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. . . Deduction [and] Induction . . . render the indefinite definite; Deduction 
explicates; Induction evaluates: that is all. Over the chasm that yawns between the 
ultimate goal of science and such ideas of Man’s environment as . . . he managed to 
communicate to some fellow, we are building a cantilever bridge of induction, held 
together by scientific struts and ties. Yet every plank of its advance is first laid by 
Retroduction alone, that is to say, by the spontaneous conjectures of instinctive 
reason. . . . 

C .  S .  PIERCE 
Scientific Metaphysics (1908), 1475 



[While] the creative power of pure thought is at work, the outside world asserts 
itself again; through the real phenomena it forces new questions upon us; it opens up 
new fields of mathematical science; and while we try to gain these new fields of science 
for the realm of pure thought, we often find the answers to old unsolved problems and 
so at the same time best further the old theories. . . . 

Besides, it is wrong to think that rigor in proof is the enemy of simplicity. 
Numerous examples establish the opposite, that the rigorous method is also the simpler 
and the easier to grasp. The pursuit of rigor compels us to discover simpler arguments; 
also, often it clears the path to methods susceptible of more development than were the 
old, less rigorous ones. . . . 

While I insist upon rigor in proofs as a requirement for a perfect solution of a 
problem, I should like, on the other hand, to oppose the opinion that only the concepts 
of analysis, or even those of arithmetic alone, are susceptible of a fully rigorous 
treatment. This opinion, occasionally advocated by eminent men, I consider entirely 
mistaken. Such a one-sided interpretation of the requirement of rigor would soon lead 
us to ignore all concepts that derive from geometry, mechanics, and physics, to shut off 
the flow of new material from the outside world, and finally, indeed, as a last 
consequence to reject the concepts of the continuum and of the irrational number. What 
an important, vital nerve would be cut, were we to root out geometry and mathematical 
physics! On the contrary, I think that wherever mathematical ideas come up, whether 
from the theory of knowledge or in geometry, or from the theories of natural science, 
the task is set for mathematics to investigate the principles underlying these ideas and 
establish them upon a simple and complete system of axioms in such a way that in 
exactness and in application to proof the new ideas shall be no whit inferior to the old 
arithmetical concepts. 

To new concepts correspond, necessarily, new symbols. These we choose in such a 
way that they remind us of the phenomena which gave rise to the formation of the new 
concepts. . . . 

If we do not succeed in solving a mathematical problem, it is often because we have 
failed to recognize the more general standpoint from which the problem before us 
appears only as a single link in a chain of related problems. . . . This way to find 
general methods is certainly the most practicable and the surest, for he who seeks for 
methods without having a definite problem in mind mainly seeks in vain. 

A role still more important than generalization’s in dealing with mathematical 
problems is played, I believe, by specialization. Perhaps in most cases where we seek in 
vain for the answer to a question the cause of failure lies in our having not yet or not 
completely solved problems simpler and easier than the one in hand. Everything 
depends then on finding these easier problems and effecting the solution of them by use 
of tools as perfect as possible and of concepts susceptible to generalization. This rule is 
one of the most important levers for overcoming mathematical difficulties. . . . 

[The] conviction that every mathematical problem can be solved is a powerful 
incentive to us as we work. We hear within us the perpetual call: There is the 
problem. Seek its solution. You can find it by pure thinking, for in mathematics 
there is no ignorabimus! 

HILBERT 
Mathematical Problems 
Archiv fur Mathematik und Physik ( 3 )  1, 
44-63,213-237 (1901). 
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Preface to the Second Edition 

Volume 2 will concern the dynamics of fluids; Volume 3, equilibrium and 
motion of elastic bodies. As the writing and incessant revision of the 
manuscripts progressed, I came to see that Volume 1 ought have provided 
additional background, especially in kinematics. Also as the years passed, 
various researches on the foundations appeared which clarified, compacted, 
and extended what was known in 1976. These are reflected most in the revised 
Sections 1.6, 1.9, II. 1 (universes of shapes), 11.11, 111.1, IV.8, and IV. 10. Also 
it seemed to me that Volume 1 wanted examples, for from the beginning the 
student should see that mechanics solves problems at every stage in its 
unfolding. To bring that fact home early, I recast Sections IV.8, IV.19, and 
IV.21, and I added two new sections, here Sections IV.15 and IV.18. In the 
text carried over from the first edition, hardly a page remains unemended. 

My experience in teaching suggests that the material in Chapter I is the 
most difficult for a beginner. Usually I began my lectures with Chapter I1 and 
then went back to Chapter I, selectively, as material in it came to be needed. 
Of course, an experienced student, one who knows the applications of fluid 
dynamics and elasticity well, should begin at the beginning. 

Acknowledgment for the Second Edition. Unfortunately I cannot now 
recall the names of all those who sent me corrections of the first edition and 
suggestions for the second. Among those who helped me most in the revisions 
of this volume and the yet unpublished texts of those to follow I express 
especial gratitude to R. D. JAMES, E. MACMILLAN, C.-S. MAN, A. W. 
MARRIS, W. NOLL, K. R. RAJAGOPAL, M. SCHEIDLER, R. SEGEV, E. VIRGA, 
C.-C. WANG, and W. 0. WILLIAMS. 

“I1 Palazzetto ’’ 
Baltimore 

1991 

... 
Xlll  
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Preface to the First Edition 

The mechanics of finite systems of points and rigid bodies was given a 
fairly definitive form by LAGRANGE’S exposition in his Mkchanique Anali- 
tique, 1788. While that book covers only certain aspects of the rational 
mechanics created by LAGRANGE’S great predecessors, it presents them system- 
atically and as a branch of mathematics: “Ceux qui aiment l’Analyse, verront 
avec plaisir la MBchanique en devenir une nouvelle branche, . . . .” The 
physics and the applications are omitted. He who will apply and interpret the 
theory, or dwell upon the intricacies and mysteries of its place among the 
relations between mind and external nature, is expected to learn it first. While 
the knowledge he thus acquires does not of itself put applications into his 
hands, it gives him the tools to fashion them efficiently, or at least to classify, 
describe, and teach the applications already known. By consistently leaving 
applications to the appliers, LAGRANGE set them on common ground with the 
theorists who sought to pursue the mathematics further: Both had been trained 
in the same workshop and spoke the same jargon. Even today this comradeship 
of infancy lingers on, provided discrete systems and rigid bodies exhaust the 
universe of mechanical discourse. 

In 1788 the mechanics of deformable bodies, which is inherently not only 
subtler, more beautiful, and grander but also far closer to nature than is the 
rather arid special case called ‘‘analytical mechanics”, had been explored only 
in terms of isolated examples, brilliant but untypical. Unfortunately most of 
these fitted into LAGRANGE’S scheme; those that did not, he passed over in 
silence. Further brilliant examples, feigned mainly upon the framework of 

xv 
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NEWTON’S and EULER’S concepts and not easily subsumed under LAGRANGE’S, 
were created in the next century but were studied mainly for their own sakes, 
separately, and did not lead to a general doctrine, despite the deep and original 
syntheses of stress and strain forged by CAUCHY. 

A hundred years after CAUCHY died began a renascence of “classical” 
mechanics as a whole, taking the deformable continuum as the typical body 
and describing it in terms of an equally specific concept of material, which had 
been left nebulous and physical or metaphysical before then. This new general 
doctrine is now fit to be learned and used by mathematicians, experimentists, 
and engineers and to join the old analytical mechanics as an element of 
common education. Physicists should be able to understand it, should they 
wish to. Like geometry, it is part of mathematics. 

In writing a textbook of continuum mechanics at this time I imitate the 
example of LAGRANGE in several ways. My book offers merely a selection 
from the wondrous harvest of the last few decades; leaving much else 
unmentioned, it bases that selection on criteria of naturalness, ease, and 
subsumption to a general method and conceptual frame. Thus it is a short 
book, designed for readers who know already that applications to further cases 
are numberless and possibilities for further mathematical study infinite. AS 
LAGRANGE wrote, “On ne trouvera point de Figures dans cet Ouvrage. Les 
mithodes que j’y expose, ne demandent ni constructions, ni raisonnemens 
gkomitriques oh mkchaniques, mais seulement des ogrations algkbriques, 
assujetties i~ une marche regulikre & uniforme.” This claim is as true-or as 
false-of the present book as of LAGRANGE’S. Of course, many proofs are 
easier to grasp if a figure is drawn, and both teacher and student should 
illumine and enrich the “regular and uniform course” by sketches. 
Finally-and here, perhaps, lies the greatest difference between this book and 
others with similar titles- it follows LAGRANGE’S example in presuming that 
the reader commands the elementary mathematics of his own day,’ making no 
attempt to offer a shadowy substitute for decent modem training in algebra and 
calculus or to appease the notorious reluctance of old men to learn anything 
new. The student may well find this book easier than his teacher does. 

In three respects, however, I depart from LAGRANGE’S model. First, I leave 
important if small pieces of the arguments, and some illustrations of them, as 
exercises for the reader, since my experience in teaching the new mechanics as 
it sprouted and grew has assured me that he who does not for himself re-create 

‘The reader is expected to know the elements of measure theory. For almost everything else 
needed in “pure” mathematics, more than sufficient background is given in the book by R.  M. 
BOWEN & C.-C. WANG, designed especially for students of continuum mechanics: Introduction 
to Vectors and Tensors, 2 volumes, New York and London, Plenum Press, 1976. Some more 
specialized works are cited below in reference to some particular theorems, as needed. 
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and digest the mathematics step by step will never master this doctrine. 
Second, while LAGRANGE’S presentation bestowed upon the subject a gloss of 
closure and completeness which by the passage of time has been abundantly 
proved specious, in this book I try to present the science of “classical” 
mechanics even to the beginner as what it is: a magnificent array of ordered 
concepts and proved theorems, some of them old, even very old, and some on 
the frontiers of research into great unsolved problems and not yet distilled 
experience of nature as human eyes see it and human hands feel it. Third, the 
frequent attributions of major ideas and theorems to others will make it clear 
that I claim little of the substance for my own. The citations of other works, 
however, are intended not as acknowledgments of sources but as aids to the 
student. Those at the ends of the chapters direct him to places where further 
matters closely related to the text are developed; those in the footnotes, to 
specific details passed over in the text such as counterexamples, direct general- 
izations, proofs of theorems cited from other parts of mathematics, and tangent 
domains of modern mechanics. 

Finally, I wish to thank those who have helped me to understand mechanics 
and to complete and purify this book. Thus above all I thank WALTER NOLL, 
and after him J. L. ERICKSEN, R. A. TOUPIN, B. D. COLEMAN, M. E. GURTIN, 
C.-C. WANG, W. 0. WILLIAMS, L. SOLOMON, T. TOKUOKA, W.-L. Ym, R. C. 
BATRA, and D. EUVRARD. I am indebted to Mr. BATRA also for a full set of 
solutions to the exercises. 

‘ ‘I1 Palazzetto ’ ’ 
Baltimore 

May 1, 1972 

Addendum. Parts 1 through 4 of this work, expertly translated into 
French by D. EUVRARD from my text of 1972, were published in December, 
1973, by Masson et Cie in a single volume with the title Introduction h la 
Mdcanique Rationnelle des Milieux Continus. Parts 1 through 5 appeared in 

CnnoruHbIxCpen, Moscow, M H ~ ,  translated from my text of 1973 by R. V. 
GOLDSHTEIN & V. M. ENTOV under the guidance of P. A. ZHILIN & A. I. 
LUR’E. Since that time I have been able to add some material and also to work 
through the text again and make numerous improvements, partly in response to 
criticisms and suggestions offered by readers of the French book. 

A question has been raised regarding the knowledge of mechanics the 
student is expected to have already. A good treatise on the theory of functions 
of a real variable does not strictly require of its readers any previous 
acquaintance with the subject, even in the most elementary aspects of infinites- 
imal calculus, yet a student armed with no more than a naked, virgin mind is 

1975 in Russian, HepBOHasaJIHHbIfi KypC PaUHOHaJIbHOfi MexaHHKH 



xviii PREFACE TO THE FIRST EDITION 

unlikely to survive the first few pages. In the same way, although this book 
does not call upon any previous knowledge of continuum mechanics, or even 
of schoolboy mechanics, it is designed for students not altogether innocent of 
hydrodynamics and elasticity. Much as a crude and awkward first affair may 
furnish knowledge that, however elementary, is indispensable to him who 
aspires toward Venus’s ultimate refinements, a bad course-something nowa- 
days cheaply found-will serve well enough here, too. 

Some comments on the preliminary editions in French and Russian suggest 
need for a reminder that this is a mathematical textbook, not a treatise or a 
history. In attaching names to a proposition I follow the commonest usage in 
the mathematical literature, proclaiming respect for those to whom I think we 
owe that proposition, be it in entirety, be it for discovery and proof of a pilot 
case, be it for clearest statement or most elegant proof; a second name never 
indicates rediscovery but always some major improvement, and of course it 
would not be feasible in any discipline so broadly cultivated as rational 
mechanics now is to list all the persons who have done something valuable, 
even if I knew of them all. . . . 

I thank Mr BATRA for further suggestions and for checking the manuscript 
of this volume. I am deeply grateful to him and to Messrs. DAFERMOS, 
ERICKSEN, GURTIN, MUNCASTER, NOLL, and WILLIAMS for their generous gift 
of time and care in correcting the proofsheets so as to remove errors and 
obscurities even at the last moment. For such faults as, alas, surely remain I 
bear an uncommon charge, for seldom has an author had the benefit of such 
abundant and expert aid. 

I owe a double debt of gratitude to the U.S. National Science Foundation 
for its continued and generous support: first, for the work of some of the great 
savants whose discoveries are incorporated here; second, for my own long 
effort to compose the essence of modern rational mechanics into an easy union 
with the magnificent tradition from which it sprang, so that beginners might 
learn both old and new together and in such a way as to see each illuminate and 
ennoble the other. 

C.T. 
December 20, 1976 

Addendum, 1990. The following introductory works are sound and helpful: 
D. C. LEIGH, Nonlinear Continuum Mechanics, New York etc., McGraw- 

P. CHADWICK, Continuum Mechanics, New York, Wiley, 1976. 
C.-C. WANG, Mathematical Principles of Mechanics and Electromag- 

netism, Part A: Analytical and Continuum Mechanics, New York and 
London, Plenum Press, 1979. 

M. E. GURTIN, An Introduction to Continuum Mechanics, New York etc., 
Academic Press, 1981. 

Hill, 1968. 



PART 1 

GENERAL CONCEPTS 

In the following Chapters on Abstract Dynamics we confine ourselves mainly 
to the general principles, and the fundamental formulas and equations of the math- 
ematics of this extensive subject; and neither seeking nor avoiding mathematical 
exercitations, we enter on special problems solely with a view to possible use- 
fulness for physical science, whether in the way of the material of experimental 
investigation, or for illustrating physical principles, or for aiding in speculations 
of Natural Philosophy. 

THOMSON & TAIT 
Traatise on Natural Philosophy 
(2"d ed., 1883), Section 453 
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Chapter I 

Bodies, Forces, and Motions 

[Tlhe idea of Force . . . is a direct object of sense . . . . 
THOMSON & TAIT 
Treatise on Natural Philosophy 
(1867), Section 207 

I have restored to the concepts of mass and force their old rights. Beyond 
all doubt we need these things, for without them, there is no mechanics. Force is 
more than mass times acceleration, as may be seen from the basic equation itself, 
which always asserts that mass times acceleration equals the sum of the forces. 
Therefore, why not use the good old words? The concepts themselves are not 
unclear; it is just that the books described them often in a very metaphysical and 
dark way. And what matter, if the concepts are remarkably useful-perhaps a bit 
riddling?- if the concepts of mechanics are deeper than many find convenient, 
and cannot be disposed of with a few elegant words like convention and economy 
of thought, abstraction and idealisation? 

HAMEL 
On the foundations of mechanics. 
Mathematische Annalen 66 (1909): 
350-397. 

3 



4 I. BODIES, FORCES, AND MOTIONS 

Space, time, and force are a priori forms; they can be derived only from 
contemplation and from general principles of research. Their common relation 
to each other in mechanics must be regarded as something inspired indeed by 
experience but in its generality fixed by convention. 

HAMEL 
Elernentare Mechanik (1912), 75 

[I]n the concept of force lies the chief difficulty in the whole of mechanics. 

HAMEL, letter to TRUESDELL, 
14 October 1952 



1. RATIONAL MECHANICS 5 

1. Rational Mechanics 

Rational Mechanics is the part of mathematics that provides and develops 
logical models for the enforced changes of place and shape we see everyday 
things suffer. It describes also much of what is observed or inferred in the 
laboratories where professional scientists produce experiments. For example, 
it is always presumed as a part of the basis for design and control of scientific 
apparatus which physicists regard as producing decisive experimental evidence 
that classical mechanics itself is only an “approximate” theory of nature. Of 
course, all mathematical theories of nature only approximate it. 

The things mechanics represents by mathematical constructs include animals 
and plants, mountains and the atmosphere, oceans and the subterraneous riches, 
the whole orb which is the seat of our life and experience, heavenly objects both 
old and new, and the elements out of which these things seem to be composed: 
earth, water, air, and fire. As its name suggests, mechanics represents also the 
contrivances of man’s artifice: fountains and engines and vehicles, bridges and 
fabrics, instruments of music and warfare, sewers and rockets. All these things 
mechanics models, but models crudely. Like any other branch of mathematics, 
it abstracts and evolves the common features of what it represents, setting aside 
most of the detail. As is necessary in any science which aims not merely to 
describe but also to predict, it seeks to select and correlate the simple out of 
the manifold and insuperable complexity of nature. Simplicity, while it does 
not ensure success in a branch of mechanics, is necessary there. A complicated 
theory in mechanics, although it may be socially or sociably useful at a particular 
time and place, does not enlighten and hence does not endure. Finally, since 
our experience grows with time and in proportion to our ingenuity, while the 
progress of mathematics enables us to manage easily and neatly mathematical 
ideas and operations of greater and greater scope, mechanics cannot be a closed 
science but must contain or at least be provided with means of improving or 
refining the models it presently possesses and also of constructing new ones. 

Mechanics does not study natural things directly. Instead, it considers bod- 
ies, which are mathematical concepts designed to abstract some common fea- 
tures of many natural things. One such feature is the mass assigned to each 
body. Always, a natural body is at any one instant found to occupy a set of 
places; that set is the shape of that body at that instant. The theory of places, 
which is called geometry, was created long ago and thus lies ready to hand 
for application in mechanics. The change of shape undergone by a body from 
one instant to another is called the motion of that body, and description of mo- 
tion, or kinematics, is the second part of the foundation of mechanics. Third, 
motions of bodies are conceived as resulting from or at least being invariably 
accompanied by the action of forces. Thus, mechanics provides a mathematical 
model, or, better, an infinite class of models, for certain aspects of nature. 



6 I. BODIES, FORCES, AND MOTIONS 

In the words of NEWTON, 

. . . Rational Mechanics will be the science of motions resulting from any forces 
whatsoever and of the forces required to produce any motions, accurately proposed and 
generated. 

Mechanics rests upon three substructures: a universe of bodies, a geometry 
with its kinematics, and a theory of forces. These substructures provide the 
concepts mechanics is to connect. Relations among places, the shapes of bod- 
ies, forces, and times are of two kinds: the general ones, common to all bodies 
in an assigned universe, appropriate to a branch of mechanics, and the partic- 
ular ones, which within a given branch distinguish one class of such bodies 
from another. The general relations are of two kinds: statics, which compares 
putative equilibria; and dynamics, which describes motions. The particular re- 
lations are called constitutive. They define materials, which are mathematical 
idealizations of the materials encountered in nature. Typical branches concern 
mass-points, three-dimensional continua, plates, shells, membranes, rods, jets, 
and strings. Typical constitutive classes are the bodies called rigid or solid or 
fluid, isotropic or anisotropic. 

The chapter now begun presents mechanics of a fairly general kind, rendered 
concrete by illustrations from the theories of continua and of mass-points. From 
Chapter I1 onward we shall treat only the mechanics of continua occupying 
three-dimensional shapes. 

I cannot develop all of mechanics from explicit axioms.' So as to reach the 
level at which we may formulate and study constitutive relations, we shall pass 
lightly over the foundations of general mechanics. 

While the presentation is lacunary and informal, it is abstract. The reader 
who is content to take bodies, the event world, frames of reference, motions, 
and forces for granted may skip this chapter and pass to the next one, which 
begins the formal treatment of continuum mechanics along traditional lines. 
The traditional approach to mechanics is in no way incorrect, but it fails to 
satisfy modern standards of criticism and explicitness. Therefore, some parts 
of the foundations of mechanics heretofore left in the penumbrae of intuition 
and metaphysics I shall here present in an explicit, compact mathematical style, 
notably the theories of substantial universes of bodies (Sections 1.2 and 1.3), 
systems of forces (Section IS) ,  and the universe of shapes of continua (Section 

'The sixth of the problems HILBERT set for the twentieth century to solve was to formulate an 
axiomatic structure for physics, and especially for mechanics. Apart from a noteworthy attempt of 
HAMEL in 1909, this problem was given scarcely any serious attention until it was taken up by NOLL 
in 1957. The content of Chapter I of this book derives essentially from the work of NOLL and those 
who have accepted, applied, and extended his ideas. 
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11.1). In the theory of contact forces and body forces (Sections 111.1 and 111.3) 
modern, precise treatments appear alongside the corresponding classical ones. 

Natural things usually are endowed with a hotness or hotnesses, which are rendered 
numerical through assignment of scales of temperature. Natural things may also absorb 
and emit heat. Rational Thermomechanics' is a group of mathematical theories that 
interrelate motion, force, hotness, and heat through a general structure, thus providing a 
framework more general than Rational Mechanics in that it allows models for a greater 
class of natural things. On the other hand, in thermomechanics the theory of constitutive 
relations is in part less general, for that theory delivers restrictions that, if pulled back 
into mechanics, would narrow its scope. 

This textbook stops short of thermomechanics. 

2. Universes of Bodies 

Most collections of bodies d ,  9?, V, . . . , X conform with the mathematical 
structure of a Boolean lattice or complemented distributive lattice, often 
called a Boolean algebra.2 The student who is familiar with this structure may 
pass directly to the next section. Here, following NOLL, we shall simply list in 
order of their immediacy the properties common to all bodies in most theories 
within mechanics and prove some theorems concerning them. 

The set Q of all bodies of some particular kind is called a universe. At the 
very beginning in any branch of mechanics, a universe is specified, though in 
older work the reader was expected to infer the particular universe from the 
context. If the body 9? is apar t  of the body 9, we write 9? + 9. The relation 
+ gives 0 the structure of apartially ordered set, defined by familiar axioms: 

Axiom B1. 9 49 

AxiomB2. ( X + 9 ? ) & ( 9 + 2 7  j F = 9  

AxiomB3. ( 9 ? + U > & ( V + 9 )  + 349. 

'Rational Thermomechanics is a field still under active discussion and development. Among 

C .  ' ~ U E S D E L L ,  Rational Thermodynamics, N.Y. etc., McGraw-Hill, 1968; second edition, 
with a historical introit and appendices by several authors, N.Y. erc., Springer-Verlag, 1984. 
W. A. DAY, The Thermodynamics of Simple Materials with Fading Memory, N.Y. etc., 
Springer-Verlag, 1972. 
D. R. OWEN, A First Course in the Mathematical Foundations of Thermodynamics, New 
York efc. ,  Springer-Verlag, 1984. 
I. MULLER, Thermodynamics, Boston efc. ,  Pitman Publishing, 1985. 
J. SEWN (editor), New Perspertives in Thermodynamics, Berlin etc., Springer-Verlag, 1986. 
2For the general theory see the book by R. SIKORSKY, Boolean Algebras, 3rd edition, Berlin 

the books that deal with it are 

etc., Springer, 1969. 
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That is, 9 is a part of itself; ?2 is not a part of any other of its parts; and 
if ?2 is a part of V, while V is a part of 9, then 9 is a part of 9. Another 
wording of Axiom B2 is, a body is the greatest of its parts. 

To picture the relations among bodies, it may help to consider Sl as being the 
collection of all open sets in the Euclidean plane and to take 4 as being the sign of 
inclusion, c , so that the suggestive sketches often called “Venn diagrams” are easy to 
draw. This illustration is only one of many. Others, including the universes commonly 
presumed in mechanics, will be presented in the next section. 

When the bodies 9 and V are given, neither need be a part of the other, 
but often they are both parts of a third one, 9. Such a 9 is called an envelope 
of ?2 and V. If, further, there is a body d that is an envelope of 9 and V and 
is itself a part of every envelope of 9 and V, then d is called the join of 9 
and V. This relation among bodies is denoted as follows: 

d = ? 2 V V .  (1.2-1) 

Formally, this equation means that if (?2 4 d & V 4 d), then 

( ? 2 4 9 & V < 9 )  + d 4 9 .  (I .2-2) 

Thus, the join of ?2 and V, if it exists, may be regarded as the least envelope of 
9 and V, since it is a part of every envelope of ?2 and V. Likewise, if d 4 9 
& d 4 V and 

(949, 9 4 9 )  * 9 4 d ,  (1.2-3) 

we write 

d = ? 2 A V  (1.2-4) 

and call d the meet of ?2 and V. If it exists, it is the greatest common part 
of ?2 and V, since every other common part of ?2 and V is a part of it. Two 
bodies 9 and V may fail to have a meet or a join, or both, but, if they do have 
them, then plainly 

Also 
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whence 

9 

(1.2-7) 

and here, trivially, both the meet and the joint exist. 

Exercise I. 2.1. 

9 < V =+ (9 A d  4 V A d )  & (99 V d  < V V d ) ,  (1.2-8) 

each indicated meet and join being assumed to exist. 

If gq are bodies from any collection, membership in which is indexed 
by subscripts q taken from some given set, meets and joins of the collection 
are defined in the same way and denoted by A g q  and V g q .  The former, 

for example, if it exists, is a body which is a part of each 3Yq and contains 
every other such body. For three bodies it is sometimes clearer to use the 
longer special notation 9? A V A 9, but then we must recall that the order of 
considering .G@, V, and 9 makes no difference, as is clear from the general 
notation and is illustrated in ( 9 1 . 2 .  

Q Q 

To see that partial ordering does not ensure the existence of meets and joins, it 
suffices to consider the example of a universe Q consisting in all non-empty, half-open 
intervals ] a ,  b] and [c ,  d [  of real numbers, with 4 defined as being inclusion in the 
sense of set theory. If 9 = [0, 2[, V = [ l ,  41, and 9 = [3, 5[, then 99 and V are 
common parts of infinitely many half-open intervals, yet they have no join, since if a 
certain half-open interval contains all the points of and V, we can find a shorter one 
that does so. The same may be said of the pair V ,  9. Nevertheless, 99 V V V 9 = [0, 51, 
which is a member of Q. Note that 9 V 9  =9 V V V 9  + 9 U 9 .  

Exercise 1.2.2. If 99 A V and V A 9 exist, and if either (g? A V )  A 9 or 9 A 
(V  A 9) exists, then both do, and so does 9 A V A 9; also 

(3? A V )  A 9 = 9 A ( V A 9) = %’ A V A 9. (1.2-9) 

A body d E Q is called the null body if and only if it is a part of every 
body in Q :  

d+.G@ V93EQ. (I .2- 10) 

Q need not contain such an element, but if it does, Axiom B2 makes that element 
unique. A body is called the universal body and denoted by 00 if and only if 
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every body in 0 is a part of it: 

g+oC V g E n .  (1.2-1 1) 

Such a body, if it exists, is obviously unique. 
If the set 0 does not contain the null body or the universal body, we can 

formally adjoin either or both of these bodies so as to form the corresponding 
closed universe 8 ,  defined as follows: 8 := fl U {a, m}. By the following 
definitions we extend the partial order 4 in 0 so as to form a partial order in 
8 :  

It is easy to verify that with the definitions (1.2-12) 8 becomes a partially 
ordered set with partial order + , and that 8 and 00 are the null body and the 
universal body of 8 . 

In 8 clearly 

Any two bodies ~8 and '+? in 8 have at least one common part, namely 0. If 
they have no other common part, they are called separate. Thus 23 and $7 are 
separate if and only if 

9 ? A V = @ .  (1.2- 14) 

Exercise I. 2.3. 

( B A V = O ) & ( Q + V )  +- % A r \ = O .  (1.2- 15) 

Setting 9 = 99 and using (7) shows that the only part of a body separate from 
that body is 8. 

Next we need a concept of environment of a given body 3, so as to provide 
which we lay down a further axiom: 

Axiom B4. With each body 3? in 8 is associated a unique body ge, 
which is called the exterior of 9, such that 

3 A g e = 8 ,  3 V L ? 8 e = ~ .  (1.2- 16) 
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Thus 9'" is separate from 9, and the only body that contains both 9 and ge 
is 00. 

The example given just before Exercise 1.2.2 shows that Axiom B4 cannot follow 
from Axioms B1, B2, and B3, since the points exterior to [0, 1[ do not constitute a 
half-open interval. 

Exercise I. 2.4. 

By putting 3? = 8 in (13)3,4 and comparing the outcome with (16), we see 
that 

d = 00, 00'" = 0. (1.2- 18) 

Likewise 

(9'")'" = 9. (I .2- 19) 

Also, putting 9 = $?? in (15) shows that 

We now postulate that the converse of this proposition holds: 

Axiom B5. The only bodies separate from Ve are the parts of @?. 

While it has been proved' that Axiom B5 does not follow from Axioms Bl-B4, I 
could find no simple example to illustrate this fact. 

Formally, we may combine (20) with Axiom B5 as follows: 

9 4 g  H g A r \ ' = 8 .  (1.2-2 1) 

By (19), then, 

9 4 + Ve A(@)'" =8. (I .2-22) 

'R. P. DILWORTH, "Lattices with unique complements," lhnsactions of the American Math- 
ematical Society 51 (1945): 123-154. 
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If we now replace 97 by Ve and $7 by ge in (21) and compare the result with 
(22), we see that 

Now let q run over the elements of some specified collection. Then if vgq 
exists, so does A(9Y9Y, and 

4 

4 

while if A%9 exists, SO does V(979)e, and 
4 4 

(1.2-24) 

(1.2-25) 

Drawing a diagram will make evident the statement and proof of the fol- 
lowing theorem, where all meets and joins indicated are assumed to exist: 

Theorem. If 

(1.2-27) 

(1.2-28) (-01, AB) A $? = b, q = 1,2.  

Let 8 be a common part of 9 and Ve: 

& + 9, & + ye .  (1.2-29) 

Then 6 4 97 by (26)3 . Let F9 be a common part of 8 and -01, : 

F9 +&, Fq + d 9 ,  q = 1 , 2 .  (1.2-30) 
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Then 9, 4 g, and hence 

13 

(1.2-31) 

Using this conclusion and (28) in (15), we find that 

y q A ( R e = @ .  (1.2-32) 

But 9, 4 € 4 Ve,  and so by the conclusion in Exercise 1.2.3 we see that 
9, = b. In view of the hypothesis (30), then, 

& A d ,  = b, 4 = 1,2 .  (1.2-33) 

By (211, then, d, < B e ,  and hence 

dl V d 2  4 g e .  (1.2-34) 

But by (26)4 and (29)l 

& 4 d l  V d 2 .  (1.2-35) 

Hence € 4 d e ,  so by (17) & = 8. The hypothesis (29) has thus led to the 
conclusion that 9 A $? = b, and by (21) we obtain (27). 

The theorem enables us to prove the distributive laws of Boolean algebra. 
First, i f d l  A g ,  d 2  A 9 ,  a n d d l  V d 2  exist, then 

provided either side exists. Indeed, the theorem tells us that any body which is 
a part of both 3? and dl V d 2  is also a part of any body of which dl A 33 and 
d 2  A 9  are parts. Thus the body on the right-hand side of (36), if it exists, 
contains every common part of d l  V ,d2 and g. Since it is trivially a common 
part ofd l  V d 2  and 9, by the definition of “meet” it is (dl V d 2 )  A g. Similar 
reasoning applies if the body on the left-hand side is assumed to exist. 

If we replace the bodies occurring in (36) by their exteriors and use (24) and 
(25), we obtain the second distributive law: If dl V B ,  d 2  V 93, and -011 A d 2  
exist, then 

provided either side exists. 
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If in (36) we take d l  and d2 as being d and &, we see that if d A 23 and 
d A g  exist, then 

g = (d A g) v (d A g). (1.2-38) 

Finally, we have the basic decomposition theowm, which enables us to express 
any body 8 as the join of any one of its parts d with a certain, uniquely 
determined, separate body V: 

(g = d V  V) & (d A @? =@) (d + g) & (U =g A d e ) .  (1.2-39) 

To prove this implication, we assume first that the decomposition on the left- 
hand side exists. Then d + 27, and by (19) and (21) V + &; equivalently, by 
(6)1, V A d  = V. By (39)1 and (36), then, 

g A& = (d v V) 

= (d A d e )  V ( V  A&), 

= b V $ ? = V ,  (1.2-40) 

so that the implication forward in (39) is proved. Now suppose, conversely, that 
d + 9? and V = 37 A d .  Then d A 93 = d, so that (38) yields 33 = d V V. 
Since v + d, it follows that d A v = 8. A 

The final axiom for bodies asserts the existence of the meet: 

Axiom B6. For any two bodies 9Y and @?, the meet LB A V exists. 

In the next section we shall see by example that Axiom B6 is not a con- 
sequence of Axioms Bl-B5. By adopting it, we may omit the qualifications 
hitherto expressed regarding the existence of meets and joins, for (24) shows 
that (d = d V @ .  

There is a notation for the part of d that is not a part of &?: 

d\g :=d A g e .  (1.2-41) 

A basic representation theorem due to STONE asserts that every collection that is a 
Boolean algebra with respect to finite joins and meets is isomorphic to a field of sets' 

'A field of sets is a non-empty collection of subsets of a given space that is closed with respect 
to the operations of finite union, intersection, and complementing. 
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in an appropriate topological space (see e.g. Theorem 8.2 of SIKORSKY’S book, cited 
above in Footnote 2 on p. 7.) Thus, as far as finite Boolean operations are concerned, a 
universe and a collection of sets endowed with the usual operations of set theory are in 
essence equivalent. Nonetheless, such equivalence fails in general when we consider, as 
we do in continuum mechanics, infinite Boolean operations (see Chapter I1 of SIKORSKY’S 
book). 

3. Examples of Universes 

We now mention two systems satisfying Axioms Bl-B6 and one satisfying 
only Axioms Bl-B5. In each, 0 is a class of sets, and the symbol 4 is taken as 
being c, the sign of inclusion, but only in the first one are A and V the same 
as n and U , the symbols of intersection and union. To avoid any possible 
confusion with the term “particle” as used in physics, in this book we shall 
call elements of the sets in U substantial points henceforth until Section IV.2; 
there we shall adjoin further properties to those points, justifying our calling 
them thereafter material points. 

Example 1. Let U consist in all subsets of some set GY. Then d A 33 = 
d ng, d v @ =d U g ,  and L& is the complement of d in P. Also 00 = P 
and 0 = 8, 0 being the null set. 

For example, Ymay be a finite set, say X I  , X2 , . . . , X, . Universes of this 
kind are used in the classical dynamics of discrete systems. We shall develop the 
basic principles of that traditional mechanics in some of the succeeding sections 
of this chapter. 

Example 2. Let Qo consist in all regularly open sets’ in a topological 
space F. The exterior 91e of 33 is the interior of the complement of 97. For any 
collection of bodies gk the meet, defined as follows: 

&?8k := intclo n33k , 
k k 

(1.3-1) 

is a body of U 0 . Thus U 0 is a universe. 

The meet of a finite collection of bodies is simply the intersection, but for 
infinite collections such is not always the case. 

‘ A  set d is regularly open if int c l o d  = 1. An example of an open set that is not regularly 
open is an open disc in the plane with one interior point removed. 
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Indeed, let Y be the real line, and consider in 00 the particular bodies k 8 k  := 

] - l / k ,  1[, k = 1, 2, 3 , .  . . . Then ngk = [0, 1[, which does not belong to no, but 

(1) shows that A $ k  = 10, 1[, which does belong to 00 . 

00 

k=l  
00 

k= I 

The join of any collection of bodies g k  is given by 

Vgk = intclo U g k  . (1.3-2) 
k ( k  ) 

Exemise 1.3.1. The statement (2) is a consequence of the general definition of 
join, given in Section 1.2. 

Example 3. Let F be a Euclidean space 8. Consider the collection 0 ,  
of all regularly open sets in & that have piecewise smooth boundaries. 0, is a 
subcollection of 0 0 .  Thus, the meet in 0 ,  is defined by (1). Nonetheless, 0, 
does not satisfy Axiom B6 because the meet of two sets of 0 ,  need not belong 
to 0 , .  

To see this last, we remark that the intersection of two sets with piecewise smooth 
boundaries need not itself have a piecewise smooth boundary. Suppose, for example, 
the elements of Q, be sets in the plane; let be the open square - 1 < y < 0,  
0 < x < 1, while %?z is the set of points such that 0 < x < 1, - 1 < y < x2  sin x - I .  
Then gI A972 # Q r  . 

The student should recall the example just presented when he comes to Sec- 
tion 11.1, in which we shall present a universe suitable for continuum mechanics. 

4. Mass 

Using Example 2 in Section 1.3, we employ as 0 the closure of 00 obtained 
by adjunction of 0 and F a s  the null body and the universal body. The bodies 
of interest in mechanics have mass; as we may say, they are massy. The massy 
bodies form a non-empty subclass O M  of 0 .  The mass of 9Y is the value M ( B )  
of a non-negative mass function M defined over O M  : 

Axiom M1. 0 s M(9Y) 5 00 V B  € 0 ~ .  
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Further, we lay down 

Axiom M2. 

That is, the exteriors’ and joins of massy bodies also are massy bodies. In 
particular, d and co are massy. Because (!?,?I; V 9 z ) e  = 971 A . g 2 ,  it follows 
from Axiom M2 that 

Thus, the meet of two massy bodies is massy. Moreover, we assume that mass 
is additive: 

Axiom M3. If 31 and 32 are separate massy bodies, then 

Hence 

The mass assigned to the infinite body 00 need not be 00. If M(co) = 00, 
then M ( 9 )  < 00 + M(@)  = co. A body of mass 0 is called massless. Thus 
0 is massless, but of course there may be other massless bodies. That is, 
M ( g )  = 0 + 93 = 0.  Also, by (1.2-39), 

(1.4-4) 

Though these properties reflect the obvious requirements of the idea of 
mass, they do not suffice to define it effectively. As is well known, if we are 
to obtain the convenient mathematical structure called measure theory, further 

‘If the requirement that 9‘ should be massy seems artificial, the student should recall that the 
possibility that M(Ct?’) = 0 is not excluded. 
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assumptions must be laid down. While we assume that fl contains a massy part 
f l ~  , we shall not attempt to construct a measure based on f l ~  , for at present 
there seems to be no entirely satisfactory way of doing so in general. 

While the notions of mass and electric charge, along with volume and area, were 
distilled to provide the basis of measure theory, that theory in its present state accounts 
satisfactorily only for the latter two, not for the former. Indeed, the mass function is 
a measure, but measure theory does not suffice for constructing a mass function. That 
is so because measure theory refers to sets, while, as we have seen in Section 1.3, the 
notions of meet A and join V of bodies generally are not the same as intersection n 
and union U in the algebra of sets, even in the case when bodies are indeed sets. A 
good mathematical theory of mass would be purely algebraic, assuming of bodies no 
more than the axioms B 1-B6 (and preferably not the last). The defect here is more one 
of clarity and elegance than application, since, as we shall see more clearly in Chapter 
11, the concepts of shape and motion enable us to use in continuum mechanics the theory 
of Lebesgue measure. 

From now on we assume that the mass M defined over Q M  can be extended 
so as to be a Borel measure defined over all the Borel sets’ of 7. There will 
be no confusion if we denote also this extended measure by M ,  even though a 
Borel set need not be a body. The assumption is more confining than it may 
appear at first glance, for if M is a measure on the Borel sets, it is additive on 
disjoint unions of them. Our basic Axiom M3 requires only that it be additive 
on the joins of separate bodies. 

Once a non-negative mass function M be given, clearly KM is also a non- 
negative mass function if K is any positive constant. To any one particular body 
23 that is not massless we may assign any positive mass we please, and the ratios 

‘ A  purely algebraic theory was developed by C. CARATH~ODORY in his last book, Mass und 
Integml und ihre Algebmisierung, Basel, Birkhauser, 1956, translated as Algebraic Theory of 
Masure and Infegmtion, Bronx, New York, Chelsea, 1963. While the u6para over which 
CARATH~ODORY defines a measure formalize a concept of “body”, he uses again and again the 
axiom that an enumerable collection of bodies have a join, which for applications in continuum 
mechanics is not always true. 

’The collection of Borel sets in a topological space is the smallest o-algebra that contains all 
of the open sets. A Boolean algebra whose elements are sets (with V and A taken as U and fl) 
is a u-algebm (or Borel field) if it includes every join of an enumerable collection of its elements. 
Thus all open sets, all closed sets, and all intersections of enumerable collections of open sets or 
closed sets are Borel sets. 

The Borel sets suffice to define a measure on the topological space to which they belong, 
and every continuous map of that space is measurable. Borel masure serves to define the Borel 
integral of a real function whose values are not negative. 

A brief and clear treatment of Borel sets and Borel measure is given by WALTER RUDIN, Chapters 
1 and 2 of R a l  and Complex Analysis, Znd edition, New York etc., McGraw-Hill, 1974. 

Because M is a Borel measure, the measure of every compact set is finite, a fact which is 
important for some of the arguments in Chapter 111. 
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of the masses of bodies are unaffected by this choice. In physics the assignment 
of a particular mass to some one body in the universe is called “fixing the unit 
of mass. ” 

Henceforth, apart from a few specified exceptions, we shall consider only 
Q M  , not any greater universe a ,  and we shall use the symbol a to denote O M  , 
thus excluding tacitly from our discourse any bodies that are not massy. Our 
assumptions enable us to write 

(I .4-5) 

and the integral 

S f d M  (1.4-6) 
.d 

of any continuous function f can be defined in the way shown in books on the 
theory of measure and integration. 

If f l ~  consists in the subsets of a finite set whose elements are, say, X I , .  . . , X ,  , 
then a positive mass Mk is assigned to { X k } :  

Mk : = M ( { X k } ) ,  k = 1 , 2  , . . . ,  n ,  (I .4-7) 

and the masses of the other bodies in fl are obtained by addition of the masses of 
the separate elements composing them; for example, M( { X I  , X2 }) := M I  + M2 . The 
substantial points X I  , X 2 , .  . . , X ,  are called mass-points. 

By assuming masses directly to the bodies of the universe we express a 
physical idea: mass is conserved. 

This principle is nowadays considered appropriate to mathematical models for phe- 
nomena in which chemical or nuclear reactions may be neglected and the speeds associ- 
ated to bodies are small in comparison with the speed of light. In theories of chemical 
reactions the principle still holds, but only for sufficiently large bodies, among the parts 
of which mass generally is exchanged. 

5. Force 

The general theory of systems of forces that we now present is NOLL’S. So 

A system of forces on a universe f l  is an assignment of vectors in some 
far, the whole refers to a fixed instant. 
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inner-product space 9 to all pairs of separate bodies of Q . Vectors are denoted 
by bold-faced letters. 

Let (0 x Q ) o  be the collection of such pairs. The first axiom of forces is 

Axiom F1. f: (Q x Q)o -+ 8. 

The vector f ( 9 ,  U) is called the force exerted on 9 by V .  Since we are here 
considering 0 rather than 0 ,  no force need be assigned to pairs one member 
of which is 00 or 8. Moreover, the force exerted by two separate bodies on a 
third body separate from both is the sum of the forces exerted by each, and the 
force exerted by a body on the join of two separate parts of a separate body 
is the sum of the forces exerted on each. That is, the function f is additive in 
each of its variables: 

Axiom F3. f ( 9 ,  U I  V U2) = f(9, U I )  + f ( g ,  U2). 

Both of these axioms refer to pairwise separate bodies V I  , V2 , and 3. 

K > 0. Choice of a particular K is called "fixing the unit of force". 
If f - g  denotes an inner product in 9, then K f - g  is also an inner product if 

It is easy to extend f from (0 x 0)o to (0 x 0)o , since Axioms F2 and F3 allow 
no other value but 0 for the force exerted by or on the null body. Thus we must set 

f@7,@):=f(0 ,9) :=0  vg Eh. (1.5-1) 

The choices &' = 00 or %? = 0 are not excluded here. 

Since Axioms F2 and F3 are statements of additivity, we see that i f f l  and 
f2 are systems of forces on (Q x Q ) o ,  then for  any numbers A and B the 
sum Afl + Bf2 is a system of forces. 

Since every body in 0 is separate from its exterior, Axiom F1 enables us to 
form f (B ,  g"), the force exerted on 3 by its exterior. We call this particular 
force the resultant force on g. Resultant forces are subject to a fundamental 
identity: 

for all pairs of separate bodies L@ and U in 0 .  To prove the identity, suppose 
first that U = 9". Then mere statement of (2) requires extension of f to 0 
and hence leads to ( l ) ,  whence (2) follows trivially. If V # g", extension of 
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f to 0 is not needed, and the following argument holds in Q as well as in 0, 
provided only 9 and 9 V @? have exteriors. Since 9 A @? = M by hypothesis, 
from (1.2-21), (1.2-38), and (1.2-24) we see that 9" may be decomposed into 
separate parts as follows: 

9" = U V ( 9  v U)e VU + 9". (1.5-3) 

By Axiom F3 

f(9, 9") = f(9, u/) + f(9, (9 v U)"), 

f( v, @) = f(  v, 9) + f( v, (9 v U)"), 
(1.5-4) 

while by Axiom F2 

f(9 V GR, (9 V U)") = f(9, (9 V U)") + f(v, (9 V U)"). (1.5-5) 

Adding (4)l to (4)2 and subtracting (5) from the sum yields (2). 

If the force exerted by v on 9 is of magnitude equal and of sign opposite 
to that exerted by 9 on v, that is, 

f(9, U) = -f(u/, 9) V ( 9 ,  U) E (0 x B)o, (1.5-6) 

the system of forces f is said to be pairwise equilibrated. This term describes 
the meaning of the idea; skew is shorter but less suggestive. From (2) we may 
read off the following 

Theorem (NOLL, GURTIN & WILLIAMS). A system of forces is pairwise 
equilibrated i f  and only i f  the resultant force f ( 9 ,  Be), regarded as a func- 
tion of 9, is additive on the separate bodies of 0 .  

A system of forces such that the resultant force on every body vanishes: 

f ( 9 ,  ge) = 0 v9 E 0,  (I .5 -7) 

is balanced. Since the function whose value is 0 is additive, the above theorem 
has the following 

Corollary (NoLL). Every balanced system of forces is pairwise equi- 
librated. 
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As is clear from the foregoing theorem, the converse of NOLL’S corollary 
does not hold. Indeed, there are many systems of forces that are pairwise 
equilibrated but not balanced. One important example is presented later on in 
this section; another is furnished by the contact forces in continuum mechanics, 
as will be explained in Section 111.1. 

In the past, instances of (6) were often inferred from a vague “axiom” called the law 
of “action and reaction”, which was regarded as expressing the content of NEWTON’S 
Third Law of Motion: “To an action there is always a contrary and equal reaction; 
or, the actions of two bodies mutually upon one another are always equal and directed 
toward contrary parts.” If, indeed, what NEWTON meant by “action” is what we here 
call “force”, which is by no means clear from his own words or the contexts in which 
he applied them, then the above argument shows that axiom to be equivalent, as far 
as pairs of separate bodies are concerned, to additivity of resultant forces on separate 
bodies. This fact is independent of whatever relations there may be among forces and 
motions. 

Axiom F2 states, among other things, that the forces exerted by the exterior 
ge of a body 9 on the separate parts of that body are additive: 

* f(91 V 9 2  , Be) = f ( 9 ,  , 9‘“) + f (92 ,  37‘“). (1.5-8) 

This fact suggests that for every particular body 9 the forces exerted by Be 
on a certain set of parts of 9 might define a vector-valued measure over 9, a 
measure which we could denote formally thus: 

f ( d ,  $!Ie) = d f p  if d 3 9. (I .5 -9) 

It would be desirable to construct an abstract theory of integration with respect 
to systems of forces, as defined only by the above axioms and some further ones 
of a technical nature, but since no such general theory is presently available, 
we here simply assume that our systems of forces are of this kind: 

Axiom F4. For each 9 in n, the function f( m ,  ge) is a vector-valued 
meusure over 9. 

Theorem. If d and 9 are separate, then f ( .  , 9) is a measure over d. 
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Proof. By (1.2-19), every body 33 is the exterior of another one, namely, 
9e. By Axiom F4, f ( . ,  B) is a measure over ge .  If d and 9l are separate, 
d + ge by Axiom B5, and so Axiom F4 yields the theorem at once. A 

In fact the theorem merely rephrases Axiom F4. 
Axioms are used in two ways. First, they may serve as a mine, whence 

theorems are drawn by mathematical deduction. Secondly, they may express a 
criterion: A mathematical system, whether already constructed or in course of 
construction, may be proved conform with them. We shall use Axioms F1, F2, 
and F3 in the first way, but we will not call upon Axiom F4 as an assumption. 
Rather, we shall demonstrate mathematically that the systems of forces in 
the two branches of mechanics developed in this book obey Axiom F4. 
In the former branch, which is the analytical dynamics of mass-points, only 
finite sums occur, and the conclusion is obvious, as the student will see below 
through the steps (15)-(28). In the latter branch, which is the mechanics of 
three-dimensional continua, upon the forces one body exerts on another which 
is separate from it but in general contiguous we will impose as an axiom the 
physically immediate bound (111.1-10). Then we shall sketch a long and difficult 
analysis from which, among other important conclusions, such a system of 
forces will be proved conform with Axiom F4. 

While the development thus far in this section applies generally to the class 
of universes discussed in Section 1.2, now and henceforth we return to use of 
f l ~  as specified in the preceding section, and again we use U to denote it. The 
mass A4 is Bore1 measure or an extension of it such as Lebesgue measure. 

We may introduce the Stieltjes integral of a continuous real function h over 
9? with respect to the measure f( - , ge);  we denote this integral by 

/h dfp (I .5- 10) 

and call it “the integral of h with respect to f p  ”. 

For example, if every is a subset of the set of mass-points XI  , X z ,  . . . , X ,  , 

n 

(1.5-1 1) 

If 

w: 9-+9-, (1.5- 12) 
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so that w(X) E 9, and if a E 9, then 8.w is a scalar field over 93, and 
J,(a. w) df,. , if it exists, is a linear function of a. Consequently, there is a lin- 
ear transformation on 9 whose value is Jg(a. w) df,. . Denoting the transpose 
of this transformation by Jg w Q df,. , we have 

[ L ~ Q d f p ] ~ a  = l ( a . w ) d f p .  (1.5-13) 

The trace of this linear transformation will be written as follows: 

For example, if $Z4 is a finite set of substantial points x k  , then 

(I .5- 14) 

(1.5- 15) 

While the formulae (1.4-7), ( l l ) ,  and (15) are appropriate to bodies which are 
subsets of a finite set, they are merely instances of general conclusions. When it comes 
to systems of forces, the classical dynamics of mass-points offers a peculiar variant, to 
which we now turn for the nonce. In describing that dynamics we shall use xk instead 
of { x k }  to denote the set consisting in the one mass-point Xk , k = 1, 2, .  . . ,n, and 
we shall adjoin one further body X O  , not necessarily massy, called “the environment” 
of the “system” X I  , X 2 , .  . . , X ,  . Thus 

n 

oc)= v x k .  (1.5-16) 
k =O 

It is the usage of analytical dynamics to apply the word “body” only to subcollections 
of { X I  , X z , .  . . , X n } ,  excluding 0, X O  , and 00. That is, the bodies treated are those 
defined as follows by a subset sg of (1, 2, .  . . ,n}: 

The traditional notations, more or less, are as follows: 

(1.5- 1 8) 

here k and q run from 1 to n. The forces f ( X k ,  X,) are called mutual; the forces 
f(9,  XO) are called extrinsic. Supposing assigned the quantities f k ,  and 6, we define 
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the entire system of forces by the requirement that Axioms F1, F2, and F3 be satisfied. 
The resultant force f k  acting on x k  is given thus: 

(1.5-19) 

the symbol c' indicates a sum omitting the term for which q = k. If by s;' we denote 
the complement of s,* in { 1, 2 , .  . . , n } ,  the resultant force on 9 is obtained as follows: 

(1.5-20) 

The double sum is the resultant mutual force on 2; the single sum is the resultant 
extrinsic force on 2. In particular, if 2 = {XI, X2,. . . ,X,}, then sg' is empty, and 
so 

n 

f ( 2 ,  @) = Cf; (1.5-2 1) 
k = l  

If the system of forces is balanced, then (6) holds, so that in particular 

fkq = - f q k ,  Q # k; (1.5-22) 

then (20) may be written as 

(1.5-23) 

because the terms by which the right-hand side differs from that of (20) cancel each 
other in pairs. By choosing 9 as Xk we conclude that 

(I 5 2 4 )  

If, conversely, (24) and (22) hold when k = 1, 2 , .  . . , n ,  then (20) shows that f ( a ,  ge) = 
0. Thus the conditions (24) and (22) are necessary and sufficient that the system of 
forces f on the universe of analytical dynamics be balanced, provided we agree that 
also f(X, , Xk) = -fi , k = 1, 2 , .  . . , n .  Either by summing (24) on k or by inspection 
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of (21) we conclude that 

R 

Cf; =o: (1.5-25) 
k = l  

the total extrinsic force acting on the system is null. These simple theorems provide 
the standard structure of analytical dynamics. 

It is easy to extend the foregoing to arbitrary pairs of bodies, which need not be 
distinct. If we introduce the self-force f k k  of Xk , the force exerted by Xk on itself, 
then we can define as follows the force exerted by the arbitrary body V on the arbitrary 
body 9: 

s p  and ss being the sets of integers that define fi’ and V according to (17). When 9 
and 5f are separate, this function f reduces to the f defined by the requirements F2 and 
F3 on the basis of (18). We may call f ( 9 ,  B’) the self-force of 9. From (22) we see at 
once that in a balanced system of forces, 

f ( B , f i ’ ) = O  V 9  w f k k = O ,  k = 0 , 1 ,  . . . ,  n .  (1.5-27) 

Exexise I. 5.1. 

f (9 ,oo)  = f(9, 9) + f(9, gel. (1.5-28) 

In analytical dynamics it is customary to assume both that f k k  = 0 and that the system of 
forces is balanced. From (27) and (28) it then follows that f ( 9 ,  00) = f(m, 9) = 0 V 9 .  
We may express this fact as a statement that the universal M y  of analytical dynamics 
is passive: The body oo exerts null force upon its parts. 

As their statements suggest, (28) and the theorem stated just after it are not 
limited to discrete systems. Rrzzo has proposed, in effect, the following axioms 
as a natural extension of NOLL’S: 

Axiom FE1. f:  0 x 0 4 9. 

Axiom FE2. 
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Axiom FE3. 
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If g, $?I , and $?2 are separate, these axioms reduce to NOLL’S, and so any f 
that satisfies them is an extension from (0 x Gi)o to 0 x 0 of an f that satisfies 
NOLL’S axioms and (1 ) .  The formula (26) effects such an extension explicitly 
for a discrete universe. Axioms FE2 and FE3 are easy to motivate intuitively. 

Exexise 1.5.2. 

f(9, m) = f(9, U )  + f(9, U”, 

f(m, 9) = f (V ,  g) + f ( U C ,  9). 
(1.5-29) 

Hence (28) holds, 

and 

f(m, 9) = f(9, m + fWC, 91, (1.5-30) 

From (28), now proved in generality, we see that if f ( g ,  00) = 0, then 

f ( 9 ,  ge)  = - f ( 9 ,  9): (1.5-32) 

If the universal body is passive, the resultant force on each body is the 
negative of its self-force. Thus, in such a universe, the system of forces is 
balanced if and only if the selj-force of every body is 0. More generally, if 
f(g, 00) + 0 for some 9, (32) does not hold, and we cannot easily infer any- 
thing about f on 0 x fi from the statements obtained above about its restriction 
to (0 x 0)o. In particular, it is not obvious how to infer (6) for pairs of bodies 
that are not separate. 

As a first step in this direction, we find on the basis of the extended ax- 
ioms FE1-FE3 a counterpart for the theorem of NOLL and GURTIN & WILLIAMS 
concerning pairs of separate bodies. 
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Lemma. A system of forces on 0 x 0 is pairwise equilibrated for sep- 
arate bodies i f  and only i f  the self-force f ( 9 ,  9), regarded as a function 
of 9, is additive on all bodies of 0.  

Proof. We apply Axiom FE2 when 9 = GR1 V GR2 and GR1 A GR2 = b, then 
expand the conclusion by use of Axiom FE3. Then, 

The basic decomposition theorem following (1.2-38) assures us that for any 9 
we may choose GR1 as any of its parts. 

Since 0 is an additive function, the lemma has the following 

Corollary (kzzo). If the self-force of every body is 0, the system of 
forces is pairwise equilibrated for  separate bodies. 

Exercise I. 5.3. 

f(g, U)+ f (V ,9 )= f (C8VV,9A%)+ f ( .%7AA,?8VV)  

+f(B V U ,  3? V U )  +f(g A V ,  i8 A U)  

- f(B, 9) - f(%, U). (1.5-34) 

Theorem (RIzzo). In order that 

f ( 9 , V ) + f ( V , 9 ) = 0  V ( 9 , G R ) € 0  x n ,  (1.5-35) 

it is necessary and sufficient that 

f ( 9 , 9 ) = O  V 9 E r l .  (1.5-36) 

Proof. Necessity is obvious. To prove sufficiency, we note that the bodies 
93 A GR and (93 V GR) A (93 A U)” are separate, and that 

93 V U = (9 A U) V [(B V U) A (93 A %?)“I. (1.5-37) 



6. THE EVENT WORLD. RIGID FRAMES 29 

By use of Axioms FE2 and FE3, with the aid of (36) we show that 

f(8 V V, 8 A U) = f((8 V V) A (3 A U)", 9? A q), 

f ( 8  A 9, L% V U) = f(L% A V, (9 V U) A (g A U)"). 
(1.5-38) 

Substituting (38) into (34), shortened by use of (36), we conclude that 

The preceding corollary assures us that the right-hand side of the former of 
these equations equals naught. a 

Systems of forces defined on pairs of bodies that are not separate will not 
be considered further in this book. 

NOLL'S corollary, derived above, asserts that a balanced system of forces 
is pairwise equilibrated on separate bodies. We may ask if the same holds for 
all pairs of bodies. The answer is no. From (28) we see that in a balanced 
system of forces f(B, 00) = f ( 9 ,  g). Only if the universal body is passive 
does it follow that f ( g ,  39) = 0 VL%. Since this last condition is necessary for 
the forces of 0 x 0 to be pairwise equilibrated, we conclude that in order for 
a balanced system of forces to be pairwise equilibrated for all bodies, it is 
necessary and sufficient that the universal body be passive. 

Nothing said about forces in this section restricts the dimension of 9. 

6 .  The Event World. Rigid Frames 

In common life we regard ourselves and other objects as occupying places, 
which are sets of points in a three-dimensional space, the properties of which 
are given once and for all and are not altered by our presence or absence. 
Moreover, the changes we perceive in ourselves and in our environment we 
regard as occurring at specific instants, which are points in a one-dimensional 
space altogether independent of the space of places. 

Places and instances are associated to events. We take an event as being 
a primitive entity like a point in geometry, not defined, but in some measure 
made clear by the mathematical properties we attribute to it. 

We endeavor now to make this rough idea somewhat precise. There are 
several ways to do so. 

We call the totality of events the event-world W. 

The event world is the blank canvas on which pictures of nature may be painted, the 
quarry for blocks from which statues of nature may be carved. This canvas, this quarry, 
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must be chosen by the artist before he sets to work. It lays limitations upon his art, but 
it by no means determines the images he will fashion. Various kinds of mechanics rest 
upon use of different event-worlds. For example, the event-worlds for relativity and for 
the mechanics of oriented materials differ from the event-world we use in this book. 

C.-S. MAN has kindly provided most of the text following in this section. 
We presume that every event occurs at some definite instant. Instants have 

their being in and by themselves; they are elements of a given one-dimensional 
Euclidean space F. Events that take place at the same instant are said to be 
simultaneous. We denote by Wt the totality of simultaneous events at the instant 
t .  We assume that each Wr is a three-dimensional Euclidean space; moreover, 
we presume that physical means are available to compare distances in different 
Wt so that it is meaningful to say whether a bijection between Wt and Wtj 
( t  + t’) is an isometry.’ 

Simultaneous events that occur some distance apart in Wt can be regarded as 
occurring at different places. For two events e and e’ that are not simultaneous, 
to say whether or not they occur at the same place has no absolute meaning. 
A place by itself has no identity except at a specific instant. The identity of a 
place through different instants is assigned externally by an observer. One way 
to effect such assignments is by use of rigid frames, which we now introduce. 

Let & be a three-dimensional Euclidean point space. Let 

$: W -+ & x F, $(e)  = (x, t ) ,  (1.6-1) 

be a bijection such that j t  , the restriction of $ to Wt , is a bijection of Wt onto 
& for each instant t .  Formally, 

j t :  Wt -+ &, j r ( e )  = x if $(e)  = (x, t ) .  (1.6-2) 

Suppose we can compare distances in Wr and 8. If is an isometry for each 
instant t ,  we call the bijection $ a rigid fmme; 8 is the background of $, and 
the elements x of & are the places in 6. Two events e E Wt and e’ E Wt/ that 
are not simultaneous occur at the same place in & if $,(e)  = $t, (e’). 

In informal speech the symbol $ may be pronounced “the reference” or 
“the observer”. 

Let us give an example to illustrate how a rigid frame may be realized (cf. Section 
1.3). Consider a universe 0 with a supply of substantial points X such that the physical 
existence of each X at the instant t is marked by (or truverses) an event in Wt . Hence- 
forth, for simplicity, we shall refer to the substantial point X in Wl when we really mean 
the event traversed by X in Wl . Suppose we can select four such substantial points Xi 

‘An isometry of two Euclidean spaces is a bijection that preserves distances. 
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( i  = 1, 2, 3,4) that satisfy the following conditions: 

(i) X ;  traverses an event in W, at each instant t;  
(ii) the four substantial points X i  are not coplanar in any W, ; 
(iii) the distance between any two substantial points X i  and X,, i + j ,  remains 

fixed for all instants t .  

By the laws of Euclidean geometry, for each instant t the four substantial points X i  
determine a unique three-dimensional Euclidean space d that includes the X i  among its 
elements. Like the substantial points X i ,  each element of d exists independently of t and 
coincides with an event in Wf for each t E F. This relation of coincidence defines for 
each t a bijection jf : Wl -+ d , which is clearly an isometry. The bijections jf together 
provide a rigid frame $: W + d . In the older literature’ such a rigid frame is usually 
called a “frame of reference”. There the non-coplanar substantial points that define a 
“frame of reference” are often so chosen as to define a Cartesian co-ordinate system. 
Each element of I is identified by its Cartesian co-ordinates, and the space d itself is 
identified with W 3 .  

A rigid frame represents an observer. Just as there are many putative ob- 
servers, there are many rigid frames. On the other hand, given two rigid frames 
$: W + € x F and $*: W + € *  x F, we can always pick an instant t and 
identify € *  and € through the isometry $: o jt-’: 6 + &*.  Since there is no 
real loss of generality in doing so, for convenience we shall choose one Eu- 
clidean space & once and for all and consider only rigid frames that have & as 
background. 

As no confusion should arise, hereafter we shall often refer to rigid frames 
simply as “frames”. 

Some authors use the word “frame” to denote any bijection $: W -+ 6 x F such 
that $, : Wl + d is a bijection for each t E F, here B is a three-dimensional Euclidean 
space. In that usage, jf need not be an isometry. For clarity let us call such bijections 
generalized frames. Two generalized frames $ and $* are rigidly related if the bi- 
jections jr* 0 and $, 0 $*TI of d onto d are isometries for each t E F. Every 
generalized frame $ gives rise to an equivalence class of generalized frames rigidly re- 
lated to $. We call that class the rigid class of $. The family of all generalized frames 
is the disjoint union of such rigid classes. It is clear that all rigid frames belong to the 
same rigid class of generalized frames. 

Much of what we shall discuss below about changes of rigid frames (Section 1.9) and 
material frame-indifference (Section IV.2) remains valid if we replace rigid frames by 

‘See, for example, A. E. H.  LOVE, TheoreticalMerhanics, Cambridge, at the University Press, 
1897. In the edition of 1921, reprinted 1987, the mathematical discussion of frames of reference, 
which is excellent, is on pp. 299-303. An excellent physical description of frames of reference may 
be found in the opening of Chapter X, “Relativistic Mechanics,” of G.  Joos, Theeretical Physics, 
1932, corrected text translated by I. M. FREEMAN, New York, Stechert, 1934. A quotation from it 
is given below in Section I. 13. 
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generalized frames that belong to the same rigid class. (Cf. the remark after (IV.2-6).) 
Nonetheless, for simplicity we shall use only rigid frames in the main text of this book. 

Henceforth we regard the “unit of length” as a distance fixed once for 
all. The “physical distance” between two places in & is then represented by a 
real number, namely the ratio of that distance to the unit of length. Following 
customary usage in mathematics, we refer to such ratios also as “distances”. A 
“distance” of five in the mathematical representation means a physical distance 
of five units. 

We denote the translation space of & by V.  Henceforth the term vector 
will denote always an element v in Y,  and IvI will denote the magnitude of v. 
The inner product of vectors v and w in Y will be denoted by v-w,  and linear 
transformations of 9’ into itself, which we shall call tensors over Y,  will be 
denoted by bold-faced letters T, S,.  . . . The notation u = Tv is read, “The 
tensor T transforms v into u.” The Euclidean distance between the places x and 
y in 6‘ will be written as Ix - y 1, since x - y is the vector in V that translates 
y into x. 

A transformation of Y cannot preserve the inner products of all pairs of 
vectors in Y unless it is a tensor. A necessary and sufficient condition for a 
tensor Q to preserve all inner products is 

Q-’ = Q’. (1.6-3) 

Such a tensor is called orthogonal.’ 
We may assign a co-ordinate system to Y. The co-ordinate of an instant 

is called the time of that instant. Only those assignments of times to instants 
that preserve the orientation of f a r e  allowed. The oriented distance between 
instants whose times are tl and t2 is t2 - t l .  It is called the time interval 
between those instants, and if that interval is positive, the time t2 is said to be 
later than t 1 ,  whereas t 1 is earlier than t2. Choice of a particular co-ordinate 
system on Y i s  called in physics “fixing the unit and origin of time”. 

Commonly the unit and origin of time in a frame $ are regarded as set in 
advance by the observer, and f i s  identified with the real line @ according to 
this choice of co-ordinates and metric. That is, instants are confounded with 

‘From (3) we see that det Q = f 1. If detQ = + l ,  Q is a mtotion. Every orthogonal tensor 
on a space of odd dimension is either a rotation or the product of a rotation by the central inversion 
- 1; that is, there is one and only one rotation R such that either Q = R or Q = -R, and the only 

possible proper numbers of Q are + 1 and - 1. If, as we always suppose, dim Y = 3, then 1 is a 
proper number of every R, and the corresponding proper space is one-dimensional unless R = 1. 
This last statement is the content of a famous theorem of EULER: Every non-identical rotation about 
a point is in fact a rotation about a single line. The axis of Q is the proper line of the one and only 
R to which Q is proportional. 
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times, which are the co-ordinates of instants. We shall follow that custom in 
this book. Moreover, for simplicity we shall assume that all observers adopt 
the same unit of time. 

With these conventions we replace (1)1 by 

$: W + & x t 2 .  (1.64) 

In practice we usually consider only an interval 9 of times in t2. The present 
time t is always an interior point of 9. 

We have agreed that a rigid frame $: W + 8 x .?2 represents an observer. 
Since forces are experienced by observers, we assume that the vector-space 8 
to which forces belong is isomorphic to V', the translation space of &. Were 
we to consider a mathematical model in mechanics resting upon a different 
event-world, we might need to make a different choice of the vector-space 8. 

I.6A. Newton's View of Time and Space 

The scholion NEWTON put after the definitions and before the laws of motion 
in his Principia reads, in part, as follows. 

. . . Time, space, place, and motion are very well known to all. It must be noted 
nonetheless that the people may not conceive those quantities except through their relation 
to sensible objects. And thence arise certain prejudices for lifting which it is fitting to 
distinguish them into absolute and relative, true and apparent, mathematical and common. 

I. Absolute, true, and mathematical time, of itself and from its nature, flows equably 
without relation to anything external, and another name for it is duration: Relative, 
apparent, and common time is some sensible and external measure of duration through 
a motion . . . that the people use instead of true time, such as hour, day, month, year. 

11. Absolute space, by its nature, without relation to anything external, remains 
always like and immobile: Relative space is a measure of this absolute space or some 
sort of movable dimension which is determined by our senses through its place in respect 
of bodies and by the people is taken as the immovable space. Such is the dimension of 
the subterranean space, the aerial, the celestial, defined through its place in respect of 
the earth. The absolute and relative spaces are the same in kind and magnitude, but they 
do not remain the same in number. . . . 

111. Place is the part of space that a body occupies, and according to the space 
[used], it is either absolute or relative. I say, a part of space, not the location of a 
body. . . . Positions, properly speaking, have no quantity, nor are they so much places 
as the properties of places. . . . 

IV. Absolute motion is the translation of a body from one absolute place into an- 
other; relative motion, from one relative place into another. . . . 
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In this book we adopt NEWTON’S “absolute time”. His absolute space cannot 
now be accepted, though his view of “place” still serves essentially. 

Our times as co-ordinates of instants are NEWTON’S “relative times”. 
Our “unit of length” is NEWTON’S “some sort of movable dimension” 

in “relative space”. NEWTON’S “part of space that a body occupies” is our 
“shape”, to be defined mathematically and developed in the following section. 

Much of the role of NEWTON’S “absolute space” is taken over by the identi- 
fication of “inertial frames” through NEWTON’S First Law of Motion, which is 
presented below at the beginning of Section 1.13. There the student will find a 
conceptual determination also of NEWTON’S absolute time. 

7. Motions 

From now on until the end of Section 1.8, we assume that a rigid frame $: 
W -+ & x 9 is given, and we do not investigate the topological and differen- 
tiable structure of -W that the bijections $ induce. 

A world-line is a curve’ in W whose image in & x 9 associates one place 
to each time, so that we may represent a world-line as follows: 

A :  Y+&, (1.7-1) 

Y being an interval of 9. A collection of world-lines defined over J is a world- 
tube. The places on a world-tube at a fixed time t form a set Y f  , and for any 
two times t‘ and t“ in 9, every place in Yp is connected with one or more 
places in Yp by world-lines of the world-tube. Thus we may regard a world- 
tube 7 as a mapping of an interval of times into the set of all subsets of &, 
which is commonly denoted by P(&):  

7 :  9 + P(&) ,  

t WYf. 
(1.7-2) 

’ Intersections of world-lines represent collisions or the creation or destruction 
of bodies or elements of bodies. In specific mechanical theories such intersec- 
tions are usually excluded altogether or allowed as exceptional cases subject to 
specified conditions. 

Experiences are to be correlated with world-lines and world-tubes. We think 
of these as progressing “through” the event world W as time goes on. 

‘A curve is a piecewise differentiable, one-parameter family of events: e = f ( s ) ,  and s varies 
over some real interval. 
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A mapping p of the universe 0 into the set P( ?Y) of all subsets of the event 
world W, 

P :  Q -P(?Y), (1.7-3) 

is called a motion if for each body 9 in Q , p ($) is a world-tube. Thus a 
motion may be represented alternatively as a mapping x o  of fl x f into P(€):  

x o :  n x f  -+ P(6) .  (1.7-4) 

f is again some interval in g, such as for example ] - 00, to[ for some to. The 
value x,(9?, t )  of X o ,  which is a set in b, is called the shape’ of G? at the 
time t .  When thinking of t as being the present time we shall call X n  (9?, t )  the 
present shape of $. 

As we have stated in Sections 1.3 and 1.4, we consider only massy bodies 
that are sets of points, which we call substantial points, in some topological 
space 2 

33 = { X ,  Y , .  . .}. (1.7-5) 

The motion of a body composed of substantial points is engendered by the 
motions of those points. Using the symbol x for this more detailed motion, we 
write 

x :  33 x f - 6 ,  (1.7-6) 

and, explicitly, 

x = x ( X ,  t )  VX E 33, w €9. (1.7-7) 

In words, x is the place in € that the substantial point X occupies at the time t 
in the motion x .  Moreover, the shape of 33 at the time t is the set of places its 
substantial points occupy then: 

Each substantial point X is thus associated with a world-line, and the world- 
lines of all the points of $ constitute the world-tube of $. 

‘In the literature usually both a map from the set of bodies into the set of all subsets of 8 and 
the value of such a map for a given body are called “configurations”. 
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The concept of “motion” embodied in (3) does not require assignment of a 
frame, but the “more detailed motion” (6) does. Henceforth the term “motion” 
is to be understood in the latter, special sense. 

It is customary in mechanics, with specifically stated exceptions, to consider 
only such motions x as are differentiable with respect to ta t  least twice and often 
as many times as desired for each substantial point X. Denoting the derivatives 

of x with respect to t when X is held fixed by A ,  x ,  . . . , $), so that in particular 

we call the values of these derivatives the velocity v, the 
acceleration a,. . . , the nth velocity nv  of the substantial point at the time t :  

(1) 
= x and 2 = 

v := X(X, t ) ,  

a := x ( X ,  t ) ,  . . . , 
( n )  .v := x ( X ,  t ) .  

(1.7-9) 

Thus IV = v,  and 2v = a. It is easy to show that, for any given x ,  the velocities 
of a given substantial point are vectors: 

~ v E Y ,  n = l , 2 , 3  ,..., (I .7- 10) 

and therefore at each time t the function $)(., t )  is a vector field defined over 
@. 

As was stated in the preceding section, the metric in the Euclidean point space € is 
determined by the inner product in the translation space Y ;  the metric in the space of 
instants is determined by the assignment of times to instants. We describe these facts by 
saying that “the units of .v are those of (length)t(time)“ .” 

While the restriction x ( X ,  - )  of the mapping x to a particular substantial 
point X has been assumed smooth, nothing in the way of smoothness has been 
imputed to the restriction x (  - , t )  to a fixed time. For mechanics in its most gen- 
eral form, x ( - ,  t )  need not even be a one-to-one mapping of substantial points 
onto places in 6. Indeed, in the example furnished by analytical dynamics, the 
motion x carries the several mass-points into a discrete set of places xi at each 
time t ,  but the restricted mapping x ( .  , t )  is not always one-to-one, for at a 
collision the world-lines of two or more mass-points intersect, and it is possible 
even that two world-lines coalesce for an interval of time and then split asunder 
again. In continuum mechanics, contrarily, the mapping x (  - , t ) :  93 + x o  (g, t)  
is assumed bijective. This statement, which asserts that two distinct substantial 



8. LINEAR AND ROTATIONAL MOMENTA. KINETIC ENERGY. WORKING. TORQUE 37 

points never come to occupy the same place at the same time, is sometimes 
called the Axiom of Impenetrability. 

Of course it is possible to relax the Axiom of Impenetrability at singular points, 
curves, or surfaces so as to represent shock waves, slip sheets, tears, welds, and frac- 
tures, but in this book we do not consider those. 

In a particular branch of mechanics a particular universe Q is laid down once 
and for all. Two examples have been provided above in Section 1.3. When a 
choice of fl has been made, there is no danger of confusion if we write x for 
xo in (4) while retaining also the sense (6). 

In Section 1.5 we have developed a mathematical theory of forces acting 
upon pairs of bodies. We have now introduced motions undergone by bodies. 
Putting these two theories together, we remark that the force f (d ,  9) exerted 
by 9 upon d will generally be a function of t .  

8. Linear Momentum. Rotational Momentum. Kinetic Energy. 
Working. Torque 

We continue to suppose given a particular frame I, in terms of which a 
motion x of a body 9 is defined and is described by (1.7-6). The vector fields 
defined over 9 at the time t by means of the motion x of 9 give rise to certain 
additive set functions, the values of integrals with respect to mass over 9. The 
most important of these are, first, the linear momentum of 97: 

m(g; x ( - ,  t ) )  := (1.8-1) 

second, the rotational momentum of 9 with respect to the place xo : 

(1.8-2) 

and, third, the kinetic energy of 9: 

(1.8-3) 

From the definitions of m, M, , and K we see that for a given motion x of a 
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given body ?t? the values of these functions at a given time t are vectors, skew 
tensors, and scalars, respectively. 

To lighten the notation we shall henceforth usually leave @, x ,  and t un- 
written in formulae involving m, M, , and K. We shall always remember that 
these important functions of t are associated to 2 by a motion x .  

It is obvious from (2) that 

M, = M,, + (XI - XO) hm. (1.8-4) 

For a given motion x of a given body 28, the quantities m, M, , and K 
are functions of time alone. Denoting the derivative with respect to time by a 
superimposed dot, we see that 

,. 
(I .8-5) 

on the assumption that the indicated differentiations be permissible. Further- 
more, in ( 3 2  the place % is taken as a stationary one in the frame $. 

Exercise 1.8.1. Let the place xo be stationary, and let X I  (.) be any place-valued, 

hi,, =hi,, +(xl  -R )A I~ I+X ,  Am, 

differentiable function of time. Then 

( X  - xi) A 2 dM + (XI - Q) A m. (1.8-6) =s, 
These definitions and relations are introduced here for later convenience. 

The basic principles of mechanics relate the rates of change m, M, , and k to 
the forces acting on g, as we shall explain in Sections I. 12 and I. 14. 

In Section 1.5 we have defined a system of forces and an integration over C8 
with respect to the forces exerted on the parts of 9 by its exterior, ge. 

At the end of Section 1.6 we have agreed that forces belong to a vector space 
isomorphic to the inner-product space Y. By using a particular isomorphism 
we may form inner products of forces and other vectors such as velocities 
or accelerations. That there are infinitely many different isomorphisms of this 
kind, reflects the fact that units of force are not yet related to units of length 
and time. We shall consider any one isomorphism and by using the definition 
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(1.5-14) introduce as follows the working W of the system of forces fge in the 
motion x of 2? at the time t :  

The units of working are those of (force)(length)t(time). When there is no 
fear of confusion, we shall drop from the notation the arguments of W. 

Forces are conceived as acting upon bodies, and when those bodies undergo 
motions and hence take shapes in &, the forces are carried over to those shapes 
in some specified way. Since the shapes themselves depend upon the choice of 
frame, so also must any transference to those shapes of the forces acting on 
bodies. Consequently the definition (7) of the working W rests also upon a 
particular choice of frame. In Section I. 12 we shall impose as the basic axiom 
of mechanics the requirement that such dependence of W be only apparent: that 
is, that the working, although it is defined by (7) in terms of a frame f ,  shall 
have the same value for all frames. 

Since by means of the isomorphism selected we may in effect say that f E Y ,  
we may define also the tensor product v 63 f and the exterior product v A f ,  
provided v E Y. In particular, the skew tensor (x -m) A f is called the “moment 
at x of f with respect to xo .” More generally, the moment F, of a system of 
forces f p  on a part d of in the motion of 9, with respect to x o ,  is defined 
thus: 

Although the moment is a special case of what is called a torque, in this 
book we shall regard the two terms as interchangeable and prefer to use the 
monosyllable. The particular torque F ( g ,  ge;  x (  - , t ) ) ,  is called the resultant 
torque of the system of forces on 9 with respect to ~0 in the motion x at the 
time t .  

The moment of a system of forces acting on a body 9 is defined in terms of 
the shape of 9 in the motion x ,  a particular frame $ being presupposed. The 
moment is a skew tensor having the dimensions of (force) x (length). More 
generally, any skew tensor having these dimensions is called a torque, and 
a torque-valued function F(9, U) of pairs of bodies is called a system of 
torques if it satisfies axioms obtained from Axioms Fl-F4 when f is replaced 
by F throughout. Torques that are not moments of forces are sometimes called 
couples. When all torques are moments of forces, as we shall assume in this 
book, the system of torques is called simple. 
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The importance of the resultant torque will appear in Section 1.12. For the 
time being, we remark only that 

That is, at the time t the resultant torque with respect to xo differs from that 
with respect to XI by the moment at x1 , with respect to XO, of the resultant 
force on 9. Here we have dropped x (  - , t )  from the notation. 

In Section 1.5 we have defined a balanced system of forces as one in which 
the resultant force on each body is 0. By (9) we see that i f  the system of 
forces is balanced, the resultant torque it exerts on any M y  is the same 
with respect to all places. 

In view of what has just been shown, the following definition makes sense: 
The torques arising from a balanced system of forces are said themselves to be 
balanced if the resultant torque on every body vanishes. 

In a system of torques more generally, NOLL'S corollary in Section 1.5 applies with 
merely verbal changes, enabling us to conclude that in a balanced system of torques, 
F ( g ,  U) = -F(V, g). 

The general axioms of mechanics that we shall lay down in Section 1.12 
will imply that a certain, basic system of forces and torques be balanced. 

In the universe of analytical dynamics (Section 1.5, above), where a body B is 
defined by (1.5-17), 

(1.8-10) 

Here we use as abbreviations the places and velocities given to the mass-points by their 
motions: 
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and the other notations are those introduced in connection with analytical dynamics in 
Section 1.5. To obtain we have used (1.5-15), (1.5-20), and the fact that F and 9' 
are isomorphic. Two instances of ( are of major interest. First, suppose L8 consists 
in Xk done. Then 

By (1.5-24) we see that i f  the system of forces is balanced, 

Second, if 9 = { X I  , X2, .  . . , X n } ,  then (10)d reduces to 

n 

k = l  k , q = l  

where the last expression holds if the system of forces is balanced. Thus, in general, 
the working of a system of forces on a dynamical system does not vanish. 

The torque F ( 9 ,  U), exerted by V on 33' with respect to ~g is defined by 

(1.8-15) 

in which 9 and @? need not be separate. Likewise the torque exerted by the environment 
XO on the mass-point xk is defined by 

(1.8-16) 

These definitions square with (8), and the resultant torque on 9 is given by 

The selftorque of 9 is the torque it exerts on itself. By (15), 

In a balanced system of forces, (1.5-22) holds, and hence 

(1.8-18) 

(1.8-19) 
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If the force f k q  exerted by Xq on Xk is parallel to the vector xk  - ~4 that translates the 
place x, occupied by xq into the place xk  occupied by X k  , the mutual forces are called 
central. For central mutual forces each summand in (19) vanishes, and we have the 

Theorem (POISSON). For a balanced system of forces on the universe of an- 
alytical dynamics, the self-torque of every body vanishes i f  the mutual forces are 
central. 

When the self-torque of G? vanishes, the resultant torque (17) may be written in the 
form 

That is, the resultant torque on G? is the sum of the moments of the resultant forces 
acting on the mass-points that make up G?. In a balanced system of forces, each of 
those resultant forces vanishes, and so F(G?, Be)  = 0. That is, the system of torques is 
balanced. 

Suppose, conversely, that the system of torques be balanced. Then by the analogue 
of (I. 5-6), 

for all separate bodies G? and @7. In particular, then, 

That is, 

If the forces are balanced, by (1.5-22) we obtain 

so that the mutual forces are central. In summary of the argument in this paragraph and 
the preceding one, we have the following 

Theorem (NoLL). If a system of forces on the universe of analytical dynam- 
ics is balanced, the corresponding system of torques is balanced i f  and only i f  the 
mutual forces are central. 
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Exercise 1.8.2. From (1.5-26) we see that in a balanced system of forces 

F(Ct?, Ct?e)m + F(g ,  = 0. (1.8-25) 

Hence the system of torques is balanced if and only if the self-torque of every body 
vanishes, and again NOLL’S theorem follows. 

Thus in analytical dynamics the balance of torques is equivalent to the hypothesis 
that the mutual forces are central, on the assumption that the system of forces is balanced. 
As should be plain from the arguments leading to NOLL’S theorem, no such reduction 
of the balance of torques to the balance of forces can be expected in the more general 
and typical universes of mechanics. In continuum mechanics central forces, and indeed 
mutual forces, rarely appear. 

The approach of analytical dynamics is untypical and next to useless in the general 
science of mechanics. 

A position vector of a place x in d is a vector that translates some given 
origin ~0 into x. Thus, a position vector field p corresponding with the motion 
x is given by 

p(X, t )  := x ( X ,  t )  - xo . (1.8-26) 

Often the origin ~0 is a fixed place. Then the time derivatives of p when X is 
held fixed equal the corresponding time derivatives of the motion itself 

P = x ,  p = x ,  e tc .  (1.8-27) 

The center of mass x, of a body 93 of positive mass M ( @ )  in a shape 
~ ~ ( 9 3 ,  t )  is that place whose position vector p is the mean, in the sense of the 
mass, of the position vectors of all the substantial points of 37: 

i r  
(1.8-28) 

Of course p generally varies in time for a given body 93, but we do not indicate 
this fact in the notation. While p depends upon the choice of the fixed place 
~0 , its time derivative p does not, and by (1) we see that 

Comparison with (lo), yields the following 

(1.8-29) 

Theorem (KELVIN & TAIT). The linear momentum of a body @ is the 
same as that of a mass-point having the same mass as 37 and moving so 
as always to occupy the center of mass of @. 
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Exercise 1.8.3. 
culated be fixed. Then 

Let the place ~0 with respect to which the position vector is cal- 

hi,, = hi, + fi A I& (1.8-30) 

9. Changes of name’ 

Once a rigid frame $ has been laid down as in Section 1.6, we may wish 
to consider another one, f*: 

$*: W - + &  x g .  (1.9-1) 

Since both $ and $* are bijections, the composition $* o $-’ is a bijection of 
& x $2 onto itself 

$* 0 $5 & x g -+ & x g, (x, t )  H ( x * ,  t * ) .  (1.9-2) 

Because both t and t* correspond to the same instant and because we have 
agreed that all observers adopt the same unit of time (cf. Section 1.6), we can 
express (2) as 

~ * = e ( x , t ) ,  t * = t + a .  (1.9-3) 

For a fixed t the mapping @(. , t): & 4 & is an isometry, because e(. , t )  = 
$f: o jt-’ (cf. Section 1.6). In ( 3 ) ~  a is a constant that depicts the possible 
difference in the origins of time for the frames f and $*. 

Mappings $* o $-’ are called changes of frame. 

We shall sometimes say “x* and x are the places at which the same event occurs in 
$* and I, respectively.” The student is expected to recognize this and like statements as 
pointing toward the interpretation of the mathematical structure in terms of experience. 
Similar1y;the velocity of a substantial point defined with respect to the frame f will 
be called its velocity in $, and a similar usage will be followed for all other quantities 
defined in terms of frames: acceleration, momentum, etc. 

Let 9‘ be the translation space associated to 6. A mapping h: -t/ + -t/ is 
an isometry if Ih(u) - h(v)l = Iu - vI for all u and v in 9’. The following 

‘For the opening of this section in its present form I am indebted to C.4.  MAN. 
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representation theorem for an isometry is well known: There is a uniquely 
determined, orthogonal, linear mapping Q:  Y + Y such that 

h(v) = Qv + h(0) (I .9-4) 

for all v in Y' 

Exemise 1.9.2. The analogue of (4) holds for two n-dimensional inner-product 
spaces. 

Because f(., t ) :  & + 6' is an isometry, use of (4) leads to the following 

Theorem. A change of fmme ( 3 )  has the representation 

in which q, is a fixed place in $, x; maps times onto places in $*, Q maps 
times onto orthogonal, linear mappings of Y, generally unique, and a is 
a constant. 

