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Preface

Clinical trials and epidemiological studies in the area of psychiatry and related fields 
 present unique challenges to study design and data analysis. Often, outcomes are impre-
cisely ascertained, repeatedly measured over time or in related individuals, and may 
represent heterogeneous populations. This requires proper statistical methods for data 
analysis to be used in order to take into account the inherent variability in the data, cor-
relations between repeated observations, and underlying traits or processes. However, a 
large number of studies in the area still use standard statistical techniques with oversim-
plified assumptions (e.g., endpoint analysis with last observation carried forward imputa-
tion, repeated measures analysis of variance models on complete data) that may lead to 
biased conclusions. Features of the data, such as floor or ceiling effects, and strength of cor-
relation depending on the closeness of the repeated observations, are also often ignored.

Multiple statistical developments in recent years have revolutionized our ability to 
analyze data from clinical trials and epidemiological studies. First, mixed models use all 
data on subjects without the need for imputation, properly account for correlations of the 
repeated measures within individuals, minimize bias in estimates, and are appropriate 
for a wide range of applications from longitudinal to brain imaging data. Second, mixture 
models allow for data-driven estimation of underlying latent classes of trajectories over 
time and are suitable when individuals are expected to demonstrate categorically differ-
ent patterns of change over time. Third, non-parametric methods are useful when there 
are excess observations at the lower or upper end of the measurement scales (i.e., floor or 
ceiling effects) or data distributions are otherwise unwieldy. In recent years, methods for 
dealing with missing data, such as multiple imputation, inverse probability weighting, 
and different types of models for incorporating the reasons for dropout in the analyses, 
have been proposed in the statistical literature.

Whereas some novel statistical methods have been used to plan studies and analyze 
data in psychiatry and related fields, bridging the gap between methodological devel-
opments in statistics and analyses of clinical trials and epidemiological studies has not 
been achieved. This is partly due to difficulties in “ translating”  statistical methods so that 
their assumptions, applicability, model fitting, and interpretation are understandable to 
quantitatively oriented non-statisticians. Statistical methodological papers are often full 
of statistical notation and jargon that make them hard to follow by applied researchers. 
Many other published works have aimed to explain statistical methods to nonstatistical 
audiences, but they are spread over many different specialized journals and often focus 
on just a particular aspect of statistical methods or only on a particular area of application. 
The current book summarizes recent statistical developments to a nonstatistical audience 
of quantitatively oriented researchers in psychiatry and related fields and is expected to 
be a valuable resource, aimed at promoting the use of appropriate statistical methods for 
analysis of complex data sets.

The book starts with an introductory chapter (Chapter  1) describing the notions of 
repeated observations, within-subject correlation, longitudinal data, and clustering. The 
advantages of collecting and analyzing repeatedly measured data are outlined together 
with the most commonly used statistical designs. The chapter also includes a review of the 
challenges in formulating appropriate models, basic statistical terminology and notation, 
and introduces the data sets that are used for illustration throughout the book.
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Several of the following chapters (Chapters  2 through 5 and 10) present, at a  non-technical 
level, approaches for the analysis of correlated data. Chapter  2 reviews traditional methods 
such as endpoint analysis, analysis of summary measures, and ANOVA-based approaches 
(rANOVA, rMANOVA), and discusses the limitations of these approaches in addressing 
the complexity of modern longitudinal and clustered data sets.

Linear mixed models (LMM) for continuous outcomes with bell-shaped distribu-
tions are presented in Chapter  3, with emphasis on how correlations within indi-
viduals (or clusters) and data variability are taken into account by random effects, 
structured  variance–  covariance matrices, or combinations of the two. The chapter also 
includes a presentation of the most commonly used linear mixed models, graphical 
methods for visualizing results and checking model assumptions, several data exam-
ples, and a detailed description of the advantages of linear mixed models over tradi-
tional methods.

Chapter  4 is devoted to two generalizations of linear mixed models for repeatedly mea-
sured categorical or count outcomes, or outcomes with skewed distributions. Generalized 
linear mixed models (GLMM) take into account the correlation among repeatedly mea-
sured observations via random effects whereas generalized estimating equations (GEE) 
use a working correlation structure to directly define the nature of interdependence 
among repeated observations. The two approaches are contrasted at a conceptual level, 
and emphasis is placed on model formulation and interpretation, with technical details 
kept to a minimum.

Chapter  5 introduces non-parametric methods for repeated measures that are useful 
for data distributions that are not well described by the standard choices from Chapters  3 
and 4. The process of ranking the observations and then analyzing the ranks using LMM 
with special choices for the estimation procedures is illustrated on data examples, and the 
advantages and disadvantages of this approach are discussed.

Finally, two types of models aimed at identifying distinct classes of trajectories over 
time are described in Chapter  10: latent class growth models (LCGM) and the more gen-
eral growth mixture models (GMM). The discussion focuses on the assumptions of both 
approaches and on result interpretation. Common computational and model identifiabil-
ity problems are also presented and data examples are used for illustration.

Chapter  2 can be skipped by readers who are familiar with or not interested in learn-
ing about traditional methods for the analysis of repeated measures. Chapter  3 is key and 
should be read before Chapters  4, 5, and 10. Chapters  5 through 12 rely on information 
presented in Chapters  3 and 4 but are otherwise free-standing.

Chapter  6 discusses the need and techniques for multiple comparison correction when 
multiple outcomes or post hoc tests or estimations are performed. Procedures for control 
of the familywise error rate and the false discovery rate are presented at a non-technical 
level. General guidelines are provided, with special attention paid to the selection of the 
family of comparisons and the type of adjustment needed.

Chapter  7 is devoted to missing data and techniques for proper analysis in the presence 
of dropout. The three missing data mechanisms (missing completely at random, missing 
at random, and not missing at random) are defined, and models are contrasted in terms 
of their ability to handle data under these different mechanisms. State-of-the-art methods 
such as multiple imputation, full information maximum likelihood, and inverse probabil-
ity weighting are presented together with methods for sensitivity analysis.

Chapter  8 is devoted to the issue of adjustment for covariates in statistical models. 
Common misuses of analysis of covariate as a bias-correction method (rather than as a 
method to enhance efficiency or power) are discussed together with explanations of the 
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utility and the goals of adjustment in experimental and observational studies. Propensity 
score adjustments for multiple covariates are presented and their advantages discussed.

Chapter  9 focuses on two special types of variables that affect the relationship between a 
predictor of interest and an outcome, namely moderators and mediators. The causal infer-
ence framework is described and careful attention is paid to the assumptions under which 
causality can be claimed in assessing mediated relationships. Assessment of moderator 
and mediator effects is considered in the context of randomized and observational studies. 

Chapter  11 reviews design considerations for studies with correlated data and focuses 
specifically on power calculations. Sample size estimation for traditional methods, mixed-
effects models, and generalized estimating equations is considered. Common randomiza-
tion approaches for experimental studies are also reviewed.

The book concludes with a summary and additional topics for interested readers 
(Chapter  12). In particular, references for models for multiple outcomes, spline modeling 
of time effects, transition models, survival analysis, analysis of intensive longitudinal data, 
models for spatial data, and Bayesian estimation approaches are included. An overview of 
commonly used software for the analysis of correlated data is also provided.

The target audience are researchers in psychiatry and related areas with minimal statis-
tical knowledge. The book is intended to be used primarily as a guide to understand the 
different methods. It could also be used to teach modern statistical methods to doctoral 
students and post-doctoral researchers, medical residents, and faculty who are interested 
in improving their knowledge of statistical methods. Applied statisticians collaborating in 
psychiatry and related fields should also find it useful.

Online materials are provided at http://medicine.yale.edu/lab/statmethods/ and include 
data sets or links to locations of data sets, programs, and output for the data examples in 
the book. The book, together with the online materials, allows readers to work through a 
variety of examples and aims to promote the use of appropriate statistical methods for the 
analysis of repeated measures data.

The book is partially based on a series of my lectures in modern statistical methods for 
the analysis of psychiatric data presented to researchers in the Department of Psychiatry at 
Yale School of Medicine, and on several of my manuscripts intended to popularize statisti-
cal methods in the psychiatry literature. As a Senior Research Scientist at the Department 
of Biostatistics at Yale School of Public Health, I have greatly benefited from discussions 
and collaborative work with my colleagues in biostatistics and psychiatry. I very much 
appreciate the flexibility of the Yale environment that has allowed me to work on this 
book project. I would also like to acknowledge the support of the Institute of Mathematics 
and Informatics at the Bulgarian Academy of Sciences that has allowed me to be an active 
member of the Bulgarian statistical community.

I would like to thank all individuals who provided feedback on the book, the researchers 
who allowed me to use their data for illustration, and all my statistical and subject-matter 
collaborators from whom I have learned so much over the years. I am especially grateful 
to Brian Pittman, Eugenia Buta, and several anonymous reviewers who read a number of 
chapters of the book and provided excellent feedback, as well as to Alan Agresti, not only 
for his thoughtful comments, but also for giving me the confidence to attempt this book 
project. I also appreciate the helpful discussions with Ran Wu. Special thanks go to my 
collaborators and mentors John Krystal and Stephanie O’ Malley who have been instru-
mental in my career and development as an independent scientist. I am also grateful to 
Neill Epperson, Gerard Sanacora, Mehmet Sofuoglu, Naomi Driesen, Peter Morgan, and 
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Introduction

Repeatedly measured data are paramount in medicine, epidemiology, public health, psy-
chology, sociology, and many other fields. The simplest case of such data is when a single 
measurement is collected repeatedly on the same individual or experimental unit. Each 
repeated measurement is called an observation and observations can be obtained over 
time, over a spatial map, or can be unordered temporally or spatially but nested (clustered) 
within larger experimental units. 

Clustered data occur when repeated measures are not ordered and can be considered 
symmetrical within the larger experimental unit (cluster). For example, members of the 
same household can be interviewed, and in this case, their responses are repeated mea-
sures within the family. The family, rather than the individual, is the experimental unit 
and serves as the cluster. Observations on different individuals within the cluster are 
likely to be related to one another because individuals share the same environment and/or 
genetic predisposition. Similarly, patients may be clustered (or nested) within the same 
therapy group or clinic. Their treatment responses are also expected to be related because 
of the common influence of group or clinic, and can be considered repeated measures 
within the group or clinic. Several layers of clustering can be present in a data set. For 
example, the individual can be nested within family and the family can be nested within 
the neighborhood. 

Longitudinal data occur when repeated measures are collected over time. In clinical trials 
in psychiatry and related fields, often the same rating instrument is administered to each 
individual at baseline, at intermediate time points, at the end of the randomized phase, 
and at follow-up. For example, depression severity can be measured weekly, biweekly, or 
monthly, in order to assess treatment effects over time. Similarly, in observational studies, 
the natural progression of a disease or other measures is ascertained repeatedly over time. 
In animal or human laboratory experiments, often responses from the same individual to 
different randomly ordered experimental conditions are recorded and compared. 

Spatial data occur when repeated measures are spatially related. In imaging data sets, 
voxels are arranged in three-dimensional space where an observed value in a particular 
voxel is likely related to the observed values in neighboring voxels. In functional imaging 
studies, brain activation maps are created and often averaged region of interest signals 
are analyzed in order to measure and compare responses to different stimuli. In epi-
demiological studies, disease maps over geographical areas are created and analyzed. 
Methods for voxel-based data analysis of imaging studies and geographic and informa-
tion systems are beyond the scope of this book, but we consider region of interest analy-
ses of imaging data. 

In all these situations, repeated observations within the same individual or cluster are 
related. Failure to take this interrelationship into account in statistical analyses, can lead 
to flawed conclusions. In this chapter, we review some terminology relevant to repeated 
measures data, such as mean response and measures of variability and correlation, present 
types of studies with longitudinal and clustered data, discuss advantages and challenges 
of collecting and analyzing repeatedly measured data, describe data sets that are used for 
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illustration throughout the book, and provide a brief historical overview of approaches 
for the analysis of correlated data. We focus on continuous (quantitative, dimensional) 
measures. Later chapters deal specifically with categorical measures which can be dichoto-
mous, ordinal with few ordered levels, and nominal (unordered). Some statistical termi-
nology and basic notation is presented in Section 1.7 and can be skipped by readers who 
are confident of their statistical knowledge of basic concepts. Statistical Analysis System 
(SAS) code for the graphs in this chapter and for all models considered in further chapters, 
together with actual output and available data sets, is available on the book website. 

1.1 Aspects of Repeated Measures Data

1.1.1 Average (Mean) Response

The goals of many studies with repeatedly measured data are to estimate the average 
response in a population of interest and see whether it changes significantly as a result of 
treatment, exposure, covariates, and/or time. Herein, response is used in the sense of an 
outcome (outcome variable, dependent variable) that measures the main characteristic in 
the population of interest. Population is the target group of individuals for whom statisti-
cal inference should be generalizable and from where the study sample is obtained. For 
example, in depression studies, the response can be depression severity measured by a 
standard depression rating scale, such as the Hamilton Depression Rating Scale (HDRS), 
or a dichotomous measure of improvement defined as at least 50% decrease from baseline 
on the HDRS, and the population can be all individuals with major depression. In sub-
stance abuse studies, the response can be the percentage of days without substance use 
in a particular time period, and the population can be all individuals with alcohol depen-
dence. In functional imaging studies, the response can be activation change in a brain 
region and the population can be all individuals, healthy or otherwise. The sample should 
be randomly obtained from the population if it is to be representative of the population of 
interest.

Average response refers to the mean of the individual responses in the sample or the 
population. In the simplest case of a single random sample from a population with-
out repeated measures, the sample average response is just the arithmetic mean of all 
response values for the individuals in the sample (see Section 1.7 for exact formula). The 
 population-average response is the mean response of all individuals in the population 
and, since it is usually not possible to measure, we use the sample mean to make infer-
ences about the population mean. In longitudinal or clustered data, response is measured 
repeatedly within the individual over time or within the cluster, and the average response 
is usually a sequence or collection of numbers that correspond to each repeated measure-
ment occasion. For example, the average response in a depression clinical trial that takes 8 
weeks may be a sequence of eight averages of the individual responses (one for each week 
of the study). The average response in an imaging study may be a collection of several 
average responses, each corresponding to a different brain region.

Average response usually depends on a number of predictors. In clinical trials, we always 
have treatment as the main predictor of interest while participant characteristics such as 
age, gender, and disease severity are additional predictors that can also affect the response. 
Such additional predictors are usually called covariates. In observational studies, we might 
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be interested in the effect of exposures, such as smoking or drinking, on the response. In 
imaging studies, we may want to measure brain activation while individuals perform dif-
ferent tasks. In all these situations, estimation of the average response and how it depends 
on different predictors is of primary interest.

1.1.2 Variance and Correlation

The variability and interdependence of repeated measures within the individual or cluster 
are usually of secondary interest, although there are situations where they may be of equal 
or even higher interest than the estimation of the average response. For example, in clini-
cal trials, the main goal may be to test whether an experimental treatment is on average 
better than a standard treatment or a placebo in terms of improvement in response over 
time. The variability in the responses of individuals needs to be taken into account but it 
is usually not of primary interest. However, it is possible that the experimental treatment 
may have a very similar average response to the standard treatment, but inter-individual 
variability in response may be lower (i.e., individuals may respond to treatment more con-
sistently and similarly to one another). In this situation, the new treatment may be prefer-
able and estimation of the variability of response is of interest too. 

Variability of observations around the mean from a simple random sample is described 
by the variance or standard deviation of the observations (see Section 1.7). The sample stan-
dard deviation is often preferable as it provides a measure of variability that is evaluated 
in the same units as the mean. In repeated measures situations with longitudinal data, 
often the variability of the response at one particular time point differs from the vari-
ability at another, in which case it makes sense to estimate separate variances in order to 
assess data spread at individual time points. However, in some situations it may be rea-
sonable to assume that the variances on all repeated occasions are the same. In this case, a 
better statistical estimate of the common variance can be obtained by pooling information 
from all occasions. Examples of both scenarios are considered in Chapter 2.

Repeated measures within individuals or clusters are often correlated. Correlation 
reflects the degree of linear dependence between two variables and varies between –1 
and 1. It is important to emphasize that the definition includes the word “linear.” Two 
variables may be perfectly related in a curvilinear fashion and have a correlation of zero. 
Correlation values of 1 or –1 correspond to perfect linear dependence between two vari-
ables. In these cases, knowing the values of one of the variables exactly predicts the val-
ues of the other variable, but does not imply that the two variables take the same value. 
Correlations are positive when larger values on one of the variables correspond to larger 
values on the other variable. Correlations are negative when larger values on one of the 
variables correspond to smaller values on the other variable. Please note that the proper 
statistical term for the latter case is “negative correlation,” not “inverse correlation,” as is 
often erroneously used. Section 1.7 shows how correlations are calculated and illustrates 
different scenarios. 

Repeated measures within individuals, especially in longitudinal studies, are usually 
positively correlated although, in some situations, it is possible for observations to be nega-
tively correlated. Individual responses tend to be systematically higher or lower than the 
mean response, which is reflected in a positive correlation. For example, if individuals 
start a study with higher illness severity than most other individuals, their repeated sever-
ity measures are likely to stay above average, at least for a while. Thus, repeated observa-
tions on the same individual are positively correlated with stronger correlation the closer 
the observations are to each other in time. This is very typical of longitudinal studies.
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Some situations where negative correlation is more likely to be present are as follows: 
clustered data where individuals within a cluster may be competing for resources (e.g., 
individual weights of fetuses within a litter may be negatively correlated), longitudinal 
data where a positive response on one occasion makes a positive response less likely in 
another situation (e.g., immunity built after a viral illness may prevent a person from get-
ting sick with the same or similar virus in the future), and clustered imaging data where a 
positive response in one brain region may occur simultaneously with a negative response 
in another region. Different types of statistical models provide varied levels of flexibility 
in specifying the structure of the correlations and variances within a data set. Subsequent 
chapters deal with this issue in detail. 

1.2 Types of Studies with Repeatedly Measured Outcomes

Repeated measures can be collected on the same individual over time, on different parts 
of the body of the same individual, on members of the same family, or on individuals 
in clusters where measurements are expected to be related to one another, for example, 
students in schools or patients in clinics. The variability of the individual measures and 
interdependence between repeated measures can follow different patterns and needs to be 
properly taken into consideration in the statistical analysis of the data. Herein, we consider 
different types of studies with repeated measures data and discuss the implications of the 
patterns of variability in each of these situations for statistical modeling. 

In longitudinal studies repeated measures are collected on the same individuals over time. 
Longitudinal studies are often prospective (i.e., individuals are recruited at a particular 
moment in time and followed up) and most often their focus is on assessing the effect of 
an intervention or an exposure over an extended period of time. They can also be used to 
ascertain trajectories of change and to compare temporal patterns of response of different 
groups of individuals. In some cases, subjects are assessed over time under experimental 
conditions (i.e., individuals are randomized to receive a particular treatment), whereas 
other times subjects are simply observed (i.e., when it might be unethical or too expensive 
to randomize individuals, for example, in studies investigating the effects of smoking or 
when analyzing the progression of a rare disease). These two types of studies are known 
as experimental and observational, respectively.

Clinical trials are the most common type of experimental longitudinal studies. Even 
though the primary endpoint of a clinical trial may be a single measure (e.g., time to remis-
sion, relapse, or outcome measured at the end of the trial), data are collected repeatedly 
on the same individuals over time. Double-blind randomized clinical trials, in which both 
the patient and the clinician are blind to treatment assignment, are considered the gold 
standard of evaluating intervention effects and are the only studies where direct causal 
interpretation is possible because randomization balances the study groups at baseline on 
potentially confounding variables for the relationship of the main predictor of interest and 
the outcome. 

The simplest and most frequently used clinical trial design is the parallel group design 
where each individual is randomly assigned to an intervention and individuals receiving 
different interventions are followed in parallel. Participants do not switch treatments in 
this design unless necessitated for safety or other reasons. Figure 1.1 presents an example 
of such a design with three groups and four equally spaced assessment points over time. 
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In the data example subsection of this chapter (Section 1.5), we present parallel group 
clinical trials in depression and alcohol dependence. In these studies, individuals are ran-
domly assigned to different interventions and the outcomes (depression severity in the 
depression trials and drinking in the alcohol dependence trial) are repeatedly measured 
on individuals during treatment.

In such parallel group trials, the variability of repeated measures on the same outcome 
often increases over time because individuals are most comparable at baseline as they need 
to satisfy a strict set of inclusion/exclusion criteria. With time, differences emerge as some 
individuals respond more favorably to treatment than others. This leads to an increase in 
variability of the measurements toward the end of the trial. This increase is sometimes 
small and can be ignored, but occasionally the increase may be quite dramatic and needs 
to be taken into account in the data analysis. Furthermore, measurements within the same 
individual that are closer in time tend to be more highly correlated than measurements 
that are further apart in time. This is almost always the case and needs to be properly mod-
eled so that statistical inferences are valid. Different ways to take into account the pattern 
of correlations in the statistical model are discussed in Chapter 3. 

Another frequently used clinical trial design, is the cross-over design, which is popular in 
both human and animal laboratory studies. In this design, individuals are assigned sev-
eral treatments in randomized order, that is, they are randomized to a particular sequence 
of treatment assignments. Figure 1.2 shows an example of a cross-over design with three 
treatments. In Section 1.5, we present a human laboratory study in which smokers received 
different doses of nicotine and menthol in randomized order. The outcome was nicotine rein-
forcement and was measured for each menthol and nicotine dose combination. The study 
focused on assessment of the independent and interactive effects of nicotine and menthol.

The cross-over design can be particularly useful when individuals vary considerably 
in their response from one another, repeated measures on the same individual are sub-
stantially correlated, when interventions are relatively short in duration, and when there 
is no or low possibility of carry-over effects from one treatment to another. Carry-over 
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FIGURE 1.1
Parallel group clinical trial with three interventions and four repeated measures.
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effects are minimized when a sufficient washout period is allowed in between treat-
ments. This design is more efficient (i.e., can detect differences between treatments with 
greater power or with fewer individuals) than the parallel group design when there is 
large  between-subject variability because it allows a direct comparison of the treatment 
effects within each individual, i.e., each subject serves as their own control. However, this 
design may also be associated with higher probability of dropout and order effects must 
be controlled. It is also difficult to implement in scenarios when there are carry-over effects 
and treatment effects take long to manifest. In cross-over designs, correlations between 
repeated measures on the same individual within the same treatment period are usually 
higher than correlations between repeated measures on the same individual from differ-
ent treatment periods. Within each period, correlations can be modeled using the same 
approach as correlations from a parallel group clinical trial. 

Observational longitudinal studies usually follow groups of individuals over time. For 
example, in the Health and Retirement Study, presented in Section 1.5, individuals aged 55 
and older were followed more than 10 years with interviews every 2 years. Participants in 
the study of association between unemployment and depression were interviewed up to 
three times in a period of up to 16 months after job loss. 

Observational longitudinal studies are used when it is not possible or ethical to ran-
domize individuals, or when it may be too expensive to perform an experimental study. 
For example, assessing the effect of smoking, or of genetic factors, on the emergence or 
progression of some disease over time can only be performed using observational stud-
ies. In these studies, the same issues about modeling variability and correlations between 
repeated measures on the same individual as in randomized clinical trials apply. 

In studies where the same outcome is measured on related individuals (e.g., twins, sib-
ling pairs, or members of the same family) or in clustered settings (e.g., individuals within 
the same clinic or treated by the same doctor), correlations are also expected to be present. 
For example, in the Health and Retirement Study, data were collected on married indi-
viduals. In the mother–infant study presented in Section 1.5, there are positive correlations 
between mothers and their infants. Correlations may be naturally occurring (e.g., indi-
viduals living together or genetically related are expected to exhibit some level of correla-
tion on some responses) or may be introduced by the researcher via the study design. For 
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FIGURE 1.2
Cross-over trial with three interventions and three repeated measures within intervention period.



7Introduction

example, in cluster-randomized clinical trials, the units receiving a particular intervention 
are clinics, not individual patients. However, the responses to the intervention are usually 
measured on the individual patients within clinics. Failure to take into account the cor-
relation between the observations on different patients within the same clinic can result in 
erroneous conclusions. Regardless of the reason for correlations between the observations 
in clustered settings, statistical methods need to appropriately model this correlation in 
order to provide valid results. 

Unlike in situations with longitudinal data, where correlations are stronger or weaker 
depending on the time lag between observations on the same individual, in clustered set-
tings with only one level of clustering it is likely that observations within clusters are 
equally correlated while observations from different clusters are uncorrelated. For exam-
ple, observations on individuals within the same clinic may be correlated but observations 
on individuals from different clinics should be uncorrelated. Additionally, the variances 
of the observations on individuals in the same cluster are expected to be the same. This 
structure of variances and correlations is the simplest possible structure in repeated mea-
sures scenarios and is called compound symmetry structure. This structure will be presented 
in more detail in Chapters 2 and 3.

Different levels of clustering are also possible. For example, individuals can be nested 
within families and families can be nested within neighborhoods, which leads to different 
levels of correlations within the family and within the neighborhood. In this case, a mul-
tilevel version of the compound symmetry structure may arise, such that observations on 
members of the same family are strongly correlated, observations on members of different 
families but living in the same neighborhood may be weakly correlated, and observa-
tions on members of different families in different neighborhoods are uncorrelated. The 
variance of each observation in this case can be represented as the sum of the variance 
due to neighborhood, the variance due to family, and the variance due to the individual. 
Figure 1.3 illustrates the situation with two different levels of clustering: individuals are 
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FIGURE 1.3
Clustered data with two levels of clustering.
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nested within twin pairs and twin pairs are nested within clinics where they might be 
undergoing a particular treatment together with other twin pairs. More than two levels 
of clustering may also be present and need to be taken into account for proper statistical 
inference.

It is also possible to have correlations in a data set due to both clustering and to repeated 
observations on the same individual over time. For example, some interventions in psy-
chiatry and related fields (e.g., some behavioral interventions) are administered in a group 
setting (e.g., therapy group) and then participants’ responses are repeatedly assessed over 
time. Since the same therapist is providing treatment to a group of individuals at the same 
time, correlations may arise between measurements on individuals in the same group. 
These correlations are in addition to the correlations that exist between repeated measures 
on the same individual over time. This leads to layers of correlation in the data. In particu-
lar, measurements on the same individual at two adjacent time points are usually strongly 
correlated and measurements on the same individual further apart in time are weakly 
correlated. Furthermore, measurements on different individuals within the same therapy 
group are correlated, with the strongest correlation observed for pairs of observations at 
the same time point and correlations decreasing with time lag between observations. The 
models considered in Chapters 3 and 4 demonstrate how such fairly complicated situa-
tions can be seamlessly and appropriately handled and illustrate the methods on data 
introduced in Section 1.5.

Imaging data present their own set of challenges in accounting for correlations between 
observations because of the spatial relationship between units of analysis. Different imag-
ing techniques (e.g., magnetic resonance imaging [MRI], functional magnetic resonance 
imaging [fMRI], and diffusion tensor imaging [DTI]) and different resolution levels may 
require different techniques for the handling of correlated measures. At the highest reso-
lution level of MRI or fMRI analyses, signal intensities at adjacent voxels (points in three-
dimensional space) are expected to be more highly correlated than observations at voxels 
that are more distant. Also, variability of signals measured at individual voxels do not in 
general vary considerably. However, at the level of region of interest (ROI), where sets of 
voxels have been combined into anatomically or functionally defined areas and overall 
measures have been calculated over the entire ROI, distance between regions is no longer 
of utmost importance and measures in regions closer in space are not necessarily more 
highly correlated than measures from regions that are further apart. Moreover, variances 
of measures in different regions may be vastly different from one another due to the size of 
the region or other factors. In-depth consideration of issues and techniques of analysis of 
different types of imaging data are beyond the scope of this book. However, in Chapter 3, 
we discuss techniques for analysis of ROI data and illustrate with the data from the fMRI 
study of working memory in schizophrenia, introduced in Section 1.5. For details on 
issues in brain imaging analysis the interested reader is referred to Chung (2014). Friston 
(2007) provides a detailed overview of statistical parametric mapping for functional brain 
images. 

1.3 Advantages of Collecting and Analyzing Repeatedly Measured Data

The main advantage of collecting repeatedly measured data is that each individual or 
experimental unit serves as their own control. When an intervention or exposure can 
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be varied within an individual, repeated measures allow one to assess or compare the 
effects within the subject. This means that the effects of potentially confounding variables 
that vary between subjects can be controlled and, as a result, the variability of estimating 
effects of an intervention or exposure is reduced, compared to studies at a single time 
point (cross-sectional studies). This is reflected in increased power for within-individual or 
within-cluster comparisons, that is, there is higher probability of finding differences in 
response within clusters or individuals when true differences exist. 

Furthermore, patterns of change over time can be assessed when longitudinal data 
are collected. Prospective studies collect information over a period of time, starting at 
study entry. Clinical trials and cohort studies are examples of prospective studies. In such 
investigations, repeated measures on a number of variables can be collected on the same 
individuals. This allows one to estimate trajectories over time, to test between-group dif-
ferences on trajectories over time, and to assess variability of measurements both within 
and between subjects. Such studies have greater statistical power for testing time effects 
and differences between groups over time than corresponding cross-sectional meth-
ods. Additionally, such analyses that take into account the variability and correlation of 
repeated measurements can better control the probability of finding differences where 
true differences do not exist (i.e., better control of type I error in statistical testing). 

1.4 Challenges in the Analysis of Correlated Data

To analyze a data set with correlated data, proper statistical models need to be constructed. 
In this section, we consider parametric models in which all aspects of the models need 
to be specified. Non-parametric models that do not make specific assumptions about the 
distribution of the response variable are considered in Chapter 5. Semi-parametric models 
that make assumptions about some aspects of the response distribution and leave others 
unspecified, such as generalized estimating equations (GEE), are considered in Chapter 4.

The first aspect of the statistical model, is the specification of the patterns of the means 
of the response variable within a cluster or over time. The means are usually assumed to 
depend on individual or cluster characteristics, on predictors that may vary within a clus-
ter or over time, and very often on time and treatment. The model should provide a good 
smoothing of the unknown true relationship between predictors and the response that is 
useful for a relatively simple description of reality. In the model definition, the relation-
ship is described by a mathematical equation, which is usually a linear function of the 
predictors and hence is called a linear predictor (see Section 1.7 for model definition). Some 
statistical models are more general and assume non-linear relationships. But in all cases, 
the equation that describes how the mean response varies as a function of the predictors 
needs to be matching reality reasonably well. This requires that measured predictors that 
affect the mean be included in the equation and that the form of the equation corresponds 
to the relationship between the predictors and the mean outcome. An example of poor 
correspondence between model and reality is when the model assumes that the response 
varies linearly with the predictor but in fact the relationship is curvilinear. If the mean 
response is not correctly specified, other aspects of the model definition can be affected 
and statistical inferences may be misleading. 

The second aspect of the statistical model is the distribution of the response variable. 
When the response variable is continuous or approximately continuous (e.g., scores on 
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instruments assessing symptoms of depression or schizophrenia), the natural and math-
ematically most convenient distribution that is considered first is the normal distribution. 
However, if a histogram of the response distribution does not appear approximately bell-
shaped (with most observations in the middle and a few large and small observations 
in the tail of the distribution), then directly assuming normal distribution can lead to 
problems with the conclusions from the statistical analysis, especially in small samples. 
One possible solution to this issue is to apply a transformation to the response variable 
prior to analysis, in order to have the distribution of the transformed variable more closely 
resemble the normal distribution, and then use models for normally distributed data. This 
is mathematically most convenient but is not straightforward to interpret as all statistical 
estimates are on the transformed scale and in general can’t be directly transformed back. 
Chapter 3 is devoted to models for repeated measures with a normal response. Alternative 
distributions can be considered for continuous response variables and some of these mod-
els are considered in Chapter 4. Chapter 4 also covers models for dichotomous (binary) 
and count data. 

The third aspect of the model formulation is describing the variances of repeated obser-
vations and the correlations between repeated measures within clusters and/or over time. 
In Chapters 3 and 4, we consider different approaches for accounting for the variance and 
covariance, based on mixed-effects models and estimating equations. 

In summary, due to the complexity of the variances and correlations between repeat-
edly measured observations, formulating an appropriate statistical model is challenging 
and should be done in steps with proper checks of each aspect of the model formulation. 
Descriptive statistics and data visualization techniques are used to inform decisions about 
model formulation. Such techniques are illustrated using the data sets in the next section.

1.5 Data Sets

Several data sets are considered for illustration of the methods described throughout the 
book. We consider data sets from both clinical trials and observational studies, with lon-
gitudinal and clustered data, with balanced and unbalanced designs. Most data sets have 
missing data which can present problems for analysis. Specific features of the different 
data sets are emphasized and graphical and tabular methods for data exploration are 
presented. 

1.5.1 Augmentation Treatment for Depression

The first data set is from a parallel group clinical trial of an augmentation treatment for depres-
sion (Sanacora et al., 2004). In this study, 50 patients were randomly assigned to either fluox-
etine + yohimbine (augmentation treatment) or fluoxetine+placebo (control treatment) for 
six weeks. The main study hypothesis was that the augmentation treatment group would 
show faster improvement than the control group on the HDRS total score, which mea-
sures severity of depression symptoms. The primary analysis of these data reported in 
Sanacora et al. (2004) showed that patients in the augmentation group achieved responder 
status (HDRS score of 10 or less) faster than the control group. In subsequent chapters (e.g., 
Chapters 3, 6, and 7) we use this data set to illustrate model fitting that allows for compari-
son of the treatment response profiles of the two groups over time.
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But before we proceed with consideration of the statistical models, we explore the data 
with some graphical representations. Figure 1.4 shows two profile plots of the HDRS scores 
of all patients in the study by treatment group. This type of plot (also known as a spaghetti 
plot) is useful for visualizing longitudinal data in small- to medium-sized data sets, as it 
shows the individual trajectories of observed responses over time. It provides a visual 
impression of the mean trend over time, the variability of observations, and the strength 
of correlation between adjacent observations of individuals over time. From Figure 1.4 
we see that the individuals in the two treatment groups appear to have similar baseline 
scores, although the scores in the control group are slightly higher. We also see that most 
patients have substantial decrease in depression severity over time and that variances 
appear to slightly increase from baseline, especially for the control group in the middle of 
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FIGURE 1.4
Profile plots of Hamilton Depression Rating Scale scores of all subjects in the augmentation depression data set 
by treatment group.
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the observation period. Furthermore, most patients’ responses tend to stay either above 
or below the corresponding average scores of their respective treatment group which sug-
gests that correlations between repeated observations within the individual are positive. 

Figure 1.5 presents a plot of the means and standard errors of the means over time for 
each treatment group, based on all available observations at each time point. This plot con-
firms our observations from Figure 1.4 concerning the average trend and the variability 
over time. However, it does not provide any information about the correlation of observa-
tions within individuals. Also, in the presence of missing data, it may present a distorted 
picture of the average trends over time. For example, if subjects in the control group selec-
tively drop out due to inefficacy of the treatment and subjects in the active group drop out 
due to side effects, the between-group differences shown in the figure at later time points 
may be smaller than the real differences. Analysis in the presence of missing data is con-
sidered in detail in Chapter 7 and these data are used for illustration. 

Despite the limitation of the mean plot, it is quite useful for spotting changes in aver-
age treatment response between groups over time and can be used with a data set of any 
size. Since standard errors of the means decrease with increasing sample size and the 
corresponding error bars get tighter around the means, sometimes the same type of plot 
is created with bars corresponding to standard deviations, rather than standard errors of 
the mean. Standard deviation estimates do not in general decrease with increasing sample 
size and provide an estimate of the variation of individual observations in the sample, 
rather than of the means. 

1.5.2 Sequenced Treatment Alternatives to Relieve Depression (STAR*D)

The second data set is from the Sequenced Treatment Alternatives to Relieve Depression 
(STAR*D) clinical trial (Gaynes et al., 2008; Trivedi et al., 2006). STAR*D is the largest ran-
domized prospective study of outpatients with major depression to date. The first stage 
of this study was a 12-week course of citalopram, a selective serotonin reuptake inhibitor 
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(SSRI) antidepressant and the outcome of interest was improvement in the total score from 
the Quick Inventory of Depression Symptomatology (QIDS) (Rush et al., 2006) question-
naire. Four thousand and nineteen subjects provided data on QIDS in the first phase. The 
total QIDS score is similar to the total HDRS score considered in the previous example and 
reflects total depression severity. 

Prediction of initial response to antidepressant treatment in STAR*D was recently con-
sidered by Chekroud et al. (2016) with responder status over the entire 12 weeks defined, 
based on the improvement in total QIDS score. Subsequent analyses identified three dif-
ferent clusters of depression symptoms (core depression symptoms, sleep symptoms, and 
atypical symptoms) in this study and in two other large clinical trials in depression, and 
showed that treatments are not equally effective for the three clusters (Chekroud et al., 
2017) across trials. In this book, we focus on the effects of citalopram treatment in the first 
phase of the STAR*D trial on the three clusters and illustrate how the models introduced 
in Chapter 3 can be used to model the three aspects of depression severity simultaneously. 

The design of the study was intended to be balanced with subjects scheduled for visits 
at weeks 0, 2, 4, 6, 9, and 12. However, participants were sometimes seen in intermediate 
weeks and occasionally had repeat visits during the same week. Thus, the measurement 
times of subjects were somewhat different and the design was actually unbalanced. This 
limits the set of possible approaches that could be used for such data and requires that 
one makes the assumption that the time points are independent of the outcome and of 
the other effects in the model. This assumption is considered in more detail in Chapter 3. 

Figure 1.6 shows a panel plot of the observed symptom cluster scores over time of three 
participants in the study. The rows correspond to different individuals and the columns 
correspond to different clusters. Each dot in the graph is the average of the scores on the 
individual items for the participant in the cluster of symptoms. The observation times 
are different for the three individuals but are all within the 12-week period. The super-
imposed regression lines are based only on the observations in the graph and are used to 
illustrate visually the linear trend in change over time. Note that the linear trend does not 
necessarily fit the data well. In particular, the trends of change in the sleep cluster appear 
curvilinear for these three individuals, but since these are only a few of the participants, 
we can’t make any conclusions about the pattern of change over time for the entire sample. 

The panel plot is an alternative way of presenting individual change over time to the 
spaghetti plot, but it is limited to showing only a few individuals at a time. We consider 
these data in more detail in Chapters 3 and 10.

1.5.3  Combined Pharmacotherapies and Behavioral Interventions 
for Alcohol Dependence (COMBINE) Study

The Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence 
(COMBINE) Study (Anton et al., 2006) represents the largest study of pharmacotherapy for 
alcoholism in the United States to date. This parallel group clinical trial was designed to 
answer questions about the benefits of combining behavioral and pharmacological inter-
ventions on drinking outcomes in individuals with alcohol dependence. Eight groups 
(1226 participants in total) received medication management and a combination of active 
or placebo naltrexone, active or placebo acamprosate, and combined behavioral interven-
tion (CBI), or no CBI in a 2 × 2 × 2 factorial design (Figure 1.7). A ninth group received only 
CBI without medication management and is not considered herein. Double-blind medica-
tion treatment (naltrexone and acamprosate) and CBI were provided for approximately 
four months and participants were followed for up to one year after randomization. 
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FIGURE 1.7
Design of the COMBINE study.
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Participants were required to abstain from drinking for at least four days prior to random-
ization and the main outcomes in the primary analyses were: time to first heavy drinking 
days and percent days abstinent over the entire treatment period. The primary analyses 
found significant benefit of naltrexone and CBI on drinking outcomes, but the combination 
of naltrexone and CBI was not better than the monotherapies. The effects of acamprosate 
were not significant. 

Drinking data in this study were collected daily using the timeline follow-back method 
(TLFB). This method was also used to collect daily drinking data for the 90 days prior to 
the baseline assessment and during follow-up. Since daily drinking data are available, it 
is possible to look at changes in drinking patterns over time pre-treatment, during treat-
ment, and during follow-up. In this book, we use monthly summaries of drinking data for 
illustration, which allow estimation of trajectories of treatment response over time and 
allow us to ignore variability in the daily measures due to the day of the week. Depending 
on the model that we are illustrating, we focus on several different measures: average 
number of drinks per day, average number of drinks per drinking day (day on which 
drinking occurred), and number of drinking days. 

Figure 1.8 shows the average number of drinks per drinking day in four treatment arms 
during the treatment period. Note that this measure is calculated only for the drinking 
days and thus reflects only one aspect of drinking behavior (i.e., intensity of drinking). 
Additional outcomes, such as percent of drinking days, need to be considered in order to 
describe other aspects of drinking (i.e., frequency of drinking). We consider these aspects 
separately in subsequent chapters. Joint analysis of the different aspects is also possible 
but requires more sophisticated statistical models and is beyond the scope of this book. 
Interested readers are referred to Liu et al. (2008) and Liu et al. (2012) for more details. 

In Figure 1.8, we omit the standard errors of the means from the graph and also ignore 
acamprosate assignment in order to have a less cluttered figure. This type of figure shows 
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the average trends over time but does not provide information about the data distribution 
at each time point. Profile plots will not be very useful for data visualization in this study 
because there are several hundred participants within each group and it will be difficult to 
distinguish the individual trajectories. Standard error or standard deviation bars will also 
be hard to distinguish if added to Figure 1.8 because there are several groups and many 
time points. Instead, histograms or box plots can be used to visualize the data distribution 
at each time point. Figure 1.9 shows box plots of the outcome (average number of drinks per 
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drinking day) at month four by treatment group. In the top panel of the figure are four box 
plots of the original response variable. In each box plot, the middle line shows the median 
of the data (i.e., the value below which 50% of the observations lie), the lower and upper 
ends of the box show the 25th and the 75th percentile, respectively (i.e., the values below 
which we have 25% and 75% of the observations, respectively), the plus (+) sign shows the 
mean of the data and the whiskers of the box plot show the minimum and maximum value 
in the corresponding treatment group. From this set of box plots, we see that drinking data 
are right-skewed (i.e., there are a few large observations whereas the majority of the obser-
vations are clustered together at the lower end of the scale). When data are right-skewed, 
usually a transformation is applied prior to statistical analysis and the log transformation 
is most commonly used. The bottom panel of Figure 1.8 shows the box plots of the data 
after the data have been transformed using the log transformation. We add 1 to each obser-
vation prior to transformation in order to avoid problems with taking log of values that 
are equal or close to 0. The box plots of the transformed data show that the transformation 
makes the data more symmetric and the medians and the means are much closer to one 
another than before the transformation. 

In subsequent chapters, we show how to fit different statistical models to the COMBINE 
data to assess changes over time and the effect of baseline covariates on trajectories over 
time. We use these data to illustrate models for longitudinal data with continuous and 
categorical responses, mixture models for empirical derivation of heterogeneous trajec-
tories over time, and assessment of moderating and mediating effects. We also demon-
strate how to interpret significant interactions and main effects via appropriate post hoc 
comparisons. 

1.5.4 The Health and Retirement Study 

The Health and Retirement Study (HRS, http://hrsonline.isr.umich.edu/) is a longitudi-
nal survey among American citizens born between 1931 and 1941 and their spouses that 
assesses changes in labor force participation and health status over the transition period 
from working to retirement, and the years after. The initial HRS panel (N=12,652) was first 
interviewed in 1992 with subsequent interviews taken every two years. This survey is an 
observational longitudinal study that provides a wealth of information to address impor-
tant questions about aging and the transition from working to retirement. In this book, we 
focus on changes in self-rated health (SHLT) and body-mass index (BMI), and the effects 
of covariates on these changes. Body-mass index is calculated as weight, in kilograms, 
divided by the square of height, in meters, and is considered a continuous measure. Self-
reported health is an ordinal measure that takes the following possible values: excellent 
(coded as 1), very good (2), good (3), fair (4), and poor (5). BMI increases on average over 
time while SHLT deteriorates on average over the first seven waves of data. Mean plots 
with or without variance estimates could be created to illustrate this, as shown for the 
previous data sets. 

Within this data set, correlations are present between repeated measures on the same 
variable within individuals and on different variables within individuals. Figure 1.10 is a 
scatterplot matrix that shows the distributions of BMI and SHLT at the first wave and at 
the seventh wave, and gives visual clues as to whether the measurements are correlated 
and in what direction the correlation is. For this plot, we chose a subset of 250 individuals 
since plotting the entire data set of several thousand individuals would have made the 
graphs hard to read. Each of the individual plots in the scatterplot matrix illustrates the 
relationship between two variables and to a certain extent the distribution of each variable. 
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For example, the plot in the first row and second column is a scatterplot for the relation-
ship between BMI at wave 1 (bmi1) and self-rated health at wave 1 (shlt1). Since SHLT takes 
only five possible values, the observations are concentrated in five columns of individual 
circles, each circle corresponding to an individual in the sample. The increasing height 
of the columns from left to right indicates that participants with higher BMI tend to have 
worse self-reported health (i.e., higher scores on the self-rated health variable). Also, some 
outliers in terms of BMI are noted in the upper right corner of this plot. 

Similarly, the plot in the first row and third column visualizes the relationship between 
BMI at wave 1 (bmi1) and BMI at wave 7 (bmi7). As expected BMI measures are strongly 
positively correlated even though the observations are 14 years apart. The plot in the 
second row and the fourth column visualizes the relationship between self-rated health 
during wave 1 (shlt1) and wave 7 (shlt7). Self-rated health measures are also positively cor-
related but this is harder to see since this variable is ordinal with five levels and the dots 
representing individuals are on top of each other. We notice that there is nobody in this 
sample with poor (5) or fair (4) self-rated health at wave 1 who is with excellent health (1) 
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at wave 7. Participants with poor (5) self-rated health at wave 1 also do not have very good 
(2) health at wave 7 and participants with excellent health (1) at wave 1 do not have poor 
health (5) at wave 7. 

Note that the plots in the lower left part of this scatterplot matrix are flipped images of 
the plots in the upper right part of the matrix. For example, the plot in the second row and 
first column represents the same information concerning the relationship between BMI 
and SHLT at wave 1 as the plot in the first row and second column but with the vertical 
and horizontal axes switched. Choosing which of the two plots to focus on is a matter of 
convenience and depends on the application. 

Scatterplot matrices are very useful for visualization of relationships between variables 
since they allow simultaneous consideration of multiple variables. However, scatterplot 
matrices that are too large should be avoided since detail may be hard to see. The HRS data 
set will be used in subsequent chapters for illustration of models for correlated data and 
also for the effects of different types of missing data on inferences. 

1.5.5 Serotonin Transport Study in Mother–Infant Pairs

This study evaluates the effects of maternal treatment with an antidepressant (sertraline) 
for post-partum depression on serotonin transport in breastfeeding mother–infant pairs 
(Epperson et al., 2001). Treatment with selective serotonin reuptake inhibitors (SSRIs) is 
associated with significant blockade of serotonin reuptake in patients. Infants of breast-
feeding mothers are exposed to sertraline through maternal breast milk. The critical ques-
tion is whether SSRI exposure is safe for infants. One aspect of this assessment is to test 
whether sertraline exposure is associated with significant blockade of serotonin reup-
take in infants and to compare magnitude of blockade between mothers and infants. The 
data set consists of 14 mother–infant pairs with serotonin measurements in both mothers 
and infants before and after exposure to sertraline. Figure 1.11 shows serotonin levels in 
mothers and infants before and after antidepressant treatment. The plot clearly shows a 
decrease in mothers after treatment and no change in their infants. 

There are two types of correlations in these data: between measurements on mothers 
and infants within the same pair, and between pre- and post-measurements for each infant 
or mother. These correlations are shown in a table form in Table 1.1. In this table mpre is 
the variable “serotonin level in mother before the intervention,” mpost is “serotonin level 
in mother after the intervention,” cpre is “serotonin level in child before the intervention,” 
and cpost is “serotonin level in child after the intervention.” All correlations are positive 
and most are fairly strong. The only two that are not statistically significantly different 
from zero are between mothers’ and children’s measures after treatment, and between 
mothers’ measures after the treatment and children’s measures before the treatment. The 
correlations, as well as the apparent differences in variability of the measurements of 
mothers before and after the intervention, need to be taken into account for proper statis-
tical analysis. We use these data to illustrate how mixed models can be fitted to analyze 
clustered correlated data. 

1.5.6 Meta-Analysis of Clinical Trials in Schizophrenia

This study (Woods et al., 2005) assessed whether the degree of improvement with antipsy-
chotic medication in clinical trials differed depending on control group choice. The meta-
analysis evaluated 66 treatment arms from 32 studies of four medications (risperidone, 
olanzapine, quetiapine, and ziprasidone) for the treatment of schizophrenia symptoms 
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TABLE 1.1

Correlations between Serotonin Level 
Measurements on Mothers and Infants 
before and after Antidepressant Treatment

mpre mpost cpre cpost
mpre 1.00 0.70 0.71 0.56
mpost 1.00 0.48 0.34
cpre 1.00 0.91
cpost 1.00

Pre
Time

Se
ro

to
ni

n 
le

ve
l i

n 
m

ot
he

rs

0

50

100

150

200

250

300

Post

Pre
Time

Se
ro

to
ni

n 
le

ve
l i

n 
in

fa
nt

s

0

50

100

150

200

250

300

Post

FIGURE 1.11
Serotonin levels in mothers (on the left) and their infants (on the right) before and after antidepressant treat-
ment in the serotonin transport study in mother–infant pairs.
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with a total of 7264 patients. Average improvements and corresponding standard devia-
tions by dose and type of design are shown in Table 1.2. Based on this table, the largest 
improvement from baseline occurs in studies with active control at effective medication 
doses. The average improvement in this type of design is by about 50% more than the 
average improvement at the same dose level in placebo-controlled trials (14.8 compared 
to 9.0). This corresponds to more than one standard deviation difference, which is consid-
ered a substantial effect. The original study (which applied mixed models to these data) 
concluded that the degree of improvement with antipsychotic medication in clinical trials 
differed significantly depending on control group choice. The modeling took into account 
the correlations between measurements on different treatment arms within the same 
study that are due to sampling individuals from the same population and the common 
effect of the environment in which the treatments within the same study were offered. 
In Chapter 3, we describe how an appropriate model is constructed and show the results 
from the analysis. 

1.5.7  Human Laboratory Study of Menthol’s Effects on 
Nicotine Reinforcement in Smokers

Menthol is a common ingredient in e-cigarettes and in other modified tobacco products 
that may facilitate the development and maintenance of addiction, especially in young 
adults who increasingly use e-cigarettes. This study (Valentine et al., under review) 
used a two-level cross-over experimental design to examine whether menthol at differ-
ent doses, compared to placebo, altered nicotine reinforcement in young adult smokers. 
Smokers of mentholated and smokers of non-mentholated cigarettes were random-
ized to receive the three doses of menthol (high dose, low dose, and no menthol) by 
an e- cigarette in random order and in a double-blind fashion. Each menthol dose was 
given on a separate test day. On each of these days, all three nicotine doses (saline, 5, 
10 µg/kg) were infused in random order. The design is illustrated with the schematic 
in Figure 1.12. This type of design leads to increased power for testing the main and 
interactive effects of the two factors (nicotine and menthol) compared to a parallel group 
design. The main outcome of interest in this study is the rewarding effect of nicotine 
measured by the Drug Effects Questionnaire. The hypothesis is that concurrent menthol 
and nicotine administration, as compared to nicotine and control flavor, or saline and 
control flavor, enhances the rewarding effects of nicotine. We use these data to illustrate 
how to model correlations within subjects between repeated observations on the same 
test day and on different test days.

TABLE 1.2

Average Change in BPRS Scores from Baseline to Endpoint and Standard 
Deviations by Dose and Type of Design in Antipsychotic Clinical Trials
Type of Design 
Dose

Placebo‑Controlled 
Mean (SD) 

Low Dose‑Controlled 
Mean (SD)

Active Control 
Mean (SD)

Effective dose 9.0 (2.9) 11.2 (2.7) 14.7 (4.0)
Intermediate dose 6.3 (2.7) 9.8 (3.9) —
Ineffective dose 2.8 (0.8) 6.7 (2.2) —
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1.5.8  Functional Magnetic Resonance Imaging (fMRI) Study 
of Working Memory in Schizophrenia

In this study, 14 patients with schizophrenia and 12 healthy comparison participants were 
tested on a spatial working memory task with two difficulty levels (Driesen et al., 2008). 
Brain activation during three distinct phases (encoding, maintenance, and response) was 
recorded using fMRI. The study assessed phase-specific deficits in cortical function that 
contribute to cognitive impairments in schizophrenia. The relationship between task per-
formance and brain activation was also assessed. Herein, we focus on averaged activa-
tion measures in pre-specified regions of interest (SMFG=superior medial frontal gyrus, 
MFG=middle frontal gyrus, IFG=inferior frontal gyrus, and VIFG=ventral inferior frontal 
gyrus) in the pre-frontal cortex as dependent measures. 

This is an example of clustered data with the individual being the cluster. There are 
several sets of correlations within the cluster: correlations between the three different 
phases, the four different regions, and the two different task difficulty levels. Furthermore, 
variances in the different regions, phases, and difficulty levels are different. A proper sta-
tistical model for the analysis of these data needs to take all these features into consider-
ation. We use this data set to illustrate how mixed models can be used to account for the 
complicated variance–covariance pattern of the data so that testing of the main hypoth-
eses involving group differences can be accomplished.

Table 1.3 shows the means, variances, and covariances of a subset of the data. We pro-
vide descriptive statistics only for the encoding phase (eight repeated measures: one for 
each region by difficulty level combination), since it is difficult to visually inspect all 24 
repeated measures simultaneously. In general, to obtain a preliminary impression of data 
with many repeated measures, one needs to separate the data into meaningful parts, 
examine the parts one at a time, and then assess the interrelationships between the differ-
ent parts. More detailed exploration of these data is undertaken in subsequent chapters. 
From Table 1.3, we see that means in some regions (e.g., IFG) appear higher than means in 
other regions (e.g., VIFG) across task difficulty levels. Standard deviations are in general 
similar, although in regions with lower average they tend to be slightly lower. Also, all cor-
relations within individuals are positive and sizeable, especially correlations within the 
same region and within the hard-working memory task. 
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FIGURE 1.12
Double cross-over design of the human laboratory study of menthol’s effects on nicotine reinforcement in 
smokers.
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1.5.9 Association between Unemployment and Depression

These data are from a study of 254 recently unemployed individuals who were followed 
for up to 16 months after a job loss (Ginexi et al., 2000). At each of three interviews after 
the initial job loss, conducted at different times for different individuals, depression symp-
toms were measured using the Center for Epidemiologic Studies Depression (CES-D) 
questionnaire, which asks participants to rate the frequency with which they experience 
each of twenty symptoms of depression. The total CES-D score was calculated as the sum 
of the answers to the 20 individual questions with a possible range of 0–80. Unemployment 
status at each interview was also recorded. 

Figure 1.13 shows the change in individual depression scores over time for subjects 
who were re-employed by the end of the study and for subjects who were unemployed at 
the last available interview. Visually, the range of CES-D scores for those who remained 
unemployed (or were employed and then laid off again) is wider than for those who were 
re-employed. Thus, the study hypothesis that depression is associated with higher levels 
of depressive symptoms appears plausible. Appropriate statistical models for these unbal-
anced data are presented in Chapter 3, whereas Chapter 8 uses the same data to illustrate 
the use of time-dependent covariates. 

1.6  Historical Overview of Approaches for the 
Analysis of Repeated Measures 

The first method for analysis of repeated measures data was the analysis of variance 
(ANOVA) model with a single random subject effect that dates back to the work of 

TABLE 1.3

Means (M), Standard Deviations (SD) and Correlations (r) between Repeated Measures during 
Hard and Easy Working Memory Tasks in Four Different Brain Regions in the Schizophrenia 
Data Set

Hard 
MFG

Hard 
IFG

Hard 
VIFG

Hard 
SMFG

Easy 
MFG

Easy 
IFG

Easy
VIFG

Easy
SMFG

Hard 
MFG

M=0.49
SD=0.23

r=0.57 r=0.59 r=0.17 r=0.63 r=0.44 r=0.35 r=0.24

Hard 
IFG

M=0.42
SD=0.25

r=0.71 r=0.62 r=0.56 r=0.80 r=0.52 r=c0.56

Hard 
VIFG

M=0.27
SD=0.16

r=0.38 r=0.55 r=0.63 r=0.79 r=0.52

Hard 
SMFG

M=0.44
SD=0.32

r=0.42 r=0.62 r=0.44 r=0.75

Easy
MFG

M=0.35
SD=0.17

r=0.59 r=0.57 r=0.65

Easy
IFG

M=0.32
SD=0.16

r=0.70 r=0.70

Easy 
VIFG

M=0.24
SD=0.16

r=0.70

Easy
SMFG

M=0.35
SD=0.25
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R. A. Fisher (Fisher, 1925). This approach is also known as the univariate repeated measures 
ANOVA (rANOVA) and assumes equal variances of the repeated observations and equal 
correlations among all repeated observations within individuals or clusters. This assump-
tion is likely to be satisfied in randomized block designs where the observational units 
within a block are deemed exchangeable, but is unlikely to be satisfied in more compli-
cated clustered or longitudinal designs where variances and correlations can differ within 
individuals or clusters. Recognizing this problem, Greenhouse and Geisser (1959) and 
Huynh and Feldt (1976) developed corrections to the statistical tests in univariate repeated 
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FIGURE 1.13
Profile plots of CES-D scores of all subjects by employment pattern in the study of the association between 
unemployment and depression.
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measures ANOVA so that this approach could be used for hypothesis testing when vari-
ances and correlations vary within individuals. Despite the correction, this approach is not 
very flexible for the analysis of longitudinal data and, as incorporated in most statistical 
packages, does not allow for missing data on an individual. It is also appropriate when 
the number of occasions per individual or cluster is the same while in many studies with 
longitudinal and clustered data, the number of observations may differ. 

A modification of the ANOVA approach that requires more extensive computations, is 
the multivariate repeated measures analysis of variance (rMANOVA) model. MANOVA was 
developed for testing between-group differences on multiple distinct response measures 
simultaneously. The repeated measures situation is different from the situation with 
distinct response measures in that the same response variable is measured repeatedly 
over time or within clusters. Nevertheless, in both situations the response observations 
are correlated and both situations fall within the same framework. An advantage of the 
rMANOVA approach over the rANOVA approach, is that it allows the variance–covari-
ance structure to be completely general. However, when there are missing data on an indi-
vidual it excludes all data on this individual from analysis. It is also less powerful than the 
rANOVA approach when exchangeability is in fact satisfied. Like rANOVA it also requires 
that the number of repeated occasions per individual is constant. 

A special case of rMANOVA analysis is profile analysis (Box, 1950) which constitutes 
a MANOVA analysis of multiple derived variables that are linear combinations of the 
repeated observations on an individual. This approach is most commonly used with lon-
gitudinal data and allows simultaneous testing of mean differences across occasions and 
trends over time between groups.

For the sake of simplicity of interpretation, often studies with repeated measures data 
are analyzed based on single summary measures of the observations within individuals. 
In clustered data studies, one can calculate the means for each cluster and then compare 
these means between groups using usual ANOVA models. In longitudinal data studies, one 
can calculate the change from baseline to endpoint and then perform ANOVA comparison 
on these derived measures. Alternatively, scores at the end of treatment can be compared 
using ANOVA or ANCOVA (analysis of covariance) with control for baseline scores. This 
approach has severe limitations, as it ignores a large portion of the data and often requires 
imputation of missing data. Missing data are very common in longitudinal studies and 
one of the earliest approaches for dealing with missing data was to impute missing values 
with baseline values carried forward, last observation carried forward, or mean values 
calculated based on all individuals. The observation carried forward approaches virtually 
always lead to biased estimates of effects and, although they were originally proposed as 
being conservative (i.e., having lower probability of false positive results) in clinical trials 
and observational studies, they can also be anti-conservative or too liberal (i.e., having 
higher probability of false positive results). Recently, more sophisticated methods, such as 
multiple imputation approaches, have been used, which provide valid conclusions under 
general assumptions about missing data. 

The state-of-the-art approaches for analysis of repeatedly measured data nowadays are 
mixed-effects models. They are also known as random effects models (Laird and Ware, 1982; 
Ware, 1985), random regression models (Goldstein, 1987), hierarchical linear models (Bryk et al., 
1987) and empirical Bayes models (Casella, 1985). Random effects models assume that indi-
viduals deviate randomly from the overall average response. The correlation between 
repeated observations on the same individual can arise from common random effects or 
the pattern of variance and correlations can be directly specified. A combination of both 
approaches is also possible. The specified structures can vary in complexity, from equal 
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variances at all time points and equal correlations between any two measurements on the 
same individual (i.e., the structure assumed in rANOVA models), to no restrictions at all 
(i.e., the structure assumed in rMANOVA models). As an intermediate complexity, one can 
assume that correlation between observations decreases with increasing time lag. Mixed 
models are very flexible because they can consider many different variance–covariance 
structures and select the best-fitting one in the process of selecting the best model. They 
also use all available data on an individual and give unbiased estimates when data are 
missing at random. Chapters 3 and 4 present mixed-effects models in detail. Different 
missing data assumptions are discussed in Chapter 7. A more detailed historical overview 
at a non-technical level of methods for the analysis of repeated measures data can be found 
in Gueorguieva and Krystal (2004). Other fairly non-technical books on longitudinal data 
are Singer and Willett (2003) and Twisk (2013a).

1.7 Basic Statistical Terminology and Notation

For simplicity of explanation, we consider that the repeated observations occur within the 
individual. That is, the individual is the clustering factor. The relevance of the notation to 
other clustering situations (e.g., individuals nested within families or other larger units) 
is clear when in the rest of this section “individual” is replaced by “cluster.” We also con-
sider the augmentation treatment for depression study (Example 1.5.1) in order to illustrate the 
concepts. 

The technical notation is kept to a minimum in this presentation. If, even at that level, 
it presents a challenge, the book of Altman (1991) can be consulted for a review of basic 
concepts. For more comprehensive notation and technical details, interested readers are 
referred to other books: Lindsey (1999), Weiss (2005), and Hedeker and Gibbons (2006). 
Fitzmaurice et al. (2009) provides a very comprehensive reference for longitudinal data 
analysis. 

1.7.1 Response

The response (outcome, dependent) variable is denoted by Y. When there is a single obser-
vation per individual, the individual responses are denoted as Yi where i corresponds to 
the ith individual and there are n individuals in the sample. The average of all observa-
tions in the sample is the sample mean and is calculated as

 Y =
=
∑1

1
n

Yi

i

n

,  

That is, all observations are summed and the sum is divided by the number of 
observations. 

The sample variance reflects the entire variability in the sample and is calculated as 
follows:
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That is, it represents an average of the squares of the deviations of the individual obser-
vations from the sample mean. In the denominator, we use n – 1 rather than n in order 
to take into account that we estimate the mean rather than use the true unknown value. 
The more spread out the observations are, the more variability there is and the larger the 
calculated variance will be. Since the variance is measured in squared units compared 
to the response, a more interpretable measure of variability is the standard deviation of 
the observations, which is measured in the same units as the mean and is obtained as the 
square root of the variance:

 s
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Y Yi
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−
=
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2

1

( ) .  

The formulae for variance and standard deviation are presented for completeness but 
are not crucial for understanding the material presented in this book. 

In repeated measures data, we have multiple observations per individual and an 
additional subscript is needed to annotate the responses. The response is Yij, where i 
corresponds to the ith individual and j corresponds to the jth observation within the 
individual. The number of individuals in the sample is usually denoted by N and the 
number of observations within the ith individual is ni. The subscript here is necessary 
to indicate that the number of observations within the individual does not need to be 
the same. 

The simplest case that we consider in Chapters 2 and 3, is with a quantitative (continu-
ous) response, that is, the response takes values over an interval of possible values. For 
example, weight and height measurements, rating scales over large intervals, are consid-
ered quantitative responses. Chapter 4 presents models for responses that are dichotomous 
(binary), ordinal, or represent counts. All responses are assumed to be random variables, 
that is, there is uncertainty in the values that are observed. 

In the considered example of the augmentation study in depression, the response is a 
measure of depression severity (HDRS). We usually start the statistical analysis by calcu-
lating means and standard deviations for each group at each time point and visualize the 
data. In statistical notation, since we have as many means as there are repeated occasions, 
we denote the sample means and standard deviations as follows:

 Y
N

Yj ij
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Herein, we used N to denote the number of individuals on each of the repeated occa-
sions but the number of individuals does not need to be the same. In longitudinal data 
especially, participants drop out so the number of individuals decreases over time. 
Figure 1.5 shows the means and standard deviations by treatment group in the depres-
sion example.
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1.7.2 Predictors

In statistical notation, the predictors are usually denoted by X and can vary between or 
within individuals. This dependence is often reflected in the subscripts of the predictor. 
Xi usually denotes the value of a predictor for the ith individual and the subscript i means 
that the covariate has the same value on all repeated occasions within the individual, but 
in general, has different values for different individuals. In this case, the predictor is said 
to vary between individuals but not within individuals. In the considered example, the 
treatment group is a predictor that varies between individuals but not within individuals.

Similarly, Xij denotes the value of a predictor for the jth observation on the ith individual. 
The additional subscript j is used in order to distinguish different values of this predictor 
on different observation occasions within individuals. In this case, the predictor is said 
to vary within individuals and it can also vary between individuals. In the depression 
example, time is a within-subject predictor as it varies within each individual (i.e., each 
individual has observations at several different time points). The time points may or may 
not be the same for different individuals. Other subject characteristics can vary over time, 
such as blood pressure or weight, or subjects can switch treatments over time and hence 
treatment can also vary within individuals. This is the case in cross-over studies.

When there are multiple predictors, a third subscript k can be used to denote the kth 
predictor. Time and group are almost always present as predictors in repeated measures 
studies with longitudinal data. Additional variables that may be affecting the response 
are usually referred to as covariates and they are also considered predictors. For example, 
history of depression and concurrent medication use may be additional covariates in the 
depression study.

Predictors are assumed to be exactly observed, that is, there is no uncertainty in the val-
ues of the predictors and they are considered fixed, not random. Time and group are usu-
ally exactly observed but other predictors may be measured with error and may need to be 
considered as random variables themselves. For example, self-reported medication com-
pliance may be imprecisely ascertained. When predictors are also assumed to be random 
variables, estimation and inference are more complicated. Interested readers are referred 
to Fuller (1987) since this situation is not considered in this book. 

1.7.3 Linear Model

The statistical relationship between the predictors and the response in the population and 
its change by occasion or time can be described using a statistical model. This represents 
our theoretical understanding and assumptions about the relationship between the pre-
dictors and the response and may or may not correspond to reality. The linear model 
assumes that the association is linear in the coefficients (betas in the formula below) and 
that the effects of the predictors are additive (i.e., they add onto one another rather than 
multiply or act together in another fashion). This can be expressed using the following 
formula:

 Y X X Xij ij ij p ijp ij= + + + + +β β β β ε0 1 1 2 2 ... ,  

Where some of the predictors vary between individuals, and some vary within indi-
viduals, the beta coefficients are unknown parameters that can be estimated from the data 
and reflect the direction and magnitude of the association between the predictors and the 
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response, and the epsilons denote the errors that describe the uncertainty or residual vari-
ability of the measurements, apart from what the predictors explain. 

In the depression example, the equation describes how each observation varies depend-
ing on the predictors and can be written as

 HDRS Group Time Group Timeij i j i j ij= + + + × +β β β β ε0 1 2 3 ,  

where:
  Groupi takes the value of 1 if the ith individual belongs to the augmentation group 

and 0 if this individual belongs to the control group
  Timej is the week (coded 0 through 6) when the jth observation is taken
  Groupi*Timej denotes the interaction between Groupi and Timej (i.e., is the product of 

Groupi and Timej)

The interaction reflects how the responses for the different groups differ from one 
another over time. Each individual’s response can be described by substituting the appro-
priate values for Groupi and Timej in the equation. For example, the baseline (i.e., Time=0) 
response for an arbitrary chosen patient i from the augmentation group is described as 
HDRSi0=β0+β1+εi0 while the response at week 6 for another arbitrary chosen patient l from 
the control group is described as HDRSl6=β0+β2 6+εl6. The errors reflect the expected devia-
tions for particular individuals and particular occasions from the average response of all 
patients in the corresponding hypothetical population measured on the corresponding 
occasion.

1.7.4 Average (Mean) Response

The average response for a particular combination of values of the predictors is described 
according to the linear function above and is

 EY X X Xij ij ij p ijp= + + + +β β β β0 1 1 2 2 ...  

Here, E stands for expectation and this formula describes how the expected (average) 
response in the population varies depending on the predictors. The predictors may 
appear by themselves in the formula or two (or even more) predictors can multiply 
each other (for example the kth predictor can be a product of some of the other pre-
dictors, e.g., Xijk=Xij1Xij2). When predictors appear by themselves, they represent main 
effects. The beta coefficients are then interpreted as the differences in mean response 
that correspond to a unit change in the predictor (for continuous predictors) and the 
difference in mean response that corresponds to comparing a particular level of a 
categorical predictor to a reference level of this predictor (e.g., experimental to con-
trol group, or later time point to an earlier time point). When there are interactions 
between the predictors (i.e., when the predictors multiply each other, e.g., Xijk=Xij1Xij2 
in the formula above), the interactions need to be interpreted first. Interactions may 
involve two or more predictors and become increasingly complex to explain, especially 
in designs with multiple factors. We consider different interactions and their interpre-
tations in subsequent chapters. Herein, a simple situation is considered in the context 
of the depression example. 
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In the depression example, the average response can be described as

 E HDRS Group Time Group Timeij i j i j{ } = + + + ×β β β β0 1 2 3 .  

Let us assume for a moment that β3 is equal to 0, which means that there is no interac-
tion between group and time, that is, the change over time in the two groups has the 
same form (i.e., average responses in the two groups can be described by parallel lines). 
The coefficient β1 is interpreted as the difference in mean HDRS scores between the two 
groups averaged over the entire time period. Using the specified coding above for a group 
(1 for the augmentation group and 0 for the control group), positive values mean that the 
augmentation group has higher scores on average, while negative values mean that the 
control group has higher scores on average. The coefficient β2 is interpreted as the change 
in average HDRS score per week (i.e., one unit change in time). To estimate how much the 
HDRS scores change on average over the entire study period, we need to multiply β2 by 
the study duration in weeks (i.e., β2 times 6). Note that this model assumes that the rate of 
change stays constant over the study period, that is, the change over time is described by 
a straight line. This is often an untenable assumption although, in some situations, it may 
be a convenient approximation.

If β3 is not equal to 0, then there is an interaction between group and time. In this 
case, slopes of average change in the two groups over time are different and the average 
between-group differences change depending on which time points we consider. At time 
0, the difference in average response between the two groups is described by β1 but at time 
6, for example, the difference in average response between the two groups is described by 
β1+β3.6. Depending on the signs of β1 and β3 the difference may be smaller or larger. The 
β3 coefficient is interpreted as the difference in slopes (linear rates of change) between the 
two groups over time. When change over time is described by a more complicated func-
tion, rather than linear change, interpreting between-group differences becomes more 
challenging.

In the general linear model, a unique linear combination of the predictors corresponds 
to each observation time point and group. For the control group, the average response at 
baseline (time 0) is HAMDi0=β0, while for the experimental group, the average response at 
week 6 is 

 E HDRSi6 6 6{ } = + + +β β β β0 1 2 3. . .  

In repeated measures data, estimation of the relationship between predictors and the 
mean response is usually of primary interest. In order to assess this relationship, all beta 
parameters need to be estimated. The deviations from the mean response need to be taken 
into account but are often of secondary interest.

1.7.5 Residual Variability

To perform statistical inference (i.e., construct confidence intervals or test hypotheses 
about the beta parameters), certain assumptions need to be imposed on the errors in the 
statistical model formulation above. Usually, when the response is continuous, the errors 
are assumed to be normally distributed with zero mean. Note that the distribution of 
the errors determines the distribution of the response in the sample when there are no 
other random effects. Thus, if the errors are normally distributed then the response is also 



31Introduction

normally distributed. A histogram of the responses on each occasion and within a group 
indicates whether the data are indeed approximately bell-shaped distributed and hence 
whether the normal distribution is appropriate.

The zero mean assumption is reasonable if we have included all important predictors of 
the response in the linear predictor and have specified the nature of the relationship cor-
rectly. That is, we have not omitted predictors that substantially affect the response and 
have used the appropriate form of each predictor. A classic example of miss-specified form 
is if the relationship between time and the response when plotted seems to be curvilinear 
but we include only the linear effect of time in the model. In this case, on some occasions 
the errors will have means that are larger than 0 and on some other occasions they will 
have means that are smaller than 0. Such a discrepancy will need to be corrected in order 
to reach justifiable conclusions for the relationship between predictors and response. 

In classical regression and analysis of variance models, where each individual contrib-
utes a single observation, the errors are assumed to be independent of one another and 
to have equal variances. However, in repeated measures situations, error variances often 
vary by occasion and errors are correlated within individuals. In the depression example, 
and in similar longitudinal studies, it is likely that variances increase over time because 
individuals are usually selected to satisfy certain conditions for study entry, and then, 
some individuals show significant improvement in their response, some show no change, 
and some deteriorate. Thus, models that assume equal variances may not be appropriate. 

Furthermore, the errors εij corresponding to different individuals are assumed to be 
independent while different εij’s corresponding to the same individual are assumed to be 
related. This is reasonable, as we expect repeated observations on the same individual on 
different occasions to deviate in a systematic way from the average for similar individuals. 
Thus, the errors for the same individual are more likely to be in the same direction (i.e., 
mostly positive or mostly negative) and their magnitudes are likely to be related. To assess 
whether the data support such assumptions, correlations of repeated observations on dif-
ferent occasions can be calculated and examined, either in table form or in figures. The 
sample correlation between repeated measures on occasion k and l within the individual is 
calculated as follows: 
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Correlations measure the degree of linear dependence between variables. Correlations 
vary between –1 and 1 with 0 corresponding to no linear relationship, –1 corresponding 
to a perfect negative relationship, and 1 corresponding to a perfect positive relationship. 
Figure 1.14 shows these three situations, as well as an example of a strong positive correla-
tion, weak negative correlation, and curvilinear relationship, where the correlation is close 
to 0 but the two variables are related. When there are repeated measures within individu-
als some degree of linear dependence is expected and the dependence is usually positive.

The statistical notation for the error distributions in models with repeated observations 
is ε σij jN~ ( , ),0 2  where σ j

2  may be different for different occasions within individuals, N   
denotes normal distribution and errors are randomly spread out around 0. The errors for 
measurements on occasion k and l within a randomly chosen individual in the popula-
tion are assumed to be correlated, that is Corr(εij, εil)=ρjl and this correlation is most often 



32 Statistical Methods in Psychiatry and Related Fields

positive. With longitudinal data, the correlation is generally stronger for observations 
that are closer to each other in time and decreases with increasing time lag. Examining 
sample correlations between any two repeated measurements, either in table form or in 
a graph, provides information about appropriate correlation structures in the population. 
Plots to examine correlations in longitudinal data are described in Weiss (2005) and in 
Dawson et al. (1997).

In the depression example, if an individual starts with a HDRS score that is signifi-
cantly higher than the average HDRS score in the sample, this individual’s HDRS scores 
are more likely to stay above the average on the next few occasions, compared to the scores 
of an individual who starts with below average HDRS scores (see Figure 1.4). With increas-
ing time lag, however, the probability of such systematic deviation becomes weaker and 
weaker. 

1.7.6 Estimation

Estimates of the beta parameters are obtained using some statistical method so that the 
residual variability in the data is minimized. The method of maximum likelihood is the most 
commonly used approach and it finds the values of the beta parameters that maximize 
the likelihood that we observe the data in the sample, given our assumptions about how 
the data were generated, as reflected in the model formulation. Substituting the estimated 
beta values in the linear model, instead of the true unknown beta values, gives an esti-
mate of the average response from the data. The obtained estimates are unbiased in large 
samples (i.e., they do not deviate in a systematic way from the true values of the param-
eters) and they are efficient (i.e., the uncertainty of these estimates is as small as possible). 
Uncertainty is measured by the standard errors of the estimates of the beta parameters 
and the standard errors are obtained in the estimation process. The parameter estimates 
are also approximately normally distributed which makes construction of confidence 
intervals and hypothesis tests straightforward. 

Perfect positive correlation (r=1) Perfect negative correlation (r=–1) No correlation between y and x

Strong positive correlation (r=0.8) Weak negative correlation (r=–0.2) Curvilinear relationship
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FIGURE 1.14
Examples of different corrections between two variables.
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1.7.7 Statistical Inference

Traditionally, the type of statistical inference of most interest in the subject-matter litera-
ture, has been testing whether one or more of the beta coefficients are zero, which cor-
responds to testing whether there is any effect of the corresponding predictor(s) on the 
response when keeping the values of the other predictors in the model constant (com-
monly referred to as controlling for the effects of the other predictors). In the simplest 
case of testing a hypothesis concerning a single beta coefficient, the null hypothesis is that 
the coefficient is zero. The alternative hypothesis is that this coefficient is different from 
zero if a two-sided test is performed, or that it is greater (or smaller) than zero in the cor-
responding one-sided tests. One-sided tests are rarely used because if the direction of 
the relationship between the predictor and the response is opposite to the hypothesized 
one, a one-sided test will fail to find a significant effect. For example, if an experimental 
treatment is compared to a standard treatment and the alternative hypothesis is that the 
experimental treatment is better than the standard treatment, there is no possibility to 
conclude based on a one-sided hypothesis test that the experimental treatment is worse 
than the standard treatment. 

Test statistic, for testing whether a single beta coefficient is zero, is usually just the esti-
mate of this coefficient over its estimated standard error. Large absolute values of this ratio 
indicate that it is unlikely that the beta parameter is zero. In such a case, the interpretation 
is that the predictor is significantly associated with the response. 

Most statistical testing is based on the calculated p-value, which is the probability that 
the test statistic is at least as extreme as observed if there is no relationship between the 
predictor and the response. Note that if there is no true relationship, we would expect 
the parameter estimate to be close to zero and the test statistic to be small. If the p-value 
is smaller than a pre-specified cut off called significance level α (0.05% or 5% is most 
commonly used), then the conclusion is that it is unlikely that there is no relationship 
between the predictor and the response, and the relationship is declared to be statistically 
significant. 

Two types of error can occur in this inference. When there is no relationship (of the form 
specified in the model) between the predictor and the response, but the hypothesis test 
concludes that the relationship is statistically significant, a type I error has occurred. This is 
a false positive result and by selecting a low significance level, we guard against this type 
of error. At 5% significance level, we would expect 5% of tests, when there is no significant 
relationship between the predictor and the response, to result in this type of error. 

The other error occurs if there is a relationship between the predictor and the response 
but the hypothesis test results in failure to reject the null hypothesis of no relationship and 
the conclusion is that the relationship is not statistically significant. This type of error is 
called type II error and is a false negative result. How large the probability of this error is 
depends on the magnitude of the beta coefficient and the population variability. When the 
beta coefficient is small and/or the variability is large, there is a higher chance to commit 
this type of error. This type of error is also directly related to the power of the statistical 
test. 

Power is the probability to reject the null hypothesis (i.e., declare that a statistically sig-
nificant relationship exists) when the alternative is true (i.e., there is a relationship between 
the predictor and the response). Power changes with changing values of the beta coef-
ficients and changing variability. It increases with increasing beta values and decreases 
with increasing variability. Issues of significance level and power of tests are considered 
in more detail in Chapter 11.
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Hypothesis tests provide clear conclusions regarding the significance of the relation-
ship between predictors and response. However, they are heavily dependent on sample 
size and do not provide estimates of the magnitude of the effects and the uncertainty in 
the estimates. Confidence intervals contain more information than hypothesis tests as they 
give a range for the magnitude of the effect of the predictor on the response with a certain 
level of confidence. Most commonly, 95% confidence intervals are constructed as the cor-
responding beta estimate plus/minus 1.96 times the standard error of this estimate. The 
confidence level 95% means that 95% of the time the true parameter falls within the limits 
of the confidence interval and is interpreted as the level of confidence that we have that 
we have captured the true underlying parameter in the confidence interval. Confidence 
intervals can also be used to evaluate whether the corresponding beta coefficient is statis-
tically significantly different from zero (or any other value) or not, i.e., they can be used to 
perform the corresponding hypothesis test. If the confidence interval contains zero then 
the beta coefficient is declared not to be significantly different from zero and if the confi-
dence interval does not contain zero then the beta coefficient is declared to be significantly 
different from zero. 

In recent years, more emphasis is placed on reporting confidence intervals rather than 
p-values and for a very good reason. Rather than giving a yes/no answer to a sometimes 
contrived or overly simplified question as hypothesis tests do, they provide an estimate 
of the magnitude of an effect with an associated level of confidence. Thus, the reader or 
independent researcher can make their own judgment call on whether a particular result 
is clinically or practically meaningful or not. As a simple example, consider a hypotheti-
cal situation with two treatments (A and B) for depression. A very large clinical trial finds 
that treatment A improves a measure of depression severity on average by 0.1 standard 
deviations more than treatment B over a period of 8 weeks with a 95% confidence interval 
between 0.05 and 0.15. While this corresponds to a statistically significant result because 
the confidence interval does not contain 0, most doctors would probably not consider such 
a change as clinically meaningful and they would decide which treatment to use based on 
other considerations than differences in clinical efficacy. 

Hypothesis tests are still useful in situations when some guidance is needed as to which 
effects to estimate, as in models with multiple possible interactions or in multiple compari-
son problems. But even in these cases, confidence intervals are still recommended as post-
hoc analyses in order to obtain estimates of the magnitudes of effects. The discussion of 
the choice between hypothesis tests and confidence intervals and the joint use is continued 
in further chapters of the book.

1.7.8 Checking Model Assumptions

The errors in the linear model formulation are not directly observable. However, when 
estimates of the beta coefficients are obtained, these allow estimation of the errors by 
taking the difference between the individual responses and the predicted mean: Y Yij ij− ˆ . 
These quantities are called residuals and they give information about the fit of the model 
to the data. Since they are estimates of the unknown errors, assessing their distribution 
and variability can help assess whether the corresponding assumptions about the errors 
are approximately satisfied. Residual plots can be used to assess whether the assump-
tions of linearity, normality, and variance pattern are appropriate. If assumptions about 
the errors are not satisfied then remedial measures must be taken by either considering a 
more general model, adding covariates, transforming the data, or using statistical methods 
that make fewer assumptions about the data, such as non-parametric methods. A good 
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reference for checking model assumptions and remedial measures for linear models is 
Kutner et al. (2005). Model diagnostics for models for repeated measures data are briefly 
considered in Chapters 3 and 4 where further references are also provided. 

1.7.9 Model Fit and Model Selection

Many different models can be fit to any particular data set. Statistical criteria can be used 
in order to select the best-fitting model among a set of different possible models fitted to 
the same data set. Perhaps the most commonly used are different versions of informa-
tion criteria such as the Akaike Information Criterion (AIC) and the Schwartz-Bayesian 
Information Criterion (BIC). We consider these in more detail in Chapters 3 and 4.

1.8 Summary

In this chapter, we described what repeated measures are, introduced different types of 
studies with repeated measures, discussed advantages of such studies, provided a brief 
historical overview of statistical methods for clustered and longitudinal data, reviewed 
some basic statistical terminology and notation, and introduced several data examples that 
are further considered in subsequent chapters. We focused on issues of describing mean 
response across repeated measures and accounting for variability and interdependence in 
the data. In Chapter 2, we consider the traditional methods for repeated measures analy-
sis in more detail, while the rest of the book focuses on the state-of-the-art methods for 
such analysis and on different aspects of the analysis and design of studies with repeated 
measures.
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2
Traditional Methods for Analysis of 
Longitudinal and Clustered Data

In this chapter, we describe methods for repeated measures analyses that have been 
traditionally used, but which are appropriate only in special situations (e.g., fixed mea-
surement times, complete data, specific pattern of variances and covariances, normally 
distributed measures). Gold standard approaches for normal data, such as mixed-effects 
models, are introduced in Chapter 3, and extensions of these approaches for non-normal 
data are presented in Chapter 4. Readers who are only interested in the more flexible and 
general approaches, can skip the current chapter. Readers who would like a refresher on 
the more basic statistical models for analysis of variance, and a gentler transition from 
simple to more complicated methods for longitudinal and clustered data, should read this 
chapter where the techniques and limitations of traditional approaches are presented, 
and where situations in which it is acceptable that such methods are used, are described.

The simplest possible approach to analyzing data with repeated measures, is to calcu-
late summary measures for each individual or cluster (e.g., mean response over repeated 
occasions or change from baseline to endpoint), and then use statistical methods for uncor-
related observations with the summary measure as the dependent variable, in order to 
make inferences regarding group differences or magnitudes of change from baseline to 
endpoint. Methods for uncorrelated data can also be directly applied to endpoint mea-
sures in longitudinal studies. The appeal of this approach (i.e., reducing the complexity 
of repeated measures data by focusing on a single measure) is its simplicity and straight-
forward interpretation. However, it is usually associated with loss of power to detect dif-
ferences, decreased efficiency of statistical analysis, potential bias when there are missing 
data on key occasions (e.g., endpoint in longitudinal studies), and inability to characterize 
change or pattern of responses across different occasions. Especially problematic are situ-
ations when some repeated measures are ignored (e.g., when all intermediate data points 
in longitudinal studies are excluded from analysis).

In the first section of this chapter, we focus on methods for assessment of change, from 
baseline to endpoint, and for testing and estimation of group differences in longitudinal 
studies. This is done via methods for analysis of independent data such as t-test, ANOVA, 
or ANCOVA. In the second section, we focus on between-group comparisons of other 
summary measures using the same set of statistical approaches for independent data 
(t-test, ANOVA, ANCOVA). We focus on the assumptions of the methods and explain the 
disadvantages of these approaches, especially when some data are missing.

When observations are made at multiple intermediate time points, some studies still 
report results from a t-test or ANOVA performed separately at each time point. However, if 
a 5% significance level test is used for each test, then the probability of type I error becomes 
considerably greater than 5% and this may lead to falsely declaring groups to be different 
when differences do not exist. On the other hand, if a procedure for correcting for multiple 
testing is used (e.g., Bonferroni correction), then this leads to loss of power and increase 
in the probability of type II error (not detecting treatment differences when they do exist). 
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Performing separate tests at each time point also does not allow for direct comparison 
between treatment groups over time. This approach is not considered in this chapter as it 
rarely makes sense for longitudinal data.

More appropriate approaches for longitudinal and clustered data (when the assessment 
occasions are the same for all individuals/clusters and when the focus is on comparison of 
group means), are repeated measures analysis of variance (rANOVA, considered in Section 
2.3), and repeated measures multivariate analysis of variance (rMANOVA, considered in 
Section 2.4). These methods use information from all repeated occasions and allow test-
ing of hypotheses regarding change over time or pattern of responses within clusters or 
individuals. When assessment occasions are the same for all clusters or individuals (i.e., 
the design is balanced), when data are complete (i.e., there are no missing observations), 
there are no extreme outliers, and in the case of rANOVA, when the appropriate correction 
to the degrees of freedom is used, these methods provide valid hypothesis tests of main 
effects and interactions.

However, these methods can’t be used when assessment occasions are different for dif-
ferent individuals (i.e., the design is unbalanced, e.g., one subject is assessed at weeks 1 and 
4, another—at weeks 2 and 8, a third—at weeks 3 and 11). Furthermore, the multivariate 
approach (rMANOVA) can’t be used when there are too many repeated occasions, com-
pared to the sample size of the data set. Both methods can be severely affected by missing 
data. If there are missing data on one or more occasions within the individual or clus-
ter, the entire individual or cluster is excluded from rMANOVA analyses and, although 
there are methods to handle such a situation in rANOVA, most software packages also 
exclude subjects with missing data. Thus, both rANOVA and rMANOVA analyses may 
produce biased results, since the resulting sample of individuals or clusters with complete 
data may not be representative of the entire population. Last but not least, these meth-
ods focus on hypothesis testing rather than effect size estimation, which is of primary 
interest in clinical studies. Thus, our descriptions of rANOVA and rMANOVA emphasize 
the assumptions and limitations of each method. In Chapter 3 we show that rANOVA 
and rMANOVA correspond to special cases of mixed-effects models and recommend that 
analyses of repeatedly measured data are performed within the framework of mixed mod-
els. Nevertheless, presenting these approaches first allows us to review the traditional 
methods for normal data with which readers may be more familiar, and provide a gentle 
lead-in to mixed models so that the reader can fully appreciate their advantages.

Data sets, SAS code, and output for all considered data examples in this chapter are 
available in the online materials.

2.1 Endpoint Analysis and Analysis of Summary Measures

2.1.1 Change from Baseline to Endpoint

Change-point analysis makes use of the change from the first (baseline) to the final obser-
vation on each subject (YiT − Yi0). A very simple question that can be addressed with such 
data is to ascertain whether there is any change in response over time. This is accom-
plished by performing a paired t-test. The null hypothesis in this test is that there is no 
change over time while the alternative is that there is some change over time. In the case 
of a two-sided test, the change may be either positive or negative. When a one-sided test 
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is used, we are specifically interested in whether there is significant increase (or decrease) 
over time. If the resulting p-value of the paired t-test is smaller than the selected signifi-
cance threshold (usually 0.05) then we declare that there is a statistically significant change 
over time. Depending on the sign of the test statistic (which corresponds to the sign of the 
difference between baseline and endpoint means), we can claim that there is either signifi-
cant increase from baseline (when the sign is positive) or significant decrease (when the 
sign is negative).

As an example, in the augmentation study in depression from Section 1.5.1, a paired 
t-test results in the test statistic t(37) = 13.94 with a p-value < 0.0001. The mean HDRS 
score at baseline is 30.14 with a standard deviation of 6.16. This is commonly denoted as 
M (SD) = 30.14 (6.16). At week 6, the mean HDRS score is 10.29 with a standard deviation 
of 6.62 (M (SD) = 10.29 (6.63)). Based on the paired t-test, we conclude that there is a sig-
nificant decrease in average depression severity from baseline to endpoint as measured 
by the HDRS, which is not surprising since both treatment groups receive an active 
treatment. Note that the paired t-test is based on the ratio of the mean change over the 
standard deviation of the change. Whereas the mean change is simply the change of 
the means, the standard deviation of the change is not only determined by the stan-
dard deviations at the individual time points, but depends on the correlation of repeated 
observations within the individual as well.

The paired t-test, by itself, provides only evidence of whether there is statistically sig-
nificant effect of time. In general, it is more important to estimate the magnitude of the 
observed effect. We can do this by constructing a confidence interval for the difference in 
means between baseline and endpoint. In the augmentation depression example, the mean 
change in HDRS score is estimated to be 20.39 points with a 95% confidence interval with 
bounds of 17.43 and 23.36 (i.e., 95% CI: (17.43, 23.36)). This is loosely interpreted as having 
95% confidence that we have captured the true decrease in the population of subjects with 
major depression in our confidence interval. Thus, we estimate that the improvement in 
depression severity is between 17.43 and 23.36 points with 95% confidence. There is still 
5% probability that the true mean change is outside of the constructed interval, but given 
how much larger even the lower bound of the confidence interval is than zero, we can 
confidently infer that the mean change is substantially greater than zero. The latter illus-
trates how we can use the confidence interval for the mean change to directly test the cor-
responding two-sided hypothesis whether the mean change is zero. Since the confidence 
interval not only allows us to test the corresponding hypothesis test but provides an esti-
mate of effect size, it is the preferred approach.

A few cautionary notes are in order for this analysis:
First, it is appropriate when the outcome is quantitative and takes on a range of values. 

We can’t use a paired t-test or construct the corresponding confidence interval to test for 
change in binary or categorical outcomes. Methods for categorical data need to be used in 
this situation and are described in Agresti (2002, 2007).

Second, the paired t-test and the confidence interval for mean change is valid when the 
sample size is large and/or the distribution of the change scores is approximately normally 
distributed (i.e., bell-shaped). If the sample is small and the distribution is not bell-shaped, 
then a non-parametric equivalent such as the Wilcoxon signed-rank test (Hollander and 
Wolfe, 1999) should be used for hypothesis testing. The Wilcoxon signed-rank test does 
not make assumptions of the shape of the distribution and hence can be used even with 
skewed data. Confidence intervals can be constructed for medians rather than means or 
medians are often reported with interquartile ranges (i.e., the 25th and the 75th percentile 
of the observations).
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Third, sometimes percent change, rather than absolute change, may be of interest. 
In this case a one-sample t-test on percent change can be used to assess whether there 
is change over time or confidence interval can be constructed for percent change from 
baseline. Whether to focus on absolute change or percent change depends on the appli-
cation. Percent change outcomes are usually used when the measurements are positive 
and when relative rather than absolute change is of interest. Note also that when the 
distribution of the original observations is not bell-shaped, sometimes a transforma-
tion such as log or square root can be applied to normalize the data. When log trans-
formation is used, the difference in log-transformed observations is actually the log 
of the percent change of the original observations. Thus, interpretation of analysis of 
change scores can be made in terms of log-transformed percent change rather than 
absolute change.

Fourth, the paired t-test requires that each subject has baseline and endpoint observa-
tions. If one of the two observations is missing, then the corresponding subject is dropped 
from the analysis, which may lead to bias and/or loss of efficiency in the confidence inter-
val estimate and the hypothesis test. A common “solution” to this problem is to impute 
the last available observation of each individual for the endpoint observation which can 
improve efficiency but almost surely results in bias of the estimate since this imputation 
assumes that there is no change in the subject’s response after dropout. Other forms of 
imputation, such as imputing the mean value for the entire sample for the missing indi-
vidual’s value, are also possible but also lead to problems (e.g., increase in type I error rate). 
More sophisticated imputation approaches, such as multiple imputation, can be used and 
are more appropriate. Such methods are considered in the context of statistical modeling 
in Chapter 7.

Note that the number of degrees of freedom for the test statistic of the t-test is one less 
than the number of subjects used in the analysis, and thus, can indicate whether the analy-
sis was performed on the entire sample or on a subsample of individuals. This is useful 
to know, in order to be able to interpret results from published papers in cases when sam-
ple sizes for individual tests are not directly presented. For example, in the t-test for the 
depression data, the degrees of freedom are 37 which means that the number of subjects 
this test is based on is 38. Thus, of the entire sample size of 50, 12 subjects are excluded 
from analysis because they have missing endpoint data.

2.1.2 Group Comparison in Endpoint Analysis

While, in some situations, hypothesis testing or estimation of mean change for the entire 
group of individuals may be of interest, more often there are multiple groups that need to 
be compared in terms of average change over time or response at the end of the study. This 
is especially pertinent when an experimental treatment needs to be evaluated in compari-
son to a control treatment. If there is no control group, there is no way of knowing whether 
the change over time is due to treatment or to other factors, such as spontaneous improve-
ment or some other change in the environment.

When two groups need to be compared, the simplest approach is to use a two-sample 
t-test or construct a confidence interval for difference of two independent means. These 
approaches can be used either for comparisons of mean change between groups or com-
parison of mean response at the end of the study. When there are more than two groups, 
one-way ANOVA allows us to assess whether there are any differences among the groups. 
Post hoc tests can then be used to ascertain which groups may be different and confi-
dence intervals allow us to estimate the magnitudes of the effects. We first consider the 
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two-group scenario and illustrate how to perform a hypothesis test and construct a con-
fidence interval for the difference in mean change between groups on the augmentation 
study in depression.

In hypothesis testing, most often the null hypothesis is that the mean (either mean change 
or mean response at the end of study) in the two groups is the same, while the alternative 
is that the two groups are different or that one is better than the other. However, it is also 
possible to test whether the mean in one of the groups is higher/lower than the mean in 
the other group by a certain amount. This scenario is rarely of interest and is not consid-
ered here.

In the depression example, we are interested in testing for significant differences 
between the control and augmentation group on change in depression severity. Usually, 
the more conservative approach for this test is to use a two-sided alternative hypothesis 
(i.e., that the two groups are different from one another). Using a one-sided alternative 
(in this case, that the change in the augmentation group is greater than the change in 
the control group) is slightly more powerful in finding a statistically significant differ-
ence but does not allow for the possibility that the response in the augmentation group 
may be worse than in the control group (i.e., the mean change in the augmentation 
group may be smaller than in the control group). The generally preferred approach is to 
use a two-sided alternative.