Pmof. Choose and fix some q, in &. Then each vector v in V' has the 
unique expression 

forsomexinb.Leth,:  9'- Vbedefinedbyh,(v) =f(x,t)-f(xo,t) .By(4),  
there is a uniquely determined, orthogonal, linear mapping Q(t) :  V' + V' such 
that hf(v) = Q(t)v  + hf(0). Since h,(O) = 0, X *  = f(x, t )  and g ( t )  = f(xo, t ) ,  
we conclude that x* - g ( t )  = Q(t)(x - XO). 

Regarding ~0 as the place of some one event as observed in $, we interpret 
g ( t )  as the place of the same event as observed in $*, while Q maps all 
the lines through q, as observed in $ isometrically and conformally onto lines 
through g as observed in $*. 

Note that the functions g (  .) and Q( .) in ( 9 1  can be arbitrary functions of 
the time t; in particular, they need not be continuous. If we use the frame $ 
to define a differentiable structure on W, the frame $* need not be compatible 
with that structure. For example, a substantial point moving smoothly in $ may 
be hopping about discontinuously in $*. In the rest of this section we shall 
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restrict our discussion to changes of frame from $ to $* that are compatible 
with $, thus accepting a single differentiable structure. For instance, when we 
talk about acceleration of a substantial point in $, we have implicitly used $ to 
define a C2 structure on W. Then, for changes of frame, we shall allow only 
those $* for which the functions %(.) and Q(.) in ( 5 ) 2  belong to C2, and so 
we can talk about the acceleration of the same substantial point as observed 
in $* . Since in mechanics we always deal with velocity, acceleration, etc., we 
shall consider only those changes of frame for which the functions %( -)  and 
Q(.) in ( 3 1  are at least twice continuously differentiable. 

Under the present interpretation the value Q ( t )  of Q is sometimes called 
the relative orientation of $* with respect to $ at time t. At a time t o  when 
Q(t0 )  = 1 and %(to )  = x g ,  the two frames are said to coincide. 

Since we have assumed that the orthogonal transformation t H Q ( t )  is con- 
tinuously differentiable, det Q = 1 always or det Q = - 1 always. Many authors 
prefer to keep the restriction det Q = 1 for admissible changes of frame. Such a 
restriction is obviously not required by the concepts of kinematics. In this book 
we study purely mechanical theories in which the current and past distances 
among the substantial points determine a body’s current mechanical response 
(Section IV.2, below). We cannot use the mechanical responses of such a body 
as observed in two frames to distinguish them as long as both are equally fit as 
backgrounds to describe the class of kinematical processes that the body may 
undergo. In this context there is no reason to discard those changes of frame 
for which det Q = - 1. 

Erom ( 5 )  we see that one particular event, to which a place and time ( x g ,  t )  
are assigned by the frame $, may be assigned an arbitrary place g ( t )  by some 
other frame $* . The vector that translates the fixed place xg into a general place 
x in $ is then rotated in V‘, perhaps also reflected, into the vector that translates 
$ ( t )  into the corresponding place x* in $*, the rotation being the same for all 
places x at any one time. 

If we like, we may picture a change of frame in terms of a motion (Section 
1.7). If we suppose a body to be given such a shape that one of its substantial 
points remains at the place x in $, then (5) is the motion of that point in $*. 

Exercise I. 9.2. In (5) we may take as the constant place ~0 in $ any one we please, 
or, if we prefer, we may substitute for it any place-valued function of time: xg( .). Hence 
the class of all changes of frame forms a group. 

From (5)1 we see that the definition of “world-line” in Section 1.7 is inde- 
pendent of the choice of frame. 

We interpret the possibility of a change of frame as meaning that two observers 
who have chosen the same units of length and time may set their clocks differently 
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and may be in arbitrary rigid motion with respect to one another, yet both are equally 
qualified to describe the phenomena represented by classical mechanics, whether they 
be right-handed or left-handed, and so any statement made by one is equivalent to some 
statement made by the other. For example, if a function f (x*, 2 ' )  is given, substitution 
of ( 5 )  into it yields a function g(x, t )  with the same value g(x, t )  = f (x*, 2 * ) ,  and any 
two functions so related are regarded as equivalent under the change of frame. In fact 
both g and f represent, by use of the frames $ and $*, respectively, the same function 
defined on the event world W .  

A change of frame induces a transformation of the translation space Y. 
Indeed, suppose that 

v : = X I  -x2.  (1.9-6) 

Then by (5) 

V* := ~f - X; = Q(t)(xl - XZ), 

= Q(t)v. (1.9-7) 

Likewise, a change of frame induces a transformation of the tensor space over 
Y. If w E Y and v E Y,  and if there is a tensor T such that 

w = Tv, (I .9-8) 

then by (7) 

W* = Q(t)w = Q(t>TQ(t)'v*; (I .9-9) 

that is, W* = T*v*, and 

T* = Q(t)TQ(t)'. (1.9- 10) 

Rules of just the same form are induced for vector-valued and tensor-valued 
functions of time v(t) and T(t), respectively. 

A change of frame (5) induces also a change in the motion (1.7-7) of a 
substantial point X of a body 9. Namely, in $* the place x* occupied by X at 
the time t * is given by the relations 
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We shall regard x* and x as being the same motions as observed in $* 
and $, respectively. We regard xo and t as the place and time assigned by $ 
to some particular event and $ ( t )  and t* as the place and time assigned by $* 
to that same event. When we need to emphasize the role of a frame, we shall 
call x the motion of 9 in $, and x *  the same motion of 9 but in $*, as 
explained above. We shall refer to the transformation (1 l), which relates the 
motion in $ with that in $*, by the same name as the transformation ( 5 )  of the 
frame & x 9?, namely, a change of frame. 

If a certain prescription defines vectors in terms of a frame, and if the 
prescription itself is independent of the choice of frame, it will deliver vectors 
V* and v, respectively, according as $* or $ is used, and generally these two 
vectors will not be the same. Consider, for example, the prescriptions (1.7-9)1,2, 
which define the velocity and the acceleration in any frame: 

v := X(X,  t ) ,  

a := j i (X ,  t ) ,  

v* := X*(X,  t * ) ,  

a* := j i* (X ,  t * ) .  
(1.9- 12) 

The dots in the second column indicate derivatives with respect to t * ,  and the 
motion x *  in $* is related to the motion x in $ by (1 1). Thus 

Therefore the velocity X *  in $* is related to the velocity X in $ by the formula 

X *  - Q>i = $ +A(x* -$I, (1.9- 14) 

in which 

A := QQT = -AT. (1.9- 15) 

The skew tensor A is the spin’ of $ with respect to $*. In (1 1) we regarded 
$ ( t )  and t* as the place and time assigned by $* to a certain reference event 
to which $ assigns the place xo and the time t .  Thus the value of the function 
$ is the rate of change of the place $ ( t )  assigned by $* to that reference 
event. On the other hand by (13), the velocity in $* of the substantial point 
that occupies the place xo at the time t is $ ( t )  + Q(t)X(x-’(xO, t ) ,  t ) ,  which 
reduces to $ ( t )  if and only if the substantial point is at rest in $. 

’The old term “angular velocity” is gradually falling out of use, since not only is it an awkward 
polysyllable but also it suggests we should look for angles, which in general considerations we are 
better advised not to do. 
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Heretofore we have regarded the relative orientation Q as a known, differ- 
entiable function of t .  Suppose instead we know the spin A, which we assume 
to be a continuous function whose values are skew tensors. Considering the 
first-order linear differential equation 

%-AY=O,  (1.9- 16) 

we observe first that it has a unique solution Y such that Y(t0) assumes an 
assigned value. 

Exercise 1.9.3. If Z := YYT and Y satisfies (16), then 

i = A Z  - ZA. (1.9- 17) 

Appeal to the uniqueness theorem for ordinary differential equations shows that a solution 
Y of (16) which is orthogonal when t = to is orthogonal for all t. Likewise, if Y is a 
rotation when t = t o ,  it is a rotation for all t. 

The argument completed in the foregoing exercise is summarized in the 
following 

Theorem. Let the spin A of $ with respect to $* be a continuous 
function of time, and let the relative orientation Q( t )  be prescribed at some 
one time to. Then a unique change of frame is determined by assignment 
of the place g ( t )  arupied in $* at the time t by some one place ~0 in $. 

Exercise 1.9.4. If A* denotes the spin of $* with respect to $, then 

A* = -Q'AQ. (1.9-18) 

More generally, if Q1 and Qz correspond with changes of frame from $ to $, and from 
$, to $z, respectively, and if Q3 corresponds with the change from $ to I,, then 

(1.9-19) 

Hence if the framings jZ and $, coincide at some instant, the spin of jZ with respect 
to $ is the sum of its spin with respect to $, and the spin of $, with respect to $ at 
that instant. 

The conclusions (19) are commonly described as asserting that while rota- 
tions are multiplicative, spins are additive. 



50 I. BODIES, FORCES, AND MOTIONS 

The axis of the Q ( t )  in the change of frame (5) is the axis of rotation 
of that change of frame at the time t .  The angle of rotation of the change 
of frame at time t is the angle of rotation O(t) of the rotation R(t)  such that 
Q = R or Q = -R (cf. Section App. IIA.14). Since A( t )  is skew, its null 
space, likewise, is a single line except in the trivial instance A( t )  = 0 .  This 
line is called the axis of spin. The corresponding proper number of A(t)  is 0. 
Since A . A  = Q - Q ,  the magnitude of A is the same as the magnitude of Q. 
The value of IAI/fi is called the angular speed w at which $ is rotating with 
respect to $* at the time t .  

If the axis of rotation is independent of t, then it is also the axis 
of spin. Hence if the angle of rotation is O(t), then w = le(t)l. 

Exercise 1.9.5. 

With the aid of a convention of sign, we can define a vector w such that w x b = Ab 
for all vectors b. Here the sign x denotes the cross-product of 3-dimensional vector 
analysis. The vector w is called the angular velocity of the rotation R. Of course 
101 = w .  

Exercise 1.9.6. 
the axis of rotation, 

(GALLETTO). If 0 + 0 and if e is a suitably selected unit vector in 

w - e  = 4. (1.9-20) 

We turn now to the acceleration. If we differentiate (14) with respect to t ,  
we obtain by ( 12)2 and (15) the following relation between the acceleration x *  
in $* and the acceleration f in $: 

X *  - Qx = Qx + X: + A(x* - x;) +A(&* - Xl) ,  

= X: + 2A(Qx) + ( A  + A2)(x* - G ) ;  (1.9-2 1)  

the second right-hand side follows by substituting (14) into (21)l. Here, and 
sometimes later, we use abbreviated notation as in (14). The first term on the 
right-hand side is the acceleration of the place in $* assigned at the time t to the 
place xo in $. The second term, named after CORIOLIS, is the acceleration in $* 
that corresponds with the velocity & in $ (as this vector is seen by $*, that is. 
rotated by Q)  and to the spin of $ with respect to $*. The third term has two 
parts, the first of which, named after EULER, corresponds with the rate of change 
of the angular velocity, while the second, called the centripetal acceleration, 
expresses the acceleration caused by the pure transport of substantial points 
with respect to $*. 

Exercise I. 9.7. For any field A of skew tensors depending on t only, 

- A2p = V( -$p-A2p), (1.9-22) 
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V being the gradient operator and p a position vector. This statement can be interpreted 
in terms of the centripetal acceleration. (A2 is a symmetric tensor; for the particular A 
defined by ( 15) A2 has the axis of spin as its nullspace and has - u2 and 0 as its proper 
numbers.) 

The linear momentum, rotational momentum, and kinetic energy of a body 
depend likewise upon the frame. The transformations of these quantities and 
their rates of change induced by a change of frame are easy to calculate by 
substituting (14) and (21) into appropriate formulae of Section 1.8. 

10. Rigid Motion 

A motion of a body is called rigid if there is a frame f *  such as to make 
its velocity field vanish. The frame f *  is called a rest frame for that motion. 
To calculate the velocity field of a rigid motion in a general f, we need only 
set x *  = 0 in (1.9-14), generalized to allow xo to depend on t as in Exercise 
1.9.2, and then by use of (1.9-15) obtain the following 

Theorem (EULER). A motion is rigid i f  and only i f  its velocity field 
in any, and hence every, frame f is of the form 

>i = Xo - Q'G - QTA(x* - g ) ,  
= c + W ( x  - w ) ;  (1.10-1) 

here w(t) is a place in 8, c(t) is a vector, and W(t) is a skew tensor. 

Of course W = A*, the spin of a rest frame f *  with respect to f, related to 
A through (1.9-18). We use the special symbol W to remind the reader that we 
refer to a particular kind of motion of a body, or, if we like, a particular frame, 
while A is defined for any pair of frames, irrespective of whatever motion of 
a body may be taking place with respect to them. We call W the spin of the 
rigid motion. 

The nullspace of W(t) is called the axis of the rigid motion in f at the time 
t. Substantial points lying upon a line through xo and parallel to the axis of the 
motion are moving with the common velocity c(t). 

Exercise I. 10.1. For a given rigid motion at a given time, W is unique if and only 
if the shape of is not part of a straight line. 

In Section 1.9 we showed that the function A determines the function Q 
uniquely if Q(t0) is prescribed. By (1.9-18) we may use the function W to 
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determine Q in the same way, as we may see equally well by writing the 
differential equation (1.9-16) in the form 

Y + Y W = O  (I. 10-2) 

and seeking the solution Y that assumes the value Q(to) when t = to. 
From ( 1 ) 2  we see that the vector c(t)  is the velocity of the substantial point 

currently occupying the place xo in $; from ( l ) , ,  that c is expressed as follows 
in terms of the functions xo and x; in (1.9-11): 

(I. 10-3) . *  c = jro - QTxO.  

Thus, once Q has been determined and xo assigned, c determines the function 
x; to within an arbitrary constant place, on the presumption that the function 
c is continuous. If we choose as xo(t) the place occupied in $ by a certain 
substantial point X O ,  then xo(t) is its velocity in $, and, since $* is a rest 
frame, >i*(Xo, t )  = 0, and so in this way we recover the conclusion with which 
this paragraph began. 

Exercise I. 10.2. Directly from (l), without use of the general concepts and frame- 
work of the earlier sections but with Q ( t )  chosen as x ( X o ,  t )  for some substantial point 
X O  , it follows that if p2 and p,  are the position vectors with respect to xo of the sub- 
stantial points X2 and XI  in a rigid motion at time t ,  then in fact p 2 - p I  is constant in 
time. 

In summary of the foregoing argument we have the following 

Theorem (EULER). Let the motion of single point X O  of 9? be given 
as a differentiable function of time in $, and let W be a continuous func- 
tion of time whose values are skew tensors. Then choice of the relative 
orientation Q(to) at some one time to determines a unique rest frame and 
hence a unique rigid motion of 9’ corresponding to the spin W. If W = 0, 
all points of move with the same velocity as does X O  . Otherwise, the 
only points to share the velocity of X Q  at the time t are those lying on the 
single line through the place xo(t) occupied by X Q  and parallel to the axis 
of W ( t ) .  

In rough terms, EULER’S theorem states that a rigid motion of 9’ is composed 
instantaneously of a translation of .%? with the velocity of any one of its points 
and a rotation of ,@ about a certain, generally time-dependent, axis through that 
point. 
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As we shall see below, the rotational momentum of a body undergoing rigid 
with motion has an especially simple form in terms of the Euler tensor 

respect to Q,, defined as follows: 

(I. 10-4) 

p being the position vector field (1.8-26). E, is symmetric. If, as we shall 
assume now, the subbodies of L8 that have positive mass are not presently 
confined to a single plane, E, is positive. Then E, has at least one orthonormal 
triad of proper vectors, the directions of which are called the principal axes of 
inertia of L8 with respect to Q, in x ,  and the proper numbers Ek corresponding 
with them are positive. This statement is Segner's Theorem. The sum of the 
three latent roots E k  , namely tr E, , is the polar moment of inertia of i2l 
about Q, , and tr E, -Ek , which is positive, is the moment of inertia' about 
the kth principal axis through xo . 

If the motion is rigid, the position vector p * ( X ,  t )  of a substantial point 
X does not change in a rest frame $*. The corresponding tensor EIT(; is then 
constant in time. It is determined once and for all by the mass function and by 
the shape of 9?. 

Exercise I. 10.3. If S is a tensor function of t only, 

L p  hSpdM = E,ST - S&, . (I. 10-5) 

We consider first the case in which k~, = x: = 0. Then c = 0 by (3), and 
so substitution of (1)2 into (1.8-2), followed by use of (9, yields the following 

Theorem (EULER). Let a body undergo a rigid motion such that in $ 
one of its substantial points remains at rest at the place Q, . Then in $ 

M, = -Eq, W - WE,, . (I. 10-6) 

Equivalently , 

QM,QT = %*A + AEIT(; , (I. 10-7) 

EG being calculated in a rest frame. 

'Traditionally the tensor (tr&)l -E, is called the tensor of inertia, and Segner's Theorem 
is expressed in terms of it. In the notation used in (9), its determinant is I . II - III. 
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The theorem at the end of Section App. IIA.12 shows that if M, is given, 
a unique W is determined by (6). Thus for all rigid motions of a given body 
the spin and the rotational momentum determine each other uniquely. 

Exercise Z. 10.4. If both ~0 and x; are functions of t ,  in a rigid motion of a body 
whose mass is M 

p and p* being the position vectors of the center of mass with respect to ~0 in $ and 
with respect to in $*, respectively. The solution of (8), for W, with the subscript 
%* understood, is 

1 
z .zz -zzz W =  {[Z’ - zz][Mp A C - - MI 

in which I ,  ZZ, and ZZZ are the principal invariants of Ex, (Section App. IIA. 10). 

EULER’S theorem presupposes that no substantial-point remains at rest in $. 
Whether or not such a restriction is imposed, we can always choose as the 
center of mass of 93 in a rest frame. Then, in general, & + 0, but of course 

= 0, p* = 0, and (1.9-7) shows that p = 0, and so again (6) and (7) follow. 
The second of these conclusions is important because EG , being calculated in 
the rest frame, does not change in time. 

Now regarding (6) ,  we consider a vector e that lies upon a principal axis 
of inertia in $. Then Ex,e = Eke, E k  being the proper number corresponding 
with the principal axis upon which e lies, and hence (Ex, W + WE,)e = (Em + 
Ek1)We. Since Ex, + E k l  is positive, in order that (Ex, + Ek1)We = 0 it 
is necessary and sufficient that We = 0. Similar reasoning may be applied to 
EGA +AEG.  

Thus we have the following generalization of EULER’S theorem. 

Theorem. Let a body 9 undergo a rigid motion, and let q ( t )  be either 
the place occupied in $ at the time t by the center of mass of 9 ,  or the 
place occupied in $ by some substantial point of 9? that remains at rest 
in $. Then any two of the following three properties of a line imply the 
third 

1. It is a principal axis of inertia of 9 at w( t ) .  
2. It is the axis of spin. 
3. It is the axis of rotational momentum with respect to q ( t ) .  
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Exercise I. 10.5. 

w = -Q'AQ, w2 = Q'A~Q. (I. 10- 10) 

We shall now calculate the acceleration field of a rigid motion. Supposing 
that $* be a rest frame for that motion, we could set j i *  = 0 in (1.9-21) after 
generalizing it so as to allow xo to depend on t ,  but it is easier to differentiate 
( 1 ) ~  instead. Doing so, we obtain 

j i  = c + W(c -h) +(W + W2)(X - xo), 

= j6 + QT[-g + 2Ajd - (A - A2)(x* - x,')], (1.10-11) 

the second step being a consequence of (10) and (3). 

Again supposing first that one substantial point of 9Y remain fixed at the 
place xo in $, we calculate the rate of change of rotational momentum with 
respect to that place. To this end we need only set r;b = jd = j6 = = 0 
in ( l l ) ,  substitute the result into (I.8-5)2,  and use (10). Thus we obtain the 
following 

Theorem (EULER). Let a body undergo a rigid motion such that in $ 
one of its substantial points remains at rest at the place xo . Then in $ 

h;Im = -E,W - WE, + E&W2 - W2Em , 
(I. 10- 12) 

Q M ~ Q '  = E;A + AE; + E;A~ - A~E; . 

Exercise 1.10.6. Differentiating (7), noting that El: is constant, and then using 
(8)2 delivers (12). 

An axis of rotation that is constant in time is called a steady axis of rotation. 
I f  We = 0 and e = 0, then We = 0, and so we may apply essentially the same 
reasoning to Mm as we did to M, and conclude the following 

Corollary (EULER). Let a body undergo a rigid motion such that in 
$ one of its substantial points remains at rest at the place @ .  Then in 
$ a steady axis of rotation is an axis of the rate of change of rotational 
momentum with respect to xo if and only if it is a principal axis of inertia 
at xo. 

Exercise I.IO.7. In rotation about a steady axis W + W2 has the same nullspace 
as does W, namely, the axis of spin. Hence the proof of the foregoing theorem is com- 
pleted. A 
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In general, no substantial point will remain at rest in $. A statement of 
simple form may be found even so by taking moments and position vectors 
with respect to the center of mass x, of ~(9, t), so that p = 0. If we choose 
~0 in (8)l as x, and then differentiate the result with respect to t, we obtain 

M, = -E&W -WE, +&W2 - W2E,. (I. 10- 13) 

Returning to use of a fixed place xo , by substituting (13) into (1.8-30) we prove 
that 

(I. 10- 14) xo _ -  - p ~ r i r  -E&W -W& + E , w ~  - w ~ E , .  

Exercise 1.10.8 (KONIG, EULER). The kinetic energy of a body B in rigid motion 
is given by 

K = ;MlcI2 +Mc*Wji - ;W2*&, . (I. 10- 15) 

If ~ ( t )  is taken as the place &(t)  occupied by the center of mass of at the time t, 
then the kinetic energy of $9 may be decomposed into translational and rotational parts 
as follows: 

The first summand is the kinetic energy of a mass-point whose mass M is that of B and 
which moves with the speed of the center of mass of 9, while the second term is the 
kinetic energy that would correspond to the spin and shape of 9 if the center of mass 
of were at rest in $. 

A body insusceptible of any motions other than rigid ones is a rigid body. 
Except for a remark below in Section IV.7, this book will not treat further of 
rigid bodies. 

11. Ftame-Indifference 

While the event world V is the seat of phenomena, we may apprehend these 
only through the intermediary of a frame, since we always report observations in 
terms of places and times. A phenomenon, of course, is independent of frame, 
though a description of it in one frame generally differs from a description 
of it in another. The same phenomenon is reported differently by different 
observers. Thus arises the question how to relate statements about one and the 
same phenomenon made in terms of different frames. 

First, we may always make a statement with respect to one frame $ and then 
simply translate it into a statement with respect to any other frame $* . We have 
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seen an example in the case of a motion x of a body. If x is given with respect 
to f, we define x *  in $* by (1.9-ll), which simply reflects our interpretation 
of the concepts of motion and change of frame. We may do the same thing with 
other quantities we regard as intrinsic to the event world. The other principal 
example in mechanics is mass (Section 1.4). We say that such quantities are 
frame-indifferent. We shall discuss the frame-indifference of mass, force, and 
torque in the next section. 

Second, and more commonly, we shall encounter a prescription or definition 
that delivers a particular quantity in each frame. The prescription or definition 
itself is frame-indifferent in the sense that it is equally effective in all frames. 
We have seen examples already, namely, the velocity and the acceleration, which 
are calculated from the motion by rules that make no mention of frames and 
hence apply for any choice of f. These particular rules have been stated as 
(1.9-12). We have then been able to express the velocity and acceleration in $* 
in terms of their counterparts in f, with the aid, of course, of the functions Q ,  
q, and $ that specify the change (1.9-5) from $ to $*. The conclusions so 
obtained have been stated as (1.9-14) and (1.9-21). It is clear from them that 
the velocity and acceleration as observed by $ and $* are not simply functions 
defined on the event world W and then referred to frames, for if they were, 
under change of frame their values, which are vectors, would have to follow 
the transformation such a change induces on the translation space 9' of 8, and 
this transformation, as we have seen, is (1.9-7). Because in general x *  =/= Qx 
and x *  + QX, we say that velocity and acceleration are not frame-indifferent. 
This example makes it clear that a frame-indifferent prescription or definition 
leads in general to a quantity that is not frame-indifferent. 

Of course some prescriptions, although stated in terms of a frame, do lead 
to quantities intrinsic to W. Such quantities we shall call frame-indifferent, 
since in principle they could have been introduced abstractly without use of any 
frame. Suppose certain prescriptions deliver in $ and $* the scalar fields A 
and A * , respectively. If 

A*(x*,  t * )  = A(x,  t )  (1.1 1-1) 

when (x*, t * )  is related to ( x ,  t )  through (1.9-5), we shall say that A and A "  
represent a frame-indifferent scalar. Loosely, we shall refer to the value of A,  
which of course is a number assigned to a place and time in $, as being itself a 
frame-indifferent scalar. Likewise, the vector field v and the tensor field T will 
be called frame-indifferent if for all t 

(1.1 1-2) 
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respectively, where again (x*, t* )  is related to (x, t )  through (1.9-5), and Q ( t )  is 
the relative orientation of f *  and f at the time t .  The first of these requirements 
asserts that v* and v are the same "arrow" at the same event as observed in 
different frames. The second asserts, as we have seen in Section 1.9, that T* 
and T are at the same event the same linear transformations of such arrows. 
For details the reader may refer back to the discussion between (1.9-6) and 
(1.9-lo), but it is even clearer and not more difficult to demonstrate (2) directly 
by referring to the abstract quantities that v, v * ,  T, T*, etc., represent, as we 
shall do now. 

Let T be the instant that corresponds to the times t and t* in f and I*, 
respectively. Let V'T be the translation space of WT (cf. Section 1.6). The 
mapping DfT : V'T + V', which is the derivative of the mapping j T  : &T + & , 
is linear. Let VT be the vector in V'T that becomes v when observed in the frame 
$. Then v = (D$,)vT. Similarly, v* = (Df;)v~. Thence 

v* = (Df;)(DfT)-'v = D(f; 0 f r ' ) ~  = Qv. (1.11-2A) 

Exemise Z.ZI.1. Reference to the linear transformation on Y'T that has T* and T 
as representatives in the frames in question leads to proof of ( 2 ) ~ .  

The position vector p of x with respect to xo , defined by (1.8-26), is ob- 
viously a frame-indifferent vector. Hence the Euler tensor & , defined by 
(1.10-4), is a frame-indifferent tensor, and the principal moments of inertia 
are frame-indifferent scalars. 

Most of the fields we encounter in mechanics are not frame-indifferent. The 
examples of velocity and acceleration suggest, nevertheless, that if we restrict 
attention to a subgroup y of changes of frame from a particular f , we may 
obtain conclusions of the forms (1) or (2). In such a case we may say that a 
particular scalar, vector, or tensor is frame-indifferent i n y  from the particu- 
lar f .  For example, from (1.9-21)2 we see that x *  = Qx for all motions if and 
only if = const. and Q = const. This subgroup 
of changes of frame from f ,  consisting in those under which the acceleration is 
frame-indifferent, is called the group of galilean transformations of f .  These 
transformations interconvert the frames of observers moving at uniform veloc- 
ities with respect to one another and with no change of relative orientation in 
time. 

Any quantity that is frame-indifferent under galilean transformations o f f  is 
called a galilean invariant of f .  

= 0 and A = 0, so that 

The term "galilean" is merely traditional and should not be regarded as an attribution 
to GALILEO. 
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Exercise 1.22.2. The rate of change m of the linear momentum of a body 9? in a 
motion x in $ is frame-indifferent in the subgroup of galilean transformations of $. 

The set of all frames obtainable from $ by galilean transformations is the 
galilean class of $. 

Specifically, from (1.9-14) we see that X *  = QX for all motions if and only 
if % = 0 and A = 0. Thus ~0 and Q are constants. This subgroup of the galilean 
group of changes of frame from $, consisting in those under which the velocity 
is frame-indifferent, is called the group of constant rigid transformations of $. 
These transformations interconvert the frames of observers at rest with respect 
to one another. The class of all frames obtainable from $ by constant rigid 
transformations is the constant rigid class of $ (cf. Section 1.6). In Section 
I. 10 a rigid motion was defined as one whose velocity field vanishes in some $*. 
We now see that the velocity field of a rigid motion is independent of place in 
all frames belonging to the constant rigid class of $*, and only in such frames. 
In particular, all rest frames for a rigid motion are obtained from any given one 
by changes of frame in which = const., Q = const. As is plain from the 
concept of rigid motions, these frames may be obtained from one another by 
time-independent translations and rotations. These also constitute a subgroup, 
the rest class of the given rigid motion. 

Exercise Z.22.3. The gradient of a frame-indifferent scalar field is a frame-indif- 
ferent vector field; the proper numbers, trace, and determinant of a frame-indifferent 
tensor field are frame-indifferent scalar fields; the proper vectors of such a tensor are 
frame-indifferent vector fields; the scalar product of two frame-indifferent vector fields 
is a frame-indifferent scalar field; and the tensor product and exterior product of frame- 
indifferent vector fields are frame-indifferent tensor fields. 

Exercise I. 22.4. An oriented unit normal field to a surface is a frame-indifferent 
vector field. 

At the beginning of this section we remarked that prescription of a quantity 
in one particular $ can always be extended trivially to form the definition of 
a corresponding frame-indifferent quantity. So as to illustrate this fact, we now 
consider the acceleration X of some substantial point of 9 in $. If 

"4 : = X *  - ji; - 2A(X* - Go*> - (A - A2)(x* - G), (1.1 1-3) 

2' and X' being the acceleration and the velocity in $*, and A being the 
spin of $ with respect to $*, then by (1.9-21) we recognize a+ as being that 
frame-indifferent vector field over 9 which in $ is the acceleration field of 9. 
Of course, to within multiplication by a constant, orthogonal tensor, it is the 
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acceleration field in all frames in the galilean class of $. The frame-indifferent 
vector field a+ is of central importance in dynamics. 

12. Axioms of Mechanics 

Mechanics relates the motions of bodies to the masses assigned to them and 
the forces that act on them. Bodies are encountered only in their shapes. Masses 
and forces, therefore, can be correlated with experience in nature only when 
they are assigned to the shapes of bodies. Indeed, the value of the mass of a 
body is a real number, and we may simply associate that number to all shapes 
of that body: Mass is frame-indifferent. We may state this fact formally as 

Axiom Al .  

M* =M, (I. 12- 1) 

the notation being that used in Section I.11. 

We dignify A1 by the title “axiom” since such it would have to be, had we 
chosen to describe everything in terms of frames from the start. 

Since a force is a vector in Y ,  the translation space of 8, assignment 
of forces presumes that a frame has already been assigned. If forces are to 
have primary meaning, the transport of them to the shapes of bodies must be 
independent of the observer. The forces acting upon the shapes of 93 in $ and 
$* at the times t and t* should be related by the transformation the change of 
frame from $ to $* induces in Y. In other words, we require that all forces 
be frame-indifferent. Formally, we lay down 

Axiom A2. 

f *  = Qf, (I. 12-2) 

the notation being again that of Section I.11, 

Here and for the rest of this section the time is not indicated in the notation. 

Axiom A1 is part of the assumption commonly called “the principle of conservation 
of mass”; the other part, which asserts that the mass of a body is the same in all shapes 
of the body, is implied by our Axiom M1 in Section 1.4, according to which mass is 
assigned to bodies with no mention of any shapes they may assume. Axiom A2, until 
recently, was left to be inferred from the context and hence was not given a name. 
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Without exception, the various traditional ways of presenting the foundations of me- 
chanics leave the concept of force in the shadows of intuition. Some even foster the 
illusion that force is a derived concept, the existence of which follows from some mys- 
terious legerdemain with potential functions and variational principles and magical 6s. 
Assumptions must be made about forces in these treatments, since nothing comes from 
nothing, but the assumptions are tacit, even struthious. Modern fundamental thought in 
mechanics has reverted to the viewpoint of NEWTON and EULER: Forces are basic, a pri- 
ori concepts in mechanics. While NEWTON and EULER left forces, as they did many other 
things, largely unformalized, today we apply to mechanics the requirement of HILBERT, 
now universally accepted in the rest of mathematics: An object which enters a mathe- 
matical structure must be described by explicit, formal axioms specifying mathematical 
properties which make it possible to set and solve mathematical problems. If one such 
axiomatic basis suffices, so do infinitely many others. The one we adopt in this book is 
close to the ideas used informally and successfully by engineers for over a century. 

Axioms A1 and A2 require that mass and force as observed in $ and in 
$* be assigned the same units, just as the change of frame (1.9-5) leaves the 
units of length and time unchanged. Of course, a fully general formulation, 
while allowing it to be possible that different observers use the same units, 
i .e.,  to choose the same metrics in &, 9$, and Y,  would not require them 
to do so. The generality so obtained is merely apparent and is not worth the 
complication it introduces into the mathematics at this level. It may be achieved, 
if desired, by simply allowing free change of units afterward in all frames, once 
the requirements of frame-indifference shall have been satisfied, if they can be, 
by one choice of units. 

Exercise I.22.2. Axiom A2 implies that l d ( x  - xg) @ d f p  is frame-indifferent. 
Hence, in particular, the resultant torque is frame-indifferent . 

In a more general system of mechanics allowing for couples as well as moments of 
forces, an additional axiom is needed: The torques are frame-indifferent. 

In Section 1.5 we have remarked that a linear combination Afl + Bf2 of 
two systems of forces fl and f2 is a system of forces. If, as is natural, we 
require the scalar coefficients A and B to be frame-indifferent, then Axiom A2 
is satisfied also by Afl + Bf2 . Thus, even after the imposition of Axiom A2, a 
linear combination of two systems of forces is a system of forces. Conversely, 
if f and g are systems of forces, the trivial decomposition f = g + (f - g) 
allows us to regard f as the sum of g and another system of forces. To justify 
this decomposition, we cannot take for g simply any function that satisfies the 
axioms of forces listed in Section 1.5. Rather, we must be sure that g is frame- 
indifferent, since Axiom A2 requires that all forces be frame-indifferent. 

We are now in a position to impose requirements relating forces to mo- 
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tions, or, in looser terms, to state the effects of forces in producing motions. 
Specifically, we lay down 

NOLL'S Axiom. For every assignment of forces to bodies, the working 
of a system of forces acting on each body is frame-indifferent, no matter 
what be the motion. 

Formally, in the notations (1.8-7) and (I. 11-l), 

Axiom A3. 

w * = w  v 9 1 E a y  vx. (1.12-3) 

On the assumption that A2 is satisfied, we can demonstrate that (3) expresses 
a necessary and sufficient condition for the resultant force and torque on each 
body 99 to vanish. Indeed, by applying (1.9-13) to the definition (1.8-7) we see 
that, for given g and x, 

By Axiom A3 the right-hand side of this equation must vanish for all choices of 
the functions Q and $ . We consider a particular time t and choose Q such that 
Q(t )  = 0. Since Q(t)T$(t)  may be any vector whatever, Axiom A3 requires 
that 

f(9, 9'") = 0. (I. 12-5) 

This being so, Axiom A3 again applied to (4) shows that in the space of 
skew tensors F(gY 9e)m must be perpendicular to every tensor of the form 
Q(t)TQ(t) ,  the values of Q(t)' being orthogonal tensors. If W is a constant 
skew tensor, and if Q(t )  then Q(t0) = 1 and Q(t0) = W, and so 
Q(tO)TQ(tO) = W. Thus the skew tensor F(g, ge)% must be perpendicular to 
every skew tensor. Therefore 

F(g, g'")% = 0. (I. 12-6) 
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Conversely, (5) and (6) suffice for the truth of Axiom A3, it being presumed 
always that Axiom A2 holds. Thus we have established the following 

Theorem (NoLL). The working of a system of forces is frame-indif- 
ferent i f  and only i f  that system and its associated system of torques are 
both balanced. 

Demise 1.22.2 Axiom A3 =+ Axiom A2 

Examination of (4) shows that to prove the necessity of (5) and (6) we need not 
assume that W’ = W for all orthogonal Q but only for proper rotations that 
are affine functions of t . 

The reader accustomed to the usual treatments of mechanics needs to be reminded 
that here forces of all kinds are included. The common and useful separation of forces 
into “applied” forces and “inertial” forces will be made in the succeeding section. 

As a consequence of NOLL’S theorem here, NOLL’S corollary in Section 1.5, 
and the counterpart for torques mentioned in Section 1.8, Axioms A2 and A3 
imply the 

Corollary (Principle of Action and Reaction). 
bodies B and $? 

For each pair of separate 

(I. 12-7) 

While, as we have seen in Section 1.8, the special assumptions of analytical dynam- 
ics, once the system of forces is assumed balanced, reduce the balance of torques to 
the hypothesis of central forces, in more general and typical universes of mechanics the 
balance of torques is independent of the balance of forces. The proof of NOLL’S theorem 
makes it clear that the balance of forces expresses the invariance of the working under 
translations, while the balance of torques expresses the invariance of the working un- 
der rotations. Since rotations and translations may be chosen independently in a change 
of frame, no relation between the two principles can be expected except in degenerate 
cases. 

We have made the existence of a rest frame $* the definition of a rigid 
motion (Section 1.10). In a rest frame, directly from the definition (1.8-7) we 
see that W’ = 0. By Axiom A3, therefore, W = 0 in any frame $: The 
working of any system of forces vanishes in a rigid motion. This is the 
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work theorem of the dynamics of rigid motions. Thus for a rigid motion the 
value of the quantity whose frame-indifference NOLL’S Axiom asserts is in fact 
0. 

Any motion of a single mass-point is rigid. Thus we may obtain again the 
trivial conclusion (1.8-13). Our earlier proof assumed the system of forces to 
be balanced, which NOLL’S theorem ensures. 

Work theorems similar to that just stated hold in some other special branches 
of mechanics also, but by no means in all of them. For example, if in the 
analytical dynamics of a system of three or more bodies, we consider the body 
consisting in X I  and X2 for it the working does not generally vanish. Likewise, 
if 9? is the join of two parts, each of which is in rigid motion, W does not 
generally vanish unless both parts have the same spin. 

13. The Axioms of Inertia. Euler’s Laws of Motion 

Thus far we have considered an armature on which models of mechanical 
occurrences may be constructed: all the massy bodies in the universe, set in 
motion through the entire event world. By its nature, human experience can 
never use with profit, let alone test the worth of so embracing a picture, for 
human experience is limited to a portion of the event world and to those bodies 
which have occupied that portion within a limited period of time. This subset of 
the universe may be a small one, this interval of time a short one; at most, the 
former represents all bodies whose existence has so far been seen or inferred by 
man, and the latter, the total length of time through which human experience 
is known to have existed or can be shrewdly extrapolated. Whatever be the 
limitation chosen, some limitation there must be, for otherwise we could not 
isolate a class of putative phenomena from all the rest so as to form models for 
experiments or for the future course of nature. 

On the other hand, we cannot simply disregard the existence of all bodies but 
those in the subcollection or great system X in Q that we choose to isolate for 
attention, since such further bodies as may exist will generally exert forces upon 
those we do consider. The idea of “isolation” requires merely that the forces 
among members of the excluded set of bodies, and the consequent motions of 
those bodies, need not be known. If 547 E X, and if we denote by X“ the join of 
all the bodies exterior to X, then we consider f ( g I  X”) and disregard whatever 
forces the parts of X” may exert upon each other and whatever motions those 
parts may undergo. 

We might also limit the event world and the space of instants, but in classical me- 
chanics it is not usual to do so explicitly. 
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In classical mechanics in its most general form, the great system C is char- 
acterized by two axioms of inertia. 

Axiom 11. There is a frame such that if m(g, x )  is constant over an 
open interval of time, then in that interval f ( g ,  X " )  = 0, and conversely. 
Equivalently, by (1.8-29), there is a frame such that the center of mass p of 
93 moves along a straight line at uniform speed in that frame if and only 
i f  C" exerts no force on 9. 

The frame whose existence Axiom I1 posits is called an inertial frame. 
The First Axiom of Inertia, while it asserts the existence of a particular 

frame, is itself a frame-indifferent statement in that the condition it lays down 
restricts but does not depend upon the assignment of a frame to the event world. 
Moreover, it does not depend upon what system of forces is being considered. 
Axiom A2 asserts that all forces are frame-indifferent. Therefore, no matter 
what be the function f ,  so long as it satisfies the axioms imposed on systems 
of forces, the force exerted by Xe on g vanishes in one frame if and only if it 
vanishes in all frames. 

We can express the First Axiom of Inertia in another way. The exterior ,ge 
of 97 may be decomposed into two separate parts: Xe and the join 9; of all 
bodies of X separate from 97: 

97" :=g; VX". (1.13-1) 

If d 4 9, by Axiom F3 in Section 1.5 

(I. 13-2) 

the second equation refers to the vector-valued measures provided by Axiom 
F4 in Section 1.5. By (1.8-8) we have a similar decomposition of the torque 
with respect to ~0 : 

In particular, the resultant force and resultant torque have such decompositions: 

(1.13-4) 
f(9, 97'") = f(L8, g;) + f(9, X"), 

F ( 9 ,  9e)m = F(g, 9?;)m + F(B, X')), . 
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In each statement the first term on the right-hand side, since it depends only on 
the bodies within the great system X, is accessible in principle to observation 
and measurement. We call these terms the applied force on 9 and the applied 
torque on g, respectively, and we denote the corresponding functions of 9 by 
f a  and F& : 

While Axiom I1 may be imposed independently of the general axioms of me- 
chanics laid down in Section I. 12, we shall of course wish to adopt those axioms 
also. Then in virtue of NOLL'S theorem in Section 1.12 the left-hand sides of 
(4)1 and (4)~ vanish, and so (4) becomes 

(I. 13-6) 

Accordingly, we may express Axiom I1 in the following, equivalent forms, 
provided we grant Axioms Al-A3 in Section 1.12: 

1. 

2. 

There is a frame in which the linear momentum of 9 is constant 
i f  and only i f  no applied force acts on 9. 
There is a frame in which the center of mass of 9 moves along a 
straight line at uniform speed i f  and only i f  no applied force acts 
on 9. 

NEWTON set forth in 1687 three Laws of Motion. The first of these was, "Every body 
perseveres in its state of rest or of uniform motion straight ahead, unless it be compelled 
to change that state by forces impressed upon it." In the generality maintained in modem 
mechanics, this axiom is not always valid, for a body may be subject to internal or 
external constraints not expressed in terms of a system of forces. For example, a rigid 
body subject to no applied force spins about some axis through its center of mass; its 
parts, which also are bodies, move in such a way that their centers of mass describe 
circles about that axis. NEWTON himself did not specify any mathematical properties of 
bodies or forces, and so his intentions must be inferred by the reader, and in the course 
of time different readers have read different meanings into his words. Our Axiom I1 may 
be regarded as including one interpretation of NEWTON'S First Law. 

Joos' wrote the following physical justification of inertial frames in classical physics 
and their employment to construct NEWTON'S absolute time. 

'See Section X.2 of Joos's book, cited above in the footnote on p. 31. 
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We start with the empirical fact that there exist reference frames for which com- 
putations based on NEWTON’S Second Law are in complete accord with experiment. 
Consider, for example, celestial mechanics, which employs a stationary reference frame 
at the centre of gravity of the solar system. We do not now say with Newton that this 
frame is at rest in absolute space, or that it is in uniform rectilinear motion with respect 
to it . . . ; we content ourselves merely with giving such a frame in which Newton’s laws 
are valid a name. Because of the validity of the Law of Inertia [NEWTON’S First Law], 
we call such a system an inertial frame. Evidently the confirmation of our calculations 
depends also upon a reasonable measurement of time. How may we obtain a criterion 
as to whether our frame of reference, together with our clock, represents an inertial 
system of space and time? For this purpose we perform, at least in thought, the simplest 
of mechanical experiments-rectilinear motion of a particle subject to no forces. If we 
divide the line of motion into equal segments, we can take the time between the passing 
of two successive marks as the unit of time. However, one direction is not sufficient. 
If our measured path were accelerated with respect to a true inertial frame, we would 
obtain a non-uniform clock which would give impossible results for other experiments. 
It is readily seen that the necessary and sufficient condition for an inertial frame is that 
three particles projected in non-coplanar directions describe straight paths. Then, by di- 
viding the path of any one of the particles into equal intervals, we can obtain an inertial 
measure of the time. 

In Section 1.11 a galilean class was defined and seen to be the set of all 
frames obtainable from a given one by galilean transformations. If the accel- 
eration of a certain substantial point vanishes in one frame, it vanishes in all 
frames belonging to the same galilean class. In view of (1.8-5), then, the linear 
momentum of a body is constant in one frame if and only if it is constant in all 
frames of the same galilean class. Accordingly, Axiom I1 requires that if for all 
9 the system of forces f be such that f( 9, X“) = 0 in $, then f * (L8, X“) = 0 in 
every $* belonging to the galilean class containing $. Thus, finally, the galilean 
class of an inertial frame is the set of all inertial frames for a given X. 

By Axiom I1 alone, the inertial frames that pertain to two different great 
systems X need not belong to the same galilean class. It is customary, nonethe- 
less, to assume that there is but one single galilean class of inertial frames for 
all great systems. This galilean class of inertial frames defines an affine struc- 
ture on the event world W. The world-lines of body-points of a body at rest in 
an inertial frame are parallel straight lines in the affine space-time W. 

Instead of introducing the affine structure on W here, we might postulate it even 
before talking about frames.’ Indeed we should have done so, had logical efficiency been 
our only guide. The somewhat long path that we have taken has its merits nevertheless. 
First, it shows clearly that the mathematical structure on W is nothing sacred or divine: 

‘An example of such an approach is furnished by T. MATOLCSI, “On material frame-indif- 
ference,” Archive for Rational Mechanics and Analysis 91 (1985/86): 99-1 18. 
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that structure describes only the physics that we mortals comprehend. The mathematical 
structures that reflect the requirements of kinematics, dynamics, and frame-indifference 
of material response are different. Secondly, our approach above is in fact more flexible. 
For instance, we may elect, following CARTAN, to incorporate Newtonian gravitation into 
our theory by allowing W to have curvature.’ To this end we should have to modify the 
Axioms of Inertia I1 and 12, but we might still leave the discussions in Sections 1.6, 1.9 
and I. 11 intact. Had we postulated W to be affine at the outset, CARTAN’S approach to 
Newtonian gravitation would seem inconceivable. 

According to astronomers, certain of the most distant stars seem to be nearly at rest 
with respect to one another. It is customary to interpret the class of inertial frames in 
the theory as being those that are obtained by uniform translation of one in which those 
“fixed stars” are stationary. The theory itself, however, merely assumes that there are 
inertial frames and does not enter into the question of how they should be interpreted in 
nature. 

In Section 1.9 we saw that two general rigid frames need not be compatible 
in terms of the differentiable structures they define on W. In view of the affine 
structure on W, we shall henceforth consider only those rigid frames that are 
compatible with the differentiable structure defined by the galilean class of 
inertial frames. 

Once a frame satisfying Axiom I1 is given, we may ask what forces are 
exerted upon a body g experiencing general motion with respect to it. These 
forces are restricted by the following conditions: 

Since f is a function of pairs of separate bodies, f ( g ,  X”) should depend 
upon the motions of bodies at most through the motion of and the 
motion of Xe. 
Since we know nothing about the nature of Xe or its motion, f ( g ,  X“) 
should depend upon 9? and its motion alone. 
For consistency with Axiom 11, f(g, X”) should vanish if m ( g ,  x )  = 
const. 

Classical mechanics rests upon what seems to be the simplest assumption con- 
sistent with these three requirements, namely, 

1 .  

2. 

3. 

Axiom I2 (NEWTON, EULER, and others). In an inertial frame 

f(g, X“) = -Iil(37; x ) .  (I. 13-7) 

‘For an exposition of CARTAN’S theory of Newtonian gravitation, see Chapter 12 of Gravitation 
by C. W. MISNER, K.  S. THORNE, & J. A. WHEELER, San Francisco, W.  H.  Freeman and Co. ,  1973. 
b r  an attempt to incorporate CARTAN’S theory of gravitation into continuum mechanics, see the 
paper by P. G. APPLEBY & N. KADIANAKIS, “A frame-independent description of the principles of 
classical mechanics,” Archive for  Rational Mechanics and Analysis 95 (1986): 1-22. 
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Up to now, the units of length, time, mass, and force have been indepen- 
dent, and Axiom I1 does not require there to be any relation among them, 
since it merely asserts that a certain force vanishes when a certain accelera- 
tion vanishes. Before it becomes legitimate even to state Axiom 12, we must 
assume that forces can be specified in mechanical units-in particular, that 
the dimensions of force are the dimensions of (mass) x (acceleration), which 
are (mass)(length)(time)-’. 

The origin of this assumption seems not to have been any particular experiment or 
observation but rather the fact that at first only special forces, namely, weights, were 
recognized. Weight was seen in time to be proportional to mass, and indeed in early 
studies of mechanics force, weight, and mass seem to have been confused often. That 
the units of force are of the special kind required in order that we be allowed even to 
consider Axiom I2 as a possible assumption in a theory of natural phenomena, should 
be accessible to test by experiment.’ While no specific experiment seems ever to have 
been proposed, let alone effected, so as to test this assumption, it seems to be universally 
accepted. 

Axiom I2 is consistent with Axiom F4 in Section 1.5, since, as shown by 
(1.8-5)l , the rate of change of linear momentum of a part of 93 is the value 
of a measure over 93. Specifically, for smooth motions (1.8-5)l enables us to 
express (7) in the form 

(1.13-8) 

The second assertion follows from the first because we have assumed (1.8-8). In a 
more general system of mechanics, we should have to lay down ( 8 ) 2 ,  or some other 
axiom, independently of (8), . 

The forces and torques given by (8) are called inertial. Provided the frame 
$ be an inertial one, these forces and torques are those exerted upon the bodies 
of the great system X by the bodies, whatever they may be, that are outside X. 
When we choose instead to use a general frame $*, we think of the unknown 
motions of the exterior Ce as being subjected to the same change from the 
frame $ to the frame $* as are the motions of X.  Therefore, the second axiom 
of inertia, while it refers to a particular class of frames, expresses a frame- 
indifferent principle. While we follow tradition in stating it as we have, in terms 
of an inertial frame, we need not do so. Axiom A2 of Section 1.12 asserts that 

‘The question is somewhat similar to that underlying the “first law of thermodynamics”, which 
allows flow of heat to be measured in mechanical units. 
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all forces are frame-indifferent. Thus the quantity on the left-hand side of (8)1 
is frame-indifferent. Accordingly, a frame-indifferent statement that reduces to 
(8) I in an inertial frame is 

d f ( 9 ,  F) = -agdM, (I. 13-9) 

a+ being that frame-indifferent vector field over $3 which in the inertial frame 
$ reduces to 2. We have already calculated a+ and recorded it in (I. 11-3). The 
student should recall the role in a+ played by A, which is the spin of $ with 
respect to the general rigid frame $* . 

In the remainder of this book we shall follow the tradition of mechanics in 
assuming tacitly that the fmme used is an inertial one, and so (8) holds. 

Our use of an inertial frame rests on more than respect for tradition. An essential 
feature of classical mechanics is the existence of special frames in which the relation 
between forces and the motions they produce is especially simple. Since we have 
these felicitous frames, it would be simply foolish not to use them. When for purposes 
of interpretation in a particular application we need to employ some frame that is not 
inertial, as for example in problems referred to a rotating earth, we formulate the laws 
of mechanics first in an inertial frame and then transform them to the other frame of 
interest. Such is the traditional approach, which derives from CLAIRAUT and EULER. In 
replacing (8) by (9) we formulate that approach in general terms. 

Recalling that the general axioms of mechanics imply (6), from Axiom I2 
we see that 

where to obtain the second statement we have used ( 8 ) ~ .  That is, the applied 
force on 9 equals the rate of change of the linear momentum of 9 in 
an inertial frame, and the applied torque equals the rate of change of 
rotational momentum of 37 in the same frame, both torque and rotational 
momentum being taken with respect to a place ~0 that is stationary in the 
inertial frame. These two statements are Euler's Laws of Motion. The formal 
treatment in the rest of this book is based upon them rather than upon the more 
general ideas from which we have developed them. Usually we shall write them 
in the shorter notation 

f a  =m, Fa =M. (1.13-11) 

If for a given body in an inertial frame 

f a  = 0,  Fa = 0, (I. 1 3- 12) 
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that body is isolated. From Euler’s Laws (11) we see that the linear and 
rotational momenta of a body remain constant if and only if that body is 
isolated. The theorem given at the end of Section 1.8 shows that in an inertial 
frame the center of mass of an isolated body moves along a straight line 
at constant speed. 

We have seen that in a general rigid frame, (8), must be replaced by (9). The 
corresponding replacement in (8)2 has to be treated with care, since in it ~0 is a fixed 
place in an inertial frame. The resulting general forms of EULER’S Laws (10) are 

fa(&’) = 1 agdM, 
.a (I. 13-13) 

Here yo is a fixed place in an inertial frame $ , and ~0 is the corresponding place in 
the general frame $*. Only if also $* is inertial are the right-hand sides of (13) equal 
to the rates of change of linear momentum and rotational momentum, respectively. 

Returning to use of an inertial frame, as we shall do henceforth in this book, 
we note from (1.8-29) that EULER’S First Law (1  1) can be written in terms of 
the motion of the center of mass p of 9: 

f a  = MP. (I. 1 3- 14) 

Thus, in an inertial frame, the applied force on a body equals the mass of 
that body times the acceleration of its center of mass. 

This last is one of the oldest of the commonly accepted principles of mechanics, 
used again and again, with or without explicit statement, in the eighteenth century. It is 
sometimes regarded as expressing the Second Law of NEWTON: “The change of motion 
is proportional to the impressed motive force, and it is made in the direction of the right 
line along which that force is impressed.” 

The point ~0 with respect to which torques and rotational momenta entering 
EULER’S Second Law are calculated is a fixed point in an inertial frame. We may 
use EULER’S two laws together so as to calculate the effect of the applied loads 
upon the rotational momentum with respect to the center of mass x, . In (1.8-9) 
we replace ge by 9?;. Then EULER’S Second Law (10)~ makes the left-hand 
side of the outcome equal the left-hand side of (1.8-30). If in the former we take 
x, for XI , by use of EULER’S First Law (10)l we conclude at once that (10)2 
holds with x, replacing ~0 . That is, the applied torque on 9 equals the rate 
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of change of rotational momentum of 9? in an inertial fmme when both 
torque and rotational momentum are taken with respect to the center of 
mass. 

The student interested only in continuum mechanics may pass now to the 
next section. 

In analytical dynamics (above, Sections 1.3, 1.5, 1.8) the “environment” XO is 
considered to have two separate parts, one inside the system C and the other being X“: 

xo = x e  VX‘, (I. 13- 15) 

say, so that 

and 

The force f : is called the external or extrinsic applied force acting upon Xk . In terms 
of it and the mutual forces f k p  , EULER’S First Law ( assumes the form 

as may be seen also from putting (16) into (1.5-24). Equations of this form are often 
called “Newtonian”, though they occur nowhere in the writings of NEWTON. 

Exercise I. 13. 1 (NoLL). The axioms of inertia when applied to analytical dynam- 
ics do not alter the requirement (1.5-22) and NOLL’S theorem at the end of Section 1.8. 
Thus in analytical dynamics EULER’S Second Law is equivalent, the first being presumed 
imposed already, to the statement that the mutual forces are central. 

Moreover, for the entire system of n mass-points 
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the second relation, while its form suggests the principle of rotational momentum, is 
a simple consequence of (18) and (1.8-24). These are the theorems of linear and 
rotational momentum of analytical dynamics. 

Comparison of (19), with (14) shows that in an inertial frame, the motion of 
the center of mass of a body g is the same as that of a mass-point having the 
same mass as &?, located at the center of mass of .9, and subject to the resultant 
applied force on 3?. Thus if we are satisfied with knowing no more about the motion of 
a body than the motion of its center of mass, and if we can determine the applied force 
on that body, we need enter no more deeply into mechanics than the level of analytical 
dynamics. As HAMEL wrote in 1909, “what is understood in practice as the mechanics 
of points is neither more nor less than the theorem on the center of gravity.” This fact 
goes far to explain the pragmatic success of analytical dynamics. In particular, use of it 
does not require that the body 3? really occupy no more than a discrete set of points in 
space, but only that our curiosity be slaked by determining the motions of such a set of 
points. The standard example here is furnished by the sun and its planets and comets. It 
is a typical example in that whether or not analytical dynamics be sufficient to describe 
its motion depends on how far we choose to inquire into it. For certain problems or in 
certain refined cases we need to take account of the spins and even the shapes of the 
bodies, and then analytical dynamics, as embodied in (18), (I.5-22), and (I.8-24), no 
longer suffices. 

From (14) we see that the motion of the center of mass of any body is 
determined, to within arbitrary assigned position and velocity at some one time, 
if the resultant force on that body is a known function of time. For a rigid motion 
still more can be said. Consider first a rigid motion of a body one of whose 
substantial points remains constantly at a fixed place, say &I, in an inertial 
frame. Substitution of (I. 10-12)~ into (1 1)2 then yields Euler’s Difenmtial 
Equation for such a motion: 

QF&QT = F$ = EGA + AEG +EkA2 - A2EG . (1.13-20) 

Here F$ is the applied torque in the rest frame with respect to the stationary 
place $ occupied in that frame by the substantial point that remains at rest at 
the one place &I in an inertial frame. Since EG is a known, constant tensor, 
(20) is a differential equation of first order for the spin A of the rest frame 
$* with respect to the inertial frame $, on the presumption that the resultant 
torque F< be known. 

Even if no substantial point remains at rest in an inertial frame, we may 
appeal to the italicized theorem above, just before the remarks on analytical 
dynamics, and so by use of (I. 10-13) conclude that 

F & = - h W - W E , + & W 2 - W 2 E , ,  (1.13-21) 



74 I. BODIES, FORCES, AND MOTIONS 

or, equivalently, 

F:: = E:. A + AE;, + E;:A2 - A2E;: , (I. 13-22) 

x,* being the place occupied by the center of mass in the rest frame I*. This 
statement is of the same form as (20) and can be interpreted similarly. 

If FZ is a continuous function of time, there is a unique solution A of (20) 
corresponding to any given initial value A(to), and if that initial value is skew, 
so is A(t )  for all t ,  as the student will easily verify. A theorem given in Section 
1.9 states conditions under which the spin A determines the relative orientation 
Q. Similar reasoning may be applied to (22). 

Summarizing all these conclusions, we have the following 

Theorem. Let a body 9 be in rigid motion, and in a rest frame let 

A. the place g in $* is occupied by a substantial point which remains 
at rest at the place xo in the inertial frame $, or 

B.  the place g in $* is occupied by the center of mass of 9.  

In Case B, suppose that the place Q ( t )  occupied in the inertial frame $ by 
the center of mass of 9 be known, e.g. by integration of (14). 

Then the assignment of the initial orientation Q(t0) of $*  with respect 
to $ determines a unique rest frame $* and hence a unique rigid motion 

E; be its Euler tensor with respect to the place $ . Suppose that either: 

of 9.  

Roughly, if one substantial point of g remains at rest in an inertial frame, 
or if the motion of the center of mass of 9 with respect to an inertial frame is 
known, a rigid motion of 99 is determined by an assigned resultant torque, to 
within inessential constants. 

This theorem enables us to refine, if we so desire, the bare skeleton of 
mechanics furnished by analytical dynamics. If we are content to regard the 
motion of a body as rigid, we may calculate that motion from the resultant 
torque, once the existence of a fixed point or the motion of the center of mass 
has been determined. For this purpose we need to know about the body itself 
only its Euler tensor E; with respect to an appropriate place $ in a rest frame. 

As we noticed above, to apply the mechanics of mass-points we need not assume that 
the shape of 93’ be a single place; rather, we must simply be content with determining the 
motion of the center of mass of B ,  leaving unknown such motion relative to that center 
as the remaining points of 93’ may have. Likewise, to apply the theory of rigid motions, 
we need not assume that the body B be susceptible onb  of such motions; rather, we 
must simply remain content with specifying some one shape of B and supposing that 
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in some frame, that shape shall remain unchanged to within a rigid motion. In rough 
terms, analytical dynamics and the theory of rigid motions determine certain aspects of 
the motions of all bodies, whether or not they be mass-points or rigid bodies. 

If we cast back one look at the purely kinematical corollary on steady 
rotations at the end of Section I. 10, by use of the axioms of inertia we may now 
obtain from it a major proposition of dynamics. An axis of free rotation is a 
line whose direction is steady in a rest frame and about which a body subject 
to no resultant torque with respect to some point on that axis may spin. Such an 
axis is necessarily a steady axis of rotation and, of course, an axis of rotational 
momentum. Thus we have the following 

Theorem (EULER). The axes of free rotation through the center of 
mass of a body, or through the place of a body-point which is at rest in 
an inertial frame, are the principal axes of inertia. 

In particular, a body of a given shape cannot spin freely about any line 
that is not one of its axes of inertia. Since E; is positive and symmetric, 
there are either exactly three such axes, which are orthogonal to one another, 
or infinitely many. In the latter case, either every line is a principal axis of 
inertia, or the principal axes of inertia are one certain line and all lines in a 
plane perpendicular to it. 

Exercise 1.13.2 (EULER). For a particular %?, let e, f ,  g be an orthonormal triad 
of proper vectors of EZ; in a rest frame, and suppose 9 to rotate about the principal 
axis of inertia defined by e, so that 

A = w f A g .  (I. 13-23) 

Then o = IAI/&. If 
to 

= ~0 , a place on the axis, then EULER’S equation (22) reduces 

FC = F f A g ,  (I. 13-24) 

and 

F = I & ,  I = E z + E 3 ,  (I. 13-25) 

E2 and E3 being the proper numbers of the Euler tensor E,’,, corresponding with the 
proper vectors f and g. 
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14. Power. Kinetic Energy. Potential Energy 

In Section 1.12 we have imposed the requirement that the working W be 
frame-indifferent. In an inertial frame the working has an especially useful 
interpretation. Namely, if we substitute (I. 13-8)l into (I. 13-2) and then substitute 
the outcome into the definition (1.8-7) of W, by comparison with (1.8-5)3 we 
see that 

W = P - K ,  (I. 14- 1) 

P being the power, namely, the working of the forces exerted on 9? by the 
exterior bodies in the great system X alone: 

(I. 14-2) 

and K being the kinetic energy of %, We have eased the writing by leaving 
arguments such as 9, x ,  and t unwritten. The statement (1) asserts that the 
working W is the power of the forces exerted upon 9 by the exterior of 27 in 
the great system X, less the rate of increase of the kinetic energy of 9, in an 
inertial frame. We may say equally that the working of the inertial forces is 
- K. 

If in an inertial frame all work done is converted into kinetic energy, P = K, 
so that 

w =o,  (I. 14-3) 

and the term mechanically perfect is applied. That term may refer to the body, 
to the system of forces, or to the motion, whichever of these we choose to regard 
as being restricted by the statement. The condition (3) is frame-indifferent, and 
so it may be imposed on all bodies, all motions, or all systems of forces, in 
any combination we please. In Section I. 12 we have proved that a rigid motion 
of any body and all motions of a single mass-point are mechanically perfect. 
This statement is a consequence of NOLL’S Axiom in Section I. 12 and does not 
require the Axioms of Inertia. These latter, however, enable us to interpret the 
statement as follows: In an inertial frame the working of the forces on 9 is 
balanced by increase of the kinetic energy of 9. 

Theories of mechanically perfect motions or bodies are untypical of general 
mechanics because they permit us to study and determine the effects of external 
forces without having to take up effects of deformation and dissipation. Exam- 
ples are furnished by any motion of a mass-point and by the rigid motion of any 
body, since, as we have seen in Section I. 12, for both of these W = 0 always. 
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With some special kinds of bodies and special systems of forces we may 
associate a potential energy. This term has somewhat different meanings in 
different special theories. For illustration we shall select analytical dynamics. 
In Sections 111.6 and IV.7 and in Volume 3 we shall obtain conclusions of the 
same kind for fluids and elastic solids. 

First, from (I.8-10)3 and (1.8-1 1 ) 2  we see that for a motion of a system of n mass- 
points 

By use of (I.13-18)l it follows that 

( I .  14-4) 

(I. 14-5) 

In the simplest examples of the analytical dynamics of systems of mass-points the 
force f t  is the value at x k  of a field that when X(Xk , t) = xk acts upon the mass- 
point Xk . The simplest such fields are those that derive from a potential funcfion 
U ( x ,  , x2,. . . , x,,) ,  defined and continuously differentiable on an open set of C, x h' x . . . 
x d' that contains all the places occupied by the mass-points X I  , X2, .  . . , X n  in the 

course of the motion. Then the following definition makes sense for each motion x :  

and so 

in which a,, U is the partial derivative of U with respect to xk . Recalling (I. 13-18), , 
we assume that 

f ;  = -axk U l x , = x ( x , . , l ,  r = 1, 2 , .  . . ,n, 

and so conclude that 

(1.144) 

(I. 14-9) 
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Such systems of forces are called conservative because putting ( 5 )  and (9) together 
yields the Energy Theorem : 

K + i J = O ;  (I. 14- 10) 

that is, for each motion x of a dynamical system subject to the forces f 7 , f i ,  . . . , f 
derived from U through ( 8 )  the quantity K + U remains constant. The value U ( t )  
given by ( 6 )  for a given x is called the potential energy of the system at the time t in 
the motion x.  

A particular kind of potential function U that delivers forces as the sum of extrinsic 
applied forces f i  and of mutual forces f q k  as in (1.13-18) is given as follows in terms 
of differentiable real functions q and U q k  , q = 1, 2,. . . ,n: 

n n 

k= l  q .  k =  I 
k >q 

Without loss of generality U k q ( X k  , x q )  := u q k ( X q ,  x k )  when k < q,  Uqq := 0,  q = 
1,2,. . . , n;  then (1 1) can be rewritten as 

From (12) we find that 

(1.14-13) 

Applying (8) yields 

q = l  

The first term on the right-hand side refers to the place x k  only; the summand in the 
second term, to the places x k  and xq only, k ,  q = 1, 2 , .  . . ,n.  Thus we may, if we 
like, regard the functions (pk as the potentials of the external forces f i  in (I. 13-18), the 
functions u k q  as the potentials of the mutual forces f k q  . Alternatively, we might start 
with those potentials and argue backward to (13) and (12). 

Thus far we have abused terms in calling the various quantities f with subscripts 
“forces”. All forces are frame-indifferent. When we apply that requirement, we sub- 
stantially restrict the various functions U that we have called potentials. The following 
exercise indicates the restrictions resulting for the functions and u k q  when they are 
assumed to be frame-indifferent. 
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Exercise 1.14.2. Under a change of frame (1.9-5), 

(1.14-15) 

if and only if u q k ( x q  , x k )  depends on xq and x k  through 1% - x k  I alone. That is, (15) 
holds if and only if there is a real function V q k  such that 

(I. 14- 16) 

If Uq, is the potential of the force exerted by x k  upon Xq in the motion x, = x ( X ,  , t ) ,  
r = 1, 2 , .  . . , n ,  the mutual forces are central and pairwise equilibrated. Hence balance 
of rotational momentum (Exercise I. 13.1) and frame-indifference of the potentials 
u k q  in (14) are equivalent for the special systems of mass-points considered here. If 
q ( x k )  = q ( x k  , xg), xg fixed (cf. (1.13-16)), then is frame-indifferent if and only 
if a,, q ( x k  , xg) is parallel to x k  - ~0 . If, more generally, q ( x k )  = q ( x k  - ~0 , n) 
and n is a frame-indifferent unit vector (e .g .  the unit normal to a surface through x k ) ,  

then q is frame-indifferent if and only if d,, q ( x k  - ~0 , n) equals the sum of a vector 
parallel to x k  - ~0 and a vector parallel to n. 

The passages on analytical dynamics included in this chapter are designed only to 
help the student grasp the general principles of mechanics through their reduction to 
very familiar concepts and theorems. 

The quantity K +U is sometimes called the “total energy” of the system, but 
this usage misleads. Potential energy is not a fundamental concept of mechanics. 
When a potential energy exists, it is useful in solving special problems, but that 
it should exist, is only a fortunate accident to the body, for not all forces 
occurring in nature are represented well by mathematical forces deriving from 
a potential energy. The succeeding section explains and defines total energy. 

15. Internal Energy 

The contents of this section will not be used in the following text except 
for an exercise at the end of Section 111.6. I include these statements as the 
beginning of an answer to the student’s natural question, “How does mechanics 
fit into the scheme of natural phenomena?” In what follows now are some 
remarks about heat. The next step would bring in electromagnetism, but even 
the elements of that subject defy clear summary in one short section. 

In nature the exercise of forces need not give rise to motion but may in 
whole or part be consumed in production of heat, and, vice versa, heating a 
body may set it in motion, as we may see from the example of compressing a gas 
by a piston, or allowing the gas by expanding to move such a piston and so cool 
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itself by working. Also there are circumstances in which a body may be heated 
or cooled with no consequent effects recognizable as being motions. Common 
experience requires that the mathematical theory of continua be broadened to 
include the effects of heating. While we shall not treat those in this book, 
here we sketch the basis of the general theory that extends mechanics so as to 
subsume the simplest thermodynamics. 

The structure of a system of heatings is much like that of a system of forces 
(above, Section 1.5). The elements of the system are real functions Q defined on 
pairs of separate bodies. They are subject to axioms just like FI-F4 in Section 
1.5. Q ( 3 ,  U)  is the heating effected upon % by V. The resultant heating of 
99 is Q(%, ge) ,  namely, the heating of 9 effected by its surroundings. 

The classical thermodynamics of homogeneous processes, begun as a some- 
what mathematical science, relates heat given to a body and the work done by 
that body in undergoing a process. Only through its changes of volume is the 
deformation of such a body taken into account in that theory. CLAUSIUS in devel- 
oping it proved the existence of the internal energy E, which compensates any 
excess or defect of heat and work. While we shall not in this book present a 
theory of thermomechanics, at this point the student may find it helpful to recall 
some of the main assumptions and conclusions of the classical thermodynamics 
of homogeneous processes. ‘ 

‘Textbooks on thermodynamics by and for physicists and engineers are more likely to obscure 
the basic assumptions and the logical structure of classical thermodynamics than to enlighten a 
critical student familiar with rigorous calculus and with the orderly, deductive arguments used in 
mechanics. Otherwise respectable books by mathematicians include among the applications adduced 
to illustrate the pure mathematics developed (e .g . ,  CARATH~ODORY’S theorem on Pfaffian forms) 
passages of silly babble on thermodynamics. The only trustworthy elementary book I have seen 
is D. R. OWEN’S A First Course in the Mathematical Foundations of Thermodynamics, New 
York, etc. Springer-Verlag. 1984. Unfortunately, as OWEN writes on p. 3, the theory he presents 
does not cover the anomalous behavior of water. 

For many years 1 strove to correct, recast, and integrate the works of the pioneers-CARNoT, 
KELVIN, RANKINE, CLAUSIUS, REECH-and so construct classical thermodynamics as a mathematical 
science, clearly and rigorously developed. My final presentation is Appendix 1 A, “Thermody- 
namics for beginners,” Rational Thermodynamics, Second Edition, corrected and enlarged, New 
York, etc., Springer-Verlag, 1984. I have circulated a corrected, fuller text (1988). revising that 
published by the Accademia dei Lincei in 1986: “Classical thermodynamics cleansed and cured,” 
pp. 265-291 of Meeting on Finite Thermoelasticity (1985), Contributi del centro Linceo interdis- 
ciplinare di Scienze Matematiche e loro applicazioni, No. 76. Further information may be found 
in the book I wrote in collaboration with BHARATHA, The Concepts and Logic of Classical Ther- 
modynamics . . . , second, corrected printing, New York, etc., Springer-Verlag. 1988, and my 
The Tragicomical History of Thermodynamics, 1822-1854, New York, etc., Springer-Verlag, 
1980. While, like the works of discovery, those just cited treat only systems with two independent 
variables, M. PITTERI has extended the analysis to systems with three or more variables: “Classical 
thermodynamics of homogeneous systems based upon Carnot’s general axiom,” Archive for Ra- 
tional Mechanics and Analysis 80 (1982):333-385. In all these works the anomalous behavior of 
water is explained naturally and easily as a special instance of thermodynamic behavior. 
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First, in conditions such that no work is done on or by 57, the resultant 
heating of 93 is stored within it as internal energy: 

E(g) = Q(g, .g“). (I. 15- 1) 

Circumstances in which this equation holds are called energetically perfect. 

Exercise 1. 15.1. On the assumption that ( 1 )  holds, E is an additive set function if 
and only if Q(#, ‘G) = -Q(%, &) for all paws of separate bodies @ and 5‘. 

Since the functions Q are defined over pairs of bodies, they may be trans- 
ferred to the shapes of bodies. Since there is no basis for assigning preference 
to one frame rather than another in considerations of heat, we assume that the 
Q are frame-indifferent: 

Axiom El .  

Q* = Q .  ( I .  1 5-2) 

The occasional connection between heating and the action of forces, men- 
tioned above, shows that the conditions (1.14-3) and (1) cannot be general. It 
suggests that W ,  E, and Q may be related, but it does not dictate any particu- 
lar relation. The units assigned to Q and hence determined for E by (1) were 
specified originally in terms of conditions in which forces and motions were 
absent. These units are called “thermal”, and they are still in wide use today. 

The pioneers of thermodynamics made scant use of the principles and theo- 
rems of mechanics. They regarded the condition of a body capable of absorbing 
and emitting heat as being specified sufficiently by its volume V and its temper- 
ature 0 on some accepted scale, and they assumed that Q was a linear function 
of and e with coefficients depending upon both V and 8. Beginning with 
CARNOT, they considered mainly changes such that V and 0 arrived finally at 
the values initially given them: “cyclic processes”. CLAUSIUS assumed (in ef- 
fect) that if a body so specified undergoes a cyclic process in the interval of 
time [0, TI, then 

i T W d f  = J i T Q d t ,  ( I .  15-3) 

and the constant J is the same for all bodies and all cyclic processes; of course it 
depends upon the systems of mechanical and thermal units employed. Nowadays 
this statement can be proved mathematically as a consequence of physically 
natural assumptions.‘ It is called the Principle of Equivalence of Heat and 

‘Here the student may consult any of the works cited in the footnote on the preceding page. 
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Work in Cyclic Processes. From it we see that despite the dissimilarity of the 
original concepts of heating from those of mechanics, heating may be measured 
in units of working. It suggests that we may consider heating Q and working 
W as co-operating to produce energy. CLAUSIUS and KELVIN, each in his own 
way, arrived at the following Balance of Energy,’ usually called “The First 
Law of Thermodynamics”: 

Axiom E2. 

E = W + Q .  (I. 15-4) 

The arguments 9?, Be,  x ,  etc., are omitted for ease of writing, and the units 
are so chosen that J = 1. 

Since Q and Ware frame-indifferent, so is E. 

By comparing (3) with (I. 14-3) and (1) we see that the term mechanically 
perfect is applicable now only to energetically perfect circumstances, and con- 
versely. 

Theories of mechanically and energetically perfect motions or bodies are untypical of 
thermomechanics since they permit us to study and determine the effects of forces without 
specifying or even mentioning heating, or the effects of heating without specifying or 
even mentioning forces. Examples of the former kind are furnished by any motion of a 
mass-point and by the rigid motion of any body, since as we have seen in Section I. 12, 
in both these cases W = 0 always. An example of the latter is furnished by the classical 
theory of the conduction of heat, which assumes at its very start that E = Q. If in that 
theory it is assumed that all bodies are at rest, obviously W = 0, but in fact the theory 
in its classical form is consistent with Axiom E2 only when W = 0. 

Axiom E2 makes no use of the Axioms of Inertia, since W is the net 
working, which may include the working of inertia. In an inertial frame we 
have the relation (I. 14-1) between the power P of the forces within the great 
system X and the kinetic energy K, and so Axiom E2 yields 

k + E  = P + Q .  (1.15-5) 

The sum K +E is called the total energy of 9l in its actual shape xn (%, t ) .  
Thus (5) states that in an inertial frame, the sum of the heating of B and 
the power of the forces within the great system acting on B equals the rate 
of increase of the total energy of B .  

‘Here the student may consult any of the works cited above on p. 80. 
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Potential energy, which has been considered above in Section 1.14, is a quality of 
certain special systems, which, while often useful, are not at all typical of the condi- 
tions mechanics and thermomechanics design to model. Potential energy must never be 
confused with internal energy. 

Only in Exercise 111.6.6 shall we again in this book refer to internal energy. 
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W. NOLL, “The foundations of classical mechanics in the light of recent advances in continuum 
mechanics,” pp. 266-281 of The Axiomatic Method, with Special Reference to Geome- 
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Reprinted in W. NOLL, The Foundations of Mechanics and Thermodynamics, New York, 
Heidelberg, and Berlin, Springer-Verlag, 1974. 

W. NOLL, “La mecanique classique, b a d e  sur un axiome d’objectivite,” pp. 47-56 of Lo Methode 
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W. NOLL, “Euclidean geometry and Minkowskian chronometry,” American Mathematical Monthly 
71, 129-144 (1964). Reprinted along with the preceding. 
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Chapter I1 

Kinematics 

These theorems render the forms of motion. . .at least approachable in con- 
cept. 

HELMHOLTZ 
On the integrals of the 
hydrodynamical equations that 
correspond with vortex motion 
Journal fur die Reine und 
Angewandte Mathematik 55 
(1858): 25-55. 

The great clarity which geometrical investigation lends to the study of the dy- 
namics of solids leads us to expect significant success in hydrodynamics through 
a study of the kinematics of deformable systems. 

ZHUKOVSKI 
KMHeMaTBKa xBnKa30 Tmona (1876) 

The theory of these general phenomena of motion in continuous media has 
a yet unbounded scope of development. Nevertheless, it is necessary to approach 
them entirely without prejudice. . . . 

JAUMANN 
Introduction to Die Grundlagen 
der Bewegungslehre yon einem 
modernen Standpunkte aus 
Leipzig (1905) 
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1. Placements. Universes of Shapes 

In Section 1.4 we have agreed that by the term “body” .!2 we mean a 
regularly open set in some topological space over which a non-negative Borel 
measure M ,  called mass, is defined.’ In Section 1.3 the elements X of 9’ are 
called substantial points. Here and henceforth, unless the contrary is stated, we 
presume given a rigid frame, and by x we denote a place in it (cf. Section 1.6). 
In Section 1.7 we defined a motion x of 3, namely, a mapping of the substantial 
points comprised by g onto points of a three-dimensional Euclidean space & at 
the time t: 

x = x ( X ,  t )  ’Jx E 92, w € A  (1.7-7)r 

For each t the mapping x ( .  , t )  is a placement of the substantial points of 
9l; the place x is occupied by the substantial point X at the time t in the motion 
x .  The range of the placement is the shape assumed by 92 at the time t (Section 
1.7). When regarding t as the present time we call the shape of 9 its present 
shape. 

Without fear of confusion we may write x(g, t) for the shape of 92 at the 
time t, thus using the symbol x in two different though related senses: as a 
mapping of substantial points onto places and as a mapping of the bodies they 
constitute onto regions of space. 

All properties we shall posit for x ( .  , t) will allow the possibility that x 
be a function of X alone, the same function for all 1. Examples of constant 
placements will be encountered below in Sections 11.2 and 11.3 and in Volume 
3. 

While in physical experience bodies are available to us only in some shape 
or other, the shapes are not to be confused with the bodies themselves. In 
analytical dynamics (Section 1.3, Example 1) the substantial points stand in 
one-to-one correspondence with the numbers 1, 2, . . . , n, and the placements 
of bodies are discrete sets of points in &. Nobody ever confuses the sixth 
substantial point with the number 6, or with the place the sixth substantial point 
happens to occupy at some time. The number 6 is merely a label attached to the 
substantial-point, and other labels would do just as well. Similarly, in continuum 
mechanics a body may assume infinitely many different shapes. 

We shall refer to the subbodies 9 of a given body .!2 as the parts of 93 
(Section 1.2). The student should here reread Example 2 in Section 1.3. 

Henceforth, we consider only continua. We assume that for  each t the 
mapping x ( - ,  t )  is a homeomorphism of 33 onto its shape x(g, t); we as- 

’ “Borel set”, “Borel measure”, and “u-algebra” are defined above in Footnote 2 on p. 18. 
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sume further that that homeomorphism carries g and its parts, which are 
regularly open sets in a topological space F, into regularly open sets in 6. 
To that end it is sufficient to assume that the homeomorphism x ( .  , t )  derives 
from a homeomorphism of 3T onto 6 by restriction of both its domain 
and its co-domain. The shapes of all bodies constitute a collection Q S  with 
the structure of a universe of bodies if + is taken to be inclusion c and the 
meet is defined by (1.3-1). We call Q s  auniverse of shapes; it is an image of 
the universe of bodies Q O  defined in Section 1.3 with Ytaken as 6. 

The student must recall always that a M y  in assuming various shapes 
never loses its identity and the properties assigned to it. Its main properties 
are its mass distribution (Section 1.4) and the material or materials assigned to 
its substantial points. The theory of materials is presented below in Chapter IV. 

For volume in & we use Lebesgue measure’ and denote it by V. Every 
element of Q s  is a Lebesgue-measurable set, and if it is not empty, its measure 
is positive. 

The homeomorphism x (  - , t )  has an inverse x - ’ (  -, t ) ,  defined over the shape 
X W ,  0: 

x = x-yx,  t )  tlx € x ( # ,  t ) ,  tlt €9. (11.1-1) 

In three-dimensional continuum mechanics, as the student will see abun- 
dantly in the succeeding chapters, the integral-gradient theorem, which is the 
basis of “Green’s transformation”, often called “the divergence theorem”, is a 
tool of central importance. All the shapes of bodies should be such as to make 
the integral-gradient theorem apply whenever the fields integrated are smooth 
to the degrees ordinarily assumed. That is not so for all the elements in Q S  . 
For our purposes Q S  includes too many sets. 

We wish to narrow the class of placements of bodies so as to make the 
collection of their shapes a universe fit for continuum mechanics. We might 
think that the subcollection Q ,  would be suitable, and in fact the integral- 
gradient theorem does hold for the sets in it, but, as we have stated in the 
warning at the end of Section 1.3, pairs of elements of Q,  do not always have 
a meet that lies in it. If we adjoin sets such as to render satisfied Axiom B6 of 
Section 1.2, we cannot be sure that adjoined sets will make the integral-gradient 
theorem hold. To overcome these two difficulties, we need some interesting, 
rather advanced mathematics, the main course of which we outline, without 
proofs. A development of traditional kinematics begins in Section 11.2. 

To help seek proper subcollections of 0 ,  that might serve as universes of 
shapes for continuum mechanics, we begin with a definition. 

‘See, for example, Theorem 2.20 of the book by RUDIN cited above in Footnote 2 on p. 18. 
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Sets of finite perimeter. If V is a Bore1 set in a Euclidean space &, its 
perimeter 

perV:=sup { L d i v g d V :  Jg(x)l 5 1, g E CA(&, “y) . (11.1-2) 1 
As the notation indicates, the supremum is taken over all continuously differ- 
entiable functions g that map & into its translation space Y,  are of compact 
support, and have values nowhere longer than 1. If per %? is finite, $7 is a set 
of finite perimeter.’ Such sets are often called “Caccioppoli sets”. 

Exercise ZZ. 2.1. Let d V have a tangent plane at each point, and suppose that the 
normal to that plane be a continuous function of position on d V .  Then per U = A(d U ) ,  
the symbol A denoting “area of”, which is taken to be two-dimensional Hausdorff 
measure.’ 

Theorem. Zf the subsets V and 9 of & have finite perimeter, then so 
do V n 9 and V U 9. Moreover, 

this inequality is sharp. 

The first statement in the theorem makes the sets of finite perimeter a Boolean 
algebra with respect to intersection and union. 

There is a theorem that relates sets of finite perimeter directly to the integral- 
gradient theorem. The concept on which the connection rests is the outer nor- 
mal of a set of finite perimeter. A point x of 8V has an outer normal if there 
is a plane through x that lies essentially to one side of a V near x. Formally, let 

‘An essentially elementary discussion of sets of finite perimeter and the associated concept of 
functions of bounded variation may be found in Chapters 4 and 5 of the book by A .  I. VOL’PERT and 
S. I. HUDJAEV, Analysis in Cfasses of Discontinuous Functions and Equations of Mathemalical 
Physics, Dordrecht etc., Martinus Nijhoff, 1985. Be it noted that this clear, excellent, and compact 
book is written by and for engineers. 

For applications to continuum mechanics see the paper by M. E. GURTIN, W. 0. WILLIAMS, 
& W. P. ZIEMER, “Geometric measure theory and the axioms of continuum thermodynamics,” 
Archive for Rational Mechanics and Analysis 92 (1986), 1-22, and also the papers by ZIEMER, 
“Cauchy flux and sets of finite perimeter,” ibid. 84 (1983): 189-201 and M. S I L H A V ~ ,  “General 
Cauchy fluxes,” ibid. 90 (1985): 195-212. 

’For “Hausdorff measure” see Section 22 of F. J. ALMOREN’S Plateau’s Problem, N.Y. and 
Amsterdam, Benjamin, 1966 and pages 169-171 of H. F ~ D E R E R ’ S  Geometric Measure Theory, 
Berlin etc., Springer-Verlag, 1969. 
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Yr(x) denote a ball of radius r centered at x; given a unit vector n, let 

Definition. Let V be a set of finite perimeter. Then n is an outer normal 
to V at x if 

(11.1-5) 

= 0. 
V ( Y ; ( x ;  n) n (&\V) 

lim 
r-0 V ( Y ; ( x ;  n)) 

The points at which an outer normal exists constitute the reduced boundary 
d*  V. 

It is easily seen that d' V is a subset of the topological boundary d V, and 

The concept of reduced boundary, introduced by DE GIORGI, is central to 
that if dV has a tangent plane everywhere, then d V = d' $7. 

the following development. 

Theorem. For each x E d*  V there is only one outer normal to V at x. 

Hence we may define the mapping nr which assigns to each x E d *  V the unique 
outer normal ng(x) to V at x. We call nv the outer normal field of V .  

Theorem. The reduced boundary d* V has finite area, and 

A(d*V)  = p6r V. (11.1-6) 

The following theorem puts in better perspective the statement in Exercise 
11.1.1. 

Theorem (DE GIORGI). The reduced boundary d*V dvfers from the 
union of a countable collection of compact subsets of C'-surfaces only by 
a set of null area. 

Integral-Gradient Theorem. For every continuous function f: 
clo V + L??! for  which f l g ,  the restriction o f f  to V, is differentiable and 
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0 f I Q  is integrable on $7, 

(11.1-7) 

For a set V of finite perimeter A(dV\a*V) + 0 in general, and so in (7) the 
reduced boundary d* V cannot be replaced by the topological boundary 8 V. 

Proofs of these theorems lie beyond the mathematical resources expected 
of students for whom this book is designed; comprehension of their meaning 
and importance for continuum mechanics does not. 

In a major memoir NOLL & VIRGA’ propose for a universe of shapes a 
subcollection of sets of finite perimeter. Their fit regions are subsets of & 
that are regularly open, bounded, of finite perimeter, and with negligible 
boundary.2 The reduced boundary of a fit region V has the remarkable property 
8% = clo(d*V). 

Fit regions provide examples of universes of shapes. For instance, NOLL 
& VIRGA proved that Q(V), the collection of all fit regions that are sub- 
sets of a given fit region V, satisfies Axioms Bl-B6 of Section 1.2. Also 

This book will concern mainly local analysis of the equilibrium and motion 
of continuous media. The student will rarely need to refer to the matters dis- 
cussed just above. Nevertheless it would be dishonest as well as misleading to 
omit them, for otherwise he might gain the false notion that modem continuum 
mechanics lacks a precise mathematical formulation. 

a(%) :=Q(V) u {V, 0) .  

The conditions we have laid down for the shapes bodies may take on imply restric- 
tions upon the structure of the bodies themselves. Because in experience we encounter 
bodies only in their shapes, specification of those suffices for efficient practice of the 
mathematical theory. 

In this book we assume that the successive shapes of a body are bounded. 
With some technical detail it is possible to include also bodies whose shapes 
fill infinite regions. We shall sometimes describe motions of such bodies, as 
for example in the case of flow of a fluid body filling all of space or the region 
between parallel planes, but in the mathematical treatment we shall confine 
attention to some part whose shapes in some finite interval of time remain 
bounded, or we shall carry out a limit process with such parts. Unless the 

‘W. NOLL & E. G .  VIRGA, “Fit regions and functions of bounded variation,” Archive for 

*A subset 9 of C is negligible if for every positive real number E it can be covered by a finite 
Rational Mechanics and Analysis 102 (1988): 1-21. 

collection of balls, the sum of whose volumes does not exceed e .  
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contrary is stated explicitly, from now on the term “body” will be taken to 
refer only to such parts. 

Henceforth we shall restrict attention to shapes that are f i t  regions. Pre- 
cisely, we shall assume that each placement of a body .%? maps @ onto 
a f i t  region of &, and that, i f x l ( - ,  t )  and x 2 ( . ,  t )  are placements of 9Y, 
then x ,  o x;’ is a C’-diffeomorphism’ of x2(.%?’, t )  onto xl(.%?, t ) .  Since the 
class of all fit regions in & is invariant under C’-diffeomorphism (see the paper 
cited above in Footnote 1 on p. 90), the above requirements on placements are 
consistent. 

We have assumed also in Section 1.7 that x is differentiable as often as need 
be with respect to t ,  and we have defined the velocity v ,  the acceleration a, and 
the n* velocity nv,  n 2 1, as the values of the successive time derivatives for 
a given substantial point X at a given time t: 

(1.7-9), 

the vector fields X (  -, t ) ,  x (  - , t ) ,  . . . are defined over 97 and have values in Y, 
the translation space of & . 

For most of our analysis it will suffice to assume that functions occurring 
in kinematical statements are twice continuously differentiable; sometimes once 
is enough. 

As explained in Example 2 of Section 1.3, the operations V and A in the 
Boolean algebra of bodies are defined in continuum mechanics as follows: 

$ @ k  :=intclo fl@ , (1.3-1)r 
( k  

V g k  := intclo U9Y , (I .3-2), 
k ( k  

for any collection of bodies .%?k in 00. Equivalently, 

for all t E Y provided x ( .  , t )  be defined on Vk.%?k . 
I A C1 -diffeomorphism is a continuously differentiable homeomorphism whose inverse is also 

continuously differentiable. 
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From (8) we see that the shapes of separate bodies are disjoint fit regions. 
For the portions of the foregoing section that differ from the text of the first 

edition I am deeply indebted to E. VIRCA and W. 0. WILLIAMS. 

2. Mass-Density 

Since in continuum mechanics 53' is a regularly open set, unless it is empty it 
contains infinitely many distinct substantial points. However, the assignment of 
mass M is left arbitrary so far and might be discrete, or partially so. Of primary 
interest in continuum mechanics are masses which are absolutely continuous 
functions of volume. To assume M absolutely continuous is to assume that if a 
part takes a shape having sufficiently small volume, then that part has arbitrarily 
small mass. Thus, formally, concentrated masses are excluded, and analytical 
dynamics will not emerge directly as a special case of continuum mechanics 
(though the two are always related through the theorem of KELVIN & TAIT in 
Section 1.8 and through (1.13-14)). 

Let u be a placement of 9?. By the Radon-Nikodym Theorem,' the mass 
of any massy part 9 of 9? may be expressed as the Lebesgue integral of a 
non-negative mass-density p,, over the shape u (9): 

(11.2-1) 

The density p,, exists and is unique almost everywhere in u(9). 
The existence of a mass-density expresses a relation between the body 9? 

and such shapes as it may assume. At almost every place x in u(9) the density 
is the ultimate ratio of mass to volume in the following sense: If Y k  is a suitably 
chosen sequence of nested parts, 9 k + l  c 9 k  , such that all the 9 k  have but the 
single substantial point u -'(x) in common, and that V(u(9k) )  --+ 0 as k + 00, 

then 

(11.2-2) 

In all its shapes a part 9 has the same mass M ( 9 ) .  We have made this 
assumption plain by assigning masses directly to the massy parts of 9. To each 
shape of 3? we may apply (1). Thus, 

'For example, Theorem 6.9 of W.  RIJDIN'S book cited above in Footnote 2 on p. 18. 
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Since both u I and u 2 are placements of B, u2 o u I' is a C'-diffeomorphism 
of u (g) onto u 2 ( g ) .  If y := u2 o u rl, the chain rule of differential calculus 
shows that (Vy)(Vy-') = 1, and so detVy x detVy-' = 1. Therefore, neither 
det Vy nor det Vy -' can vanish. Thus if 

J := ldetVy(, (11.2-4) 

then 

J >O. (11.2-5) 

A theorem of integral calculus' tells us that for a measurable function f 

(11.2-6) 

for each massy part 9 of 3. By applying this statement to (3) we obtain an 
equation relating the two densities almost everywhere: 

Thus the mass-density field over one shape of 97 determines the mass-density 
fields over all others to within a set of null volume. These qualities apply to the 
shapes g assumes when it undergoes a motion. 

As in Section 1.4, integration with respect to mass is defined on the massy 
parts 9 of a body g. In continuum mechanics the assumption that M is an 
absolutely continuous function of V enables us to replace all integrals so defined 
by counterparts taken over regions of 8. Thus, 

On the left-hand side, f stands for f(X, t), while on the right-hand side, f 
stands for f (x-'(x, t),  t) and p is written for px . Alternatively, we may start 

'The formula (6). inferred by a formal or pictorial argument, derives from EULER'S researches 
on hydrodynamics in the middle of the eighteenth century. A clear and simple statement and proof 
within the theory of Riemann integration is given in Theorems 3.13 and 3.14 of M. SPIVAK, Calculus 
on Manifolds, New York, Benjamin, 1965; for Lebesgue integrals, in Theorem 8.26 in the book 
of W. RUDIN, cited in Footnote 2 on p. 18. In both cases the integrand is merely assumed integrable, 
and y is assumed to be a bijective, differentiable mapping of an open set of I ,  into I ,  . For the 
former theorem, y is assumed continuously differentiable; for the latter, y -' is assumed continuous, 
and Range y is assumed open and bounded. While both of these assumptions allow J to vanish on 
a set of measure 0, the conditions we assume deliver (11.2-5). 
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with the right-hand side and regard f as standing for f (x, t ) ,  so that on the 
left-hand side f stands for f (x(X,  t ) ,  t ) .  This abbreviated notation, which is 
common in continuum mechanics, will be developed further in Sections 11.4 
and 11.6. 

In this book we shall always assume not only that mass is an absolutely 
continuous function of volume but even that mass is ultimately bounded by 
volume: For any placement u of ?8 there is a constant K, which depends upon 
u , such that i f  V (a  (9)) is sufficiently small, then 

M ( 9 )  5 K V ( u ( S ) ) .  (11.2-9) 

Equivalently, ps is essentially bounded. Any additive set function that is bounded 
with respect to volume is bounded also with respect to mass, and conversely. In 
passages where the manipulations of differential calculus are brought to bear, 
we shall presume the still stronger assumption that pe is a continuously dif- 
ferentiable function of its arguments at all places and times we may choose to 
consider. 

3. Reference Placement. Tkansplacement 

Often it is convenient to select the placement of B’ at some one time t in 
some putative motion, not necessarily the motion x being studied, and to refer 
everything concerning B’ and its motion to that placement, which we shall call 
the reference placement. We denote by X the place given to the substantial 
point X by the reference placement K : 

x = K(X). (11.3-1) 

Since K ,  by assumption, is invertible, 

X = K-l(X), (11.3-2) 

and both K and K - ’  are continuous. Hence the motion (1.7-7) may be written 
in the form 

In the description furnished by this equation, the motion is expressed as a 
mapping X, of the reference shape K Q ( g )  onto the actual shapes x(g,  t )  as t 
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progresses or regresses. Thus the motion, which is defined by (1.7-7) as mapping 
substantial points onto places in space, is now represented as mapping spatial 
regions onto spatial regions. A reference shape is introduced so as to allow us 
to employ immediately the apparatus of Euclidean geometry. The mapping x r  is 
the transplacement of the substantial points of 93 from their reference places X 
into their actual places x at the time t .  By the assumptions on placements made 
in Section 11.1, the transplacements are homeomorphisms of the reference shape 
onto present shapes. Now we assume more: each x r  is a C’-diffeomorphism. 

and write ~(93) for 
the reference shape of g, just as we have already written ~ ( 9 3 ,  t )  for ~ ~ ( 3 7 ,  t ) .  
As in ordinary language a body is “deformed” when its shape changes, we shall 
say that the transplacement x r  deforms the reference shape K (93) into the actual 
shape ~ ( 9 3 ,  t ) .  While “strain” is commonly used to denote deformation or some 
aspect of it, in this book we do not give any precise meaning to the word, but 
we shall use it descriptively from time to time. 

The choice of reference placement, like the choice of a co-ordinate system, 
is arbitrary. The reference placement, which may be any smooth mapping of 
93 into 8, need not be the value of the motion x(g, .) at any time to .  If it 
is, then x ( .  , to) = K .  In the treatment of surface waves in Volume 2 we shall 
encounter a classic example in hydrodynamics for which it is preferable to use 
a reference placement that is never occupied by the body considered. 

For each different K , a different transplacement x r  for the same motion x is 
defined by (3). Thus one motion of the body is represented by infinitely many 
different mappings of parts of space in the course of time, one for each choice 
of K .  For some choice of K we may get a particularly simple description, just 
as in geometry one choice of co-ordinates may lead to a simple equation for 
a particular figure while another may not, but the reference placement itself 
has nothing to do with such motions as it may be used to describe, just as 
the co-ordinate system has nothing to do with geometrical features themselves. 
A reference placement is introduced so as to allow the use of mathematical 
apparatus familiar in other contexts. Again there is an analogy to co-ordinate 
geometry, where co-ordinates are introduced, not because they are natural or 
germane to geometry, but because they allow the familiar apparatus of algebra 
to be applied at once. 

With no fear of confusion we may drop the subscript 

4. Descriptions of Motion: Substantial, Referential, and Spatial 

There are four methods of describing the motion of a body: the substan- 
tial, the referential, the spatial, and the relative. Because of our hypotheses of 
smoothness, all are equivalent. 
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In the substantial description we deal directly with the substantial points 
X. This description extends the only one used in analytical dynamics, where we 
always speak of the first, second,. . . ,n* substantial points, which are usually 
called masses. To be precise, there we should say, “the mass-point X, whose 
mass is Mq ,” but commonly this expression is abbreviated to “the mass q” 
or “the body M ,  ,” etc. In continuum mechanics every body 3 comprises 
infinitely many substantial points X. The substantial description employs as 
independent variables X and t ,  the substantial point and the time. While the 
substantial description is the most natural in concept, it was not mentioned 
in continuum mechanics until a few decades ago, was then called “material”, 
and is still used little. With the substantial description for continua, strictly 
interpreted, few analytical tools are at hand. For some time the term “material 
description” was used to denote another and older description often confused 
with it, the description to which we turn next. 

The referential description employs some assigned reference placement K . 
Thus it describes the motion x by means of the transplacement x r  . We must 
always bear in mind that the choice of K is ours, that ~ ( 3 )  is merely some shape 
that ~4? has occupied or might occupy, and that it must be possible always to 
state hypotheses and equations in forms valid for any choice of K , although for 
one choice of K the corresponding transplacement x r  may show the important 
properties of some particular motion more easily than do the transplacements 
corresponding with other choices of K .  Any motion of a body has infinitely 
many different referential descriptions, equally valid. 

For the purposes of this book, and for most purposes in mechanics, the 
substantial description and the referential description may be confused, at least 
locally, as they long have been. To see that they are in principle different, and 
that the referential description may not always suffice, we need only consider 
the two-body problem of analytical dynamics. No one would find it convenient 
to use as labels for the first and second mass-points the places they occupied 
at some particular time. If that time were one at which the two mass-points 
collided, such names would not distinguish those two bodies. Since analytical 
dynamics always envisions the chance that collisions may occur, the distinction 
between substantial and referential descriptions is not a matter of purism or mere 
abstraction, and in fact nobody has ever employed the referential description 
in analysis of the motions of discrete systems. The referential description is 
useful only for systems in which it is convenient to use a place as a name for an 
element of an abstract manifold. Such naming is indeed convenient in continuum 
mechanics. 

In the mid-eighteenth century EULER introduced the description that hydro- 
dynamicists still call “Lagrangean”. This is a particular referential description, 
in which the Cartesian co-ordinates of the position X of the body-point X at 
the time t = 0 are used as a label for that body-point. It was recognized that 
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such labelling by initial co-ordinates was arbitrary; writers on the foundations 
of hydrodynamics have often mentioned that the essential conclusions must be 
and are independent of the choice of the initial time, and some have remarked 
that the parameters of any triple system of surfaces moving in such a way as 
to be at all times the sites of the substantial points on them at any one time 
would do just as well. The referential description, taking X and t as indepen- 
dent variables, includes all these possibilities. Some form of it is always used 
in classical elasticity theory, and the best studies of the foundations of classical 
hydrodynamics from EULER’S day to the present have employed it almost with- 
out fail. It is the description commonly used in modern works on continuum 
mechanics, and we shall use it in this book. 

In view of (11.3-2), any function F ( X ,  t) may be replaced by a function 
F , ( X ,  t )  that has the same value at corresponding arguments X and X ,  for 
given K :  

F ( X ,  t )  = F ( K - I ( X ) ,  t )  =: F, (X ,  t ) .  (11.4- 1) 

In (11.3-3) we have already encountered a special instance. Moreover, 

diF = diF, (11.4-2) 

at the respective arguments X and K(X). We shall employ a superimposed dot 
to denote also time derivatives of functions of the referential variables X and 
t. Thus, by differentiating (11.3-3) and using the definitions (1.7-7) and (11.3-2), 
we see that for each choice of K and at each time 

k = x ,  9 . . . ,  (11.4-3) 

the arguments of the functions on the left-hand sides being X and t, those of 
the functions on the right-hand sides being the corresponding X and t. 

In the spatial description, attention is directed to the present shape of 
the body. This description, which was introduced by DANIEL BERNOULLI and 
D’ALEMBERT, is called “Eulerian” by the hydrodynamicists. The place x and 
the time t are taken as independent variables. In view of (1.7-7), any function 
F ( X ,  t )  may be replaced by a function of the spatial variables, x and t, that 
has the same value at corresponding arguments X and x :  

F ( X ,  t )  = F[x-’ (x ,  t ) ,  t ]  =: f ( x ,  t ) .  (11.4-4) 

The function f, moreover, is unique. Thus, while there are infinitely many 
referential descriptions of a given motion, there is only one spatial description, 
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just as there is only one substantial description. In the spatial description the 
velocity field is defined on ~ ( 3 7 ,  t). As t changes, generally the shape of B 
changes. With the spatial description, we watch what occurs in a fixed region 
of space that remains within the successive shapes of 37. This description seems 
perfectly suited to studies of fluids, where often a rapidly deforming mass comes 
no-one knows whence and goes no-one knows whither, so that we may prefer 
to consider what happens here and now before our eyes. In many problems 
of hydrodynamics the boundary dx(37, t) remains fixed, making the spatial 
description especially suitable. 

However convenient kinematically, the spatial description is awkward for 
questions of principle in mechanics, since in fact the laws of dynamics refer 
to what is suffered by the body, not by the region of space the body momen- 
tarily occupies. Some relations obvious and easy to derive in the substantial 
or referential descriptions seem to require contorted reasoning if approached 
by the strictly spatial standpoint sometimes adopted by specialists in applied 
hydrodynamics. 

According to (4), the value of any function of the substantial points of 37 at 
the time t is given also by a field defined over the actual shape ~ ( 3 7 ,  t ) .  In this 
way, for example, we obtain from (1.7-9) the velocityfield x, the accelemtion 

field x, and the nth velocity field %): 

( n )  
v = x(x, t ) ,  a = %(x, t ) ,  . . . , nV = x (x, t) .  (11.4-5) 

The fields 

the motion: 

and $) have the common value ,,v at arguments related through 

In Section I. 11 we have calculated the frame-indifferent field a+ that reduces 
in the inertial frame $ to the acceleration. While as given by the right-hand 
side of (I. 11-3) this field is defined over the body 9l, of course we may convert 
it into a field over the actual shape ~ ~ ( 3 7 ,  t) in the general rigid frame $*. 
Calling that field a+, we calculate it as follows from (1.11-3): 

a+ = 2' - j6* - 2A(x* - G) - (A - A2)(x* - g) ;  (11.4-7) 

here x*,  x*,  and %* are the spatial fields of place, velocity, and acceleration 
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over the actual shape x * (93, t )  in the frame $ * , and A is the spin of the inertial 
frame $ with respect to $ * . 

The velocity field of a motion is often called aflow. 
In the spatial description a function of place alone is called a steady function. 

For example, a velocity field x that is independent of t is called a steady f low.  
Other flows are called unsteady. A steady flow may or may not have a steady 
density. 

A flow that is steady in one frame generally fails to be steady in another. 
The property of steadiness is not even a galilean invariant. It is not a simple 
matter to determine whether a given flow that is not steady in the frame in 
which it is defined be steady in some other frame. Cf. CFT, Section 146. 

A point at which x = 0 is called a stagnation p i n t .  
In the spatial description we may superpose the flows and x2 in their 

common domain at each t ,  so obtaining a new flow: 

x1+2 :=x, + x 2  = x 2  + X I .  (11.4-8) 

We may think of superposition as arising from adding the values of the vectors 
k , ( X ,  t )  and & ( X ,  t )  for one and the same substantial point X at the time t ,  but it is 
not usual to do so. 

The fourth common description of motion, called “relative”, we shall de- 
velop in Section 11.8. 

5. Ransplacement Gradient 

The gradient of the transplacement x r  at a given t is called the transplace- 
ment gradient’ F: 

F:=F,(X,  t )  :=Vxr(X, t ) .  (11.5-1) 

It is the linear approximation to the mapping (11.3-3) in a neighborhood of X.  
More precisely, we should call it the gradient of the transplacement from K to 
x .  but when, as is usual, a single reference placement K is laid down once and 
for all, no confusion should result from failure to remind ourselves that the 
very concepts of transplacement and transplacement gradient presume use of a 
reference placement. If, as we may, we select independently co-ordinates X“ 

‘The reader ought not confuse F or F. with the torque F, of a system of forces with respect 
to xo . 
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and x"' in the reference shape and the actual shape, respectively, the motion 
(11.3-3) is expressed as follows: 

x" =X?(X', x2, x3, t ) ,  m = 1,2 ,  3, (11.5-2) 

and then the components of F are simply the nine partial derivatives of the 
functions x," with respect to the Xa, viz 

F: = x ;  =axr.x;(x1,x2,x3, t ) ,  m = i , 2 ,  3, IY = i , 2 ,  3. 

(11.5-3) 

There would be no loss in logical strictness were we to write out everything, 
as the older authors on continuum mechanics did, in Cartesian co-ordinates. 
In practice, abstract notations are easier to understand and more efficient to 
manipulate, once they be grown familiar, and proofs using them are easier to 
follow. Particular applications often refer to certain particular directions and 
hence suggest use of a particular basis, which need not be the natural basis 
of any co-ordinate system (cf. the end of Section App. IIC.7). Thus it is to 
our advantage to express all the principles of our science directly in terms of 
the concepts of algebra and geometry, without the complicating intermediacy 
of co-ordinate systems. 

In Section 11.2 we have introduced the mass-density pa that corresponds to 
the placement ~(9). Henceforth we shall write simply p for px ; thus p is the 
mass-density field over the actual shape ~ ( 3 7 ,  t ) .  Choosing for u1 in (11.2-7) 
the reference placement K , we obtain 

PJ zz Pr 9 (11.5-4) 

on the understanding that when the argument of pr is X, the arguments of p 
and J are x r  (X, t )  and t ,  and that 

J := ldetF(. (11.5-5) 

We shall use J in the sense just defined rather than in the more general one 
expressed by (11.2-4). The relation (4) is EULER'S referential equation for  the 
mass-density. If 37 occupies at some time the reference placement selected for 
it, then the value of F at that time is 1, and so detF = 1 then. In that case 
det F > 0 always, and the bars may be dropped from (5). 

The student will recall that 

J > O .  (11.2-5), 
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While (4) is often called “the Lagrangean equation of continuity”, that name is 
doubly misleading, since if the transplacement is smooth enough, (4) holds, but if the 
transplacement is not differentiable, let alone not continuous, J cannot be defined at all, 
and so (4) cannot even be stated, let alone used. Obviously (4) is neither more nor less 
than a formula that delivers the actual density p.  once the transplacement gradient F and 
the reference density p. be known. 

In the older literature (4) is sometimes related to an “axiom of impenetra- 
bility”, according to which two distinct substantial points never come to occupy 
the same place, and thus no body enters into the shape of another body at the 
same time (cf. Section 1.7). In truth, on the contrary, a formal condition such 
as (4) does not express that axiom but rather presumes that some such axiom 
has been laid down already. 

Exercise ZZ. 5. I (EULER, LIOUVILLE). 

d i v x = J / J = -  d(det F, b e t  F, 
dt 

(11.5-6) 

in which the superimposed dot on the middle member denotes the time derivative, and 
divx is the divergence of the velocity field (II.4-5), . 

In (6) ,  as in (4), the field on the right-hand side is a referential one, while 
that on the left-hand side is a spatial one. Both conclusions assert that fields of 
these two kinds have at time t the same values at the places X and x, respectively, 
selected so as to correspond with each other through the referential description 
(11.3-3) of the motion. It leads to less awkward statements if in such cases 
we simply presume that any referential field is replaced by the corresponding 
spatial one. For example, if we differentiate (4) with respect to time and then 
use (6) ,  we obtain D’ALEMBERT and EULER’S spatial equation for the density: 

p + p d i v x = O ;  (11.5-7) 

in which we follow the convention, as we did for (4), that allows us to interpret 
p as being the mass-density field over the present shape x(g, t). This equation 
has exactly the same meaning as (4), which, conversely, may be gotten from it 
by use of (6) followed by integration. 

Exerrise 11.5.2 (LAGRANGE). If (7) is taken as a first-order differential equation 
for p in the spatial description, integration by the method of characteristics yields (4). 

Exercise 11.5.3 (D’ALEMBERT, EULER). A motion of 9 is called isochoric if the 
volume V ( x ( 9 ,  t ) )  of the shape of each part 9 of 9l remains constant in time. Any one 
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of the following three conditions is necessary and sufficient for isochoric motion: 

1. divx=O. 
2. There is a reference placement K such that 

(11.5-8) 

(11.5-9) 

3. There is a reference placement K such that 

J = 1 .  (11.5-10) 

In plane flow the velocity is everywhere parallel to a given plane and is 
the same at all points on each line normal to that plane. To study plane flow, it 
suffices to confine attention to the fields of velocity and acceleration restricted 
to some one plane. 

Exewise 11.5.4 (D'ALEMBERT, NOLL). If the boundary of the region on which a 
plane flow x is defined is the union of a finite number of curves in rigid motion, and 
if (for an infinite region) there is no flux into or out of the region of the plane beyond 
some sufficiently large circle, the general solution of (8) is given in terms of a strmm 
function q by 

x = ( V q ) l ,  (11.5- 11) 

V denoting the gradient operator in the plane and I denoting rotation counter-clockwise 
through a right angle about the normal to the plane. The velocity x ( x . t )  is tangent to 
the curve q ( .  , 1 )  = const. through x at each t .  

Exewise ZZ. 5.5. Given a vector field v defined on x(g, t ) ,  let it be desired to find 
a vector field v, such that 

v.ndA (11.5- 12) I l v x  .n, d A  = 
X' w. 1 )  

for any surface Y in K (a). Then 

V, =JF-'v. (11.5-1 3) 

Points at which p = 0 are generally unusual. From now on we shall often 
tacitly assume that 

(11.5- 14) 
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and hence be able to use freely the specific volume u :  

1 

P 
u := -, (11.5- 1 5) 

which also is positive. 

6. Substantial Time Rates and Gradients in the Spatial Description. 
Substantial Surfaces. Kinematic Boundaries 

In continuum mechanics the need to distinguish a vast number of quantities 
often deprives us of the clarity gained by using for a function a symbol dif- 
ferent from that for its value, as logically we ought to do. If two functions of 
different variables have the same value for properly corresponding arguments, 
and if both are denoted by that value, when we come to effect some functional 
operation it is not clear which function is intended. The distinction, which of 
course is essential, is traditionally made by introducing different symbols for 
the differential operators. Henceforth 

f and Grad f 

shall denote the partial time derivative and the gradient of the function G(X, t )  
at a given t such that 

f = G(X, 0,  (11.6- 1) 

while 

f '  and grad f 

shall denote the partial time derivative and the gradient of the function g(x, t )  
at a given t that has the same value as G, namely, 

by (11.3-3). If we apply the chain rule to the equation G(X, t )  = g(x,(X, t ) ,  t )  
and then denote by f both functions G and g, we obtain the classical formulae 
of EULER: 

f = f '+(grad f ) . x ,  

f = f' + (grad f)x; (11.6-3) 
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the values o f f  are scalars, of f ,  vectors, and an analogous rule holds for 
functions whose values are tensors. In particular, the acceleration field x is 
calculated from the velocity field x by the D’ ALEMBERT-EULER formula 

x = x’ + (grad x)x. (11.6-4) 

The dot operator as defined by (3) is called the substantial derivative.’ We have 
already agreed to use the dot to denote the time derivative in the substantial and 
referential descriptions, and the definition (3) has been framed so as to render 
the two usages consistent with each other. 

Likewise, 

Gradf = FT grad f .  (11.6-5) 

The notations div and Div shall stand for the traces of grad and Grad, 
respectively. 

We have already introduced an instance of these conventions in (11.5-6) and 
(11.5-7). For example, by (3)1 the latter equation may be written explicitly in 
the forms 

p’ + (gradp).x + pdivx = 0, p’ + div(px) = 0. (11.6-6) 

For a motion with steady density ( 6 ) ~  reduces to div(px) = 0. 
In Section 11.2 we have shown how to convert integration with respect to 

mass on %? into integration with respect to volume on the shape of 9Y. Iff(X, t )  
is continuously differentiable with respect to t, the theorem on differentiation 
of an integral with respect to a parameter assures us that 

(11.6-7) 

We may now use (11.2-8) to convert the right-hand side into an integral over 
~(9, t ) .  According to the convention of notation just established, the function 
of x and t whose value is a , f ( X ,  t )  at x-’(x, t )  is denoted by f, and (3) 
provides us means to calculate f from data in the spatial description. Thus 

pfdV.  (11.6-8) 
d 

’The substantial derivative is only one of many rates that may be calculated on the basis of a 
given time-dependent field such as a velocity field. Others are introduced below by (11.134) and 
(11.13-7). The problem is discussed from a general point of view by H. BOLDER, “Deformation 
of tensor fields described by time-dependent mappings,” Archive for Rational Mechanics and 
Analysis 35 (1969): 321-341. 
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More generally, if ty denotes a tensor field of any order, 

and 'Y is to be calculated by an appropriate rule of the type (3). (The central 
expression, which involves an undefined operation d l d t ,  is to be regarded 
only as a suggestive way of writing the left-hand expression.) The commutation 
formula (9) is used so often in continuum mechanics that it is taken for granted 
without special reference. It expresses the time-rate of change of the integral 
of over a body B as that body moves through space, in terms of an integral 
over the present shape x(f8, t )  of f8. 

Exercise 11.6.2. Simple rearrangement of (9), supplemented by use of (11.5-7), 
delivers the Reynolds Transport Theorem: For a given part 9 of g ,  

the notations being defined as follows: 

(11.6- 10) 

(11.6-11) 

Thus a substantial derivative is expressed in terms of a local time-derivative and 
flux through a boundary. In particular, 

p x x  . n d A ,  

(11.6- 12) ax(:?, 1) 

( x  - ~ ~ ) ~ p x X ~ n d A .  

J 
J 

m=m'+ 

Mw =M:,+ 
ax(a ,  1 )  

A stationary surface YE in the reference shape ~ ( f 8 )  is described by an 
equation of the form f(X) = 0, and hence 

f =o.  (11.6-1 3) 

Conversely, if (13) is satisfied by a function f (X,  t ) ,  then in fact the surface 
f = 0 is a stationary surface in the reference shape, provided of course that 
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X E ~(97). At the time t the substantial points that make up Yc constitute a 
certain surface Y in the shape assumed by 33 in its motion at the time t .  These 
surfaces are the successive forms of a single substantial surface. In accord 
with the convention we have established, we write f also for the function of x 
and t whose value at x,(X, t )  is f (X), and so in order for the locus f = 0 
to represent a substantial surface we have the necessary and sufficient condition 
(13), where now the operation signified by a dot is defined by (3)l . Thus in the 
spatial description this requirement becomes EULER’S condition: 

f ’ + (grad f ).x = 0. (11.6- 14) 

If n is the oriented unit normal to the surface f = 0, where of course f now 
stands for the function such that f (x, t )  = 0 is the locus of Y, then (14) may 
be written alternatively in the form 

s, = n.%, (11.6- 15) 

provided S, , which is called the speed of displacement of Y ,  be the speed at 
which that surface advances in the direction normal to itself in space: 

(11.6- 16) 

EULER’S condition (14) thus asserts that the speed of displacement of Y at (x, 1 )  
is just the same as the speed at which the substantial point now occupying (x, t )  
is moving in the direction normal to Y. 

Exercise ZZ.6.2. Let a surface Y have parametric representation x = g(A, t ) ,  the 
parameter A being an ordered pair of real parameters. If A is regarded as permanently 
denoting a particular point on Y as Y moves, calculation of its velocity u shows that 
n-u = S, . If Y is represented by some spatial equation, say h ( x ,  t )  = 0, the same field 
S, is obtained in this way. This fact justifies the name “speed of displacement”. 

Exetcise 11.6.3 (LAGRANGE). If (14) is regarded as a partial-differential equa- 
tion for f in the spatial description, integration by the method of characteristics yields 
F(x,’ , f) = 0. Thus, the substantial points that lie upon f ( x ,  t) = const. at any one 
time lie always upon its image under the motion. 

A kinematic boundary is a surface that separates permanently two parts of 
33, one of them being possibly the null body. Thus a kinematic boundary is a 
substantial surface, and conversely. The special term “boundary” is introduced 
so as to distinguish particular substantial surfaces, usually assigned in advance 
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like a wall or at least given some special role such as a surface separating two 
parts having different properties. The simplest example is a stationary wall, a 
surface f (x) = const. In order for such a surface to be substantial and hence 
a possible kinematic boundary for a given motion of L@, by (15) we have the 
following necessary and sufficient condition relating the unit normal n to the 
velocity: 

n.x = 0. (11.6-17) 

That is, the velocity field on the wall is tangential, as is obvious. More 
generally, if the places on a wall have assigned velocities u, then at those 
places 

n-x = n-u.  (11.6- 18) 

Sometimes a stronger kinematic condition is imposed, that of adherence. 
The body is then constrained to move with the kinematic boundary. If the places 
on the wall have an assigned velocity v, then on that wall 

x = v. (11.6- 19) 

In the case of a stationary wall this condition becomes 

x = 0. (11.6-20) 

Exercise 11.6.4. Let the surface Y whose equation is g(x, t) = 0 in x(g, t)  be 
the image of the surface 9, whose equation is G(X, t) = 0 in the reference shape 
I($?). (Note that 9, , in contradistinction with the substantial surfaces discussed above, 
generally moves with respect to ~(g).) With the conventions of notation set at the 
beginning of this section, the oriented unit normals n, and n to these two surfaces are 
related by 

(11.6-2 1) 

the speed of advance S, of the surface YN in the direction normal to itself in ~ ( g )  is 
given by 

and 

(11.6-22) 

(11.6-23) 
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The speed S ,  given by (22) is called the speed of propagation of the surface 
9, in K ( @ ) .  It is the normal speed of advance of Y, in ~(g). Its reciprocal, 
S;l, is the slowness of Y', , and the vector S;'n, is the slowness vector of 
that surface. 

When, as we may, we take the actual shape as being also ~(g), the corre- 
sponding speed of propagation is denoted by S and called the intrinsic speed of 
propagation of Y. At (x, t )  it is the speed at which the surface is advancing in 
the direction normal to itself and relative to the velocity of the substantial point 
instantaneously situate upon it. The intrinsic slowness vector of Y is S-'n. 

The intrinsic speed of propagation of Y is related as follows to the speed 
of displacement of 9: 

S = S n  - n . t ;  (11.6-24) 

this formula is an instance of (23). Finally, comparison with (23) shows that 

Exercise ZZ.6.5. If x 1 + 2  is defined by (11.4-8), then 

X1+2 = XI + X 2  + (gradxz)xl + (gradxl)xz . 

(11.6-25) 

(11.6-26) 

7. Change of Reference Placement 

Let the same motion (11.1-1) be described alternatively by transplacements 
x , ,  and x,, with respect to two different reference placements, K 1 and ~2 : 

(11.7- 1) 

The transplacements x, ,  and x,, have gradients F1 and F2 at (X, t ) .  Let X1 
and X2 denote the places occupied by the substantial point X in K 1 and K:!  : 

Thus, 
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say. The transplacement from K 1 to x can be effected in two ways: either straight 
off by use of x,,, itself, or by using X to get to ~2 and then using x X 2  to get to 
x .  Thus 

X r ,  - - x , ,  o x .  (11.7-4) 

Because this relation holds among the three mappings, we see that their linear 
approximations, the gradients, compose in the corresponding order: 

F,, = F,,P, P :=VX. (11.7-5) 

This multiplication can be expressed also as a chain rule: 

(11.7-6) 

in this notation X" are the co-ordinates of the place occupied by X in K 1 , X A  
are the co-ordinates of the place occupied by X in ~2 , the co-ordinate systems 
are arbitrary, and the summation convention is followed. 

8. Present Placement as Reference 

To serve as a reference, a placement need only be a homeomorph of 9. So 
far, we have employed a reference placement independent of time, but we could 
just as well use a varying one. Thus one motion may be described in terms of 
any other. The only varying placement often useful as a reference placement is 
the present one. If we take the present placement as reference, we describe the 
past and future as they seem to an observer fixed to the substantial point X that 
now occupies the place x .  The corresponding description is called relative. 

To see how such a description is constructed, we consider places that are 
values of the motion of X at the two times t and 7 :  

(11.8- 1) 

That is, t is the place occupied at the time 7 by the substantial point that at the 
time t occupies x: 

say. The function x t  here defined is called the relative transplacement. 
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Sometimes we shall wish to calculate the relative transplacement when the 
motion is given to us only through the spatial description of the velocity field: 

v = X(X, t ) .  

8 4  = W E ,  7). 

(11.4-5)r 

(11.8-3) 

Since the right-hand side is a given function, we thus have a differential equation 
to integrate. The initial condition to be satisfied by the integral t = x,(x, 7 )  is 

When the motion is described by (2), we shall use a subscript t to denote 
quantities derived from the relative transplacement x ,  . Thus Ft , the function 
of x and 7 defined by 

Ft := gradx, (11.8-5) 

is the relative transplacement gradient. Of course 

F,(t) = 1. 

By (11.7-5), at X 

F ( T )  = Ft(7)F(t), 

(11.8-6) 

(11.8-7) 

As the fixed reference placement with respect to which F ( 7 )  and F(t) are taken 
we may select the placement of the body at the time t ’ .  Then (7) yields 

a formula which, like (11.7-5), expresses a chain rule of differential calculus. 
In (6) ,  (7), and (8) the argument x is understood and not written. 



9. STRETCH AND ROTATION 111 

9. Stretch and Rotation 

Since the transplacement xz is invertible, so is its gradient F, and the polar 
decomposition theorem of CAUCHY’ yields two expressions for F in terms of an 
orthogonal tensor R and positive symmetric tensors U and V, all three unique: 

F = RU = VR. (11.9- 1) 

R is orthogonal but need not be proper-orthogonal: RRT = 1, and so det R = 
+ I  or - 1, and det R maintains either the one value or the other for all X and 
t ,  by continuity. Thus detU = detV = IdetFI = J .  R is called the rotation 
tensor2; U and V, which satisfy the obvious relation 

V = RURT, (11.9-2) 

are called the right and left stretch tensors, respectively. These tensors, like 
F itself, are to be interpreted as comparing aspects of the present shape of 9 
with their counterparts in the reference shape. Just how they do so, we shall 
proceed to show. 

First, since U is symmetric, it has at least one orthogonal triad of principal 
axes; the members of any such triad are called principal axes of strain at X in 
the reference shape ~(9). Likewise, V has an orthogonal triad of principal axes, 
which are called principal axes of strain at x in the present shape x(B, t ) .  By 

‘This theorem is proved in any book on linear algebra, e.g., in Section 83 of P. R. HALMOS, 
Finite-Dimensional Vector Spaces, 2”d ed., Princeton, Toronto, and London, Van Nostrand, 1958. 
It was discovered by CAUCHY in the present context; he proved it by geometrical arguments in g3. 

’To reconcile the term with the definition, we could have imposed from the start the requirement 
that only reference placements such that detF > 0 be allowed, which would have implied that 
detR = 1 and have made R a rotation in the usual sense of that term. Since there is no reason 
to do so other than the convenience of language, we take advantage of that convenience without 
imposing the restriction. That is, in the text above we leave to the student such trivial changes of 
wording as may be needed when - R rather than R is proper. From the remarks made regarding 
(11.5-5) the student will recall that if the body in question ever occupies its reference placement, 
then R = 1 at that time, and therefore R is always proper. 

MARTINS & PODIO-GUIDUGLI, extending work of GRIOLI, have established the polar decomposi- 
tion theorem through the following problem of minimization: for a given tensor F, to find orthogonal 
tensors R such as to render IF - QI a minimum when Q varies over all orthogonal tensors. They 
prove that such R exist and that FRT is unique and not negative. If V := FR’, then F = VR, and 
if U := RTVR, then U is unique and not negative. Hence F = RU = VR. If F is invertible, R is 
unique, and U and V are positive. Thus the local rotation R in the polar decomposition of F is the 
unique orthogonal tensor closest to F. Cf. L. C. MARTINS & P. PODIO-GUIDUGLI, “A variational ap- 
proach to the polar decomposition theorem,” Acrademia Nazionale dei Lincei, classe di Scienze 
Fisiche, Matematiche, e Natumli, Rendiconti ( 6 )  66 (1975): 4 8 7 4 9 3 .  
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(2), U and V have their proper numbers in common. Indeed, if ek is a proper 
vector of U corresponding to the proper number U k  , then 

and so by (1) and (2) 

V(Rek) = ( RURT)(Rek ) = U k (Rek). (11.9-4) 

Thus the rotation R carries principal axes of strain at X into principal axes of 
strain at x. (Since R is unique but the principal axes of strain need not be, we 
cannot always use this property as a definition of R.)  If ek  points along the 
k* principal axis of strain at X in K ( $ ) ,  then Uk is the ratio of the length of 
the image Fek in x ( $ ,  t )  to the length of the original e k  . Thus, the U k  are 
called the principal stretches. Because U and V are positive, U k  > 0. When 
R = 1, the transplacement is called a pure stretch at X, t .  In a pure stretch, 
U = V ;  the principal axes of strain at X and x coincide; and we may visualize 
the transplacement as being effected by stretching elements along those axes in 
the ratios u 1 , u2  , u g  . If U = V = 1, the transplacement is called a rotation 
at X, t .  CAUCHY'S decomposition tells us that the transplacement gradient may 
be obtained by effecting a pure stretch with principal stretches U k  along three 
suitable, mutually orthogonal directions e k  , followed by a rotation of those 
directions, or by performing the same rotation first and then effecting the same 
stretches along the resulting directions. 

The right and left Cauchy-Green tensors, C and B ,  are defined as follows: 

C := U2 = F T F ,  

B := V2 = FFT = RCRT. 
(11.9-5) 

While the fundamental decomposition (1) plays the major part in the proof of 
general theorems, calculation of U ,  V, and R from F for particular transplace- 
ments may be awkward, since irrational operations are usually required. C and 
B ,  nonetheless, are calculated by mere multiplication of F and F T .  E.g., if g k m  

and gaB are the covariant and contravariant metric components in arbitrarily 
selected co-ordinate systems in & and in ~(g), respectively, components of C 
and B are' 

(11.9-6) 

'If both systems of co-ordinates ( x k )  and (XO) are Cartesian, (6) follows at once from (5) and 
(11.5-3). To derive (6) in general coordinates it suffices to observe that (6)t and ( 6 ) ~  are tensorial 
equations which reduce in Cartesian co-ordinates to the equations already demonstrated in the case 
when those co-ordinates are used. 
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in which F t  = x: : = d p x f ( X ' ,  X 2 ,  X 3 ,  t ) .  The proper numbers of C and 
B are the squares u: of the principal stretches. The principal invariants of C 
and B are given by 

Z := tr B = tr C = u: + u $  + U: , 

ZZ:= i[(trB)2 -trB2] = i[(trC)2 - trC2] = uiu$ + u : u ~ ,  (11.9-7) 
2 2 2  ZZZ:=detB = d e t C = J 2  = u , u 2 u 3 .  

Any symmetric function of u 1 , u 2 , and u 3 equals a function of Z, ZZ, and ZZZ. 
The formulae obtained so far in this section apply to any invertible tensor, 

making no use of the fact that F is the gradient of x K  , which implies that it must 
satisfy the condition of compatibility skw grad F = 0. Sometimes the relation of 
the values of F at different arguments X must be taken into account. One such 
example is furnished by the chain rule (11.8-7). For another, we note from (7)7 
and (11.5-4) that 

pK / p  = det U = det V = mZ. (11.9-8) 

Another example is furnished by the following exercise. 

Exercise 11.9. I (MICHAL). If K ($?) is connected, a transplacement whose gradient 
is orthogonal at each point is either a rigid rotation or the product of one by a central 
inversion. (If 3 ever occupies I ,  a central inversion is excluded.) If x r  and R. are 
transplacements, for xE o xE-' to preserve the distances between substantial points it is 
necessary and sufficient that U = U. 

If we begin with the gradient FI of the relative transplacement, defined by 
(11.8-5), and apply to it the polar decomposition theorem, we obtain the relative 
rotation tensor RI , the relative stretch tensors UI and Vl and the relative 
Cauchy-Green tensors CI and Bl : 

Ft = RtUt = VtRt ,  Ct = U:, BI = V : .  (11.9-9) 

The uniqueness of a polar decomposition enables us to see from (11.8-6) that 
U,( t )  = V , ( t )  = R,(t)  = 1. 

Exercise 11.9.2. It follows from (11.8-7) that 

C ( T )  = F(t)TC,(T)F(t). (11.9- 10) 
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[B-'1 = 

When a transplacement is laid down for study, it is a trivial matter to cal- 
culate from it the tensors B and C. We consider here two examples, both of 
which will be useful later. In a simple shear each member of a family of paral- 
lel planes is transplaced tangentially a distance proportional to its distance from 
a particular plane in that family. If we let the particular plane be X I  = 0, and 
if we let the direction of the shear be that of the co-ordinate X Z  , then a sim- 
ple shear is described in the co-ordinate system XI , Xz , X3 by the following 

1 + K 2  -K 0 

-K I 0 , 

0 0 1  

components of transplacement: 

X I  =x1, 
xz =xz + K X l ,  
x3 =x3. 

The constant K is called the amount of shear. 
Since 

[FI = 

it follows that 

[B] = [FFT] = 

1 0 0  

K 1 0  

0 0 1  

I 

1 K O  

K 1+K2 0 

0 0 1  

(11.9- 12) 

(11.9-11) 

(11.9- 13) 

I = t rB = 3 + K 2  = ZZ = tr B-', ZZZ = 1 .  

In simple shear the principal stretches are ex- Exercise 11.9.3 (KELVIN & TAIT). 
pressed as follows in terms of the amount of shear: 

(11.9- 14) 

v 3  = 1 .  
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r 2 / ( A 2 R 2 )  0 0 

ll(B-')kmll = 0 R2 - A D R ~  

0 -ADR2 A2(  1 + D2R2)  

The angle 0 through which the principal axes of strain in ~ ( g )  are rotated so as to 
become the principal axes of strain in ~(9) is given by tan 0 = 1 K .  

, 

An example illustrating the use of curvilinear co-ordinate systems is pro- 
vided by the following components of transplacement in cylindrical polar co- 
ordinates: 

A ,  B, D,  and F being constants. The cylinders R = const. are mapped into the 
cylinders r = const., and choice of the constants A and B allows an arbitrary 
expansion or contraction as well as an eversion of these cylinders. At the same 
time, there is a stretch F i n  the direction of the axis of the cylinders, so adjusted 
as to make the transplacement isochoric. Finally the planes Z = const. are 
rotated about the axis through angles proportional to their distance from the 
particular plane Z = 0. Thus a torsion of amount D / F  is superimposed upon 
the isochoric expansion or contraction of the cylinders. 

Exercise 11.9.4. Use of (6)2 shows that for the transplacement (15) 

llBkrnII = 

A2R2 / r 2  0 0 

0 R - 2 + D 2  DF 

0 DF F 2  

To calculate ( B - ' ) k m  , the matrix (16) may be inverted; alternatively, 

A ~ R ~  
I = trB = gkmBkm = - r2 + r 2  (+ + D ' )  + F 2 ,  

(11.9- 16) 

(11.9- 17) 

(11.9- 18) 

r2 R2 
II = trB-' = gkm(B- ' )km = - + 

zrr = 1. 

+A'(I + D ~ R ~ ) ,  
A ~ R '  r 
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Exercise IZ. 9.5. In simple torsion A = F = 1, B = 0. Comparing ( 16) with ( 13)1 
shows that simple torsion may be regarded as effecting on each cylinder R = const., 
when cut along a generator and developed onto a plane, a simple shear of amount of 
DR.  

The transplacements (15) are members of a family that will be analysed in greater de- 
tail below in Section IV. 15. There we shall encounter also transplacements conveniently 
described by Cartesian co-ordinates in the reference placement, polar co-ordinates in the 
present placement. 

Exercise 11.9.6. In the notation used in Section 11.6, 

IGradfl' = gradfeBgradf, 

and hence (11.6-21) can be written in the form 

n, = - &FTn; 

likewise, (11.6-23) becomes 

1 s, = - - (S ,  - 
n.Bn 

n-x). 

(11.9- 19) 

(11.9-20) 

(11.9-2 1) 

10. Histories 

Let 'y denote a function of time whose value is a scalar, a vector, or a 
tensor. We shall often wish to consider the restriction of 'y to present and past 
times only. For convenience, if t is the present time, we shall represent the past 
time r by the positive quantity s := t - r .  The history of 'y up to time t is 
denoted by 'y', the value of which is 'y'(s): 

'y'(s) := ' y ( t  -s), t fixed, s 2 0. (11.10-1) 

For each t the history 'y' is defined on [0, a[. The history 'y ', as its name 
suggests, is the portion of a function of time which corresponds to the present 
and past times only. Histories turn out to be of major importance in mechanics 
because it is circumstances at the present and past times that should determine 
future occurrences. 
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In this notation Ci , for example, is the history of the relative right Cauchy- 
Green tensor Ct up to the time t .  Of course 

~ ' ( 0 )  = y ( t ) ,  F:(O) = 1, etc.  (11.10-2) 

11. Stretching and Spin 

For the instantaneous time derivative of a tensor defined from the relative 
transplacement, for example Ft , we introduce the notation' 

X being held constant, and we lay down the following definitions: 

G := Ft(t), 

D := U,(t) = V , ( t ) ,  

w := R&)* 

(11.11-2) 

D, which is called the stretching, is the rate of change of the stretch at the 
place of X in the shape at time t + E with respect to that at time t ,  in the limit 
as E 4 0. Likewise, W, which is called the spin, is the ultimate rate of change 
of the rotation at x from the present shape to one the body had just before or 
will have just afterward. Since Ut is symmetric, so is D, being its derivative 
with respect to a parameter: 

DT = D, (11.11-3) 

but D, unlike Ut , generally fails to be positive. Since D(x, t )  is symmetric, its 
proper numbers are real, and it has at least one orthogonal triad of proper vec- 
tors. The latent roots of D(x, t )  are called the principal stretchings d k ( x ,  t ) ,  
k = 1, 2, 3; the directions of a corresponding orthogonal triad are called prin- 
cipal axes of stretching. 

If we differentiate the relation Rt ( u)Rt ( u ) ~  = 1 with respect to u, put u = t , 
and use (2)4, we find that W is skew: 

W T + W = O .  (11.11-4) 

'This notation could not be confused with the substantial derivative, introduced in Section 11.6, 
since F,(t) = 1 and 1 = 0. 
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From its definition (2)1 , G is the ultimate rate of change of Ft , but that is not 
all, for by differentiating (11.8-7) with respect to 7 and then putting T = t we 
obtain 

G = FF-'. (11.11-5) 

Differentiation of (11.5-1) with respect to t yields 

F = Grad x x  = (grad x)F; (11.11-6) 

in view of (11.5-3), the last step follows by the chain rule of differential calculus. 
Substitution into (5) yields 

G = gradx. (11.11-7) 

We have shown that the tensor G, which we defined by (2)1, is in fact the 
spatial velocity gradient. 

If we differentiate the polar decomposition (II.9-9)l with respect to T and 
then put 7 = t , we find that 

G=D+W. (11.11-8) 

This conclusion, showing that D = symgradx and W = skwgradx, expresses 
the fundamental Euler-Cauchy-Stokes Decomposition of the instantaneous 
motion at x, t into the sum of a pure stretching along three mutually orthogonal 
axes, a spin, and a translation. The stretching D must not be confused with a 
rate of change of a stretch such as U or V, and the spin is not generally the 
rate of change of a finite rotation. 

The definitions (2)3 and (2)4 make the different kinematic meanings of D 
and W clear and suggest that both tensors will be useful in the description and 
classification of motions. 

Of course, we could have defined G by (7) as the velocity gradient and W 
and D by (8) as the symmetric and skew parts of G. We should then have had 
to prove (2)2,4 as theorems so as to interpret G, W, and D kinematically. Most 
writers on hydrodynamics prefer the argument in this order. 

Exemise ZZ. 11. I (LAGRANGE). 

x = x' + 2Wx +grad( ;i*). (11.11-9) 

Motions in which W = 0 are called irrotational. They form the main 
subject of study in classical hydrodynamics. Motions in which W # 0 are called 
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rotational. Of course both conditions are local: a motion may be irrotational in 
one part of its domain and rotational in another. In Volume 2 we shall encounter 
the famous example called a spherical vortex. 

Exercise II.11.2. Writing (11.6-26) as 

(11.11-10) % I t 2  =%,  + % 2  +G,X2 +G2X,, 

we see that if XI and x 2  are isochoric, then 

divxI+* =div%, +divx2 +2DI.D2 +2W,.W2.  (11.11-1 1) 

Because W is skew, it may be represented to within a convention of sign by 
the axial vector curl x, which is called the “vorticity vector” in hydrodynamics: 
w := curl x.’ Nowadays it seems more convenient not to introduce this vector 
but instead to use the tensor W. We shall nevertheless use the letter w to denote 
the magnitude of curls: 

w := J Z I W ~  = IcurlxI, (11.1 1-12) 

and it is the scalar field w that in this book we shall call the vorticity. In a 
rigid motion w = w ,  the angular speed (cf. Section 1.9). In the plane normal 
to the axis of spin at x we can choose orthogonal unit vectors e and f such that 

w = i w e h f ,  (11.11-13) 

and so 

We = -kwf, Wf = ;we, 

W = - e @ W e + W e @ e .  
(11.11-14) 

Another important scalar is the expansion E, defined as follows: 

E : = J / J  = divx = t rG = t rD  = u / u  = - b / p ;  (11.11-15) 

‘LAORANGE’S form (9) for the acceleration may be written as 

x = x’ + w x x +grad( ;xi.’), 

in which w := curl x. 
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the third and fourth expressions follow by use of (7) and (8), and the last 
by use of (11.5-7). E is the local rate of increase of volume of a substantial 
region, referred to unit volume. We remark again that necessary and sufficient 
conditions for isochoric motion are 

(11.11-16) 

The velocity field of a rigid motion is given by (1.10-1). Taking the gradient 
of that equation yields G = W. Thus D = 0 in a rigid motion, and the spin as 
defined by (2)4 for a general motion reduces in a rigid motion to a field having 
as its value everywhere what we have called in Section 1.10 the spin of that 
motion. Thus we may regard the spin field as a generalization of the spin of a 
rigid motion- in rough language, a local velocity of infinitesimal rotation. 

Exercise ZZ.ll.3 (EULER). If D = 0 is regarded as a differential equation for the 
spatial velocity field in a connected open set, integrating it yields (I. 10- 1). 

These observations establish the following theorem: The condition D = 0 
in a region at an instant is necessary and sufficient that the motion be rigid 
in that region at that instant. In view of the interpretation of D given just 
after its definition, the theorem is obvious. 

Clearly the spin W is generally something quite different from R, the time- 
rate of the rotation tensor, as the following two examples show. 

In a steady, simple shearing Cartesian velocity components are 

X I  = 0, X z  = K X I  , X 3  = 0, K = const.; (11.11-17) 

K is the shearing; and each substantial point moves ahead at constant speed along a 
straight line parallel to the x2-axis, yet unless K = 0, the motion is rotational. In a 
steady, simple vortex, the cylindrical polar, contravariant velocity components are 

i = 0 ,  e = w ( r ) ,  i =o, (11.1 1-1 8) 

and each substantial point rotates steadily about the polar axis on a circle r = const., 
z = const., at the angular speed w ( r ) ,  yet if w(r) = K r P 2 ,  the motion is irrotational. K, 
which is the magnitude of the rotational momentum per unit mass-density of the body 
undergoing the motion, is the strength of the irrotational vortex. More generally, the 
vorticity is given by rw = (r’w)’,  the prime denoting the derivative with respect to r .  

The simple distinction of “rotational” and “irrotational” does not tell us 
how to decide whether a given rotational motion is strongly or weakly so. 
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To say that vorticity or stretching is small, has no meaning by itself, for the 
physical dimension of these quantities is the reciprocal of the dimension of 
time. Dimensionless measures of intervals of time, speeds, frequencies, etc., 
are provided by ratios. For example, one intuitive concept of the rotationality 
of a motion may be made precise by defining a numerical degree called the 
vorticity number, namely the field @defined as follows at all points where the 
motion is not rigid: 

(11.11-19) 

If D = 0 but W + 0, we may choose to say that B = 03. Then the value 
of Wis a degree of rotationality determined at each time at every interior point 
of the present shape of a body that does not presently lie in a neighborhood 
undergoing pure translation; the degree is 0 for an irrotational motion and oc) for 
a rigid motion other than a state of rest. When W = 1, spin and stretching are 
precisely balanced. Such is the case in some flows commonly used to illustrate 
the effects of viscous friction, for example the steady, simple shearing (17). 

Exercise 11.22.1 (TRUESDELL). For the steady, simple vortex (18) 

(11.11-20) 

Thus B > 1 in regions where the linear speed rw increases with r ,  while @ < 1 in 
regions where rw decreases with r.  In regions where w 0: r-' the simple vortex is 
irrotational: %,Y = 1 .  If w 0: r -" ,  then 

(11.11-21) 

Thus B in an isochoric motion may take on any value in [0, m[, and that value may be 
the same at all points even though neither D nor W need be so. 

Exercise II.12.5 (TRUESDELL). If W + 0, then 

(11.11-22) 
divx - E  

B = 1 in any accelemtionless, isochoric, and rotational pow.  Indeed, for the last 
statement to hold it suffices (but is not necessary) that the expansion be substantially 
constant and that the acceleration field be solenoidal. 
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Exercise ZZ.ZZ.6 (‘I~UESDELL). Let there be given an isochoric motion of spin 
Wo and vorticity number Bo; let there be given also a rigid motion of spin W,; and 
let these two motions be superposed (Section 11.4) to produce a motion whose spin 
W = Wo + W, . Suppose that WO + 0 and W + 0. Then the vorticity number B o f  the 
combined motion is determined as follows: 

&) = IWOI* (1  - (11.11-23) 

If Bo = 1 ,  then 

Bz? 1 H IW,122 -2W,.Wo. (11.11-24) 

In three dimensions the right-hand inequality becomes, if W, + 0, 

IW,I z -2jwOl cos e, (11.1 1-25) 

8 being the least angle between the oriented axes of W, and WO . In particular, the 
condition 0 f~ is sufficient to ensure that B 2 1 if Bo = 1. If WO = -W, , then 
8 = T and W = 0. 

Further enlightenment of the difference between stretch and stretching and 
between rotation and spin is furnished by the following exercise.’ 

Exercise ZI.ZZ.7 (E. & F. COSSERAT, COLEMAN & TRUESDELL). 

C = 2FTDF, 

W = RRT + iR(UU-’ - U-’U)RT, (11.11-26) 

D = iR(UU-l + U-lU)RT, 

where R and U have their usual meanings as the rotation and right stretch tensors with 
respect to a fixed reference placement. Also BIF=~ = 2D. 

Various higher rates of change of stretch and rotation may be defined. 

Exercise ZZ.lZ.8. Including and generalizing (1) and (2)1 , set 

‘R as a function W, R, U, and U can be read off from ( 2 6 ) ~  . Guo ZHONG-HENG, “Rates of 
stretch tensors,” Journol of Elasticity 14 (1984): 263-267, determines R and V as functions of V, 
R, and C; also he determines U as a function of U, R, and G. Cf. also A. HOGER & D. CARLSON, 
“On the derivative of the square root of a tensor and Guo’s rate theorems,” ibid. 329-336. 
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Differentiating (11.8-7) n times with respect to 7 and setting 7 = t shows that 

( n )  
FF-l = Gn , (11.11-28) 

and hence by use of the chain rule 

(11.11-29) 
( n )  

Gn = grad x . 

In particular 

The most useful higher rates are the Rivlin-Ericksen tensors A,, . They are 
defined as follows in terms of a notation like (27): 

and hence are symmetric. In particular, A, = 2D. 

Exercise 11.11.9 (DUPONT, RIVLIN & ERICKSEN). 

n-I  

An =Gn + G i  +C (;) GJGn-j 
j = l  

(11.11 -3 1) 

(11.11-32) 

and 

= A n  +AnG +(AnG)T. (11.1 1-33) 

Exercise IZ. 21.10 (RIVLIN, TRUESDELL & NOLL). Differentiating the relation 
detC,(u) = 1 repeatedly with respect to u and then putting u = t shows that in an 
isochoric motion 

trAl = 0, 

trA2 =&A:, 

tr A3 = -2 tr A: + 3 tr(A2AI), 

(11.11-34) 

and in general trAn is a linear combination of traces of products formed from 
AI 9 A29.. . $ & - I  . 
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We now consider restrictions imposed upon W by boundaries. To do so, 
we first appeal to KELVIN’S transformation (“STOKES’S theorem”)’ of an integral 
over a surface Y into a line integral around the border of Y, which we shall 
denote by V. (Y is a compact set, ‘if := cloY\Y, and V is a closed line, often 
called a circuit.) The circulation C( V) was introduced by KELVIN as a measure 
of the summed tangential speeds of the substantial points lying presently upon 
V. Assuming that dim8 = 3, we suppose the surface Y to be given by a 
mapping x = f ( a ,  b )  on a domain 9 of the parameters a and b. Then, with the 
usual convention of sign and on the assumption that the fields and the surface 
be sufficiently smooth, 

W.(d,xhdbx)dadb. (11.11-35) 

For our first use of this statement, we apply it to a surface Y that is normal to 
the velocity field x. Then C( V) = 0, and so the right-hand side of (35) vanishes. 
The same holds for every subsurface of Y. If W and dux hdbX are continuous, 
then everywhere on Y 

We have proved the following theorem: At a point on a surface normal to 
the velocity field, either W = 0 or the axis of W lies in the tangent plane. 
Therefore, if n is a unit normal field to Y,  we can take n for e in (14)3 and 
conclude that at a point on Y 

W = - n @ W n + W n @ n .  (11.11-37) 

The foregoing statements hold a fortiori on a stationary boundary to which a 
body adheres. 

Exercise II. 11. I1 (WEATHERBURN, BERKER, CASWELL, TRUESDELL). Interpretation 
of the gradient in terms of the directional derivative shows that if k is any vector in the 
tangent plane at the place x on a stationary wall to which a body adheres, then at x 

Gk = 0. (11.11-38) 

‘A  surface is a compact, oriented, two-dimensional manifold with boundary in a three- 
dimensional Euclidean space. The velocity field 6 is assumed to be differentiable in an open set 
properly containing Y.  A brief statement and a rigorous proof of KELVIN’S transformation are given 
by M. SPNAK at the end of his book cited above in the footnote on p. 93. 
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Hence at x 

D = E n  O n  + n  8 W n  + Wn On, 

125 

(11.11-39) 

and the principal stretchings are given by 

Exercise 1 f . I f . f Z  (TRUESDELL). If a body undergoing an isochoric motion which 
is not rigid adheres to a stationary surface, then ?3 = 1 on that surface. 

Exercise 11.11.13 (CAUCHY). If 

W, := skw G2 = skw grad t, (11.1 1-4 1) 

then 

(FTWF)’ = FTW,F. (11.11-42) 

Hence a necessary and sufficient condition that FTWF remain constant for each substantial 
point X in the course of its motion is 

w, =o .  (11.1 1-43) 

If (43) holds, then 

FTWF = f ,  (11.11-44) 

a function of place X in the reference shape. Because F = 1 throughout that shape, 
from (44) we conclude that f = W, , the spin that X would have, were it to be at X. In 
particular, (43) is satisfied by an irrotational flow. 

The condition (43) is of central importance in classical fluid dynamics. 
There it is applied in a region, not merely to a single substantial point. It is 
called the D’Alembert-Euler condition. A convenient way to express it is 

skw gradx = 0; (11.11-45) 
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because of (30), equivalently 

skw FF-' = skw(G + G2) = 0. (11.11-46) 

We shall learn further consequences of this condition in Sections 11.13, IV. 14 
and in Volume 2. For the time being we remark only that according to a familiar 
theorem on lamellar fields, in a simply connected region the field x satisfies (43) 
if and only if there is an acceleration-potential Pa : 

2 = -gradpa. (11.11-47) 

Exexise fZ.  11.15 (D'ALEMBERT, EULER, BELTRAMI). 

W, = w +DW + WD. (11.11-48) 

Exercise Zf.II.16 (APPELL). If d im8 = 3, 

(&TWI2)' =J2(W.W. + IWI2n.Dn), (11.11-49) 

n being either unit vector in the nullspace of W. Hence w satisfies the differential 
equation 

(Jw)' = Jwn-Dn (11.11-50) 

if and only if 

W.W. = 0. (11.11-5 1) 

Exercise 11.11.17. A rigid motion has an acceleration-potential if and only if its 
spin is steady, and then 

- P a  = fp.WZp + [C + W(c - k0)l.p; (11.11-52) 

here p := x - xo . If w denotes the angular speed and r the distance from the axis of 
spin, 

As we have seen above in this section, the condition W = 0 defines an 
irrotational motion. Consequently, a motion is irrotational in a simply connected 
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region if and only if it has there a velocity-potential P ,  : 

ir = -gradP, . (11.11-54) 

For that reason irrotational motions are often called potential flows. The po- 
tential P ,  may depend upon t as well as x. The surfaces P , ( t ,  x) = const., t 
fixed, are called equipotentials. The velocity is normal to the equipotential on 
which it lies. A system of equipotentials determined by giving to P, succes- 
sively equal, constant increments, say c, divides the region of flow into laminae, 
and hence an irrotational flow is sometimes called lamellar. If the constant c is 
very small, so also are the values of the function d which delivers the normal 
distances between the equipotentials, and 1x1 x c / d .  

If an irrotational motion is also isochoric, then, as EULER remarked, (11.5-8) 
reduces to the linear partial-differential equation later to be called “Laplace’s”: 

A P ,  = 0. (11.11-55) 

Solutions, which are called harmonic functions, are easy to obtain. The sum 
of two harmonic functions is a harmonic function, and so the outcome of su- 
perposing two isochoric, irrotational flows is likewise an isochoric, irrotational 
flow, and complicated flows may be built up from simple ones in this way. In 
the nineteenth century many general properties of them were discovered, and 
general methods for calculating solutions of (55) such as to satisfy (11.6-17) 
on given boundaries were constructed. The corpus of these properties is called 
“potential theory”. The problem of determining an isochoric, irrotational flow 
within or about assigned boundaries is purely kinematical; it can be phrased 
with no reference to mechanics. 

A disquieting property of isochoric, irrotational flows is revealed by a the- 
orem in the theory of the “Laplacian” equation: The boundary condition (11.6- 
17), applied to the boundary of a closed, bounded, simply connected region, 
determines a unique velocity field in that region. Were the fluid to adhere to 
some bounding wall, there we should have to prescribe x, not merely n-x.  A 
standard theorem of potential theory may be interpreted as follows: If at a cer- 
tain time a body undergoing isochoric, irrotational flow adheres to a not 
void, open set on a surface, that whole body must be at rest at that time. 

Neither isochoric motion nor the condition of adherence nor the restriction 
to a bounded domain is necessary to render impossible an irrotational motion 
other than a state of rest, as is shown by the following, purely kinematical 

Theorem of Kelvin and Helmholtz. Let an irrotationalflow in a sta- 
tionary, simply connect& region be such that 

1 .  It is isochoric, or its density is steady. 
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2 .  On all finite boundaries ir-n = 0. 
3 .  In any part of the region that lies outside of a sphere of arbitrarily 

large radius r ,  i f  the motion is isochoric then 

while i f  the density is steady 

Then x = 0 everywhere. 

Of course the two main conditions, those of isochoric motion and of steady 
density, are not mutually exclusive, for it is easily possible that both (56) and 
(57) hold. 

Proof. If div(Ax) = 0, then div(AP,x) = Ax-gradP, = -A lgradP,I2. 
If we integrate this equation over any finite region W in which P, exists, we 
obtain 

A [grad P ,  l 2  d V = AP,x- n d A  . (11.11-58) -1 I ,  
Condition 2 makes the integral over 8.9 vanish. Condition 1 makes the con- 
clusion apply if we put A = 1 for an isochoric flow, A = p for a flow with 
steady density; we use (11.5-9) and (II.6-6)2, respectively, so as to conclude 
that A IgradP, l2 = 0 throughout 92. If the flow is defined over a region that is 
not bounded, we choose 9%’ as the part of the region that lies within a sphere of 
large radius r. The boundary dW then consists partly of points where x.n = 0 
and partly of points on the sphere. The former contribute nothing to the surface 
integral in (58). As r -+ 00, the integral on the portion of the large sphere tends 
to 0 because of (56) or (57). Thus the integral on the right-hand side of (58) 
converges to 0, and again it follows that A IgradP, l 2  = 0 throughout the region 
where P ,  exists. A 

In a multiply connected region a potential flow that is not a state of rest 
may exist. An example is provided by the irrotational, simple vortex included 
in (18). For it P, = -Ad. 

Exercise ZZ. 12.28 (CISOTTI) . The kinetic energy of a body undergoing irrotational 
flow in a stationary, bounded, simply connected region W on the boundary of which 
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x . n = 0 is given by 

2K = - P,p’dV.  s, (11.11-59) 

A flow is complex-lamellar if it is non-trivially proportional to a lamellar 
flow: There are scalar fields A and P, neither of them constant, such that x = 

AVP.  The surfaces P ( t ,  x) = const., like the equipotentials of an irrotational 
flow, are normal to the field x, but a complex-lamellar flow is rotational. Thus 
the axis of spin at xo lies in the tangent plane of the surface P ( t ,  x) = const. 
containing XO, and W satisfies (37). Cf. Section App. IIC.5. 

12. Homogeneous ’Itansplacement 

A transplacement x, of the reference placement K is said to be homoge- 
neous if the substantial points occupying each straight line segment in K (g) are 
carried into some straight line segment in x(g, t). By a theorem of geometry, 
any such transplacement xK must be affine at each time t .  Thus a homogeneous 
transplacement of ~ ( g )  is of the form 

x,(X, t )  = xo(t) + F(t)(X - XO), detF(t) + 0. (11.12-1) 

In this formula XO is a fixed place in ~ ( 9 ) ;  xo is a place-valued function 
of time; and F is a tensor-valued function of time. By (11.5-1) we see that 
F is the transplacement gradient, and that at any one time t it has the same 
value at all places in ~ ( 9 ,  t). This property explains the name “homogeneous 
transplacement”: A transplacement is homogeneous if and only if its gradient 
is uniform at each time. 

For a given reference placement K the composition of two homogen- 
eous transplacements is a homogeneous transplacement. For each fixed t the 
transplacements homogeneous with respect to K are restrictions of members of 
the affine group. 

If K 1 and ~2 are two different reference placements, a motion that gives rise 
to a transplacement homogeneous with respect to ~1 generally fails to do the 
same with respect to ~2 . The class of motions that give rise to transplacements 
homogeneous with respect to K 1 coincides with the corresponding class of ~2 if 
and only if the differentiable homeomorphism ~2 o K has a constant gradient. 

Homogeneous transplacements are most easily visualized as mappings of one 
vector space into another. Let p, denote the field of position vectors in ~ ( g )  
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with respect to the origin XO , and let p denote the field of position vectors in 
~(9, t )  with respect to m(t).  That is, p, := X - XO , and p := x - xo . Then 
(1) may be written in the form 

P = FP, 9 (11.12-2) 

and F is a function of time only. 

m and n, respectively, by (2). Then 
Let the two particular position vectors m, and n, in ~(9) be mapped onto 

man = rn,.Cn,, (11.12-3) 

C being the right Cauchy-Green tensor (11.9-5)l . Likewise, 

m, .n, = m.B-'n, (11.12-4) 

B being the left Cauchy-Green tensor (II.9-5)3. The student will recall that B 
and C are symmetric and positive. All vectors parallel to n, are increased in 
length in the same ratio. In particular, if n, is a unit vector, generally the n 
corresponding with it through (2) has some length other than 1. This ratio of 
lengths is called the stretch u(,,) in the direction of n, . It may be calculated 
as follows: 

Two orthogonal vectors m, and n, in ~(9) are mapped, generally, onto 
vectors m and n in x ( g ,  t )  that are not orthogonal. This phenomenon is called 
shear, and there are various ways to report it. The angle 8(n,,mc) between the 
images in ~(9, i) of two unit vectors n, and m, in ~(9) is one measure of 
shear. It is determined by the relation 

(11.12-6) 

The sphere Im, = const. in ~ ( g )  is mapped onto an ellipsoid in x(g,  t ) ,  
and the sphere lmI2 = const. in ~(37, t )  is the image of an ellipsoid in ~(9). 

Exerrise 11.12.1 (CAUCHY). The principal axes of strain, as defined in Section 
11.9, are the principal axes of the ellipsoids just constructed; the principal stretches are 
the stretches in the directions of those axes; and these particular stretches are extremal. 
Thus a homogeneous transplacement is resolved into a translation and a rotation of one 



12. HOMOGENEOUS TRANSPLACEMENT 131 

set of principal axes into the other, followed or preceded by pure stretches along those 
axes. The shear of each pair of principal axes is null. 

Exercise II.12.2. Let the linearly independent vectors p, , and q, , and r. deter- 
mine a parallelepiped of volume V ,  . Let the volume of the parallelepiped onto which 
it is mapped by ( 1 )  be V.  Then J = V / V .  . Let A, be the area of the parallelogram 
determined by q. and r. ; let A be the area of the parallelogram onto which it is mapped; 
let 0, and 0 be the angles subtended upon those parallelograms by p, and p, respectively. 
Then V / V .  = (A/A,)(IPI/IP~ I)(sin e l s in  &). 

The terms “stretching” and “shearing” in general refer to the rates of 
change of stretch and shear when these latter are defined with respect to the 
present shape as reference. We may discuss stretching and shearing just as we 
have discussed stretch and shear, starting from homogeneous transplacements. 
If we differentiate (2) with X held constant, then use (11.11-5), and then use 
(2) again, we obtain 

ji = Fp, = GFp, = Gp. (11.12-7) 

Hence by use of (11.11-8) we derive EULER’S relation 

IPIIPI’ = P - P  = P-DP, (11.12-8) 

D being the stretching tensor; equivalently, if p + 0 and if n is a unit vector in 
the direction of p, then 

(log lpl)’ = n-Dn. (11.12-9) 

Thus the component n.Dn of D is the rate of increase of length, per unit length, 
of a linear segment in K ( @ )  presently parallel to n in x(S,  t), and this rate is 
called the stretching in the direction of n. The three principal stretchings, which 
were defined in Section 11.11, are the extremal stretchings. 

Exercise 11.12.3 
tiating (6)  shows that 

(EULER). For two orthogonal unit vectors n. and in. , differen- 

This statement has an interpretation in terms of shearing. 

Let ‘p(,,, ,,,.) denote the angle between the position vector p of x with respect 
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to ~0 in x(S,  t )  and the unit vector m, in ~(g). Then by (2), 

in which for simplicity we do not write the subscript (p, m,). Differentiating 
(1 1) with respect to t yields 

cos 'p IpI' - [ P I @  sin 'p = m, .Fp, , 

= m, -GFp, , (11.12-12) 

by (11.11-5). If we now let the value of p, be a unit vector orthogonal to m, , 
say nr , and then take the present shape as the reference shape, so that the 
corresponding value of p also is n, we find that 

This formula gives the angular rate at which a line segment in ~(9) presently 
parallel to n turns away from the stationary unit vector m in ~(9, t ) .  Likewise, 
the rate at which a line segment in ~(9) presently parallel to m is turning toward 
the stationary unit vector n is given by 

@(m, -n) (F=I = +n-Gm. (11.12-14) 

By adding these formulae and using (11.11-8) we obtain 

W being the spin. Thus we have proved a fundamental theonem of CAUCHY: 
The component n. Wm of W corresponding to the orthogonal unit vectors 
n and m is the arithmetic mean of the rates of right-handed rotation of 
a line in K ( @ )  presently parallel to n with respect to the direction of m in 
~(28, t )  and of a line in K(S) presently parallel to m with respect to the 
direction of n in ~(9, t ) .  

Exercise ZI. 12.4. Because of (3) 

(men)(@ = m.Akn, k = 1 ,  2 , .  . . . (11.12-16) 

For a general motion the transplacement gradient F provides a local linear 
approximation to the transplacement x r  . We may say that to within an error 
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that is o(X - XO) as X - XO + 0 the transplacement x K  is approximated at Xo 
in ~ ( 8 )  and hence at xo in x ( 8 ,  t), with an error o(x - XO) as x - xo + 0, 
by the homogeneous transplacement (1) that is defined by F(X0, t). Thus the 
conclusions reached in this section for homogeneous transplacements may be 
interpreted in general motions as first-order local approximations to counterparts 
for the present transplacement of K (8). In loose language, the conclusions 
valid for all lines in homogeneous transplacement are valid for infinitesimal line 
segments in any smooth transplacement. 

For reference we record here also the velocity field and the acceleration 
field of the homogeneous transplacement ( 1): 

X = ko + FF-'(x - XO) = Xo + G(x - xO), 

f = & + FF-'(x - XO) = Xo + (G + G*)(x - XO). 
(11.12-17) 

That these fields are given by affine functions of place, should be obvious 
without calculation and may be verified also by a glance at (11.11-5) and (11.11- 
30). 

Suppose, conversely, that the velocity field of a transplacement of 9? be affine: For 
each place x in x(9?, t) and each t in some interval, 

X = c + K(x - X), (11.n-18) 

in which c and K are functions of t alone and X is a fixed place. Then K = grad X, and 
so from (11.11-7) and (11.11-5) we see that a transplacement gradient F from which K 
derives must satisfy the differential equation FF-' = K. Solutions F may be functions 
of x as well as o f t ,  but there is a solution that is a function o f t  alone, unique to within 
an initial value. Cf. (1.9-16). 

13. Rates of Change of Integrals over Substantial Lines, Surfaces, and 
Regions. Substantial Vector Lines. The Vorticity Theorems of Helmholtz 

and Kelvin 

In Section 11.1 we introduced the notation ~ ( 8 ,  t) for the shape of a body 
39 at the time t. Likewise, any subset of the substantial points comprised by 39 
will be given in time a sequence of shapes by x .  In Section 11.3 we introduced 
a reference placement I to assign a place X in & to each substantial point X ,  
in terms of which we defined through (11.3-3) the transplacement x K  of the 
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substantial points of 9 from their places X in the reference placement into 
the places x they occupy at the time t .  Our assumptions of smoothness should 
suffice to ensure that x K  preserve the nature of the subsets of 9. For example, 
a surface Y in K (9) should be mapped at the time t into a surface in x K  (9, t ) .  
This sequence of surfaces x r  (Y, t )  provides the successive loci of a substantial 
surface under x ,  for at each t one and the same set of substantial points occupies 
x K  (9, t ) .  The same idea can be applied also to a line Y in K (9); the sequence 
xK(Y, t )  provides the successive loci of a substantial line. If d is a subbody 
of g, then xK(d, t )  is the shape at t of a substantial region. 

In Section 11.6 we have shown how to calculate substantial time-rates for 
quantities given in the spatial description, and we have provided the criterion 
(11.6-13) to determine whether a set of points in 8 that satisfies f ( x ,  t )  = 0 do 
or do not provide the successive shapes of a substantial surface under x .  Also 
in (11.6-8) and (11.6-10) we see the rule for calculating the substantial derivative 
of an integral over a substantial volume. As those examples show, the value of 
an integral of a spatial field over a substantial set will generally change in time 
for two reasons: first, because the field itself changes, and, second, because the 
domain of integration in € is changing in consequence of the motion. 

We now enter into the details concerning integrals over substantial lines and 
substantial surfaces. Before going ahead, the student would do well to refresh 
his knowledge of the contents of Section 11.3 and the first half of Section 11.6. 

We have mentioned that formulae valid strictly for homogeneous transplace- 
ments serve as first-order approximations in general. Since only the first-order 
terms affect the value of an integral, we may derive in this way exact formulae 
for the time-rate of change of integrals. For example, if V is a given curve in 
~(9), the time derivative of a line integral along its shape x (  V, t )  is obtained 
by supposing that the substantial rate of change & of the element of arc dx  
is Gdx, as (11.12-7) suggests. Thus we infer the following formula, due to 
KELVIN: 

= Ig(f + GTf)-dx. (11.13-1) 

The abbreviated notation J, denotes integration over the parametric interval of 
the function k that defines V in the reference shape: say X = k(l) ,  1 E [0, I]. 
The student should clear the details by solving the following exercise. They 
will be made obvious anyway by the treatment for the analogous but more 
complicated problem for surface integrals which we shall give a little further 
on. 
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Exercise 11.23.1. Transforming line integrals along x(V, t) back into integrals 
along the stationary curve V in ~(9) delivers a formal proof of (1). 

Exercise 11.13.2. Use of (11.12-7) to calculate the rate of change of the volume of 
a substantial region in a homogeneous transplacement provides another proof of (11.6-8). 

Exemise ZZ. 23.3. If s, . . . ds denotes integration with respect to arc length along 
a substantial curve V, and if t(s) is either of the two continuous fields of unit vectors 
tangent to the present shape of V at s, then 

(11.13-2) 

Now suppose that a substantial surface Y has the parametric representation 
X = H(a,  b )  in ~(g), a and b being real parameters varying separately in 
some interval, say [0, 11. The present shape of this substantial surface is x = 
X,(H(a, b ) ,  t )  =: h(a, b ,  t ) .  Let d,X and dbx  denote the partial derivatives 
of H; let d,x and a b x  denote the partial derivatives of h. Then by use of the 
rule for differentiating composite functions, followed by use of (11.11-5) and 
properties of the exterior product, we find that’ 

a , X  = Faax, 
(d,x)’ = FdaX = FF-’d,x = G ~ , x ,  (11.13-3) 

(dax Adbx)‘ = G(d,x hdbX) + (d,x Aabx)GT. 

Let S be a skew tensor field. By use of (3) we quickly obtain LAMB’S formula 

S.(a,xAdbx)dadb = SC.(d,xAdbX)dadb, 
d 

(11.13-4) 
sc := S + SG + G ~ S .  

The integral on the left-hand side is called the flux of S through the present 
shape x(Y, t )  of the substantial surface 9. From (4) we read off Zorawski’s 
criterion: In order for  the flux of a skew tensor field S to remain constant 
in time for  each substantial surface, it is necessary and sufficient that 

S‘ = 0. (11.13-5) 

’Decompositions of these and other kinematical rates are given by J .  CASEY, “Connections 
between kinematics of line, area, and volume elements,” Journal of Elasticity 17( 1987): 71-74, 
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In this notation the theorem (11.11-48) of D'ALEMBERT, EULER, and BELTRAMI 
appears as 

wc =wa.  (11.13-6) 

If for S we take W, the integral upon the left-hand side of (4) becomes the 
flux of vorticity through x(Y,  t ) .  From ZORAWSKI'S criterion ( 5 )  we then read 
off a classic vorticity theorem: In order that the flux of vorticity through 
each substantial surface shall remain constant in time, it is necessary and 
sufficient that 

w, = o .  (11.11-43), 

The statement that the D' Alembert-Euler condition (11.11-43) is sufficient for 
constant flux is Helmholtz 's Third Vorticity Theorem . 

The substantial derivative f ,  defined by (11.6-3), reflects use of the Euclidean 
parallel transport. Following the path of a substantial point from the place it 
occupies at the time t to the place it occupies at the time t + h ,  we use the 
Euclidean parallel transport to translate the value of f at the latter point back 
to the former point, subtract from it the value o f f  there, divide by h, and pass 
to the limit to obtain f .  If we do just the same thing but use the parallelism 
induced by the motion of the deforming body, we obtain' 

F := f' + (gradf)x - Gf, 

= f - G f .  (11.13-7) 

Thus F = 0 if and only if f obeys in all motions the same relation as does the 
position vector of a substantial point in a homogeneous transplacement, namely, 
(11.12-7)3 . The quantity Sc defined by (4)2 has a similar interpretation. We may 
refer to F and Sc as the convected time-fluxes o f f  and S ,  respectively. 

The vector lines of a non-vanishing vector field f are the curves everywhere 
tangent to f .  Generally these curves move and deform in the course of time. If 
they do so in such a way as to be occupied always by the same set of substantial 
points, they are substantial lines. A field of such a kind has substantial vector 
lines. A substantial line that once is a vector line o f f  is then always a vector 
line of f .  

' A  clear explanation of the idea is included in the paper by BOLDER cited on p. 104. The 
standard way to introduce the convected derivative begins from the Lie derivative L ,  based upon a 
vector field v and then sets fc := f'+E*f. For the Lie derivative a standard, old reference is Section 
10 of J. A. SCHOUTEN, Ricci-Calculus, Berlin, Springer-Verlag. 1954. 
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To determine the fields f that have substantial vector lines, we let a curve 
@? in ~ ( g )  be given by the parametric representation X = H(a) and proceed 
as we did above in considering substantial surfaces, and we assume that f does 
not vanish anywhere. By use of (3)4 we obtain 

(fhd,X)’ = f h d , X + f h ~ d , X .  (11.13-8) 

The material line generated by %? is presently a vector line o f f  if and only if 
there is a scalar field A such that 

dux = Af. (11.13-9) 

The substantial line then remains always a vector line if and only if (9) implies 
for all t that 

(f hd,X)’ = 0. (11.13-10) 

Putting (9) into (8) yields 

(f  hd,X)’ = A(f - Gf) h f .  (11.13-11) 

Comparison with (7) yields the Helmholtz-Zomwski criterion : The field f 
has substantial vector lines i f  and only i’ 

f h f C = O .  (11.13-12) 

We can express this statement equivalently in terms of the unit vector e in the 
direction o f f ,  that is, e := Ifl-’f: 

f“ = (e.F)e. (11.13-13) 

In this formula we may, if we like, choose f to be a field e of unit magnitude. 
Then 

ec = (e.ec)e. (11.13-14) 

Of course e.e = 0, and from (7) we see that e.ec = -e.Ge, and so in general 
e.ec =+ 0. 

By use of (13) we may express the conclusions in Section 11.12 in more 
general forms, without recourse either to homogeneous transplacements or to 
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infinitesimals. The student should convince himself of this fact by solving the 
following exercise. 

Exercise 1113.4 (STOKES, BOUSSINESQ, GOSIEWSKI, TRUESDELL & TOUPIN, WANG’ ). 
Let e be a field of unit vectors having substantial vector lines. Then 

e = ID + W - (e.De)l]e. (11.13-15) 

If such an e presently lies in a principal axis of stretching, it is presently suffering a rigid 
motion with spin W. If m and n are unit vector fields having substantial vector lines, 
then 

(m-n)’ = 2m.Dn - (m.Dm + n-Dn)(m.n), 

m . i - n . m  =2m.Wn+(m.Dm -n.Dn)(m.n). 
(11.13-16) 

Thus substantial lines orthogonal at one instant do not generally remain orthogo- 
nal. For example, the principal axes of stretching (cf. the Euler-Cauchy-Stokes 
Decomposition (11.1 1-8)) are not generally substantial. These conclusions may 
be related to those on homogeneous transplacements, given above in Section 
11.12. 

The vector lines of a flow are called its streamlines. Generally these lines 
vary from one time to another; they are not generally the paths of the substantial 
points. It is plain that the streamlines and the paths of the substantial points 
coincide if and only if both are steady.’ In order that a family of lines be 
steady, it is necessary and sufficient that any tangent field shall suffer change 
only in magnitude, not in direction. Therefore, in order that the streamlines of 
a non-vanishing flow x be steady, it is necessary and sufficient that 

X A X ’  = 0. (11.13-17) 

This same formula should emerge also as a condition for the streamlines to be 
substantial, and it does. Indeed, if we apply (7)l to x, we find that xc = x’, and 
placing this conclusion in (12) yields (17). Of course (17) is satisfied by any 
steady flow. 

Let S denote a field of skew tensors. A curve whose tangent at each x lies 
in the nullspace of S(x) is a vector line of S. In discussing such vector lines 
we shall presume that dim d = 3. Then if S + 0, the vector lines of the field S 
are the vector lines of the field of axes of S. 

‘Further conclusions and interpretations are provided by C.-C. WANG, “On Gosiewski’s theo- 

’For analysis of streamlines, pathlines, and streaklines, with illustrations both graphic and 
rem,” Archives of Mechanics 24 (1972): 309-314. 

analytic, see Sections 70-71 of CFT. 
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Exercise 11.13.5. If d ime = 3, a substantial line that is once a vector line of the 
skew-tensor field S remains always a vector line of S if and only if 

ssc = S‘S. (11.13-18) 

Hence in order for the vector lines of S to be substantial it is sufficient but not necessary 
that the flux of S through each substantial surface shall remain constant in time. 

The vector lines of W are called vortex lines. If we take W for S in (18) 
and use (11.11-48), we obtain the condition 

ww, = w,w. (11.13-19) 

Since two non-null skew tensors commute if and only if they have the same 
axis, from ( 19) we read off a theorem due to POINCARE: In a rotational flow, 
for a substantial line that is once a vortex line to remain always a vortex 
line, it is necessary and sufficient that either W, = 0 or the vector lines of 
W ,  be the vortex lines. The former alternative yields the celebrated Second 
Vorticity Theorem of HELMHOLTZ: In a rotational f low that satisfies the 
D’Alembert-Euler condition (11.1 1-43), a substantial line that is once a 
vortex line is always a vortex line. 