Similarly to the assessment of overall change in response over time, in the group com-
parison, a confidence interval of the difference in mean change from baseline to endpoint 
between groups provides more information than the corresponding hypothesis test. In 
the depression example, the t-test for the between-group comparison of change over time 
results in a small test statistic and a non-significant p-value (t(36) = 0.23, p = 0.82), thus lead-
ing to the conclusion that there are no significant differences in improvement in depres-
sion severity between the two groups. The confidence interval for the difference in mean 
change between the augmentation and control groups (mean change = 0.68, 95% CI: (−5.33, 
6.70)) also contains 0, leading to the same conclusion. It also indicates that the change in 
the augmentation group is estimated to be slightly more than in the control group (by 0.68 
points) but could be by up to 6.70 points more and by up to 5.33 points less than in the 
control group.

While there is significant overall improvement as evidenced by the analyses in the 
previous section, the magnitude of this improvement does not vary significantly by 
group, as evidenced by the confidence interval and the independent samples t-test. Note 
that these analyses of change are also based only on data from individuals with both 
baseline and endpoint observations (N = 38), rather than the entire sample size (N = 50). 
If imputation is used, then all individuals will be included in the analysis. However, we 
do not advocate this approach and defer discussion about missing data till Chapter 3, 
where mixed models are introduced, and Chapter 7, where missing data are discussed 
in detail.

When comparing two independent groups, there are two versions of the t-test. One 
assumes that the variances of the two groups are equal (pooled method) and the other 
estimates each group variance separately (Satterthwaite’s approximation method). An 
additional test to compare the variances between groups could be performed in order to 
decide which version of the t-test to use. This is the F-test for equality of variances and is 
widely available in software packages. There is some disagreement in the statistical litera-
ture as to whether a two-stage approach with testing the equality of the variances prior 
to comparison of the means, or a direct use of the t-test based on an a priori decision about 
the version of t-test, is better. Often, both versions of the t-test lead to the same conclusion, 
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but in case when there is discrepancy, the F-test could be used to decide between the two 
versions.

In the augmentation depression data set, the equality of variance test does not indicate 
that the variances are significantly different (F(18,18) = 1.37, p = 0.51) and hence the pooled 
variance version of the t-test is used. In contrast, in the serotonin transport study in mater-
nal-child pairs from Section 1.5.5, the variances of the observations in mothers and in 
children after treatment are significantly different (F(13,13) = 94.69, p < .0001) and hence the 
Satterthwaite’s version is used to compare serotonin levels in mothers to serotonin levels 
in children after maternal treatment for depression. This test results in a highly significant 
p-value (t(13.28) = 7.74, p < .0001) and leads us to declare that there are significant differ-
ences in serotonin levels in the mothers, compared to their children, after maternal treat-
ment for depression. Thus, medication is significantly changing serotonin transport in the 
mothers but not in their children.

Note that Satterthwaite’s version of the t-test has, in general, fractional degrees of free-
dom. This is due to the use of an approximation and this situation must be distinguished 
from situations when test statistics have two sets of degrees of freedom such as the F-test 
for equality of variances. In both the augmentation treatment for depression study and in 
the serotonin transport study, regardless of which version of the test is used, the substan-
tive conclusions are the same.

When the two groups are comparable at baseline, it is likely that the comparison of the 
scores at endpoint will lead to the same result as the comparison of the change scores from 
baseline to endpoint. This is the case in both considered data sets. But quite often, especially 
in observational studies, the results can be quite different. Even small differences at baseline 
may increase to become larger and statistically significant differences at endpoint, especially 
if subjects selectively drop out of the study. Focusing on change scores, rather than on end-
point scores, is, in general, more appropriate for assessment of treatment effects although 
control for baseline covariates may be necessary as discussed further in this chapter.

Similar to the paired t-test and corresponding confidence interval, the two indepen-
dent sample comparisons on change from baseline or endpoint depend on a number of 
assumptions:

• The data to which they are applied needs to be quantitative, with bell-shaped dis-
tribution in small samples, possibly after a transformation. If the data are not bell-
shaped and can’t be transformed to normality, a non-parametric method, such as 
Wilcoxon rank sum test (Hollander and Wolfe, 1999), should be used.

• The appropriate version for equal or unequal variances should be selected based 
on an a priori decision or examination of the variances.

• Measurements on different subjects are assumed to be independent.
• These methods use only individuals who have both baseline and endpoint data 

unless imputation is applied.

The depression data are approximately normally distributed and the sample size is 
modest, hence we are justified to apply the independent samples t-test and to construct the 
corresponding confidence interval for the mean change. However, as we saw above, the 
results were based on the subsample of individuals with both baseline and endpoint data.

Note that change-point analysis may be entirely adequate in simple situations with 
only pre- and post-measurements, no missing data, and comparable groups at baseline. 
However, such simple designs are rare in most subject-matter areas and dropout is almost 
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inevitable in longitudinal studies, and thus, more complex methods are necessary to ana-
lyze longitudinal data sets.

2.1.3 Multiple Group Comparisons in Endpoint Analysis

When there are more than two groups of subjects whose responses need to be compared, 
ANOVA is the natural extension of the two-sample t-test. We first consider the simplest 
ANOVA situations with only one factor with multiple levels, each level corresponding to 
a different group of subjects (one-way ANOVA). ANOVA with multiple factors (multiway 
ANOVA) is considered further along in this section. We focus on statistical testing of the 
overall effects in the models, followed up by group comparisons, in order to explain the 
nature of the discovered differences. Many details regarding ANOVA models are available 
in Montgomery (2013).

The main hypothesis that is tested in one-way ANOVA, in this context, is that the mean 
endpoint (or change from baseline to endpoint) scores are the same for all groups. If this 
hypothesis of an overall group effect is rejected, then follow-up comparisons are necessary 
in order to explain which groups are different. Usually, the follow-up analyses are pairwise 
comparisons of means among the different groups. Note that it is possible that the over-
all test of group differences is significant but none of the pairwise comparisons between 
groups are significant. Conversely, the overall test of group differences may not be sta-
tistically significant, but some pairwise differences between groups may be significant. 
Thus, if there are a priori hypotheses regarding certain pairwise differences that are pre-
specified, these can be performed at a pre-specified significance level even if the overall 
group test is not significant.

We use part of the COMBINE data introduced in Section 1.5.3 to illustrate the one-way 
ANOVA approach. This study assessed the effects of treatments for alcohol dependence 
over approximately four months. For the sake of simplicity, in this first analysis we ignore 
whether subjects received active or placebo acamprosate (which was not shown to be an 
effective treatment in this trial) and initially assess whether there are any differences in 
the average number of drinks per day at month 4 for those who drink. Four groups of 
individuals are considered, depending on whether they received naltrexone or CBI: nal-
trexone and CBI, naltrexone only, CBI only, or neither. We apply log transformation to the 
dependent variable (drinks per day) in order to make the data more closely adherent to 
the normal distribution. The null hypothesis is that the four treatment combinations have 
the same means, while the alternative is that some of the means are different. We perform 
this test by calculating the F-statistic which compares the between-group and the within-
group variances in the data. Large F-values correspond to small p-values and lead to rejec-
tion of the null hypothesis of no difference in means. In this data set, the overall test of the 
group effect results in a small p-value (F(3,717) = 3.34, p = 0.02) and thus we conclude that 
there are significant differences among the treatment groups. However, this overall test 
does not show which mean(s) are different and how much they differ. To understand the 
nature of the treatment effect, one needs to perform post hoc comparisons of least square 
means and/or to visualize the data.

The least square means are estimated means for each group in the ANOVA model 
that are adjusted for other effects in the model. Post hoc pairwise comparisons of these 
means (Table 2.1) reveal that all active groups are associated with lower intensity of drink-
ing than not receiving either treatment. The other pairwise comparisons are not sta-
tistically significant. The p-values from the tests of the pairwise differences succinctly 
summarize whether the differences are statistically significant, but do not indicate the 
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direction and the magnitude of the differences. One needs to look at the mean estimates 
and their standard errors in order to judge in what direction the differences are and how 
much uncertainty there is in the mean estimates. Better yet, 95% confidence intervals for 
the mean differences can be constructed in order to show in what range we are confident 
the mean difference lies. The intervals are provided in Table 2.2 and from them we can 
easily reach the same substantive conclusions, but we also have a possible range for the 
difference in means.

Note that correction for multiple comparisons should be used for the post hoc analyses 
(whether p-values or confidence intervals), especially when the comparisons are not pre-
planned. Correction needs to be applied because otherwise the probability of making a 
type I error (i.e., declaring a statistically significant difference for one or more post hoc 
comparisons when no differences exist) is increased. In Chapter 6 we consider different 
correction methods and illustrate them on the COMBINE data.

We ignored acamprosate in order to simplify our illustration of the one-way ANOVA 
procedure. If we considered all eight treatment combinations as levels of the group factor 
with the one-way ANOVA approach and had a significant overall group effect, there are 
28 post hoc pairwise comparisons that one can do and many of those are not of specific 
interest. A more appropriate approach, and one that reflects the design of the COMBINE 
study, is multiway (factorial) ANOVA, which allows assessment of main effects and inter-
actions of the different treatments. The interaction tests evaluate the hypotheses that the 
effect of one factor varies at the levels of the other factors, while the tests of the main effects 

TABLE 2.2

Confidence Intervals for Pairwise Comparisons of Log Drinks per Day 
During the Last Month of the Study Period for Subjects Who Drink in the 
COMBINE Study

Treatment Group versus Treatment Group
Least Square Mean Difference

(95% CI)

naltrexone + CBI naltrexone only 0.001 (−0.16, 0.17)
naltrexone + CBI CBI only 0.03 (−0.13, 0.19)
naltrexone + CBI neither −0.19 (−0.35, −0.03)
naltrexone only CBI only 0.03 (−0.13, 0.19)
naltrexone only neither −0.19 (−0.35, −0.03)
CBI only neither −0.22 (−0.38, −0.07)

TABLE 2.1

Least Square Means, Associated Standard Errors and Adjusted p-Values for Pairwise 
Comparisons of Log Transformed Drinks Per Day During Month 4 for Those Who 
Drink in the COMBINE Study

Group
Least Square Mean 
(standard error)

Naltrexone + CBI 
1.04 (0.06)

Naltrexone Only 
1.04 (0.06)

CBI Only 
1.01 (0.06)

Neither 
1.23 (0.05)

naltrexone + CBI p = 0.99 p = 0.69 p = 0.02
naltrexone only p = 0.99 p = 0.70 p = 0.02
CBI only p = 0.69 p = 0.70 p = 0.005
neither p = 0.02 p = 0.02 p = 0.005
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evaluate whether there are differences in the mean response between the levels of one of 
the factors when response is averaged across the levels of the other factors.

In COMBINE, we assess the effects of the three factors (naltrexone, acamprosate, and 
CBI) by testing all possible interactions (one three-way interaction and three two-way 
interactions) and the three main effects. In this case the multiway ANOVA is a 3-factor 
model, each factor with two levels (i.e., 2 × 2 × 2 factorial). Table 2.3 presents the results 
from the three-factor ANOVA analysis of the log-transformed number of drinks per day at 
month 4 among subjects who drink in COMBINE. All tests of main effects and interactions 
are based on type III test statistics and are performed at 0.05 significance level.

When interpreting results from factorial experiments, first the significant interactions 
are interpreted and then the main effects could also be interpreted, especially if the inter-
actions appear to be quantitative (i.e., the direction of the effect of one factor does not vary 
by the levels of the other factors), rather than qualitative (i.e., the direction of the effect of 
one factor varies by the levels of the other factors). Thus, if there is a significant three-way 
interaction, post hoc tests to explain such an interaction are necessary. If the three-way 
interaction is not significant, but some two-way interactions are significant, the significant 
two-way interactions are interpreted first.

Table 2.3 includes the test statistics and corresponding p-values for all effects in the 
three-factor ANOVA. The results show that only the interaction between naltrexone and 
CBI (F(1,713) = 3.77, p = 0.05) is statistically significant at 0.05 significance level. The inter-
action test indicates that the effect of CBI varies depending on whether naltrexone was 
given or not, and the effect of naltrexone varies depending on whether active CBI was pro-
vided or not. To understand this interaction, the least square means are examined, either 
in table or graph form, and simple effects of one factor at all the levels of the other factor are 
assessed. The simple effects of naltrexone to explain the naltrexone by CBI interaction are 
simply comparisons between the least square means on active naltrexone and on placebo 
naltrexone at each level of therapy (CBI and no CBI). Similarly, the simple effects of CBI 
are comparisons between the least square means on CBI and without CBI at each level of 
naltrexone (active and placebo).

Figure 2.1 visualizes these simple effects in a convenient way by plotting the effect of each 
factor at the levels of the other factor. The top panel of the figure shows that among subjects 
who did not receive CBI, those on active naltrexone when compared to those on placebo nal-
trexone drank less on average, while the difference when CBI was given was slight and in the 

TABLE 2.3

Test Statistics and Corresponding p-Values of the Tests of Main Effects 
and Interactions in the Factorial ANOVA Analysis of Log Drinks per 
Drinking Day at Month 4 for Subjects Who Drink in the COMBINE 
Study

Effect Test Statistic p‑value

acamprosate F(1,713) = 0.00 0.96
naltrexone F(1,713) = 1.86 0.17
CBI F(1,713) = 3.64 0.06
acamprosate × naltrexone F(1,713) = 0.41 0.52
acamprosate × CBI F(1,713) = 0.11 0.75
naltrexone × CBI F(1,713) = 3.77 0.05
acamprosate × naltrexone × CBI F(1,713) = 0.01 0.93
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opposite direction. Table 2.4 shows the confidence intervals for these simple effects and since 
the intervals both overlap zero, the simple effects are not statistically significant at 0.05 level. 
Similarly, the bottom panel of Figure 2.1 shows that among subjects on placebo naltrexone, 
those on CBI compared to those not on CBI drank significantly less, while there was no dif-
ference between CBI and no CBI when naltrexone was given. The corresponding confidence 
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FIGURE 2.1
Least square means for the simple effect of naltrexone on average drinks per day at month 4 at each level of CBI 
(on the top) and for the simple effect of CBI at each level of naltrexone in the COMBINE study.

TABLE 2.4

Estimates and 95% Confidence Intervals for the Simple Effects 
Explaining the Significant Naltrexone by CBI Interaction on Number 
of Drinks per Day in the COMBINE Study

Simple Effect At level
Least Square Mean Difference

(95% CI)

naltrexone versus placebo CBI 0.04 (−0.13, 0.20)
naltrexone versus placebo no CBI −0.19 (−0.35, −0.03)
CBI versus no CBI naltrexone 0.00 (−0.16, 0.17)
CBI versus no CBI placebo −0.22 (−0.38, −0.07)
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interval estimates of the simple effects of CBI in Table 2.4 indicate that CBI was effective in 
reducing drinking when placebo but not when naltrexone was given. Note that these esti-
mates and associated 95% CI from Table 2.4 are a subset of all pairwise comparisons that 
are shown in the second-to-last column in Table 2.2. By focusing only on the simple effects, 
we reduce the need to correct for all possible comparisons although some correction may be 
necessary (see Chapter 6 for more discussion and guidance on multiple comparisons).

The interaction between naltrexone and CBI is an example of a qualitative interaction. 
That is, the effect of one factor is categorically different depending on the level of the 
other factor. In this case, CBI is effective if naltrexone is not given but not if naltrexone is 
given. When there are qualitative interactions, it is of limited use to interpret main effects. 
In contrast, when there are quantitative interactions (i.e., the effect of one factor is in the 
same direction at each level of the other factor but the magnitude is different), main effects 
should also be interpreted.

The general rule of interpreting interactions and main effects is to interpret the sig-
nificant interaction of the highest order first by testing and/or estimating simple effects of 
each factor at the levels or combination of levels of the other factor(s). Depending on the 
nature of the interaction, lower order interactions and main effects could also be inter-
preted. In particular, if the higher order interactions are quantitative rather than qualita-
tive, then testing lower order effects of this factor makes sense. However, one needs to be 
careful to use type III tests of effects for hypothesis tests and appropriate linear contrasts 
for estimation of effects that take into account all the interactions in the model, rather 
than parameter estimates taken directly from the output. Such estimates for lower order 
effects when there are higher order effects can be easily misinterpreted. More details about 
interpretation and testing of interactions in ANOVA models are available in Montgomery 
(2013). Further discussion is included in Chapter 6.

The assumptions underlying ANOVA analyses of change from baseline data are similar 
to the assumptions underlying two-sample t-test and confidence interval analyses:

• The data need to be quantitative with approximately normal distribution in small 
samples, possibly after a transformation. If the data are not normally distributed 
then non-parametric tests should be used. The Kruskal–Wallis test (Hollander and 
Wolfe, 1999) is the non-parametric equivalent of ANOVA analysis for quantitative 
data with non-normal distributions.

• Measurements on different subjects should be independent of one another.
• In ANOVA variances of observations in different groups are assumed to be 

the same. While ANOVA is fairly robust to deviations from the equal variance 
assumption, there are a number of options if variances are vastly different. Details 
can be found in Kutner et al. (2005).

Like the two-group comparisons, ANOVA on change-point values may be entirely ade-
quate in simple situations with only pre- and post-measurements, no missing data, and 
comparable groups at baseline. Small imbalances on baseline covariates can be handled by 
analysis of covariance methods, as shown in the next section, and discussed in more detail 
in the context of mixed models for repeated measures data in Chapter 8.

2.1.4 Controlling for Baseline or Other Covariates

When there are potentially confounding variables at baseline that might affect the out-
come, ANCOVA can be used to compare the final measures or the change from baseline 
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to endpoint measures between groups. Traditional ANCOVA involves adding the base-
line response measure or other covariate(s) to the ANOVA model as main effects. This 
approach can reduce variance in the analysis when there is imbalance on potentially con-
founding measures, due to chance. In such situations, ANCOVA may increase power to 
detect treatment differences without introducing bias. However, it is a common miscon-
ception that ANCOVA can be applied in any scenario to control for systematic differences 
between groups at baseline. When treatment or exposure is completely or substantially 
confounded with a predictor at baseline, ANCOVA can result in even more bias in analy-
ses than ANOVA since variance due to treatment\exposure and variance due to the pre-
dictor are overlapping and can’t be distinguished. Thus, it is very important at the design 
stage to consider potential confounders carefully and limit their effects, either by using 
randomization in experimental studies or matching in observational studies.

The same assumptions regarding the distribution of the response and the independence 
of the errors apply to ANCOVA as to ANOVA. Additionally, in traditional ANCOVA it 
is assumed that there are no interactions between the predictors of interest (treatment/
exposure) and the baseline measures, and the model for the average is correctly specified 
(i.e., there are additive effects between treatment/exposure and the relationship between 
the covariate and the response variable is known and the same for each treatment). The 
covariates must not be affected by the treatments, which means that there is substantial 
overlap of the covariate distributions for the different treatment/exposure groups. If there 
is no overlap then treatment/exposure estimates from ANCOVA will be biased because of 
complete confounding. Also, if the distributions of the continuous covariates are skewed, 
extreme observations may have undue effect on the inferences, so transformations of 
the covariates prior to analysis may need to be performed. Finally, if the relationship of 
covariates and outcome varies by treatment\exposure, interactions between the covariate 
and treatment\exposure should be assessed, in addition to main effects. The covariates in 
ANCOVA should be pre-specified and not based on multiple assessments of baseline dif-
ferences. Controlling for covariates is considered in more detail in Chapter 8 and design 
issues are considered in more detail in Chapter 11. Milliken and Johnson (1984) provide 
detailed information about covariate control.

We illustrate the traditional ANCOVA approach on the augmentation depression study 
and on the COMBINE data. Analysis of endpoint depression severity when controlling for 
baseline depression severity results in non-significant effect of treatment (F(1,35) = 1.56, 
p = 0.22) and the effect of baseline severity is also not statistically significant (F(1,35) = 0.03, 
p = 0.87). Thus, we conclude that there are no differences between the two treatment groups 
when controlling for baseline depression severity (i.e., when considering the outcome at 
the same level of baseline depression severity) and that endpoint depression scores are not 
significantly associated with depression severity at study entry.

In COMBINE, there is increased evidence for the interaction between naltrexone and CBI 
(F(1,712) = 4.83, p = 0.03) and for the main effect of CBI (F(1,712) = 6.70, p = 0.01) after control-
ling for baseline drinks per drinking day. Also, baseline drinks per day (log-transformed) 
is statistically significantly associated with the outcome during treatment (F(1,712) = 56.49, 
p < .0001). Thus, in COMBINE there is a gain in power when controlling for baseline, which 
allows us to more confidently claim that there is an interaction between naltrexone and 
CBI. Also, we have evidence that individuals who drink more at baseline also drink more 
during treatment. The online materials show all results before and after controlling for the 
covariate. The increased power and precision of estimates of least square means is evident 
in this outcome. Note that in ANCOVA, if least square means are estimated and confidence 
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intervals constructed, this needs to be done at a pre-specified value of the covariate. By 
default the mean covariate value is used.

2.1.5 Summary

In summary, all methods for endpoint or change-point analysis are simple and results are 
easy to interpret. However, all such methods are vulnerable to large effects from missing 
values or imputation. If subjects with missing data are dropped from analysis, bias may 
be introduced as the reduced sample may no longer be representative of the population of 
interest. If missing data are imputed, as is most commonly used with last observation car-
ried forward, then bias is introduced because it is rarely the case that the last observation 
and the missing endpoint observation are the same. Regardless of whether there are miss-
ing data or not, efficiency and power are decreased in endpoint analysis because all inter-
mediate data points are ignored. Finally, patterns of change over time can’t be estimated 
with this simple form of analysis. Endpoint analysis is acceptable only in simple designs 
with baseline and endpoint observations when data are complete. Also, confidence inter-
vals, rather than hypothesis tests, should be used to explain significant overall tests, since 
they provide estimates of the magnitudes of effects.

2.2 Analysis of Summary Measures

The most commonly used summary measure in data sets with repeated measures is the 
mean over all repeated observations. For example, in COMBINE one of the primary out-
come measures was percent days abstinent, which is actually the mean of the binary mea-
sures of any drinking on each day over the entire study period. In imaging studies, often 
responses are averaged over regions of interest and the means in these regions are consid-
ered as the dependent measures in analyses.

In longitudinal data, summaries like the individual regression slopes over time can be 
directly analyzed with methods for independent data. For example, in the augmentation 
depression study individual slopes of change over time can be estimated and then com-
pared between groups using t-test or ANOVA. This approach ignores the uncertainty in 
the estimation of slopes and may lead to incorrect conclusions.

In laboratory studies, summary measures, such as peak response or area under the 
curve, may be of interest in order to characterize maximum achieved response and com-
bined intensity/duration of response. For example, in the study of menthol effects on nico-
tine reinforcement (Section 1.5.7) subjective effects can be characterized in terms of peak 
response or area under the curve during the infusion session. Depending on the goals of 
the study and the available data, univariate analyses of some of these summary measures 
may be appropriate.

2.2.1 Mean Response

One of the simplest summary measures for clustered or longitudinal data is the mean 
response over all repeated occasions. This is denoted as Y Y Y Y mi i i im= + + +( ... )/1 2  where m 
is the number of repeated occasions within the individual/cluster. Note that the summation 
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is over the repeated observations of the same individual, not across individuals. Also, the 
number of observations for each individual/cluster need not be the same. If the response 
does not change in a systematic way from occasion to occasion, then the mean, compared 
to individual measures, has the advantage of having smaller variance. It can also be calcu-
lated even if there are some missing data on individuals as long as each individual has at 
least one recorded value. Once individual means are calculated, methods for independent 
data such as t-test, ANOVA, or ANCOVA can be used to analyze the means.

However, when the response changes systematically, which is the case in almost all 
longitudinal data sets, then the individual mean is not a useful measure. For example, 
in the augmentation study of depression, HDRS scores change significantly from base-
line to endpoint. Taking their average does not provide information about change over 
time, which is of primary interest. Even in clustered data sets, taking the average over 
different occasions may not be very meaningful. For example, in the schizophrenia 
data set, we can calculate average percent signal change measures across several dif-
ferent regions, but each of these regions has its own mean and variance, and hence 
further averaging of the data across regions does not necessarily decrease variability 
of the data. Although specific region effects may not be of primary interest in the 
analysis, analyzing all repeated measures, rather than the mean, helps separate the 
different sources of variability and provides greater power to detect group differences. 
This is illustrated in subsequent chapters.

2.2.2 Slope over Time

One of the earliest approaches for analyzing change over time was estimating a slope for 
each individual and then using standard statistical techniques, such as t-tests or ANOVAs, 
to compare the slopes between groups. Slopes describe the constant rate of increase or 
decrease over time.

To illustrate, we consider the augmentation depression study. In the context of this study, 
each subject’s slope is estimated by fitting a separate simple linear regression model with 
HDRS score as the dependent variable, and week as a continuous predictor. Each of the 50 
individual models (one for each subject) has the following form:

 Y weekij i i ij ij= + +β β ε0 1  (2.1)

with the usual assumptions about independence and identical normal distributions of the 
errors. Separate intercept (βi0) and slope (βi1) is estimated from each model. The averages 
of the slope estimates of βi1 in the two treatment groups are then compared using t-tests. 
Figure 2.2 presents box plots of the slopes in the augmentation and control groups. On aver-
age, the slope estimates in the augmentation group are more negative than in the control 
group, suggesting faster rate of improvement over time on the augmentation treatment. 
The difference is statistically significant as indicated by a two-sample t-test comparison 
(t(48) = −2.20, p = 0.03). However, four of the subjects have HDRS measured at only two 
time points and these values entirely determine the individual slopes for these subjects. In 
these four cases, estimates of the uncertainty of the slopes are missing and the slopes may 
provide very poor prediction of future observations.

Furthermore, the uncertainties of the slope estimates of the other subjects are not taken 
into account in the t-test and thus the variance used in the t-test is often underestimated, 
thus potentially leading to an increase in type I error rate. It is possible to put differ-
ent weights on the slope estimates based on these uncertainties in order to correct the 
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two-group comparison. However, this is rarely done. The most appropriate approach 
for comparison of slopes is to fit mixed-effects models to the data that seamlessly take 
into account the uncertainty of the slope estimates. Details of this approach follow in 
Chapter 3.

2.2.3 Peak Response and Area under the Curve

In some studies, the maximum achieved response or a combined measure of intensity 
and duration of response may be of particular interest. In such cases, the correspond-
ing summary measure can be calculated for each individual and then statistical infer-
ence can be applied to this measure, as shown previously for mean and slope estimates. 
As an example, consider the human laboratory study presented in Section 1.5.7. In this 
study, nicotine is infused intravenously and a number of physiological and psycholog-
ical measures are collected repeatedly over time on each participant. The peak response 

Y Y Y Y Yi
p

i i im= −( )max( , , )1 2 0  and the area under the curve formed by connecting all repeated 
responses over the observation interval for an individual are two important summaries, 
which might be of primary interest for statistical analysis. If primary hypotheses are for-
mulated for these measures, then performing univariate analysis on these measures may 
be appropriate. 

For example, if one is interested in the maximum reduction in craving achieved after 
nicotine infusion in smokers, then peak change can be calculated and methods for uncor-
related data applied to make inferences. Or if one wants to estimate the overall effects 
of nicotine on drug liking measures, then the area under the curve can be calculated for 
each individual and confidence intervals or hypothesis tests for uncorrelated data can be 
performed.

However, peak response and AUC assess particular aspects of the response and do not 
provide information about other aspects (e.g., shape of response over time). They are also 
easily affected by missing data. Thus, if the goals of the study are broader and missing 
data are a concern, a more complete analysis of all repeated measures is preferred.
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FIGURE 2.2
Box plots of individual slopes of change in HDRS scores over time in the augmentation depression study.
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2.2.4 Summary

Similar to endpoint analysis, all methods for analysis of summary measures are simple, 
results are easy to interpret, but the methods may be vulnerable to large effects from miss-
ing values or imputation. Patterns of change also can’t be estimated with this simple form 
of analysis. Analyses of summary measures are appropriate only when a particular aspect 
of the data is of primary interest and when the uncertainty in the calculation of the mea-
sures is properly accounted for.

2.3 Univariate rANOVA Models

The simplest approach to analyzing all repeated measures on an individual, or within a 
cluster, is the univariate rANOVA model. This approach provides more complete descrip-
tion of the average pattern of change over time or within cluster than endpoint analysis 
and analysis of summary measures. In longitudinal data, the response over time may take 
a variety of shapes: for example, little or no improvement, steady improvement, larger 
improvement in the beginning followed by leveling off of the response, or a U-shaped 
curve. There may be the same total improvement between baseline and endpoint in differ-
ent treatment groups but faster response in one of the groups. In the latter case, endpoint 
analysis, even with complete data, will not find a difference while rANOVA may detect a 
statistically significant time by treatment effect.

However, rANOVA requires that correlations among measurements on the same indi-
vidual on any two occasions or correlations among measurements on different units 
within a cluster satisfy a restrictive condition called sphericity or circularity. Usually (but 
not always), this amounts to having equal variability of the measurements and equal cor-
relations between every two measurements within the same individual or cluster. While 
this assumption may be reasonable for clustered data, where units within a cluster may be 
considered interchangeable, it is rarely satisfied for longitudinal data where observations 
on the same individual that are closer in time are expected to be more highly correlated 
than observations that are further apart. Other assumptions of this approach are that all 
repeated measures are approximately normally (bell-shaped) distributed, observations on 
different individuals/clusters are independent of one another, and that individuals/clus-
ters are randomly sampled from the population. To apply rANOVA to a data set, we also 
need to have data on the same occasions for all individuals in the sample (i.e., balanced 
design). When there are missing data on an individual, usually all the data on this indi-
vidual are dropped from the analysis.

We focus on the rANOVA approach with one between-subject factor (referred to as 
group) and one within-subject factor (referred to as time). We also use the augmentation 
depression study as a simple example with longitudinal data. In this study, group is a 
between-subject factor because its levels vary between subjects. That is, each subject 
is assigned to a particular group and stays in that group for the purposes of analysis 
throughout the study. Time, on the other hand is a within-subject factor, which means 
that its levels vary within individual. That is, repeated observations on an individual 
are taken at multiple time points. This distinction is important because in rANOVA 
models different error terms are used to test hypotheses relating to between-subject 
factors and within-subject factors. This distinction carries into all further methods for 
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repeated measures that are considered (rMANOVA, mixed models, and non-parametric 
methods).

In this situation with one between-subject and one within-subject factor, the rANOVA 
model can be formulated as shown below for observation j on subject i in group t:

 Y bij t j tj i ij= + + + ( ) + +µ α β αβ ε ,  

where μ is the overall mean, αt is the effect of group t, βj is the effect of time j and (αβ)tj is 
the interaction between group t and time j. The random subject effect b i i d Ni b~ . . . ,0 2σ( )  
introduces correlations between the repeated observations on the same individual and 
is independent of the errors εij ~ i.i.d.N(0,σ2). The variance σb

2 captures the variability in 
responses between subjects while the variance σ2 corresponds to the variability unac-
counted for by differences between subjects. Here i.i.d. is an abbreviation for independent 
and identically distributed and it means that the random effects for different subjects are 
independent of one another and have the same statistical distribution, and that the errors 
of all observations that capture residual variability are independent and have the same 
statistical distribution. The means of both normal distributions are zero and each has a 
distinct variance to be estimated from the data.

With one between-subject factor and one within-subject factor, there are three hypoth-
eses of primary interest: testing the interaction between the two factors (i.e., whether all 
(αβ)tj are zero) and testing the main effect of each factor (group and time). In the con-
text of the depression study, the test of the interaction between group and time shows 
whether the patterns of average response over time in the two groups are significantly 
different. The test of the main effect of time shows whether there is significant change 
over time when observations at each time point are averaged across groups, and the test of 
the main effect of group shows whether there are significant differences between groups 
when all repeated observations over time are averaged within group. If there are addi-
tional between-subject or within-subject factors, all additional main effects and all pos-
sible interactions among factors are tested too.

Unlike the usual ANOVA model, where all observations are assumed to be independent 
of one another, the rANOVA model usually assumes that the variances on all occasions 
are the same Var Yij b( ) = +( )σ σ2 2 and that the correlations between all repeated observa-
tions within individual are the same Corr Y Yij ik b b,( ) = +( )( )σ σ σ2 2 2/ . Note that the correla-
tion between repeated observations on the same individual is due to the shared random 
effect for subject. This is the compound symmetry assumption and it follows from the model 
definition above. This compound symmetry assumption is a special case of the sphericity/
circularity assumption, which states more generally that the variances of the differences 
between any two observations within individual are the same. The sphericity assump-
tion is tested by Mauchly’s test, but the test is not considered very useful since in small 
samples it tends to miss sphericity violations while in large samples it is often significant 
even for trivial violations of sphericity. Thus, a more practical approach to dealing with 
deviations from sphericity is to apply one of the two widely available corrections to the 
degrees of freedom of the tests of the within-subject factors in rANOVA: the corrections of 
Greenhouse and Geisser (1959) or Huynh and Feldt (1976). They adjust the tests by reduc-
ing the numerator degrees of freedom so that the p-values are usually adjusted upward 
and type I error is closer to the target level when sphericity is violated. Both tests correct 
the type I error rate when there is serial correlation in the data (observations closer in time 
are more highly correlated than observations further apart) but the Greenhouse-Geisser 
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also corrects when the variability of the measurements increases over time but the correc-
tion tends to be very conservative.

The data structure in rANOVA can be in the long format or in the wide format, depend-
ing on which statistical program and module is used for data analysis. The long format 
means that each repeated observation is in a separate row of the data set and implies that 
there are as many rows per individual as there are repeated occasions. Table 2.5 repre-
sents this structure. In the augmentation depression example, the last column contains the 
corresponding HDRS measures for each subject and occasion. This representation is also 
known as the univariate repeated measures structure.

The wide format, where all repeated observations on an individual are included in the 
same row but in different columns, also known as the multivariate repeated measures struc-
ture, is presented in the next subsection as it is a requirement for the use of the repeated 
measures MANOVA considered therein. More details on data format for rANOVA (and 
also for rMANOVA considered in the next subsection) can be found in Hedeker and 
Gibbons (2006). In the online materials we illustrate how data sets can be restructured 
from the long to the wide format and vice versa and how either format can be used for 
rANOVA analysis in SAS.

We fit the rANOVA model to the depression severity ratings in the augmentation study 
in depression data and obtain the results shown in Table 2.6. The results show that the 
interaction between group and time is not statistically significant according to the F-test for 
this effect (F(6,198) = 0.37, p = 0.90, G-G adjusted p-value = 0.78, H-F adjusted p-value = 0.80). 
Thus there are no significant differences in the patterns of mean change over time in the 
two groups. The main effect of group is also not statistically significant (F(1,33) = 1.45, 
p = 0.24). However, there is a statistically significant effect of time (F(6,198) = 75.49, p < .0001, 
G-G adjusted p-value < .0001, H-F adjusted p-value < .0001). We already know that HDRS 
scores in both groups decrease significantly over time from the graphical representation 
of the data in Chapter 1. Figure 1.5 shows raw means and standard errors but a similar 
plot of least square means (the estimated means on each occasion for each group, which 
may differ from the raw means because of missing values) and their standard errors shows 
the same trend. Since the interaction between group and time is not significant, post hoc 
comparisons by time point are not performed. If the interaction was significant, separate 
comparisons between the groups at each time point would have allowed us to identify 

TABLE 2.5

Univariate Structure of a Repeated Measures Data Set

Subject id Occasion

Group (or other 
between‑subject 

predictor) Response

S001 1 1 Y11

S001 2 1 Y12

S001 3 1 Y13

….. …. …. ….
S002 1 2 Y21

S002 2 2 Y22

….. …. ….. …..
S003 1 1 Y31

….. …. ….. …….
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when the two groups had significantly different response. The significant main effect of 
time could be further investigated by testing hypotheses of linear and quadratic trend 
over time, or comparing each subsequent time point to baseline. We discuss such post hoc 
tests in more detail in the following chapters of the book, in the context of the more general 
mixed models.

Note that only 35 of the 50 subjects are used in the rANOVA analysis of the depression 
example. This is because the remaining 15 subjects have at least one missing value over 
time. This leads to a decrease in power and potential bias in the analysis. While it is pos-
sible to perform data imputation and then fit rANOVA models on the imputed data set, a 
more straightforward and fully efficient approach is to use mixed models, which use all 
available data on an individual.

This illustrates that similar to endpoint analysis, rANOVA may be severely affected 
by missing values or imputation. Most statistical packages automatically drop subjects 
with even one missing observation from the analysis and researchers may use imputa-
tion of missing data without acknowledging it. As explained previously, omission of 
subjects can introduce sample bias, as the group of people with complete data may not 
be representative of the entire population. Imputation by using the last available obser-
vation on each subject in place of all subsequent missing observations leads to biased 
treatment estimates usually (but not always) in the direction of making them more con-
servative. Another disadvantage of rANOVA is that repeated observations need to be 
made on the same occasions. For example, individuals need to be assessed at the same 
points in time.

However, rANOVA may be entirely appropriate for clustered data where the sphericity 
assumption is approximately satisfied and there is no missing data.

2.4 Multivariate rMANOVA Models

Unlike rANOVA, the multivariate approach to repeated measures (rMANOVA) does 
not impose any restrictions on the patterns of means, variances, and covariances of the 
repeated observations within individual or cluster. This approach is also known as mul-
tivariate growth curve analysis. Like rANOVA, it assumes that all repeated measures are 
approximately normally (bell-shaped) distributed, observations on different individuals/
clusters are independent of one another, individuals/clusters are randomly sampled from 
the population, and the repeated observations are taken on the same occasions for all indi-
viduals. When there are missing data on an individual, this individual is dropped from 
the analysis.

TABLE 2.6

Repeated Measures ANOVA Analysis of Augmentation Depression Study

Test Statistic p‑Value
Greenhouse‑Geisser 

Adjusted p‑Value
Huynh‑Feldt 

Adjusted p‑Value

Group F(1,33) = 1.45 0.24 — —
Time F(6,198) = 75.49 < .0001 < .0001 < .0001
Group by time F(6,198) = 0.37 0.90 0.78 0.80
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In the rMANOVA approach, the entire set of repeated observations on the same indi-
vidual is considered as a multivariate response. The mean values of this response can be 
expressed in the same way as in rANOVA (as effects of group, time, group by time in the 
case of one between and one within-subject factor). However the errors within individual 
(and hence the repeated observations for an individual) have multivariate normal distri-
bution. This is denoted as (εi1,εi2,…εiJ) ~ i.i.d.MVN(0,Σ), where the errors are randomly dis-
tributed around 0 on each occasion and the variance–covariance matrix Σ is expressed as

 Σ =
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The variances of the response on the different occasions are on the main diagonal of this 
matrix (σ11,σ22,…,σjj) and the covariances σ kl between any two repeated observations are in 
the off-diagonal elements. The element in row k and column l of Σ is the covariance between 
the observations on occasions k and l within the individual/cluster: σ kl = Cov(εik,εil). Note 
that cov corrik il ik il kk llε ε ε ε σ σ, ,( ) = ( )  so there is direct correspondence between the covari-
ance between two observations and the correlation. Correlations are bounded by 1 and −1, 
while the magnitudes of the covariances depend on the magnitudes of the variances. The 
variance–covariance matric is symmetrical so the elements in the lower left of the matrix 
are mirror images of the elements in the upper right with the diagonal from upper left to 
lower right as the “mirror” (that is σkl = σlk).

The rMANOVA approach requires that the data are structured in the wide format rather 
than the long format. This is the multivariate representation of repeated measures data and it 
requires that all data on an individual are in the same row of the data set. Table 2.7 shows 
how this is done. SAS code to transfer from one format to another is included in the online 
materials and more details can be found in Hedeker and Gibbons (2006). In the multivari-
ate format the response on each occasion is coded in a different variable and is in a differ-
ent column of the data set. In the context of the augmentation depression study this means 
that there are seven different columns with HDRS scores of the subjects at baseline and the 
six post-baseline assessment points.

The rMANOVA model is actually equivalent to the most general mixed-effects model 
for complete data (to be introduced in Chapter 3), since no restrictions are imposed on the 
variances and correlations of the repeated observations. This approach is often preferable 
to the rANOVA approach because of the lack of restrictions. However, it requires complete 
data on all subjects and, like rANOVA, can show significant loss of power and sample bias 
if individuals with missing data are dropped from the analysis. Imputation of missing 
observations also usually leads to conservative estimates and rMANOVA is less powerful 

TABLE 2.7

Multivariate Structure of a Repeated Measures Data Set

Subject id

Group (or other 
between‑subject 

predictor) Response1 Response2 …. Responsem

S001 1 Y11 Y12 …. Y1m

S002 2 Y21 Y22 …. Y2m

S003 1 Y31 Y32 …. Y3m

….. …. ….
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than rANOVA when the sphericity assumption is approximately satisfied. rMANOVA may 
not work in small samples when the number of repeated observations is large as there are 
too many parameters to be estimated (all parameters describing the means, and also all 
variances and correlations).

In rMANOVA, the same set of hypotheses can be tested as in rANOVA. In the context of 
the augmentation study in depression, these are the interaction between group and time, 
and the main effects of group and time. There are several different multivariate test sta-
tistics for testing the effects of the within-subject factors and the interactions of between-
subject and within-subject factors (Wilks’ Lambda, Pillai’s Trace, Hotelling-Lawley Trace, 
Roy’s Greatest Root) but they all are converted to an F-statistic. In simple designs they all 
lead to the same F-value and p-value.

In the augmentation depression study, all four tests of the interaction between treatment 
group and time result in a non-significant p-value (F(6,28) = 0.51, p = 0.79). All four tests of 
the main effect of time show a significant effect of time (F(6,28) = 26.99, p < .0001). There is 
also no significant effect of group (F(1,33) = 1.45, p = 0.24). Note that the test of the group 
effect in rMANOVA is exactly the same as the test of the group effect in rANOVA. That is, 
the procedure for testing the effects of between-subject factors does not vary whether the 
univariate or the multivariate approach to repeated measures analysis is taken.

In general, the rMANOVA approach is preferable to the rANOVA approach when there 
are sizeable differences in the variances and correlations between repeated observations 
and when the number of observations within the individual/cluster is relatively small 
compared to the number of individuals in the sample.

2.5 Summary

Traditional methods for analysis of longitudinal and clustered data include analysis of 
summary measures, endpoint and change-point analysis, rANOVA, and rMANOVA mod-
els. Summary measures, such as means, AUCs, peak change, or slope, may be appropriate 
if one is interested only in the particular aspect of data. However, missing data may intro-
duce sample bias if subjects with missing data on key occasions are dropped from analysis 
and may lead to loss of efficiency in statistical estimation and inference.

Endpoint analysis for longitudinal data has been traditionally used because of its ease 
of interpretation and implementation. However, it ignores all intermediate data and hence 
can’t be used to estimate trends over time. Furthermore, it suffers even more from the 
effects of missing data than analyses of summary measures and is not as efficient. If analy-
sis is done only on these subjects who have been measured at the last time point, then the 
sample may not be representative of the population and serious sample bias may occur. If 
the analysis is performed with some simple imputation method, such as last observation 
carried forward, there is a serious risk of estimation bias. Thus, endpoint analysis can yield 
misleading results, especially regarding comparisons between treatment groups, when 
dropout rates differ between the groups. Univariate and multivariate methods for repeated 
measures analyses based on rANOVA and rMANOVA, respectively, use information from 
all occasions and allow testing of hypotheses regarding change over time or pattern of 
responses within the cluster or individual. With complete data and balanced designs, 
these methods provide valid tests of main effects and interactions. However, these meth-
ods are not appropriate when assessment occasions are different for different individuals, 
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lose power, and may produce biased results in the presence of missing data. rMANOVA 
also can’t be used when there are too many repeated occasions. In general, rANOVA is 
preferable to rMANOVA when the sphericity/circularity assumption is approximately sat-
isfied. However, both methods are focused on hypothesis testing of group effects. Both 
rANOVA and rMANOVA are special cases of mixed-effects models, which provide much 
greater flexibility in modeling longitudinal and clustered data.
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3
Linear Mixed Models for Longitudinal 
and Clustered Data

The ANOVA-based approaches for analysis of data from Chapter 2, focus on average 
response, require balanced designs and complete data, and either make an overly simpli-
fying assumption about the correlations between repeated measurements or estimate a 
full set of variances and covariances. These features severely limit the situations when tra-
ditional ANOVA-based approaches provide valid results. In this chapter, we explain how 
linear mixed models overcome these limitations and provide a very flexible framework for 
the analysis of longitudinal and clustered data.

The assumption that all individuals follow the same average response is overly strin-
gent, especially in the context of longitudinal data where individual responses may be 
higher or lower than the average response at baseline and the individual rates of change 
over time may also be higher or lower than the average rate of change. When the response 
over time can be approximated by a straight line, this situation can be described by one of 
the simplest random effects models: a model with a random intercept (response at baseline) 
and a random slope (rate of change over time). Figure 3.1 shows hypothetical data on five 
individuals generated from a random intercept and random slope model. Dashed lines denote 
individual responses over time while the solid line denotes the average response over 
time. Three of the individuals start higher than the average response, and all but one of 
the individuals shows decrease over time. The rates of change vary considerably around 
the mean rate of change. 

The random intercept and slope model is a fairly simple model, but based on the same 
principle, one can describe more complicated patterns of change over time. For example, 
adding a quadratic random effect allows to model J- or U-shaped change over time. Note 
that, unlike the ANOVA approaches we considered in the previous chapter, random effects 
models do not require repeated observations to be made at the same time points for all 
individuals. With random effects it is possible to model individual response data mea-
sured at unique or partially overlapping sets of time points. 

In the random effects approach, the individual random effects imply a certain correla-
tion pattern between repeated observations within subject. However, it is also possible 
to model different variance–covariance structures of the repeated observations within 
individuals directly and to use the data to estimate the parameters describing the vari-
ances and covariances. Such models are known as covariance-pattern models. The rANOVA 
model is the simplest covariance-pattern model with equal variances across time points 
and equal correlations between repeated observations on the same individual at any two 
time points. The rMANOVA model is the most unrestricted covariance-pattern model as 
it assumes different response variance at each observation occasion and different covari-
ances between responses at any two occasions. Other structures are possible, for example, 
decreasing correlations with increasing time lag. 

While the name “mixed effects” comes from the combination of random and fixed effects 
in the model specification, for normally distributed data covariance-pattern models are 
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usually fit using the same software as random effects models, even if random effects are 
not specified. In this chapter, we consider random effects, covariance-pattern models and 
combinations thereof as different subclasses of mixed-effects models. Combining random 
effects and different covariance patterns leads to an incredible variety of mixed models 
that can describe a wide range of scenarios. This flexibility of modeling the correlation 
structure of the data is one of the main advantages of mixed models. 

All models considered in this chapter are linear mixed models (LMM) (Harville, 1977; 
Laird and Ware, 1982) because the expression that describes the response is a linear func-
tion of the regression coefficients (whether fixed and/or random). In these models, the 
response is assumed to be normally distributed. Extensions of this approach to binary 
data, count data, and other outcomes in the exponential family (McCullagh and Nelder, 
1989; Agresti, 2015). are considered in Chapter 4. Non-linear mixed- effects models are not 
considered in this book and interested readers are referred to Davidian and Giltinan (1995) 
and Vonesh and Chinchilli (1997).

In addition to flexibility in modeling the correlation structure of the data and ability to 
account for both balanced (i.e., with the same set of observations points for each individual) 
and unbalanced (i.e., with different observations points for different individuals) designs, 
another major advantage of LMM is how they handle missing data. Specifically, the mixed-
effects approach does not require a complete set of observations on each individual, rather, it 
uses all available data on each individual. If a participant drops out of the study, all the data 
collected up to the time of dropout are used in the model fitting. If a subject has intermittent 
missing data, or subjects/clusters have different numbers of repeated observations, again 
all available data are used. Furthermore, in scenarios with missing data when the model is 
approximately correctly specified and missingness is random (i.e., whether an observation 
is missing depends only on the observed data and not on the actual unobserved values, to 
be discussed in more detail in Chapter 7), the obtained parameter estimates and the cor-
responding statistical inferences are unbiased and maximally efficient. These properties, 
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FIGURE 3.1
Profile plot of hypothetical data generated according to a random intercept and random slope model. The five 
dashed lines correspond to responses over time of five hypothetical subjects. The solid lone shows the average 
response over time.
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together with the flexibility of modeling the correlation structure and the wide availability 
of software for fitting LMM, is the basis of the current popularity of mixed-effects models 
as the preferred approach for the analysis of longitudinal and clustered data. 

In this chapter, we explain how to specify the different aspects of LMM. First, we focus 
on describing the average response with emphasis on modeling of the time trend in 
longitudinal studies. Situations when time is treated as a categorical and as a continuous 
predictor are considered. Second, we introduce random effects as a way of accommodat-
ing individual variations around the average trend and describe the implied correlations 
between repeated measures on the same individual due to the random effects. Third, we 
show how the variance–covariance structure of repeated observations can be specified 
directly by assuming different patterns and estimating the parameters of these patterns, 
based on the data. Several data examples are considered with focus on interpretation of 
results. We also briefly consider estimation, assessment of model fit, and selection of the 
best-fitting model. Throughout this chapter, we focus on quantitative response that is either 
approximately normally distributed or can be transformed to normality. Data sets, SAS 
code, and output for the considered data examples are available online. We keep the expo-
sition at a non-technical level. Other non-technical descriptions with focus on psychiatry 
and mental health applications can be found in Gibbons et al. (1993) and Gueorguieva 
and Krystal (2004). Technical details can be found in Laird and Ware (1982), Ware (1985), 
Longford (1993), Lindsey (1999), Diggle et al. (2002), and Fitzmaurice et al. (2009), among 
others. 

3.1 Modeling the Time Trend in Longitudinal Studies

This section shows different ways to model the average pattern of change over time. The 
primary focus is on situations with planned data collection at particular time points for all 
individuals, since in such balanced designs time can be treated either as a categorical or 
a continuous predictor. When individuals are observed at unique time points, time needs 
to be treated as a continuous predictor in order to be able to describe change over time. 
Such situations are considered in more detail in other books (Hedeker and Gibbons, 2006; 
Weiss, 2005). Note that when the design is unbalanced, the time points at which individu-
als are observed are assumed to be independent of the responses and random effects. If, on 
the other hand, observations are taken “as needed,” i.e., driven by previous observations, 
bias can occur if the data are analyzed as is. 

For simplicity of presentation, we again consider a simple situation with one between-
subject factor (treatment group) and one within-subject factor (time) and use the augmen-
tation depression study from Chapter 1 for illustration on modeling of time trends. As a 
reminder, in this study two groups of patients were randomized either to a standard or 
to an augmentation treatment and depression severity was assessed once per week for six 
weeks after baseline. In the previous two chapters, we already presented two specifica-
tions of the average response for this example. In Section 1.7, we specified that the aver-
age response over time depended on the main effects of group, time, and the interaction 
between group and time where time was treated as a continuous predictor. The expression 
for the average Hamilton Depression Rating Scale (HDRS) response (denoted as Y in order 
to show how the model generalizes to other data sets, averaged over individuals in the 
same group) is as follows:
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 { } = β + β + β + β ×E Y Group Time Group Timeij i j i j0 1 2 3  (3.1)

Here, all predictors are fixed and the beta coefficients are fixed (unknown) parameters 
that describe the effect of group and time on average response. Interpretation of these 
coefficients was considered in more detail in Section 1.7. Implicit in this specification is 
that the average response changes linearly over time (i.e., the rate of change from week 
to week is the same). However, closer examination of Figure 1.5 shows some curvature of 
change in HDRS scores over time with greater initial improvement followed by decreased 
rate of change. Thus, it is possible that an addition of a quadratic term may more closely 
approximate the average response over time. This would lead to the following expres-
sion for the average trend where the group is coded as 1 for the active group and 0 for the 
control group and time takes values of 0 through 6, corresponding to baseline and post-
randomization week, respectively:

 E Y Group Time Group Time Time Groupij i j i j j{ } = + + + × + +β β β β β β0 1 2 3 4
2

5 ii jTime× 2  (3.2)

Two terms are added to the model: a quadratic effect of time and an interaction between 
group and the quadratic effect of time. As a result, two additional parameters need to be 
estimated, compared to the linear model (β4 and β5), that allow for different amounts of 
curvature in the two treatment groups. The expression for the quadratic model implies 
that the average HDRS score over time in each group can be described as part of a para- 
bola. Figure 3.2 shows the resulting curves from the linear model and the quadratic model 
fit to the data, and their correspondence to the raw means by time point in the augmenta-
tion depression data set. From the top panel of Figure 3.2, we see that the linear model 
overestimates the average HDRS score in both groups during weeks two and three and 
slightly underestimates the average HDRS score in the augmentation group at week six. 
The quadratic model from the bottom panel of Figure 3.2 shows a very good fit to the raw 
means in the augmentation group but somewhat overestimates the average HDRS score in 
the control group at the end of the study. Since some patients in the study possibly drop 
out because of lack of efficacy, especially in the control group, it is feasible that the true 
underlying response at the end of treatment is more in line with the quadratic model than 
with the linear trend or even the raw mean trend. The raw means are calculated only based 
on the available measurements of subjects who have data at each particular time point and 
thus may be biased toward better response if subjects with worse outcome selectively drop 
out. However, the prediction of the quadratic model at endpoint is the least precise and it 
is quite possible that the parabola is forced to curve in a certain way by a model that may 
not fit very well. We delay discussion of model fit and assessment of goodness of fit until 
subsequent sections. For now, we just illustrate the complexity of interpretation of time 
effects even in relatively simple models. The quadratic model appears to fit the average 
trend over time in HDRS scores a little bit better than the linear model, since there is an 
initial sizeable response and then gradual slowing down of improvement. 

While in the linear model the beta coefficients β2 and β3 are interpreted as the average 
rate of change in HDRS scores in the control group per week, and the difference in the 
average rate of change per week in the active group, compared to the control group, respec-
tively, in the quadratic model the same coefficients no longer have the same meaning since 
the rate of change is not constant. Rather, the three coefficients (intercept β0, linear β2 and 
quadratic β4) describe the parabola over time for the control group (because Group = 0 for 
subjects in the control group). The linear β2 and quadratic β4 determine where the parabola 
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for the control group achieves its minimum or maximum and the intercept β0 shows the 
average HDRS score at week 0 for the control group. To get the corresponding numbers 
for the active group (coded as Group = 1), one needs to add the regression coefficients in 
front of the corresponding terms involving the group factor. Thus, β0 + β1 is the intercept, 
β2 + β3 is the slope, and β4 + β5 is the quadratic term for the active group. Note that in this 
particular example, the intercepts for each group can be interpreted since they correspond 
to the average HDRS score at baseline. But depending on how time is coded (e.g., the first 
time point may be time 1), the intercept may not be interpretable since it is outside of the 
range of the data. Sometimes, the time variable is centered by subtracting the average time 
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FIGURE 3.2
Raw (solid line) and estimated (dashed lines) mean HDRS scores over time based on liner (on the left) and qua-
dratic (on the right) model in the augmentation depression study.
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point (week three, in this particular example) and then the intercept is interpreted as the 
average response at this mid time point. More information on the benefits of centering 
with examples can be found in Hedeker and Gibbons (2006). 

Both the linear and the quadratic models are special cases of polynomial models. The linear 
model is a polynomial model of the first degree and the quadratic model is a polynomial 
model of the second degree. The degree refers to the highest power of time in the expres-
sion for the average response (first degree in the linear, and second degree in the quadratic 
model). If we add terms with higher powers of time to the models above (time cubed, time 
to the fourth power, and so on), we allow the trend over time to go up and down and to 
have inflection points. Note that in order for the model to be well-defined, we must include 
all sequential degrees in the model. For example, if the highest degree in the model is third 
then we should have terms of second and first degree and an intercept in the model. 

It is a well-known mathematical fact that a polynomial of nth degree can go through 
(n + 1) pre-specified points and thus we can perfectly describe the means over time in any 
situation with a fixed set of observation times with a polynomial of a sufficiently high 
degree. However, the predictions of the average response, with such a high degree poly-
nomial in between points, are highly inaccurate as the polynomial is forced to wiggle 
extensively in order to perfectly match the means at the pre-specified time points. In prac-
tice, usually the highest degree that is considered is quadratic, although a polynomial of 
third degree can occasionally be encountered. Information about polynomial models and 
the use of orthogonal polynomials (centered and rescaled polynomials) can be found in 
Hedeker and Gibbons (2006). More sophisticated models for describing change over time 
are based on piecewise approximations to different time windows called splines. Consult 
Weiss (2005) for a fairly non-technical description and Fitzmaurice et al. (2009) for more 
technical details.

Curvilinear trends over time can also be accommodated by transforming the time vari-
able and then fitting a straight line model. For example, one can take natural log of time 
and fit a linear model with log-transformed time, rather than time as a predictor. Note 
that logarithmic transformation can be applied only to positive values. Thus, if zeros are 
used to code time on some occasions (which is usually the case when baseline is included), 
a small constant may need to be added to all the time points before applying a logarith-
mic transformation. In the augmentation depression study, the linear predictor with time 
transformed using natural log is as follows:

 E  log logY Group Time Group Timeij i j i j{ } = + + + ×β β β β0 1 2 3( ) ( ) (3.3)

Since baseline is coded as time 0, we add 1 to all time points before taking natural log. 
We choose 1 because this constant keeps baseline coded as 0. The rest of the time points 
are small positive numbers. Log-transforming time and then fitting a linear model may 
appear unnatural but it does in fact describe reality reasonably well in many longitudinal 
studies (especially clinical trials) where there might be an initial fast change in outcome 
and then slowing down as response/remission status is reached or further improvement 
is not likely/possible. 

Figure 3.3 shows the estimated average response from Equation 3.3 applied to the aug-
mentation depression study. The top panel of the figure has log-transformed time on the 
horizontal axis and on this time scale the average response in both groups appears as a 
straight line. However, the lags between successive time points vary so that later time 
points appear to be closer together. This panel represents exactly how the average response 
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was modeled. However, it is not as easily interpretable as the panel on the bottom, which 
shows the exact same fit but has the original time scale on the horizontal axis. Although 
only an intercept and a slope are included in the expression for the mean, the graph shows 
curvature on the original scale, which is due to the transformation of time prior to enter-
ing it in the model. At least, by visual inspection the model with log-transformed time 
provides a very similar fit to the data as the quadratic model considered previously. This 
illustrates how different models can provide almost the same fit to the raw data. Selection 
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FIGURE 3.3
Raw (solid line) and estimated (dashed lines) mean HDRS scores over time based on liner model with long-
transformed time in the augmentation depression study. On the top the horizontal axis in nature log trans-
formed time, on the bottom the horizontal axis is time (in week).
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of the best model is usually based not only on statistical considerations but on practical 
considerations related to interpretability.

We now turn our attention to incorporating individual variability around the time trend 
in the models.

3.2 Random Effects for Individual Variability in Response

The primary focus in many longitudinal studies is estimating the average trend and test-
ing the effects of predictors on this trend. However, it is also important to properly account 
for individual variation in participant response and sometimes estimation and prediction 
of individual response is of interest in itself. An intuitively appealing approach to dealing 
with this issue, is to introduce random effects in the model formulation that describe the 
inter-individual variability. To illustrate the concept, we continue working with the aug-
mentation depression study as a simple example and initially assume a linear trend over 
time. That is, we consider Equation 3.1 for the average trend. 

3.2.1 Random Intercept Model

The simplest random effects model is the random intercept model. It is specified as follows: 

 Y Group Time Group Time bij i j i j i ij= + + + × + +β β β β ε0 1 2 3 ,  (3.4)

where bi denotes the random intercept for subject i and is assumed to be normally dis-
tributed with mean 0 and unknown variance σb

2  (i.e., b i i d Ni b~ . . . ,0 2σ( ) ) to be estimated 
from the data. The parameter σb

2  describes the between-subject variability in the data. The 
random effects bi are assumed to be independent of the random errors ɛij, which describe 
the residual variability in the responses at the jth occasion for the ith subject (in addition 
to what is accounted for by the average trend and the systematic individual deviation 
from the average trend represented by the random intercept). In the simplest case, the 
errors are also assumed to be independent and normally distributed with equal variance 
(i.e., ɛij~i.i.d.N(0,σ2)). We consider different structures of the errors in the next subsection 
of this chapter. 

The random intercept model has an intuitive interpretation. It assumes that individu-
als vary around the average trend in a systematic way. If bi is positive, then the responses 
of the ith individual are likely to be above the average for the group to which the subject 
belongs. If bi is negative, then the responses of the ith individual are likely to be below the 
average of the group. The larger bi is, the further above the average the observations for 
this subject are. Since there are also random errors, the individual responses over time 
do not all fall on parallel lines to the average trend, but fluctuate up and down around 
subject-specific parallel lines away from the average. When the errors are independent 
of one another, the deviations from the straight subject-specific line are random and do 
not depend on one another. Figure 3.4 shows a schematic with hypothetical data for two 
individuals (one with a positive random intercept and one with a negative random inter-
cept). The circles represent the observed response values at each of four time points. The 
dashed lines correspond to the individual trends for each of the two subjects. The trends 
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are parallel to the average trend but the trend for the first individual (with a positive ran-
dom intercept) is above the average trend, while the trend for the second individual (with 
a negative random intercept) is below the average trend. 

The normal distribution assumption of the random intercepts, with zero mean and 
constant variance, implies that the individual intercepts are equally spread and centered 
around 0, forming a bell-shaped distribution when plotted with a histogram. Note that 
since the random intercept is an additional random variable that is added to the model 
and it is assumed uncorrelated with the errors, the variance of an individual response is 
the sum of the variance of the random intercept and the variance of the random errors: 
Var Yij b( ) = +σ σ2 2.  The random intercept model with i.i.d. errors also implies that the cor-
relation (and the covariance) between any two observations Yij and Yik on the same indi-
vidual is the same. In fact, 

 Cov Y Yij ik b, ,( ) = σ2  

 , .Corr Y Yij ik
b

b
( ) =

+
σ

σ σ

2

2 2  

This is the compound symmetry assumption that we discussed in Chapter 2, in the context 
of rANOVA, with the added restriction that the covariance and correlation can’t be nega-
tive since the variance of the random intercept σb

2  can’t be negative (although it can be 0 
if individual responses do not vary systematically from the average trend). We previously 
discussed that the compound symmetry assumption may hold for clustered data where 
the observations within the cluster are considered inter-chargeable, but is rarely satisfied 
for longitudinal data. While rANOVA provides a way of correcting the tests of the effects 
of the within-subject factors for deviations from this assumption, there is no such correc-
tion in the mixed model. Hence, the random intercept model should be chosen only if data 
conform reasonably well to the assumption of compound symmetry. If this is the case, the 
random intercept mixed-model approach is preferable to the rANOVA approach, since all 
available data on an individual are included in model fitting and thus the sample needs 
not be restricted only to individuals with complete data. More flexible mixed models are 
necessary when the compound symmetry assumption is not satisfied. 
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FIGURE 3.4 
Hypothetical trends and observations of two individuals with response changing according to a random inter-
cept model.
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The correlation between any two repeated observations, within individuals or clusters 
Corr(Yij,Yik), is one of the simplest measures of intra-class correlation (ICC). It is the ratio of 
the variance of the random intercept to the total variance of the response and is referred 
to as the proportion of variance (unexplained by fixed predictors) due to between-subject 
variability. The ICC is a commonly used measure of test-retest reliability for quantitative 
variables when the same instrument is administered repeatedly to the same individuals. 
High values of ICC (i.e., values close to 1) mean that the subject’s repeated responses are 
consistent with one another and hence the instrument that is evaluated is reliable. Low 
values of ICC mean that there is considerable variability in repeated responses of the same 
subject and hence the instrument is not reliable. More information on ICC can be found in 
Snijders and Bosker (2012) and Muller and Buttner (1994). 

3.2.2 Random Intercept and Slope Model

In longitudinal data, subjects often not only start higher or lower than the average trend, 
but the rate of change is faster or slower than the average rate of change. To accommodate 
such a scenario, a random slope can be added to the model specified above. Thus, we con-
sider the random intercept and slope model:

 Y Group Time Group Time b b Timeij i j i j i i j ij= + + + × + + +β β β β ε0 1 2 3 0 1 .  (3.5)

The only difference between this model and the random intercept model in Equation 3.4, 
is the addition of the random slope term bi1Timej. Here, bi1 is the random slope and like the 
random intercept bi0, it is assumed to be normally distributed with mean 0 and constant 
but unknown variance (to be estimated from the data). Since the random slope and the 
random intercept can be correlated, it is assumed that the two have a multivariate normal 
distribution (bi0,bi1)~MVN(0,Σb) where

 ∑ =








b

b

b

σ σ
σ σ

0
2

01

01 1
2 .  

The diagonal elements of Σb (namely σb0
2  and σb1

2 ) are the variances of the random inter-
cept and the random slope, respectively, while σ01 is the covariance between the random 
intercept and the random slope. The covariance is related to the correlation ρ between 
the random intercept and the random slope as follows: σ01 = ρσb0σb1. In some programs, 
the random intercept and the random slope are assumed to be uncorrelated by default. 
This may be a restrictive assumption for some data and, in general, needs to be checked 
by comparing the fit of a model in which the random intercept and slope are correlated to 
the fit of a model in which they are not correlated. Assessment of model fit is considered 
further in this chapter.

Figure 3.5 shows a schematic with hypothetical data for two random individuals (one 
with a positive random intercept and steeper slope, and one with a negative random inter-
cept and flatter slope). The circles represent the observed response values at each of four 
time points. The dashed lines correspond to the individual trends for each of the two sub-
jects. Unlike the situation described in Figure 3.4, here both the intercepts and the rates of 
change of the two individuals differ from the corresponding means, and the individual 
trends are no longer parallel to the average trend. The assumption about normal distri-
bution of the random intercepts and slopes, means that the individual intercepts form a 
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bell-shaped distribution around the average intercept, so that about half of the individual 
intercepts are above the average and half are below, and most of the individual intercepts 
are within two standard deviations of the average intercept. Similarly, individual slopes 
form a bell-shaped distribution around the average slope. 

If the correlation between the random intercept and slope is negative, then subjects with 
larger intercepts (i.e., subjects who are initially above the average) have smaller slopes and 
subjects with smaller intercepts have larger slopes. The two left panels of Figure 3.6 illus-
trate negative correlations between the random intercept and slope when the slopes are, 
in general, negative (on the top), and when the slopes are, in general, positive (on the bot-
tom). Note that in most longitudinal studies, one would expect to see negative association 
between the intercepts and slopes because of the phenomenon known as regression to the 
mean. Individuals who are further away from the mean at one point in time, are expected 
to move closer to the mean. In this case, the variance is unlikely to increase dramatically 
over time. 

The two panels on the right in Figure 3.6 illustrate the situation when there is positive 
correlation between the random intercept and slope. Although not as frequently encoun-
tered, it is quite possible that subjects with larger intercepts have larger slopes and subjects 
with smaller intercepts have smaller slopes. This leads to a noticeable increase in variance 
over time as seen in both panels. 

While the random intercept model implies that the variances of the observations on 
all occasions are the same, and that the correlations between any two repeated measures 
within individuals are the same, the random intercept and slope model implies that the 
variances change (usually increase) over time, and that the correlation between repeated 
measures within individuals changes, depending on the lag between the two time points. 
Exactly how much the variances increase depends on the time scale and on the relative 
magnitudes of the different variances (the variance of the random intercept, the variance 
of the random slope, and the variance of the random error). The pattern of the correlations 
between repeated measurements on the same individual also depends on the time scale, 
the magnitudes and ratios of the variances, and additionally, on the correlation between 
the random intercept and the random slope. It may be difficult to judge from the raw 
data whether the pattern of the correlations in the data set is consistent with the random 
intercept and slope model. Once the model is fit, the observed variances and covariances 
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FIGURE 3.5 
Hypothetical trends and observations of two individuals with response changing according to a random inter-
cept and random slope model.
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between responses at different time points can be compared to the estimated variances 
and covariances based on the model, to see whether there is good correspondence. Model 
selection should be used to choose the best-fitting model. 

3.2.3 More Complex Random Effects Models

As we saw in the analysis of the augmentation depression study, a linear trend over time 
may not be describing the change over time sufficiently well and it may be necessary to 
account for curvature in response over time. This can be accomplished by adding quadratic 
terms to the model. The random intercept, slope and quadratic model is defined as follows:

 
Y Group Time Group Time Time Group Tij i j i j j i= + + + × + + ×β β β β β β0 1 2 3 4

2
5 iime

b b Time b Time

j

i i j i j ij

2

0 1 2
2+ + + + ε

 (3.6)

Note that we added both fixed and random quadratic effects. We also have an interaction 
term between group and time squared in order to allow for different curvature in the two 
groups. The assumptions of the random intercept and slope model naturally extend to this 
more complicated scenario. We assume that the random intercept bi0, the random slope bi1, 
and the random quadratic term bi2, are jointly normally distributed and are independent of 
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FIGURE 3.6 
Four hypothetical situations with data for 20 individuals generated according to random intercept and slope 
model.
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the errors. Since there are three random effects, three separate variances and three differ-
ent covariances (one for each pair of random effects) need to be estimated for the random 
effects. Figure 3.7 shows hypothetical examples of individual trajectories generated based 
on the random intercept, slope and quadratic models. There are many possible combina-
tions of positive or negative slopes, positive or negative quadratic coefficients, and correla-
tions among the three random effects (intercept, slope, and quadratic). Figure 3.7 shows 
only some of them, in order to illustrate that in all cases there is curvature in individual 
trajectories and increasing variability over time. 

Although it is theoretically possible to add higher order fixed and random effects, the 
models become increasingly more complicated as the total number of variance and cova-
riance parameters rapidly increases. Furthermore, the model-fitting algorithm may not 
converge for higher order models and interpretation becomes very difficult. Thus, from a 
practical perspective the quadratic random effects model is the highest order polynomial 
random effect that is useful in most applications. 

Random slopes (and higher order terms) can be added on the log-transformed scale, 
rather than on the original scale. For example, the following random intercept and slope 
model can be constructed:

 Y Group Time Group Time b bij i j i j i i= β β β β0 1 2 3 0 1+ + + × + +log( ) log( ) logg( )Timej ij+ ε  
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FIGURE 3.7 
Four hypothetical situations with data for 20 individuals generated according to random intercept, slope and 
quadratic models.
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As shown for the mean portion of this model (Figure 3.3), each individual trajectory will be 
a straight line on the log-transformed time scale but will display curvature on the original 
scale. 

3.3 Multilevel Models

So far, we considered models with repeated observations where there was only one level of 
clustering. In many situations, however, there are multiple levels of clustering. Models that 
consider different levels of clustering are usually known as multilevel or hierarchical mod-
els. Often individuals in longitudinal studies may be clustered in families or may receive 
treatment in a group setting. For example, in the Health and Retirement Study, introduced 
in Section 1.5.4, survey participants and their spouses are repeatedly interviewed over 
time. Thus, two levels of clustering may be considered: individual (these are repeated mea-
sures within individuals over time) and family (individuals are clustered within family 
units). Usually, the individual is referred to as the level 1 cluster, and it is nested within the 
level 2 cluster (in this case, the family). Correlations are expected to be strongest within 
individuals, but positive correlations are also expected on some measures within families.

Another scenario with multiple levels of clustering is when responses on individuals 
participating in a longitudinal study are repeatedly measured on the same day and the 
process is repeated on different days. In this case, observations within the same day are 
expected to be more highly correlated than observations on different days within the same 
individual. Because there are repeated measures within each day on an individual, here 
the level 1 cluster is the day within the individual, and the level 2 cluster is the individ-
ual. Level 1 clusters are nested within level 2 clusters. An example of such a situation is 
the human laboratory study in smokers, introduced in Section 1.5.7. This study is a two-level 
cross-over experiment in which different doses of menthol are given in random order on 
three different test days (level 1 clusters) to all participants (level 2 clusters) and responses 
are repeatedly measured on each test day (repeated observations within level 1 clusters). 

In imaging studies, there can be even more levels of clustering. For example, in the fMRI 
study of working memory in schizophrenia, introduced in Section 1.5.8, where individuals 
complete different tasks at different difficulty levels, brain activation during three distinct 
working memory phases is recorded for each task and there are multiple brain regions 
from which a signal is extracted for all working memory phases for each task. 

In all these situations, fitting a random effects model with a single random intercept 
(or random intercept and slope) is not adequate to describe the correlations in the data. 
Additional random effects should be considered to account for the correlations within each 
level of clustering. Herein, we consider some simple multilevel models. More information 
on multilevel and hierarchical linear models is available in Goldstein (1987), Snijders and 
Bosker (2012), and Twisk (2013b).

The two-level random intercept model is specified as follows:

 Y Mean b bijk ijk i ij ijk= + + + ε  

Here, we do not specify exactly how the fixed effects affect the average response. This can be 
done by specifying a linear combination of predictors that is deemed adequate to describe 
the average response, as shown previously for the depression example. We introduce an 
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additional subscript k so that the different levels of clustering can be clearly identified. To 
illustrate, we consider specific examples. In the context of the Health and Retirement Study, i 
denotes the family pair, j denotes the individual within the family pair and k denotes the 
wave at which the measurement is taken on each individual. In the context of the human 
laboratory study in smokers, i denotes individual, j denotes test day within individual, and 
k denotes repeated observation within test day within individual. Thus, in addition to the 
random intercept for the first level of clustering bi, we have an additional intercept for 
the second level of clustering bij. Each of these intercepts is assumed to be independently 
normally distributed: b i i d Ni b~ . . . ,0 1

2σ( ) , b i i d Nij b~ . . . ,0 2
2σ( ) , and, to be independent of the 

errors, εijk~i.i.d.N(0, σ2). This implies that the variability of each individual observation can 
be parceled out as the variability due to the first level clustering, variability due to the sec-
ond level clustering, and residual variability, i.e., Var Yijk b b( ) = + +σ σ σ1

2
2

2 2. Since each mea-
sure of variability is non-negative, this also implies that the correlation between repeated 

observations within the level 1 cluster i.e., Corr Y Yijk ijl
b b

b b
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+ +
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clusters are uncorrelated (i.e., Corr(Yijk, Yhgl) = 0).
In the context of the Health and Retirement Survey, this means that the variability of each 

individual response is parceled into variability due to family, variability due to the indi-
vidual, and residual variability. Also, the correlations between repeated observations 
on the same individual are implied to be higher than the correlations between repeated 
observations on different individuals in the same family, and observations on different 
individuals are uncorrelated. 

In the context of the human laboratory study in smokers, variability of individual observa-
tions is the sum of variability due to the individual, variability due to the day within the 
individual, and residual variability. The correlations between repeated observations taken 
on an individual on the same day are higher than correlations between repeated obser-
vations taken on the same individual but on different days, and there is no correlation 
between observations on different individuals. 

Note that since there are only random intercepts, the repeated observations within the 
level 1 cluster are equally correlated. This may not be reasonable if the repeated measures 
at this level are taken over time, as it is in the human laboratory study in smokers, for example. 
Also, any two observations from different level 1 clusters, but the same level 2 cluster, are 
equally correlated. This may also not represent reality, in some cases. More flexibility in 
accounting for such complicated structures can be achieved by adding additional ran-
dom effects (e.g., adding a random slope term bij1Timeij for longitudinal observations on the 
same day) or by combining random effects and covariance-pattern models, as discussed 
further in this chapter. 

Mixed-effects models with more than two nested levels of clustering can be constructed 
by adding random effects at additional levels of clustering. This is necessary in situations 
like the fMRI study of working memory in schizophrenia, where there are more factors intro-
ducing correlation between repeated observations on the same individual. 

A random intercept model with three levels of clustering is defined as follows:

 Y Mean b b bijkl ijkl i ij ijk ijk= + + + + ε ,  
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where the additional random effect bijk is also assumed to be normally distributed with 
zero mean, some unknown variance, and is uncorrelated with the other random effects 
and the random errors. In the context of the fMRI study of working memory in schizophre-
nia, the clustering level indexed with i is the individual, the clustering level indexed by 
j is the task, and it is nested within the individual, clustering level indexed by k is the 
phase (encoding, retention, response), and l indexes individual observations in different 
regions. If we fit such a model to these data, we assume that observations within the same 
phase, during the same task, on the same individual, are more highly correlated than 
observations from different phases, during the same task, on the same individual, which 
in turn are more highly correlated than observations from different tasks on the same 
individual. We are also assuming equal variances and exchangeability between observa-
tions within each level of clustering. This may not be reasonable as observations within 
different regions may have different variances and correlations across phases, and regions 
may also differ. More sophisticated models based on both random effects and structured 
variances and covariances should be considered. This is presented in more detail further 
in this chapter. We now focus on a different approach to accounting for the correlations 
between repeated observations on the same individual—namely, directly assuming a cer-
tain pattern of the error variances and covariances. 

3.4 Covariance‑Pattern Models

So far in this chapter, we assumed that the random errors have equal variances on all occa-
sions and are uncorrelated with one another. This is usually inconsistent with the pattern 
of data variability in clinical trials where subjects are selected according to a strict set of 
inclusion/exclusion criteria and then show divergent trajectories over time. However, it is 
possible that variability does not follow this pattern and then the models may not provide 
a good fit to the data. Making alternative assumptions about the errors (e.g., assuming 
unequal variances across time and/or additional correlations between observations on 
different occasions) may help in such situations. Instead of using random effects to model 
individual variability around the average trend, and to account for correlations within 
individuals or clusters, we can directly consider different patterns of variances and cor-
relations for the random errors. 

This is similar to the approach taken in rMANOVA where we assume that the errors 
across repeated occasions on the same individual follow a multivariate normal distribution 
(εi1, εi2,… εij)~MVN(0,Σ) where the mean consists only of zeros and the variance– covariance 
matrix Σ is expressed as follows:

 Σ =
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There are a number of patterns for the variance–covariance matrix that we can consider. 
They vary in complexity by the number of parameters that are used to describe all the 
variances and covariances between repeated observations on the same individual. The 
simplest structure that we can specify is compound symmetry. That is, we assume that all 
variances are equal and all covariances (correlations) are also equal:
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There are only two unknown parameters in this formulation (the variance σ2 and the cor-
relation ρ). This structure is almost identical to the structure imposed by the single level 
random intercept model but here the correlation ρ is not restricted to be positive (or 0) and 
can be negative. Although this structure is slightly more general than the structure of the 
random intercept model, it is likely that it is not well suited in most longitudinal situations 
where correlations between observations measured closer together within individuals are 
expected to be higher. 

At the other extreme of complexity of the variance–covariance structure, we have the 
most general scenario with the unstructured (aka unrestricted) variance–covariance matrix, 
as assumed in rMANOVA. This structure can be considered only when the observation 
occasions are the same within individuals or clusters. In this case, we freely estimate the 
variances on all repeated occasions and the correlations between any two occasions. With 
t repeated occasions, there are t(t + 1)/2 parameters that correspond to all the variances 
and correlations between repeated occasions. As the number of observation occasions 
increases, the number of parameters that need to be estimated drastically increases and 
the sample size in some data sets may be insufficient to estimate all the parameters. Unlike 
rMANOVA, where only subjects with complete data are used in the analysis, in the cor-
responding mixed model all available data on an individual are used, and hence, even 
subjects with missing values contribute to the estimation process. 

Some variance–covariance structures of intermediate complexity include the autoregres-
sive structure, the Toeplitz structure, compound symmetry with heterogeneous variances, autore-
gressive structure with heterogeneous variances, and spatial power. A tutorial on modeling the 
covariance structure of repeated measures data is available in Littell et al. (2000). Structures 
of varying complexity are available in software programs, which provide modules or pro-
cedures for fitting mixed-effects models. Herein, we consider the most commonly used 
structures.

The autoregressive structure of first order AR(1) is a parsimonious structure that assumes 
equal variances on all repeated occasions and exponentially decreasing correlations 
between repeated observations with increasing time lag. The correlation between obser-
vations at time points k and l is calculated, based on the following formula:

 Corr Y Yik il
k l, .( ) = −ρ  

Like the compound symmetry structure, the autoregressive structure uses only two 
parameters to describe all variances and correlations (namely the variance σ2 and the cor-
relation ρ). The further apart occasions k and l are from each other, the smaller the correla-
tion between the repeated observations on these occasions is. For example, if ρ = 0.5, then 
the correlation between observations that are one unit of time apart is equal to 0.5. The 
correlation between observations that are two units of time apart is equal to 0.5 × 0.5 = 0.25. 
The correlation between observations that are three units of time apart is equal to 
0.5 × 0.5 × 0.5 = 0.125. The decrease in correlation, according to the AR(1) structure, is quite 
rapid, which may not reflect reality. In the next section we show how a combination of a 
random intercept model and AR(1) error structure can be used for longitudinal data. But 
first we focus on a few additional structures of intermediate complexity.
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The Toeplitz structure assumes that variances are equal on all occasions and that correla-
tions between observations m occasions apart are also equal. With three time points the 
structure is as follows:

 Σ =
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Here, ρ1 denotes the correlation between neighboring repeated observations on the same 
individual, while ρ2 denotes the correlation between repeated observations on the same 
individual that are two occasions apart. Subsequently, ρ1σ2 denotes the covariance between 
two neighboring observations and ρ2σ2 denotes the covariance between repeated obser-
vations that are two occasions apart. In the general case with t occasions, the variance– 
covariance structure is
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and uses t parameters to describe all variances and covariances (namely the variance 
σ2 and the correlations ρ1, ρ2, …, and ρt − 1). If the observations are not equally spaced 
over time, this structure may not fit well as it imposes the same correlation for observa-
tions that are a different number of units of time apart. The autoregressive structure 
AR(1) is actually a special case of the Toeplitz structure for equally spaced repeated 
occasions when the correlations decrease exponentially. In the special case when the 
repeated occasions are one unit in time apart, the Toeplitz structure reduces to AR(1) 
when ρ ρ2 1

2= , ρ ρ3 1
3= , and so on. 

Another possible generalization of the AR(1) structure is the spatial power structure. For 
3 repeated occasions, it is represented as follows:

 Σ =
















σ ρ σ ρ σ
ρ σ σ ρ σ
ρ σ ρ σ σ

2 2 2

2 2 2

2 2 2

12 13

12 23

13 23

d d

d d

d d

,  

where:
 d12 is a measure of the distance between occasion 1 and 2
 d13 is a measure of the distance between occasion 1 and 3
 d23 is a measure of the distance between occasion 2 and 3

When the repeated measures are taken over time, this distance is simply represented 
by the number of units (hours, days, weeks, years) that separate the corresponding 
time points. If the repeated measures are taken over a spatial map (as may be the case 
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with some imaging data, measurements taken on a subject’s body, or measurements 
taken over a specific area), then distance is measured as actual physical distance. Such 
a structure may also be used in order to model correlations among measurements on 
people who are related (e.g., a distance of 1 may denote a first degree relative, a dis-
tance of 2 may denote second degree relatives, etc.). As can be easily seen, the AR(1), 
structure is a special case of the spatial power structure when distances are measured 
in time units. 

So far, all structures that we considered, except the unstructured, assume that the 
variances on repeated occasions are the same. However, this may not reflect the vari-
ability in the data well and it may be judicious to assess whether this assumption is 
satisfied. One way to do this is to consider more general structures and compare the 
fit of models with the same mean specification and the same correlation structure, 
but allowing the variances to be different. The following structures with unequal 
variances correspond to structures we already considered: compound symmetry hetero-
geneous (CSH), autoregressive heterogeneous (ARH(1)), Toeplitz heterogeneous, and spatial 
power heterogeneous (SPH). The only difference between these and their homogeneous 
variance counterparts, is that the variances on all occasions are allowed to vary freely. 
For the simple case of an autoregressive heterogeneous pattern, the structure for three 
time points is as follows:
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In general, the number of parameters that characterize the variance–covariance matrices 
increases substantially as the number of repeated occasions t increases and is equal to:

For CSH: t + 1 (t variances and 1 correlation)
For ARH(1): t + 1 (t variances and 1 correlation)
For Toeplitz heterogeneous: 2t − 1 (t variances and t − 1 correlations)
For SPH: t + 1 (t variances and 1 correlation)

3.5 Combinations of Random Effects and Covariance‑Pattern Models

Different variance–covariance structures can be used either alone or in combination with 
random effects. The most commonly used combination that often provides a good fit for 
longitudinal data is random intercept plus autoregressive structure (r.i. + AR(1)). The model is 
formulated as follows:

 Y Group Time Group Time bij i j i j i ij= + + + × + +β β β β ε0 1 2 3 ,   

where the usual assumptions for the random intercept and the errors hold and where 
Var bi b( ) = σ2 , Var(εij) = σ2 and Corr ik il

k lε ε ρ,( ) = − . The resulting variance–covariance struc-
ture for t repeated occasions is then
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While the AR(1) structure assumes a fast decrease of correlations with increasing time 
lag, and the random intercept model assumes equal correlation between any two repeated 
measures on the same individual, the structure of the combined model shows decreasing 
correlation with time lag, but at a slower rate than in the AR(1) structure because of the 
addition of σb

2  to each covariance. Littell et al. (2000) demonstrate that this structure is 
often best-fitting in medical studies with longitudinal data.

The r.i. + AR(1) structure assumes that the variances at all occasions are the same. If this is 
not a reasonable assumption, then one can consider r.i. + ARH(1) structure or add a random 
slope in addition to the random intercept in the model. Many more combinations of ran-
dom effects and structured variances and covariances can be considered, especially when 
there are different levels of clustering. We consider some such combinations in Section 
3.8 and refer interested readers to Brown and Prescott (2006) for more systematic explora-
tion of such combinations. Note, though, that certain combinations may over-specify the 
variances and covariances (i.e., introduce more parameters than can be estimated from 
the data) and should not be considered. For example, in longitudinal scenarios without 
additional clustering and with fixed occasions, it is not possible to fit a random intercept 
model plus an unrestricted variance–covariance structure. The variance of the random 
intercept, in this situation, is completely absorbed in the individual variances on the differ-
ent occasions. Thus, one needs to be careful when considering different variance–covari-
ance structures since not all possible combinations of random effects and structures of the 
errors are reasonable. 

With many different ways to specify the variances and covariances between repeated 
observations, it may be challenging to select the best-fitting one and it is often not a clear-
cut decision. In the next section we consider statistical criteria that can be used to compare 
different models.

3.6 Estimation, Model Fit, and Model Selection

Estimation of fixed-effects coefficients in mixed models is accomplished using the method 
of maximum likelihood (ML), which finds the values of the parameters that maximize the 
likelihood of obtaining the observed data from the hypothesized model. This method 
turns out to be equivalent to the generalized least squares (GLS) method, which minimizes 
the sum of squares of the residuals (i.e., the differences between observed and predicted 
values) weighted by the inverse of the variances. 

The variance parameters can also be estimated using maximum likelihood. However, in 
order to take into account that the fixed-effects coefficients are also estimated, a modifica-
tion of the maximum likelihood approach, namely restricted maximum likelihood (REML) is 
preferred because it provides unbiased estimates of the variance parameters. 
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Empirical Bayes estimation of the random effects (e.g., intercept, slope) allows estimation 
and prediction of individual responses. The individual-specific estimates and predictions 
are weighted averages of the responses of the particular individual and the estimated 
mean responses for the group of individuals that are similar to that individual. Detailed 
information about the estimation process and properties of the estimates is beyond the 
scope of this book. We refer interested readers to Brown and Prescott (2006) and Hedeker 
and Gibbons (2006) for a relatively non-technical description. 

The estimation procedures provide estimates not only of the coefficients and variance 
parameters, but also of the variability (uncertainty) of these estimates. General statistical 
theory then allows confidence intervals to be constructed and hypothesis tests evalu-
ated for individual parameters or combinations of parameters. Thus, both the overall 
tests of the between-subject and within-subject effects in the model and post hoc tests 
are performed, and confidence intervals constructed for the effects of interest within 
the general model framework. In the subsequent sections with data examples, we focus 
on interpretation of the overall tests of main effects and interactions in the statistical 
models and on estimation of mean comparisons with confidence intervals, in order to 
provide effect size estimates. 

The estimation procedure also provides the maximum value of the likelihood function 
achieved by each model when the parameters are equal to their estimated values. This 
function is at the basis of the statistical criteria for model comparison. In the special case 
of nested models, when the fixed effects of one model are a subset of the fixed effects 
of another model, the likelihood ratio test that compares the likelihood of the two nested 
models can be used to decide which model to select for a particular data set. However, the 
likelihood ratio test can’t be used for models that are not nested. Thus, we focus on two 
statistical criteria that are most commonly used to compare different models fitted to the 
same data set: the Akaike Information Criterion (AIC) and the Schwartz’ Bayesian Information 
Criterion (BIC). 

Both the AIC and the BIC are based on the maximum likelihood value and include a pen-
alty for the number of parameters estimated in the model. The AIC tends to favor models 
with more parameters while the BIC tends to favor more parsimonious models. Thus the 
BIC is considered to be more conservative and penalizes more for the number of param-
eters in the model. Among a set of alternative models, the model with the lowest AIC or 
the lowest BIC is selected. For selection of the best-fitting variance–covariance structure, 
the AIC is generally preferred as the BIC is considered too conservative (Fitzmaurice et al. 
2011). 

The idea behind the AIC and BIC measures is that we want to find the model that best 
describes the data and that provides results that generalize to the population of interest. By 
adding more and more parameters, we make the models fit the observed data better and 
better. But some parameters add little to the explanatory ability of the model. If too many 
parameters are added, the model may reflect random noise in the sample data set and 
may become less and less useful in terms of predicting response in the actual population. 
The information criteria include penalties for the number of parameters in order to favor 
selection of models with balance between explanatory power and parsimony. Because the 
information criteria can be applied to any set of models fit to the same data set (not just 
nested models) we focus on the AIC and BIC in deciding on the best-fitting model among 
those considered. 

Other information criteria are also available, for example the finite sample size adjusted AIC. 
Detailed information about a variety of model selection criteria is available in Claeskens 
and Hjort (2008). 
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3.7 Residuals and Remedial Measures

As in other model classes, in mixed-effects models we can examine the residuals in order 
to assess whether the assumptions of the model (e.g., normality) are reasonably satisfied. 
Raw (unstandardized) residuals are just the differences between the observed values and 
the predicted values on each occasion for each individual. Residuals can be standardized 
in order to take into account that they do not have equal variances in most mixed mod-
els. Studentized residuals are standardized residuals so that extreme values (values larger 
than 3 or smaller than −3) are easily identifiable and indicative of deviations from the 
assumptions of normal distribution of the errors. In models with random effects, there 
are two types of studentized residuals: marginal and conditional. The two sets of residuals 
differ in the following way. To obtain the marginal residual, the predicted value for each 
individual observation, based only on the fixed-effects portion of the model, is subtracted 
from the observed value. To obtain the conditional residual, the predicted value based 
on the fixed effects and the random effects portion of the model is subtracted from the 
observed value. When there are several random effects, the predicted values are obtained 
by adding the mean prediction and the individual-specific estimates for the random 
effects obtained, using the empirical Bayes method. Thus, the conditional residual adjusts 
for systematic individual-level variation from the mean, due to random effects, while the 
marginal residual does not. In covariance-pattern models only marginal studentized 
residuals are calculated. The raw and studentized residuals should have approximately 
bell-shaped distributions, since they approximate the errors which are assumed to be nor-
mally distributed. 

A normal probability plot of the residuals (i.e., plotting the ordered residuals against the 
expected values from the standard normal distribution given their ranks, see for example 
Kutner et al. (2005)), or a plot of the residuals against their predicted values, can be used to 
assess whether the normality assumption is approximately satisfied. In the normal prob-
ability plot we expect to see a straight line. Deviations from the straight line indicate skew-
ness and lack of fit. In the residuals versus predicted plot, we expect randomly distributed 
residuals around zero with no obvious patterns. Both plots can also be used to check 
whether there are outlying observations. The residual versus predicted plot also shows 
whether the residual variance is constant across observations. These plots are illustrated 
on the data examples in the next section.

If there is an indication of non-normality (i.e., deviation from straight line in the 
normal probability plot), a transformation of the response can be considered. For 
example, taking a log of the response values often helps correct positive skewness. If 
there are outliers, the corresponding observations need to be double-checked. If no 
obvious reason for the outlying observations can be identified, results may need to be 
presented with and without the outliers, especially if there are significant differences 
in the results. 

If variances are not approximately equal across occasions, an alternative variance– 
covariance structure can be considered, or sometimes, a transformation may help stan-
dardize the variance. If deviations from the assumptions are sizeable, non-parametric 
statistical methods may need to be used, as described in Chapter 5.

More detailed discussion of residuals and remedial measures in the context of 
mixed models can be found in Fitzmaurice et al. (2011) and Nobre and da Motta Singer 
(2007).
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3.8 Examples 

We now present several different examples that illustrate how to construct mixed models 
for longitudinal and clustered data, how to select the best model, assess whether model 
assumptions are satisfied, and perform statistical inferences based on the model. The SAS 
code for fitting all models is provided on the associated website.

3.8.1 Augmentation Treatment for Depression

This study was introduced in Section 1.5.1 and already repeatedly considered in order to 
illustrate simple methods for the analysis of longitudinal data, such as endpoint analy-
sis, rANOVA, and rMANOVA, in the previous chapter, and mixed models with random 
effects, earlier in this chapter. Herein, we start by fitting a number of reasonable mixed 
models to these data and using the AIC and BIC to select the best-fitting model. For the 
best-fitting model, we present residual plots to assess if model assumptions are reasonably 
satisfied and show how to interpret overall tests, post hoc comparisons, and how to esti-
mate and interpret the effects of interest. 

We consider both models with random effects and with structured variance–covariance 
matrices appropriate for longitudinal data. Also, in some models time is treated as a continu-
ous predictor and in some models it is treated as a categorical predictor. All models include 
main effects of time, treatment group, and the interaction between time and treatment group. 

Table 3.1 shows the AIC and BIC for all considered models. The first five models are models 
with random effects and with time treated as a continuous predictor. The AIC and the BIC 
decrease steadily as we add higher order random effects to the model (i.e., include a random 
intercept, add a slope, then add a quadratic term), indicating that the random slope and qua-
dratic term are necessary to describe the data well, if we consider time as a continuous predic-
tor. Note that when comparing models with uncorrelated random effects (i.e., models 2 and 4) 
to the corresponding model with correlated random effects (models 3 and 5, respectively) the 
change in AIC and BIC is small and the AIC decreases while the BIC increases. Thus, it does 
not appear essential to include correlations between the random effects as the addition of extra 
parameters partially outweighs the gain in improvement of the fit of the model to the data. 

The rest of the models in Table 3.1 treat time as a categorical predictor (i.e., six dummy 
variables are used to describe the time effect) and consider different structures for the 
 variance–covariance matrix. In general, these models (models 6 through 12) fit better 
than the random effects models when time is treated as a continuous predictor (models 1 
through 5) as most of them have lower AIC and BIC. The model with compound symme-
try structure, which assumes equal variances and equal correlations of any two repeated 
observations on an individual, fits poorly compared to the other models. Also, the models 
with unequal variances at the different time points fit worse than the corresponding mod-
els with equal variances for the different time points. Thus, there is no indication in this 
data set that there is a substantial increase in variability with time. 

According to both information criteria, the model with autoregressive structure of first 
order fits the data the best (model 7) as the AIC and BIC are the smallest. We also consid-
ered a model with a random intercept and autoregressive variance–covariance structure 
of the errors (r.i. + AR(1)) but since the estimated variance of the random intercept was zero, 
indicating that the random intercept was not needed, we do not include these results in the 
table and do not consider this model further. Additional models can be fit to these data, 
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especially when one considers combinations of random effects and structured variances 
and covariances. However, since a fairly simple structure, with decreasing correlations 
with increasing time lag, fits the data better than more complicated models, we consider 
this as our final model. We now focus on exploration of residuals in order to assess how 
well the model assumptions are satisfied and then proceed with interpretation of signifi-
cant effects in the model with appropriate post hoc comparisons and estimates. 