In Section 11.1 1 we have mentioned and used KELVIN’S transformation when 
applied to the velocity field on a surface Y whose border is the circuit U:  

C(U) := l x . d x  = L2W.(a,nA&x)dadb. (11.11-35)r 

We now interpret the statement in general: The circulation of a circuit equals 
the flux of the spin through any surface whose border is that circuit. The 
usual convention of orientation is adopted here, and the fields and surfaces are 
presumed smooth enough to ensure the validity of the transformation. 

A surface consisting entirely of vortex lines is a vortex surface. From 
(11.11-35) we see that at a given instant, a surface is a vortex surface if and 
only if the circulation of every sufficiently small circuit on it is null. In 
particular, a flow in a region is irrotational if and only if the circulation of 
every sufficiently small circuit in that region is null. 

A flow such that the circulation of every substantial circuit is constant 
in time is said to preserve circulation. Because of (11.11-35) we may ex- 
press HELMHOLTZ’S Third Vorticity Theorem and its converse as follows: The 
D’Alembert-Euler condition (11.11-43) is necessary and sufficient that the 
f low preserve circulation. KELVIN’S proof of this fact amounts to substitution 



140 11. KINEMATICS 

of x for f in (1) so as to obtain for a substantial circuit V 

= L k - d x ,  (11.13-20) 

the second step being a consequence of the fact that V is a circuit. In virtue of a 
standard theorem on lamellar fields, the integral on the right-hand side vanishes 
for all V if and only if grad x is symmetric. The conclusion then follows by 

There are several ways to see that every irrotational flow preserves cir- 
(11.11-45). 

culation. One way has been indicated in Exercise 11.11.13. 

Exercise 11. 23.6. The simple vortex (11.11-18) preserves circulation for all choices 
of w ,  and the circulation of the circle r = const., 0 5 0 < 2s, z = const., described 
counterclockwise, is 2?rr24r) .  Hence for the irrotational vortex the circulation of a curve 
which encircles the axis n times counterclockwise and m times clockwise is 2a(n -m)K. 

Exercise 11.13.7 (KELVIN). The Helmholtz Theorems and the Lagrange-Cauchy 
Theorem (Exercise 11.11.14) expressed for a substantial region follow directly from the 
concept of circulation. 

Exercise 11.13.8 (APPELL, in principle). A motion with substantial vortex lines 
preserves circulation if and only if the vorticity satisfies the differential relation 

(Jw)’  = Jwn-Dn,  (II.l1-50), 

n being either unit vector in the nullspace of W. 

We can now prove an important theorem of APPELL: A rotational motion 
with substantial vortex lines preserves circulation if and only if 

= const. 1% (11.13-21) 

for every finite segment V of a substantial vortex line. Indeed, because of  
(2) 

(11.13-22) 
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t being either of the two continuous fields of unit vectors tangent to the present 
shape of %. To conclude the proof, we apply the conclusion of the preceding 
exercise. The theorem shows that if the motion preserves circulation, the sub- 
stantial vortex lines grow longer if w / p  increases, shorter if w / p  decreases. 
The same result may be inferred also from HELMHOLTZ’S Second Theorem. For 
an isochoric motion that preserves circulation the statement is still simpler: the 
vortex lines stretch or shrink according as the spin at points upon them increases 
or decreases. 

A motion whose streamlines are steady need not be a steady motion.’ 
Streamlines are often fairly easy to observe or trace in flows of water and 

other fluids. There is a vast literature concerning the kinematics of isochoric 
motions that preserve circulation. The streamlines of a steady, isochoric, poten- 
tial flow essentially determine the quantities associated with that flow, but there 
are exceptions. In what follows now we shall consider the much broader class 
of steady, isochoric flows that preserve circulation. While such motions, like 
potential flows, are thought of mainly as pertaining to the solutions of the dy- 
namical equation of an Eulerian fluid (defined below in Sections IV.4 and IV.7), 
they can be regarded and studied as purely kinematical developments of the 
purely kinematical postulate (11.11 -45), which is called “the D’Alembert-Euler 
condition”.2 

A fascinating instance is provided by HAMEL’S analysis3 of isochoric, poten- 
tial flows having constant speed on each streamline. He claimed to have proved 
that the streamlines of such a flow had to be parallel straight lines or circular 
helices mounted on concentric cylinders, but in the paper he published he did 
not give his formal proof, which, he wrote, filled a small notebook. During the 
war of the nineteen-forties the notebook disappeared. Of his exposition, MANS 
wrote4 that he “essentially explained how he had achieved a proof of the the- 
orem, rather than presenting an explicitly demonstrated proof. ’’ While various 
students attempted in vain to construct a demonstration, others took HAMEL’S 
word for what he had done and used his statement as if it had been established. 
 PRIM^, mentioning some properties of flows as having been “known to HAMEL”, 

‘Cf .  A. W. MARRIS, “Unsteady motions with steady streamlines,” Archive for  Rational 
Mechanics and Analysis 109( 1990): 95-106. 

2Among the studies adopting this approach are The Kinematics of Vorticity, cited at the end 
of this chapter, and the paper by A. W. MARRIS, “On steady three-dimensional motions,” Archive 
for Rational Mechanics and Analysis 35( 1969): 122-168. 

3G.  HAMEL, “Potentialstromungen mit konstanter Geschwindigkeit,” Sitzungsberichte der 
Preussischen Akademie der Wissenschaften, physisch-mathematische Klasse (1937), pp. 5-20. 

4A. W. MARRIS, “Hamel’s theorem,” Archive for  Rational Mechanics and Analysis 51( 1973): 

5R. C. PRIM, “Steady rotational flow of ideal gases,” Journal of Rational Mechanics and 
85-105. 

Ana/ysis 1( 1952): 425-497. See Section Vb. 
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proved a cognate theorem: If there is a steady, isochoric, complex-lamellar flow 
which preserves circulation and has constant speed on each streamline, there is 
a steady isochoric, potential flow which has the same streamlines and constant 
speed on each of them. Finally MARRIS, through a difficult analysis,’ achieved a 
formal proof. Later,2 by a short and elegant argument, MARRIS proved that the 
only steady, isochoric, rotational flow that preserves circulation and has as its 
streamlines those of a potential flow is complex-lamellar and has constant speed 
on each streamline. Consequently the potential flow has constant magnitude on 
each streamline and therefore is covered by the HAMEL-MARRIS theorem. 

A rotational motion whose vortex lines and streamlines coincide is a screw 
motion. STOKES once thought he had proved such motions to be impossible, but 
he later recognized his error. CRAIG was the first to study them. 

In doing the following exercises the student might profit from the material in 
Section App. IIC.6, which introduces 0, the abnormality of the vector lines. 

Exercise IZ. 13.9. In a screw motion R + 0, and 

(11.13-23) 

Exercise 11.13.10 (BELTRAMI). In a screw motion 

(11.13-24) 
1 

R = -w .curlw. 
W 2  

If t or w is steady, so is 0, and the motion is steady if and only if its spin 
is steady. 

Exercise 11.13.11 (BELTRAMI). In a screw motion 

w 2  = x .  curlw. (11.13-25) 

Thus curl w subtends upon x an acute angle, possibly naught. 

Exercise ZZ. 13. 12 (GROMEKA, BELTRAMI). A screw motion preserves circulation 
if and only if it is steady. An acceleration-potential for it is - fx’. 

‘The paper cited in Footnote 4 on p. 141 rests essentially on the analysis of MARRIS & J.-F. 
SHIAU, “Hamel’s theorem: the three polynomial integrals,” Rendiconti del Cimlo Matemotico di 
Palermo (2)22( 1973): 185-216. 

’A. W. MARRIS, “Isochoric circulation-preserving motions with stream-lines of a potential 
motion,” Archive for Rational Mechomics and Analysis 90( 1985): 213-218. 
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Exercise 11.13.13 (GROMEKA, BELTRAMI). In a screw motion with steady density 
the surfaces 

R / p  = const. (11.13-26) 

are stream surfaces; in particular O/p  is constant on each streamline. 

Exercise 11.13.24 (GROMEKA, BELTRAMI). For a m e w  motion to preserve circu- 
lation, two equivalent conditions are necessary and sufficient: the motion is steady, or its 
spin is steady. Conversely, if w is steady, so is x, and (11.11-9) reduces to x = grad( t i ’ ) .  

Exercise 11.13.15 (GROMEKA, BELTRAMI, NEMENYI & PRIM, TRUESDELL).’ The curl 
of a screw motion is also a screw field if and only if the abnormality R of x is constant 
in space. Then curl x has the same abnormality R as does x, and div x = 0. Moreover, 
all successive curls of x are solenoidal screw fields of abnormality R. 

There has been much study of the kinematics of screw motions. BELTRAMI 
gave a simple example in Cartesian components: 

XI = sin(&3), X2  = C O S ( Q X ~ ) ,  x 3  = 0, R = const., 

(11.13-27) 

a uniplanar, isochoric flow of unit magnitude. NEMENYI & PRIM proved that 
the speed of a screw flow is spatially constant if and only if the streamlines 
are rectilinear. WANG noticed that if &3 is replaced by a function of x3 in 
BELTRAMI’S example (27), a uniplanar, isochoric flow of unit magnitude results. 
ERICKSEN proved that if s1 is spatially constant, BELTRAMI’S uniplanar flow is the 
only possible steady, isochoric screw flow of unit magnitude. MAWS & WANG~ 
have proved a theorem that subsumes all the foregoing limitations upon screw 
flows. 

14. Changes of name. name-Indifference 

The concept of frame has been explained in Section 1.6, and the transfor- 
mations induced by a change of frame have been developed in Section 1.9. The 
motion (1.7-7) of a body 93 is described with respect to a certain frame I; with 

‘For a fuller elaboration of this theorem see CFT, Section App. 34. 
’A. W. MARRIS & C.-C. WANG, “Solenoidal screw fields of constant magnitude,” Archive for 

Rational Mechanics and Analysis 39( 1970): 221-244. 
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respect to another frame $*, it is given by the mapping, say, 

x* = x*(X,  t*). (11.14-1) 

We regard a change of frame (1.9-5) as expressing the relation between the 
places and times, (x, t) and (x*, t * ) ,  of the same event as it appears to different 
observers. Thus, if (1.7-7) and (1) are to represent the same experiences of a 
body as apparent to observers in $ and $*, respectively, the motions x and x* 
must be related by (1.9-1 l), which we rewrite here: 

~0 and a being the place and time with respect to $ of some assigned event, x; 
being a function whose values are places, and Q being a function whose values 
are orthogonal tensors. 

If we choose to describe the motion in terms of a reference placement K ,  

the corresponding transplacements x,* and X~ are related in the same way: 

As the notation indicates, we here use the same reference placement K in forming 
from (2) the transplacements xN and xi .  We may change the reference placement 
also. To do so, we simply use (11.7-4). 

Exercise II.14.1 (V. BJERKNES). Let a subscript $ denote the frame used; let w 
be the angular speed at which $ is rotating with respect to $*; let C ( U )  denote the 
circulation of a circuit V. Then 

in which A,, is a signed area of the region bounded by the projection of Gf4 onto a plane 
normal to the axis of spin of $ with respect to $* . 

In Section I. 11 we have introduced the concept of frame-indifference. Briefly, 
a function of place and time whose values are scalar is frame-indifferent if it 
is in fact a function of events, independent of frame; one whose values are 
vectors, is frame-indifferent if its value in $* effects the same translation of the 
places of events in I* as its value in $ effects upon the places of these same 
events in $; one whose values are tensors, is frame-indifferent if it transforms 
each frame-indifferent vector into a frame-indifferent vector. Formally, as we 
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have shown in Section I. 11, these three conditions for frame-indifference are 

F *  = F  for scalars, 

V* = Q v  for vectors, (11.14-5) 

T* = QTQ' for tensors (of second order), 

the asterisks indicating quantities appropriate to the frame $* , and Q being the 
orthogonal tensor that occurs in the change of frame (2). 

When a quantity is defined by a prescription valid in all frames, conditions 
such as (5) may or may not be satisfied. In Section 1.9 we have calculated 
the relation (1.9-14) connecting the velocities x and x *  as obtained in $ and 
$* whence we see that generally x *  + Qx, and so the velocity is not frame- 
indifferent. Indeed, (1.9-14) shows that the spin A of $* with respect to $ 
gives rise to a velocity in $*, which is in fact the velocity corresponding to 
a rigid motion for which $* is a rest frame (cf. Section 1.10). Likewise, the 
relation (1.9-21) connecting the accelerations 2 and x *  in $ and $* shows that 
the acceleration is not frame-indifferent . 

Now we shall consider the effect of change of frame upon quantities for 
whose definition not only a frame of reference but also a reference placement 
is employed. We begin with the transplacement gradient. Since the definition 
(11.5-1) applies both in $ and in $*, we have 

F :=Vxr(X,  t ) ,  F* :=Vx,*(X, t) .  (11.14-6) 

Taking the gradient of (3) shows that 

F* = Q F .  (11.14-7) 

Thus the transplacement gradient is not frame-indifferent . 
By applying to (7) the polar decomposition (11.9-1), we see that 

R*U* = QRU. (11.14-8) 

Because QR is orthogonal and because the polar decomposition of an invertible 
tensor is unique, 

R* = Q R ,  and U* = U .  (11.14-9) 
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V* = R*U*R*' = QRU(QR)', 

= QVQ'. (11.14-10) 

Thus we have shown that V is frame-indifferent, while F,  R, and U are not. Of 
course, C* = C and B* = QBQ', as is immediate by applying (9)~ and (10)3 
to the definitions (11.9-5). 

If we differentiate (7) with respect to time, we find that 

F* = QF + QF, (11.14-1 1) 

but by (11.11-5) F = GF and F* = G*F*, and so 

G*F* = QGF + QF, 

= QGQ'F' + QQ'F*. (11.14-12) 

Because F* is invertible, it may be cancelled from this equation, which by use 
of the Euler-Cauchy-Stokes Decomposition (11.11-8) becomes 

D* + W* = Q(D + W)Q' + A ,  (11.14-13) 

A being the spin (1.9-15) of $ with respect to $*: 

(11.14-14) 

Since a decomposition into symmetric and skew parts is unique, 

D* = QDQ', W* = QWQ' + A .  (11.14-15) 

These formulae embody the Theorem of Zaremba and Zomwski: The stretch- 
ing is frame-indifferent, while the spin in $* is the sum of the spin in $ 
and the spin of $ with respect to $*. The assertion is intuitively plain, since 
a change of frame in effect superimposes a rigid motion, possibly followed 
by a reflection, neither of which alters the stretchings of elements though the 
former does rotate the directions in which those stretchings seem to occur. A 
conclusion in Exercise I. 11.3 makes the principal stretchings and the principal 
axes of stretching likewise frame-indifferent . 
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If we differentiate (11.9-10) n times with respect to 7 and then put 7 = t ,  
by appeal to the definition (11.11-3 1) we conclude that 

( n )  
C =FTAnF, (11.14-16) 

An being the n* Rivlin-Ericksen tensor. Applying the polar decomposition 
theorem (11.9-1) to (16), we obtain 

( n )  
U-’ CU-’ = RTAnR. (11.14-17) 

Likewise 

00 
u*-1 c*u* - 1  = R*TA:R*. (11.14- 18) 

(n )  ( n )  
We have shown a little above that U* = U and C* = C; hence also C* = C ,  
and so the left-hand sides of (17) and (18) are equal. Therefore 

R*TAiR* = RTAnR. (11.14-19) 

By (9)1 we conclude that 

A,* = QAnQT. (11.14-20) 

Thus the Rivlin-Ericksen tensors are frame indifferent. This statement gen- 
eralizes the first assertion in the Zaremba-Zorawski Theorem. The second is 
equally easy to generalize, but the generalization is not so easy to interpret. 

Exercise ZZ. 24.2. U, is frame-indifferent, and 
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C. T~LIESDELL, The Kinematics of Vorticify, Bloomington, Indiana University Press, 1954. 
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Chapter I11 

The Stress Tensor 

Although I envisage here very great generality both in the nature of the 
fluid and in the forces that act upon each of its particles, I have no fear of 
those reproaches often levelled with good reason at them who have undertaken 
to generalize the researches of others. I agree that often an excessive generality 
obscures rather than enlightens, and that sometimes it leads to calculations so 
messy as to make it extremely hard to draw any conclusions from them for the 
simplest cases. When generalizations are subject to this drawback, most certainly 
we ought abstain from them altogether and limit our studies to particular cases. 

But in the subject I intend to explain, just the opposite happens: The gen- 
erality that I embrace, far from dazzling our lights, will reveal to us rather the 
veritable laws of Nature in all their brilliance, and in them we shall find even 
stronger reason to admire her beauty and her simplicity. It will be an important 
lesson to learn that some principles till now believed bound to some special case 
are of greater breadth. Finally, these researches will demand calculations scarcely 
any more troublesome, and it will be easy to apply them to all special cases we 
might set up. 

EULER 
General principles of the state of 
equilibrium of fluids 
Memoires de I'Acadernie des Sciences 
de Berlin 11 (1757): 217-273 
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The geometers who have investigated the equations of equilibrium or motion 
of thin plates or of surfaces, either elastic or inelastic, have distinguished two 
kinds of forces, the one produced by dilatation or contraction, the other by the 
bending of these surfaces . . . , It has seemed to me that these two kinds of forces 
could be reduced to a single one, which ought to be called always tension or 
pressure, a force which acts upon each element of a section chosen at will, not 
only in a flexible surface but also in a solid, whether elastic or inelastic, and 
which is of the same kind as the hydrostatic pressure exerted by a fluid at rest 
upon the exterior surface of a body, except that the new pressure does not always 
remain perpendicular to the faces subject to it, nor is it the same in all directions 
at a given point. 

CAUCHY 
On the pressure or tension in a solid 
body 
Exercices de Mathematiques, Saconde 
Annee (1827) 

One way of introducing the notion of stress into an abstract conceptual 
scheme of Rational Mechanics is to accept it as a fundamental notion derived 
from experience. The notion is simply that of mutual action between two bodies 
in contact, or between two parts of the same body separated by an imagined sur- 
face; and the physical reality of such modes of action is, in this view, admitted 
as part of the conceptual scheme . . . . This was the method followed by Euler 
in his formulation of the principles of Hydrostatics and Hydrodynamics, and by 
Cauchy in his earliest writings on Elasticity. When this method is followed, a 
distinction is established between the two types of forces which we have called 
“body forces” and “surface tractions,” the former being conceived as due to 
direct action at a distance, and the latter to contact action. 

Low 
Note B, A Veatise on the 
Mathematical Theory of Elasticity, 
Znd ed. (1906) 

In many otherwise good textbooks a standing confusion reigns between 
three groups of forces: 1. Internal and external forces. 2. Volume and sur- 
face forces-a distinction which the mechanics of points is altogether incapable 
of perceiving. 3. Applied forces and forces of reaction. 

HAMEL 
On the foundations of mechanics 
Mathematkche Annalen 66 
(1909): 350-397 
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1. Forces and Torques. The Laws of Dynamics. Body Forces and 
Contact Forces 

Forces and torques, like bodies, motions, and masses, are primitive elements 
of mechanics. They are mathematical quantities introduced a priori, represented 
by symbols, and subjected to mathematical axioms that delimit their properties 
and render them clear and useful for the description of mechanical phenomena in 
nature. Axioms for a system of forces in general have been presented in Section 
1.5; torques have been defined as the moments of forces in Section 1.8; general 
axioms of dynamics, which relate forces and torques to the motion they effect 
upon a given body, have been given in Sections I. 12 and I. 13. In the remainder 
of this book, except in passages where we discuss frame-indifference, we shall 
suppose that the frame $ is an inertial one, and we shall base dynamics on 
Euler 's Laws of Motion : 

f" =m, F a = M .  (I. 13-11)r 

That is, the rate of increase of the linear momentum of any body equals the 
applied force fa upon it, and the rate of increase of the rotational momentum 
with respect to X,J equals the applied torque Fa upon it, the place xo being 
stationary in the inertial frame. 

We begin by restating these laws in more explicit forms, referred to a part 
9 of 9 and to its shape x ( 9 )  in the inertial frame $. These forms, which 
follow at once from (1.8-5) and (1.13-lo), are 

(111.1-1) 

we recall that the applied force fa and the applied torque Fa may depend upon 
the time t, as does the shape x(Y), though we do not so indicate in the notation. 
Thus the applied force and torque upon 9 are expressed in terms of integrals 
over the actual shape of 9. As always, x is the acceleration field on x(B) ,  and 
we assume that it is essentially bounded. 

In continuum mechanics two different systems of forces are introduced: 
body forces f B  , which may be exerted mutually by bodies, whether or not they 
be in contact, and which are presumed related to the masses of the bodies, 
and contact forces fc , which are exerted by one body on another through their 
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common surface of contact and are presumed related to that surface, distributed 
over it, and independent of the masses of the bodies on either side. 

In this section we prepare the way toward deriving equations of motion 
expressed in terms of these special kinds of forces. We do so twice. First, imi- 
tating the great treatises of the preceding century, we follow a line of argument 
deriving from EULER, CAUCHY, and others; versions of this route are common 
in modern textbooks. Analytic precision wants; seeking only to make the de- 
sired conclusions clear and easily comprehensible, we bring in tacitly whatever 
assumptions of smoothness will do to get from one step to the next. 

The second presentation aims to maintain the level of modem analysis. It is 
a sequel to the treatment of shapes in Section 11.1, upon which we build. 

In the traditional presentation the force fa applied to the part 9 in its shape 
x ( 9 )  at the time t is assumed to be the sum of resultant forces of two different 
kinds: 

fa = f; + f;: , (111.1-2) 

both of them obtained from densities, 

(111.1-3) 

9 being any part of the body 3. The corresponding torques are given by 

(111.1-4) 

and 

FL = Fb, + Fk, . (111.1-5) 

As is clear from (3)1 , the resultant applied body force ff, is an absolutely 
continuous function of volume. For brevity, its density with respect to 
mass will be called henceforth the body-force field or even simply the body 
force. Moreover, we shall limit attention in this book to the case in which h(9) 
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itself is an assigned function of place and time and hence independent of ~(9): 

(111.1-6) 

Such fields of body force are called external.‘ Commonly the external body 
force is assumed to be lamellar: 

b = -grad w; (111.1-7) 

the scalar function2 w is a potential of b. If w is a potential of b, so is w +h if 
h is a function of time alone; the student should always recall this fact, and so 
we shall leave h unwritten henceforth, not only for the potential a but also for 
other potentials. The student shall remember that potentials are determinable 
(apart from boundary conditions) only to within a function of time alone. 

A steady lamellar body force is called conservative. A conservative body 
force has steady potentials, and of course in dealing with such a body force we 
always choose one of these. If b is constant in space and time, as is appropriate 
to heavy bodies near the surface of the earth, it is called the field of uniform 
g r a ~ i t y . ~  For such a b the potentials are affine functions of the distance h(x) of 
the place x from some fixed plane; in the case of uniform gravity a convenient 
choice is w = gh, the constant g being the gravitational acceleration and h(x) 
being the height of x above the surface of the earth. 

Exetrise III. 1.1. Two systems of forces applied to the shape of a body are said to 
be equipollent if they give rise to the same resultant force and resultant torque on that 
shape. The field of uniform gravity is equipollent to a single force acting at the center 
of mass of the body, directed parallel to b and in the same sense (“downward”), and 
equal in magnitude to the weight of the body. 

‘Not all external body forces are included in (6). For example, the density of force exerted by 
a magnetic or electric field is a function of x and of constitutive properties of the body on which 
it acts. For the purposes of this book (6) is sufficient. 

’In this book we always use the term “function” for a mapping, called in the older literature a 
“single-valued” function. “Cyclic” or “many-valued” potentials are important in many problems 
concerning multiply connected regions. Since this book is concerned mainly with local aspects of 
mechanics, and since “cyclic functions” are locally functions in the ordinary modem sense, we 
shall not take up the complications that may result from use of body forces with cyclic potentials. 
The reader already familiar with cyclic potentials can easily state for himself the generalizations to 
which they give rise in the few theorems in this book where they might be introduced. An example 
is EULER’S corollary in Section IV.8. 

A clear, elementary discussion of cyclic potentials may be found in Sections 49-54 of H. 
LAMB, Hydrodynamics, 2”*-6” eds., Cambridge, Cambridge University Press, 1895/1932, var-  
ously reprinted. A good example of a body force with cyclic potential is discussed in Section 6 of 
A. SOMMERFELD’S Mechanics of Deformable Bodies, New York, Academic Press, 1950. 

3The force of universal gravitation is a mutual body force, not an external one, and hence is 
not treated in this book except for a summary remark at the very end of this section. 
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Body forces are of secondary interest in continuum mechanics, which con- 
cerns mainly the effects of contact forces, to which we now address ourselves. 

According to ( 3 ) ~  the resultant contact force f‘, is an absolutely continuous 
function of the area of the bounding surface d x ( 9 )  on which it acts. The surface 
density bxcn is called the traction field on ax(9’). If that field be known, the 
resultant contact force is determined and is independent of whatever may be 
occurring at places not lying upon ax(9). In this sense, the traction field is 
equipollent to the action upon 9 of the bodies outside 9 and adjacent to it. The 
assumption that the contact force is of this kind is the cut principle of EULER 
and CAUCHY: Within the shape of a body at any given time, conceive a 
smooth, closed diaphragm; then the action of the part of the body outside 
that diaphragm and adjacent to the part inside is equipollent to that of a 
field of vectors defined on the diaphragm. 

Of course, the diaphragm may be chosen as the shape of the boundary of a 
body, the exterior of which we prefer not to specify, and in this case the cut prin- 
ciple does not furnish an interpretation for the traction bx(g) . Rather, tractions 
upon the boundary of the largest body entering the statement of the problem 
at hand are regarded as prescribed by other considerations. For example, so as 
to represent the application of given forces upon the surface of a given body, 
without including in the theory such other bodies as may bring those forces to 
bear, we impose a boundary condition of traction by assigning bxcg), or a 
field closely related to it, on a given boundary surface such as ax(@) or ~ K ( ? J ) .  
Examples of such conditions are given and discussed below in Sections 111.2 
and 111.8-111.9. In other cases we may leave to be determined on such 
surfaces by imposing a boundary condition of place, typically by prescribing 
on the transplacement x,(X) or some quantity derived from it. 

We assume that ax(9) is orientable, and we write n for its outer unit 
normal. If bx(s ) -n  > 0, the traction is said to be a tension; if bXp) . n < 0, it 
is a pressure. 

If we substitute (2)-(5) into EULER’S laws ( l ) ,  we obtain the Basic Laws of 
Motion of continuum mechanics, as far as this book is concerned: 

bx(s) d A  + 1 ~ b d V ,  
X(.Y) 

(111.1-8) 
L9:XdV = Lx(a 

( x - ~ ) A p % d V  = / (x - xo) hbX(.q d A  + I,,, a x m  

for all parts 9 of all bodies in the universe. 

‘More general formulations relax the assumption that x exist everywhere at all times and take 
account of body couples, couple stresses, multipolar stresses, spin momentum, director stresses, 
etc., as well as counterparts for diffusion and chemically reacting mixtures. 



1. DYNAMICS. BODY FORCES AND CONTACT FORCES 155 

As we have stated in Section 1.13, all forces are frame-indifferent. Thus, 
in particular, the contact forces and applied body forces are frame-indifferent. 
Consequently their densities are frame-indifferent vector fields : 

(111.1-9) 

Q being the orthogonal tensor occurring in the change of frame (11.14-2). 

Of course the forms (8) expressing the principles of linear and rotational momentum 
are valid only in an inertial frame. To obtain corresponding forms in a general frame, 
we need only replace the acceleration field x by the frame-indifferent vector field a 
that reduces to x when the frame is inertial. That frame-indifferent vector field we have 
calculated already and recorded as (11.4-7). With this replacement, the integrals on the 
left-hand sides of (8) become frame-indifferent, as are all four integrals on the right-hand 
sides. 

The reader who is content to accept these equations, supplemented by axioms 
endowing the densities b and bxcp) with some smoothness, may pass straight 
on to the next section. 

The more critical reader will see two objections. First, the resultant contact 
force f: does not define the traction uniquely, since to any bx(n that satisfies 
(3)2 we may add Sn if for S we take any tensor field such that div S = 0, and 
f, will be the same. Second, the resultant body force f B  and resultant contact 
force f: are not clearly related to the general concept of a system of forces, 
which is a function defined on pairs of separate bodies rather than on single 
bodies. For such a reader this section concludes with an analysis which delivers 
the classical assumptions (3) and (4) as theorems’ proved from assumptions 
of continuity phrased in terms of the modern theory of bodies and systems of 
forces, which appears above in Sections 1.2-1.5. 

For the text following now through the end of this section I am indebted 
both to W. 0. WILLIAMS, as I was for its predecessor in the first edition, and 
to E. VIRGA, who provided the following formulation and arguments in terms 
of reduced boundaries, fit regions, and contacts. 

Considering a fixed time t and not indicating it in the notation, we assume 
that f is a system of forces defined on (0 x Q)O ; accordingly, it satisfies Axioms 

‘The” main sources of the material presented here are the papers by NOLL & VIRGA and by 
GURTIN, SILHAV?, WILLIAMS, and ZIEMER, cited above in Footnote 1 on p. 90 and Footnote 1 on p. 
88. Those works were influenced by earlier researches, especially the paper of M. E. GURTIN & W. 
0. WILLIAMS, “An axiomatic foundation for continuum thermodynamics,” Archive for Rational 
Mechanics and Analysis 26 (1967): 83-117. In that paper they are phrased in terms of scalar- 
valued functions having a thermomechanical rather than purely mechanical interpretation, but the 
mathematics is essentially the same. 
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F1, F2, and F3 in Section 1.5, though we do not assume that it satisfies Axiom 
F4. Rather, fulfilling the promise made in Section 1.5, we shall sketch a proof 
that under a physically natural axiom of bounds f in continuum mechanics 
must obey Axiom F4. Likewise, we shall outline an argument that delivers the 
systems of forces fg and fc whose resultants f;l. and fk appear as posited entities 
in (3). 

To that end we introduce the idea that in continuum mechanics forces are 
exerted upon pairs of bodies in virtue of their masses and the areas of contact of 
their shapes, and that these forces diminish at least linearly with those masses 
and areas when both are sufficiently small. To express this idea within the 
general framework built in Section 11.1, where the shapes of bodies are taken 
as fit regions in a three-dimensional Euclidean space € , we have to specify what 
“area of contact” is to mean. We call the contact of two disjoint fit regions the 
intersection of their reduced boundaries, and we call area of contact the two- 
dimensional Hausdorff measure of the contact.’ The student will recall from the 
end of Section 11.1 that the shapes of separate bodies are disjoint fit regions. 

Axiom on Forces in Continuum Mechanics. Let d and @ be separate 
bodies, the area of contact of whose shapes is sufficiently small, and let 
the mass of d be sufficiently small. Then 

K being a positive constant and K v  being a positive, bounded function of 
$? such that 

lim K V  = O .  
M( U )  -0 

(111.1-1 1) 

This axiom seems broader and more natural than the classical assumptions 
(3). 

The second addend in (10) is independent of the motion x ;  it refers to the 
bodies d and $? alone, independently of their shapes. The first addend depends 
upon x not only as the notation indicates but also through K. The motion x as 
it proceeds affects the values of the functions on the right-hand side of (lo), 
but the property that (10) asserts remains unaffected. 

The proof that these assumptions do lead to applied forces conform with the 
statements (2) and (3) is not easy. The argument does not require the system 

’This definition comes from the paper by NOLL & VIRGA cited above in Footnote 1 on p. 90. 
It follows from (11.1-5) that the area of contact of b o  fit regions is always finite. 
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of forces f to be balanced; at the beginning, it does not even require the forces 
to be pairwise equilibrated. 

Theorem. There are systems of forces f B  and fc such as to satisfy the 
bounds 

for  a l l d  and U in (0 x 0)o, and 

f = fB f fc . (111.1-13) 

This major theorem decomposes the system of forces f uniquely into the system 
of body forces f B  and the system of contact forces fc . The bound it provides 
for f B ( d ,  U) depends only upon d and U, independently of the motions those 
bodies may undergo. 

Because of (11.2-9), in (12)l M ( d )  may be replaced by V ( x ( d ) ) ,  but then 
the multiplier K u  will depend in general upon x .  The contact force fc de- 
pends upon the shapes x(d) and x (  U), but the existence of its stated bound is 
unaffected by whatever motion takes place. The body force f B ( d ,  U) .+ 0 as 
V ( x ( d ) )  + 0; the contact force fc(d, U) -+ 0 as A(a*x(d)  na*x( $7)) + 0. 

The traditional treatment starting from (3) in effect posits the bounds (12) 
when U =&; here they are established for general U. 

Proof of the theorem. For given d and U, 

(Here the student might well draw a sketch.) The subbody 9 o f d  is an element 
of r,Y) if and only if the contact of x ( 9 )  and x (  U) differs from the contact of 
x(s8) and x (  U) by a set of null area. If 9 and F are in I??), then, because 
9 = (9 A f l  V (9\fl, 9 = (9 A f l  V (F\9), and f is bi-additive, 
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The latter bound follows because M(9\9) 5 M ( 9 ) ,  M(F\9) 5 M ( 9 ) ,  and 
because the contact of the shapes of 9\F and V has the same area as the 
contact of the shapes of F\9 and V. Because (11.2-9) implies that bodies of 
arbitrarily small volume have arbitrarily small mass, the definition 

f d d ,  V) := lim f ( 9 ,  U), 
M(9)+0 

(111.1-16) 

makes sense, and 

IfCWY 5 KA(d*x (d  n d * x ( U ) )  (111.1-17) 

since A ( d * x ( 9 )  nd*x(V))  = A(d*x(& n d * x ( U ) )  for each 9 E I??). Thus 
fc has the bound specified by (12)2 . Straightforward computations show that 
fc is bi-additive. 

Defining fg thus: 

fB : = f  - f c ,  (111.1-18) 

we make fB bi-additive, and because of (16) 

We now show that fB has the bound specified by (12)1. For every 9 E ry), 
let 8 :=d A g e ;  thus 

d = g V 8 .  (111.1-20) 

Since f is bi-additive, it follows from (19) and (20) that 

fB(d, U) = lim f(G, u). (111.1-21) 
M(9)+O 

It is geometrically plain and will be proved soon (see (111.1-28), below), that 

A@*G n d * q  = 0; (111.1-22) 

for every 9 E ry). Thus, by (10) and (21), 

(111.1-23) 
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and the desired conclusion follows, since (20) implies that 

lim ~ ( 4 )  =M(&).  A (111.1-24) 
M ( 9 ) - 0  

Taking up first the system of contact forces fc , we shall prove that because 
of (12)2, fc(d, U) depends upon d and U only through the contact of their 
present shapes. 

Lemma (GURTIN & WILLIAMS). Let (d, U) and (2, d) be pairs of sep- 
arate bodies; suppose that d +d and 4 + U ;  suppose further that the 
shapes of d and U share the same area of contact as the shapes of d and 
d: 

Then 

fc(d, U) = fc(2,  8). (111.1-26) 

hf. We set 

2 :=d A d e ,  $? := $f A @", (111.1-27) 

and note that (2, U) and (2, 5) are also pairs of separate bodies. Then a 
sketch makes plausible the following statement, which was proved by GURTIN, 
WILLIAMS, & ZIEMER: 

An elegant proof follows now. To shorten the formulae, we introduce the tem- 
porary notation A := x(&, C := x (  U), etc. 

Let A, B, and C be mutually separate shapes. Then 

a * A  nd*B n d * C  = 0 .  (111.1-30) 

Suppose for contradiction that x E d * A  na*B nd*C.  Since x E d * A  nd*B, 

n A  = -ne, (111.1-31) 
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where nA and nB are, respectively, the outer normal fields to A and B at x (see 
Section 11.1). Similarly, 

nB = -nc,  nc = -nA. (111.1-32) 

It follows from (3 1) and (32) that 

nA = -nA, (111.1-33) 

which is a contradiction. 
Since A c A, 

d * A  n d * C  = a* i i  nd*A nd*C. (111.1-34) 

Then, because A, A and are mutually separate, from (25) we conclude that 

Thus (28) is proved. Similarly, A c A and e c C imply that 

d*A nd*e  = d * A  nd*e nd*C = d * A  nd*A nd*C na*C, (111.1-36) 

and so, because A, e and 2: are separate, 

Thus also (29) is proved. 

shapes have area of contact 0 is 0. Thus (28) and (29) show that 
In view of (12)2 , the contact force exerted upon each other by bodies whose 

fc(2,  U) = 0, fC(J2,  d) = 0. (111.1-38) 

Now we see that since 

d=gvd and U = @ V @ ,  (111.1-39) 

and since fc is bi-additive on (a x O ) o ,  

fc(d, U) = fc(2,  4 v 3) + f C ( 2 ,  U), 

= fc(J, @) + fc(2,  d) + fc(2,  U). (111.1-40) 

In virtue of (38) this statement reduces to (26). 
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We use the lemma so as to render explicit the nature of the function fc . We 
shall call a subset of the underlying contact a subcontact. A contact is orientable 
by assigning it the orientation of the outer normal to one of the shapes in contact. 
Clearly, any contact may have one of two opposite orientations. We agree to 
assign a subcontact the same orientation as has the contact to which it belongs. 
Letting Y be any subcontact of the contact of the shape of some body V with 
the shape of some other body, we define a new function on the subcontacts 9 
of 9. Noting that since 9 c a*x( U), we see that there is some d such that 
9 = a*x(.d) nd*x(  U),  and we set 

fE(9, Y) := fc(d, U). (111.1-41) 

The lemma guarantees that this definition is unambiguous. That is, if 8 is 
another body such that Y c a*x( @), there is a body .d such that 2 = a*x(g) n 
a*x( @, and by (26) we conclude that f&, @) if used in (41) would yield the 
same function f: . Thus the new function f: , which is defined on contacts and 
their subcontacts by (41), completely determines the old function fc , defined 
on (a x n ) ~ .  We have shown, then, that any system of contact forces is defined 
completely by an appropriate function whose arguments are contacts and their 
subcontacts. 

Since, by assumption, fc( - , U)  is defined and additive on the subbodies of 
Ue, the function f:( - , Y) is defined and additive on the subcontacts of Y. From 
(41) it follows also that if Y’ is a subcontact of Y and if % is a subcontact of 
9’. then 

f:(% Y) = f:(% 9). (111.1-42) 

The requirement ( 12)2 now assumes the form 

if 9 c Y and if A(  %) is sufficiently small. Since f:( -, Y) is additive and obeys 
(43) on a rich collection of subsets of Y,  an exercise in measure theory shows 
that it has a countably additive extension to the Bore1 sets of Y. Then the 
Radon-Nikodym theorem provides it a representation as an integral: 

f:(% Y) = / j Y d - 4 .  (111.14) 

Moreover, it follows from (42) that if the contacts Y and Y’ have the same 
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orientation and if 5"' c Y, then 

t y  = tY (111.1-45) 

at almost every point of Y'. Now going back to the definition (41) of f: , we 
may interpret (44) as demonstrating the following 

lkaction Theorem (GURTIN & WILLIAMS). I f a  system of forces fc on 
(0 x G)o satisfies (12)2, there is an essentially bounded density t y  such 
that 

fdd, U)  = / t y d A ,  Y:=d*x(& nd*x(U) ;  (111.1-46) 
Y 

moreover, tyt = t y  i f  Y' is a subcontact of 9. 

Taking 9 for d and 9 for U in this theorem yields ( 3 ) ~  . 
Now we take up the system of body forces f B  . The details of the reduction 

of f B  to an integral representation are too involved to present here, but we may 
briefly sketch the argument used by GURTIN, WILLIAMS, & ZIEMER. First, for a 
fixed 9 the mapping d H f B ( d ,  ge) is additive for all d 4 G?; then use of the 
bound ( 12)1 ensures a representation of the form 

f B ( d ,  ge) = L(&)be dM - I(&)% dM (111.1-47) 

Here we have invoked the Axioms of Inertia in Section 1.13 to make x an 
identifiable part of the density of f B  with respect to mass. Since we have assumed 
that in an inertial frame x is bounded, it follows that be is essentially bounded. 
If 

feg(d, Be) := L(&)be d M ,  (111.1-48) 

putting 9 for d and 9 in (48) leads to (3)l . 
WILLIAMS, & ZIEMER show that if V 4 a? A 9, then 

Second, by circuitous arguments resting mainly on (1 1) and (12)l , GURTIN, 

f B ( d ,  %?) = / bm dM2 (111.1-49) 
X W )  X X ( W  

with W an integrable function defined on B x 9. Here bm(x, y) represents a 
mutual body force between body-points occupying the places x and y in x(G?). 
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Since in this book we shall, as already remarked, deal with no body forces 
other than external ones, we take b"' to be the null function, and henceforth we 
write b for be. 

Now, for the first time in our treatment based upon the axiom (lo), we 
suppose that the system of forces f is pairwise equilibrated: 

f ( 9 ,  U) = -f(V, 9) V ( 9 ,  V) E (8 x n>o, (I. 5-6), 

Theorem of Action and Reaction (NoLL). Zf f is pairwise equili- 
brated, then both the system of body forces and the system of contact 
forces are pairwise equilibrated: 

We recall from Section 1.5 that every balanced system of forces is pairwise 
equilibrated, and we note that neither of the systems f B  and fc need be balanced. 

Proof of the theoem. Again we let Y denote the contact of the shapes 
of the separate bodies d and V .  We may choose sequences of parts dn and Un 
of d and V, respectively, such that in the limit as n -+ 00 the volumes of their 
shapes vanish, yet they retain A ( 9 )  as their area of contact. This statement, 
which is easy to demonstrate in elementary geometry, for bounded sets of finite 
perimeter has been proved by GURTIN, WILLIAMS, & ZIEMER. Formally, 

and, since in continuum mechanics mass is an absolutely continuous function 
of volume (Section 11.2), 

The lemma of GURTIN & WILLIAMS shows that 

(111.1-53) 
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Of course d, and V, , being parts of separate bodies, are separate, and so we 
may substitute d,, f o r d  and V, for $7 in (1.5-6) and by use of (53) obtain 

As n 00, both body forces f B ( d n  , U,) and fB(  $7, , d,) vanish because of 
(12)1 , and so (50)2 follows. By use of (8) and the assumption that f is pairwise 
equilibrated we deduce also (50)l . a 

Corollary. Let f be pairwise equilibrated; let - Y denote the contact 
having the same underlying set as Y but opposite orientation; then 

(111.1-55) t-y = - t y .  

Exercise 111.2.2. Use of the Lebesgue Differentiation Theorem' proves that ( 5 5 )  
follows from (50), and (46). 

Thus far we have not called upon the principle of linear momentum, though 
to prove (50) we have assumed (1.5-6), which is a corollary of that principle. 
Now, finally, we turn our attention to the resultant forces on a body 9 in f i .  
Because, as we see from (13), 

the assumption that f(9, 9) = 0 for all 9 then delivers 

If we consider a sequence of parts 9 such that V ( x ( 9 ) )  --+ 0, by (11.2-9) and 
(12)1 (in which we recall that K g  is a bounded function of U and hence know 
that KF is a bounded function of 9) we conclude from (57) that there is a 
positive number K e  such that 

and so 

f c ( 9 , F )  4 0. (111.1-59) 

'E .g .  Theorem 8.8 in the book by RUDIN cited above in Footnote 2 on p. 90. 
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This fact is stated formally by the following 

Theorem (CAUCHY). If the system of forces is balanced, then on a 
sequence of shapes whose volumes tend to 0 the resultant contact forces 
tend to 0. 

This theorem will play a major part in Section 111.3, where we develop the 

Also the foregoing conclusions lead to the statements (1.13-ll)~ , (2), and 

In the remainder of this book we follow largely the classical, local, and 

nature of the contact forces in the interiors of the shapes of bodies. 

(3), namely the assumptions with which the traditional treatment begins. 

informal style of argument in continuum mechanics. 

2. Reactions upon Containers and Submerged Obstacles 

With little more than the concept of a system of contact forces and the 
theorem of action and reaction in the form (111.1-50) we can sometimes evaluate 
the force and the torque that a deforming body exerts upon a container or an 
object submerged in it. Analyses of this kind go back to the earliest days 
of mechanics; they remain of great utility to engineers because they require 
very little detailed knowledge of either the body or its motion; and for just the 
same reason they sometimes provide essential steps in the precise, mathematical 
treatment of qualitative problems. Here we shall consider only three examples, 
the simplest. We present them upon a general framework due, more or less, to 
v. MISES, CISOTTI, and BOGGIO. 

First we substitute (11.6-12), (111.1-2), and (111.1-5) into Euler’s Laws (I. 13- 
I I) ,  thus obtaining expressions for the resultant contact force fL and resultant 
contact torque FL on the present shape x ( 9 )  of the part 9 of a body: 

Here Fk is taken with respect to a fixed place xo in an inertial frame, and 
p = x - xo as in Sections I. 13 and 11.12. Because of (111.1-50), the left-hand 
sides of (1) are the contact force and torque, respectively, exerted by 9 upon its 
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exterior P. It is these quantities that we wish to evaluate in special problems. 
Together they are called the reaction of 9 upon its exterior. 

In general terms (1) asserts that if the resultant applied force and torque upon 
9 are known, then the reaction of 9 upon its exterior is determined by the 
fields of density and velocity over the present shape of 9. Kinematical data 
thus determine the reaction. 

The essential field px ,  which has the dimensions of momentum per unit 
volume, is called the mass flow. In the three examples we shall give now we 
shall assume that the mass flow is steady: (px)’  = 0. 

Example 1. Flow in a Stationary Container. Let 9 be confined by a 
bounded, stationary container. On the walls &(9) of the container the condition 
(11.6-17) is satisfied, and so the integral over &(9) vanishes. A little reflection 
enables us to derive the same conclusion even if 9 does not fill the container 
entirely. We have shown that a M y  in motion with steady mass flow within 
a bounded, stationary container exerts upon that container just the reaction 
it would exert, were it at rest. 

Example 2. Flow in a Pipe. Suppose that a body is flowing through 
a stationary pipe of arbitrary form. We consider the part 9 contained in the 
portion of the pipe cut off by two surfaces, the inlet 9’i and the outlet Yo . Upon 
the walls of the pipe (11.6-17) is satisfied, and so, if (px)’  = 0, (1) becomes 

(111.2-2) 

- F ;  = / p A p x O x n d A -  phpxOxndA+Ff , .  
Y, 

In writing the integral over 9’i we have taken the normal n as directed inward, 
so as to emphasise that a difference is being calculated. 

We have not yet called upon the Traction Theorem. Doing so, we use (111.1- 
46) and (III.1-50)2 to express the contact force and torque f, and F ,  on the 
pipe alone: 

(111.2-3) 



2. REACTIONS UPON OBSTACLES 167 

Eliminating the left-hand sides of (2) and (3), we find that 

(111.2-4) 

pA(px@xn- t . v , )dA  - p h ( p x @ x n - t , v , ) d A + F b .  
Fp = s, 

From these formulae we see that measurement of p ,  6, and t y  at the inlet and 
the outlet suffice to determine the reaction exerted on a stationary p i p  by 
a body moving through it with steady mass flow, provided the applied force 
and torque on the body be known. 

Various simplifying assumptions reduce the general expressions (4) to ex- 
amples of great use in hydraulics. Instances of (4)l are called “Bernoulli’s 
theorern”, “the flow energy theorem”, “the impulse theorem”, etc. For the 
truth of the result it is not necessary that the body fill the pipe or that the fields 
p and x be smooth within it; of course the cross-sectional area of the body must 
not vanish at any cross-section of the pipe. 

In this example we 
shall suppose that p’ = 0, x’ = 0, f; = 0, and F;3 = 0. We consider a body 
filling all of space except for a stationary, rigid, bounded object. The shape of 
the object need not be specified in the present context, for upon it the boundary 
condition (11.6-17) is satisfied, and so the integrals of integrands proportional to 
x over the boundary of the obstacle vanish. We consider the region 6% between 
the obstacle and a closed control surface 9, so large as to contain the obstacle 
entirely. We denote by 9 the part of the body whose shape is the region g,. 
We may take for YC the surface of a sphere if we wish to. From (1) we conclude 
that 

Example 3. Reaction upon a Submerged Object. 

P 
(111.2-5) 

Exercise 111.2.1. If v is any constant vector field, 

p i 8 i n d A  = p ( i - v ) O ( x - v ) n d A +  p ( x - v ) @ n d A  v, s, L< [s, 1 
p A ( p i  8 i n ) d A  = p A [ p ( i  - v )  8 (x - v ) n ] d A  (111.2-6) J, s, 

i- s,. p A [ p ( i  - v) @vn]dA + m h v ,  

m being the momentum of 9. 
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We now call upon the Traction Theorem. If we write fobs and Fobs for the force 
and torque exerted by 9 upon the obstacle, then (111.1-46) and (111.1-50)2 show 
that 

(111.2-7) 

Putting (3, (6), and (7) together, we obtain finally 

p ( x  - v )  @(x - v )ndA - p(x - v )  @ n d A  v 1 
(111.2-8) 

p h p ( x  - v) @ v n d A  - m hv + p h (tyc + Pn)dA;  
- L 

here we have added to each right-hand side the resultant force and resultant 
torque of a constant scalar pressure P ,  both of these resultants being null. 

These formulae serve to evaluate the reaction exerted by the motion of 9 
upon a stationary, rigid obstacle immersed in it. The obstacle itself seems not 
to enter the final results. All we need know is the steady kinematical fields p 
and x and the traction field tyc upon the control surface Yc . The choice of Yc 
is ours. Generally it is advantageous to choose it very large; we expect then 
that the effect of the obstacle upon the fields of p and x be lessened. To evaluate 
the integrals we may adjust as we like the form of Yc and the values of the 
arbitrary constants v and P.  

The most celebrated example is provided by the steady, uniform flow of a 
body past an obstacle. Then 6 --f v, say, at 00. If also the traction field at great 
distances from the obstacle is approximately a uniform hydrostatic pressure 
p m ,  then tyc --f - p m n  at 00. So as to model this condition, we consider the 
body 9, that presently occupies the space between the obstacle and the surface 
Yr of the sphere of radius r, centered upon some fixed point. To 9, for any 
large enough r we may apply (8). If the integrals in (8) converge as r -t 00, 
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we obtain definite expressions for fobs and Fobs. For example, if as r + 03 

t - v = o(r-2) ,  P = 0(1), ty, +pmn = o(rP2) ,  (111.2-9) 

then all the integrals in (8)1 converge to naught as r + 03, and so 

fobs = 0. (111.2- 10) 

That is, the conditions (9) are sufficient that the infinite body with steady 
density in steady flow past the obstacle exert no resultant force on the 
obstacle. 

The conditions (9) are of the essence for the proof. Without some conditions 
of this kind, no such conclusion follows. They assert that the disturbance due to 
the presence of the obstacle falls off rapidly at great distances from it; indeed, 
they specify the rate at which it falls off. In Volume 2 we shall show that they 
are satisfied by an irrotational flow of a homogeneous, incompressible, Eulerian 
fluid body filling all of space outside an obstacle. For other bodies they are not. 
In general, fobs + 0. 

EULER, treating a very special instance, was the first to obtain (10). His reasoning 
provides a primitive example of that which we have given in general terms. D’ALEMBERT, 
much later, rediscovered or appropriated the assertion; his unduly special reasoning 
applies only to obstacles of great symmetry. The fact itself he announced as a paradox. 
The name has stuck: “the d’Alembert paradox”. Both the name and the fact have given 
rise to perennial confusion. 

If as r + 03 

then of course (10) holds, and also the integrals in ( 8 ) 2  converge. The infinite 
body occupying the region Y, outside the obstacle has finite relative momen- 
tum m, , given by 

and from (8)2 we obtain 

(111.2- 13) 
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Here, not in the proof of (lo), belong appeals to symmetry, for they suffice to 
show that Fobs = 0 for some obstacles, though not for others. 

3. The lkaction Field. The Cauchy Postulate and the 
Hamel-Noll Theorem 

In Section 111.1 we have expressed the principles of balance of linear and 
rotational momentum in terms of the traction field tax(9) on the boundary d x ( 9 )  
of the shape of each part 8 of ?3: 

here we continue to consider a particular time t but do not indicate it in the 
notation. To reduce these integral equations to equivalent field equations, we 
must express the traction field bxc9,, which is defined only upon ax(9) ,  in 
terms of fields defined in an open set containing ax(9). To an extension of this 
kind we now address ourselves. 

A place x on ax (8 )  obviously lies also upon the boundaries &(2) of 
infinitely many parts 9 of 8. The traction t for these various boundaries having 
the point x in common depends, in general, upon &(2). For the reader who 
skipped the developments in Section 111.1 following (111.1-9), we here repeat 
that we call contact of the shapes of two separate bodies the surface that their 
boundaries have in common. Here a contact is a smooth surface, oriented by 
assigning it one of its two normal fields. A subcontact is any subset of a contact 
that is assigned the same orientation. In Section 111.1 we have shown that if 9’’ 
is a subcontact of Y, then tyf = ty, but we have not established any relation 
between tyt and ty for more general pairs of contacts Y and L? , for example if 
9” and Y have in common only the one place x we are considering. Classical 
continuum mechanics as developed by CAUCHY and his successors assumes that 
the tractions on all like-oriented contacts with a common tangent plane 
at x are the same at x. That is, ty at x is assumed to depend upon Y only 
through the normal n of Y at x: 

ty = t(x, n). (111.3- 1) 
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This statement may be called the Cauchy Postulate. Y is oriented so that 
its normal n points out of x ( 9 )  if Y is a part of d x ( 9 ) .  Thus t(x, -n) is 
the traction at x on all surfaces Y tangent to ax(@) and forming parts of the 
boundaries of bodies in the exterior x(9f'") of x(9f). In this sense t(x, n) is 
the traction exerted upon 9 at x by the contiguous bodies outside 97, while 
t(x, -n) is the traction exerted there by 9 on the contiguous bodies outside it. 

As a trivial corollary of (111.1-55) follows Cauchy 's Fundamental Lemma : 

t(x, -n) = -t(x, n). (111.3-2) 

For those readers who have not stopped to follow the theorems given in the latter 
parts of Section 111.1 we include here a sketch of CAUCHY'S own argument to 
prove (2) as a consequence of (1) and the balance of linear momentum, of 
course without use of (111.1-55). 

Pmof. In view of ( l ) ,  it suffices to consider an oriented disk Y of suffi- 
ciently small radius, centered at x; then -9 is the oppositely oriented disk. As- 
suming that the universe of shapes is rich enough in sets that every right-circular 
cylinder of sufficiently small base and altitude is the shape of some body, for 
x ( 9 )  we take a circular cylinder which is normal to Y and is bisected trans- 
versely by Y. If E denotes the altitude of this cylinder, then V ( x ( 3 ) )  = eA(9). 
We assume that b-x is essentially bounded. Cf. the statement following (111.1- 
47). We apply the balance of linear momentum as expressed by (111.1-8) to x(9f) 
and then take the limit as E --f 0, the disk Y being kept fixed, so that its area 
remains constant. The limit of the difference of the volume integrals is 0, and 
so 

(111.3-3) 

(This statement is a special case of (111.1-59), but the present proof is intended 
for the reader who skipped the part of Section 111.1 that follows (111.1-9).) 
In the passage to the limit n does not vary, but the set of x over which the 
integral is taken shrinks down to Y,  twice over. If we assume that t(. , n) is an 
essentially bounded function of x, the limit of the integral over the mantle of 
the cylinder is 0, since the area of that mantle tends to 0. Thus only the limits 
of the two integrals over Y remain to be considered. If we assume further that 
t( - , n) is a continuous function of x, then the limits of these integrals equal the 
integrals of the limit functions in the two cases: 

(111.3-4) 

Since Y is any sufficiently small disk normal to n at x, (2) follows. 
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The reader who is content to lay down the Cauchy Postulate (1) and to make 
the assumptions of smoothness concerning b - x and t that we have stated in 
the course of proving CAUCHY'S Fundamental Lemma should now pass on to the 
next section. On the other hand, the reader who has followed the development 
in Section 111.1 will have noted that one of the assumptions of smoothness made 
just now is unnecessarily strong, while another has already been proved to hold 
in the mathematical theory based on (111.1-10). In fact, as we shall see now, 
the Cauchy Postulate can be proved true as a consequence of the principle of 
linear momentum and very mild assumptions of smoothness. In the proof we 
shall appeal to some of the conclusions demonstrated in the part of Section 111.1 
that begins a little before (111.1-10). 

Theorem (HAMEL (imperfectly), NOLL). Suppose that the contact force 
f&d, U)  exerted upon any part d of @ by the separate body V be deter- 
mined by a traction field ty through (III. l-46).  Then the Cauchy Postulate 
(1) holds almost everywhere on every surface Y interior to ~(9). 

The reader should recall that (111.1-46) has been proved to hold as a con- 
sequence of (111.1-10). 

Proof of the Humel-Noll theorem. By (111.1-43), (111.1-44), and the 
Lebesgue differentiation theorem we know that at almost all points of the surface 
Y 

ty(x) = lim (111.3-5) 
m-03 A ( % m )  

if qrn is a suitably selected sequence of sets on Y shrinking down to x. We are 
to show that if Yand  Y have a common oriented normal n at x, and if both 
t d x )  and ty(x) exist, then 

t d x )  = ty(x). (111.3-6) 

The common value of the two functions t r  and ty at x is then a function of n 
only and may be denoted by t(x, n); if so, the HAMEL-NOLL theorem will have 
been proved. 

If Y and Ycoincide near x, the claim is trivial. Otherwise, at the regular 
point x common to Y and Ywe  describe a circular cylinder of small radius A r  

' A  good presentation of this proof with appropriate figures may be found in Section 11.5 of 
IRE, cited at the end of this chapter. 
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about the common normal n and denote the parts of its interior lying between 
Y and Y by A 9. We denote the cylindrical part of d A 9 by A d *  and the 
parts of d A 9  common to Y and Y, respectively, by A d  and A d ‘ .  

First we suppose that Y i s  the tangent plane to Y at x, that x is an elliptic 
point for Y, and that (5) holds at x for Y. Then not only does Y lie entirely 
on one side of Ynear x, but also we may construct a paraboloid of revolution 
Y* with vertex x, with Y a s  its tangent plane, and such as to include between 
itself and T a l l  of Y ,  for sufficiently small A r .  Specifically, if z = f ( x ,  y) is a 
Cartesian equation of Y near x, the coordinates x and y being in Yand z being 
distance along the normal to Y, then d:f 2 0, and d i f  2 0 at x, and if 

K := max(d;.f, d,d, f, d;f) when x 2  + y 2  5 A r 2 ,  (111.3-7) 

a paraboloid of the kind desired is given by 

z = 2K(x2 + y2).  (111.3-8) 

The area of the cylindrical part A d *  of d A 9  is not greater than that of the 
part of the cylinder between the plane and the paraboloid. Thus 

A ( A d * )  (2?rAr).2K(Ar)’, 

= o ( A r 2 )  (111.3-9) 

as A r  + 0. Likewise, the volume of A 9  is bounded by that of the region 
between Y*, the cylinder, and the plane. Thus 

V ( A 9 )  5 ?rKAr4, 

= o ( a r 3 ) .  (111.3-10) 

Of course 

A ( A d ’ )  = T a r 2 .  (111.3-11) 

Exemise III. 3. I .  

A ( A d )  = T a r 2  + o(Ar2) .  (111.3-12) 

Hence 

A(aA9)  = 2*Ar2 + o(Ar2)  as Ar + 0 ,  

(111.3- 13) 

V ( A 9 )  = o(A(aA9))  as Ar --t 0.  
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We assume that the universe of shapes is rich enough in sets that A 9 ,  no 
matter what be Ar,  is the shape of some body 9 ’ ~ ~  . Because of (13)2 and 
(111.1-58) 

(111.3-14) 

Orienting the tangent plane 3-so that its normal points into Y at x,  we conclude 
that for almost all x on Y 

(111.3- 15) 

In view of (9) and (13)l the limit of the third term vanishes, and so by (1 1) 
and (12) we see that 

provided either limit exist. Now the value of the limit on the left-hand side is 
ty(x) by assumption, and so the limit on the right-hand side is proved to exist 
by the argument given. The limit on the right-hand side is independent of the 
choice of Y. Hence ty(x) is the same for all surfaces Y that are elliptic at x, 
provided x be a place where (5) holds for Y. 

Exercise IZZ.3.2. The proof of the HAMEL-NOLL theorem is completed by letting 
x be a saddle point for Y or for Y or for both. 

4. Cauchy’s Fhndamental Theorem: Existence of the Stress Tensor 

The Cauchy Postulate (111.3-1) and its consequence, CAUCHY’S Fundamental 
Lemma (111.3-2), enable us to determine the way the traction field t depends 
upon n. Indeed, it is a linear function of n, as shown by 

Cauchy’s E’undamental Theorem. If t(. , n) is a continuous function, 
there is a tensor field T such that 

t(x, n) = T(x)n. (111.4- 1) 
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CAUCHY himself interpreted this theorem as stating that the tractions on any 
three linearly independent planes at a point determine the traction on any and 
every surface at that point. Indeed, let { e k }  be a basis in V, so that n = n k e k  . 
Then (1) asserts that 

(111.4-2) k k k t = T ( n  e k )  = n ( T e k )  = n tk , 

tk being the traction on a plane whose outer unit normal is e k  . The value T(x) 
of the tensor field T at x is called the stress tensor, and CAUCHY’S Fundamental 
Theorem asserts the existence of the stress-tensor field. The letter T should 
recall “tension,” since n.T(x)n > 0 if and only if the traction t(x) is a tension. 
Sometimes, accordingly, - T is called the pressure tensor. 

CAUCHY himself proved his theorem by applying (111.1-58) to a tetrahedron, 
three of whose four faces were mutually perpendicular. In this way he concluded 
by use of an orthonormal basis { e k }  at x that 

3 

T = E t c x ,  e k )  @ e k ,  
k = l  

(111.4-3) 

a statement equivalent to (2). CAUCHY’S proof, which suggests a method for 
discovering the theorem, has been reproduced again and again in the textbooks. 
Here we shall give a proof due to NOLL’ , which is similar to CAUCHY’S in resting 
essentially upon (111.1-58) but differs in that it uses a construction employing 
any two linearly independent vectors rather than an orthogonal triad. 

Proof. The function t(x, .) is defined by (111.3-1) only for arguments 
which are unit vectors. We may extend it as follows to all of V’: 

{ Ivlt(x, i) if v=t= 0 
t(x, v) := (111.4-4) 

0 if v = 0. 

If A > 0 and v + 0, then by (4)1 

t(x, Av) = lAvl t x,  - = At(x, v), ( ;:I) (111.4-5) 

‘We follow the presentation by M. E. GURTIN in Section 15 of “The linear theory of elasticity,” 
FLUGGE’S Handbuch der Physik VW2,  ed. C .  T~UESDELL, Berlin and New York, Springer-Verlag, 
1972. In the same section GURTIN gives a rigorous and efficient version of CAUCHY’S original 
proof. Rigorous presentations more or less close to CAUCHY’S path of discovery may be found 
in CFT, Section 203; in Section 16 of C.-C. WANO’S Mathematical Principles of Mechanics 
and Electromagnetism, N.Y. and London, Plenum, 1979; and Section 14 of M. E. GURTIN’S 
Introduction to Continuum Mechanics, N.Y. etc., Academic Press, 1981. 
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and the same conclusion follows trivially if v = 0 or A = 0. If A < 0, then (5) 
and CAUCHY’S Fundamental Lemma (111.3-2) show that 

Thus t(x, - )  is a homogeneous function of vectors. 
We wish now to show that t(x, - )  is additive: 

t(x, v1 + v2) = t(x, v1) + t(x, v2). (111.4-7) 

If v1 and v2 are linearly dependent, (7) follows at once from the homogeneity 
of t(x, .). We suppose, then, that v1 and v2 are linearly independent. At a given 
place ~0 the planes [PI and P2 normal to v1 and v2, respectively, are distinct. 
We set 

v3 := - (v1 + v2) (111.4-8) 

and consider the wedge A that is bounded by these two planes, the plane P3 
normal to v3 at the place xo + E V ~  , the planes P4 and [P5 distant 6 from ~0 
and parallel to the plane of v1, v2 , and v3. We suppose both E and 6 small 
enough that A be the shape of some part of Li?, and we denote by diA the 
portion of the plane [Pi that makes a part of the boundary of A. We shall hold 
6 fixed and let 6 approach 0. d5A is a triangle in the plane of v1, v2 ,  and 
v3 . If the lengths of its sides normal to these vectors are, respectively, 11 ,/2, 
and 13 , then consideration of similar triangles shows that 11 /I3 = Iv1 I/Iv3 I and 
12/13 = 1vzI/Iv3/. Also 1 3  = O(E) .  Hence if we write A; for the area of &A, 
we see that 

A3 = O ( E )  as E +O, 

If 

(111.4-9) 

(111.4- 10) 
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from (9) and the assumption that t( - , n) is continuous we see that 

3 

c = x F i , , t ( x ,  $) dA + O ( E )  as 6 + 0, (111.4-11) 
i = l  

where we have used CAUCHY’S Fundamental Lemma (111.3-2) so as to incorpor- 
ate into the remainder the integrals over 8 4  A and ds A. Since t is a homogeneous 
function of its second argument and a continuous function of its first argument, 

c -+&t(%, v k )  as 6 +o. (111.4- 12) 
k=l  

On the other hand, by (9)4 and (III.1-59), which is a consequence of the balance 
of momentum, we see that c + 0 as E + 0. Therefore, since the sum in (12) 
is independent of E ,  it must vanish: 

3 

(111.4-1 3) 

By (7), t(x0, .) is additive. Because every homogeneous additive function is 
linear, we have shown that t(x, v) = T(x)v, and restriction of this statement to 
unit vectors yields CAUCHY’S Fundamental Theorem (1). a 

If, as we have assumed in demonstrating CAUCHY’S Fundamental Theorem, 
t(. , n) is a continuous function, then so is T. 

CAUCHY’S Fundamental Theorem must not be confused with any standard 
theorem in measure theory. The proof rests essentially upon (III.1-59), which 
reflects the balance of linear momentum. Of course the theorem can be phrased 
more abstractly, without verbal reference to mechanics,’ but if we do not impose 
(III.1-59), then t need not be a linear function of n. In some important theories 
of continuum mechanics there are, indeed, traction fields that are not delivered 
by a stress tensor,’ but we shall not take up such theories in this book. 

Exercise 111.4.2 (GURTIN). Let k be a vector other than 0. If t(x, n) = (k . n)n, 
then (111.1-59) holds, but the important bound (111.1-58) and CAUCHY’S Fundamental 
Lemma do not. 

‘Cf. the papers cited above in Footnote 2 on p. 88. 
’Cf. R. A. TOUPIN, “Elastic materials with couple stresses,” Archive for Rational Mechanics 

ond Anolysis 11 (1962). 387-414. TOUPIN calls the tensor whose contravariant components he 
denotes by t” the stress tensor, but according to his Equation (7.192 the traction vector on a 
boundary surface is given only in part by t‘’n1 . TOUPIN’S traction is not essentially bounded in the 
sense expressed by (III.l-12)2. 
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In the proof of CAUCHY’S Fundamental Theorem the assumption that t( -, n) be con- 
tinuous is crucial. Then there is a sequence of sets dm in the plane through x and 
normal to n such that 

t(x, n) = lim (111.4-14) 
m - r n  ~ ( s ~ m )  ’ 

in which td, is the traction as defined by (111.1-46). This fact suggests that we define as 
follows the average tmction tr(x, n) over a closed disk gr of positive radius r, centered 
at x and normal to n: 

(111.4-15) 

We say that fc has uniform average traction in the actual shape x(g) if for each fixed 
n the one-parameter family of functions {tr(x, n)} is, as r + 0, uniformly Cauchy- 
convergent in the set of x belonging to any compact subset ~ ( 3 7 ) .  Using (111.1-8)1 and 
(111.3-2), one can then show that the map x H tr(x, n) is continuous. 

Theorem (GURTIN & MARTINS).’ 

(i) fc has uniform avemge traction. 
(ii) for every x and every n, the average tmction tr(x, n) tends to a limit, say 

Let fc satisfy (111.1-58). Then the following 
two statements are equivalent: 

lim tr(x, n) =: t(x, n), 
r-0 

(111.4-16) 

and t( - , n) is continuous. 

Thus the continuity oft( a ,  n) is characterized directly in terms of the nature of the system 
of contact forces fc . Can the linearity expressed by CAUCHY’S Fundamental Theorem be 
demonstrated on the basis of the bound (111.1-58) without further assumptions? We state 
without proof the following generalization of CAUCHY ’s Theorem, which, altogether 
dispensing with the assumption of continuity, refers directly to the existence of the 
average traction. 

Theorem (GURTIN & MARTINS). Again let fc satisfy (III.1-58). At all places 
where the limit exists, let t be defined by (16). Then on x ( 9 ) ,  to within a set of 

‘M. E. GURTIN & L. C. MARTINS, “Cauchy’s theorem in classical physics,” Archive for 
Rational Mechanics and Analysis 60 (1976): 305-324. 
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null volume, there is a tensor field T such that 

t(x, n) = T(x)n 
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(111.4- l), 

for every unit vector n. 

The normal component n. t(x, n) of the traction corresponding to n at x is 
called the normal traction at x on the surfaces that have the outer unit normal 
n at x, while the tangential component t - (n.t)n is called the shear traction 
on those surfaces. From CAUCHY'S Fundamental Theorem (1) we see that the 
normal traction is the normal component of T: 

n- t  = n.Tn. (111.4- 17) 

If n, e ,  f is an orthonormal basis at x, then 

t - (n.t)n = (e.Tn)e + (f.Tn)f. (111.4- 18) 

The components e-Tn and f -Tn of the shear traction are called the shear 
stresses in the directions of e and f ,  respectively, on a surface normal to n at 
X. 

Exercise 111.4.2. Cauchy 's R t x i p m l  Theorem: 

n . t ( . , m ) = m . t ( . , n )  Vm,n @ T = T T .  (111.4-19) 

In view of CAUCHY'S Fundamental Theorem (1) we may express the prin- 
ciples of balance of linear and rotational momentum (III.1-8)1,2 as follows in 
terms of the stress tensor T: 

in which now we have restored the time t in the notation. These are the forms 
in which the two principles of momentum are commonly stated in continuum 
mechanics. 
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Since all forces are frame-indifferent, under change of frame from $ to $* 

t* = Qt, b* = Qb, (111.4-21) 

Q(t)  being the orientation of $* relative to $ at the time t. As we have seen in 
Exercise I. 11.4, the unit normal n to a surface in & is frame-indifferent: 

n* = Qn. (111.4-22) 

CAUCHY’S Fundamental Theorem (1) applies in $* as well as in $. Hence 
T transforms frame-indifferent vectors into frame-indifferent vectors. From 
the analysis leading to (1.9-10) we conclude that the stress tensor is frume- 
indifferent: 

T* = QTQ’. (111.4-23) 

The traction t is called the Cuuchy traction; the stress tensor T, the Cuuchy 
stress. Because it determines the contact force per unit area acting upon any 
surface in the present placement of a body, the CAUCHY stress is fundamental 
to our understanding of the effects of systems of forces in and on continuous 
bodies. For the solution of boundary-value problems and the discussion of con- 
stitutive properties of materials, the tractions referred to unit area in a reference 
placement are usually more convenient; in modern applications and studies of 
fundamental aspects of particular theories of materials, consequently, referential 
tractions occur much more frequently than the Cauchy traction t. The referential 
tractions are determined by the first and second Piolu stresses, which we shall 
introduce at our first need for them, namely in Volume 3. 

The traction fields on the surfaces dx (9 ,  t), which the traditional approach 
through (111.1-3) assumes to exist, and which in the approach through the 
modern theory of systems of forces GURTIN & WILLIAMS’ Traction Theorem 
(111.1-46) proves to exist, CAUCHY’S Fundamental Theorem (1) replaces by val- 
ues of a linear function of n, namely T(x, t )n .  Because the traction field tax (q , r )  
is defined only upon dx (9 ,  t), it does not lend itself easily to further devel- 
opment. In replacing it by the action of a tensor field T(x, t) defined on all 
of x(S,  t ) ,  CAUCHY’S theorem suggests use of the divergence theorem. That 
use, as we shall see below in Section 111.6, leads to the partial differential equa- 
tion expressing locally the balance of linear momentum in continuum mechanics 
and requires T to be symmetric. Because the technique for using the divergence 
theorem applies to various sciences, we proceed to present it in fairly general 
terms. 
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5. The General Balance 

The integral equation (III.4-2O)l , like other fundamental equations of clas- 
sical physics, has the form of an equation of balance: 

d / 4 n d A + /  pcrdV.  
O X ( 9 ,  0 x ( 9 ,  t )  

(111.5- 1) 

Here Y and cr are tensor fields of the same order, defined over 9 and ~(9, t ) ,  
and 4 is a tensor field of order greater by 1 than that of @ and cr . One instance, 
trivial, has been encountered earlier, for the principle of conservation of mass 
(Section 1.4) may be expressed in this form by the choices Y = 1, 4 = 0, 
cr = 0. More generally, we interpret the equation of balance (1) as asserting 
that the rate of increase of the total Y in a part 9 of a body may be expressed 
as the sum of two effects: inflow through the boundary of the shape of 9 and 
growth at places within that shape. If a statement of the form (1) holds, 4 is 
called an efflux of Y and cr is called a supply of '4. 

Of course, neither 4 nor cr is determined uniquely by (1). For example, 
any divergenceless tensor of the same order as 4 may be added to 4 without 
effecting any alteration of the other two terms in (1). 

Equations of balance have two common applications: in regions where the 
fields occurring in them are smooth, and at certain kinds of discontinuities. We 
consider the former application here. When we come to treat elasticity (Volume 
3), we shall illustrate the latter. 

i ,  4 , and cr are functions of t and x, integrable in the latter. We assume 
also that 4 is continuously differentiable in x ( 9 ,  t) and continuous on dx(S,  t). 
Then Green's transformation may be applied to regions with smooth boundaries: 

4 n d A  = d i v 4  d V ,  (111.5-2) S axcp. 1) X V .  t )  

and so the general balance (1) becomes 

( p i  - d i v 4  - p a ) d V  = O .  (111.5-3) S x ( S ,  t )  

Now a principle of balance is asserted to hold for all bodies and hence for 
all shapes of all parts of a given body. In particular, then, (3) follows for all 
parts whose shapes at the time t are sufficiently small spheres about the place x 
in the interior of ~(99, t). If the integral of a continuous function f over every 
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small sphere about x vanishes, then f itself vanishes at x. Conversely, of course, 
iff vanishes at all points, so does its integral over every region contained in its 
domain. Thus we obtain the following 

Theorem. If the equation of balance (1) holds for  all sufficiently 
small spheres in the f i t  region x(L47, t ) ,  then at all interior points of x(L47, t )  
where p $ - div 4 - p 0- is continuous in its argument x the following dif- 
f eren tial equation holds; 

p Y  = d i v 4  + p u .  (111.5-4) 

Conversely, if (4) holds at all interior points of a region, and i f  4 is 
continuous in its argument x on the boundary of that region, the general 
balance (1) holds at the time t for  the M y  occupying that region. 

The differential equation (4) is called the Geneml Field Equation. In the 
spatial description the substantial derivative Y is to be calculated by (11.6-3) 
or one of its generalizations. 

6. Cauchy’s Laws of Motion 

We now obtain local forms of the principles of balance of linear and ro- 
tational momentum. First, with the choices w = t, 4 = T,  and o = b we 
reduce (111.5-1) to (III.4-20)1, and so by (111.5-4) we obtain Cuuchy’s First 
Law of Motion: 

px=d ivT+pb ,  (111.6- 1) 

as a necessary and sufficient condition that linear momentum be balanced for all 
subbodies in the interior of a region where px,  pb, T, and div T are continuous. 

The treatment of (III.4-20)2 is not quite so immediate. 

Exercise IZZ. 6.2. For any tensor field S continuously differentiable in the fit region 
9 

(x - xg) A SndA = [(x - xg) A div S - 2 skw S] d V .  (111.6-2) L 
If we substitute (2) into (III.4-20)2 and suppose that CAUCHY’S First Law 

(1) holds, as a necessary and sufficient condition for the balance of rotational 
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momentum we obtain 

Since T is continuous, skw T = 0; that is, 

T’ = T .  
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(111.6-3) 

(111.64) 

This is Cauchy’s Second Law of Motion: Under the hypotheses leading to 
the First Law, and on the assumption that the First Law holds, balance of 
rotational momentum and symmetry of the stress tensor are equivalent. 

CAUCHY’S Laws assert that TT - T and px - div T - pb vanish in an inertial frame. 
Since these quantities are frame-indifferent in the galilean class of any given frame, they 
vanish in one inertial frame if and only if they vanish in all inertial frames. Cf. Section 
I. 13. 

Since T is frame-indifferent, so is TT - T. Thus CAUCHY’S Second Law is a frame- 
indifferent statement. That is, it holds for one frame if and only if it holds for all frames. 

CAUCHY’S First Law as stated is not frame-indifferent, but of course it can be modified 
so as to become so. Indeed, both div T and pb are frame-indifferent, reflecting the fact 
that all forces and masses are frame-indifferent. The acceleration x, in contradistinction, 
is not frame-indifferent (cf. Section 1.9 and I. 11). In accord with the frame-indifferent 
statement of the Axioms of Inertia in Section 1.13, CAUCHY’S First Law in a general 
rigid frame $* assumes the form 

pag=divT* +pb*; (111.6-5) 

here 

T* = QTQ’, 

b* = Qb, 

( 11.4-7)r 

in which Q, ~0 , and are the quantities defining the change of frame (11.14-2) when 
applied to an inertial frame $, while i* and x* are the fields of velocity and acceleration 
relative to $* , and A is the spin of $ with respect to $* . The student may refer to 
(1.9-15), (1.13-9), (1.11-3), and (1.13-13). 

Some authors prefer to transfer the terms following the minus signs in (11.4-7) to 
the right-hand side of CAUCHY ’s First Law and call them “forces” or “apparent forces. ” 
According to their point of view, CAUCHY’S First Law in the form (1) is valid in all 
frames, but the body force b must be augmented for forces “due to the motion” of the 
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observer’s frame with respect to an inertial frame. Since just the same equations result, 
this point of view is legitimate, but it is scarcely felicitous, since it obscures the basic 
nature of frames and of systems of forces. 

In this book, except in passages where requirements of frame-indifference are de- 
veloped, we shall always presume that the frame used is inertial. 

CAUCHY’S two Laws of Motion have been derived by arguments that apply 
only to interior points. On the boundary of a body not in contact with any 
other body, those arguments have no force. We shall assume that the stress 
field T(x, t )  is continuous on cloX($Y, t )  at the time t .  Thus the second law (4) 
holds on the boundary. At boundary points we shall assume that the First Law 
(1) holds in the sense of an interior limit. 

In some recent theories of continuum mechanics stress tensors that are not symmetric 
appear. In these theories either there are torques that are not moments of forces, or 
the density of rotational momentum is not simply the moment of the density of linear 
momentum, or both. We shall not have need of these more general ideas in this course, 
for which the classical laws of CAUCHY will suffice as local statements of the principles 
of linear and rotational momentum. 

Because the stress tensor is symmetric, it has a spectral decomposition: 

3 

= C t k e k  @ek ,  (111.6-6) 
k=l  

{ek} being a suitably selected orthonormal basis at (x, t ) .  The numbers tk are 
called the principal stresses, and the directions of the ek are called the principal 
axes of stress. If the three principal stresses are distinct, the principal axes of 
stress are unique; otherwise, T has infinitely many triads of principal axes. In 
general, there are no surfaces everywhere normal to the fields e k  (cf. Section 
App. IICS), but of course there are infinitely many surfaces normal to each 
ek at any one given place x at the time t .  On such a surface at the place x and 
the time t ,  the principal stress tk is the normal traction, and all shear stresses 
vanish. 

If el is a unit vector, a stress of the form tlel @el  is called a uniaxial 
tension of amount tl in the direction of el . The spectral decomposition (6) 
asserts that the stress at (x, t )  may be regarded as the sum of uniaxial tensions 
along the principal axes of stress. 

Exercise 111.6.2. The stress is said to be hydrostatic at x if, for all n 

It(& n)l is independent of n, and n.t(x, n) is of one sign, (111.6-7) 
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n.t(x, n) is independent of n, 
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(111.6-8) 

t(x, n) is parallel to n. (111.6-9) 

In view of CAUCHY’S Second Law, any one of these statements implies the others and 
also 

T = -p(x)l. (111.6- 10) 

What relations can be established among these statements if T is not symmetric? A 
particular time f, not indicated in the notation, is understood throughout the argument. 

The working W of a system of forces has been defined by (1.8-7). In an 
inertial frame W is expressed in terms of the kinetic energy K and the power P 
by (I. 14-1). The power (I. 14-2) in continuum mechanics is the rate of working 
of the contact force and the body force: 

Exercise HI. 6.3 ( PIOLA’S power theorem). If t and b are regarded as given fields 
in (1 l ) ,  then in order that P = 0 in every rigid motion of 9, it is necessary and sufficient 
that the resultant force and resultant torque applied to 9 shall vanish. Equivalently, in an 
inertial frame the linear momentum and rotational momentum of 9 are both constant. 

Exercise III. 6.4 (STOKES’S power formula). 

(111.6- 12) 

in which w, which is called the stress power, is given by 

w = T*G = T.D. (111.6- 13) 

Hence w = 0 in a rigid motion, and also in an isochoric motion subject to hydrostatic 
stress. Also w is a frame-indifferent scalar. 
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Exercise ZZZ. 6.5 (Balance of mechanical energy). If 

(111.6-14) 

and if the body force is lamellar (cf. (111.1-7)), the corresponding potential energy 
U ( 9 ,  t )  is defined as follows: 

Then 

(111.6- 15) 

(111.6- 16) 

and hence 

p w ’ d V .  (111.6-17) I w = Pc - ( K  + rr) + 
X V ,  I )  

The definition of “mechanically perfect” in Section I. 14 shows that in a mechanically 
perfect motion of a body subject to conservative body force and to boundary tractions 
normal to the velocities at the points where they act, 

K + U = const., (111.6-18) 

provided, of course, that a steady w be selected. 

The foregoing exercise asserts a theorem of conservation of purely me- 
chanical energy. It provides motivation of our having called “conservative” a 
body force that is steady as well as lamellar. Its hypotheses hold in some cases 
governed by some classical theories of continua, but not very generally. 

Exewise 111.6.6 (Balance of internal energy and working) (FOURIER, STOKES, 
MAXWELL, KIRCHHOFF, C. NEUMANN). Looking back at the Balance of Energy, ex- 
pressed by (1.15-4), suppose that E has a density € with respect to mass, that w as given 
by (111.16-13) is the density of the net working W with respect to volume, and that Q 
has both a superficial density q and a density s with respect to mass: 
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Then there is a vector field h such that 

q = h .n, 

and 
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(111.6-20) 

p i  = w +divh  + p s .  (111.6-2 1) 

It is bruited that the differential equations expressing balance of linear and rotational 
momenta follow generally from (21) by applying a superposed rigid motion. That belief 
seems to have grown from a paper by A. E. GREEN & R. S. RIVLIN, “On Cauchy’s 
equations of motion,” Zeitschrift f i r  Angewandte Mathematik und Physik 15( 1964): 
290-291. If it seems strange that theorems about momenta alone can emerge from 
an assumption about internal energy, it is strange. An expert in continuum mechanics 
has written of this, “There are so many assumptions that the main argument becomes 
trivial.” In fact, internal energy is introduced only so as to subtract it out at the first 
step, and no use of (21) is necessary to the end desired, which is the outcome of PIOLA’S 
power theorem (Exercise 111.6.3). 

7. Mean Values and Lower Bounds for the Stress Field 

SIGNOMNI remarked that since 

div( ‘yT) = Tgrad ‘y + ‘y divT, (111.7- 1) 

CAUCHY’S First Law (111.6-1) yields 

Tgrad ‘y = div( ‘y T) + p’y (b - x), (111.7-2) 

and so if we integrate this identity over the present shape ~ ( 3 7 )  of a body and 
then use the divergence theorem, we obtain 

Tgrad ‘y d V  = 6,,, V TndA + L ( g ) p  ‘y (b - x) dV. (111.7-3) 

The left-hand side is proportional to a certain weighted mean of the stress field 
over the shape ~ ( 3 7 ) .  It is determined by the value of T upon the boundary 
ax(B) and by the corresponding mean of p ‘y (b - x). The conclusion seems 
to be of interest mainly for a body at rest, and so x = 0. Then it expresses 
the mean values of the stress field in terms of the load alone: Tn upon the 
boundary, pb in the interior. 
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An example due to CHREE and FINGER makes the point clear: If we take for 
‘v the position vector p ,  and if 

then the mean value ‘=f of the stress field in x(g) is given by 

T = L .  (111.7-5) 

The skew part of this equation merely reaffirms Cauchy’s Second Law, but the 
symmetric part has some interesting applications. 

First let us suppose that ~ ( 9 )  is the region bounded without by a closed 
surface Yo and within by a closed surface Yi , which lies wholly inside the 
region bounded by Yo,  so that the region interior to Yi bounds a cavity V of 
positive volume, and let Yo and Yi be subject to uniform hydrostatic pressures 
p o  and pi (Exercise 111.6.2). We suppose also that b = 0, and we write V ( U )  
for the volume of the cavity. Then L is easy to evaluate, and ( 5 )  yields 

(111.7-6) 

Thus hydrostatic loading gives rise to a stress field that is hydrostatic in 
mean. If p o  = pi, the mean stress is the applied pressure. If p o  > p i ,  the 
mean pressure always exceeds p o  . 

Next we consider a body in a shape x(g) subject to surface tractions alone, 
all of which are parallel to a certain vector e .  If f is any vector normal to e, 
then Tf = 0 on ax(g), and so from (4) we obtain 

(111.7-7) 

Thus ( 5 )  yields 

Tf  = 0: (111.7-8) 

The stress field corresponding to uniaxial surface load is uniaxial in mean. 

Exemise III. 7.1. Let d be a portion of a plane normal to e, and upon I let Te 
be a constant multiple of e. If Fe denotes the resultant contact load upon d ,  and if the 
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centroid o f d  is at po(d) ,  then (s, p BTedA)e = F p , ( d ) .  Hence if the shape ~ ( $ 7 )  of 
a body at rest has two plane, parallel faces normal to e, upon each of which a uniform 
tensile load is applied, and if the body is otherwise free, then the mean tensile stress is 
given by 

(111.7-9) 

F being the resultant tensile force applied to either face, and d being the distance between 
the plane faces. 

Numerous other relations of this kind were obtained by SIGNORINI and his 
school. They studied also moments of stress p C3 p C3 . ' . C3 p C3T and showed 
that many components of those moments can be determined from the moments 
of the load. 

Exercise ZIZ. 7.2 (SIGNORINI). Let L be the third-order tensor whose components 
L k m q  are defined as f o ~ ~ o w s  in terms of the components ps  of the position vector: 

Then 

pOT= L. (111.7-1 1) 

SIGNORINI showed how to obtain lower bounds for the mean stresses in terms 
of other, more accessible means such as L and L. His method was extended 
by GRIOLI. Their conclusions are most easily expressed if we regard T as a 
6-dimensional vector field, which we shall do for the remainder of this section. 