Figure 3.8 shows several residual plots with studentized residuals from the best-fitting 
model (Model 7). The plot in the upper left of Figure 3.8 is a scatter plot of residuals versus 
predicted values. We do not see studentized residuals larger than three in absolute value 
and the plot is fairly symmetrical around the zero horizontal line. Therefore, we conclude 
that the model provides a good fit to the data. Note that on the horizontal axis we have 
the predicted means, which are also equal to the predicted values for individual subjects 
because the model does not have random effects. There are, in fact, only 14 distinct pre-
dicted values corresponding to the seven time points for the two treatment groups. This is 
not an issue but it explains why the points are vertically aligned.

The plot in the upper right of Figure 3.8 is a histogram of the studentized residuals with 
the corresponding theoretical distribution of the residuals superimposed over the histo-
gram. There is a slight discrepancy between the histogram and the theoretical distribution 
but no gross deviations, which would have indicated substantial lack of fit. The normal 
distribution plot in the lower left of Figure 3.8 confirms that there are no substantial devia-
tions from normality of the errors as the circles indicating individual observations fall 
approximately on a straight line. 
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FIGURE 3.8
Plots of studentized residuals for the Hamilton Depression Rating Scale from the autoregressive model with 
categorical time fit to the data set from the augmentation study in depression.
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The bottom right of Figure 3.8 shows the number of studentized residuals (which corre-
sponds to the number of non-missing response values in the sample) and some descriptive 
statistics (minimum, maximum, mean, and standard deviation). The mean of the studen-
tized residuals should be close to zero if normality of the errors is approximately satisfied 
and it comes close at −0.02. The standard deviation should be close to 1 and it is 1.02. The 
minimum and maximum should be no larger than 3. All these conditions are satisfied in 
this example and hence we conclude that the model assumptions are fairly well satisfied.

Note that nothing can be determined from the plots of Figure 3.8 about residual patterns 
within an individual subject. We need to plot the residuals by week and by individual in 
order to see whether any patterns emerge within individuals over time. Figure 3.9 shows 
studentized residuals by treatment group, week, and individual. Although the residuals 
are again approximately symmetrical around the zero horizontal line, we see that residu-
als for the same individual tend to stay either above or below the zero horizontal line. Such 
systematic deviation can easily be accounted for by adding a random intercept to the model. 
However, our model selection procedure led to the conclusion that this is not needed. 

After we have determined that model assumptions are reasonably well satisfied, and the 
best-fitting model among a set of plausible models is identified, we proceed with hypoth-
esis testing, effect estimation, and interpretation of significant effects. Usually, the first 
step of statistical inference is to assess the significance of the main and interaction effects 
of the predictors in the model, followed by post hoc comparisons and effect estimation.

Table 3.2 contains the results from the tests of the three effects of interest in this example 
and post hoc comparisons to explain the significant effects. The interaction between treat-
ment and time is not statistically significant (F(6,231) = 0.60, p = 0.73), but the main effects 
of treatment and time are statistically significant at 0.05 significance level (F(1,57.4) = 5.15, 
p = 0.03 and F(6,231) = 37.04, p < 0.0001). Thus, this model suggests that the differences in 
pattern of change over time in the two groups are not significant, but that average response 
changes significantly over time and there are significant differences between the groups 
when all time points are averaged together. 

In order to understand what this means, we consider the estimated least square means 
(model-based estimates of the mean response at each combination of levels of the predic-
tors) shown in Figure 3.10. They follow the same pattern as the raw means from Figure 1.5 
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FIGURE 3.9
Plots of studentized residuals for the individual subjects by treatment group and week from the autoregressive 
model with categorical time fit to the Hamilton Depression Rating Scale scores in the data set from the augmen-
tation study in depression.
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and indicate that depression severity decreases steadily in both treatment groups and that 
the control group has higher depression severity scores on average than the augmentation 
group, with the between-group difference increasingly slightly (but not significantly) with 
time (i.e., there is no significant interaction between group and time). Since there are seven 
different time points, we attempt to interpret the time trend in a more parsimonious way 
by testing for linear, quadratic, and cubic trends in the least square means over time. 

This is done by specifying individual contrasts within the mixed model using PROC MIXED 
in SAS, as shown in the online code for this example. As seen from Table 3.2, the linear, qua-
dratic, and cubic trends over time are all significant, suggesting that the shape of response 

TABLE 3.2

Test Results from the Autoregressive Model with Categorical Time Effect in 
the Augmentation Study in Depression

Effect Test Statistic p‑Value

Treatment F(1,57.4) = 5.15 0.03
Time F(6,231) = 37.04 <0.0001
Treatment × time F(6,231) = 0.60 0.73
Linear time trend F(1,237) = 159.06 <0.0001
Quadratic time trend F(1,276) = 13.90 0.0002
Cubic time trend F(1,233) = 5.37 0.02
Week 1 vs. baseline t(240) = 7.85 <0.0001
Week 2 vs. baseline t(276) = 10.82 <0.0001
Week 3 vs. baseline t(293) = 11.45 <0.0001
Week 4 vs. baseline t(288) = 11.51 <0.0001
Week 5 vs. baseline t(269) = 13.15 <0.0001
Week 6 vs. baseline t(245) = 13.81 <0.0001

Note: Significant main effects are highlighted in bold.
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FIGURE 3.10
Estimated least square means and standard error for the Hamilton Depression Rating Scale by treatment group 
and week from the autoregressive model with categorical time fit to the data set from the augmentation study 
in depression.
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over time is fairly complex with a significant steady decrease, but with some leveling off of the 
response in the middle of the period. Since there are only seven time points and interpretation 
of cubic trends is somewhat complicated, for this particular example it seems judicious to con-
tinue treating time as a categorical factor rather than as a continuous predictor. 

When time is a categorical variable, we can perform all pairwise comparisons among time 
points. In Table 3.2 we show the comparisons of all post-baseline time points to baseline. All 
these comparisons are statistically significant even at overall alpha level of 0.05 corrected for 
multiple comparisons using Bonferroni’s adjustment (to be presented in detail in Chapter 6). 
Among all possible pairwise comparisons of different time points (not shown), only the 
comparisons between least square means at weeks 3 and 4, and between weeks 5 and 6, are 
not statistically significant, suggesting leveling off of response in these time periods.

Note that because the overall treatment by time interaction is not statistically significant, 
we are not performing post hoc tests to assess differences between groups at each time 
point. If there are a priori hypotheses about such differences at particular time points, 
they can be performed, but with appropriate adjustment for multiple testing. Although the 
overall treatment by time interaction is not significant, it is possible that a more focused 
interaction test (such as linear trend by treatment interaction or quadratic trend by group 
interaction) may be significant. We did perform three such tests (linear trend by treatment, 
quadratic trend by treatment, and cubic trend by treatment) but none of them were statisti-
cally significant (not shown here, but included in online code for this example).

The main effect of the group is statistically significant, but baseline is one of the repeated 
occasions in this model and, since the control group starts with slightly (not significantly) 
higher scores, on average, than the augmentation group at baseline, we can’t interpret this 
as indicating that the augmentation treatment is more efficacious than the control treat-
ment. One way to assess whether there are significant differences in post-treatment initia-
tion between groups is to modify the model so that we covary for depression severity at 
baseline and drop baseline from the response set. This approach allows us to answer the 
question of whether controlling for baseline severity yields statistically significant differ-
ences between groups during treatment. Controlling for covariates is considered in detail 
in Chapter 8. 

Since hypothesis tests only tell us whether there are statistically significant results, and 
the conclusions are heavily dependent on sample size, it is very important to estimate the 
magnitude of the effects and judge whether they are clinically meaningful. Because time 
is considered a categorical factor in the best-fitting model, we present estimates and 95% 
confidence intervals for mean change from baseline for each time point (Table 3.3). These 
estimates are shown for the entire sample, and not by group, because the overall group by 

TABLE 3.3

Estimated Effects and 95% Confidence Intervals for Change from Baseline Based on the Best-
Fitting Model in the Augmentation Study in Depression

Effect
Estimate (Difference of Least 

Square Means) with Standard Error
95% Confidence 

Interval

Decrease from baseline to week 1 5.48 (0.70) (4.10, 6.85)
Decrease from baseline to week 2 10.30 (0.95) (8.42, 12.17)
Decrease from baseline to week 3 12.73 (1.11) (10.54, 14.91)
Decrease from baseline to week 4 14.00 (1.22) (11.61, 16.40)
Decrease from baseline to week 5 17.20 (1.31) (14.62, 19.77)
Decrease from baseline to week 6 19.02 (1.38) (16.30, 21.73)
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time interaction is not significant. Estimates can also be calculated by group in order to 
provide information that might be used in the planning of future studies. 

The estimated average change from baseline to the end of the treatment period (week 6) is 
19.02 with a standard error of 1.38. The corresponding 95% confidence interval is (16.30, 21.73). 
Thus, with 95% confidence, the change from baseline to week 6 is estimated to be between 16.30 
and 21.73 points. This is a clinically meaningful change. All estimates in Table 3.3 show that 
there is a steady decrease in scores over time, but most of the change occurs in the first 2 weeks 
of the study. This is not surprising since there is more room for improvement in the beginning 
of the study and, as depression severity decreases, overall room for improvement is less. 

The estimated variance of the random errors is 52.05 with a standard error of 6.86 (shown 
in the online materials). Because the estimate is several times larger than its correspond-
ing standard error, there is substantial residual variability. The estimated variance corre-
sponds to a standard deviation of 7.21, that is, the common standard deviation of individual 
observations is estimated to be 7.21. The correlation between neighboring observations is 
0.77 with a standard error of 0.03. The variance and correlation estimates are in line with 
those from the raw data (the variances in the two groups at the different time points range 
between 34.36 and 78.26), with most estimates around 50. The correlation value is also in 
the range of raw correlations between consecutive observations (0.64–0.90). The strength of 
correlations in the raw data also steadily decreases with time (e.g., raw correlations between 
baseline and subsequent time points goes down from 0.64 for the first time point, to 0.06 for 
the last time point). Therefore, it is not surprising that the AR(1) structure fits the data well. 

Since there are no random effects in the best-fitting model, the individual predicted val-
ues are the same as the average predicted values. If there were random effects, then we 
could obtain empirical Bayes estimates for the individual random effects and estimate 
individual-specific response trajectories over time. 

Just for illustration, we consider the model with random intercept, slope, and quadratic time 
(Model 5 in Table 3.1) and show the estimated individual trajectories in Figure 3.11. We see that 
all predicted trajectories show some curvature, which is due to the inclusion of the quadratic 
term (both fixed and random). Also individuals differ considerably in change over time. While 
the majority of subjects are estimated to have initial faster decrease in severity with subsequent 
leveling of response, there are a few for whom there is no substantial change over time and 
some exhibit worsening of symptoms. It does appear that more subjects in the augmentation 
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FIGURE 3.11
Predicted individuals trajectories for the Hamilton Depression Rating Scale by treatment group and week from 
the random intercept, slope and quadratic model fit to the data set from the augmentation study in depression.
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group show improvement than in the control group but the statistical tests of the group effects 
in the model are not significant. Individual trajectories could be used to predict response for 
individuals with missing data and to classify individuals of groups, according to change over 
time. Individual-level inference is considered in more detail in subsequent chapters. 

3.8.2 Serotonin Levels in Mother–Infant Pairs

In this study serotonin blockade was measured in breastfeeding mothers and their infants 
before and after maternal treatment with antidepressant medication. As shown in Section 1.5.5 
where this study was introduced, there were sizeable correlations within mother–child pairs. 
The main hypothesis here is that there is significant change in serotonin levels in mothers 
from pre- to post-treatment, but not in their infants. To assess this hypothesis, we set up a 
mixed-effects model with the mother–infant pair as the clustering factor and with the indi-
vidual (mother versus infant), time (pre- versus post-treatment), and the interaction, as fixed 
effects. The test of the interaction tells us whether the change in levels from pre- to post-
treatment is the same in mothers and in their infants. 

We assess several different variance–covariance structures within mother–infant pairs: 
unstructured, compound symmetry, and compound symmetry heterogeneous. The unstruc-
tured assumes different variances for all repeated observations within the mother–child pair 
and different correlations between any two observations within the pair. Thus, it has 4 freely 
estimable variances and 6 freely estimable correlations. The compound symmetry assumes 
equal variances of all four repeated observations within the cluster, equal correlations between 
any two, and thus has only two estimable parameters. The compound symmetry heteroge-
neous allows the variances to be different but keeps the correlations the same, and thus has 5 
parameters that are estimated. Of the three mixed models, the one with the unstructured vari-
ance–covariance is the best-fitting (BIC = 548.7 compared to 597.4 for the compound symmetry 
model, and 553.7 for the compound symmetry heterogeneous model, AIC = 542.3 compared to 
596.1 for the compound symmetry model, and 550.5 for the compound symmetry heteroge-
neous model). This is not surprising, since the variance of levels in mothers at post-treatment 
is much smaller than all other variances and the correlations between measurements on the 
same individual in the pair are larger than the correlations between measurements on differ-
ent individuals in the pair, as shown previously in Chapter 1 (Table 1.1). 

Table 3.4 presents the results from testing the model effects and the results from the 
corresponding post hoc tests. Both the main effects and the interaction are statistically 
significant (all p-values <0.0001). In such a situation the interaction needs to be interpreted. 

TABLE 3.4

Test Results from the Unstructured Variance–covariance Mixed 
Model Fitted to Serotonin Levels in Mother–Infant Pairs

Effect Test Statistic p‑Value

Individual (mother vs. infant) F(1,13) = 44.41 <0.0001
Time F(1,13) = 43.02 <0.0001
Individual × time F(1,13) = 73.54 <0.0001
Mothers: pre vs. post F(1,13) = 84.18 <0.0001
Infants: pre vs. post F(1,13) = 0.09 0.77
Pre-treatment: Mother vs. infant F(1,13) = 13.78 0.003
Post-treatment: Mother vs. infant F(1,13) = 64.37 <0.0001

Note: The bold indicates significant main effects and interactions in the model.
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We perform four post hoc comparisons to assess changes in levels as a result of treatment 
in mothers and in infants separately, and differences between mothers’ and infants’ levels 
before treatment and after treatment. These are the simple effects where we evaluate the 
effect of each factor at all possible levels of the other factor. As expected, serotonin levels 
change significantly in mothers but not in their infants, with treatment. The mean change 
in mothers is estimated to be −140.00 (95% CI: (−172.96, −107.04)) while the mean change in 
infants is estimated to be 3.29 (95% CI: (−20.77, 27.34)). Both pre-treatment and post-treat-
ment infants’ levels are higher than the corresponding levels in their mothers. 

Figure 3.12 shows the estimated least square means and their standard errors by type 
of individual and time. It is evident that infants’ serotonin levels stay constant over time 
while mothers’ levels decrease substantially. The variability of the mean of the maternal 
post-treatment measures is very small compared to the variability of the rest of the means. 

Note that in this example we have two levels of clustering: mother–infant pairs, and indi-
viduals (mothers or infants) within a pair. Hence an alternative mixed model that we could 
consider is a three-level random intercept model with random intercepts for the pair and 
for the individual within the pair. The errors in this model are considered independent. 
This approach implies stronger correlations between measurements within individuals 
than between different individuals (mother and infant) in a pair. However, it implies that 
the variances of the repeated observations are the same on each occasion for both types of 
individuals, and this does not seem to correspond to reality. The structure that is implied 
is as shown below. The order of the rows/columns is as follows: mother pre-treatment, 
mother post-treatment, infant pre-treatment, and infant post-treatment.
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FIGURE 3.12
Estimated least square means and standard errors for the serotonin levels of mothers and infants before and 
after antidepressant treatment of the mother.
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Thus, the variance of an individual observation is the sum of the variance due to the pair, the 
variance due to the individual within the pair, and the error variance. The covariance within 
the individual is just the sum of the variance due to the pair and the variance due to the indi-
vidual within the pair. The covariance between observations on different individuals (mother 
and infant) within a pair is just equal to the variance due to the pair. This type of structure 
does not correspond well to the patterns seen with the sample variances and covariances, 
because the variance of observations on mothers, post-treatment, is markedly smaller than at 
pre-treatment and also compared to the variances of the observations on infants. Indeed the 
AIC and BIC for this model are 586.9 and 588.8, respectively—much larger than the AIC and 
BIC for the best-fitting unstructured covariance model (542.3 and 548.7). 

A third type of mixed model that can be fit to these data is with a random intercept 
for mother–infant pairs and an unstructured variance–covariance matrix for the repeated 
observations within individuals in a pair. Such a structure allows for different variances by 
time point and stronger correlations within an individual. However, it still does not allow 
for different variances between corresponding measures for infants and mothers. It is pos-
sible to specify unstructured variance–covariance matrices with different parameters for 
mothers and for infants by using a special option in the model formulation. However, the 
current data set is fairly small, which limits the complexity of the structures that we can 
fit. The implied structure of this more general model is as follows:
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Here, m and i index the different structures for the mothers and the infants, respectively. 
Such a structure is reasonable for the data but the estimation procedure in PROC MIXED 
in SAS failed to converge. This is an issue that can be encountered with mixed models, 
especially as the models become more complicated. When this occurs one is forced to use 
a simpler model for which estimates can be obtained.

In summary, of all fitted models, the one with an unstructured variance–covariance 
matrix for the four repeated observations within mother–infant pairs was the best-fitting 
model and showed a statistically significant decrease of serotonin levels in mothers, but 
not in their infants. This suggests that antidepressant treatment with sertraline is safe for 
infants of breastfeeding mothers but, because of the limited sample size (only 14 mother–
infant pairs), the conclusions are tentative. 

3.8.3 fMRI Study of Working Memory in Schizophrenia

The already pre-processed data from this study introduced in Section 1.5.8 represent a 
complex repeated measures situation with multiple repeated measures factors. There is 
one between-subject factor, namely the group (schizophrenics versus normal controls), 
and three within-subject factors (task difficulty level, region of interest, and phase). The 
response variable is the activation levels measured during the three distinct phases of the 
working memory task (encoding, maintenance, and response) within each region of inter-
est (SMFG, MFG, and IFG) for every task difficulty level (easy task and difficult task). This 
introduces complex correlations within individuals that need to be taken into account in 
the statistical model, in order to evaluate between-group differences in activation by task, 
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phase, and region. Furthermore, assessment of all possible interactions among the factors 
requires testing multifactor interactions (interactions involving two, three, or four factors). 

We begin the exploration of these data by evaluating the sample variances and correla-
tions between repeated observations on the same individual. Sample standard deviations 
by levels of the repeated measures factors are presented in Table 3.5. The range of the 
standard deviations is not very large (0.15–0.32) with the highest standard deviation (0.32) 
somewhat larger than the rest (the second largest standard deviation is 0.25). Correlations 
vary but are almost always positive (not shown but included in online materials). The raw 
data suggests that a structure based on a combination of random effects that imply posi-
tive correlations and equal variances may fit the data well, without the need to estimate a 
large number of distinct variances and correlations (i.e., not in combination with covari-
ance patterns).

Table 3.6 presents the random effects models that we considered and the correspond-
ing AIC and BIC, allowing us to compare different models. In all models the errors are 
assumed uncorrelated with equal variances. Models with combinations of random effects 
and structured variance–covariance matrices did not provide a better fit than the best 
model with random effects, and are not presented here. Furthermore, covariance pattern 
models without random effects did not converge, due to the large number of distinct vari-
ances and covariances that need to be estimated. 

TABLE 3.5

Descriptive Statistics of Activation in fMRI Data Set by Task Difficulty Level, Region, and Working 
Memory Phase

Task Difficulty Level Region Phase Mean Standard Deviation

Easy MFG Encoding 0.35 0.17
Easy MFG Maintenance 0.01 0.16
Easy MFG Response 0.37 0.21
Easy IFG Encoding 0.32 0.16
Easy IFG Maintenance 0.04 0.16
Easy IFG Response 0.51 0.22
Easy VIFG Encoding 0.24 0.16
Easy VIFG Maintenance 0.02 0.15
Easy VIFG Response 0.30 0.16
Easy SMFG Encoding 0.35 0.25
Easy SMFG Maintenance 0.02 0.17
Easy SMFG Response 0.32 0.23
Hard MFG Encoding 0.49 0.23
Hard MFG Maintenance 0.04 0.21
Hard MFG Response 0.44 0.21
Hard IFG Encoding 0.42 0.25
Hard IFG Maintenance 0.05 0.19
Hard IFG Response 0.56 0.23
Hard VIFG Encoding 0.27 0.16
Hard VIFG Maintenance 0.02 0.16
Hard VIFG Response 0.32 0.15
Hard SMFG Encoding 0.44 0.32
Hard SMFG Maintenance 0.06 0.15
Hard SMFG Response 0.38 0.21
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In order to select the best-fitting variance–covariance structure, we first consider models 
with all possible fixed effects (i.e., the main effects of group, task difficulty level, region, and 
phase, and all possible interactions among them). This is necessary because the fixed effects 
explain some of the variance of the data. If we do not include all possible fixed effects, then 
we may end up selecting a variance–covariance structure that reflects some of the variance 
due to fixed effects. Once we select the best-fitting variance–covariance structure, we can 
drop non-significant fixed effects for the model, in order to achieve a more parsimonious 
model that describes the data well but is easier to interpret. The elimination of non-signif-
icant effects proceeds in a hierarchical fashion so that at each step the model is hierarchi-
cally well-formulated. This means that no lower order terms are omitted before higher order 
terms when these factors are dropped from the model. For example, we should not drop the 
main effects of factors when there are interactions involving these factors still in the model, 
and we should not drop two-way interactions among factors when three-way interactions 
involving these factors are present in the model. If the four-way interaction is significant, 
then we can’t drop any of the lower order interactions or main effects from the model.

The elimination approach is as follows. We first consider the highest order interaction in the 
model and evaluate whether it is statistically significant at a pre-selected alpha level. If it is not 
statistically significant, we drop it, refit the model and evaluate the statistical significance of 
the highest order interactions in the new model. In the schizophrenia data, the highest order 
interaction involves four factors. If it is dropped from the model then we need to refit the model 
and evaluate the three-factor interactions. If at least one of these interactions is not significant 
at the pre-specified alpha level, then we drop the interaction with the largest p-value. Then the 

TABLE 3.6 

Model Fit Criteria for the fMRI Study in Schizophrenia

Model Random Effects Fixed Effects AIC BIC

Model 1: Single-level 
random intercept

Intercept for subject All main effects and 
interactions

−360.2 −357.7

Model 2: Two-level 
random intercept

Intercept for subject and for 
task within subject

All main effects and 
interactions

−362.2 −358.5

Model 3: Two-level 
random intercept

Intercept for subject and for 
phase within subject 

All main effects and 
interactions

−401.2 −397.4

Model 4: Two-level 
random intercept

Intercept for subject and for 
region within subject 

All main effects and 
interactions

−416.6 −412.9

Model 5: Variance 
components

Random effects for 
subject, for task, phase, 

and region within subject

All main effects and 
interactions

−521.9 −515.6

Model 6: Three-level 
random intercept

Intercept for subject, for 
task within subject and for 

region within subject by 
task

All main effects and 
interactions

−384.4 −379.3

Model 7: Three-level 
random intercept

Intercept for subject, for 
task within subject and for 

phase within subject by 
task

All main effects and 
interactions

−379.5 −374.4

Model 8: Variance 
components

Random effects for 
subject, for task, phase, 

and region within subject

All main effects, group × 
phase, region × phase, task × 

phase, task × region 

−607.9 −601.6

Note: Model 5 is the model with all fixed effects and the best-fitting variance-covariance structure. Model 8 is 
the final model after backward elimination of the non-significant fixed effects.
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model is refit again and the least significant highest order interaction is dropped. This proce-
dure continues until all highest order effects involving each factor in the model at the last stage 
are statistically significant. We now show how this is done on the schizophrenia data.

Of the considered models with all fixed effects in Table 3.6, model 5, which has a random 
intercept for subject, and for phase, region, and task difficulty level within subject, fits the 
data the best, according to both the AIC and BIC criteria. The random effects are all nested 
within subject and hence we call this model the variance component model, since it splits 
the total variance in parts due to the different factors within the subject. The exact model 
formulation for the random effects is as follows:

 Y Mean b b b bijkl ijkl i ij ik il ijk= + + + + + ε ,  

where:
 i denotes subject
 j denotes phase
 k denotes task difficulty level
 l denotes region 

All random effects are assumed to be independent of one another and of the errors 
and normally distributed with different variances. This formulation results in 
equal   variances across repeated occasions within the same subject but different cor-
relations, depending on whether the observations are within the same task, phase, 
and/or region. 

After selecting the best-fitting model, in terms of random effects and variance– covariance 
of the errors, we perform backward elimination in order to drop fixed effects that are not 
significant from the model. We drop the four-way interaction first, then all the three-way 
interactions in the following order (region × task × phase, group × region × phase, group 
× task × phase, group × task × region). Finally, the two-way interactions between group 
and region, and group and task are dropped. We are left with model 8, which has all main 
effects and four two-way interactions. 

Table 3.7 presents the results from all overall tests of the effects in model 8. All two-way inter-
actions involving phase are statistically significant, the interaction between task and region is 

TABLE 3.7 

Tests of Main Effects and Interactions from the Best-
Fitting Mixed Model in the fMRI Study of Working 
Memory in Schizophrenia

Effect Test Statistic P‑Value

Group F(1,24) = 2.85 0.10
Difficulty level F(1,25.1) = 11.49 0.002
Region F(3,74.7) = 8.00 0.0001
Phase F(2,48) = 134.65 <0.0001

Group × phase F(2,48) = 5.83 0.005

Difficulty level × phase F(2,428) = 6.92 0.001

Region × phase F(6,428) = 18.06 <0.0001

Difficulty level × region F(3,430) = 2.77 0.04

Note: Effects in bold are significant at 0.05 level.
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also significant and the main effects of region, difficulty level, and phase are significant at 0.05 
level. When interpreting significant effects in the models we focus on the highest order interac-
tions that are significant. More information on the order of testing of effects in the model and 
different types of interactions (qualitative or quantitative) is provided in Chapter 6.

Table 3.8 presents the results from the tests of the simple effect of group within each phase. 
Similar tables can be produced for the other significant interactions in the model, however 
since the focus in this study is on identifying between-group differences we do not pursue 
post hoc analyses for the other significant effects in the model here. As seen from Table 3.8, 
there are significant differences in activation between groups during maintenance and 
response but not during encoding across regions and task difficulty levels. Estimated least 
square means and standard errors show that activation is lower in schizophrenic patients 
during maintenance and response compared to healthy controls. This indicates impaired 
performance during the maintenance and response phases of the working memory task 
across task difficulty levels and regions in the schizophrenia patients. Note that if adjust-
ment for multiple testing of post hoc hypotheses is applied as if often needed in order to 
protect against committing a type II error (i.e., finding significant differences when there 
are in fact no differences), some of the significant p-values may become non-significant. 
Adjustment for multiple testing is considered in more detail in Chapter 6. 

Figures 3.13 and 3.14 show plots of marginal and conditional studentized residuals, 
respectively, from the best-fitting model. The two sets of residuals differ in the following 
way. To obtain the marginal residual, the predicted value for each individual observation 
based only on the fixed-effects portion of the model is subtracted from the observed value. 
To obtain the conditional residual, the predicted value based on the fixed effects and the 
random effects portion of the model is subtracted from the observed value. Since there are 
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several random effects, the predicted values are obtained by adding the mean prediction 
and the individual-specific estimates for the random effects obtained using the empirical 
Bayes method. Thus, the conditional residual adjusts for systematic individual-level varia-
tion from the mean due to random effects while the marginal residual does not. 

In the upper-left plot of Figure 3.13, the marginal residuals are stacked in columns because 
there is a fixed number of different combinations of levels of the fixed effects. In contrast, 
in the corresponding plot in Figure 3.14 the residuals form a cloud with more randomness 
because in this case the predicted individual values have been obtained by adding the esti-
mates of the random effects to the mean predictor. Both sets of residuals are approximately 
normally distributed with a few positive outliers. In particular, there is one large positive 
conditional residual as indicated in the lower left plot in Figure 3.14. Measures of influ-
ence can be used to ascertain whether these outliers are significantly affecting the results. 
A simple method of sensitivity analysis is to repeat the main analysis with and without 
the potential outliers. If the results do not change substantively, then the residuals are not 
influential. In this particular example, the results did not change substantively when the 
outlying observation was removed and hence the results can be considered to be robust. 

3.8.4 Meta-Analysis of Clinical Trials in Schizophrenia

Mixed-effects models can also be used for joint analysis of data from different studies. 
Meta-analysis typically involves combining the results of studies of the effect of a particu-
lar medication or intervention so that an overall estimate of effect size can be obtained that 
succinctly summarizes the available empirical evidence in published and unpublished 
data. The individual observations in such an analysis are usually the effect sizes from 
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different studies (e.g., standardized mean differences between the response on the experi-
mental and the control treatment in each study) and a fixed effects or a random effects 
approach is used. The fixed-effects approach is focused on estimation of the overall effect 
where the study-specific effects are assumed to deviate randomly from the overall effect 
and are weighted according to their variability. The random effects approach incorpo-
rates additional random study-specific variability by introducing a random intercept in 
the model and thus allowing to account for heterogeneity in effects among the different 
studies. More information on statistical and other aspects of meta-analysis can be found 
in Normand (1999).

The meta-analysis of clinical trials in schizophrenia (Woods et al., 2005) introduced in 
Section 1.5.6 seeks to assess whether the degree of improvement with antipsychotic medi-
cation on active treatment depends on the type of design (i.e., whether the study includes 
an active, low dose or placebo control). To answer this question, the focus is on the average 
improvement on the outcome of interest in the active study arms rather than on the effect 
size comparing active to control groups. The response is the Brief Psychiatric Rating Scale 
(BPRS), with larger scores indicating worse symptoms, and the study-specific outcome 
measure is the change in BPRS scores from baseline to endpoint per treatment arm. Since 
multiple active arms per study are entered in this meta-analysis, it is imperative to include 
a random effect for study in order to account for both between-study heterogeneity and for 
correlations between outcomes in the different arms within study. 

In this investigation (Woods et al., 2005), individual studies were categorized in one of 
three design types: placebo-controlled, low dose-controlled and active-controlled design. 
Each active dose arm in the studies was categorized in one of three dose ranges: effective 
doses that consistently separated from placebo, ineffective doses like those used as low 
dose controls and intermediate doses.

The random effects model we focus on includes fixed effects of drug (risperidone, olan-
zapine, quetiapine or ziprasidone), a combined dose/design variable (effective dose/placebo 
control, intermediate dose/placebo control, ineffective dose/placebo control, effective dose/
low dose control, intermediate dose/low dose control, ineffective dose/low dose control, 
effective dose/active control), baseline BPRS mean and a random intercept. The response is 
mean BPRS change scores per treatment arm and the clusters are the different studies. The 
combined dose/design variable is needed because not all combinations of dose and design 
levels are possible and hence we should not simply include main effects of design and dose 
and their interaction. In particular, studies with active-control design designs do not have 
intermediate or ineffective doses as seen from Table 1.2 in Chapter 1, which gives descriptive 
statistics of the study-specific outcomes. The main hypothesis test of interest in the analysis, 
presented in the original publication and herein, is the test of the overall dose/design vari-
able with post hoc contrasts to examine the effects of design within each level of dose. The 
analysis is performed in SAS using SAS PROC MIXED, the between-study variance is esti-
mated together with the fixed effects and the standard errors of the change score means are 
held fixed at their reported values as is the common practice in meta-analyses. More details 
about the study and the analysis can be found in Woods et al. (2005) and the code to fit the 
models and estimate the effects is included in the online materials. 

The overall test of the design/dose variable is statistically significant (F(6,27) = 15.93, 
p<0.0001). Least square means and standard errors by design/dose level are shown in 
Figure 3.15. Post hoc mean comparisons of improvement in BPRS between different types 
of designs within dose range are included in Table 3.9. Average improvement on the 
BPRS at effective doses is significantly more in active-controlled designs than in either 
placebo-controlled or low dose-controlled designs. Improvement is also more substantial 
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at intermediate and ineffective doses but not at effective doses when low dose-controlled 
designs are compared to placebo-controlled designs.

This analysis demonstrates that magnitude of improvement in symptoms in clinical 
trials in schizophrenia depends on the type of design. In particular, in active-controlled 
trials the improvement on effective doses is nearly double (14.76 points on average) com-
pared to the improvement in placebo-controlled trials (8.41 points on average). Multiple 
possible explanations for this result are possible. For example, there might be selection or 
expectancy bias as subjects who enroll in active-controlled trials may be different from 
subjects who enroll in placebo-controlled trials, or patients and providers may have differ-
ent expectations and behavior in active vs. placebo-controlled trials. Detailed discussion 

TABLE 3.9

Tests of the Simple Effects of Design within Each dose Range in the Meta-Analysis of Clinical 
Trials in Schizophrenia

Effect
At Dose 
Range LSM1 (SE1) LSM2 (SE2) P‑Value

Least Square 
Mean Difference 

(95% CI)

Active control vs. 
placebo control

Effective 14.76 (0.76) 8.41 (0.87) <0.001 6.35 (3.89, 8.82)

Active control vs. 
low dose control

Effective 14.76 (0.76) 10.18 (1.30) 0.005 4.58 (1.47, 7.69)

Low dose control vs. 
placebo control

Effective 10.18 (1.30) 8.41 (0.87) 0.27 1.77 (−1.43, 4.97)

Low dose control vs. 
placebo control

Intermediate 10.38 (1.42) 5.46 (0.97) 0.008 4.92 (1.38, 8.46)

Low dose control vs. 
placebo control

Ineffective 7.10 (1.36) 3.30 (1.24) 0.05 3.80 (0.03, 7.57)

Note: LSM, Least Square Mean; SE, Standard Error; 1, "schizophrenics"; 2, "controls." 
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Model-based BPRS change mean and standard error estimates for the three different design types across dose 
ranges in the meta-analysis of clinical trials in schizophrenia.
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of the results and their interpretation can be found in Woods et al. (2005). Herein, we focus 
on providing a different type of example of the application of mixed models in order to 
illustrate the flexibility and wide use of the approach.

3.8.5 Citalopram Effects on Depressive Symptom Clusters in the STAR*D Study

The first phase of the STAR*D clinical trial (described in more detail in Section 1.5.2), was a 
12-week treatment with citalopram. Depression symptoms were assessed using the QIDS 
rating scale at several visits during the 12-week period with individuals deviating some-
what from the planned schedule of visits. In this analysis, we are interested in assessing 
the improvement in the average scores of the three clusters of depressive symptoms (core, 
sleep and atypical) and comparing the effects of citalopram on the different symptom 
clusters. Since individuals are assessed at different time points and hence the design is 
unbalanced, we need to use random effects rather than covariance-pattern models in order 
to take into account the correlations between repeated observations within individuals. 
We consider several random effects models of increasing complexity and compare the fit 
of these models as described below. 

We analyze the three symptom clusters together, in order to be able to assess sta-
tistically whether the citalopram effects are similar or different across clusters. As in 
the augmentation study in depression example, for these data there is indication that 
the relationship between time and depression severity is curvilinear with larger initial 
improvement and then leveling off of the response on average. This seems to hold for 
each of the three clusters. Therefore, we again log-transform time and consider linear 
fixed effects in log time for each symptom cluster. Thus the fixed-effects portion of the 
model includes cluster (coded by two dummy variables), log time and the interactions 
between cluster and  log time as shown in the model equation for the best model below. 
The interactions are needed to allow us to assess the differences in change over time for 
the three clusters.

We consider several random effects structures with increasing complexity. In particular, 
we start with a model with three random intercepts (one for each cluster) that are uncor-
related across the clusters, then consider a model with correlated random intercepts, then 
add on random slopes, first uncorrelated with the random intercepts and across clusters, 
then gradually build-in all possible correlations. Table 3.10 shows the model fit criteria for 

TABLE 3.10

Model Fit Criteria for Mixed-Effects Models Fitted to the Depression Symptom Cluster Scores in 
the STAR*D Study

Model Fixed Effects AIC BIC

Model 1: Uncorrelated random intercepts Cluster Time Cluster × Time 78255.9 78281.1
Model 2: Correlated random intercepts Cluster Time Cluster × Time 75290.8 75334.9
Model 3: Uncorrelated random intercepts and 
common random slope for all clusters

Cluster Time Cluster × Time 75234.9 75266.4

Model 4: Correlated random intercepts and 
common random slope for all clusters

Cluster Time Cluster × Time 72940.2 73009.5

Model 5: Random intercepts and slopes correlated 
only within cluster

Cluster Time Cluster × Time 75632.3 75689.0

Model 6: Correlated random intercepts and slopes Cluster Time Cluster ×  Time 71224.2 71362.7

Note: Model 6 indicated in bold is the best-fitting model according to AIC and BIC.
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these different models. The best-fitting model is the most general one with correlated ran-
dom intercepts and slopes (Model 6).

Thus, the selected model is

 
Y d d d d t d t d tijk j j j j ik j ik j ik= + + + + +β β β β β β1 1 2 2 3 3 4 1 5 2 6 3log log log

++ + + + + +b d b d b d b d t b d t b di j i j i j i j ik i j ik i j1 1 2 2 3 3 4 1 5 2 6 3log log log ttik ijk+ ε
 

where:
 i indicates individual
 j indicates cluster within individual
 k denotes time

The three dummy variables dj1, dj2 and dj3 indicate the three different clusters. That is, 
for observations Yijk from the core cluster: dj1 = 1, dj2 = 0 and dj3 = 0; from the atypical cluster: 
dj1 = 0, dj2 = 1 and dj3 = 0; and from the sleep cluster: dj1 = 0, dj2 = 0 and dj3 = 1. Since we are using 
as many dummy variables as there are clusters, we excluded the overall intercept and the 
main effect of time. This notation allows for a very simple interpretation of the coefficients 
in the model as intercepts and slopes in the appropriate clusters. By substituting the appro-
priate dummy codes, we get the following simple random intercept and slope models for 
each cluster:

Core cluster: Y t b b ti k ik i i ik i k1 1 4 1 4 1= + + + +β β εlog log ;
Atypical cluster: Y t b b ti k ik i i ik i k2 2 5 2 5 2= + + + +β β εlog log ;
Core cluster: Y t b b ti k ik i i ik i k3 3 6 3 6 3= + + + +β β εlog log .

The reason we combined these in one model, is to take into account the correlations 
among observations on different clusters and to compare the fixed intercepts and slopes of 
the different clusters statistically. In the most general model from Table 3.10, the variances 
and covariances of the random effects are unrestricted. 

All regression parameter estimates are highly statistically significant (p-values <0.0001) 
which is unsurprising given that the entire sample size is 4019 individuals with up to 27 
observations per individual (up to 9 repeated observations on three clusters). Thus citalo-
pram appears to significantly improve symptoms over time. 

Figure 3.16 shows the estimated average cluster scores over time for the three clusters. 
Since the symptom scores on the three clusters have the same range (0–3) the values are 
directly comparable. From the differences in intercepts, we see that at baseline partici-
pants endorse more core and sleep symptoms than atypical symptoms. On the other 
hand, the improvement over time in core symptoms is most pronounced while sleep 
and atypical symptoms improve less and at a slower rate. To quantify these apparent 
differences, we refer to Table 3.11 which presents the estimated intercepts and slopes (in 
log time) and the comparisons among those with estimated 95% confidence intervals. 
The observations from the figure are confirmed by the estimates in this table with only 
the difference in intercepts between core and sleep clusters not statistically significant. 
Thus, we can conclude that citalopram has the most pronounced effect on core depres-
sive symptoms with less of an effect on sleep symptoms and the least effect on atypical 
symptoms. 
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3.9 Summary

In this chapter, we introduced mixed-effects models for approximately normally dis-
tributed outcome measures and showed how correlations between repeated measures 
and data variability can be taken into account by random effects, structured variance– 
covariance matrices or combinations of the two. We focused on model definition, various 
error structures, selection of best-fitting model and briefly discussed model diagnos-
tics. We also discussed interpretation and presented graphical methods for visualizing 
the results and checking of model assumptions. This is by no means a comprehensive 
treatment of this topic. We refer the interested reader to Brown and Prescott (2006) for 
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Predicted trajectories for average depression cluster symptom scores in the STRD*D clinical trial.

TABLE 3.11

Estimated Intercepts, Slopes, and Contrasts between Clusters with Associated 95% Confidence 
Intervals in the STAR*D Clinical Trial

Effect Estimate (95% Confidence Interval)

Intercept for core cluster 1.76 (1.74, 1.78)
Intercept for atypical cluster 0.84 (0.82, 0.85)
Intercept for sleep cluster 1.74 (1.71, 1.76)
Difference in intercepts for core and atypical clusters 0.92 (0.91, 0.94)
Difference in intercepts for core and sleep clusters 0.02 (−0.01, 0.05)
Difference in intercepts for atypical and sleep clusters −0.90 (−0.93, −0.87)
Slope for core cluster −0.40 (−0.41, −0.39)
Slope for atypical cluster −0.16 (−0.17, −0.16)
Slope for sleep cluster −0.26 (−0.28, −0.25)
Difference in slopes for core and atypical clusters −0.23 (−0.24, −0.22)
Difference in slopes for core and sleep clusters −0.13 (−0.15, −0.12)
Difference in slopes for atypical and sleep clusters 0.10 (0.09, 0.11)
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information on different types of studies and how to fit models to such data using SAS, to 
Littell et al. (2000) for more on selection of the variance–covariance structure and to Weiss 
(2005), Hedeker and Gibbons (2006) and to Fitzmaurice et al. (2011) for more information 
on fitting trends over time. 

Mixed-effects models are considered the gold standard method for the analysis of 
repeated measures data because they use all available data on individuals, are very flexible 
in accounting for variability across occasions and correlations between repeated measures 
in both balanced and unbalanced designs, and provide unbiased and efficient estimates 
under general assumptions for missing data. However, special attention needs to be paid 
to model formulation and interpretation. Since the selection of the best-fitting mixed model 
is not clear cut, there is potential for reaching different conclusions from different mixed 
models on the same data set. Additional topics related to mixed models such as effects of 
missing data and heterogeneous trajectories over time are considered in subsequent chap-
ters. In particular, Chapter 7 discusses missing data in detail while Chapter 10 focuses on 
models that allow subgroups of the sample to follow categorically different trajectories 
over time. Chapter 4 shows how mixed models are extended for non-normally distrib-
uted outcomes, and Chapter 5 describes non-parametric alternatives. Chapter 12 mentions 
further extensions such as models for multiple repeatedly measured outcomes, non-para-
metric time modeling, intensive longitudinal data, non-linear and non-parametric models.
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4
Linear Models for Non-Normal Outcomes

The linear mixed models (LMM), presented in the previous chapter, extend the classical 
 linear models for non-correlated data to the analysis of clustered and longitudinal data 
when the outcome variable is quantitative and can be assumed to be approximately nor-
mally distributed. When the outcome is categorical or a count, or when its distribution is 
not normal and can’t be transformed to normality, other models need to be considered. For 
example, very often treatment response in medical studies is measured by a categorical 
variable with two or more categories. Patients may be “responders” or “non- responders,” 
showing a different degree of improvement (“very much improved,” “improved,” “not 
improved,” or “deteriorated”), or diagnosed with different subtypes of a certain disease. 
Outcomes can also be non-negative counts: for example, the number of suicides per geo-
graphic area or the number of positive urine tests over a period. Other variables, such as 
number of drinks per drinking day, have distributions that are skewed and often can’t be 
transformed to normality. A wider class of models than linear models, namely generalized 
linear models (GLM) (Nelder and Wedderburn, 1972), unite such outcomes under the same 
umbrella and allow statistical inference to be performed within the same theoretical frame-
work. GLM are appropriate for cross-sectional data where there are no statistical associa-
tions among the observations, but extensions have been developed that allow incorporating 
statistical dependence between observations on the same individual or within a cluster. 

GLM assume that the outcome variable has a distribution in the exponential family 
(McCullagh and Nelder, 1989). This family encompasses many distributions and includes 
the Bernoulli distribution for binary data, the Poisson distribution for count data, the gamma 
distribution for skewed continuous data, and the normal distribution for bell-shaped continu-
ous data. GLM extensions are also available for dealing with categorical responses that may 
be ordinal (i.e., with ordered categories such as graded levels of improvement) or nominal 
(i.e., with categories that do not have natural ordering such as different disease types). 
In GLM, mathematically convenient functions relate the mean of the outcome to a lin-
ear combination of the predictors. This is necessary because the mean response is often 
restricted to be within a certain range, hence it is not appropriate to allow it to get outside 
of this range for some levels of the covariates. For example, the mean of dichotomous 
data is the same as the probability of the response of interest (e.g., treatment response or 
remission, usually coded as 1 with the opposite outcome coded as 0), which is restricted 
to be between 0 and 1. If we directly model the mean (probability) as a linear combination 
of the predictors, as is done in the linear model for normally distributed outcomes, then 
for some values of the predictors the estimated probability may be less than 0 or greater 
than 1. This is not reasonable and, therefore, for binary data, the effects of the predictors 
are often assessed on the logit (log odds) scale, as described in the next section. In the case 
of non-negative count data, the mean can’t be negative because the counts can’t be nega-
tive. Therefore, for count data, the log of the mean, rather than the mean itself, is related to 
the linear combination of the predictors. Interpretation of estimated coefficients in GLM is 
specific to the type of outcome and to the distributional and model assumptions. 
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In this chapter, we present two types of extensions of GLMs for longitudinal or clustered 
data: marginal (population-averaged) models that focus on estimation of the effects of predic-
tor variables on the average response in the population and treat the association structure 
of the repeated measures as a nuisance, and random effects (subject-specific) models that focus 
on inference at the individual level and jointly estimate the parameters characterizing 
the mean and the association structure. Because of the non-linearity in the relationship 
between the predictors and the response with non-normal data, the population-averaged 
effect of a predictor is not the same as the subject-specific effect. For example, the odds 
ratio for the effect of a predictor within an individual is not the same as the odds ratio for 
the effect of the same predictor in the population. This distinction is explained in more 
detail further in this chapter.

The population-average approach presented herein is based on the classical generalized 
estimating equations (GEE) (Zeger et al., 1988) while the subject-specific approach is based 
on generalized linear mixed models (GLMM) (Clayton, 1992). These two classes of models are 
described in a fairly concise way without going into technical details and considering dif-
ferent extensions of the methodology. A multitude of publications has been dedicated to 
these approaches in recent years. Comprehensive textbooks are the works of Hardin and 
Hilbe (2013) and Ziegler (2011) for GEE, and of McCulloch and Searle (2001), Jiang (2007), 
and Stroup (2013) for GLMM. A fairly non-technical introduction for GEE is provided by 
Hanley et al. (2003), and for GLMM by Bolker et al. (2009).

While in LMM correlations between repeated measures are incorporated by assuming a 
certain pattern for the variances and covariances, and/or including random effects in the 
linear predictor, GEE and GLMM are different model extensions, depending on whether 
one specifies the variance–covariance structure directly or includes random effects. In 
GLMM statistical associations between repeated measures on the same individual are 
incorporated strictly by specifying random effects for individuals and/or clusters. GEE, 
on the other hand, do not include any random effects, consider the correlation structure of 
the repeated observations as a nuisance, and assume a working correlation structure that 
has minimal effect on the fixed-effects estimates, which are of primary interest. Figure 4.1 
illustrates the relationship between these different classes of models and the underlying 

Linear Models (LM)
Normal outcome
Fixed effects
Uncorrelated errors

Generalized Linear Models (GLM)
Exponential family outcome
Fixed effects
Uncorrelated errors

Generalized Linear Mixed
Models (GLMM)

Exponential family outcome
Fixed and random effects
Conditionally independent observations

Linear Mixed Models (LMM)
Normal outcome
Fixed and/or random effects
Correlated or uncorrelated errors

Random Effects
Models

Normal outcome
Random effects
Uncorrelated errors

Covariance-Pattern
Models

Normal outcome
Fixed effects
Correlated errors

Generalized Estimating Equations (GEE)
Exponential family outcome
Fixed effects
Working variance–covariance structure

FIGURE 4.1 
Relationship between different types of linear models.
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assumptions for the outcomes, the presence or absence of random effects, and the statis-
tical dependence of the observations. Note that GEE models can be regarded as exten-
sions of covariance-pattern models while GLMM models can be regarded as extensions 
of random effects models for outcomes in the exponential family. When the outcome is 
not normally distributed, the two extensions of GLM can’t be combined under the same 
umbrella, as was done for random effects models and covariance-pattern models in the 
LMM framework. 

There are major differences in GLMM and GEE in model assumptions, estimation, 
and interpretation. While in LMM, the estimates of the fixed regression coefficients are 
interpreted exactly the same, regardless of whether the variance–covariance structure is 
directly modeled or implied by the use of random effects, in GEE and in GLMM the inter-
pretation is different. In GEE, the focus is on estimation of marginal effects. That is, we 
estimate how the outcome in the population changes, on average, if the predictors are 
varied in the population. In contrast, in GLMM the focus is on individual-level response, 
and thus, the effects of the predictors have subject-specific interpretation. That is, we estimate 
how the outcome of an individual is expected to change if the predictors are varied for that 
individual. Thus, when interest lies in estimation of average effects in the population, one 
should use GEE, and when interest lies in estimation of the effects of predictors within 
individuals, one should use GLMM. 

GEE and GLMM also differ in robustness of their inferences in the presence of missing 
data with GLMM, in general, providing valid results under a wider range of missing data 
assumptions. While GLMM models can handle unbalanced designs where individuals 
are observed at different occasions, GEE usually requires balanced designs. An exception 
is the quasi-least squares (QLS) approach for estimation of the correlation parameters in the 
framework of GEE (Shults and Hilbe, 2014). On the other hand, fewer assumptions are 
necessary for GEE models to provide valid inference, compared to GLMM, in situations 
when both can be used and missing data are not an issue (i.e., only the mean structure 
needs to be approximately correctly specified rather than both the mean and the variance 
structure).

In this chapter, we first provide a short introduction to GLM, which are the basis for 
both GEE and GLMM extensions. Particular attention is paid to binary, count, and ordinal 
outcomes. Separate sections are then devoted to GEE and GLMM. Data examples are used 
throughout for illustration and SAS code and output are available in the online materials. 
The chapter concludes with a summary and suggestions for further reading. Missing data 
issues are discussed in more detail in Chapter 7.

4.1 Generalized Linear Models (GLM)

GLM are extensions of linear models for outcomes with distributions in the exponential 
family (Harville, 1977; McCullagh and Nelder, 1989). This allows quantitative outcomes 
with approximately normal distributions and a wide range of other outcomes (binary, 
count, and quantitative outcomes with skewed distributions) to be considered within the 
same analytical framework. That is, the models can be constructed in a similar manner, 
the same estimation procedure can be used, and statistical inference is based on common 
theory. We first describe GLM by considering a couple of special cases (logistic regres-
sion for binary data, Poisson regression for count data) and show how these models are 
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combined in the same framework. Note that in GLM the outcomes are assumed to be inde-
pendent and hence GLM are not appropriate for clustered or longitudinal data. GLMM 
and GEE extensions for correlated data are presented in Sections 4.2 and 4.3.

4.1.1 Logistic Regression for Binary Data

Binary data are quite common in medical studies. For example, in substance abuse often 
the outcome is whether a subject is using a particular substance or not. Also, binary mea-
sures of treatment response and remission are of primary interest in many clinical trials. 
When a single binary measure is collected on each individual in a study, then logistic regres-
sion (Hosmer and Lemeshow, 1989) can be used to assess the effect of treatment, exposure, 
and/or covariates on the outcome. In logistic regression, we relate the log of the odds of 
the outcome of interest (e.g., response, remission; denoted by Y) to a linear function of pre-
dictors, as shown in Equation 4.1. As a reminder, the odds of an outcome are the ratio of 
the probability of that outcome and the probability of the opposite outcome. For example, 
the odds of remission are equal to the probability of remission divided by the probability 
of non-remission. If the probability of remission is one-half (1/2 or 0.5), then the odds of 
remission are 1 as both the probability of remission and the probability of non-remission 
are equal to one-half. If the probability of remission is one quarter (1/4 or 0.25), then the 
odds of remission are equal to one-third: 0.25/(1 − 0.25) = 0.25/0.75 = 1/3. It is important to 
keep in mind this difference between odds and probabilities, in order to interpret results 
from logistic regression models appropriately. 

For simplicity, we define the basic logistic regression model in the context of an example. 
We consider the augmentation study in depression and treatment response (a score of 10 
or less on the HDRS at endpoint) as a dichotomous outcome. The outcome Yi is often coded 
as 1 or 0, where 1 denotes the event of interest. The unknown probability of the outcome 
(treatment response) for the ith subject is P(Yi = 1) = pi. A simple logistic model that we can 
consider is as follows:

   log
p

p
Groupi

i
i1 0 1−







= +β β  (4.1)

That is, we hypothesize that the log odds of the outcome of interest (treatment response) 
are associated with group membership via the linear function in the beta regression coef-
ficients on the right. The group is coded as 1 for individuals in the augmentation group, 
and as 0 for individuals in the control group. Thus the β0 parameter is interpreted as the 
log odds (i.e., log-transformed odds) of response in the control group and the β1 parameter 
is interpreted as the difference in the log odds of response in the augmentation group 
and in the control group. Since the difference of two logs is equal to the log of the ratio, 
the β1 parameter is the log odds ratio of response in the augmentation group, compared to 
the control group. Exponentiating β1 (i.e., taking exp(β1)) gives the odds ratio of the group 
effect (i.e., the odds ratio of response in the augmentation group compared to the control 
group). Exponentiating β0 (i.e., taking exp(β0)) gives the odds of response in the control 
group, while exponentiating β0 + β1 (i.e., taking exp(β0 + β1)) gives the odds of response in 
the augmentation group. 

Note that β1 > 0 corresponds to an odds ratio greater than 1 and a positive association 
between the group and the outcome (i.e., individuals have higher odds of the outcome in 
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the treatment compared to the control group). On the other hand, β1 < 0 corresponds to an 
odds ratio less than 1 and a negative association between the group and the outcome (i.e., 
individuals have lower odds of the outcome in the treatment group compared to the con-
trol group). β1 = 0 corresponds to no association between group and the outcome, i.e., the 
odds of response are the same in both groups. 

Based on the estimated odds of the outcome for each group, we can estimate the cor-
responding probabilities. If the odds are 1, then the probability is ½, if the odds are larger 
than 1 then the probability is greater than ½, and if the odds are smaller than 1 then the 
probability is smaller than ½. 

In the depression data set, 17 out of 26 subjects (65.4%) in the augmentation group are 
responders at the end of the study, while 10 out of 24 subjects (41.7%) in the control group 
are responders. Thus the odds of response in the augmentation and control group are, 
respectively, 1.89 and 0.72. The odds ratio for the comparison between the augmentation 
and the control group is 2.64 (95% CI: 0.84, 8.31). This is interpreted as the odds of response 
in the augmentation group being more than two and a half times larger than in the control 
group. Since the confidence interval includes 1, the groups are not considered to be statisti-
cally significantly different in terms of their odds of achieving response. 

Note that the coding of the outcomes and categorical predictor variables determines the 
interpretation of the odds ratio. If we switch the coding of the group variable so that the 
control group is coded as 1 and the augmentation group is coded as 0, the new parameter 
evaluating the group effect (let’s call it β1

*) is just the negative of β β β1 1 1
* = −( ) and corre-

sponds to the log-odds ratio of response in the control group compared to the augmen-
tation group. When we exponentiate to obtain the odds ratio for the comparison of the 
control group to the augmentation group, we get the inverse of the odds ratio when com-
paring the augmentation group to the control group: exp /exp*β β1 11( ) = ( ). 

In the depression data the odds ratio for the comparison between the control and the 
augmentation group is 0.38 (95% CI: 0.12, 1.19) (0.38 ≈ 1/(2.67)). Thus, the odds of response 
in the control group are less than 40% of the odds in the augmentation group. 

As in linear models with normal outcomes, in logistic regression we usually have multi-
ple predictors. For example, if there are more than 2 groups then several dummy variables 
are necessary to code all possible levels of the group factor and each dummy variable has 
its own beta coefficient. Depending on the coding, each beta coefficient corresponds to an 
odds ratio comparing a certain group to the reference group when keeping the rest of the 
predictors constant. There might also be additional continuous predictors, for example 
depression severity at baseline as shown in Equation 4.2. 

   log
p

p
Group BaselineHDRSi

i
i i1 0 1 2−







= + +β β β  (4.2)

For continuous predictors, the regression coefficients are interpreted as the change in 
log odds of the outcome per unit change in the predictor when the other predictors are 
held constant. For example, the log odds of remission increases\decreases by β2 (depend-
ing on the sign of β2) for each unit increase in baseline HDRS score. Since there are no 
interactions in Equation 4.2 we assume that this change is the same in both groups. If we 
include an interaction between group and baseline HDRS score then we allow this effect 
to vary by group. Controlling for baseline covariates and interpreting main and interac-
tive effects of baseline covariates and treatment is considered in more detail in Chapter 8.
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To build up toward the GLM definition, we emphasize three aspects of the logistic 
regression model:

 1. We assume that the binary outcomes Yi are independent of one another and have 
Bernoulli distribution with the probability of the outcome of interest denoted by pi. 
This means that the probability of the opposite outcome is 1 − pi The mean of the 
Bernoulli distribution is equal to pi and the variance is equal to pi(1 − pi). Unlike the 
normal distribution, where the mean and the variance are entirely independent of 
one another, here the variance is related to the mean.

 2. We describe the effects of covariates as a linear function in the parameters, as 
shown in the right-hand side expression of Equations 4.1 and 4.2. This expres-
sion is called the linear predictor and can be any linear combination of predictors 
(quantitative or categorical coded by dummy variables) including interactions. 

 3. We relate the mean of the response distribution (pi) to the linear predictor via a 
mathematically convenient function. In logistic regression, we use the logit func-
tion, which is the log odds of the outcome of interest. This function takes a vari-
able that is restricted to be between 0 and 1 and makes it unrestricted. This way, 
there is no problem with equating the log odds of the response to a linear predic-
tor that is entirely unrestricted and can also take positive and negative values.

These three aspects are defined for each GLM model, as shown later in this chapter. We 
now turn attention to Poisson regression for count data. 

4.1.2 Poisson Regression for Count Data

Counts are also frequently encountered as outcomes in a variety of studies. For example, 
the number of drinking days or number of drinks may be outcomes of interest in alcohol 
studies. The number of positive urine tests is often an outcome in substance use data sets. 
The number of symptoms or number of occurrences of certain side effects can also be of 
interest. Counts are positive integers or zero, and very often exhibit skewed distributions. 
Hence, using linear regression models for normally distributed outcomes is not appropri-
ate. A commonly used distribution for count data is the Poisson distribution and log-linear 
regression models are used to assess the effects of predictors on average response. 

To introduce the basic log-linear regression model for count data, we consider the 
COMBINE clinical trial, introduced in Chapter 1 (Section 1.5.3), which assessed the com-
bined effects of three treatments in alcohol dependence on drinking measures over 16 
weeks. The outcome of interest, herein, is the number of drinking days in the last four 
weeks (called month, for simplicity) of the study period. We chose this outcome because it 
allows us to illustrate several different GLM and extensions on the same data. Some of the 
considered models may not be entirely appropriate because assumptions may not be satis-
fied, but herein, we emphasize the mechanism of constructing such models. An overview 
of the different analyses and a recommendation for the preferred approach is provided 
toward the end of this chapter.

We denote the outcome for the ith subject as Yi and assume that the outcome has a 
Poisson distribution with mean μi. Later on we describe why this assumption is not very 
reasonable. A simple log-linear model is as follows:

 log iµ β β β β= + + + ×0 1 2 3Naltrexone CBI Naltrexone CBIi i i i  (4.3)
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Here, Naltrexonei and CBIi are indicator variables that are equal to 1 if the participant 
received active naltrexone or CBI, respectively, and 0 otherwise. For simplicity, we ignore 
whether individuals received the third randomized treatment in the study (acamprosate). 
The regression coefficients for the naltrexone and CBI effects are interpreted as logarith-
mically transformed ratios of means. More commonly the coefficients are interpreted as 
logarithmically transformed ratios of rates since the Poisson distribution is often used in 
situations when subjects are followed up for different amounts of time or when rare events 
are modeled (e.g., suicide rates in a population). 

In the COMBINE study, some subjects have missing data in the last four weeks of 
treatment, therefore, for them there are fewer days over which the counts of heavy 
drinking data can be accumulated. If τi corresponds to the actual number of days 
for which information on the ith subject is available, the model can be modified as 
follows:

   log i

i

µ
τ

β β β β





= + + + ×0 1 2 3
* * * *Naltrexone CBI Naltrexonei i i CCBIi  (4.4)

or equivalently

 log log i iµ τ β β β β= + + + + ×0 1 2 3
* * * *Naltrexone CBI Naltrexone CBi i i IIi (4.5)

where log τi is called the offset.
In this new formulation, the regression parameters are in general different and 

the offset can’t be combined with the intercept because subjects have different 
follow-up times. The beta star parameters of the group effects are interpreted as 
logarithmically transformed mean (or rate) ratios of drinking adjusted for the 
actual lengths of follow-up for the different subjects. For simplicity, from here on 
we refer to these as rate ratios although sometimes it may be better to interpret in 
terms of mean ratios.

Exponentiating the regression coefficients provides the rate ratios, which are of primary 
interest. In particular, exp(β1) is the rate ratio for the comparison of the naltrexone only 
group to the control group who did not get either naltrexone or CBI, exp(β2) is the rate 
ratio for the comparison of the CBI only group to the control group, exp(β1 + β3) is the rate 
ratio for the comparison of the active naltrexone + CBI group to the CBI only group, and 
exp(β2 + β3) is the rate ratio for the comparison of the active naltrexone + CBI group to the 
naltrexone only group. 

Testing whether β3 is different from 0 is a test of the interaction between the two treat-
ments. β3 = 0 implies that there is no interaction between the two treatments while β3 > 0 
corresponds to a rate ratio greater than 1 and β3 < 0 corresponds to a rate ratio less than 
1 If, in addition, there are continuous predictors then the coefficients for these predictors 
are interpreted as rate ratios corresponding to unit change in the predictor when the other 
predictors are held constant. 

When the Poisson log-linear model is fitted to the number of drinking days in the last 
month of the COMBINE study, all estimated beta coefficients are statistically significantly 
different from 0 (p<0.0001). The estimated means for the four groups together with 95% 
confidence intervals are provided in the third column of Table 4.1. The means are slightly 
different than the raw (unadjusted) means, since they adjust for the length of  follow-up. 
The second column in Table 4.2 shows the corresponding rate ratios for all possible 
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pairwise comparisons between the treatments with associated 95% confidence intervals 
for this model. Compared to the control group, all three active groups have significantly 
lower rates of drinking. That is, because all three rate ratios are significantly less than 1 as 
the associated 95% confidence intervals are entirely below 1. This indicates that naltrex-
one and CBI, whether together or alone, appear to reduce the rate of drinking in the last 
month of treatment. 

We now highlight the parallelism between the logistic regression model definition and 
the log-linear models for count data: 

 1. We assume that the count outcomes Yi are independent of one another and have 
Poisson distributions with means μi.

 2. We describe the effects of covariates as a linear function in the parameters, as 
shown in the right-hand side expression of Equations 4.3 and 4.5. This expres-
sion is called the linear predictor and can be any linear combination of predictors 
(quantitative or categorical coded by dummy variables) including interactions.

 3. We relate the mean of the response distribution (μi) to the linear predictor via 
a mathematically convenient function. In Poisson regression, we use the log 
function. 

We see that both logistic regression for binary data and log-linear models for count data 
are described completely by specifying each of the three components above. We are now 
ready to introduce the class of generalized linear models. 

4.1.3 Generalized Linear Models

4.1.3.1 Model Definition and Most Commonly Used Specifications

GLM extend linear models for normal outcomes so that a larger class of outcomes can 
be considered. To define a GLM, three components need to be specified: a random compo-
nent, a systematic component and a link function. The random component is the distribu-
tion of the independent observations on the outcome variable. In GLM the distribution 
needs to be from the exponential family. The Bernoulli distribution, the Poisson distri-
bution, and the normal distribution are all exponential family distributions. The second 
column of Table 4.3 shows the most commonly used distributions in this family. The 
systematic component is the linear function of the predictor variables that are hypoth-
esized to be related to the mean of the outcome most commonly referred to as the linear 
predictor (denoted in the technical literature as η, herein we use lp). The link is a math-
ematically convenient function that links the random and systematic components. There 
are multiple link options for the different distributions but for each distribution there 
is a preferable function (called canonical link) that makes estimation and interpretation 
easier. Table 4.3 provides information on the most commonly used functions for each 
distribution. 

In the previous two subsections, we showed how the three GLM components are defined 
in logistic regression for binary data and in Poisson regression for count data. The special 
case in which the random component is a normal distribution, corresponds to the linear 
model introduced in Chapter 1. In this case, the mean response is directly equated to the 
linear predictor and hence the link function is the identity. The regression coefficients in 
linear models with normal outcomes are interpreted as the mean change in the outcome 
per unit change in a continuous predictor or as the mean difference in the outcome at a 
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certain level of a categorical predictor, compared to a reference level when the rest of the 
predictors are held constant. 

Logistic regression is used when the outcome is a single binary variable (e.g., 1 versus 0, 
“success” versus “failure”) or a number of successes out of a certain number of indepen-
dent trials. In the depression example, the single binary outcome we considered was the 
response to treatment and it was assessed at the last available time point for each indi-
vidual in the study. In other applications, the outcome can be number of “successes” out of 
a certain number of “trials.” 

In the COMBINE study, the 28 days at the end of treatment, during which we previously 
considered the number of drinking days, might be regarded as 28 different trials with a 
dichotomous outcome (drinking or not drinking) for each subject on each test day. If we 
assume for a moment that the observations on different days within the same subject are 
independent of one another (which is not the case and hence we will need to modify the 
model later on), and that the probability of drinking does not vary by day, then the total 
number of drinking days in this period for an individual can be regarded as a number 
of “successes” in a binomial experiment. Thus, we can fit a binomial distribution to these 
data and estimate how the odds of drinking on a particular day vary by treatment group. 
The sixth column of Table 4.2 provides the corresponding odds ratio estimates and 95% 
confidence intervals for each group. The sixth column of Table 4.1 shows the estimated 
mean number of drinking days and the corresponding 95% confidence intervals. Similar 
to the conclusions from the Poisson model, based on the estimates from these two tables, 
we can conclude that all three active treatments compared to the control have significantly 
lower odds of drinking. Note that the effects in this case are represented as odds ratios 
rather than as rate ratios. Also, the naltrexone group has significantly lower odds of drink-
ing than the CBI group. We continue the discussion of these results and focus on the issues 
of model selection later in this chapter, following the introduction of the additional models 
considered in these two tables.

The logit link function is the most commonly used function for binary/binomial data. 
The choice of this function is not unique. Another relatively frequently used possibility 
for binary data is the probit function (Agresti, 2002), which is very similar to the logit but 
does not provide as simple interpretation for the fixed-effects coefficients. However, for 

TABLE 4.3

Commonly Used Distributions in the Exponential Family with Corresponding Link Functions

Type of Outcome Random Component Link Function
Interpretation of 

Coefficients

Continuous Normal distribution: N(μi, σ2) Identity: μi = lpi Mean differences
Binary or number of 
“successes” out of ni 
independent trials with 
a dichotomous outcome

Binomial 
distribution: Bin(ni,pi) Logit: log

p
lpi

i
i

p
1 −







=

Log-transformed 
odds-ratios

Count Poisson distribution: Po(μi) Log: log(μi) = lpi Log-transformed mean 
ratios (rate ratios)

Count Negative binomial 
distribution: NegBin(k, μi)

Log: log(μi) = lpi Log-transformed mean 
ratios

Positive continuous Gamma 
distribution: Gamma (μi, v) Reciprocal:

1
µi

ilp=  

or log: log(μi) = lpi

Depends on link
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correlated data it has certain advantages over the logit link as it generalizes more easily 
from the case of independent to dependent observations. 

Poisson and negative binomial GLMs are used when the outcomes are counts. For exam-
ple, the number of heavy drinking days in a period is a non-negative count. The Poisson 
distribution has a very restrictive feature that the mean and the variance of the observations 
need to be the same. In reality, this restriction is rarely satisfied with count data as the vari-
ance is often several times larger than the mean. For example, the average number of drink-
ing days in the last month in the treatment period in COMBINE is 7.1 while the variance 
is 83.9. Within treatment group, the ratio is very similar as can be inferred from the means 
and standard deviations (the variance is the square of the standard deviation) in the second 
column of Table 4.1. This situation is referred to as overdispersion and is discussed in the next 
subsection. The negative binomial distribution seamlessly accommodates overdispersion in 
the data and hence is often preferred to the Poisson distribution in such situations.

The gamma distribution is also part of the exponential family and is useful for model-
ing positive continuous variables with skewed distributions. It has two parameters that 
determine the mean and the variance and hence has more flexibility to fit observed data 
than distributions with only one parameter. In general, the variance is proportional to 
the square of the mean, which makes it well suited for positively skewed data. The math-
ematically most convenient link function for the gamma is the inverse. However, the log 
link is most often used. The effects of covariates are estimated on the log-mean scale. In 
COMBINE, the number of drinks per drinking day can be modeled using gamma distri-
bution as the values are positive with right-skewed distribution. 

4.1.3.2 Overdispersion

In many of the GLM, the variance is a function of the mean but data may exhibit more vari-
ability than predicted by the theoretical model. As mentioned above, the Poisson distribu-
tion assumes that the variance is equal to the mean, which rarely corresponds to reality. 
This situation is referred to as overdispersion and can be handled by estimating an addi-
tional parameter ϕ so that the variance of the Poisson outcome is equal to ϕμi, rather than 
to μi. However, this is a rather artificial fix to the problem as the overdispersed Poisson is 
not a proper statistical distribution.

Note that some apparent overdispersion may result when important fixed effects are 
omitted from the linear predictor. Hence, before fitting an overdispersed model, one needs 
to make sure that all important variables are included in the linear predictor. With the 
additional parameter ϕ the variance is allowed to be higher than the mean. Since ϕ is not 
restricted (except to be positive), one can also model underdispersion (variance smaller 
than the mean), although this situation is encountered much less frequently in practice. 

The negative binomial distribution is directly applicable to overdispersed data because 
its variance is equal to µ µi i k+ 2/  for some positive number k and hence is larger than the 
mean. Estimating the extra parameter k allows us to determine the degree of overdisper-
sion. As k gets larger and larger, the negative binomial distribution gets closer and closer 
to the Poisson distribution. The negative binomial distribution is preferable to the over-
dispersed Poisson distribution, except in situations when there might be underdispersion, 
because it is a proper statistical distribution.

Overdispersion can also be present with binomial data where the variance is also deter-
mined by the mean. For the binomial distribution, the variance is equal to nipi(1−pi) and it 
is quite possible that the observed variance relative to the observed mean does not follow 
this pattern. Similar to the case with the Poisson distribution, an extra overdispersion 
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parameter can be estimated in order to deal with this situation. In general, any GLM where 
the variance is related to the mean can be augmented by an extra dispersion parameter so 
that overdispersion can be handled seamlessly within the GLM framework. 

Tables 4.1 and 4.2 provide the mean estimates and rate ratios with 95% confidence inter-
vals for the overdispersed Poisson model and the negative binomial model, and also 
the mean estimates and odds ratios with 95% confidence intervals for the overdispersed 
binomial model. This allows for direct comparison of the results from the overdispersed 
Poisson and the negative binomial models to the results from the Poisson model without 
overdispersion. Similarly, the results from the overdispersed binomial model can be com-
pared to the results from the regular binomial model. 

We first focus on the Poisson and negative binomial models. The mean estimates in 
the two Poisson models (without and with overdispersion), and hence also the rate ratio 
estimates are exactly the same. The corresponding estimates from the negative bino-
mial model are also very close. However, the confidence intervals are markedly wider 
in the overdispersed models (when an additional overdispersion parameter is estimated) 
because the standard errors are adjusted and are appropriately larger. This leads to fewer 
comparisons being declared statistically significant in the models that allow for overdis-
persion compared to the classical Poisson and binomial models. 

4.1.3.3 Estimation and Assessment of Model Fit

Maximum likelihood estimates for the model parameters are obtained using an itera-
tive procedure, as shown in McCullagh and Nelder (1989). To determine whether there is 
substantial overdispersion, one needs to assess the goodness of fit of the corresponding 
model (the Poisson or the binomial, in this case). This is done by examining goodness-of-fit 
measures such as the deviance or the generalized Pearson’s Chi-square statistic. The deviance 
of a model is defined as two times the difference of the log-likelihood for the maximum 
achievable model (i.e., when there is a separate parameter for each subject’s response and 
the response serves as a unique estimate of the corresponding parameter), and the log-
likelihood under the fitted model. If the deviance is about equal to the residual degrees of 
freedom of the model then there is no evidence of overdispersion or underdispersion. If 
the deviance is noticeably larger (i.e., by 50% or more) than the corresponding degrees of 
freedom, then there is substantial overdispersion. If the deviance is much smaller than the 
degrees of freedom, then there is underdispersion. 

Similarly, the Pearson’s Chi-square statistic, which is defined as the sum of squared dif-
ferences between observed and expected outcomes properly standardized by the corre-
sponding variances, can be compared to the residual degrees of freedom. The difference in 
the deviance and degrees of freedom of two nested models can be used in likelihood ratio 
chi-square tests for model comparison. More details about tests involving deviance, can be 
found in McCullagh and Nelder (1989) and Agresti (2002), for example. 

In the COMBINE data set, when the Poisson model without overdispersion is fit to the 
number of drinking days at the end of the treatment, the deviance is 12979.1 on 1143 degrees 
of freedom, which results in a ratio of 11.4 approximately, that is, the deviance is more 
than 11 times larger than the corresponding degrees of freedom and hence the data are 
undoubtedly overdispersed. Similarly, the Pearson’s Chi-square statistic is 13409.1 on 1143 
degrees of freedom for a ratio of about 11.7. Thus, it is imperative to take into account this 
extra variability. For the negative binomial model, the deviance is 1213.1 on 1143 degrees 
of freedom, which results in a ratio of 1.06 approximately, and hence the variability in the 
data is properly absorbed by the negative binomial distribution. 
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Similarly, when the binomial model without overdispersion is fit to the data, the devi-
ance is 19773.2 on 1143 degrees of freedom, that is, the deviance is more than 17 times 
larger than the corresponding degrees of freedom and the data are overdispersed with 
respect to the binomial distribution too. The Pearson’s Chi-square statistic is 17984 on 1143 
degrees of freedom, that is, more than 15 times larger than the corresponding degrees 
of freedom. Thus, if a binomial model is selected to fit the data, then an extra parameter 
needs to be estimated to account for overdispersion. 

Note that in many situations, overdispersion results from dependencies between the 
individual observations that violate the basic assumptions of the model. In particular, in 
COMBINE and in similar studies the 28 days at the end of the treatment are not indepen-
dent of one another. If a subject drinks on a particular day, he or she is arguably more 
likely to drink on the next day too and the reverse may also be true (if a subject abstains 
on a particular day, they are more likely to abstain on the next day). Thus, the total number 
of drinking days when there is dependence will have a more dispersed distribution than 
predicted by the binomial distribution. If the days are independent of one another and 
the probabilities of drinking are not extreme (very close to 0 or very close to 1), the prob-
abilities of 0 drinking days or 28 drinking days will be very low so there should be virtu-
ally no people with such data in the sample. Yet, by the end of the treatment period, some 
subjects drink on all days and others don’t drink at all and there are more subjects with 
counts close to the two extremes than predicted by the binomial distribution. Thus, over-
dispersion is expected with such data and by itself should not preclude the corresponding 
distribution to be used to fit the data if an extra parameter is estimated to account for the 
increased variance. 

Which distribution to use for the data, depends largely on the goals of the analysis and 
how well the model describes the data. Measures such as AIC and BIC can’t be used to com-
pare models with different response distributions since the formulae for the likelihoods 
are different and the information criteria are based on the likelihoods. In the COMBINE 
data example, the main difference in the conclusions from the models considering three 
different possible distributions in the exponential family (binomial, Poisson, and negative 
binomial) is in the interpretation of the results. From the binomial model odds ratios are 
estimated and interpreted, while from the Poisson and negative binomial models mean (or 
rate) ratios are estimated. Arguably, rate ratios are easier to interpret than odds ratios so on 
this basis (and also because it seamlessly handles overdispersion) the negative binomial 
model may be preferred. Note that, in some cases, even the linear model for normal data 
may fit count data well and this model is the easiest to interpret. Residual plots can be used 
to assess how well the models fit the data. 

4.1.3.4 Zero-Inflated and Hurdle Models

Count data can also exhibit floor effect with a larger number of zeros than predicted 
by either the Poisson or the negative binomial distributions. In such a case, the extra 
zeros can be accommodated using zero-inflated models or hurdle versions of the Poisson 
and negative binomial models: see, for example, Heilbron (1994), Lambert (1992), or 
Min and Agresti (2005). In zero-inflated models, the zeros are assumed to be generated 
either from the Poisson or negative binomial distribution, or to be “real” zeros (e.g., 
subjects who don’t drink at all). The probabilities of extra zeros are modeled using 
logistic regression and may or may not depend on covariates. In hurdle models, the 
zeros occur only in the logistic regression part of the model. The rest of the observa-
tions (i.e., the positive counts) come from zero-truncated censored Poisson or negative 
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binomial distribution. We do not consider such models in this chapter, but examples 
with repeated measures data can be found in Hedeker and Gibbons (2006), Hu et al. 
(2011), and Min and Agresti (2005).

4.1.3.5 GLM Summary

Uniting different models under the same framework allows common methods to be used 
to obtain estimates and to perform statistical inference. GLM covers many useful models 
for continuous and discrete outcomes. The models are fitted using iteratively reweighted 
least squares procedure for maximum likelihood estimation. Model selection is performed 
using likelihood ratio tests and deviance statistics. Residual plots can be used to assess 
model assumptions. McCullagh and Nelder (1989) and Agresti (2015) provide detailed 
information about GLMs.

4.1.4 GLM Extensions for Ordinal and Nominal Data

When the outcome of interest is a categorical variable with more than two levels, GLM 
extensions can be used to model the effects of predictors on the outcome. Different models 
are appropriate for ordinal (categories are ordered) and for nominal (categories are not 
ordered) categorical variables. For example, in the augmentation depression study, one of 
the outcomes of interest is the Clinical Global Impressions (CGI) score, which is an ordi-
nal measure with values from 1 to 7, 1 indicating “normal, not at all ill,” and 7 indicating 
“among the most severely ill patients.” The intermediate categories are 2 = “borderline men-
tally ill,” 3 = “mildly ill,” 4 = “moderately ill,” 5 = “markedly ill,” 6 = “severely ill.” Another 
example of an ordinal measure is self-rated health in the Health and Retirement Study 
with possible values: 1 = “excellent,” 2 = “very good,” 3 = “good,” 4 = “fair,” and 5 = “poor.” 

Nominal measures are often collected when individuals are asked to choose among dif-
ferent alternatives. For example, smokers may be asked to choose between e-cigarettes, 
regular cigarettes, or neither. Dropout in clinical trials can be due to a variety of reasons 
(inefficacy, side effects, or unrelated to treatment). Diseases can be classified into different 
subtypes.

Generalizations of logistic regression are often used to model ordinal and nominal data. 
We focus first on ordinal data which are frequently encountered in medical research. 

4.1.4.1 Cumulative Logit Model for Ordinal Data

The most commonly used model for ordinal data is the proportional odds cumulative logit 
model, in which the probability of observations in lower (or higher) categories is related to 
the linear predictor with logit transformation. The random component of this model is the 
multinomial distribution, which is a multivariate generalization of the binomial distribution 
with more than two possible outcome categories. The systematic component is the linear 
predictor which is constructed in a similar way as for other GLM. The link function is the 
cumulative logit link, which is the log of the odds of observation in lower categories versus 
higher categories, also known as cumulative odds. 

To illustrate, we consider the augmentation depression study. The ordinal CGI outcome 
at the end of the treatment for the ith subject is denoted as Yi, with possible values of 1 
through 7. In reality, only categories 1 through 4 are observed at endpoint as all com-
pleters improve at least slightly. P(Yi ≤ k) denotes the probability that the CGI score is in 
the lower k categories and corresponds to a better clinical outcome than the opposite event 
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(i.e., outcome in a higher than the kth category). A simple cumulative logit model is defined 
as follows: 
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On the left-hand sides of these equations are the cumulative logits for a response in lower 
categories, since P(Yi ≤ k) = P(Yi = 1)+P(Yi = 2)+ … P(Yi = k). Note that the parameters β0k (inter-
cepts, also called thresholds) are different depending on k (i.e., the category where we draw 
the line for the comparison of lower versus higher categories). Necessarily, β01 < β02  < ... < β0,k−1 
because the cumulative odds can’t decrease and we need to be able to distinguish between 
categories.

The thresholds β0k correspond to the log of the cumulative odds of response in the kth 
or lower category in the control group. Exponentiating the parameter (i.e., taking exp(β0k)) 
gives the corresponding cumulative odds in the control group. To obtain the cumulative 
odds in the augmentation group, we add β1 to the thresholds and then exponentiate. Thus, 
the log of the cumulative odds of response in the kth or lower category in the augmenta-
tion group is β0k + β1 and the cumulative odds are exp(β0k + β1). To assess whether there is 
a difference between the augmentation and control group, we test whether β1 is equal to 
0. If β1 = 0, then the cumulative odds in the two groups are the same, if β1 > 0, then the log 
cumulative odds in the augmentation group are higher than in the control group, and if 
β1 < 0, then the log cumulative odds in the augmentation group are lower than in the con-
trol group. 

Exp(β1) is the cumulative odds ratio between the two groups. When β1 = 0 the odds ratio 
is 1. β1 > 0 corresponds to exp(β1) > 1, and hence an odds ratio greater than 1. β1 < 0 corre-
sponds to exp(β1) < 1, and hence an odds ratio less than 1. Unlike the intercepts, which are 
in general different for different k, β1 is the same for each k. This means that the cumulative 
odds ratios are the same whether we compare the first category versus the rest, the first 
two categories versus the rest, or all the categories except the last one versus the last one. 
This is often referred to as the proportional odds assumption and may or may not be satisfied 
in a particular data set.

In the augmentation depression study, β0k are the log odds of being less ill in the control 
group, β0k + β1 are the log odds of being less ill in the augmentation group, and β1 is the log 
odds ratio for the comparison of the augmentation and control groups, which is assumed 
to be the same for all possible cutoffs for severity. If this assumption does not seem to be 
reasonable, then different beta parameters can be estimated for each split by replacing 
β1 with β1k and interpreting different odds ratios for each cutoff. 

Based on the estimated betas in the augmentation study, we calculate the odds of 
response in lower categories, shown in Table 4.4, and the cumulative odds ratio for the 
comparison of the augmentation and control groups. The estimates are based only on the 
sample of completers in the study and, since at the end of treatment there are no subjects 
with CGI scores in categories 5 through 7 (markedly ill, severely ill, or among the most ill 
patients), not all possible comparisons are represented in Table 4.4. Because the odds are 
ratios of two complementary probabilities, odds less than 1 imply that the probability in 
the numerator is lower than the probability in the denominator, and odds greater than 1 
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imply that the probability in the numerator is higher than the probability in the denomina-
tor. For example, the estimated probability of “normal, not at all ill” is significantly lower 
compared to the cumulative probabilities in the rest of the categories in the control group, 
because the entire confidence interval for the odds is below 1 (OR = 0.21, 95% CI: (0.07, 0.59)). 
This is not the case for the augmentation group where the confidence interval includes 1. 

The common odds ratio for the comparison of the odds of better outcome in the augmen-
tation and control group is not significantly different from 1, since the confidence interval 
includes 1 (OR = 2.51, 95% CI: (0.75, 8.43)). Thus, we don’t have sufficient evidence in this 
small sample to conclude that severity at the end of treatment is significantly different 
between the augmentation and the control groups. 

Table 4.5 shows the correspondence between raw proportions and estimated probabili-
ties in each outcome category. The estimated probabilities are obtained from the estimated 
cumulative odds in each group by first calculating the cumulative probabilities (cumula-
tive probability = cumulative odds/(1 + cumulative odds) and then taking the differences 
between successive cumulative probabilities. The estimated probabilities in the first and 
fourth category are fairly close, but the model estimates lower probability of “borderline ill” 

TABLE 4.4

Cumulative Odds of Better Response and Cumulative Odds Ratio for the Comparison of the 
Augmentation and Control Groups in the Augmentation Study in Depression

Comparisons
Cumulative Odds 

or Odds Ratio 95% CI

Odds for “normal, not at all ill” versus “borderline ill,” “mildly ill,” or 
“moderately ill” in the control group

0.21 (0.07, 0.59)

Odds for “normal, not at all ill” or “borderline ill” versus “mildly ill” or 
“moderately ill” in the control group

1.44 (0.60, 3.41)

Odds for “normal, not at all ill,” “borderline ill,” or “mildly ill” versus 
“moderately ill” in the control group

3.05 (1.19, 7.85)

Odds for “normal, not at all ill” versus “borderline ill,” “mildly ill,” or 
“moderately ill” in the augmentation group

0.53 (0.22, 1.27)

Odds for “normal, not at all ill” or “borderline ill” versus “mildly ill” or 
“moderately ill” in the augmentation group

3.60 (1.34, 9.66)

Odds for “normal, not at all ill,” “borderline ill,” or “mildly ill” versus 
“moderately ill” in the augmentation group

7.66 (2.48, 23.62)

Cumulative odds ratio for less severe illness in augmentation versus 
control group

2.51 (0.75, 8.43)

TABLE 4.5

Proportions and Estimated Probabilities by Category in the Augmentation Study in Depression

Treatment 
Group

Normal, not at 
all ill Borderline ill Mildly ill Moderately ill

Augmentation Sample 
proportion

0.32 0.53 0 0.16

Estimated 
probability

0.35 0.44 0.10 0.12

Control Sample 
proportion

0.21 0.32 0.26 0.21

Estimated 
probability

0.17 0.42 0.16 0.25
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in the augmentation group, compared to the proportion in the raw data, and higher prob-
ability of “borderline ill” in the control group, compared to the proportion in the raw data. 
This is compensated by the estimated probabilities in the next category, “mildly ill.” Since 
this is a small sample, we can’t say that this is a large discrepancy but it is some indication 
that the proportional odds assumption may not be satisfied in this data set. 

The cumulative odds model is not the only option to consider for ordinal data but is 
the most commonly used due to the relative ease of interpretation. Other models are also 
available for ordinal data. One such example is the adjacent-category logit model where the 
odds of response in category k versus in category k + 1 are modeled. Also, probit versions of 
all logit models are also available and, in some cases (e.g., when data are correlated), may 
be preferable. More information on the cumulative logit model and other alternatives can 
be found in Agresti (2002). 

4.1.4.2 Baseline Category Logit Model for Nominal Data

When the outcome is nominal (i.e., the categories are unordered), the most commonly used 
GLM model is the baseline category logit model, which is also known as the generalized logit 
model. The random component is again the multinomial distribution, the systematic com-
ponent is the linear predictor, and we use a baseline category logit link function, as shown 
below. If we suppose for a moment that the categories of CGI are unordered and the last one 
(K) is the reference category, then the baseline category logit model is defined as follows:
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Here, the intercept β0k is the log of the ratio of the probability for response in category k 
and the probability for response in the reference category for the control group. The cor-
responding log ratio in the augmentation group is β0k + β1k. Note that there are separate 
β1k parameters for each non-reference category and hence, the difference between the log 
ratios in the augmentation and control group varies depending on which category we 
compare to the reference. Thus, the baseline category logit model does not make a propor-
tionality assumption the way the cumulative logit model does. 

By exponentiating β0k, one obtains estimates of the ratios of probabilities in each category 
and the probability in the reference category in the control group and by exponentiating 
β0k + β1k one obtains the corresponding ratios of probabilities in the treatment group. Based 
on these estimates, one also obtains estimates of the probabilities of response in each cat-
egory. Testing whether all β1k are different from 0 allows one to assess whether there are 
significant differences between the augmentation and control groups. In this simple situ-
ation, this is equivalent to performing the ordinary χ2 test of independence in a two-way 
table. For more information on baseline category logit models consult Agresti (2002).

4.2 Generalized Estimating Equations (GEE)

It is very common for categorical, count, or other non-normal outcomes to be observed 
repeatedly over the time. For example, in the augmentation study in depression, CGI was 
assessed every week for the duration of the study. In the Health and Retirement Study, 
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the ordinal measure of self-rated health was collected every two years. In the COMBINE 
Study, drinking data were collected daily during the double-blind treatment phase. In 
all these situations, it is likely that there are correlations between repeated observations 
on the same individual. These correlations need to be taken into account in the statisti-
cal analysis. When the focus of statistical inference is on the estimation of population 
level effects (i.e., average effects of treatment and/or covariates in the population), the 
correlation structure is considered a nuisance and the design is balanced in longitudinal 
studies (i.e., the observations on all individuals are taken at the same set of fixed time 
points), one can use the classical Generalized Estimating Equations (GEE) approach. This 
is known as the marginal approach of repeated measures analysis, as it requires that the 
marginal means and variances at each repeated occasion are specified and the marginal 
means are related to predictors via an appropriate link function. A working correlation 
structure is assumed between the repeated observations to take into account the depen-
dence among them. 

4.2.1 Modeling the Mean

Any exponential family distribution can be considered to generate the data at each 
occasion and thus imply some structure for the means and variances of the repeated 
observations. The link function that relates the mean of the response to the predictors, 
is chosen based on the options for the particular exponential family distribution as 
described in the GLM section of this chapter. 

The type of marginal distribution at each time point and the link function are selected to 
match the data. Table 4.3 can be used as a guide for the most commonly encountered data 
types, distributions, and link functions. In particular, for dichotomous data the Bernoulli 
distribution (or the binomial if dichotomous data are aggregated) with a logit link func-
tion could be selected, for count data either the Poisson or negative binomial with log link 
might be chosen; for positively skewed data the gamma distribution with inverse or log 
link may be appropriate. Note that GEE can also be used with normally distributed data, 
in which case, the normal distribution with identity link is selected.

To illustrate the definition for the mean structure of the model, we consider several 
examples, some of which are described in more detail further in this chapter. Correlation 
structure considerations follow immediately after the examples.

In the augmentation depression study, we can formulate a GEE model to assess whether 
there are between-group differences in the probability of achieving treatment response 
over the six study weeks. The outcome, in this case, is treatment response (1 = yes, 0 = no) 
which is measured weekly for the duration of the study for each subject (we use Yij to 
denote this outcome where, as usual, i denotes subject and j denotes time point). Because 
the outcome is binary, it is logical to consider the Bernoulli distribution at each time point 
and to relate the probability of treatment response pij via the logit link to the linear predic-
tor which should include the effects of treatment group, time, and the interaction of group 
and time. Thus, we can specify the marginal model as follows:

 log
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We consider time as a continuous predictor just for simplicity of the expression. We 
can use dummy coding to specify time as a categorical predictor since this is a balanced 
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design. If the observation times were unique for different individuals, the only possible 
choice would be to treat time as a continuous predictor.

In the COMBINE study, we can formulate a GEE model to assess whether there are 
between-group differences in the average number of drinking days or average number 
of drinks per drinking day (i.e., day on which the subject drank) per month during the 
treatment period. For the number of drinking days, it is convenient to consider either a 
Poisson or a negative binomial distribution while for drinks per drinking day a gamma 
distribution is appropriate, as shown in the previous section. For both outcomes and all 
distribution choices, the main focus is on the mean (i.e., the average number of drinking 
days or the average number of drinks per drinking day) and the log link provides a nice 
interpretation of the regression coefficients. Thus, to complete the marginal specification 
in each interval we define:

 log µ β β β β β β β βij i i j i i i j i j iN CBI t N CBI N t CBI t N CB= + + + + + + +0 1 2 3 4 5 6 7 II ti j  (4.9)

where:
Ni  and CBIi  are indicators for naltrexone and CBI treatment (1 corresponds to active 

treatment, 0 to placebo or no treatment)
tj       denotes month (1 through 4)
μij       denotes the mean response for subject i at time j

Again, time is shown here as a continuous predictor but can be categorized using 
dummy variables.

In the Health and Retirement Study from Section 1.5.4, we are interested in assessing 
change in self-rated health over time and how it relates to gender and smoking status 
at baseline. For the ordinal measure of self-rated health (higher category corresponds to 
poorer health), we consider the multinomial distribution and assume a cumulative logit 
model, which allows to assess the effect of predictors on the cumulative odds of poorer 
self-rated health. The model can be formulated as follows.

 log
( )
( )

P Y k
P Y k

F S W FS FWij

ij
k i i j i i i j

≥
<







= + + + + +β β β β β β0 1 2 3 4 5 ++ +β β6 7SW S FWi j i i j  (4.10)

where:
Fi = 1 for female sex and 0 otherwise
Si = 1 if smoker at baseline and 0 otherwise
Wj  corresponds to wave with values of 1 through 7

Note that in this model we are accumulating the categories from the highest to the low-
est one (5–1). This is because we want to model the cumulative odds of poorer rather than 
better health. 

4.2.2 Specifying the Working Correlation Structure

To fully specify the GEE model, in addition to the model for the mean or probability at 
each occasion, we need to specify a working correlation structure between the outcomes 
on repeated occasions. The most popular choices of working correlation structures are 
independent, exchangeable, first-order auto regressive, and unstructured. We show them 
here in the case of four repeated occasions.
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These structures correspond to the independent, compound symmetry, first-order auto-
regressive, and unstructured variance–covariance structures in linear mixed models, 
introduced in Chapter 3. In general, most variance–covariance structures used in linear 
mixed models have corresponding correlation structures for GEE but note that in GEE we 
focus on the correlation rather than the covariance since the variances on each repeated 
occasion depend on the mean according to the relationship implied by the assumed expo-
nential family distribution. Extra parameters can be introduced (e.g., to deal with overdis-
persion) but there is still an underlying relationship between the variance and the mean 
for most exponential family distributions. For some distributions (e.g., the multinomial), 
the choice of working correlation structures in software packages may be restricted. For 
binary or ordinal outcomes, an alternative method to account for the associations among 
the measurements is based on log odds ratios between pairs of responses. Details about 
this alternating logistic regressions (ALR) algorithm can be found in Carey et al. (1993) and 
Heagerty and Zeger (1996). 

The selection of the correlation structure should be based on substantive considerations 
or, in the absence of such, on a modification of the AIC criterion for correlated data devel-
oped by Pan (2001), namely the quasi-likelihood under the independence model criterion (QIC). 
Other criteria are also available for selecting the working correlation structure for GEE 
(see Section 8.1 in Shults and Hilbe, 2014). Similar to the AIC and BIC measures, we can’t 
compare the QIC measures of different types of models (i.e., models that assume different 
outcome distributions). The selection of the marginal model needs to be based on substan-
tive considerations (e.g., interpretation) and how well the fitted data correspond to the 
observed data.
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 4.2.3 Estimation Process and Properties 

Based on the choice of the marginal GLM model, and the assumed working correlation 
structure, parameter estimates are obtained by solving a set of estimating equations. Note 
that this approach does not require the joint distribution of all repeated observations to 
be completely specified as, in general, this is a very complicated task for non-normally 
distributed data. As long as the marginal distributions on each repeated occasion (i.e., the 
distribution of the data when each time point is considered separately) and the GLM 
model relating the mean of the response to the predictors match the data reasonably 
well, even if the correlation structure is miss-specified (e.g., a compound symmetry struc-
ture is assumed while the true structure is autoregressive), the estimates of the param-
eters in the mean model are consistent (i.e., converge to the true value as the sample 
size increases). Note, though, that the estimates of the covariance matrix may fail to be 
consistent when the working correlation structure is incorrect (Sutradhar and Das, 2000), 
in particular, when the estimator of the correlation parameter is not consistent. Thus, 
although the regression parameters are consistent, the associated p-values and standard 
errors may not be valid. Furthermore, the regression estimates are fully efficient (i.e., have 
the smallest variance) only if the correlation structure is correctly specified but efficiency 
loss is often quite small when the correlation structure is miss-specified and decreases 
with increasing sample size. Thus, care should be taken in selecting the working correla-
tion structure. 