Let the functions Fa,  a = 1 , 2 , .  . . ,m,  be orthonormal in mean over the 
present shape x(S)  of a body: 

- 
F a F b  = 6 a b .  (111.7-12) 

Let K be any symmetric, non-negative tensor over the space of 6-dimensional 
vectors, and let C, , a = 1 ,  2 , .  . . , m, be vectors in that space. Then 

m m 

( a=l ) ( b=l ) 0 K * T - C F , C a  C3 T - C F b C b  . (111.7-13) 
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Calculating the mean value of this expression, we obtain 

(111.7-14) 
a=l 

The vectors C, have been arbitrary so far. We now choose them as follows: 

C , = F , T .  (111.7-15) 

Then (14) reduces to 

m 

K.= 2 K.XF,T@F,T. (111.7- 16) 
a=l  

The non-negative tensor K and the orthonormal functions Fa remain ours to 
choose. Thus (16) provides infinitely many lower bounds for the components of 
T 8 T, bounds which depend upon the shape of the body and the loads applied 
to it. One general conclusion is worth noting before we descend to particular 
applications: If K is positive rather than merely non-negative, (13) and (15) 
show that equality is achieved in (16) if and only if 

m 

T = CFaF,T. (111.7- 17) 
a=l 

- 
Therefore, among all stress fields that have in common the m means F,T for 
a given set of orthonormal functions F a ,  such fields as satisfy (17) give a 
minimum value to K . m  for every choice of the positive tensor K. 

For example, we may take for K the tensor whose components with respect 
to a particular basis are all 0 except for K k k  , which has the value 1. Since 
T i  5 max g ,  from (16) we see that 

m 

max T i  2 2 C ( F T ) 2 ,  k = 1, 2,. . . ,6. (111.7-18) 
a=l  

Thus lower bounds for the magnitude of every component of T with respect to 
a constant basis field have been obtained. 

The bounds we have demonstrated are expressed in terms of the means F,T 
and thus might seem more difficult to calculate than such direct means as T 8 T. 
On the contrary, the conclusions reached earlier in this chapter show that for 
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suitable choices of the functions Fa the means F,T can be evaluated in terms of 
the applied loads. We have obtained two theorems of this kind, namely, (5) and 
(11). We shall see now that they may be used so as to evaluate the right-hand 
side of (16) in terms of the shape of the body and the loads acting upon it. 

To do so, we are guided by the properties of the center of mass and the 
Euler tensor of a body (Sections 1.8, I. 10). These assure us that by choice of 
a system of Cartesian co-ordinates we can satisfy the relations Jx(g) z k  dV = 0 
and Jx(g) zpzp  dV = 0 if p q. We could describe these co-ordinates as 
having their origin at the centroid of x ( 9 )  and their axes parallel to principal 
axes of inertia of a body of uniform density having the shape ~(9). To express 
the outcome, it is convenient to write Ak for the reciprocal of the square root 
of the k" axial momentoid of inertia: 

Ak := l/&, k = 1,2, 3. (111.7- 19) 

Then the following 4 functions Fa are orthonormal in mean over Y:  

Fo := 1, Fk : = A k Z k ,  k = 1 , 2 , 3 .  (111.7-20) 

- 
The relation (5) may be expressed as FoT = L. In the present notation, which 
regards T as a 6-dimensional vector field, the third-order tensor L defined in 
terms of the applied loads by (10) becomes a triple of vectors L1 , L2 , L3 , and 
we may express (11) in the form = L k  , k = 1, 2, 3. Thus, finally, if 

if a =0 ,  
(111.7-2 1) (" AkLk if a =  1 ,  2, 3, 

Na := 

by using in (16) the particular set of orthonormal functions (20) we obtain an 
elegant inequality discovered by SIGNORINI: 

3 

K . m  )= x N a . K N , .  (111.7-22) 
a 4  

The 4 vectors N, on the right-hand side are determined by (5) and (11) from 
the shape of the body and the loads acting upon it. 

The estimate (22) may be rendered more specific by considering special 
loadings upon special shapes. Perhaps the most interesting application is the 
most trivial. Various older theories of plasticity lay down an axiom that for an 
appropriate choice of K there is a constant C such that 

T-KT 5 C. (111.7-23) 
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SIGNOFUNI’S inequality (22) shows that such an axiom cannot hold unless the 
loads and the shape are such that 

k N a . K N a  5 c. (111.7-24) 
a 4  

Thus (23) cannot serve as a general assumption in any theory designed to 
represent the behavior of bodies of arbitrary shape subject to arbitrary loads. 

8. Load. Boundary Condition of llaction 

The applied force fa and applied torque Fa acting upon the shape x ( 9 ,  t )  
appear on the right-hand sides of (111.4-20). When p is regarded as given, both 
of them are determined by the field b upon ~(9, t )  and the field Tn upon 
d x ( 9 ,  t ) .  These two fields by integration deliver the load on 9’ in its shape 
~(9, t). In many particular problems of continuum mechanics the load on some 
given shape is prescribed. The condition 

Tn = t upon ax(%!?, t), (111.8-1) 

t being a given function of x and t ,  is the boundary condition of prescribed 
traction. Such a condition supplements the kinematical boundary conditions 
mentioned in Section 11.6. 

For example, if p is a prescribed scalar field, and if 

the body is subject to the pressure p upon its boundary. Of course this condition 
does not require the stress field throughout ~(9, t) to be hydrostatic [cf. (111.7- 
611. 

When the fieldp in (2) has a constant value on dx(%!?, t ) ,  the body is subject 
to uniform pressure. This boundary condition often is regarded as a model for 
the contact load exerted by a quiet body of gas upon a body submerged in it. 
A field of pressure proportional to the distance from a fixed plane provides a 
common model for the contact load exerted by a quiet body of heavy liquid of 
uniform density upon a body partly or wholly submerged in it. The fixed plane 
represents the horizontal upper surface of the body of liquid. 

Exercise 111.8.1 (ARCHIMEDES, STEVIN, EULER). Let a body whose shape is a fit 
region be submerged partly or wholly in a heavy liquid of uniform density. The centroid 
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of the part of the shape below the horizontal upper surface of the liquid is called the 
center of buoyancy. The line connecting the center of buoyancy to the center of mass is 
called the hydrostatic axis. If the part of the boundary above the upper surface is free of 
traction, then the resultant contact load on the body is equipollent to a force applied 
at the center of buoyancy directed upwards, of magnitude equal to the weight of 
the fluid displaced by the body. If the body force applied to the body results from the 
same gravitational field as that which acts on the liquid, then the body is isolated, as the 
term is defined by (1.13-12), if and only if 

the hydrostatic axis is vertical, and 
the weight of the displaced fluid equals the weight of the body. 

1. 
2. 

An important special kind of pressure is that exerted by surface tension. In 
contrast with the other special cases just presented, this one reflects the nature 
of the body as well as its shape and the nature of its surroundings: 

p = 2 ~ k ,  

k = mean curvature of d x ( g ,  t ) ,  (111.8-3) 

u = const. 

The constant 0 ,  called the coefficient of surface tension, is adjustable so as 
to model, more or less, the nature of the parts of &? adjacent to the inside of 
ax($, t )  and the parts of the surroundings adjacent to the outside of d x ( g ,  t ) .  
It is the first example of a constitutive modulus in this book. Others, referring 
to the material of which &? is composed, will appear in later chapters. 

Exemise 111.8.2. The contact load of surface tension upon a shape whose boundary 
has a continuous unit normal field is null. Thus a body loaded by surface tension alone 
is isolated. 

A body ~8 subjected to null loads, that is, 

b = 0 in x(9?, t), Tn 3 0 upon dx(9?, t ) ,  (111.8-4) 

is free. Of course a free body is isolated, but an isolated body need not be free. 
Cf. Section I. 13. 

9. Motion of a Free Body 

The theory presented thus far is so general as to impose little restriction 
upon the motions of a body. Theories of particular materials, developed in 
the succeeding chapter and applied throughout the remainder of this book, 
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impose systematic restrictions upon bodies by requiring that they consist of 
particular materials. In addition to these constitutive restrictions, or in some 
cases instead of them, kinematic assumptions are sometimes imposed directly, 
and these may severely limit the kind of motion possible. For example, rigid 
motions have been discussed in Section I. 10, motions that preserve circulation 
in Section 11.13, and some effects of kinematic boundary conditions have been 
demonstrated in Section 11.11. The dynamic boundary conditions discussed in 
the preceding section also have their effects, as we shall see now in what appears 
to be the simplest case, namely, the motion of a free body. 

In the mechanics of systems of mass-points the motion of a free body is 
trivial. In contrast, a free rigid body may rotate about its center of mass in 
a most complicated way. When we come to deformable bodies, the problem 
of free motion becomes indeterminate. Nevertheless, something definite can be 
learned about it. For example, by putting a position vector p for ty in (111.7-3) 
we see that 

T = - p p  ax, (111.9- 1) 

by which the mean stress at each time restricts, or is restricted by, the acceler- 
ation field. In particular, if we denote by p the arithmetic mean of the normal 
tractions, p := - 4 tr T, then from (1) it follows that 

p = fa. (111.9-2) 

DAY, acknowledging influence of SUNDMAN'S classic work on the three-body 
problem of analytical dynamics, has exploited (2) so as to prove a theorem 
relating p to the diameter of the shape of a body 28 supposed free when t 1 0; in 
particular, the rotational momentum M is an assigned constant. By the diameter 
d ( t )  of ~ ( 2 8 ,  t )  is meant the supremum of the distances between its points. The 
position vector p( t )  will henceforth be taken with respect to the center of mass 
P( t )  ofx(28, t ) ;  thus p : = x  - p ,  p = x  -p, p = o .  

Theorem. Let M be the rotational momentum of 2? with respect to its 
center of mass. If M + 0,  then either d ( t )  + 00 or there is apositive time 
t* such that p ( t * )  < 0.  

In particular, in the interior of a free body that remains within a bounded part 
of space for all time, a region in which at least one of the principal stresses is a 
tension must develop unless the rotational momentum of the body is null. The 
proof follows now. 
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Exemise 111.9.1. If 

then 

Also 

[MI2 = 

P d fMd' 
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(111.9-3) 

(111.94) 

(111.9-5) 

the last step is a consequence of the Cauchy-Schwarz inequality. But for any 
vectors a and b 

la A biz = 21a121b12 - 2 ( a ~ b ) ~  5 21a)21b(2. (111.9-6) 

Thus it follows from ( 5 )  that 

IMI2 5 4PK, (111.9-7) 

in which K denotes the kinetic energy of x ( B ,  t )  with respect to the body's 
center of mass. 

We now take the substantial derivative of (3) and use (2) to obtain 

P =4K +6PV, (111.9-8) 

V being the volume of ~(93, t). If p ( t )  2 0 when t 2 0, then from (8) it 
follows that P 2 4K. Thus (7) yields 

2PP 2 2IMI2. (111.9-9) 

Hence 

(P2)"= 2PP + 2P2 2 2IMI2 > 0. (111.9- 10) 
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Integrating this inequality twice shows that P ( t )  + 00. A glance at (4) suffices 
to prove that d( t )  -+ 00. 

Some materials are regarded as being unable to support tension. DAY’S 
theorem shows that a freely spinning body of such material will ultimately fly 
asunder unless its diameter tends to 00. For further development of this idea, 
see below, Section IV. 19. 
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Chapter IV 

Constitutive Relations 

If geometry is to serve as a model for the treatment of axioms of physics, we 
shall try first to cover with a few axioms as large a class of physical phenomena 
as possible, and then by adjoining further axioms, one after another, to arrive at 
the more special theories . . . . Also the mathematician will have to take account 
not only of those theories that come near to reality but also, as in geometry, of all 
logically possible theories, and he must always be careful to obtain a complete 
survey of the consequences implied by the system of axioms laid down. 

Further, it is the task of the mathematician, complementing the physicist’s 
way of looking at things, in each instance to examine exactly whether the further 
axioms be compatible with the foregoing ones. The physicist regards himself 
often as being compelled by the results of his experiments to make new hypothe- 
ses from time to time during the development of his theory; . . . he calls only 
upon those experiments or a certain physical intuition, a practice which in the 
rigorously logical erection of a theory is not admissible. 

HILBERT 
in regard to his Sixth Problem, 
“Mathematical Treatment of the 
Axioms of Physics” (1900) 
Mathematische Probleme 
Archiv fur Mafhematik und Physik 
(3) l  (1901), 44-63, 213-237 
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1. Dynamic Processes 

A motion x assigns to a body 3? a shape ~(9, t) at the time t. At a point x 
of that shape, the stress tensor T(x, t) determines the traction on every surface 
that is the boundary of the shape of some interior part B of 9. In this sense 
the stress field T is assigned to the body in its motion. The ordered pair (x, T) 
is called a dynamic process for 9 if x and T are related in such a way as to 
satisfy the principles of balance of linear and rotational momentum. 

At interior points of regions where x and T are sufficiently smooth, the 
principles of linear and rotational momentum are expressed by CAUCHY’S Laws 
of Motion. The second law (111.64) requires that the stress be symmetric. The 
first law (111.6-1) relates the stress field to the acceleration x in an inertial frame, 
provided the body force field b be known. We regard b, which represents the 
action on B of unspecified bodies exterior to ~8, as assignable. While in practice 
only a few special body forces like that of gravity are available in laboratories 
or daily life- indeed, typically in specific problems of continuum mechanics we 
suppose that b = 0-in principle we have no way of delimiting the class of all 
possible fields of body force. Therefore, in arguments concerning the totality 
of all possible motions of a body, we shall necessarily think of b as being 
unrestricted. Whatever be x and T ,  a field b such as to satisfy the principle 
of balance of linear momentum is determined by (111.6-1), or, if the frame of 
reference is not inertial, by (111.6-5). Thus CAUCHY’S First Law imposes no 
restriction at all upon x and T .  

A dynamic process is defined in terms of a frame f. Thus, properly, we 
should refer to { x ,  T} as being a dynamic process in $. Suppose now we 
consider another frame f * . We have reason to regard the motion x * obtained 
from x by the transformation (1.9-1 1) as being the very same motion as apparent 
in f * :  

(1.9-1 l)r 
t* = t + a ,  

a, xo , g(t) ,  and Q ( t )  being prescribed. In contrast, as we have seen in Section 
111.4, the stress T is frame-indifferent: 

T*(x*, t * )  = Q(t)T(x, t)Q(t)’; (IV. 1-1) 

here x* and t * are determined from x and t by (1.9-1 1). Finally, if the dynamic 
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process { x ,  T }  determines a body force b in $, then b* as given by 

b*(x*, t* )  = Q(t)b(x,  t )  (IV. 1-2) 

serves to balance { x * ,  T * }  in $*, and, of course, CAUCHY’S First Law is un- 
derstood to hold in the frame-indifferent form (111.6-5). Not only is { x * ,  T * }  
a dynamic process defined in terms of $*, but also the body force b* corre- 
sponding with it is the same, in the sense of frame-indifference, as the body 
force required to equilibrate { x ,  T }  in $. Thus the definition of a dynamic 
process is frame-indifferent, and the process { x * ,  T * }  in $* may be regarded 
as describing the same phenomena of nature as does { x ,  T }  in f . We shall say 
formally that { x * ,  T * }  is the process in $* that is equivalent to the process 
{ x ,  T }  in $ if the two are related through (1.9-11) and (1). 

The foregoing statements enable us to substitute (1.7-7) and (1.9-11)l into 
(l) ,  so obtaining 

2. Constitutive Relations. Noll’s Axioms 

The principles and definitions so far presented express properties common 
to all bodies and motions. The diversity of natural bodies, which arises from 
the differences among the materials that make up those bodies, we represent 
in the theory by constitutive relations. In mechanics, a constitutive relation is 
a restriction upon the forces or the motions or both. In popular terms, forces 
applied to a body “cause” it to undergo a motion, and the motion “caused” 
differs according to the nature of the body. 

In this regard some constitutive relations are trivial, in the sense that a 
constant function is a trivial special case of a function. External body forces 
are of this kind. The assumption that the body force is external, since it restricts 
the class of body forces to those unaffected by the motions of such bodies as 
may occupy the part of space in which they act, is a constitutive relation, but it 
is not the kind subjected to study in continuum mechanics, in which, in typical 
problems, we simply assume that b = const. or even 0 and go on to analyse in 
detail the different responses to these trivial body forces effected upon bodies 
in which there are different kinds of contact forces. 

Indeed, the only forces of much interest in continuum mechanics are contact 
forces. As we have seen in Section 111.4, these are determined from the stress 
tensor field T .  Just as different figures defined in geometry idealize certain 
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important natural objects, in continuum mechanics ideal materials are defined 
by particular relations between the stress tensor and the motion of a body. Some 
special materials, like some special figures, are important in themselves, but 
it is more efficient to study infinite classes of geometric objects and infinite 
classes of materials, distinguished by properties of symmetry and invariance. 
A general theory of constitutive relations lays down overriding restrictions 
that all constitutive relations must satisfy in order to represent mathematically 
the kinds of behavior observed in materials in nature. In the class of all such 
constitutive relations a rational scheme of classification is then introduced, and 
theorems characterizing or describing the members of this class are then proved. 

The approach is like that of Euclidean geometry, in which, after statement of the 
axioms satisfied by all geometric objects, theorems characterizing and relating classes 
of figures are proved. Since mechanics is a discipline vastly more subtle and sensitive 
than geometry, the parallel stops here and does not extend to the theorems themselves 
or even to the methods of constructing proofs. 

Continuum mechanics, like any other branch of mathematics, has its own character- 
istic concepts and methods. These were created in large part by JAMES BERNOULLI, EULER, 
CAUCHY, GREEN, STOKES, KELVIN, MAXWELL, and HUGONIOT, but only in recent years have 
they been subjected to general and collective scrutiny and forged into a unified doctrine. 

The further development of continuum mechanics in this book will fall within 
the axioms laid down by NOLL in 1958. These, which we now state, while they 
are by no means the most general considered today, are nevertheless far more 
general than necessary for our purpose in this introductory book, but they are 
so clear and easy to grasp that more special statement here would only blunt 
them. 

Axiom N1. Principle of Determinism. The stress at the place occu- 
pied by the substantial point X at the time t is determined by the history 
x' of the transplacement of %? up to the time t: 

(IV.2-1) 

Here 6 denotes a mapping of histories x ' ,  substantial points X ,  and times t 
onto symmetric tensors. It defines the material composing B. The domain 
of the first argument x' is the set of possible motions of B (and not merely 
their restrictions to the substantial point X) .  The range of 6, for each X, is 
some subset of the set of histories of symmetric tensors. The mapping 6 is the 
constitutive mapping of the substantial point X,  and the substantial point X 
itself is now called a material point of @. The relation (1) is the constitutive 
relation of the material defined by 6. The mapping 8 is neither more nor less 
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than a rule which, for each material point and at each time, assigns to the 
history up to the time t of each conceivable motion of 97 a unique stress tensor 
T ( x ( X ,  t ) ,  t )  at the place x occupied by X at the time t .  As X ranges over 9, 
the value of 8 at the time t delivers the stress field T(x, t )  acting upon ~ ( 9 ,  t ) .  
In rough terms, the past and present placements given by the motion of 
9 to the material points it comprises determine the stress field over its 
present shape x(g,  t ) .  

The concept of material here defined represents the common observation 
that many natural bodies exhibit memory of their past experiences, sometimes 
continuing to respond to the effects of change of form long after the change itself 
took place. For this reason 8 is often called a memory functional. Of course, 
those special 8 that depend on x only through its present value, which model 
materials without memory, or through the present values of its time derivatives, 
which model materials with short-range memory, are not excluded. 

Only frames preserving the sense of time are allowed in mechanics, as has been 
stated in Section 1.6. In view of this fact and the definition (11.10-1) of the history x ' ,  
the constitutive relation (1) respects the sense of time. While past and present motion 
determine present stress, it by no means follows that future and present motion do the 
same. In the materials of nature the past of a specimen cannot generally be reconstructed 
from its present and future conditions, and irreversibility of this kind is allowed for by the 
mathematical theory from the start. Indeed, irreversibility is the rule, not the exception, 
in continuum mechanics, and the study of various precise senses of that word is one of 
the main aims of the theory. In this study, continuum mechanics quits the tradition of 
analytical dynamics, in which, in typical cases, such as that presented above in Section 
1.14, past and future are interchangeable. 

It is possible that (1) be invertible in the sense that the motion x of a body is 
determined, conversely, from the history T' of the stress field defined over it. However, 
such cannot be the case in general, since in Eulerian hydrodynamics, defined by the 
special constitutive relation (IV.4-4), below, a knowledge of the pressure field for all 
times and at all places determines nothing more about the placement x (  -, t )  than its 
mass density p .  Thus an inverted relation giving x in terms of T' cannot possibly be 
general. 

Axiom N2. Principle of Local Action. The principle of determinism 
allows the motions of material points 2 that lie far away from X to affect the 
stress at X .  The notion of contact force makes it natural to exclude action at a 
distance as a material property. Accordingly, we assume a second constitutive 
axiom: The motion of material points at a finite distance from X in some 
shape of 8 may be disregarded in calculating the stress at X from the 
past and present shapes of 97. (Of course, by the smoothness assumed for x ,  
material points once a finite distance apart are always a finite distance apart.) 
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Formally, if x and x are motions such that for some neighborhood N ( X )  

x'(2, s) = X'(Z, s) vs 2 0, vz E N ( X ) ,  (IV. 2-2) 

then 

If we apply Axiom 1 to the transformation rule (IV.l-3), we obtain 

5*(x*'* ; X ,  t * )  = Q(t)D(x'; X ,  t)Q(t)'. (IV. 2-4) 

Here the constitutive mappings 8 and g* may differ. In conformity with general 
experience gained from observations of the behavior of materials, we assume 
that the properties of a given material as represented by 8 do not differ for 
different rigid frames. If the constitutive relation (1) holds for  the dynamic 
process { x ,  T}, it holds also for  every equivalent dynamic process { x * ,  T*} 
as defined in Section IV.l. In other words, we cannot distinguish one rigid 
frame from another by measurement of the stresses in a body of given material. 
Formally, for any two rigid frames $ and $* 

%* = 8. (IV .2-5) 

The assumption ( 5 )  expresses 

Axiom N3. Principle of Material Frame-Indifference. 

In fact (6) should hold for two generalized frames $ and $* in the same rigid 
class. (Generalized frames are defined above in the passage in fine print preceding the 
discussion of units of length and physical distance in Section 1.6.) 

Now referring to a particular frame $ and a particular constitutive mapping 
6, let us consider two motions x ,  and x 2  that differ by a rigid motion, a time 
shift, and possibly a reflection: 

for a real number a, a fixed place xg , a vector $ ( t ) ,  and an orthogonal tensor 
Q(t ) .  While x 1  and x 2  need not be given a kinematical interpretation here, 
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x:+' may be regarded as formally related to x{ just as x*" is related to x' , 
and so by using (6) we obtain the following functional equation, which each 
constitutive mapping 8 must satisfy: 

This statement asserts Invariance under Superposed Rigid Motions : In any 
given frame let the motion x2 be obtained from the motion x1 by super- 
posing a rigid motion, a time-shift, and possibly a reflection. Under that 
superposition the value of a constitutive mapping transforms like the stress 
under a change of frame (1.9-1 1) with the orthogonal tensor Q(t) .  

While the analysis just given refers to a single frame only, its conclusion is 
not restricted to that frame, because if (8) holds in one frame, it holds in all, for 
a change of frame if considered as a purely mathematical statement superposes 
a rigid motion perhaps combined with a reflection. 

We have considered the behavior of 8 for a class of motions. Material 
frame-indifference was used to effect the proof of Invariance under Superposed 
Rigid Motions. Now we shall show that, conversely, Invariance under Super- 
posed Rigid Motions implies the Principle of Material Frame-Indifference. The 
assumption is now (8), with x2 derived from x, by superposing a rigid motion, 
a time-shift, and possibly a reflection, expressed by (7). 

and $*, any two equivalent motions x and x* 
are related by (1.9-ll), and hence they satisfy (7) with x ,  = x ,  x2 = x * ,  and 
t + a = t * . Thus our assumption (8) asserts that 

For any two rigid frames 

From (6) and (4) we conclude that 

fj(x*"; x, t*)  = g*(x*"; x, t ) .  (IV .2-9) 

Because x* in (9) is arbitrary, (5) follows. 

abbreviate as follows the theorem just proved: 
Using the abbreviations MFI and SRM to denote the two principles, we may 

MFI w SRM . 
(all frames) (some one frame) 

(IV .2- 10) 

In other words, the two principles are equivalent. 
For the foregoing analysis I am indebted to R. SEGEV. 
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From physically oriented circles come claims that SRM is the “correct” principle, 
being more “physical”, while MFI is not correct. Some use the term “objectivity” to 
denote SRM. Tendentious terms are dangerous; in ordinary life, use of a tendentious 
term often indicates deceit, and those who claim to be “objective” in their judgments 
sometimes mislead themselves while trying to pull the wool over the eyes of others. 

Neither MFI nor SRM is objective in any sense of that adjective found in dictionaries. 
Both are assumptions. On the basis of Axiom N1, each implies the other. 

The real difference of opinion comes with the sign of det Q. Rotation of a body does 
not turn it inside out. Therefore, detQ = +1 in transformations intended to represent 
motions of natural bodies. Anyone who so wishes may impose that requirement. To 
impose it for SRM automatically imposes it for MFI, and conversely. For all purposes 
in this book, it makes no difference. In the proofs given in this section, Q may always 
be replaced by - Q at pleasure. 

Constitutive mappings whose values are tensors of odd order appear in theories of 
heat conduction, optics, etc. They are not invariant under change of the sign of Q. 

While some steps may be taken to delimit the class of all constitutive map- 
pings that satisfy Axioms Nl-N3, in this book we shall consider only simple 
materials. To this special class, which is still general enough to include all the 
older theories of continua and many of the more recent ones, we now address 
ourselves. 

3. Simple Materials 

The constitutive axioms N1 and N2 state that the history of the motion of an 
arbitrarily small neighborhood of a material point determines the stress at the 
place presently occupied by that point. The first approximation to the transplace- 
ment x ,  at X is provided, at each t ,  by the transplacement gradient F,(X, t ) ,  
the properties of which we have discussed in Section 11.5 and thereafter. Thus 
the history of F, , which we shall denote by F: , provides a first approximation 
near X to the history x: of the transplacement X, of 37. If a knowledge of 
this first approximation suffices to determine the stress at X, the corresponding 
material point X is called simple. Formally, (IV.2-1) becomes in this instance 

(IV.3- 1) 

Clearly the principles of determinism and local action, Axioms N1 and N2, are 
satisfied. We shall consider Axiom N3 presently. 

The mapping a, is called the response with respect to K .  If it is such as 
to satisfy Axiom N3, the Principle of Material Frame-Indifference, it defines 
a particular simple material; otherwise, it does not. The domain of its first 
argument, for fixed X, is a suitable class of histories of invertible tensors. Its 
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range is some subset of the set of all symmetric tensor fields over the present 
shape x(g7 t )  of g in 8. In other words, at a given time t and at a fixed place 
X in the reference shape it maps the history of an invertible tensor function of 
time onto a symmetric tensor at the place x presently occupied by X. 

As in Section 11.7, let X map the reference shape ~ 1 ( 9 ? )  onto another one, 
K Z ( # ) ,  and let P := VX. Thus P is a given function of X. Substituting (11.7-5) 
into (1) yields 

(IV .3-2) 

in a notation which omits the place X in K I ( ~ )  that the material point X 
occupies. Thus if for any invertible history F‘ 

a K 2 ( F f )  := aK,(F’Pl7 (IV. 3 -3) 

the constitutive relation (1) assumes the form 

provided now F be interpreted as the gradient of x K z  at X, and x = x K , ( X 7  t). 
Thus T is determined just as well by the history of the transplacement gradi- 
ent from ~ ~ ( 2 7 )  as by the history of the transplacement gradient from K 1 (#). 
Although the response GKZ is not generally the same mapping as is the re- 
sponse @K, , the existence of such a mapping is a fact independent of the choice 
of reference placement. Therefore, the definition of a simple material, while 
it mentions a reference placement, does not depend upon that placement and 
hence could be expressed without any use of reference placements. 

Homogeneous transplacements were defined and analysed in Section 11.12. 
A history F‘ of the gradient of a homogeneous transplacement can be constructed 
from any invertible tensor function F. By exhausting the class of histories of 
such transplacements, we exhaust the domain of the response aK ( -  , X). Thus 
the response of a simple material point is determined for  all histories by its 
restriction to the histories of gradients of homogeneous transplacernents. 

In laboratories of experimental mechanics great weight is laid upon homo- 
geneous transplacements, and the results of more complicated transplacements 
are commonly explained in terms of them. In this sense, though unconsciously, 
experimenters tend to presume that a material found in the laboratory may be 
modelled sufficiently well in the mathematical theory by some simple material. 
In this book we shall sometimes use the term “experiment” in an ideal sense. 
We shall imagine an experiment in which a subbody containing X is subjected 
to a particular transplacement history xr with respect to the reference place- 
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ment K ,  and we shall suppose that the resulting stress T is then measured. As 
x i  ranges over various transplacement histories, various values of T result. We 
shall describe the constitutive relation itself as expressing the outcome of these 
experiments. In this sense we may say that the material point X of the body 
9l is simple if the outcomes of all experiments at X are determined by the 
outcomes of all experiments on homogeneous transplacements of parts of 

near X .  In Section IV.9, so as to delimit the ideal experimental program 
suggested by this fact, we shall determine the homogeneous transplacements 
that can be produced by the action of uniform body forces. 

The definition of a simple material and its interpretations are independent 
of the choice of reference placement K .  The response aK with respect to K is 
not, nor are the experiments just mentioned. A homogeneous transplacement 
of K 1 (g) is not a homogeneous transplacement of K Z ( ~ )  unless K Z  o K r' is an 
affine mapping. The responses BK, and aK2 are in general different mappings, 
each being determined uniquely from the other by (3). 

Henceforth in this book we shall consider only simple materials. When, 
as will usually be the case, a reference placement K is selected once and for all, 
we shall write the constitutive relation (1) of a simple material in the abbreviated 
form 

T ( t )  = &(F'). (IV. 3-5) 

The theory of simple materials includes most of the common purely mechan- 
ical theories of continua studied in works on mechanics, engineering, physics, 
applied mathematics, etc. While modern studies of continuum physics include 
microstructure, electromagnetism, chemical reactions, diffusion, and relativis- 
tic phenomena, we shall not consider those in this book. Modern continuum 
thermomechanics incorporates the effects of heating and change of temperature, 
but those, too, this book will not go into. 

4. Some Classical Instances. Specimens of the Effect of the 
Principle of Material name-Indifference 

In this section we shall define some of the special materials, the theory of 
which furnished the main subject of study in continuum mechanics in former 
times, and we shall use them to illustrate the power of the Principle of Material 
Frame-Indifference to reduce the apparent generality of a class of hypothetical 
constitutive relations. The reader who is already familiar with classical theo- 
ries or who desires only a consecutive, systematic development of continuum 
mechanics should skip this section and pass to the next. 
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An elastic material is defined by the instance in which the mapping 8 in 
(IV.3-5) reduces to a function Q of the present transplacement gradient F(X, t ) ,  
irrespective of the values F'(X, s) of the history F' in the past; i .e.,  when 
s >o ,  

(IV.4-1) 

Q(. , X) being a function which maps invertible tensors F onto symmetric tensors 
T. Not all such functions define elastic materials, however, since the Principle 
of Material Frame-Indifference, stated in Section IV.2 as Axiom N3, is not 
satisfied unless Q is of a special kind, as delimited in the following 

Theorem (CELLERIER, RICHTER). Let the polar decomposition of the 
transplacement gradient be F = RU. Then the constitutive relation of an 
elastic material is of the form 

T = RQ(U, X)RT. (IV.4-2) 

in which Q( -, X) maps positive, symmetric tensors onto symmetric tensors. 
Conversely, any such Q serves by means of (2)  to define a particular elastic 
material. 

Proof. We invoke Axiom N3 only in a weakened form. Indeed, since (1) 
involves F' only through F, which is F'(O), we need specify nothing about the 
orthogonal tensor history Q' mentioned in Axiom N3 except its present value 
Q'(O), which we shall denote by Q. Under a change of frame F obeys the 
transformation rule (11.14-7). Thus, according to (IV.2-6), 

(IV.4-3) 

X being omitted from the notation since it is held fixed in this proof. The 
functional equation (3) must hold for all orthogonal Q, all orthogonal R, and 
all positive and symmetric U .  In particular, (3) must hold if we choose Q = RT. 
Hence (2) follows as a necessary condition. That it is also sufficient, is trivial 
to verify. A 

The elastic material is of intrinsic interest because it is the simplest example 
of a simple material that springs to mind, as natural to mechanics as is the 
circle to geometry. The constitutive relation (1) provides a precise, generalized 
formulation of HOOKE'S "ut tensio sic vis." Moreover, many real materials 
conform with it roughly when JU - 11 is sufficiently small- for glass, very small 
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indeed at room temperature, and for rubber, many times larger. Furthermore, 
if we apply (IV.3-5) to any constant history F' = Fo , say, it reduces to (1). 
Thus, in problems of statics every simple material behaves like a corresponding 
elastic material: The statics of simple materials is elastostatics. This obvious 
fact has many important consequences in the theory of simple materials. 

If fi(U) = g(det U)l, then (2) reduces because of (11.9-8) to 

p is the pressure function, which, as the notation indicates, determines the 
pressure field from the density field. The material so defined is called an elastic 
fluid or idealfluid or Eulerian fluid; it provides the basis for much of the 
classical theory of compressible fluids. 

As we have remarked before, the velocity field of a motion is called a flow. 
The term "flow" also has a popular or physical meaning, and so as to reconcile 
common language with kinematics, sometimes the capacity of a fluid to flow 
is attributed to its failure to sustain shear stress when at rest in any placement 
whatever. We shall see below in Section IV. 17 that this property, while common 
to all simple fluids, does not suffice to define them. The Eulerian fluid satisfies 
it a fortiori, since it never sustains shear stress, whether it be at rest or in 
motion. 

A class of materials more general than the Eulerian fluids and also not 
subsumed under elastic materials may be defined by the functional relation 

the first argument, G, being the velocity gradient (11.11-7). We shall see now 
that the Principle of Material Frame-Indifference forces the last three arguments 
to drop out and imposes further restrictions upon the function r. Indeed, Axiom 
N3 requires that for an arbitrary orthogonal tensor function of time Q ,  an arbi- 
trary place-valued function of time g , an arbitrary place w ,  and an arbitrary 
constant a, the function r shall satisfy for all arguments G, p,  x, x, t the identity 

r(G, p,  x, x, t )  

= Q't(D* + W * ,  p * ,  x* ,  x* ,  t*)Q, 

= Q'r(QDQ' + QWQ' + A, p,  

Qx + % + A(x* - ~ o * > ,  XC; + Q(x - XO), t + a)Q, (IV.4-6) 

to explicate which we have used (11.11-8), (11.14-13), (1.9-ll), and (1.9-14). 
Let us consider particular, fixed arguments G, p ,  x, x, t and choose a function 
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Q such that Q ( t )  = 1, A = Q ( t )  = -W; a function x$ such that x:( t )  = 

-x -A(%* - g ( t ) ) ,  x;(t) = xo - (x - X O ) ;  and a constant a such that a = - t .  
Then (6)  yields the following necessary condition at each argument of r: 

r(G, P ,  x, x, t )  = r(D, P ,  0, xo , O), (IV.4-7) 

in which xo is any fixed place. Thus r reduces to a function of D and p alone: 

Roughly, we may describe the formal reasoning just given as showing that 
since the spin and the velocity may be transformed away by a suitable change 
of frame, and since any place and time may similarly be transformed into any 
other, these four arguments cannot enter a frame-indifferent constitutive relation 
of the presumptive class asserted by (5). But that is not all. If we substitute (8) 
back into (6) ,  we obtain the relation 

MQDQ', P )  = QW, p)QT. (IV.4-9) 

This identity must be satisfied by all symmetric tensors D and all orthogonal 
tensors Q. Conversely, if it is satisfied, so also is (6). Thus we have the following 

Theorem (NoLL). In order that the relation ( 5 )  satisfy the Principle 
of Material Frame-Indifference, it is necessary and sufficient that r reduce 
to a function 4 of D and p alone and also satisfy (9) as an identity in Q 
and D. 

A function 4 that maps tensors onto tensors and satisfies the functional 
equation (9) is called isotropic. In a sense which we shall make precise in 
Section IV. 14, NOLL'S theorem asserts that all materials whose constitutive 
relations are subsumed under ( 5 )  are isotropic materials. 

A material having a constitutive relation in the class defined by (5) when r 
is made to be an affine function of its first argument is called a linearly viscous 
fluid. By NOLL'S theorem, such a fluid must have a constitutive relation of the 
form inferred by STOKES: 

T = 4(D, P ) ,  (IV .4- 10) 

in which 4 is an affine, isotropic mapping of the set of symmetric tensors into 
itself. 
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We shall now determine the most general function of that kind. For later use 
we shall at first leave aside the condition that $ be affine. The dimension of the 
vector space considered, so long as it be finite, plays no part in the conclusions 
or the analysis. 

Transfer Theorem (RIVLIN & ERICKSEN, SEWN, NOLL, Guo). Let $ map 
tensors onto tensors. If A and AT have a common proper vector e, and if 
for all orthogonal Q 

MQAQ') = Qb(A)QTy (IV.4-11) 

then e is a proper vector of both $(A) and $(AT). 

Proof. Let e be a unit proper vector of A, and let & be the reflection 
across the plane normal to e: 

% = 1 - 2 e @ e .  ( IV .4- 1 2) 

Then for any A 

%AR: = A  -2e@ATe -2Ae@e+4(eeAe)(e@e). (IV.4-13) 

If A and AT have a common proper vector e, their corresponding proper num- 
bers are the same, and so it follows that 

&AR: = A. (IV .4- 14) 

Since & is orthogonal, (1 1)  requires that 

the second step being a consequence of (14). Thus & commutes with $(A), 
and so 

%$(Ale = W ) % e  = -$(Ale. (JV .4- 16) 

That is, & transforms $(A)e into its negative. Hence $(A)e is parallel to e. 
Similarly, e is also a proper vector of $(AT). a 
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Among the tensors to which the transfer theorem applies are those that are 
symmetric, skew, or orthogonal. 

The transfer theorem is widely useful. In this volume we make only one 
application of it, which follows now. 

Theorem (CAUCHY). In order that a function 8 mapping symmetric 
tensors onto symmetric tensors be both isotropic and affine, it must have 
the representation 

4(A) = (a + P t r A ) l +  yA, (IV .4- 17) 

in which a, 0, and y are constants. Conversely, i f (  17) holds, l) is isotropic 
and affine. 

Proof (GURTIN). The projection Pe has as proper vectors e itself and all 
vectors normal to e. By the transfer theorem, these are proper vectors of $(Pe). 
The spectral representation of f)(Pe) is therefore 

@(e) being the proper number that corresponds to the vectors normal to e, and 
P(e) + y(e) being the proper number that corresponds to e. It is sufficient to 
restrict the argument of and y to unit vectors. I f f  is any unit vector, there is 
an orthogonal tensor Q such that Qe = f .  Then Pf = QPeQT. Using this fact 
and (1 1) and then appealing to ( 18) twice, we show that 

(IV .4- 19) 

Because 1 and Pf are linearly independent, 

Since e and f are any two unit vectors, 

tensor K and a linear function 1 such that 

and y are constants. 
Suppose now that is an affine function. Then there is a constant symmetric 

f i = K + l ,  (IV.4-21) 
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K + I(QAQ') = QKQ' + QI(A)QT (IV .4-22) 

for all symmetric A and for all orthogonal Q .  Since I is linear, I(0) = 0. 
According to (22), then, the constant symmetric tensor K commutes with every 
orthogonal tensor. 

Exercise W.4.2.  If K commutes with every orthogonal tensor, then 

K = al .  (IV.4-23) 

Thus the linear function I in (21) must satisfy (1  1). The fact that it is linear 
allows us to conclude from (1 8) that 

n 

n 

k=l 

= P(tr A)1+ yA, (IV.4-24) 

the numbers a1 , a 2 , .  . . ,an being the latent roots of A. Putting (23) and (24) 
into (21) shows that IJ must have the form (17). 

Conversely, it is plain that (17) is an isotropic affine function for every 
choice of a, 0, and y .  

By combining the theorems of CAUCHY and NOLL we obtain the following 

Theorem (STOKES). The constitutive relation of a linearly viscousfluid 
is 

T = (-p +ht rD)1+2pD,  (IV .4-25) 
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in which p ,  X, and p are functions of p .  Every such relation defines a 
linearly viscous fluid. 

The theory based on (25) is called the Navier-Stokes Theory of Fluids; 
under various hypotheses, (25) or major special cases of it were derived by 
NAVIER, CAUCHY, ST. VENANT, and STOKES. The coefficients X and p are called 
the viscosities of the fluid. In rigid motions the Navier-Stokes Theory reduces 
to Eulerian hydrodynamics, and so the fluid it defines exhibits the phenomenon 
of “flow” in the sense described above, namely, in a state of rest it can sustain 
only hydrostatic stress. If X = p = 0, the linearly viscous fluid reduces to an 
elastic fluid, and for this reason elastic fluids are sometimes called “inviscid” 
or “perfect”. 

A material slightly more general than any of those introduced so far in 
this section is defined by reducing the mapping in (IV.3-5) to a function of 
F(X, t )  and F(X, t )  which is affine in F: 

T = K(F, X)[F] = L(F, X)[Gl; (IV.4-26) 

the second form follows from the first by (11.11-5), and the domain of the affine 
operator L, indicated by the brackets, is the space of tensors over Y. Such a 
material is called linearly viscous. 

Exercise ZV.4.2. 
Indifference if and only if 

The relation (26) satisfies the Principle of Material Frame- 

RTTR = M(C, X)[RTDR], (IV.4-27) 

M(C, X) being an affine operator on the space of symmetric tensors over V‘ 

BOLTZMANN’S accumulative theory of visco-elasticity is obtained if we sup- 
pose the mapping 8 in (IV.3-5) to be expressible as an integral from s = 0 to 
s = 00. In this case, too, the Principle of Material Frame-Indifference imposes 
a restriction upon the class of putative constitutive mappings, but we defer to 
Volume 3 the appropriate reduction. 

In the Boltzmann theory, as in the theory of elasticity, a further simplification 
is often attained at the cost of supposing that (F - 11 or some measure of the 
magnitude of F‘ - 1 be small in some sense. Approximations of this kind make 
it easier to solve some special problems but are more confusing than helpful in 
analysis of the general theory. 

Exercise IV.4.3. Other than a constant multiple of 1, there is no affine function 
fi in (1) that satisfies the Principle of Material Frame-Indifference. (Do not confuse this 
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condition with that of taking the restriction of a to positive symmetric arguments as 
affine.) This fact may be interpreted in terms of the theory of elasticity. 

In this section we have defined and named some of the most important special 
materials of old. Also, we have illustrated the force of the Principle of Material 
Frame-Indifference by showing how it serves to delimit those mappings that 
may enter a putative class of constitutive relations. In the next section we 
shall encounter a more general argument of the same kind, an argument which 
applies to all simple materials. 

5. Material Frame-Indifference. Reduced Constitutive Relations 

According to Axiom N3, the response 9 must be such as to make the con- 
stitutive relation (IV. 3-5) satisfy the Principle of Material Frame-Indifference. 
Under the change of frame (11.14-3) the transplacement gradient F obeys the 
transformation rule (12.14-7), and hence its history F' obeys the rule 

Q' being the history of the orthogonal tensor function Q occurring in (11.14-3), 
while the stress tensor T satisfies (IV. 1-1). Hence in order that Axiom N3 hold, 
8 must be such that 

@(Q'F') = Q(t)@(F')Q(t)' (IV .5-2) 

for every orthogonal tensor history Q' and for every invertible tensor history 
F' in a suitable class. Here Q(t)  is the present value of the function Q ,  so that 
Q'(0) = Q(t) .  Conversely, if ( 2 )  is satisfied, so is Axiom N3. 

Following an analysis first given by NOLL, we can solve the equation (2) for 
8, once and for all. Indeed, by the polar decomposition theorem (11.9-1) we 
see that F' = R'U', so that (2) becomes 

Q(t)'@(Q'R'U')Q(t) = @(F').  (IV.5-3) 

We may now choose the orthogonal tensor history Q' in such a way that Q'(s) = 
R'(s)', 0 6 s < 00. Hence Q(t )  = R(t)', and (3) becomes 

8 ( F ' )  = R(t)@(U')R(t)'. (IV .5-4) 
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Conversely, if (4) holds, it is easy to show that Axiom N3 is satisfied. We have 
proved the following 

Reduction Theorem (NoLL). Let 8 denote a mapping of positive 
symmetric tensor histories onto symmetric tensors. Then every constitutive 
relation for  a simple material is of the form 

T ( t )  = R(t)B(U')R(t)T, (IV .5-5) 

and conversely, any such mapping defines a simple material. 

A constitutive equation of this kind, in which the mappings or functions 
occurring are not subject to any further restriction upon the class of putative 
responses set down for study, is called a reduced form. 

The reduction ( 5 )  shows that while the stretch history U' of a simple ma- 
terial may influence its present stress in any way whatever, past rotations have 
no influence at all. The present rotation R enters (5) explicitly. Thus the re- 
duced form enables us to dispense with considering rotation in determining the 
response to a motion. If we like, we may regard (4) as effecting an extension 
of 8 from a domain of positive, symmetric tensor histories to the full domain 
of invertible tensor histories. In writing it and similar formulae henceforth we 
shall usually omit the argument t of T ,  U, R, etc., although of course t must 
still appear in the notation for histories U', etc. 

The reduced form enables us also, in principle, to reduce the number of 
tests needed to determine the response 8 by experiment. Indeed, consider pure 
stretch histories: R' = 1. If we know the stress T corresponding to an ar- 
bitrary, homogeneous, pure stretch history U',  we have a relation of the form 
T = 8(U'). By (5) we then know T for all deformation histories. Alternatively, 
consider irrotational histories: W = 0 .  Given any U',  we can determine R' by 
integrating (11.11-26)~ with W set equal to 0. If we know the stress correspond- 
ing to an arbitrary irrotational history, by putting the corresponding values of R 
into (5) we can again determine 8. Thus we may characterize simple materials 
in either of two more economical ways: A material is simple i f  and only i f  its 
response in general is determined by its restriction to homogeneous, pure 
stretch histories, or to homogeneous, irrotational histories. 

In the polar decomposition (11.9-1) two measures of stretch, U and V, are introduced. 
Kinematically, there is no reason to prefer one to the other. From (4) we see that use 
of U as a measure of stretch history leads to a simple reduced form for the constitutive 
equations of simple materials. If we like, of course we may use V instead. Since U' = 
(R')TV'R', substitution into (4) shows that by using V we do not generally eliminate 
the rotation history R. Consequently, use of V does not lead to a simple statement. 



216 I v  . CONSTITUTIVE RELATIONS 

There are many other tensors that measure stretch just as well as U and V. In the 
older literature one or another of these is called a “strain” tensor, but the term “strain” 
has led to such confusion that we are better advised to avoid it altogether. 

Exercise ZV. 5.2. Had we started from a relation of the form 

T(X, t )  = @(F‘, X, X, X, t )  (IV .5-6) 

as the definition of a simple material point, the Principle of Material Frame-Indifference 
would have reduced it to our actual starting point (IV.3-1). (Cf. the analysis of the 
assumption (IV .4-5) in Section IV.4.) 

Exercise ZV.5.2. All the reductions obtained in Section IV.4 are in fact instances 
of the reduction indicated in the preceding exercise, followed by the reduction of (IV.3-5) 
to ( 5 ) .  

There are infinitely many other reduced forms for the constitutive relation 
of a simple material. Since C‘ = (U‘)2, one such form is 

T = RUU-~~(JC‘)U-WR~, 
= Fg( C‘ )FT , 

g being defined as follows: 

@(C‘) := &-‘a( Jct)dE’. 

(IV .5-7) 

(IV .5-8) 

In Section 11.8 we constructed the kinematical apparatus for using the actual 
placement as the reference placement. It is natural to ask if the response of a 
simple material can be described entirely in terms of this apparatus. Of course 
the answer is no, but an analysis due to NOLL shows just how far we can go 
toward expressing the constitutive relation in terms of F$ rather than F‘. To do 
so, we note from (11.8-7) and (11.9-1) that for given X 

Thus 

In the notation (11.10-1) for histories, (10) reads as 

F‘ = R: R(t)[R( t)TU$ R( t)]U( t ) ,  

(IV .5- 10) 

(IV.5-IOA) 
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and so if 

Q'(s> := (R:(s)R(t))T, (IV.5-11) 

we obtain 

Q'F' = R(t)TU:R(t)U(t). (IV .5- 12) 

We may write the requirement of frame-indifference (2) in the equivalent form 

WF') = Q(t)'@(Q'F')Q(t) VQ'. (IV.5- 13) 

With the choice of Q' given by ( 1 1 )  we have Q(t) = R(t)T, and so (12) and 
(13) yield 

RTTR = O(RTU:RU). (IV .5- 14) 

Because the right-hand side of this equation may be thought of as the value of a 
mapping of two arguments, RTU:R and U, a more useful equivalent expression 
in terms of C: and C(t) is 

RTTR = J)(RTC:R, C). (IV. 5- 15) 

NOLL'S reduced forms (14) and (15) show that it is not possible to express the 
effect of the transplacement history in determining the stress entirely by refer- 
ence to the present shape. While the effect of all the past history, 0 < s < 00, 

is accounted for in this way, a fixed reference placement is required, in general, 
to allow for the effect of the deformation and rotation at the present instant, as 
shown by the appearance of R and C in (15). The relative rotation Rt has no 
effect at all. 

We conclude this section by remarking upon an important instance. A ma- 
terial point is said to have a placement at ease K O  if the stress vanishes when 
a neighborhood of that point has been held at rest in K O  at all times, past and 
present. In general, of course, a material point need not have any such place 
ment, as is shown by the case of an Eulerian fluid, defined by (IV.4-4), since 
usually the pressure function p is assumed to be such that p ( p )  > 0 unless 
p = 0, the exception p = 0 being excluded because it violates the condition 
(11.2-5). When a placement at ease K O  exists, if we choose it as the reference 
placement K we obtain 

8(1') = 0, (IV .5- 16) 
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1' being the history up to the time t of the tensor function F such that F ( t )  = 1 
for all times t .  By (2) we see that 

@(Q') = 0 .  (IV .5- 17) 

Thus any rotation, constant or varying in time in any way, carries one 
placement at ease into another. The converse is not true, for a material point 
may have two distinct placements at ease that are not obtained from one another 
by a rotation. 

In this book we shall not assume in general that any material point has a 
placement at ease. 

6. Internal Constraints 

So far, we have been assuming that the material is capable, if subjected to 
appropriate forces, of undergoing any smooth deformation. Such a material is 
said to be unconstrained. An a priori restriction of possible transplacements at 
interior points of x(B,  t )  for all t in the domain of ~(93, .) is called an internal 
constraint; a material subject to one or more internal constraints is said to be 
constrained. An elastic constraint is expressed by requiring the transplacement 
gradient F to satisfy an equation of the form 

y ( F )  = 0, (IV .6- 1) 

where y is a scalar function. The set of transplacement gradients satisfying (1) 
is called the constraint set. This set must be frame-indifferent in the sense that 
if it contains a particular transplacement gradient F, then it contains also QF for 
all orthogonal Q .  This condition is satisfied if y is a frame-indifferent function. 

More generally, a simple mnstruint' is expressed by a relation like (1) except that 
the argument F is replaced by F'. In this book the only constraints we shall study are 
elastic constraints. 

Exercise ZY.6.l. y is frame-indifferent if and only if 

'Simple constraints were introduced and studied by S. ANTMAN, "Material constraints in con- 
tinuum mechanics," Atti della Academia Nazionale dei Lincei, Rendiconti, Classe di Scienze 
fisiche, matematiche e natumli (8)70( 1981): 256-264. 
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Hence an elastic constraint may be written in the form 

A(C) = 0, (IV.6-3) 

where X is a scalar function. Let A have been determined, and let f be any real function 
that vanishes at 0 only. Then F satisfies the frame-indifferent elastic constraint ( 1 )  if and 
only if it satisfies f(A(C)) = 0. 

If we differentiate (3) with respect to time at a given material point, we 
obtain 

A = &A(C).C = 0. (IV .6-4) 

That is, in view of (II.ll-26)l , 

(FdcX(C)FT)-D = 0 (IV.6-5) 

for F compatible with the constraint and for all D corresponding with such F. 
Conversely, if (5) holds at each instant for the material point in question, by 
integration we conclude that X(C) = const.; therefore, (5) asserts that if (3) 
holds at one instant, it holds always. Thus (5) may be used alternatively as a 
general expression for a frame-indifferent elastic constraint. 

In all examples so far found to be of interest, for every positive C satisfying 
(3) 

acxcc> + 0, (IV .6-6) 

and we shall consider only constraints of this kind. Because F&X(C)FT is a 
symmetric tensor, we may interpret (5 )  as requiring all D corresponding to F 
to lie in a certain five-dimensional plane determined by C. 

7. Principle of Determinism for Constrained Simple Materials 

Constraints, since they assert that some kinds of deformation cannot occur, 
must be maintained by forces. Since the constraints, by definition, are im- 
mutable, the forces maintaining them cannot be determined by the motion itself 
or its history. Internal constraints must be maintained by appropriate stresses, 
and the constitutive equation of a constrained material must be such as to allow 
these stresses to operate. 

For constrained materials, accordingly, the principle of determinism must 
be relaxed. A fortiori, the necessary modification of that principle cannot be 
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deduced from the principle itself but must be brought in through a more general 
axiom. 

There are, presumably, many systems of forces which could effect any given 
constraint. The simplest are those whose power vanishes in any motion compat- 
ible with the constraint. In a constrained material stresses that do no work will 
therefore be assumed to remain arbitrary in the sense that they generally will 
be conditioned by the transplacement history but not entirely determined 
by it. 

Thus we have given reasons for laying down the following 

Axiom Nlc (Principle of Determinism for Simple Materials Subject 
to Constraints). The stress is determined by the history of the transplace- 
ment gradient only to within an arbitrary tensor that does no work in any 
motion compatible with the constraint. That is, 

T = N + 8(Ft) ,  (IV.7- 1)  

N being a stress for which the stress-power vanishes in any motion satis- 
fying the constraint. The determinate response C4 need be defined only for  
arguments F' such as to satisfy the constraint. 

It is understood here that 6 is not unique but that for each X in the reference 
placement K a particular 8 may be selected. Thus far, 8 depends upon K . 

The definition 

S : = T - N  (IV.7-2) 

gives the determinate stress S: It is  the value of the response 8, which appears 
in (l),  for the history F' of the transplacement gradient under consideration. 
Axiom Nlc generalizes Axiom N1 of Section IV.2 and reduces to it when no 
internal constraint is imposed, for then the only stress that never does work is 
0. 

As has been stated already, in this book we consider only elastic constraints. 
The problem now, given an internal constraint X, is to find the N that 

corresponds with it. The stress-power w of a symmetric stress tensor T in a 
motion with stretching D is given by (111.6-13). Accordingly, we are to find the 
general solution N of the equation 

N.D 10 (IV.7-3) 
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if D is any symmetric tensor that satisfies (IV.6-5). Hence the symmetric tensor 
N must be perpendicular to every vector D that is perpendicular to FdcX(C)FT. 
Thus N is parallel to this latter vector: 

N = qFdch(C)FT, (IV .7-4) 

q being an arbitrary scalar field. This formula provides the general solution of 
(3). 

If there are k constraints Xm(C) = 0, m = 1, 2 , .  . . , k, then 

k 

N = CqmFdchm(C)FT. (IV. 7-5) 
m=l  

That is, the symmetric tensor F-lN(F-')T must lie in the span of the k symmet- 
ric tensors dcXm(C), m = 1, 2 , .  . . , k. If the k tensors dcXm(C) are linearly 
independent, their span is a k-dimensional plane. If k 2 6, no restriction upon 
N results. Thus in a material subject to 6 or more constraints with linearly 
independent gradients, the stress is altogether arbitrary. 

The argument given here applies at a single material point. Usually the 
same constraints will be laid down for all points of a body. In that case (5) will 
result for each, but the theory does not require that the quantities qm in (5) for 
the several points be related to one another in any particular way. In order to 
obtain a constitutive relation leading to definite solutions of specific problems it 
is customary to assume that each multiplier qm is a smooth field q m ( x ,  t )  on the 
present shape of 9. Substitution into (1) yields the general constitutive equation 
for simple material subject to k simple, frame-indifferent, elastic constraints. 

The determinate response @(F') may be expressed in reduced forms like 
those found in Section IV.4 for unconstrained materials. 

We now consider some examples of constraints. 

1. Incompressibility. A material is said to be incompressible if it can 
experience only isochoric motions. By (11.5-10) and (II.9-7)g , an appropriate 
constraint function for an incompressible material is 

X(C) = det C - 1. (IV.7-6) 

Because 

FdcX(C)FT = FC-'FT det C = 1, (IV.7-7) 
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(4) yields 

(IV .7-8) 

where p is an arbitrary scalar. Thus we have verified a statement due in effect to 
POINCAW? In an incompressible material the stress is determined by the his- 
tory of the transplacement gradient only to within an arbitrary hydrostatic 
pressure. 

2. If e, is a unit position vector in the reference shape 
~(g), Fe, is the vector e into which it is carried in a homogeneous transplace- 
ment with gradient F, as we have seen in Section 11.12. Accordingly, for a 
material inextensible in the actual direction e an appropriate constraint func- 
tion is 

Znextensibility. 

h(C)=(Fe,I 2 - l = e , - C e ,  - 1 .  

Because 

dcX(C) = e, @ e x ,  

(4) yields 

N = gF(e, 8e,)FT = qe B e .  

(IV .7-9) 

(IV. 7- 10) 

(IV.7-11) 

Since N is an arbitrary uniaxial tension in the direction of e, we recover a 
conclusion due to ADKINS & RIVLIN: In a material inextensible in a certain 
direction, the stress is determined by the history of the transplacement 
gradient only to within a uniaxial tension in that direction. 

A material is rigid if it is inextensible in every direction. 
By the theorem just established, the stress in a rigid material is determinate 
only to within an arbitrary tension in every direction. Therefore, the stress in 
a rigid material is altogether unaffected by the motion. That is to be expected 
in view of the fact, demonstrated in Section 1.13, that the rigid motion of any 
body is determinable without knowledge of what the stress may be. 

A body of rigid material is a rigid body in the sense defined at the end of 
Section I. 10. 

3 .  Rigidity. 

Exedse ZV.7.2. For incompressible materials there are counterparts of the re- 
duced forms (IV.5-5), (IV.5-7), (IV.5-14), and (IV.5-15). The constitutive relation of 
an incompressible elastic material is of the form 

T = -pl +Rg(U)RT, IdetUI = 1; (IV. 7- 12) 
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of an incompressible, elastic fluid, 

T = -pl; (IV.7- 13) 

of an incompressible, linearly viscous fluid, 

T =  - p l + 2 y D ,  t r D = 0 .  (IV .7- 14) 

In all three cases the hydrostatic pressure p is indeterminate in the sense that it may 
be assigned independently of the history of the motion. Conversely, any relation having 
one of the above three forms defines, respectively, an incompressible elastic material, 
an incompressible elastic fluid, and an incompressible linearly viscous fluid. 

For future reference we note that the constitutive relation of an incompress- 
ible material is 

T = - p l  +S,  S = @(F'); (IV .7- 15) 

the response 8 need not be defined except for arguments such that ldet Ff I=1. 

Exercise ZV. 7.2 (Energy theorem for incompressible fluids in classical hydro- 
dynamics). All motions of an incompressible, elastic fluid body 9 are mechanically 
perfect. When 9 is subject to conservative body force, the conclusions of Exercise 
111.6.5 show that 

K + U = const. (111.6- 1 8)r 

if on d x ( 9 ,  t )  the pressure is everywhere constant or the velocity is everywhere tan- 
gential (a more general statement of this kind is given below in Volume 3). 

8. Simple Bodies. Equations of Motion. Homogeneous Universal 
Transplacements, Motions, and Flows 

A body 37 all of whose points are of a single, simple material is a simple 

A simple body, be it unconstrained or constrained, is homogeneous if there 
is a reference placement K such as to render the response 8 in (IV.3-5) or 
(IV.7-15) independent of the reference position X. Such a K is a homogeneous 
reference placement. For an unconstrained body, the constitutive relation is 
(IV.3-5), and the equation of motion is 

M Y .  

px = div 8(F') + pb. (IV.8- 1) 
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We think of b as given-typically, as being a constant vector or even 0-and 
then (1) becomes a condition on the transplacement x r  . In the older theories 
this condition is a differential equation of second order in the time and the co- 
ordinates, separately or jointly. In general, it is a differential-functional equation 
which in view of the reduced form (IV.5-5) is never linear in the derivatives 
with respect to spatial co-ordinates. The resources of analysis are far from 
sufficient today to approach the general solution of initial-value or boundary- 
value problems stated through such equations except for a few particular kinds 
of body. Nevertheless, a great deal is known about particular solutions for 
particular classes of responses 8, and the rest of this book is devoted to proof 
and explanation of some of these now known theorems of rational mechanics. 

We have just made it plain that a constrained body is by no means a special 
case of an unconstrained one. Rather, the reverse holds, and the unconstrained 
body emerges as special. The behavior of a constrained body is not the same 
as that of any corresponding unconstrained one which happens to experience a 
motion satisfying the constraint. For example, if an unconstrained body happens 
to have been subjected to an isochoric transplacement history, the stress field 
on its present shape is determined by that history. An incompressible body, 
by definition, can never be subjected to anything but isochoric transplacement 
histories, but its stress field is never completely determined by them, being 
always indeterminate to the extent of an arbitrary hydrostatic pressure field. 
We shall see below in this section an example to show how this hydrostatic 
pressure field, to within a function of t only, can be determined by the principle 
of balance of linear momentum. More to this effect will be found near the end 
of Section IV. 10. 

Some recent writers on hydrodynamics are guilty of propagating bad English and 
hence confusion when they refer to “incompressible flows”. No such carelessness occurs 
in the classic treatises of LAMB and MILNE-THOMSON. A flow, in any sense of the term, 
cannot be compressed. A flow may or may not be isochoric, and a fluid may or may 
not be incompressible; the behavior of an incompressible fluid in a certain, necessarily 
isochoric flow is generally not at all the same as that of any compressible fluid undergoing 
the same isochoric flow. 

A constrained body is susceptible of a smaller class of deformations than 
is an unconstrained one. Corresponding to this restriction are certain arbitrary 
stresses, arbitrary in the sense that they are not determined by the deformation 
history. When we seek to determine whether or not a given deformation history 
of a constrained body be compatible with the axioms of mechanics and an 
assigned body force, the presence of these arbitrary stresses gives us greater 
freedom than for an unconstrained body undergoing the same transplacement 
history subject to the same body force. In this sense a single transplacement 
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history satisfying a certain internal constraint will correspond with infinitely 
many different stress fields, provided it correspond with any at all. Roughly, we 
may say that while a constrained body is susceptible, by definition, to a restricted 
class of transplacement histories, it is easier to solve problems concerning those 
histories for a constrained body than for a corresponding unconstrained one. 
We shall frequently illustrate this evident but important fact. 

The extreme case is furnished by the rigid body, whose allowed transplace- 
ments reduce to so special a class that the stress, whatever it may be, has no 
effect at all on the motion of the body, which can be determined by solving 
ordinary differential equations expressing no more than the principles of linear 
and rotational momentum for the whole body, with no reference to what the 
actions of its subbodies upon one another may or may not be. 

The most useful constrained body is the incompressible one. To obtain the 
equation of motion for it, we substitute (IV.7-15) into CAUCHY'S First Law and 
so obtain 

p(x - b) = - gradp + div@(F'). (IV, 8-2 )  

If a field p satisfies this equation, so also does p + h for an arbitrary function h 
of t alone. This arbitrariness must arise because any uniform pressure applied 
to the boundary of an incompressible body exerts no resultant force or torque 
on that body. 

If we suppose b given, x K  must satisfy (1) for an unconstrained body, ( 2 )  
for an incompressible one. In the former all fields x K  are eligible to compete, 
and few will be found successful. For the latter, only those fields x K  such that 
det F' = 1 are allowed, but the scalar field p may be adjusted to aid in finding 
a solution. The condition upon the motion alone is now 

skw grad[div @(F') - p(x  - b)] = 0, (IV .8-3)  

a differential-functional equation of order higher than that of (1). If this condi- 
tion is satisfied, then locally p(x - b) - div@(F') has a potential, from which 
the pressure p required to complete the solution of ( 2 )  is easy to obtain. 

To see the effect of this difference, we restrict attention to homogeneous, 
incompressible bodies. The term homogeneous applied to an incompressible 
body will be taken to mean not only that the response aK does not depend upon 
X but also that pK is an assigned, positive constant. The reference placement K 

will then be called homogeneous for 37, and it is motions homogeneous with 
respect to such a K that we shall consider. We shall write p for pK and u for 
1 / p K  . Furthermore, we shall assume the body force lamellar with potential a. 
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With the definition 

4 :=pu +a, (IV .8-4) 

we reduce (2) to 

x = -grad 4 + u div @(F'). (IV.8-5) 

Because w and u are given, p is determined from 4 through (4). Referring 
back to (IV.7-15), we thus determine the entire stress field: 

T = -p(+ - a)l + @(F'). (IV. 8-6) 

We note that p and a enter the equation of motion only through the combi- 
nation denoted by 4. Suppose, now, that for a given incompressible body, that 
is, for a given response @ and a given density p,  a certain isochoric transplace- 
ment history satisfy (5) with a certain pressure field p1 and a certain field of 
body force having the potential wl . Let p2 and a 2  be any scalar fields such 
that 

P 2 + p a 2 = p l + p a l .  (IV. 8-7) 

A glance at (4) shows that the equation of motion ( 5 )  is satisfied when p1 
and a1 are replaced by p2 and a 2 .  Thus we have the following theorem, 
patterned upon a conclusion and argument given by EULER for ideal fluids: Let 
a homogeneous incompressible M y  of density p undergo a flow subject 
to pressure p1 and body force having the potential al . Then that body 
may undergo the same f low subject to pressure p2 and body force having 
the potential a 2  if 

P2 = P l  + d W l  - ad. (IV.8-8) 

When b = 0, the only forces applied to .!?8 from without are tractions 
upon the boundary ax@, t ) .  Thus we have the following corollary: A flow of 
a homogeneous incompressible M y  is possible subject to some lamellar 
Peld of body force Vand only i f  it is possible for that same body subject to 
surface tractions alone. Indeed, for surface tractions to suffice it is necessary 
and sufficient, starting from the flow subject to p1 and a1 , that we put a 2  = 0 
and so obtain p2 = p1 + p a l  . 

Since no more than adjustment of the pressure field is needed to convert the 
solution of a problem in which there is no body force at all into one in which 
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some lamellar body force is applied, there is little loss in generality in supposing 
that b = 0 when we treat problems concerning homogeneous, incompressible 
bodies; also there is scant gain in doing so. 

Exercise IV.8.1. Let two homogeneous, incompressible bodies have responses 0 
and (uI /uz)@ and specific volumes u1 and u2 , respectively. Then if the former body can 
undergo a flow subject to the pressure p 1  and to the body force having the potential 

, the latter body can undergo the same flow with uI , p1 , and ml replaced by u2 , 
p 2 ,  and 9 provided that 

P 2 V 2  + a 2  =plh fa1. (IV. 8-9) 

If, continuing to presume that b has a potential, we substitute (11.11-48) 
and (11.11-41) into (3, we obtain a useful form of the condition of integrability 
necessary and sufficient for 4 to exist: 

pw, = p ( W  + D W  + WD) = skwgraddivQ(F'). (Iv.8-10) 

When specialized to classical fluids this relation is often called "the vorticity 
equation". We shall use it much in Chapters VII and VIII. 

Exercise IV.8.2. For a motion of the incompressible body whose response is 8 
to preserve circulation, it is necessary and sufficient that for the F' giving rise to that 
motion 

skw grad div 8(F') = 0 (IV.8-11) 

and hence that during that motion there be a scalar field X such that 

div O(F') = -grad A .  

Because of ( 5 )  and (11.11-47) 

(IV. 8- 12) 

Pa being an acceleration-potential of the flow, and so use of (6) yields the 
following 

Theorem (COLEMAN & TRUESDELL). For the homogeneous, incompress- 
ible body whose response is Q, let a certain flow that preserves circulation 
be possible, subject to null body force. Then that f low is possible also for 
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arbitrary a, and 

T = - [ p ( P a  - W) - A11 + @(F'). (IV. 8- 14) 

In other words, if the incompressible body whose response is 8 may un- 
dergo a flow that is possible for an Eulerian fluid, both Pa and X will exist for 
it in that flow, w will be assigned, and the stress that the body will experience 
will be determined by (14) to within an arbitrary hydrostatic pressure dependent 
on time only. 

A careless glance might suggest that (14) merely repeats (6). That is not 
so. The latter reflects a condition of integrability for (5 ) ,  that is, for the scalar 
field 4, which is delivered by a theorem of existence and hence may be hard 
to determine simply. The former uses a theorem of existence for A, a potential 
of div 8 in the particular flow considered, while presuming the existence of a 
potential Pa for x. If an acceleration field is known, it is easy to determine 
whether Pa exists, and if it exists, to calculate it is straightforward. Below in 
Sections IV. 10 and IV. 15 the student will see several examples of a potential 
Pa calculated explicitly. 

A transplacement or motion or flow is called universal for a given class of 
bodies subject to a given class of body forces b if it satisfies the corresponding 
equation of motion with such b for all those bodies. When b is assigned, any 
corresponding universal transplacement or motion or flow may be produced 
by bringing to bear suitable surface tractions upon the boundary of the body 
in question. These tractions will vary in general from one body of the given 
class to another. If they can be measured in an experiment, they will provide 
information about the material of which the body made to undergo the known 
transplacement consists. 

Universal transplacements are centrally important because they suggest ex- 
periments in which the transplacement is known, at least approximately, from 
the outset. Then the analysis of experimental data is not complicated by the 
need to determine at the same time an unknown transplacement. Many of the 
particular solutions presented in textbooks of elasticity or fluid dynamics involve 
universal transplacements or motions. A famous example follows now. 

A homogeneous, incompressible Eulerian fluid has an assigned, constant 
density and the constitutive relation (IV.7-13); thus for it 8 = 0; hence we may 
take X = 0 in (12) through (14) and so obtain from the foregoing theorem the 
following celebrated 

Corollary (EULER). All flows of homogeneous incompressible Euler- 
ian fluids subject to lamellar M y  force are universal; they are the iso- 
choric flows that preserve circulation. The corresponding pressure fields 
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are given by 

pu = P, - a. (IV. 8- 15) 

Simple logic shows that if a motion is universal for a class of bodies 
and body forces, it must be universal for every subclass of that class. For 
example, a flow that is universal for the class of homogeneous, incompressible 
bodies subject to lamellar body force is also universal for incompressible, ho- 
mogeneous, Eulerian fluids subject to lamellar body force. Therefore, by the 
foregoing corollary, it must preserve circulation. Roughly speaking, the more 
general is the class of bodies and body forces, the fewer are its universal so- 
lutions. Finally, to show that a motion is not universal in some class, we need 
only exhibit one member of the class that does not satisfy the equation of motion 
defining that class. 

9. Universal Homogeneous lkansplacements of Unconstrained Bodies 

The constitutive relation of an unconstrained body with respect to the ref- 
erence placement K is 

(IV. 3- l)zr 

Therefore, as we have explained in Section IV.3, the restriction of the consti- 
tutive mapping of a body to the histories of transplacements homogeneous with 
respect to K determines its response to all transplacement histories altogether. 
Thus in an ideal program of experiment we should subject a body of given 
material to every transplacement of the form (cf. Section 11.12) 

x = xK(X,  t)  = xo(t) + F(t)(X - XO), detF(t) + 0, (11.12-1)r 

and record the stresses obtained. The results would amount to a determination of 
the response aK . We now ask whether such a program be possible in principle. 

Can the transplacement (11.12-1) be produced in a body of the material 
defined by (IV.3-l)? If the body force b in CAUCHY’S First Law (111.6-1) is 
disposable, the answer is of course yes. In contrast, while in considering the 
totality of dynamical processes we saw no reason to exclude any b, it is a 
different matter when we come to think about particular experiments, for only 
very special body forces are available in the laboratory. Practically speaking, 
a uniform field b = const. is all we are likely to be able to produce, unless 
we call upon electromagnetic forces, the effects of which are not taken up in 
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this book. We then ask whether the homogeneous transplacement (11.12-1) can 
be produced in the body defined by (IV.3-1)~ if suitable surface tractions be 
supplied. We shall approach the problem only for homogeneous bodies. 

In a homogeneous body undergoing a history of homogeneous transplace- 
ment, at each time the stress field T has the same value at every place, and 
so 

divT = 0. (IV .9- 1) 

The question we now put is, if the value of b is constant, is it possible to 
supply boundary tractions such as to produce the homogeneous transplacement 
(11.12-1) of an unconstrained simple body? Substitution of (1) into the equation 
of motion (IV.8-1) yields the condition 

pb = pX. (IV.9-2) 

This requirement is compatible with the motion (11.12-1) if and only if 

Hence 

F(t) = F o ( 1  + tFI), xo(t) = ;t2b + te + f ,  (IV.9-4) 

Fo being an arbitrary, constant, invertible tensor, F1 an arbitrary, constant ten- 
sor, e an arbitrary vector, and f an arbitrary, fixed place. 

Exercise ZV.9.2. In an interval of t in which 1 + tF1 is invertible 

G = FoFI(l+ tF~) - 'Fr l .  (Iv.9-5) 

The foregoing analysis shows that for unconstrained homogeneous bodies 
subject to constant body force, the homogeneous transplacements (II. 12- 
1) are possible if and only i f  they satisfy the restrictions (4). If they are 
possible, they are universal. 

by effecting all homogen- 
eous transplacements from K cannot be carried out. This conclusion does not 
mean that no method of determining aK may be found but merely that the vista 
of homogeneous transplacements, used to interpret the definition of a simple 
material, is not feasible for finding aK by experiment without use of artificial 
body forces. 

Therefore, the ideal program of determining 
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Once an F of the form (4)l be selected, by substituting F' into (rV.3-1)2 we 
obtain the stress required to effect the resulting universal transplacement in the 
body whose response is . To make bodies of different materials undergo one 
and the same universal transplacement, generally different fields of stress must 
be produced in them, and different fields of stress will act in their interiors. Thus 
universal motions bring into relief the effects of different constitutive relations. 

Motions satisfying (4) generally exist only for a finite interval of time. By 
assumption, det F(0) = det Fo + 0, and so (4) makes F invertible only so long 
as 

det(1 + tF1) =+ 0, (IV.9-6) 

that is, in an interval of time It- ,  t+[ containing 0 and such that - l / t  never 
equals a proper number of FI . Since F1 is an arbitrary tensor, perhaps singular, 
nothing can be said in general about its proper numbers. The possibilities that 
t -  = -00 or t+  = +oo are not excluded. E.g., in an isochoric motion of this 
class, 

IdetFoI = 1, det(1 +tF1) = 1, (IV.9-7) 

and the interval in which the motion exists is ] - 00, +00[. 

For some particular materials, limitation of t to a finite interval would not 
matter. Examples are the elastic materials and the linearly viscous fluids, defined 
above in Section IV.4. In contrast, the general constitutive relation (IV.3-5) for 
simple materials refers to the entire history F', and so for general considerations 
F1 must be such that t -  = -m. 

Exercise IV.9.2. The motions defined by (4) are isochoric if and only if 

ldet FO I = 1 ,  tr FI = 0, tr F: = 0, detF, = 0. (w.9-8) 

A counterexample shows that F: need not equal 0. 

If b = 0, we may rephrase the main conclusion from (3) and (II.12-17)2 
as follows: A homogeneous transplacement is universal for unconstrained, 
homogeneous bodies if and only i f  it is accelerationless. 

An important example is furnished by steady simple shearing, which has 
been used traditionally to illustrate various special theories in continuum me- 
chanics. Cartesian components of the flow are given by (11.11-17). In a suitable 
pair of Cartesian systems, one on ~(3? )  and one on x(g, t), the components of 
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[F] = 

the transplacement are 

XI  = x 1 ,  

X2 = x 2  + K t X l ,  

x 3  = x 3 .  

1 0 0  

K t  1 0 , b = o .  
0 0 1  

Thus 

and so 

(IV .9-9) 

(IV .9-10) 

and (8) is satisfied. In fact, F: = 0. Therefore, steady, simple shearing is a 
universal flow for homogeneous, unconstrained bodies; it arises from a universal 
transplacement with respect to a homogeneous reference placement. 

Another example is furnished by a homogeneous, irrotational, pure stretch: 
R = 1, W = 0, U = U( t). From (11.11-26)2 we see that U must satisfy the 
differential equation 

uu = uu. (IV.9- 12) 

Exercise ZV.9.3. The condition (12) holds if U has an orthogonal triad of proper 
vectors ek which are constant in time. Then 

(IV.9- 13) 

The corresponding homogeneous, pure stretch has constant acceleration if and only if 
% = const. and the uk are positive, affine functions of C. A rectangular block with faces 
normal to the ei is transformed by this motion into another such block at any time within 
the interval for which the motion exists. This motion is isochoric if and only if it reduces 
to a translation. 
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The two families of motions just exhibited are interesting members of the 
class of universal motions for homogeneous bodies subject to constant body 
force. 

The class of body forces for which some homogeneous transplacements 
are universal for homogeneous, unconstrained bodies is very limited, as the 
following exercise shows. 

Exemise ZV. 9.4. Use of (11.12-17) shows that for the homogeneous transplacement 
(11.12-1) to be possible in some one homogeneous, unconstrained body, b must satisfy 
the following condition: 

For such a b the homogeneous transplacements (11.12-1) are possible and hence uni- 
versal for homogeneous, unconstrained bodies if and only if 

F = B F ,  skwB=O,  j6 = b .  (IV .9- 15) 

As we shall see presently, the class of body forces compatible with univer- 
sal motions for homogeneous, incompressible bodies is much greater, and the 
class of universal motions, while of course comprising only isochoric ones, is 
otherwise much broader. 

10. Universal Homogeneous Transplacements of Incompressible Bodies 

We now determine all homogeneous transplacements that are possible, and 
hence universal, for homogeneous, incompressible bodies subject to lamellar 
body force. The apparatus for obtaining universal solutions for incompressible 
bodies has been provided above in the statement of Exercise IV.8.2. In any 
homogeneous transplacement of an incompressible body, the determinate stress 
S is a function o f t  alone, and so 

divS = 0; (IV. 10-1) 

therefore we take X as 0 in (IV.8-12) and (IV.8-14). All that remains is to 
ensure that the flow preserves circulation. Therefore a homogeneous, isochoric 
transplacement is possible, subject to boundary tractions alone, in every 
homogeneous, incompressible body i f  and only if F satisfies the condition 

skw(FF-l) = 0. 
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If F satisfies this differential equation, inspection of (11.12-17)3,4 delivers the 
acceleration-potential Pa : 

- P a  = (x - XO). [;FF-'(x - XO) + XO], 

= (X - m)-[;(G + G2)(x - XO) + & I ,  (IV .lo-2) 

and (IV.8-14) yields the stress: 

T = P[(X - Q).( ;FF-'(X - XO) + Xo) + a11 + 8(F'), 

=P[(x -m)*[(;(G +G2)(x -XO)  +Xo) +all +8(F') .  (IV.10-3) 

Any unimodular solution F of (11.11-46)1 and any point-valued function ~0 if 
put into (11.12-1) yield a possible transplacement, and then substitution into (3) 
delivers the stress required to produce it, subject to the action of the body force 
with potential a. The student will recall that for these motions the value of 8 
is a function of t only; cj .  (1). 

The solution of Exercise 11.9.1 shows that all rigid motions are homogen- 
eous, while Exercise 11.11.17 implies that a rigid motion satisfies (11.11-46) if 
and only if its spin is steady. 

Exercise f V.fO.1. For a rotation with steady spin the expression (2) for P ,  reduces 
to (11.11-52). 

We proceed to determine the homogeneous motions that are irrotational. If 
we are given a homogeneous stretch history U' , we may set W = 0 in (11.11- 
26) and integrate the resulting ordinary differential equation for R. In this way 
we can determine a rotation history R' such that the flow corresponding with 
R'U' is irrotational. As we remarked in Section 11.13, every irrotational flow 
preserves circulation. If det U(t) = 1, the result demonstrated above shows that 
the motion just determined in principle can be produced in any homogeneous, 
incompressible body by applying suitable boundary tractions. Consequently, 
the ideal experimental program proposed initially can be achieved, for homo- 
geneous, incompressible bodies, without calling upon artificial body forces, in 
fact without use of any body force at all, and by considering only irrotational 
histories. 

More generally, starting from any homogeneous, pure stretch, we can con- 
struct homogeneous flows that preserve circulation. To do so, we substitute 
CAUCHY'S criterion (11.11-44) into (11.1 1-26)2 and so find that 

R = RY, (IV. 10-4) 
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Y being defined as follows: 

Y := ;(u-'u - uu-l) + u-'w,u-'. (IV. 10-5) 

Suppose now a homogeneous stretch U and an arbitrary spin W ,  in the reference 
shape be given. Then Y is a known function oft .  If U and W ,  are such that Y 
is continuous, the first-order linear differential equation (4) determines a unique 
rotation R(t)  corresponding with any assigned initial rotation R(0). Therefore, 
the homogeneous motion whose deformation gradient is R( t)U( t )  preserves 
circulation. The theorem established near the end of Section IV.8 rests upon 
assuming that a particular flow preserves circulation. Because we have now 
exhibited the entire class of homogeneous motions that do so, we may apply 
the theorem to each of those motions and so obtain the following 

Theorem (COLEMAN & RUESDELL). By applying suitable boundary trac. 
tions alone, it is possible to cause any homogeneous, incompressible body 
to undergo any desired isochoric, homogeneous stretch history U'. The 
corresponding rotation history R' , which is independent of the material, 
is obtained from the unique solution of (4) corresponding with assigned 
initial values R(0) and W ,  . Conversely, the only homogeneous transplace- 
ments that can be effected in all homogeneous, incompressible bodies by 
the application of boundary tractions and lamellar body force are those in 
which R is determined from U ,  R(O), and W ,  by (4). 

Putting W ,  = 0 in the foregoing theorem, we recover the statement about 
irrotational histories proved just after Exercise IV. 10.1. Clearly pure stretch 
histories do not suffice to achieve the ideal experimental program since R = 1 
is not generally a solution of (4). 

Exercise ZY.10.2. A pure stretch preserves circulation if and only if 

UU - UU = const., (IV.10-6) 

a condition more general than (IV.9-12). Hence, in general, a homogeneous, isochoric, 
pure stretch cannot be produced in an arbitrary homogeneous, incompressible simple 
body by the effect of boundary tractions alone. Among those special homogeneous, 
isochoric, pure stretches that can be so produced are the irrotational ones. The class 
of homogeneous, isochoric, irrotational, pure stretch histories includes' those given by 
(IV.9-13) with the added restriction ul(f)u2(t)u3(f) = 1 .  

'The wording here clarifies that following Equation (30.37) in NFTM and in the paper of 
COLEMAN & ~ U E S D E L L  cited on p. 73 of NFTM. 
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Exercise IV. 10.2 shows that any homogeneous, isochoric, irrotational pure 
stretch history can be produced by the action of surface tractions alone or of any 
lamellar body force, in any homogeneous, incompressible body. Exemplifying 
the general discourse shortly after the beginning of Section IV.8, this conclu- 
sion illustrates the difference between the stress system in a compressible body 
that just happens to undergo an isochoric motion and that in a corresponding 
incompressible body undergoing a motion with the same transplacement gradi- 
ent and the same response. For the unconstrained body, change of volume is 
avoided because the stresses are selected in just the right way, and that way is 
specified uniquely by the response 8. For the incompressible body, no system 
of stresses can produce any motion but an isochoric one, and corresponding 
with that fact there is a hydrostatic pressure which is arbitrary in the sense 
that it is not determined by the history of the transplacement gradient but is 
determined, to within a time-dependent hydrostatic pressure, by the balance of 
linear momentum and is exhibited in (3). 

When given body forces are applied, CAUCHY’S First Law restricts that 
arbitrary pressure but does not determine it uniquely. In this sense a single 
isochoric transplacement history if possible at all for a given incompressible 
body is possible subject to infinitely many different body forces and surface 
tractions. 

Exercise ZV.10.3. Suppose that 8 be the response of a certain unconstrained 
simple body 3?, and that the restriction of 8 to isochoric transplacement histories be 
the response of a certain incompressible simple body 9 0 .  How does the stress system 
required to effect a certain simple shearing in 9 differ from that required to effect just 
the same simple shearing in ? 

Internal constraints such as incompressibility reduce the class of possible mo- 
tions but otherwise expand the class of stresses compatible with such motions 
as may take place. The theory of a constrained body is therefore essentially 
easier to work out. The far-reaching simplification that results from assum- 
ing the material to be incompressible was seen and exploited by R~VLIN in his 
pioneering researches on non-linear continuum theories in 1946- 1955. Most of 
the explicit solutions known today concern incompressible bodies; several were 
discovered by RIVLIN and his associates. 

11. Material Isomorphisms 

Up to now we have considered the constitutive relation of a single material 
point, or a single homogeneous body made up of material points all having 
the same response relative to a given reference placement K .  When can we 
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say that two body-points X1 and X2 of B are of the same material? When 
it is possible to bring small portions 91 and 9 2  of 9 containing X I  and X2 
into reference shapes ~ l ( 9 1 )  and ~ 2 ( 9 2 )  such that any subsequent history of 
transplacement gives rise to exactly the same stress at the places x1 and x2 

occupied by X I  and X2 . Thus no experimental measurement of stress as deter- 
mined by transplacement histories can detect whether we started with the part 
91 containing X I  in K ~ ( B )  or the part 9 2  containing X2 in K ~ ( B ) ,  it being 
understood that X1 = K ~ ( X I ) ,  X2 = ~ 2 ( X 2 ) .  This interpretation suggests also 
that we should require the densities p K l  and pK2 to be equal and uniform near 
X I  and X2, as we shall. 

To render this idea formal, we erect the following 

Definition (NoLL). Let aK be the response of a simple material with 
respect to the reference placement K .  The points X I  and X2 of B are 
materially isomorphic if there are reference placements K 1 and ~2 such that 
pKl  = pKz = const. near X I  and X2 and 

for every transplacement history F' in the domains of GK1 and aK2 , re- 
spectively. 

This definition embodies the idea just stated informally, for the value of 
the left-hand side is the stress at the place occupied by X 1 when the material 
points constituting B have been subjected to a history of transplacement F' with 
respect to K 1 (B) ,  while the right-hand side is the stress at the place occupied 
by X2 when the material points constituting 9l have been subjected to just 
the same history of transplacement with respect to K ~ ( B ) .  Since (1) must hold 
for all F' in the domains of the hvo responses considered, we can bring the 
parts 91 and 9 2  of the body that contain X I and X2 , respectively, into shapes 
indistinguishable by any measurement of stress. 

If each body-point is materially isomorphic to every other one, then every 
sufficiently small part of 9l has just the same properties as every other suf- 
ficiently small part, and we say that the body is uniform. Now this quality 
requires that the responses of B at X I  and X2 be the same with respect to 
suitable reference placements K 1 and ~2 , that the responses of B at X2 and X3 
be the same with respect to suitable reference placements K ;  and K ;  , etc. There 
need be no single reference placement K such that all the material points making 
up 9l have one and the same response: aK (. , X )  = aK ( -  , Y) VX, Y E ~ ( 9 ) .  
In order to demonstrate the isomorphism of each pair of body-points it may 
be necessary (in imagination, of course) to cut the body into small pieces and 
bring each piece separately into an appropriate shape before beginning the ex- 
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periment. These small pieces need not fit together to form a shape of all of 
B. 

If the isomorphism of all the points of a uniform body may be demonstrated 
by use of a single reference placement K ,  the body is homogeneous. The 
response aK with respect to this particular K is independent of X, and pK is 
likewise independent of X, so that the definition of “homogeneous” in terms of 
the concept of material isomorphism is equivalent to the one we have introduced 
already at the beginning of Section IV. 8. 