The technical aspects of GEE estimation are not presented in this book. The interested 
reader can consult Hardin and Hilbe (2013) or Ziegler (2011). Herein, we consider several 
examples to illustrate how this approach works and how the results are interpreted. 

4.2.4 GEE Analysis of Count Data: Number of Drinking Days in the COMBINE Study

The active treatment period in COMBINE was approximately four months (16 weeks to 
be precise). In the previous section, we used GLM in order to model the number of drink-
ing days in the last four weeks of the study period (loosely referred to as the last month). 
However, these analyses do not provide information about the change in drinking behav-
ior over time. In particular, we are interested in the change in the number of drinking days 
per month from randomization until the end of double-blind treatment. We consider sev-
eral different GEE models to assess trends over time and see whether these trends differ by 
treatment. In particular, we fit GEE models with Poisson and negative binomial outcome 
distributions, respectively, log links, linear predictors as the one specified in Equation 4.9, 
but with time treated as a categorical predictor (i.e., dummy-coded with three dichoto-
mous 0–1 variables) and different working correlation structures. The actual number of 
days used to calculate the outcome for each individual is included as an offset. We also 
fit GEE models with binomial outcome distribution, logit link, the same linear predictor 
as in the Poisson and negative binomial models, and the same set of working correlation 
structures. The considered working correlation structures are independent, exchangeable, 
autoregressive of first order, and unstructured.

Table 4.6 includes the QIC values of the different models that we consider. All of them 
have fixed effects of naltrexone, CBI, and time, and all possible interactions among these 
factors. Both the Poisson and binomial marginal formulations include an extra overdisper-
sion parameter although this parameter has no effect on the value of the QIC statistic.

From Table 4.6 we see that the QIC is the smallest when the independence structure 
is assumed with the binomial marginal model and when the unstructured working 
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correlation matrix is assumed with the Poisson and negative binomial marginal models. 
Since the independence structure may be over-selected in some settings (Shults and Hilbe, 
2014), and since we expect positive correlations among repeated measures, in the binomial 
setting we can choose one of the working correlation structures based on substantive con-
siderations. However, because the negative binomial model allows for overdispersion and 
provides a fairly easy interpretation of the estimated regression coefficients, we focus on 
this model and use the unstructured working correlation pattern. Note that the results are 
very similar if we consider other working correlation structures, so, in this example, the 
choice of structure does not matter much. In smaller samples the differences can be more 
dramatic.

The overall tests of main and interactive effects in all models (not shown) indicate that 
there is a significant time effect, a significant naltrexone by CBI interaction, and a signifi-
cant CBI by time interaction. The test statistics and corresponding p-values for these in the 
negative binomial model are as follows: χ2(1) = 4.78, p = 0.03 for the naltrexone by CBI inter-
action; χ2(3) = 50.05, p < 0.0001 for the main effect of time (time is considered as a categorical 
predictor) and χ2(3) = 8.45, p = 0.04 for the CBI by time interaction. Figure 4.2 shows the raw 
and estimated marginal means by treatment group and time. The two sets of means are 
almost the same because all predictors in the model are categorical and the model-based 
means are expected to match the raw means if every individual has complete data. Since 
there are some missing data, an offset is specified and there are slight differences between 
the model-based means and the raw means. 

Figure 4.2 shows that the control group that does not receive either active naltrexone or 
CBI has a sizeable increase in average number of drinking days from the first to the fourth 
month during treatment. The other three groups also show a slight increase, which occurs 
mainly between the first and the second month. Since the three-way interaction between 
naltrexone, CBI, and time is not significant we proceed with interpretation of the signifi-
cant two-way interactions. While it is possible to do this in the context of the complete 
model, sometimes it is simpler to refit the model after dropping the non-significant three-
way interaction and interpret the significant two-way interactions.

Table 4.7 presents rate ratios for the significant effects in the model that help explain the 
effects. The estimates for the naltrexone by CBI interaction are averaged over time, the esti-
mates for the CBI by time interaction are averaged over naltrexone, and the estimates for 
the time effect are averaged over naltrexone and CBI. Of all possible pairwise comparisons 
among the four treatment groups averaged over time (first four rows), only the rate ratios 
for naltrexone versus control and for CBI versus control are significantly below 1. Thus, 
either the medication therapy or the behavioral therapy is associated with a lower rate of 
drinking than the control condition. The decrease is about 23% for naltrexone alone and 
18% for CBI alone.

TABLE 4.6

Assessment of Model Fit as Measured by the Quasi-Likelihood under the 
Independence Model Criterion for Different GEE Models

Working Correlation Structure Binomial Poisson Negative Binomial 

Independence 391.7 −5226.5 −152712.3
Exchangeable 392.3 −5246.9 −154124.3
Autoregressive 392.3 −5242.3 −153977.6
Unstructured 394.4 −5248.5 −154124.0
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FIGURE 4.2
Raw means and model-based means from the GEE model with negative binominal distribution and log link for 
number of drinking days per month during treatment in the COMBINE study.

TABLE 4.7

Rate Ratios for the Significant Effects in the Negative Binomial GEE Model with Log Link Fitted to 
Number of Drinking Days in the COMBINE Study Assuming Unstructured Working Correlation 
Matrix

Effect Level Comparison Level Rate Ratio (95% CI)

Naltrexone × CBI Interaction Naltrexone and CBI Naltrexone 1.10 (0.91, 1.33)
Naltrexone and CBI CBI 1.04 (0.86, 1.25)
Naltrexone and CBI Neither 0.85 (0.71, 1.02)

Naltrexone CBI 0.95 (0.78, 1.15)
Naltrexone Neither 0.77 (0.64, 0.93)

CBI Neither 0.82 (0.68, 0.98)
CBI × Time CBI in period 1 No CBI in period 1 1.06 (0.91, 1.22)

CBI in period 2 No CBI in period 2 0.96 (0.83, 1.11)
CBI in period 3 No CBI in period 3 0.90 (0.78, 1.04)
CBI in period 4 No CBI in period 4 0.88 (0.76, 1.02)

Main Effect of Time Period 1 Period 2 0.85 (0.82, 0.89)
Period 1 Period 3 0.85 (0.80, 0.90)
Period 1 Period 4 0.83 (0.79, 0.89)
Period 2 Period 3 1.00 (0.96, 1.04)
Period 2 Period 4 0.98 (0.93, 1.03)
Period 3 Period 4 0.98 (0.95, 1.02)



127Linear Models for Non-Normal Outcomes

The rate ratios for the comparisons between CBI and no CBI are not significant at any 
of the time points (since all confidence intervals contain 1) but they are steadily decreas-
ing over time so that, during the first month, participants on CBI have on average a higher 
number of drinking days, but during the later months the direction of the effect is reversed 
and in the fourth month participants on CBI have more than 10% lower rates of drinking 
than participants in the control group. This trend is consistent with how CBI is expected to 
work. As a behavioral treatment, it takes time to see its effects but the benefit may be longer 
lasting than the benefits of medication treatment. The post hoc comparisons for the main 
effect of time show that averaged across treatments, the rates of drinking increase over time.

The estimated working correlation matrix of the data is as follows:
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There are high correlations across time points but they are slightly decreasing with 
increasing time lag. 

Note that by selecting the negative binomial marginal model we took into account the 
overdispersion in the data. Another aspect of distribution violations observed with this 
and other data sets is the presence of extra zeros. GEE zero-inflated models are not yet 
available in SAS software and are not considered here. Recent research shows how such 
models can be defined and fit (Kong et al., 2015).

4.2.5  GEE Analysis of Ordinal Data: Self-Rated Health 
in the Health and Retirement Study

To illustrate GEE analysis of ordinal data, we consider the data set from the Health and 
Retirement Study, introduced in Section 1.5.4, which assesses a number of measures on 
individuals in their transition from work to retirement biennially over 14 years. Our focus 
here is to assess the association between smoking and self-rated health and to see whether 
the association varies by gender. For the marginal response at each wave, we consider 
the cumulative logit model specified in Equation 4.10. Time is considered as a continuous 
predictor with a linear trend, which appears to be a reasonable assumption for these data.

We also include the individual’s age at wave 1 (centered at the mean age of the sample at 
wave 1) in the linear predictor of the model but, since controlling for covariates is not con-
sidered until later in this book, we do not elaborate on this effect. Herein, we just empha-
size that the effects of the other factors in the model are adjusted for age. Consideration of 
covariate effects is considered in more detail in Chapter 8.

Note that self-rated health is an ordinal variable with 5 categories: 1 = “excellent,” 
2 = “very good,” 3 = “good,” 4 = “fair,” and 5 = “poor,” and we focus on the cumulative odds 
of poorer health. That is, we model the odds of “poor” versus the rest of the categories; 
“poor” or “fair” versus the rest of the categories; “poor,” “fair,” or “good” versus “very 
good” or “excellent,” and “poor,” “fair,” “good,” or “very good” versus “excellent.” The 
proportional odds assumption in this case means that the cumulative odds ratios for the 
effects of gender, smoking status, and time, are the same for all these comparisons. 

To formulate the GEE model fully, we specify the distribution of the data and the work-
ing correlation structure. Since there are five different categories of self-rated health, the 
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distribution is multinomial. For this distribution, the only working correlation structure 
that can currently be specified in SAS PROC GENMOD is the independence structure. 
Note that although the estimates are obtained under no correlation, the standard errors 
are based on an empirical sandwich estimate and take into account the correlations in the 
data. We use the cumulative logit link as shown in Equation 4.10. 

The results from the overall tests of interactions and main effects show significant two-
way interactions between gender and smoking (χ2(1) = 4.21, p = 0.04) and between wave and 
smoking (χ2(1) = 4.73, p = 0.03); and also, significant main effects of smoking (χ2(1) = 174.38, 
p < 0.0001) and wave (χ2(1) = 459.54, p < 0.0001). 

Post hoc analyses (estimation of slopes and tests of differences) are performed to explain 
the significant interactions in the models. The estimated slope over time for non-smokers 
(averaged across gender) is 0.08 (SE = 0.004) and for smokers is 0.10 (SE = 0.007). The inter-
pretation of the two slope estimates is that the log cumulative odds of poorer self-rated 
health increase by 0.08 per wave (two-year period) in non-smokers and by 0.10 in smok-
ers. The difference in slopes is −0.02 (SE = 0.008), showing that the log cumulative odds of 
poorer health in non-smokers increase slightly slower than in smokers. Since it is not con-
venient to interpret odds and odds ratios on the log scale, we exponentiate the correspond-
ing estimates. The cumulative odds ratio comparing the effect of time in non-smokers to 
smokers is 0.98 (95% CI: (0.97, 1.00), Table 4.8), indicating that the rate of increase in the odds 
of poorer health over time is lower by about 2% in non-smokers compared to smokers. 

Figure 4.3 shows the estimated cumulative odds over time of “poor,” “fair,” or “good” self-
reported health versus “very good” or “excellent” self-rated health by gender and baseline 
smoking status. These are obtained by exponentiation of the corresponding combinations of 
regression coefficients and thus, show some curvature. The change in cumulative odds over 
time for the other cutoffs (e.g., “poor” versus the rest of the categories; “poor” or “fair” versus 
the rest of the categories), are very similar in terms of shape but the cumulative odds them-
selves change since there is a different intercept in the model for each possible comparison 

TABLE 4.8

Cumulative Odds Ratios for the Significant Effects in the Cumulative Logit GEE Model Fit to 
Self-Rated Health in the Health and Retirement Study

Effect Level
Comparison 

Level
Cumulative Odds 

Ratio (95% CI)

Main effect of time Next wave Previous wave 1.10 (1.09, 1.11)
Effect of smoking (evaluated at wave 1) Non-smoker Smoker 0.57 (0.53, 0.62)
Gender × smoking interaction 
(evaluated at wave 1)

Female
non-smoker

Female
non-smoker

0.63 (0.56, 0.70)

Male
non-smoker

Male
non-smoker

0.53 (0.47, 0.59)

Male
non-smoker

Female
non-smoker

0.92 (0.85, 1.00)

Male
non-smoker

Female
non-smoker

1.10 (0.96, 1.25)

Time × smoking interaction Next wave
non-smoker

Previous wave
non-smoker

1.09 (1.08, 1.10)

Next wave
non-smoker

Previous wave
non-smoker

1.11 (1.09, 1.12)

Next wave versus previous wave × 
Non-smoker versus smoker

0.98 (0.97, 1.00)
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to reflect the different cumulative probabilities. Figure 4.3 shows steeper increase in cumu-
lative odds of poorer health for smokers of both genders and also shows that there are sub-
stantial differences in the cumulative odds at wave 1 between smokers and non-smokers. 
The change seems to be more sizeable for males than for females. Post hoc pairwise cumula-
tive odds ratios at wave 1 confirm that non-smokers of both genders have significantly lower 
odds of acknowledging poorer health than smokers (see Table 4.8). Substantively, the same 
results are obtained if one evaluates these post hoc comparisons at other waves. 

In summary, smokers have lower self-rated health at baseline than non-smokers with the 
difference slightly more pronounced in males. Deterioration in self-rated health proceeds at 
a slower rate in non-smokers than in smokers over time. The actual regression estimates are 
population-averaged, which means they are interpreted as average changes in the population. 

To estimate how much the response for a particular individual is expected to change 
if we could change the predictors for this individual, it is better to consider models that 
allow for subject-specific interpretation of the regression coefficients such as random 
effects models which we now introduce.

4.3 Generalized Linear Mixed Models (GLMM)

An alternative to direct specification of the correlation structure is to include random 
effects in the model formulation in order to account for correlations within the individual 
or cluster. This approach has a simple intuitive interpretation as individuals are allowed 
to vary randomly around the group averages and thus, between-subject heterogeneity is 
directly modeled. As shown in the previous chapter, in the context of linear models, indi-
viduals in longitudinal studies can start higher or lower than the average and can have a 
faster or slower rate of change. Also, clusters can vary randomly from one another in their 
response and individuals/observations within each cluster are correlated. Generalized 
linear mixed models (GLMM) are natural extensions of LMM that allow us to consider 
any distribution in the exponential family. Thus, binary, count, skewed continuous data 
can be modeled within the same framework. 

3.5

3

2.5

2

1.5

1

0.5

0
1 2 3 4

Wave

C
um

ul
at

iv
e 

od
ds

5 6 7

Male smokers
Female smokers
Male non-smokers
Female non-smokers

FIGURE 4.3
Cumulative odds of “poor,” “fair,” or “good” versus “very good” or “excellent” self-reported health over time by 
gender and baseline smoking status in the Health and Retirement Study.
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4.3.1 Modeling the Mean

The difference in formulating GLMM compared to GLM and to GEE is that the linear 
predictor specifying the effects of predictors on the outcome includes random effects (usu-
ally assumed to be normally distributed) and that conditional on these random effects, the 
repeatedly measured outcomes are assumed to be independent of one another. To illus-
trate, we consider the same three examples used to explain the GEE approach. 

In the augmentation depression data, we formulate a GLMM by specifying 

 log
p

p
Group Time Group Time b bij

ij
i j i j i i1 0 1 2 3 0−







= + + + + +β β β β 11Timej  (4.11)

where:
 bi0 is a random intercept
 bi1 is a random slope

Both are assumed to be normally distributed with zero means and unknown variances 
and, in general, are correlated with one another.

Thus, for each individual the log odds of treatment response are allowed to vary ran-
domly from the average log odds associated with the particular treatment and time point, 
and to deviate from those in a linear fashion over time. Conditional on these random 
effects (i.e., assuming that we know what the random effects are), the usual assumptions 
of a GLM are made. That is, the responses are assumed to be Bernoulli distributed with 
probability of the outcome of interest on a particular occasion for a particular individual pij 
related to the linear predictors, as shown in Equation 4.11. The individual observations are 
assumed to be independent, conditional on the random effects. This does not mean that 
repeated measurements on the same subject are uncorrelated since the random effects are 
shared within subject. Rather, it means that all statistical associations that exist between 
the repeated observations on the same subject are due to the shared random effects. 

Note that in GLMM the regression coefficients have a subject-specific interpretation. 
This means that they show how much the outcome (in this case the log odds of treatment 
response) of a particular individual changes if we change the predictor for this individ-
ual. For example, the β3 regression coefficient shows how much the log odds of treatment 
response are expected to change per week if a subject received the augmentation treatment 
versus the control treatment. Note that this is somewhat of an extrapolation as we have no 
data on individuals who change their treatment assignment. While the subject-specific 
interpretation of the time effect is reasonable in GLMM, because all subjects have repeated 
measures over time, the interpretation of the group by time interaction is not as intuitive.

In contrast to GLMM models, in the GEE models, the regression coefficients have pop-
ulation-averaged interpretations. In particular, the regression coefficient for the group 
by time effect in the corresponding GEE model for the augmentation depression data (β3 
in Equation 4.8) shows how much the log odds of treatment response in the population 
who (could) receive active treatment change per week, when compared to the log odds of 
treatment response in the population who (could) receive control treatment. The subject-
specific and population-averaged effects are not the same unless the outcome is normally 
distributed and the identity link is used. Often subject-specific effects are larger in magni-
tude than the corresponding population-averaged effects, especially with binary and ordi-
nal data. Subject-specific and population-averaged effects are similar when the variability 
due to individual/cluster is low.
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In the COMBINE data, we formulate a GLMM for the number of drinking days or drinks 
per drinking day, by specifying 

 log µ β β β β β β β βij i i j i i i j i j iN CBI t N CBI N t CBI t N CB= + + + + + + +0 1 2 3 4 5 6 7 II t bi j i+ 0  (4.12)

where bi0 is a random intercept, which is assumed to be normally distributed with zero 
mean and unknown variance

We choose to use a random intercept only in order to show a different random effect 
structure than the one used in the previous example. Conditional on the random intercept, 
the outcomes can be assumed to have Poisson, negative binomial (for number of drinking 
days), or gamma distribution (for drinks per drinking day) and repeated observations on 
the same subject are conditionally independent. Individuals are also assumed to be inde-
pendent of one another. 

Since there is only a random intercept in this model, the correlations between repeated 
observations on the same individual are the same regardless of how far apart the obser-
vations are. If we also include a random slope in the model, the strength of the cor-
relations depends on the time lag between observations. Multiple level random effects 
can also be added, for example, we can add a random effect for the clinical center and 
specify that individual-level random effects are nested within the center. This allows 
to account for positive correlations of the observations on different individuals within 
the center.

The interpretation of the regression coefficients is subject-specific. That is, the regres-
sion coefficients show how much the outcome is expected to change for a particular indi-
vidual when the corresponding covariate is changed by 1 unit for a continuous predictor 
and when a particular category of a categorical predictor is compared to the reference 
category. As in the case of binary data, the subject-specific effects are not the same as the 
population-averaged effects. 

Similarly, in the Health and Retirement Study, we can modify Equation 4.10 to include 
random effects. Conditional on the random effects, we assume a multinomial distribution 
for the ordinal measure of self-rated health and relate the cumulative logit of poorer health 
self-assessment to the linear predictor augmented with the random effects. The repeated 
observations within the individual are assumed to be independent, conditional on the 
random effects, and individuals are assumed to be independent of one another. As in the 
other GLMM examples, the regression parameters have subject-specific interpretations. 

Thus, to summarize, we define a GLMM by the following:

 1. Specify a linear predictor with fixed and random effects. 
 2. Assume that conditional on the random effects, the repeated observations within 

the individual/cluster are independent with a distribution in the exponential 
family.

 3. Choose an appropriate link to relate the mean of the exponential family distribu-
tion to the linear predictor.

4.3.2 Implied Variance–Covariance Structure

In GLMM the individual observations are assumed to be independent, conditional on the 
random effects. As explained above, this means that all statistical associations that exist 
between the repeated observations on the same individual or within the cluster are due to 



132 Statistical Methods in Psychiatry and Related Fields

the shared random effects. Thus, there are equal associations when there is only a random 
intercept in the model and more complicated structures when there are random slopes 
and other configurations of random effects. The variances of individual observations are 
a combination of the residual variances, according to the specific GLM that is chosen, 
and the variances of random effects. Herein, we just consider random effects that are 
normally distributed but other distributions of the random effects could be chosen (e.g., 
t- distributions, discrete distributions). This complicates model fitting and there is limited 
software for such models, but it is possible.

4.3.3 Estimation, Model Fit, and Interpretation

Due to the complicated form of the likelihood function of GLMM, model fitting requires 
that analytical, stochastic, or numerical approximations are used. Nowadays, many soft-
ware packages include modules for fitting such models. In particular, we use the GLIMMIX 
procedure in SAS in order to fit GLMM models to the data examples. 

Model selection among models with different fixed and random effects (but the same 
response distribution and fitted to the same data) are based on information criteria such as 
the AIC and the BIC. Smaller values of these criteria are indicative of a better fit. Likelihood 
ratio tests can also be used to compare nested models with different numbers of fixed 
effects. 

The estimated parameters of the fixed effects in the GLMMs have subject-specific inter-
pretation as described above. Empirical Bayes estimates of the random effects indicate 
how a particular subject’s responses deviate from the expected response of an average 
individual (i.e., individual with random effects set to 0) and, based on these estimates 
and the estimates of the fixed effects, individualized predictions of the outcome can be 
performed. 

Model diagnostics for GLMMs also have been recently developed that allow an evalua-
tion of the fit of the model to the data. Details about GLMMs are provided in McCulloch 
and Searle (2001), Jiang (2007), and Stroup (2013). 

4.3.4 GLMM for Count Data: Number of Drinking Days in the COMBINE Study

In parallel to the GEE analyses considered in the previous section, we fit a GLMM with 
a negative binomial distribution to the number of drinking days per month during the 
double-blind treatment phase of the study. We could also consider Poisson, binomial, or 
even normal GLMM, but as discussed before, the negative binomial model has the advan-
tage of seamlessly taking into account the overdispersion in the data and has intuitive 
interpretation in terms of percent change, so we focus on this model. We consider the 
same fixed effects in the linear predictor as before (i.e., main effects of naltrexone, CBI, 
time, and all possible interactions). Note that unlike the GEE approach, where we treated 
time as a categorical predictor, herein, we consider time as a continuous predictor as this 
is more natural in the context of models with random effects where individual trends over 
time are the focus, and we are interested in describing these parsimoniously. We present 
two different random effects models (a random intercept, and a random intercept and 
slope model) in order to illustrate the implications of random structure assumptions and 
to compare and contrast the GLMM and GEE approaches. In terms of model fit, the ran-
dom intercept and slope model fits significantly better than the random intercept model 
(AIC = 22937.5 compared to AIC = 23241.7) so this would be the chosen final GLMM model. 
The decision between the GEE or GLMM approach is based on the goals of the analysis 
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(i.e., whether population-averaged or subject-specific effects are of interest) and can’t be 
based on model fit statistics. 

4.3.4.1 Random Intercept Model

The estimated variance of the random intercept is large compared to its standard error 
(variance of 3.86 with a standard error of 0.21) suggesting that there is significant between-
subject variability in overall drinking frequency. The first two columns with results from 
Table 4.9 present the subject-specific slope estimates and the rate ratios from the GLMM 
negative binomial models for the significant effects in the model: a significant naltrex-
one by time interaction (F(1,3488) = 5.84, p = 0.02) and a significant CBI by time interac-
tion (F(1,3488) = 8.44, p = 0.004). There is also a statistically significant main effect of time 
(F(1,3488) = 12.02, p = 0.0005). Since there are only random intercepts in the model, indi-
viduals are expected to start higher or lower than the average but their rate of change 
is expected to be the same. Thus, the fixed slope estimates show the rate of change for a 
random individual. For example, the rate ratio estimate in the first row is 1.01 which means 
that the rate of drinking increases by 1% per month for a random subject on naltrexone. 
Similarly, from the second row the rate of drinking increases by 7% for a random subject 
on placebo. 

Note that the difference between the estimated fixed slopes on naltrexone and on pla-
cebo estimates the magnitude of the naltrexone by time interaction. This difference is esti-
mated to be 0.05 with a corresponding rate ratio exp(0.05) or 1.05 (95% CI: 1.01, 1.10). The 
interpretation is as follows: if we consider any specific individual and could change his 
treatment assignment from naltrexone to placebo, we expect the rate of drinking to jump 
up by about 5% in a month. The estimated interaction between CBI and time is of a similar 
magnitude. 

However, the subject-specific interpretation of this interaction is problematic since indi-
viduals do not switch treatments in this study. Thus, we are de facto performing extrapo-
lation from the data. It is more natural to consider population-averaged estimates of the 
treatment by time effects from GEE. In GEE, the naltrexone by time effect is interpreted as 
the ratio of drinking frequency per month when comparing subjects on naltrexone and on 
placebo (we can think of comparing an average subject on naltrexone to an average subject 
on placebo). Often, the two sets of estimates are quite close. Note that the interpretation 

TABLE 4.9

Fixed Slope Estimates and Rate Ratios for the Significant Effects in the Negative Binomial GLMM 
with Log Link Applied to Number of Drinking Days in the COMBINE Study

Fixed Slope of the 
Time Effect

Random Intercept Model Random Intercept and Slope Model

Estimate (95% CI) Rate Ratio (95% CI) Estimate (95% CI) Rate Ratio (95% CI)

For subjects on 
naltrexone

0.01 (−0.02, 0.04) 1.01 (0.98, 1.04) −0.06 (−0.11, −0.01) 0.94 (0.89, 0.99)

For subjects on 
placebo

0.06 (0.03, 0.09) 1.07 (1.04, 1.10) 0.01 (−0.04, 0.06) 1.01 (0.96, 1.06)

For subjects on 
CBI

0.01 (−0.02, 0.04) 1.01 (0.98, 1.04) −0.06 (−0.11, −0.01) 0.94 (0.90, 0.99)

For subjects not on 
CBI

0.07 (0.04, 0.10) 1.07 (1.04, 1.10) 0.01 (−0.04, 0.06) 1.01 (0.96, 1.06)
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of the within-subject effect of time from GLMM is quite natural and not at all problematic 
since all subjects have repeated measures over time. However, the random intercept model 
is limited in terms of what it tells us about the individual change over time since it forces 
all individuals in a group to have the same slope. We now consider the random intercept 
and slope model which is more flexible in addition to fitting the data better. 

4.3.4.2 Random Intercept and Slope Model

The estimated variances of the random intercept and slope are fairly large compared to 
their standard errors (variance of 3.89 with a standard error of 0.29 for the random inter-
cept and variance of 0.13 with a standard error of 0.01 for the random slope) suggesting that 
there is significant between-subject variability in overall drinking frequency and rate of 
change over time. The intercept and slope are also negatively correlated (covariance = −0.13 
with a standard error of 0.05).

The last two columns of Table 4.9 present the subject-specific slope estimates and the rate 
ratios from the GLMM negative binomial models for the significant effects in the model: A 
significant naltrexone by time interaction (F(1,2310) = 5.22, p = 0.02) and a significant CBI by 
time interaction (F(1,2310) = 4.73, p = 0.03). Since there are random intercepts and slopes in 
the model, the fixed slope estimates show the rate of change for an individual who is in the 
middle of the corresponding treatment group, in terms of rate of change, that is, who has a 
random slope of 0. We call this individual a “middle” individual (in contrast to an average 
individual, which is sometimes used in the context of population-averaged models). The 
rate ratios are obtained by exponentiating the fixed slope estimates and can be interpreted 
as the percent change per month for such a “middle” individual. Thus, we estimate that 
the “middle” individual on naltrexone has a 6% decrease in the number of drinking days 
per month (since the rate ratio is 0.94 and we compare it to 1), while the “middle” indi-
vidual on placebo has a 1% increase per month. The estimated effect for CBI is very similar 
(almost identical within rounding error). 

However, other individuals in the group are estimated to have different rates of change 
which are obtained by adding the fixed slope estimate and the predicted random slope 
for the particular individual. For example, an individual on naltrexone with a random 
slope one standard deviation above the “middle” individual’s random slope of 0 has an 
estimated slope equal to −0.06 + 0.36 (−0.06 is the fixed slope and 0.36 is the estimated stan-
dard deviation of the random slope, obtained as the square root of the variance) or 0.30 and 
thus, is estimated to increase (rather than decrease) his drinking days exp(0.30) = 1.35 times 
per month (i.e., by 35%). Similarly, an individual on naltrexone with an estimated random 
slope one standard deviation below the slope of the “middle” individual has an estimated 
slope of −0.06–0.36 = −0.42 and thus decreases her drinking days exp(−0.42) = 0.66 times 
(i.e., by 34%). The difference in rate of change over time, when considering two individuals, 
one with a random slope two standard deviations above, and one with a random slope two 
standard deviations below 0, is even more dramatic: an increase of 93% versus a decrease 
of 54%. 

Like in the random intercept model, in the random intercept and slope model, condi-
tional on the random effects, the difference between the estimated fixed slopes on nal-
trexone and on placebo is the same (−0.06 to 0.01 = −0.07) and the corresponding rate 
ratio (exp(−0.07) = 0.93) is the same. Thus, if we consider any specific individual and could 
change their treatment assignment from placebo to naltrexone, we expect the rate of 
change over time to decrease by about 7%. This estimated decrease is the same regardless 
of which individual we consider (i.e., whether they have higher or lower rate of change 
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over time, and whether they start higher or lower than the average individual). However, 
this interpretation is problematic, as we already pointed out, because individuals do not 
switch between treatments during the period we consider. Thus, although technically 
we can estimate subject-specific effects of between-subject factors, such as treatment, we 
need to be cautious when interpreting those. In contrast, the subject-specific slope esti-
mates for time are perfectly interpretable because all subjects have repeated observations 
over time. 

Note that there are sizeable differences between the estimates for the fixed portion of the 
slopes from the random intercept model, and from the random intercept and slope model. 
This is not always the case but it demonstrates that the estimates for the fixed portion of 
the GLMM can be affected by the assumptions about the random effects. 

Figure 4.4 shows the predicted number of drinking days for individuals by treatment 
group, based on the GLMM. Due to the different intercepts and slopes, there is a wide 
variety of predicted responses. While most individuals have zero or few drinking days 
throughout the study (judging by the denseness of the lines at the lower end of the scale), 
there are some who drink intensively and show substantial increase over time. The variety 
of individual predictions comes in contrast to what one sees in a GEE, where each indi-
vidual’s predicted response is equal to the estimated average response for the group to 
which the individual belongs.
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FIGURE 4.4
Predicted values from the GLMM with negative binominal distribution, log link, random intercept and slope 
for number of drinking days per month during treatment in the COMBINE study.
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Figure 4.5 shows the averages of the predicted values per treatment group, based on 
the GLMM, the population-averaged estimates from the corresponding GEE (i.e., a GEE 
with the same fixed portion of the linear predictor, response distribution and link func-
tion, and unstructured working correlation matrix), together with the raw means of 
the observed number of drinking days per month. Note that the estimated trajectories 
from the GEE are the same for all individuals, while the estimated trajectories from the 
GLMM are averages of the lines from Figure 4.4. Both the GLMM and the GEE provide 
a similar fit to the raw means with more noticeable curvature in the estimates from the 
GLMM. Interestingly, although we have only linear time effects, the estimated means 
show a curvilinear change over time as we are averaging the predictions for subjects 
with different intercepts and slopes (in the GLMM) and are using a non-linear function 
(log) to relate the response to the predictors (in both models). Compared to the GEE with 
categorical time, here the match of the means from both the GLMM and GEE models 
with continuous time to the raw means is not as good because we are using linear time 
effects, which describe the longitudinal trends more parsimoniously but fail to capture 
some of the curvature in the data. 

The fixed slope and rate ratio estimates from GEE models with different working cor-
relation structures are shown in Table 4.10. We focus on the results from the GEE model 
with unstructured working correlation shown in the last two columns in Table  4.10. 
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FIGURE 4.5
Raw means, average predicted values from the GLMM, and model-based means from the GEE model, with 
negative binominal distribution and log link for number of drinking days per month during treatment in the 
COMBINE study.
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In contrast to the GLMM, with random intercept and slope, where the estimated subject-
specific slope estimates for the “middle” individual on naltrexone or on CBI are nega-
tive, the population-average slope estimates in the GEE are positive with the slopes on 
active treatment much closer to 0, while the slopes not on active treatment are signifi-
cantly larger than 0. This may appear contradictory to the results from the GLMM but 
it is not, since the two types of models are estimating different parameters (population-
averaged in GEE versus subject-specific in GLMM). As illustrated above, in the random 
intercept and slope GLMM, the estimated slope and rate ratios for time vary depending 
on which individual we consider. The rate ratio describing change over time for the 
“middle” individual is not the same as the average of the rate ratios of all individuals in 
the same group because of the non-linearity of the link function. However, although the 
fixed slope estimates over time are different in the two random effects models and in 
the GEE model, the differences between treatment groups are very similar. Indeed, the 
population-average analysis suggests that in the absence of treatment there is signifi-
cant worsening of outcome over time, and treatment ameliorates that, while the subject-
specific analysis suggests that for a “middle” individual there is slight but not significant 
deterioration in the absence of treatment, and treatment significantly improves the out-
come. Both analyses find a substantial advantage of either naltrexone or CBI, but not of 
the combination. 

We should note that if the focus is on the treatment group by time effect, the GEE 
approach is preferable since treatment is a between-subject factor and the treatment by 
time effect has more intuitive population-averaged interpretation. However, the GLMM 
approach is more flexible in describing subject-specific trends over time and hence, when 
the focus is on estimating individual-level change over time, the GLMM approach is pref-
erable. Also, GLMM is more flexible in terms of modeling change over time and can seam-
lessly be used with any unbalanced designs. 

Of note, inclusion of random effects allows us to account for some degree of overdisper-
sion in the data. Sometimes a random intercept can be added just with this purpose in 
mind. Fitting other appropriate models for count data, such as the generalized Poisson 
model, which allows us to account for overdispersion, zero-inflated and hurdle mixed 
models which allow us to account for extra zeros is described in Littell (2006).

TABLE 4.10

Slope Estimates and Rate Ratios for the Naltrexone by Time and CBI by Time Effects from the GEE 
Negative Binomial Model with Log Link Applied to Number of Drinking Days in the COMBINE 
Study

Fixed Slope of 
the Time Effect

Exchangeable Working Correlation Unstructured Working Correlation

Estimate (95% CI)
Rate Ratio 
(95% CI) Estimate (95% CI) Rate Ratio (95% CI)

For subjects on 
naltrexone

0.04 (0.01, 0.07) 1.04 (1.01, 1.07) 0.02 (−0.01, 0.05) 1.02 (0.99, 1.05)

For subjects on 
placebo

0.07 (0.05, 0.10) 1.08 (1.05, 1.11) 0.06 (0.03, 0.09) 1.06 (1.03, 1.09)

For subjects on 
CBI

0.02 (−0.00, 0.05) 1.02 (1.00, 1.05) 0.01 (−0.02, 0.04) 1.01 (0.98, 1.05)

For subjects not 
on CBI

0.08 (0.06, 0.11) 1.09 (1.06, 1.12) 0.07 (0.04, 0.09) 1.07 (1.04, 1.10)
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4.3.5  GLMM Analysis of Ordinal Data: Self-Rated Health 
in the Health and Retirement Study

In parallel to the GEE analysis of these data, we consider a cumulative logit model with 
the same fixed effects as in the GEE model, but also including a random intercept and a 
random slope. Thus, the GLMM is specified by the following equation: 
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where the random effects bi0 and bi1 are assumed to be normally distributed and, in gen-
eral, correlated.

The observations on the same individual are conditionally independent, given these 
random effects, and have a multinomial distribution. The inclusion of the random 
effects allows the cumulative odds of poorer self-rated health for each individual to 
deviate systematically from the cumulative odds associated with the particular com-
bination of fixed predictors. Individual-level odds can be larger or smaller than pre-
dicted by the fixed effects and the rate of change in these odds over time may be faster 
or slower than the rate predicted by the fixed effects. We also include subject’s age at 
wave 1 (centered at the mean age of the sample at wave 1) in the linear predictor of the 
model. 

As in the GEE model, in the GLMM self-rated health is an ordinal variable with 5 cat-
egories: 1 = excellent, 2 = very good, 3 = good, 4 = fair, and 5 = poor, and we focus on the 
cumulative odds of poorer health self-assessment. That is, we model the odds of “poor” 
versus the rest of the categories; “poor” or “fair” versus the rest of the categories; “poor,” 
“fair,” or “good” versus “very good” or “excellent,” and “poor,” “fair,” “good,” or “very 
good” versus “excellent.” 

We first report the significant results from the tests of the fixed effects in the model 
(interactions and main effects). There are significant two-way interactions between gen-
der and smoking (F(1,36682) = 6.72, p = 0.01), between wave and smoking (F(1,36682) = 29.25, 
p<0.0001), and between wave and gender (F(1,36682) = 7.22, p = 0.01); and also significant 
main effects of smoking (F(1,36682) = 205.19, p < 0.0001) and wave (F(1,9113) = 1333.44, 
p<0.0001). 

Post hoc analyses (estimation of slopes) are performed to explain the significant 
effects in the models. The estimated slope over time for a “middle” non-smoking indi-
vidual (i.e., the random intercept and slope are both 0) is 0.20 (SE = 0.006) and for an 
“average” smoking individual is 0.27 (SE = 0.01). The interpretation of the two slope 
estimates is that the log cumulative odds of poorer self-rated health increase by 0.20 per 
wave (two-year period) in a “middle” non-smoking individual and by 0.27 in a “mid-
dle” smoking individual. The difference in slopes is −0.07 (SE = 0.01) showing that the 
log cumulative odds of poorer health in “middle” non-smoking individuals increase 
at a slower rate than in “middle” smoking individuals. Exponentiating this estimate 
gives a cumulative odds ratio of poorer health of 0.93 (95% CI: 0.91, 0.96) or we estimate 
that not smoking is associated with about 7% slower rate of decrease in a particular 
individual. The difference due to smoking is the same in all individuals and does not 
depend on whether they start higher or lower than the average or have higher or lower 
rate of change over time.

Similarly, the estimated slope for a “middle” female is 0.22 (SE = 0.009) and for a “mid-
dle” male is 0.25 (SE = 0.009), with a difference of 0.03 (SE = 0.01). Exponentiating gives us 
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a cumulative odds ratio of poorer health of 1.03 (95% CI: 1.01, 1.06) or an approximate 3% 
 difference in the rate of change over time with faster deterioration in males than in females. 
Note, though, that it is difficult to conceptualize this as a subject-specific effect as individu-
als don’t change their gender during the study. Rather, one could think of this effect as 
comparing a male and female individual with the same values of their random effects. 

Note that these estimates are larger in absolute value than the corresponding estimates 
from the population-averaged GEE model, which reflect the average effects in the popula-
tion rather than the effects within individual or “middle” individuals. This is often the 
case when comparing subject-specific and population-averaged estimates. Individuals 
have steeper or flatter rates of change than the “middle” individual, depending on their 
random effect estimates. They also start lower or higher than the “middle” individual. 

Figure 4.6 shows the estimated cumulative odds over time of “poor,” “fair,” or “good” 
versus “very good” or “excellent” self-rated health for a “middle” individual in each of 
the four groups (non-smoking females, non-smoking males, smoking females, and smok-
ing males). These are obtained by exponentiation of the corresponding combinations of 
regression coefficients and thus, show some curvature. The change in cumulative odds 
over time for the other cutoffs (e.g., “poor” versus the rest of the categories, or “poor” or 
“fair” versus the rest of the categories) is very similar in terms of shape, but the cumulative 
odds themselves change, since there is a different intercept in the model for each possible 
comparison. Figure 4.6 shows steeper increase in cumulative odds of poorer health for 
smokers of both genders and also shows that there are substantial differences in the cumu-
lative odds at wave 1 due to smoking. Post hoc pairwise cumulative odds ratios at wave 1 
confirm that “middle” non-smokers of both genders have significantly lower odds (about 
60%–70% lower) of acknowledging poorer health than “middle” smokers (see Table 4.11). 
The effect is more pronounced for males than for females: cumulative odds ratio = 0.29, 95% 
CI: (0.23, 0.35) compared to cumulative odds ratio = 0.42, 95% CI: (0.34, 0.52). Substantively, 
the same results are obtained if one evaluates these post hoc comparisons at other waves.

Figure 4.7 shows the estimated odds of poorer health over time in individuals by gender 
and smoking status at baseline. The individual-level variability is evident in this plot with 
larger spread of the values among smoking males and females. Unlike the GEE model, 
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which implies the same estimated cumulative odds of individuals with the same levels of 
the predictors (gender and smoking status), here each individual has their own estimated 
trajectory. Even individuals with missing data have complete estimated trajectories. The 
magnitude of the variability is due to the variance in the intercept in slope. In the GLMM, 
the estimated variance of the random intercept is 7.98 (SE = 0.17), while the variance of 
the random slope is estimated to be 0.07 (SE = 0.004). Both random effects are necessary 
to be included in the model as evidenced by the AIC of the model with random intercept 
and slope (AIC = 132297.7) compared to the AIC of the model just with a random intercept 
(AIC = 132804.9) and the model without any random effects (AIC = 164909.7).

In summary, smokers have lower self-rated health at baseline than non-smokers with the 
difference more pronounced in males, and deterioration in self-rated health proceeds at a 
slower rate in non-smokers over time than in smokers. The actual regression estimates are 
subject-specific, which means that this is the expected change for a particular subject if we 
could change the predictors for this individual. In the case of time, this is very reasonable, 
as time is a within-subject effect in the model. Smoking status could also potentially be 
changed, although in this example, we used smoking status at baseline. However, gender 
is arguably not changeable and hence the gender differences can’t be interpreted as sub-
ject-specific. Rather, one can think of comparing males and females with the same values 
of their random effects. In general, subject-specific estimates are larger in absolute value 
than population-averaged estimates. However, this is not always the case, especially when 
odds or rate ratios are close to 1. 
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Predicted individual odds of "poor" health based on the cumulative logit GLMM applied to the Health and 
Retirement Study data.



141Linear Models for Non-Normal Outcomes

4.4 Summary

In this chapter, we introduced two classes of models (GEE and GLMM) that can be 
used to assess the effects of predictors on non-normally distributed outcomes in 
studies, with repeated measures and presented data analyses from clinical trials and 
observational studies as illustration. We focused on binary, ordinal, and count data, 
since these are the most commonly encountered types of non-normally distributed 
data in medical studies, and showed how these outcomes fit in the same statistical 
framework, which simplifies model fitting and inference. Nevertheless, each type of 
outcome requires specific interpretation of the effects (e.g., effects are expressed as 
odds ratios for binary data, cumulative odds ratios for ordinal data, and rate ratios for 
count data). Moreover, depending on how the correlation between repeated measures 
is accounted for (i.e., by assuming a working correlation structure or by incorporat-
ing random effects in the linear predictor), estimates have either population-averaged 
(in GEE models) or subject-specific (in GLMM) interpretation. Hence, deciding which 
model to use is much more challenging than in linear mixed models when the out-
come is normally distributed. 

TABLE 4.11

Cumulative Odds Ratios for the Significant Effects in the Cumulative Logit GLMM Fit to Self-
Rated Health in the Health and Retirement Study

Effect Level Comparison Level
Cumulative Odds Ratio 

(95% CI)

Main effect of time Next wave Previous wave 1.26 (1.25, 1.28)
Effect of smoking (evaluated at 
wave 1)

Not smoking Smoking 0.35 (0.30, 0.40)

Effect of gender (evaluated at 
wave 1)

Female Male 0.98 (0.85, 1.14)

Gender × smoking interaction 
(evaluated at wave 1)

Female
not smoking

Female
smoking

0.42 (0.34, 0.52)

Male
not smoking

Male
smoking

0.29 (0.23, 0.35)

Male
not smoking

Female
not smoking

0.84 (0.72, 0.98)

Male
smoking

Female
smoking

1.23 (0.96, 1.58)

Time × gender interaction Next wave
female

Previous wave 
female

1.24 (1.22, 1.26)

Next wave 
male

Previous wave
male

1.28 (1.26, 1.31)

Next wave versus previous wave × Female 
versus male

1.03 (1.01, 1.06)

Time × smoking interaction Next wave
not smoking

Previous wave
not smoking

1.22 (1.21, 1.24)

Next wave
smoking

Previous wave
smoking

1.31 (1.28, 1.33)

Next wave versus previous wave × Not 
smoking versus smoking

0.93 (0.91, 0.96)
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In general, when interest lies in predicting the outcome of individual subjects, the design 
is unbalanced (i.e., observations are not taken at the same time points for all subjects), 
and/or there is substantial proportion of missing data, GLMM would be the preferred 
approach. On the other hand, when interest lies in estimation of average effects in the 
population, the correlations are not of particular interest in themselves, and missing data 
are not a particular concern, GEE would be the preferred approach. Once a particular 
approach and an appropriate outcome distribution are chosen, model selection between 
models with different correlation structures and fixed effects can be based on information 
criteria. Interpretation of estimated fixed (and random) effects is based on the choice of the 
model. 

Although GLMM and GEE are more complicated than the LMM they extend, they pro-
vide much needed flexibility in modeling non-normal outcomes. Nevertheless, even these 
models may not be appropriate for some types of data that do not conform well to distri-
butions in the exponential family. In such situations, an entirely non-parametric approach 
to repeated measures data can be considered. We focus on such an approach in Chapter 5. 
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5
Non-Parametric Methods for the Analysis 
of Repeatedly Measured Data

In the previous two chapters, parametric models for different types of repeatedly measured 
outcomes were presented. These models require that the distribution of the response 
closely resembles one of a set of pre-specified distributions (e.g., normal for continuous 
data, Poisson for count data). While these models cover a wide variety of scenarios, there 
are situations where none of the distributions provide a very good fit to the data and trans-
formations are not very useful in bringing the data in line with theoretical expectations. 
For example, most mathematically convenient distributions do not accommodate data that 
show floor or ceiling effects (i.e., when there is a substantial number of observations at the 
end of the distribution range). In Chapter 4, we encountered such a scenario with the num-
ber of drinking days in the COMBINE study, which had many more zeros than predicted 
by the theoretical distributions we considered. Although in this particular case, one might 
fit hurdle or zero-inflated models, an alternative is to use a non-parametric approach, which 
does not require that a specific distribution for the data be assumed.

Another example that we presented in Chapter 1, is the human laboratory study of men-
thol’s effects on nicotine reinforcement in smokers. Rewarding effects of nicotine in this small 
cross-over trial under different menthol and nicotine conditions were assessed using the 
drug effects questionnaire. Observed scores were mostly 0 at baseline and, depending 
on the dose of nicotine, had small or large variability post-baseline but with a substantial 
number of observed zeros. None of the parametric models presented so far fit these data 
well because of limited or no variability at baseline, floor effects, and the different vari-
ances at different levels of the predictors.

Covariance patterns are also hard to fit with such types of data. In situations when 
hypotheses testing is the main focus of analysis and the design is balanced (i.e., individu-
als are evaluated at the same time points), a non-parametric approach that does not assume 
a particular shape or form for the outcome and structure of the variances and covariances 
is more appropriate. It allows to test for main and interactive effects of the factors and 
provides appropriately conservative tests of study hypotheses. However, since balanced 
design is required, this approach can’t be applied to situations when individuals are mea-
sured at different time points.

In the first section of this chapter, we briefly mention some classical non-parametric pro-
cedures in order to introduce non-parametric methods and outline their advantages and 
disadvantages. In the second section, we include a brief presentation and discussion of the 
first non-parametric test used for repeated measures data, namely Friedman’s test. The 
major emphasis in this chapter is on the general approach for longitudinal data in facto-
rial experiments presented at a non-technical level in the third section. The overall idea is 
to rank the data (from smallest to largest observation) and then run a linear mixed model 
on the ranks with special options selected for the estimation of the variances and covari-
ances, and for approximation of the test statistics. This method can be used in a variety of 
repeated measures situations and is described in detail in Brunner, Domhof, and Langer 



144 Statistical Methods in Psychiatry and Related Fields

(2002). We use two of the data examples introduced in Chapter 1 for illustration. SAS pro-
grams and output files are available in the online materials.

The non-parametric methods discussed here should be distinguished from non-para-
metric modeling of time trends in longitudinal studies, known as non-parametric regres-
sion smoothing. Smoothing methods are usually applied to intensive longitudinal data 
when no a priori assumptions of the form or shape of time trends over time are made, and it 
is of interest to estimate the trajectory of change over time. This is a very different situation 
from the one we focus on here, where we have relatively few repeated occasions and a non-
parametric approach is needed because response distributions and/or variance structures 
do not correspond to mathematically convenient choices provided by parametric models. 
Readers interested in the topic of non-parametric regression smoothing are referred to Wu 
and Zhang (2006), Lin and Carroll (2009), or Lin and Pan (2013).

5.1 Classical Non‑Parametric Methods for Independent Samples

Non-parametric procedures are statistical procedures that are valid under mild assump-
tions. In particular, they are distribution-free and, as such, they enjoy several advantages 
over parametric methods. They require fewer assumptions, are not as sensitive to outliers, 
can be used in situations when parametric methods are not appropriate, and are, in general, 
easy to implement. However, they are focused on hypothesis testing, effect sizes provided 
by non-parametric tests may not be as interpretable, and non-parametric alternatives, in 
general, are less powerful when assumptions for parametric procedures are satisfied.

Non-parametric procedures use ranks rather than actual observed values of the depen-
dent variables. That is, observations are ranked from the smallest to the largest, with the 
smallest observation assigned a rank of 1 and the largest observation assigned a rank 
equal to the number of observations that are ranked.

A simple example is presented below with 10 observations in total and two sets of tied 
observations (ties, observations with the same value). 

When the 10 observations are ranked (−1, −1, 2, 3, 3, 3, 5.5, 7, 10, 33), the smallest in value 
is assigned a rank of 1, the second smallest is assigned a rank of 2, and ranking continues 
until the largest in value is assigned a rank of 10. However, when there are ties, they are 
assigned the mid-rank. In the example, the smallest value is −1 and there are two observa-
tions with this value. Hence, they are assigned the mid-rank of 1 and 2 which is 1.5. The 
next smallest value is 2 and it is assigned a rank of 3 since there are two observations with 
smaller values. Then comes 3 which represents a three-way tie, hence, each of these obser-
vations is assigned a rank of 5 (the mid-rank of 4, 5, and 6). Ranking continues until the 
largest observation is assigned a rank of 10 because there are 10 observations. Once ranks 
are assigned, test statistics are calculated based on these ranks.

Some of the simplest and most commonly used non-parametric procedures are 
Spearman’s rank correlation coefficient, for assessing the relationship between two variables, 
Mann–Whitney’s U test, for evaluating whether two sets of observations come from the 
same distribution, Kruskal–Wallis’s test, which extends the Mann−Whitney procedure for 

Values 3 7 3 10 −1 −1 3 5.5 2 33
Ranks 5 8 5 9 1.5 1.5 5 7 3 10
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more than two samples, and Wilcoxon’s signed-rank test for matched pairs. Each of these 
procedures is based on ranks and is used when the corresponding parametric test can’t 
be applied because its assumptions are not satisfied. Non-parametric tests are also often 
preferred in very small samples (e.g., sample sizes less than 10), although they have very 
low power in these situations.

Spearman’s rank correlation coefficient is calculated as the Pearson’s correlation between the 
ranks of the observations on two variables with the observations on each variable ranked 
separately. It can be used to assess the association of continuous or discrete (including ordi-
nal) data, in particular, to determine whether larger values on one variable correspond 
to larger/smaller values on the other variable. Spearman’s rank correlation coefficient is 
the non-parametric alternative of Pearson’s correlation for two continuous variables and it 
assesses whether the ranks, rather than the actual values, are linearly related.

Mann–Whitney’s U test is the non-parametric equivalent of the two-sample t-test for nor-
mally distributed data, and is used to assess whether there are differences in location 
between the distributions of the two groups that are compared. The null hypothesis is that 
the continuous distributions of the populations from which the two samples are obtained 
are the same (i.e., that all observations come from the same distribution) while the alterna-
tive is that one distribution is shifted toward larger or smaller values. To test this hypoth-
esis, all observations from both samples are ranked together, the ranks of the observations 
in each sample are summed, and a test statistic based on the sums of the ranks in one of the 
samples is calculated. An exact distribution of the test statistic is used to obtain p-values in 
small samples, while in large samples approximations are used.

Kruskal–Wallis’s test is the non-parametric alternative to one-way analysis of variance and 
is used to compare the distributions of two or more groups. Similar to Mann–Whitney’s 
U test, all observations are ranked together as if they come from the same continuous 
distribution. The test statistic is then very similar to the test statistic of treatment effects in 
one-way ANOVA, with the only difference that the ranks of the observations are used as 
response values, rather than the actual values. That is, the between-group variability of the 
ranks is compared to the within-group variability of the ranks and if the former is much 
larger than the latter, then it is concluded that the distribution of at least one of the groups 
is shifted with respect to the other distributions.

Details of these simple procedures, and a wide variety of other non-parametric tests, can 
be found in the comprehensive text of Hollander and Wolfe (1999). The common theme in 
all such tests is that the observations are ranked and a test statistic based on the ranks is 
calculated. Usually in these tests, it is assumed that the data come from a continuous dis-
tribution and hence, ties are not expected. When ties are present, the test statistics require 
some adjustments but these are automatically handled by software programs.

Since emphasis herein is on correlated data, we focus on non-parametric tests for 
repeated measures data of increasing complexity. We start with Wilcoxon’s signed-rank 
test and Friedman’s test, and continue with the general approach of non-parametric analy-
sis of data with repeated measures.

5.2 Simple Non‑Parametric Tests for Repeated Measures Data

Wilcoxon’s signed rank-test is the non-parametric equivalent to a paired t-test and, as such, 
is the simplest non-parametric test that can be used for repeated measures data. If there 
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are only two repeated occasions, and it is of interest to test whether there is significant 
change from one occasion to the other, then Wilcoxon’s signed-rank test can be used. The 
test involves calculating the absolute differences between paired observations (i.e., obser-
vations on the same individual) and the signs of these differences (positive or negative). 
The absolute differences are then ranked and the test statistic is the sum of the signed 
ranks (hence, the name of the test). Extreme values of the test statistic are supportive of 
the hypothesis of change from occasion 1 to occasion 2. For small samples, the p-values 
are calculated based on the exact distribution of the test statistic, while for large values an 
approximation is used.

Friedman’s test is the non-parametric equivalent of analysis of variance in complete block 
designs. In the context of repeated measures data, it can be applied when each subject is 
observed at the same set of repeated occasions and the goal is to assess whether there are 
differences in distributions across occasions (i.e., whether the values on some occasions 
are systematically larger or smaller than the values on other occasions). Friedman’s test 
involves ranking the repeated observations within the same subject (cluster, block), calcu-
lating the average ranks per occasion and looking at the variability of these average ranks. 
Large values of the test statistic indicate differences in the distributions on repeated occa-
sions. Details about the test statistic, its distribution, and the effect of ties can be found in 
Hollander and Wolfe (1999).

Friedman’s test can also be performed by first ranking the data within the subject, per-
forming two-way ANOVA analysis on the ranked data with the subject and occasion as 
factors (without interactions between them), and assessing the significance of the occasion 
effect. In the case of data without ties, this approach results exactly in Friedman’s test 
statistic. When there are ties, adjustment to the test statistic is necessary and it is better 
to use specialized procedures for such analysis. In the online materials, we show how to 
apply Friedman’s test in SAS directly, and using ANOVA, on the ranks for the example 
considered next.

In the COMBINE data set, it is of interest to assess whether there is an overall increase in 
drinking over time. To illustrate how Friedman’s test can be used to test this hypothesis, 
we focus on the number of drinking days during double-blind treatment in a subsample of 
COMBINE subjects. Since non-parametric methods are often used in small samples where 
it is not possible to verify the assumptions of normality, we consider only 10 subjects and 
show how the data are ranked in Table 5.1.

As seen from the table, in this subsample of 10 subjects, the average ranks (and hence, 
the number of drinking days) increase with time. The test statistic for Friedman’s test is 
7.8 with a borderline significant p-value of 0.05. This indicates that there are statistically 
significant differences among the occasions. However, the average ranks do not provide 
information about how large the increase is and which occasions are significantly different 
from one another. While the first shortcoming is typical of non-parametric tests, pairwise 
comparisons among the repeated occasions can pinpoint where the differences are and 
address the second issue. To compare each pair of occasions we use Wilcoxon’s signed-
rank tests.

The results are shown in Table 5.2. There are significant differences between periods 
1 and 3, periods 2 and 3, and periods 1 and 4, at 0.05 significance level. From the average 
ranks, we see that there is significant increase in ranks from periods 1 and 2 to period 3, 
and then slight (non-significant) decrease from period 3 to period 4. Overall the ranks 
in period 3 are the highest. Note that this is a small subsample of the entire sample that 
we used for illustration of the test in order to show how the data are ranked. In general, 
the significance of the effects is largely dependent on sample size and in small sample 
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sizes it is quite possible to miss actual effects. Also, in general, corrections for multiple 
testing need to be applied for post hoc tests, which can also change the significance of the 
results (considered in detail in Chapter 6).

Friedman’s test and Wilcoxon’s signed-rank comparisons on the entire sample show 
significant differences across time points (Friedman’s TS = 10.4, p = 0.02) but only the first 
month is statistically significantly different from the rest (p-values < .0001).

Friedman’s test is useful for hypothesis testing in balanced repeated measures designs 
with only one repeated measures factor. However, as illustrated in the example data sets 
in Chapter 1, usually longitudinal and clustered data studies have more than one repeated 
measures factor and hence, more complicated statistical procedures are needed to evalu-
ate such scenarios. We next present the general approach to repeated measures analysis in 
studies with balanced repeated measures designs (Brunner et al., 2002).

5.3  Non‑Parametric Analysis of Repeated Measures Data in Factorial Designs

A commonly used but potentially misleading approach to the non-parametric analysis 
of repeatedly measured data is to rank all observations in the data set and then perform 

TABLE 5.1

Number of Drinking Days (NDD) per Month for 10 Individuals in the COMBINE Study with 
Corresponding within-Subject Ranks and Result from Friedman’s Test of Change in 
Drinking over Time

Individual NDD_1 NDD_2 NDD_3 NDD_4 Rank_1 Rank_2 Rank_3 Rank_4

I1 1 9 10 14 1 2 3 4
I2 1 4 6 13 1 2 3 4
I3 10 8 11 7 3 2 4 1
I4 23 17 20 22 4 1 2 3
I5 13 14 28 24 1 2 4 3
I6 4 13 9 10 1 4 2 3
I7 3 8 12 28 1 2 3 4
I8 11 19 26 22 1 2 4 3
I9 8 6 7 3 4 2 3 1
I10 5 7 17 9 1 2 4 3
Average 1.8 2.1 3.2 2.9
Test statistic 
and p-value

TS = 7.8, p = 0.05

TABLE 5.2

Pairwise Comparisons between Months based on Wilcoxon’s Signed-
Rank Tests in the Subsample of 10 Subjects from the COMBINE Study

Period 2 Period 3 Period 4

Period 1 TS = −14.5, p = 0.16 TS = −23, p = 0.02 TS = −20.5, p = 0.04
Period 2 TS = −21, p = 0.03 TS = −18.5, p = 0.06
Period 3 TS = 1.5, p = 0.93
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mixed model analysis on the ranked data, as usual. With simple designs without repeated 
measures, such as one-way ANOVA, this often works well, however, with repeated mea-
sures designs with more factors, this method can lead to widely differing variances within 
the different groups or on repeated occasions. Failure to account for the heterogeneity in 
variances can result in conclusions that are not supported by the data. Brunner, Munzel, 
and Puri (1999) and Brunner and Puri (2001) provide a technical description of the issues 
and develop appropriate procedures for the non-parametric analysis of repeatedly mea-
sured data. The basic idea is still based on ranking the observations, but once the data are 
ranked, special options need to be used when fitting linear mixed models (LMM) to the 
ranks, in order to estimate the variances correctly and to have valid tests of the effects in 
the model. In the mean portion of the LMM, all predictors are treated as categorical and 
all main effects and interactions are included in the model. In the variance portion of the 
model, the variances and covariances of the repeated observations within individuals are 
unrestricted and different unstructured variance–covariance matrices must be estimated 
within each combination of levels of the between-subject factors. The technical details are 
beyond the scope of this book but the main options that need to be selected for proper 
inferences are provided here.

In particular, variances and covariances must be obtained using moment-based rather 
than maximum likelihood or restricted maximum likelihood methods. Moment-based 
methods match the expected powers of the outcome (theoretical moments, e.g., the mean, the 
mean of squares) to the sample moments (e.g., the sample mean, the average of the squared 
observations), and solve the resulting equations to obtain estimates of the parameters of 
interest. Furthermore, special ANOVA-type statistics (ATS), based on the moment-based 
variance estimates, must be used for hypothesis testing. The ATS are similar to F-test sta-
tistics for the effects in the model but use the correct variance estimates and have only one 
associated set of degrees of freedom (unlike F-test statistics, where there are numerator 
and denominator degrees of freedom). They are requested by specifying a special option 
in SAS PROC MIXED.

The resulting algorithm performs well in large and small samples, with data that have 
floor/ceiling effects and are continuous or discrete. This is in contrast to other non-para-
metric procedures that require that distributions be continuous and require special han-
dling of ties. Ties do not present a problem for the approach described herein. Also, the 
approach can seamlessly handle missing data at pre-specified occasions in a balanced 
design. Relative marginal effects can be plotted to compare the magnitudes of average ranks 
at different combinations of levels of the between-subject and within-subject factors and 
thus indicate direction and magnitude of effects, albeit not on the original scale. However, 
the non-parametric method is problematic to use if there are too many repeated occasions 
and can’t be used at all when individuals are observed at different time points.

Theoretical details and discussion of advantages and disadvantages of this approach are 
described in the book of Brunner et al. (2002). In summary, the advantages include accom-
modating an outcome with any distribution, designs with multiple within-subject and 
between-subject factors, allowance for missing data, and unbiased tests of all the main and 
interactive effects. The disadvantages are that the approach requires a balanced design 
(i.e., individuals are measured on the same occasions), is not as powerful as a paramet-
ric approach when distributional assumptions are satisfied, and that it does not provide 
very meaningful effect size measures. The non-parametric approach is easily applied in 
SAS PROC MIXED, where all necessary options are available. SAS code is included for all 
examples considered in this chapter.



149Non-Parametric Methods for the Analysis of Repeatedly Measured Data

We now illustrate how to apply this approach on the subsample of the COMBINE study 
considered earlier in this chapter, and gradually increase the complexity of the models 
that we consider. We start with the repeated measures design with only one within-subject 
factor. In the COMBINE subsample of 10 individuals, we are interested in testing whether 
there is a significant change over time in frequency of drinking, regardless of treatment. 
Table 5.3 shows the number of drinking days per month for the 10 individuals and the 
corresponding ranks when data are ranked according to the general non-parametric 
approach. Unlike Friedman’s test, where data are ranked within the individual, here all 
observations (whether from the same individual or from different individuals) are ranked 
together. The lowest value in the sample is 1, as before, but it gets a rank of 1.5 since two 
subjects report one drinking day per period in this subsample. The largest value is 28, cor-
responding to drinking on all possible days since each period consists of 28 days and it 
gets a rank of 39.5, since this value occurs twice among the observations on the 10 subjects. 
The average ranks per period are increasing over time from 13.75 in month 1 to 25.15 in 
month 4. Since the actual numbers are heavily dependent on the number of values that 
are being ranked, it is better to consider the relative marginal effects. The relative mar-
ginal effects are obtained from the average ranks on each occasion by subtracting 0.5 and 
dividing by the total number of observations that are ranked (40 in this example). Relative 
marginal effects can also be plotted in order to better understand the effects, especially 
in more complicated designs. Since there is only one factor here, it is easy to compare the 
magnitudes of the relative marginal effects from the table.

To obtain the estimates of the main effect of time and post hoc comparisons, a LMM is 
fit to the ranked data with time as a within-subject categorical factor and unstructured 
variance–covariance matrix of the repeated measurements. Options to use moment-based 
estimates of the variance components and to calculate ANOVA-type statistics are speci-
fied (see online materials for SAS code). The ANOVA-type statistic (ATS) for the test of 
the main effect of time is ATS(1.92) = 5.01, p = 0.007 (i.e., the value of the test statistic is 

TABLE 5.3

Number of Drinking Days (NDD) per Month for 10 Individuals in the COMBINE Study with 
Corresponding Ranks, Hypothesis Testing Results, and Relative Marginal Effects from the 
Non-Parametric Analysis of Repeated Measured in Factorial Designs Approach

Individual NDD_1 NDD_2 NDD_3 NDD_4 Rank_1 Rank_2 Rank_3 Rank_4

I1 1 9 10 14 1.5 17 20 28.5
I2 1 4 6 13 1.5 5.5 8.5 26
I3 10 8 11 7 20 14 22.5 11
I4 23 17 20 22 36 30.5 33 34.5
I5 13 14 28 24 26 28.5 39.5 37
I6 4 13 9 10 5.5 26 17 20
I7 3 8 12 28 3.5 14 24 39.5
I8 11 19 26 22 22.5 32 38 34.5
I9 8 6 7 3 14 8.5 11 3.5
I10 5 7 17 9 7 11 30.5 17
Average ranks 13.75 18.70 24.4 25.15
Relative 
marginal effects

0.33 0.46 0.60 0.62

Test statistic and 
p-value

ATS(1.92) = 5.01, p = 0.007
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5.01, the associated degrees of freedom are 1.92, and the corresponding p-value is quite 
small at 0.007). Therefore, there is a statistically significant change over time. This con-
firms the substantive results from Friedman’s test. However, the p-value of the ANOVA-
type statistic is much smaller than the p-value of Friedman’s test (p = 0.007 vs. p = 0.05). 
In small samples, it is common for different results to occur depending on which test is 
used. The ANOVA-type statistic is recommended for small samples since it protects the 
error rates better than statistics relying on large sample approximations. For large samples 
the Wald-type statistic can also be used. However, a very large sample may be needed for 
this statistic to be well-behaved. Therefore, Brunner and Puri (2001) recommend using the 
ANOVA-type statistic in general.

Post hoc comparison between time points is also performed with the ANOVA-type 
statistic for contrasts within the LMM. Results are shown in Table 5.4. There are signifi-
cant differences between periods 1 and 3, periods 2 and 3, and periods 1 and 4, which 
leads to the same substantive conclusions as performing pairwise Wilcoxon’s signed-
rank tests, except that the difference between periods 2 and 4 is borderline significant 
(p = 0.05). From the relative marginal effects, we see that there is significant increase in 
frequency of drinking from periods 1 and 2, to period 3, and then leveling off for period 
3 and period 4.

Four different variances (one for each occasion) and six different covariances are esti-
mated, based on the method of moments in the mixed procedure (not shown).

In the subsample of 10 subjects, there are three subjects who were randomized to active 
naltrexone and seven subjects who were randomized to placebo naltrexone. Next, we illus-
trate how to use the non-parametric approach with one between-subject and one within-
subject factor, by taking into account treatment assignment and testing the interaction 
between naltrexone in addition to the main effects of naltrexone and time.

The ranking of the data is performed exactly as shown in Table 5.3. The average ranks 
and the relative marginal effects per occasion are also exactly the same. However, we 
also need to calculate average ranks and relative marginal effects for each treatment 
level, and for each combination of treatment level and occasion, in order to be able to test 
the naltrexone main effect and the interaction between naltrexone and time. Subjects 
I3, I4, and I5 from Table 5.3 are the ones who received active naltrexone. The rest of the 
subjects received placebo. We calculate the average of all ranks for subjects on naltrex-
one and the average of all ranks for subjects on placebo. We also calculate the averages 
of the ranks for subjects on active naltrexone and the averages of the ranks for subjects 
on placebo at each repeated occasion. Relative marginal effects are then calculated by 
subtracting 0.5 from the average ranks and dividing by the number of ranked obser-
vations. Table 5.5 shows all average ranks and Figure 5.1 shows the relative marginal 
effects.

TABLE 5.4

Pairwise Comparisons between Months Based on Pairwise Comparisons with 
ANOVA-Type Statistics in the Subsample of 10 Subjects from the COMBINE 
Study

Period 2 Period 3 Period 4

Period 1 ATS(1) = 2.94, p = 0.09 ATS(1) = 12.63, p = 0.0004 ATS(1) = 5.58, p = 0.02
Period 2 ATS(1) = 5.89, p = 0.02 ATS(1) = 3.79, p = 0.05
Period 3 ATS(1) = 0.05, p = 0.82
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Average ranks increase in the placebo naltrexone group and stay level (but higher) in the 
active naltrexone group. In this particular subsample, the average ranks on active naltrex-
one are higher than the average ranks on placebo naltrexone, but this is not representative 
of the entire study sample. The relative marginal effects show the same pattern (Figure 5.1) 
and can be used for visualization of the effects.

To test statistically the significance of the interaction between naltrexone and time, and 
the main effects of naltrexone and time, a LMM is fit to the ranked data with naltrexone, 
time, and their interaction as categorical predictors, unstructured variance–covariance 
matrix for the repeated measures over time, and specifying the methods-of-moments esti-
mation option, and the ANOVA-type statistics option (see online materials for SAS code).

The interaction between naltrexone and time is not statistically significant (ATS(1.96) = 2.69, 
p = 0.07) and neither is the main effect of naltrexone (ATS(1) = 2.84, p = 0.09). Only the main 
effect of time is statistically significant (ATS(1.96) = 4.37, p = 0.01). Post hoc pairwise com-
parisons show significant differences between periods 1 and 3 (p = 0.003), periods 1 and 4 
(p = 0.04), and periods 2 and 3 (p = 0.003), and a marginally significant difference between 
periods 2 and 4 (p = 0.05). Note that while Figure 5.1 nicely illustrates on which occa-
sions the observations have on average larger values, the absolute differences in relative 
marginal effects do not provide information about how large the differences are. Other 
descriptive statistics (e.g., medians and interquartile ranges) can be calculated in order to 
get a better idea of the magnitude of effects.

We next focus on the complete factorial design of the study with three between-subject 
factors (naltrexone, acamprosate, and CBI), and one within-subject factor (time), and test 

TABLE 5.5

Average Ranks by Naltrexone Group and Time in the Subsample of 10 
Subjects from the COMBINE Study

Period 1 Period 2 Period 3 Period 4 Average

Active naltrexone 27.33 24.33 31.67 27.50 27.71
Placebo naltrexone 7.93 16.29 21.29 24.14 17.41
Average 13.75 18.70 24.40 25.15 20.5
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FIGURE 5.1
Relative marginal effects by naltrexone treatment and month in the subsample of 10 individuals from the 
COMBINE study.



152 Statistical Methods in Psychiatry and Related Fields

all possible interactions and main effects in the entire sample. Another example is also 
included in the following section.

5.4 Data Examples

5.4.1 COMBINE Study

Participants in the COMBINE study of treatments for alcohol dependence were random-
ized to all possible combinations of naltrexone (active versus placebo), acamprosate (active 
versus placebo), and CBI (CBI versus no CBI), in addition to medication management in 
order to assess the main and interactive effects of the three treatments over 16 weeks of 
treatment (considered as four monthly periods). We apply the non-parametric approach to 
assess the effects of treatments on the number of drinking days by ranking all observations 
together and then fitting a LMM to the ranks with fixed effects of naltrexone, acampro-
sate, CBI, and all possible interactions, and the unstructured variance–covariance matrix 
over time. Moment-based estimators of eight different unstructured variance–covariance 
structures over time for the eight different combinations of between-subject factors are 
obtained. Although this leads to a large number of variance–covariance parameters (80 
total, four variances and six covariances for each of the eight treatment combinations), this 
is seamlessly handled by the algorithm. All available data on each subject are used in the 
analysis.

ANOVA-type statistics are calculated for all possible main and interactive effects. 
Table 5.6 shows the statistics and the associated p-values. There are significant interactions 
between naltrexone and CBI (ATS(1) = 4.21, p = 0.04), and between naltrexone and time 
(ATS(2.41) = 2.98, p = 0.04), and also significant main effects of naltrexone (ATS(1) = 5.32, 
p = 0.02) and time (ATS(2.41) = 5.40, p = 0.003). Figure 5.2 shows all relative marginal effects. 

TABLE 5.6

Non-Parametric Tests of Main and Interactive Effects of Treatments and Time 
on Number of Drinking Days per Month in the COMBINE Study

Effects ANOVA‑Type Statistics p‑Value

Main effect of naltrexone ATS(1) = 5.32 0.02
Main effect of acamprosate ATS(1) = 0.11 0.74
Main effect of CBI ATS(1) = 0.31 0.58
Naltrexone*acamprosate ATS(1) = 0.06 0.80
Naltrexone*CBI ATS(1) = 4.21 0.04
Acamprosate*CBI ATS(1) = 0.27 0.60
Naltrexone*acamprosate*CBI ATS(1) = 1.76 0.18
Main effect of time ATS(2.41) = 5.40 0.003
Naltrexone × time ATS(2.41) = 2.98 0.04
Acamprosate × time ATS(2.41) = 0.06 0.97
CBI × time ATS(2.41) = 1.92 0.14
Naltrexone × acamprosate × time ATS(2.41) = 0.33 0.76
Naltrexone × CBI × time ATS(2.41) = 0.14 0.90
Acamprosate × CBI × time ATS(2.41) = 0.46 0.67
Naltrexone × acamprosate × CBI × time ATS(2.41) = 0.31 0.78
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Since there are no significant acamprosate effects, we averaged the relative marginal 
effects of the active and placebo acamprosate groups and Figure 5.3 shows these averaged 
relative marginal effects.

It is clear from Figure 5.3 that subjects who did not receive either naltrexone or CBI 
increased the number of drinking days over time. Subjects who received naltrexone had 
the lowest relative marginal effects, while subjects on the combination of naltrexone and 
CBI, or on CBI alone, were in the middle. Table 5.7 provides the test statistics and p-values 
for the post hoc comparisons to explain the significant effects in the model. Consistent 
with results from the alternative analyses reported in Chapter 4 for this data set, the 
group receiving naltrexone by itself appears have fewer drinking days compared to the 
group that did not receive naltrexone or CBI (p = 0.002). The combination of naltrexone 
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FIGURE 5.2
Relative marginal effects for the number of drinking days by naltrexone, acamprosate, and CBI treatment over 
time in the COMBINE study. Nx = naltrexone, Ac = acamprosate, CBI = Combined Behavioral Intervention.
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and CBI is also associated with fewer drinking days compared to placebo naltrexone 
and no CBI (p = 0.05), but is not significantly more advantageous than the monotherapies. 
CBI is not associated with a significant improvement compared to no CBI. Comparisons 
of subjects on active naltrexone versus placebo naltrexone are statistically significant in 
the last two months (p = 0.02 and 0.004, respectively), but not in the first two months. The 
ranks during the first month are, on average, significantly lower than the ranks during 
the other months.

Note that there are some differences between these results and the results from the GEE 
and random effects analyses in Chapter 4. In particular, there is a significant CBI by time 
interaction in the parametric analyses, but in the non-parametric analysis the naltrexone 
by time interaction, rather than the CBI by time interaction, is statistically significant. In 
general, discrepancies between non-parametric and parametric analyses are possible, 
especially when assumptions of parametric procedures are not satisfied. While the results 
from the non-parametric approach are valid under a wider range of assumptions, a defi-
nite disadvantage is that this approach does not provide effect size estimates on the origi-
nal scale. Thus, we can conclude that there are significant effects but their magnitudes are 
harder to quantify.

5.4.2  Human Laboratory Study of Menthol’s Effects on 
Nicotine Reinforcement in Smokers

This study, introduced in Section 1.5.7, used a two-level cross-over experimental design 
to examine whether menthol at different doses, compared to placebo, alters nicotine rein-
forcement in young adult smokers. The two-level cross-over design of the study with three 
menthol doses (high dose, low dose, and no menthol) administered on three separate days 

TABLE 5.7

ANOVA-Type Statistics for the Post Hoc Comparisons for the Significant Effects in the Non-
Parametric Mixed Model Fitted to Number of Drinking Days per Month in the COMBINE Study

Effect Level Comparison Level
ANOVA‑Type 

Statistic p‑Value

Naltrexone × CBI 
interaction

Naltrexone and CBI Naltrexone ATS(1) = 1.13 p = 0.29
Naltrexone and CBI CBI ATS(1) = 0.03 p = 0.86
Naltrexone and CBI Neither ATS(1) = 3.93 p = 0.05
Naltrexone CBI ATS(1) = 1.60 p = 0.21
Naltrexone Neither ATS(1) = 9.32 p = 0.002
CBI Neither ATS(1) = 3.36 p = 0.07

Naltrexone × month Naltrexone at month 1 Placebo at month 1 ATS(1) = 1.28 p = 0.26
Naltrexone at month 2 Placebo at month 2 ATS(1) = 3.31 p = 0.07
Naltrexone at month 3 Placebo at month 3 ATS(1) = 5.88 p = 0.02
Naltrexone at month 4 Placebo at month 4 ATS(1) = 8.45 p = 0.004

Main effect of time Month 1 Month 2 ATS(1) = 20.56 p < .0001
Month 1 Month 3 ATS(1) = 4.65 p = 0.03
Month 1 Month 4 ATS(1) = 4.77 p = 0.03
Month 2 Month 3 ATS(1) = 3.29 p = 0.07
Month 2 Month 4 ATS(1) = 1.51 p = 0.22
Month 3 Month 4 ATS(1) = 0.10 p = 0.76
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and three nicotine doses (saline, 5 µg/kg, 10 µg/kg), infused in random order on each test 
day, is shown in Figure 1.12. The main outcome of interest is the rewarding effect of nico-
tine measured by the Drug Effects Questionnaire (DEQ). We focus on the item measuring 
how much subjects liked the perceived nicotine effects during the first 5 minutes of the 
infusion. Four separate ratings were collected during this time period within each infu-
sion on each test day.

The hypothesis is that concurrent menthol and nicotine administration, as compared 
to nicotine and control flavor, or saline and control flavor, enhances the rewarding effects 
of nicotine. Since, in this data set, there are correlations within subject between repeated 
observations on the same test day and on different test days, we need to use a method for 
repeated measures analysis in order to take these correlations into account. However, as 
illustrated by the box plots in Figure 5.4 for two of the conditions, the data are skewed, 
exhibit floor effects, and the variability differs by time point, nicotine, and menthol dose. 
Hence, this data set is particularly suited to be analyzed with the non-parametric approach 
to repeated measures.

We fit a LMM with menthol, nicotine, time, and all possible interactions on the ranked 
data, with the unstructured variance–covariance matrix and the required options for 
proper estimates. This allows us to test the hypotheses of main and interactive effects, 
according to the non-parametric approach.

The first part of Table 5.8 shows the ANOVA-type statistics and the associated p-values 
for the main and interactive effects in the model. There is a statistically significant inter-
action between nicotine and time (ATS(5.69) = 3.83, p = 0.001). There are also significant 
main effects of nicotine (ATS(1.80) = 22.21, p < .0001) and time (ATS(2.52) = 10.93, p < .0001). 
Post hoc comparisons among the three nicotine doses are then performed at each time 
point, in order to explain the significant interaction in the model. These comparisons 
show that at minutes 1, 3, and 5, there are significant differences among all three nicotine 
doses with the high dose associated with the highest liking rating and saline associated 
with lowest rating. Figure 5.5 illustrates this effect with a plot of the relative marginal 
effects. When high dose nicotine is infused, there is a sizeable increase in the drug liking 
effect, with subsequent decrease to baseline levels. When low dose nicotine is infused, 
there is a small change upward but responses go down after the first minute. When saline 
is infused, there is no increase and drug liking effects decrease. Detailed tests for these 
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TABLE 5.8

Non-Parametric Tests of the Effects of Menthol, Nicotine, and Time in the 
Human Laboratory Study of Nicotine Reinforcement in Smokers

Effects ANOVA‑Type Statistics p‑Value

Main effect of nicotine ATS(1.80) = 22.21 < 0.0001
Main effect of menthol ATS(1.67) = 1.65 0.20
Main effect of time ATS(2.52) = 10.93 < .0001
Nicotine × menthol ATS(3.84) = 0.94 0.44
Nicotine × time ATS(5.69) = 3.83 0.001
Menthol × time ATS(5.28) = 0.63 0.69
Nicotine × menthol × time ATS(10.6) = 0.58 0.84

Post hoc tests: 
High dose versus low dose nicotine at time 0 ATS(1) = 0.00 0.96
Low dose nicotine versus saline at time 0 ATS(1) = 0.51 0.48
High dose nicotine versus saline at time 0 ATS(1) = 0.47 0.49
High dose versus low dose nicotine at time 1 ATS(1) = 9.98 0.002
Low dose nicotine versus saline at time 1 ATS(1) = 9.49 0.002
High dose nicotine versus saline at time 1 ATS(1) = 28.83 < .0001
High dose versus low dose nicotine at time 3 ATS(1) = 5.63 0.02
Low dose nicotine versus saline at time 3 ATS(1) = 6.35 0.01
High dose nicotine versus saline at time 3 ATS(1) = 18.61 < .0001
High dose versus low dose nicotine at time 5 ATS(1) = 5.92 0.02
Low dose nicotine versus saline at time 5 ATS(1) = 4.66 0.03
High dose nicotine versus saline at time 5 ATS(1) = 17.13 < .0001
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effects are provided in the online materials. In conclusion, this analysis confirms that indi-
vidual studies respond to nicotine infusions with an increase in liking but there is no 
evidence that menthol modifies this effect.

5.5 Summary

In this chapter, we introduced non-parametric methods for the analysis of repeated mea-
sures data and focused on the approach described by Brunner et al. (2002) for factorial 
experiments. This approach can be used in a variety of situations with longitudinal and 
clustered data when data do not conform to normality or other distributions in the expo-
nential family. The basic idea of ranking the observations, and performing mixed model 
analysis on the ranks, is simple but special options must be used in order to estimate the 
variances correctly and to have valid tests of the effects in the model.

Advantages of the approach are that it can be applied to discrete and continuous data 
with all kinds of distributions, in large and in small samples, and that the method is not 
substantially affected by missing data. Disadvantages are that this approach is limited 
to balanced designs and that the focus is on hypothesis testing, rather than effect size 
estimation. The relative marginal effects do provide effect size measures but they are not 
in the metric of the original observations and hence, are not as useful. Power may also 
be diminished, compared to parametric models, when parametric models can be used. 
Further information on the non-parametric approach can be found in Brunner et al. (2002), 
Brunner et al. (1999), and Brunner and Puri (2001).
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6
Post Hoc Analysis and Adjustments 
for Multiple Comparisons

In the previous three chapters, we showed that analysis of repeated measures data with at 
least two factors usually involves testing of main effects and interactions, followed by mul-
tiple individual comparisons (whether pre-planned or post hoc), in order to explain the 
significant effects in the models. As in ANOVA without repeated measures, in repeated 
measures analyses with categorical factors, main effect tests comparing more than two 
means are usually followed by pairwise comparisons of the means or comparisons of all 
means to the mean of a control group, while interactions are followed by testing or estima-
tion of simple effects (i.e., comparisons of the means of one factor at the levels of the other 
factors). When there are significant main or interaction effects of time in longitudinal stud-
ies, often it is of interest to assess whether the mean change over time can be described by 
a straight line or by a parabola and hence, testing of linear or quadratic trends is indicated. 

We already illustrated post hoc testing on several of the data sets introduced in Chapter 1. 
In particular, we showed how to describe the significant trend over time in the augmenta-
tion depression study by comparing post-baseline time points to baseline, and by testing 
linear, quadratic and cubic effects (Section 3.8.1), we illustrated testing of simple effects in 
the serotonin levels in the mother–infant pairs study (Section 3.8.2), in the fMRI study of 
working memory in schizophrenia (Section 3.8.3), and in the COMBINE study of alcohol 
dependence (Sections 4.2.4, 4.3.4, and 5.4.1). We also showed how to perform focused mean 
comparisons in the meta–analysis of clinical trials in schizophrenia (Section 3.8.4) and 
illustrated how to estimate effect sizes in GEE and GLMM applied to self-rated health 
in the Health and Retirement Study (Sections 4.2.5 and 4.3.5). In almost all instances of 
post hoc testing so far, we used an uncorrected significance level of 0.05 for hypothesis 
testing and a confidence level of 0.95 for confidence interval construction. When there are 
multiple comparisons, this leads to inflation of the type I error rate (i.e., increased chance 
of finding significant effects when there are no differences) in the family of comparisons. 
For example, if we have three groups and compare all pairs of means (i.e., perform three 
comparisons: mean 1 versus 2, mean 1 versus 3, and mean 2 versus 3), each with a prob-
ability of 0.05 of finding a difference when there is no difference, the probability of finding 
at least one of the three differences to be statistically significant when there are no differ-
ences can be as high as 0.14. When the number of comparisons is much higher, the proba-
bility can become almost 1, or 100%. A similar issue occurs with confidence intervals. If we 
construct just one 95% confidence interval, then in all likelihood, the interval includes the 
parameter of interest (or difference of parameters, e.g., differences of population means). 
Only in 5% of the cases, the true parameter is not in the confidence interval. But if we con-
struct multiple confidence intervals, then the probability that at least one of the confidence 
intervals does not include the parameter increases, often dramatically. 

Multiple comparison procedure is any simultaneous statistical inference that allows 
error rates or confidence levels to be controlled in a family of tests or confidence intervals. 
For example, in clinical trials several treatment groups may need to be compared in terms 
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of their mean response, by either performing multiple hypothesis tests or constructing 
simultaneous confidence intervals for mean differences. This is the case in the COMBINE 
study, where there are eight different treatment groups depending on the pharmacologi-
cal and behavioral treatments that patients are randomized to. There are different sets of 
comparisons that can be performed, as illustrated later in this chapter, for each outcome 
measure. 

In addition, in clinical trials there are often multiple efficacy and safety outcome mea-
sures that need to be analyzed. With multiple measures, there is increased likelihood that 
a new treatment will be found beneficial on at least one of the measures by chance and 
hence, the probability of such chance occurrence needs to be controlled. This situation is 
sometimes referred to as “multiple testing,” rather than “multiple comparisons,” in order 
to emphasize that different measures are compared. Also “multiple testing” often refers to 
hypothesis testing while “multiple comparisons” refers to simultaneous confidence inter-
vals. In this chapter, we use “multiple comparisons” and “multiple testing” interchange-
ably when referring to hypothesis tests, and “multiple comparisons” when we refer to 
simultaneous confidence intervals. 

Multiple comparison procedures must be used if there is a chance that some of the effects 
that are found are false positives, to claim that the observed effects from confirmatory or 
exploratory are real with high level of confidence, and especially when the cost of false 
positive results is high (e.g., a new experimental treatment with largely unexplored side 
effects profile is mistakenly declared to be better than a standard treatment). There are 
many different multiple comparison procedures that address different inferential objec-
tives. Some methods are specific to hypothesis testing, others to confidence intervals, and 
some may be used in either context. Procedures also differ in terms of the errors that they 
control. Most commonly, procedures control the familywise error rate (FWER), which is the 
probability of at least one false positive result or the false discovery rate (FDR), which is the 
proportion of falsely rejected null hypotheses. In some cases, there are big differences in 
results depending on which method is used. In other cases, the results are the same. 

Arguably the most important aspect of multiple comparison testing is selecting the fam-
ily of inferences over which one controls the error rates. If too many separate hypotheses or 
confidence intervals are constructed, then the correction may be too severe and important 
effects may be missed. On the other hand, if the family consists of a small set of hypoth-
eses or confidence intervals but those are selected based on extensive data dredging, then 
the correction may not be sufficiently strict and may result in false positive results that fail 
to replicate. 

In this chapter, we first provide a brief historical overview of approaches for multiple 
comparisons. Then we describe different settings in which multiple comparison pro-
cedures may be needed and present logical choices of families of statistical inferences. 
In the  third section, we describe classical approaches such as Bonferroni’s, Tukey’s and 
Scheffé’s procedures that control the FWER. Stepwise modifications of the Bonferroni 
method and FDR-based approaches are considered next with a brief mention of simu-
lation-based, bootstrap, and permutation tests. Finally, some of the data examples from 
Chapter 1 are used for illustration. The emphasis herein is on assumptions, interpreta-
tion of results, and applicability. For interested readers, a comprehensive reference, com-
plete with SAS code and data examples for the use of multiple comparison procedures, is 
Westfall et al. (2011). Another good reference that covers most procedures is the book by 
Hsu (1996). Multiple comparison procedures in the context of clinical trials are described 
in detail by Dmitrienko et al. (2010), while Dudoit and Laan (2008) cover multiple testing 
in genomics experiments.
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6.1 Historical Overview of Approaches to Multiple Comparisons

Some of the earliest approaches of correction for multiple comparisons are due to Tukey 
(Tukey, 1953) who focused on all pairwise comparisons among means, and Scheffé (1952, 
1953) who focused on linear contrasts among group means. Dunnett proposed an adjust-
ment method for multiple comparisons when multiple treatment groups are compared to 
a control group (Dunnett, 1955). These procedures are most commonly used in the context 
of post hoc testing in ANOVA, when it is of interest to understand what drives a significant 
overall finding of mean differences. 

Another commonly used approach is the Bonferroni correction credited to Dunn (1961). 
This method is perhaps the most widely known and used because of its simplicity and 
wide applicability. It can be used not only for mean comparisons but in any situation 
where multiple statistical inferences are performed (e.g., when multiple efficacy endpoints 
are assessed in clinical trials). However, the Bonferroni correction is also the most con-
servative in many situations. More liberal modifications of this procedure have been pro-
posed (Marcus et al., 1976; Holm, 1979; Hommel, 1988) and have grown in popularity in 
recent years. 

All approaches mentioned so far are focused on controlling the familywise error rate 
(FWER), which is the probability of at least one type I error among multiple (possibly cor-
related) hypothesis tests. If constructing simultaneous confidence intervals is the focus, 
these procedures control the familywise confidence at pre-specified level. While Bonferroni-
type and some of the classical procedures may be too conservative, simulation-based 
methods (Edwards and Berry, 1987) provide good control of FWER and can be used seam-
lessly with dependent observations in clustered and longitudinal studies.

In contrast to classical procedures that protect against a single false positive result, 
more recent developments are often centered on controlling the false discovery rate 
(FDR), which is the expected proportion of rejected null hypotheses that are false 
discoveries (i.e., incorrect rejections). The idea of FDR was first formalized by Benjamini 
and Hochberg (1995) and was based on previous research by Schweder and Spjøtvoll 
(1982), Soric (1989) and Hochberg and Benjamini (1990), as acknowledged by Benjamini 
(2010a). However, it was not until a few years after the seminal Benjamini and Hochberg 
publication that the idea received wide acceptance and use. With the explosion of tech-
nology developments in genomics and other high throughput sciences, it was neces-
sary to test simultaneously a large number of hypotheses when data were collected on 
relatively few individuals. For example, in genomics or proteomics, thousands of genes 
or protein expressions are often evaluated simultaneously using microarrays and need 
to be compared between individuals with a particular disease and healthy controls. 
Classical familywise error rate corrections, in such situations, result in a drastic loss of 
power for signal detection and hence new types of multiple correction procedures are 
necessary. FDR procedures and related modifications have better power than FWER 
procedures and allow simultaneous testing of large numbers of hypotheses (in the 
hundreds or thousands) in relatively few individuals, without sacrificing too much 
power. 

Nowadays, researchers can choose from a variety of FWER and FDR procedures that are 
incorporated in software packages. The key issue is which procedure is most appropriate 
in a particular situation with theoretical and empirical research still in full swing. In this 
chapter, we focus on post hoc comparisons to explain significant main effects and interac-
tions in linear models, present the key concepts in multiple testing, and illustrate some of 
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the most popular procedures on data examples. A succinct overview of multiple correction 
methods, multiplicity-related error rates, their interpretation, and applicability is provided 
in Benjamini (2010b).

6.2 The Need for Multiple Comparison Correction

6.2.1 Hypothesis Testing

When a single hypothesis test is performed at 5% significance level, there are two possible 
outcomes—the null hypothesis is rejected if the corresponding p-value is less than 0.05 
and it is not rejected, otherwise (Table 6.1). Consider the situation when the null hypoth-
esis is rejected. There is up to 5% probability that the null hypothesis was rejected in error 
(type I error). Most people would be comfortable with one in twenty probability of a type I 
error and would feel comfortable concluding that the null hypothesis is false. 

However, suppose that k independent tests are performed and in each case there is 5% 
probability of falsely rejecting the null hypothesis. Then, the probability of at least one 
false rejection (the familywise error rate, FWER) is 1 − 0.95k, which is equal to 40% when k = 10 
and to 99.4% when k = 100. Most people would probably not be comfortable having such 
high probability to commit a type I error. Thus multiple comparison correction for the 
family of hypothesis tests is necessary. 

Any correction involves performing individual tests at levels lower than 5%. However, 
when type I error rate is decreased in a statistical test, the probability of type II error (i.e., the 
probability to fail to reject the null hypothesis when it is indeed false) increases and hence 
power (i.e., the probability to reject the null when it is false) decreases. Thus all corrections 
that control the FWER need to be evaluated also in terms of the loss of power when the alter-
native hypotheses are true. Since it is not known which of the underlying null hypotheses 
in the family of tests are true and which are false, a good balance needs to be maintained 
between the probabilities of type I and type II error over different possible scenarios. 

Table 6.2 shows the possible outcomes when m hypotheses tests are performed simulta-
neously. Here m0 is the (unknown) number of true null hypotheses and hence m − m0 is the 

TABLE 6.1

Results When Testing a Single Hypothesis Test

Null Hypothesis 
Not Rejected

Rejected Null 
Hypothesis

True null hypothesis Correct Type I error
False null hypothesis Type II error Correct

TABLE 6.2

Results When Testing m Hypothesis Tests

Null Hypothesis 
Not Rejected

Rejected Null 
Hypothesis Total

True null hypothesis TNR FR m0

False null hypothesis FNR TR m−m0

Total m−R R m
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number of false null hypotheses. Of the m0  true null hypotheses FR are rejected in error 
and thus the FWER is the probability that FR is 1 or more, i.e., P(FR ≥ 1). 

Another important measure to consider is the per-comparison error rate (PCER) which is 
the expected proportion of all hypotheses that are falsely rejected null hypotheses, i.e., 
E /F mR( ) . If all comparisons in the set are performed at a 5% significance level (i.e., no 
correction for multiple tests is applied), then the PCER is controlled at 5%. Depending on 
how many of the hypotheses in the set are true null hypotheses, this leads to a potentially 
substantial increase in the FWER. If all hypotheses are true null hypotheses, the increase 
is large even with a moderate number of hypotheses in the test, which has motivated the 
development of classical multiple comparison procedures that control the FWER. But if 
only a few of the hypotheses are true null hypotheses, then the increase may not be as 
large and strict FWER control may be at the expense of missing important signals, which 
has motivated the development of procedures that control the false discovery rate (FDR). 

There are two types of FWER control with some procedures controlling only the first 
one but not the second one. The first type is FWER control in the weak sense, which means 
that FWER control is guaranteed to be at level α only when all null hypotheses are true 
(i.e., m0 = m). The second type is FWER control in the strong sense, which means that FWER 
control is guaranteed to be at level α for all possible configurations of true and false null 
hypotheses. Procedures that control the FWER in the strong sense are, in general, prefer-
able to procedures that control the FWER in the weak sense. However, when many of the 
null hypotheses are false and there is a large number of comparisons, procedures that 
control the false discovery rate should be considered.

The false discovery rate (FDR) is the expected proportion of rejected hypotheses among the 
set of hypothesis tests that are false discoveries (i.e., differences are found when no differences 
exist). Based on the notation in Table 6.2 it is defined as E F RR/( ) . Unlike the PCER, which 
has the total number of hypothesis tests in the denominator, the FDR uses only the number 
of rejected null hypotheses in the denominator. Thus depending on how many of the actual 
hypotheses are true null, it can be close to the FWER (it is equal to the FWER when all hypoth-
eses are true null hypotheses, i.e., m0 = m). When all null hypotheses are false (i.e., when m0 = 0), 
or when there are no rejected null hypotheses (i.e., R = 0), the FDR is 0 by definition. 

Compared to the FWER, FDR is more permissive and thus is more powerful in gen-
eral. Because of this property, it is much better suited for situations when the number 
of simultaneous tests is large. To understand the rationale for this correction, consider 
the following example: if one performs 1000 simultaneous hypothesis tests, keeping the 
FWER (i.e., the probability of at least one false positive result) below the commonly used 
threshold of 5% would require a very severe correction in each individual hypothesis 
test and thus will lead to a significant loss of power to detect differences, even when dif-
ferences exist. In comparison, controlling that no more than 5% of the rejections among 
the 1000 tests are false rejections (i.e., controlling the FDR within 5%) is still reasonable 
and would require much smaller adjustment and thus, will have better power. If among 
60 rejected null hypotheses, three are false rejections this is still a good result although 
we have some false rejections. In contrast, if among six rejected null hypotheses, there 
are three false rejections, this is most likely not acceptable. If we can control the FDR at 
5%, we will be assured that only a small percent of the rejections are expected to be false 
rejections. 

When all null hypotheses are true (i.e., there are no differences in any of the hypoth-
esis tests), the FDR is equal to the FWER since all rejections are false rejections. In gen-
eral, FWER ≥ FDR and some of the rejections are false rejections. The more non-true 
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null hypotheses there are, the more powerful the FDR correction is. Also, the greater the 
 number of simultaneous tests, the greater the advantage of the FDR over the FWER if there 
are at least some true alternative hypotheses. That explains why FDR-type corrections are 
the preferred approach in genomics or proteomics experiments and other areas where 
high dimensional data are analyzed. 

6.2.2 Confidence Intervals

When a confidence interval is constructed for a single parameter at some confidence level, 
say 95%, there is 95% probability that the true parameter is inside the confidence interval. 
That is, if the process of construction of a confidence interval is repeated many times, 95% 
of the time the confidence interval will be correct in that it will contain the parameter of 
interest. But when simultaneous intervals are constructed for multiple parameters, each 
at a 95% confidence level, the probability that all of them are correct can be significantly 
lower than 95% and hence the probability that at least one of them is incorrect (which is 
the familywise error in the context of confidence intervals) can be significantly higher than 
5%. In many situations, there is direct correspondence between hypothesis tests and confi-
dence intervals, and confidence intervals can be used to test the corresponding hypotheses 
by checking whether the parameter values under the null hypotheses are in the corre-
sponding intervals. For example, if we are interested in all pairwise comparisons in a set 
of means, we can construct simultaneous confidence intervals for all pairwise differences 
and check which of these confidence intervals include 0. If a confidence interval includes 
0, then the corresponding null hypothesis that the two means are equal is not rejected. If a 
confidence interval does not include 0, then the corresponding null hypothesis is rejected 
and the confidence interval indicates which mean is larger than the other mean. If  the 
entire confidence interval is above 0, then the first mean is significantly larger than the sec-
ond mean. If the entire confidence interval is below 0, then the second mean is significantly 
larger than the first mean. 

While many FWER correction procedures can be applied to both confidence intervals 
and hypothesis tests, some are specifically designed for multiple hypothesis testing only 
and FDR multiple comparison procedures are mainly for hypothesis testing. 

6.3 Standard Approaches to Multiple Comparisons

Standard approaches are single-stage procedures and are most commonly used for least 
squares mean comparisons in ANOVA designs with independent observations. These 
procedures have been developed for the simple linear model where the assumptions of 
linearity, normality, constant variance, and uncorrelated errors are satisfied. We first focus 
on the single-stage procedures of Bonferroni, Tukey, Scheffé, and Dunnett, and consider a 
scenario where k means need to be compared. Technical details about these and additional 
classical procedures can be found in Montgomery (2013) and Kutner et al. (2005). If the goal 
is to rank the means from largest to smallest value and to figure out which of the mean dif-
ferences are statistically significant, then all pairwise comparisons of the means are per-
formed. With k means, there are k(k − 1)/2 possible comparisons of the form μi−μj. It is easy 
to see that the number of comparisons increases very fast. For example, with three means 
there are three possible comparisons. With four means there are six possible comparisons, 
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with five means there are 10 possible comparisons. If pairwise comparisons are performed 
at uncorrected α level, then the probability of finding at least one false significant differ-
ence among a set of m comparisons can be much higher than α. Therefore, it is necessary 
to apply a correction and in the classical procedures this is done in such a way as to keep 
the probability of finding at least one significant difference within a certain limit, that is, 
to control the familywise error rate (FWER). 

6.3.1 The Bonferroni Multiple Correction Procedure

The most commonly used multiplicity correction is the Bonferroni procedure. It consists of 
testing each of m comparisons at α/m significance level and thus guarantees a FWER of α  
for the set of comparisons. For example, if five comparisons are to be performed with the 
goal of limiting the probability of at least one false positive at 0.05, then each individual 
comparison needs to be performed at 0.01 significance level in order to guarantee that the 
FWER is no higher than 5%. 

Equivalently, each of the raw p-values for the comparisons is multiplied by the number 
of comparisons to obtain adjusted p-values, which are then directly compared to α. The 
adjusted p-value approach is illustrated in Table 6.3 where raw and Bonferroni-adjusted 
p-values are shown in the first two columns. Since there are five comparisons in this exam-
ple, each raw p-value is multiplied by 5 in order to obtain Bonferroni-adjusted p-values 
which are then compared to the chosen significance level (namely 0.05). While four out of 
five raw p-values are below 0.05, only one of the adjusted p-values is below 0.05 and thus 
only one of the comparisons is declared statistically significant after Bonferroni adjust-
ment. Prior to Bonferroni adjustment four out of five comparisons are statistically sig-
nificant. Note that it is possible for the adjustment to result in values larger than 1, in 
which case adjusted p-values are truncated at 1 and reported as 1. Adjusted p-values are 
interpreted as the lowest FWER for which the corresponding comparisons are statistically 
significant. The smallest p-value in the set of five raw p-values in Table 6.3 is 0.001, which 
corresponds to a Bonferroni-adjusted p-value of 0.005 and hence for any FWER that is 
equal or greater than 0.005 this comparison will be statistically significant. The second 
smallest Bonferroni-adjusted p-value is 0.06, which is not significant at 0.05 level but will 
be significant if we set the FWER to be 0.06 or higher. Traditionally, the desired FWER is 
set to 0.05. However, in specific studies it can be set to be higher or lower if one needs to be 
more liberal or more conservative. 

Confidence intervals can also be constructed using the Bonferroni approach by using 
1-α/m confidence level for each interval rather than 1 − α confidence level. For example, 
if we want to be 95% confident that five confidence intervals constructed simultaneously 
contain the respective parameters of interest (which means that α = 0.05, 1 − α = 0.95), we 
need to construct each individual interval at 1 − 0.05/5 = 99% confidence level. This leads 
to increased widths of the confidence intervals compared to using uncorrected 95% confi-
dence level for each, but we are almost guaranteed that we have captured all parameters 
of interest. Simultaneous confidence intervals are considered in more detail in the data 
examples section of this chapter. 

The advantages of the Bonferroni procedure are that it can be applied very easily, it can 
be used both for simultaneous hypothesis testing and confidence intervals construction, 
it is valid even when the comparisons are statistically dependent, and it can be used in a 
wide variety of situations when multiplicity correction is necessary, not just for compari-
sons of means in ANOVA. The main disadvantage is that this approach is very conserva-
tive, that is, in many situations the FWER is maintained at a level lower than α and too few 
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null hypotheses are rejected. This leads to substantial loss of power to detect  differences 
when there are more than a few comparisons and to confidence intervals that may be 
unnecessarily wide. There are a number of stepwise modifications of the Bonferroni pro-
cedure aimed at increasing power, as described in Section 6.4, and more appropriate pro-
cedures depending on the goal of multiple comparisons such as Tukey’s, Scheffé’s, and 
Dunnett’s, as described next.

6.3.2 Tukey’s Multiple Comparison Procedure

A less conservative correction than Bonferroni, in the context of multiple mean compari-
sons in ANOVAs and other linear models, is Tukey’s honest significance difference procedure 
(also known as Tukey’s range test). It was developed for a balanced one-way ANOVA design, 
that is, when the means of k groups with an equal number of independent observations per 
group are compared. Extensions apply to unbalanced designs with an unequal number of 
observations in each group (the Tukey–Kramer method) and dependent data (i.e., when there 
are correlations between the observations). Tukey’s method is based on the precise distri-
bution of the pairwise statistics and thus controls the FWER exactly (under the assump-
tions of the model and when the design is balanced), rather than conservatively, as in the 
Bonferroni method. That is, the probability of at least one false positive result is equal to 
the desired FWER, rather than smaller than that. This is possible because it properly takes 
into account the correlations between different pairs of means. 

Application of Tukey’s multiple comparison procedure with balanced data is easy as it 
involves performing multiple t-tests or setting up multiple confidence intervals just as one 
would do for a single test or a single confidence interval but with critical values that come 
from the studentized range distribution (Tukey, 1949) rather than from a t-distribution. Before 
the wide use of computers and proliferation of statistical software programs, tabled values 
were used to calculate the test statistics or to set up the confidence intervals. However, 
nowadays all statistical software programs have options to perform Tukey’s multiple com-
parisons in ANOVAs and in linear models. Even with unbalanced data, all the calculations 
are performed behind the scenes and the end user just sees the constructed confidence 
intervals or the adjusted p-values for the pairwise comparisons. However, when the data 
are unbalanced, the overall confidence level is greater than 1 − α and hence, the procedure 
is conservative. Tukey’s test assumes that the observations are independent within and 
among the groups, that the outcome distributions in the different groups are normally 
distributed and that the variances in the different groups are the same. Therefore, it is 
quite appropriate as a multiple testing procedure in ANOVA for independent observa-
tions. When there are dependencies of the observations, as occurs with clustered or lon-
gitudinal data, appropriate error estimates need to be used (e.g., Hochberg and Tamhane, 
1983). In general, Tukey’s procedure is considered the best when all pairwise differences 
are tested, when confidence intervals are needed, or sample sizes are equal. In cases where 
many comparisons need to be performed, Scheffé’s method may be preferred.

In Section 2.1.3, we used part of the COMBINE data to illustrate the one-way ANOVA 
approach for endpoint analysis. In particular we tested whether there were any differences 
in the average number of drinks per day during the last month of the treatment period 
among participants who drank on the following treatment combinations: naltrexone and 
CBI; naltrexone without CBI; placebo and CBI; placebo and no CBI. The overall test of the 
group effect resulted in a small p-value (F(3,717) = 3.34, p = 0.02) and thus we concluded 
that there were significant differences among the treatment groups. However, this overall 
test did not show which mean(s) were different. To understand the nature of the treatment 
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effect, we visualized the least square means and their standard errors by treatment group 
and performed t-tests for all pairwise comparisons among the means. In Chapter 2, we 
reported unadjusted p-values and confidence intervals and concluded that all active treat-
ment groups (naltrexone and CBI; naltrexone and no CBI; and placebo and CBI) had sig-
nificantly better outcomes than the control group (placebo and no CBI). Here we compare 
several different classical methods of multiple comparisons, in order to illustrate the use-
fulness of the confidence intervals approach and the differences among the methods. 

Table 6.4 gives all pairwise confidence intervals prior to adjustment and after various 
adjustments that keep the simultaneous confidence level at 95%. Thus, we are 95% confi-
dent that all constructed confidence intervals contain the target mean differences. P-values 
are also provided for completeness although they are not needed to make a decision about 
which treatment differences are significant. When it is possible to construct simultaneous 
confidence intervals, they are preferred to p-values because they indicate the direction of 
the differences (i.e., which means are larger and which are smaller) and they are directly 
used to test the corresponding multiple hypotheses at FWER of 5% or lower. Confidence 
intervals that do not contain zero and hence, correspond to statistically significant differ-
ences, are denoted in bold. 

The results in Table 6.4 confirm the theoretical expectations that Tukey’s adjustment 
results in the narrowest confidence intervals when the family of tests is all pairwise 
comparisons. 

The Bonferroni method in this example leads to only slightly wider confidence intervals 
and to the same substantive conclusions as Tukey’s adjustment. Mainly, CBI is associated 
with lower drinks per drinking day compared to subjects not receiving active treatment. 
The combined naltrexone and CBI treatment, and the naltrexone only treatment, are sig-
nificantly better than the control before adjustment for all pairwise comparisons. 

The results from the analysis of all pairwise comparisons can be graphically illustrated 
using a mean-mean scatterplot (Hsu, 1996), also known as a diffogram in SAS. Figure 6.1 
shows such a plot based on the Tukey-adjusted comparisons generated for the COMBINE 
data. The mean values for each treatment group can be read off from the vertical and/
or from the horizontal axis. Not all groups are shown on each axis because only non-
redundant group pairs are displayed. Mean differences are represented as intersections 
of the horizontal and vertical lines corresponding to each pair of groups. The confidence 
intervals for the mean differences are shown as straight lines centered at these intersec-
tions and spreading out in a symmetrical fashion from them. The lines are scaled in such a 
way that if they cross the 45° dashed line, the corresponding confidence interval contains 
0 and hence the two means are not significantly different, while if the confidence interval 
line does not cross the 45° dashed line, the corresponding confidence interval does not 
contain 0 and the two means are significantly different. Note that because the means for 
the naltrexone and no CBI, and the naltrexone and CBI groups are almost the same (within 
precision of up to two digits after the decimal point), the lines for these two groups are 
overlapping and appear as one thicker line. 

In Figure 6.1, the line representing the confidence intervals for the mean comparison of 
the CBI only versus neither does not cross the 45° dashed line and hence indicates a sig-
nificant difference, while the rest of the lines do cross it and hence indicate non-significant 
differences. This graphic display allows us to spot significant and non-significant differ-
ences easily, and the ordering of the means of the different groups. However, it becomes 
very busy when many treatment groups are compared. 
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6.3.3 Scheffé’s Multiple Comparison Procedure

Scheffé’s multiple comparison method (Scheffé, 1953, 1999) is also a single-step procedure for 
mean comparisons developed in the context of ANOVA designs, but it can be used for any 
possible contrasts among the factor level means, not just pairwise differences. For exam-
ple, one may be interested in testing whether each mean is equal from the average of the 
remaining means, whether the means are different from a control, or in linear or quadratic 
trends in the means when the factor levels are ordered. All these comparisons can be 
represented by linear contrasts, which are linear combinations of the means defined as 
C ci i= ∑ µ , where the c si’  are constants such that ∑ =ci 0. Some examples are as follows:

• When two means μi and μj are compared: ci = 1, cj = −1 while all other constants are 
0 and hence the contrast C is μi−μj. 

• A contrast where the fourth mean is tested to be equal to the average of the remain-
ing three means is coded as (μ1 + μ2 + μ3) − 3μ4 (i.e., c1 = 1, c2 = 1, c3 = 1, c4 = −3).

• A linear contrast among four ordered means can be coded as (−3μ1 − μ2 + μ3 + 3μ4) 
(i.e., c1 = −3, c2 = −1, c3 = 1, c4 = 3). 

One can see that there are many possible contrasts that can be formulated, but only some 
of them are of substantive interest. Scheffé’s procedure keeps the FWER at the selected 
alpha level for all possible contrasts when it follows an overall significant F-test for the 
factor of interest. Because of this, it is guaranteed to find a significant contrast when the 
overall F-test of the effect is statistically significant. However, this contrast may not be one 
of the few of interest. Like Tukey’s and Bonferroni’s procedures, Scheffé’s procedure can 
be used for both simultaneous hypothesis testing and confidence interval construction. 
When only a few contrasts are of interest, it may be too conservative, as is the case with the 

1.3

1.2

1.1

1.0

0.9

0.9 1.0 1.1 1.2 1.3

4. Neither

4. Neither

1. Naltrexone + CBI

1. Naltrexone + CBI

2. Naltrexone

2. Naltrexone

3. CBI
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FIGURE 6.1
Diffogram for Tukey-adjusted pairwise differences in drinks per day at month four in the COMBINE study.
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pairwise comparison of the COMBINE data, shown in Table 6.4, where confidence inter-
vals adjusted with Scheffé’s method are the widest. 

6.3.4 Dunnett’s Multiple Comparison Procedure

In contrast to Tukey’s and Scheffé’s procedures, Dunnett’s multiple comparison test (Dunnett, 
1955) is specific to the situation when each of the means of several experimental treatments 
(μ1, μ2, … μc − 1) is compared to the mean of a control treatment (μc). If only such comparisons 
are of interest, Tukey’s and Scheffé’s procedures lead to confidence intervals that are wider 
than necessary and to hypothesis tests that are too conservative (familywise error rate is 
below the target level). Similar to the other multiple comparison procedures considered 
so far, the only difference between this test and performing unadjusted t-tests (or equiva-
lently between single confidence intervals and multiplicity-adjusted confidence intervals) 
are the critical values that are used. Those are based on the multivariate analogue of the 
t-distribution and are tabulated by Dunnett in the original publication introducing this 
method. 

In the context of the COMBINE example, Dunnett’s test is appropriate if we may be inter-
ested in testing only whether the combination of naltrexone and CBI, naltrexone alone, 
or CBI alone, are better than not getting treatment but not in the comparisons among 
the active treatments. Table 6.4 shows the three simultaneous confidence intervals with 
the  control after Dunnett’s adjustment. All three confidence intervals do not contain 0 
and the intervals are narrower than those based on the other adjustment methods. Unlike 
Tukey’s method, which adjusts for all pairwise comparisons, and Scheffé’s method, which 
adjusts for all contrasts among the means, Dunnett’s method adjusts only for the compari-
sons with the control, and thus retains more power and allows us to estimate the effects 
comparing the different treatments to the control more precisely. However, it does not 
provide estimates for the other comparisons, which may also be of interest. Note that the 
family of comparisons must be pre-specified rather than chosen after seeing the data, in 
order to avoid increasing the chance to overstate the significance of the findings. 

Dunnett’s approach can also be used to construct one-sided confidence intervals and 
hypothesis tests. In the COMBINE example, this will be appropriate if one is interested 
only in whether the mean drinks per day are lower in the active treatment groups than in 
the control group and doesn’t care about differences in the other direction. This increases 
power but can miss differences in the other direction, so the one-sided approach should 
be used with care.

6.3.5 Other Classical Multiple Comparison Procedures

Another popular procedure for multiple comparisons is Šidák’s correction (Šidák, 1967). It is 
similar to Bonferroni, but is slightly less conservative for independent tests or confidence 
intervals and hence, is recommended in such situations. However, for dependent tests or 
confidence intervals, it may fail to protect the FWER. 

There are also procedures aimed at comparing all other treatments to the best/worst 
treatment in the set (e.g., Hsu, 1981). This procedure is similar to Dunnett’s method but the 
control group is not known beforehand.

Simulation-based methods (Edwards and Berry, 1987) are very useful, especially with 
unbalanced data since, in these cases, the approximations of the critical values by clas-
sical methods may not be precise (e.g., as in the Tukey–Kramer procedure). These meth-
ods approximate the appropriate critical values in hypothesis tests or confidence intervals 
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by simulation, which can be made as precise as needed. However, there is a degree of 
 randomness in these methods and results from analyses of the same data may be slightly 
different.

A number of classical procedures for multiplicity correction do not control the FWER and 
nowadays are less frequently used (e.g., Fisher’s least significant difference approach, Duncan’s 
multiple range procedure [Duncan, 1955], (Student-)Newman-Keuls procedure [Newman, 1939]). 
In particular, Fisher’s LSD approach attempts to protect the FWER by performing unad-
justed comparisons among treatment means only if the overall F-test for the treatment 
effect is statistically significant. However, it is possible that the overall F-test is significant 
while all pairwise comparisons are not, and for the overall F-test for the treatment effect 
to be non-significant while one or more pairwise comparisons are statistically significant. 
Thus, Fisher’s LSD approach does not sufficiently control the FWER.

Hochberg and Tamhane (1987) describe classical single-step and stepwise multiple cor-
rection procedures and modifications in detail. Note that results from all multiple com-
parisons procedures are valid only when assumptions of the underlying models are 
reasonably well satisfied. When the assumptions are not satisfied (e.g., a model for normal 
data is used when the data are not normally distributed), the FWER may not be adequately 
controlled.

6.3.6 Classical Multiple Comparison Procedures for Repeated Measures Data

The classical multiple comparison procedures can be used for data that are dependent 
and have heterogeneous variances, with a few caveats. The variance–covariance structure 
needs to be properly estimated (see Chapter 3) and when the data are not balanced, the 
appropriate approximations to the degrees of freedom need to be used (see Westfall et al., 
2011). Even then, the methods are approximate and may be too conservative or too liberal 
depending on how unbalanced the data are and how well the chosen variance–covariance 
structure matches the data. Simulation-based procedures may be preferred for dependent 
data in that they can closely approximate the critical values for the mean comparisons. 
Alternatively, stepwise modifications of the Bonferroni procedure can be used for p-value 
adjustment, as described in Section 6.4.

6.3.7 Families of Comparisons and Robustness to Assumption Violations

As mentioned in the context of the COMBINE data example, the choice of the family of 
multiple comparisons is very important. If the family includes too many comparisons, 
some of which are not of particular interest, power may be adversely affected. But if the 
family is selected after a number of exploratory analyses and data peeks, then the FWER 
correction may be too small and the significance of results may be overstated. 

In general, a family of simultaneous hypothesis tests or confidence intervals should cor-
respond to a set of questions of interest that are related, and the overall conclusion or 
decision depends on the answers to all the questions. The most common scenarios are: 
comparisons of treatments with the goal of identifying the best one; ranking the treat-
ments from best to worst; comparing treatments to a control, or comparing treatments or 
groups in terms of multiple outcome measures (e.g., multiple efficacy and safety measures 
in clinical trials, multiple gene, or protein expression levels). A study can have multiple 
sets of questions of interest and the results will be dependent on how the sets are defined. 
Note that the control over the familywise error rate is for the entire family of interferences 
and only for that family. Since our focus in this book is on models for repeated measures 
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data, we primarily discuss and illustrate methods for post hoc testing in linear models, in 
which case FWER correction methods are often preferable. We also briefly mention correc-
tion for multiple outcome measures later in this chapter.

6.3.8 Post Hoc Analyses in Models for Repeated Measures

For post hoc analysis in models for repeated measures on a single outcome variable, the 
most common approach is to perform all tests of main effects and interactions at unad-
justed significance level (e.g., 0.05). If the analysis is exploratory and/or if there are no a 
priori comparisons of interest, significant interactions and main effects are identified and 
multiplicity adjustments are performed only for the post hoc analyses to explain these 
significant effects. Separate adjustments are used to explain the different significant effects 
or interactions. 

For example, in a study with two between-subject factors (A and B) and repeated 
measures on individuals over time, a linear mixed model with all possible interactions 
is fit. Suppose that the interactions A × time and B × time are significant. If this approach 
is adopted, two families of post hoc tests can be formulated: one to explain the sig-
nificant interaction A × time and the other to explain the significant interaction B × time. 
For each set, separate FWER adjustment should be used. While this approach will not 
necessarily protect the FWER for all comparisons that are performed, it will maintain 
power better than a stricter approach that corrects for all comparisons in both sets of 
post hoc analyses. 

Note that in clinical trials, there are usually a priori hypotheses about comparisons that 
are expected to be statistically significant. In this case, one should directly test these com-
parisons with a multiplicity adjustment as necessary regardless of the overall significance 
of effects. More information about different multiplicity situations in clinical trials and 
various adjustments can be found in Dmitrienko et al. (2010). Herein, we continue consid-
ering the situations of post hoc analyses with multiplicity adjustments. 

Post hoc analyses in linear models should start with the highest order interaction and 
proceed with lower order interactions and main effects, as indicated. In general, if the 
highest order interaction is qualitative (i.e., the effect of one factor changes dramatically 
depending on the level[s] of the other factor[s]), only the highest order interaction is inter-
preted. If the interaction is quantitative (i.e., the effect of one factor varies in magnitude but 
not in direction depending on the levels of the other factors), then interpretation of lower 
order interactions and/or main effects may be indicated. 

The following general guidelines show what post hoc analyses are indicated to explain 
significant effects in linear models (listed from simple to more complicated effects): 

• When the levels of a categorical factor with a significant main effect are of equal 
interest and unordered, all pairwise comparisons should be performed. Tukey–
Kramer adjustment, simulation-based adjustment, or Bonferroni-type adjust-
ments (including those described in the next section) can be used. If there are 
other factors in the model, the means that are compared are averaged over the 
levels of the other factors. 

• When the levels of a categorical factor with a significant main effect are ordered, 
focused comparisons should be performed. For example, if dose-response is of 
interest, one can construct contrasts for linear, quadratic, etc. dose effects. One 
can also compare each of the doses with the control. Bonferroni-type adjustments 
(including those described in the next section) may work best, especially if the 
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number of post hoc tests is small. If the number of post hoc contrasts is large, 
Scheffé’s method may work better. Simulation-based methods can be used in both 
cases.

• When there is a significant main effect of a categorical factor, and it is of interest 
to compare all factor levels with a control, the methods of Dunnett, Bonferroni, or 
simulation can be used. 

• When there is a significant two-way interaction between two categorical factors, 
post hoc testing should consist of tests of simple effects, i.e., comparisons of the 
means of one of the factors within each level of the other factor. Note that depend-
ing on how many levels each factor has, this can become complicated. The simplest 
case is when each factor has two levels. Then, we just need to compare the levels 
of the first factor at each level of the second factor and/or vice versa. For example, 
in the COMBINE study, the significant interaction between naltrexone and CBI in 
Chapter 2, for drinks per day during the last month, should be followed by test-
ing the simple effect of naltrexone for those on CBI (i.e., comparison of naltrexone 
versus placebo on CBI) and the simple effect of naltrexone for those not on CBI (i.e., 
comparison of naltrexone versus placebo not on CBI). We can also test the simple 
effect of CBI at each level of naltrexone, which will add two comparisons to the 
family. If we are not interested in all four and we would like to focus on naltrexone 
(which should be decided a priori) we can adjust for only two tests. 

• A slightly more complicated example is if one of the factors has three levels and 
the other—two levels. Then we can perform all pairwise comparisons of the levels 
of the first factor within each level of the second factor. This involves performing 
six post hoc comparisons. If the three levels of the first factor are ordered, we can 
test for linear and quadratic effects. 

• With more levels, post hoc testing becomes quite complicated. The logic of specific 
post hoc testing for interactions should be decided a priori but should be focused 
on simple effects. Bonferroni-based procedures (including the ones in the next 
section) may be most flexible in these situations.

• When there are interactions involving categorical and continuous predictors, 
post hoc analysis involves comparisons of slopes for the relationship between the 
continuous predictor and the response at different levels of the categorical predic-
tor. One can also select particular meaningful levels of the continuous predictor 
and test the simple effects of the categorical predictor at these levels. For example, 
if time is treated as a continuous predictor with a linear effect, and time interacts 
with treatment (active versus control), one can estimate slopes for change over 
time within each treatment group. On the other hand, one might be interested in 
the difference between the active and the control group at the beginning of the 
study, at the mid-point, and at the end.

• Significant interactions of higher order are also interpreted by testing or estimat-
ing simple effects but this may be within combinations of levels of the other fac-
tors. For example, if there is a three-way interaction A × B × time, one can look at 
the effect of A within each level of B at each time point. Slope comparisons may 
also result from interactions involving categorical and continuous predictors. 

Specific examples of logical families of post hoc tests are provided in the context of the 
examples given further in this chapter. We also consider a situation of multiple testing 
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when there are multiple outcome measures. With different outcome measures analyzed 
simultaneously (e.g., several drinking measures in COMBINE), the most logical assump-
tions are Bonferroni-type adjustments that are less conservative. These stepwise proce-
dures are considered next.

6.4 Stepwise Modifications of the Bonferroni Approach

When the focus is on simultaneous testing of multiple hypotheses, rather than on con-
fidence intervals, stepwise procedures are more powerful than single-step procedures, 
while still maintaining the FWER. Using these methods, p-values in a set of hypoth-
esis tests are sequentially compared to different cutoffs (or adjusted in different ways) 
depending on the other p-values in the set. Stepwise procedures are examples of closed 
testing procedures, which involve testing extra intersection hypotheses (i.e., testing 
whether several hypotheses in the set are simultaneously true) in an order that allows 
us to effectively ignore multiplicity (Marcus et al., 1976). Westfall et al. (2011) described 
how these procedures work at a non-technical level. Closed testing procedures can be 
applied to any set of hypothesis tests (pairwise differences, sets of contrasts, or inde-
pendent hypotheses).

6.4.1 The Bonferroni–Holm Multiple Comparison Procedure

The Bonferroni–Holm method (Holm, 1979) is one of the first stepwise modifications of the 
Bonferroni procedure that improve power while still controlling the FWER. It involves 
ordering the p-values of m hypothesis tests from lowest to highest. We denote the 
ordered p-values as p(1) ≤ p(2)  ≤ … p(m) and the corresponding hypotheses as H(1), H(2),  …H(m). 
For a given significance level α, one first tests whether p m1( ) < α/ . If it is, one checks 
whether p m2 1( ) < − )α/( . If this is also the case, then one continues checking whether 
p m kk( ) < − +( )α/ 1  until one reaches the first k for which this condition is not satisfied. 
At this point, one reaches the conclusion to reject all hypotheses H(1), H(2), … H(k − 1) and to 
not reject the hypotheses H(k), H(k + 1), … H(m). If even the first inequality is not satisfied (i.e., 
if p m( )1 ≥ α/ ) then none of the hypotheses are rejected and no significant differences are 
found. If p(m) < α then all null hypotheses are rejected. This procedure ensures that the 
FWER is smaller or equal to α. A simple example how to apply it is as follows:

Suppose that we are performing four simultaneous tests that result in p-values 
p1 = 0.10, p2 = 0.03, p3 = 0.001, p4 = 0.015. Uncorrected tests at 0.05 significance level would 
result in rejection of H2, H3, and H4. The classical Bonferroni correction would require 
comparing all p-values to 0.05/4 = 0.0125 and hence, would lead to rejection of only 
H3. The Bonferroni–Holm procedure would involve ordering the four p-values so 
that p(1) = p3 = 0.001, p(2) = p4 = 0.015, p(3) = p2 = 0.03, p(4) = p1 = 0.010, comparing the smallest 
p-value p(1) = 0.001 to α/ / 125m = =0 05 4 0 0. . , the second smallest p-value p(2) = 0.015 to 
α/( / 167m − = =1 0 05 3 0 0) . . , since the smallest p-value is smaller than the corresponding 
cut off, and comparing p(3) = 0.03 to α/( /2 25m − = =2 0 05 0 0) . . . Since the last inequality is 
not satisfied, the Bonferroni–Holm procedure results in a rejection of H3 and H4, which 
is an intermediate result between not correcting and using the conservative Bonferroni 
correction. 
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Table 6.3 also shows the results from the Bonferroni–Holm procedure applied to the 
hypothetical set of five hypotheses we considered earlier in this chapter. Column 3 shows 
the adjusted p-values from the test, which can be compared directly to the chosen FWER 
(0.05 in this case), in order to decide which hypotheses are rejected and which are not. An 
elegant explanation of how adjusted p-values are calculated can be found in Westfall et al. 
(2011). Two of the five hypotheses in this example are rejected, compared to four out of five 
when no adjustment is applied, and only one out of five when the conservative Bonferroni 
approach is applied. 

Indeed, the main advantage of the Bonferroni-Holm procedure over the classical 
Bonferroni procedure is that it is less conservative and more powerful. However, there are 
other methods for controlling the FWER that are even more powerful, such as Hochberg’s 
procedure (Hochberg, 1988) and Hommel’s procedure (Hommel, 1988). They both rely on some 
of the theoretical framework developed by Simes (1986). 

6.4.2 Hochberg’s Multiple Comparison Procedure

Hochberg’s procedure is similar to the Bonferroni–Holm approach in that it uses the 
same cutoff values for the ordered p-values but it is a step-up (starts with testing less 
significant test statistics and moves toward testing more significant test statistics) 
rather than a step-down approach (starts with testing more significant test statistics 
and moves toward testing less significant test statistics). The p-values and the cor-
responding hypotheses are again ordered so that p(1) ≤p(2)  ≤ … ≤ p(m), but then we start 
by comparing the largest p-value (corresponding to the least significant test statistic) 
to the significance level α. If p(m)  ≤ α then all hypotheses are rejected and we stop. If 
p(m) >α  then we do not reject H(m) and evaluate how the next p-value (corresponding to 
the second most non-significant test statistic) compares to its cutoff (n) i.e., whether 
p m−( ) ≤1 2α/ . If it is, then all remaining hypotheses (i.e., H(1), H(2), … H(m − 1)) are rejected 
and we stop. If not, we continue checking. The kth p-value is compared to α/(m k− + 1) 
but we allow the p-value to be equal to the cutoff in order to reject, i.e., we check 
whether p m kk( ) ≤ − +α/( 1). If it is, then we reject all remaining hypotheses (i.e., H(1), 
H(2),  … H(k)). If none of the p-values are less or equal to their corresponding cutoffs then 
none of the null hypotheses are rejected. 

Note that because the inequalities are strict in Holm’s procedure while the p-values are 
allowed to be equal to the cut off in Hochberg’s approach, Hochberg’s approach is more 
powerful. However, Hochberg’s procedure is guaranteed to protect the FWER in case of 
independent or positively dependent hypotheses, while Bonferroni–Holm can be applied 
in any situation. 

Similar to Bonferroni–Holm’s procedure, adjusted p-values can be calculated for 
Hochberg’s procedure and directly compared to the selected overall alpha level. Adjusted 
p-values from Hochberg’s procedure are always smaller or equal to the adjusted p-values 
from Bonferroni–Holm’s procedure.

The fourth column of Table 6.3 includes the adjusted p-values from Hochberg’s step-up 
procedure applied to the hypothetical set of five hypotheses. As expected those are equal 
or smaller to the adjusted p-values from Bonferroni–Holm’s procedure, which in turn are 
smaller than the Bonferroni-adjusted p-values. The same two hypotheses are rejected 
using Hochberg’s and Bonferroni–Holm’s approaches. 

Hochberg’s approach protects the FWER when the p-values are independent or 
 positively dependent. If the p-values are negatively dependent then the FWER may be 
inflated.
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6.4.3 Hommel’s Multiple Comparison Procedure

Hommel’s approach is even more powerful than Hochberg’s approach but it is more difficult 
to understand and takes more computational time. Like the other two modifications of the 
Bonferroni procedure considered here, the method also orders the p-values from smallest 
to largest. Then it seeks to identify the largest integer k (less than or equal to the number 
of comparisons m), such that p j km k j− +( ) > α/  for all j = 1,…k. If there is no such k then all 
hypotheses are rejected. If there is, then all hypotheses for which p ki( ) ≤ α/  are rejected 
and the remaining are not rejected. Like Hochberg’s approach, Hommel’s method requires 
that the p-values be either independent or positively dependent in order to control the 
FWER at the desired level. If the p-values are negatively dependent, it can result in a FWE 
level greater than the desired level. 

In the hypothetical data example from Table 6.3, the adjusted p-values based on Hommel’s 
approach are in the fifth column. Three of those p-values are less than 0.05 and hence three 
of the hypotheses are rejected. This is one more than the number of hypotheses rejected 
using the Bonferroni–Holm and Hochberg procedures. 

6.5 Procedures Controlling the False Discovery Rate (FDR)

While FWER has been the preferred approach to multiple corrections for a long time, it 
is too conservative in many situations, which has led to some researchers not using the 
control at all and just keeping the per-comparison error rate at a pre-specified alpha level. 
FWER does protect against inflation of type I error but such strict control may not be 
always needed. In general, if the overall result from the simultaneous testing can be con-
sidered invalid even if there is just one mistake, then FWER may be essential. This is the 
case when out of several treatments, one wants to select the best one. But, when an experi-
mental treatment is compared to a control treatment on a number of outcome measures, 
and some of the rejections are false rejections, the overall conclusion of superiority of the 
experimental treatment may not be invalidated by these false rejections. We now turn our 
attention to more appropriate corrections in cases when strict control of FWER may not be 
needed and/or when the number of comparisons is so high that FWER correction leads to 
significant loss of power to detect any differences. 

As described previously, the false discovery rate (FDR) is the expected proportion of 
false rejections. When it is likely that there are going to be many rejections (as is the case in 
large scale genomics, proteomics, and other high throughput studies), then this interpreta-
tion is quite intuitive. However, if it is likely that there are no or very few rejections and/or 
the number of hypotheses is small, then the interpretation of the FDR is not clear. In such 
cases it is better to use methods that control the FWER. 

Note that the FDR correction assures that the proportion of false rejections is less than 
the desired FDR level only on average. Therefore, it is quite possible that in some samples 
the ratio of false versus all rejections can be higher than intended.

The FDR can be controlled at any level but it is typically controlled at the same level as 
the FWER, namely 5%. Procedures that control the FDR also control the FWER at the same 
level, but typically the FDR is much lower than the FWER, and when the goal is to control the 
FDR, a number of less conservative procedures than the FWER-controlling procedures are 
available. 
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6.5.1 Benjamini–Hochberg’s Multiple Comparison Procedure

The first and most frequently used procedure that controls the FDR, is Benjamini–
Hochberg’s procedure (Benjamini and Hochberg, 1995). It is simple to implement and is 
very similar to the modifications of the Bonferroni procedure considered in the previous 
section, in particular the step-up procedures. For a given level α, one needs to find the 
largest number k, such that p k mk( ) ≤ α/  and then reject the null hypotheses H(1), H(2),  … H(k). 
As before, k needs to be between 1 and m inclusive. If no such k exists then none of the null 
hypotheses are rejected. Note that the thresholds to which the p-values are compared are 
larger than the thresholds in Hochberg’s test and thus more hypotheses can be rejected. 
The Benjamini–Hochberg procedure is valid when the tests are independent or positively 
dependent. 

As with the other multiplicity control methods, this procedure is usually implemented 
by comparing adjusted p-values to the chosen FDR threshold. Table 6.3 shows the 
adjusted p-values based on Benjamini–Hochberg’s method for the simple data example. 
It is indeed less conservative than the other methods in that it rejects four out of the five 
hypotheses. Note, though, that in this situation the interpretation of the FDR is not clear 
since there are only five hypotheses in total and the expected number of rejections is 
small. Typically, the Benjamini–Hochberg correction is used when the number of tested 
hypotheses is large. 

6.5.2 Benjamini–Yekutieli’s Multiple Comparison Procedure

A modification of Benjamini–Hochberg’s procedure, when there is dependence 
between the hypothesis tests, as often encountered with multiple outcome tests on the 
same individuals, is due to Benjamini and Yekutieli (2001). This procedure modifies 
the threshold so that the dependence is taken into account. The inequalities that are 
evaluated are

  p
k

m c mk( ) ≤
× ( ) α ,  

where c m ii
m( ) = ∑ =1 1/  under arbitrary dependence while c(m) = 1 under independence and 

positive dependence. Note that in the latter scenario, Benjamini—Yekutieli’s procedure 
reduces to Benjamini–Hochberg’s procedure. 

The adjusted p-values based on Benjamini–Yekutieli’s correction for the example in 
Table 6.3 show that this correction can be quite conservative when we are unsure about the 
dependence of the structure of the hypotheses. Only one out of five hypotheses is rejected 
in this case. However, this is hardly an appropriate example to illustrate the advantages of 
FDR correction procedures since the family set is small.

Both Benjamini–Hochberg’s and Benjamini–Yekutieli’s procedures control the FDR, 
so that FDR m m≤ 0α/  and therefore, they can be conservative if the number of true null 
hypotheses is smaller than the total number of hypotheses in the set. If one knew the num-
ber of true null hypotheses m0, then one could formulate a more powerful FDR-controlling 
procedure. There are indeed adaptive FDR adjustments that use an estimate of the number 
of true null hypotheses.

Many other procedures that control the FDR and related error rates (e.g., the positive 
false discovery rate (pFDR), or the false discover proportion (FDP)) have been considered in 
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recent years (see Benjamini (2010b) for a review). Most of them improve on the Benjamini–
Hochberg procedure in order to make it more powerful (e.g., Storey, 2003; Genovese and 
Wasserman, 2004; Benjamini et al., 2006).

6.5.3 Simultaneous Confidence Intervals Controlling the False Coverage Rate

The FDR equivalent for confidence intervals is the false coverage rate (FCR) (Benjamini and 
Yekutieli, 2005). It is a measure of interval coverage following the selection of a number 
of parameters from a larger set of potential parameters, based on statistical significance. 
The procedure constructs individual CIs for each selected parameter with the confidence 
level adjusted for the number of selected parameters. The FCR indicates the average rate 
of false coverage, namely, the expected proportion of parameters not covered by the CIs 
among the selected parameters. The proportion is 0 if no parameter is selected. There are 
different FCR procedures depending on how the parameters are selected and what adjust-
ment is applied to the construction of confidence intervals for the selected parameters (e.g., 
Bonferroni-Selected-Bonferroni-Adjusted, Adjusted Benjamini–Hochberg-Selected-CIs). 
In the Adjusted Benjamini–Hochberg-Selected CIs, first the Benjamini–Hochberg FDR 
procedure is applied, and the parameters for which the null hypotheses are rejected at 
level α are selected. Then 1 − Rα/m level confidence intervals are constructed for each of 
these R parameters. 

6.6 Procedures Based on Resampling and Bootstrap

Another class of procedures for multiple comparisons is based on resampling of the data 
with replacement (bootstrap) and without replacement (permutation). This results in mul-
tiple simulated data sets based on the original data. The basic idea is to use these simulated 
data sets to approximate the distributions of the minimum p-value (which is a key to most 
multiplicity corrections) and to use these approximations to adjust the individual p-values. 
Resampling methods are computationally intensive but have advantages over the other 
methods in seamlessly taking into account correlations and distributional characteristics. 
They can be used in situations when the distributional assumptions of other models are 
not satisfied. See Westfall and Young (1993) for a detailed description of these approaches 
and Dudoit and Laan (2008) for a more up-to-date but very technical description. More 
recent research is focused on improving the computational performance of the procedures 
(e.g., Zhang et al., 2012).

6.7 Data Examples 

6.7.1 Post Hoc Testing in the COMBINE Study

Earlier in this chapter, we focused on the log-transformed number of drinks per day dur-
ing the last month of treatment in the COMBINE Study and illustrated classical multiplic-
ity corrections for all pairwise tests among four treatments (naltrexone and CBI, naltrexone 
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only, CBI only, and neither naltrexone nor CBI). However, in this analysis we ignored the 
third active treatment (namely acamprosate), the factorial nature of the study design, and 
the fact that there is more than one outcome measure of interest. Herein, we present addi-
tional analyses of these data in order to compare the FWER and FDR correction proce-
dures, to discuss the challenges in specifying the family of inferences and the sensitivity 
of conclusions to the choice of family and methods. Note that in the first subsection we 
consider a rather artificial family of comparisons (i.e., one would not normally perform so 
many unfocused comparisons for such data) but it demonstrates how the FDR methods 
allow us to retain power better than FWER methods.

6.7.1.1  Correction for Simultaneous Pairwise Comparisons 
on Different Outcome Measures

We can consider a family of inferences that focuses on all possible pairwise comparisons 
among the eight treatments (all possible combinations of levels of naltrexone, acampro-
sate, and CBI) for two outcomes measured during the last month of treatment that we 
considered previously in separate analyses: average number of drinks per day and num-
ber of drinking days. This unfocused set of tests consists of 56 comparisons (7 × 8/2 pair-
wise comparisons for each of the two outcome measures). To assess whether there is an 
indication of some non-null hypotheses, one can graphically view the results using the 
Schweder-Spjøtvoll p-value plot (see Figure 6.2). This plot depicts the relationship between 
the ordered p-values and their rank order. On the horizontal axis is the rank (going from 1 
for the largest p-value to 56, in this example, for the smallest p-value). On the vertical axis 
each p-value is shown after being subtracted from 1. If there are no differences among the 
means (i.e., all null hypotheses are true), then the p-values should fall approximately on 
a straight diagonal line going from the lower left corner to the upper right corner. When 
there are some actual differences, then the corresponding p-values for these differences 
are smaller than expected under the null hypotheses and hence the circles in the graph 
corresponding to these comparisons will be in the upper right corner above the straight 
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FIGURE 6.2
Schweder-Spjøtvoll p-value plot for all pairwise comparisons on two outcome measures during month four in 
the COMBINE study.
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diagonal line. In this particular example, we see that a number of the comparisons are 
indeed above the straight line so they might correspond to genuine differences. The plot 
as created by PROC MULTTEST in SAS also includes a histogram of the 1 − p-values which 
should be uniform if all null hypotheses are true. If there are genuine differences then 
there should be more values at the top, which is what we see in Figure 6.2. 

Although the graphic display indicates that some differences are likely true differences, 
we need to apply formal multiple comparison correction in order to figure out which differ-
ences are statistically significant when multiplicity is taken into account. Since the family 
consists of a mix of pairwise mean comparisons on the same variable and tests on differ-
ent variables, we can’t directly use corrections such as Tukey’s and Scheffé’s. However, 
Bonferroni-type FWER corrections and FDR corrections are appropriate. We can also 
apply Tukey–Kramer’s method for all pairwise comparisons on each outcome variable at a 
Bonferroni corrected level of α/2 per variable. We considered the Bonferroni, Bonferroni-
Holm, Hochberg, and Hommel methods. We also applied the Benjamini–Hochberg and 
Benjamini–Yekutieli corrections. The results of the stepwise Bonferroni procedures were 
very similar and led to the same substantive conclusions that there are no significant dif-
ferences after adjustment hence we show the p-values from the Hommel method only. 
The Benjamini–Yekutieli correction and the Tukey–Bonferroni combination also made all 
results non-significant and are not shown here. All results are available in the online mate-
rials. Eighteen of the 56 comparisons are significant prior to correction for multiplicity. Ten 
out of the 18 comparisons remain significant at 0.05 level with the Benjamini–Hochberg 
method and none are significant at familywise 0.05 level with the other corrections we 
considered. Table 6.5 shows the raw and adjusted p-values for the comparisons that were 
significant before adjustment for the different methods. 

This example illustrates that with such a comparatively large family of tests, controlling 
the FWER results in a severe correction and probably misses the identification of genuine 
differences. FDR corrections maintain power but the corresponding FWER is likely (much) 
higher than 5%. In such a situation, a more focused testing or estimation strategy, which 
takes into account the factorial nature of the design, followed by procedures that control 
the FWER, is preferable, as illustrated in the next subsection. 

6.7.1.2 Post Hoc Testing of Significant Main Effects and Interactions

Due to the factorial design of this study, it is more appropriate to assess main effects and 
interactions, and to perform follow-up tests for the significant effects in the model fol-
lowing the guidelines presented in Section 6.3.7. In Section 2.1.3, we performed all tests 
of main effects and interactions for the outcome measure of drinks per day at the end 
of treatment for subjects who drank in COMBINE, using 0.05 significance level. We also 
considered these data earlier in this chapter to illustrate differences among the classical 
multiple comparison procedures. 

The results from the three-factor ANOVA analysis showed that the interaction between 
naltrexone and CBI (F(1,713) = 3.77, p = 0.05) (see Table 2.3) was statistically significant at 
0.05 significance level. The general strategy in such a situation is to test all main effects 
and interactions at uncorrected alpha level of 0.05, then to interpret any significant interac-
tions first by assessing simple effects and to perform post hoc analysis for main effects as 
needed. 

In this particular example, the simple effects of naltrexone to explain the naltrexone by 
CBI interaction are simply comparisons between the least square means on active naltrex-
one and on placebo naltrexone at each level of therapy (CBI and no CBI). Similarly, the simple 
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effects of CBI are comparisons between the least square means on CBI and without CBI at 
each level of naltrexone (active and placebo). Figure 2.1 visualizes these simple effects in a 
convenient way. The p-values for these simple effects, together with various adjustments 
for multiple testing, are provided in Table 6.6. Note that we are testing a subset of the pos-
sible comparisons among the levels of all factors after pre-specifying that we will interpret 
significant interactions with simple effects and thus we do not need to adjust for all possible 
pairwise comparisons. In this situation, all the Bonferroni adjustments lead to the same 
substantive conclusions, namely that all tests of simple effects are non-significant except 
the comparison of CBI versus the control. The Benjamini–Hochberg correction retains the 
significance of both the simple effect of naltrexone when CBI is not provided and the simple 
effect of CBI when naltrexone is not given. Note that since the Benjamini–Hochberg and the 
step-down Bonferroni procedures can’t be used for confidence intervals, a better approach 
that also provides effect size estimates is to focus on confidence intervals. Confidence inter-
vals can be Bonferroni corrected. Although such an analysis will not alter the substantive 
conclusions regarding statistical significance, it provides meaningful effect size estimates. 
In the next section, we focus on constructing confidence intervals for focused post hoc 
comparisons in a linear model. 

6.7.1.3  Multiple Comparison Adjustments for Post Hoc Analysis 
in Models for Repeated Measures Data

In Chapter 4, we used GEE and GLMM to assess treatment effects on the number of 
drinking days per month during treatment in the COMBINE study. We constructed 95% 
confidence intervals to explain the significant effects in the models but did not apply cor-
rection for multiple testing. Herein, we show how confidence intervals and p-values can 
be adjusted to take into account that multiple inferences are being made simultaneously. 
We focus on the negative binomial GEE for the number of drinking days. The overall tests 
of main and interactive effects showed that there was a significant interaction between 
CBI and time, a significant main effect of time, and a significant naltrexone by CBI interac-
tion at 0.05 significance level (see Section 4.2.4). To explain the significant interactions, a 
simple effects estimation is performed. Note that many statistical programs automatically 
perform all possible pairwise comparisons of different time points between groups (e.g., 
baseline of one group versus endpoint of another group) and adjust for all of these com-
parisons. This rarely makes sense. Usually, only the pairwise comparisons within group 
or the between-group comparisons at each time point are interpretable.

TABLE 6.6

Raw and Adjusted p-Values for the Simple Effects of Naltrexone and CBI in the Analysis of 
Endpoint Drinks per Day in the COMBINE Study

Effect

At Level of 
the Other 

Factor Unadjusted Bonferroni
Bonferroni–

Holm Hochberg
Benjamini–
Hochberg

Active versus 
placebo 
naltrexone

CBI 0.6851 1.0000 1.0000 0.9825 0.9135

No CBI 0.0189 0.0756 0.0567 0.0567 0.0378
CBI versus no 
CBI

Naltrexone 0.9825 1.0000 1.0000 0.9825 0.9825
Placebo 0.0050 0.0200 0.0200 0.0200 0.0200

Note: Values indicated in bold are statistically significant at 0.05 level.
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Table 6.7 shows the confidence intervals for the pairwise time comparisons prior to and after 
Bonferroni correction. Correction is applied only within the post hoc tests of each hypothesis. 
Tukey is not appropriate here since we do not consider all possible pairwise comparisons. 
Stepwise and FDR procedures work with p-values rather than confidence intervals and the 
number of comparisons is relatively small, so FWER control is better than FDR control in this 
situation. The familywise confidence level in the simultaneous intervals is 95% or higher.

As expected, the adjusted confidence intervals for the post hoc comparisons of the treat-
ment groups are wider than the non-adjusted and one of the comparisons is not signifi-
cant after adjustment (the comparison of CBI versus the control). The adjusted confidence 
intervals for the CBI by time interaction, and the main effect of time, are also wider but the 
statistical significance of the results does not change remarkably.

6.7.2 Post Hoc Testing in the fMRI Study of Working Memory in Schizophrenia

In Section 3.8.3, we used a LMM to determine whether there were differences between 
schizophrenia patients and healthy controls on activation measures during a working 
memory task. The overall analysis revealed a significant group by phase interaction which 
was followed by post hoc assessment of simple effects within each phase of the task (encod-
ing, maintenance, and response). We did not adjust these multiple analyses (see Table 3.8). 
In Table 6.8, we show the results after several adjustments for multiple testing. Since we 
are focusing on p-values here, rather than confidence intervals, we use some of the step-
wise closed testing procedures. Hommel is the only procedure that shows the comparison 
between schizophrenic patients and controls during maintenance to be statistically sig-
nificant at the familywise significance level of 0.05. The comparison during response is 
significant before but not after correction for multiple testing. 

TABLE 6.7

Raw and Adjusted Confidence Intervals for Mean Ratios for the Significant Effects in the 
Negative Binomial GEE with Log Link Fitted to Number of Drinking Days per Month in the 
COMBINE Study

Effect Level
Comparison 

Level
Unadjusted Rate 

Ratio (95% CI)

Adjusted Rate 
Ratio (Bonferroni‑

Corrected CI)

Naltrexone × CBI 
interaction

Naltrexone + CBI Naltrexone 1.10 (0.91, 1.33) 1.10 (0.85, 1.43)
Naltrexone + CBI CBI 1.04 (0.86, 1.25) 1.04 (0.81, 1.34)
Naltrexone + CBI Neither 0.85 (0.71, 1.02) 0.85 (0.67, 1.08)
Naltrexone CBI 0.95 (0.78, 1.15) 0.95 (0.73, 1.23)
Naltrexone Neither 0.77 (0.64, 0.93) 0.77 (0.60, 0.99)
CBI Neither 0.82 (0.68, 0.98) 0.82 (0.64, 1.04)

CBI × time CBI in period 1 No CBI in period 1 1.06 (0.91, 1.22) 1.06 (0.88, 1.27)
CBI in period 2 No CBI in period 2 0.96 (0.83, 1.11) 0.96 (0.80, 1.15)
CBI in period 3 No CBI in period 3 0.90 (0.78, 1.04) 0.90 (0.75, 1.08)
CBI in period 4 No CBI in period 4 0.88 (0.76, 1.03) 0.88 (0.73, 1.06)

Main effect of time Period 1 Period 2 0.85 (0.82, 0.89) 0.85 (0.80, 0.90)
Period 1 Period 3 0.85 (0.80, 0.90) 0.85 (0.79, 0.92)
Period 1 Period 4 0.83 (0.79, 0.89) 0.83 (0.77, 0.91)
Period 2 Period 3 1.00 (0.96, 1.04) 1.00 (0.95, 1.05)
Period 2 Period 4 0.98 (0.93, 1.03) 0.98 (0.92, 1.04)
Period 3 Period 4 0.98 (0.95, 1.02) 0.98 (0.94, 1.03)
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6.8 Guidelines to Multiple Comparison Procedures

Since there are so many options for multiple comparison corrections, it is a challenge to 
choose the most appropriate method in different situations. Westfall et al. (2011) propose 
some general guidelines:

• For graphical summary, use the Schweder-Spjøtvoll p-value plot. Graphic displays 
should also be used to supplement formal analyses, especially when there is a 
large number of comparisons.

• Bonferroni and Šidák corrections are easy to apply both for hypothesis testing 
and for confidence intervals. Bonferroni can be used in any situation and Šidák is 
preferred for independent tests. 

• When confidence intervals are not required, the stepwise modifications of the 
Bonferroni procedure are preferable in order to control the FWER. 

• Tukey’s procedure is most powerful for all pairwise comparisons of a set of means. 
However, with repeated measures data, this procedure is only approximately cor-
rect. Simulation-based methods can be used in order to properly account for the 
correlation structure and potential deviations from distributional assumptions.

• Dunnett’s procedure is preferable for comparisons of multiple groups with a con-
trol group. 

• FDR procedures are preferable in large scale studies where some percentage of 
false positive results can be tolerated.

Note that multiple comparison corrections are necessary both for independent and for 
correlated tests. Westfall et al. (2011) recommend resampling methods because they read-
ily adjust only for the comparisons of interest, properly address the correlated compari-
sons, and can be used in virtually all situations.

6.9 Summary

In this chapter, we reviewed different methods for multiplicity corrections and provided 
some general guidelines for when to use them. Although the choice of the best procedure 
for each scenario is challenging, the biggest issue is the definition of a proper family of 

TABLE 6.8

Raw and Adjusted p-Values for the Tests of the Simple Effect of Group within Each 
Phase of the Working Memory Task in the fMRI Study in Schizophrenia

Comparison Phase
Unadjusted 

p‑Value

Bonferroni‑
Adjusted 
p‑Value

Bonferroni‑
Holm Adjusted 

p‑Value

Hommel 
Adjusted 
p‑Value

Schizophrenic 
versus 
control

Encoding 0.8631 1.0000 0.8631 0.8631
Maintenance 0.0248 0.0745 0.0745 0.0497

Response 0.0288 0.0865 0.0745 0.0577
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comparisons over which to apply the corrections. Our focus was mainly on post hoc test-
ing in the context of linear models for correlated data, in which case, classical one-step and 
stepwise FWER control procedures of pairwise comparisons, comparisons to a control, 
or assessment of simple effects are usually most appropriate. The issues of controlling 
for multiple outcome measures and controlling the FDR in the simultaneous analysis of 
a large number of hypotheses, as occurring in high throughput experiments, were only 
briefly mentioned. Further reading on these topics is offered in the books by Dmitrienko 
et al. (2010), who describe issues and methods for multiple comparisons in the context of 
clinical trials, and by Dudoit and Laan (2008), who focus on multiple testing in genomics 
experiments. 

A particular problem with the specification of the family of inferences, is that sometimes 
the selection is based on multiple peeks at the data. This leads to inflation of the reported 
FWER and FDRs. Therefore, an appropriate strategy of multiple testing needs to be devel-
oped at the design stage of the study and results need to be reported accurately. 

One must also always keep in mind that the results from multiple comparison pro-
cedures are only as valid as the assumptions of the underlying model. For example, if 
a model for normal data is selected when data clearly deviate from the model assump-
tions, or correlations are not taken into account, the results from both the overall tests 
of main and interactive effects, and post hoc multiple comparison tests, can’t be trusted. 
Simulation-based methods are preferred in situations when data assumptions are suspect. 

Missing data can also severely affect the results from statistical modeling and multi-
plicity adjustment. We now turn to this very important topic, especially in the context of 
longitudinal studies where missing data are paramount.
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7
Handling of Missing Data and Dropout 
in Longitudinal Studies

The term missing data refers to data that were intended to be collected but for whatever 
reason were not. Missing data are of paramount importance in clinical trials and observa-
tional studies. Subjects drop out or do not show up for some scheduled study visits, refuse 
to answer specific questions, data are incorrectly recorded or lost. There are two types of 
missing data in longitudinal studies: intermittent missing data (also referred to as in-study 
non-response) and dropout. Intermittent missing data occur when there is a gap in data col-
lection followed by further measurements. For example, a participant might have been 
traveling and missed a scheduled visit. Dropout occurs when a participant stops provid-
ing any data in the study. There might be varying reasons for dropout (e.g., death, with-
drawal of consent to participate, relocation) that may or may not be related to the outcome 
being analyzed. Thus, the presence of missing data may or may not be informative about 
the outcome of interest and care must be taken when interpreting summary statistics and 
results from statistical analyses.

Traditional methods for repeated measures analysis such as repeated measures ANOVA 
(rANOVA), repeated measures MANOVA (rMANOVA), and endpoint analysis can be 
severely affected by missing data. Usually, statistical software programs implementing 
these methods automatically drop individuals with missing data from the analyses. This 
leads to a loss of power because part of the information is lost and, even more importantly, 
to potential bias since dropouts and subjects with missing data may be systematically 
different from subjects with complete data. Alternatively, simple substitution methods 
such as last observation carried forward or mean substitution are used to fill in the miss-
ing values, and then classical analyses are performed as if all values in the data set were 
observed. This almost always results in bias, since it is usually unreasonable to assume 
that a subject’s response would remain the same after dropout or that the mean value 
(whether within the individual or across individuals within a specific time point) corre-
sponds to the unobserved value well. It also underestimates the variability associated with 
substituting missing values since a constant value is substituted for all missing values for 
the individual.

Recent developments in the theory of missing data, such as multiple imputation, full 
information maximum likelihood estimation, and weighting methods, allow missing data 
to be handled properly so that bias in statistical inference is minimized and the variability 
in the data is properly accounted for. These methods deal with both intermittent missing 
data and dropouts and provide valid results when data are randomly missing (i.e., miss-
ing data do not provide information about the unobserved outcome). However, even these 
methods can provide biased results when data are not randomly missing (i.e., dropout 
is related to the unobserved outcome). Many methods for sensitivity analyses are avail-
able in such situations. The complexity in dealing with missing data and the continuing 
ignorance of applied researchers of approaches for handling missing data have hindered 
progress in the transition from naive to modern methods for missing data. This chapter 
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is intended to clarify concepts, illustrate the available methods with examples, point out 
useful references, and present guidelines for handling missing data.

In Section 7.1, we describe the basic terminology introduced by Rubin (1976) and explained 
in detail in Little and Rubin (2014) regarding types of missing data. We illustrate different 
scenarios of dropout and intermittent missing observations and provide an overview of 
the potential effects of the different types of missing data. In Section 7.2, we briefly men-
tion simple substitution methods and point out their shortcomings in handling missing 
data. The subsequent three sections focus on the state-of-the-art methods for missing 
data; namely, multiple imputation (MI) (Section 7.3), full information maximum likelihood 
(FIML) (Section 7.4), and inverse probability weighting methods (Section 7.5). Methods for 
analysis when data are informatively missing are described briefly in Section 7.6 and refer-
ences are provided for interested readers. The chapter concludes with illustration of the 
methods on data examples (Section 7.7) and general guidelines for handling missing data 
in studies with longitudinal and clustered data (Section 7.8).

Detailed technical information about missing data and approaches to handle them 
can be found in the books of Little and Rubin (2014) and Molenberghs et al. (2014). More 
non-technical presentations are available in the books of Allison (2002) and C. K. Enders 
(2010). A special chapter in Widaman (2006) and the manuscripts by Graham (2009) and 
Schlomer et al. (2010) provide brief, non-technical, and fairly comprehensive reviews of 
the issues and methods. Specific publications that focus on missing data in longitudi-
nal studies are Ibrahim and Molenberghs (2009), Spratt et al. (2010), and Enders (2011). 
The tutorial of Hogan et al. (2004) is a very useful introduction for applied statisticians 
and quantitatively oriented researchers. Since our focus in this book is on missing data 
in longitudinal studies, we make a distinction between missing data on predictor and 
repeatedly measured outcome variables and emphasize available methods for dealing 
with both situations.

7.1 Types of Missing Data

Missing data can lead to a variety of issues with analysis and interpretation of results in 
longitudinal studies: in particular, bias in estimation and hypothesis testing, and loss of 
power to detect effects of interest. However, the extent to which this presents a problem 
depends on the amount of missing data, the mechanism by which the data became miss-
ing, and the robustness of statistical analysis methods to the effects of missing data.

There is no clear-cut rule about what amount of missing data presents problems for 
analysis. The effect is dependent on the sample, the question of interest, and the analysis 
method. As expected, the larger the proportion of missing data, the larger the potential 
bias and efficiency loss. Therefore, in longitudinal studies there is usually a concentrated 
and intensive effort to prevent or minimize missing data. Nevertheless, it is unrealistic to 
expect that missing data can be entirely avoided. Mallinckrodt et al. (2013) have presented 
different strategies for minimizing missing data in clinical trials.

In this section, we focus on the hierarchy of three different types of missing data, as 
defined in Little and Rubin (2014), based on whether the missingness gives us informa-
tion about the outcomes that are missing. If a participant misses a visit because they 
moved, then missingness is likely unrelated to the unobserved outcome and is non-
informative or ignorable. On the other hand, if sicker individuals are more likely to miss 
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visits,  then missingness does contain some information about the unobserved outcome 
and may be informative or non-ignorable. Intermittent missingness is usually considered 
ignorable, while dropout may be ignorable or non-ignorable.

The three different types of missing data are missing completely at random (MCAR), miss-
ing at random (MAR), and missing not at random (MNAR) (also referred to as not missing at 
random or NMAR). MCAR and MAR are considered non-informative or ignorable, while 
MNAR is considered informative or non-ignorable. MCAR is a special case of MAR. There 
are also some related missing data types such as covariate-dependent missingness and 
sequentially missing at random that are mentioned later in this section. Different analysis 
methods make different assumptions about the types of missing data. For more informa-
tion see Hogan et al. (2004).

The MCAR, MAR, and MNAR are also referred to as three different missing data mecha-
nisms. Note that investigators do not control the mechanisms. Rather, the mechanisms 
reflect different assumptions that are made regarding the missing data and these assump-
tions may or may not hold for the data at hand. The results are valid if the assumptions 
hold and an appropriate analysis is chosen that corresponds to the missing data mecha-
nism. Modern methods for the analysis of repeated measures data, such as mixed models, 
deal well with non-informative (ignorable) missing data, but special methods are neces-
sary to handle informative (non-ignorable) missing data.

To explain the three different mechanisms in longitudinal studies from a practical perspec-
tive we consider the augmentation depression study from Chapter 1. This is a double-blind 
randomized clinical trial of augmentation versus control treatment in major depression, 
with subjects receiving treatment for six weeks and depression severity measured weekly 
by the Hamilton Depression Rating Scale (HDRS). About 30% of the subjects in this trial 
dropped out or missed visits (i.e., had intermittent missing data). Subjects who missed visits 
do not have HDRS data from these visits. We consider a statistical model with treatment, 
time, and their interaction, with HDRS as the dependent variable. Presume also that some 
subject characteristics (e.g., gender) are included in the model as additional predictors.

In this context, missing data on the HDRS would be MCAR if the missingness does not 
depend on any observed or unobserved outcomes. That is, whether a particular HDRS 
score is missing does not depend on any previous, current, or future HDRS values. MCAR 
may or may not depend on covariates, with some authors preferring the definition of MCAR 
that allows for dependent missingness (in which case it is commonly referred to as covari-
ate-dependent MCAR) and some preferring the definition of MCAR as a completely chance 
mechanism not dependent on either outcome or covariates. We focus on the simpler situa-
tion, when MCAR does not depend on covariates. In this case, a consequence of the MCAR 
assumption about missing data is that subjects who drop out or have intermittent missing 
data are a random sample from all participants. For such data, all methods of analysis 
provide valid results but there might be loss in efficiency in estimates (i.e., standard errors 
of estimates may be larger, which may lead to decreased power) if subjects with missing 
data are dropped from the analysis. Note that if MCAR is covariate-dependent, then the 
subjects with missing data are a random sample of the participants with the same charac-
teristics receiving the same treatment, and analyses need to include such characteristics as 
predictors. In general, it is often difficult to justify the MCAR assumption since whether 
subjects drop out often depends on their treatment response or longitudinal trajectory. In 
particular, some subjects are expected to drop out of the augmentation depression study 
because of lack of improvement.

A more realistic assumption in the context of the augmentation depression study is that 
missing HDRS scores are MAR, which means that missingness depends on observed 
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outcomes (and potentially on covariates) but not on unobserved outcomes (i.e., on responses 
that should have been obtained but were not). That is, whether a subject is missing some 
data points may depend on previous depression severity but not on the current and unob-
served depression severity scores. For example, if a subject drops out due to inefficacy and 
the lack of improvement is measured by the investigator, their past responses can be used 
to predict dropout. In such situations, the MAR assumption is reasonable but the data are 
not MCAR. Under MAR, participants with missing data are not a random sample of the 
population of interest but their future trajectories can be predicted based on the data from 
other individuals with the same set of observed values prior to dropout.

The name MAR is a bit of a misnomer as the data are not strictly missing at random. 
Some alternative terminology has been proposed, such as conditionally missing at random 
(CMAR) (Graham, 2009), but has not gained much popularity due to the possible confusion 
of this term with MCAR. Mixed-effects models provide valid results when data are MAR 
and the model (fixed effects and variance–covariance structure) is specified correctly.

A concept related to MAR is sequentially missing at random (S-MAR) dropout. Data are 
S-MAR if missingness depends on observed covariates and outcomes prior to dropout. 
While GEE models do not in general provide valid inference under MAR assumptions, 
modifications are available that provide valid results under S-MAR dropout and with 
additional assumptions as explained in Section 7.5.

When missingness is related to the specific values that should have been obtained but 
were not, in addition to the ones already obtained, the data are said to be missing not at ran-
dom (MNAR) or not missing at random (NMAR). In the context of the depression example, if 
subjects miss visits because their depression suddenly becomes worse and the investigator 
is not able to observe the deterioration, then data are MNAR. Individuals’ responses up to 
the point of dropout fail to predict their dropout because dropout is related to the unob-
served depression severity. Such data are informatively missing because dropout tells us 
something about the missing values. They are also non-ignorable, because to analyze such 
data properly one needs to specify a model for the missing data mechanism and fit this 
model jointly with the model for the primary outcome. Results depend on the choice of the 
missing data model. On top of that, the assumptions about the missing data are unverifi-
able from the observed data. Hence, analyses of MNAR data are usually considered only 
as sensitivity, and not as primary, analyses.

In summary, in longitudinal studies, missing data on the dependent variable are MCAR 
when the probability of dropout or missing data is not related to observed outcomes. 
When the probability of dropout or missing data is related to observed but not to unob-
served outcomes, data are MAR, and when it is related to unobserved outcomes, data are 
MNAR. There is a test of the MCAR assumption (R. J. A. Little, 1988) that distinguishes 
between MCAR and MAR scenarios, but the MAR and MNAR assumptions cannot be dis-
tinguished based on the observed data. MNAR is used mainly in a sensitivity framework.

Less frequently, data on predictor variables may be missing. Data on predictor vari-
ables are considered MCAR when the missingness does not depend on any observed or 
unobserved values of the predictors or response, that is, the subjects with missing data on 
the predictors are a random sample of all individuals. Data are MAR when missingness 
depends on observed but not unobserved values, and data are MNAR when missingness 
depends on unobserved values of the predictors. In the augmentation depression study, 
no data are missing on predictor variables, so we will consider a hypothetical example. 
Suppose that individuals are asked whether they use a prohibited substance at baseline 
and the researcher is interested in using this as a predictor of an outcome in the statistical 
model. The data on this variable are MCAR if whether a subject replied to this question is 
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not related to their substance use or any other observed data. The data are MAR if whether 
a subject replied to this question is related to other subject characteristics (e.g., gender, 
race, age) but not to the substance use itself, and data are MNAR if subjects who used the 
prohibited substance are more likely to refuse to reply to this question. Since predictors are 
usually measured at baseline (although it is possible to have time-dependent covariates) 
we do not specifically consider the scenario when missing data on predictors may depend 
on the response.

We now focus on different statistical approaches for missing data and their ability to 
handle data of the three different types. Keep in mind that if only a small portion of 
the data are missing (e.g., less than 5%–10%), the resulting bias and efficiency loss even 
when using a suboptimal analysis method will likely be small and unlikely to jeopardize 
interpretation.

7.2 Deletion and Substitution Methods for Handling Missing Data

Due to the inability of traditional approaches to handle missing data, the earliest 
approaches have been to delete individuals/cases with any missing data and perform 
complete case analysis, or to substitute missing values with “reasonable” guesses and 
then analyze the augmented data set with the substituted values as if these were the 
observed data. The most popular simple substitution method for missing values on the 
dependent variable in longitudinal studies has been last observation carried forward 
(LOCF), while mean or regression substitution has been used for imputing values on pre-
dictor variables. These approaches have major drawbacks, as detailed below.

Complete case analysis means that only subjects with complete data on the dependent 
and independent variables are included in the statistical analysis. In Chapter 2, we dem-
onstrated endpoint, rANOVA, and rMANOVA analyses on subjects with complete data in 
the augmentation depression study. These analyses were performed on only about 70% of 
the available sample. Losing a high percentage of the sample before analysis can lead to 
major issues with results and interpretation. In particular, the sample of individuals with 
complete data may not be representative of the entire population of subjects, and thus 
the estimates obtained from these individuals may be systematically biased. For example, 
if individuals who fail to improve selectively drop out, then we might overestimate the 
magnitude of treatment-induced change over time. Or if subjects in the treatment group 
selectively drop out due to side effects and subjects in the control group selectively drop 
out due to inefficacy, the treatment versus control comparison based on the subjects with 
complete data will be biased.

Furthermore, there is a loss of power in statistical tests and increased uncertainty in 
the estimates due to the decreased sample size. The loss of power may be quite severe 
if a large proportion of the subjects are excluded from the analysis. Thus, complete case 
analysis may be used only when a very small proportion of the data are missing. However, 
there is no general agreement about what constitutes a small proportion. Some thresh-
olds that have been proposed are less than 1% or less than 5% since in these cases loss of 
power is indeed small. But even with a small proportion of missing data, if the individu-
als with missing data are very different from the rest of the sample, some bias may occur. 
Nowadays, with readily available methods for analysis of incomplete data across time, 
there really is no good reason for using methods that require complete data.
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Note that complete case analysis is often referred to as listwise deletion. A less extreme 
deletion of missing data is pairwise deletion, which means that, in each analysis assessing 
the relationship between a pair of variables, only those observations that have missing 
values on these two variables are deleted. Pairwise deletion is not often used with lon-
gitudinal data as separate analyses are rarely done for pairs of variables. In contrast, in 
cross-sectional data, pairwise correlations and regression analyses may be performed 
on a subset of the variables. If we are interested in assessing the pairwise correlations 
among ten variables, with listwise deletion we first delete all observations with missing 
values on any of the ten variables, while with pairwise deletion for each pair of variables, 
we drop only observations that are missing values on these two variables. The latter 
approach loses less power, but a different sample is used for each pairwise correlation 
and, hence, it is difficult to generalize and interpret the results for the entire sample.

Last observation carried forward substitution for longitudinal data involves replacing miss-
ing observations on the dependent variable with the last available observation prior to 
dropout or intermittent missing data. This results in a “complete” data set that can then 
be analyzed using any method. Figure 7.1 shows how the missing data for a couple of 
individuals in the augmentation depression study are substituted (one subject in the aug-
mentation and one in the control group) using different approaches. The black dotted line 
with circles shows what LOCF substitution does to the profile of repeated observations 
over time for these individuals. The individual on the left is from the augmentation group 
and drops out after the second post-randomization visit. We observe some improvement 
over the first two weeks of the study, but we do not know what happens to the participant 
after dropout. Nevertheless, it seems unlikely that the slope of the change in depression 
scores over time suddenly levels out and depression severity remains the same. The indi-
vidual on the right is from the control group and drops out after the first post-random-
ization visit without showing any improvement. While the LOCF substitution continues 
the trend of no improvement prior to dropout, it is unlikely that it describes the missing 
response well since depression treatment takes time to work and this individual did get 
the standard treatment. LOCF also implies a perfect correlation between the last observed 
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FIGURE 7.1 
Observed, substituted, imputed, and predicted values for missing Hamilton Depression Rating Scale scores 
on two individuals who dropped out: one in the augmentation group (on the left) and one in the control group 
(on the right). LOCF = last observation carried forward substitution, Mean = mean substitution, MI = multiple 
imputation, LMM = linear model prediction.
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measurement and all unobserved measurements, whereas in longitudinal studies correla-
tions in the range of 0.4 to 0.6 are much more likely (rather than a correlation of 1). Thus, 
the flat line of projected response is probably unreasonable.

LOCF substitution is valid only if the response of an individual does not change after 
dropout. This is in most cases an unreasonable assumption but, nevertheless, this approach 
has been used for a long time because of its simplicity and since it was believed to be con-
servative. That is, it was believed to underestimate the treatment effect in simple parallel 
group clinical trials with an active and control group. However, in some situations, LOCF 
may actually overestimate the treatment effect and in all scenarios it is virtually guar-
anteed to give biased results. Thus, this approach should not be used for the analysis of 
longitudinal data.

A number of other substitution approaches have been used for longitudinal data. In par-
ticular, missing values on the dependent variable can be replaced with the mean value 
of all individuals in the group to which the subject belongs at the particular time point. 
This does not change the marginal means at the particular time point, but affects the 
estimated variances and covariances of the repeated measures so that both are underes-
timated. Also, it is not reasonable to assume that, regardless of the previous responses of 
an individual, the missing response is equal to the sample mean. Figure 7.1 illustrates this 
type of substitution for the two individuals in the augmentation depression study with 
the dashed gray lines. For the individual in the augmentation group, mean substitution 
after dropout results in an apparent abrupt deterioration, while for the individual in the 
control group, mean substitution leads to apparent significant improvement over time. 
While it is likely that the individuals will regress to the group means, assuming that their 
unobserved responses are equal to the group means is not reasonable. As described in 
Section 7.4, a reasonable estimate of the missing data for an individual is a weighted aver-
age of the trend of the subject’s response estimated from the available data up to the point 
of dropout and the group average over time. However, this simple substitution method 
does not allow this.

A more appropriate approach than mean substitution is regression substitution, whereby 
a regression model is formulated for repeated observations with previous responses and 
other covariates as fixed predictors. The predicted values from the regression model cor-
responding to missing observations then replace the missing observations. This is better 
than mean substitution, because it maintains the relationship among the observations, not 
just the mean values. However, it still underestimates the variability of the data since it 
does not take into account the uncertainty in predicting the missing value.

Also, regression and mean substitution may not work well for binary or categorical 
outcomes. For binary and ordinal data, extreme case substitution is often performed. For 
example, in alcohol clinical trials where outcome is often a binary indicator of heavy or any 
drinking, missing data are coded as heavy (any) drinking. Whereas this may be a reason-
able assumption for the majority of subjects, it certainly is not true in general, and leads 
to the same problems as other oversimplified methods such as last observation carried 
forward (D. Hedeker et al., 2007; Nelson et al., 2009; Blankers et al., 2016). However, extreme 
case substitution for binary or ordinal data has its place in the context of sensitivity analy-
sis. In particular, if missing values are coded first at one of the extremes (e.g., 1 for binary 
data, the highest category for ordinal data) and the data analyzed, and then all missing val-
ues are coded at the other extreme (0 for binary data, the lowest category for ordinal data) 
and the data analyzed, and the results are substantively the same, then one can be confi-
dent in the conclusions. Since the rates of missing data may be different across groups, the 
process may need to be performed differentially by group (e.g., coding all missing binary 
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data as 1 in one of the groups and 0 in the other group, and then the reverse). If we obtain 
consistent results in all these scenarios, then the findings are robust to the treatment of 
missing data. An extension of this approach has been considered by Delucchi (1994). On 
the other hand, if the results are not all consistent a more appropriate analysis method or 
additional sensitivity analyses are needed.

Another class of substitution methods is based on matching the individuals with missing 
data to other individuals on different baseline characteristics or using external informa-
tion and then substituting the values from these individuals for the missing values. These 
are called pattern-matching imputation methods (Schlomer et al., 2010) and include hot-deck 
and cold-deck imputation methods. In hot-deck imputation, data from similar individuals 
in the sample are used to replace the missing values, while in cold-deck imputation data 
from similar individuals in other samples are used to replace the missing values. Pattern-
matching imputation methods have the same disadvantages as the other simple substitu-
tion methods as they underestimate the variability in the data. In order to represent the 
variability in the data properly with a substitution approach, one needs to introduce a sto-
chastic component and repeat the substitution multiple times (i.e., do multiple imputation). 
In the next section, we provide an overview and discuss the benefits of multiple imputation.

Before proceeding with multiple imputation, we also focus on the most important and 
appropriate single imputation approach based on the EM algorithm. The EM algorithm is a 
statistical method for maximum likelihood estimation that allows us to obtain maximum 
likelihood estimates when there are missing data. Technical details about the method are 
available in Little and Rubin (2014) while a more non-technical description can be found 
in Graham (2009). As an imputation method, it is commonly used to obtain the mean and 
variance–covariance matrix of a set of variables that are assumed to have a multivariate 
normal distribution and which are then used as an input to different statistical procedures 
(e.g., regression). Alternatively, a single set of imputed values is generated based on the 
observed mean and covariance matrices by adding random variability according to the 
assumptions of the statistical model.

The advantage of this approach is that it guarantees that the estimates are true maxi-
mum likelihood estimates and hence are unbiased when data are missing at random. The 
disadvantage is that it does not provide valid standard errors. In order to obtain stan-
dard errors, one can use the method of bootstrapping (Efron, 1994). That is, one can draw 
many samples with replacement from the original sample, produce EM estimates for each 
sample, and calculate the standard errors of all regression coefficients across samples. This 
allows one to properly account for the uncertainty due to missing data and produces accu-
rate standard errors. However, this may require some programming, as software packages 
usually provide just single EM imputation. An alternative method for obtaining both esti-
mates and correct standard errors is multiple imputation.

7.3 Multiple Imputation

Multiple imputation (Schafer, 1999; Rubin, 1996) as an approach for analyzing data sets with 
missing data consists of three steps:

 1. Several “complete” (also referred to as imputed) data sets are created using stochas-
tic imputation based on a selected imputation model.
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 2. Each “complete” data set is analyzed separately.
 3. The results from the separate analyses are combined to obtain a single set of esti-

mates, test statistics, and inferences.

To illustrate, consider the regression substitution approach. Single substitution underesti-
mates the variability in the data, attenuates the relationship among variables, and may pro-
duce bias in some parameter estimates and, hence, randomness needs to be introduced in the 
imputation process. Rather than replacing missing values with the predicted values from the 
regression model, random perturbations can be added to these values according to the esti-
mated distribution of the errors. Thus, each missing value is replaced with slightly different 
imputed value in different “complete” data sets. Figure 7.1 shows five sets of values generated 
using multiple imputation for the two individuals from the augmentation depression study. 
We see that the values are all different and their spread indicates the uncertainty in imputing 
missing values for these individuals. Multiple imputation uses information both about the 
observed response of the individual up to the point of dropout and from the responses of other 
individuals in order to generate reasonable values for the missing data points.

Analysis of the “complete” data sets is then performed according to the chosen statistical 
model. The final parameter estimates are simply the averages of the parameter estimates 
from the different “complete” data sets and as such have minimal bias and are efficient. 
The variances of the parameters are obtained as weighted averages of the “between” and 
“within” data set variances. The “between” variance estimates the sampling variabil-
ity produced by the imputation process, while the “within” variance is the mean of the 
squared standard errors from the separate analysis of the different data sets. Exact formu-
lae can be found in Carpenter and Kenward (2013), among others.

Multiple imputation has optimal statistical properties but it is sometimes challenging to 
implement, mainly because the results depend on the chosen imputation method and vari-
ables included in this model, and also on the amount and type of missing data. Note that 
multiple imputation produces unbiased results only if data are MCAR or MAR. If data are 
informatively missing, some amount of bias remains. Also, imputation of values on cat-
egorical variables is more challenging than imputation of values on continuous variables.

In general, the imputation model is different from the analysis model and includes 
observed variables and interactions of variables that are related to the missing data. 
Variables that are included in the imputation but not in the analysis model are often 
referred to as auxiliary variables. Usually, all variables in the analysis model are included 
in the imputation model in the particular form (after transformation, with interactions) 
which they take in the analysis model. This makes the imputation model consistent with 
the analysis model and is done because omitting variables from the imputation model 
assumes that they are uncorrelated with the variable with missing data, which is rarely the 
case. In particular, when there are missing values on a predictor variable and it is related 
to the dependent variable, one needs to include the dependent variable in the imputation 
model for the predictor variable, otherwise bias may occur (see e.g., Allison, 2000). The 
imputation model can have many more variables than the analysis models, for example 
additional baseline and time-dependent covariates. Auxiliary variables that are correlated 
with the variables with missing data or are predictive of missingness can dramatically 
improve the quality of the imputation from the imputation model by reducing uncertainly 
and variability in imputed values.

With longitudinal data, missing data can form different patterns. When subjects drop 
out of the study, the patterns are usually monotone. That is, if the observation at the kth time 
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point is missing, then all subsequent observations on that individual are also missing. In 
contrast, if a subject misses a scheduled visit or does not provide information on a variable 
of interest at a particular visit but then returns for subsequent visits, we have intermittent 
missing data. Table 7.1 shows the different missing patterns in the augmentation depres-
sion study. Patterns 1, 3, 5, and 7 are monotone and patterns 2, 4, and 6 are intermittent.

Whether patterns are monotone or intermittent, subjects often have missing values on 
more than one variable or on more than one repeated occasion. This adds additional com-
plexity to the imputation of missing values for longitudinal data as a series of models may 
need to be iteratively fit to impute all missing data. The two most flexible approaches are the 
Markov chain Monte Carlo (MCMC) imputation approach (Schafer, 1997) and the full conditional 
specification (FCS) imputation approach (e.g., White et al., 2011; Van Buuren et al., 2006). The 
MCMC approach is computationally efficient, and can be used with any pattern of missing 
data, but as implemented in software packages it may not be appropriate for some types 
of categorical data. The FCS approach can also be used with any pattern of missing data, 
is appropriate for imputation of categorical data, but is computationally more demanding. 
Other commonly used imputation algorithms available in PROC MI in SAS are regression 
imputation and propensity score imputation, but they require that data have a monotone miss-
ing pattern, so are not in general appropriate for non-monotone missing data. More infor-
mation about multiple imputation algorithms can be found in Carpenter and Kenward 
(2013), Van Buuren (2012), White et al. (2011), and Little and Rubin (2014).

Another decision that one needs to make with multiple imputation is how many “com-
plete” data sets to generate. The general recommendations are that five to ten data sets are 
sufficient, but some say that 20 data sets are needed. Nevertheless, the sensitivity of con-
clusions to the number of data sets can always be assessed by generating a larger number 
and comparing the estimates. Note that since there is a degree of randomness in multiple 
imputation the results will vary slightly when the procedure is repeatedly implemented. 
In order to be able to replicate the results, it is important to fix the random seed to allow 
for exact replication of the results. If the program automatically selects the random seed, 
then full replication is not possible.

While multiple imputation is one of the preferred approaches for dealing with missing 
data in longitudinal studies, it may be daunting to apply, due to the different decisions that 
one needs to make. In particular, one needs to decide what imputation model and what 
analysis model to use, what algorithm is appropriate, whether to change default settings of 
the algorithm, and how many imputation data sets to generate. Each of these decisions is 

TABLE 7.1

Pattern of Missing HDRS Scores in the Augmentation Depression Study. Plus (+) Indicates Data 
Are Present. Minus (−) Indicates Data Are Missing

Pattern
Week 

1
Week 

2
Week 

3
Week 

4
Week 

5
Week 

6
Week 

7
Number of 

Individuals(%)

CompleteData + + + + + + + 35 (70)
Pattern 1 + + + + + + − 2 (4)
Pattern 2 + + + + + − + 1 (2)
Pattern 3 + + + + + − − 4 (8)
Pattern 4 + + + + − + + 1 (2)
Pattern 5 + + + − − − − 2 (4)
Pattern 6 + + − − + + + 1 (2)
Pattern 7 + + − − − − − 4 (8)
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non-trivial and needs to be justified. We illustrate how to go through these steps on a data 
example in Section 7.7, but before that we turn our attention to another method of analysis 
in the presence of missing data that gives asymptotically unbiased and efficient results 
when data are missing at random, namely full information maximum likelihood (FIML).

7.4 Full Information Maximum Likelihood

In FIML, the parameter estimates are obtained by maximizing the likelihood based on all 
observed data. The likelihood function is summed or integrated over the missing data, 
which means that the missing data are allowed to vary over all possible values according 
to the model assumptions, and the observed data likelihood is like a weighted average over 
the possible values for the missing data. The “weights” are determined based on the distri-
butional and model assumptions. In the case of continuous variables, the averaging is actu-
ally integration. This approach allows one to seamlessly incorporate the uncertainty due to 
the missing values, to use all available data on individuals, and to produce the same result 
every time the algorithm is run. The latter is not the case with multiple imputation, which 
can produce different results as the algorithm is repeated. This is one of the reasons FIML 
is preferable to multiple imputation. Others are that it is more efficient, it is easier to imple-
ment, and since everything is done under the same model, there is no potential discrepancy 
between the imputation and the analysis model. The main factor limiting the use of FIML 
is that it is not always available in software packages, especially when there are missing 
data on predictor variables in longitudinal data. Also, FIML provides valid results when 
the model is correctly specified. If important covariates are omitted then bias may occur.

In the context of longitudinal data, the mixed-effects models presented in Chapters 3 
and 4 are fit according to the FIML approach when data are missing on the dependent 
variable only. Subjects who drop out provide information in the likelihood based on their 
observed responses prior to dropout. When there are intermittent missing data, all remain-
ing observations on the individual are again used to derive the likelihood. Mixed-effects 
models provide asymptotically unbiased results that are also maximally efficient as long as 
the data are missing at random, all variables that predict dropout or intermittent missing 
data are included in the model, and the variance–covariance structure is correctly speci-
fied. For example, if the probability of dropout is related to treatment and possibly previ-
ous responses, mixed models that include treatment as a predictor and model all repeated 
responses provide unbiased results. However, if the probability of dropout is also related to 
the unobserved response or some other predictors that are not measured or not included 
in the model, results may be biased. Since it is not possible to distinguish whether data are 
MAR or MNAR, the mixed model is often the best analysis that one can do. Sensitivity 
analyses under MNAR assumptions can help ascertain the robustness of the results to the 
effects of missing data. Such models are considered further in this chapter.

Note that mixed models, as implemented in most software programs, automatically drop 
subjects with missing values on the predictor variables (as opposed to the outcome vari-
able) from the analyses. MPlus and PROC CALIS in SAS with the FIML option are excep-
tions, with PROC CALIS applicable only for multivariate normal data. When there are 
missing values on predictor variables and the software does not have a FIML option, there 
are two approaches that can be taken. One is to use the EM algorithm with bootstrap stan-
dard errors as described in Section 7.2. The other approach is to use multiple imputation 
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for the predictor variables. Note that the imputation and the analysis models in multiple 
imputation can be any statistical models. Therefore, it is completely acceptable to impute 
missing values on predictor variables using multiple imputation, to use mixed-effects 
models as the analysis models for each imputed data set, and to combine the results of the 
different analyses to obtain the final results. This is a combination of multiple imputation 
and FIML analysis since FIML is used for the missing data on the dependent variable and 
multiple imputation is used to handle missing values on the predictor variables. Note that 
in longitudinal data, some values of the dependent variable are almost guaranteed to be 
missing, while missing data on predictor variables are encountered much less frequently.

7.5 Weighted GEE

Unlike likelihood-based mixed models that provide unbiased results when data on the 
dependent variable are MAR, classical GEE models provide unbiased results only when 
data on the dependent variable are MCAR. However, modifications are available for MAR 
data, such as inverse probability weighting methods (see Li et al. (2013) or Rotnitzky (2009) for a 
technical review) and combined imputation (mean or multiple) and GEE methods (e.g., Paik, 
1997; Chapter 11 in Molenberghs and Kenward, 2007).

Inverse probability weighting attempts to correct the underrepresentation of certain 
response profiles in the sample. For example, if a large proportion of subjects with increas-
ing depression severity drop out from the study, there will be fewer fully observed trajecto-
ries of deterioration in the sample. Average depression scores will be biased toward better 
scores because some of the “bad” scores are missing from the data set due to dropout, and 
this phenomenon is more pronounced as more participants drop out. Inverse probability 
weighting allows one to put more weight on the trajectories of the subjects who remain in 
the sample but show similar deterioration to those subjects who drop out, and thus cor-
rects the bias. This allows one to base estimation on the observed responses but weigh 
them according to the probability of dropout. The probability of dropout can be estimated 
using statistical models (e.g., logistic regression) with covariates, observed responses, 
and auxiliary variables, and then the weights are calculated from these estimated prob-
abilities. The weights can be interpreted as the number of observations that a particular 
observed value represents. The more individuals there are who have dropped out with 
a similar response pattern and covariates to the individual with the observed value, the 
higher the weight on this observation, since it represents many missing data points. The 
GEE approach then takes into account the weights and produces valid estimates as long 
as the model that is used to estimate the weights (i.e., the model used to predict the drop-
out probabilities) is correctly specified. We illustrate the inverse probability-weighted GEE 
approach in Section 7.7.

7.6 Methods for Informatively Missing Data

We first focus on extensions of the FIML approach to deal with informatively missing 
data and then proceed with description of weighting and imputation approaches. There 
are three types of likelihood-based models for MNAR analyses: shared parameter models, 
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selection models, and pattern-mixture models. Detailed descriptions of these methods are 
available in Molenberghs and Kenward (2007) and Molenberghs et al. (2014). All of these 
approaches involve treating missingness as an additional outcome and relating the miss-
ingness and the response processes. To be a little bit more specific, we consider the outcome 
Yij at time j for individual i and define the missing data binary indicator Rij to be equal to 
1 if Yij is observed, and to 0 if Yij is unobserved. In Chapters 3 and 4, we showed different 
types of models for Yij, but so far we have ignored Rij. When data are MCAR and MAR, it is 
not in general necessary to specify a model for Rij (except in the weighted GEE approach). 
However, when data are MNAR, one needs to define a model for Rij and relate the substan-
tive and the missingness models. The three approaches differ in how this is done.

Shared parameter models consist of two sub-models—one for the primary outcome and one 
for the dropout/missingness. The two are linked by shared random effects, latent variables, 
or latent classes. For example, we can have a linear mixed model for the Yij with a random 
intercept, bi0, and a random slope, bi1. We considered such a model for the augmentation 
depression study in Chapter 3. It may be reasonable to assume that the probability of miss-
ing outcome also depends on the intercept and slope. For example, subjects with higher 
intercepts (i.e., more severe depression at baseline) and/or with narrower slopes (i.e., little 
improvement over time) may be more likely to drop out. To take this potentially informa-
tive dropout process into account, we can specify a generalized linear mixed model for Rij 
with binary response, logit link, and the random intercept bi0 and the random slope bi1 as 
predictors. Fitting the two related models together allows us to account for potentially non-
ignorable dropout or intermittent missing data. Note that there is no way to test whether 
this particular joint model fits the data best and, hence, such modeling is usually done as 
sensitivity analysis rather than primary analysis. It is also possible for random effects to 
interact with treatment in predicting dropout (i.e., controls who are not improving drop out, 
whereas treated subjects who improve quickly drop out). The model needs to be modified 
by considering these interactions in order to provide a good fit to the data.

The shared parameters between the substantive and the missingness processes are not 
necessarily random effects. A special case of shared parameter models is when a latent 
class variable links the two processes. Thus, one can assume that there are different types 
of individuals in the population (represented by different latent classes that are not known 
a priori) and that conditional on the type of individual, the dropout and the outcome are 
independent. As before, there is no way to verify the form of the model from the data at 
hand. One needs to rely on substantive considerations.

Selection models also consist of two sub-models, but the dependent variable from the sub-
stantive model is included as a predictor in the model for the dropout or missing value. 
As an example, we can again have a linear mixed model for the outcome, Yij, and a gen-
eralized linear mixed model for the missingness indicators, Rij. We can then include the 
corresponding values of Yij (some of which are unobserved), and, potentially, interactions 
of those with treatment in the linear predictor of the elements of Rij. Note that the linear 
predictor may (and often should) include previous observed outcomes and covariates. The 
model should be defined based on substantive considerations as it relies on unverifiable 
assumptions. Since some of the outcomes, Yij, are unobserved, numerical integration is 
necessary to obtain estimates. Thus, selection models are in general difficult to fit with 
existing software which limits their use in practice.

Pattern-mixture models reverse the order in which the substantive model and the miss-
ingness model are related. That is, a model for Rij is considered, and then Rij is included 
as a predictor in the model for Yij. We can relate Rij to concurrent and future response val-
ues. This approach essentially leads to different substantive models corresponding to each 
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dropout pattern, and then the overall estimates of the effects are obtained by averaging 
over patterns weighted by their estimated probabilities. Patterns are most often defined by 
the time of dropout, but other definitions are possible (e.g., reason for dropout). Pattern-
mixture models are not fully identifiable since some of the data in different patterns 
are entirely missing, and thus some parameter constraints are necessary to estimate all 
parameters. As do the other two approaches, this one relies on unverifiable assumptions 
and is mostly used as sensitivity analysis. Pattern-mixture models are especially useful 
when the number of dropout times is small and when subjects drop out due to death (i.e., 
their unobserved outcomes cannot be observed). We consider pattern-mixture models on 
an example in Section 7.7.