While every homogeneous body is uniform, the converse is false. Uniform 
but inhomogeneous bodies seem to correspond in some cases with what in 
physics are called bodies with “defects” and “dislocations”. In this book, 
henceforth, we shall consider only homogeneous bodies. 

The concept of material isomorphism is of far greater use than merely to 
define homogeneity, as we shall now see. 

12. The Peer Group 

Trivially, every point X of 9’ is materially isomorphic to itself, but there 
may be also non-trivial isomorphisms of X with itself. We shall analyse this 
possibility by the aid of an arbitrarily selected reference placement ~1 , and 
since we shall consider now a single body-point X, we shall drop X from the 
notation. Thus (IV. 11-1) yields the condition 

If we can find a K Z  distinct from Y 1 such that (1) holds for all F‘ in the respective 
domains, we shall have shown that the response of the given body-point X is 
just the same in deformations with respect to two distinct reference placements. 
That is, in terms of the ideal experiments we sometimes invoke so as to visualize 
the assertions of the theory, no measurement of stress on the part of 28 near X 
can distinguish ~2 from K 1 . Thus the reference placements K 1 and K Z  are peers 
at X. 

If we choose a different reference placement, say K * , then aK * will generally 
determine a different set of peers. 

The set of gradients at K(X) of transplacements carrying K into its peers 

‘The general theory and solutions of particular problems concerning inhomogeneous, uniform, 
simple bodies are presented in the book republishing memoirs by W.  NOLL, R. A. TOUPIN, and 
C.-C. WANG, Continuum Theory of Inhomogeneities in Simple Bodies, Berlin and New York, 
Springer-Verlag, 1968, and also in Chapters V and VI of IRE. 
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forms a group called the peer group’ . Because material isomorphisms leave 
the mass density assigned by K to X unchanged, the gradient P of a transplace- 
ment delivering peers is unimodular: detP = f 1. Thus the peer group of 
K at X is a subgroup of the unimodular group u : Y‘ 

(Iv. 12-2) 

It is the group of gradients of all maps that carry K into its peers, namely, 
the reference placements indistinguishable from K by measurements of stress 
arising from deformation of parts of K (g). 

By substituting (IV.3-3) into (l) ,  we find that the elements of the peer group 
are unimodular tensors H such that for all histories F‘ in the domain of Y‘ 

(Iv. 12-3) 

and conversely, any such H is an element of 

for every unimodular H. 

deserves that appellation. 

. Here we assume that if the 
domain of OK includes F‘ , it is large enough ? o ‘include also the products F‘H 

We have called the set of peers a group, but we have not yet shown that it 

fiewise IV.12.1. The collection of solutions H of (3) forms a group. 

As a part of the definition of the peer group we have required that its members 
be unimodular. We have done so in favor of the intended application rather than for 
any mathematical block against more general isomorphisms. By considering in (3) the 
case of the rest history F(t) := 1, we see that if H and n = 1, 2, 3 , .  . . , then 
Q).((H”)‘) = &(l‘); here (H“)‘ denotes the history of the constant tensor H”, and 1‘ 
denotes the history of 1. If ldet HI < 1, this conclusion and (11.54) show that we can find 
a placement which has arbitrarily large density and in which a part of the body can be 
held at rest indefinitely under just the same stress as that required for equilibrium in K . If 
JdetHI > 1, the same can be said for a placement with arbitrarily small density. Such a 
material would be a strange one. In particular, no Eulerian fluid with invertible pressure 
function (cf. IV.4-4) is of this kind. In this book we merely leave out of account any H 
that satisfies (3) and is not unimodular, but the foregoing remarks would lend support 

‘The term “isotropy group”, used by NOLL in introducing these groups, is misleading here 
because it derives from the concept of turning, while the elements of the peer group need not 
all be rotations; “symmetry”, while closer to the popular speech of physicists, would be equally 
misleading because it derives from the concept of distance, which is irrelevant in material response. 
The term “peer” is intended to suggest its root meaning, which is “equal in status before the law”, 
the “law” being here the constitutive relation of the material. 
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to requiring, as part of the definition of simple material, that aE allow no solutions H 
of (3) that are not unimodular. I 

The members H of need not be orthogonal, but they may be. Since 
1 € f K  for every material point and every reference placement K , at least 
one member of is orthogonal. If an orthogonal tensor Q EP" , then also 
Q' EP. sincefK is a group; also, if F' runs over all invertible tensor histories, 
so does QF'. Thus, when H = Q', ( 3 )  is equivalent to 

P K  

P K  

@K(QF'Q') = @,(QF').  (IV. 12-4) 

In the condition (IV.5-2), which expresses the Principle of Material Frame- 
Indifference, we select the particular history Q' = Q(t )  = Q and obtain 

This relation holds for all F' and for all orthogonal tensors Q ,  while (4) holds 
only for those Q that belong to . Combining the two relations yields %. 

aK(QF'QT) = QaK(F')QT (IV. 12-6) 

PK * 
as a necessary condition to be satisfied by all orthogonal members of 

Exercise ZY.22.2. Conversely, if Q satisfies (6), then Q E 

Thus (6) is a necessary and sufficient condition for  the orthogonal ten- 
sor Q to belong to the peer group. 

From (6) we see that - 1 E for all materials and all K .  Since - 1 is 
a central inversion, it does not correspond with any deformation that could be 
effected physically but merely expresses the invariance of material properties 
under reflections of the reference placement.2 Since - 1 EyK a n d y K  is a 
group, -H E j z K  ++ H € f K  , ThusyK can be expressed as the direct product 
of the trivial group consisting in 1 and - 1 alone and a groupff all of whose 

P K  

'In a theory of thennomechanics it is possible to define peer groups and to prove that in order 
to satisfy certain reasonable requirements they must be subgroups of cc, as has been shown by M. E. 
GURTIN & W. 0. WILLIAMS, "On the inclusion of the complete symmetry group in the unimodular 
group," Archive for Rational Mechanics and Analysis 23 (1966/7), 163-172 (1966). 

ZThe reader should not extrapolate this statement to other theories such as those of heat con- 
duction and electromagnetism; in them there is no such invariance, because the transplacement 
gradient F is not the only independent variable in the constitutive relations. 
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members have determinant fl: 

(IV. 12-7) 

and only the elements of + can be interpreted in terms not only of change 
of reference placement but also as gradients of transplacements that map one 
shape of a given body onto another. These are the transplacements that cannot 
be distinguished from one another by mental measurement,’ but it is formally 
more convenient to retain the trivial central inversions and so operate with 
itself. We have shown, then, that (1, -1) is the smallest possible peer group: f. 

(1, -1) C f K  c u. (IV .12-8) 

The foregoing constructions and conclusions in these precise, abstract forms 
were introduced by NOLL, generalizing earlier and more special notions. 

Any subgroup of the unimodular group that includes (1, -1) may be the 
peer group of a material point. Corresponding with any assigned unimodu- 
lar subgroup it is possible to construct infinitely many responses 8; more 
specifically, it is possible to write 8 in a reduced form such as to be frame- 
indifferent and to include automatically all materials having an assigned peer 
group, and these only.2 In the following sections we shall consider only such 
as are notable or lead to especially simple representations for 8. In particular, 
we shall use the ideas and apparatus just given so as to define the concepts of 
“fluid”, “solid”, and “isotropic”. 

f: 

f 

13. Comparison of Peer Groups with Respect to Different 
Reference Placements 

The peer group at a material point depends, as does the response aK of 
the material, upon the choice of reference placement K . Since aK, determines 

for all K:! , the same should be true o f fK ,  a n d y K 2 ,  That is so, and either 
group determines the other through a rule found by NOLL: 

f K  

(IV. 13- 1) 

‘Again the reader must be warned that while this fact expresses a proved theorem of the theory 
presented in this book, nothing of the sort holds for the peer groups that can be defined by parallel 
constructions in other theories such as optics. 

*C.-C. WANG, “On a general representation theorem for constitutive relations,” Archive for 
Rational Mechanics and Analysis 33 (1969). 1-25. 
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To prove this rule, we simply apply (IV.3-3) to each member of (IV. 12-3) after 
replacing K therein by ~1 : 

&,(F'HP-') = axZ(FtP-'); (IV.13-2) 

here P := VA and X := ~2 o K r ' . As F' runs over all invertible tensor histories, 
so does F'P-' for any assigned invertible tensor P. Hence (2) is equivalent to 

&,(F'PHP-') = aK2(Fr),  (IV.13-3) 

which is of the form (IV.12-3) with K replaced by ~ 2 .  Since PHP-' is uni- 
modular if H is, every solution H of (IV. 12-3) corresponds with a unimodular 
solution PHP-' of (3), and conversely. NOLL'S rule (1) is an abbreviated state- 
ment of this fact. 

It is a trivial consequence of (IV. 12-1) that if K 1 and ~2 are peers, they 
have the same peer groups. 

While the members o f f r l  andyr2  are unimodular tensors, the reference 
placements K 1 and ~2 themselves need not have the same density. In particular, 
if we let ~2 be obtained from K I  by a dilatation, then P = K 1  and K + 0, 
and so P-' = K - l l .  Therefore (1) yieldsfx2 = f x I  . Thus the peer group is 
unaltered by a dilatation. 

, (1) shows that for some choice of K Z  we may expect to 
obtain a different peer group . Thus the concept of peerdom is a relative one, 
depending upon the choice of reference placement. It is possible, nonetheless, 
thatf.xI =ygz for all choices of K 1 and ~2 . In that case we shall say that the 
material is egalitarian: No deformation can alter its peer group. A glance at 
( 1) reveals two groups corresponding to egalitarian materials: 

Whatever be 
%.I 

f a 2  

f = (1, -1) or y =&. (IV.13-4) 

According to a theorem of group theory,' the proper unimodular group a+ is 
"simple", which means that the equation 

f =PyP- '  W E &  (IV. 13-5) 

'My inquiries have not led to a simple, direct proof. The statement follows from more pow- 
erful theorems of group theory presented by J. J. ROTMAN, The Theory of Groups, 2"d ed., 
Rockleigh, New Jersey, Allyn & Bacon, 1973. The projective special linear group PSL(n, K) := 
SL(n,  K ) / Z o  . Here K is an arbitrary field; SL(n, K) is the multiplicative group of proper unimod- 
ular n x n matrices over K, and ZO is its center, that is, the group of all elements that commute with 
every element. ROTMAN'S Theorem 8.25 asserts that PSL(m, K) is simple if m 2 3; his Theorem 
8.13, that the center of SL(3, R )  is the unit matrix. Thus PSL(3, R )  = SL(3, R)/Zo = SL(3, R), 
and so SL(3, R) is simple. 
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has no solutionsf that can be peer groups other than the trivial ones (4). Thus 
the groups (4) correspond with the only possible egalitarian materials.’ In 
Section IV.16 we shall see an important consequence of this fact. Here we 
remark merely that the fact itself will not startle the student, since it asserts that 
only for the two extremes of response can no deformation either create new 
peers or unseat any of the old, as might well be expected from the definition 
of peers. At one extreme, all placements are peers; at the other, no placement 
has any peers but the two trivial ones. 

The considerations of this section and the preceding apply equally to the 
determinate response of a constrained material, which is defined by (IV.7-2). 

14. Isotropic Materials 

A homogeneous body is isotropic if it can be brought into a shape, no 
rotations of which can be detected by measurement of stress. Isotropy is an 
example, and the most important one, of material symmetry. To consider 
material symmetries, we fix attention upon the peer groups of a single material 
point. In this section and the next two we shall use the phrase “a material is 
. . .” to abbreviate “a material point is . . . .” Since in the rest of the book we 
consider only homogeneous bodies, and so all the material points that make up 
a body must have the same material symmetry, we could just as well write in 
each case “a body is . . . .” The letter a will denote the full orthogonal group. 

Definition (CAUCHY, NOLL). A material is isotropic if there is a refer- 
ence placement K such that 

(IV. 14-1) 

Such a placement K is called undistorted, other placements, distorted. Ac- 
cording to this definition, every orthogonal transplacement of an undistorted 
placement carries it into a peer. From NOLL’S rule (IV.13-1) we see that for 
other placements K ’  the peer groups need not contain u . That is, rotations 
of K ’  generally can be detected by experimental measurements of stress, though 
rotations of an undistorted placement K cannot. Of course, that same rule shows 
us that an orthogonal transplacement carries one undistorted placement of 
7n isotropic material into another, a fact which merely reflects the definition 

f . 1  

‘The reader should be warned not to expect that the statement proved here for the mechanics 
of simple materials can be extended to other theories in which a peer group may be defined. For 
example, in optics there are four groups that correspond to egalitarian materials: not only those 
given by (4) but also (1) and u + . 
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of "isotropic material", besides showing that an isotropic material has infinitely 
many undistorted placements. 

For an isotropic material, (IV.12-6) changes from an equation to be solved 
for certain Q into an identity satisfied by all Q, and likewise (IV.12-3) is 
satisfied by all orthogonal H. By this latter equation, then, the value of T is 
unchanged if we replace F' by F'Q, where Q is any constant orthogonal tensor. 
In particular, if we regard the present time t as a parameter which we may hold 
fixed, and if F'(s) := F'(s)R(t)', then F' delivers the same stress as does F' 
at the time t .  R, the present rotation of F, equals 1. Thus (FTF,)' = 21: = C: 
and C = RCR' = B. Putting R, Ci, and C into (IV.5-15) delivers NOLL'S 
reduction of the constitutive relation for  isotropic materials: 

T = I(C: ; B), (IV. 14-2) 

in which, as was to be expected, the rotation does not appear at all. 
According to (IV. 12-6), moreover, if F' is replaced by QF'Q', for any Q, 

the stress T is replaced by QTQ'. In this replacement C: and B are replaced 
by QC:Q' and QBQ', as is easily verified from (11.9-10) and (11.9-5). Thus 
the mapping I in (2) must satisfy the condition 

d)(QC:QT; QBQ') = QI(C: ; B)QT, (IV. 14-3) 

for every orthogonal tensor Q, for every positive symmetric tensor history C: , 
and for every positive symmetric tensor B. 

A mapping satisfying this requirement for all Q is called isotropic. Thus, 
the concept of isotropic mapping generalizes that of isotropic function defined 
by (IV.4-9). Conversely, if (3) is satisfied by I, (2) gives the constitutive equa- 
tion of an isotropic simple material, referred to an undistorted placement. If a 
distorted reference placement is used, the constitutive relation of an isotropic 
material cannot have the form (2) and generally shows no recognizable simplic- 
ity. 

The solution of Exercise IV.7.1 enables us to reduce as follows the constitu- 
tive equation (IV.7-14)2 giving the determinate response of an incompressible 
isotropic material with respect to an undistorted placement: 

S = I(C: ; B); (IV. 14-4) 

det C: = detB = 1; and the mapping I satisfies (3). 
While (1) embodies a natural concept of isotropy, it seems more general 

than in fact it is. According to a theorem of group theory, the orthogonal 
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group is maximal in the unimodular group.’ That is, iff is a group such that 
o cp c W ,  then 

either p = a  or 9 = w .  (IV. 14-5) 

Thus the peer group of an isotropic material in an undistorted placement is 
either the orthogonal group or the unimodular group. 

In either (2) or (4), let C: be fixed. Then (3) reduces to (IV.4-9), and 8 
reduces to an isotropic mapping of symmetric tensors onto symmetric tensors. 

A body of isotropic material is called an isotropic M y .  

15. Universal ’Jkansplacements of Isotropic Incompressible Bodies 

In Section IV.8 we have defined universal motions and explained their 
great value for use in comparison of theory with experiment, and we have 
set out the scheme for finding universal transplacements for homogeneous, in- 
compressible bodies. In Section IV. 10 we have determined all homogeneous 
transplacements of homogeneous, incompressible bodies subject to lamellar 
body force. The constraint of incompressibility, which narrows the class of ad- 
missible transplacements to those that are isochoric, at the same time broadens 
it by allowing some universal transplacements that are not homogeneous. We 
shall now exhibit, again supposing the body force lamellar, five families of 
universal transplacements for homogeneous, isotropic, incompressible bodies, 
defined in the preceding section. We shall always presume that the reference 
placement is homogeneous and undistorted. 

As for the homogeneous transplacements discussed in Sections IV .9 and 
1V. 10, the analysis follows a semi-inverse method. Families of putative trans- 
placements such as to model circumstances of interest in mechanics are set 
down. Each is written in terms of functions, at first arbitrary but later to be 
restricted in such a way as to deliver dynamically possible motions for every 
homogeneous, isotropic, incompressible body. The outcome of such analysis is a 
class (rather small, perhaps even empty) of solutions of the problem initially set. 
Comparison of the calculated solution with data from experiments on motions 
of real bodies idealized by members of the class laid down may then yield 
some information about the constitutive properties of the bodies used in the 
experiments. 

The at first arbitrary functions denoted by capital letters in the following 
five examples denote twice differentiable functions of time only. 

‘E.g .  W. NOLL, “Proof of the maximality of the orthogonal group in the unimodular group,” 
Archive for Rational Mechanics and Analysis 18 (1965): 100-102, reprinted in NOLL’S Foun- 
dations of Mechanics and Thermodynamics, Berlin and New York, Springer-Verlag, 1974. 
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Although our problem is essentially simple, its solution is achieved in several 
steps, some of them long. The constitutive and dynamical conclusions are due 
to CARROLL, who extended the work of T~LJESDELL and others in elasticity to 
simple materials in general. We shall follow in the main the elegant presentation 
of F~SDICK,~ which in outline goes as follows. 

Step 0 .  We specify the five families. To this end we set out these putative 
universal transplacements in a referential description using two conveniently 
selected co-ordinate systems, one for the reference placement and one for the 
actual placement. 

Step 1. For each of the five families we calculate B and C: . 
This matter is purely kinematical, and the calculation is routine. We find that at least 
two of the shear components of B and C: vanish, while the remaining components are 
the values of simple, explicit functions of one particular distance (labelled r or x),  thus 
reducing the generality of the functions of time introduced at Step 0, and of the histories 
of those functions. 

Step 2. We use the constitutive relation (IV. 14-4) and the functional re- 
striction (IV. 14-3). 
We show thereby that each null component of B and Ci corresponds with a null shear 
component of S, that the remaining components of S are the values of functions of the 
variables occurring at Step 1 and of the histories of the functions of time occurring there, 
and that those functions are odd or even in certain of their arguments. 

Step 3. "bming to the flows corresponding with the transplacements, we 
recall from Section IV. 10 that every transplacement universal for homogeneous, 
incompressible bodies subject to lamellar body force must preserve circula- 
tion. Thus, on the assumption that the domain of flow is simply connected, an 
acceleration-potential Pa stands at our disposition: 

x = -gradP,, (11.11-33), 

whence (cf. (IV.8-12)) follows the existence of a scalar field X such that 

divS = -gradX. (IV. 15-1) 

The left-hand side of this relation, calculable from the conclusions of Step 2 
for each of the five families, delivers X for each. 

'For further detail see the paper of R.  L. F~SDICK, "Dynamically possible motions of incom- 
pressible, isotropic, simple materials," Archive for Rational Mechanics and Analysis 29( 1968): 
272-288. 
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Step 4 .  For each of the five families in turn we apply the requirement that 
the flow preserve circulation, namely 

skwgradt = 0. (II.11-45), 

Restrictions upon the arbitrary functions of time appearing in the families set 
down at Step 0 result, and P, is determined for each family in turn. Because 
X has been determined at Step 3, p for each family is now determined: 

p = p(P, - a) - A. (IV. 8-13)2, 

Step 4, although it is purely kinematical and requires only routine calculus, 
is the longest. For it we shall follow the analysis of WANG,’ which includes and 
extends the contributions of several earlier authors. 

We proceed now with the details. 
Step 0. The five families of isochoric transplacements follow. In each the 

letters A ,  B, . . . stand for as yet arbitrary, twice-differentiable functions of t .  
To each putative universal transplacement we may add an arbitrary rotation, 
but to do so would add at Step 4 complications not worth the effort needed 
to take account of them. On the other hand, the student must be warned that 
two universal transplacements which are not identical may in fact differ only by 
some particular rigid motion. Moreover, the reference placement is arbitrary. 
One particular choice of it is made when a transplacement is specified. If, 
instead, as we shall do for some instances below in Section IV.18, we begin 
from a spatial velocity field, we must always remember that infinitely many 
transplacements give rise to it, one for each choice of reference placement. 

Family I (Pure bending, stretching, and shearing of a rectangular block). 
X ,  Y, Z are Cartesian co-ordinates in the reference placement; r ,  8, z are cylin- 
drical polar co-ordinates in the present placement. 

r2 = 2AX + B, 8 = CY + DZ + K ,  z = EY + FZ + L ,  

(IV. 15-2) 
A(CF - D E )  = 1. 

From (2)4 it follows that A is determined by C, D,  E, and F ,  that CF + DE, 
and that sgnA = sgn(CF - DE). Usually we shall neglect the arbitrary con- 
stants K and L. 

I C.-C. WANG, “Universal solutions for incompressible laminated bodies,” Archive for Ratio- 
nu/ Mechanics and Analysis 29(1968): 161-192. Fbr some further details consult RE,  especially 
Section 6 of Chapter 5. 
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Family 2 (Straightening, stretching, and shearing of a section of a hollow 
cylinder). R ,  O , Z  are cylindrical polar co-ordinates in the reference placement, 
and x ,  y ,  z are Cartesian co-ordinates in the present placement. 

A(BE - CD)  = 1. 
(IV. 15-3) 

From (3)4 it follows that A is determined by B, C, D, and E, that A + 0 and 
BE + CD, and that sgnA = sgn(BE - CD). 

(Inflation, eversion, bending, torsion, extension, and shearing of 
an annular wedge). Here R ,  O , Z  and r, 8 ,  z are cylindrical polar co-ordinates 
in the reference placement and the present placement, respectively. 

Family 3 

r2 = A R 2  + B ,  8 = C0 +DZ + K ,  z = E 0  + F Z  + L ,  

(IV. 15-4) 
A(CF - D E )  = 1. 

Thus A 0, CF + DE, A = l / ( C F  - D E ) ,  sgnA = sgn(CF -LIE).  As 
we did for Family 1 ,  here too we shall generally set aside K and L. 

Family 4 (Inflation and eversion of a sector of a spherical shell). The co- 
ordinates R ,  0, @ and t, 8, cp are spherical polar in the reference placement 
and present placement, respectively. 

r 3 =  f R 3 + A ,  8 =  f0 ,  p=@.  (IV. 15-5) 

Family 5 (Inflation, azimuthal bending and shearing, and extension of an 
annular wedge). The co-ordinate systems are the same as those used for Family 
3 .  

r = A R ,  8 = B log R + CQ, z = D Z ,  A2CD = 1. (IV.15-6) 

Thus A + 0 and C D  > 0. 

Exercise IV.15.1. The verbal descriptions of the five families are just. 

Step I. We shall refer vectors and tensors to their physical components, 
for which see Section App. IIC.9. Because (2), (3), (4), ( 5 ) ,  and (6) are linear 
in two out of three co-ordinates, it is plain that the physical components of B 
and C: will be functions of the one co-ordinate in which the transplacement is 
not linear. 
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[BI = 

Family 1. We show from (11.9-6)2 that 

[AC/(r2  - B)  + D2]r2  [CEA/(r2  - B)  + DF]r . 
E2A/(r2  - B )  + F2 

Family 2. B depends upon x alone, C: is independent of x,  and BXY = 
BXZ =z C'XY = C'XZ = 0. t t 

Exetcise ZV.15.3. B and Ci for Family 2 are to be calculated. 

Exetcise IV.15.4 (BHARATHA). The flow delivered by Family 2 is homogeneous. 

Family 3 .  B and C: for Family 3 are given by (7) and (8). 

Exetcise IV.15.5 (WANG). The flows delivered by Families 1 and 3 are the same. 
This fact is explained by showing that composition of a static instance of Family 1 with 
the general Family 3 delivers the general Family 1. The motions defining Families 1 and 
3 differ from each other only by a change of reference placement. 

Family 4 .  

[B] = diag[(r3 -A)4 /3 / r4 ,  r 2 / ( r 3  - A ) 2 / 3 ,  r 2 / ( r 3  - A ) 2 / 3 ] ,  

(IV.15-9) 

[Ci] =diag[r4/(r3 - A  +A')4/3, (r3 - A  + A f ) 2 / 3 ,  ( r3  - A  + A ' ) ~ / ~ ] .  
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[QYQ'] = 

Family 5 .  

y l l  - y 1 2  - y 1 3  

-Y21 Y 2 2  Y 2 3  . (IV. 15-12) 

- y 3 1  y 3 2  y 3 3  

Both B and C: are independent of place. 

Step 2. The mapping must satisfy the relation (IV. 14-3) for all orthog- 
onal tensors Q. We first consider the particular Q that represents a rotation 
through a straight angle about the x'-axis in some orthogonal co-ordinate sys- 
tem: 

[Q] :=diag(l, -1, -1). (IV. 15-1 1) 

Then for any tensor Y 

If Y 1 2  = Y 1 3  = Y 2 1  = Y 3 1  = 0, then for the Q given by (11) it follows 
that QYQ' = Y. Applying this observation to (IV.14-3), we see that when 
B 1 2  = B 1 3  = C i 1 2  = C i 1 3  = 0, then 

i ( C :  ; B) = Q&C: ; B)QT (IV.15-13) 

for the Q defined by (11). Thus S = QSQ', and hence (12) requires that 

s 1 2  = s 1 3  = 0: (IV.15-14) 

The shear stresses corresponding to vanishing shears are null. 
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[QYQ'] = 

Next we consider the effect of a rotation through a straight angle about the 
x3-axis: 

yll y12 -y13 

Y21 Y22 -Y23 . (IV. 15-16) 

-y31 -y32 y33 

[Q] =diag(-1, -1, 1). (IV. 15-15) 

For any tensor Y 

If, supposing that (14) is satisfied, we use in (IV. 14-3) the Q given by (15), we 
see that when C!23 and B23 are reversed in sign, also S23 is reversed in sign, 
while S11, S 2 2 ,  and S33 remain unchanged. 

Now we apply the two foregoing statements to the five families in turn, with 
conclusions as follows. 

Family I .  
uil)  such that 

Sre  = S r z  = 0, and there are scalar-valued mappings dl), u1 ( 1 )  , 

Sez = T ( ~ ) ( B ' ,  C', D', E', F';  r ) ,  

S r r  - Szz = u:l)(B', C', D', E', F'; r ) ,  (IV.15-17) 

See -SZZ = ui''(B', C',  D', E', F';  r ) .  

From (8) we see that to change the sign of Sez  while leaving unchanged the 
diagonal components of S we may either replace C' and F' by - C' and - F' 
or replace D' and E' by - D' and - E'. Therefore r is odd under such 
changes: 

T ( ~ ) ( B ' ,  -C', D', E', -F'; r )  = r( l ) (B' ,  C',  -D', -E', F';  r ) ,  

= -7(l)(B',  C',  D', E', F'; r ) .  

(IV. 15-18) 

Hence if the shear stress function d l )  is continuous at C' = D' = E' = F' = 0, 
then 

r(I)(B', 0, D', E', 0; r )  = r(*)(B' ,  C', 0, 0, F'; r )  = 0, (IV.15-19) 
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Also, when a = 1 or 2, 

aL1)(B', -C', D', E', -F'; r )  = aL1)(B', C', -D', -E', F'; r )  

= aL1)(B', C', D', E', F'; r ) .  

(IV. 15-20) 

Exercise ZV.25.6. The conclusions (18), (19), and (20) suffice for @ to satisfy 
(IV. 14-3) in all instances of Family 1 .  

Family 2 .  Similar analysis shows that Sx, = S,, = 0 and 

Syz = T(')(B', C',  D', E'; x ) ,  

(IV. 15-21) SXx -Szz = u1 (2) ( B  t , C', D', E'; x ) ,  

S,, - S , ,  = u2 (2) ( B  I , C', D', E'; x ) ;  

that T ( ' )  changes sign when B' and E' are replaced by - B' and - E' and 
when C' and D' are replaced by - C' and - D'; and that ay)  and a?) are 
unchanged in sign by those transformations. 

Family 3 .  The conclusions are the same as for Family 1. 

Family 4 .  To obtain necessary and sufficient conditions here, we use not 
only (15) but also another Q: 

[QI = 

- 1  0 0 

0 0 1  

0 1 0  

9 (IV. 15-22) 

which represents a rotation about an axis in the plane normal to the direction 
of r. The outcome is that [S] is diagonal, that Sflo = S w ,  and that 

(A'; r ) .  (IV. 15-23) S r r  - See = Srr  - spp = T(4) 

Family 5 .  S r z  = Sez = 0, and 

(IV. 15-24) 
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The shearing stress and the differences of the normal stresses, like the com- 
ponents of B and C: , are independent of position. 

Step 3 .  We now show that the dynamical condition ( 1 )  is satisfied for each 
family, and in so doing we calculate for each the function X that is defined by 
(1) and will be used to determine p through (1V.8-11). 

Family I .  From Section App. I1 C .9 we see that if the physical components 
of S are given by functions of r alone at each time f, then 

(div S)e = -dr(r2Sre), 1 
r 

(IV. 15-25) 

For Family 1 ,  because Sre = S r z  = 0, we see that (1) is satisfied, and 

dr +f (0. s”” See 
- = S r r  + (IV. 15-26) 

S z z  may be taken as the value of an arbitrary function of r alone at each f. then 
the right-hand side of (26) is determined by the constitutive functions ui’) and 
ui’), obtained at Step 2. 

Family 2 .  If the components of S are functions of x alone at each time t, 
then 

(div S), = d,S,, , (div S), = d,S,, , (div S), = d,S,, . 
(IV. 15-27) 

For Family 2, because S,, = S,, = 0, 

- h = s,, . (IV. 15-28) 
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S,, may be taken as the value of an arbitrary function of x and t, and so the 
right-hand side of (28) is determined by the constitutive function a\*), obtained 
at Step 2. 

Family 3 .  Refer to Family 1 .  

Family 4 .  From Section App. IIC.ll we see that if the physical compo- 
nents of S are given by functions of r alone at each t, and if Sre = Sw = D i p  = 
0, then 

2 
r 

(div S)r  = d r S r r  + - ( S r r  - See), 

(IV. 15-29) 

(divS)e = 0, (divS)v = 0. 

Hence 

dr.  Jsrr - h = S r r + 2  (IV.15-30) 

Because S w  is given by an arbitrary function of r at each t and See = S99, the 
right-hand side of (30) is determined by the constitutive function T ( ~ ) ,  obtained 
at Step 2. 

Family 5 .  We appeal to (25) again. This time the physical components of 
S are given by function of t alone, and hence 

- X = ( S r r  -See) log r + 213Sre. (IV. 15-31) 

The right-hand side of (31) is determined by the constitutive functions T ( ~ ) ,  a?’, 

and a?’, obtained at Step 2. 

Step 4. On the assumption that the arbitrary functions o f t  appearing in the 
putative universal transplacements (2), (3), (4), (9, and (6) can be so chosen as 
to satisfy (11.11-45), we have exhausted the requirements of material symmetry 
and dynamics except for determining the required pressure p .  We shall now 
solve (11.11-45) for each family and so determine for each the acceleration- 
potential Pa . Substitution of Pa into (IV.8-11) will then deliverp. Accordingly, 
for each family in turn we calculate the flow to which it gives rise and then the 
acceleration field of that flow. 



Family 1 .  From (2) we find that 

A B B A  1 
i. = -r + ( - -) 

2A 2A r ’  
b = OA(FC - ED)  + zA(Cb - DC), 

Z = OA(FE - EF) + zA(CF - D k ) ,  

(Y -91 1 2r 
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- 

1 
2 -(+) - 

4r3 ’ 
e = OA(FC - E D )  + zA(CD - DC), 

t = OA(FE - E F )  + zA(CP - DC). 

(IV. 15-32) 

From these we can determine the covariant components of the acceleration field: 

(IV. 15-33) 

Substituting (32) and (33) into (11.1 1-45) yields the differential system 

C D - D C = O ,  

F E - E F = o ,  (IV. 15-34) 

FC - E D  + ( F C  - E D )  AFC - A E D  + - =o. ( A A )  

We wish to solve this system of differential equations together with the condition 
(7)4 for isochoric motion. In doing so we recall that 

A(CF - DE)  = 1 .  (IV.15-2)4, 

First we notice that the function B does not appear in the governing equations 
(34) and (2); thus it is arbitrary. Second, C and D cannot vanish simultaneously, 
for that would violate (2). We shall prove that C vanishes always or never. If 
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C does not vanish for any t, the integral of (34)l is 

D = kC, k = const. (IV.15-35) 

Because C appears in the differential system (34), C must be continuous. The 
set 

% := {t : C ( t )  + O}, (IV. 15-36) 

because it is the inverse image of the open set @ \ {0}, is open, and if C does 
vanish at some t but not always, then 

0 c % c @ ,  (IV. 15-37) 

and both inclusions are proper. Thus there is a boundary point t o  of Q that 
does not belong to Q, i .e.,  

C ( t )  =I 0 (IV. 15-38) 

on an open interval with to  as an end-point. Thus t o  is a limit point of %. Since 
(35) holds on the interval just mentioned, continuity requires that D(t0) = 0, 
but it is impossible for C and D to vanish simultaneously. 

We have shown that there are only two possibilities: 
I) % = 9; equivalently, C + 0 for any t. In this case (35) holds for all t. 

Then (2)4 reduces to 

AC(F - kE)  = 1, (IV.15-39) 

and (34)3 reduces to 

c+c - + -  =o ,  (E 5;) (IV. 15-40) 

an integral of which is 

kl =const. (IV. 15-41) 
. k  c=' 

AC ' 

The differential equation (34 )~  has an obvious integral also: 

F E  - EF = k2, k2 = const. (IV. 15-42) 

Now we consider the following three possibilities: 
Ia) F = 0. In this subcase kz = 0, and (42) is satisfied for all E. Further, 

(39) reduces to - kACE = 1. Thus the constant k cannot be 0. The complete 
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solution for this subcase is 

B ,  E = arbitrary functions of t ,  but E ( t )  $. 0 for any t ,  

F =0,  

C = k’ ( l E d t  + k ” )  , C ( t )  + 0 for any t ,  

1 

k”‘E ( L E  dt + k “ )  ’ 

If F + 0, we can still get local solutions near points where F does not 

Ib) F(t0) + 0 for some to .  We consider the solution for t near t o .  Inte- 

A =  

in which k’ ,  k”,  and k”‘ are arbitrary, non-null constants. 

vanish or does vanish, as follows. 

grating (42) yields 

E = F  ( k t + k 2 / r l d t )  0 F2  (IV. 15-44) 

We put 

t = - = F  1 [ l - k ( k 1 + k 2 l $ d t ) ] .  (IV.15-45) 
AC 

Then the complete solution for t near to is 

B ,  F = arbitrary functions of t ,  

D = kC = kk” ( l t d t  + k“‘) , 

(IV. 15-46) 

k ,  k’, k”,  k”‘, and k2 being arbitrary constants. 
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Ic) F(t0) = 0 for some to ,  but F + 0. Then to must be an isolated root of 
F. To see that, in parallel with (36) we put 

% := {t : F( t )  + O}, (IV.15-47) 

and again @ is open, and both inclusions in (37) are proper. It follows that 
the boundary of @ is not empty. Thus F(t0) = 0 if to lies on the boundary 
of %. Now suppose that k2 = 0. Then we can integrate (42) as before and 
so show that E = kF on @. By continuity, E(t0) = F(t0) = 0,  contradicting 
(39). Hence the assumption k2 = 0 is false. Having proved that k2 + 0, we 
conclude from (42) and the assumption F(t0) = 0 that P(t0)  + 0. Therefore 
to is an isolated root of F. 

Now we consider the solution for t near to . By (39), E(t0) and k do not 
vanish. Hence we can integrate (42) to get 

dt 
F = -k2EL0 g .  

In parallel with (45) we put 

t = - 1 = -E ( 1 + k 2 / ~ ' : ) .  
AC 

Then the complete solution is 

B and E are arbitrary functions of t ,  but E + 0, 

D = kC = kkl  ( lo1t dt + k o )  + 0, 

(IV. 15-48) 

(IV. 15-49) 

(IV. 15-50) 

where k ,  ko , kl , and k2 are arbitrary constants. 
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11) C = 0. In this case (2)4 and (34) reduce to 

ADE = - 1 ,  

FE - EF = k2,  (IV. 15-51) 

b + D  - + -  =o.  (1 $) 
The last equation can be integrated at once, yielding D = k"'/AD. Again there 
are three possibilities: 

IIa) F = 0. The complete solution for this subcase is exactly the same as 
that of Subcase la) except that now C = 0. 

IIb) F(t0)  + 0 for some t o  . The solutions for B, E,  and F are the same as 
those of the subcase Ib) except that E + 0, and the solutions for A and D are 
the same as those of Subcase Ia). 

IIc) F(t0)  = 0 for some t o ,  but F + 0. Again t o  must be an isolated root 
of F. The solutions for B, E, and F are the same as those of Subcase Ic), and 
the solutions for A and D are the same as those of Subcase Ia). 

In general a solution may belong to different subcases in different intervals 

An acceleration-potential Pa for this family, in all cases, is given by 
of time. 

+ i ( A b  - BA)(FC - Eb)02 + iA(CF - DE)z2 ,  (IV.15-52) 

Family 2 .  While the conclusion of Exercise IV. 15.4, above, reduces anal- 
ysis of this family to an application of statements established in Section IV.8, 
also a direct attack is instructive. From (3)1,2,3 

(IV. 15-53) 
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along with (3)4 . Condition (11.1 1-45) now takes the form 

This differential equation can be integrated at once, yielding the integral 

BC - CB = E D  - DE + k ,  (IV. 15-55) 

where k is a constant. We consider the following two possibilities: 
I) B(t0) + 0 for some to  , In this case the complete solution is 

B ,  D ,  and E are arbitrary functions of 1, but B + 0, and E and D do 
not vanish simultaneously, 

c = B [k‘ + lot +(ED - DE + k )  dt , 1 
k’ being a constant such that E(to) - k’D(t0) + 0,  

1 
BE - C D ‘  

A =  (IV.15-56) 

11) B(t0) = 0 for some t o .  In this case C(to)D(to) + 0. The complete solu- 
tion near to is 

C ,  D ,  and E are arbitrary functions of t ,  except that C D  0, 

t 

B = -Cd, &(ED - DE + k ) d t ,  

1 
BE - C D ‘  

A =  

The root t o  need not be isolated. 

(IV.15-57) 

A solution for this family may belong to different cases on different intervals 

No matter how A ,  B ,  . . . , E are determined, an acceleration-potential is 
of time. 

given by 

- p, = , A  - x 2  + ;A(EB - o C ) y 2  
A 

+ A ( B C  - C@yz  + ;A(& - CD)z2. (IV. 15-58) 

Family 3 .  The conclusions for Family 1 hold. 
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Family 4 .  From (5) we find that 

e = o ,  + = o ,  . A  r = -  
3r2 ' 

(IV. 15-59) 
.. A 2 A  

i e  = X,+ = 0. _ _  xr = - 
3r2 9r5' 

The condition (11.11-45) does not restrict A; a velocity-potential and an accelera- 
tion-potential are given by 

A A 2  
-p, = 7 ,  -p a -  - - -+ -  (IV. 15-60) 

A 
3r 18r4' 

Family 5 .  From (6) we find that 

r = - r ,  

r e  
' ( '  F) A C 

2 = -2 ,  

. A  

e =  B - -  l o g - + - e ,  

A 

D 
D 

A 

.. D 
xz = 3' 

Now the condition (11.1 1-45) implies that 

(E i) B + B  - + 2 -  =o ,  

.. c AB A c B  
B - B -  +2- -2- = 0. 

C A  AC 

(IV. 15-62) 
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We wish to solve this system of differential equations, subject to the condition 
(6)4 * 

First, ( 6 2 ) ~  can be integrated at once, yielding 

A2CC = kl . (IV. 15-63) 

Next subtracting (62)3 from (62)l , we obtain a differential equation and its 
integral: 

BC BC ACB 
c c  AC 
- + - +2- = O ,  A2BC = k2. (IV.15-64) 

We consider the following two possibilities: 
I) kl = 0. The complete solution for this case is 

A is an arbitrary function except A( t )  + 0 for all t, 

B = k ' L A Z + k ' ' ,  dt 

1 
kA2 ' 

D = -  
(IV. 15-65) 

k ,  k', and k", being arbitrary constants. 
11) kl + 0. Now (63) makes ACC a non-null constant, and so neither 

C ( t )  nor C ( t )  can vanish for any t. The quotient of (63) by (64)~ makes B 
proportional to C, and the complete solution is 

C = an arbitrary non-vanishing function of t, and C(t)  + 0 for all t ,  

1 I 2  
A =  (-%) , B =k 'C ,  D = ~ (IV.15-66) 

A2C ' 

kl and k' being arbitrary constants. 
An acceleration-potential is given by 

-P - - - -a2 +a0 - (IV.15-67A) ' - 2  r2 ( A  A 
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in which 

, = ( B - g ) l O g - + - e ,  r e  
A C  

(IV. 15-67) 

. BC 
P = B - - - .  

C 

For each instance we have determined Pa ; by use of (IV.8-11) we thus 
obtain, for each family in turn, the pressure fieldp required to effect the motion. 

Conclusion. We have now shown that the five families of putative universal 
motions for homogeneous, isotropic, incompressible bodies subject to lamellar 
body force are indeed solutions when the originally arbitrary functions of time 
occurring in them are suitably specialized. They remain universal motions when 
those functions of time are constant functions. Then Pa = const., all compo- 
nents of S are constant, J)  reduces to a function of B alone, and our solutions 
here reduce to universal transplacements in the statics of an elastic body, of 
course homogeneous, isotropic, and incompressible. As has been remarked in 
Section IV.4, the statics of simple bodies is elastostatics. Thus the placement at 
each time in one of these motions is a possible placement of rest for the body 
in question. Motions of this kind are called quasi-equilibrated. 

In Volume 3 we shall show that all universal motions of homogeneous, 
isotropic, incompressible, elastic bodies are quasi-equilibrated. Because the 
class of universal motions cannot be greater for simple bodies than for elastic 
bodies, all universal motions of homogeneous, isotropic, incompressible, 
simple bodies are quasi-equilibrated. 

Whether, for the same classes of bodies, there are universal solutions beyond 
those just exhibited, is presently unknown. To understand why that is so, the 
student may consult ERICKSEN’S paper on universal solutions in the statics of 
homogeneous, incompressible, isotropic, elastic bodies. ’ 

The logic used to obtain the five families of universal solutions shows that 
among the putatively arbitrary functions set out in (2), (3), (4), (3, and (6) only 
those satisfying the restrictions later derived give rise to universal solutions, and 
that ifthose restrictions are satisfied, they do deliver solutions of the differential 
equations locally. Two qualifications must be noted. First, the analysis takes no 
account of the fact that symbols such as rand 0 represent co-ordinates and hence 

’ J. L. ERICKSEN, “Deformations possible in every isotropic, incompressible, perfectly elastic 
body,” Zeitschrift fur angewandte Mathematik und Physik 5( 1954): 466-489, reprinted in 
Problems of Non-Linear Elasticity (edited by C .  ’T~UESDELL), New York, etc., Gordon & Breach, 
1965. 
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are subject to restrictions such as r 2 0 and 0 5 6 < 2n. Second, the various 
integrals in terms of which the conclusions are stated are not tested or analysed. 
There are no theorems of existence corresponding with given initial conditions, 
for no such conditions are stated, and no attempt has been made to confront 
the conclusions with physical requirements. Steady, simple shearing, defined by 
(IV.9-12), indeed exists for all time, but the irrotational pure stretches defined 
by (IV.9-15) exist only so long as solutions of that differential equation exist. If 
we look back at ( 1) with the function C given by (43)3 or (46)3 , we see that even 
if C(0) = 1, in general C > 1 or C < 1 at later times. In the former instance an 
angular wedge of a solid cylinder will be made to overlap itself, contrary to the 
requirement that x (  - , t) be a homeomorphism. In the latter instance a cylinder 
with an angular wedge removed may be made to close up and fill the void, again 
violating the requirement of homeomorphism. Also cylinders R = const. in the 
reference placement are generally expanded or contracted into spatial cylinders 
of greater or lesser radius r ,  and with A and B given by (43)1,5 and (46)l.s it 
may happen that the radius of some cylinder R = const. either becomes null 
at some time or originates at some time from a cylinder of null radius, and the 
transplacement fails to exist outside some interval of times. Specific examples 
of such phenomena are presented below in Section 18. 

How important these considerations are, depends in part upon the materials 
of the bodies to which they are applied. For theories of the classical types, say 
elastic solids or Navier-Stokes fluids, existence in a tiny interval containing the 
present time suffices. For bodies of material with long memory, on the contrary, 
motions must exist in the time-interval ] - 00, t ] ,  and all those that do not must 
be rejected. Also if motions do exist at a particular time, they may break down 
in one way or another shortly thereafter. 

These observations sound a warning, but also they proffer encouragement. 
Some of the universal solutions may serve as models for explosions, implosions 
or tears and welds such as those that form from opening and closing cavities. 
Continuum mechanics is sometimes faulted for failure to include such phenom- 
ena. It is just, indeed, to state that they have not been much studied up to now 
in the serious literature on mathematical theory and will not be well understood 
until studied further. 

16. Solids 

In ordinary experience we commonly think of a body as being “solid” if af- 
ter changing its form we can discern a difference in the way it responds to further 
deformation. A solid, then, has some placement, any non-rigid transplacement 
of which is detectable by some subsequent measurement of stress. Thus, still 
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considering a particular material point, we lay down the following formal 

Definition (NoLL). A material is solid if there is a reference place- 
ment K such that 

f K  (IV. 16-1) 

Such a placement K is called undistorted. According to this definition only 
orthogonal deformations belong to the peer group f corresponding with an 
undistorted K . 

A material for which f = (1, -1) is solid. Such a material, which is 
called triclinic, furnishes an example of a crystalline solid in the classical 
sense. All the classical crystallographic groups, provided they be extended so 
as to include - 1, correspond with solids. So also do the groups defining 
“transversely isotropic” and “orthotropic” materials, and many others. 

For solids, no particularly simple form of the constitutive relation has been 
found. 

An isotropic solid material, of course, is a material that is both solid and 
isotropic. Both of these qualities have been defined in terms of the existence 
of special reference placements, both of which have been called “undistorted”. 
Denoting by K the one used to define “isotropic” and by K the one used to 
define “solid”, for an isotropic solid 

f K 3 0 ,  y:,ca. (IV. 16-2) 

The relation between any such pair of reference placements is laid bare in the 
following 

Theorem 1 ( ~ U E S D E L L  & NOLL). 

f K  =p:, = 0. (IV .16-3) 

f K  7’ Proof. According to the last statement in Section IV.14, either 
o r f x  = a. I f f K  = a, then by (1V.13-1)yz = a; since (2)2 contradicts 
this conclusion, we are left with the former alternative,yK = o . Thus K is an 
undistorted placement of the solid. 

If X : = R  o K - ’  and P := VA, NOLL’S rule (IV.13-1) ensures that there is 
a X such that f:, = Po P-’. If we can find an orthogonal tensor R such that 
f :, = R o R-’ , then we shall have proved the theorem, since the only orthogonal 
conjugate of 0 is 0 itself. That such an R exists, is a corollary of a more general 
theorem which is stated in the following exercise. 
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Exercise ZV.16.1 (COLEMAN & NOLL). Let K and I *  be two undistorted place- 
ments of a solid, and let P = V(K * o r - ’ ) .  If the polar decomposition of P is 
P = &Uo , and if Q* and Q are elements offr  a n d y r  that correspond with one 
another through NOLL’S rule, then 

Q* = RoQG, Uo = Q’UoQ. (IV.16-4) 

Hence 

(IV. 16-5) 

P.. That i s , Y r *  is an orthogonal conjugate of 

A body composed of solid material points is a solid body. A body of 
isotropic solid material is an isotropic solid. No confusion of “material” and 
“body” should ensue. 

Returning to the consideration of a solid material in general, we remark that 
its peer group with respect to an undistorted placement may be any subgroup 
of the orthogonal group that contains - 1. 

However, only certain particular kinds of anisotropy have attracted much notice 
until recently. These are the ones corresponding with the 32 crystal classes, which are 
defined by optical symmetries, and to two further types which correspond with some 
manufactured products. In order to define these particular symmetries, we let Rr denote 
a right-handed rotation of angle cp about an axis in the direction of the vector a; we let 
(i, j, k) be an orthonormal basis, and we set p := &(i + j + k). In view of (N.12-7), 
it suffices to speciQy + , which is a group of rotations. 

A material such t h a t y +  consists in 1 and all rotations Rg for a fixed k and all 
angles cp is called transversely isotropic with respect to k. 

The 32 crystal classes reduce to 11 in the context of the present, purely mechanical 
theory. Definitions of these, along with the standard crystallographic names, are given 
in the following table, summarizing conclusions derived by COLEMAN & NOLL. The 
directions of the particular unit vectors i, j, k are called the crystallographic axes. 

contains the reflections -R; , 
- R{ , - R; . Since R;R{ = R; and (R,,’’)’ =$- , the materials belonging to the 

classes numbered 3, 5, 6, and 7 in the table are orthotropic. 
In this book we shall not have occasion to treat crystals or other materials of special 

symmetry, except, of course, isotropic materials. The definitions just given are included 
only so as to help the student understand the meanings of the terms, should he encounter 
them elsewhere. 

Finally, a material is called orthotropic if 
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Crystal class Generators’ of p +  Order of p 

all classes 
1 .  Triclinic system 1 2 

2. Monoclinic system 
all classes 

3 .  Rhombic system 
all classes 

R; 4 

4. Tetragonal system 
tetragonal-disphenoidal R;/2 
tetragonal-pyramidal 
tetragonal-dipyramidal 

5 .  tetragonal-scalenohedral 
ditetragonal-pyramidal 
tetragonal-trapezohedral 
ditetragonal-dipyramidal 

6 .  Cubic system 
tetartoidal 
diploidal 

7. hextetrahedral 
gyroidal 
hexoctahedral 

8. Hexagonal system 
trigonal-pyramidal 
rhombohedra1 

9. ditrigonal-pyramidal 
trigonal-trapezohedral 
hexagonal-scalenohedral 

10. trigonal-dipyramidal 
hexagonal-pyramidal 
hexagonal-dipyramidal 

R;12, R; 

11. ditrigonal-dipyramidal 
dihexagonal-pyramidal 
hexagonal-trapezohedral R;, R:l3 
dihexagonal-dipyramidal 

8 

16 

24 

48 

6 

12 

12 

24 

’ The members of a set of elements of a group p are called the generators of 7 if products 
of their powers exhaust p . 
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Traditionally the use of these classical “point groups” is motivated by CAUCHY’S 
theory of stress in a lattice of mass-points. I ERICKSEN’ has pointed out that the arguments 
used apply only when IF - 11 is small. The theory of point lattices if taken seriously for 
transplacement gradients of great magnitude suggests that the peer groups of crystals 
should contain some non-orthogonal tensors, no matter what reference placement be 
used. Thus a crystal lattice does not serve as a model for a solid body in the sense 
defined by (1) and used throughout this book. 

Returning to the consideration of solids as defined by (l), we note first that 
only certain particular placements will be undistorted. Indeed, if K is undis- 
torted, if K * is another reference placement, and if P := V(K * o K - I ) ,  by NOLL’S 
rule we have 

p K *  = PpKP-l ,  pK c 0 .  (IV.16-6) 

Now if Q is orthogonal, PQP-’ generally fails to be orthogonal. Thus not all 
placements of a solid are undistorted. 

Exercise ZV. 16.2. L e t y  contain all rotations about e3 , and let K * be obtained by 
the biaxial stretch such that [PI = diag(A, A, p ) ,  A + p .  Thenfr * contains all rotations 
about e3 . Thus if K is an undistorted placement of a material transversely isotropic with 
respect to e3 , so also is K * . For example, if K is an undistorted placement of an isotropic 
solid (a special instance of a material transversely isotropic with respect to e3), then K * 
is an undistorted placement of a material transversely isotropic with respect to e3 . In 
contrast, rotations of K ( B )  about el are not carried into rotations of K * ( B ’ )  about el . 
Thus, even if K is an undistorted placement of an isotropic solid B’, K *  is a distorted 
placement of .LB. 

Exercise ZV.26.3. Application of ( 5 )  shows that the peer groups corresponding 
with different undistorted placements of a particular solid are not generally the same, 
and that the undistorted placements of an anisotropic solid generally fail to be peers. 

We may set ourselves the following task: to find the largest class of mappings 
X that carry places in an undistorted placement K defined by a given groupfK 
into places in another undistorted placement. 

For the largest and smallest possible peer groups, the answer is easy to get. 
First, iff. = (1, -l}, then, as shown in Section IV.13, all placements are 

‘An outline of this theory is given by A. E. H. Lorn in Note B, “The notion of stress,” in his 
A l’katise on the Mathematical Theory of Elasticity, Cambridge, Cambridge University Press, 
2nd-4a editions, 1906/1927, variously reprinted. 

* J .  L. EIUCKSEN, “Nonlinear elasticity of diatomic crystals,” International Journal of Solids 
and Structures 6( 1970): 951-952, and Chapter IV of “Special topics in elastostatics,” Advances 
in Applied Mechanics, 17(1977): 179-244. 
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undistorted, and so any X has the property sought. The second case is settled 
bY 

Theorem 2 (COLEMAN & NOLL). A transplacement of an isotropic 
solid maps one undistorted shape onto another if and only if it is con- 
formal. ' 

The sufficiency of the condition follows trivially from a theorem established 
in Section IV. 13. Necessity is a consequence, as we shall see presently, of the 
following more general 

Theorem 3 (COLEMAN & NOLL). Let K be an undistorted placement of 
a solid body L~I. If  X : = K *  o K - ' ,  so that X maps ~ ( 3 7 )  onto ~ * ( 3 7 ) ,  then 
K * is undistorted if and only if the proper spaces of the right stretch tensor 
UO of VX are invariant under all the rotations in the peer group P K  * 

Proof. By ( 4 ) 2 ,  every member Q of commutes with UO . According 
to a theorem of algebra,* Q satisfies this condition if and only if it leaves the 
proper spaces of UO invariant. 

P K  

Exercise W.16.4. The statement of sufficiency in Theorem 2 is a corollary of 
Theorem 3. 

We turn now to the use of Theorem 3 so as to complete the proof of necessity 
in Theorem 2. By Theorem 1 we know that if K is undistorted, y K  = 0 .  If 
X carries K into another undistorted placement K * ,  then by Theorem 3 every 
orthogonal tensor must leave invariant the proper spaces of UO . Therefore, the 
proper space of UO can be nothing but 9' itself. Hence UO has only one proper 
number, so that UO = K1, and consequently VA = KR. 

Theorem 3 itself may be used to determine the most general form of UO 
compatible with a given in cases other than the two already disposed of 

in the following table, due to COLEMAN & NOLL. The numbers in parentheses 
isotropic or triclinic soli cf s . The outcomes for the crystalline solids are shown 

' A transplacement X is conformal if it preserves the angles between material curves: equiva- 

*This theorem is a corollary of Theorem 2, Section 43, and Theorem 3, Section 79, of P. R. 
lently, there is an orthogonal tensor R such that VA = KR and K + 0. 

HALMOS, Finite-Dimensional Vector Spaces, 2nd ed., Princeton, Van Nostrand 1958. 
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refer to the definitions of the special kinds of aeolotropy in the table printed 
above on p. 267. 

~~ 

Type of aeolotropy Restrictions on U, 

Triclinic system (1) no restriction 
Monoclinic system (2) 
Rhombic system (3) 
Tetragonal system (4,5) 
Hexagoanl system (8,9,10,11) 
Transverse isotropy 
Cubic system (6,7) 

k is a proper vector of U, 
i, j, k are proper vectors of U, 

U, = A1 + B k @  k 

u, = A1 
I 

17. Fluids 

There are various physical notions concerned with fluids. One is that a fluid 
is a substance which can flow. “Flow” itself is a vague term. One meaning of 
“flow” is simply deformation under stress, which does not distinguish a fluid 
from any other material not rigid. Another is that steady velocity results from 
constant stress, which seems to be special and to apply only with difficulty 
and to particular flows. Another is inability to support shear stress when in 
equilibrium. Formally, within the theory of simple materials, such a definition 
would yield 

where &(1‘) = 0, 1‘ being the history whose value is always 1. Since the 
material so defined may have any peer group whatever, including one of those 
already considered to define a solid, this definition does not lend itself to a 
criterion in terms of common response. 

The constitutive relation T = -K(3 -trU)l, K = const. ?= 0, 
defines an isotropic, elastic solid which has infinitely many placements at ease and never 
experiences non-vanishing shear stress, no matter how it be deformed. 

Finally, a fluid is regarded as a material having “no preferred configura- 
tion”. In terms of peer groups we may realize this somewhat vague idea by the 
following 

T = -P(P)l  +&(F‘), (IV.17-1) 

Exercise IV.27.I. 

Definition. A fluid is an egalitarian material that is not solid. 

P =  In Section IV. 13 we have shown that for an egalitarian material either 
(1, -1) o r 7  = a. The former case corresponds with a solid, according to the 
definition given in Section IV. 16. Thus we have the following 
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Theorem. A material is fluid if and only if for some K 

p .  =.u (IV. 17-2) 

For a fluid material, (2) holds for all K . 

From this theorem, some preceding ones, and the definitions, we read off 

1. Every fluid is isotropic. 
2. Every placement of a fluid is undistorted. 
3. A material is egalitarian if and only if it is either a fluid or a 

triclinic solid. 
4. The only isotropic materials are fluids and isotropic solids. 

The condition (2) was laid down as the definition of a fluid by NOLL, who 

the following trivial but important corollaries: 

derived thereupon the following 

Fbndamental Theorem on Fluids. Every unconstrained fluid has a 
constitutive relation of the form 

T = rrcc: ; P ) ;  (IV.17-3) 

also 

for all orthogonal Q and all arguments C: and p that lie in the domain 
of J). Every such isotropic mapping of positive, symmetric tensor histories 
onto symmetric tensors defines a fluid. Furthermore, 

RU‘; P )  = -p(p)l. (IV.17-5) 

This last conclusion states that all fluids obey in rigid motion, such as a state 
of rest, the laws of Eulerian hydrostatics, according to which the stress is a 
hydrostatic pressure which depends on the density alone. In particular, a fluid 
exhibits the phenomenon of “flow” in one of the common senses, namely, it 
cannot support any shear stress when it has been at rest for all times, past and 
present, in any placement whatever. As we have shown at the beginning of this 
section, the converse is false: a material capable of “flow” in this sense may 
have any peer group. 

Proof of Noll’s theom?m. Since a fluid is isotropic and every placement is 
undistorted, we may apply (IV. 14-2) for any reference placement K . Because the 
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stress in a fluid cannot be changed by a static deformation from one placement 
to another with the same density, the dependence upon B ( t )  in (IV.14-2) must 
reduce to dependence on detB(t), or, what is the same thing, dependence on 
p,  and this fact establishes the necessity of (3). Furthermore, 8 must satisfy 
(IV.14-3), which now reduces to (4). If Ci = l', then (4) yields 

T = 8(1' ; p)  = Q8(1', p)QT = QTQT. (IV. 17-6) 

Thus in a fluid which has always been at rest T commutes with every orthogonal 
tensor. The conclusion of Exercise IV.4.1 establishes the necessity of (5). 

Exencise ZV.17.2. The relations (3) and (4) imply tha tyn  = c for every K . This 
exercise completes the proof of NOLL'S theorem. A 

We may express the foregoing theorem also as follows: The constitutive 
relation of a fluid is of the form 

the mapping B is isotropic, and its value is naught when its argument is the 
history 0' whose value is always 0. Conversely, every relation of this form 
defines a fluid. 

A trivial corollary of the foregoing, which may be proved in several other ways, 
states that any relation of the form (IV.44) defines an elasticfluid. While in hydro- 
dynamics it is customary to impose the condition that p(p) > 0 for all p ,  or at least the 
weaker requirement that p ( p )  > 0 for all but a discrete set of values of p,  this condition 
does not follow from any general principle of mechanics. Because steady, hydrostatic 
tensions of some magnitude have been produced, with extreme pains, in very quiet 
laboratories, perhaps the condition p(p) > 0 should be regarded as expressing stability 
rather than a constitutive restriction. 

From (IV.14.4) it is clear that the determinate stress of a homogeneous 
incompressible fluid has a constitutive relation of the form 

s = 8(c;); (IV. 17-8) 

the mapping 1) need not be defined except for arguments such that det Ci = 1; 
8 must satisfy the condition of isotropy expressed by (4); and there is no loss 
in generality if we require that 1)(1') = 0. Conversely, every mapping of this 
kind defines a homogeneous, incompressible fluid. 

Finally, since for a rigid motion Ci = 1' , the constitutive relation (3) reduces 
to (IV.4-4): A body of unconstrained fluid in rigid rotation behaves like 
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a body of Eulerian fluid. For a homogeneous, incompressible fluid body a 
similar statement holds, and in steady rotation about a fixed axis 

(IV. 17-9) p v + w = p r ,  1 2 2  

r being the distance from the axis. 

Exercise ZV.27.3. The statement (9) follows by use of (11.11-53), (11.11-52), and 
(rv. 10-2). 

A body of fluid material is a fluid body. Often the noun “fluid” is used 
equally to refer to a material or a body. No confusion ought result. 

A fluid may react to its entire transplacement history, yet its reaction cannot 
be different for different placements with the same density. A fluid reconciles 
these two seemingly contradictory qualities- ability to remember all its past 
and inability to regard one placement as different from another- by reacting 
to the past only insofar as it may differ from the present, which may be ever 
changing. 

18. Universal Flows of Homogeneous Incompressible Fluids 

Universal motions, transplacements, and flows have been defined in Section 
IV.9. Five families of universal transplacements for isotropic, incompressible, 
homogeneous bodies have been presented and discussed in Section IV. 15. Since 
homogeneous, incompressible fluids constitute a proper subclass of homogen- 
eous, incompressible, isotropic materials, the class of universal motions of 
fluids may be greater than that given by the five families presented and anal- 
ysed in Section IV. 15. Whether such is the case, is not presently known. Thus 
this section cannot include anything not a consequence of what has appeared in 
Section IV .15. 

Nevertheless, we shall here remark upon some universal flows. The student 
will recall the main advantage of the spatial description: While a motion is 
defined in terms of a particular reference placement, the spatial velocity-field is 
unique, independent of reference placements. Infinitely many transplacements, 
one for each choice of reference placement, give rise to the same flow. We have 
seen examples in Section 1.15: namely, the flow of Family 2 is homogeneous 
and hence corresponds also with a homogeneous motion, and Families 1 and 3 
give rise to the same flow. In doing Exercises IV. 15.4 and IV. 15.5 the student 
will have confirmed this observation in two examples. 

In researches on the dynamics of incompressible fluids of various kinds, 
members of two particular families of steady flows are often mentioned, usually 
because they satisfy the dynamical equations and provide exceptions, perhaps 
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rather degenerate ones, to some otherwise general statements. Their definitions 
in terms of contravariant cylindrical components follow. 

i. = -ar + b / r ,  e = ae + ;c, i = uz sg, (1v.18-1) 

i . = h / r ,  O = k ,  i = M + m ;  (IV.18-2) 

a, b, c, g ,  h, j ,  I ,  and m are arbitrary constants. These flows generally represent 
expansion or contraction of concentric cylinders superimposed upon azimuthal 
and longitudinal stretches and shears; the most familiar instance has streamlines 
that are logarithmic spirals, which include as a limiting instance flow between 
concentric, co-axial cylinders. We note that the instance a = 0 in (1) and the 
instance I = 0 in (2) are identical. 

Exemise ZV. 28. 2 (MARRIS). These flows preserve circulation; they are irrota- 
tional if and only if, respectively, a = c = 0 and k = I = 0, and for their principal 
stretchings to be all constant, it is necessary and sufficient that b = 0 and h = 1 = 0, 
respectively. Also if h = 0, then I + 0 unless the motion is rigid. 

Exercise ZV.18.2. The flows (1) and ( 2 )  are steady instances of ( IV.15 .32)1 ,2 ,3  
to within an arbitrary, steady rotation about the z axis and a steady translation along it. 

Following WANG & MARRIS,’ we render the statement of the preceding exer- 
cise transparent by calculating relative transplacements corresponding with ( 1) 
and (2). A relative description of (1) is obtained by integrating the appropriate 
instance of (11.8-3). Using a prime to denote differentiation with respect to the 
time lapse s, we obtain 

rl = -ar + b / r ,  8‘ = ae + ;c, Z’ = uz +g. (1v.18-3) 

Lhemise ZV.18.3. If a + 0, 

(IV. 18-4) 

FQr ( 2 )  

r l = h / r ,  8 ’ = k ,  z 1 = 1 8 + m ,  (IV. 18-5) 

‘(2.-C. WANG & A. W. MARRIS, “Proof that motions obtained in the preceding paper by Mams 
are universal for all incompressible isotropic simple materials,” Archive for  Rational Mechanics 
and Analysis 69(1979): 381-390. 
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which includes as a special instance the result of taking a = 0 in (3). Hence 

r2 = R2 + 2hs, 0 = 0 + ks, z = Z + (re + m)s + ikls.  (IV. 18-6) 

The minuscules a ,  b ,  . . . , m occurring on the right-hand sides of (4) and (6) 
are the very ones appearing in the flows ( 1)  and (2). 

In (4) and (6) the arbitrary constants of integration R,  8, and Z may be taken 
as the polar co-ordinates of body points in a reference placement corresponding 
with s = 0, though no such placement need be occupied by the body, and that 
interpretation is not compelled. 

Exercise IV.28.4 (WANG & MARRIS). The functions A ,  B , .  . . , H  in (IV.15-4) 
may be so chosen as to yield motions that deliver the flows (1) and (2). 

Corresponding thus with instances of (IV.15-4), the flows (1) and (2) are 
universal for homogeneous, incompressible, isotropic bodies provided the 
conditions following from (IV. 15-34) be satisfied; the corresponding stresses 
are then determined by (IV. 15-17). The values A(O), B(O), . . . ,H(O) deliver 
the position of a body-point in the chosen reference placement, which is pre- 
sumed to be homogeneous and undistorted. That reference placement need not 
ever be occupied by the body-point in consideration, but of course it may be. 

Exercise IV.18.5 (WANG & MARRIS). Examination of the effects of the signs of a 
and b in (4) and of h in (6) exemplifies the statements made above at the end of Section 
IV. 15. In general the motions delivering (1) and (2) can be maintained with physically 
reasonable connotation at most for a semi-infinite interval of time. 

The steady universal flows (1) and (2) have a special status. In performing 
Exercise IV. 18.1 the student will have shown that with specified exceptions they 
are rotational and have fields of principal stretchings that are not constant in 
space. MARRIS~ proved in a long and difficult analysis of a small class of fluids 
that there are no other universalflows having theseproperties. By a simple 
and direct calculation based on the flows to which the five families of universal 
transplacements discussed in Section IV. 15 give rise, WANG & MARRIS’ proved 
that among those flows all but (1) and (2) are either unsteady or irrotational or 
have three constant principal stretchings or do not preserve circulation. The con- 
ditions required to reduce the five families to their subclasses that do preserve 
circulation have been provided above in Section IV. 15. 

Perhaps there are universal flows not delivered by any of the five families of 
transplacements mentioned. Perhaps there are universal flows of incompressible 
fluids that are not universal for isotropic, incompressible solids. MARRIS’S theor- 

‘A.  W.  MARRIS, “Steady universal motions of Rivlin-Ericksen fluids,” Archive for Rational 
Mechanics and Analysis 69( 1979): 335-380. 
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em tells us that any further universal flows, be they of incompressible fluids 
only or of isotropic, incompressible materials in general, will necessarily have 
three constant principal stretchings or be unsteady or irrotational. 

For incompressible fluids the class of all universal flows in which all three 
principal stretchings are constant and distinct seems to be abundant and very 
difficult to delimit. 

19. Steady Rotation of a Homogeneous Body of Incompressible Fluid 
Loaded by Surface Tension 

In Section 111.9 we have presented the theorem of DAY which states that 
a free body whose rotational momentum is not null will ultimately develop 
negative pressures unless its diameter tends to 00. In particular, such will be 
the case for a free body in rigid rotation. It is natural to ask if surface tension, as 
defined by (111.8-3) with a positive coefficient u, can overcome the tendency of 
a spinning body of fluid to fly asunder. DAY, again acknowledging the influence 
of SUNDMAN'S work, has found circumstances sufficient that such be true of a 
homogeneous body of incompressible simple fluid. For the generalized form in 
which his analysis is presented here I am indebted to R. BATRA. 

Theorem. Let a body of incompressiblefluid of uniform density be 
loaded when t 2 0 by surface tension alone. I f  the rotational momentum 
H ,  mass M, and volume V are related as follows to the coefficient u of 
surface tension : 

0 < H < 1 . 0 5 1 ~ ' / ~ M ' / ~ V ~ / ~ ,  (IV. 19-1) 

then when t 2 0 the body may undergo a steady, rigid rotation in a shape 
such that p > 0 everywhere. 

hliminuries to the pmf. The student will recall from Exercise 111.8.2 
that a body loaded by surface tension alone is isolated, and so its center of mass 
remains fixed and its rotational momentum constant. From the developments 
in Section IV.17 we know that any homogeneous, incompressible fluid body 
undergoing steady rotation obeys the constitutive relation of an Eulerian fluid; 
the pressure on such a fluid in steady rotation is given by (IV. 17-9), which here 
reduces to 

P = po + :pw2r2, (IV. 19-2) 

r being the distance from the axis of spin, w the angular speed, and po the 
pressure of the fluid at points on the axis. The theory presented in Section I. 13 
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shows that that axis is parallel to the rotational momentum and is a principal 
axis of inertia of the body in its shape at the time 0 and thereafter. 

We shall construct a solution for a body whose shape is bounded by a 
surface of revolution about the axis of spin. We shall call that axis the z-axis 
and assume that the body has an equatorial plane, and so we may take the 
generating curve as having the equation z = f f ( r ) ,  0 5 r 5 a.  We shall 
assume that the bounding surface of the body has a continuous normal field. 
Thus 

f ( a )  = 0 ,  f ’ ( O )  = 0 ,  f ’ ( r )  --t - 00 as r + a .  

(IV. 19-3) 

Under these assumptions we shall show first that at most one choice of a and 
f exists. It will be easy then to see that that choice does indeed satisfy the 
conditions set down and so establishes the theorem. 

Proof of Day’s Theorem. Because of (2) the boundary condition (111.8-3) 
assumes the form 

1 
- a [ rfi =PO + Zpu2r2 ,  0 _I r _I a. (IV.19-4) 

(l+f) 

Integrating this differential equation and using the conditions (3), we find that 

2a 1 
po = - - -pw2a2,  

a 4  

- f ‘  = [I - K  (1 - $ ) I ,  (IV. 19-5) 
(l+fQ)”2 a 

in which 

Now using (2) and (5)1 , we calculate p explicitly: 

p = 2” [l - K  (1 - 31. 
a 

(IV. 19-6) 

(IV. 19-7) 

Thus in order that p > 0 throughout the shape of the body, it is necessary and 
sufficient that 

K < 1 .  (IV. 19-8) 
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Integration of ( 5 ) ~  determines the shape of the body, but we are not directly 
interested in that. 

Exercise IV. 19.1. 

m a 5  M 
V = 2aa3g2(K), H = - g4(K); (IV.19-9) 

V 

the functions g ,  are defined as follows: 

xa+l( l  - K  + K x 2 )  1 [ l  -x2(1 - K  + K X * ) ~ ] ' / ~  dx* 

1 

gl7(K) = (IV.19-10) 

From (9) and (6) we see that 

say. Regarding V, H, M, and a as given, we seek a value of K such as to 
satisfy (1 1). If we can find it, we can then determine a from (9)l and thereafter 
determine w from ( 9 ) ~  . We shall then have determined the shape and spin of 
the body. If, furthermore, we can satisfy (8), then it will follow that p > 0 
everywhere in the shape of the body. 

Thus it remains to solve (1 1). The definition (10) shows that g 2  and g4 are 
continuous and positive on [0, 11. Because, therefore, h as defined by (11) is 
continuous on [0, 11, it assumes every value in the interval [h(O), h(l)]. Now 
h(0) = 0, and h( 1) can be estimated numerically. According to DAY, 

It follows, then, that if 

(IV. 19-12) 

(IV.19-13) 

there is a value of K in [0, 11 such as to satisfy (1 1). Obviously 0 violates (1)1 , 
while (12) shows that 1 is too large. a 

20. Fluid Crystals 

To exhaust the possible types of simple materials, any material that is not a 
solid we shall call a fluid crystal. For a fluid crystal, thenp, @ 0 ,  no matter 
what be the reference placement K .  Thus the peer group with respect to every 
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placement has some elements which are not orthgonal. That is, there is always 
some change of shape that no experiment on the stress can detect. In this regard 
a fluid crystal is like a fluid, for which no change of shape without change 
of density is detectable by measurement of stress. Since it is impossible that 

IJ o unless the fluid crystal be in fact a fluid, for a fluid crystal not isotropic 
some rotations are detectable. In this property an anisotropic fluid resembles an 
anisotropic solid. 

The definitions and theorems in the preceding section show that a fluid 
crystal is a fluid if and only i f  it is isotropic. 

In this book we shall not go any further into the theory of fluid crystals.’ 

f* 

Exercise ZV.20.2. A “Venn diagram” represents the exhaustive classification of 
peer groups. 

21. Monotonous Motions 

Continuum mechanics, even the mechanics of simple materials, covers so 
vast a range of possible behavior that little can be learnt from it without de- 
scending to instances. In this complexity continuum mechanics mirrors nature 
itself, for only by specifying particular features of a phenomenon can we so 
much as name it, let alone describe it. In the mechanics of simple materials two 
kinds of specialization are fruitful: 

1. of the material, 
2. of the motions a body is forced to undergo. 

We have given examples of the former in the immediately preceding sections. 
The constitutive relations of fluids and isotropic solids are simpler than the 
general one, and we can expect the solution of problems for these two classes 
of bodies to be relatively easier than for anisotropic solids or fluid crystals. 

‘The peer groups of certain fluid crystals have been defined and interpreted by B. D. COLEMAN, 
“Simple liquid crystals,’’ Archive for Rational Mechanics and Analysis 20, 41-58 (1965). and 
C.-C. WANG, “A general theory of subfluids,” ibid. 20( 1965): 140 .  

Fluid crystals as defined here are not to be confused with the “liquid crystals’’ occumng in 
physics; those liquid crystals do not fit into the framework established and studied in this book, 
although they are simple materials in the more general sense introduced in NOLL’S paper of 1972, 
which is cited at the end of this chapter. Surveys of the vast literature on theories of liquid crystals 
are available: 

I .  Static Theory. J. L. ERICKSEN, “Equilibrium theory of liquid crystals,” Advances in 

2. Dynamic Theory. F. M. LESLIE, “Theory of flow phenomena in liquid crystals,” ibid. 
Liquid Crystals, Vol. 2, ed. G. BROWN, New York, Academic Press, 1976. 

Vol. 4, New York, Academic Press, 1979. 
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The continuum mechanics of the last century carried this kind of specializa- 
tion much further and restricted attention to materials specified by one or two 
constants. As a result, the solution of many boundary-value problems became 
easy-deceptively so, since only rarely can the properties of natural bodies be 
condensed adequately into one or two numbers fit to be tabulated in a manual. 

We have given a specimen of the second simplification in Sections IV.9 
and IV.10, where we have seen that we may determine, once and for all, all 
homogeneous transplacements that can be produced in an arbitrary homogen- 
eous simple body by bringing to bear suitable tractions upon its boundary. 
In Section IV.15 we have derived and displayed the universal solutions made 
possible by two specializations: incompressibility as well as isotropy. We now 
define and analyse certain particular motions in which the effects of material 
memory, which for a simple material may indeed be various and complicated in 
a general motion, are given little chance to manifest themselves, because there 
is little to remember. 

Consider, for example, the constitutive equation of a simple fluid: 

T = J)(C: ; P ) .  (IV.17-3), 

In the particular case when p = const. and C:(s) is the same function of s 
for all t ,  the stress becomes constant in time for a given material point. The 
fluid body may have undergone transplacements for all past time, but as each 
material point looks backward, so to speak, it sees the entire sequence of past 
transplacements referred to its present placement remain unchanged. 

More generally, since the Principle of Material Frame-Indifference (Section 
IV.5) forbids past rotations to enter the constitutive relation and renders explicit 
the effect of present rotation, we should be able to simplify the constitutive 
relation almost as much in the more general circumstances when, for some 
orthogonal tensor Q( t )  , 

C:(S)  = Q(t)C!(s)Q(t)T,  0 5 s < 00. (IV. 2 1 - 1) 

Here Cg denotes C: when t = 0, and Q(0) = 1. COLEMAN isolated motions 
of this kind as a class and called them substantially stagnant. In them, an 
observer situate upon the moving material point may choose his frame in such 
a way as to see behind him always the same transplacement history referred to 
the present placement. The proper numbers of C:(s) are for a given s and any t 
the same as those of C&), although the principal axes of the one tensor for a 
given s may rotate arbitrarily with respect to those of the other as t increases. 
Thus, while the principal relative stretches u(?)k  generally vary with t ,  they do 
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so in such a way that their histories up to the time t remain unchanged: 

0 
U t f ) k  = U(O)k, k = 1, 2, 3, -00 < t < 00. (IV.21-2) 

Thus a substantially stagnant motion is a motion having constant principal rel- 
ative stretch histories. A simpler name is monotonous motion. 

Since the definition of this property makes no use of a fixed reference 
placement, it pertains to the motion itself rather than to any of its embodiments 
as a transplacement. Moreover, in view of a conclusion derived in Exercise 
I. 11.2, this property is a frame-indifferent one. 

We turn now to the pure kinematics of monotonous motions. They are 
characterized by the following 

Fundamental Theorem (NoLL). A motion is monotonous i f  and only 
i f  there are an orthogonal tensor Q ( t ) ,  a scalar K ,  and a constant tensor 
NO such that 

FO(7)  = Q(7)erKN0, 

Q(0)  = 1, (No1 = 1. 

Proof. We begin from the hypothesis (1) and set 

H ( s )  := CO( -s) = Q(t)'C,(t - s )Q( t ) .  

(IV.2 1-3) 

(IV .2 1-4) 

By (11.8-8), F f ( 7 )  = Fo(~)Fo( t ) -* ,  and so 

If 

then (5) assumes the form of a difference equation: 

H ( s  - t )  = E(t)TH(s)E(t). (IV .2 1-7) 
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To obtain a necessary condition for a solution H(s), we differentiate’ (7) 
with respect to t and put t = 0, obtaining the first-order linear differential 
equation 

- H(s) = MTH(s) + H(s)M; (IV .2 1 -8) 

here M E E(O),  and the dot denotes differentiation with respect to s. The unique 
solution of (8) such that H(0) = 1 is easily seen to be 

Since histories are defined only when s 2 0, this formula has been derived only 
for that domain. Nevertheless, the difference equation (7) serves to define H(s) 
for negative s as well and shows that H is analytic. Since the right-hand side 
of (9) is analytic, the principle of analytic continuation shows that (9) gives the 
unique solution for all s, when E(t) is assigned. If we substitute (9) back into 
(7), by putting s = 0 we obtain 

[E(t)e-fM]TE(t)e-‘M = 1. (IV .2 1 - 10) 

Hence E(t)ePtM is an orthogonal tensor, say Q ( t ) .  By (6), then, 

F o ( t )  = Q(t)Q(t)efM. (IV.21-11) 

We may define K and No to within sign as follows: 

KNO :=M,  IN01 = 1 ,  (IV .2 1 - 12) 

and so (3) follows. The scalar field K is generally called the shearing. The proof 
reveals that the orthogonal tensor function appearing in the conclusion (3) is 
not generally the same as the Q in the hypothesis (1). Conversely, if (3) holds, 
an easy calculation shows that the motion is monotonous. A 

Exercise IV.2l.Z (NoLL). In a monotonous motion 

‘That the assertion of the theorem remains true even if H is merely continuous and E is 
completely arbitrary, has been shown by W. NOLL, “The representation of monotonous processes 
by exponentials,” Indiana University Mathematics Journal 25( 1976): 209-214. On pp. 338-339 
of the earlier paper cited in Footnote I on p. 286 WANG had proved NOLL’S Fundamental Theorem 
by use of a “minor continuity assumption” weaker than continuity. 
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[S] = 

N being defined as follows: 

a 0 0  0 X Y  

0 b 0 , [W] = -X 0 z . (IV.21-17) 

o o c  -y  --z 0 

and so IN( = 1; conversely, if F,(r) has the form (13), any motion to which it corre- 
sponds is monotonous. In such a motion 

c ; ( ~ )  = , --sKN',-sKN, 

G = KN + Q(t)Q(t)', 

A, = Ci(0) = K(N + NT), 

A2 = c:(o) = K ( N ~ A I  + A I N )  = K ' ( ~ N ~ N  + N2 + (N')'), 

A3 = K(N'A~ + A2N), . . . , 
Ak = K ( N ~ A ~ - ~  + Ak-lN), 

(IV.2 1-1 5) 

the notations being those of Section 11.11. A monotonous motion is isochoric if and only 
if 

tr No = 0, (IV .2 1 - 16) 

and of course then also tr N = 0. 

With the aid of these consequences the following corollary makes plain the 
extremely special nature of monotonous motions. 

Corollary (WANG). The relative transplacement history C: of a 
monotonous motion is determined uniquely by its first three Rivlin-Ericksen 
tensors. 

That is, if three tensors Al( t ) ,  A2(t), and A3(t) are given, they can be the first 
three Rivlin-Ericksen tensors corresponding to at most one relative deformation 
history C: satisfying the defining condition (1). 

The proof rests upon a simple lemma. Let S be a symmetric tensor and W 
a skew tensor in 3-dimensional space. Without loss of generality we can take 
the matrices of these tensors as having the forms 
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Then 

[SW-WS]= 
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0 (a -b )x  (a - c ) y  

(a  - b ) x  0 (b - C ) Z  . (IV.21-18) 

(a - c ) y  ( b  - c ) z  0 

[A21 = 

Hence S and W commute if and only if 

u o o  

0 u 0 I 

o o v  

( a  - b ) ~  = 0, ( a  - C)U = 0, ( b  - C)Z = 0. (IV.21-19) 

Consequently, if S has 3 proper numbers, it commutes with no skew tensor 
other than 0. If a = b $I c, S commutes with W if and only if y = z = 0. If 
a = b = c, S commutes with all W. 

WANG'S corollary may now be proved in stages. If two monotonous motions 
can correspond with A1 and A2 , then because of (15)4,6 there are tensors M 
and M such that 

M +MT = M +MT, 

(IV.2 1-20) 

MTAl + A I M  = MTAl +AIM. 

The first of these equations asserts that M - M is skew; the second, that M - M 
commutes with A1 . If A1 has 3 proper numbers, the lemma shows that M-M = 

0. 
Suppose now that A, has 2 proper numbers. Then relative to a suitable 

orthonormal basis 

Case 1 .  Relative to the same basis, 

(IV. 2 1-2 1) 

(IV.21-22) 
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The most general M compatible with (15)d and (21) is given by 

-x ;a z 

-y -2 i b  

K[M] = . 

By (21) and (22) 

K[M'A~ + A I M ]  = 

a2 0 (a -b)Y 

0 a2 (a -b)z 

(a  - b ) y  (a -b)z b2 

Since a + b ,  it follows from (15)b and (22) that 

2 2 u = a ,  u = b ,  y = O ,  z = O .  

285 

(IV .2 1-23) 

. (IV.21-24) 

(IV.2 1-25) 

Exercise IV.21.2. Use of (23) and (25) shows that M commutes with MT; 
hence by ( 15)1,3 

C;(S) = e--sAl. (IV.21-26) 

Case 2 .  Still on the supposition that Al is of the form (21), but regardless 
of whether (22) does or does not hold, we assume that two monotonous motions 
can correspond with A1 , A2, and A3. Then again, there are tensors M and M 
such as to satisfy (20). Since M - M is a skew tensor that commutes with A ,  
as given by (21), the lemma shows that 

But also by (15)7 

MTA2 + A2M = RTA2 + A2M, (IV .2 1-28) 

and so M - M commutes with A2 . 

Exercise ZV.22.3. If (22) does not hold, M = M in Case 2. Finally, if Al = a l ,  
(26)  holds. 
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Accordingly, then, three given tensors Al(t) ,  A2(t), and A3(t) can be the 
Rivlin-Ericksen tensors corresponding to at most one Ci (s) belonging to a 
monotonous motion. In general, three symmetric tensors taken arbitrarily will 
fail to be the first three Rivlin-Ericksen tensors of any motion at all, let alone 
a monotonous one, since they will fail to satisfy conditions of compatibility’ 
expressing the fact that they derive from a velocity field in a region. We shall not 
take up those conditions because our interest lies in simplifying a constitutive 
relation when the motion is known to be monotonous. 

While NOLL’S theorem is independent of dimension, WANG’S corollary rests 
heavily on use of the dimension 3. 

NOLL’S theorem (3), when applied to a space of 3 dimensions, suggests an 
invariant, exhaustive classification of all monotonous motions: 

Type 1. 
Type 2. 
Type 3. 

There are interesting examples of all three types, but the simplest, the vis- 

N$ = 0. These motions are called viscometric 
N: = 0 but Ni + 0. 
No is not nilpotent. 

cometric flows, are used most in applications. 

Exercise IV.21.4. In types 1 and 2 the motion is isochoric, and also tr Ni = 0. 

Exercise IV.21.5. The relative transplacement gradient FI of a viscometric flow 
has the form 

No = const. IN01 = 1 ,  Ni = 0, K = a scalar field. 

Conversely, any relative transplacement gradient of this form corresponds with a visco- 
metric flow. An expression for F, ( 7 )  which is quadratic in K (  7 - t) characterizes motions 
of type 2. 

Exercise IV.21.6. In any monotonous motion 

A:! -A: = K’(N~N - NNT), (IV.2 1-30) 

‘Conditions necessary and sufficient that given functions Al(t) ,  A&), A&) be the first three 
Rivlin-Ericksen tensors of a monotonous motion are obtained by C.-C. WANG in Section 3 of his 
memoir, “A representation theorem for the constitutive equation of a simple material in motions 
with constant stretch history,” Archive for Rational Mechanics and Analysis u)( 1965): 329-340. 

2A different but equivalent definition of viscometric flow was introduced and developed by 
A. C. PIPKIN, “Controllable viscometric flow,” Quarterly of Applied Mathemafics 16( 1968): 
87-100. 
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and hence 

trA: = t r A 2  =2K2(1+trN2). 
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(IV.21-31) 

Thus in a viscometric flow and in a motion of type 2 

The flow to which a monotonous motion gives rise is a monotonous flow. 
Many of the preceding statements refer to the motions only through their flows; 
more statements of that kind follow now. 

Exercise ZV.21.7 (NOLL, COLEMAN & NOLL). The homogeneous flow whose 
Cartesian components are 

XI =o,  x 2  = p x 1 ,  k3 =Ax1 +vx2,  (IV.2 1-33) 

A, p ,  and v being constants, is monotonous of type 1 if p + 0, v = 0; (cf. 11.11-11); 
of type 2 if p $; 0. The flow whose Cartesian components are 

is monotonous of type 3 if u I 112113 + 0 and is isochoric if and only if u I  + 4 2  + a3 = 0. 
The flows (33) of type 2 are not universal. The isochoric instances of (34) are universal 
flows for homogeneous, incompressible, isotropic bodies. = 1 for (33), while (34) 
is irrotational. 