As already described, each class of model relies on unverifiable assumptions. Even more 
importantly, it has been shown (Molenberghs et al., 2009a) that for every MAR model there 
is an equally well-fitting MNAR model to the observed data but with different predictions 
for the unobserved data. Hence, the primary analysis model is usually an MAR model (such 
as a linear or generalized linear mixed model) and then different types of MNAR models 
are used for sensitivity analysis. Sensitivity analysis involves simultaneous consideration 
of several plausible statistical models and/or evaluation of different estimates of quantities 
of interest with confidence intervals under different possible deviations from the primary 
model. If conclusions and effect size estimates are consistent, then one can have more con-
fidence in the results. We show an example of primary and sensitivity analyses based on 
MAR and MNAR models in the context of the data examples in Section 7.7. Detailed explana-
tions of different approaches including diagnostic-type measures of local and global influ-
ence, and intervals of ignorance and uncertainty, are available in Molenberghs et al. (2009b).

Another approach to dealing with informatively missing data is to perform multiple 
imputation under MNAR rather than under MAR assumptions. One such technique is 
reference-based imputation, where the imputation model is derived from the control group 
only, and is applied to both the control and the treatment groups. (The usual way to apply 
multiple imputation is to develop separate models for the active and the control groups). 
For example, subjects who discontinue in the active group may be assumed to follow the 
trajectory of outcomes in the control group immediately after dropout. This would mean 
that whatever benefit might have been accrued with treatment disappears right after treat-
ment discontinuation. Performing such sensitivity analysis and comparing the results to 
the results from the primary analysis shows how sensitive the conclusions are under the 
fairly drastic assumptions of an abrupt loss of benefit from treatment.

Weighted GEE models can also be used for sensitivity analysis based on different models 
for the probability of non-response that are used to calculate the weights. While under MAR 
the probability of non-response is usually estimated as a function of covariates and observed 
responses, dependence on unobserved responses can also be incorporated in these methods 
(e.g., Rotnitzky and Robins, 1997; Scharfstein et al., 1999). Doubly robust estimates (Rotnitzky 
et al., 2012) of the effects of interest can then be obtained under MNAR assumptions. Doubly 
robust means that they provide valid results if either the substantive model or the missing 
data model is correct. This method is also considered in the next section.

7.7 Data Examples

We will now illustrate different MCAR, MAR, and MNAR approaches on data from the 
augmentation depression study and from the Health and Retirement Study. The first 



201Handling of Missing Data and Dropout in Longitudinal Studies

example focuses on the continuous and approximately normally distributed depression 
score, while the second focuses on the ordinal measure of self-rated health. We compare 
the performance of mixed models, GEE methods, multiple imputation, and pattern-mix-
ture models in the presence of missing data. Since there are many possible models (espe-
cially MNAR models) that can be considered this is not intended to be a comprehensive 
set of examples. Rather, we illustrate some of the techniques, mainly the ones that can be 
fairly easily implemented with existing software. SAS code and output for all results are 
available in the online materials. Detailed examples of different methods can be found in 
Molenberghs and Kenward (2007), Molenberghs et al. (2014), Hedeker and Gibbons (2006), 
and Mallinckrodt et al. (2014), among others.

7.7.1 Missing Data Models in the Augmentation Depression Study

As mentioned earlier in this chapter, 30% of the subjects in the augmentation depression 
study had missing data and 24% dropped out before the end of the double-blind treatment 
phase. As a first step toward assessing the potential impact of missing data on inferences, 
the data on the response variable are plotted by time of dropout. This allows one to assess 
whether participants who drop out have similar or different trajectories to individuals 
who stay in the study. Figure 7.2a and b visualize the raw HDRS means of different sets 
of subjects. The left panel of Figure 7.2a shows the means (by treatment group) based on 
all available observations at each time point while the right panel of Figure 7.2a shows the 
means based on data only for completers. The two graphs are fairly similar, with the lines 
for the two treatment groups a little bit closer together for completers. Both figures suggest 
that there are substantial improvements in both treatment groups but no obvious differ-
ences between groups.

The left panel of Figure 7.2b shows the mean depression scores of subjects who dropped out 
before the mid-point of the study (three weeks), while the right panel shows the mean scores 
of subjects who dropped out after the mid-point of the study. A divergence of mean scores by 
treatment group is evident in both graphs. In particular, it appears that subjects who drop out 
in the control group do not improve much, if anything it seems they deteriorate prior to drop-
out. At the same time, subjects in the active group drop out after their depression scores have 
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gone down. Thus, it does not appear that dropout is MCAR, although we cannot decide based 
on these graphs if dropout is more likely to be MAR or MNAR. Thus, we follow the general 
recommendation in such a case and select a linear mixed model as our primary analytic 
method with secondary analysis based on pattern-mixture models as sensitivity analysis. We 
also compare the GEE approach under MCAR with two imputation approaches (under MAR 
and MNAR) with GEE on the imputed data sets. Since the outcome is normally distributed, 
linear mixed-effects models and the corresponding GEE specification with the same linear 
predictor estimate the same mean effects. Remember that, in general, GEE models provide 
valid results even if the correlation structure of the repeated measures is incorrectly specified, 
but this nice property is guaranteed when data are complete or MCAR. When data are MAR 
or MNAR, we need to use either weighted GEE methods or use multiple imputation to fill in 
the missing data. We chose to illustrate the second approach on this study based on a GEE 
with a normal response and an identity link function. The weighted GEE is illustrated in the 
second data example (i.e., the Health and Retirement Study).

For simplicity of presentation and to facilitate comparisons among models, we consider 
linear effects in terms of log time; thus, our main focus is on estimating and comparing 
the slopes of the two treatment groups. As shown in Chapter 3, this parsimonious mean 
pattern matched the raw data fairly well. The linear mixed-effects model (LMM) under a 
MAR assumption has fixed effects of treatment group, time (log-transformed), the interac-
tion between group and time, and random intercept and slope. Both random effects and 
random errors are assumed to be normally distributed as usual and the random intercept 
and slope are correlated.

The corresponding pattern-mixture model (PMM) under the MNAR assumption 
includes a binary dropout indicator (equal to 1 for subjects who drop out and equal to 0 for 
subjects who complete the study) and all its interactions with treatment group and time, 
and has different random intercept and slope distributions for completers and for subjects 
who drop out. Thus, in this model there are twice as many parameters as in the LMM. We 
chose a simple dropout indicator since the sample size was small and would not allow us 
to estimate separate coefficients for subjects who dropped out early and late. In general, 
pattern-mixture models consider different coefficients for different dropout patterns as 
long as the sample size can support it. Table 7.2 shows the estimates from the two models 
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while Figure 7.3 shows the corresponding predictions for the mean HDRS scores based on 
the LMM (in the left panel) and based on the PMM for completers and dropouts (in the 
right panel).

The estimates from the LMM (which provides valid results under MAR assumptions) 
show that the slopes for both groups are significantly negative, and the difference in 
slopes is not statistically significant as the confidence interval in the last column of Table 
7.2 includes zero. The estimates from the PMM show that, for completers, the slopes in 
both groups are almost identical (−10.9 and −10.5). However, for subjects who drop out, 
the slope in the control group is slightly positive rather than negative, and the difference 
in slopes between the augmentation and control group is statistically significant. Figure 
7.3 illustrates this more dramatically, as it shows a very different estimated trajectory for 
subjects in the control group who drop out. Since there are only 12 subjects who dropped 
out (seven in the augmentation group and five in the control group) caution should be 
applied when interpreting these results. Also, since no information is available after drop-
out, the trajectories for dropouts toward the end of the period are extrapolations. Although 
the right panel of Figure 7.3 suggests that dropout might be informative (non-ignorable), 
there is no way to check this. Note that if we calculate weighted averages of the slopes of 
completers and dropouts from the PMM, they are going to result in similar trajectories to 
the ones shown in the left panel of Figure 7.3. Thus, although dropout may be informative 
in this data set, due to the relatively small percentage of subjects who drop out, the impact 
on the results is limited.

We also considered GEE models and combinations of MI and GEE, since they allow us 
to explore differences in estimates under different missing data assumptions. The simple 
GEE model (MCAR model) is based on all available data on individuals, has the same lin-
ear predictor as the mixed model, and uses an AR(1) working correlation structure. Results 
from this model are shown in the first row of Table 7.3. The code to perform MI and GEE 
analysis in SAS is included in the online materials.

In order to make valid inferences under MAR assumptions, we performed MI of miss-
ing HDRS scores separately for each treatment group using the FCS method and then fit 
a GEE model to each of the complete data sets. We generated ten imputed data sets, fitted 
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the same GEE model on the imputed data sets, and combined the results. These results are 
shown in the second row of Table 7.3.

Finally, we performed sensitivity analysis with MI using the FCS method with adjust-
ment to the imputed HDRS values (shown in the third row of Table 7.3). Generated HDRS 
values in the control group were artificially increased by two points, while generated 
HDRS  values in the augmentation group were decreased by 0.2 points to account for 
potentially different reasons for dropout in the two groups. This was intended to allow 
assessment of the sensitivity of the results when subjects who dropped out in the control 
group were worse off, while subjects who dropped out in the augmentation group were 
slightly better off, than indicated by the extension of their respective observed trajectories.

Note that in such sensitivity analysis, one would normally fit a series of models under 
potentially different assumptions. That is, one changes the perturbations and investigates 
how far from MAR they need to be to influence the results. We did consider different 
perturbations (+1, +2, +3, and +4 in the control group; −0.1, −0.2, −0.4, and −1 in the aug-
mentation group), but larger perturbations than the ones shown in Table 7.3 corresponded 
to unreasonable values for the HDRS scores. For example, for one subject in the augmen-
tation group, most imputed values were negative when the scores were decreased by 0.4 
and 1, and for one subject in the control group, most imputed values were larger than the 
possible maximum on the HDRS (53 points) when the scores were increased by +3 and 
+4. Thus, such large perturbations are not reasonable. Also, perturbations in the other 
direction (e.g., smaller than anticipated values in the control group, larger than anticipated 
values in the augmentation group) are not likely, since the observed trajectories suggest 
otherwise. If unobserved values are in these unexpected directions, this will make the 
null hypothesis of no differences between the two treatment groups even more likely. The 
results for the slope comparison can theoretically change only if dropouts pull the group 
trajectories in different directions. Many other MNAR models are possible, as indicated 
previously in this chapter, but are not considered here.

Note that when using multiple imputation we can get individual imputed values outside 
of the range of the data (in this case values less than 0 or larger than the maximum possible 
HDRS score). It is not recommended in such situations to truncate the values, since this 
artificially decreases the estimate of the variability in the data. Nevertheless, it is good to 
keep the average imputed values for each missing data point inside the range of possible 
values, as otherwise the considered perturbations are unrealistic.

Table 7.3 shows the estimates from the three different models we considered. As expected 
based on the results from the LMM shown above, the slopes of both groups are significantly 
negative under MCAR and MAR and there are no statistically significant differences in 
slopes. Under the specific MNAR multiple imputation, the slope estimate for the augmenta-
tion group is larger in magnitude, and since it is negative there is a faster decrease in scores 
than under MCAR and MAR assumptions. At the same time, the slope estimate in the 
control group is smaller in magnitude, and hence there is slower decrease in scores than 
under MCAR and MAR assumptions. The difference in slopes, while still not statistically 
significant, is larger in absolute value (−3.7, 95% CI: (−8.6, 1.2)), indicating a larger degree of 
separation between groups. Because all three models suggest that there are no statistically 
significant differences between groups in slopes of change in log time, we can conclude that 
the results are fairly robust to the effects of missing data. This does not preclude the specu-
lation that a larger study could find a significant influence of missing data.

We selected a parsimonious model to describe the time trend in order to illustrate the 
methods more easily. However, in the presence of missing data, the “correctness” of the 
mean model is even more important than with complete data, especially in the context of 
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the GEE approach. While model diagnostics can help assess different aspects of the model, 
they can also be influenced by missing data. Assessing the robustness of results should 
involve not only sensitivity analysis with respect to different models and assumptions for 
the missing data but also different plausible model specifications.

7.7.2 Missing Data Models in the Health and Retirement Study

In Chapter 4, we presented GLMM and GEE analyses of the ordinal measure of self-rated 
health assessed biennially over a period of 14 years in individuals transitioning into retire-
ment. We focused on assessment of gender differences and effects of smoking at baseline 
on the time trends in self-rated health. In the previous analyses, we ignored the issue of 
missing data. This is reasonable in the GLMM model, which provides valid results under 
MAR assumptions when full maximum likelihood estimation is used. However, the GEE 
model produces valid results only under MCAR assumptions. In this section, we explore 
different types of missing data in the study, present several GEE models under varying 
assumptions, and assess the potential impact of missing data on the substantive conclu-
sions. As in any large longitudinal survey, there are all kinds of missing data in the HRS. 
In particular, there are missing data on predictor variables, intermittent missing data on 
the response variable, and dropouts. Dropouts are further separated in individuals who 
died and who dropped out for other reasons. Our focus here is on missing data on the 
dependent variable (self-rated health) and on dropouts. Since data are complete on the pri-
mary predictors (gender and smoking status) at baseline, we do not consider the issue of 
missing data on predictors. Figure 7.4 shows the patterns of mean self-rated health scores 
in subjects who completed the study or dropped out for a different reason than death (in 
the left panel, separate lines shown for different dropout times) and in subjects who died 
during the study period (in the right panel, separate lines shown for different dropout 
times). Separate plots of patterns of change among completers and dropouts for other rea-
sons, and subjects with intermittent missing data did not reveal any obvious changes, so 
the left panel lumps all these individuals together. We further omitted subjects with inter-
mittent missing data from the analyses in order to simplify interpretation and be able to 
apply the inverse probability weighting method in a GEE context that is targeted toward 
dropout.
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FIGURE 7.4
Mean self-rated health scores by dropout status in the Health and Retirement study.
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Figure 7.4 shows that subjects who died had significantly worse self-rated health and 
showed faster deterioration prior to dropout compared with subjects who provided data at 
all time points or dropped out for other reasons. Thus, it appears that dropout can be pre-
dicted from the available data and therefore can be considered MAR, or if it also depends 
on unobserved data then it can be considered MNAR. Among subjects without intermit-
tent missing data (8365), 1244 (14.9%) died during the study, while 1267 (15.2%) dropped 
out. Although not overwhelming in terms of percentage of the entire sample, dropout and 
death could have an effect on inferences, so considering different models and assessing 
sensitivity of results is desirable.

Unlike the analysis of the augmentation depression study, the outcome here is not nor-
mally distributed, and hence, estimates from GLMM and GEE are not expected to be the 
same. We first fit the same GLMM and GEE models as in Chapter 4. The results are sub-
stantively very similar, as the only difference in these basic analyses is that, in this chap-
ter, individuals with intermittent missing data are dropped. In both the GLMM and GEE 
models there are significant smoking by time effects that we focus on in order to illustrate 
and compare different missing data models. The fixed slope estimate for non-smokers 
and smokers from the GLMM are 0.20 (95% CI: (0.19, 0.22)) and 0.26 (95% CI: (0.23, 0.28)), 
respectively. Thus, the cumulative log odds of worse health increase for both non-smokers 
and smokers with time, but at a lower rate for non-smokers. Subtracting the two slopes 
and exponentiating gives a cumulative odds ratio for the comparison of rate of change 
over time in non-smokers relative to smokers of 0.95 (95% CI: (0.92, 0.98)), indicating that 
not smoking is protective in terms of slowing deterioration in self-rated health. Since the 
GLMM provides valid estimates under MAR missingness and the focus is on individual 
change over time, this would be the preferred approach for this example.

Nevertheless, we consider GEE models for these data in more detail in order to compare 
the results under the three possible mechanisms and to present and illustrate the inverse 
probability weighting approach. The usual GEE model with multinomial response, cumu-
lative logit link, and independent working correlation matrix (the only such structure 
available for ordinal data in SAS) provides valid results only when data are MCAR. Next, 
we also fit a weighted GEE model with the same assumptions about the response, link, and 
working correlation structure but weigh the contribution of individual observations to the 
results using the inverse probability approach as described below. This type of model pro-
vides valid results under S-MAR assumptions (i.e., when data are MAR, depending only 
on the previous observed responses). Finally, we tweak the weights in order to simulate a 
MNAR process and compare the results for the overall tests of the treatment effects and 
the individual slope estimates and comparisons in order to assess the sensitivity of the 
results to missing data assumptions.

In the models, we consider gender and smoking status as categorical predictors, and 
wave as a continuous predictor. We model a linear effect of time.

We first report the significant results from the tests of main and interactive effects of the 
fixed factor. In the GEE model without weights, which provides valid results under MCAR 
mechanism, there is a statistically significant interaction between smoking status and 
time (χ2(1) = 3.79, p = 0.05) and significant main effects of smoking (χ2(1) = 166.0, p < 0.0001) 
and time (χ2(1) = 374.3, p < 0.0001). Interestingly, in contrast to our analysis in Chapter 4, 
there are no significant gender effects. This might reflect a loss of power due to dropping 
subjects with intermittent missing data. Since our main interest here is in comparing the 
results of models under different assumptions of missing data, we focus on the effects of 
smoking and, in particular, on changes over time by smoking status. Additional estimates 
for the main effects can be obtained as discussed in Chapter 4.
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Table 7.4 shows the estimated slopes for change in self-rated health over time by smok-
ing status and based on these, the estimated cumulative odds ratios when comparing the 
increase in odds of worse self-rated health per wave for smokers and non-smokers. Intercepts 
are not shown, since there are four different intercept parameters for all cumulative odds 
of the five-level ordinal response. All these estimates are available in the online materials. 
Positive slopes show that self-rated health deteriorates over time, and the cumulative odds 
ratios show the estimated decrease in odds of worse self-rated health assessment per wave 
for non-smokers compared with smokers. The first row of Table 7.4 shows the results from 
the GEE under MCAR, that is, GEE based on all available data without weighting. The 
results show significantly positive slopes for both smokers and non-smokers, indicating 
that self-rated health assessment worsens with time. The deterioration is statistically sig-
nificantly, but slightly less so for non-smokers compared with smokers (about 1 − 0.98 = 0.02, 
or 2% lower per wave for non-smokers compared with smokers). Next, we assess how these 
results change when we weigh the observations under MAR assumptions.

The weights used in the weighted GEE, calculated under S-MAR assumptions, are based 
on the estimated probabilities of individual self-rated health measures being observed. We 
estimate the probabilities by fitting a logistic regression model with a missing data indica-
tor (Rij = 1 if self-rated health was observed and Rij = 0 if self-rated health was missing for 
individual i at wave j) as the response variable and the following predictors, updated at 
the previous wave: self-rated health at the previous visit, gender, smoking status, wave, age 
at study entry, indicator variables for ever having cancer, heart attack, stroke, high blood 
pressure, diabetes, or lung disease. Note that we include additional variables here that are 
not part of our main model but which may be related to death and dropout from the study. 
This helps us improve the prediction of dropout or death. We denote these estimated prob-
abilities as pij, with i for subject and j for wave. These probabilities are obtained for all post-
baseline measurement occasions on which self-rated health is observed, and for the first 
occasion after dropout for individuals who drop out. Since at baseline there is no informa-
tion about previous self-rated health but complete information about current self-rated 
health, pi1 = 1 for all individuals at baseline. A subject who drops out at wave 2 contributes 
Ri1 = 1 and Ri2 = 0 to the logistic regression, while a subject who drops out at wave 4 contrib-
utes Ri1 = Ri2 = Ri3 = 1 and Ri4 = 0. We estimate pi1 and pi2 for the first individual, and pi1, pi2, pi3, 
and pi4 for the second individual.

The inverse probability weights are then calculated as follows:
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TABLE 7.4

Estimates and 95% Confidence Intervals from GEE (under MCAR) and Weighted GEE (under 
S-MAR and MNAR) for Self-Rated Health in the Health and Retirement Study

Slope for 
Non‑Smokers Slope for Smokers

Cumulative Odds 
Ratio for the 

Difference in Slopes

GEE (MCAR) 0.08 (0.07, 0.09) 0.10 (0.08, 0.11) 0.98 (0.97, 1.00)
Weighted GEE (S-MAR) 0.10 (0.10, 0.11) 0.14 (0.12, 0.15) 0.97 (0.95, 0.99)
Weighted GEE (MNAR) Model 1 0.15 (0.14, 0.16) 0.17 (0.15, 0.19) 0.98 (0.96, 1.00)
Weighted GEE (MNAR) Model 2 0.14 (0.13, 0.15) 0.17 (0.15, 0.18) 0.98 (0.96, 0.99)
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Obviously, the weight at the first time point is equal to one (i.e., wi1 = 1), and it increases 
(perhaps substantially) over time for subjects who are likely to drop out, as we keep multi-
plying by numbers less than one in the denominator. The idea behind this weighting is that 
data on individuals who are likely to drop out based on their previous response measure 
and covariates need to be more heavily weighted in order to account in the analysis for 
individuals with similar characteristics and covariates who actually drop out. Figure 7.5 
shows the estimated weights according to the logistic model above.

As expected, the weights increase over time, with some weights as large as ten at the last 
wave. Note that if weights are very high, undue emphasis is based on some observations 
and another approach for dealing with missing data, such as multiple imputation, may be 
more appropriate. See Hogan et al. (2004) for more discussion. In this data example, there 
are only a few weights that are relatively high, which do not affect the results considerably.

The second row of Table 7.4 shows the estimated slopes and the contrast of interest under 
the weighted GEE model under MAR assumptions. Note that the same overall tests as in 
the unweighted GEE are statistically significant, with the interaction between wave and 
smoking much more strongly significant than before (χ2(1) = 11.5, p = 0.0007 for the inter-
action, χ2(1) = 160.7, p < 0.0001 for the main effect of smoking, and χ2(1) = 524.5, p < 0.0001 
for the main effect of time). The slope estimates for both non-smokers and smokers in 
the weighted GEE are steeper than in the unweighted GEE, reflecting that under MCAR 
assumptions the deterioration in self-rated health over time is underestimated. The dif-
ference in slopes between smokers and non-smokers is more pronounced in the weighted 
GEE than in the unweighted GEE (cumulative odds ratio = 0.97 compared with 0.98, see last 
column of Table 7.4).

The third and fourth rows of Table 7.4 show the estimated slopes and the contrasts of 
interest under the considered MNAR-weighted GEE models. In both models, we estimate 
the probabilities of missingness with a logistic regression model as specified above except 
that we use the current (potentially unobserved) self-rated health in the linear predictor 
rather than self-rated health at the previous visit. Since self-rated health is not observed for 
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Distribution of estimated individual weights based on the inverse propensity score approach in the Health and 
Retirement Study.
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subjects and dropouts at the last time point that is used in the logistic regression model, 
we add 0.5 to the previous self-rated health for dropouts and use this as the current unob-
served self-rated health value. For subjects who died, we assign values of 5.5 for self-rated 
health for the first assessment after dropout. This is 0.5 higher than the code for “poor” 
self-rated health in the first model. In the second weighted GEE under MNAR assump-
tions, we do the same “imputation” of values for subjects who died regardless of smoking 
status, but for dropouts we add 0.5 to previous self-rated health for smokers and 0.2 for 
non-smokers.

These decisions are fairly arbitrary, and one can argue that for subjects who died we 
should not even be considering any values post-dropout. Note though that subjects might 
have died at any point in the two-year period between visits, including right before the 
missed assessment, and we are imputing a value only for the first visit past dropout. Thus, 
to a certain extent, the “imputation” we make is reasonable, since “health” of subjects who 
died in the last interval should have been worse than for those alive. For dropouts from 
causes other than death, it is reasonable to assume that they have a further deterioration 
in self-rated health that is not observed, and this deterioration might depend on smoking 
status. We can perform multiple sensitivity analyses using different values or by model-
ing the informative dropout in different ways. Herein, we just illustrate the point that the 
weights in the GEE model can be manipulated to reflect different MNAR mechanisms.

The slope estimates for both non-smokers and smokers are further increased under both 
considered MNAR mechanisms, and the estimate for the cumulative odds ratio reflecting 
the rate of deterioration in self-rated health between smokers and non-smokers is between 
the estimates from the MCAR and S-MAR models. The estimate from the first MNAR 
scenario, when our assumptions about dropout and death do not differ by smoking status, 
is closer to the MCAR estimate, while that from the second MNAR scenario, when we 
allowed self-rated health to vary for dropouts by smoking status, is closer to the S-MAR 
estimate. Thus, the conclusions do not change substantively under these particular MNAR 
mechanisms.

As expected, the slope estimates from the GLMM are larger than those from the GEE 
model; this is consistent with the expected relationship between subject-specific and pop-
ulation-averaged estimates, as explained in Chapter 4. Furthermore, the estimated slopes 
for smokers are steeper than for non-smokers, with cumulative odds ratio estimates that 
are more highly statistically significant than in the GEE models. Although there are sub-
stantial differences between subjects who die during the study and subjects who complete 
or drop out for other reasons, the substantive results under MAR are not much different 
compared with the MNAR models we considered. Thus, we can conclude that the results 
are robust to deviations from the MAR assumption.

7.8 Guidelines for Handling Missing Data

Many publications have appeared in recent years that give guidelines for handling miss-
ing data (e.g., Graham, 2009; Schlomer et al., 2010; Little et al., 2012; Mallinckrodt et al., 
2013; https://www.ncbi.nlm.nih.gov/books/NBK209904). Perhaps the most active area is 
missing data in clinical research (Molenberghs and Kenward, 2007) due to the important 
implications in interpreting results from clinical trials. Mallinckrodt et al. (2014) identified 
three pillars for dealing with missing data: “(1) providing clearly stated objectives and 
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causal estimands; (2) preventing as much missing data as possible, and (3) combining a 
sensible primary analysis with sensitivity analyses to assess robustness of inferences to 
missing data assumptions.”

In clinical trials, an important distinction in objectives is made between efficacy and 
effectiveness analyses. Efficacy is the effect of treatment if applied as directed (i.e., drug 
taken as directed, behavioral therapy delivered and received as directed) and the corre-
sponding analysis is done per protocol. Effectiveness is the effect of treatment as actually 
applied (i.e., subjects may stop receiving treatment, change doses, switch to another medi-
cation) and the corresponding analysis is intention-to-treat.

Missing data are handled differently in these two situations. The per-protocol analysis 
is performed only on completers and the results are generalizable only to individuals who 
are able to receive treatment as intended. Intention-to-treat analysis is performed on all 
randomized subjects; results are generalizable to the entire population, but the estimated 
effect is not of the treatment itself, but rather of how treatment is intended to be applied. 
Effectiveness analysis can also be performed to assess the effectiveness of the initially ran-
domized treatment, but data on subjects who drop out, change dose, or switch to another 
treatment after the change are not used in the analysis. Instead, their data may be imputed.

This illustrates the importance of clear objectives in making a decision of how to handle 
missing data in the analysis. Of course, it is even more important to prevent or at least 
minimize missing data. While prevention of all missing data is unrealistic, missing data 
can be minimized using different strategies (Mallinckrodt et al., 2013). Regarding the pri-
mary analysis plan, most often this is a MAR approach since it is both reasonable and 
fairly straightforward to implement. The three MAR approaches most often used are like-
lihood-based analyses (in this category are all mixed models we considered in Chapters 
3 and 4), multiple imputation, and weighted generalized estimating equations. Methods 
for informatively missing data under different MNAR assumptions are most often used 
as sensitivity analyses, since they can never be definite because they rely on unverifiable 
assumptions about the missing data. If the primary MAR analysis and a reasonable set of 
secondary MNAR analyses lead to the same conclusions, we have confidence in the con-
clusions from the study. If there are discrepancies, then the secondary analyses provide a 
measure of how much the results depend on the MAR assumption.

7.9 Summary

In this chapter, we reviewed the basic terminology and explained at a non-technical level 
the modern approaches to analysis of longitudinal data with missing data. The methods 
were illustrated on a fairly simple data example and general guidelines were presented.

The most important take-home message is that the primary analysis of longitudinal data 
sets with missing data needs to be performed under MAR assumptions, and it is recom-
mended that sensitivity analyses under reasonable MNAR mechanisms are used to assess 
how robust the results are to deviations from MAR. When data are missing only on the 
dependent measure, the preferred approach is LMM or GLMM analysis, since it is simple 
to perform and interpret and provides valid and efficient results under MAR assumptions. 
PMM can be used as sensitivity analyses with selection and shared parameter approaches 
as other good choices that are somewhat more complicated to perform with existing sta-
tistical software.
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Although mixed models are the preferred approach for longitudinal data, the infer-
ences from LMM or GLMM are valid if all aspects of the model reflect the data well 
(e.g., both mean and variance–covariance structure are reasonably well modeled). When 
this is difficult to ensure, an alternative is to use doubly robust weighted GEE models, 
which provide valid estimates when either the missing data mechanism or the main 
model are correctly specified. These methods also require just a working correlation 
structure. The inverse probability-weighted GEE is fairly easy to apply in existing statis-
tical software and allows manipulation of the weights under different MNAR assump-
tions in order to address the sensitivity of the results.

When data are missing on both predictor and outcome variables, a preferred approach 
is multiple imputation together with an appropriate model for the longitudinal data. 
Multiple imputation is efficient even with a small number of imputations and allows mul-
tiply imputed data sets to be created separately from the modeling. That is, data can be 
multiply imputed and then different models can be fit to the same data sets. However, mul-
tiple imputation requires the investigator to make multiple decisions and it is not always 
clear what effect these have on the results. The preferred MI approaches are MCMC for 
missing continuous data and FCS (also known as multiple chain equations) for missing data 
of different types. Multiple imputation can also be done under MNAR assumptions to 
assess the sensitivity of results.

Finally, causal inference with counterfactual outcomes is considered a special case of 
missing data analysis, with many recent developments in the statistical literature. Since 
missing data is an area of continuing and very intensive research, the current chapter 
touches only on the tip of iceberg. The interested reader is referred to Molenberghs et al. 
(2014) for details and the most up-to-date methods.
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8
Controlling for Covariates in Studies 
with Repeated Measures

In Chapters  3–7, we presented different models for the analysis of longitudinal and clus-
tered data from experimental and observational studies. Our main focus was on the 
assessment of the effects of treatments and in evaluating group differences. For example, 
in the depression clinical trials and in the COMBINE trial of alcohol dependence, the main 
question of interest was whether depression severity and drinking outcomes, respectively, 
improved with treatment. In the Health and Retirement Study, we investigated differences 
and changes in health self-assessment by smoking status, and in the schizophrenia work-
ing memory data, the focus was on testing for differences between schizophrenia patients 
and healthy controls in brain activation. In all these examples, we would ideally like to 
assess the causal effect of treatment or the independent (unconfounded) effect of group. 
In the case of randomized studies, the treatment groups are expected to be balanced on 
observed and unobserved characteristics that might change the relationship between 
treatment and outcome, and hence treatment effects have a causal interpretation. In obser-
vational studies, non-randomized groups of subjects are compared and these groups may 
differ from one another on a variety of covariates. Estimating the independent effect of 
group in this case is difficult since it is likely to be confounded with the effects of other 
predictors of outcome. 

Analysis of covariance (ANCOVA) is a statistical technique that allows one to adjust 
inferences so that individuals from different groups are compared at the same levels of 
the covariates (also known as confounding variables, concomitant variables, or independent 
variables ). The classical ANCOVA approach involves adding the covariate that we want to 
control to the statistical model before the main predictor (treatment, group, or exposure) is 
added. This allows us to reduce the noise in the data and may increase power in the statis-
tical analysis. However, when the covariate is influenced by treatment or differs by group, 
controlling for it may still result in bias and can lead to erroneous conclusions. 

In general, for ANCOVA to be valid, it is necessary for the main predictor of interest (i.e., 
treatment in randomized studies and exposure or group in observational studies) to be unre-
lated to the potential covariates. This is common in randomized studies where any differ-
ences at baseline among groups can be attributed to chance. For example, baseline severity is 
likely to be associated with the outcome and thus may be important to include in the model. 
Since groups are expected to be balanced in terms of initial severity because of the random-
ization, treatment is unrelated to baseline illness severity. In this situation, ANCOVA is quite 
appropriate and may improve power and efficiency for the estimation of treatment effects on 
the outcome. However, inclusion of covariates in the model should not depend on whether 
there are significant differences between groups on the covariates but rather should be based 
on a priori  substantive considerations in order to ensure generalizable conclusions.

In contrast, in observational studies, the main predictor of interest is often statistically 
associated with potential covariates. For example, smoking may be related to drinking, 
and hence smokers and non-smokers may differ in terms of their drinking distributions. 
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In this case, controlling for drinking in a statistical model can actually remove some of the 
effect of smoking and lead to biased and not readily interpretable results. In general, if the 
covariates that are controlled in the statistical model are affected by treatment or expo-
sure, controlling for these covariates can remove some of the treatment effect and can bias 
the estimates. It is a common misconception that including the potentially confounding 
predictors in observational studies “ corrects”  the estimates of the main predictor effect of 
interest. This is true only in special situations and when appropriate statistical techniques 
are used. 

In this chapter, we explain how to control for potentially important covariates by includ-
ing them in the statistical model with the goal of improving power and precision of 
estimates. In Section  8.1, we focus on the classic ANCOVA in cross-sectional studies or 
longitudinal studies with two repeated measures (pre-treatment versus post-treatment), 
describe how ANCOVA is properly used in randomized studies, and discuss challenges 
and limitations of this approach in observational studies. In Section  8.2, we proceed to 
consider ANCOVA in the context of more complicated studies with repeated measures, 
and distinguish between situations when covariates vary between or within individu-
als. Attention is devoted to time-independent and time-dependent covariates in longitu-
dinal studies. Section  8.3 presents the propensity scoring approach for reduction of bias 
in observational studies and discusses regression adjustments, weighting methods, and 
matching. With this approach, observational studies can be considered as “ pseudo-exper-
iments”  in which balance on measured covariates can be achieved. The issue of control-
ling for unmeasured confounders is briefly discussed. Data examples are presented in 
Section  8.4 with the appropriate code and output included in the online materials. The 
chapter concludes with a summary and includes references for alternative approaches bet-
ter suited for causal inference (Section  8.5).

As always, the emphasis of the chapter is on conceptual issues. A detailed and compre-
hensive reference on the technical details of analysis of covariance models, including mod-
els for repeated measures data, is presented in Milliken and Johnson (2008). Other useful 
recent references are Huitema (2011) and Rutherford (2012). A non-technical description 
of the caveats and inappropriate uses of ANCOVA can be found in Miller and Chapman 
(2001). References on the propensity scoring approach are given in Section  8.3. 

8.1  Controlling for Covariates in Cross‑Sectional 
and Simple Longitudinal Designs

In Chapter  2, we considered controlling for covariates in the context of endpoint analysis 
by using traditional analysis of covariance (ANCOVA) methods for cross-sectional data. 
Herein, we detail and expand this discussion. We start by considering randomized experi-
ments and, in particular, the simple situation when individuals are randomized to one of 
t  different treatments. A quantitative outcome variable and potential covariate are mea-
sured on each individual. The usual strategy in such a design is to test whether there are 
differences in response among the treatment groups followed by pairwise or other mean 
comparisons if the overall treatment effect is significant. The most simple ANOVA model is

 Y I Ii i t it ij= + +β β ε1 1 ...  (8.1)
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where: 
i   denotes individual
I i  1   indicates whether individual i  is assigned to the first treatment (i.e., I i  1   =  1 if subject 

i  is assigned to the first treatment and 0 otherwise)
I i  2   indicates whether individual i  is assigned to the second treatment, and so on

The usual assumptions about normality, independence, and equal variances of the errors, 
ε ij, are made. Using this notation, we see that the β parameters correspond to the unknown 
means for the t  different treatments and the usual null hypothesis of equality of means is 
H0 : β1   = β 2   = … β t  . When there are significant differences between the means, pairwise or 
other focused mean comparisons are performed to identify differing means or patterns of 
means. The ANOVA model ignores the systematic effects of other potentially important 
variables on the outcome and considers them random noise. This is reasonable in random-
ized studies where such effects are likely to be balanced across the different treatment 
groups and hence the estimates of the treatment effect are unbiased. 

However, treatment effects could potentially vary for individuals depending on other 
variables. Taking those into account may improve power for the treatment comparisons. 
For example, in the COMBINE study, intensity of drinking at baseline is likely related to 
intensity of drinking during treatment and may account for some of the residual vari-
ability in the ANOVA model described. Other predictors such as gender and age can also 
be related to the outcome. Including such predictors in the model can decrease the resid-
ual variability and thus increase precision for the treatment comparisons. The traditional 
ANCOVA model with one covariate is

 Y I I xi i t it t i ij= + + ++β β β ε1 1 1...  (8.2)

where:
x i   is the value of the covariate for the i th individual
βt    +  1 describes the effect of this covariate

This model, known as the common slope model, is intended to adjust the treatment effects 
for the covariate. That is, we estimate the effect of treatment at the same level of the covari-
ate. Thus, even if there is chance imbalance on this covariate, as long as the covariate 
is not statistically dependent on the treatment, unbiased treatment effects are obtained. 
However, there are several implicit assumptions that are made in the common slope model 
that might invalidate it, if not satisfied. For example, the relationship between the covariate 
and the outcome is assumed to be linear and the same for all treatments. Since it is usually 
not known a priori  whether this is the case in a particular situation, we need to go through 
several steps in order to perform a proper analysis of covariance.

8.1.1 Steps in Classical ANCOVA 

Step 1: Assess the type of the relationship between the outcome and the covariate 
within each treatment group. Is it indeed linear? Is a transformation needed? To 
answer these questions, we can fit separate simple linear regressions within the 
treatment group, examine residuals, and assess whether remedial measures such 
as transformations or including higher order terms (such as xi

2) are needed. When 
it is determined that remedial measures are necessary, they are performed before 
proceeding to the next step. 
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Note that when there are many treatment groups, evaluations of the relation-
ship between the covariate and the outcome may not be straightforward. For 
example, a  linear relationship may seem to hold in one treatment group but a 
log-linear relationship in another. Since we need to treat a covariate consistently 
(e.g., as a linear effect without transformation, or a linear effect after transforma-
tion), we may need to go through all the steps repeatedly using different forms 
of the covariate– outcome relationship or transformations of the covariate or out-
come before deciding what best describes the relationship with the outcome. 
Residual plots of the entire model can help with this decision.

Step 2: Assess whether the outcome is significantly associated with the covariate. 
Since this relationship can vary by treatment, to perform this step we need to fit 
the following model: 

 Y I I x I x Ii i t it t i i t i it ij= + + + + + ++β β β β ε1 1 1 1 2... ...  (8.3)

This is a full rank model with an interaction between treatment and the covari-
ate. In this model, testing whether the coefficients βt    +  1  through β2 t   are equal to 
zero tells us whether there is a statistically significant linear relationship between 
the covariate and the outcome for any of the treatment groups. Note that if trans-
formations are applied to the covariate values, the x  values in Equation 8.3 are 
the transformed covariate values. If there is a curvilinear relationship between 
the covariate and the treatments, then xi

2  values are also included, and both the 
slopes and the coefficients of the quadratic terms are simultaneously assessed for 
equality to zero.

If there is no statistical relationship between the covariate and the outcome, the 
covariate adjustment is likely not necessary and there will be no gain in power. 
Thus, analysis can be done based on an ANOVA model without adjusting for the 
covariate and we do not need to continue following steps 3 and 4. Otherwise, if 
there is an indication of an association for at least some of the treatment groups 
we proceed to step 3.

Step 3: Assess whether the relationship between the covariate and the outcome varies 
by treatment group. This is accomplished by testing whether the coefficients βt    +  1  
through β2 t   in the more general, third ANCOVA model are equal to one another 
(but not necessarily to zero). This is actually a test of the interaction between the 
treatment and the covariate. 

If the relationship is the same, then the simpler common slope ANCOVA model 
(i.e., the model in Equation  8.2) can be used for statistical inference. On the other 
hand, if there is an indication that the relationship between the covariate and the 
outcome varies by treatment (i.e., the coefficients are not all equal to one another) 
then we need to base inferences on the more general model with the interac-
tion of the covariate and treatment (i.e., the model in Equation 8.3). We consider 
inferences under this scenario right after the description of inferences under the 
 common slope model in step 4. 

Step 4: When there is no evidence that the relationship between the predictor and 
the outcome varies by treatment group, the fourth step of the approach is to per-
form inferences based on the common slope model in Equation  8.2. This model 
is often described as the basic ANCOVA model, and models with interactions 
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are not even considered in many cases. We urge caution with direct application 
of this model, since if there are in fact interactions between treatment and the 
covariate, incorrect inferences may result. Note that in the common slope model 
the treatment comparisons are still the focus of the inferences but they are 
interpreted as the differences between the treatments adjusted for the covariate, 
i.e., the treatment differences are evaluated at the same value of the covariate. It 
does not matter what value of the covariate we consider, since the relationship 
between the covariate and the outcome is described by parallel lines for the dif-
ferent treatment groups and hence the distances are the same for each value of 
the covariate. 

In the case when the covariate by treatment interaction is statistically significant and 
we use the model in Eq. 8.3 for statistical inferences, the magnitude of the treatment com-
parisons depends on the value of the covariate. Thus, we get a different estimate for the 
mean differences between treatments at different values of the covariate. In this case, the 
follow-up approach is to perform treatment comparisons at several (usually three) differ-
ent values of the covariate. These should be meaningful from a subject-matter perspective, 
and by all means not outside of the range of values for the available covariates. Often, the 
mean value of the covariate is used together with values one or two standard deviations 
above and below the mean. Alternatively, we can also estimate different slopes for the 
relationship between the covariate and the outcome in each treatment group and perform 
pairwise comparisons of these slopes. 

More complex post hoc analyses involve constructing confidence bands on the regres-
sion predictions within each treatment group and establishing a range of the predictor 
values within which the mean outcome is different between two or more treatments. The 
interested reader is referred to Milliken and Johnson (2008) for examples and details.

We will mention several additional issues with analysis of covariance: controlling for 
multiple covariates, effects of transformations, dealing with categorical covariates and/or 
outcomes, effects of missing data, and advantages of ANCOVA over change score analyses 
in simple pre- versus post-treatment longitudinal studies. 

Controlling for multiple covariates:  When multiple covariates are of interest, a model 
selection procedure based on evaluation of residuals may need to be performed to 
select which covariates to use. For the equal slope scenario, this approach involves 
calculating residuals from the ANOVA model of the outcome on treatment and 
residuals from separate linear regression models of each covariate on treatment, 
and using stepwise model selection procedures (e.g., forward selection, backward 
elimination, stepwise selection) to identify important covariates. The procedure 
is similar, but more unwieldy, when the slopes are not equal (see Chapter  7 in 
Milliken and Johnson [2008]).

Effects of transformations:  Note that the transformations can affect the relationship 
between covariates and the outcome. A linear association between the mean of a 
transformed response and a covariate often corresponds to a non-linear associa-
tion between the mean of the original response and a covariate. Thus, the equality 
of slopes hypothesis and the shape of the relationship between the covariate and 
the response can vary depending on whether a transformation is used. 

Categorical covariates:  In the steps above for ANCOVA, we focused on quantitative 
covariates but it is possible that covariates are categorical (e.g., binary, ordinal, 
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nominal). In this case, the same approach is used but the results are interpreted as 
mean differences rather than slope differences. 

Categorical outcome:  When the outcomes are categorical, analysis of covariance can also 
be used by replacing the linear model with a generalized linear model. However, 
since a non-linear function relates the predictors to the outcome, interpretation 
can become complicated and it is more challenging to identify the proper relation-
ship between the predictors and the outcome. 

Missing data:  Traditional ANCOVA requires complete data on the outcome and the 
covariate. When there are missing data, a common approach is to impute data 
on the covariate and/or on the outcome and then use ANCOVA. This needs to be 
done with multiple rather than single imputation in order to appropriately account 
for the loss of information due to missing data. Thus, the appropriate algorithm is 
to impute missing data using multiple imputation, fit ANCOVA to each imputed 
data set, and combine the estimates and standard errors taking into account the 
variances within and between imputed data sets as outlined in Chapter  7. 

ANCOVA in longitudinal studies:  In simple longitudinal designs with only two repeated 
measurements (baseline and endpoint), ANCOVA is frequently used to control for 
baseline imbalance or to improve power. A number of authors have compared 
the performance of ANCOVA at endpoint controlling for baseline to an ANOVA 
analysis of change scores (endpoint minus baseline), with the unequivocal conclu-
sion that ANCOVA is preferred to change score analysis in randomized studies. 
However, there are somewhat differing views as to how useful it is in observational 
studies where group differences in other covariates may be present (Van Breukelen, 
2006; Egbewale et al., 2014; Senn, 2006). We now turn our attention to the discussion 
of the properties of this method in experimental versus observational studies. 

8.1.2 Analysis of Covariance in Randomized Studies

In randomized studies, estimates of treatment effects from ANCOVA have causal inter-
pretation. Since controlling for confounding variables may improve power and precision 
in statistical inference, many researchers look for baseline differences in any potentially 
important covariates and include all covariates for which there are statistically signifi-
cant differences between treatments in the analysis. However, this leads to several seri-
ous issues. First, whether there are statistically significant differences at baseline depends 
largely on sample size. In small studies, even sizeable imbalances may not be statistically 
significant, while in large studies even trivial covariate differences are statistically signifi-
cant. Second, adjusting for covariates that differ by group but are not prognostic of treat-
ment outcome does not improve efficiency and in small samples may lead to bias. Third, 
differences in covariates are typically evaluated one at a time, thus ignoring potential sta-
tistical relationships among the covariates themselves. Since covariates may work together 
or against each other in unpredictable ways, including them in the statistical model jointly 
can have unforeseen effects on inferences. Fourth, covariates are often included as main 
effects without consideration of possible interactions with treatment. While the four-step 
approach described earlier deals with this issue, it is often not used, and covariates are 
directly controlled using the common slope model. 

In view of these potential problems, the CONSORT guidelines developed to ensure 
consistency in the implementation and interpretation of clinical trials (Moher et al., 2012) 
 recommend that covariates are selected based on a priori  substantive considerations rather 
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than in a post hoc fashion based on the presence of significant differences between treat-
ment groups. This allows for seamless integration of results of different studies in meta-
analyses, as the covariates that are controlled in each study are not likely to be idiosyncratic 
to the particular study. 

8.1.3 Analysis of Covariance in Observational Studies

In observational studies, controlling for covariates is much more complex since it is pos-
sible that the main predictor of interest (treatment or exposure) is majorly or completely 
confounded with other predictors of outcome. Confounding with quantitative covariates 
manifests in no, or little, overlap of the distributions of the covariates in the different treat-
ment\exposure groups. In this case, including the potential covariate as a main or interac-
tive effect in the model could remove or exaggerate the treatment\exposure effect. Thus, 
the need for, and method of, covarying should be carefully considered and the relation-
ship between the covariate and treatment\exposure should be examined from a substan-
tive perspective. In general, for analysis of covariance to be valid in observational studies, 
the covariate should not be affected directly or indirectly by treatment or exposure and 
there needs to be substantial overlap between the distributions of the covariate for each 
level of treatment or exposure. If there is no or very little overlap, results of ANCOVA are 
not interpretable. If there is substantial overlap then ANCOVA could be performed, but 
interpretation depends on the relationship between the covariate and exposure/treatment, 
and the potential for bias remains. 

ANCOVA can be used to control multiple covariates, but a better method is the pro-
pensity scoring  approach (see D' Agostino (1998) and Williamson and Forbes (2014) for 
a tutorial and introduction, respectively). This method is considered in more detail in 
Section  8.3 and later illustrated on a data example (Section  8.4) but the basic idea is as 
follows: When comparing a non-randomized group to a control group, the propensity 
score is defined as the probability of being in the treatment/exposure group given the 
covariates. It can be used to balance the covariates in the two groups by matching or 
stratification, regression adjustment, or inverse probability weighting. When balance 
on the covariates is achieved, bias due to confounding with these covariates can be 
reduced or eliminated. 

While ANCOVA with multiple covariates or the propensity scoring approach allows 
us to adjust for a set of observed variables, groups may differ not only on observed, but 
also on unobserved, covariates. In this case, it is very difficult to obtain unbiased esti-
mates of the group effects. ANCOVA and propensity scoring cannot deal with variability 
due to unmeasured confounders. One approach that is designed with the goal of control-
ling for unobserved confounding is the instrumental variable approach  (see, e.g., Hogan and 
Lancaster, 2004; Baiocchi et al., 2014). Instrumental variables are variables that are indepen-
dent of other measured or unmeasured covariates, are associated with treatment/expo-
sure, and have no direct effect on the outcome. That is, whatever effect they might have on 
the outcome is via the treatment/exposure variable. A two-stage estimation approach is 
usually used in order to remove bias via the use of instrumental variables. The success of 
this approach depends on the ability to find a good instrumental variable that is specific to 
the subject-matter area, and this is often a very challenging task. Perhaps for this reason, 
this method is still not very popular in the medical and behavioral sciences literature. 
However, it has been used extensively in econometrics. Describing this approach is beyond 
the scope of this book, but we refer the interested reader to Bowden and Turkington (1984), 
Angrist et al. (1996), and Imbens (2014).
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8.2 Controlling for Covariates in Clustered and Longitudinal Studies

Controlling for covariates in studies with repeated measures has similar advantages 
as in studies with cross-sectional data. In particular, precision and efficiency may be 
increased and chance imbalances can be corrected in randomized experiments. However, 
similar cautions apply in observational studies where estimates are likely to be biased. 
Furthermore, there are added challenges, as there are different types of covariates in lon-
gitudinal and clustered designs that can be related in different ways to the main predictor 
of interest and the outcome. Covariates can vary within individual (within-subject covari-
ates ) or between individuals (between-subject covariates ). For example, variables such as sex 
or different genotypes vary between individuals. Measures of environmental exposures 
or people’ s behaviors can vary within individuals. In longitudinal studies, covariates are 
classified as either time-independent  (i.e., their values do not vary during the entire study 
period) or time-dependent  (i.e., their values potentially change during the study period). For 
example, in COMBINE, baseline drinking intensity is an example of a time-independent 
covariate while medication compliance or concurrent medications are examples of time-
dependent covariates. In the cross-over study of menthol’ s effects on nicotine reinforce-
ment, type of cigarettes smoked (mentholated versus non-mentholated) is an example of 
a time-independent covariate, while baseline on each test day is an example of a time-
dependent covariate. In clustered data with different levels of clustering, covariates can 
be measured at each level of clustering (e.g., individual characteristics at the student level, 
homeroom characteristics at the homeroom level, and school level characteristics at the 
school level). 

Different covariate types are seamlessly incorporated in GEE and mixed models, but 
one needs to be careful not to specify effects or interactions that are not readily inter-
pretable. For example, interaction of time-independent covariates with time can be easily 
interpreted, but that is not always the case for interactions of time-dependent covariates 
and time. Time-dependent covariates are usually included as main effects. If treatment 
changes over time (as in cross-over trials, for example), interactions between time-depen-
dent covariates and treatment might be difficult to interpret. 

The general strategy of handling covariates in models for repeated measures data  is as follows:

Step   1:  Determine the adequate form of the covariate part of the model. That is, 
determine whether the covariates and the outcome (or appropriate function of 
the outcome such as odds or log means in the case of non-normality) are related 
linearly and whether transformations are needed. Ideally, this needs to be done 
within each treatment group and by time (in balanced designs), but in unbal-
anced designs this is not possible. In addition, the relationship can change with 
time or be different by treatment group. In such cases, several different complete 
models might need to be considered, their residuals examined, and the decision 
between competing models based on interpretability and goodness of fit. Note 
that substantive considerations should guide the model selection, as otherwise 
there may be too many possibilities to consider and type I errors can be commit-
ted more easily. 

Step 2:   Determine the variance– covariance part of the model. That is, determine the 
random effects and the residual error variance– covariance structure by compar-
ing different models as outlined in Chapters  3 and 4.
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Step 3:   Simplify the fixed part of the model as described in steps 2 and 3 in 
Section  8.1.1 for cross-sectional studies. That is, test whether the covariates are 
needed. Then, if they are needed, test the equal slope assumption. Note that with 
longitudinal data you may need to evaluate not only whether the slopes are the 
same across treatments, but also whether they are the same over time. Thus, one 
needs to carefully consider potential interactions among covariates and treatment 
and to evaluate whether there is evidence that they are important. Often, sub-
stantive considerations trump statistical significance as significance is frequently 
dependent on sample size. 

Step 4:   Compare treatments/exposures based on the final model identified in step 3. 
If an equal slope model is selected, evaluate the differences at an arbitrary value 
of the covariate. If the unequal slope model is selected, compare the treatments at 
three or more different values of the covariate, or compare intercepts and slopes 
between the different treatment groups. Since the results may also vary by time, 
additional comparisons may need to be made. 

Similar to the situation with cross-sectional data, controlling for multiple covariates 
is challenging, transformations can change the nature and the significance of covariate 
effects, categorical covariates and outcomes are seamlessly handled, and missing data 
(especially on the covariate) can affect inferences. 

An additional issue with analysis of covariance in the context of longitudinal data is that 
it can be performed on the repeated observations as they are (whether including baseline 
as part of the repeated measures or not) or on change from baseline (absolute or percent 
change). Absolute change is, in general, preferable to percent change because it is always 
well-defined and has been empirically shown to be more efficient in a variety of scenarios 
(Vickers, 2001). In contrast, percent change is sometimes not well-defined. For example, 
one cannot calculate a percent change of zero, and percent change may not be meaning-
ful when there is a mix of positive and negative numbers. Still, in some cases when the 
repeated measures are all positive, an analysis on the logarithmic scale with results pre-
sented as percentages may be appropriate. 

When change from baseline is the outcome, it is imperative to include the baseline 
 values as covariates. If baseline values are not included, estimates may be biased because 
the analysis essentially assumes that the relationship between post and baseline values 
is described by a simple linear regression with a slope of 1. As with other covariates, one 
needs to assess whether there are equal or unequal slopes (i.e., whether baseline interacts 
with treatment). 

Although analysis of covariance is appropriate when the goal is to improve power in 
randomized studies and to control for chance imbalances between treatment groups, 
it requires complete data on the outcome and the covariate. This is rarely the case 
in prospective clinical trials as subjects drop out. One solution to this problem is to 
use full information likelihood inference based on all repeated measures data on an 
individual controlling for baseline covariates. This approach can be applied seam-
lessly when data are missing only on the outcome. Another approach is to impute 
missing data using multiple imputation, fit an analysis of covariance model to each 
imputed data set, and combine the estimates and standard errors, taking into account 
the variances within and between imputed data sets as outlined in Chapter  7. This 
method can be applied when there are missing data on both the covariate and out-
come variable. 
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8.3 Propensity Scoring

Propensity scoring  allows one to adjust the estimates of treatment/exposure effects on an 
outcome for multiple measured confounders (Rosenbaum and Rubin, 1983; 1984; 1985). 
The ultimate goal is to estimate causal effects, and this approach attempts to do that when 
systematic differences between groups (defined by treatment or exposure) are expected. 
Propensity scoring is mainly used to adjust inferences in observational studies, but it 
can also be used in clinical trials, most often to adjust for dropout. Herein, we present 
the general propensity scoring idea in more detail and discuss how it can be applied 
to assess causal effects via regression adjustment, matching, stratification, or probability 
 weighting. Examples are given in Section  8.4. We focus on the simple scenario of a binary 
treatment/exposure that has been considered by D’ Agostino (1998) and Williamson and 
Forbes (2014) in their fairly non-technical introductions. Extensions to categorical predic-
tors with more levels or to quantitative predictors have been considered in recent years 
(e.g., Imai and van Dyk, 2004). The books of Rosenbaum (2002, 2010) provide a detailed 
and technical guide to design and analysis of data from observational studies. In a recent 
review of the medical literature (Austin, 2008), different pitfalls with the application of 
the propensity scoring approach have been identified. Most often, propensity scoring is 
used for the analysis of cross-sectional data and when treatment is not time-varying. 
However, in recent years, extensions to time-varying treatment effects have also been 
proposed (e.g., Lu, 2005).

To understand propensity scoring we first need to define causal effects. The causal effect 
of treatment (active versus control) at the individual level is defined as the outcome on the 
active treatment minus the outcome on the control treatment. An individual receives only 
one of the possible treatments, and hence, only one of these outcomes is observed. The 
other is unobserved and is called a counterfactual outcome . Thus, individual causal effects 
cannot be directly measured or estimated. However, average causal effects in a population 
of individuals can be estimated in randomized parallel group experiments as the differ-
ence between the average response of subjects on active treatment and subjects on control 
treatment. Because of randomization, individuals receiving the active treatment and those 
receiving the control treatment are representative of the entire population of interest and 
thus the average outcome for each group is an unbiased estimate of the outcome of all 
individuals who could potentially have received active and control treatment, respectively. 
This makes randomized clinical trials well suited for causal inference, but it is imme-
diately clear that observational studies where individuals are not randomly assigned to 
groups are ill-suited for causal inference. The propensity scoring approach attempts to 
balance the groups on observed covariates so that observational studies can be treated as 
pseudo-experiments  and causal inference can be done under certain conditions. In particu-
lar, in order for this approach to result in causal estimates, it is necessary to assume that 
there are no unmeasured confounder variables and that the individuals do not influence 
each other’ s outcomes. 

In observational studies, groups of individuals are often compared (e.g., smokers ver-
sus non-smokers, patients with a particular disease versus healthy controls). Thus, the 
groups differ on a variety of characteristics (both measured and unmeasured), some of 
which are prognostic of the outcome, and thus the group differences in outcome cannot 
strictly be attributed to group. Analysis of covariance in this situation usually gives biased 
results because it cannot adequately adjust for group differences in important covariates. 
In such situations, alternative approaches to analysis of covariance based on propensity 
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scoring adjustments with matching, stratification, regression modeling, or inverse prob-
ability weighting are used. Since the propensity score method is more frequently used in 
observational studies, we will consider the two groups to be exposed and non-exposed 
individuals for the remainder of this section. 

The propensity score  is the probability that an individual is exposed given the measured 
confounding variables. We can estimate it by fitting a logistic regression with the con-
founding variables as predictors and the binary indicator of exposure as the outcome. 
Other approaches such as classification trees are possible but not as frequently used. 
The predicted exposure probabilities are the estimated propensity scores and they all 
are between 0 and 1. A crucial property of the propensity score is that all variables that 
are included in the propensity score model are balanced at each value of the estimated 
propensity score. Thus, the causal exposure effect can be obtained by comparing the out-
come in the exposed and unexposed groups at each value of the estimated propensity score . 
Matching, stratification, and controlling for the propensity score are all valid techniques 
to do this. Weighting is another technique that can be used to obtain causal effects. We 
briefly explain these here.

Propensity score matching  involves creating exposed and unexposed groups that are 
matched on propensity scores. Thus, for each individual in the exposed group, one or 
more individuals in the unexposed group with very similar propensity scores (within a 
certain level of closeness) to that individual are identified. If the matched samples are bal-
anced on the covariates (which can be assessed by evaluating standardized differences 
in each covariate), statistical methods for matched data can be used to estimate exposure 
effects (e.g., conditional logistic regression, weighted regression methods). Note that creat-
ing matched samples is rarely an easy task. For example, some individuals in the exposed 
group might not have close matches, and in this case such individuals are discarded. 
Thus, the estimated exposure effect might not be representative of the exposure effect in 
the population of exposed individuals. There are a variety of techniques for propensity 
score matching with no clear winner. For example, matching can be done with or without 
replacement from the population of unexposed individuals, but if replacement is used, one 
needs to account for potentially using some subjects’  data more than once. In general, the 
propensity score matching approach is preferred when the number of exposed individuals 
is much smaller than the number of unexposed individuals. 

Propensity score stratification  involves splitting the estimated propensity scores in several 
strata (e.g., the lower 20% of propensity scores, 20%– 40%, 40%– 60%, 60%– 80%, 80%– 100%), 
evaluating exposure effects within each stratum, and then calculating an overall average 
of the within-stratum effects. An advantage of this approach is that it is easy to implement, 
but it is not as precise as propensity score matching since there might still be lack of bal-
ance between propensity scores of the exposed and unexposed groups within stratum. 
Usually, there are only a few strata (e.g., five) and although the number can be increased, 
some residual imbalances may remain. Furthermore, it is possible that the distributions of 
the propensity scores in the exposed and non-exposed groups are shifted with respect to 
each other, in which case in some strata there might be too many individuals of one group 
and too few the other.

Covariate adjustment using propensity scores  involves fitting a regression model with the 
exposure variable as the primary predictor and the propensity score itself as a covari-
ate. Interactions between exposure and the propensity score can also be considered. This 
approach is the simplest to apply, as it is essentially an ANCOVA model with the pro-
pensity score as the covariate of interest. However, it may fail to correct for bias when the 
distributions of the propensity scores between the groups do not sufficiently overlap, and, 
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even more importantly, it relies on the assumption that the model relating the propensity 
score and the response is correctly specified. For these reasons, this approach is usually 
not recommended. 

The inverse probability weighting approach  differs from the other three methods in that 
it does not compare individuals with the same value of the propensity score but rather 
weighs the individuals’  data based on the estimated propensity score in an appropriate 
model for the outcome. If p i   is the estimated score for the i th individual, the weight is 1/p i   
if the individual is in the exposed group and 1/(1  −   p i  )  if the individual is in the unexposed 
group. Thus, individuals in the exposed group with higher estimated propensity scores 
are given less weight than individuals with lower propensity scores in that same group. 
In contrast, individuals in the unexposed group with higher estimated propensity scores 
are given more weight than individuals with lower propensity scores in that group. Thus, 
subjects in a particular group who are more like the subjects in the other group in terms 
of their covariates are weighed more heavily. The outcome model can be any appropriate 
model, e.g., logistic or linear regression for a single outcome variable. 

We have already considered such a weighting method in the previous chapter in the 
context of accounting for missing data. The same technique is used to control for lack of 
balance of covariates among exposure groups. This approach is easy to apply and per-
forms well, except when the estimated propensity scores are close to 0 or 1. In this case, 
the weights are too high and the resulting exposure estimates are imprecise. Trimming 
procedures have been proposed to deal with this issue. This approach is preferable in the 
absence of large weights and when the exposed and unexposed groups are of similar size. 

A few comments regarding propensity scoring are in order. First, all potential confound-
ers should be included in the propensity score model. To reiterate, these are variables that 
are related to the exposure and predictive of the outcome. Adding variables that are related 
to exposure but not to the outcome may actually inflate the variance of the exposure effect, 
and thus decrease precision. Variables that are predictive of the outcome but not related 
to the exposure do not improve the fit of the exposure model but may increase precision; 
thus, it may sometimes be beneficial to include these. 

Second, it should be checked whether the propensity score model achieves balance on 
the potential confounders. This is done by calculated standardized differences between 
the exposed and unexposed groups before and after applying the propensity score adjust-
ment by any of the four methods. These are standardized mean differences for continu-
ous confounders and standardized differences of probabilities for binary confounders (see 
Williamson and Forbes [2014] or Harder et al. [2010] for non-technical descriptions). Values 
of greater than 10% difference are indicative of some remaining bias. Such a level of bias is 
problematic for strongly predictive variables of the outcome. 

Third, missing data in the exposure model (whether on the exposure itself or on covari-
ates) can be handled by multiple imputation. 

Fourth, a sizeable sample size is needed for propensity score analysis in order to carry 
out a logistic regression or other prediction model of exposure with multiple possible 
covariates. The most typical propensity score analyses are performed on observational 
data sets with thousands of observations. 

Fifth, although we considered the simple situation with binary exposure variable here, 
methods have also been developed for categorical and continuous exposure variables 
(Imbens, 2000; Imai and van Dyk, 2004). 

Finally, propensity score methods are quite attractive because most of the modeling for 
bias correction can be done without looking at the outcome. That is, the propensity score 
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model for the exposure can be fitted without knowing the outcome. Thus, it can be consid-
ered as a quasi-randomization approach for observational studies.

In summary, the propensity score methods are flexible and appropriate when it is neces-
sary to control for multiple measured confounding variables. However, the presence of 
bias on potentially predictive variables should be checked before and after adjustment. 
Bias may still remain due to unmeasured confounders. In this case, other methods of 
adjustment such as instrumental variable approaches may need to be considered. 

8.4 Data Examples

8.4.1  ANCOVA of Endpoint Drinks per Day Controlling for 
Baseline Drinking Intensity in the COMBINE Study

ANCOVA is most often applied for the comparison of endpoint outcomes between groups 
when controlling for baseline measures. To illustrate this traditional ANCOVA, we con-
sider again the COMBINE clinical trial in alcohol dependence and herein focus on the 
outcome drinks per day at the end of treatment for individuals who drink. An analysis 
involving all four  months of treatment is considered in the next subsection. We ignore 
acamprosate treatment to simplify the presentation and perform an overall test of dif-
ferences between the four groups (naltrexone and CBI, naltrexone only, CBI only, neither 
 naltrexone nor CBI). This analysis was used to illustrate one-way ANOVA in Chapter  2 
and here we consider it again in order to demonstrate the basic steps of ANCOVA. 

If a simple one-way ANOVA model is fit to the log-transformed outcome, there is a 
statistically significant treatment effect (F(3,717)  =  3.34, p  =  0.02) with significantly fewer 
drinks per day on average for subjects who received at least one active treatment (naltrex-
one and/or CBI) compared with those not receiving an active treatment. Comparisons 
of least square means with confidence intervals are shown in Table  8.1 . This analysis 
answers the question of whether treatments differ on average in their effects on inten-
sity of drinking at endpoint in the clinical trial. However, the effect of the treatment 
could potentially vary for individuals depending on their baseline intensity of drink-
ing. The treatment groups are balanced at baseline on drinks per day (F(3,717)  =  2.04, 

TABLE  8.1 

Confidence Intervals for Pairwise Comparisons of Log Drinks per Day during the Last Month of 
the Study Period in the COMBINE Study

Treatment Group

Comparison 
Treatment 

Group

Least Square Mean 
Difference in ANOVA 

Model (95% CI)

Least Square Mean 
Difference in ANCOVA 

Model with Parallel 
Slopes (95% CI)

Naltrexone  +  CBI Naltrexone 
only

0.001 (− 0.16, 0.17) − 0.02 (− 0.18, 0.14)

Naltrexone  +  CBI CBI only 0.03 (− 0.13, 0.19) 0.06 (− 0.10, 0.21)
Naltrexone   +  CBI Neither − 0.19 ( − 0.35,  − 0.03 ) − 0.21 ( − 0.36,  − 0.06) 
Naltrexone only CBI only 0.03 (− 0.13, 0.19) 0.08 (− 0.08, 0.24)
Naltrexone only Neither − 0.19 ( − 0.35,  − 0.03) − 0.19 ( − 0.34,  − 0.03) 
CBI only Neither − 0.22 ( − 0.38,  − 0.07) − 0.27 ( − 0.42,  − 0.12) 

Note: Estimates highlighted in bold indicate statistically significant differences at 0.05 level.
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p  =  0.11), hence there is no reason to expect systematic bias in the estimates of the effects in 
ANOVA, but ANCOVA may improve power for the between-group comparisons and may 
increase precision in the estimates of treatment effects. The steps of ANCOVA analysis 
are outlined in the following.

Step 1  : We assess the type of the relationship between the outcome and the covariate 
by fitting several different models to evaluate how intensity of drinking relates to 
baseline drinking by treatment group. In particular, we consider linear and qua-
dratic regression models on raw and log-transformed measures. Figure  8.1  shows 
the fit of the simple linear regression models to the raw and log-transformed data. 
We show the results of the analysis of the entire sample together, but separate 
 models by treatment arm look very similar. We note that there is no indication of a 
curvilinear relationship between intensity of drinking at baseline and during treat-
ment. Indeed, when quadratic models are fit, the quadratic term estimates are not 
statistically significant for any of the treatment arms. In addition, the fit of the model 
is much better when both measures of intensity of drinking are log-transformed, 
because the transformation both stabilizes the variances and reels in potential 
 outliers. There is still a minor issue with floor effects (since number of drinks can-
not be less than zero) and there are some positive outliers outside of the prediction 
limits based on the regression fit, but none are too extreme. Thus, it appears that a 
linear relationship between the log-transformed covariate and the log-transformed 
outcome is justified, and we proceed to the next steps in ANCOVA using this form 
of the model. Residual plots (not shown) confirm that this is a good choice. 

Step 2  :  We assess whether the outcome is significantly associated with the covari-
ate. Figure  8.1 suggests that there is a positive association between the two vari-
ables, but the formal test of whether the slopes of the linear relationship between 
the covariate and the outcome are simultaneously zero is highly statistically sig-
nificant (F(4,713)  =  15.63, p  <   0.0001), indicating that such a relationship indeed 
exists. 
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Simple linear regression fit of drinks per day at the end of treatment versus baseline drinks per day in the 
COMBINE study before (a) and after (b) log transformation.
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Step 3:   Next, we assess whether the relationship between the covariate and the out-
come varies by treatment group. The interaction test is not statistically signifi-
cant (F(3,713)  =  2.03, p  =  0.11); hence, we conclude that the relationship between 
the covariate and the outcome does not vary by treatment group and we can use 
a common slope model. 

Step 4:   We perform inferences based on the common slope model. The left panel of 
Figure  8.2  shows the results from the application of the common slope model to 
the intensity of drinking outcome in the COMBINE data, while, for comparison 
purposes, the right panel of Figure 8.2 shows the results when different slopes are 
considered. Since the test of the interaction between treatment and the covariate 
is not statistically significant, the graph on left in Figure 8.2 is based on our final 
model.

Table  8.1 shows the least square mean comparisons and associated 95% confidence 
intervals for the contrasts between the different treatments when covarying for baseline 
intensity of drinking according to our final model. Note that the estimates are somewhat 
different from the estimates in the model without covarying since there are some differ-
ences in the covariate at baseline between groups. In ANOVA, one estimates the mean dif-
ferences regardless of the values of the covariate, and in ANCOVA, the mean differences 
are adjusted for the covariate levels, i.e., we align the groups as if they have the same val-
ues on the covariate and then compare the means. When the covariates are well balanced 
across groups, the difference between ANOVA and ANCOVA estimates tend to disappear. 
From Table  8.1, we also notice that the confidence intervals based on ANCOVA are slightly 
narrower than those based on ANOVA. This is because we gain efficiency and reduce the 
residual variability by essentially subtracting the variability in the outcome due to the 
covariate. However, the gains here are minimal.

Just for illustration, we also consider the more general model with unequal slopes 
(i.e., with treatment by covariate interaction) that was used to produce the right panel of 
Figure  8.2. In this plot, the regression lines describing the relationship between the covari-
ate and the outcome for the different treatments cross. Thus, depending on which level of 
the covariate we consider, we get a different estimate for the mean differences between 
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treatments. Table  8.2  shows the least square mean comparisons with 95% confidence inter-
vals evaluated at approximately the mean value of the covariate (log number of drinks at 
baseline  =  2), at a value that is about two standard deviations below the mean (log number 
of drinks at baseline  =  1) and at a value that is about two standard deviations above the 
mean (log number of drinks at baseline  =  3). These values correspond to seven, three, and 
20 drinks per day (note that on the original scale the values are not equally spaced but 
correspond to a number of drinks at the lower end of the heavy drinking range, below the 
commonly used heavy drinking cutoff of 5, and very heavy drinking). 

We see quite a bit of variability in the estimates and the confidence intervals depend-
ing on the value of the covariate at which we assess the effects. The confidence intervals 
are tighter when calculated at mean baseline intensity of drinking, and wider at baseline 
intensity of drinking that is either higher or lower by two standard deviations than the 
mean (on the log scale). There are no significant differences between the treatment groups 
when baseline intensity of drinking is low. In contrast, for average and high baseline drink-
ing intensity, the active treatment is better than placebo, with more exaggerated effects at 
high baseline drinking intensity. Note, though, that since the overall baseline intensity by 
treatment interaction is not statistically significant, the equal slope model should be used 
to interpret treatment effects rather than this model. 

8.4.2  Analysis of Monthly Drinks per Day Controlling for 
Baseline Drinking Intensity in the COMBINE Study

Since the outcome drinks per day for subjects who drink is assessed monthly, we perform 
an analysis of the repeated measures data (months  one to four) using a covariance-pattern 
model and include baseline drinking intensity as a covariate. We follow the steps outlined 
in Section  8.3.

Step 1:  This step is very similar in Section  8.4.1, but there are more time point by treat-
ment combinations. The results are very similar for the longitudinal data so are not 
presented here. The overall conclusions are the same, so we use log-transformed 
drinks per day as the outcome, and log-transformed baseline drinking intensity as 
the covariate. The fixed portion of the model includes effects of treatment, time, 
 log-transformed baseline drinking intensity, and all possible interactions.

TABLE 8.2 

Confidence Intervals for Pairwise Comparisons of Log Drinks per Day Based on the Unequal 
Slopes Model in the COMBINE Study

Treatment Group

Comparison 
Treatment 

Group

Least Square Mean 
Difference at Two 

Standard 
Deviations below 

the Mean Covariate 
Value (95% CI)

Least Square Mean 
Difference at Mean 

Covariate 
Value (95% CI)

Least Square Mean 
Difference at Two 

Standard 
Deviations above 

the Mean Covariate 
Value (95% CI)

Naltrexone  +  CBI Naltrexone 
only

− 0.22 (− 0.58, 0.14) − 0.04 (− 0.20, 0.13) 0.15 (− 0.16, 0.45)

Naltrexone  +  CBI CBI only 0.03 (− 0.33, 0.39) 0.05 (− 0.11, 0.22) 0.07 (− 0.21, 0.35)
Naltrexone  +  CBI Neither − 0.02 (− 0.36, 0.32) − 0.20 ( − 0.35,  − 0.04) − 0.37 ( − 0.66,  − 0.08) 
Naltrexone only CBI only 0.25 (− 0.11, 0.61) 0.09 (− 0.07, 0.25) − 0.07 (− 0.37, 0.22)
Naltrexone only Neither 0.20 (− 0.15, 0.54) − 0.16 ( − 0.31,  − 0.00) − 0.52 ( − 0.82,  − 0.21) 
CBI only Neither − 0.05 (− 0.40, 0.30) − 0.25 ( − 0.40,  − 0.09) − 0.44 ( − 0.72,  − 0.17) 

Note: Significant effects at 0.05 level are indicated in bold.
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Step 2:  We select the best-fitting variance–covariance structure for the model with 
the general fixed-effects structure from step 1. We compare unstructured, autore-
gressive of first order, autoregressive of first order with heterogeneous variances, 
compound symmetry and compound symmetry heterogeneous. The unstruc-
tured has the lowest AIC, so we choose this option. 

Step 3:  This step aims to simplify the fixed portion of the model. However, in this 
case, the three-way interaction between the baseline covariate, time, and treat-
ment is statistically significant (F(9,946)  =  2.12, p  =  0.03), and hence, no simplifica-
tion is possible. The significant interaction means that the differences between 
treatments vary by time and baseline intensity level.

Step 4:  Since there is a significant interaction between treatment, time and baseline 
intensity, we assess the treatment effects at three different levels of the covariate 
and at all time points. We again select the mean covariate value and values approxi-
mately two standard deviations above and below the mean. Table  8.3  shows the 
tests of effect slices at each of these three levels of the covariate for each month. We 
see that at the mean covariate level there are differences between the treatments 
only at months three and four, while for high levels of baseline drinking there are 
also differences at month one. The substantive results for months  three and four 
are very similar to the results presented in Table  8.2, so are not shown here (see 
the online materials for full information). At month one, and for levels of baseline 
drinking two standard deviations above the mean, the combination treatment is 
associated with significantly higher drinks per day (0.41, 95% CI: (0.18, 0.65) versus 
naltrexone; 0.34, 95% CI: (0.11, 0.57) versus CBI; and 0.25, 95% CI: (0.01, 0.49) versus 
neither) and the rest of the pairwise comparisons are not statistically significant. 
Thus, the beneficial effects of active treatment are not manifest until month three 
of the clinical trial. As indicated in the previous subsection, we can also calculate 
different slopes for the relationship of baseline intensity of drinking with outcome 
by treatment and time in order to explain the significant interaction, but these are of 
secondary interest, as the main purpose of the study is to assess treatment effects. 

So far, we have considered only a time-independent covariate. In the next subsection, we 
focus on predictors that are time-varying. 

8.4.3  Mixed-Effects Analysis of Depression Trajectories during Recent 
Unemployment with a Time-Dependent Covariate

In this study introduced in Section 1.5.9, 254 recently unemployed individuals were fol-
lowed for up to 16  months after a job loss. At each of three interviews after the initial job 
loss (conducted at different times for different individuals), depression symptoms were 
measured using the CES-D questionnaire and unemployment status was recorded. More 
than half of the individuals remained unemployed until the end of the study. Some found 
work by the second or third interview, and some were re-employed and then lost their 
job again. We are interested in change in CES-D scores during the follow-up and how 
unemployment affects depression symptoms. Thus, the main predictor of interest is time. 
Strictly speaking, unemployment status here is a predictor in its own right, but we use it to 
illustrate different possibilities for incorporating time-varying covariates in the statistical 
model for change over time. The main predictor here is continuous (time) and the second-
ary predictor (unemployment status coded as 1 or 0) is binary.
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The first model that we consider is a linear mixed model with CES-D as the response, 
time as a fixed predictor, and random intercept and slope in order to model individual vari-
ability around the average slope. The random intercept and slope are assumed to be corre-
lated. Note that since this study has an unbalanced design (i.e., individuals are not observed 
at the same time points), the random effects approach is more appropriate than the covari-
ance pattern approach. The second model adds time-varying unemployment status as a 
fixed main effect to the first model. Thus, unemployment status is assumed to shift CES-D 
scores by a fixed amount in the population. The third model adds a fixed-effects interac-
tion between unemployment status and time. This means that how much CES-D scores are 
shifted depends on when during the study re-employment happens. We also considered 
models with random effects for unemployment status, but since these models either could 
not be fit or did not provide a better fit than models 1-3, they are not presented here. 

Table  8.4  summarizes the results for the fixed-effects estimates from the three models 
and the model fit criteria. We do not present the random effects estimates here. The online 
materials present information on the variance components. The estimates in Table  8.4 vary 
considerably depending on which model is used. In particular, the slope estimate of the 

TABLE 8.3 

Tests of Effect Slices for the Treatment Effects by Time Period at Different Levels of Baseline 
Drinking Intensity

Month Baseline Drinking Level Test Statistic P‑Value

1 Two standard deviations below the mean F(3,946)  =  0.73 0.54
2 Two standard deviations below the mean F(3,946)  =  0.38 0.76
3 Two standard deviations below the mean F(3,946)  =  2.49 0.06
4 Two standard deviations below the mean F(3,946)  =  1.31 0.27
1 The mean F(3,946)  =  1.67 0.17
2 The mean F(3,946)  =  1.55 0.20
3 The mean F(3,946)   =  3.95 0.008 
4 The mean F(3,946)   =  4.04 0.007 
1 Two standard deviations above the mean F(3,946)   =  4.54 0.004 
2 Two standard deviations below the mean F(3,946)  =  2.20 0.09
3 Two standard deviations above the mean F(3,946)   =  3.31 0.02 
4 Two standard deviations above the mean F(3,946)   =  6.62 0.0002 

Note: Significant effects at 0.05 level are indicated in bold.

TABLE 8.4 

Estimated Slopes and Model Fit Criteria for the Association between Depression and 
Unemployment Study

Model AIC
Estimated Slope over 

Time (95% CI)
Estimated Effect of 

Unemployment (95% CI)

Model 1: Main effect of 
time

5143.5 − 0.42 (− 0.59, − 0.26) — 

Model 2: Main effects of 
time and employment 
(time-dependent)

5116.1 − 0.20 (− 0.39, − 0.02) − 5.12 (− 7.06, − 3.17)

Model 3: Interaction of 
time and employment 
(time-dependent)

5112.8 Unemployed: 0.16 (− 0.22, 0.54)
Employed: − 0.30 (− 0.51, − 0.10)

At month 2:− 7.60 (− 10.61, − 4.59)
At month 8:− 4.81 (− 6.77, − 2.85)
At month 14:− 2.02 (− 5.47, 1.43)
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time effect is − 0.40 when unemployment status is not considered, and this changes to − 0.20 
when unemployment status is considered. Thus, depression severity improves over time 
but the rate of improvement may be overestimated when we do not control for unem-
ployment status. The main effect of unemployment in model 2 is sizeable (− 5.12) which 
translates into a mean difference of more than five points on CES-D, with better scores for 
those employed at a particular time point compared with those unemployed. Since re-
employment accounts for some of the improvement in depression scores with time after 
unemployment, it is not surprising that this diminishes the estimate of the time effect. 
Note, however, that the effects here do not have a causal interpretation since this is an 
observational study. Conceptually, unemployment may result in more depression symp-
toms, but depression may also lead to unemployment. A number of other unmeasured 
confounders may also affect the outcome. 

From Table  8.4, we also see that model 2 fits significantly better than model 1. If we do 
not take unemployment into account we end up overestimating the time effect and might 
erroneously conclude that individuals recover naturalistically from depression triggered 
by recent unemployment. 

Figure  8.3  shows the estimated mean trajectories from the main effects model 2 when 
employment status does not vary (employed versus unemployed throughout the study) 
and when employment status varies. Note that since everybody was unemployed at the 
first interview, the estimated depression score for employed individuals at the begin-
ning is an extrapolation. Since there is no interaction, the lines are parallel, and change in 
employment has the effect of shifting estimated depression scores: downward in the case 
of re-employment and upward in the case of new unemployment. 

Similarly, Figure  8.4  shows the estimated mean trajectories from the interaction model 
when unemployment status varies or does not vary. This time, the lines are not parallel 
because of the significant interaction (F(1,425)  =  4.55, p  =  0.03). 

Based on the AIC (Table  8.3), the interaction model (i.e., Model 3) fits the best among the 
three considered models. The slope for change in depression levels over time is negative 
when employed (− 0.30) and slightly positive (0.16) but non-significantly different from a 
slope of zero when not employed. Employment is generally associated with lower depres-
sion levels; however, there is an indication of converging lines toward the end of the study, 
which may at least partially be due to regression to the mean (see the three different 
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Estimated mean outcomes from the main effects model in the depression by unemployment status study.
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estimates of the unemployment effects at months  2, 8, and 14 of the study). Because of the 
non-parallel lines, change in employment status has more of an effect on depression at the 
beginning of the study than toward the end. Note that because both time and employment 
status are time-varying covariates, interpretation is not as straightforward as in studies 
with time-independent covariates only.

Furthermore, since this is a random effects model, there is inter-individual variability in 
change over time. Figure  8.5  shows the predicted trajectories for individuals with different 
patterns of transitions from unemployment to employment. As expected, individuals who 
remain unemployed tend to maintain their depression levels with only slight improve-
ment. For those who are re-employed, depression scores are estimated to improve with 
employment and then potentially deteriorate if unemployment happens again. 

Additional models and more detailed considerations of this data set can be found in 
Singer and Willett (2003).

8.4.4  Estimating the Effect of Transition to Retirement on Change in 
Self-Rated Health in the Health and Retirement Study

We use this analysis to illustrate the different versions of the propensity scoring approach 
of controlling for measured confounders. For simplicity, we focus on the first two waves 
of the study and evaluate the relationship between transition into retirement and a binary 
measure of change in self-rated health. The measure is equal to 1 if the self-rated health 
assessment worsened from wave 1 to wave 2, and 0 if it stayed the same or improved. A 
simple chi-square test indicates that retirement and change in self-rated health are indeed 
statistically significantly associated (χ 2 (1)  =  24.41, p  <   0.0001) with 35.9% of retirees com-
pared with 27.5% of the individuals who do not retire in this period reporting worsening 
health. The estimated odds ratio is 1.48 (95% CI: (1.27, 1.73)); thus, individuals who retire 
are about 50% more likely to report worsening self-rated health.

The association between retirement and self-rated health may be confounded by a number 
of other predictors. For example, age is related to both retirement and health. Individuals 
who retire are older by about two  years on average at baseline compared with those 
who do not retire. Also, older individuals in general report worse health. Other sociode-
mographic variables and previous self-rated health can also confound the relationship 
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between retirement and health. Different health conditions can also affect both the deci-
sion to retire and the self-assessment of health. Table  8.5  lists variables that are available in 
the data set and that we considered as potential confounders. The second column of this 
table shows standardized differences in these variables between subjects who transitioned 
to retirement and subjects who did not transition. For quantitative variables, the standard-
ized mean difference is the mean difference in the groups divided by the pooled standard 
deviation. For binary variables, it is the difference in proportions divided by the average of 
the standard deviations. Some authors prefer to use the standard deviation in the exposure 
group in the denominator rather than the average of the standard deviations, but both 
strategies are good as long as they are applied consistently. Standardized differences above 
0.10 are considered problematic, especially if larger than 0.25, in variables that are prognos-
tic of the outcome. In these data, the largest standardized differences prior to adjustment 
are in age, previous self-rated health, and some of the health condition variables (arthritis, 
heart disease, diabetes). A few other standardized differences are higher than 0.10 as well. 
Thus, the propensity scoring approach should be used to balance on these potential con-
founders. Note that the health conditions reflect lifetime prevalence.
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We use logistic regression to estimate the predicted probability of retirement (i.e., the 
propensity score) based on these variables. The distributions of the estimated propensity 
scores by retirement status are shown in Figure  8.6 . There is substantial overlap between 
the two distributions but, as expected, the propensity scores of those who retire are shifted 
toward larger estimated probabilities and there is more variability. Thus, adjustment of the 
propensity score is expected to shift the estimates for the relationship between retirement 
and change in self-rated health. 

We consider all four methods for propensity score adjustment and briefly present the 
results here. Detailed results are available in the online materials. The propensity score 
matching is done using a caliper approach, where each observation in the retirement 
group is matched to two observations in the control group with propensity scores within 
0.05 of the target propensity score. The resulting data set is analyzed using conditional 
logistic regression for matched groups with change in self-rated health as the response 
and retirement indicator as the predictor. The balance on propensity scores after match-
ing is checked by calculating standardized differences in the matched sample. Balance 
is excellent, with no standardized differences above 0.10 (see third column of Table  8.5). 
The adjusted analysis shows a statistically significant association between retirement and 
change in self-rated health that is stronger than the unadjusted association (see Table  8.6  
for the comparison of results across methods).

Propensity score analysis with stratification is performed after dividing the propensity 
scores into five equal bins and running stratified logistic regression to obtain an overall 
estimate of the group differences across strata. This adjustment is not as precise as the 
matching adjustment, but is easier to apply, and in cases when there is good overlap of 
the propensity score adjustments it works fairly well. The adjusted odds ratio using this 

TABLE 8.5 

Potential Measured Confounders for the Relationship between Transition to Retirement and 
Change in Self-Rated Health with Standardized Differences between Groups (Retired versus Not 
Retired) before and after Propensity Score Matching

Variable
Standardized Difference before 

Adjustment
Standardized Difference after 

Adjustment

Age 0.59 − 0.02
Previous self-rated health 0.34 0.04
Total non-housing wealth 0.04 − 0.07
Gender 0.01 − 0.01
Smoking (yes, no) 0.06 0.00
Race (white, non-white) 0.05 0.03
Obesity (yes, no) 0.11 0.03
Diabetes (yes, no) 0.23 0.02
High blood pressure (yes, no) 0.19 0.01
Heart disease (yes, no) 0.26 0.03
Stroke (yes, no) 0.20 0.01
Lung disease (yes, no) 0.16 − 0.01
Arthritis (yes, no) 0.27 0.03
Cancer (yes, no) 0.06 0.04
Depression at baseline (yes, no) 0.14 − 0.01
Ever had depression (yes, no) 0.21 0.03
Psychiatric conditions (yes, no) 0.17 − 0.01
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method is in between the odds ratios from the matched propensity score analysis and for 
the unadjusted analysis. 

The propensity score analysis with regression adjustment where the propensity score is 
simply included as a covariate in the logistic regression model gives very similar results 
to the stratified approach. Regression adjustment is also very easy to apply but is the least 
preferred approach, especially when propensity score distributions in the two groups are 
shifted with respect to one another. 

Finally, the propensity score analysis with inverse probability weighting gives a similar 
result to the propensity score analysis with matching. It is applied by fitting weighted 
logistic regression. This approach is also easy to use and results in good adjustment except 
in cases when the probabilities are close to 0 or 1, thus resulting in large weights. In such 
cases, calibration of the weights can be done. 

Although the results differ somewhat when using the propensity score method of adjust-
ment, the general conclusion remains the same— namely, that in this sample, retirement is 
associated with significantly higher odds of worsening self-rated health which cannot be 
explained by age, sociodemographic, or health differences between groups. Note that it is still 
possible that the results are biased due to the effect of unmeasured confounders. In addition, 
we focused on relatively early retirement (in wave 2, when most individuals are younger than 
65). The analysis can be extended to consider retirement in any of the remaining waves, but 
the analysis will become necessarily more complex as both the main predictor of interest and 
covariates may be time-varying. The basic idea of the propensity score approaches for time-
dependent exposure and covariates is to match individuals based on their entire covariate 
history during the study. Such models are beyond the scope of this book but interested readers 
are referred to Lu (2005), Ertefaie and Stephens (2010), Tleyjeh et al. (2010), and Leon et al. (2012).
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Distribution of estimated propensity scores for those who do not retire (top histogram) and those that do retire 
(bottom histogram) in the Health and Retirement Study.
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8.5 Summary

In this chapter, we reviewed traditional ANCOVA methods and the propensity scoring 
approach which are used to control for potentially confounding variables. We clarified 
that the main strength of ANCOVA methods is in improving power and precision in ran-
domized studies rather than in correcting for bias. We cautioned against improper uses 
of ANCOVA to control for unbalanced covariates in observational studies. The proper 
steps in performing ANCOVA analysis in cross-sectional and longitudinal studies with 
time-independent and time-dependent covariates were detailed and illustrated on data 
examples. 

Controlling for covariates in observational studies received special attention. Contrary 
to popular belief, ANCOVA is rarely appropriate for observational studies, as it generally 
gives biased results. The propensity scoring approach of achieving balance on observed 
confounding variables provides estimates of causal effects under strong assumptions. The 
four different techniques for propensity score adjustment were illustrated on a data exam-
ple with a single time-independent exposure. Detailed references on adjustments using 
propensity scoring and related approaches are D’ Agostino (1998), Joffe and Rosenbaum 
(1999), and Rosenbaum (2010). 

A limitation of the propensity scoring approach is that we can control only for observed 
confounders. It is possible that unobserved variables are confounding the observed rela-
tionship, in which case one could consider instrumental variable approaches. This is 
beyond the scope of this book and interested readers are referred to Angrist et al. (1996), 
Hogan and Lancaster (2004), and Hernan and Robins (2006). In general, methods for causal 
inference in longitudinal studies are a fast-developing field for statistical research. Useful 
references are Winship and Morgan (1999), Robins et al. (2000), Robins and Hernan (2009), 
and Morgan and Winship (2015).

TABLE 8.6 

Odds Ratios for the Association between Retirement and Change in Self-Rated Health in the 
Health and Retirement Study

Method Model Estimated Odds Ratio (95% CI)

Unadjusted association Unadjusted logistic regression 1.48 (1.27, 1.73)
Propensity scores with matching Conditional logistic regression for 

matched groups
1.70 (1.43, 2.01)

Propensity scores with 
stratification

Stratified logistic regression 1.59 (1.35, 1.87)

Propensity scores with regression 
adjustment

Logistic regression controlling for 
the propensity score

1.58 (1.34, 1.86)

Weighting by the inverse of the 
propensity scores

Weighted logistic regression 1.74 (1.61, 1.88)
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9
Assessment of Moderator and Mediator Effects

In Chapter 8, we reviewed methods of controlling for potentially confounding variables in 
clinical trials and observational studies. We considered both main and interactive effects 
of the covariates but we did not posit a particular relationship between the potential 
covariate and the main predictor of interest. In this chapter, we focus on two particular 
types of variables—moderators and mediators—and detail how they clarify the relationship 
between the main predictor of interest (treatment or exposure) and the outcome. We first 
focus on randomized experiments and then indicate the additional challenges in assess-
ment of moderator and mediator effects in observational studies.

In general, moderators are unrelated to and interact with treatment, and thus indicate 
for whom or in what circumstances treatment effects are more pronounced. On the other 
hand, mediators are changed by treatment and some, or all, of the effect of treatment is 
realized through the effect of the mediators on the outcome. Thus, moderators show for 
whom a treatment works, and hence play an important role in the recent wave of research 
targeted at personalized interventions or precision medicine. Mediators, on the other 
hand, show how a treatment works, and can provide important information on how to 
optimize treatment effects.

Assessment of moderator effects is fairly straightforward, and there is general consen-
sus that moderation is present when there is an interaction between the moderator and 
the main predictor of interest. On the other hand, assessment of mediator effects is still 
 subject to considerable debate, with somewhat different methods and/or differing assump-
tions offered in the statistics, epidemiology, and psychology literature. In this chapter, 
we  provide an overview of the most commonly used methods at a non-technical level 
and provide information about recent publications that explain the methods in detail. We 
place most attention on methods justified from a causal inference perspective with clear 
assumptions under which the mediator effects have causal interpretation. Interested read-
ers are referred to the recent books of MacKinnon (2008), Jose (2013), Hayes (2013), Hong 
(2015), and VanderWeele (2015) for more detailed and complete description of methods 
for  moderator and mediator analysis. Important publications that introduce or review the 
concepts of moderation and/or mediation and describe methods for assessment of such 
effects are Baron and Kenny (1986), Robins and Greenland (1992), Kraemer et al. (2002), 
Pearl (2003), Frazier et al. (2004), MacKinnon and Luecken (2008), Imai et al. (2010), Ten Have 
and Joffe (2012), Hayes (2013), VanderWeele (2015), and Preacher (2015). A good overview 
of methods used in the psychology literature is MacKinnon et al. (2007). A fairly non-
technical overview of causal inference methods for mediation is provided by VanderWeele 
(2016).

The chapter begins with a description of analysis of moderator effects (Section 9.1), 
 followed by data examples in Section 9.2. Mediation effects are presented with emphasis 
on the importance of the assumptions required to claim mediation in Section 9.3, and illus-
trative data examples are provided in Section 9.4. The chapter concludes with a summary 
and reiteration of the challenges in moderation and mediation analyses in Section 9.5.
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9.1 Moderators

Traditionally, clinical trials and observational studies have focused on average treatment 
or exposure effects. However, in recent years more and more emphasis is placed on identi-
fication of subgroups of individuals for whom treatments may be most effective or circum-
stances under which treatment or exposure effects might differ. Thus, there is an increased 
effort to identify moderators of treatment effects.

A moderator is a variable that affects the strength of the relationship between the main 
predictor of interest and the outcome. A common moderator in clinical trials is baseline 
severity of illness. Individuals with more severe illness may benefit to a greater extent from 
treatment since there is more room for improvement. Age and gender are other commonly 
explored moderators of treatment effects. A particular treatment may be more effective for 
younger individuals compared with older individuals, for females compared with males, 
or vice versa.

9.1.1 Assessment of Moderator Effects

The moderator can be categorical (qualitative) or dimensional (quantitative). We first con-
sider a simple linear model to assess the effect of a dichotomous treatment on an outcome 
at the end of treatment, and a single moderator where the moderator is unrelated (i.e., 
independent) to treatment assignment. The latter assumption is crucial in order to be able 
to claim that moderation has occurred. This independence assumption is usually quite 
reasonable in randomized studies but not necessarily in observational studies. The model 
that is used to assess the potential moderating effect is as follows:

 Y T M T Mi i i i i i= + + + +β β β β ε0 1 2 3  

Here, Ti indicates experimental versus control treatment, Mi is the moderator (dimen-
sional or dichotomous), and the interaction between treatment and the moderator is 
included in the model. The statistical test of the significance of the interaction coefficient, 
β3, indicates whether statistically significant moderation is present. If moderation is pres-
ent, the effects of treatment need to be evaluated at different levels of the moderating vari-
able in order to understand the nature of the moderation. For categorical moderators, the 
treatment effects are estimated at each of K levels (K ≥ 2) of the moderator. For continuous 
moderators, the approach described in Chapter 8 of evaluating treatment effects at the 
mean, and at values of the moderator one or two standard deviations above and below the 
mean, should be adopted.

Figure 9.1 shows several hypothetical scenarios illustrating different interaction effects 
between a dichotomous treatment and a dichotomous moderator on a quantitative out-
come. In scenario one, there is a treatment effect at the “high” but not at the “low” level 
of the moderator. In this scenario, the experimental treatment compared with the con-
trol treatment is associated with a larger mean response at the high level of the modera-
tor. In scenario two, there is a treatment effect at the “low” but not at the “high” level of 
the moderator. In scenario three, the treatment effects are in the opposite direction at the 
two levels of the moderator. The experimental compared with the control condition has a 
higher mean response at the “low” level of the moderator, but has a lower mean response 
at the “high” level of the moderator. In scenario four, there are treatment effects in the 
same direction at both levels of the moderator, but the magnitude of the effect is larger 
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at the “high” level of the moderator. Note that whether the effects depicted in this figure 
are statistically significant depends not only on the magnitude of the effect and the vari-
ance of the outcome variable but also on the available sample size. It is important to point 
out that the nature of interactions may change when transformations are applied to the 
outcome variable, so it is possible that there are moderating effects before, but not after, a 
transformation, or vice versa. That is, lines may be intersecting before transformation, but 
not after, or vice versa. Thus, moderator effects need to be interpreted only with respect to 
the chosen metric and in the context of the available sample size.

Assessment of the nature of the moderating effect is done by evaluating the simple 
effects of treatment at different levels of the moderator. As usual, it is much more infor-
mative to present effect sizes and associated confidence intervals for the simple effects 
than simply report p-values. Evaluation of simple effects was explained in more detail in 
Chapter 2. As an example, we used the endpoint data on log-transformed drinks per day 
in the COMBINE clinical trial to assess the effects of treatment. A significant naltrexone by 
CBI interaction was identified, and post hoc tests of simple effects were used to illustrate 
the nature of the interaction. Figure 2.1a showed the simple effects of naltrexone (active 
versus placebo naltrexone) at each level of CBI (CBI and no CBI) and Figure 2.1b showed 
the simple effects of CBI (CBI versus no CBI) at each level of naltrexone (active and pla-
cebo). These graphs illustrated that active naltrexone significantly lowered drinking com-
pared with placebo for subjects not on CBI, but did not have a significant effect for subjects 
who received CBI. Thus, if our focus is on naltrexone effects, then we can consider CBI to 
be a moderator of naltrexone effects since it defines in what circumstance (when no CBI 
is given) or for whom (subjects who do not get CBI) naltrexone is effective. On the other 
hand, if we are interested in the effect of CBI, then naltrexone can be considered a modera-
tor of its effect, because CBI is effective in reducing drinking only in the absence of naltrex-
one. The assumption of independence of the moderator and the main predictor of interest 

1. Treatment effect at high level of moderator 2. Treatment effect at low level of moderator

3. Treatment effects in opposite directions 4. Treatment effects differ in magnitude

Treatment

M
ea

n 
re

sp
on

se

Control

6
5
4
3
2
1
0

M
ea

n 
re

sp
on

se

6
5
4
3
2
1
0

M
ea

n 
re

sp
on

se

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

M
ea

n 
re

sp
on

se
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Experimental

Moderator = “low”
Moderator = “high”

Moderator = “low”
Moderator = “high”

Moderator = “low”
Moderator = “high”

Moderator = “low”
Moderator = “high”

Treatment
Control Experimental

Treatment
Control Experimental

Treatment
Control Experimental

FIGURE 9.1 
Four hypothetical scenarios of effects of dichotomous treatment on quantitative outcome moderated by a 
dichotomous variable.
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is satisfied in this case because both treatments are randomly assigned. However, in facto-
rial designs such as this one, it is rather unusual to consider one treatment as a moderator 
of another treatment since we are equally interested in both randomized treatments. More 
often, moderators are third variables such as baseline characteristics (e.g., gender, initial 
disease severity) that are not treatments themselves but rather precede treatment. In this 
sense, there is no ambiguity as to which variable(s) moderates treatment. This is a basic 
premise of the MacArthur approach to moderation advocated by Kraemer (2011). 

We next consider the situation when the outcome is not normally distributed and hence a 
non-linear link function is used to relate the outcome to the predictors. In this case, assess-
ment of moderator effects can be done according to the following generalized linear model.

 g E Y T M T Mi i i i i( ( )) = + + +β β β β0 1 2 3  

where:
 g is an appropriate link function

 If Yi is binary, then the logit function
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is the preferred choice. If Yi is a count, then log(E(Yi)) is most commonly used. For simplic-
ity, we assume a binary treatment and a binary moderator. Note that in these cases, the 
effects (including the moderating effects) are multiplicative rather than additive. This is 
most readily seen from the model equation. We illustrate this with a count outcome Yi and 
log link where we have

 log( ( )) 0 1 2 3E Y T M T Mi i i i i= + + +β β β β  

We can re-write this as

 E Y T M T M T Mi i i i i( ) exp exp exp exp ex0 1 2 3 0 1 2= ( + + + ) = ( ) ( ) ( )β β β β β β βi i pp( )β3T Mii  

Thus, at all possible combinations of the dichotomous treatment and moderator (i.e., 
substituting 0 and 1 for treatment and the moderator, 1 indicating experimental treatment 
or “high” level of the moderator, 0 indicating control treatment or “low” level of the mod-
erator) we obtain

 E Y T Mi i i( | , ) exp( )= = =0 0 0β  

 E Y T Mi i i( | , ) exp( )exp( )= = =1 0 0 1β β  

 E Y T Mi i i( | , ) exp( )exp( )= = =0 1 0 2β β  

 E Y T Mi i i( | , ) exp( )exp( )exp( )exp( )= = =1 1 0 1 2 3β β β β  
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The simple effects of treatment are the ratios of the means for experimental and control 
treatment (i.e., when Ti = 1 compared with when Ti = 0) at the two levels of the moderator 
(i.e., when Mi = 1 and when Mi = 0). Thus, the simple effect of treatment at Mi = 0 is exp(β1), 
and at Mi = 1 is exp(β1)exp(β3). The ratio of these simple effects is exp(β3). When β3 = 0, the 
two simple effects are the same, and hence there is no indication of a moderation because 
the treatment effect is the same at both levels of the moderator. When β > 0, the simple 
effect of treatment at the “high” level of the moderator is exp(β3) times higher than at the 
“low” level of the moderator. Similarly, when β1 < 0, the simple effect of treatment at the 
“high” level of the moderator is exp(β3) times lower than at the “low” level of the modera-
tor. Note that the interpretation of the ratio (which indicates the strength of the moderator 
effects) depends on the magnitude of the effect at the “low” level of the moderator. For 
example, if there is no effect of treatment at the “low” level of the moderator (i.e., the mean 
ratio for the treatment effect is 1) and at the “high” level the treatment effect is increased 
1.5 times (i.e., exp(β3) = 1.5, an increase of 50%), then we might have a significant treatment 
effect at the “high” level of the moderator (i.e., a mean ratio of 1.5) but not at the “low” level 
of the moderator (i.e., a mean ratio of 1). But in another scenario, with exp(β3) = 1.5, if at the 
“low” level of the moderator the treatment effect is below 1 (e.g., the mean ratio is 0.7), then 
a 50% increase (0.7 × 1.5 = 1.05) brings this effect to the neutral range around 1, where there 
is almost no difference in outcome between the treatment levels. This means that there is 
no effect at the “high” level of the moderator, but there is an effect at the “low” level of the 
moderator. Thus, the interpretation of the magnitude and significance of the β3 parameter 
(i.e., the log-mean ratio in the log-linear model) needs to be supplemented by interpreta-
tion of the magnitudes and significance of the simple effects. Plots of simple effects can 
be very helpful in such a situation. We present a data example to illustrate this point in 
Section 9.2.1.

Note that there is no guarantee that either the assumption of additive effects made in 
the linear model or the assumption of multiplicative effects made in the log-linear model 
is correct. If there are concerns about the model assumptions in the model used to assess 
moderation, non-parametric approaches or less restrictive models (e.g., General Additive 
Models [Hastie and Tibshirani, 1987; Hastie et al., 1990]) can be used. A non-technical 
 reference is Wang and Ware (2013).

9.1.2 Moderator Effects in Experimental and Observational Studies

In experimental studies such as clinical trials the effect of treatment has a causal inter-
pretation. That is, whatever differences occur in outcome between treatment groups can 
be interpreted as treatment effects, since the treatment groups are balanced on measured 
and unmeasured confounders (including the potential moderators) at baseline due to ran-
domization. In this context, a moderator variable indicates how the causal treatment effect 
changes depending on the value of the moderator. In observational studies, however, the 
potential moderator and treatment\exposure can be related, in which case it is difficult to 
claim causality. That is, individuals can receive a particular treatment more often, or could 
be more often exposed at a particular level of the potential moderating variable, than at 
another level. For example, more severely ill patients may receive treatment A rather than 
treatment B in non-randomized studies. In such a case, assessing the moderating effect of 
baseline illness severity is problematic because the moderator and treatment are statisti-
cally associated.

In randomized studies, such as COMBINE, the moderating effects have causal 
interpretation because randomization ensures that the moderator and treatment 



244 Statistical Methods in Psychiatry and Related Fields

are  unrelated and there should be no residual confounding of the treatment with other 
variables. However, note that unchecked exploration of moderator effects (i.e., testing 
of every potential moderator one at a time) may still lead to spurious results because of 
the multiple testing issue, and because chance imbalances on covariates at baseline may 
lead to confounding between treatment and moderator effects, especially in small stud-
ies. In general, the gold standard for assessment of moderator effects is to pre-specify 
the moderator(s) and to stratify the randomization on the moderator(s), thus ensuring 
that treatments are balanced within each level of the moderator(s). Some of the most 
commonly explored moderators in clinical trials are gender, site (in multisite studies), 
and illness severity at baseline (often described with a categorical variable). It is fre-
quently of interest to assess whether treatment effects are stronger/weaker in males 
versus females, at urban versus rural sites, or for subjects with more severe versus less 
severe illness.

In observational studies, assessment of moderator effects is more complicated, since 
exposure may be related to the potential moderators. For example, in Chapter 8 we 
used data from the Health and Retirement Study to assess the effect of the transition to 
retirement on self-rated health. As a further analysis, we might be interested whether 
age moderates the effect of retirement on health, since the transition from working life 
to retirement may be different for those who retire early and for those who retire late. 
However, age and retirement are not independent. Thus, even if there is an interaction 
between age and retirement, we cannot claim moderating effects, as alternative explana-
tions may be as plausible: transition to retirement may be a mediator of age effects, and 
both can be proxy predictor factors (i.e., they stand in for other direct predictors of health). 
To assess whether the moderator and treatment are related, one can use chi-square tests of 
association for categorical moderators and treatment, correlations for continuous modera-
tors and treatment, and t-tests or ANOVAs when one variable is categorical and the other 
is continuous. Propensity scoring approaches should be used for observational data in 
order to balance the treatment\exposure groups on levels of the moderator to be able to 
interpret interactions as moderating effects (see Chapter 8 for a description of the propen-
sity scoring approaches).

In conclusion, in both experimental and observational studies, the potential modera-
tor should be unrelated to the treatment or exposure. If treatment or exposure affects the 
potential moderator, or treatment is selected partly based on the level of the moderator, we 
may not have moderating effects. Rather, different relationship among the variables may 
exist—we might have mediation, partial mediation, proxy predictor factors, or overlap-
ping predictors. See Kraemer et al. (2001) for a classification of predictors in observational 
studies.

9.1.3 Moderator Effects in Longitudinal Studies

Our discussion of moderating effects has so far applied to both cross-sectional and lon-
gitudinal studies. Note that assessment of moderator effects in longitudinal studies is 
often no more complicated than in cross-sectional studies. Since the moderator and the 
main predictor of interest (treatment or exposure) need to be independent of one another, 
moderators are often measured before treatment. Thus, in order to assess moderating 
effects, we simply assess interactions between the moderator and treatment. These inter-
actions may be time-independent or time-dependent. When they are time-independent 
(i.e., there is no three-way interaction between the potential moderator, treatment and 
time), post hoc testing of simple effects proceeds as with cross-sectional data but is done 



245Assessment of Moderator and Mediator Effects

within the mixed model or GEE model that takes time into account. The three-way inter-
action between the moderator, treatment and time could be removed from the model for 
ease of interpretation. In this case the simple effects of treatment by moderator level will 
be averaged across time.

On the other hand, when the interaction is time-dependent (i.e., when there is statisti-
cally significant interaction between the moderator, treatment, and time), tests of simple 
effects of treatment by level of the moderator need to also be performed by time point (in 
the case of categorical time and/or balanced designs). The relationship between treatment 
and time (e.g., differences in slopes of change over time between treatment groups) need 
to be evaluated by values of the moderator when time is treated as a continuous predic-
tor and/or the design is unbalanced. Although this entails more comparisons, ultimately 
moderation can be claimed when the direction and/or magnitude of treatment effects var-
ies by levels of the moderator (whether in a time-independent or time-dependent fashion). 
As long as the metric for assessment of moderator effects is correct, and there is indeed 
no relationship between the moderator and treatment, we can interpret significant inter-
actions as moderating effects and follow up with tests of simple effects. We show some 
examples in Section 9.2.

9.1.4 Moderator Effects in Studies with Clustering

When data are clustered (e.g., individuals clustered within schools, patients within provid-
ers), moderators may be measured at the level of the individual or at the level of the cluster. 
In both cases, the interaction between the moderator of interest and the primary treatment 
or exposure variable needs to be considered to assess moderation. Interpretation is not 
problematic once the moderator and the predictor of interest are not related, but one needs 
to take into account the correlation of the observations within clusters in the analysis.

9.1.5 Multiplicity Corrections for Moderator Analyses

In addition to the requirement of no relationship between treatment and the moderator, a 
cautionary note must be made regarding “fishing” for moderator effects. Moderator analy-
ses are often considered exploratory, and a large number of potential moderators are some-
times evaluated. Correction for multiple comparisons should be used in this situation. 
Depending on the number of moderators and the desired trade-off between power and 
the potential for a type I error, FWER or FDR corrections should be applied for all interac-
tion tests as described in Chapter 6. Usually, for many simultaneous exploratory analyses, 
especially including multiple genotypes, an FDR correction is preferred. For confirmatory 
moderator analyses, FWER is more appropriate.

9.2 Data Examples of Moderator Analysis

9.2.1  Moderation of Treatment Effects on Number of 
Drinking Days in the COMBINE Study

In previous chapters, we outlined how interactive effects are used to assess the combined 
effects of treatments in linear models. In Section 9.1, we also described multiplicative rather 
than additive interactions in generalized linear models. Herein, we continue the COMBINE 
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example to illustrate assessment and interpretation of moderator effects in log-linear models 
where the interactions are multiplicative on the original scale. We focus on the count out-
come number of drinking days during the treatment period and use a log-linear GEE model 
to relate the outcome to naltrexone, CBI, and their interaction. Abstinence from drinking 
(dichotomized into less than two weeks and two weeks or more) in the 30 days prior to ran-
domization is hypothesized to be a moderator of treatment effects based on prior research 
(Gueorguieva et al., 2014). Thus, we include interactions among the treatments, abstinence, 
and time (month in treatment) to evaluate moderator effects. The highest order interaction in 
this model involves four factors (naltrexone, CBI, pre-randomization abstinence, and time), 
and for simplicity, we eliminate non-significant interactions one at a time (first the four-way, 
then the three-way non-significant interactions, then non-significant two-way interactions). 
Table 9.1 shows the significant effects remaining in the model together with lower-order 
terms that make the model hierarchically well-formulated (e.g., the naltrexone main effect is 
retained, although non-significant, because the naltrexone by CBI interaction is statistically 
significant).

Herein, we focus on the significant interaction between baseline abstinence and CBI 
since it suggests that the effect of CBI varies for individuals who were able to remain absti-
nent for two weeks or more compared with those who were not. Simple effects are used to 
explain the interaction.

The estimate of the interaction parameter β3 is −0.39 (SE = 0.16). Thus, the log rate ratio 
of CBI versus no CBI in the longer abstinence group is 0.39 units lower than in the shorter 
abstinence group. Bringing the estimate back to the original scale by exponentiating, 
we get

 exp( ) exp( . ) .β3 0 39 0 68= − =  

Thus, the rate ratio for the CBI effect in the longer abstinence group is 0.68 times that in 
the shorter abstinence group. However, without knowing what the effect is in the shorter 
abstinence group (i.e., whether it is beneficial, detrimental, or neutral) we cannot fully 
interpret this information. We need to look at the rate ratios for the effect of CBI for each 
abstinence group. We estimate that the rate ratio is 1.00 (0.87, 1.16) in the shorter abstinence 
group and 0.68 (95% CI: (0.52, 0.89)) in the longer abstinence group. Thus, CBI treatment 
does not affect the outcome in the shorter abstinence group, but there is a significant pro-
tective effect of CBI on number of drinking days in the longer abstinence group. This 
makes pre-randomization abstinence a moderator of the effect of CBI irrespective of the 

TABLE 9.1 

Tests of Main Effects and Interactions in the Final Model Evaluating 
Moderation by Pre-Randomization Abstinence of Treatment Effects 
on Number of Drinking Days in the COMBINE Study

Effect Test Statistic P‑Value
Pre-randomization abstinence χ2(1) = 52.96 < 0.0001
Naltrexone χ2(1) = 1.94 0.16
CBI χ2(1) = 5.78 0.02
Time χ2(3) = 46.99 < 0.0001
Abstinence × CBI χ2(1) = 6.05 0.01
CBI × Time χ2(3) = 11.13 0.01
Naltrexone × CBI χ2(1) = 4.68 0.03
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level of naltrexone, and the results indicate for what type of individuals CBI is most effec-
tive. At the same time, pre-randomization abstinence is not a moderator of the effect of 
naltrexone as there are no significant interactions between naltrexone and abstinence in 
the final model. The other significant interactions in the model should also be interpreted, 
but they do not represent moderating effects of pre-treatment abstinence. Moderation in 
this example is described by multiplicative, rather than additive, effects because we are 
basing inferences on the log-linear model.

9.2.2 Type of Cigarettes Smoked as a Moderator of Nicotine Effects in Smokers

The human laboratory study of the effects of menthol on nicotine reinforcement in smok-
ers introduced in Section 1.5.7 has a two-level cross-over experimental design with three 
different levels of menthol (high, low, placebo) administered on three different test days in 
random order. Within each test day, again in random order, three different nicotine concen-
trations (saline, low dose, high dose) were infused and effects of nicotine were  measured 
using the Drug Effects Questionnaire scale. The design of the study is shown in Figure 1.12. 
In Chapter 5, we used these data to illustrate the non-parametric approach to the analysis 
of repeated measures data. We looked at menthol and nicotine effects and their interac-
tions on drug liking effects. Herein, we focus on the entire sample of subjects and on a dif-
ferent outcome; namely, maximum stimulatory effects during each infusion. The sample 
consists of two types of individuals: those who smoke mentholated  cigarettes and those 
who smoke non-mentholated cigarettes. The question of interest here is whether nicotine 
and menthol effects vary depending on the preferred type of cigarettes smoked. Thus, we 
are investigating whether preference for mentholated cigarettes is a  moderator of nicotine 
and menthol effects. Note that the potential moderator in this study is pre- specified and 
randomization is stratified on it, thus guaranteeing that there is no relationship between 
the moderator and the treatments.

To assess the moderator effect, we fit a linear mixed model with maximum stimula-
tory effects during each test session (square root transformed to deal with positive skew-
ness) as the repeatedly measured outcome, nicotine and menthol as within-subject factors, 
and type of cigarettes smoked as a between-subject factor. We also control for session 
and period effects since there might be systematic changes in individual responses from 
the first to the third test session as subjects adjust to the experimental setting, and from 
the first to the third period within each test session as subjects might be getting tired. The 
model with random effects for subject, menthol dose, and nicotine dose within subject fits 
the best according to the AIC and BIC. Table 9.2 shows the results from the tests of statisti-
cal significance of all interactions and main effects in the model.

We focus on the statistically significant interaction between mentholated cigarettes and 
nicotine because it indicates a moderating effect; that is, nicotine effects vary for smokers of 
mentholated cigarettes compared with smokers of non-mentholated cigarettes. Figure 9.2 
shows the pattern of least square means that describes the nature of the interaction. Dose-
dependent nicotine effects are highly statistically significant in both groups (p < 0.0001); 
thus, the moderating effect of type of cigarette is one of magnitude, not direction and sig-
nificance. Additional post hoc testing shows that smokers of non-mentholated cigarettes 
acknowledge, on average, significantly greater stimulatory effects than smokers of men-
tholated cigarettes at high and low nicotine doses (p = 0.0008 and p = 0.025, respectively) 
but not when saline is infused (p = 0.88). Stimulating effects are significantly higher during 
the first session compared with the second session (p = 0.0007). All code and results can be 
found in the online materials.
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9.3 Mediators

Mediation analyses assess how a particular treatment or exposure works. A mediator is 
a variable that is affected by treatment or exposure and reflects a mechanism through 
which all or part of the treatment/exposure effect on the outcome is produced. Treatment 
can have a direct effect on the outcome and/or an indirect effect via the mediator vari-
able. Mediational analysis is focused on estimating the direct and indirect effects with the 
ultimate goal of making inferences about the causal effect of treatment via the mediator.

As an example, consider a medication treatment for alcohol dependence that is expected 
to reduce drinking by reducing craving. In this situation, the predictor is treatment, the 
potential mediator is craving, and the outcome is a measure of drinking, such as number 
of drinking days or drinks per drinking day. Treatment can have a direct effect on drink-
ing behavior or an indirect effect via reduction of craving. In mediation analysis, the goal 

TABLE 9.2 

Tests of Main Effects and Interactions in the Study of Type of 
Cigarettes Smoked (Mentholated or Non-Mentholated) as Moderator 
of Menthol and Nicotine Stimulatory Effects in Smokers

Effect Test Statistic P‑Value
Mentholated cigarettes F(1,163) = 5.27 0.02
Menthol F(2,85) = 2.33 0.10
Nicotine F(2,105) = 70.30 < 0.0001
Mentholated × Menthol F(2,163) = 0.41 0.66
Mentholated × Nicotine F(2,163) = 6.51 0.002
Menthol × Nicotine F(4,163) = 1.88 0.12
Mentholated × Menthol × Nicotine F(4,163) = 1.99 0.10
Session F(2,163) = 5.99 0.003
Period F(2,163) = 1.05 0.35

7

6

5

4

Stimulatory effects

1. Saline 2. Low
nicotine level

Type of cigarettes
Mentholated
Non-mentholated

3. High

Le
as

t s
qu

ar
e 

m
ea

ns

FIGURE 9.2 
Estimated least square means for the moderating effect of types of cigarettes smoked on nicotine effects in the 
human laboratory study of menthol’s effects on nicotine reinforcement in smokers.
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is to evaluate the direct and indirect effects and assess whether there is evidence to sup-
port pre-specified mechanistic hypotheses.

Unlike moderator analysis, where there is consensus among researchers about methods 
of assessment, assumptions, and limitations, the literature is not all in agreement regard-
ing the approaches, assumptions and caveats of mediator analysis. In this section, we first 
provide a short overview of the most popular approach used in the psychology literature, 
then focus on the causal inference approach to mediation and carefully describe assump-
tions that are necessary to infer causality.

9.3.1 Assessment of Mediator Effects: The Baron and Kenny Approach

The basic idea of mediation analysis with a single mediator, presented in the influential 
article by Baron and Kenny (1986) and used widely in the psychology literature (see also 
Judd and Kenny, 1981), is illustrated in Figure 9.3. Mediation effects are typically assessed 
when there is an effect of the main predictor of interest (X, often called a causal variable) 
on the outcome (Y) as shown in Figure 9.3a. The total effect of X on Y is denoted by c1. 
Mediation occurs if the causal variable (X), affects the outcome (Y), X affects the mediator 
(M), M affects Y, and part or all of the effect of X on Y is via M. Figure 9.3b shows the effect 
of the predictor on the mediator (denoted by a1), the effect of the mediator on the outcome 
(denoted by b2) adjusted for the main predictor of interest, and the remaining direct effect of 
the predictor on the outcome (denoted by b1). The indirect effect of the predictor on the out-
come is defined as the product of a1 and b2 (i.e., the product of the effects of X on M and the 
effect of M on Y), or it can be calculated as the difference between the total and the direct 
effect (c1 – b1). The former definition is obtained using the product method (as originally pro-
posed by Baron and Kenny). The latter definition has been more widely used in the epide-
miology and biomedical literature. The two definitions coincide when linear models for 
a continuous outcome and a continuous mediator are used to estimate the relationships 
between the outcome, mediator and treatment. In such a situation, the total effect of the 
causal variable on the outcome is the sum of the direct and indirect effects (c1 = b1 + a1. b2). 
In other cases (e.g., non-linear models such as logistic regression and survival analysis), 
this simple decomposition of the total effect does not hold and the formulae need to be 
modified (to be discussed later).

Baron and Kenny (1986) suggested using regression models to ascertain these 
 statistical relationships and described the following four steps for establishing media-
tor effects.

Predictor
(X)

Predictor
(X)

Outcome
(Y)

Total effect = c1 Total effect = c1
Direct effect = b1

Indirect effect = a1 . b2 or c1 – b1

c1

(b)(a)

Mediator
(M)

Outcome
(Y)

b1

b2a1

FIGURE 9.3
Total, direct, and indirect effect of predictor X on outcome Y via mediator M.
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Step 1: Establish whether there is an effect that can be mediated. That is, assess the 
regression relationship between Y and X and evaluate whether effect c1 is differ-
ent from zero.

Step 2: Establish that X is related to M. That is, establish a regression relationship 
between X and M, treating M as the outcome (effect a1).

Step 3: Establish that M is related to Y (effect b2) when X is controlled in a regression 
model.

Step 4: From the same equation used in the preceding step, evaluate whether the 
direct effect of X on Y (effect b1) is zero. If it is, declare that full mediation has 
occurred. If not, partial mediation has occurred.

Several cautions to this algorithm apply. First, statistical significance was originally 
required to be present at all steps to claim mediation, but statistical significance depends 
largely on the sample size and, hence, it is possible for mediation to occur even if some 
of the effects are not statistically significant. In addition, it can be the case that there is a 
statistically significant indirect effect but no total effect because the direct and indirect 
pathways are in opposite directions and are cancelling each other out. In this situation, 
when following the four-step approach described, one would stop at the first stage and not 
proceed. Thus, the modern interpretation of this approach is to focus only on steps two 
and three and to skip step one.

Second, even when the conditions in all four steps above are satisfied, mediation may 
not be present since alternative models may also be consistent with the data. This is espe-
cially true if reverse causation is present between the mediator and the predictor. That is, the 
mediator is effecting a change in the predictor and not the reverse. This may well appear 
as a statistically significant effect in step two, but the direction of the arrow is from M to 
X rather than from X to M. Some researchers (e.g., Kraemer, 2011) require that there is a 
strict temporal ordering of treatment/exposure, change in the mediator, and change in the 
outcome. In particular, treatment should precede the change in the mediator which should 
precede the change in the outcome in order to be able to claim that the effects are in the 
required direction for mediation. The causal inference approach discussed in the next 
section requires temporal precedence too, but this follows from the more general assump-
tions of that method.

Third, other variables may confound the mediation relationship. There may be variables 
that affect both the mediator and the outcome, both the predictor and the mediator, or all 
three variables. In this case, following the Baron and Kenny approach without additional 
adjustment for such confounders leads to biased and often uninterpretable results. Proper 
control for confounding is a focus of much current research and is the basis for many of 
the developments in causal inference and mediator analysis.

Fourth, the Baron and Kenny approach does not allow for an interaction between 
the treatment/exposure and the mediator. Other researchers (e.g., Kraemer et al., 2001; 
Kraemer et al., 2002; Valeri and VanderWeele, 2013; VanderWeele, 2013) consider interactive 
effects to be necessary for proper assessment of mediator effects, because mediator effects 
may be present only for certain levels of the predictor or can vary by treatment level. We 
focus on this issue when describing mediation analysis from a causal inference perspec-
tive in Section 9.3.2.

Fifth, there may be multiple mediation variables through which treatment or exposure 
effects are produced. It is possible to examine multiple mediators in the same model (see e.g., 
Preacher and Hayes 2008), but the models and assumptions become necessarily more complex.
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As a last note of caution, when a parametric model is considered in the four steps, the 
results regarding mediation are valid only if the model is correctly specified. This applies 
to distributional assumptions; causal ordering of the predictor, mediator, and outcome; 
and no confounding by other variables (to be discussed in more detail in the causal infer-
ence subsection). We now consider the linear regression models most commonly used in 
the four-step approach for a continuous outcome and a continuous mediator.

The linear regression model equations are as follows:

 Step 1 : Y c c Xi i i= + +0 1 1ε  

 Step 2 : M a a Xi i i= + +0 1 2ε  

 Steps 3 and 4 : Y b b X b Mi i i i= + + +0 1 2 3ε  

The usual assumptions of normality and independence of the errors apply. In particu-
lar, the errors ε2i and ε3i are assumed to be independent, which may very well not be the 
case. That is, there may be residual confounding between the outcome and the mediator 
due to unmeasured variables or failure to include interaction effects. Baron and Kenny’s 
approach can be used when potentially confounding covariates are added to these models. 
However, the simple decomposition of total effect into direct and indirect effect as defined 
earlier no longer holds when there are interactions between treatment and the mediator. 
We show an extension of the Baron and Kenny approach from a causal inference perspec-
tive in Section 9.3.2.

As an additional note to the model definition described, generalized linear models, 
rather than linear models, can be used when the outcome and/or mediator are non-nor-
mal. However, since the relationship between outcome, mediator, and treatment are no 
longer linear (e.g., logit or log is used to relate the mediator and the outcome to treatment 
when the response is binary, log is used for count mediator and/or outcome), the total 
effect is not equal to the sum of the direct and indirect effects. In general, the Baron and 
Kenny approach does not generalize easily and naturally to non-linear models. In contrast, 
the causal inference approach presented in the next section is more general and can apply 
to both linear and non-linear models.

9.3.2 Assessment of Mediator Effects: The Causal Inference Approach

We now present the causal inference approach based on counterfactual logic, which 
extends the Baron and Kenny approach and clarifies the assumptions necessary to 
claim mediation. This approach can be used even in situations when there is an inter-
action between treatment and the mediator and when there are non-linearities in the 
effects. Many authors provide detailed descriptions with somewhat differing notation 
and the presentation is often technical (see e.g., Robins et al., 2000; Little and Rubin, 2000; 
Rubin, 2005; Imai et al., 2010; Pearl, 2010; Ten Have and Joffe, 2012; Valeri and VanderWeele, 
2013; Muthen and Asparouhov, 2015). A recent publication that provides a good overview 
at a non-technical level is VanderWeele (2016). 

The causal inference approach to mediation is based on the notion of counterfactual out-
comes. We introduced counterfactual outcomes in Chapter 8 in the context of the propen-
sity scoring method of adjustment for measured confounders when estimating treatment 
or exposure effects in observational studies. We continue this line of thought here to jus-
tify methods for assessment of mediator effects in experimental or observational studies. 
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Our focus is on a simple situation with a binary treatment (exposure) in a parallel design 
setting (i.e., each individual gets one of the treatments). For simplicity, our main predictor 
of interest, X, is a treatment with values 1 and 0, with 1 indicating experimental and 0 indi-
cating control treatment. We observe only the outcome of the individual on the assigned 
treatment. The outcome on the alternative treatment is called a counterfactual outcome as it 
is unobserved. The causal effect of treatment for each individual is the difference between 
the outcome of the experimental and the control treatment (denoted by Yi(1) − Yi(0)). Since 
we observe only Yi(1) for subjects on the experimental treatment and Yi(0) for subjects on 
the control treatment, we cannot estimate the causal effect at the individual level for any of 
the individuals. However, the average causal effect is defined as the average of the individual 
causal effects over all individuals in the population E{Yi(1) − Yi(0)} = E{Yi(1)} − E{Yi(0)}. This 
effect can be estimated in randomized studies because the expected outcome in the popu-
lation on each treatment can be estimated by the average of the outcomes of the individu-
als assigned to that treatment. Due to randomization, subjects in each treatment group are 
representative of the entire population; hence, their average response is a good estimate of 
the average response in the population. In observational studies, however, the causal inter-
pretation is more problematic, since individuals in the exposed and non-exposed groups 
may differ on a variety of characteristics and there may be many variables that affect both 
exposure and treatment and thus act as confounders of the causal relationship of interest.

In causal mediation analysis, the idea is to define direct, indirect, and total effects of 
treatment on the outcome using counterfactual outcomes, under very general conditions, 
and to make clear the assumptions that are being made in order to claim mediation. To do 
this, we consider factual and counterfactual values of the mediator. Let Mi(1) and Mi(0) be 
the values of the mediator for subject i if this subject were to receive the experimental or 
control treatment, respectively. As with the outcome, only one of the two mediator values 
is observed for each subject. To define direct and indirect effects, we consider the outcome 
under different combinations of levels of the treatment and the mediator Yi(t,m). Treatment 
t can be 1 or 0 (experimental or control) and m denotes any value of the mediator. Of spe-
cific interest are the cases when m = Mi(1) or m = Mi(0) that reflect the value of the mediator 
under experimental and control treatment, respectively. The following outcomes are of 
interest:

Yi(0,Mi(0))—outcome on the control treatment when the mediator value is fixed to 
what it would be if the control treatment was given

Yi(1,Mi(1))—outcome on the experimental treatment when the mediator value is fixed 
to what it would be if the experimental treatment was given

Yi(1,Mi(0))—outcome on the experimental treatment when the mediator is manipu-
lated to reflect the effect of the control treatment on the mediator.

With this notation, the total causal effect of treatment for an individual is Yi(1,Mi(1)) − 
Yi(0,Mi(0)) and the average total causal effect (TCE) in the population is

 TCE : { ( , ( )) ( , ( ))}E Y M Y Mi i i i1 1 0 0−  

The total causal effect is the effect of treatment when the mediator is allowed to take its 
natural value under experimental or control treatment.

The natural direct effect (NDE, also known as pure/total direct effect) is the effect of treat-
ment when the mediator is fixed at the value it would take under the control treatment. 
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Thus, the direct effect is interpreted as the effect of treatment when the mediator is not 
allowed to be influenced by treatment and, therefore, the effect that is measured is occur-
ring either directly or through other unspecified pathways. The population-averaged 
NDE is

 NDE : { ( , ( )) ( , ( ))}E Y M Y Mi i i i1 0 0 0−  

The natural indirect effect (NIE) is the effect of the mediator on the outcome under the 
experimental treatment. It measures the effect that is transmitted through the mediator, 
not allowing treatment to directly influence the outcome. The population-averaged NIE is

 NIE : { ( , ( )) ( , ( ))}E Y M Y Mi i i i1 1 1 0−  

There is another useful definition in the causal inference literature; namely, the controlled 
direct effect (CDE). The CDE measures the effect of treatment when the mediator is con-
trolled at a particular value m:

 CDE : { ( , ) ( , )}E m mi iY Y1 0−  

In the model formulation of the Baron and Kenny approach, the CDE is the direct effect, 
b1, that is estimated in the third step (rather than the NDE, which fixes the mediator at the 
value achieved under the control treatment). The CDE and the NDE coincide when there 
is no interaction between treatment and the mediator in the linear model as then the effect 
of treatment is the same for any fixed value of the mediator. However, when there is an 
interaction between treatment and the mediator, the CDE and NDE are not the same.

Note that as long as no assumptions of a particular model are made to define the direct 
and indirect effects, the formulae are valid for all kinds of outcomes (continuous, categori-
cal) and there are no restrictions on what interactions are present. However, parametric 
models are often considered for assessment of mediator effects and hence more specific 
expressions appropriate for the particular types of outcomes (e.g., continuous, dichoto-
mous, count) are defined.

We first focus on the situation with a continuous mediator, a continuous outcome, and 
a binary treatment and follow the approach of Valeri and VanderWeele (2013) in order to 
illustrate the similarities and the greater flexibility of the causal inference mediational 
analysis compared with the Baron and Kenny approach. The formulae extend to the situa-
tion when the main predictor of interest (treatment or exposure) is measured on a continu-
ous scale.

We again assume linear models for the mediator and the outcome but this time allow 
for interactive effects between the treatment and mediator and adjust for potential covari-
ates that might confound the effect of treatment on the mediator and outcome. It may be 
necessary to include interaction effects because the effect of the mediator on the outcome 
may vary by treatment level. In addition, observed covariates may confound the relation-
ship between the mediator and outcome, and even between treatment and the outcome in 
observational studies; thus, ignoring them may produce bias in the estimates. Under these 
assumptions, the model equations for mediational analysis are as follows:

 Equation 1 0 1 2: ’M a a X a Ci i i i= + + +ε  

 Equation 2 : ’Y b b X b M b X M b Di i i i i i i= + + + + +0 1 2 3 4 δ  
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The errors in the two equations are assumed uncorrelated once we have accounted for 
the potential confounders. The coefficient for the interactive effect of treatment and the 
mediator, which is also added to the model in Equation 2, is b3. Ci are covariates that affect 
the mediator, while Di are covariates that affect the outcome.

Based on this model, the formulae for the CDE, NDE, and NIE (obtained by replacing the 
mediator value in Equation 2 with the expression from Equation 1 and taking an expecta-
tion) are as follows:

 CDE = +b b m1 3  

 NDE = + +b b a a C1 3 0 2( )’  

 NIE = +( )b b a2 3 1  

To clarify how these are obtained, let us consider CDE and NIE. From the general for-
mula for CDE, we need to evaluate E{Yi(1,m) − Yi(0,m)} based on the assumed model. From 
Equation 2, we have

 E Y m b b b m b m b Di i{ ( , )} ’1 0 1 2 3 4= + + + +  

and

 E Y m b b m b Di i{ (0, )} 0 2 4
’= + +  

Therefore, the difference is CDE = b1 + b3m because the rest of the terms cancel out.
Similarly, for NIE we evaluate E{Yi(1,Mi(1))} and E{Yi(1,Mi(0))}. From Equation 1, we have 

 M a a a Ci i i( ) ’1 0 1 2= + + + ε  

and

 M a a Ci i i( ) ’0 0 2= + + ε  

Substituting these in Equation 2 and taking expectations gives

 E Y M b b b a a a C b a a a C b Di i i i i{ ( , ( ))} ( ) ( )’ ’ ’1 1 0 1 2 0 1 2 3 0 1 2 4= + + + + + + + +  

and

 E b b b a a C b a a C b Di i i i{ ( , ( ))} ( ) ( )’ ’ ’Y Mi0 0 0 1 2 0 2 3 0 2 4= + + + + + +  

When we take the difference, we obtain the formula for the NIE given previously. In the 
same way, we can obtain the formula for NDE.

The expressions for CDE, NDE, and NIE are generalizations of the expressions for the 
direct and the indirect effects in the Baron and Kenny approach. The NDE is calculated at 
the mean values of the confounders of the treatment–mediator relationship, C, while the 
CDE depends on the value of the mediator but does not depend on the values of the con-
founders. If the interaction is not present (i.e., b3 = 0), the CDE and NDE are simply b1, which 
is exactly the direct effect in the Baron and Kenny approach. Without interaction, the NIE 
also reduces to b2a1, the expression for the indirect effect in the Baron and Kenny approach.
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In all linear models, TCE = NDE + NIE, but in the presence of an interaction CDE cannot 
replace NDE in this expression; hence, the total effect is not equal to the sum of the CDE 
and NIE. There is mediation when the TCE—NDE, or equivalently the NIE, is different 
from zero. A measure of percent mediated effect (PME) is often used to assess what propor-
tion of the total effect is mediated via the specific pathway hypothesized in the model. PME 
is defined as the ratio of the natural indirect effect to the total effect: NIE/(NDE + NIE). The 
larger the value, the greater portion of the effect of the predictor is via the mediator rather 
than directly or via other mechanisms.

In non-linear models, a complication arises so that the total causal effect is generally 
not the sum of the natural direct and natural indirect effects. For example, this is true for 
binary outcomes when logistic models are used to relate the outcome to treatment and the 
mediator. With binary treatment, binary mediator, and binary outcome the models are

 Equation 1 : { ( )} ’logit P M a a X a Ci i i= = + +1 0 1 2  

 Equation 2 : )logit{ ( } 0 1 2 3 4
’P Y b b X b M b X M b Di i i i i i= = + + + +1  

When the outcome is rare (about 10% prevalence or below), the CDE, NDE, and NIE 
are expressed as odds ratios (ORs). The CDE is the OR of positive response (Y = 1) 
when comparing experimental with control treatments (X = 1 versus X = 0) and con-
trolling the mediator at a value m (either 0 or 1). The NDE is the OR for Y = 1 when 
comparing the experimental and control treatments and assuming the mediator is 
at the value it would take under the control treatment M(0). The NIE is the OR for 
Y = 1 when comparing M(1) to M(0) for the experimental treatment (i.e., when X = 1). 
The second and third expressions that follow are approximately true (see Valeri and 
VanderWeele, 2013):

 OR b b mCDE = +exp( )1 3  

 ORNDE
b b b a a C

b a a C
≅ + + + +

+ + +
exp( ){ exp( )}

{ exp( )}

‘

‘
1 2 3 0 2

2 0 2

1
1

 

 ORNIE
a a C b b a a a C
a a

≅ + + + + + + +
+ +

{ exp( )}{ exp( )}
{ exp(

‘ ‘1 1
1

0 2 2 3 0 1 2

0 11 2 2 3 0 21+ + + + +a C b b a a C‘ ‘)}{ exp( )}
 

These formulae also describe the direct and indirect effects when the outcome is not 
rare, in which case a log-linear rather than logistic model needs to be used for the out-
come (i.e., the probability of 1 is related to the predictors via log link rather than logit). 
In this case, the effects are risk ratios (i.e., ratios of probabilities) rather than ORs (i.e., 
ratios of odds). In addition, when the outcome is count rather than binary and a log-linear 
model is used the same expressions for the risk ratios hold. We show a data example in 
Section 9.4.2.

In these cases, in the absence of an interaction between treatment and the mediator, 
TCE is approximately equal to the product of the NDE and NIE. We demonstrate how 
the causal inference approach works with non-normal data on a data example in Section 
9.4.2. Interested readers are referred to Valeri and VanderWeele (2013) for more general 
expressions, including for different combinations of outcomes, mediators, and treatments. 
Formulae for standard errors are available for all the effects described, and a SAS macro is 
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available for calculation of the effects with associated p-values and confidence intervals at 
https://www.hsph.harvard.edu/tyler-vanderweele/tools-and-tutorials/.

Since the validity of model-based inference relies on the model being correctly specified, 
models should be selected carefully using model diagnostics to indicate possible issues 
with lack of fit (see Chapter 3). Non-parametric approaches to estimation of causal effects 
are available when one is not willing to make strong assumptions about the distributions 
of the mediator and/or the outcome (see e.g., Ten Have and Joffe (2012) for a review); how-
ever, these are generally more difficult to implement.

Regardless of whether parametric or non-parametric approaches are used for estimation 
of causal effects, general assumptions under which the causal approach provides valid 
estimates of mediation effects need to be carefully considered. The conditions for a causal 
interpretation of the direct and indirect effects are as follows:

For the CDE, we make the assumptions that there is no unmeasured confounding of the treat-
ment–outcome relationship (Assumption One, A1) and no unmeasured confounding of the media-
tor–outcome relationship (Assumption Two, A2). That is, there are no third variables (other 
covariates) that have not been included that would affect both treatment and the outcome, 
and both the mediator and the outcome. The first two panels of Figure 9.4 indicate viola-
tions of these assumptions when the potential confounder variable E is not included in 
the models. Note that identifying and measuring all potentially confounding variables 
for inclusion in statistical mediation models is a very complicated task. Randomization of 
treatment usually assures that Assumption One is satisfied but not that Assumption Two 
is satisfied.

Assumption Two may be satisfied if randomization of the mediator occurs. As an exam-
ple, consider a study such as the one in Ten Have and Joffe (2012), in which depressed sub-
jects are randomized to cognitive behavioral therapy (CBT) or treatment as usual. Subjects 
are encouraged to seek outside treatments in addition to the primary study treatment. The 
outcome is improvement in depression. Because subjects are randomized to CBT, there is 
no unmeasured confounding of the treatment–outcome relationship, and thus Assumption 
One is satisfied. If outside treatment (the potential mediator) is also randomized, then 
Assumption Two of no unmeasured confounding of the mediator–outcome relationship 
will also be satisfied. If the second intervention (i.e., the potential mediator) is not random-
ized, then we are not guaranteed that Assumption Two holds. Manipulation-of-mediator 

A1. Confounding of the treatment–outcome relationship

A3. Confounding of the treatment–mediator relationship

A2. Confounding of the mediator–outcome relationship

A4. Treatment predicting confounders of  the mediator–outcome relationship
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X Y

M
E

X Y

M

E

X Y

M
E

X Y

FIGURE 9.4 
Examples of violations of different assumptions for casual interpretation of mediation effects.
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designs (Pirlott and MacKinnon, 2016) that use double randomizations (i.e., randomization 
of both the treatment and the mediator) or experimental manipulations of the mediators 
are tools to ensure that the second assumption is satisfied, but such designs are rarely uti-
lized and often impractical.

When it is not possible to manipulate the mediator, one needs to include all common 
causes for the mediator and the outcome being covariates in Equation 2 to adjust for poten-
tial confounding of the mediator–outcome relationship. In the CBT example, all factors 
that increase the likelihood of seeking additional treatments and may also be related to 
improvements in depression (e.g., economic support and stress factors) should be included 
in Equation 2. As the equation gets more complicated, this task becomes more challenging 
and requires substantial theoretical support.

For the NDE and NIE formulae to be valid for causal inference there are two additional 
conditions: no unmeasured confounding of the treatment–mediator relationship (Assumption 
Three, A3) and no treatment effects on confounders of the mediator-outcome relationship 
(Assumption Four, A4). Assumption Three implies that all variables that affect both the 
treatment and the mediator are included in Equation 1, while Assumption Four requires 
that treatment be independent of the covariates in Equation 2 that are confounders of the 
mediator–outcome relationship. Note that in randomized designs, both Assumption Three 
and Assumption One are directly satisfied. In the CBT example, there is no unmeasured 
confounding of the randomized CBT treatment and additional out-of-study treatments 
due to the randomization of CBT. However, in observational studies, unmeasured con-
founders may lead to violation of this assumption as shown in the third panel of Figure 9.4.

In both randomized and observational studies, it is difficult to ensure that Assumption 
Four is satisfied. A violation of this assumption in the context of the CBT example occurs 
if economic support and stress factors (potential confounders of the relationship between 
the additional interventions and the outcome) are affected by CBT treatment. Having all 
such variables independent of treatment is a very strong assumption indeed. The fourth 
panel of Figure 9.4 shows a violation of the fourth assumption.

If Assumptions Three and Four are violated, estimates of the NDE and NIE can be 
substantially biased. Note that it is not possible, based on the observed data, to assess 
whether the assumptions are satisfied or not. The determination of whether they are 
reasonable should be based on theoretical (subject-matter) considerations. Sensitivity 
analyses can be performed to assess the effects of violations of assumptions (see e.g., 
Imai et al., 2010). Estimation methods such as marginal structural models and structural 
nested models are available to estimate controlled direct effects when the predictor of 
interest affects the confounders of the mediator–outcome relationship (e.g., VanderWeele 
et al., 2014).

A very important point is that the set of four assumptions implies that the treatment, 
mediator, and outcome are temporarily ordered (i.e., treatment precedes the mediator 
which in turn precedes the outcome). If this is not the case, then associations cannot be 
interpreted as causation.

9.3.3 Mediators in Experimental and Observational Studies

As mentioned in the preceding paragraphs, randomization of treatment ensures that the 
assumptions of no unmeasured confounding of the treatment–mediator (Assumption 
Three) and treatment–outcome (Assumption One) relationships are satisfied. For example, 
since treatments in the COMBINE clinical trial are randomized, we can safely assume that 
there is no unmeasured confounding of the treatment–mediator and treatment–outcome 
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relationship. That is, there are no third variables that affect both treatment and the media-
tor, or both treatment and the outcome.

In manipulation-of-mediator designs, the other two assumptions (no unmeasured con-
founding of the mediator–outcome relationship and no treatment effects on confounders 
of the mediator–outcome relationship) are also automatically satisfied. Thus, experimen-
tal studies with randomization of both treatment and the mediator can safely be used 
for causal inference. However, commonly, in situations such as the COMBINE study, the 
potential mediator (craving) is not randomized; thus, we are not guaranteed that there is 
no mediator–outcome confounding. Designs in which only the treatment is randomized 
require inclusion of all confounders of the mediator–outcome relationship in Equation 2. 
Thus, all variables that can potentially influence both craving and drinking post-random-
ization should be included. If potential confounders are omitted the effects may not have 
causal interpretation.

Observational studies are the least desirable for causal inference, as all common causes 
of the exposure and the mediator need to be included in Equation 1, and all common 
causes of the exposure and the outcome, and of the mediator and the outcome, need to be 
included in Equation 2. This is virtually impossible to do if we do not know the temporal 
ordering of the exposure, the mediator, and the outcome since simple association studies 
cannot be interpreted as causal. Thus, cross-sectional studies in which there is no clear 
temporal ordering should not be used for causal inference. Observational studies in which 
the temporal ordering can be ascertained with a reasonable degree of certainty (e.g., sub-
jects recall accurately the sequence of events, measures are extracted from time-stamped 
sources, or studies are prospective), then mediational analyses may proceed, but with cau-
tion, since the possibility of unmeasured confounding remains.

9.3.4 Multiple Mediators

Quite often, there are multiple mechanisms that account for how or why a treatment works. 
Considering mediators one at a time is not a good approach, as it does not take into account 
the potential relationships among the mediators. The single-mediator causal approach is 
extended to handle multiple mediators by VanderWeele and Vansteelandt (2014). Ideally, 
mediators should be identified a priori rather than in a post hoc fashion, as the chance of 
ambiguous results increases.

Another approach used to deal with potential multiple mediation mechanisms is 
 structural equation models (SEM), which allow simultaneous modeling of multiple path-
ways. However, such models make assumptions regarding linearity, normality, and lack 
of confounding on all considered sets of variables. Such assumptions are very strong 
and are rarely satisfied in their entirety. Thus, SEMs should be used with great caution 
and most likely as hypothesis-generating, not confirmatory, analyses (VanderWeele and 
Tchetgen, 2016).

9.3.5 Mediator Effects in Longitudinal Studies

Due to the requirement for temporal precedence of treatment, mediator, and outcome, all 
mediation analyses that have the goal of assessing causal effects should be based on stud-
ies with measurements over time. Although, technically, the equations in Section 9.3.2 are 
valid with cross-sectional data when the assumptions are satisfied, in practice one needs 
to measure the mediator and outcome (and potentially treatment) longitudinally in order 
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to be sure that there is temporal ordering. This is true both for experimental and obser-
vational studies. Longitudinal data offer unique opportunities to test causal hypotheses 
because they allow one to determine when changes in variables occur and how to attri-
bute these changes to treatment and/or mediator effects. However, they come with their 
own set of challenges, including measurement times that may not be optimal and vary 
from subject to subject, missing data, difficulties in specifying models, and mechanisms of 
action among many others.

There are three different types of longitudinal mediation models that have been consid-
ered in the psychological literature: autoregressive models (Cole and Maxwell, 2003), latent 
growth models (Muthen and Asparouhov, 2015) and latent difference score models (Ferrer and 
McArdle, 2003; McArdle, 2009).

Autoregressive models specify contemporaneous relationships and/or relationships 
between variables one measurement occasion apart. For example, exposure at one occa-
sion may effect change in the mediator at the next occasion which in turn may affect the 
outcome at the next assessment time point. Repeated evaluations over time can be used 
to assess stability of the mediational relationship. That is, whether the mediational rela-
tionship between treatment/exposure, mediator, and outcome is the same throughout the 
study period and is stronger/weaker as time progresses.

Latent growth models examine whether the predictor (or the change in the predictor) 
affects the growth trajectory of the mediation variable, which in turn affects the growth 
trajectory of the outcome variable. The predictor can also have a direct effect on the growth 
trajectory of the outcome.

In the latent difference score approach, changes in the mediator values, and changes in the 
outcome values, between repeated occasions are subjected to methods for simple media-
tional analysis with a single measurement of each variable.

Different combinations of models are also possible (Bollen and Curran, 2004). Each of 
these approaches has advantages and disadvantages, but the most glaring drawback is 
that the effects are most often not derived from a causal inference perspective and the 
assumptions under which causal interpretation can be made are not clear.

In order to deal with the interpretability issue and to formalize conditions under which 
causal inference can be performed, a few publications in the statistical literature have con-
sidered mediation analysis with time-varying exposures and repeated assessments of the 
mediator (VanderWeele, 2010; Bind et al., 2016). An approach that has gained popularity 
in the statistical and epidemiology literature to assess mediation effects when treatment 
is not randomized and there may be time-varying confounders and exposures is marginal 
structural models (MSM, see e.g., Moodie and Stephens (2011) for a non-technical descrip-
tion). These models are marginal because they assess population-averaged effects of the 
treatment and the mediator on the outcome, and structural because they focus on causal 
rather than associational effects. There are different methods for estimation: inverse prob-
ability weighting (Robins et al., 2000), g-estimation (van der Wal et al., 2009), or targeted maxi-
mum likelihood (Rosenblum and van der Laan, 2010). These methods have not yet gained 
popularity in the subject-matter literature.

To provide a more specific example of mediation analysis with longitudinal data, we 
focus on the approach of Bind et al. (2016), as it is very general and justifies effects from a 
causal inference perspective. The authors suggest using generalized linear mixed models 
(GLMM) to specify relationships among exogenous exposure variables, repeatedly mea-
sured mediators, and the outcome. They derive definitions of direct, indirect, and percent 
mediated effect from a causal inference perspective. Interactions between the exposure 
and the mediator are allowed. The approach can handle multiple mediators and different 
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types of mediators and outcomes. Thus, Bind et al. (2016) extend and formalize some of the 
methods that have been previously used in the psychological literature. We outline their 
approach here, consider an example in Section 9.4, and refer the interested reader to the 
original publication for more information.

Briefly, the approach involves specifying a GLMM, with the mediator as the outcome 
and treatment and covariates as predictors, and a second GLMM for the outcome of inter-
est with the mediator, treatment, and covariates as predictors. Individual-level random 
intercepts and slopes for the treatment (and mediator in the second GLMM) effects are 
included, thus allowing for subject-specific differences in the strength of treatment–medi-
ator and mediator–outcome relationships. All random effects in both models are allowed 
to be correlated. If there are positive correlations between the slopes of the treatment and 
mediator effects, individuals who are more likely to experience exposure effects on the 
mediator are also more likely to experience mediator effects on the outcome. Negative cor-
relations imply the opposite.

The assumptions under which the derived direct and indirect effects have causal inter-
pretation are similar to those for single measurements of the exposure, mediator, and 
outcome, but in the longitudinal case these assumptions are defined to be conditional 
on the random effects. There is also the added assumption of no time-varying confounding 
with respect to both the exposure and the mediator variables. What this means is that 
the mediator and the outcome, measured up to a particular time point, depend only on 
recent values of the exposure and confounders, and not on previous values of the outcome 
or mediator. Future values are also assumed not to affect current and past values. An 
example illustrating this approach is shown in Section 9.4.

9.3.6 Mediator Effects in Studies with Clustered Data

A multitude of papers in the psychological literature have proposed mediational analyses 
in hierarchical (multilevel) models (e.g., Krull and MacKinnon, 1999; Kenny et al., 2003; 
Bauer et al., 2006; Tofighi et al., 2013) that can be used in studies with clustered data. In 
nested designs, predictor and mediators can be measured at the cluster or individual level, 
and mediation mechanisms may vary depending on the level of measurement. That is, 
different variables may mediate the relationships at the cluster level (e.g., group-based 
intervention) and others at the subject level (e.g., individual-level response to treatment).

When clustering is present, performing a mediation analysis at the individual level, 
ignoring potential clustering of individuals within groups, inflates the probability of type 
I error and underestimates standard errors of effects. Random effects are typically used to 
allow for correlations among observations within clusters and often the direct and indi-
rect effects themselves are represented as random effects (e.g., in Figure 9.3 we allow a1, b1, 
and b2 to be random). This is quite appropriate when we expect direct and indirect effects 
to vary from cluster to cluster. For example, individuals in different families may respond 
in systematically different ways to an intervention and the strength of the mediating effect 
may vary from family to family. Random coefficients for the effects of treatment on both 
the mediator and the outcome, and for the mediator on the outcome allow for this flexibil-
ity. Any valid estimation of the effects, however, needs to take into account inter-cluster 
variability and covariance among the various random effects.

A word of caution applies when using approaches for multilevel mediational analysis. 
Most publications do not justify the proposed estimates of direct and indirect effects as 
contrasts of counterfactual outcomes and the assumptions under which the effects have 
causal interpretation are often not clear. Exposure–mediator interactions are also often not 
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considered. Note, however, that the approach of Bind et al. (2016) can be used with clus-
tered data and allows for exposure–mediator interactions.

9.3.7 Moderated Mediation and Mediated Moderation

Moderators can often impact the relationships in mediation models. Two situations are 
particularly relevant: moderated mediation (Preacher et al., 2007) and mediated moderation 
(Muller et al., 2005). In moderated mediation, the mediation effect depends on the level of 
a moderator. That is, whether there is mediation of the relationship between X and Y via 
M, its direction, and the magnitude of the indirect effect depends on a third variable, Z (a 
moderator). Such a situation can be handled by including the moderator and its interac-
tions with treatment and the mediator in the models for mediation analysis. Assessing the 
magnitude and the significance of the interactions involving the moderator shows how 
much the treatment and/or mediator effects vary depending on the level of the moderator. 
Interpretation of moderated mediation effects is more straightforward with categorical 
moderators. See MacKinnon (2008) for more information.

In mediated moderation, there is an interactive effect of X and the moderator, Z, on the 
outcome, Y, and M mediates this effect. Models for such a situation include main and 
interactive effects of the predictor and the moderator on the mediator, and on the outcome. 
Morgan-Lopez and MacKinnon (2006) describe such models but further methodological 
developments are needed.

Note that the interactive effects of treatment and the mediator inherently suggest mod-
eration such that treatment assignment moderates the effect of the mediator. That is, the 
effect of the mediator varies by level of treatment. As discussed previously, the calculation 
of NDE and NIE effects becomes more complicated in such situations, but is appropriately 
handled via the causal inference approach.

9.4 Data Examples of Mediation Analysis

9.4.1  Improvement in Sleep as Mediator of the Effects of Modafinil 
on Cocaine Use in Cocaine-Dependent Patients

In this study, patients were randomized to modafinil treatment or placebo during a period 
of inpatient treatment and then were followed up for six weeks as outpatients (Morgan 
et al., 2016). The treatment goal was to reduce cocaine use, and it was hypothesized that 
the anticipated reduction would be at least partially mediated through improvements in 
slow-wave sleep. The outcome of interest was percent negative urine samples during the 
six weeks of outpatient treatment. Improvement in slow-wave sleep was the hypothesized 
mediator, and it was measured during the inpatient phase when subjects were abstaining 
from cocaine use. Due to the schedule of the measurements we have clear temporal order-
ing of the treatment, the mediator, and the outcome; thus, we can perform causal infer-
ence mediation analysis. We consider models with and without an interaction between the 
treatment and the mediator. The outcome and the mediator are assumed normally distrib-
uted, hence the total treatment effect is represented as the sum of the natural direct and 
indirect effects (TCE = NDE + NIE). Since this is a linear model, the controlled direct effect 
is the same as the natural direct effect (CDE = NDE) when there is no interaction between 
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the treatment and the mediator. Thus, the Baron and Kenny approach and the causal 
mediation approach without an interaction are expected to produce the same results. We 
do not control for potential confounders between the mediator and the outcome, although 
it is possible to include such variables in the equations.

The two fitted models are as follows:

 Equation 1 Sleep duration treatment: _ . .= − +2 48 18 76  

Equation 2 Percent negative urine tests treatme: _ _ _ . .= +27 29 12 15 nnt sleep duration+ 0 70. _

From Equation 1, we see that slow-wave sleep duration is on average about 20 min (18.76 
to be precise) longer in subjects on modafinil than for subjects on placebo, which is sta-
tistically significant (a1 = 18.76, SE = 5.53, p = 0.002). Thus, there is evidence of a statistically 
significant effect of treatment on the mediator. From Equation 2, we see increased sleep is 
associated with increased percent negative urine samples. An increase of 10 min is asso-
ciated with an average increase of seven points in percent negative urine samples. The 
effect of sleep is statistically significant (b2 = 0.70, SE = 0.26, p = 0.01), while the effect of treat-
ment is no longer statistically significant (b1 = 12.15, SE = 11.27, p = 0.29). The estimates of the 
direct, indirect, and total causal effects with 95% confidence intervals are as follows:

 CDE NDE 12 15  95  CI  9 94  34 24= = −( ). , % : . , .  

 NIE 13 12  95  CI  88  25 37= ( ). , % : . , .0  

 TCE 25 27  95  CI  4 35  46 2= ( ). , % : . , . 0  

Although the confidence intervals are quite wide (possibly due to the small sample 
size), the intervals for the NIE and TCE are entirely above zero, thus indicating statisti-
cally significant indirect and total effects. The percent mediated effect is 51.3 (obtained as 
approximately 13.12/(13.12 + 12.15)), thus about half of the effect of treatment on outcome is 
explained via improvement in sleep.

Improvement in sleep
(continuous)

Percent negative
urine samples
(continuous)

a1 = 18.76 b2 = 0.70

b1 = 12.15Modafinil treatment
(active vs. placebo)

Direct effect (b1) = 12.15
Indirect effect (a1 × b1) = 13.12

Total effect = 25.27

FIGURE 9.5 
Total, direct, and indirect effect of modafinil treatment on percent negative urine samples via improvement in sleep.
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The results are obtained using the %mediation macro in SAS (Valeri and VanderWeele, 
2013; see online materials). Figure 9.5 shows a diagram of the mediation analysis and 
the estimated magnitudes of the direct, indirect, and total effects. The indirect effect is 
obtained as the product of the coefficients of the effect of treatment on the mediator and of 
the mediator on the outcome.

We next include an interaction between treatment and the mediator in Equation 2:

 
Equation 2 Outcome treatment sleep duration: . . . _= + +27 20 10 71 0 66 ++ 0 13. *

_
treatment

sleep duration  

Based on this model, the following causal estimates of the effects are obtained:

 CDE 1 71  95  CI  14 82  36 25= −( )0. , % : . , .  

 NDE 1 39  95  CI  16 57  37 36= −( )0. , % : . , .  

  NIE 14 71  95  CI  2 6  31 48= −( ). , % : . , .0  

 TCE 25 11  95  CI  3 78  46 43= ( ). , % : . , .  

In this case, the CDE and NDE are slightly different, the NIE is no longer statistically sig-
nificant (the 95% CI includes zero), and all confidence intervals are wider. Hence, evidence 
of a mediation relationship is not as strong.

To decide between the two models, we check the significance of the interaction between 
treatment and sleep. The p-value is highly non-significant (p = 0.82), and thus there is no 
need to include the interaction and we can use the simpler main effects model. We con-
clude that the effect of modafinil on cocaine use is partially mediated through improve-
ments in sleep.

9.4.2  Intent-to-Smoke as a Mediator of the Effect of a School-
Based Drug Prevention Program on Smoking

The second example uses a data set from a longitudinal school- and community-based 
drug intervention program analyzed by MacKinnon et al. (2007). Middle schools were ran-
domly assigned to experimental or control conditions. The outcome was measured at the 
student level and was a dichotomous indicator of cigarette use (1 = yes, 0 = no). The poten-
tial mediator was intention to use tobacco, measured several months after the program 

TABLE 9.3 

Data from the Study of the Effects of a School-Based Drug Prevention Program on Smoking

Experimental Treatment Control Treatment

Intent‑to‑Smoke Cigarette Use Cigarette Use

No Yes No Yes

No 396 43 265 43
Yes 24 30 23 40
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was initiated and before the outcome assessment. Table 9.3 presents the number of indi-
viduals by treatment group, intent-to-smoke (dichotomous), and cigarette use.

We consider a logistic regression model to estimate the effect of treatment on the media-
tor, and in two separate analyses, logistic and log-linear regression, the effect of treatment 
and the mediator on the outcome. The outcome here has an overall prevalence of about 22% 
(larger than the 10% cutoff for rare outcomes), so the log-linear model is more appropriate, 
but we fit both logistic and log-linear models in order to illustrate both approaches. As in 
the previous example, we considered models with and without an interaction between 
treatment and the mediator, but since the interactions were not statistically significant, the 
results herein are presented based on the main effects models. The complete results are 
available in the online materials.

The fitted logistic models are as follows:

 logit{ ( 1)} 1.59 0.51P M Ti i= = − −  

 logit{ ( 1)} 1.83 0.38 2.41P Y T Mi i i= = − − +  

where:
 Ti indicates the treatment prevention program (1 is for experimental, 0 is for control) 
 Mi indicates the intent of the individual student to smoke (1 corresponds to “yes,” 

0 corresponds to “no”)
 Yi is the outcome (1 corresponds to smoking, 0 corresponds to not smoking)

The estimated odds ratios describing the CDE, NDE, NIE, and TCE based on these mod-
els obtained by substituting the regression coefficient estimates in the approximate formu-
lae of Valeri and Vanderweele (2013), shown in Section 9.3.2, are as follows:

 OR OR 68  95  CI  46  1CDE NDE= = ( )0 0 00. , % : . , .  

 OR 78  95  CI  63  95NIE = ( )0 0 0. , % : . , .  

 OR 53  95  CI  34  82TCE = ( )0 0 0. , % : . , .  

The OR for the total effect shows that the odds of smoking for students in the experimental 
prevention program are only about half of those on the control treatment, a statistically sig-
nificant effect (p = 0.004). The OR for the total effect (0.53) factors out approximately into the 
product of the OR for the natural direct effect (0.68) and the OR of the natural indirect effect 
(0.77) (TCE = NDE × NIE). Both the NDE and the NIE are statistically significant (p = 0.05 
and p = 0.01, respectively). Thus, we conclude that there is statistically significant partial 
mediation of the effect of the prevention program via the intention to smoke acknowledged 
by individual students. The prevention program reduces the intent to smoke, which in turn 
leads to reduced odds of smoking. There is also a direct effect of the program on smoking.

Since the outcome is not rare, we prefer to use log-linear regression rather than logistic 
regression to relate the outcome to the treatment and the mediator. Thus, the second fitted 
equation is changed to:

 log{ ( )} . . .P Y T Mi i i= = − − +1 2 04 0 22 1 61  

Based on this model (together with the logistic regression for the mediator above), the 
estimated risk ratios of the CDE, NDE, NIE, and TCE are as follows:
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 RR RR 81  95  CI  63  1 3CDE NDE= = ( )0 0 0. , % : . , .  

 RR 86  95  CI  76  97NIE = ( )0 0 0. , % : . , .  

 RR 69  95  CI  53  9TCE = ( )0 0 0 0. , % : . , .  

In this scenario, the risk ratio for the TCE is estimated to be 0.69; thus, individuals who 
receive the experimental program are estimated to have a 31% lower probability of smok-
ing, which is a statistically significant decrease (p = 0.007). The risk ratios for the NDE and 
NIE are 0.86 and 0.81, respectively, which correspond to about 14% and 19% decreases in 
the probability of drinking, while the NDE is not statistically significant (p = 0.09), the NIE 
is (p = 0.01).

In the log-linear model TCE = NDE × NIE, as was the case in the logistic model. Both 
approaches indicate that there is a statistically significant NIE, and thus the effect of treat-
ment on the outcome is partially mediated via the considered intention-to-smoke variable. 
The difference in the estimates and associated confidence intervals arise because we are 
estimating odds ratios in the logistic model and risk ratios in the log-linear model. For rare 
outcomes, the two sets of estimates will be approximately the same.

9.4.3 Mediator Effects in a Simulated Repeated Measures Data Set

We use the simulated data from Bauer et al. (2006) with eight repeated occasions per indi-
vidual to illustrate causal mediational analysis with repeated measures data. On each 
occasion, a continuous predictor variable, X, a continuous mediator, M, and a continuous 
response variable, Y, are available. All variables, including the predictor, are time-varying. 
The question of interest is whether the effect of X on Y is mediated through M. We apply 
the approach of Bind et al. (2016) to assess direct and indirect effects in this scenario. Linear 
mixed models are assumed for 1) the effect of X on M with random intercept and random 
slope of X and 2) for the effect of X and M on Y with random intercept and random slopes 
of X and M. The random effects are assumed to all be correlated, which takes into account 
the variance–covariance structure of the data. The fitted models, with the random effects 
indicated by alphas and betas, are as follows:

 Equation 1 : . .M X Xit it i i it= + + +0 09 0 61 0 1α α  

 Equation 2 : 0.10 0.22 0.61 0 1 2Y X M X Mit it it i i it i it= − + + + + +β β β  

Since the predictions for subject-specific random effects vary from individual to indi-
vidual, we are not showing them here. SAS code to fit the models and estimate the effects 
is available in the online materials. Similar code is also available at http://www.ats.ucla.
edu/stat/sas/faq/ml_mediation2.htm, with standard errors obtained by the delta method 
rather than by bootstrapping. Although the approach of Bind et al. (2016) allows for an 
interaction between the treatment and mediator variables, we do not consider it here since 
the data were generated according to a main effects model only. The estimated effects and 
confidence intervals are as follows:

 CDE NDE 22  95  CI  18  3= = ( )0 0 0 0. , % : . , .  

 NIE 47  95  CI  35  54= ( )0 0 0. , % : . , .  
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 TCE 69  95  CI  6  79= ( )0 0 0 0. , % : . , .  

There is a statistically significant effect of X on Y such that a unit increase in X increases 
Y by 0.69 on average. Most of this increase is due to the change in the mediator (0.47), while 
the remaining effect (an increase of about 0.22) is not explained by this particular mediator 
and may be due to other pathways or to a direct effect of the intervention program on the 
outcome. The percent mediated is estimated to be 0.68, 95% CI: (0.58, 0.74) or about two-
thirds of the total effect.

9.5 Summary

In this chapter, we focused on two special types of variables that affect the relationship 
between a predictor (treatment, exposure) of interest, X, and an outcome, Y. Moderators are 
unrelated to the predictor and describe for whom or under what conditions the treatment 
or exposure produces its effect on the outcome. Mediators explain how the effect of X on Y 
is produced, are affected by the predictor, and in turn affect the outcome.

While moderator analyses and interpretation are relatively straightforward, mediator 
analyses are challenging and a universally used approach is yet to emerge. The causal 
inference framework is very attractive in that it unifies different types of predictors, medi-
ators, and outcomes under the same umbrella, provides clear definitions of direct and 
indirect effects, and is explicit about assumptions under which causality can be claimed. 
However, as of now, most causal inference analyses appear in the statistical literature, 
partly because most software packages do not yet provide convenient modules for such 
analyses and partly due to difficulties with positing and verifying assumptions (especially 
in longitudinal models). There is a complexing array of macros available for use, but they 
generally offer little user guidance and require some level of sophistication. In general, 
the assumptions underlying mediator analysis are difficult to assess, and in some studies, 
mediation cannot be properly tested (e.g., cross-sectional studies where temporal ordering 
cannot be established). Theoretical support is often needed in order to specify appropriate 
models.

Randomized studies provide much better frameworks than observational studies for 
evaluating moderation and mediation since they guarantee that the potential moderator 
and treatment are unrelated, and automatically satisfy some of the assumptions of media-
tion analysis. Designs that allow for randomizing the mediator in addition to treatment 
are the best for mediation analysis in terms of satisfying the assumptions for causal inter-
pretation. However, they are logistically difficult to implement and not really an option 
in most situations. Designs without double randomization are vulnerable to the effects 
of unmeasured confounding. Structural mean models and principal stratification approaches 
are available to provide effect estimates in such scenarios (Robins and Greenland, 1992; 
Robins et al., 2000;  VanderWeele and Vansteelandt, 2009).

Longitudinal studies provide unique opportunities for the assessment of mediator 
effects because the temporal ordering of the treatment, mediator, and the outcome can be 
ascertained, and treatment and mediator effects can therefore be more accurately attrib-
uted. However, they come with their own set of challenges. Despite some recent meth-
odological advances, such as the approach of Bind et al. (2016) that was discussed and 
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illustrated in this chapter, much research is still needed on general models and accessible 
modules need to be incorporated into software programs.

In addition to moderation and mediation, other types of relationships may exist between 
X, Y, and a third variable that can shed light on the relationship between the predictor 
and the outcome. Variables related to both the predictor and the outcome are confound-
ing variables, and ignoring them can lead to incorrect inferences. Confounding variables 
can also be responsible for bias in mediator analysis, where confounders of the relation-
ship between the treatment and the mediator, and/or the mediator and the outcome are 
ignored. The third variable can be an independent predictor of the outcome, in which case 
ignoring it will not lead to bias, but taking it into account may improve precision in esti-
mating moderator and mediator effects, as it helps reduce the unexplained variability in Y. 
This is usually what is done in classical ANCOVA when there are no interactions among 
the predictors. A review of different types of relationships among risk factors is available 
in Kraemer et al. (2001).

More work is needed on effect sizes for mediation, improving power for testing 
mediation effects, and simultaneous assessment of multiple moderators and mediators. 
Non-parametric models and simulation-based approaches for estimation of direct and 
indirect effects can be quite useful when one is unwilling to make parametric assump-
tions or parametric assumptions are unlikely to hold (Imai et al., 2010). Thus, mediational 
 analyses are going to continue presenting a multitude of challenges, including the need 
for more  methodological development, better and more consistent software capabilities, 
careful assumption checks, and sensitivity analyses to assess the effects of violations of 
assumptions.



http://taylorandfrancis.com/
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10
Mixture Models for Trajectory Analyses

Generalized linear mixed models (GLMM) for longitudinal data (described in Chapter 4) 
assume that individuals follow the same type of trajectory over time with random vari-
ability (in the form of random intercepts, slopes, or other effects) around the mean trends. 
Traditional generalized estimating equations (GEE) (also described in Chapter 4) do not 
allow for random effects, but also assume that all individuals with the same baseline 
covariates have the same trajectory over time. However, it is possible that there are categor-
ically different classes of trajectories, with individuals having different chances of being 
in a particular class. This is especially common with categorical outcomes. For example, in 
studies such as COMBINE, some individuals abstain from drinking throughout the obser-
vation period while others increase or decrease their drinking. Developmental trajectories 
of substance use are often also heterogeneous with some individuals showing progression 
to substance abuse while others show an increase followed by recovery or no change at all. 
Such situations are difficult to capture with traditional models for longitudinal data and 
may be more suitably described by latent class-based approaches (Nagin, 1999; Muthén 
and Muthén, 2000). These approaches are focused on data-driven extraction of distinct 
trajectory patterns and use the available data to determine both the number of patterns 
(trajectory classes) and the shapes of response over time in each of these classes. Treatment 
and covariates typically affect the probability of following a particular trajectory pattern. 
Since the classes themselves are unknown and unobserved, they are referred to as latent 
classes.

Models with latent trajectory classes are useful when interest lies in categorizing pat-
terns of response in treatment studies or types of developmental trajectories. If groups 
of individuals with similar trajectories can be identified in a data-driven way and we can 
identify predictors of trajectory membership and how it relates to future outcomes, inter-
ventions can be planned to prevent adverse outcomes.

In this chapter, we introduce two commonly used methods for latent class growth analy-
sis: latent class growth models (LCGM) and growth mixture models (GMM). Both approaches 
aim to classify individuals into distinct groups (classes) based on the response patterns 
over time so that individuals within a group are more similar than individuals in different 
groups. The major difference between the two approaches is that GMM allows individu-
als to vary in their trajectories around the mean trend of the class they most likely belong 
to (much like GLMM allows for random intercepts and slopes in the entire population) 
while the LCGM approach does not (much like GEE posits that the expected trend is the 
same for all individuals). This makes the GMM approach more flexible, but also more 
prone to computational and convergence problems since individuals are not as easily clas-
sified in groups. In addition, from a conceptual perspective, GMM rely on the assumption 
that categorically different subgroups exist in the population, while LCGM are aiming 
to capture population heterogeneity simply by categorizing trajectories of response over 
time into a small number of groups. These groups may or may not correspond to different 
subpopulations. This is a fine distinction between the two approaches and one that not all 
researchers agree on. Since LCGM are a special case of GMM one can argue that they also 
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rely on the assumption of the existence of distinct trajectory classes in the population. The 
differences and similarities of the two approaches are emphasized throughout the chapter.

The structure of the current chapter is as follows. Section 10.1 describes LCGM with their 
advantages and disadvantages while Section 10.2 does the same for GMM. Section 10.3 
focuses on model fitting and model selection issues while Section 10.4 presents a couple of 
data examples. The chapter concludes with a summary (Section 10.5) and reiteration of the 
versatility and caveats of these approaches.

As always, we keep the presentation non-technical and focus only on the key aspects 
of the methods. Other non-technical presentations are available in Muthén and Muthén 
(2000), Nagin and Tremblay (2005), Jung and Wickrama (2008), Ram and Grimm (2009), 
Bauer and Reyes (2010), Berlin et al. (2014), Nagin (2014), and Frankfurt et al. (2016). More 
demanding technical overviews of the methods can be seen in Muthén and Shedden 
(1999), Muthén et al. (2002), Pickles and Croudace (2010), Vermunt (2010), and Muthén and 
Asparouhov (2015).

10.1 Latent Class Growth Models (LCGM)

LCGM aim to identify categorically different trajectory classes over time and investigate 
how membership of a particular class is affected by treatment, exposure, or covariates. 
These models are also commonly referred to as trajectory models, semi-parametric group-
based models, and group-based trajectory models (GBTM). Our presentation here is based on 
the model definition of Nagin (1999). For more information at a non-technical level, we 
refer the interested reader to Nagin and Odgers (2010) and Frankfurt et al. (2016). A review 
of the similarity and differences with GMM is provided by Frankfurt et al. (2016).

Note that unlike the usual mixed-effects models for longitudinal data, where we can 
compare different a priori specified groups (i.e., individuals on different treatments or with 
different characteristics), in LCGM the trajectory groups (classes) are unknown. We are 
using the data to identify such classes, and the number of latent classes is decided based 
on the fit of models with different numbers of classes to the observed data. The repeatedly 
measured outcomes can be continuous, dichotomous, or counts and we use polynomial 
trends to describe change over time in each class. Other types of outcomes (e.g., ordinal) 
can also be considered.

Figure 10.1 shows a hypothetical situation with three distinct trajectories of a dichot-
omous outcome over time. We have observed similar trajectories when investigating 
medication adherence (Gueorguieva et al., 2013) and also when exploring trajectories of 
drinking in clinical trials (e.g., Gueorguieva et al., 2007). The outcome is a binary measure 
(e.g., taking prescribed medication or not; drinking or not), evaluated daily. To be specific, 
we consider the medication adherence outcome. In this context, the trajectory class at the 
top shows consistently high probabilities of taking the prescribed medication throughout 
the study and hence we call this the adherence trajectory. The trajectory class at the bot-
tom shows consistently low probabilities of taking the prescribed medication and hence 
we call this the non-adherence trajectory. The third trajectory class is called the progressive 
 non-adherence trajectory as initially high probabilities of taking the prescribed medication 
are followed by a gradual decrease, ending in almost zero probabilities of adherence. 
Treatment is expected to have some effect on the likelihood to follow a particular trajec-
tory either alone or in combination with other predictors. For example, individuals who 
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experience side effects may stop taking their prescribed medication and thus follow the 
“non-adherence” or “progressive non-adherence” trajectory. On the other hand, treatment 
may have a true beneficial effect and thus increase the likelihood of following the “adher-
ence” trajectory.

Such a situation is difficult to describe with traditional mixed models with random inter-
cepts and slopes because individual trajectories tend to cluster at the end of the measure-
ment scale (i.e., individuals are consistently complying or not complying with treatment, 
and some change their adherence behavior intermittently or progressively). Traditional 
mixed models assume normal distribution of the random effects which implies that the 
majority of trajectories are closer to the mean trajectory with some outliers. In contrast, 
LCGM assume that there are a number of trajectory types and individuals have a certain 
probability of falling into a particular class. Residual variability at each time point around 
the mean of the trajectory is allowed, but in LCGM no additional random effects (i.e., inter-
cepts and slopes) are specified. Thus, all individuals in a latent class are expected to have 
the same starting point and rate of change over time, and LCGM  also assumes that, given 
class membership, repeated measurements within a subject are independent. The goal in 
LCGM  is to use the data to identify the classes and shapes of change over time within 
each class.

To specify a LCGM one needs to go through the following steps:

  1. Decide how many classes of trajectories to estimate.
  2. Specify a generalized linear model (GLM) for the repeatedly measured response 

in each class.
  For example, if the outcome is binary, we commonly use logistic regression to 

describe the change in response over time within the class. If the outcome is count, 
we use Poisson or negative binomial regression. Zero-inflated models can also be 
considered. For a normally distributed outcome, a GLM is preferred.

  Polynomial trends are used to describe change over time and one can choose 
whether to use linear, quadratic, or cubic effects in each class. Covariates other 
than time can be included in the linear predictor for each class.

Trajectories of dichotomous response over time
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FIGURE 10.1
Hypothetical example of a latent class growth model with three trajectory classes.
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  3. Specify a generalized logistic regression model for the individual’s odds of belong-
ing to a particular class. One of the classes is selected as the reference class, and the 
log of the ratio of the probability of each of the other classes versus the probability 
of the reference class is related to treatment, exposure, or other baseline covariates.

As an example, consider the situation shown in Figure 10.1. The LCGM used to describe 
this scenario is specified by (1) assuming three trajectory classes, (2) formulating a logistic 
regression model to describe the time trend in the odds of positive response within each 
class, and (3) using a generalized logistic regression model for trajectory membership with 
treatment and other potential covariates as predictors.

The logistic regression model within class k could be

 log |
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where pt|k is the probability that the response at time t for an individual in the class 
is 1. This probability is conditional on membership in class k and the regression coef-
ficients (betas) are specific to the class. In general, the form of the model is the same in 
all classes, although it is possible to have different polynomials in the different classes 
and additional covariates (e.g., starting or stopping other concurrent medications, life 
events).

The generalized logistic regression model relating treatment and baseline covariates to 
trajectory membership could be
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Here, Pik denotes the probability that individual i follows the trajectory of class k and 
K is the reference class. Note the difference between pt|k (the probability of the observed 
outcome at time t if the subject belongs to class k) and Pik (the probability that the trajectory 
of individual i belongs to class k). In LCGM, we always have the generalized logit model 
for Pik (even if there are no predictors, in which case we just estimate the class member-
ship probabilities). In the generalized logistic regression model, treatment and a single 
covariate are shown to predict class membership. Thus, individuals who receive different 
treatments and have different levels of the covariate are expected to have different prob-
abilities of membership in a particular trajectory class. Additional covariates can be added 
as needed.

The logistic regression model for pt|k is used when we have a binary outcome. Different 
types of outcomes can be considered by changing the models describing the trajectory 
within each class. That is, replacing the logistic model in step 2 with another type of GLM 
(e.g., Poisson or normal regression). Note that there are no random effects within each 
class. The only random variable (in addition to the repeatedly measured response) is class 
membership, a categorical latent class variable.

It is clear that for each situation there are a multitude of possible models that can be con-
sidered with different numbers of classes, forms of the GLMs within classes, and different 
predictors of class membership and outcome within classes. We defer consideration of the 
issues of model selection and assessment of model fit to Section 10.3, after we introduce 
GMM, since the issues are common for both approaches. Herein, we just emphasize sev-
eral popular misconceptions regarding LCGM.
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  1. Individuals do not actually belong to a trajectory group. Their trajectories may be 
most consistent with a particular trajectory group, but individual time courses are 
not set at the outset and external factors could alter them.

  2. The number of trajectory groups is not set in stone and does not necessarily rep-
resent distinct groups in the population. Thus, much care needs to be taken when 
interpreting treatment effects on trajectory membership.

  3. The trajectories of individuals classified as most likely members of a particular 
group are not identical. There is still random variability allowed around the mean 
for each trajectory, but it is not a systematic deviation such as is modeled in ran-
dom effects models.

LCGM are most commonly used for balanced designs (i.e., when individuals are observed 
at the same fixed time points) and are fit using a specifically designed SAS procedure (SAS 
PROC TRAJ) introduced by Jones et al. (2001), and reviewed and revised by Jones and 
Nagin (2007). However, theoretically, the approach is not limited to balanced designs and 
can be applied using other software (e.g., MPlus, Muthén and Muthén (1998–2015)).

There are a number of advantages of the LCGM approach, including (1) data-driven 
assessment of patterns over time; (2) data-driven identification of groups of subjects with 
similar trajectories over time; (3) estimation of effects of covariates and treatment on tra-
jectory membership; (4) assessment of the proportion of the population whose treatment 
response corresponds most closely to each trajectory group; (5) accounting for time-depen-
dent covariates; and (6) valid inference under missing at random assumptions (i.e., when 
observations from some of the fixed time points are missing on some individuals).

At the same time, there are disadvantages to this approach, including (1) the reli-
ance of the analysis on the assumption that different classes of trajectories represent 
the population distribution well; (2) the tendency to over-extract latent classes under 
model misspecification (see e.g., Bauer and Curran, 2003); (3) the number and shape 
of trajectories are limited by sample size and number of fixed time points; (4) there is 
no allowance for systematic between-subject variability around the different trajecto-
ries; (5) there is no allowance for testing of interactions between treatment or baseline 
covariates and time-dependent covariates; and (6) the results may be biased if data are 
informatively missing.

Guidelines for the use of LCGM and presentation of results from LCGM can be found in 
Nagin and Odgers (2010), van de Schoot (2015), and Frankfurt et al. (2016), among others. 
Extensions of the LCGM approach to model trajectories of related behaviors over time are 
proposed by Nagin and Tremblay (2001).

10.2 Growth Mixture Models (GMM)

GMM (Muthén and Shedden, 1999) can be regarded as extensions of LCGM in that they 
allow for random variability in the form of random intercepts, slopes, or higher order 
terms in each trajectory class. They are also extensions of the GLMM, which are actually 
GMM with a single latent class. Thus, GMM provide incredible flexibility in modeling 
trajectories over time but the models become very complex. Model fitting and model selec-
tion is also very challenging. Note that, unlike LCGM, which are focused on grouping 
observed trajectories in latent classes that might or might not correspond to distinct sub-
populations, GMM require the assumption that there are distinct trajectory classes in the 
population to yield interpretable results. Thus, it is not appropriate to fit GMM when there 
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is no reason to believe that there are categorically different trajectories in the population. 
In such cases, spurious results can occur and erroneous conclusions can be reached.

Compared with LCGM, GMM are very flexible in accommodating inter-individual vari-
ability in trajectories within a latent class, which is a clear advantage of the approach, but 
at the same time it is more difficult to classify individuals in a particular class, and this 
may be regarded as a disadvantage of the approach. To clarify, we consider a simulated 
data example.

Figure 10.2 shows a hypothetical scenario with two trajectory classes: a flat trajectory 
class and a linearly decreasing trajectory class over time. Six individual trajectories (three 
per class) are also shown. The individual trajectories indicate that there is variability in the 
intercepts and slopes even within a class, and thus there is a very rich variety of longitu-
dinal profiles that can be accommodated using such a model (especially if one considers 
also non-linear change over time). Since some of the variability in individual trajectories 
is contained within specific classes in GMM rather than across different classes, fewer 
classes are usually necessary in GMM in order to capture that variability of the data com-
pared with LCGMs.

On the other hand, as can be seen from Figure 10.2, some individuals are clearly mem-
bers of their corresponding classes (i.e., the two trajectories that end up with the lowest 
scores belong to the decreasing trajectory class, the two trajectories that end up with the 
highest scores belong to the flat trajectory class) but some individuals (i.e., the two tra-
jectories in the middle) are not unequivocally members of either class. When a GMM is 
fit to the data, these individuals may have probabilities compatible with being classified 
in either class (e.g., 55% probability to be in one class versus 45% probability to be in the 
other). Thus, there may be quite a bit of uncertainty in classifying individuals; hence, the 
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FIGURE 10.2
Profile plot of hypothetical data generated according to a two-class growth mixture model. The solid lines cor-
respond to the average response over time in the two trajectory classes (black line—flat trajectory class, gray 
line—decreasing trajectory class). The black dashed lines correspond to individuals whose trajectories match 
that of the flat trajectory class more closely, the gray dashed lines correspond to individuals whose trajectories 
follow the decreasing trajectory class more closely.



275Mixture Models for Trajectory Analyses

classification accuracy of GMM is often lower than the classification accuracy of the cor-
responding LCGM.

To specify a GMM one needs to go through the following steps:

  1. Decide how many classes of trajectories will be estimated.
  2. Specify a GLMM (rather than GLM as in LCGM) for the repeatedly measured 

response in each class. That is, one needs to specify a response distribution (e.g., 
binomial, Poisson, negative binomial, normal), a link function (e.g., logit, log, iden-
tity), and the form of the linear predictor. Polynomial trends describe change over 
time, and one can choose whether to use linear, quadratic, cubic, or some other time 
effects (e.g., change-point) in each class. Random effects are included in the model 
in addition to fixed effects. Time-dependent covariates can also be incorporated in 
the model.

  3. Specify a generalized logistic regression model for the individual’s odds of belong-
ing to a particular class. Treatment, exposure, or other baseline covariates can be 
included as predictors.

To illustrate, consider again the situation shown in Figure 10.1, with three medication 
compliance trajectories. A GMM for this scenario is specified by (1) assuming three trajec-
tory classes, (2) formulating a logistic regression model with random effects within each 
class, and (3) using a generalized logistic regression model for trajectory membership.

The logistic regression model within class k could be
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The fixed-effects portion of the model is the same as in the corresponding LCGM, but 
there are also class-specific random intercepts, slopes, and quadratic terms. The random 
effects bik0, bik1, and bik2 are assumed to be normally distributed and are in general corre-
lated within the class. The random effects in different trajectory classes are assumed to 
be independent of each other. The rest of the model formulation is exactly the same as in 
LCGM.

Note that compared with the corresponding GLMM with a single trajectory class there 
are many more parameters in GMM (k times as many to be precise). Thus, one needs a size-
able sample size in order to estimate GMM accurately. Empirical identifiability issues often 
arise so that, for example, some variances are not identifiable (cannot be estimated) from 
the data. Thus, restrictions are often imposed on some of the parameters in the model.

One possible restriction is to set all variances of the random effects in all classes to be 
equal to zero. That is, we assume that there is no between-subject heterogeneity of growth 
trajectories within the class. In this case, GMM reduce to LCGM.

Another possible restriction is to set the variances of only some random effects (e.g., 
the quadratic terms, or the quadratic and slope terms) to be equal to zero. Thus, we may 
assume that individuals have unique starting points for their trajectories but then the 
shape of change is the same across subjects within a trajectory class.

A third possible restriction is to assume that the variances of the random intercepts, the 
random slopes, and the quadratic terms are the same for all classes. That is, we assume 
that the variability in starting points, rates of change, or curvature of individual trajec-
tories around the corresponding class means are the same for all trajectory classes. This 
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may seem like a rather restrictive assumption, but it might otherwise be very difficult to 
identify the trajectory types, as a class with large variances of the random effects may 
partially or completely subsume a class with lower variances of the corresponding ran-
dom effects.

Finally, another common restriction applied in the case of normally distributed out-
comes in each trajectory class is that the residual variances (i.e., the variances of the 
errors) are the same across time points. That is, the amount of random variability beyond 
what is predicted by the mean trajectories within the class and the variability of random 
intercepts, slopes, and quadratic terms within the class is constant over time. Again, this 
may be a necessary assumption for stability of the estimates, but not necessarily a valid 
one, as there might be changes in variability over time in addition to changes in mean 
values.

The multitude of possible restrictions of the parameters presents additional challenges 
for model fitting and for identification of a best-fitting model. Inconsistent reporting of 
such aspects of model fitting in the scientific literature also hampers the use and inter-
pretation of such models. Aspects of model specification that most commonly receive 
attention are selection of the number of trajectory classes and evaluation of classification 
accuracy. We present these in Section 10.3.

Herein, we briefly discuss the advantages and disadvantages of the GMM approach. 
Advantages include (1) data-driven assessment of patterns over time; (2) flexible char-
acterization of variability within and between latent classes; (3) estimation of effects 
of covariates and treatment on trajectory membership; (4) assessment of the effects of 
time-dependent and time-independent predictors (including treatment) on growth 
factors (i.e., intercepts, slopes, quadratic terms) within trajectory classes; (5) account-
ing for time-dependent covariates; and 6) valid inference under missing at random 
assumptions.

Disadvantages include (1) the reliance of the analysis on the assumption that differ-
ent classes of trajectories exist in the population; (2) potential problems with model 
 non-identifiability, model non-convergence, or multiple solutions when different start-
ing values for the fitting algorithm are used; (3) difficulties in identifying the best-fitting 
model as misspecification in one part of the model can affect estimates in other parts of 
the model; (4) potential problems with classifying individuals in trajectory classes; (5) the 
number and shape of trajectories are limited by sample size and number of time points; 
(6) potential biasing of results if data are informatively missing.

The most important potential drawback is that GMM is predicated on the assumption 
that distinct trajectory classes exist in the population. If there are no distinct classes, GMM 
can lead to spurious results, as skewed distributions can be approximated by mixtures of 
standard distributions (see e.g., Bauer and Curran, 2003). If non-existent classes are identi-
fied, then treatment effects on trajectory membership and on individual growth trajecto-
ries may be uninterpretable.

GMM are most commonly fit using MPlus (Muthén and Muthén (1998–2015)). Recently, 
a new R package (lcmm) has become available (https://cran.r-project.org/web/packages/
lcmm/lcmm.pdf).

We now turn our attention to model fitting and model selection in GMM. Since LCGM 
are a special case of GMM, most of the issues discussed apply to LCGM as well. We devote 
special attention to model convergence issues and the decision of how many latent classes 
are supported by the data. Detailed reviews of this problem and solutions are provided in 
Tofighi and Enders (2008) and Nylund et al. (2007).
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10.3 Issues in Building LCGM and GMM

10.3.1 Model Fitting

GMM and LCGM are estimated using maximum likelihood via an iterative algorithm. 
That is, initial estimates of all the parameters in the model are considered (or just some 
fixed starting values), and at each iteration of the algorithm those estimates are updated 
based on the fit of the model to the observed data. The algorithm guarantees that at each 
step the likelihood improves; that is, the new estimates provide a better fit to the data. The 
algorithm converges when estimates from subsequent iterations are virtually the same 
(within a certain precision).

However, unlike traditional linear mixed models, in mixture models the likelihood is 
not well-behaved in a sense that it is not like one smooth mountaintop, the top of which 
can eventually be reached if one keeps climbing. Rather, the likelihood surface is like a 
mountain range with many peaks and valleys, and hence there is a real danger that the 
algorithm will end at a peak away from the highest point, and that the achieved peak will 
be different depending on the starting point. Thus, the algorithm is likely to converge to a 
local, rather than to a global, maximum. To combat this problem, different sets of starting 
values are selected and the achieved maxima compared. With a sufficiently large number 
of starting points, the global maximum should be repeatedly achieved, but unfortunately 
this is not guaranteed. A measure of the convergence of the algorithm to the global maxi-
mum is whether the highest likelihood value is reached from multiple starting values. 
Another indicator of whether the global maximum has been achieved is how frequently 
the largest likelihood value is reached from different starting values. If the largest value 
is reached only in a small percentage of the runs, it is likely that there is a problem with 
model specification.