Exercise ZV.21.8 (TRUESDELL). A monotonous motion with spin W and vorticity 
number B may be regarded as the superposition of a rigid motion whose spin W, = 
Q(t)Q(t)' upon a motion, quantities associated with which are distinguished by subscript 
0, such that 

1 - t rN2 
@: = ~ 

1 + t r N 2 '  
IWol2 = i ~ ~ ( 1  - trNZ), 

Hence for types 1 and 2 

and so 

(IV.21-35) 

(IV.2 1-36) 

(IV .2  1 -37) 
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[N]= 

8 being defined in Exercise 11.11.6. Hence for types 1 and 2 

@ > 1 H I W , ~  > - V ' ~ I K ~  cos 8, 

B = l  H 

B < 1 

W, = O  or { IW,I = -41~1 cos 8, 

@ 0 < IW,( 5 - V'3I.l cos 8. 

0 0 0  

1 0 0 . (IV.21-39) 

0 0 0  

(IV .2 1-38) 

In particular, B 2 1 if 0 5 8 5 ;7r, while in order that B < 1 it is nec- 
essary that i 7 r  < 0 5 7r. Not only for flows of type 1 may B take any value in 
[0, m[ (Exercise 11.11.4) but also for those of type 3. 

A theorem on nilpotent tensors tells us that for a viscometric flow there is 
an orthonormal basis with respect to which 

The basis that gives [N] this special form generally changes in time and varies 
from one place to another; it need not be the natural basis of any co-ordinate 
system. It is called the viscometric basis of the flow. 

If we write i l  , i2 , i3 for the members of this basis, we see from (15)3 that the axis 
of WO in Exercise IV.21.8 is parallel to i3 . Thus the angle 8 that appears in (37) and 
(38) is the angle subtended upon i3 by the axis of W, . 

The theory of nilpotent tensors provides also a basis with respect to which for flows 
of type 2 

(IV.21-40) 

The axis of WO is then parallel to i l  + i 3  , and 8 is the angle subtended upon i l  + i3 by 
w, . 

We consider next some special viscometric flows of interest particularly in 

The steady, lineal flows are an example: 
application to viscometric experiments. 

x 1  = 0, x 2  = u(x1), x3 = 0. (IV.2 1-41) 
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We have studied already a special instance of this class, simple shearing, defined 
by (11.11-17); for it the shearing u is linear. 

Exercise ZV.21.9. For (41) 

F:(s) = 1 - KSN = e--rsN; (IV .2 1-42) 

cf. (29)i . The flow is viscometric; the co-ordinate basis is a viscometric basis; N has 
the constant matrix (39); and the shearing is given by 

K = U' (X1) .  (IV.2 1-43) 

Also t5, = 1 .  The material points move in straight lines at uniform speed; the principal 
stretchings are 0 and f $ K .  

The flow whose contravariant components in a cylindrical polar co-ordinate 
system r ,  8 ,  z are given as follows in terms of arbitrary functions w and u is 
called a helical flow: 

Each material point remains upon a fixed cylinder r = const., on which it 
describes a helix, whose pitch is the same for all material points on any one 
cylinder. We have already encountered a special flow of this kind, the simple 
vortex, which is defined by (11.11.12). We set 

f ( r )  := w' ( r ) ,  h(r)  := u'(r). (IV.2 1-45) 

Exercise ZV.21.10 (RIVLIN, COLEMAN & NOLL). A helical flow is a viscometric 
flow. and 

Let {ek(x)} be a natural basis for the co-ordinate system at x, and let 

i l  :=el , i 2  := aez + pe3 , i 3  := - @e2 + (.ye3 , (IV.2 1-47) 

the functions Q and /3 being defined as follows: 

r 1 
OI := - f ( r ) ,  K p := -h( r ) ,  a2 + p 2  = 1 .  (IV.21-48) 
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No has the form (39) with respect to the orthonormal basis {ik(x)}, which is not the 
natural basis of any co-ordinate system unless (Y = 0 or = 0. (Cf. the end of Section 
App.IIC.7.) Also 

&(ro)’ 
BZ=l+-. 

K2 
(IV.2 1-49) 

(Cf. Exercise 11.11.4, in which it is shown that even very special instances of (44) give 
B any value in [0, cot.) 

Exercise ZV.22. 22 
drical co-ordinates are 

(PIPKIN). The flows whose contravariant components in cylin- 

r = 0 ,  0 =0, i =AO, A =const., (IV.2 1-50) 

and 

r 
R 

r =0, O = K log -, i =0, K =const., (IV.21-51) 

are viscometric and are universal for homogeneous, incompressible, isotropic bodies. 
The first represents an accelerationless shearing of fanned planes; the second, a flow at 
uniform shearing between rotating cylinders. 

Exercise ZV.22.22. The flow (SO) is the only monotonous flow included in the 
family (IV.18-2), while the family (IV.18-1) includes no monotonous flow. 

In a major memoir on the kinematics and dynamics of viscometric flows YIN 
& PIPKIN’ proved that those may be regarded as the effect of sliding inextensible 
material surfaces upon one another. While in the commonest examples these 
slip surfaces are rigid, typically they are flexible. Indeed, if they are rigid, they 
must be cylinders, surfaces of revolution, or helicoids, not necessarily co-axial. 
Some motions with rigid slip surfaces are intrinsically unsteady. YIN & PIPKIN 
give the following unsteady viscometric flow as an example: in cylindrical polar 
co-ordinates 

R 
e = (1  + ~ * t ~ ) @  + ~t log R - arctan(Kt), z = Z ,  

r =  Ji7-23) 
(IV.2 1-52) 

‘W.-L. YIN & A. C. RPKIN, “Kinematics of viscornetric flow,” Archive for Rational Me- 
chanics and Analysis 37(1970): 111-133. 
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[F,(7)1 = 

the constant K being the shearing. As t increases, a material cylinder with the 
z-axis as central line shrinks inward toward that axis, and its length increases. 
The motion is kinematically admissible for only some finite interval of time. 

YIN & PIPKIN prove also that the only viscometric flows such as to be uni- 
versal for homogeneous, isotropic, incompressible fluids are the steady, simple 
shearing (11.11-17) and PIPKIN'S flows (50) and (51), to within arbitrary rigid 
translations and certain rotations. In fact they are universal also for incom- 
pressible, isotropic solids. Whether any monotonous, isochoric flows beyond 
the homogeneous ones are universal for isotropic bodies seems not to be known. 

While the term "viscometric flow" was intended to suggest a motion ap- 
propriate to an instrument for measuring a fluid's viscosity or more general 
properties of a similar kind, and the old viscometers did indeed presume one or 
another motion of the class here called "viscometric", recently some motions 
not in this class have been shown to lend themselves to such studies. One of 
these is described by the following steady, isochoric flow, introduced by BERKER 
in his researches on the Navier-Stokes theory: 

c S - S g ' + ( l - C ) f '  

-S C ( I  - C)g' +Sf' , 

0 0  1 

X I  = - W 2  - g(x3)), X 2  = R(xi - f (xg ) ) ,  X 3  = 0, R = const. + 0, 
(IV .2 1-53) 

in whichfand g are differentiable functions, not both constant. The plane x3 = 

const. rotates with angular speed R about the point X I  = f ( x g ) ,  x2 = g(x3).  
The locus of these points is a curve which crosses each plane x3 = const. just 
once. 

Exercise ZV.22.23 (RAJAGOPAL). For (53) 

G2ntl - 
- (-1)"R2"G, 

- (-1)"R2"G2, 
n = 1, 2 , .  . . , G2ll+2 - 

and 

(IV.2 1-54) 

(IV .2 1-55) 
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Exercise IV.21.14 (RAJAGOPAL). For (53) 

Fo(7) = e", G3 + 0,  (IV.2 1-56) 

and so (53) is monotonous of NOLL'S type 3.  Also 

B2 = 1 + 4 / ( f C  + g R )  > 1; (IV . 2  1-57) 

and 

A2"+l = (-1)"R2"AI , 

Azn+2 = (-1)"R2"A2. (IV.2 1-58) 
n = 1 ,  2 , .  . . , 

Thus R, A, , and A2 determine all the Rivlin-Ericksen tensors of (53). 

22. Reduction of the Constitutive Relation for a Simple Material in a 
Monotonous Motion 

In view of WANG'S corollary, any information that can be determined from 
C: in a monotonous motion can be determined also from Al( t ) ,  A2(t), A3(t). 
Therefore, the values of a functional of C: equal, in these motions, the values of 
a function of  Al( t ) ,  AZ(t), A3(t). Consequently the general constitutive relation 
(IV.5-15) may be replaced, as far as monotonous motions are concerned, by 

RTTR =f(RTAl( t )R,  RTA2(t)R, RTA3(t)R, C(t)) ,  (IV.22-1) 

f being a function. A material whose constitutive relation is (1) is called a 
material of differential type of complexity 3. By (l) ,  then, we have the 
following 

Theorem. In undergoing a monotonous motion, a simple body is sub- 
ject to the same stress as is a body of some material of complexity 3 un- 
dergoing the same motion. 

Consequently, no measurement of stress in a monotonous motion can dis- 
tinguish a general simple material from a material of differential type of 
Complexity 3.  As we shall see in the next chapter, the special flows most com- 
monly used to describe the properties of natural fluids are of the kind considered 
here and hence are of limited service in exploring the physical properties of 
those fluids. 
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An isotropic material of differential type is called a Rivlin-Ericksen mater- 
ial. For it, (1) becomes 

and when the isotropic material is fluid, 

the functions f ,  in the two cases, are isotropic in the sense that for all symmetric 
A1 , A * ,  A3,  B ,  and for all orthogonal Q 

this being the functional equation to which (IV.14-3) reduces in the present 
instance. Moreover, for a fluid f(0, 0, 0, p )  = 0. 

The statements in Section IV.7 enable the student to write down at once the 
constitutive relations for incompressible Rivlin-Ericksen materials. 

The reductions just given may be interpreted in two ways. On the one 
hand, they enable us to solve easily various special problems concerned with 
monotonous motions. However complicated may be in general the response of 
a material, in these particular motions we need consider only a simple, special, 
constitutive equation. On the other hand, they show that observation of this 
class of flows is insufficient to tell us much about a material, since most of the 
complexities of material response are prevented from manifesting themselves. 

In Section VI.l  we shall discuss materials of the differential type in some- 
what more detail, but in the next chapter we shall exploit the present theorems 
so as to obtain specific solutions for viscometric flows of simple fluids. 

If in the constitutive relation (1) the numbers 1 ,  2, 3 are replaced by 1 ,  
2 , .  . . ,n,  the material so defined is called a material of differential type of 
complexity n . 

In a viscometric flow, by definition, Ni = 0, and hence by (IV.21-14) and 
(IV.2 1-15) 

Therefore, in a viscometric flow a simple fluid cannot be distinguished from 
some Rivlin-Ericksen fluid of complexity 2. The condition (5) is merely 
sufficient, not necessary for this deduction. If A3 is determined by A ,  and A2 
for the class of flows considered, the same conclusion follows. 
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Exercise ZV.22.2 (RAJAGOPAL). In the class of motions (IV.21-53) a simple fluid 
cannot be distinguished from a Rivlin-Ericksen fluid of complexity 2. 

For a monotonous motion we see from (IV.21-15)l that 

RTC:(S)R = e x p [ - s ~ ( R ~ N R ) ~ ]  exp[ -sKR~NR]. (IV.22-6) 

Hence any quantity determined by RTC:R in general is determined here by 
K R ~ N R .  Referring to the frame-indifferent constitutive relation (IV.5-15) of a 
simple material, we may set 

f(K, RTNR, C) := #(RTC$R, C) (IV .22-7) 

and so obtain 

R'TR = f(K, RTNR, C) (IV. 22-8) 

as an expression for it when restricted to monotonous motions. The student 
will see at once the simpler forms to which (8) reduces for isotropic solids 
and fluids. For an incompressible fluid the reduction of the determinate stress 
(IV.17-8) is 

the function f being subject to the requirement that 

f(K, QNQ') = Q ~ ( K ,  N)QT (IV.22-10) 

for every orthogonal tensor Q and for all N such that IN1 = 1 and N2 = 0. 
From (6) we see that RTCiR is unchanged when K and N are replaced by -K 

and -N. Hence 

f ( - K ,  -N) = f ( K ,  N). (IV.22-11) 

The relations (9), (lo), and (1 1) provide the starting point for the analysis in 
the following chapter. 
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Appendix I 
~ ~ ~~~ 

General Scheme of Notation 

Departures from the general scheme occur here and there, usually only 
within single sections. 

Script majuscules: d, 9, V,. . . ,F, CY, 5, denote bodies, sets, regions of 

If Y is a set in a topological space, then intY and c l o y  denote the interior 
space, curves, and surfaces. & is the exterior of d. 4’ is the real line. 

and closure, respectively, of Y. 

Lightfaced italics, both majuscule and minuscule, stand for scalars and 
scalar-valued functions: A ,  B, C ,  . . . , X ,  Y ,  Z ,  a ,  b ,  c ,  . . . , x ,  y, z .  Included 
are the components of vectors and tensors with respect to particular bases. 

Exception: X usually stands for a substantial point, A( ) means “area of” 
and V (  ) means “volume of”. 

Special letters: t always denotes the time, and n usually denotes the dimen- 
sion of a vector space. 

Note also the uses of o and 0 explained below in Section C1 of Appendix 
11. 

Boldfaced roman minuscules stand for vectors and vector-valued functions: 
a, b, . . . ,u, v, except that x, y, z are places and n always denotes an oriented 
unit normal to a surface. 

Boldfaced greek minuscules 29, A ,  7 ,  etc., denote mappings other than func- 
tions of vectors. 

297 
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Special greek letters: 

1.7). 
x always denotes the motion of a substantial point or of a body (Section 

K always denotes a reference placement of a body (Section 11.3). 
x r  always denotes the transplacement of a substantial point or body from 

the reference placement K to the actual placement (Section 11.3). 

Boldfaced majuscules A,  B, . . . , U, V, W denote linear transformations 
(second-order tensors) over finite-dimensional (usually three-dimensional) vec- 
tor spaces. 

Exception: X is always the place of the substantial point X in a reference 
placement. 

Special letters: 
Q and R are always orthogonal. 
W is always skew. 
F is always an invertible tensor which can be interpreted as a transplace- 

ment gradient. 

If A is a tensor, symA and skwA denote its symmetric and skew parts, 
while adj A, AT, t rA and det A denote its adjugate, transpose, trace, and 
determinant. The matrices of a tensor and the determinant of a tensor and of a 
matrix are defined in Sections I1 A.3 and 4. 

Lightfaced greek minuscules are used for three different kinds of quantities: 

For angles, rates of change of angles, and other pure rates. 

For scalar moduli or scalar-valued material functions of a real vari- 

1. 
2. For scalar potentials. 
3. 

able. 

Exceptions: 

volume l l p .  

are used also for some particular functions, e.g. alternators. 

p is always the mass-density (Section 11.5), u is always the specific 

6 and E are usually scalars which can be chosen arbitrarily small; they 

Fraktur letters, both majuscule and minuscule, denote constitutive mappings 
(responses). Lightfaced a, b, c , .  . . ,%, 8, 6,. . . are used if the values of the 
mappings are scalars; boldfaced a, b, t,. . .,a, 8, 6, . . . , if the values are 
vectors or tensors, respectively. 

Black letter (“old English”) majuscules denote scaling parameters, in this 
volume only B . 
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Script minuscules denote groups of tensors. 
Special letters: 

o is the full orthogonal group. 
a is the full unimodular group. 

is a subgroup of a. 

Lightfaced greek majuscules 0, @, . . . , are used for certain angles in a 
reference placement. 

Boldfaced sans-serif majuscules A, B, C, L denote third-order or fourth- 
order tensors or affine mappings of tensors over a three-dimensional vector 
space. 

Astronomical symbols ‘v , Y , 0 , etc., stand for quantities of arbitrary 
tensorial order; scalars, vectors, etc. 

Special symbols: $ denotes a frame (Section I.6), and 0 denotes the null 
set. 

Indices: 

The uses of subscripts and superscripts are standard. A few examples will 
suffice. but the list is far from exhaustive. 

If a, A, and A are vectors and tensors denoted as above, then their com- 
ponents with respect to a basis are denoted by adjoined indices, for example 
ak, A,, , Aqrsu. The particular basis is always specified. In the case of curvilin- 
ear co-ordinates, the usual notations of contravariant and covariant components 
such as uk and (Ik are employed once in a while. Physical components, which 
are components with respect to an orthonormal basis other than a Cartesian 
basis, are denoted by indices following the letter at middle height: T r r ,  T88, 

etc. 

Superscript T (sans-serif) always indicates transposition. 

Greek minuscule indices refer to co-ordinate systems in the reference shape 
~(9). For example, F i  is the component of F that corresponds with xk and 
X u .  Both systems of co-ordinates may be curvilinear if so desired. 

A boldfaced subscript kappa, as on x x  and A,, reminds the reader that the 
reference placement K is being used. 

Roman letters associated with mathematical symbols are labels. Examples: 
min and max in the obvious senses, superscript c for “convected”, e superscript 
for “exterior”, subscript B for “body”, C for “contact”, etc. 
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General relations: 

A + B  
A H B  

d+.?fY,.?fY+d 
dug ,dn@ 

d V @ , d A @  

vx €d 
{ x :  x E d }  
{ X l ,  XZ,. * * J n }  

Proposition A implies Proposition B. 
A holds if and only if B holds. 
join and meet, respectively, of the bodies d and 93 
d is a part of LB. 
union and intersection, respectively, of the sets d and 

dnge 
.cd is a subset of 9. 
x is an element of the set d. 
f maps the set d into or onto the set 33. 
f maps the element x onto the element y ;  that is, f ( x )  = 

Y .  
composition of the mappings g andf; that is, (f o g ) ( x )  = 

“for every x that is an element of the set d” 
the set of all x that are elements of d 
the set consisting in the elements XI,  XZ,  . . . , x n  

f (g (x ) ) .  

After 8 ,  a subscript indicates the variable on which 8 operates; for example, 
80 is the partial derivative with respect to 8 .  

A superimposed dot always indicates a time derivative in some sense. For 
example, x is the velocity field over a body or a placement of a body and x is 
the corresponding velocity field over the present shape of that body. Cf. Section 
11.4. 

Functions: 

f = g  The numbers f and g are the same; the functions f and g are 
the same. E.g. ,  for functions f = 0 means that f ( x )  = 0 
for all x in the domain o f f ;  in other words, f is the zero 
function. 

f :=g The function or number f is by definition the same as the 
function or number g. 

f = : g  The function or number g is by definition the same as the 
function or number f. 

f ( x )  = g ( X )  when x is an assigned, invertible function of X. Then the 
value off at x equals the value of g at X (cf. e.g. Sections 
11.2, 11.4, and 11.6). 
The value off at x is 0. f ( x )  = 0 

Operations on vectors and tensors: see Appendix 11. 
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Some Definitions and Theorems 
of Algebra, Geometry, and Calculus' 

A. Algebra 

1. Vactor Spaces, Bases 

With a few specified exceptions, the vector spaces V, V' etc., that are 
recognized explicitly in this book are of finite dimension n ,  usually three, 
and their field of scalars is the real field. Their elements are denoted by bold- 
faced minuscule letters a, b, . . . , u, v, w, and their scalars by light-faced italics 
a ,  b , .  . . , A ,  B,. . . The null vector is 0. 

The set of vectors UI, u2,. . . ,urn is a linearly dependent set if scalars 
a' ,  a*, . . . ,a", not all null, can be found such that 

alul + u2u2 + .  . . + amu, = 0. 

Otherwise the set is linearly independent. The expression on the left-hand 
side is called a linear combination of the vectors U I  , u2 , . . . , u, . The set of 
values of all linear combinations of u1 , u 2 , .  . . , Um is a subspace, which the 
vectors u1 , u2 , . . . ,urn are said to span; the subspace itself is called the span 
of U' , u2 , .  . . ,u,. 

'The material listed here is drawn largely from unpublished notes leading to W. NOLL'S Finite- 
Dimensional Spaces, Volume 1. Algebra, Geometry, and Analysis, Dordrecht etc., Martinus 
Nijhoff, 1987. Excellent treatments are included also in two other books: R .  M. BOWEN & C.-C. 
WANG, Introduction to Vectors and Tensors, 2 vols., New York & London, Plenum, 1976, and 
M. E. GURTIN, An Introduction to Continuum Mechanics, New York etc., Academic Press, 
1981. 
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The dimension n of a space is the number of vectors in the smallest set 
that spans it. The dimension of a subspace of an n-dimensional vector space is 
at most n. (Of course vector spaces of infinite dimension whose elements are 
functions occur implicitly in this book, but they are only rarely considered as 
such in the presentation.) 

Any indexed set el , e2 , .  . . ,en of n linearly independent vectors spans an 
n-dimensional vector space and hence is called a basis in it. If u is any vector, 
then 

k u = u  e k ,  

in which u ' ,  u 2 , .  . . , u" are uniquely determined scalars. In this expression, 
and subsequently, diagonally repeated indices are to be summed from 1 to n. 
The n scalars uk are the components of u relative to the basis el , e 2 , .  . . ,en . 
Here and henceforth in this appendix a free index such as k is understood to 
run through the numbers 1, 2, . . . , n unless a different range is specified. 

If el , e2 , . . . ,en is another basis, of course the vector u has components 
relative to it: 

Also ep has components, say A:, relative to el , e2 , . . . ,en: 

ep = A;eq ,  p = 1,2,. . . , n .  

Likewise 

em = A4,eq, m = 1,2,. . . , n ,  

and hence, since the vectors of both bases are linearly independent, 

1 i f m = k ,  

0 i f m $ - k .  
A:AY := 

Therefore the components of any vector u relative to the two bases are deter- 
mined from each other as follows: 

Persons who prefer numerical to geometrical treatments may use this trans- 
formation law for components to define vectors. They may choose to specify 
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a vector by prescribing its components relative to some one basis and then 
use the transformation law to calculate its components relative to every other 
basis. Alternatively, they may start with lists of numbers u l ,  u 2 , .  . . , u” and 
ii’, i i2, .  . . , ii”, . . . , associated with various bases and then say that these lists 
do or do not constitute components of one and the same vector relative to the 
respective bases according as they are or are not related by the transformation 
law. 

Every vector space of dimension n is isomorphic to the ‘‘Cartesian space” 
gn (defined below in Section A5 of this appendix), but usually a conceptual 
argument is clearer if it does not employ co-ordinates. 

2. Lineur Mappings 

The concept of “mapping” and the terms associated with it are presumed 
familiar. In this book the words “into” and “onto” retain their senses in brief, 
idiomatic English. For example, a vector may be mapped onto a vector but 
cannot be mapped into a vector, for a vector has no inside. The statement “L 
maps vectors onto vectors” means “L maps a set of vectors (specified by the 
context) into a vector space” (also specified by the context); equivalently, “the 
domain and codomain of L are subsets of vector spaces.” 

A mapping L of a vector space Y into a vector space 9“‘ is linear if 

L(au + bv) = aL(u) + bL(v) 

for all u and v in Y and all scalars a and 6. The scalar multiple aL of L by 
a and the sum L + M of such mappings L and M are defined as follows: 

(aL)(u) := a(L(u)), 

(L + M)(u + v) := L(u + V) + M(u + v). 

It is easy to show that aL and L + M are themselves linear mappings of Y into 

The nullspace of a linear mapping L is the set of vectors that L maps onto 
0. The range of L is the set of all values L(u). These sets are subspaces of Y 
and Y’, respectively, and 

YI. 

dim Nullspace L + dim Range L = dim Y. 

If dim Y = dim Y’, the linear mapping L may have an inverse L-’ ; such 
an L is invertible. If dim Y = dim Y’, any of the following statements is a 
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necessary and sufficient condition that L have an inverse: L is one-to-one, L 
maps $' onto Y', the nullspace of L consists in 0 alone. The inverse, if it exists, 
is itself a linear invertible mapping. Of course (L-')-' = L. 

A mapping A is affine if it is the sum of a linear mapping and a constant 
mapping: 

A(v) := L(v) + a, 

L being a linear mapping of V' into Y' and a being a particular element of Y'. 

3. Tensors 

A linear mapping L of a vector space into itself is called a tensor (of second 
order). The value L(u) of the tensor L at u is written like a multiplication: 

The mapping whose value for every vector is 0 is a tensor; it is called the 
zero tensor and is denoted by 0. The identity mapping is a tensor; it is called 
the unit tensor or identity tensor and is denoted by 1. Thus for all vectors u 

Lu := L(u). 

ou = o ,  l u = u .  

The tensor that transforms every vector into its opposite is called the central 
inversion and is denoted by - 1: 

( - l )v  = -v. 

If L and M are tensors, so is their composition, which we denote by ML 
and call the product of L by M. The set of all tensors forms an algebra 
under the operations denoted by aL,  L + M, and LM. Clearly 1L = L1 = L 
for every L. As usual for algebras, - L is written for (-1)L; of course 
(-l)L = L( -1) = (-l)L = -L for every L, and likewise LO = OL = OL = 0, 
but if ML = 0, neither M nor N need be 0. 

Generally LM # ML. If LM = ML, the tensors L and M commute. For 
clarity we sometimes state that one tensor commutes with another. We have 
seen that 1, - 1, and 0 commute with every L. 

The powers of a tensor L are defined as follows: 

LO := I,  L' :=L, L* :=LL, etc.; 
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these obey the usual rules of exponentiation: 

(Lm)q = Lm9, 

if m 2 0 and q 2 0. 
If Lm = 0 for some positive integer m but Lp + 0 if 0 < p < m, the tensor 

L is nilpotent of order m. Nilpotent tensors of orders 1, 2, 3,. . . , n  exist, but 
not of any greater order. That is, if L" + 0, then L is not nilpotent. 

If L is invertible, 

L L - ~  = L - ~ L  = 1. 

Also if there is a tensor M such that LM = ML = 1, then L is invertible, and 
M = L-' .  Clearly, 1-I = 1, (-l)-' = -1. If L and M are invertible, and so 
is LM, and 

(LM)-~ = M - ~ L - ' .  

Thus the invertible tensors form a group under multiplication and a subalgebra 
of the algebra of tensors. The tensor 0 is not invertible, nor is any nilpotent 
tensor. A tensor that is not invertible is sometimes called singular. 

The product of two invertible tensors is invertible, and so is the multiple of 
an invertible tensor by any scalar other than 0, and also (aL)-' = a- 'L- ' .  If 
L is invertible, then 

(L-')" = (L")- ' ,  

and the rules of exponentiation extend to negative powers. 
If el ,  e2 , . . . ,en is a basis of the vector space, the conditions 

Lek = L9keq 

define unique scalars L9k, which are called the components of L relative to 
the basis. The matrix (ILqk 11 of the components Lqk is called the matrix of L 
relative to el , e2 , . . . ,en and is denoted by [L]. That is, 

L' ,  L'2 . ( '  L', 

L2 1 

L", Lfl2 . . .  L", 
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Of course [aL] = a[L]. Also [LM] = [L][M]; the components of LM are 
LpkMkq. No matter what the choice of basis. 

[OI = 

0 0 . . .  0 

0 0 * . .  0 

0 0 . . .  0 

1 0 . . .  0 

0 1 " *  0 

0 0 . . .  1 

0 

0 

-1 

If the bases e l ,  ez, .  . . ,en and e l ,  e z , .  . . ,en are related as in Section 
IIA.l, the components Lmk and zpq of L relative to them are determined 
uniquely in terms of each other by the following transformation law: 

zP, = A ~ A s , L ~ , ,  L', = A ; A , " ~ ; ~ ,  , 

in which the scalars A; and 1; are the coefficients defining the change of 
basis, introduced in Section App. IIA.l. 

The set of all tensors over a vector space of dimension n is itself a vector 
space of dimension n2 under the operations of addition and scalar multiplication 
already introduced. The vector 0 in the space of n2 dimensions is simply the 
tensor 0. 

Over the vector space of dimension n2 so obtained, we may consider linear 
transformations in just the same way as before. If M is such a tensor, its 
components M h f k g  relative to the basis el , e2 , . . . ,em can be determined from 
definitions already given. Under change of basis those components transform 
as follows: 

Rules of this kind may be used, alternatively, to define tensors in terms of 

Tensors of order higher than two are used in this book only a few spe- 
their components. 
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cial contexts. The considerations concerning them may be understood either 
abstractly or in terms of components, as the reader prefers. 

For the result of operating with a fourth-order tensor K upon a second- 
order tensor L we use the special notation K[L]. The components of K[L] are 
Kk,PqLpq. Sometimes the same notation is used to indicate the linear part of 
an affine mapping of tensors onto tensors. 

4. Determinant and Adjugate of a Tensor 

The determinant of the matrix whose components are LP, may be defined 
as follows: 

det IILpqII := Ek1k2'..knL1klL2k2 . ' .L"k, 

- 
- Eklk2 ... k ~ L k ' 1 ~ " 2 ' . ' L k n n  3 

The symbol ~ ~ l ~ ~ . , . ~ q  denotes 1 if kl , k2 , . . . , k, are obtained from 1, 2 , .  . . , q 
by an even permutation; - 1, if by an odd permutation; and 0 otherwise. If L 
is a tensor, the determinants of its matrices of components 11 LP, 11 all have a 
common value, irrespective of the choice of basis el , e2 , . . . , en used to define 
those components. This common value det L is called the determinanr of the 
tensor: 

det L := det 11 L p ,  11 . 

It follows that 

det(LM) = (det L)(det M) = det(ML), det(aL) = a" det L,  

and of course det 1 = 1, det( -1) = (-1)". 

cofactors of the elements of [L]: 
The adjugate adjL of a tensor L is that tensor whose components are the 

Thus 

Ladj L = (det L)l  = (adj L)L. 

Therefore L is invertible if and only if det L + 0. If so, 

L-' = (det L)-' adj L. 

The invertible tensors constitute a group under multiplication. 
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A tensor L such that det L = f 1 is unimodular. The unimodular tensors 
constitute a subgroup of the group of invertible tensors. That group is called 
the unimodular group w . 

5. Inner-Product Spaces 

The vector spaces encountered in this book are endowed with an inner 
product, denoted by a dot. The magnitude or length 1111 of a vector is defined 
in terms of the inner product: 

The elements u and v are orthogonal or perpendicular if 

u-v  = 0. 

The only vector orthogonal to all vectors is 0. In fact, if u is such that u-v is 
bounded above for all v, then u = 0. Also 

In the former inequality, which is called Cauchy's inequality, the sign = is 
valid if and only if u and v are linearly dependent. 

The set of all vectors perpendicular to a given set of vectors forms a sub- 
space. It is called the orthogonal complement of the subspace spanned by the 
given set. The vector space itself is the direct sum of any of its subspaces and 
the orthogonal complement of that subspace. This statement means that if u 
is any vector, it can be expressed as the sum of a uniquely determined vector 
from any desired subspace and another vector, also uniquely determined, from 
the orthogonal complement of that subspace. 

If g is a linear function of vectors whose domain is the whole vector space 
and whose values are scalars, there is one and only one vector f such that 

g(u)  = feu. 

This statement is the representation theorem for linear, scalar-valued functions. 
If el , e2, .  . . ,en is a basis, another basis e', e2,.  . . ,en is determined 

uniquely by the conditions 
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The basis e’ , e2 ,  . . . ,en is reciprocal to the original one. The conditions 

u = u P e p  and u =u,e’ 

are equivalent, respectively, to 

uk = e k - u ,  uk = e k . u .  

The components uk are called contravariant, while the components u k  are 
called covariant, both relative to the basis el , e2 , . . . , e n ,  and 

u.v  = uQug = u p u p .  

A basis el  , e2 , . . . , e ,  is orthonormal if 

1 i f q = k  

0 i f q $ k .  
eq.ek = 6qk := 

A basis is orthonormal if and only if it is its own reciprocal. Corresponding 
contravariant and covariant components relative to an orthonormal basis equal 
one another, and so when an orthonormal basis is used, one speaks simply of 
“components”. 

A familiar example of an n-dimensional inner-product space is the Cartesian 
space W,, , the vectors of which are lists of n real numbers Uk : 

provided addition and scalar multiplication are defined by the corresponding 
operations on the entries in the list. The standard basis is defined as follows: 

ek : = ( O , O , .  . . ,o ,  1,0,. . . , O ) ,  

the 1 being the k” entry. 
With no loss in generality any limit process on an n-dimensional vector 

space may be expressed in terms of Cartesian co-ordinates in W, . That usage 
is familiar from old treatises on mechanics and many engineering textbooks 
today. is the real line. 
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6. Tensor Products. Tensors of Orders Gmter than 2 

If a and b are vectors, their tensor product is the tensor a 63 b such that 

(a Q b)u = (us b)a Vu E -t/ 

In components, 

If el , ez , . . . ,en and f l  , f p  , . . . , f n  are bases of the vector space, the set of 
tensor products 

form a basis for the space of tensors: 

L = LQke, Q f k  . 

The scalars Lqk are the contravariant components of L with respect to the 
basis. Commonly f k  is chosen for ek . Then 

The scalars L‘, here are the same as those denoted previously by the same 
symbol and called simply “components” of L relative to el , e2 , . . . ,en . They 
are called also mixed components relative to that basis and its reciprocal. 
In the same terms, the L,” are the mixed components relative to the bas- 
is e’ ,  e’, . . . ,en and its reciprocal. The scalars LrW and Lhm are the con- 
travariant and covariant components, respectively, of L relative to the basis 
el , e2 , . . . ,en . If the basis is orthonormal, then L Q ~  = Lqk = L , ~  = Lqk . 

We note that 

1 = ek Bek = ek Q e k .  

The introduction of tensor products affords another method of defining tensors. 
For example, if we use the symbol a 8 b Q c to denote the linear mapping of 
the given vector space into (second-order) tensors such that 

( a Q b 8 c ) d  = (c.d)(aQb), 
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we can prove that the products e k  Q e, 8 eq of elements of a basis for the given 
vector space form a basis for the set of such transformations. That is, if N is 
any linear mapping of the given vector space into the space of (second-order) 
tensors, it may be expressed in the form 

and its contravariant components Nqrs obey the transformation law 

mqrs = A,A,APNumP - q - r  -s 

The tensors so defined are of third order; the method illustrated serves to define 
tensors of any order. 

7. lhnsposition. Symmetric and Skew Tensors 

If B(u, v) is a scalar-valued bilinear function defined for all vectors u and 
v, there is a unique tensor L such that 

B(u, v) = u.Lv. 

This statement is the representation theorem for  bilinear functions. If L is 
determined in this way by B, we can determine another tensor LT, called the 
transpose of L, by the requirement that 

B(v, u) = U.LTV. 

Then 

(L+M)T =LT +MT, 

(LM)T = MTLT, 

(LT)T = L, 

(aQb)T = b a a .  

If L is invertible, then so is LT, and 

(LT)-' = (L-')T =: L- T .  
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In mixed components, 

(LT)'k = Lk9. 

In terms of matrices, [LT] = [LIT if the components are taken relative to an 
orthonormal basis, but otherwise in general [LT] =/= [LIT. Of course 

that is, the matrices of contravariant and covariant components of LT are the 
transposes of the respective matrices of L. 

Tensors S and W such that 

are called symmetric and skew, respectively. The conditions are expressed as 
follows in terms of components: 

S 9 k  = s k 9  3 S9k = S k 9 ,  S 9 k  = S k , ,  

Wqk = -Wk9, W9k = -Wk9, W9k = -Wk Q' 

The set of all symmetric tensors is a kn(n + 1)-dimensional subspace of the 
space of tensors; the set of skew tensors, a i n ( n  - 1)-dimensional subspace. 
Bases for these two subspaces are formed by the following sets of products of 
the vectors of a basis el , e 2 , .  . . ,en : 

and 

ekhe, ,  k < m ,  

the wedge product or exterior product being the skew tensor defined as fol- 
lows: 

a h b : = a @ b  - b@a.  

Any tensor L has a unique representation as the sum of a symmetric and a 
skew tensor, both unique: 

L = s y m L + s k w L ,  
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If S is either symmetric or skew, S2 is symmetric, and S2 and S have the 
same nullspace. If T and U are either both symmetric or both skew, (TU)T = 
UT. Hence T and U,  if both symmetric or both skew, commute if and only if 
TU is symmetric. If W is skew and dim Y is odd, detW = 0. 

8. Orthogonal Tensors 

A mapping Q of an inner-product space onto itself is orthogonal if it pre- 
serves the inner product: 

(Qu)*(Qv) = U.V. 

This condition is satisfied if and only if Q is a tensor such that 

Q-' = Q'. 

Hence 

detQ = * 1. 

If detQ = 1, the orthogonal tensor Q is called proper, or equivalently, a 
rotation. The central inversion - 1 is orthogonal; it is a rotation if and only 
if n is even. If n is odd, either Q or - Q is a rotation, while the other is the 
product of a rotation by the central inversion. 

The orthogonal tensors constitute a proper subgroup of u called the (full) 
orthogonal group a ; if n is odd, the rotations form a proper subgroup of the 
orthogonal group. 

Some special properties of orthogonal tensors over a 3-dimensional space 
are listed below in Section App. 1I.A. 14. 

9. lkz ,  Inner Pmduct of Tensors 

The trace t rA of the tensor A is defined uniquely by the following two 
requirements: It is a linear function whose domain is the set of all tensors and 
whose values are scalars, and 

tr(u @v)  = u-V.  

Hence 

t rA =Akk =Akk =t rAT;  
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that is, the trace of a tensor is the trace of the matrix of either of its arrays of 
mixed components. Of course tr 1 = n ,  trO = 0. If W is skew, tr W = 0. 

The inner product A-B of the tensors A and B is defined as follows: 

A-B := tr(ABT) = B.A. 

With this definition the set of all tensors A, regarded as a vector space of 
dimension n2 ,  becomes an inner-product space. The magnitude IAl of the 
tensor A is defined from the inner product in the usual way: 

IAl:= 

In components, 

If S is symmetric and W is skew, then S-W = 0; also for any tensor L 

and so 

W - a  Ab = -2b.Wa = 2a-Wb, 

i(aAb).(cAd) =a.db-c -a.cb-d. 

10. Invariant Subspaces, hjactions, Proper Vactors, Proper Numbrs 

If the tensor A maps a certain subspace into itself, that subspace is invariant 
under A. Every tensor A has invariant subspaces, among which are the whole 
vector space, {0}, Range A, and Nullspace A. 

A tensor E is called a projection if it is idempotent: E2 = E. A projection 
is called a perpendicular projection if also it is symmetric: ET = E. If E is a 
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projection, there is a basis relative to which 

r ~ i  = 

0 1 0  0 . . .  

3 1  

1 0 0  0 

0 0  

0 

0 0 . . .  3 

315 

Y 

the number of Is being equal to the dimension of the invariant subspace of E. 
If E is a perpendicular projection, the basis may be chosen orthonormal. 

If e is a unit vector, any vector v has a unique decomposition as the sum of 
a vector P,v parallel to e and another Pev perpendicular to it: 

v = P,v + pev, e.P% = 0. 

Both P, and Pe are perpendicular projections, and 

P, is the projection onto the span of e; Pe is the projection onto the plane 
normal to e .  The reflection R across the plane normal to e is the orthogonal 
tensor defined as follows: 

Therefore v is parallel to e if and only if Rv = -v; perpendicular to e if and 
only if &v = v.  

If x is any scalar, the nullspace of A - xl is an invariant subspace of A. It 
is called the proper space of A corresponding with x ,  and its dimension is the 
multiplicity of x for A. The scalar x is a proper number of A if any one, and 
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hence all, of the following equivalent conditions holds: 

1. There is a vector u other than 0 such that 

AU =XU. 

2. 

3.  

The elements of the proper space are the proper vectors corresponding to 
that proper number. A proper number is simple if its multiplicity is 1; that is, 
if its proper space is one-dimensional. The set of all proper numbers of A is 
called the spectrum of A. By definition, the scalars constituting the spectrum 
are distinct. 

The proper space of A corresponding with x contains one vector besides 
0. 
The multiplicity of x for A is not 0. 

The characteristic polynomial P A ( x )  of A is defined as follows: 

the signs being alternately - and f; the principal invariants Ik of A are 
defined as follows: 

The symbol 62f&ftm, denotes 0 if any superscript or subscript is repeated, or 
if the subscripts fail to be the same numbers as the superscripts; otherwise it 
denotes f 1 according as an even or odd permutation is needed to bring the 
subscripts into the same order as the superscripts. While this definition of the 
Zk seems to depend upon a basis, the value of I k  so obtained is the same for 
all bases. For example, 

ZI = trA, 

I,, = det A. 

Because the field of scalars is the real field, the principal invariants of tensors 
are real numbers. 

The characteristic polynomial P A ( x )  has real co-efficients and is a function 
of a real variable x .  We obtain from it a complex polynomial if we replace x 
by a complex variable z. There are exactly n unique numbers a I , a2 , . . . ,a, , 
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possibly complex, such that 

The equation P A ( z )  = 0 is the characteristic equation of A, and the numbers 
a t  , a2 , . . . ,an are the latent roots of A. If q of the latent roots are equal, their 
common value is said to be a latent root of algebraic multiplicity 4. Since the 
principal invariants of A are real, such latent roots of A as are not real occur 
in complex-conjugate pairs. I k  is the sum of the products of the latent roots 
taken k at a time, k = 1 ,  2 , .  . . , n. Thus, for example, if n = 3, 

Every proper number of A is a latent root, and every real latent root is a 
proper number. If AAT = ATA, the multiplicity of a proper number of A is the 
same as its algebraic multiplicity as a latent root. Such is the case, therefore, 
for tensors that are symmetric, skew, or orthogonal. If n is odd, A has at least 
one proper number, but if n is even, A need have none. 

The Hamilton-Cayley Theorem states that the tensor A satisfies an equa- 
tion having the same form as its characteristic equation: 

A" -IIAn-' + . . . ( -  l)"Inl = O .  

It is possible, of course, that A may satisfy also a polynomial equation of degree 
less than n. If A is invertible, 

Thus 

adjA = (-l)n-l[An-' -Z1AnP2 + . . .  +(-l)"-'Zn-Il]. 

For a given A and B the equation 

A X + X B = O  
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has the solution X = 0. A theorem of SYLVESTER~ states that there is another 
solution if and only if A and -B have a common proper number. If the equation 

AX + XB = C 

for given A, B, and C other than 0 has one solution X, then its other solutions, 
if any, are obtained by adding to X all solutions of (*) beyond 0. 

11. Spectml Decomposition of Symmetric Tensors 

Every symmetric tensor S has at least one proper number. In fact, the least 
and greatest proper numbers of S are the least and greatest values, respectively, 
of u. Su as u ranges over all unit vectors. Every latent root of a symmetric tensor 
is real and hence is a proper number. The proper spaces of a symmetric tensor 
are mutually orthogonal. Any vector may be expressed as a linear combination 
of vectors, each of which belongs to one (and of course, if it is not the vector 
0, to only one) of the proper spaces of S. 

If s1, s2, .  . . ,sp are the proper numbers of S, then there is a unique set of 
perpendicular projections El , E2 , . . . ,Ep such that 

P 

C E k  
k = l  

and 

P 

s = X S k E k .  

Hence there is at least one orthonormal basis el , e2,. . . ,en,  each member of 
which is a proper vector of S: 

k=l 

Se, = s q e q ,  q = 1,2,. . . ,n, 

'This theorem follows from a more general one, likewise due to SYLVESTER, which is stated 
and proved in outline at the beginning of Chapter VIII of C.-C. MACDUFFEE'S The Theory of 
Matrices, Volume 2 of Ergebnisse der Mathematik und ihre Grenzgebiete, Berlin, Springer, 
1933, reprinted in 1946 by Chelsea Publishing Co., N.Y. 
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sq being a proper number of S, repeated a number of times equal to its multi- 
plicity. Such a basis is called principal. The matrix of  components of S relative 
to this basis is diagonal. Indeed, 

[Sl = 

Sn 0 . . .  

where again each proper number occurs a number of times equal to its multi- 
plicity. With the same convention of multiplicity, 

n n 

This statement presents the spectral decomposition of S .  
In order that two symmetric tensors S and T have the same proper numbers, 

each with the same multiplicity, it is necessary and sufficient that there be an 
orthogonal tensor Q such that 

T = QSQ'. 

If this condition holds, the proper spaces of T are the images under Q of the 
proper spaces of S. An orthogonal tensor Q commutes with the symmetric 
tensor S if and only if the proper spaces of S are invariant subspaces of Q. 

12. Positive Tensors 

A tensor S is positive if 

u.Su > 0 unless u = 0, 

not negative if 

u.Su 2 0 for all vectors u. 

If - S is positive, S is negative; if - S is not negative, S is not positive. We 
abbreviate these terms by the notations S > 0, S 2 0, S < 0, S 5 0, respec- 
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tively. If L is any tensor, LLT >= 0 and LTL >= 0. If L is invertible, LLT > 0 
and LTL > 0. If L is symmetric, L > 0 if and only if all of its proper numbers 
are positive, and L 2 0 if and only if none of its proper numbers is negative. 

If S is symmetric and positive, there is one and only one symmetric and 
positive T such that T2 = S. We denote this tensor by 6 and call it the square 
root of S. The proper numbers of 6 are the positive square roots of those of 
S. 

If A is a given symmetric tensor that is either positive or negative, the 
equation 

A X + X A = C  

has a unique solution X for given C. If C = 0, then X = 0. If C is symmetric, 
so is X; if C is skew, so is X. Guo’ has shown that if X and C are skew and 
A is positive, and if n = 3, then 

[ ( I :  - IIA)C - (A’C + CA‘)]. 
1 

I A I I A  - I I I A  
X =  

13. Polar Decomposition 

If L is an invertible tensor, then there are unique, positive, symmetric 
tensors S and T and a unique, orthogonal tensor Q such that 

L =QS =TQ. 

T and S determine each other as follows if Q is known: 

T = QSQ’ 

If L is not invertible, the polar decomposition still holds with symmetric S or 
T not negative and with Q not unique. 

14. Structure of Orthogonal Tensors over a 3-Dimensional Vector S’ce 

In this book we need to analyse orthogonal tensors only when dim $‘ = 3. 
Then the central inversion - 1 is orthogonal but not a rotation. Every orthogonal 
tensor Q is either a rotation R or the product - R of a rotation R by - 1. Thus 
the structure of orthogonal tensors is determined by the structure of rotations. 

’Cf. Guo ZHONG-HENG, “Rates of stretch tensors,” Journal of Elasticity 14(1984): 263-267. 
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cos 8 -sin 8 0 

[R] = sin 8 cos 8 0 

0 0 1  

The latent roots of R are 1, e iB,  e-" for some real number 8 ,  called an 
angle of rotation. If 8 is an angle of rotation, then so is * 8 f 2nn for any 
integer n and any combination of signs. There is exactly one angle of rotation 
in the interval 0 

If R + 1, the proper space that corresponds with the proper number 1 is 
1-dimensional. It is called the axis of the rotation R. There are two unit vectors 
in the axis of R. Corresponding with any angle of rotation 8 there is a unique 
unit vector e in the axis of R such that 

8 < n. 

. 

Re1 = cos 8 el + sin 8 e2, 

Re2 = -sin e e l  + cos 8e2,  

Re = e.  

for any el and e2 such that e l ,  e2, e is a right-handed orthonormal basis. Then 
for any vector v orthogonal to e,  8 is the angle between v and Rv, measured 
counter-clockwise from v. It follows from (*) that 8 is an angle of rotation of 
R if and only if it is a root of the equation 

cos 8 = (trR - 1). 

Keeping e fixed, we see that (*) holds if 8 is replaced by 8 3I2nn, but (*) 
does not hold if 8 is replaced by - 8 k 2nn. In other words, if e is the unit 
vector in the axis that corresponds with the angle of rotation 8, then the other 
unite vector in the axis, namely - e,  corresponds with the angles of rotation 
- 8 3I 2nn. If R = 1, then 8 = 0, and (*) holds for every basis el , e 2 ,  e.  The 

matrix of R with respect to the basis e l  , e2, e is given by 

In general co-ordinates 

Rkm = cos 8 6; + (1  - cos @ekem - sin 8 ckmpeP 

If Q = -R, the axis of R is called the axis of Q, and an angle of rotation 
of R is called an angle of rotation of Q .  

R = RT if and only if 8 = 0 or T .  
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15. Structure of Skew Tensors over a Thm-Dimensional Vector Space. 
Thm-Dimensional Vector Algebm ’ 

In this book we need analyse skew tensors only if dim Y = 3. Then the 
nullspace of a not null, skew tensor W, namely, the subspace of vectors n such 
that 

Wn = 0, 

is 1-dimensional; it is called the axis of W. If W =/= 0, its only proper number is 
0, and its axis is its only invariant subspace. Two skew tensors, neither of which 
is 0, have the same axis if and only if they are proportional to one another. 

Let n be one of the two unit vectors lying on the axis of a skew tensor W 
other than 0, and let e be normal to n. Then of the two unit vectors normal to 
the span of e and n we may choose one, say f ,  such that 

1 
W = -1WleAf. Jz 

Equivalently, there is an orthonormal basis such that 

Two orthonormal bases {ek} and { e k  } are said to have the same orientation 
if they are obtainable from one another by a rotation: e k  = Rek , k = 1,2, 3 .  
Since every orthogonal transformation is either a rotation or the negative of 
one, there are exactly two distinct classes of bases having the same orientation. 
In three-dimensional vector algebra one of these is set down and fixed. Of the 
two possible isomorphisms between skew tensors and vectors, one is specified 
by use of a particular orthonormal basis. “The Gibbsian cross” T of a tensor 
T is the vector defined as follows in terms of components with respect to any 
such basis: 

‘Cf. Sections 7.16, 8.15, and 8.16 of W. H. GREUB, Linear Algebra, 3‘d ed., Berlin and New 
York, Springer-Verlag, 1967. 
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If S is skew, then 

S,3 = 2S12, S , I  = 2S23, Sx2 = 2S31. 

The cross product u x w of two vectors u and w is defined thus: 

U X W := i(u A W) , 

and so 

and 

Also 

(u X W ) ~  = ulw2 - u 2 w l ,  etc. 

2 %  = - s x  X U ,  S.(UhV) = -sx.(U XV), 

and if S and T, neither of them 0, are both skew, 

S-T = i S x - T x ,  (ST), = ;(ST -TS). = - t S x  x T ,  . 

The first of these relations shows that S.T = 0 if and only if the nullspaces 
of S and T are perpendicular; the second shows that S and T commute if and 
only if the nullspace of one of them contains the nullspace of the other. If L is 
invertible, 

Lu x Lv = (det L)(L-l)T(u x v). 

B. Geometry 

I .  Euclidean Point Spaces 

While in this book there are allusions to rather general manifolds, the only 
specific geometry employed is that of Euclidean space. 

A set d of elements x, y is an n-dimensional Euclidean point space or 
Euclidean manifold if it is endowed with a structure defined in reference to 
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an inner-product space -t’ of n dimensions by the following axioms: 

1. Each vector u E Y maps Q onto itself 

u(x) E & vx E &. 

2. The composition of the mappings u and v is their vector sum: 

(u + VMX) = u(v(x)) vx E Q. 

3. For given x and y there is exactly one vector u such that 

u(x) = y. 

The elements of Q are called points. The vector space Y is the translation 
space of b,  and its elements are called translations of &. The translations 
may be visualized as arrows; if the butt of the arrow u is put at x, its sharp 
end distinguishes u(x). Thus we say that u translates x into y; of course - u 
translates y into x. 

The second axiom, in view of the first, asserts that the result of applying first 
the translation v and then the translation u is the same as the result of applying 
u + v to start with; thus it expresses the axiom of resultant displacements, 
familiar from elementary geometry and mechanics, and it suggests the notation 

x + u := u(x). 

Thus we use the plus sign to denote not only addition of vectors to each other but 
also addition of vectors to points. Axiom 3 enables us to extend the interpretation 
by writing y - x for the unique vector u that maps x into y: 

y - x := u. 

Thus the difference of points is defined, and 

x + ( Y  - x> = Y. 

Let % be a subspace of Y having positive dimension, and let some point 
yo of € be selected. If 9 := {yo + u, u E q}, then 9 is a flat of d parallel to 
42. Two flats that are both parallel to the same subspace of V’ are parallel to 
each other. The dimension of 9 is the dimension of the 4? that defines it. A 
I-dimensional flat is a straight line, while a 2-dimensional flat is a plane, and 
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an (n - 1)-dimensional flat is a hyperplane. If n = 3, planes and hyperplanes 
are the same thing. An equation for a straight line is 

in which e is some vector and s runs from - 00 to co, while if e and f are 
linearly independent, an equation for a plane is y = yo +se+r f ,  r and s running 
from -co to 03. 

2. Distance, Isometry 

The distance between the points x and y is the magnitude of the vector u 
that translates x into y, that is, 

It is easy to see that this function of pairs of points satisfies the axioms of a 
metric, and in particular that it obeys the triangle axiom: 

A mapping a of & onto itself is called an isometry if it preserves distances. 
The representation theorem for isometries asserts that to each isometry a if 
& corresponds a unique orthogonal tensor Q over Y’ such that 

a (x) = a (xg) + Q(x - xo) 

for each pair of points xg and x. Thus each isometry may be regarded as u e  
succession, in either order, of a translation of an arbitrarily selected point and 
a uniquely determined orthogonal transformation of the vectors that translate 
that point into the other points of space. 

3. Topology, Figures 

The topology of a Euclidean space is defined in the standard way by the met- 
ric Jx - y 1. The definitions of spheres, cubes, parallelepipeds, open and closed 
sets, neighborhoods, interiors, closures, and boundaries as those concepts are 
used in this book may be found in any text on elementary analysis. 
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C. Calculus 

1. Limits, Orders 

Euclidean point space has a metric; likewise, the magnitude of a differ- 
ence of vectors or tensors, Iu - vI or IT - SI, serves as a metric. In terms of 
the topologies defined by these metrics, standard procedure defines continuity, 
convergence, limits, boundedness, compactness, etc., in the respective spaces. 
Standard theorems of calculus, such as those on subsequences, Cauchy’s cri- 
terion, covering theorems, the theorem of the maximum and minimum on a 
compact set, are easy to extend to 6 and to vector spaces. 

The order symbols 0 and o are defined as follows for scalar-valued func- 
tions of a scalar variable. 

If there is a constant K such that 

when x is sufficiently near to a, we write 

f =O(g)  a s x  -+a. 

If 

we write 

f = o ( g )  a s x  -+a. 

For example, O( 1) stands for a function that is bounded near a ,  and o( 1) stands 
for a function that tends to 0 as x + a. 

The statement that f is continuous at x = a may be put as follows: 

f (x) = f (a) + o(1) as x + a .  

These definitions are easily extended to functions of points whose values are 
scalars, vectors, or tensors. In estimating vectors or tensors we write o and 0 
instead of o and 0. For example, iff maps a domain of a normed vector space 
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into a normed vector space, we writef = o ( u )  as u + 0 if 

= O  as IuI + O .  lim - lfcv 1 I 
Iu I 

2. Difletentiation 

I f f  is a function of a real variable t whose values are points or vectors, its 
derivative f ( t )  at t is defined as follows: If there is a vector g such that 

f ( t  + s) = f ( t )  + sg(t) + o(s) as s -+ 0, 

then f is differentiable at t ,  and g is the derivative of f at t .  The standard 
notation for the derivative is 

f ( t )  := g( t ) .  

Thus the derivative f ( t )  defines a linear function that approximates the function 
f ( t  + .) - f ( t )  near s = 0. For a function whose values are tensors a similar 
definition and notation may be used. 

There are simple rules for interchanging the order of differentiation and 
other operations. A few of these, in a notation which may confuse functions 
with their values, are listed below. 

(u @v). = u @v + u @V. 

(LM)' = LM + LM. 

(L'). = (L)'. 
m 

For the last two rules to hold, it is necessary that L be invertible. To prove the 
last one, do Exercise 11.5.1. 

If Q is a function whose values are orthogonal tensors, then the values of 
QQ' are skew. 
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3. Gmdients 

A function f that maps points in a Euclidean space d into a vector space 
W is called a vector field. A vector field f is said to be differentiable at x if 
there is a linear mapping Vf(x) of n-dimensional vectors onto rn-dimensional 
vectors such that 

f(x + u) = f(x) + Vf(x)(u) + o(u) as u --+ 0. 

The function of x whose value at x is Vf(x) is called the derivative (or gradient) 
off  at x. Equivalently, the gradient Vf(x), if it exists, is a linear mapping such 
that 

d 
dt 
-f(x + tu)I,=o = Vf(x)(u). 

A function on an open set is differentiable thereon if it is differentiable at each 
point of that set. A function f that has a continuous derivative Vf on an open 
set is sometimes called smooth on that set. 

Two special cases deserve notice. First, if W = Y,  the translation space 
of d, then Vf(x) is a tensor, and Vf(x)u is written for Vf(x)(u). Second, 
if W is the set of real numbers, the field f is called a scalar field. By the 
representation theorem for functions of vectors whose values are scalars we 
know that Of (x)(u) equals the inner product of some vector and u. In this 
sense we say that the gradient of a scalar field at a point is a vector. Writing 
Of (x) for that vector, we have 

f ( x + u )  = f(X)+Vf(X).U+O(U). 

Similar definitions can be framed for functions of points whose values are 

Among the rules for taking the gradients of products of various kinds are 
points, vectors, or tensors. 

There is also the chain rule for taking the gradient of a composite function. 
If f o g denotes the composition of g with f ,  the rule can be written symbolically 
as 
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If x maps points onto points, and iff maps points onto scalars, then 

4. Other Diffemntial Operators 

The repeated or second gradient is the mapping that results from taking the 
gradient twice. It is denoted by V2. If the values off are scalars, the value of 
v2 f is a symmetric tensor. 

The operators divergence div and laplacian A upon vector fields and scalar 
fields, respectively, are defined as follows: 

divf :=trVf,  

Af :=divVf = t rV2f .  

If L is a tensor field and a is a fixed vector, then LTa is a vector field, and it 
is easy to see that the values of div(LTa) are linear functions of the vector a 
whose values are scalars. Thus the divergence divL of a tensor field L can be 
defined by the requirement that 

a.divL = div(LTa). 

Among the rules for calculating divergences and gradients of products are the 
following: 

div( f g) = g. V f + f div g, 

div(Lg) = (divLT).g + tr(L Vg), 

div( Vg)T = V div g, 

div[Vg k(Vg)T] = Ag k Vdivg. 

5. Spscial Kinds of Vsctor Fields 

A vector field whose divergence vanishes is called solenoidal; whose lapla- 
cian vanishes, harmonic. The label “laplacian” is merely traditional, not an 
attribution. 
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A vector field f is lamellar if there is a scalar field P such that for every 
sufficiently short curve V that connects two sufficiently near points XI and x2 

the sense of V being from x1 to x2. The function P is a potential of f; the 
surfaces P = const., which are called equipotential surfaces, are normal to f .  
Conversely, if there is a scalar field P such that 

f = -VP, 

the field f is lamellar. P is determined by f only to within an additive constant. 
If f is differentiable, it is lamellar if and only if Vf is symmetric: 

skw Vf = 0. 

If the domain of f is a simply connected, open set, the restriction to suffi- 
ciently near points and sufficiently short curves, imposed as part of the definition 
of lamellar, is unnecessary. 

If the domain of the lamellar field f is multiply connected, a potential exists 
locally, but the line integral J, f -dx is not generally independent of the path 
$? connecting two given points. If the two curves V ,  and V2 connect x1 to x2, 

then 

the “cyclic constants” Kk are determined by f and its domain alone, and the 
numbers nk are integers. The concept of potential may be extended to lamellar 
fields on multiply connected domains by introducing “cyclic functions,” which 
map each point onto a set’ of the form {PO + Cz=lnkKk} .  

A vector field f is complex-lamellar if and only if it is non-trivially pro- 
portional to a lamellar field: There are scalar vields K and P, neither of them 

‘The classical treatment of cyclic potentials, due to KELVIN, is most easily available in Sections 
49-51 of H.  LAMB’S Hydrodynamics, Cambridge, Cambridge University Press, znd-6’” editions, 
1895/1932. It is not easy to find a simple treatment that satisfies modem standards of rigor. 

An elegant, rigorous treatment of lamellar fields that need not be differentiable, and also of 
solenoidal fields, may be found in a paper by H. WEYL, “The method of orthogonal projection in 
potential theory,” Duke Mathematical Journal 7 (1940): 41 1-444. 
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constant, such that f = KVP. A theorem of EULER and  KELVIN^ asserts that 
a continuously differentiable field f is complex-lamellar if and only if it is not 
lamellar and f . curl f = 0. 

6. Curves. Vector Lines’ 

A curve is a mapping, twice continuously differentiable, of an interval of 92’ 
into & 3 ,  say x = g(s); the parameter s, which increases monotonically from one 
end of the interval to the other, may be taken as arc-length. The unit tangent 
t at s is g’(s); we may write t := g’. The curvature K is the scalar arc-rate at 
which the tangent turns; that is, Kn := t’, in which the unit principul normal 
n at g(s) is taken as one of the two unit vectors normal to t that lie in the 
osculating plane at s, namely the plane determined by three distinct values of 
g confluent at g(s). One of the two unit vectors normal to the osculating plane 
at g(s) is taken as the unit binormal b. Thus t ,  n, b form an orthogonal triad 
at each point on the curve. Differentiation o f t  . b = 0 yields t . b’ = 0, and so, 
since b’ is perpendicular to b, it must lie in the direction of n. Writing --7 for 
the magnitude of b’, we obtain b’ = -7n. The quantity -7, which is called the 
torsion, is the arc-rate at which the osculating plane rotates around the tangent. 
Finally, n’ = (b x t)’ = --7n x t + ~ b  x n = -7b-Kt. The formulae for t’ 
and b’ are due to EULER and CAUCHY, respectively, while that for n’ is an easy 
consequence of them. The set of three is called “the Serret-Frenet formulae”. 

The definition of “curve” can be broadened, typically by allowing piece- 
wise smoothness, but points where differentiability fails always require special 
treatment. 

At a given time, the vector lines of a vector field c are the curves everywhere 
tangent to c. At each point the tangent of the vector line has the same direction 
as the value of c at that point. A vector field continuous in a closed region 
possesses at least one vector line through each interior point of the region; 
moreover, if the field satisfies a Lipschitz condition, it has exactly one vector 
line through each point x at which c(x) + 0. 

The unit tangents of the vector lines in a region form a field t, a function 
of x and t .  The same is true of n and b. The field t has two important scalar 
invariants: 

0 := div t, R := t . curl t. 

’Cf .  Section 105 of L. BRAND’S Vector and Tensor Analysis, New York, Wiley, 1947, and 
Section 52 of Introduction to Vactors and Tensors by R. M. BOWEN & C. C. WANO, New York 
and London, Plenum Press, 1976. 

zCf. CFT, Section App. Va. 
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The field R, called the abnormality of the vector lines, which was introduced by 
ZHUKOVSKY and named by LEVI-CIVITA, gives measure to the motion's departure 
from being lamellar or complex lamellar. Since 

1 
R = -c . curlc, c := IcI, 

C2 

c is lamellar or complex-lamellar if and only if R = 0. 
MASOTTI derived an intrinsic representation for curl c: 

curlc = cat  + (b . Vc)n + ( C K  - n . Vc)b, 

in which K is the curvature of the vector lines. Putting c = 1 yields 

curl t = f Kb. 

BJGRGUM obtained intrinsic expressions for the gradients and curls of the 
fields t, n, b; corresponding conditions of compatibility were obtained by YIN 
& PIPKIN in the paper cited above in the footnote on p. 290. A convenient 
display of all of these are found in the paper by MARRIS & WANG cited above 
in Footnote 2 on p. 143. 

7. Co-ordinates 

A co-ordinate system on an open set of an n-dimensional Euclidean space 
is a one-to-one mapping of that set into 9" , a mapping which has an invertible 
gradient and a continuous second gradient. If x is such a mapping, 

X(x) = (X'(X), X2(x), . . . ,X"(X)), 

in which Rk is a scalar field having the same degree of smoothness as that 
assumed for x. The number X k ( x )  is the k" co-ordinate of the point x in the 
co-ordinate system x. 

If x denotes the inverse of x, then 

xk(X(x' ,  x2,. . . , x" ) )  = x k ,  k = 1 , 2 , .  . . , n ,  

for all lists ( x ' ,  x 2 , .  . . ,x") that lie in the range of x. We set 
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where d,m denotes the partial derivative with respect to x" of a point-valued 
function of the n real variables xl,  x 2 , .  . . , x" .  The vector ek(x) is normal at 
x to the co-ordinate surface x k ( y )  = const. that passes through x. The vector 
e,(x) is tangent to the m' co-ordinate curve at x, that curve being the set of 
points near x for which every co-ordinate but X" has the same value as it does 
at x. 

The sets of vectors e'(x), e2(x),. . . ,e"(x) and el(x), e2(x),. . . ,e,(x) are 
reciprocal bases of the translation space of &. The basis el(x), e2(x), . . . , e,(x) 
is called the natural basis of the co-ordinate system x at x, and e'(x), e2(x), . . . , 
e"(x) is the reciprocal natural basis there. As the point x varies over the domain 
of x, fields of natural bases and their reciprocals are obtained. In general, these 
bases are not orthonormal. If the co-ordinate surfaces are mutually orthogonal, 
the co-ordinate curves are normal to the co-ordinate surfaces, and so ek is 
parallel to ek , but generally the two are not the same. Indeed, the natural basis 
field is orthonormal only if it is a constant field, in which case the co-ordinates 
are called Cartesian. The values of the Cartesian co-ordinate fields may be 
interpreted as distances from a particular set of n mutually orthogonal (n - 1)- 
dimensional flats, or as distances measured parallel to a particular set of n 
mutually orthogonal lines, as we please. (We refer to rectangular rectilinear co- 
ordinates as "Cartesian", but as the baroque savant DESCARTES never used them, 
in this book we adjust fact to tradition by writing the initial letter minuscule.) 

Two other systems are commonly used in three-dimensional space. The 
cylindrical co-ordinates ( r ,  8, z )  of x, are, respectively, the distance of x from 
a chosen line called the axis, the angle subtended upon a particular plane through 
that line by a chosen plane through the axis at x, and the distance of x from a 
particular plane perpendicular to the axis. Hence 

The spherical co-ordinates ( r ,  8, cp) are, respectively, the distance of x from 
a certain point, an angle between planes through an axis through that particular 
point, and an angle subtended upon the axis by a line from the particular point 
to x. Hence 

dX 
e, = - =er ,  

dX 
es = -  = r  2 e ,  e e'p = a(p = r2 sin2 e ep 

dr ae 

Thus far in this section we have used co-ordinate surfaces to define compo- 
nents. The student will recall that components may be defined relative to any 
basis, and that if n > 2 a vector field is not generally normal to any family of 
surfaces. In particular, an arbitrary field of bases will not generally be the field 
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of natural bases of any co-ordinate system. Components that do not derive from 
a co-ordinate basis are called anholonomic. For some purposes anholonomic 
components are more convenient than components with respect to a co-ordinate 
system. For an example, see Exercise IV.21.10. 

In works on differential geometry may be found necessary and sufficient 
conditions that an orthogonal basis field be locally the natural basis of some 
co-ordinate system. 

8. Contmvariant, Covariant, and Mixad Components Relative to a 
Co-ordinate System 

The value v(x) of a vector field at x is a vector and hence has unique 
components relative to any basis (above, Section App. IIA.l), and in particular 
relative to the natural and reciprocal bases of a co-ordinate system a. Thus 

k k v = u  e k  = u k e  . 
The scalar fields u ' ,  u 2 , .  . . , u" are the contravariant component fields of v 
relative to the co-ordinate system %; likewise, the fields u1 , v 2 , .  . . , Uk are 
the covariant component fields relative to that system. When a particular co- 
ordinate system is set down for use, we usually speak simply of contravariant 
and covariant components, respectively. 

The covariant and contravariant metric components, g k m  and gkm , are the 
scalar fields defined as follows: 

and so 

For Cartesian co-ordinates 

g k m  = 6 k m  = gkm I 

for cylindrical co-ordinates 

1 0 0  

o r2 o 
0 0 1  

9 IlgkmII = 

1 0 0  

0 r-2 o 
0 0 1  



c. CALCULUS 

IlgkmII = 

and for spherical ones 

1 0  0 1 0  0 

0 r o , llgkmII = o r-* 0 

o o r2 sin2 8 o o r-2/sin20 

335 

In terms of the metric components, it is easy to relate covariant and con- 
travariant components of one and the same vector field v: 

Similar definitions and rules hold for the components of tensor fields, e . g .  

Let x and f be co-ordinate systems. Then the co-ordinates of x with respect 
to these two systems are functionally related: 

a k ( x )  = f k ( X ' , X 2 , .  . . ,X"), 

x q ( x )  = g q a l , a 2 , .  . . ,a"). 

Let & ( x ) ,  e z ( x ) ,  . . . , e , ( x )  be the natural basis of the co-ordinate system i at 
x .  From the definition of natural basis it follows that 

(often denoted by dXk/agm and d P / d x q ) ,  from the transformation rules in 
Section App.IIA. 1 we may read off the relations between components of various 
kinds relative to different co-ordinate systems. E . g . ,  if the components of a 
vector u with respect to the two systems are distinguished by superimposed 
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bars and tildes, then 

and so on for tensors. 
These transformation laws for components were used to define vector fields 

in some of the older literature. E.g . ,  the scalar functions A’r‘s and Akuhu 
are said to be components, in the co-ordinate systems x and 2, of a tensor of 
order four (contravariant order two and covariant order two) if they are related 
as follows: 

the functions on the left-hand side being evaluated at the argument f(x), and 
those on the right-hand side at x(x). The other approaches to tensors of order 
greater than 2 which were mentioned above in Section App.IIA.4 and App.IIA.6 
may be extended to fields in a straightforward way. 

Whatever be the definitions chosen, there is no doubt that specific calcula- 
tions are performed most easily by means of the transformation rules. For ex- 
ample, it is obvious that for a Cartesian co-ordinate System g k m  = 6km = g . 
The covariant metric components g k m  in the co-ordinate system 2, therefore, 
are obtained as follows: 

km 

where the Cartesian co-ordinates x P  are presumed given as functions of the 
general co-ordinates 2 : 

xp = f P ( f  I , f 2 ,  . . . I f “), p = 1,  2, . . . , n, 

For example, in cylindrical co-ordinates, if we write r ,  8, and z, respectively, 
for PI, f2 Z3, then 

1 

2 

3 

x = x = r c o s e ,  

x = y = r sin 8 ,  

x = z .  



c. CALCULUS 337 

It is a trivial matter to obtain in this way the matrices IIgkm 11 and llgpq 11 for cylin- 
drical co-ordinates. Likewise, the components of vectors and tensors relative 
to any co-ordinate system may be calculated routinely from their components 
relative to a Cartesian system. 

Tensors of order greater than 2 occur rarely in this book. A student who does 
not possess a technique of handling them should be able to follow all develop- 
ments by simply referring them to components relative to Cartesian co-ordinates. 
Of course, this procedure, while often inelegant, is perfectly rigorous. 

9. Physical Components Relative to an Orthogonal Co-ordinate System 

The vectors and tensors that occur in physical problems usually are assigned 
physical dimensions. For example, a velocity has the dimensions of length di- 
vided by time. The components of a velocity field with respect to a co-ordinate 
system do not necessarily have these same dimensions, since the dimensions of 
the different members of natural basis are not usually all the same. For example, 
in a cylindrical system e' is dimensionless, but ee has the dimension of length, 
and ee has the dimension of reciprocal length. In physical problems it is often 
desirable to be able to interpret each component of a vector in the same terms 
as the vector itself, and for this reason physical components are used. For an 
orthogonal co-ordinate system these components are defined unambiguously as 
being the components with respect to the following orthonormal basis field: 

here e l  , e 2 , .  . . , en  is the natural basis field of the co-ordinate system, and 
el , e2 , . . . , e" is its reciprocal natural basis field. The orthonormal basis field 
i l  , iz , . . . , in is everywhere tangent to the co-ordinate curves and normal to 
the co-ordinate surfaces. Physical components are denoted by indices at middle 
height, neither subscript nor superscript, thus: 

A similar notation is used for tensors, e.g. 

T r r ,  TrO, etc. 

In Section App.IIA. 15 we have listed some algebraic formulae peculiar to 
skew tensors over a three-dimensional space. For reference we converted some 
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of them to common special notations including the two vector products, either 
of which may be denoted by x.  Here we adjoin some differential statements in 
the same context. The symbols u and v denote arbitrary vector fields. 

curlu := - (Vu). ; 

in Cartesian components, 

(cur1u)g = u2.1 - ~ 1 . 2 ,  etc. 

Also 

div( u A v) = curl( u x v) . 
If S := skw Vu, then 

2divS = Au - Vdivu = -curlcurlu. 

10. Christofel Components 

The gradients r ( k )  of the natural basis of a co-ordinate system exist and are 
continuous tensor fields: 

r ( k )  := Vek 

The mixed components rpkq of these fields, namely 

rp k , := qP) k , = ek .r@)e , ,  

are the Christoffel symbols of the given co-ordinate system. It is possible to 
prove that 

rpk, = rqkp 

and that 

ax+ = rrksek. 

Furthermore, the Christoffel symbols can be calculated as follows from the 
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metric components g k p  and g,, of the co-ordinate system: 

The notation might suggest that the Christoffel symbols are components of 
third-order tensors, but, as their name indicates, they are not. 

It can be shown that the Christoffel symbols of a co-ordinate system vanish 
identically if and only if its natural basis field is constant. Such is the case for 
a Cartesian co-ordinate system. 

11. Covariant Derivatives, Diffemntial Operators 

I f f  is a vector field, its gradient Vf is a tensor field. The four usual kinds 
of components of Vf are called covariant derivatives o f f .  These are defined 
as components always are: 

Each covariant derivative is thus a scalar field. 

we note first that 
To calculate the covariant derivatives of f in terms of the components of f, 

Vf = V(fPep) = ep @Ofp + f P  Ve,. 

Hence 

Likewise 
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Each covariant derivative equals the corresponding partial derivative if the co- 
ordinate system is Cartesian; for such equality to hold for all f, the co-ordinate 
system must be Cartesian. 

Similar formulae hold for tensors of all orders. In particular, covariant 
derivatives of all tensors reduce to the corresponding partial derivatives if the 
co-ordinate system is Cartesian. 

The values of all differential operators can be calculated in terms of covariant 
derivatives or Christoffel symbols. For example, 

(div L)k = Lkm,m , 

where g := detg,, . 
The easiest way to get expressions in terms of physical components is to 

derive them first in terms of contravariant or covariant components, which is a 
simple routine matter, and then convert the results. We record here the phys- 
ical components of the divergence of a symmetric tensor L in cylindrical co- 
ordinates: 

1 Lrr - Lee 

r r 
(div L)r = &Lrr + -deLre + dzLrz + 9 

1 2 
r r 

(divL)e =drLre + -deLee +dZLez + -Lre, 

I 1 
r r 

(divL)z = &Lrz + -deLet +d,Lzz + -Lrz. 

In spherical co-ordinates they are 

1 1 1 
r r sin 8 r 

aPLw + -(2Lrr - Lee - LW + Lre cot e), (divL)r = &Lrr + -aeLre + - 
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For a skew tensor S, in cylindrical co-ordinates, 

1 
r 

(div S)r  = -8eSrS + d,Srz, 

(div S)e = d,Sez - drSre - - S o ,  
1 
r 

r 

and in spherical co-ordinates 

d,SW, 
1 1 1 

(divS)r = -SrecotO + -8eSrO + - 
r r r sin O 

2 1 
(divS)e = - - S r e  -drSre + ~ 

r r sin 6 

2 1 1 
(divS)w = - -Sw - -SbcotO -drSrw - -dsSRlp. 

r r r 

dpSeP, 
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Solutions of the Exercises 

Note: Solutions immediate by merely following the directions given in their 
statements are omitted from this list. 

1.2.1 

1.2.2 

Use ( I . 2 - 5 ) 3 ,  Axiom B3, and the definition of meet to prove the first 
implication. Use ( 1 . 2 - 5 ) 4  and the definition of join to prove the second. 
Adopting the first of the two possible hypotheses, we set 

By the definition of meet, 

9 3  49, 9 3  4 U,  9 3  49 .  

Thus 9 3  is a part of .C%, U, and 9. Now suppose that 

9-4.C%, 3 4 U ,  9-49. 

Then, again by the definition of meet, 

3491,  9 - 4 9 2 ,  9 - 4 9 3 .  

Thus any part 9- of 9, U, and 9 is a part of 9 3 .  By the definition 

343 
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1.2.3 
1.2.4 
1.3.1 

1.4.1 

1.5.1 
1.5.3 

1.8.1 

1.8.2 
1.8.3 

1.9.1 

of the meet of three bodies, then, 

From this last, we see that 

Suppose now that 

Since 9 A V A 9 exists, 

The definition of meet shows that 

A similar proof holds if we assume that 9 A (h4 A 9) exists. 
Use (1.2-8)l and (1.2-12)~. 
Use (1.2-8)1, (I.2-16)1, and (1.2-12)~. 
Let 91 and 9 2  be bodies of 0 0 .  Then 9j = intcloaj ,  i = 1,2.  We 
know also that int clo(91 U 9 2 )  belongs to 00 . Consider any 9 E Q 
suchthat91 c 9 a n d 9 z  c 9 ; t h e n 9 = i n t c l o 9 a n d 9 1  U9z c9, 
and so intclo(91 U92) c 9. Since 9 is arbitrary, the conclusion 
follows. 
Use (1.2-38) to write 9 V h4 as the join of separate bodies. Then use 
Axiom M3, (1.4-3), and Axiom M1 (if necessary). 
Substitute (1.5-16) into (1.5-26), then use (1.5-20). 
Expand f ( 9  V V, 9 v $7) with the aid of Axioms FE2 and FE3, then 
similarly expand the results. 
(1.8-6)l follows simply by differentiating (1.8-4). To derive (I.8-6)z , 
use the definition of M,, so as to get M,, , and adjust the terms. 
Write F(9 ,  ge) + F(9 ,  9) explicitly, and use (1.5-26). 
In (1.8-6) take x, for x l ,  and use (1.8-29). The second term in (1.8- 
30) is the rate of change of rotational momentum with respect to the 
fixed place x,, of a mass-point located at the center of mass of ~(9, t) 
and endowed with the linear momentum of 9. 
Let 4 and V’ be two n-dimensional inner-product spaces over 9. Let 
h: @ -t Y be an isometry. Let Q: 4 -t Y be defined by Q(u) = 
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[Q] = 

h(u) - h(0) for each u in @. Then Q(0) = 0, and we conclude that 
(i) IQ(u)ly = 1 ~ 1 %  for each u in 42. Let u and v be vectors in @. By 
multiplying out both sides of IQ(u) -Q(v)& = Ju and using (i) 
to simplify the resulting expression, we obtain (ii) (Q(u), Q ( v ) ) ~  = 
(uy v)% for every u and v in @. By (i) and (ii), it is easy to show that 

for each scalar A in 9 and all vectors u and v in @. It follows from (111) 

and (iv) that Q is linear; (ii) states that Q is orthogonal. Moreover, 
by definition Q satisfies the equation Qu = h(u) - h(0) for each u in 
@. The uniqueness of such a Q is easy to prove. 

(iii) IQ(u +v) - (Q(u) +Q(v)) l’y = 0 and (iv) IQ(W - XQ(u) l’y =.O, 

1.9.2 
X* = G(t)  + Q ( N x  - XO), 

= $ ( t )  + Q(t)(x - % ( t )  + Z o ( t )  - XO), 

= g(t)  + Q(t)(%(t) - XO) + Q(t)(x - %o(t ) )y  

= & ( t )  + Q(t)(x - Mt)),  

say. Since a transformation of this kind, along with t* = t + II, 
preserves the metrics in 8 and 9, it defines a change of frame. To 
prove the group property, use the fact that the orthogonal tensors form 
a group. 
Differentiate Z = YYT and use (1.9-16) and (1.9-15). A solution of 
(1.9-17) is furnished by Z ( t )  = 1; by uniqueness it is the only solution 
satisfying Z ( t o )  = 1. 
A* is formed from the tensor Q* that enters the inverse of (1.94). 
Since Q* = QT, (1.9-18) follows. To derive (1.9-19), write out the 
equations for the three changes of frame. A3 = Q3Qi ; simplifica- 
tion by (1.9-19)l yields (I.9-19)2. When i3 and i2 coincide at some 
instant, Q2 = QS = 1 at that instant. 
If e is a unit vector on the axis of rotation, Qe = f e. Hence Qe + 
Qe = f e ;  that is ,  

1.9.3 

1.9.4 

1.9.5 

cos 8 -sin 8 0 

sin 8 cos 0 0 , 

0 0 1  

Thus if e = 0, it follows that Ae = 0. The relation between o and b 
can be proved by use of an explicit representation of the orthonormal 
components of rotations over a three-dimensional space: 
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where 8 is the angle of rotation and the basis vector e3 lies in the axis 
of rotation. 

1.9.6 

tr[kRT(R - R')] = tr[R + (kRT)TRT], 

= 2trR. 

In a space of 3 dimensions 

tr R = -2(sin e)e .  

Also, by appeal to the explicit representation given in Section App. 
IIA.14, 

tr[kRT(R - R')] = -2(sin 8)AKLcLKpeP, 

= -4(sin 8)o me. 

If 8 = 0, no relation between w e and 4 can hold, because e can be 
any unit vector. If 8 = ?r, the foregoing argument delivers nothing, 
but w - e is a continuous function of e, and so we may infer (1.9-20) 
by a passage to the limit, using the conclusion established for values 
of 8 near r. 
The remark just preceding the exercise solves half of it, for in any 
frame that gives rise to a spin W having the same axis as W at 
each t the points on that axis will maintain their mutual distances. 
Conversely, suppose that 

1.10.1 

Then 

Thus W - W is a skew tensor such that 

(W - W)(x - y) = 0 if x E x(a, t )  and Y E x(@,  0. 

For any given x and y there are infinitely many skew tensors S such 
that S(x - y) = 0. Such S belong in common to all x and y that lie 
upon the same straight line. If x ( @ ,  t) contains three not collinear 
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places, W - W is a skew tensor whose nullspace contains two distinct 
straight lines; since the nullspace of a skew tensor other than 0 is 
l-dimensional, W - W = 0. 
(1.10-1)2 shows that & = c. Therefore p i  = Wp,, i = 1, 2. Compute 
d a(p,.p2), and use W = -WT. 

Use (1.8-2)l , (1.10-1)2, (1.10-5), and the fact that c is a function of 
t only. To obtain (I. 10-8)2, note that Q(a A b)QT = Qa A Qb, and 
use (1.10-3) and (1.10-7). To obtain (1.10-9), use Guo's formula in 
Section App.IIA. 12. 
Use W = -QTAQ and (1.9-15). 
If e = 0, then We = 0 if and only if (W + W2)e = 0. 
Use (1.8-3), (1.10-1), and (1.104) to get (1.10-15). If ~ ( t )  is chosen 
as directed, then &(t) = c, and p = 0. (1.10-16) follows with the 
aid of a little manipulation in the third term on the right-hand side of 

Let TT: Y'T + Y'T be the linear transformation in question. Then 
T = (D$,)TT(D$~)-*, and T* = (D$;)TT(D$;)-'. Thence 

1.10.2 

1.10.4 

1.10.5 
1.10.7 
1.10.8 

(1.10-15). 
1.11.1 

1.11.2 

1.11.3 

Since under galilean transformations X* = QX and M* = M ,  (1.8-5)l 
shows that m* = Qm. 
The first statement follows at once from the chain rule. The fourth 
statement is proved as follows from (I. 11-2): 

det T* = det(QTQT) = (det Q)(det T)(det QT), 

= det T. 

This being so, det(T -rl)  is frame-indifferent, no matter what be the 
number r. Therefore, T' and T have the same latent roots. Conse- 
quently they have the same trace and the same proper numbers. If e 
is a proper vector corresponding to the proper number r, then 

Te = re, 

so that 

(Q'T'Q)e = re, 
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and hence 

T*(Qe) = r(Qe). 

Thus Qe is the corresponding proper vector of T*. 
A given smooth surface can be embedded in a smooth family of 
surfaces f = const., where f is a frame-indifferent scalar. Then, 
by conclusions of Exercise I. 1 1.3, both V f and )Of I are frame- 
indifferent, and n = Of /[Of ). A better proof can be constructed by 
writing an equation for a single surface as 

1.11.4 

where a and b are parameters. For each a and b, the left-hand side 
is a frame-indifferent vector, and so the vector-valued function f is 
frame-indifferent. Accordingly, a, g and ab  g are frame-indifferent . 
They span the tangent plane at (a,  b). The line normal to the tangent 
plane contains exactly two unit vectors. Their construction as above 
shows that both are frame-indifferent. 
Use Axiom A2 and conclusions from Exercise I. 11.3. 
In (1.9-13) suppose that x' = 0, Q = 0. Then I* = Qx, and so 
W* = W implies that 

1.12.1 
1.12.2 

1 . d f i e  = . d h e ,  
1 

whence 

Q'df ie  = dfge. 

1.13.1 We note that (1.5-22) holds as long as the system of forces is balanced. 
Since the axioms of inertia as applied to analytical dynamics respect 
the requirement that the forces be balanced, they do not alter the 
requirement (1.5-22). 
Note that (f hg)' = 0. The spectral decomposition of EG is 1.13.2 

EL. = Ele 8 e  + E2f 8f + E3g8g .  

It is easy to show that 

E;,A~ - A~E;, = 0, 
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and 

Thus (I. 13-22) reduces to (I. 13-24). 
Invariance under translation is equivalent to a representation 1.14.1 

Wqk being a frame indifferent function of vectors. A theorem of 
CAUCHY [NFTM, p. 291 tells us that 

for all v and all changes of frame if and only if Wqk(v) = Vqk(v.v). 
Calculation of fqk and Vqk yields 

The conclusion about f i  follows by a similar argument. 
The heating Q obeys the identity (1.5-2). 
If d U  is of class C ' ,  by use of the divergence theorem it follows from 
the definition of perimeter that 

1.15.1 
11.1.1 

per( U)  5 A ( d U ) .  

If d u is of class c*, one can easily arrive at the inequality 

per(U) 2 A ( d U )  

by using the divergence theorem to compute J div g dV for g E 
Cb(S, Y') such that lgl 5 1 and gl3g = ng . Comparison of the two 
inequalities delivers the desired conclusion if d U  is of class C 2 .  If 
d g  is merely of class C ' ,  the same conclusion follows from a rather 
more delicate argument which is sketched on p. 157 of the book by 
VOL'PERT & HUDJAEV, cited in Footnote 1 on p. 88. 
From the definition of a determinant, or by use of the characteristic 
polynomial, it follows that for a tensor A 

11.5.1 

det( 1 + A) = 1 + tr A + o(A) as A + 0. 
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Thus if L is a fixed invertible tensor 

det(L + U) = det L det( 1 + L-IU) 

= det L[l + tr(UL-')] + o(U) as U + 0. 

If an invertible tensor F is a differentiable function of a parameter, 
we may put F for L and EF for U and so obtain 

det(F + EF) - detF = det F(l + E tr FF-I) - detF + O ( E )  

= E(detF)trFF-l + o(E).  

Divide by E and then let E + 0 to conclude that 

(det F)' = (det F) tr(FF-l). 

Interpret F as being the transplacement gradient and use the chain rule 
to show that m-' = Vxy or simply use (11.11-5) and (11.11-7). 
(An easier problem of this kind is given below as Exercise 11.6.3.) 
Consider the linear partial differential equation 

11.5.2 

where P O ,  P1 ,. . . , P ,  , R are given functions of X O ,  X I , .  . . , xn  . 
The chamcteristics of (L) are the integral curves of the system 

A chamcteristic integral is a function f i ( X 0 ,  XI , . . . , xn  , Z )  such 
that f i  = const. on every characteristic curve. The formal statement 
of LAGRANGE'S theorem is that if f 1 , . . . f n are any n functionally 
independent, characteristic integrals of (C), then the general solution 
of (L) is 

To treat (11.5.7) in n dimensions, let xo = 1 ,  write x for (xl,  
X Z , .  . . , x n ) ,  Z := log p .  Then Po = 1, Pi = , t i ,  and, by (11.5-6), 
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R = -J /J.  Hence n members of (C) can be written in the form dx = 
x d t ,  and so n families of characteristic curves are provided by the 
path-lines of the substantial points. Thus x;’ denotes n characteristic 
integrals. An (n + lyt integral can be obtained by integrating dt = 
d Z / R  = -d log p/d  log J, the resulting integral being p J .  Thus the 
general solution of (11.5-7) is 

and this is (11.54). 
Note: The method of characteristics for linear partial differential 

equations of first order was invented by LAGRANGE on the basis of this 
example and the one in Exercise 11.6.3, both of these having arisen in 
hydrodynamics. The trivial generalization of the particular case (11.5- 
6) from 3 dimensions to n was obtained by LIOUVILLE; it is the only 
one of the several statements physicists call “Liouville’s theorem in 
statistical mechanics” that has any connection with LIOUVILLE. 

A rigorous treatment of LAGRANGE’S theory in the large is intricate. 
Most modem books on partial-differential equations omit it. A clear 
and precise treatment of the local theory may be found in Chapter 2 
of P. R. GARABEDIAN’S Partial Differential Equations, New York, 
John Wiley & Sons, 1964, reprinted New York, Chelsea Publications, 
1986. A simple treatment of characteristics is given by C.-C. WANG 
in the appendix to his Mathematical Principles of Mechanics and 
Electromagnetism, Part A ,  N.Y. & London, Plenum, 1979. 
By the theorem of integral calculus used to derive (11.2-6), the volume 
of x1 (9, t )  is given by 

11.5.3 

J d V .  

The condition of isochoric motion is therefore locally equivalent to 
J = 1. To complete the exercise, use (11.5-6) and (11.5-7). 
For a plane motion (11.5-8) becomes 11.5.4 

axx +ayy = 0, 

in which x ,  y are Cartesian co-ordinates and x , y are the correspond- 
ing components of the velocity field. This is a necessary and sufficient 
condition that in each simply connected region there be a function q 
such that 

x = -&q, y =&q,  
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and this is (11.5-1 1). For the extension to multiply connected domains 
see CFT, Section 161. Clearly x. Vq = 0, and so the stream lines 
are normal to the normals of the curves q( - , t) = const. 

11.5.5 

n k  dA(X) = c k p q  dXp dXQ = ckpqFP,Fq8 dX" d X a .  

(An interpretation for this transformation law is given in Section 
11.13.) The conclusion follows by comparing both sides of (11.5-12). 
As (11.6-11) suggests, take V / p  for Y! in (11.6-9), then use (11.5- 
7), (11.6-3), and the divergence theorem. The value of the left-hand 
side of (11.6-10) is the time derivative of J 4 dV for a given part 
9 of 97; the operation denoted by a prime is the time derivative of 
J 4 dV obtained if, neglecting the motion x ,  we confuse 9 with 
its present shape ~(9, t). The difference between these is explained 
and evaluated by the third term, which gives the rate of increase of 
J 4 dV for 9 effected by the motion of substantial points out of 
or into the present shape of 9. To complete the exercise, refer to 
the definitions (1.8-1) and (1.8-2), and take for 4 first px and then 

For a moving surface Y,  choose a particular parametric representa- 
tion: 

11.6.1 

(X - Xg) ApX.  

11.6.2 

and think of A as being attached permanently to a point on Y as it 
progresses. Then the velocity u at A is given by 

Of course the field u so defined on Y depends upon the particular 
parametrization used to describe Y. Now suppose the parameter A to 
have been eliminated, so that an equation for Y is 

f ( x ,  t )  = 0. 

All the infinitely many different parametrizations of Y will lead to 
one and the same set of points satisfying a relation of this kind, and 
this relation characterizes Y over an interval of time: 
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for each fixed A in any parametrization. If h(x,  t) = 0 is another 
equation for Y ,  then h is an invertible function off.  Differentiation 
of (1) yields 

f ' + (grad f ). u = 0. (2) 

Now the unit normal to Y in the direction of increasing f is given by 

Therefore (2) asserts that 

h' 
lgrad h 1 ' 

f '  - u . n =  -~ -~ 
lgrad f I - 

h being any differentiable function off. Because the right-hand side is 
independent of the parametrization, so is the left-hand side. Thus what 
we have defined as the speed of displacement S, is in fact the common 
normal speed of advance of all possible assignments of velocity to 
points on Y. 
For the method of characteristics, see Exercise 11.5.2. In the present 
instance R = 0, and f is the unknown function. 
Note that g ( x ,  t) = g(x,(X, t), t) := G(X, t) = 0, and 

11.6.3 

11.6.4 

FT grad g - - GradG(X, t )  
lGradG(X, t)l lGradG(X, t)l' 

n, = 

A little simplification gives (11.6-21). If YK is not a substantial surface, 
then at different times different substantial points will lie upon it. Of 
course (11.6-22) is merely an application of (11.6-16). To get (11.6-23), 
use (II.6-3)l and (11.6-16). 
The common proof starts from the assumption FFT = 1 and by dif- 
ferentiating it and using the fact that Fk,b = F$,a  concludes that 
F = const. GURTIN & WILLIAMS have found an elegant proof that does 
not require F to be differentiable. Let f be a differentiable function 
of place z in some open, connected set Y o n  which (Vf)( = 1. 
Then det V f  = f 1. If ~0 E F, there is an open ball Y such that 
xo E Y c Yand that f is invertible in Y. If x E Y and y E 9, let V 
be the line segment from y to x .  Then 

11.9.1 

f ( x )  - f(y) = s, V f ( z ) d z .  
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[R] = 

Because lQul = lul for any orthogonal tensor Q and any vector u, 

cos 8 sin 8 0 

-sin 8 cos 8 0 

0 0 1  

Just the same argument applies to f-I: 

Comparison of these two inequalities yields 

Therefore f preserves distances in Y. Since F i s  connected, the asser- 
tion follows. If U = U, then grad(& o x; ' )  = FF- ' - - mT, which 
must be constant in virtue of the preceding. 
C(7) = FT(7)F(7). Use (11.8-7), and simplify. 
The principal stretches u are the roots of det(B - u21)  = 0. B = 
RCR', and 

11.9.2 
11.9.3 

since the principal axes are rotated about the ~3-axis. 
11.9.4 

11.9.5 Calculate the physical components of B by employing 

B k m  = Bkmd' (no summation), 

and compare with (11.9-13)'. 
Use (11.6-5) and (II.9-5)4 to get (11.9-19). 
EULER proved the statement by first differentiating the component 
equations xk, + x m ,  k = 0. The elegant proof of GURTIN & WILLIAMS 

does not require that G be differentiable. Let the notations be as in 

11.9.6 
11.11.3 
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[f(x) - f(y)]. [x - y] = [x - yl.Vf(z)dz. s, 
Since V is a straight line, dz is parallel to x - y, and so the integrand 
is 0 if Vf is skew. Therefore 

This condition is equivalent to (I. 10.1) in the present notation: 

f = c + W(x - xg), WT = -W = const. (B) 

Indeed, that (B) +- (A) is immediate. Conversely, by differentiating 
(A) with respect to x we obtain 

Vf(x)T(x - y) + f(x) - f(Y) = 0. 

Differentiation with respect to y yields 

- Vf(x)T - Vf(y) = 0. 

Thus Vf is both constant and skew. 
Show first that divx = E + trG2. 
The preceding exercise shows that in a rigid motion divx = -lWI2. 
Use (11.11-1 1) and (11.11-22) to obtain (11.11-23), and then use Sec- 
tion App . IIA . 1 5 .  
G = duF(~)F-'(t)Ju,, . Use the polar decompositions of F(u) and 
F(t), and then carry out the indicated differentiation to obtain 

11.11.5 
11.11.6 

11.11.7 

G = RR-' + RUU-~R-'. 
This equation can be written as 

D + W = kFt-' + qR(UU-' - U-'U)RT 

+ iR(UU-' + U-'U)RT. 
Use uniqueness of the additive decomposition of a tensor into sym- 
metric and skew parts to get (11.11-26)~. 3 . To get (II.11-26)l , start 
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11.11.8 

11.11.9 
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from (11.11-26)3, and use C = U2 and the polar decomposition the- 
orem. (In fact, (11.11-26)' is easy to derive directly, but from it as a 
starting point there seems to be no obvious way to reach (11.1 1-26)2 .) 
The last relation follqws from B = FFT and FIF=I = G. 
C = (FF- )' = FF- +F(F-')', (FF-I)' = 0 = F(F-I) +F(F-')'; 
hence (F-'). = F-IFF- . 
To get (11.11-32), use Leibniz's rule to differentiate Ft(7)TFt(7). To 
get (11.11-33), first prove that 

1 

(n) 
C =FTA,F. 

(A prescription for proving this formula is given in the text of Section 
11.14, where it is listed as (11.14-16).) Hence 

= FTA,F + F T ~ , , ~  + F~A,,F.  

Now use (11.11-5). 
11.11.10 A formula for the derivative of the determinant of an invertible tensor 

is given in Exercise 11.5.1. Differentiating it yields 

(det L)" = (det L) tr[LL-' - (LL-')2] + (det L)' tr(LL-I), 

(det L)"' = (det L) tr[LL-' - 3LL-'LL-' + 2(LL-')3] 

+( detL)'(...) +( detL)"(...), 

etc. If det L = 1 always, these relations reduce to 

tr[LL-' - (LL-')*I = 0, 

tr[LL-l - ~LL-ILL-' + ~ ( L L - ' ) ~ I  = 0, 

etc. In an isochoric motion, we may substitute Ct(u)  for L. Putting u 
for t, followed by use of the definition (11.11-31), yields (11.11-34)2,3 . 
The term involving the time derivative of highest order in the formula 

for (detL)(") is (detL)tr LL-' , and so the general assertion of 

the exercise follows. 
11.11.11 Let x be a point of Y, and let k be a vector in the tangent plane of 

Y at x. Then there are points y (h)  on Y such that 

('" ) 

y ( h )  = x + hk + o(h)  as h --+ 0. 
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Therefore, 

X(X + hk) - X(X) 

h 
Gk := lim 

h -0 
9 

If x vanishes on Y,  the difference quotient on L.: right-hand side 
vanishes, and so (IT. 11-38) follows. Now in (11.11-13) replace e by 
n, a unit normal to the tangent plane at x; then denote by e a unit 
vector in the axis of W, so that W = iwn A f ,  We = 0. Because of 
(11.11-38), Ge = Gf = 0, and so 

De = 0 ,  Df = -Wf = -iwn, 

the last equation being a consequence of (11.11-14)~. Now since 

it follows that 

Dn = (n.Dn)n - i w f ,  

E = n.Dn. 

Hence (11.11-39) follows. Because De = 0, e is a principal axis of 
stretching, the corresponding principal stretching is 0, and det D = 0. 
The second principal invariant of D is - bw2. Thus the characteristic 
equation of D is 

D(D2 - E D  - :w2) = 0, 

the solutions of which are (11.11-40). 
11.11.12 From (11.11-40) we see that 

B2 = 1/[1 + (E/w)23. 
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11.11.13 (FTF). = FTF + a symmetric tensor. By choosing n successively as 1 
and 2 in (11.11-28) show that (FT(V%)F)’ = FT(Vx)F+a symmetric 
tensor. Take the skew part of this relation to get (11.11-42). 

11.11.14 By (11.114) 

w = o  * w , = o .  

11.11.15 Use (11.11-28) to show that 

The skew part is (11.11-48). 
11.11.16 By (11.1148) 

(;(Wl2)’ = W.(W, - D W  -WD). 

If dim Y = 3, then for any skew tensor W and any symmetric tensor 
D 

W.(DW + WD) = IWI2(trD - n-Dn), 

in which n is either unit vector in the nullspace of W. Use of (11.11- 
15) yields (11.11-49), from which the conclusion of the exercise is 
obvious. 

11.11.18 In the proof of the theorem of Kelvin and Helmholtz replace the 
assumption of steady density by the general equation (11.6-6)2 and 
so obtain 

generalizing (11.1 1-58). Under the conditions stated in the exercise 
the surface integral vanishes. In unbounded domains the condition 
(11.11-59) suffices to make the surface integral vanish. (The isochoric 
instance is more fruitful because the student has at his disposition 
the developed discipline called “potential theory”, while conditions 
at 00 for a mass density that depends upon x and t are difficult to 
ascertain in practice.) 
The ellipsoid in ~(97) is swept out by the termini of vectors m, such 
that 

11.12.1 

const. = Im l2 = IFm,. Fm, I = m, . Cm, . 
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Let el , e2, e3 be an orthonormal set of unit proper vectors of C ,  so 
that Ce, = u,?e,, where u, is the principal stretch corresponding to 
e, . Let the co-ordinates of m, with respect to this basis be mk . Then 
the above equation for the ellipsoid assumes in Cartesian co-ordinates 
the form 

3 

C ( m k ) 2 u z  = const. 
k=l  

Therefore, the principal axes of the ellipsoid are the principal axes 
of strain at X, and the lengths of the semi-axes are inversely propor- 
tional to the corresponding squared principal stretches. The extremal 
properties of the principal stretches correspond inversely to the ex- 
tremal properties of the lengths of vectors to points on the ellipsoid. 

That the principal axes are not sheared, is the same as the statement 
cos O(ei , e j )  = &, , which is an immediate consequence of (11.12-6). 

Since (11.12-1) can be written in the form 

the last statement follows immediately by aid of (11.9-4). 
Differentiate (11.12-6) after writing it as 11.12.3 

11.13.1 

11.13.2 

Jx(u,l) f -dx  = JK(u) f(X, t).F(X, t ) d X .  Now on the right-hand side 
differentiation can be performed under the integral sign. 
The volume V of a tetrahedron whose vertices are ~ ( t )  and the 
termini of p 1  , p 2 ,  and p 3 ,  is given in terms of the components p,k 
as follows: 

Hence 

11.13.3 Put dx = tds ,  f = f t  in (11.13-1). 
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11.13.4 By (11.13-7) and (11.11-8) 

ec = e - (D + W)e. 

Since erne = 0 and W is skew, 

e.ec = -e.De. 

Substituting this formula into (11.13-14) and then putting the outcome 
into (A) yields (11.13-15). If De = de, (11.13-15) reduces to 

e =We. 

C'. the discussion of rigid motion in Section I. 10. For any vector m 
we obtain from (11.13-15) 

m.e = m.De + m.We - (e.De)(m.e). 

Hence (11.13-16) follows. All these conclusions apply to the position 
vectors p in a homogeneous motion because pc = 0. Since m-n = 
cos 8( , , ," ) ,  (II.13-16)l reduces to (11.12-10) if m-n = 0 at the instant 
in question. Likewise (11.13-16)~ reduces to (11.12-15). 
Let the vector field f be tangent to a vector line of S at the time t o .  
Then f is tangent to a vector line of S for all t 2 to  if and only if 

11.13.5 

(Sf)' = 0. 

Hence by use of (11.134) and (11.13-7) 

SCf + sfc = 0. 

By (11.13-12), there is a scalar field 01 such that fc = af. Thus, f 
too, has to be tangent to a vector line of Sc: SCf = 0. Now recall 
that two non-null skew tensors have one and the same vector lines if 
and only if they commute. 
The argument is phrased in terms of vortex tubes. These are sur- 
faces swept out by the vortex lines through the points of some circuit 
nowhere tangent to the axes of spin. The flux of spin has the same 
value, at a given instant, for all like-oriented surfaces bounded by 

11.13.7 
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11.13.8 

11.13.9 

11.13.10 

11.13.11 

11.13.12 
11.13.13 

11.13.14 

11.13.15 

11.14.1 

circuits embracing the tube just once (HELMHOLTZ’S First Vortic- 
ity Theorem). KELVIN’S argument, a classic example of conceptual 
mathematics, may be found in LAMB’S treatise, in Section 128 of 
CFT, and elsewhere. 
POINCAR~S Theorem makes the hypothesis equivalent to WW, = 

W,W. Exercise 11.1 1.12 makes the differential relation equivalent to 
W-W, = 0. If neither W nor W, vanishes, the two requirements 
are incompatible, for one requires the axes of the two tensors to 
coincide and the other requires that they be perpendicular to each 
other. If W = 0, then W, = 0, as is shown in Exercise 11.11.12. 
Thus W, = 0 is the only possibility, and clearly it is sufficient that 
the two conditions be compatible. 
Take x for c in MASOTTI’S formula (Section App.IIC.6) to obtain for 
w - R x  a vector which for a screw motion must vanish because w 
and x are collinear. 
Put x for c in the second formula for R in Section App.IIC.6, then 
use (11.13-23). 
Take the curl of (11.13-23); then the inner product of the result and 
6, and use (11.13-23). 
Inspect (11.11-9). 
As was remarked just after (11.6-6), in a motion with steady density 
div (px) = 0. Using (11.13-23) delivers div [(p/R)w] = 0, and so 
w . grad (p/R) = 0. Thus x is the tangent to one of the surfaces 
p/R = const. 
If a screw motion preserves circulation, then taking the screw part 
of the gradient of (11.11-9) yields w’ = 0. The conclusion follows 
from (11.13-23) and (11.13-24). 
Begin as in Exercise 11.13.11. For the first statement the condition 
grad R x x = 0 is necessary and sufficient. The others follow by 
taking curls of the preceding. 
Referring to (1.9-14), for A(x* - $) write w x p* and note that 

= w.l;p* x ds*. 

For a plane circuit V the vector delivered by the latter integral is 
normal to the plane, and its magnitude is the area of the region 
bounded by V+. . 
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11.14.2 By (11.8-7) and (11.14-6), 

Hence 

111.1.1 

The conclusion (11.14-20) follows by the uniqueness of a polar de- 
composition. 

by (1.8-28). 
111.1.2 By (III.1-50)2 and (111.1-46), 

t y d A  = - t - y d A .  J ,  L 
The Lebesgue differentiation theorem gives t y  = -t+ a.e. 
Expand p ( x  - v) @ (x - v)n and p A [ p ( x  - v) @ (x - v)n]; integrate 
over the shape of L8; use the divergence theorem; note that 

111.2.1 

div(pP Q x) = px + p div(px); 

use (11.6-6) for a motion with steady density, and note that x.n = 0 
on the obstacle. 
Choose Ar such that A ( A 4  (= A ( A d ' )  + A ( A d * ) .  Then (111.3- 
11)  and (III.3-9)2 yield (111.3-12). Hence 

111.3.1 

A(d A.9) = A ( A d )  + A ( A d * )  +A(&'') ,  

V(A.9) = o(Ar3)  as A r  -+ 0. 
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111.3.2 The student would be well advised to draw a figure. Let be 
the tangent plane to Y and F a t  x. With respect to Cartesian co- 
ordinates ( x ,  y, z) with x-axis and y-axis in y ,  let z = f ( x ,  y) and 
z = g(x, y )  be the representations of Y and Fnea r  x. Choose Ar 
such that when x2 + y 2  5 Ar2,  Y and Yl i e  entirely between two 
paraboloids z = f K ( x 2  + y 2 ) ,  where 

Follow the same procedure as before. 
Let C be a cube, and let two of its faces be normal to k. Then 111.4.1 

l , t  dA = 2( V(  C))2’3k, 

and 

but 

lim K:,I = +m, 
V(C) -0  V(C) 

and so (111.1-58) is violated, while (111.1-59) is not. 
Immediate from (111.4-1) and the definition of the transpose. 111.4.2 

111.6.1 Prove the identity 

div(v 8 S) = v 61 div S + ( Vv)ST, 

take the skew part, set v = x-xo , and apply the divergence theorem. 
Hold x fixed, and drop it from the notation; do not assume that 
TT = T. Trivially (111.6-10) @ (111.6-11), and 

111.6.2 

(111.6-1 1) + (111.6-8) 8t (111.6-9). 

Write (111.6-9) in the form n.Tn = -p for all unit vectors n; let 
n = cos 8 nl +sin 8 n2 , nl and n2 being unit vectors, and show that 
n1 .Tnz = -n2.Tnl . Hence conclude that 

(111.6-9) + T = -pl +S,  
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S being a skew tensor. If T is symmetric, (111.6-11) follows. Other- 
wise it does not. 

(111.6-8) requires that 

(t(n)I2 = n.TTTn = p2. 

The conclusion just reached in regard to (111.6-9) shows that TTT = 
p21 + a skew tensor, but this latter is 0 because TTT is symmetric. 
If p = 0, (111.6-11) holds trivially; if p + 0, we have shown that 
p- 'T is an orthogonal tensor, say - Q. Then 

n.t(n) = -pn.Qn. 

If R is the rotation such that Q = f R, show that 

n-Rn = 1 - 2 n t  sin2 $9, 

n l  being the magnitude of the component of n normal to the axis 
of R, and 0 being the angle of R. In order that n.Rn > 0 Vn, it is 
necessary and sufficient that 1 - 2 sin2 $I > 0. Thus (111.6-8) and 

are equivalent. If T is symmetric, R = RT, and hence 6 = 0 or T .  

Since the latter alternative is excluded by the conclusion just drawn, 
R = 1. Thus (111.6-11) follows from (111.6-8) if T is symmetric. 
Otherwise it does not. 
The statement is really an instance of NOLL'S theorem in Section I. 12 
but is more than a century older. For an independent proof, hold t 
fixed and consider the rigid transplacement defined as follows by a 
constant vector vo , the position vector p, and a constant skew tensor 
WO : v = vo + Wop. Since a. Sb = S .  (a Q b) for any skew tensor S, 

111.6.3 

In order that P = 0 for all choices of vo and WO, it is necessary 
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and sufficient that the first bracket vanish and the second bracket be 
symmetric. 
Use (I. 14-1), (111.6-12), the divergence theorem, (111.6-l), and (11.11- 
8). In a rigid motion D = 0. In an isochoric motion t rD  = 0. 
Substitute from (111.1-7) and (111.6-15) and (111.6-12) and use (11.6- 
9) to obtain (111.6-17). Then (111.6-18) and (111.6-19) are easy to 
obtain. 
The existence of h,  the influx of heating, first demonstrated by 
STOKES, follows by use of arguments parallel to those that deliver 
CAUCHY’S Fundamental Theorem (Section 111.4). The differential equa- 
tion (111.6-20) follows by appropriate substitutions in (111.5-l), which 
delivers (111.5-4). 

111.6.4 

111.6.5 

111.6.6 

111.7.1 

( l p @ T e d A )  e = l ( e - T e ) p d A ,  

Using subscript 1 and 2 to refer to quantities associated to the two 
plane, parallel faces, if nl = e we must take n2 as - e,  and so 
(111.7- 14) yields 

Equilibrium of forces requires that F1 = F2 ; equilibrium of mo- 
ments, that p o ( d l )  - p 0 ( d 2 )  be parallel to e. 
Taking Y as p @ p  in (111.7-3) yields at once 111.7.2 

Forming the combination indicated by (111.7-10)1 and then using 
Cauchy’s Second Law yields 

111.8.1 Let the constant g denote the gravitational acceleration, let p denote 
the density of the heavy liquid, and let z denote the distance down- 
ward from the surface of the liquid. Then p = pgz on the surface of 
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the submerged part of the body, say Y. The resultant surface force 
and surface torque upon x(g, t )  are, respectively, 

F$ = - p g L ( x  - xg) AzndA. 

The formulae used to denote the two integrands serve to extend them 
smoothly to the interior of the part of x(S,  t )  below the plane z := 0. 
(This fact expresses STEVIN’S Principle of Solidification: The load 
exerted by one part of a heavy fluid body upon another is unchanged 
if either is replaced by a rigid solid.) Thus we can apply Green’s 
transformation to express the two surface integrals as volume inte- 
grals over the submerged part Y. Since gradz = k ,  a unit vector 
pointing downwards, 

L z n d A  = ( L d V )  k = V ( f l k .  

Likewise 

L ( x - w ) A z n d A  = s, (x -xO)dVhk ,  

p, being the position vector of the center of buoyancy.’ 
To consider a heavy body, invoke the result of Exercise 111.1.1 

to conclude that the load on that body is equipollent to two parallel 
forces: the weight of the body, acting downward at its center of mass, 
and the weight of the displaced fluid, acting upward at the center 
of buoyancy. Consideration of a simple vector diagram suffices to 
conclude the exercise. 
Since d x ( B ,  t) has a differentiable unit normal field n, that field 
can be extended smoothly into a small region containing dx(9?, t )  in 
its interior. A standard theorem of differential geometry asserts then 
that the mean curvature 

111.9.1 

k = div n. (4 

‘To define the centroid of a region, in (1.8-28) replace M by Vand D by the region considered. 
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If n is any differentiable field of unit vectors, and if c is a constant 
vector field, then in a 3-dimensional space 

n.curl(n x c) = -c.(divn)n, 

n.curl{n x [c x (x - %)I} = -c- [(x - xg) x (div n)n]. 

(B) 

By Kelvin's transformation the integral of n. div(p A q) over a surface 
Y is equal to the value of a line integral around dY.  If Y is a surface 
without boundary, that value is 0. Thus the integrals of the right-hand 
sides of (B) over dx(33, t) both equal 0. Use of (A) completes the 
proof. 
By hypothesis, QK = KQ VQ. For Q take the reflection & in the 
plane normal to e. Then &v = -v if and only if v is proportional to 
e. But &Ke = K&e = -Ke, so Ke is proportional to e, no matter 
what be e. Suppose now that Ke = ae ,  Kf = Pf, K(e+f) = y(e+f). 
Then a e  + (3f = y(e + f). Choosing e and f as linearly independent 
shows that a = (3 = y. 
Note. We may ask if the condition RK = KR for all rotations R 
implies (IV.4-23). The answer is no if the dimension of the vector 
space is 2, for then all rotations commute. If the dimension of the 
vector space is odd, the answer is obviously yes, since the tensors 
k R  exhaust the orthogonal tensors. The answer is yes also for 

vector spaces of even dimension greater than 2 but is not so obvious. 
It is easy to prove that a symmetric tensor which commutes with 
every rotation is proportional to 1. 
Follow the procedure given in the proof of (IV.4-2). 
If g in (IV.4-1) is an affine function of F,  

IV.4.1 

IV.4.2 
IV.4.3 

T = A  +B[F], 

A being a constant tensor and B being a tensor-valued linear function 
of tensors. In order for this constitutive equation to satisfy the Prin- 
ciple of Material Frame-Indifference, it is necessary and sufficient 
that 

Q(A + B[F])QT = A + B[QF] ( *) 

for all invertible F and all orthogonal Q. Put F = C1, C + 0, to 
obtain 

L 

QAQ' - A + Cf(B, Q) = 0 
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Since the real number C is arbitrary, both terms in this affine function 
of C vanish. Because A commutes with all orthogonal tensors, A = 
A l .  The functional equation (*) reduces to 

Taking Q = -1 shows that B[F] = 0. (Note. T = a1 + /3V does 
satisfy the principle, but the right-hand side is not an affine function 
of F.) 
(IV.6-2) and (IV.6-3) are straightforward. A frame-indifferent, elas- 
tic constraint equivalent to (IV.6-1) is of the form p ( C )  = 0, where p 
vanishes if and only if y vanishes. This statement is logically equiv- 
alent to the last sentence of the exercise. (Note that p and y are 
not claimed to be functionally dependent, though of course they may 
be.) 
Only (IV.7-14) requires care, because CAUCHY’S Theorem in Section 
IV.4 refers to a function whose domain is the space of all symmetric 
tensors. If the domain of g is the subspace of traceless, symmetric 
tensors, we define as follows a function f on all symmetric tensors: 

IV.6.1. 

IV.7.1 

f(D) := g(D - i( tr  D)1). 

If g is affine and isotropic, so is f .  Thus CAUCHY’S Theorem applies to 
f. Specializing the conclusion to traceless tensors D yields (IV.7-14). 
Since t = -pn, the last statement follows at once from the formula 
proved in Exercise 111.6.5. More generally, (111.6-1 8) becomes 

IV.7.2 

If p = const. on d x ( 9 ,  t), the right-hand side reduces to 

-p  J divxdV, 
X ( S , O  

which vanishes since the flow is isochoric. 
A glance at (11.11-5) and (IV.9-7)1 gives the assertion. IV.9.1 

IV.9.2 

det F ( t )  = det[Fo( 1 + tF1)] = det Fo det( 1 + tFl), 

det(1 + tF1) = 1 + t(trF1) + ;t2[(trF1)’ - trF:] + t3 detF1 , 
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because the second principal invariant of a tensor S equals [(tr S)2 - 
tr s2]. 
Generalizing the spectral decomposition (IV.9-13), we allow not 
only the latent roots of U but also the orthonormal basis vectors 
to depend differentiably upon t. Then 

IV.9.3 

and hence 

Because e k  . e,  + e k  . e,  = 0, k, q = 1 ,  2, 3, a calculation yields 

Consequently a necessary and sufficient condition that UU = UU is 

If the orthonormal basis is constant in time, the statement of the 
exercise follows. Another sufficient condition, obviously, is that U 
shall have only one proper number. The student will distinguish and 
assemble other solutions of the above differential equation. 

For the first instance, write 

and conclude the first statement following (IV.9-13). Taking the ei  

as the axes, let the block be the region included by the planes Xk = 
f a k  . Show that it is deformed into a similar block. Since it is 

already proved that u k  = C?k + b k t  if C?k > 0 and b k  > 0, the motion 
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will be isochoric if and only if 

3 

k=l 

This condition holds if and only if 010203 = 1, bl = bt = b3 = 0. 
For a pure stretch k = 0, R = 1. Use (11.11-26)~ and (11.11-42). 
For an unconstrained simple body T = 8(F'), and for the corre- 
sponding incompressible simple body T = p ( a  - h ) l  + 8 ( F f ) .  F(t) 
is given by (IV.9-10). In the unconstrained body, every component 
of T is determined uniquely. In the incompressible body, the func- 
tion h is arbitrary. For example, if a = 0, then by choice of h we 
may let any one of the tractions T,, , T,, , and T,, be any function 
we please, e.g. 0. 
If H I ,  Ht EY., then 

IV.10.2 
IV.10.3 

IV.12.1 

where the first step follows because H:! E 

cause HI 
other axioms of a group. 
Since 8. satisfies Axiom N3, 

and the second be- 
. Thus H1Hz EP.. Similar arguments verify the 

%. ' 

IV.12.2 

%g * 
This statement when combined with (IV. 12-6) implies that Q' E 
The change of reference placement is described as follows by use of 
the Cartesian co-ordinates X, 9 , Z :  

IV.15.5 

z =FP +62 +R;  

A ,  B, . . . R are constants, and A(CG - bF) = 1. 
By NOLL'S rule Q* = PQP-', which can be written as IV.16.1 

Q*RoUo = RoQQ'uoQ. 

Use the uniqueness of the polar decomposition. 
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H = 

37 1 

cos cp sin cp 0 

-sin cp cos cp 0 

0 0 1  

IV.16.2 If 

x ;  = UI, x;  = A x 2 ,  x ;  = px3, x + p ,  

then [PI = diag(X, A,  p ) ,  and so if H E , then NOLL'S rule gives f x  

[HI = 

If 

1 0  0 

0 cos cp sin cp , 

0 -sin cp cos cp 

[H*] = 

1 0 0 

0 cos cp - sin cp . 

0 -- sin cp cos cp 

x 
P 

P 

then 

IV.16.3 Since in generalyx + 0 ,yK will not be an invariant subgroup of a .  

Put UO = K1 in Theorem 2. 
Note that the right-hand side of (IV.17-3) depends upon K only 
through px / J .  

Thusf:f(= RY~R-') will not be equal to Pfi * 
JV.16.4 
IV.17.2 

IV.17.3 Use (11.11-53). 
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[D] = 

IV.18.1 For (IV.18-1) [D] = diag(-(a + b / r 2 ) ,  b / r 2 ,  a). For (IV.18-2) 

. h / r 2  $ l / r  . 
0 

Clearly - h / r 2  is a principal stretching, and it is constant if and only 
if h = 0. In that case the other principal stretchings are f I/r .  
In (IV.18-1) the constants c and g may be removed by superposing 
a rigid motion. Then 

IV.18.3 

while for (6) 

A = 1 ,  B =2hs ,  C = 1, D = O ,  K = h ,  

E = l s ,  F = l ,  L = r n s + i l k s 2 .  

IV.21.1 Substitute (IV.21-3) into (11.8-8) to get (IV.21.13). The other re- 
lations follow easily from the definitions (11.11-2) and (11.11-31). 
The condition tr G = 0 is necessary and sufficient that the motion be 
isochoric, so (IV.21-16) follows. 
If A and B commute, then eAeB = eA+B. 
The most general form of A2 is 

IV.21.2 
IV.21.3 

“421 = 

u a b  

a u c  

b c w  

Remembering that (IV.21-22) does not hold, show that this A2 com- 
mutes with M - M as given by (IV.21-27) if and only if x = 0. 
When A1 = al,  by the lemma A1 commutes with every skew ten- 
sor. Therefore (M - MT)A1 = AI(M - MT). Using (IV.21-15)3, 
conclude that MMT = MTM, and then arrive at (IV.21-26). 
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0 0 0  

[/A"] = /A 0 0 

A V O  

313 

=[GI, 

IV.21.4 If N3 = 0, the Hamilton-Cayley equation reduces to 

(trN)N2 = $[(trN)2 - trN2]N. 

Thus 

N + O & N 2 = 0  =+- t r N 2 = O & t r N = 0 ,  

while 

N2 + 0 + (tr N)N3 = 0 = i[(tr N)2 - tr N2]N2 

=+- [(trNI2 = trN2] =+- trN = 0 =+ trN2 = 0. 

IV.21.6 

IV.21.7 

Use (IV.21-15)4,7 to get (IV.21-30). Then (IV.21-31) follows by 
use of (IV.21-14)2 and (IV.21-15)7. 
Use (11.8-3) and (11.8-4) to obtain the relative description of the 
motion whose spatial velocity field is (IV.21-33): 

41 = X I ,  42 = (7 - O P X l  +x2, 

4 3  = (7 - t ) ( X x l  + v x 2 )  + ; ( t  - 7 ) 2 p v x 1  + x 3 .  

Hence Ft(7) assumes the form (IV.21-13) with the special values 
Q = 1 and 

components being taken with respect to the Cartesian co-ordinate 
basis. Since ( K N ~ ) ~  = 0 and (KNo)~  = 0 + pv = 0, the first 
two assertions of the exercise follow. The relative description of the 
motion whose spatial velocity field is (IV.21-34) is 
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calf 0 0 

[F] = 0 e‘zt 0 

0 0 east 

Thus 

= [U]; 

[No] = 

(IV.9-15) is satisfied; and the last sentence of the exercise follows 
by the conclusion of Exercise IV. 10.2. 
Use (IV.21-15)2, (11.11-22), and the statement in Exercise IV.21.4. 
A non-vanishing isochoric dilatation (IV.21.34) superposed on a 
rigid motion of spin W, provides a monotonous motion of NOLL’S 
third class. For it @ = 1BrI/d2(a: +a$  + (21a2), which for a fixed 
W, by choice of a1 and a2 gives@ an arbitrary value in 30, GO[. 

(11.8-3), (11.8-S), and (IV.21-39) show that 

IV.21.8 

IV.21.9 

0 0 0  

CY 0 0 with respect to the basis {ei(x)}. 

P O 0  

cf. (Iv.21-29)1. 
IV.21.10 Using (11.8-3) and (11.8-4), integrate (IV.21-44). So as to calculate 

physical components of Ft(7) with respect to {ei(()} and {ei(x)}, 
evaluate the quantities ei(t).Ft(E)ej(x). Since the bases {ei([)} and 
{ej(x)} are orthonormal, there is an orthogonal tensor function Q 
such that ej(E(7)) = Q(T)ej(x). Thus 

Now show that Fo(7) = Q(7)( 1 + 7KNO), where 

Writing (IV.21-47) as ik = Rek , calculate the matrix of No with 
respect to the basis {ik}.  

IV.21.11 Inspect (IV.15-32) and (IV.15-61) to show that (IV.21-50) and 
(IV.21-51) are universal. Proceed as in Exercise IV.21.7 to show 
by use of (11.8-7) that the flows are monotonous and that N2 = 0. 

IV.21.12 Inspect the solution of Exercise IV.18.3. 
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IV.21.13 Use (IV.21-54)l to perceive (IV.21-54)2,3. Follow the method of 
Exercise IV.21.7 and use its notations to obtain 

which delivers (IV.21-55). 
IV.21.14 From (IV.21-54)2,3 conclude that 

and then use (IV.21-54)1 and (IV.21-55). Since G3 = -R2G, com- 
parison of (IV.21-54) with (IV.21-3) shows that No is not nilpotent 
unless R = 0. Use (IV.21-54) to calculate the components of Al ,  
A2, A3, and & and so establish (IV.21-58) when n = 1. Next, 
suppose that if n 2 4 

If so, (11.11-33) shows that 

whence by induction (*) is proved to hold if n 2 4. 
The conclusions of Exercise IV.21.14 show that A3 = -R2A1, and 
so the third argument of (IV.22-1) may be replaced by R. Calculation 
of Al  and A2 shows that they together determine R unless f’ = g’ = 
0. In that case the motion is rigid, and so the assertion of the exercise 
becomes trivial. 

IV.22.1 
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Gazetteer 

of Axioms, Laws, Theorems in the order of their first appearances 

Axioms of Boolean Algebra 
Axioms of Mass 
Axioms of Forces 
Theorems of NOLL, GURTIN, WILLIAMS on Forces 
Axioms of Rrzzo and Theorems on Forces 
NEWTON’S View of Time and Space in the Principia 
Theorems of POISSON and NOLL on Central Forces 
Theorem of KELVIN & TAIT 
EULER’S Theorems on Rigid Motion 
Axioms of Mechanics 
NOLL’S Axiom and Theorem on Working of Forces 
Axioms of Inertia 
EULER’S General Laws of Motion 
NEWTON’S Second Law 
EULER’S Differential Equation for Rigid Motion 
General Theorem on Rigid Motion 
EULER’S Theorem on Free Rotation 
Axioms of Internal Energy 
Integral- Gradient Theorem (Divergence Theorem) 

371 

7, 10, 11, 14 
16, 17 
20, 22 
21 
26-28 
33 
42 
43 
51-55 
60-62 
62-64 
65-70 
70-71 
71 
73 
74 
75 
81, 82 
89, 90 
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Polar Decomposition of Transplacement 111 
EULER-CAUCHY -STOKES Decomposition of 

the Velocity Gradient 118 
D’ALEMBERT- EULER Condition for Acceleration-potential 125 
Theorem of KELVIN and HELMHOLTZ to exclude 

Irrotational Flow 127 
CAUCHY’S Fundamental Theorem on Spin 132 
ZORAWSKI’S Criterion for Conservation of Flux 135 
HELMHOLTZ’S Third Vorticity Theorem 136 
HELMHOLTZ-ZORAWSKI Criteria for Substantial 

Vector Lines 137 
HELMHOLTZ’S Second Vorticity Theorem 139 

ZAREMBA-ZORAWSKI Theorem on Frame-Indifference 146 
EULER’S Laws of Motion for Continua 152, 154 
Axiom on Forces in Continuum Mechanics 156 
Decomposition of Forces in Continuum Mechanics 157 
Lemma of GURTIN & WILLIAMS for shared Area of Contact 159 
Traction Theorem of GURTIN & WILLIAMS 162 
NOLL’S Theorem of Action and Reaction 163 
CAUCHY’S Theorem on Balanced Forces 165 
The CAUCHY Postulate 170 
CAUCHY’S Fundamental Lemma 171 
The HAMEL-NOLL Theorem 172 
CAUCHY’S Fundamental Theorem 174 
GURTIN & MARTINS’ Sufficient Conditions for Stress to Exist 
CAUCHY’S Reciprocal Theorem 179 
General Field Equation 182 
CAUCHY’S Laws of Motion 
DAY’S Theorems on Free Bodies 

Theorem of CELLERIER and RICHTER on Elastic Materials 
(reduced Constitutive Equation) 207 

NOLL’S Theorem on Viscous Fluids 209 
Transfer Theorem 210 
CAUCHY’S Theorem on Isotropic, Affine Functions 21 1 

HAMEL-MARRIS Theorem 141-142 

178, 179 

182, 183 
193, 276 

NOLL’S Principles for Constitutive Relations (1958) 200-203 

STOKES’S Constitutive Relation for a Linearly 
Viscous Fluid 213, 214 
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NAVIER-STOKES Theory of Fluids 
NOLL’S Reduction Theorem for Simple Materials 
Principle of Determinism for Simple Materials 

Subject to Constraints 
COLEMAN & TRUESDELL’S Theorem on 

Flows that Preserve Circulation 
EULER’S Theorem on Incompressible Eulerian Fluids 

Subject to Lamellar Body Force 
COLEMAN & TRUESDELL’S Theorem on Homogeneous 

Stretch Histories in Incompressible Bodies 
NOLL’S Definition of Material Isomorphism 
NOLL’S Rule for Peer Groups 
NOLL’S Reduced Constitutive Equation for 

NOLL’S Definition of a Solid 
TRUESDELL & NOLL’S Theorem on Isotropic Solids 
COLEMAN & NOLL’S Theorem on Undistorted 

NOLL’S Fundamental Theorem on Fluids 
NOLL’S Fundamental Theorem on Monotonous Motions 
WANG’S Corollary for Monotonous Motions in 

NOLL’S Classification of Monotonous Motions 
Reduction of Monotonous Motion to Material 

Reduction of Viscometric Flow to RIVLIN-ERICKSEN 

Isotropic Materials 

Shapes of Solids 

Three Dimensions 

of Complexity 3 

Fluid of Complexity 2 

213 
215 

220 

227 

228 

235 
237 
24 1 

244 
265 
265 

269 
27 1 
28 1 

283 
286 

292 

293 
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Index 

Names of Persons are cited only when they serve to identify theorems or concepts, not for 
attributions. The contents of the appendices are not indexed. 

A 

Abnormality, 142 
Absolute continuity 

of force in continuum mechanics, 157 
of mass, 94 

Absolute motion, 33 
Absolute space, 33 
Absolute, true, and mathematical time, 33 
Acceleration, 36, 50, 59, 98, 104 
Accelerationless homogeneous transplacement, 

Acceleration-potential, 126, 142, 227, 234, 

Action and reaction, NOLL’S theorems of, 63, 

Adherence, 107, 124 
Analytical dynamics, see Mass-points, Rigid 

motion 
Angle of rotation, 50 
Angular momentum, see Rotational momentum 
Angular velocity or speed, 50, 126, see also 

APPELL’S vorticity theorem, 140 
Applied force, 66, 67, 70-72 

universal, 23 1 

246, 247, 259-262 

163 

Vorticity 

Applied torque, 66 
ARCHIMEDES, 192, 193 
Area of contact, 156 
Axioms 

of bodies, 7, 10, 11 
constitutive 

unconstrained materials, 200-202 
constrained materials, 220 

of energy, 81, 82 
of force, 17, 22, 26, 60, 65-68, 156 
of heating and energy, 81, 82 
HAMEL’S attempt, 6 
HILBERT’S problem, 6 
of inertia, 64-70 
of mass, 16, 17, 60 
of mechanics, 60, 62, 65, 68 
NOLL’S, see Axioms, constitutive; Axioms 

of forces; Axiom of frame-indifference; 
Axioms of mechanics 

Axis 
of inertia, 52-55 
of rotation, 

free, 74, 75 

381 
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C 

CACCIOPPOLI sets, see Sets of finite perimeter 
CAUCHY’S definition of isotropic, 243 
CAUCHY’S fundamental lemma on traction vec- 

CAUCHY’S fundamental theorem on stress ten- 

CAUCHY’S laws of motion, 182, 183 
CAUCHY’S postulate on traction vector, 171 
CAUCHY’S reciprocal theorem, 179 
CAUCHY’S theorem on isotropic functions, 21 1, 

CAUCHY’S theorem on spin, 132 
CAUCHY’S velocity-potential theorem, 125 
CAUCHY’S vorticity theorem, 101, 102 
CAUCHY-GREEN tensors, 92, 112 
CELLERIER-RICHTER theorem in elasticity, 207 
Center of buoyancy, 193 
Center of mass, 43, 44, 71, 73-75 
Centripetal acceleration, 50 
Change of frame, 44-48, 143- 147, see also 

Frame-indifference, Frame-indifferent 
Circuit, 124 
Circulation, 124, 133, 140 
Classification of monotonous motions, 286 
Closed universe, 10 
Coefficient of surface tension, 193 
Coincidence of frames, 46 
COLEMAN & NOLL’S theorems on solids, 269 
COLEMAN & TRUESDELL’S extension of EULER’S 

theorem on flows that preserve circula- 
tion, 228 

COLEMAN & TRUESDELL’S theorem on homoge- 
neous stretch histories, 235 

Complex-lamellar, 129 
Complexity of material of differential type, 292 
Conformal, 269 
Conservation, see also Balance, equation of 

tor, 171 

sor, 174-177 

212 

of energy, see Energy, theorem 
of mass, 19, 60 
of mechanical energy, 186 
of momentum, see Linear momentum, bal- 

ance of; Rotational momentum, balance 
of 

Conservative force, 78, 153 
Constant principal relative stretch histories, see 

monotonous motions 
Constitutive mapping, see Response 
Constitutive modulus, 193 

of change of frame, 49 
of rigid motion, 51, 55, 75 

of change of frame, 49, 5 
of motion 

of spin 

general, 117- 122, 124- 126 
rigid, 51-56 

B 

Background, 30 
Balance 

of energy, 82 
equation of, 181, 182 
of forces, 21, 25, 26, 41, 54 
of mechanical energy, 186 
of torques, 40, 63 

BIERKNES’ kinematical theorem, 144 
Bodies 

continua, 86 
general, 4, 5 ,  
pairwise separate, 20 
separate, 10 
universes of, 7- 15 

force, 151, 155, 157, 158, 162-164 
freely spinning, 194 
isolated, 71 
null, 9 
simple, 223 
universal, 9 

Body 

Boolean algebra, 7, 88 
Boolean decomposition theorem, 14 
Boolean distributive laws, 13 
Boolean lattice, 7 
BOLTZMANN’S theory of viscoelasticity, 213 
Borel field, I8  
Borel measure, 18, 86 
Borel set, 18 
Boundary conditions 

of adherence, 107, 125 
kinematic, 106, 107 
negligible, 90 
of place, 154 
of pressure, 192 
reduced, 89 
of surface tension, 193 
of traction, 154, 192 

Bounds for mean stresses, 189 
Buoyancy, 193 
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Constitutive relations 
axioms of, 200-203, 220 
of elastic materials, 207 
of fluids, 208-213, 270-273 
general, 6, 194, 199-203, 214 
of isotropic materials, 244, 245 
reduced for frame-indifference, 215-217, 

reduced for monotonous motions, 292-294 
reduced for viscometric flows, 293, 294 
of simple materials, 204, 206 

222, 223 

Constraints, internal, 218-227, 233-236 
Contact, 156 
Contact forces, 151, 153, 154, 156-165, 

“Continuity,” see Mass-density 
Control surface, 167 
Convected time-fluxes, 135- 139 
Coriolis acceleration, 50 
Couple, 39 
Crystal classes, 265, 267 
Crystallographic axes, 266 
Cut principle, 154 

172-174 

D 

“D’Alembert paradox,” 169 
D’ALEMBERT-EULER condition for flow that 

preserves circulation, 125, 130 
D’ALEMBERT-EULER equation for density, 101 
D’ALEMBERT-EULER formula for acceleration, 

D’ALEMBERT-EULER kinematical equation for 

DAY’S theorems on free bodies, 193-196, 

Decomposition theorem of Boolean algebra, 14 
Descriptions of motion, 

104 

vorticity, 125 

276-278 

referential, 96 
relative, 109 
spatial, 92 
substantial, 96 

Determinate stress, 220, 272 
Determinism, principle of, 200, 201, 220 
Differential type, material of, 292, 293 
Displacement, speed of, 106 
Distance, physical, 32 
Distorted placement 

of an isotropic body, 243 
of a solid, 268 

Distributive laws of Boolean algebra, 13 

Divergence theorem (Integral-gradient theo- 

Dynamic process, 198, 199, 202 
Dynamical system, see Mass-point 
Dynamics, 6, analytical, see Mass-points, 

rem), 87 

Rigid motion 

E 

Ease, placement at, 217 
Efflux, 181 
Egalitarian material, 242, 270, 271 
Elastic fluid, 208, 233 
Elastic constraint, 208 
Elastic material, 207, 208, 222, 223 
Elastostatics, 208 
Energetically perfect, 8 1 
Energy 

internal, 80-82 
kinetic, 37, 40, 56 
mechanical, 186 
potential, 77, 78, 186 

for incompressible elastic fluids, 223 
for rigid motion, see Energy, mechanical 
for systems of mass-points, 78 
total, 79, 82 

Energy theorem 

Envelope, 8 
“Equation of continuity,” see Mass-density 
Equation of balance, 181 
Equations of motion for simple bodies, 223, 

225, 226, 230 
Equilibrated, pairwise, 21, 28 
Equipollent, 153 
Equivalence of 

balanced torque and mutual forces, 43 
heat and work in cycles, 8 1, 82 
superposed rigid motions and frame-indif- 

ference, 203 
Equivalent processes, 199 
Euclidean point space, 30 
EULER acceleration, 50 
EULER’S differential equation for rigid motion, 

EULER’S laws of motion 
73 

general, 70, 71 
of continuum mechanics, 151, 154 

EULER’S referential equation for density, 100, 
see also D’ALEMBERT-EULER equation 
for density 
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EULER’S spatial equation for the density, 101 
EULER’S tensor, 53 
EULER’S theorems on rigid motion 51-56, 

73-75 
EULER-CAUCHY cut principle, 154 
EULER-CAUCHY-STOKES decomposition, 11 8 
“Eulerian” description, see Spatial description 
Eulerian fluid, see Elastic fluid 
Event, 29 
Event world, 29 
Expansion, 119 
Experiments, 205, 206, 229, 238 
Exterior, 10, see also Boundary conditions 
External applied force, 66, 71, 72 
External body force, 151 
External force, 153 
Extrinsic applied force, 72 
Extrinsic force. 153 

F 

“ F  = MA,” 71 
Field equation 

continuum mechanics, 182, 183 
general, 182 

Finite perimeter, sets of, 88 
Fit region, 90, 91 
Flow, 99, 208, 270 

about a submerged object, 167 
in a stationary container, 166 
in a pipe, 166 
plane, 102 
steady, 99 
subject to surface tractions alone, 226 
universal, 228 
unsteady, 99 

body, 273 
crystal, 278, 279 
elastic, 208, 223 
incompressible elastic, 223 
linearly viscous, 209, 212, 213 
simple, 241, 270-273, 292-294 

of a skew tensor through a surface, 135 
of spin (vorticity), 136, 139 

Force, 5 ,  see also Forces, system of 
applied, 66, 70, 71 
axioms of, 20, 22, 26, 27, 60, 62 

Fluid 

Flux, see also Time-fluxes, 

body, 151-155, 157, 158, 162-164 
conservative, 78, 153 
contact, 151, 153, 154, 156-165, 172-174 
discrete, 24-26, 40-43, 72, 77-79 
exerted by one body on another, 20 
external, 72, 120 
extrinsic, 25, 26, 72 
frame-indifference of 60, 70, 155 
general, 5 ,  19-29, 41-43, 72, 78 
mutual, 24, 25, 41-43, 72, 78 
pairwise equilibrated, 21, 28 
resultant, 20, 21, 155 
self, 26-28 

extrinsic, 24 
mutual, 24 

Forces, system of, 19 

Frame, see also Frame-indifference, Change 
of frame 

generalized, 3 1 
inertial, 65-75 
of reference, 31 
rest, 51, 74 
rigid, 30 

conditions for, 144, 145 
of constraints, 218, 219 
of dynamic process, 198, 199, 218, 219 
of fluid, 200 
of force, 60, 61, 70, 155 
of mass, 60 
material, 202, 203, 208, 213, 218 
of potentials, 79 
of RIVLIN-ERICKSEN tensors, 174 
of stress tensor, 180 
of stretching, 146 
of working, 62, 63 

Frame-indifferent, 57, 58 
in g, 58 

Frame of reference, see Frame-indifferent 
Free body, 193-196, 276-279 
Functional, memory, 201 
Fundamental theorems, see Gazetteer, p. 377 

Frame-indifference 

G 

Galilean class, invariant, transformation, 58, 

General balance, 18 1 
General field equation, 182 
General principles of mechanics, 6 

59, 67 

balance of, 21, 25-27, 41 General relations, 6 
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Generalized frame, 3 1 
Geometry, 4, 5 
Gradient of relative transplacement. 110 
Gravity, uniform, 153 
Great system, 64 
Greatest common part, 8 
GURTIN-WILLIAMS’S lemma, 159, 160 
GURTIN- WILLIAMS’S traction theorem, 162 

H 

HAMEL-NOLL theorem on traction, 172- 174 
Harmonic functions, 127 
Hausdorff measure, 88 
Heat, 7 
Heat and work, equivalence in cycles, 81 
Heatings, 80 
Heavy liquid, 192 
Helical flow, 288 
HELMHOLTZ vorticity theorems 

second, 139 
third, 136 

HELMHOLTZ-ZORAWSKI criterion for material 

HILBERT’S problem, 6 
History of a function, I16 
Homeomorphism, 86, 89 
Homogeneous body, 238 
Homogeneous incompressible body, 225 
Homogeneous irrotational transplacement his- 

Homogeneous pure stretch history, 215 
Homogeneous reference placement, 223, 225 
Homogeneous stretch history of incompressible 

Homogeneous transplacement 

vector lines, 137 

tory, 215 

body, 235 

general, 129-133 
incompressible body, 233-236 
possible, 230 
unconstrained body, universal if and only if 

accelerationless, 229-233 
Hotness, 7 
Hydrostatic axis, 193 
Hydrostatic loading, 188 
Hydrostatic stress, 184, 185, see also Eulerian 

fluid 
Hydrostatics, 27 1 

I 

Ideal fluid, 208 
Impenetrability, 37, 101 

Incompressible body 
equations of motion, 225, 226 
homogeneous, 225 
in homogeneous stretch history, 235 
in homogeneous transplacement, 232 

elastic fluid, 222 
isotropic, 244 
viscous fluid, 223 

axioms of, 64-71 
moments of 53 
principal axes of, 53-56, 75 
tensor of, 53 

Incompressible material, 

Inertia 

Inertial forces, torques, 69 
Inertial frame, 65-75 

Inextensible material, 222 
Instant, 5, 29-32, see also Time 
Integral-gradient theorem, 87 
Internal constraints, 218-223, 227-229 
Internal energy, 80-82, 186 
Intrinsic speed of propagation, 108 
Invariance under superposed rigid motions, 203 
Invariants, principal, 54 
Inviscid fluid, 213 
Inotational motion (flow), 118, 120, 121, 

Isochoric, 101, 102, 103, see also Incompress- 
ible body 

Isolated Body, 71, 193 
Isometry, 44 
Isomorphism, material 236, 237 
Isotropic body, 245 
Isotropic fluid, 209 
Isotropic function, 209, 21 1 
Isotropic material, 209-241, 243-245, 266 
Isotropic solid, 265, 266 
Isotropy group, see Peer group, peers 

Galilean, 67 

126- 128, 140, 142, 215, 235 

J 

Join, 8 
Joos’s test for inertial frame, 67 

K 

KELVIN’S circulation theorem, 139 
KELVIN’S transformation, 124, 139 
KELVIN & TAIT’S theorem on linear momen- 

tum, 43 
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Kinematic boundary, 106 
Kinematics, 5 ,  6, 86-147, 280-292 
Kinetic energy, 37, 40, 56, 76, 78, 82 
KONIG’S theorem on kinetic energy, 56 

L 

LAGRANGE-CAUCHY velocity -potential theo- 

“Lagrangean” description, see Referential de- 

Lamellar flow, 127 
Lamellar force, 153, 186, 226 
“Laplaces’s equation,” 127 
Lattice 

rem, 125 

scription 

Boolean, 7 
crystal, 268 

Laws of motion 
basic, for continuum mechanics, 154 
CAUCHY’S, 182, 183 
EULER’S, 70, 71, 151 
NEWTON’S, 22, 66-68 

Length, unit of, 32 
Linear momentum 

axioms of inertia, 65, 66 
balance of, 182 
definition of, 37 
EULER’S law of, 58,  70, 151 
rate of change of, 38, 154 
relative, 169 
of system of mass-points, 40, 72 
theorem on center of mass, 43 
transport of, 105 

Linearly viscous fluid, 209, 212, 213 
Load, 187, 192 
Local action, principle of, 201 
Local transplacement, 99, 204 

M 

Mass, see also Center of mass 
absolute continuity of, 92 
assignment of, 5 
axioms of, 16, 17, 60 
boundedness of, essential, 94 
conservation of, 19, 60 

definition of, 92, 100 
properties of, 92, 93 
referential equation for, 100 
spatial equation for, 101 

Mass-density 

Mass flow, 166 
Mass function, 16 
Massless, 17 
Mass-point, definition of, 19, 23, 24 
Mass-points, systems of, 23-26, 40-43, 72, 

Massy, 16 
Material, 6, 200, see also BOLTZMANN’S the- 

73, 77-79, 268 

ory, Constitutive relations, Elastic 
material, Fluid, Homogeneous body, 
Incompressible material, Isotropic 
material, RIVLIN-ERICKSEN material, 
Solid, STOKES’S constitutive relation, 
Surface tension, Uniform body 

classical examples of, 206-2 14 
definition of, 119-202 
derivative, see Substantial derivative 
description, see Substantial description 
of differential type, 292, 293 
egalitarian, 242, 270, 271 
frame-indifference, 202, 204, 206-209, 213, 

214, 280 
ideal, 6, 194, 200 
incompressible, 223 
isomorphism, 237-239 
point, 15, 200 
simple, 204-294 
symmetry, 243 

Materially uniform body, 237 
Mathematical model, 5 
Mean values of stress, 187-192 
Measure, 17, 18, 22, 86, 88, 93 
Mechanical energy, 186 
Mechanically perfect, 76, 82, 186 
Mechanics, 

axioms of, 60, 62, 65, 68 
nature of, 5 ,  6 

Meet, 8, 14 
Memory functional, 201 
Model, mathematical, 5 
Moment, moments, 

of force, see Torque 
of inertia, 53 
of momentum, see Rotational momentum 
of stress, 189 

Momentum, see Linear momentum, Rotational 

Monotonous motion, 279-292 
momentum 

determination by RIVLIN-ERICKSEN tensors, 
283 
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fundamental theorem, 281 

absolute, 33 
of body, 48 
of center of mass, 73 
definition of, 
descriptions of, see Referential, Relative, 

Spatial, Substantial 
equations of, for simple bodies, 223-225, 

228 
laws of, 22, 66-68, 70, 71, 151, 154, 182, 

183 
preserving circulation, 139- 141 
universal, 228 

Mutual forces, 24, 25, 41-43, 72, 78 
body force, 162 
central, 42 
resultant, 25 

Motion 

N 

nth velocity, 36, 91, 123 
“Natural state,” see Ease, placement at 
NAVIER-STOKES theory of fluids, see also 

STOKES’S constitutive relation, 212, 213, 
223 

“Newtonian equations,” 72 
NEWTON, 6 
NEWTON’S laws and views 

first law, 34, 66 
Principia, 33 
second law, 71 
space and time, 33 
third law, 22 

NOLL’S axioms 
of constitutive relations, 200-202 
of forces, 20-23 
of frame-indifference of forces, 62 
of mechanics, 60-63 

NOLL’S corollary on systems of forces, 21 
NOLL’S definition, 

of fluid, 270-273 
of isotropic, 243-245 
of peer group, 238-241 
of solid, 265, 266, 268, 269 

for fluids, 271-273 
for isotropic materials, 243, 244 
for simple materials, 215-217 

NOLL’S rule on peer groups, 238-241 

NOLL’S reduction 

NOLL’S theorem 
of action and reaction, 63, 163 
of isotropy of linear fluids, 209 
on monotonous motions, 281, 282 

NOLL, GURTIN & WILLIAMS’ theorem, 21 
Normal traction, 179 
Null body, 9 

0 

Observer, 30, 31 

Open sets, regularly, 15, 16, 87 
Orientation, relative, 46 
Orthogonal members of peer group, 240 
Orthogonal transformation, tensor, 32 
Orthotropic, 265, 266 
Outer normal, 88 

occupy, 35 

P 

Pairwise equilibrated, 2 1, 28 
Pairwise separate, 20 
Part of a body, 7, 8, 87 
Particle, see Substantial point 
Particular relations, 6 
Partially ordered set, 7 
Passive universal body, 26, 27, 29 
Past history, 217 
Path of substantial point, 138 
Peer group, peers, 238-245, 265-272 
Perfect fluid, 213 
Perimeter, 88 
Physical distance, 32 
P l o u  stress, 180 
PIOLA’S power theorem, 185 
Place, places, 5 ,  30, 33 
Placement, see also Motion, Transplacement 

definition of, 86 
at ease, 217 
reference, 94, 108, 109 

POINCARB’S assertion about incompressible ma- 

PoINcARB’s theorem on vortex lines, 139 
Point 

terials, 222 

material, 15, 200, 206 
substantial, 15, 35, 133, 200 
simple, 206 

Point space, Euclidean, 30 
POISSON’S theorem on mutual forces, 42 
Polar decomposition, 11 1 
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Polar moment of inertia, 53 
Position vector, 43 
Potential 

of acceleration, 126, 234 
energy, 77, 78, 186 
flow, 127 
of forces in system of mass-points, 77-79 
frame-indifference and balance of rotational 

function, 77 
of lamellar body force, 153, 225, 226 
of mutual forces in systems of mass-points, 

of velocity, see Irrotational motion 

momentum, 79 

78 

Power, 76, see also Working, Stress power 
Prescribed traction, 192 
Present shape, 35, 86 
Present time, 33, 35 
Preserved circulation, 139 
Pressure 

boundary, 192 
definition of, 154 
function, 208 
tensor, 175 

Principal axes 
of inertia, 53, 75 
of strain, 11 1 
of stress, 184 
of stretching, 117 

Principal stresses, 112 
Principal stretches, 112 
Principal stretchings, 117 
Principle of 

action and reaction, 63 
determinism, 200 
local action, 201 
material frame-indifference, 202 

Process, dynamic, 198 
Processes, equivalent, 199 
Propagation, speed of, 108 
Pure stretch, 112, 232, 234-236 

Q 
Quasi-equilibrated, 263 

R 

Rational mechanics, 5, 6 
Rational thermomechanics, 7 
Reaction 

on container, 166 

on pipe, 166 
on submerged object, 167-169 

Reduced boundary, 89 
Reduced constitutive equations 

of fluids, 271, 272 
of unconstrained materials, 215-217 

for isotropic materials, 244 
for monotonous motion, 292 
for simple materials, 215 
for viscometric flow, 293 

Reduction theorem 

“Reference,” 30 
Reference placement, 

change of, 108, 109 
definition, 94-96 
homogeneous, 223, 225 
homogeneous and undistorted, 245 

Reference shape, 94 
Referential description, 96, 97 
Referential equation for the density, 100 
Region 

material, fit, 90 
substantial, 134 

Regularly open set, 15, 16, 87 
Relative constitutive relations, 216, 217 
Relative description, 109, 110 
Relative orientation, 46 
Relative space, 34 
Relative transplacement, 109, 110 
Relative tensors (CAUCHY-GREEN, rotation, 

stretch, erc.), 113 
Relative transplacement history of monotonous 

motion, 283 
Response, 204-206, 229 
Rest frame, 5 1, 52; unique, 74 
Resultant applied body force, 152 
Resultant contact forces vanishing in limit, 165 
Resultant extrinsic force, 25 
Resultant force and torque, 20 
Resultant heating, 80 
Resultant mutual force, 25 
REYNOLDS transport theorem, 105 
Rigid body, 56 
Rigid class, 59 
Rigid frame, 30, 34 
Rigid material, 222 
Rigid motion, 51-56 
Rigid transformation, 59 
Rigidity, 222 
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RIVLIN-ERICKSEN fluid, 293 
RIVLIN-ERICKSEN tensors, 123, 147 
bzzo’s axioms, 26-29 
Rotation, 32; see also Orthogonal tensor, Spin, 

axis of, 50, 51, 54 
Rotation tensor, 111, 113 
Rotational flow, 119-121, 130, 139, 142 
Rotational momentum 

balance of, 182 
definition of, 37 
EULER’S law of, 70, 71, 151 
rate of change of, 38, 154 
of rigid motion, 54-56 
of system of mass-points, 40, 72, 73 
theorems on change of reference place, 38, 

44 

S 

Screw motion, 142, 143 
SEGNER’S theorem, 53 
Sets of finite perimeter, 88 
Self-force, 26-29 
Self-torque, 4 1-42 
Semi-inverse method, 245 
Separate bodies, 10 
Shape, 5, 34, 35 
Shape, reference, 94 
Shapes, universe of, 86, 87 
Shear, simple, 114 
Shear stress, 179 
Shear traction, 179 
Shearing 

general, 131 
simple, 120, 223 

“Sigma”-algebra, 18 
SIGNORINI-GRIOLI theorems of mean stress, 

189, 192 
Simple body, 223 
Simple constraint, 218 
Simple material point, criterion, 205, 206 
Simple materials, 204, 215, 294 
Simple shear, 114, 1 15 
Simple shearing, 120, 23 1, 232 
Simple torques, 39 
Simple torsion, 116 
Simple vortex, 120 
Simultaneous, 30 
Skew forces, 21 
Slowness, 105 

Solid 
in general, 264-270 
isotropic material, body, 265, 266 

Space, relative, 34 
Spatial description, 97 
Spatial variables, 97 
Specific volume, 103 
Speed of propagation, 108 
Spatial equation for density, 101 
Spin 

of change of frame, 48, 49 
of rigid motions, 51 
tensor, 117-122, 124-126, 136, 139, 140, 

142, 143 
Stagnation point, 99 
Statics, 6, 208 
Stationary wall, 106 
Steady axis of rotation, 55 
Steady flow 

in general, 99 
lineal, 288 

Steady streamlines, 138 
STOKES’S constitutive relation of linearly vis- 

STOKES’S power formula, 185 
“Stokes’s theorem,” see KELVIN’S transforma- 

Strain, see also Principal axes of strain 
Strain ellipsoids, 130, 131 
Stream function, 102 
Streamline, 138 
Strength of an irrotational vortex, 120 
Stress 

cous fluid, 212, 213 

tion 

determinate, 220 
hydrostatic in mean, 188 
normal and shear, see traction, normal and 

power, 185 
tensor, 174-180, 220, 221 
vector, see traction 
workless, 220 

Stretch, stretches 
general, 130 
principal, 112, 113 
pure, 112 

shear 

Stretch tensors, 11 1 
Stretching tensor, 117, 118 
Stretchings (scalars), 131 
Subbody, see Part of a body 
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Substantial 
derivative, 104 
description, 96 
line, 134, 137, 140 
point, 15, 35, 133 
region, 134 
surface, 106, 134, 135, 137, 139 
vector lines, 136 

Substantially stagnant, see Monotonous motion 
Superpose, 99 
Superposed rigid motions, 203 
Supply, 181 
Surface tension, effect of, 276 
Surface tractions, 226, 228 
Symmetry, see Peer group, Peers 
System, see Force, Mass-point, Torque 

T 

Temperature, 7 
Tension, 154, 175 
Tensor 

CAUCHY-GREEN, 112 
EULER, 53 
of inertia, 53 
orthogonal, 32 
rotation, 91, 92 
spin, 117, 118 
stress, 174-180, 220, 221 
stretch, 91-93 
stretching, 117, 118, 131 

Time, 32, 33 
Time-fluxes, 134- 137 
Topological space, 18 
Torque, 39-43, 62, 63, 66, 69-71, 73, 151, 

152, 154 
Torsion, 116 
Traction 

CAUCHY’S postulate and lemma on, 170, 171 
field, 154 
GURTIN & WILLIAMS’ theorem on, 162 
HAMEL-NOLL theorem on, 172-174 
normal and shear, 179 

definition of, 95 
gradient, 99, 108, 110, 111, 205, 206 
homogeneous, 129-133, 205, 206 
relative gradient, 109, 110, 117 

Transplacement 

Transport theorem, 105 

Transversely isotropic, 265, 266 
Triclinic, 265 

U 

Unconstrained homogeneous bodies, 229 
Unconstrained material, 21 8 
Undistorted placement 

of isotropic material, 243, 268 
reference, 245 
of solid material, 266, 269 

Uniaxial stress and load, 188 
Uniaxial tension, 184 
Uniform, materially, 237 
Uniform pressure, 192 
Unique rest frame, 74 
Units, 18, 19, 32, 69 
Universal body, 9, 10, 26, 27 
Universal flows, motions, transplacement, def- 

inition of, 228 
Universal flows of simple fluids, 273-276 
Universal homogeneous transplacements, 229, 

Universal transplacements of incompressible 

Universe 

230 

bodies, 246-264 

Boolean, 7 
closed, 10 
examples of, 15, 16 
of shapes, 86, 87 

Unsteady, 99 

V 

Vector lines, 136 
Vector-valued measure, 22 
Velocity, nth velocity 

definition of, 36 
field, 98 
gradient of, 11 8 
on a wall, 107 

Velocity -potential, 127 
Viscometric basis, 228 
Viscometric flow, 286, 294 
Viscosities, 213 
Viscous fluid, 209, 211-213 
Viscous fluid, incompressible, 223 
Viscous material, 213 
Vortex, see also Spin, Vorticity 

lines, 139- 142 
simple, 120 
surface, 139 
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Vorticity, 119, 121, 122, 124-126, 140, 141 
Vorticity equation, 227 
Vorticity, flux of, 136 
Vorticity number, 121, 122, 287, 288, 290, 

292 

W 

Wall 
stationary, 106, 107 
velocity on, 107 

WANG’S corollary on monotonous flows, 283 
Work theorem for rigid motions, 63, 64 
Working, 39-43, 62-64, 76-79 
Workless stresses, 220 
World-line, world-tube, 34, 46 

2 
ZAREMBA-ZORAWSKI theorem, 146 
ZORAWSKI’S criterion for conservation of flux, 

135 



This Page Intentionally Left Blank



PURE AND APPLIED MATHEMATICS 

VOl. 1 
VOl. 2 
VOl. 3 

VOl. 4 

VOl. 5 
Vol. 6 
Vol. 7 
Vol. 8 
VOl. 9 

VOl. 10 

VOl. 11* 
VOl. 12+ 
Vol. 13 
Vol. 14 
Vol. 15* 

Vol. 16* 
Vol. 17 
Vol. 18 
Vol. 19 
VOl. 20 
VOl. 21 

Vol. 22 

Vol. 23* 

Vol. 24 

Arnold Sommerfeld, Partial Diflerential Equations in Physics 
Reinhold Baer, Linear Algebra and Projective Geometry 
Herbert Busemann and Paul Kelly, Projective Geometry and 
Projective Metrics 
Stefan Bergman and M. Schiffer, Kernel Functions and Elliptic 
Differential Equations in Mathematical Physics 
Ralph Philip Boas, Jr., Entire Functions 
Herbert Busemann, The Geometry of Geodesics 
Claude Chevalley , Fundamental Concepts of Algebra 
Sze-Tsen Hu, Homotopy Theory 
A. M. Ostrowski, Solution of Equations in Euclidean and 
Banach Spaces, Third Edition of Solution of Equations and 
Systems of Equations 
J. Dieudonnt, Treatise on Analysis: Volume I ,  Foundations of 
Modern Analysis; Volume ZI; Volume ZZZ; Volume I V ;  Volume 
V ;  Volume VZ; Volume VZZ 
S .  I .  Goldberg, Curvature and Homology 
Sigurdur Helgason, Diflerential Geometry and Symmetric Spaces 
T.H. Hildebrandt, Introduction to the Theory of Integration 
Shreeram Abhyankar, Local Analytic Geometry 
Richard L. Bishop and Richard J .  Crittenden, Geometry ofMani- 
folds 
Steven A. Gad, Point Set Topology 
Barry Mitchell, Theory of Categories 
Anthony P. Morse, A Theory of Sets 
Gustave Choquet, Topology 
Z. I. Borevich and I. R. Shafarevish, Number Theory 
Jost Luis Massera and Juan Jorge Schaffer, Linear Diperential 
Equations and Function Spaces 
Richard D. Schafer, A n  Introduction to Nonassociative Alge- 
bras 
Martin Eichler, Introduction to the Theory of Algebraic Num- 
bers and Functions 
Shreerarn Abhyankar, Resolution of Singularities of Embedded 
Algebraic Surfaces 

*Presently out of print. 
'Out of print; please see Vol. 80. 



Vol. 25 Franqois Treves, Topological Vector Spaces, Distributions, and 
Kernels 

Vol. 26 Peter D. Lax and Ralph S. Phillips, Scattering Theory 
Vol. 27 Oystein Ore, The Four Color Problem 
Vol. 28* Maurice Heins, Complex Function Theory 
Vol. 29 R. M. Blumenthal and R. K. Getoor, Markov Processes and 

Potential Theory 
Vol. 30 L. J. Mordell, Diophantine Equations 
Vol. 3 1 J. Barkley Rosser, SimplNed Independence Proofs: Boolean 

Valued Models of Set Theory 
Vol. 32 William F. Donoghue, Jr., Distributions and Fourier Trans- 

forms 
Vol. 33 Marston Morse and Stewart S. Cairns, Critical Point Theory in 

Global Analysis and Dgerential Topology 
Vol. 34* Edwin Weiss, Cohomology of Groups 
Vol. 35 Hans Freudenthal and H. DeVries, Linear Lie Groups 
Vol. 36 Laszlo Fuchs, IMnite Abelian Groups 
Vol. 37 Keio Nagami, Dimensional Theory 
Vol. 38 Peter L. Duren, Theory of H P  Spaces 
Vol. 39 Bodo Pareigis, Categories and Functors 
Vol. 40* Paul L. Butzer and Rolf J.Nesse1, Fourier Analysis and Approxi- 

mation: Volum I ,  One-Dimensional Theory 
Vol. 41* Eduard PrugoveEki, Quantum Mechanics in Hilbert Space 
Vol. 42 D. V. Widder, An Introduction to Transform Theory 
Vol. 43 Max D. Larsen and Paul J. McCarthy, Multiplicative Theory of 

Ideals 
Vol. 44 Ernst-August Behrens, Ring Theory 
Vol. 45 Morris Newman, Integral Matrices 
Vol. 46 Glen E. Bredon, Introduction to Compact Transformation 

Groups 
Vol. 47 Werner Greub, Stephen Halperin, and Ray Vanstone, Connec- 

tions, Curvature, and Cohomology: Volume I ,  De Rham Co- 
homology of Manifolds and Vector Bundles; Volume II,  Lie 
Groups, Principal Bundles, and Characteristic Classes; Vol- 
ume III, Cohomology of Principal Bundles and Homogeneous 
Spaces 
Xia Dao-Xing, Measure and Integration Theory of Infinite-Di- 
mensional Spaces: Abstract Harmonic Analysis 
Ronald G. Douglas, Banach Algebra Techniques in Operator 
Theory 
Willard Miller, Jr., Symmetry Groups and Theory Applications 
Arthur A. Sagle and Ralph E. Walde, Introduction to Lie Groups 
and Lie Algebras 

Vol. 48 

Vol. 49 

Vol. 50 
Vol. 51 



Vol. 52 
VOl. 53* 

VOl. 54 
VOl. 55 
Vol. 56 

VOl. 57 
Vol. 58 
VOl. 59 

Vol. 60 

Vol. 61 
Vol. 62 
Vol. 63* 

VOl. 64 

Vol. 65 
Vol. 66 
Vol. 67 
Vol. 68 

Vol. 69 
Vol. 70 
Vol. 71 

Vol. 72 

VOl. 73 

VOl. 74 

VOl. 75 
Vol. 76 

VOl. 77 
Vol. 78 
VOl. 79 
Vol. 80 

T. Benny Rushing, Topological Embeddings 
James W. Vick, Homology Theory: An  Introduction to Alge- 
braic Topology 
E. R. Kolchin, Dizerential Algebra and Algebraic Groups 
Gerald J. Janusz, Algebraic Number Fields 
A. S .  B. Holland, Introduction to the Theory of Entire Func- 
tions 
Wayne Roberts and Dale Varberg, Convex Functions 
H. M. Edwards, Riemann’s Zeta Function 
Samuel Eilenberg, Automata, Languages, and Machines: Vol- 
ume A ,  Volume B 
Morris Hirsch and Stephen Smale, Differential Equations, Dy- 
namical Systems, and Linear Algebra 
Wilhelm Magnus, Noneuclidean Tesselations and Their Groups 
Franqois Treves, Basic Linear Partial Dflerential Equations 
William M. Boothby, An Introduction to Dizerentiable Mani- 
folds and Riemannian Geometry 
Brayton Gray, Homotopy Theory: An  Introduction to Alge- 
braic Topology 
Robert A. Adams, Sobolev Spaces 
John J. Benedetto, Spectral Synthesis 
D. V. Widder, The Heat Equation 
Irving Ezra Segal, Mathematical Cosmology and Extragalactic 
Astronomy 
I .  Martin Isaacs, Character Theory of Finite Groups 
James R. Brown, Ergodic Theory and Topological Dynamics 
C .  Truesdell, A first Course in Rational Continuum Mechanics: 
Volume 1, General Concepts; Second Edition, Corrected, Re- 
vised, and Augmented 
K. D. Stroyan and W. A. J. Luxemburg, Introduction to the 
Theory of Infinitesimals 
B. M. Puttaswamaiah and John D. Dixon, Modular Representa- 
tions of Finite Groups 
Melvyn Berger, Nonlinearity and Functional Analysis: Lectures 
on Nonlinearity Problems in Mathematical Analysis 
George Gratzer, Lattice Theory 
Charalambos D. Aliprantis and Owen Burkinshaw, Locally Solid 
Riesz Spaces 
Jan Mikysinski, The Bochner Integral 
Michiel Hazewinkel, Formal Groups and Applications 
Thomas Jech, Set Theory 
Sigurdur Helgason, Differential Geometry, Lie Groups, and 
Symmetric Spaces 



Vol. 81 
Vol. 82 

Vol. 83 

Carl L. DeVito, Functional Analysis 
Robert B. Burckel, An Introduction to Classical Complex Anal- 
ysis 
C. Truesdell and R. G. Muncaster, Fundamentals of Maxwell’s 
Kinetic Theory of a Simple Monatomic Gas: Treated as a 
Branch of Rational Mechanics 

Vol. 84 Louis Halle Rowen, Polynomial Identities in Ring Theory 
Vol. 85 Joseph J. Rotman, A n  Introduction to Homological Algebra 
Vol. 86 Bany Simon, Functional Integration and Quantum Physics 
Vol. 87 Dragos M. Cvetkovic, Michael Doob, and Horst Sachs, Spectra 

of Graphs 
Vol. 88 David Kinderlehrer and Guido Stampacchia, A n  Introduction to 

Variational Inequalities and Their Applications 
Vol. 89 Herbert Seifert, W. Threlfall, A Textbook of Topology 
Vol. 90 Grzegorz Rozenberg and Art0 Salomaa, The Mathematical The- 

ory of L Systems 
Vol. 91 Donald W. Kahn, Introduction to Global Analysis 
Vol. 92 Eduard PrugoveEki, Quantum Mechanics in Hilbert Space, Sec- 

ond Edition 
Vol. 93 Robert M. Young, An Introduction to Nonharmonic Fourier 

Series 
Vol. 94 M. C. Irwin, Smooth Dynamical Systems 
Vol. 96 John B. Garnett, Bounded Analytic Functions 
Vol. 97 Jean DieudonnC, A Panorama of Pure Mathematics: A s  Seen 

by N .  Bourbaki 
Vol. 98 Joseph G. Rosenstein, Linear Orderings 
Vol. 99 M. Scott Osborne and Garth Warner, The Theory of Eisenstein 

Systems 
Vol. 100 Richard V. Kadison and John R. Ringrose, Fundamentals of the 

Theory of Operator Algebras: Volume 1, Elementary Theory; 
Volume 2,  Advanced Theory 

Vol. 101 Howard Osborn, Vector Bundles: Volume I ,  Foundations and 
Stiefel- Whitney Classes 

Vol. 102 Avraham Feintuch and Richard Saeks, System Theory: A Hilbert 
Space Approach 

Vol. 103 Barrett O’Neill, Semi-Riemannian Geometry: With Applica- 
tions to Relativity 

Vol. 104 K. A. Zhevlakov, A. M. Slin’ko, I. P. Shestakov, and A. I. 
Shirshov, Rings That Are Nearly Associative 

Vol. 105 Ulf Grenander, Mathematical Experiments on the Computer 
Vol. 106 Edward B. Manoukian, Renormalization 
Vol. 107 E. J. McShane, Unified Integration 



Vol. 108 
VOl. 109 

VOl. 110 
VOl. 111 
VOl. 112 
Vol. 113 

Vol. 114 
Vol. 115 
Vol. 116 

Vol. 117 
Vol. 118 

Vol. 119 

VOl. 120 

Vol. 121 

VOl. 122 

Vol. 123 

Vol. 124 
Vol. 125 

Vol. 126 

Vol. 127 
Vol. 128 
Vol. 129 
Vol. 130 
Vol. 131 
Vol. 132 

A. P. Morse, A Theory of Sets, Revised and Enlarged Edition 
K .  P .  S .  Bhaskara-Rao and M. Bhaskara-Rao, Theory of Charges: 
A Study of Finitely Additive Measures 
Larry C. Grove, Algebra 
Steven Roman, The Umbra1 Calculus 
John W .  Morgan and Hyman Bass, editors, The Smith Conjecture 
Sigurdur Helgason, Groups and Geometric Analysis: Integral 
Geometry, Invariant Diperential Operators, and Spherical 
Functions 
E .  R. Kolchin, Diflerential Algebraic Groups 
Isaac Chavel, Eigenvalues in Riemannian Geometry 
W. D. Curtis and F. R. Miller, D&%erential Manifolds and 
Theoretical Physics 
Jean Berstel and Dominque Perrin, Theory of Codes 
A. E. Hurd and P. A. Loeb, An Introduction to Nonstandard 
Real Analysis 
Charalambos D. Aliprantis and Owen Burkinshaw , Positive Oper- 
ators 
Willaim M. Boothby, An Introduction to Diflerentiable Mani- 
folds and Riemannian Geometry, Second Edition 
Douglas C. Ravenel, Complex Cobordism and Stable Homo- 
topy Groups of Spheres 
Sergio Albeverio, Jens Erik Fenstad, Raphael H$egh-Krohn, and 
Tom Lindstr$m, Nonstandard Methods in Stochastic Analysis 
and Mathematical Physics 
Albert0 Torchinsky, Real- Variable Methods in Harmonic Anal- 
ysis 
Robert J . Daverman, Decomposition of Manifolds 
J. M .  G. Fell and R. S. Doran, Representations of *-Algebras, 
Locally Compact Groups, and Banach *-Algebraic Bundles: 
Volume 1,  Basic Representation Theory of Groups and Alge- 
bras 
J. M. G. Fell and R. S. Doran, Representations of *-Algebras, 
Locally Compact Groups, and Banach *-Algebraic Bundles: 
Volume 2,  Induced Representations, the Imprimitivity Theo- 
rem, and the Generalized Mackey Analysis 
Louis H .  Rowen, Ring Theory, Volume I 
Louis H. Rowen, Ring Theory, Volume 11 
Colin Bennett and Robert Sharpley , Interpolation of Operators 
Jurgen Poschel and Eugene Trubowitz, Inverse Spectral Theory 
Jens Carsten Jantzen, Representations of Algebraic Groups 
Nolan R. Wallach, Real Reductive Groups I 



Vol. 133 Michael Sharpe, General Theory of Markov Processes 
Vol. 134 Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex Oper- 

ator Algebras and the Monster 
Vol. 135 Donald Passman, Infinite Crossed Products 
Vol. 136 Heinz-Otto Kreiss and Jens Lorenz, Initial-Boundary Value 

Problems and the Navier-Stokes Equations 
Vol. 137 Jean-Dominique Deuschel and Daniel W. Stroock, Large Devia- 

tions 


	A First Course in Rational Continuum Mechanics
	Copyright Page
	Contents
	Preface to the Second Edition
	Preface to the First Edition
	PART 1: GENERAL CONCEPTS
	Chapter I.  Bodies, Forces, and Motions
	1. Rational Mechanics
	2. Universes of Bodies
	3. Example of Universes
	4. Mass
	5. Force
	6. The Event World. Rigid Frames
	7. Motions
	8. Linear Momentum. Rotational Momentum. Kinetic Energy. Working. Torque
	9. Changes of Frame
	10. Rigid Motion
	11. Frame-Indifference
	12. Axioms of Mechanics
	13. The Axioms of Inertia. Euler’s Laws of Motion
	14. Power. Kinetic Energy. Potential Energy.
	15. Internal Energy
	General References

	Chapter II.  Kinematics 
	1. Placements. Universes of Shapes
	2. Mass-Density
	3. Reference Placement. Transplacement
	4. Descriptions of Motion: Substantial, Referential, and Spatial
	5. Transplacement Gradient
	6. Substantial Time Rates and Gradients in the Spatial Description. Substantial Surfaces. Kinematic Boundaries
	7. Change of Reference Placement
	8. Present Placement as Reference
	9. Stretch and Rotation
	10. Histories
	11. Stretching and Spin
	12. Homogeneous Transplacement
	13. Rates of Change of Integrals over Substantial Lines, Surfaces and Regions. Substantial Vector Lines. The Vorticity
	14. Changes of Frame. Frame-Indifference
	General References

	Chapter III. The Stress Tensor 
	1. Forces and Torques. The Laws of Dynamics. Body Forces and Contact Forces
	2. Reactions upon Containers and Submerged Obstacles
	3. The Traction Field. The Cauchy Postulate and the Hamel–Noll Theorem
	4. Cauchy’s Fundamental Theorem: Existence of the Stress Tensor
	5. The General Balance
	6. Cauchy’s Laws of Motion
	7. Mean Values and Lower Bounds for the Stress Field
	8. Load. Boundary Condition of Traction
	9. Motion of a Free Body
	General References

	Chapter IV.  Constitutive Relations
	1. Dynamic Processes
	2. Constitutive Relations. Noll’s Axioms
	3. Simple Materials
	4. Some Classical Instances. Specimens of the Effect of the Principle of Material Frame-Indifference
	5. Material Frame–Indifference. Reduced Constitutive Relations
	6. Internal Constraints
	7. Principle of Determinism for Constrained Simple Materials
	8. Simple Bodies. Equations of Motion. Homogeneous Universal Transplacements, Motions, and Flows
	9. Universal Homogeneous Transplacements of Unconstrained Bodies
	10. Universal Homogeneous Transplacements of Incompressible Bodies
	11. Material Isomorphisms
	12. The Peer Group
	13. Comparison of Peer Groups with Respect to Different Reference Placements
	14. Isotropic Materials
	15. Universal Transplacements of Isotropic Incompressible Bodies
	16. Solids
	17. Fluids
	18. Universal Flows of Homogeneous Incompressible Fluids
	19. Steady Rotation of a Homogeneous Body of Incompressible Fluid Loaded by Surface Tension
	20. Fluid Crystals
	21. Monotonous Motions
	22. Reduction of the Constitutive Relation for a Simple Material in a Monotonous Motion
	General References


	Appendix I.  General Scheme of Notation
	Appendix II. Some Definitions and Theorems of Algebra Geometry, and Calculus
	A. Algebra
	B. Geometry
	C. Calculus

	Appendix III.  Solutions of the Exercises
	Gazetter
	Index