There are different recommendations regarding how many starting points are needed. In 
general, only about five to ten may be sufficient in LCGM, but, in GMM, hundreds of starting 
values are needed. Note that the number of starting values can always be increased if the 
best likelihood value is not replicated with the originally specified number of starting values. 
Some software packages (e.g., MPlus) automatically generate starting points and users just 
need to specify how many they want to consider. The limitation is the time needed for the 
algorithm to converge. The more starting points, the longer the run times. Users can always 
provide starting points that may be based on prior results or substantive considerations.

Note that algorithms may also fail to converge. This happens when consecutive itera-
tions do not improve the likelihood and it is usually due to singularities in the likelihood 
function. Increasing the number of starting points can help, but sometimes there is no 
solution and a simpler model with parameter restrictions should be used instead.

Convergence problems are more likely to occur when more classes are considered 
because the number of parameters increases substantially as more classes are added. 
As mentioned in Section 10.2, restrictions on the parameters are often placed to avoid 
problems with convergence. In general, if there is suspicion that the algorithm has not 
converged to the right solution because the maximum likelihood value is not (or is infre-
quently) replicated, model restrictions should be imposed to stabilize the model fit. The 
most common solutions are to set the variances of the random effects in the latent classes 
to be the same or to fix some of these variances to zero. The first option is the default option 
in MPlus. The flip side of such constraints is that they may not be consistent with theory 
and can have a large impact on parameter estimates.
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10.3.2 Model Selection

There are several aspects of model selection that need to be considered. Perhaps the 
most important is the selection of the number of classes, but other aspects involve 
identifying the best-fitting shapes over time (both fixed and random effects structure), 
inclusion of time-dependent or time-independent covariates within latent classes, and 
predictors of trajectory class membership. Note that misspecification of one aspect of 
the model can have substantial impacts on another part. For example, a two-class model 
with only linear trends over time may represent the data equally as well as a one-class 
model with quadratic effects.

Usually, the highest reasonable polynomial (depending on the number of time points, 
theoretical and prior considerations) is considered in each class, models with increas-
ing number of classes are fit, and only essential covariates (e.g., treatment, exposure) are 
included as predictors. To decide on the best model, the fit of all considered models is 
compared. The Schwartz-Bayesian Information Criteria (BIC) is the most commonly used 
model fit criterion, with smaller values indicative of a better model fit. However, the BIC 
tends to favor models with too many classes. Thus, the BIC is used mainly to select from 
alternative predictor sets and polynomials of different degree within classes rather than 
the number of classes.

There are specific tests for the selection of number of classes: the Lo-Mendell-Rubin 
likelihood ratio test (Lo et al., 2001) and the bootstrap likelihood ratio test (Nylund et al., 
2007). These tests compare the fit of a model with (k−1) classes to the fit of the corre-
sponding model with k classes. Small p-values indicate that the model with k classes 
provides a better fit than the model with one fewer class. Usually, a significance level 
of 0.05 is used.

Another indication of whether a model fits the data well is the entropy, a measure of 
classification accuracy. To calculate the model entropy, posterior probabilities of class 
membership for each individual are calculated (based on the overall model and observed 
outcomes), and then individuals are classified in the most likely class (i.e., the class for 
which the posterior probability is the highest). If the model successfully identifies distinct 
patterns of responses over time, then subjects have probabilities close to one and zero to 
be classified in a particular class. Thus, we can fairly convincingly assign individuals to 
the most likely trajectory class. Roughly speaking, the entropy is calculated based on the 
average of the posterior class probabilities. The values are between zero and one, with one 
indicating perfect classification accuracy. Models with higher classification accuracy are 
preferred, with values exceeding 0.7 considered good.

Since there is no reliable test to “prove” that there are categorically different trajectories, 
one informal way to assess this assumption is to examine posterior probabilities that sub-
jects belong to a particular trajectory class. In the case where there are no categorically dif-
ferent trajectories there will be a substantial percentage of subjects who cannot be reliably 
classified to any one trajectory. On the other hand, when there are different trajectories 
and the model fits the data well, then individuals should be classified in a particular trajec-
tory more accurately.

Several additional aspects of model fit based on posterior probabilities should also be 
routinely evaluated:

• Whether there is good correspondence between the estimated probability of group 
membership and the proportion of individuals assigned to that group based on 
estimated posterior probabilities
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• Whether the average of the posterior probabilities of individuals assigned to each 
group exceeds a pre-specified high threshold (e.g., 0.7)

• Whether group membership probabilities are precisely estimated, that is, the stan-
dard errors of the group membership probabilities are small

Additionally, trajectory classes with too few subjects (e.g., less than 1% of the sample in 
large samples, less than 5% of the sample in smaller samples) should be avoided, as they 
cannot be reliably estimated. 

In general, there is a danger of idiosyncratic results if the final decision on a model rests 
on a single number (whether this is the BIC, the bootstrap likelihood ratio test, or entropy) 
and no attention is paid to the interpretation of obtained results. The model fit indices 
themselves can also contradict each other. Although this introduces an element of sub-
jectivity, a more complex decision process is needed to select meaningful and well-fitting 
latent class models.

Note that sample size plays a role in identification of the best model. In general, the 
larger the sample size, the more classes one can reliably estimate. For GMM/LCGM, both 
number of individuals and number of observation points per individual are important. 
Simulation studies have shown that about 200–500 individuals are sufficient for reliable 
inference, even in the presence of trajectory classes with a relatively small number of sub-
jects. Increasing the number of follow-up points usually leads to an increase in the number 
of trajectories.

10.3.3 Guidelines for Model Selection

Because of the complexity of the models, selection of the best model is difficult. Many 
reasonable models need to be considered and the final model should satisfy the following 
conditions:

• Stable solution achieved (i.e., maximum likelihood value replicated in a substan-
tial proportion of the runs).

• Lower BIC value among models with different number of classes, fixed and ran-
dom effects structures, and predictors (it is desirable for the final model to have 
the lowest BIC value, but sometimes other criteria and interpretability may lead to 
selection of a model with somewhat higher BIC than the best achieved).

• Significantly better fit according to the bootstrap likelihood ratio test or Lo-Mendell-
Rubin’s test than the same model with one fewer class. The model with one more 
class does not fit significantly better than the model in question.

• Good classification accuracy (usually above 0.7).
• No classes with few individuals per class (e.g., less than 1% in big samples, less 

than 5% in smaller samples).
• Parsimonious model (i.e., among different models that fit the data approximately 

equally well, the one with fewer parameters is selected).
• Interpretable results (consistent with existing theory). Classes are considered 

meaningful if they differ in relevant characteristics and outcomes.

A general recommendation is to include predictors of class membership directly in the 
model as well as to incorporate concurrent events and consequences. Concurrent events 



280 Statistical Methods in Psychiatry and Related Fields

can be considered as time-varying covariates with class-varying effects, time-varying out-
comes predicted by the latent classes, or as parallel growth processes. Consequences may 
be considered as distal outcomes predicted by trajectory classes.

Some residual diagnostics are available for GMM but are not widely used. For example, 
Wang et al. (2005) proposed residual diagnostics for number of classes, mean growth tra-
jectories, and covariance structures.

More detailed guidelines on the use of GMM are provided in Muthén and Muthén 
(2000), Muthén et al. (2002), Hipp and Bauer (2006), and by Frankfurt et al. (2016). Detailed 
criticisms of LCGM and GMM, including the tendency to over-extract trajectory classes, 
run into computation problems, and to achieve unstable solutions, can be found in Bauer 
and Curran (2003), Sher et al. (2011), and Skardhamar (2010).

10.4 Data Examples

10.4.1 Trajectories of Heavy Drinking in COMBINE

To illustrate mixture models, we focus on the COMBINE study (introduced in Section 1.5.3 
and repeatedly analyzed in subsequent chapters), in which we evaluate drinking outcomes 
and the effects of the randomized treatments over approximately four months in over 1000 
alcohol-dependent individuals. The heavy drinking outcome considered herein is coded as 1 
if 5 or more drinks are consumed on a day during each monthly interval during the treatment 
part of the study and 0 otherwise. If no data are available during a particular month, then the 
outcome is missing for that month. We first fit LCGM with two to four latent classes, a logistic 
regression model with linear and quadratic trends over time in each latent trajectory class, and 
trajectory membership predicted by naltrexone, CBI, and the interaction between naltrexone 
and CBI. The purpose of this analysis is to evaluate whether there are distinct trajectory pat-
terns of heavy drinking over time, how they are described, and whether the treatments affect 
the chance of following a particular pattern. PROC TRAJ in SAS is used for the analysis, and 
the results are replicated using MPlus. The code for both can be found in the online materials.

Table 10.1 presents indices of model fit. Models with five classes do not converge to stable 
solutions so are not presented here. We select the model with linear time trends in four 
classes as the final model because it has the lowest BIC of the considered models, good 
entropy (0.73), and a highly significant p-value on the bootstrap likelihood ratio test when 
compared with the model with three classes (p < 0.0001).

Figure 10.3 shows the model-based and sample-based means by time point in the four 
trajectory groups. The four trajectories can be described as: (1) “abstinence from heavy 
drinking” (485 subjects out of 1220 with outcome data, or approximately 40% of the sam-
ple, are most likely to be classified in this trajectory class); (2) “decreasing probability of 
heavy drinking” (194 out of 1220, or 15.9%); and (3) “increasing probability of heavy drink-
ing” (81 out of 1220, 6.6%). That is, the “decreasing probability of heavy drinking” descrip-
tion should be preceding the “increasing probability of heacy drinking”. The numbers 
pertaining to each description go with the description. and (4) “heavy drinking” (460 out 
of 1220, 37.7%). The four trajectories are quite distinct, and the majority of individuals are 
classified in one of the extreme classes (either abstainers from heavy drinking or heavy 
drinking throughout the study). In addition, there is very good correspondence between 
the model-based probabilities of heavy drinking (i.e., the probabilities calculated based on 
the model) and the sample-based probabilities calculated when each individual’s contribu-
tion is weighted by the estimated posterior probability of trajectory membership.
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In order to assess how well individuals are classified in trajectory classes, we examine 
the posterior probabilities of class membership. Table 10.2 shows the averages of the esti-
mated posterior probabilities in each of the four classes by most likely class membership. 
We see that these averages are all quite high for the most likely class. For example, indi-
viduals most likely to be classified in the “abstinence from heavy drinking class” have, on 
average, a probability of 0.87 of falling within that class and much lower estimated prob-
abilities of being classified in an alternative class (all probabilities less than 0.10). Similarly, 

TABLE 10.1

Results from Fitting Six Latent Class Growth Models to the 
COMBINE Data

BIC Entropy

Bootstrap Likelihood 
Ratio Test

P‑value

Linear time trend
Two classes 5054.33 0.83 <0.0001
Three classes 5002.71 0.78 <0.0001
Four classes 5002.15 0.73 <0.0001

Quadratic time trend
Two classes 5026.44 0.84 <0.0001
Three classes 5011.12 0.71 <0.0001
Four classes 5019.62 0.76 <0.0001

Note: The outcome is a dichotomous measure of heavy drinking evaluated 
for each of the four months of the study.

Time (in months)

Abstinence

Model-based

Decreasing

Model-based

Increasing

Model-based

Heavy drinking

Pr
ob

ab
ili

ty
 o

f h
ea

vy
 d

rin
ki

ng

Model-based

1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
2 3 4

FIGURE 10.3
Sample-based and model-based probabilities of heavy drinking in the four trajectory classes during the treat-
ment period of the COMBINE study. Solid lines represent sample-based probabilities of heavy drinking, based 
on all subjects weighted by the posterior probability of trajectory membership. Dotted lines represent model-
based probabilities of heavy drinking. Dotted lines are not visible where solid and dotted lines overlap.
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individuals most likely to be classified in the “heavy drinking” trajectory class have, on 
average, a probability of 0.88 of being classified in this trajectory class. The lowest average 
probability of membership in the most likely class is the one for “increasing heavy drink-
ing,” and even this probability is pretty high (0.80). Thus, this model appears to classify 
individuals quite well, which translates into a high overall measure of classification accu-
racy of 0.73.

Turning our attention to treatment as a predictor of trajectory membership, we evalu-
ate the effects of naltrexone, CBI, and their interaction. Since there are four different tra-
jectories and each pair can be compared, there are multiple tests that can be conducted 
and effect estimates that can be calculated. For a full list and results, refer to the online 
materials. Since the overall test of the interaction between naltrexone and CBI is not sta-
tistically significant (χ2(3) = 5.27, p = 0.15) we focus on the main effects of naltrexone and 
CBI and present odds ratios for the pairwise comparisons of the trajectories with associ-
ated 95% confidence intervals. Table 10.3 shows these results without any adjustment for 
multiple tests. Naltrexone significantly lowers the odds of following the “heavy drink-
ing” trajectory compared with the “abstinence from heavy drinking” trajectory and the 
“decreasing heavy drinking trajectory.” There are no significant pairwise comparisons 
for CBI.

We next consider GMM with linear trends over time and use the default assumptions in 
MPlus of equal variances and covariances of the random effects across different classes. 
The model with linear time trends in two latent trajectory classes converges and fits bet-
ter than a model with only one class, as the bootstrap likelihood ratio test for the two-
class GMM compared with a one-class model is highly statistically significant (p < 0.0001). 
GMM with three trajectory classes does not converge to a replicable solution even with 500 
random starts and imposing additional restrictions on the parameters. Thus, the GMM 
reliably identifies only two trajectory classes for these data.

The GMM with two latent classes had a slightly lower BIC than the LCGM with four 
trajectory classes (BIC = 4943.26 compared with 5002.15), but the entropy is 0.63, lower 
than the entropies of all considered LCGMs. This is a common finding, because the 
random effects within classes allow GMM to match the observed data more closely 
than LCGM, but, at the same time, it is harder to accurately classify individuals in latent 
classes.

TABLE 10.2

Probabilities of Class Membership by Most Likely Latent Class in LCGM Applied to Monthly 
Heavy Drinking Measures in the COMBINE Study

Most Likely 
Trajectory Class

Average Probabilities of Class Membership

Sample 
Size

Abstinence from 
Heavy Drinking

Decreasing 
Heavy Drinking

Increasing 
Heavy Drinking

Heavy 
Drinking

Abstinence from 
heavy drinking

0.87 0.08 0.05 0.00 485

Decreasing heavy 
drinking

0.03 0.88 0.05 0.04 194

Increasing heavy 
drinking

0.10 0.09 0.80 0.01 81

Heavy drinking 0.00 0.10 0.02 0.88 460
Entire sample 0.36 0.21 0.09 0.34 1220
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The two latent classes are shown in Figure 10.4 and can be regarded as a “heavy drink-
ing” class and an “abstinence from heavy drinking” class. About 38.3% of the sample (467 
out of 1220 individuals) are classified as most likely belonging to the “heavy drinking” 
class while the remaining 61.7% (753 out of 1220) are classified as most likely belonging 
to the “abstinence from heavy drinking” class. Of those most likely to follow the “heavy 
drinking” trajectory, the average probability of being assigned to this class is 0.75, while 
of those most likely to follow the “abstinence from heavy drinking” trajectory, the average 
probability of assignment to this class is 0.97 (Table 10.4). Both are fairly high, although 

TABLE 10.3

Odds Ratios and 95% Confidence Intervals for the Effects of Naltrexone and CBI on Trajectory 
Membership in Heavy Drinking Classes in COMBINE Based on the LCGM with Four Classes

Effect Trajectory Comparison
Odds Ratio (95% 

Confidence Interval)

Main effect of naltrexone “Decreasing heavy drinking” versus “No heavy drinking” 1.10 (0.74, 1.62)
“Increasing heavy drinking” versus “No heavy drinking” 0.70 (0.34, 1.42)
“Heavy drinking” versus “No heavy drinking” 0.68 (0.51, 0.92)
“Increasing heavy drinking” versus “Decreasing heavy 
drinking”

0.64 (0.30, 1.34)

“Heavy drinking” versus “Decreasing heavy drinking” 0.63 (0.42, 0.94)
“Heavy drinking” versus “Increasing heavy drinking” 0.98 (0.49, 1.97)

Main effect of CBI “Decreasing heavy drinking” versus “No heavy drinking” 1.22 (0.81, 1.84)
“Increasing heavy drinking” versus “No heavy drinking” 0.68 (0.34, 1.36)
“Heavy drinking” versus “No heavy drinking” 0.85 (0.63, 1.14)
“Increasing heavy drinking” versus “Decreasing heavy 
drinking”

0.56 (0.27, 1.13)

“Heavy drinking” versus “Decreasing heavy drinking” 0.69 (0.45, 1.07)
“Heavy drinking” versus “Increasing heavy drinking” 1.25 (0.63, 2.49)
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FIGURE 10.4
Sample-based and model-based probabilities of heavy drinking in the two trajectory classes during the treat-
ment period of the COMBINE study identified using generalized mixture models. Solid lines represent sample-
based probabilities of heavy drinking. Dotted lines represent model-based probabilities of heavy drinking. 
Dotted lines are not visible where solid and dotted lines overlap.
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the overall entropy is lower than the one in the four-class LCGM. Compared with the four 
latent classes identified using LCGM, the two classes identified using GMM are the two 
extremes, with individuals who follow a heavy drinking trajectory identified accurately 
by both approaches. In the LCGM, the remaining individuals are split into three groups 
depending on whether they increase or decrease the probability of heavy drinking over 
time, while in the GMM these individuals are in the same class (“abstinence from heavy 
drinking”). They can be absorbed into the same class because their intercepts and slopes 
are allowed to vary within a class. 

To compare the results from the LCGM and GMM further, we focus on the treatment 
effects on trajectory membership. Similar to the overall test in the four-class LCGM, the 
interaction between naltrexone and CBI is not statistically significant in the two-class GMM 
(χ2(1) = 2.22, p = 0.14), there is a statistically significant main effect of naltrexone (χ2(1) = 7.61, 
p = 0.006), and no significant main effect of CBI (χ2(1) = 1.30, p = 0.25). Naltrexone signifi-
cantly decreases the chance of following the “heavy drinking” class trajectory (OR = 0.62, 
95% CI: (0.44, 0.87)).

Note that although GMM and LCGM identify different numbers of trajectory classes, 
most individuals are classified in the two extreme classes in LCGM, and the effects of 
treatment on trajectory membership are similar (i.e., naltrexone significantly reduces the 
chance of following a heavy drinking trajectory). In deciding which approach to use, one 
needs to consider conceptually whether the goal of the analysis is to categorize individu-
als in particular meaningful groups (in which case LCGM is arguably better because it 
has higher entropy) or discover underlying population structure (in which case GMM is 
preferable). In this particular application, and more generally with categorical data, LCGM 
often provides more useful and detailed descriptions of the responses over time.

In conclusion, for this example, we have evidence that most individuals are either 
heavy drinkers or not heavy drinkers throughout the study. A minority show a change 
in response over time. Naltrexone decreases the likelihood of following a heavy drink-
ing trajectory. Further analyses incorporating predictors of trajectories, time-dependent 
covariates, and distal outcomes can be considered. Examples of the application of LCGM 
to daily drinking data from the COMBINE study can be found in Gueorguieva et al. (2010, 
2011, 2012).

10.4.2 Trajectories of Depression Symptoms in STAR*D

Our second example focuses on identification of distinct trajectories during 12-week anti-
depressant treatment with citalopram using the data on more than 400 individuals from 

TABLE 10.4

Probabilities of Class Membership by Most Likely Latent Class in GMM Applied 
to Heavy Drinking in the COMBINE Data

Most Likely Trajectory Class

Average Probabilities of Class Membership

Sample 
Size

Abstinence from 
Heavy Drinking

Heavy 
Drinking

Abstinence from heavy 
drinking

0.97 0.03 753

Heavy drinking 0.25 0.75 467
Entire sample 0.69 0.31 1220



285Mixture Models for Trajectory Analyses

the STAR*D clinical trial (Section 1.5.2). As in the analysis of these data in Chapter 3, we 
focus on the three clusters of depressive symptoms (core, atypical, and sleep). Herein, 
we seek to identify distinct trajectory classes of all three clusters simultaneously. That is, 
each class is characterized by a particular combination of patterns on all three symptoms. 
Compared with the models with a single repeatedly measured outcome variable, a GMM 
with three repeatedly measured outcome variables requires specification of three GLMM 
in each latent class (one for each outcome), with different fixed and random effects. The 
random effects of the same and different outcomes measures on the same individual are 
assumed to be correlated within but not across latent classes. The default assumptions of 
equal variances and covariances across latent classes are used.

We focus on the scheduled visits at weeks 0, 2, 4, 6, and 9 and fit linear mixed models 
with random intercepts and slopes for each symptom within each trajectory class. Week 12 
is excluded, since only about 20% of the individuals in the sample provide data at this time 
point. Time is log-transformed as in this case the response over time is well described by a 
straight line. Although it is theoretically possible to consider multiple outcomes in LCGM, 
PROC TRAJ in SAS can handle only two outcomes measures at a time, and hence we focus 
only on GMM that can be fit seamlessly using the MPlus software. All code, output, and 
graphs are available in the online materials.

Table 10.5 shows the results from the GMM with two, three, and four latent classes. We 
use the Lo-Mendell-Rubin (LMR) test rather than the bootstrap likelihood ratio test to test 
whether models with more classes fit the data significantly better, since the LMR test sta-
tistic is more easily calculated and performs well with continuous data. In all models, the 
variance of the random slope in all classes for the atypical symptom are fixed at zero in 
order to achieve model identifiability.

From Table 10.5, we see that the model with four classes has the lowest BIC and the high-
est entropy (0.60); however, it does not provide a better fit to the data than the three-class 
model according to the LMR test and its entropy is only slightly higher than the entropy 
of the three-class model (0.59). Neither entropy is particularly high (in general, entropies 
above 0.7 are preferred) so there is a fair amount of uncertainty when classifying individu-
als in latent classes.

Figure 10.5 consists of three panels and shows the estimated mean trajectories for each 
of the three symptom clusters. The three trajectories in each panel can be described as a 
“non-response,” “rapid response,” and “improvement” trajectories. The “non-response” 
trajectory class shows minimal decrease in core and sleep symptom severity and some 
deterioration of atypical symptom severity. The “rapid response” class shows marked and 
fast improvement in core symptoms and to a lesser degree in sleep symptoms and atypical 
symptoms. The “improvement” class shows improvement in all three symptom clusters 
but not as fast as in the “rapid response” group, and with residual symptoms remaining 

TABLE 10.5

Results from Fitting Three Growth Mixture Models to the 
STAR*D Data. The Outcome is Cluster Severity Score 
Evaluated at Baseline and Weeks 2, 4, 6, and 9

BIC Entropy

Lo‑Mendell‑Rubin test

P‑value

Two classes 64118.18 0.47 < 0.0001
Three classes 63728.93 0.59 0.02
Four classes 63562.30 0.60 0.21
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by nine weeks. Two-thirds of the individuals in the sample (2693 out of 4018, or 67%) have 
trajectories most consistent with the “improvement” class, while only about 10% (402 out 
of 4018) are most likely to show trajectories of “non-response” on all three symptom clus-
ters. The remaining subjects are classified in the “rapid response” trajectory (923 out of 
4018, or 23%). Table 10.6 shows that the average probabilities by most likely latent class are 
reasonably high.

Note that the trajectory classes differ not only in rate of improvement but also in baseline 
starting point. Individuals in the “non-response” and “rapid response” classes start with a 
higher average baseline severity than individuals in the “improvement” class. Comparing 
trajectories across clusters, we see that individuals acknowledge mostly core and sleep 
symptoms at baseline. Atypical symptoms are less frequently acknowledged, which at 
least partially explains the flatter slopes for this group.

In this data set, all individuals received citalopram treatment, so we cannot explore 
medication effects. However, an exploration of predictors of trajectories of improvement 
and the relationship between these trajectories and distal outcomes are of considerable 
interest. In a study of such large sample size as the STAR*D trial, state-of-the-art prediction 
models can be used (see e.g. Chekroud et al. (2016), who used machine learning methods 
for a prediction of a simpler outcome of clinical response within 12 weeks of treatment).

Note that we considered latent classes identified by the combination of patterns on 
the three different clusters of symptoms simultaneously. It is possible, although more 
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FIGURE 10.5
Sample-based and model-based symptom severity in the three trajectory classes fitted to the STAR*D data.

TABLE 10.6

Probabilities of Class Membership by Most Likely Latent Class in GMM 
Applied to Symptom Severity of Three Clusters in the STAR*D Data

Most Likely Trajectory 
Class

Average Probabilities of Class Membership

Sample 
SizeNon‑Response

Rapid 
Response Improvement

Non-response 0.80 0.03 0.17 402
Rapid response 0.04 0.77 0.19 923
Improvement 0.06 0.11 0.82 2693
Entire sample 0.13 0.25 0.61 4018
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complicated, to define separate trajectory classes for each symptom and then relate these 
trajectory classes to each other. This was the approach taken by Nagin and Tremblay (2001) 
when studying related behaviors using LCGM.

10.5 Summary

In this chapter, we reviewed two types of latent class models for data-driven iden-
tification of distinct trajectory patterns over time. Such models have intuitive appeal 
for heterogeneous populations and when classifying patterns of change is of interest. 
Latent class growth models offer a semi-parametric group-based approach that allows 
for normal, censored normal, Poisson, zero-inflated, and binary outcomes. It assumes 
polynomial trends, can handle missing data, both time-dependent and time-indepen-
dent covariates, and can model related behaviors over time. However, it does not allow 
for random variability in growth factors within each trajectory class, and thus is less 
flexible than the other latent class approach presented in this chapter; namely, growth 
mixture models. GMM share the advantages of the LCGM approach but are more prone 
to computational and identifiability problems. Also, philosophically, the aim of LCGM 
is to describe the population variability in patterns of response over time for a small 
number of distinct groups, while GMM relies on the assumption that there are underly-
ing latent classes of individuals within the population in order to produce interpretable 
results.

Identifying a well-fitting model is challenging for both types of models, but more so for 
GMM, since there are too many possible combinations of numbers of trajectory classes, 
patterns of change over time, sets of fixed and random effects, and covariates. A system-
atic model selection approach has been recently proposed by Frankfurt et al. (2016). The 
initial step is to fit a single-class GMM without covariates (i.e., a GLMM with only time 
as a predictor) and examine the variances of the random effects. If there is no evidence of 
significant inter-individual variability (i.e., non-zero variances) then latent class models 
should not be fit to the data. On the other hand, if there is evidence of significant variabil-
ity, then in step 2 , a latent class model (LCGM or GMM) should be specified. This involves 
specifying the patterns of change over time within classes. No covariates are included yet 
in the model. In step 3, the number of classes should be determined. In general, the boot-
strap likelihood ratio test is preferred, but since it is computationally intensive, the BIC or 
Lo-Mendell-Rubin’s can be used initially, and BLRT considered only for the final decision. 
Convergence issues need to be addressed in step 4. In the last step (step 5), covariates are 
added to the model. Although this is a very reasonable algorithm, there is disagreement 
among researchers as to the order of the steps, in particular whether models with or with-
out covariates should be considered initially. Furthermore, different latent class models 
may be appropriate, and one may need to go repeatedly through the steps in order to 
identify a best-fitting model.

A complication in this process is that one cannot rely on a single decision rule to select 
the number of classes, patterns, covariates, and random effects. When there is contra-
diction among commonly used fit statistics, such as the BIC, the LMR or BLRT, and the 
entropy, one needs to consider the research question of interest, model parsimony, theo-
retical justification, and interpretability. The entire process of model selection needs to be 
transparent and accurately described so that results can be reproduced.
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Methodological research in GMM is ongoing. Some recent developments include using 
GMM for causal inference (Haviland and Nagin, 2005; Brown et al., 2008; Muthén et al., 2002) 
and GMM to account for non-random attrition (Havilandet al., 2011; Muthén et al., 2011). 
An alternative approach to GMM to handle non-normal variability is to consider GLMM 
with random effects that are not normally distributed (e.g., Verbeke and Lesaffre, 1996).

In conclusion, LCGM and GMM are useful in identifying different trajectories over time 
and potentially in characterizing individuals following a particular trajectory. Predictors 
of trajectory membership and distal outcomes are useful in providing substantive justifica-
tion of the latent classes. However, due to the potential for identifiability and convergence 
issues, model selection and assessment of model fit are critical. Sensitivity analysis may 
also need to be performed. GMM have mostly been used as an exploratory tool but have 
potential as a confirmatory tool. Both LCGM and GMM have been used to classify indi-
viduals in latent trajectory classes and then to use these assignments as response variables 
in regression modeling. This two-stage approach is problematic when the uncertainties of 
trajectory classifications are not accounted for in the second-stage models. One can allow 
for the uncertainty by using the posterior membership probabilities to construct weights 
that reflect the uncertainty of classification.
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11
Study Design and Sample Size Calculations

The emphasis of the first ten chapters of this book has been on analysis methods for 
clustered and longitudinal data. However, an equally important aspect of studies with 
repeated measures is the study design. At the design stage, decisions are made about the 
primary goals of the investigation (i.e., what questions should the study answer), type 
of study most suited to the goals (e.g., experimental or observational), study design (e.g., 
parallel group versus cross-over clinical trial), the population for which inferences should 
be valid, sampling scheme in order to obtain a representative sample, response variable(s), 
assessment schedule, specific analysis plan, and adequate sample size to achieve the study 
goals.

If crucial mistakes are made at the design stage, then even the best statistical analysis 
will not be able to correct for fatal flaws. For example, if one is interested in evaluating 
treatment efficacy but does not include a control group in the study, it is not possible to 
disentangle the effect of treatment from the effect of time. Changes may occur over time 
due to regression to the mean or other phenomena that have little to do with treatment. 
Similarly, if treatments A and B are compared to each other within individuals but treat-
ment A always precedes treatment B, the effect of treatment B may be confounded with 
the residual effects of treatment A. A common flaw of many studies is that they are not 
sufficiently powered to detect the effects of interest. This is sometimes a flaw at the design 
stage when overly optimistic measures of effect size are used in order to calculate the nec-
essary sample size. At other times, inadequate power reflects a problem with recruitment 
as the study cannot achieve its recruitment goals. Higher than expected rates of missing 
data often result in bias and increased probability of type II error (i.e., failure to find effects 
when effects exist).

This chapter reviews design considerations for studies with correlated data and focuses 
specifically on sample size estimation. Section 11.1 reviews the importance of careful study 
design for experiments and observational studies with repeated measures and lists key 
aspects that need consideration. Section 11.2 describes the most commonly used repeated 
measures designs and weighs in on their advantages and disadvantages. Section 11.3 intro-
duces methods for sample size calculations for cross-sectional data. Section 11.4 focuses 
on sample size calculations for clustered and longitudinal data with emphasis on mixed 
regression and GEE models. Methods based on traditional ANOVA-based approaches 
and power calculations based on summary measures are also briefly discussed. Common 
randomization approaches for experimental studies are reviewed in Section 11.5, and 
the chapter concludes with a summary and discussion (Section 11.6). Data examples are 
presented throughout the chapter with code and results included in the online materi-
als. Useful references regarding study design and/or sample size calculations are Lachin 
(1981), Fleiss (1986), Kraemer and Blasey (1987), Cohen (1988), Bailar and Mosteller (1992), 
and Borenstein (1997). A reference for power analysis for longitudinal and clustered data 
that includes many recent developments is Ahn et al. (2015).
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11.1 Study Design Considerations

11.1.1 Study Objectives

At the design stage, the first and most important question is to define clearly the goals of the 
study. In clinical trials, most commonly, the goal is to establish whether an experimental 
treatment is better than or as good as a control treatment. In observational studies, most 
commonly, the goal is to evaluate whether individuals with a particular exposure have 
different outcomes than individuals without that exposure. The size of the effects needs to 
be estimated precisely in both types of studies.

11.1.2 Target Population

Another important decision concerns the target population; that is, the population to 
which the results should apply. Do we want to know how individuals with a particu-
lar disease respond to a particular treatment? Should we place any restrictions on the 
population? For example, should we exclude from the study individuals with certain 
co-morbidities? Below or above a certain age? What other inclusion/exclusion criteria 
should we consider? These questions become very complex, as one wants to balance 
the need for generalizable results with the feasibility of recruitment, and the potential 
benefits with the potential risk to the individuals participating in the study. If the tar-
get population is very diverse, then the results will be applicable to a wider range of 
individuals; but, on the other hand, the variability in measures may be so high that an 
unrealistically large sample is needed in order to estimate treatment or exposure effects 
precisely. In addition, certain individuals in the population may be more likely to suffer 
adverse effects, and hence it is an ethical dilemma whether to include them in a study. If 
higher-risk individuals are excluded, then results may not generalize to such individu-
als in the population. On the other hand, if they are included, they might be exposed to 
unnecessary risk.

11.1.3 Study Sample

Once the goal of the study and the target population are defined, a decision needs to be 
made on how to obtain a representative sample of the population. Practicality and gen-
eralizability are again at odds here. For clinical studies, individuals are often selected 
when they seek contact with a health care professional. However, this may lead to 
a biased sample, as sicker individuals may seek help and may be more likely to be 
selected. In addition, different types of health centers may have different mixtures of 
individuals.

In observational studies, such as longitudinal surveys, individuals are often selected 
based on their residence. Ideally, one would want to capture a wide variety of individu-
als and settings. Sometimes, it is necessary to oversample from certain sociodemographic 
groups in order to be able to generalize to the entire population. There are a variety of 
sampling schemes that could be used in order to obtain representative samples. Sampling 
strategies are beyond the scope of this book, but the interested reader is referred to Levy 
and Lemeshow (1999). The sampling scheme needs to be taken into account in the analysis. 
Most national surveys provide special weights in order to adjust estimates for the sam-
pling process.
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11.1.4 Outcome Measures

In addition to the goals of the study, target population, and methods for obtaining 
a representative sample, one needs to identify the measure of interest and choose the 
most appropriate design for the study. We focus on the measure(s) of interest first. The goals 
of the study are often defined in a general way. For example, the aims may be to assess 
whether depression severity decreases more with treatment A than with treatment B in 
the target population, or whether working memory in schizophrenic patients is worse 
than in healthy controls when performing certain tasks. In order to formulate an action-
able statistical plan for the study, we need to specify the outcome measure. In the depres-
sion example, one has the choice of several rating scales of depression severity. Which 
one should be chosen? This may depend on the population of interest (some measures 
may be validated or more appropriate in populations of younger individuals, some in 
populations of older individuals). Additionally, some variables may have lower variabil-
ity, which may make it easier to detect change. Measures can also be selected based on 
the participant burden they place. A lengthy questionnaire may be more precise but more 
burdensome to complete.

Note that multiple outcome measures may be of interest in a particular study. They 
may capture the same aspect of the response (e.g., the Hamilton Depression Rating Scale 
and a simpler ordinal measure of depression severity, such as the Clinical Global Severity 
Scale; time to response or relapse and repeated measures of severity) or different aspects 
of interest (e.g., measures of efficacy and safety). A decision then needs to be made about 
primary versus secondary outcomes, and about adjustments for multiple testing. When 
few outcomes are of equal interest, a simple Bonferroni-based adjustment is often appro-
priate. On the other hand, when there are many simultaneous hypotheses tests or effect 
size estimations that are of interest, adjustments based on the false discovery rate may be 
more appropriate (see Chapter 6).

11.1.5 Study Design

There are many different design choices for longitudinal data studies: parallel group 
designs (see e.g., Figure 1.1), cross-over designs (e.g., Figure 1.2), cluster-randomized 
trials, stepped-wedge and other practical designs, and adaptive designs that sequen-
tially assign or randomize participants to different treatments. We describe the most 
common designs in more detail and focus on their advantages and disadvantages 
in Section 11.2. In general, the choice of the design is based on feasibility, ability to 
achieve the study goals, and sample size requirements. Evaluation of several alterna-
tives is usually performed at the design stage and the best choice agreed on by the 
study planners.

11.1.6 Data Collection, Management, and Monitoring

Design considerations in longitudinal studies also include decisions about the assessment 
schedule (e.g., number of occasions the outcome variables are evaluated; whether individu-
als will be followed up at the same or different time points; by whom and how the data 
will be collected), methods for preventing and minimizing the impact of missing data, and 
plans for data collection, data management, and statistical analysis. Data also need to be con-
tinually monitored in order to identify issues with data collection, outliers, or other prob-
lems with data capture.
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11.1.7 Statistical Analysis Plan

A mark of a well-designed study is the presence at the onset of a detailed statistical  analysis 
plan. In order to be able to formulate such a plan, one needs to have gone through all the 
steps mentioned previously. The analysis plan includes details about the modeling approach, 
the level of uncertainty allowed in the statistical inference, and what results will be consid-
ered supportive of the study aims.

We first focus on the modeling approach. A basic question in any study with repeated mea-
sures data is whether a simple baseline-to-endpoint comparison is sufficient to address 
the aims of the study or whether a more sophisticated mixed model or GEE approach is 
needed. The latter is preferred if one hopes to obtain information and perform inference 
about the pattern of change over time. Simple baseline-to-endpoint comparison may be 
appropriate if the study is of short duration or if it is expensive or impractical to measure 
the outcome repeatedly. If a more sophisticated modeling approach is selected, one needs 
to consider what assumptions will be made about the correlation structure of the data 
and the mean trends. For example, would a linear trend be adequate to describe change 
over time or would higher order polynomials be needed? If the rate of change over time is 
expected to be different at the beginning of the study compared with the end of the study, 
a curvilinear trend or a time transformation may be more appropriate.

Another very important question in the analysis plan is what distributions will be used 
to model the study outcomes. If the outcome is continuous and expected to be bell-shaped, 
normal distribution should be used. For skewed continuous data, alternative distributions 
(such as gamma) may be preferred, or one may transform the data prior to using models 
for normally distributed data. For discrete outcomes such as counts, one may consider 
Poisson or negative binomial distributions. When the outcomes are not conforming to the 
chosen distributions, transformations or non-parametric methods should be considered.

One also needs to specify if any covariates will be included in the statistical model. Ideally, 
these should be pre-specified and balanced across groups. This is achieved with stratified ran-
domization in experimental studies (see Section 11.5) and matching in observational studies.

Another very important question is how missing data will be handled in the analysis 
approach. As described in Chapter 7, two gold standard approaches are available to deal with 
missing data—full information maximum likelihood and multiple imputation. However, 
with informatively missing data, even those approaches may produce biased results. Thus, 
sensitivity analyses under different conditions should be considered in the analysis plan.

It is also very important to specify what level of statistical significance or confidence will be 
used for hypotheses testing and effect estimation. Traditionally, the 0.05 significance level 
and corresponding 95% confidence level for confidence intervals are used for primary 
outcomes. However, when there are multiple primary analyses, this may prove to be too 
liberal and corrections should be considered. Depending on the goals of the study, family-
wise error rate corrections or false discovery rate corrections can be used (see Chapter 6).

In the statistical analysis method, one needs to be very clear what results will be consid-
ered consistent with the study aims. For example, in clinical trials with multiple groups, 
one often focuses on the group by time interaction. However, it is not sufficient to state that 
one expects to observe a significant group by time effect. It is important to indicate also 
what pattern of follow-up tests will be consistent with the study hypothesis. For example, 
the expectation may be that there is greater rate of change from baseline to endpoint in the 
experimental group compared with the control group. If the goal is to estimate effect sizes, 
a successful outcome would be to estimate those with a good precision (i.e., with a narrow 
confidence interval).
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11.1.8 Sample Size Estimation or Power Analysis

All components of the design mentioned so far have a bearing on the sample size estimation, 
which is the most widely recognized component of the study planning process. Sample 
size calculations are described in detail in Sections 11.3 and 11.4. Herein, we just emphasize 
the main purpose and ideas behind this process. Traditionally, sample size calculations 
are performed for simple hypotheses tests and the sample size calculation is intended to 
guarantee with a particular level of confidence that the study will not miss a meaning-
ful effect and will not falsely identify a non-existent effect, if conducted as planned. In 
recent years, there has been a movement away from hypothesis testing and toward effect 
size estimation, and hence, the goal of the sample size calculation has become to estimate 
within a certain precision the effect of interest from the study data. This has the advantage 
that an interval is achieved that captures the true effect with a certain level of confidence, 
but is sometimes impractical when there are multiple groups that are being compared. 
Sample size calculations need to take into account corrections for multiple testing if there 
are multiple study hypotheses and/or outcome measures.

Note that, often, rather than estimating sample size, reverse sample size calculations are 
performed, in which a feasible sample size is assumed and then the detectable effect size of 
interest for the outcome is calculated. If such a detectable effect size of interest is deemed 
reasonable, the study can proceed, otherwise alternatives need to be considered.

Similarly, for a particular sample size and effect size, the available power to declare the 
effect as statistically significant could be calculated. If power is high enough (usually 80% 
or above), the study proceeds, otherwise an alternative need to be considered.

Sample size/power calculations are a very important part of the study planning. If prop-
erly performed and described, they give credence to the results. However, such calcula-
tions are often missing from study descriptions, are performed in a post hoc fashion, or 
do not correspond to the study design or outcome measures. Scientific journals in recent 
years have become increasingly rigorous about requesting this information and holding 
authors responsible for gaps and discrepancies between power calculations, a priori analy-
sis plans, and final analyses. Furthermore, more sophisticated and flexible software pro-
grams have become available to perform power calculations, thus simplifying the study 
planning process.

Note that although the design of the study and the analysis plan need to be pre-speci-
fied, one can allow for pre-specified modifications depending on the data generated from 
the trial. For example, the sample size can be adjusted based on interim analysis or ran-
domization allocation can be adjusted depending on the outcomes of individuals already 
enrolled in the trial. Such clinical trials are called adaptive and are the topic of very inten-
sive research in recent years. Reviews of adaptive designs are provided by Schaefer et al. 
(2006), Coffey and Kairalla (2008), Chow (2014), and Bauer et al. (2016).

Guidelines for study design in epidemiological studies and/or clinical trials are provided 
by Fleiss (1986), Woodward (1999), Katz (2006), Parfrey and Barrett (2009), and Friedman 
et al. (2010) among others.

11.1.9 Reporting Guidelines

In recent years, detailed reporting guidelines for different types of studies have been devel-
oped. The most popular ones are the CONSORT (CONsolidated Standards Of Reporting 
Trials) guidelines for randomized controlled trials and the STROBE (STrengthening the 
Reporting of OBservational Studies in Epidemiology) guidelines for epidemiological 
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studies. The EQUATOR (Enhancing the QUAlity and Transparency Of health Research) 
network has been established with the goal of promoting transparent and accurate report-
ing of health research studies (Simera et al., 2010) and has put together a comprehensive 
list of reporting guidelines, including CONSORT and STROBE. Altman and Simera (2016) 
provide a historical overview of the development of the guidelines and outline future 
challenges. Following established guidelines ensures higher quality of studies and their 
reporting, and thus, investigators should be familiar with, and whenever possible follow, 
the guidelines. Furthermore, publishing study protocols prior to carrying out the study 
serves to prevent scientific misconduct associated with post hoc changes in outcomes mea-
sures, presented analyses, and sample size calculations. We now turn our attention to spe-
cific aspects of study planning and consider those in more detail.

11.2 Repeated Measures Study Designs

In this section, we briefly review some of the most popular study designs for repeatedly 
measured outcomes and emphasize their advantages. We first focus on experimental stud-
ies and on designs with a single randomization.

11.2.1 Commonly Used Experimental Designs

The most commonly used design is the parallel group design presented in Chapter 1 
(Figure  1.1), with individuals randomized to different groups and followed up over a 
specified period of time. The advantages of this design are its simplicity and in the case 
of randomization, the ability to obtain causal treatment effects. When repeated measures 
are collected on each individual, one can measure the change over time and compare the 
average change between groups.

Another commonly used design (also introduced in Chapter 1, Figure 1.2) is the cross-
over design, in which individuals receive different treatments in a sequence. The order is 
randomized between individuals. This design has the advantage over the parallel group 
design in that the treatment comparisons can be performed within individuals, which 
increases power for statistical testing and precision for effect size estimation. However, 
it is not appropriate when carry-over effects are expected or when treatments are of long 
duration.

In many situations, randomization is performed not at the individual level but at the 
provider level. For example, a study might be focused on evaluating the effect of specific 
training of medical personnel on individual outcomes, or different behavioral interven-
tions may be provided in group settings. The training is given at the provider level and the 
interventions are simultaneously administered to a group of individuals. Such designs are 
cluster-randomized, and since clustering introduces correlations between observations at 
the individual level, these correlations need to be taken into account for proper inference. 
In general, cluster-randomized trials require a larger sample size than the correspond-
ing parallel group designs. The stronger the correlation between outcomes on individuals 
within a cluster, the larger the increase in the sample size. We discuss adjusting for such 
correlations in Section 11.4.

Another type of design that is more naturalistic and appropriate for the evaluation of 
service delivery-type implementations is the stepped-wedge design (see e.g., Hemming et al. 
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[2015]). This is a cluster-randomized design in which clusters sequentially cross over from 
control to an intervention condition until all clusters have crossed over. This design is 
pragmatic and is often chosen because of logistical constraints (i.e., it may not be possible 
to randomize at individual or provider level within a center). However, the effect of the 
intervention may be confounded with underlying temporal trends and lack of blinding is 
often an issue. Sample size calculations and the analysis plan must account for both clus-
tering and the confounding effect of time.

In recent years, more and more attention has focused on designs with multiple random-
ization stages. This allows researchers to assess the effect of sequences of treatment assign-
ments or to limit the potential for placebo effects. The simplest such design is a two-stage 
parallel group design, in which two completely independent randomizations occur at stage 
one and then at stage two. The treatments can be the same or different at the two stages. 
A variation of this design that is focused on optimizing treatment outcomes performs dif-
ferent randomizations at the beginning of stage two in responders and non-responders to 
the assigned treatment at stage one. Responders could be randomly continued or discon-
tinued on their current treatment in order to assess duration of treatment response. Non-
responders could be offered alternative treatments in order to improve their outcomes.

A variation of this design is the sequential parallel design (Fava et al. 2003), which has been 
proposed in order to deal with the issue of placebo response, particularly in trials with 
antidepressant medications. When a number of individuals are expected to respond to 
placebo, treatment differences are harder to detect. Some trials of antidepressant medica-
tions include a placebo lead-in period in order to reduce the number of potential placebo 
responders from the actual clinical trial and thus increase power to detect true treatment 
effects. However, this increases the duration of clinical trials and may bias the study sam-
ple. The sequential parallel design offers another alternative so that randomization of the 
treatments occurs at two stages, and at the second-stage treatment effects are evaluated 
only among placebo non-responders at stage one. Individuals can either receive active 
treatment in both phases, placebo in both phases, or placebo followed by active treatment. 
This type of design has been proven more efficient than a parallel group design when a 
substantial proportion of placebo responders is expected.

There are a number of other modifications of the basic clinical trial designs and many 
adaptive designs. This is a rapidly developing area of statistical investigation, mainly 
in the area of pharmaceutical statistics where more efficient design for evaluating novel 
drugs and treatments are needed. A good current reference for clinical trial designs is 
Chow and Liu (2013).

11.2.2 Observational Study Designs

While randomized experiments are the gold standard for evaluation of causal effects, in 
many instances it is impossible, impractical, or unethical to randomize individuals. For 
example, it would be unethical to randomize individuals to a harmful exposure such as 
smoking. In addition, when long-term effects of exposure or treatment are evaluated, it 
is impractical and not feasible to randomize individuals and follow them up for a long 
period of time. Similarly, when studying rare diseases, it may not be possible to recruit a 
sufficient number of individuals for an experimental study. Finally, when treatment effects 
are expected to be small, an unrealistically large sample size may be needed for a random-
ized study.

In such cases, observational studies are the only alternative. Although they do not pro-
vide such good control of potentially confounding factors as randomized studies, they do 
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have the advantage of being able to recruit a more representative and larger sample of the 
population. Two basic types of epidemiological studies are used for evaluating longitudi-
nal effects: cohort and case-control studies.

Cohort studies follow up a group of individuals over a period of time. Individuals in the 
cohort are selected based on exposure or a characteristic of interest that is measured at 
baseline, and then the outcome measure is (repeatedly) evaluated over time and compared 
between groups with different exposures. Cohort studies can be prospective or retrospective, 
depending on how the information is collected (i.e., by following up individuals over time 
or performing a chart review or an interview in order to retrospectively collect informa-
tion). Retrospective cohort studies are susceptible to recall or information bias. Prospective 
cohort studies may require long durations of follow-up, are prone to the effects of missing 
data, and may be expensive to conduct. However, both types of studies gather information 
regarding the sequence of events, are good for investigating patterns of change over time, 
and are well suited to studying rare exposures.

Case-control studies select individuals based on the measured outcome. Typically, cases 
(i.e., individuals with a particular disease or outcome of interest) are selected first and then 
controls (i.e., comparable individuals from the same population who do not have the out-
come of interest) are also identified. Data about the exposure or risk factor(s) of interest are 
collected retrospectively by record review, interview, or survey on both groups of indi-
viduals. Often, controls are matched to cases on a number of characteristics (e.g., age, gen-
der, other potentially confounding factors) in order to decrease the potential for bias and 
increase power for statistical inference regarding the effects of the exposure on the outcome. 
Case-control studies are less expensive than cohort studies and are well suited to investi-
gating rare outcomes or outcomes that take a long time to occur (e.g., long-term survival). 
However, they are susceptible to recall or information bias and do not allow determination 
of rates of disease in exposed and unexposed individuals. More information about obser-
vational study designs for longitudinal studies can be obtained in Rothman et al. (2008).

11.3 Sample Size Calculations for Traditional Methods

We first consider sample size/power calculations when there is a single outcome measure 
per individual. This is the case for cross-sectional data and may be the case in longitudinal 
data if we consider endpoint analysis or analysis of summary measures as described in 
Chapter 2. Initially, we consider sample size calculations for hypothesis testing. Further, 
we extend our presentation to confidence interval estimation. We conclude this section 
with an example. More information about sample size calculations is provided in Altman  
(1982).

11.3.1 Power Calculations for Simple Hypothesis Tests

All power calculations for hypotheses tests link four elements according to the design of 
the study. If any three of the elements are specified, the fourth can be calculated. The four 
elements are as follows:

• The sample size (overall and in each group if groups of different sizes are 
compared)
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• The effect size (magnitude of effect that is not to be missed)
• The significance level (the maximum allowed probability of committing a type I 

error, i.e., to reject the null hypothesis when it is in fact true)
• Power to detect the effect size of interest (the probability of declaring a particu-

lar effect to be statistically significant, i.e., to reject the null hypothesis when it is 
indeed false).

To formalize the presentation, let us consider a comparison of means of two independent 
groups. This may be the focus of analysis if we are performing an endpoint comparison 
of outcomes in two independent groups of individuals. The main hypothesis of interest 
in such a scenario is that the means are the same versus that they are different. This is 
formally expressed as follows:

 H Ha0 1 2 1 2: :µ µ µ µ= ≠versus  

We want to calculate the needed sample size per group, so that we have at least the target 
level of power, (1−β) × 100%, to detect a particular clinically meaningful mean difference 
when performing a two-sample t-test of these two hypotheses at a pre-specified signifi-
cance level, α. Remember that power is the probability of rejecting the null hypothesis 
when the alternative is true. Power is equal to one minus the probability of committing a 
type II error, with the latter being the failure to reject the null hypothesis when it is false. 
Power is usually set at 80% or 90% with corresponding type II error probabilities of 20% 
or 10%, respectively.

Significance level is the allowed rate of type I error (i.e., probability of rejecting the null 
hypothesis when it is in fact true) and it is usually set at 5%, but may be reduced if the con-
sequences of type I error are drastic or multiple hypotheses are tested. For example, if five 
hypotheses tests are to be performed, we might want to use a 1% significance level in each 
hypothesis test in order to limit the familywise error rate to 5% (see Chapter 6).

The meaningful effect size for the comparison of two means is expressed as a standard-
ized mean difference; that is, d = −µ µ σ1 2 / . The effect size, d, is the absolute difference 
between the means of the two groups that is considered clinically meaningful and is not 
to be missed, expressed in terms of standard deviations of the measurements (which are 
assumed to be equal in the two groups). This effect size has come to be known as Cohen’s 
d (Cohen, 1988). As a rough guide, effect sizes are referred to as small (d = 0.2), medium 
(d = 0.5), and large (d = 0.8); however, what effect size to use in sample size calculations is 
study dependent. The effect size is the element of power calculations with the largest effect 
on sample size or power, and is often the most difficult to specify. We explain its role and 
impact in the next couple of paragraphs.

The formula H0: μ1 = μ2 for the sample size calculation for the comparison of two means, 
assuming equal sample sizes, n, per group and equal standard deviations is as follows:

 n
z z

d
=

+( )− −2 1 2 1
2

2
α β/ , 

where z1−α/2 is the z-score such that the probability of a value from a standard normal dis-
tribution (i.e., normal distribution with mean 0 and variance 1) smaller than that is − α1 /2, 
and similarly z1−β is the z-score such that the probability of a value from a standard normal 
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distribution smaller than that is 1 − β. For the most common values α = 0.05 and β = 0.20, 
z1−α/2 ≈ 1.96 and z1−β ≈ 0.84. The effect size d is study-specific.

This formula shows that as the effect size, d, increases (keeping the type I and type II 
error rates α and β constant), the required sample size, n, decreases as it is inversely pro-
portional to the square of the effect size. Indeed, if we want to be adequately powered to 
detect a particular difference between groups, the larger the difference, the fewer indi-
viduals we need. Conversely, to detect smaller differences between the two groups, we 
need larger sample sizes.

It is a little bit harder to see, but as either of the error rates decrease (keeping the other one 
and the effect size constant), the sample size increases. This is logical, since if we want to 
detect the same difference between groups with lower probability of committing type I or 
type II error, we need larger sample sizes. Figure 11.1 illustrates how the sample size require-
ment changes as we vary the effect size, the significance level, and power one at a time.

Figure 11.1a shows that as the effect size increases, the sample size decreases. To detect a 
small effect size (d = 0.2) with 80% power at a two-sided alpha level of 0.05 one needs close 
to 400 individuals per group, whereas for a large effect size (d = 0.8) one needs fewer than 
30 individuals per group. If the significance level is decreased from 0.05 to 0.01, sample 
size requirements increase by about one-third at the fixed power level. Figure 11.1b shows 
that for a fixed-effect size (medium effect size d = 0.5), higher power is associated with 
increased sample size. Whereas a little over 60 individuals are needed to achieve 80% 
power to detect a medium effect size at a two-sided significance level of 0.05, close to 
80 are needed in order to achieve 90% power. Again, sample size requirements increase 
 substantially as the alpha level is decreased.

A few notes of caution should be emphasized regarding sample size calculations. We 
illustrate these with a hypothetical sample size planning experiment.

 1. The selected effect size should be specified a priori and should reflect a clinically 
meaningful effect. Thus, it needs to be selected based on substantive considerations 
and not estimated using pilot studies. As an example, consider planning a clinical 
trial of a new medication. Suppose individuals improve, on average, by five points 
on standard treatment, and the standard deviation of the improvements is four 
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Sample size per group for a two independent samples t-test as a function of effect size (a) and power (b). Power 
in panel (a) is fixed at 80%. Standardized mean difference effect size in panel (b) is fixed at d = 0.50.
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 points (these estimates are obtained from prior data, hopefully from a large sample 
of individuals from the same target population). More improvement is expected 
with the experimental medication. Clinicians are willing to use that medication 
if, on average, it improves the outcome by at least two more points (i.e., by a total 
of at least seven points compared with five points on the standard medication). 
This  corresponds to half a standard deviation difference between groups; that is, 
to a medium effect size d = 0.5. Thus, the study needs to be powered for a medium 
effect size.

 2. The significance level should be based on the tolerance for type I error. If the 0.05 
level is selected in the hypothetical example, this means that we are willing to allow 
up to a 5% probability of declaring statistically significant differences between the 
experimental and standard medication when such differences do not exist.

 3. Power should be based on the tolerance for type II error. If power of 0.8 (i.e., 80%) 
is selected, then this means that we are willing to tolerate up to a 20% probability 
of failing to find statistically significant differences when such differences exist 
and are of the magnitude of the considered effect size. Note that as type I error 
increases, type II error decreases, and vice versa, so unfortunately we cannot keep 
both of them very low. Usually, type II error is allowed to be larger since it is more 
risky to adopt a new experimental treatment with unknown side effects than to 
continue using the proven treatment. However, there is no reason why the hard-
ingrained defaults of 5% for type I and 20% for type II error rates should not be 
broken. If, in a particular application, it is more costly to miss a true difference, the 
type II error rate may be decreased to 10% or even 5% (corresponding to 90% or 
95% power, respectively) and type I error could be increased to 10%, or even 15%. 
This might be the case if there are no good treatments, and any potential improve-
ment may have the potential to change clinical practice.

 4. Often, one-sided rather than two-sided tests are used because they require a 
smaller sample size to detect the same effect size. In the hypothetical example, if 
we expect the mean improvement on the experimental treatment to be more than 
on the control treatment, we could choose to use a one-sided test (i.e., Ha: μ1 > μ2. 
However, if the difference is in the opposite direction (i.e., μ1 < μ2), we are going to 
miss such an effect and may potentially expose future individuals to an ineffec-
tive treatment if the two treatments are mistakenly declared not to be significantly 
different from one another. Note that the sample size needed to detect a particular 
effect size at a fixed level of power at the α one-sided significance level is the same 
as the sample size needed to detect the same effect size at the same power level at 
a 2α two-sided significance level.

 5. When comparing different groups, the best power (smallest sample size) is usually 
achieved when the number of individuals in the two groups are equal. However, 
sometimes, for ethical or other considerations, the size of one of the groups may 
need to be smaller than the size of the other group (e.g., there might not be a suf-
ficient number of individuals with a particular disease available for study, indi-
viduals may be less likely to participate in a placebo-controlled trial unless they 
have a higher chance of being assigned to an active medication).

 6. The variances of the groups in the two-mean comparison example are assumed 
to be the same. A modification of the calculations is necessary when variances are 
widely different. 
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 7. Although, most often, sample size calculations estimate the sample size needed 
to detect a target effect size at particular significance and power levels, feasibility 
constraints sometimes require that the calculations are performed in reverse. That 
is, for a particular sample size (e.g., maximal number of individuals that could be 
recruited under feasibility constraints), significance level, and effect size, power is 
calculated. This is achieved by solving the preceding equation for the parameter 
β, since power is equal to (1 − β) × 100%. If power is satisfactory (i.e., above at least 
80%, usually), then the experiment can be performed and will have a good chance 
of delivering a clear-cut answer to the research question of interest. If not, then 
alternatives must be considered (e.g., a different design, including an additional 
center that could recruit more individuals, using a measure with lower variability 
so that one could power for a larger effect size). In rare instances, power calcula-
tions are performed with a fixed sample size, power, and significance level in order 
to obtain a minimum detectable effect size. In this case, one needs to evaluate the 
minimum detectable effect size and decide whether it is clinically meaningful. If 
it is, then the experiment or study may proceed. If it is not, alternatives should be 
considered.

 8. Power calculations should be performed prior to study initiation. Sometimes, 
researchers perform post hoc power calculations with the available sample size, 
using the observed effect size instead of the minimum clinically significant effect 
size that should not be missed. This is often done when study results are negative 
(i.e., no significant effects are found), in the mistaken belief that such a calculation 
would help distinguish between studies that are truly negative and those that are 
simply underpowered. However, such post hoc power calculations not only fail to 
achieve this goal but do not provide any additional useful information compared 
to the p-value of the statistical test. In fact, post hoc power (also referred to as 
observed power) is directly determined by the p-value, regardless of sample size 
and effect size. In particular, a p-value of 0.05 corresponds to post hoc (observed) 
power of 50%. This issue is discussed in more detail and further arguments are 
provided against its use by Hoenig and Heisey (2001).

Note that we considered the simplest hypothesis, comparing two means, in which we 
aim to establish superiority of one of the treatments over the other. Other types of tests 
that can be performed are equivalence or non-inferiority tests. To test the equivalence of two 
treatments, one needs to specify the bounds around the two means within which the treat-
ments will be assumed to be equivalent. Similarly, for non-inferiority, a lower (or upper) 
bound needs to be specified so that if the experimental treatment is, at most, that much 
worse than the control treatment, it will be considered non-inferior. Testing of equivalence 
and non-inferiority and sample size calculations for these scenarios are beyond the scope 
of this book. We refer the interested reader to Wang et al. (2008) for details.

Similar to testing the equality of means, sample size can be calculated for a two-sample 
test comparing two independent proportions. For example, the number of individuals needed 
for a clinical trial can be based on having sufficient power to detect certain differences in 
proportions of responders in the two treatment groups at a pre-specified alpha level. The 
basic principles of sample size estimation are the same, but the proportion in the control 
group needs to be specified, together with a measure of the effect size comparing the 
experimental to the control group. Unlike the test of the means, where there is a clear-cut 
measure of effect size (i.e., the standardized difference, d), there are different options for 
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proportions. One can define the effect as an odds ratio, relative risk, or difference in pro-
portions. Furthermore, there are slightly different formulae that one could use depending 
on whether the sample size is large or small, and exactly what test is used. Details can be 
found in Wang et al. (2008).

When there are more than two groups to be compared, the hypothesis test of interest is 
the overall F-test in ANOVA, which indicates whether there are statistically significant dif-
ferences among the group means. The effect size for this test is Cohen’s f, and it is defined 
as the ratio of the standard deviation of the group means over the standard deviation of 
the individual observations. In the case of two groups, Cohen’s d and Cohen’s f are equiva-
lent, in particular f = d/2. Small, medium, and large effects for differences among group 
means are f = 0.1, f = 0.2, and f = 0.4, respectively.

There are a number of other hypotheses for which sample size or power calculations 
can be performed (e.g., correlations, regression analysis). We refer the interested reader 
to Cohen (1988) and Wang et al. (2008) for detailed information. A review of sample size 
calculations at a fairly non-technical level with advice on how to proceed is provided in 
Lenth (2001).

11.3.2 Power Calculations for Confidence Intervals

Hypotheses tests have been the backbones of statistical inference, especially in clinical tri-
als where decisions regarding efficacy and safety need to be reached. However, they have 
the major disadvantages of failing to provide an estimate of how large differences are, and 
are dependent on sample size. With a sufficiently large sample size, any statistical test is 
significant, but statistical significance often does not translate into clinical significance. 
Thus, in recent years, more and more emphasis has been placed on effect estimation using 
confidence intervals. Sample size can be calculated so that effect sizes are estimated within 
a certain precision.

To illustrate, consider again the scenario of comparing two means of independent popu-
lations. Rather than powering the study so that a certain effect size is detected with good 
power at a reasonable significance level, we can estimate the sample size needed to con-
struct a confidence interval for the mean difference within a certain width at a pre-spec-
ified level of confidence. The half-width of the confidence interval is often referred to as 
the margin of error or precision and needs to be small enough so that the confidence interval 
is informative. For example, suppose that a 95% confidence interval for the difference in 
mean improvement on two antidepressant medications is constructed, and the obtained 
confidence interval is (−5; 10) for a scale such as the Hamilton Depression Rating Scale. 
This is quite a wide range that does not even show which treatment is better. In compari-
son, a confidence interval from 2 to 6 is tighter and provides important information about 
which treatment is better, with a good degree of confidence in the magnitude of superior-
ity. Likewise, an interval from −1 to 3 is just as tight, and although it does not show which 
treatment is better, from it, one can fairly confidently say that the two treatments are simi-
larly effective.

To estimate the sample size for a confidence interval, one needs to specify the required 
confidence level (1 − α) × 100% (usually 90% or 95%), the half-width (this is study depen-
dent and should be based on clinical considerations), and the standard deviation(s) (usu-
ally estimated based on prior studies). When two means are compared, the two standard 
deviations are often assumed to be equal and the estimated sample size is equally divided 
between groups. Alternative formulae are available when the sample sizes are unequal.
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There are two versions of power calculations for confidence intervals. One assumes that 
the future standard deviation is equal to the one used in the power calculation, and the 
sample size is calculated so that the expected width of the confidence interval is within 
the specified margin. The other takes into account the uncertainty when estimating the 
standard error(s) from the future data and requires the specification of a tolerance probabil-
ity. This is the probability that the constructed confidence interval’s length will be within 
the specified half-width. For example, we may want 90% tolerance probability that a 95% 
confidence interval for the quantity of interest (e.g., difference in two means) will have a 
half-length within the specified margin. The tolerance in confidence interval calculations 
corresponds to the power in the hypotheses test calculations. The effect size is more clearly 
separated into mean difference and standard error in confidence interval sample size esti-
mation compared with hypothesis testing sample size estimation. A specific data example 
is included in the next section to illustrate how this is done.

Note that, as in sample size calculations for hypothesis testing, calculations for confi-
dence intervals could be performed in reverse. For example, one might fix the sample size 
based on feasibility and then estimate what margin of error could be achieved given the 
assumed standard deviation, the desired confidence level, and tolerance probability. If the 
margin of error is meaningful, that is, an informative confidence interval can be obtained, 
then the study can proceed; otherwise, alternatives should be considered.

The estimated sample size for confidence interval estimation increases as the confidence 
level increases, the tolerance probability increases, the desired margin of error decreases, 
or the standard deviation increases (keeping all other elements of the calculation fixed). 
A  one-sided confidence bound can be constructed rather than a two-sided confidence 
interval, but similar to hypotheses testing, caution needs to be applied in order not to miss 
differences in the opposite to the hypothesized direction.

Note that confidence intervals are quite useful when the study is focused on a par-
ticular simple contrast: for example, difference between two means or proportions, 
evaluation of average change from pre- to post-treatment, comparison of a proportion 
to a particular value (e.g., 50%). However, more complicated designs require testing 
of more complicated hypotheses (e.g., differences among multiple groups, evaluation 
of group by time effects) and, in such cases, the confidence interval approach may 
not be easily applicable. One could potentially formulate several effect estimations 
of interest (e.g., comparison of multiple group means to a control mean), construct 
simultaneous confidence intervals at an adjusted confidence level (e.g., 99% confidence 
level to adjust for five simultaneous confidence intervals), and perform sample size cal-
culations that would guarantee that all confidence intervals were within the specified 
margin of error. However, sample size calculations become more complex and require 
more assumptions.

11.3.3 Example Power Calculations for a Two-Group Study

We consider the simplest design for repeated measures data, with one pre- and one 
 post-treatment measure and two parallel groups (experimental and control). Our goal is to 
compare the mean improvements in the experimental group and the control group. Since 
we are focusing on change, we can perform power calculations as if this were a cross-
sectional study with the change in the dependent measure as the outcome. We consider 
estimating sample size based on a t-test for two independent samples and based on a con-
fidence interval for the difference in means.
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11.3.3.1 Hypothesis Test for the Difference of Two Means

We first choose an outcome measure and evaluate prior data in order to figure out how 
large the standard deviation of this measure is. Suppose that it turns out to be about ten 
points. From previous studies, we anticipate that we will observe a change of about five 
points on the control treatment between baseline and endpoint, and that the correlation 
between repeated observations on that measure within the same individual is about 0.5. 
We will consider the experimental treatment to be better than the control treatment if it 
produces a change from baseline of at least ten points (five points more than the standard 
treatment produces). We plan to recruit equal numbers of individuals in the two groups. 
The planned analysis will be a t-test on differences in change from baseline to endpoint 
between the two groups. The question is, how many subjects do we need in order to detect 
the clinically meaningful difference with good power using a two-sided test? It is possible 
that up to 20% of the individuals could drop out during the study.

To estimate the required sample size we need to specify the other elements of the power 
calculation; namely, the significance level, the power level, and the effect size. Please note 
that we consider different combinations of these in order to evaluate the impact on our 
calculation. In particular, we consider 0.05 and 0.10 significance levels, power of 80% and 
90%, and several effect sizes. To calculate the effect sizes based on the information avail-
able, we need to first calculate the standard deviation of the difference scores from the 
standard deviation of the outcome measure. The relationship between these two is as 
follows:

 ( )σ = σ − ρ2 1diff  

where:
 σdiff is the standard deviation of the difference scores 
 σ is the standard deviation of the measure

Since, from previous data, we know that σ is around ten, we consider values between 
eight and 12. Also, from previous data, we know that ρ is around 0.5, and hence, we con-
sider correlations between 0.4 and 0.6. This gives the following range of values for σdiff: 
8 2 1 0 6 7 16−( ) =. .  to 12 2 1 0 4 13 15−( ) =. . . Note that the bigger the within-individual cor-
relation, the smaller the standard deviation of the differences. If we have a direct measure 
of σdiff from previous studies, then we do not need to go through this step, and can directly 
use the σdiff value in the power calculations.

Since we want to be able to detect a minimum difference in change scores between the 
groups of 10 − 5 = 5 points, this gives us the following range of values for the effect size d: 

=5/13.15 0.38  (or approximately 0.40) to =5/7.16 0.70. For the standard deviation and cor-
relation equal to our prior estimate we obtain d = −( )



 = =5 10 2 1 0 5 5 10 0 5/ /. . . Table 11.1 

presents the required sample size per group for these combinations of values of the differ-
ent parameters in the power calculation.

We see that the required sample size varies widely depending on what values we choose 
for the standard deviation, the within-individual correlation, and the required significance 
level and power. The bigger the effect size, the fewer individuals we need. The higher the 
power requirement and the lower the significance level, the more subjects we need. If we 
want to have sufficient power under all considered scenarios, we need 133 individuals per 
group.
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Note though, that if we expect to lose individuals because of drop out, we will not be able 
to calculate change scores for those individuals. Thus, the sample size should be increased 
further to account for dropout. The most conservative approach is to increase the required 
sample size in such a way as to have complete data on 133 individuals per group. Since we 
expect up to 20% drop out, we need to start with 167 individuals per group (80% of 167 is 
133.6, truncated down to 133). A common mistake when accounting for drop out is to cal-
culate 20% of the final number (20% of 133 = 26.6 or rounded up to 27) and add that to the 
target sample size for completers (133 + 27 = 160). However, this underestimates the total 
sample size. To obtain the required sample size prior to dropout, we divide the calculated 
sample size for completers by the expected completion rate (i.e., 133/0.8 = 166.25 rounded 
up to 167 per group).

As mentioned previously, this is a conservative approach to account for drop out. Since 
missing data could be handled using more sophisticated approaches (e.g., mixed models 
or multiple imputation, see Chapter 7), all available data on individuals could be used 
in the analysis and loss of power due to drop out may not be as extreme. We come back 
to this issue when we discuss power analysis methods for repeated measures studies in 
Section 11.4.

11.3.3.2 Confidence Interval for the Difference of Two Means

Suppose that the same parallel design with two groups of individuals with two repeated 
measures is chosen to compare the effects of experimental and control treatments. But, 
rather than performing a significance test, we are interested in estimating with good preci-
sion the difference in mean improvements on the two treatments. As before, the standard 
deviation of the outcome measure is about ten points and the expected within-individual 
correlation is 0.5. We would like to estimate the difference in mean improvement between 
groups with a confidence interval such that the half-width of the confidence interval is 
within a specified margin with high probability. To calculate the needed sample size 
(assumed equal in the two groups) we consider several possible values for the confidence 
level, the precision (half-width of the interval), the standard deviation, and the tolerance 

TABLE 11.1

Sample Size Requirements for Two Independent Samples Comparison Using a t-test 
with Equal Variances

Effect Size d Significance Level Power Required Sample Size Per Group

0.4 0.05 80% 100
0.4 0.05 90% 133
0.4 0.10 80% 78
0.4 0.10 90% 108
0.5 0.05 80% 64
0.5 0.05 90% 86
0.5 0.10 80% 51
0.5 0.10 90% 70
0.7 0.05 80% 34
0.7 0.05 90% 44
0.7 0.10 80% 26
0.7 0.10 90% 36
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level (the probability that the half-width is smaller than the margin). Table 11.2 shows the 
needed sample size for the combination of values.

As in the previous power calculation, we see that the required sample size varies widely 
depending on what assumptions we make about the standard deviation of the change 
scores, the confidence level (which is equal to one minus the significance level), the toler-
ance probability, and the required precision (half-width of the confidence interval). We 
need more individuals when the standard deviation is higher, the confidence level is 
higher, the half-width is lower, and the tolerance probability is higher. If we want to have 
sufficient power under all considered scenarios, we need 206 individuals per group. If we 
are willing to use a lower tolerance probability (0.95 rather than 0.99) and lower confidence 
level (0.90 rather than 0.95), we can reach our goal with 142 individuals. Note that the high-
est impact on the power calculation comes from the width of the confidence interval and 
the standard deviation estimate. If we are way off the mark with these, we can get sample 
size estimates that are too high or too low. As in the power calculations for hypotheses 
testing, here we also need to increase the sample size if we anticipate subject dropout. The 
procedure for increasing the sample size is the same. We now turn our attention to more 
complicated designs with repeated measures.

11.4 Sample Size Calculations for Studies with Repeated Measures

The complexity of power calculations for studies with repeated measures stems from 
the need to account for correlations between repeated measures on the same indi-
vidual (or within the same cluster) and the possibility of missing data (especially in 

TABLE 11.2

Sample Size Requirements for Two Independent Samples Comparison Using a Confidence Interval 
to Estimate Mean Differences

Confidence Level Half‑Width Standard Deviation 
Tolerance 

Probability
Required Sample 

Size Per Group

0.95 4 7 0.95 66
0.95 4 7 0.99 72
0.95 4 13 0.95 194
0.95 4 13 0.99 206
0.95 6 7 0.95 34
0.95 6 7 0.99 38
0.95 6 13 0.95 94
0.95 6 13 0.99 102
0.90 4 7 0.95 48
0.90 4 7 0.99 54
0.90 4 13 0.95 142
0.90 4 13 0.99 150
0.90 6 7 0.95 26
0.90 6 7 0.99 30
0.90 6 13 0.95 70
0.90 6 13 0.99 76
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longitudinal studies) and unequal variances over time. In the previous section, we 
presented an example with a simple pre–post comparison in which methods for cross-
sectional data are applied to the change scores. We now extend our presentation by 
focusing on clustered data with an exchangeable correlation structure and then pro-
ceed by considering different correlation structures in longitudinal data. We consider 
power calculations for traditional methods for repeated measures analysis (rANOVA, 
rMANOVA), mixed-effects models, and GEE models. Our goal is to present the basic 
ideas only. A comprehensive reference on power analysis of repeated measures data is 
the book by Ahn et al. (2015).

11.4.1 Clustered Data

Let us consider the parallel two-group example from the previous section. Suppose that 
the treatments are administered in a group setting. Another instance when clustered 
data may arise is if we measure outcomes on students nested in classrooms (and perhaps 
schools) and we anticipate those outcomes to be correlated. In such scenarios, we expect 
observations on individual units to be equally correlated within clusters and uncorrelated 
across clusters. The intra-class correlation (ICC, which we denote by ρ) is given by the 
formula:

 ρ = σ
σ + σ

  b

b

2

2 2  

where:
 σb

2  is the variance due to cluster
 σ2 is the residual variance (see Chapter 3)

If this correlation is ignored in statistical analysis, then type I error rate is usually 
increased. To prevent this inflation, analysis and power calculations need to take this 
correlation into account. This can happen if one uses rANOVA, mixed effects, or a GEE 
approach.

When data are equally correlated within clusters, sample size estimation proceeds as 
in cross-sectional data, with a simple adjustment for clustering. Specifically, one obtains a 
total number of individuals needed to detect a particular effect size with required power 
at a specified significance level. Then the resulting sample size is increased in order to take 
into account that some observations are equally correlated. Note there are two levels to the 
sample size: number of clusters and number of observations per cluster. The total sample 
size is the product of the two numbers when the data are balanced or the sum of individual 
observations across all clusters when the data are unbalanced.

Often, the number of individuals per cluster is fixed due to feasibility or practical con-
straints (e.g., class size is fixed, a provider treats a certain number of patients), and, in this 
case, one needs to calculate the number of clusters required. When it is possible to vary 
the number of individuals per cluster, one needs to decide on the optimal combination of 
number of clusters and number of individuals per cluster.

To illustrate how the sample size calculation is adjusted for within-cluster correlation, 
suppose that we have estimated that we need a total sample size of T = n∙m individuals if 
the data both within and across clusters were independent. Here, n is the number of clus-
ters, and m is the number of individuals in each cluster. The total sample size needed when 
there is positive ICC (equal to ρ) is then nm[1 + (m − 1)ρ].



307Study Design and Sample Size Calculations

The quantity [1 + (m − 1)ρ] is the correction factor, also known as the design effect or the 
variance inflation factor (VIF). Note that the higher the ICC (ρ), the more we need to increase 
the sample size. If ρ = 0, then no increase is necessary. If ρ = 1, then we need to multiply the 
calculated sample size by the number of observations per cluster, m. For intermediate val-
ues of ρ, the inflation depends also on the cluster size. This increase is logical, since when 
there is dependence among the observations within clusters they provide less information 
than independent observations. We illustrate with a simple data example.

Suppose that we have calculated that for a two-group mean comparison we need a total 
of 200 individuals (100 per treatment group) assuming independence between observed 
values. We could divide these equally in 20 clusters per group (five individuals per clus-
ter), or into ten clusters per group (ten individuals per cluster). Table 11.3 shows how the 
sample size increases under different assumptions for the ICC and cluster size. The first 
three columns of this table are fixed while the rest are calculated based on the information 
in the first three columns.

Note that the VIFs vary from 1 (when there is no within-cluster correlation) to 5.5 
when the within-subject correlation is large and there are more observations within clus-
ters. Thus, the required sample size could increase dramatically when the ICC is large. 
Fortunately, in most practical situations, the ICCs are not very large (we did not even con-
sider values above 0.5) and hence the sample size requirements can be reined in.

The amount of independent information that is contained in a clustered sample 
(n*   clusters of size m) is reflected in the effective sample size. If all observations are per-
fectly correlated within a cluster, they provide as much information about the variance as 
a single observation. Thus, the effective sample size is equal to the number of clusters m. If 
observations are positively correlated, then the effective sample size is n m m* / 1 1+ −( ) ρ  
and is often considerably less than the total number of observations.

The effective sample size is interpreted as the sample size that is needed to detect the same 
effect size with the same power and at the same significance level as if the data were inde-
pendent. In Table 11.3, the effective sample size is 200, while the actual sample sizes ranges 
between 200 and 1100 depending on the number of observations within clusters and the ICC.

Note that so far we have assumed that the data were balanced (i.e., number of units 
per cluster is the same). Modifications of the sample size formula are available for unbal-
anced data (see e.g., Ahn et al. [2015]). In addition, we did not specify what kinds of test we 
were using. This is because the general variance inflation formula applies whether we are 

TABLE 11.3 

Relationship between Sample Size Needed When Observations are Independent and When There 
Is Clustering with Positive Correlation among Some Observations

Sample Size for 
Independent 
Observations

Observations 
per Cluster

Intra‑Class 
Correlation 

(ICC)

Variance‑
Inflation 

Factor (VIF)

Sample Size 
for Clustered 
Observations

Number of 
Clusters

200 5 0 1 200 40
200 5 0.10 1.4 280 56
200 5 0.25 2 400 80
200 5 0.50 3 600 120
200 10 0 1 200 20
200 10 0.10 1.9 380 38
200 10 0.25 3.25 650 65
200 10 0.50 5.5 1100 110
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looking at comparisons of means or comparisons of other measures, such as proportions. 
Finally, if we anticipate that there will be missing data, we need to increase the sample size 
further in order to compensate for the loss of information. The sample size increase can 
be achieved by increasing the number of clusters and/or the number of individuals per 
cluster. Often, practical constraints dictate which option is more appropriate.

Note that, as with cross-sectional data, sample size calculations can be performed in 
reverse. That is, one could start with a feasible sample size and calculate power or detect-
able effect size. The only extra step that needs to be taken is to convert the feasible sample 
into an effective sample size before proceeding as indicated earlier in this chapter.

For example, practical restrictions might dictate that up to 500 individuals can be 
recruited in a study to compare two groups, clustered in groups of ten individuals (i.e., 
there are 50 clusters, ten individuals per cluster). The significance level for the test is 0.05. 
We want to calculate power to detect a particular effect size, or, conversely, we want to 
figure out what mean difference we can detect with 80% power. We expect from prior data 
a within-cluster correlation of around 0.2. To calculate the effective sample size, we first 
calculate the VIF, which is equal to 1 + (10 − 1)(0.2) = 2.8. Thus, our effective sample size is 

=500/2.8 178.6 (or close to 180 individuals). We round the number up in order to be able to 
distribute the individuals equally between groups. Now the problem reduces to perform-
ing reverse power calculations for a two independent samples t-test with 90 individuals 
per group.

Power calculations for confidence intervals are affected the same way as power calcula-
tions for hypotheses tests. Variance inflation adjustment is required. Models with more 
than one level of clustering require further adjustments of the sample size so that cor-
relations within clusters at each level are taken into account. More information about the 
effects of clustering on power calculations can be found in Ahn et al. (2015).

11.4.2 Longitudinal Data

In order to perform power calculations for longitudinal data, several important decisions 
need to be made in addition to selecting the parameters of the calculation (i.e., power or 
tolerance level, significance level, effect size). The first is to decide what analysis will be 
performed, the second is what effect to power for, the third is to come up with reasonable 
values for the variances and covariances of repeated measures, and the fourth is to decide 
how to account for missing data.

The type of analysis is mainly a choice between mixed models and GEE models. 
Traditional rANOVA and rMANOVA methods could also be used in some scenarios, but 
are often not flexible enough, especially when it comes to dealing with missing data (see 
Chapter 2 for more detailed discussion of these approaches). Nevertheless, they might be 
useful for power calculations, as illustrated in Section 11.4.2.1. Non-parametric methods 
could also be used, but are usually not the first choice because they have less power and 
do not provide very meaningful effect size estimates (see Chapter 5).

Several possibilities for the effect of interest are commonly considered. The overall group 
by time effect is one option. However, there are many different ways in which one could 
achieve the same effect size for such a general test, with some of these potentially consis-
tent with the study hypotheses and some not. Often, a more appropriate option to consider 
is a particular contrast of means over time (e.g., mean difference from baseline to endpoint, 
linear trend over time) either within or between groups. For example, one may be inter-
ested in assessing whether the average change from baseline to endpoint is greater in the 
experimental group than in the control group, or to estimate with good precision the rate 
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of change over time (assuming that the trend is linear) and to assess whether it is signifi-
cantly different from zero. A third option for the effect of interest may be the overall main 
effect of group; that is, whether post-baseline response in one group is consistently higher 
than in the other group on average. One could come up with other options depending on 
the goals of the study. Herein, we consider several basic options and present examples of 
how the study could be powered depending on the chosen method of analysis.

Prior data and substantive considerations can inform the choice of values for variances 
and covariances that are used in longitudinal data analysis. For example, previous studies 
may provide estimates for the variances of the outcome measure, indications of whether 
these variances are stable over time, and information about correlation structures that may 
fit the data well (e.g., autoregressive). Note that if a mixed-model approach with random 
effects is selected, then assumptions need to be made about the variances and covari-
ances of the random effects in addition to assumptions about the errors. It often becomes 
a daunting task to specify the variance–covariance structure of the repeated measures 
before the study is initiated; hence, a range of values often need to be considered.

Missing data also affect the power of the study, sometimes considerably. Thus, it is 
important at the planning stage to establish what the expected rate and pattern of drop-
out is, and to decide how missing data will be handled. The latter is usually determined by 
the chosen method of analysis. For example, in mixed and GEE models, analyses are done 
following the intent-to-treat principle, with all available data on an individual used in the 
estimation. However, loss of some of the data usually leads to some loss of power, and 
hence the sample size should be adjusted so that sufficient power is available and effects 
are estimated with sufficient precision even after some dropout occurs.

We now consider sample size calculations for different methods of analysis of repeated 
measures data. We do not present general formulae as there is a wide variety of possibili-
ties. Rather, we use data examples to explain what information we need to perform the 
power calculations and to emphasize interpretation of the results. SAS modules or freely 
available software programs are used to obtain the results. The code and output are avail-
able in the online materials.

11.4.2.1 Power Calculations for Summary Measures

One of the simplest approaches of performing power calculations for longitudinal data 
is to focus on summary measures for each individual and then perform power analysis 
for cross-sectional data on these summary measures as if they were the directly observed 
outcomes. Examples of summary measures are mean response over time, pre- to post-
treatment change, area under the curve, and individual slope. We already illustrated how 
such power analysis is done on change scores from baseline to endpoint. However, this 
approach implies that the chosen analysis method is a two-stage analysis. At the first 
stage, the summary statistic is calculated for each individual, and at the second stage 
the summary measures are analyzed using traditional methods (e.g., t-test, ANOVA, 
ANCOVA) for cross-sectional data. As discussed in detail in Chapter 2, this analytic 
approach underestimates the variability in the data (e.g., slope uncertainties are ignored 
at the second stage) and missing data preclude calculation of the summary measures for 
some individuals. Although this may be offset by recruiting more individuals, a more 
appropriate approach is to consider analytic approaches and power calculations that take 
full advantage of the repeated measures nature of the data. Thus, we now focus on power 
calculations for traditional rANOVA and rMANOVA approaches, and then proceed to 
mixed and GEE models.
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11.4.2.2 Power Calculations for Traditional Methods (rANOVA, rMANOVA)

When the main focus is on comparing groups and an exchangeable correlation structure 
is expected to fit the data well, the approach for clustered data from Section 11.4.1 could 
be used. That is, power calculations could be performed as if the data were cross-sectional 
and then the sample size could be increased according to the calculated variance inflation 
factor and dropout rate. The number of clusters is equal to the number of individuals and 
the number of observations per cluster is equal to the number of repeated measures on an 
individual. Different combinations of number of subjects and repeated measures could be 
considered. Missing data are taken into account by varying the cluster size according to 
the anticipated dropout rates.

When the correlation structure is not exchangeable and the design is balanced (i.e., indi-
viduals are measured at the same time points), power calculations could be based on the 
overall effect tests in rMANOVA. The effect sizes are determined based on the pattern of 
group means over time that we wish to detect and the values of the variances and corre-
lations. More details and directions for the use of this method are provided in Castelloe 
(2014). Theoretical derivations and explanations are given in Muller and Peterson (1984) 
and in Muller et al. (1992). We show how power calculations could be performed for both 
the main effect of group and the overall interaction test between group and time using 
PROC GLMPOWER in SAS (see online materials for code).

In order to estimate the necessary sample size to detect clinically meaningful effects, 
we need to specify the design, the mean patterns over time by group, the variances by 
group and time point, the correlations among repeated observations within individuals, 
the power and significance levels, and the expected dropout rate. Power calculations 
could also be performed in reverse (i.e., we can fix the sample size and estimate the 
corresponding power at the levels of the other components of the calculation that are 
selected).

To illustrate sample size estimation in rMANOVA, we consider a hypothetical study 
with two parallel groups of individuals (equal number of individuals per group) with a 
normally distributed outcome measure evaluated at four equally spaced time points (e.g., 
month 1–4). The pattern of means is selected to represent clinically meaningful differences 
between groups that we do not want to miss, overall and by time point, and we consider 
the following mean values:

Group 1: 30, 25, 20, 15
Group 2: 30, 27, 24, 20

We assume two possible scenarios that describe the variability over time: a constant 
standard deviation of 4 for both groups at each time point, and increasing variances 3, 4, 5, 
and 6 at the first through fourth time points, respectively.

Several different variance–covariance structures are also considered: compound sym-
metry with a correlation of 0.5, autoregressive of first order with a correlation parameter 
0.8, and unstructured with the following correlations:
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Performing power calculations under different assumptions for the variance–covariance 
structure is done because there may be uncertainty about the correct structure prior to 
analysis. We assume a 20% dropout during the study. Since rMANOVA excludes any indi-
viduals with missing data from the analysis, the analysis will be performed on 80% of the 
original sample; thus, we need to increase the sample size obtained from the power calcula-
tions so that even after dropping 20% of the individuals we still have sufficient power.

We are interested in testing the main effect of group, and the group by time interaction. 
The selected sample size should be sufficient so that for the mean and variance–covariance 
patterns already specified, we have 80% power at alpha levels of 0.05 for each test.

Table 11.4 shows the required total sample sizes under several different scenarios for 
the variance–covariance structure. The second-to-last column shows the estimated sample 
size using PROC GLMPOWER. The last column shows the final sample size that allows us 
to drop individuals with incomplete data from the analysis and still maintain 80% power. 
The numbers in the last column are obtained by dividing the corresponding numbers in 
the second-to-last column by 0.8 and rounding up to the nearest even number (since indi-
viduals need to be equally split between the two treatment groups).

Note that, in most cases, more individuals are needed to detect the group effect com-
pared with the group by time effect, especially when the variances are unequal (increas-
ing over time). The autoregressive structure is associated with larger sample size for the 
between-subject factor (group) than for the within-subject effect (group by time) when 
the correlation between neighboring observations is high. This is not surprising in view 
of our previous discussion of the effect of clustering, in that, when repeated observations 
are highly correlated, the effective sample size for between-group comparisons is much 
smaller than the total sample size. In contrast, for within-subject effects, the high correla-
tion helps, as each individual serves as their own control. In general, compound symmetry 
needs the smallest sample sizes compared with the other structures.

As expected, dropout increases the sample size requirement, but unfortunately there is 
no guarantee that dropout will be uninformative, and it is quite possible that performing 

TABLE 11.4 

Required Sample Sizes to Detect Group and Group by Time Effects in rMANOVA under Different 
Correlation Structures

Effect Variances
Correlation 
Structure

Required Number of 
Individuals with 
Complete Data

Required Number of 
Individuals Prior to 

Dropout

Group Equal CS 44 56
Group Equal AR(1) 54 68
Group Equal UN 36 46
Group Unequal CS 56 70
Group Unequal AR(1) 68 86
Group Unequal UN 58 74
Group×time Equal CS 28 36
Group×time Equal AR(1) 30 38
Group×time Equal UN 54 68
Group×time Unequal CS 38 48
Group×time Unequal AR(1) 40 50
Group×time Unequal UN 46 58

Note: Power Is Fixed at 80% and Significance Level at 0.05
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the analysis on individuals with complete data leads to bias. This is one of the reasons 
why rANOVA and rMANOVA approaches are no longer widely used for longitudinal data 
analysis except in special cases (see Chapters 2 and 3 for more discussion on this issue).

Note that we did not specify the effect size directly in these calculations. Some programs 
(e.g., NCSS Statistical Software, 2014) calculate effects sizes in the form of ratios of the 
standard deviation of the means over the appropriate standard deviation of individual 
observations (which is a function of the variances and covariances). However, many dif-
ferent patterns of the means, standard deviations, and correlations could lead to the same 
effect size estimate, and not all of them reflect a pattern of the means consistent with the 
theoretical hypothesis. Thus, it is more meaningful to perform power calculations based 
on specific contrasts of the means. We illustrate this approach in the next two subsections 
in the context of mixed-effects models and GEE.

11.4.2.3 Power Calculations for Mixed-Effects Models

As described in Chapters 3 and 4, there is a wide variety of mixed models that can be 
considered. Mixed models can describe change over time using both fixed and random 
effects, and/or can assume different structures of the errors. Thus, it is important to decide 
a priori what model will be used for the analysis and to perform sample size calculations 
based on the chosen model. In many situations, a simulation approach is the only fea-
sible option to obtain power estimates. That is, multiple simulated data sets are generated 
according to the chosen model and power is determined by the percent of samples for 
which the hypothesis test of interest rejects the null hypothesis.

One of the most meaningful comparisons in studies with longitudinal data is the dif-
ference in slopes between groups. Many other options are possible: overall main effects of 
group, time, group by time, user-specified mean contrasts including linear and quadratic 
effects over time, and particular mean differences by time point. Herein, we focus on the 
approach proposed by Hedeker et al. (1999), further developed by Roy et al. (2007) and 
Bhaumik et al. (2008) for linear mixed models, and used in the RMASS program (http://
www.rmass.org/) for sample size calculations. It is focused on two-group repeated mea-
sures designs with attrition, allows for a variety of variance–covariance structures of the 
repeated measures, and for specification of either slope differences or mean differences 
by time point. Random effects may or may not be included. Attrition rates are specified 
by time point. Additional clustering can also be added (e.g., individuals clustered within 
centers). An example of a power calculation performed with the RMASS program follows.

Suppose we have a two-group design with four repeated measures and we anticipate 
linear trends over time with no difference between groups at baseline and a difference 
of 1.5 points by the end of the study (fourth time point). The model under the alternative 
hypothesis is:

 Y t t tij ij ij i i ij ij= − − + + +10 0 5 0 5 0 1. . ,Groupi β β ε  

where:
 i denotes individual
 j denotes observation within individual
 tij is observation time

Groupi is an indicator variable equal to 1 or 0 for the experimental and the control group, 
respectively.
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There is no term in the linear predictor for group by itself because we assume that the 
groups’ average responses are equal at baseline. The power calculation is based on the 
hypothesis test of the interaction between group and time and we would like to detect an 
absolute value for this coefficient of 0.5 or larger. This means that for one unit increase in 
time, the groups diverge from each other by 0.5 points. At the first time point (time 0) the 
groups have equal mean responses and by the fourth time point (time 3), the difference in 
outcome has become 1.5 points on average. Under the null hypothesis, the coefficient for the 
group by time effect is zero; that is, there is no difference in the rate of change over time.

The random intercept βi0 and slope βi1 are assumed to be correlated (ρ = −0.2) and nor-
mally distributed with variances of 0.25 and 0.09, respectively. The implied covariance 
(which is needed by the RMASS program in order to calculate the power) is then equal to 
− = −0 2 0 25 0 09 0 03. . . . . The error variance is assumed to be equal to 0.5 and the errors are 
assumed to be uncorrelated with each other (i.e., all the correlations among the repeated 
observations within individuals are determined by the random effects). Power is set at 
80% and the significance level is 0.05 (two-sided). Attrition is assumed to be 5% between 
consecutive time points.

Under these assumptions, the required sample size to detect the difference in slopes is 
calculated to be 27. Since this is an odd number and we plan to split the individuals evenly 
between groups, we need to recruit 28 individuals, 14 per group. As with the calculations 
for cross-sectional data, we should consider different values for the parameters of interest 
in order to investigate how the sample size changes. Table 11.5 shows how the estimated 
sample size depends on the effect size, on the assumptions about the variances and covari-
ances of the random effects, and on the error variance value. In general, the greater the 
variability (i.e., larger variances of the random effects and/or the error), the more individu-
als we need, all other parameters of the calculation held equal. Also, the smaller the slope 
difference, the greater the sample size requirement.

Adjustment for attrition is integrated within the program so one does not need to inflate 
the sample size additionally. This approach results in a smaller sample size than if one 

TABLE 11.5 

Required Sample Size for Difference in Slopes in Linear Mixed Models under Different 
Assumptions for the Variances and Covariances of the Random Effects

Difference 
in Slopes

Intercept 
Variance

Slope 
Variance

Covariance between 
Intercept and Slope Error Variance

Required Number of 
Individuals Prior to 

Dropout

0.5 0.25 0.09 −0.03 0.5 28
0.5 0.25 0.09 −0.03 0.2 18
0.5 0.25 0.09 −0.03 0.8 36
0.5 0.36 0.16 −0.06 0.5 36
0.5 0.36 0.16 −0.06 0.2 28
0.5 0.36 0.16 −0.06 0.8 46
0.4 0.25 0.09 −0.03 0.5 42
0.4 0.25 0.09 −0.03 0.2 30
0.4 0.25 0.09 −0.03 0.8 56
0.4 0.36 0.16 −0.06 0.5 58
0.4 0.36 0.16 −0.06 0.2 44
0.4 0.36 0.16 −0.06 0.8 70

Note: Power is fixed at 80% and significance level at 0.05. Attrition is fixed at 5% between consecutive time points.
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calculates the needed sample size based on complete data, and then divides the resulting 
sample size by one minus the attrition rate as we did for traditional methods. This allows 
for a more efficient study.

Note that even in a simple scenario with just two groups and linear trends over time, 
there are many parameters that need to be fixed. This requires prior knowledge and good 
judgment, and gets even more complicated if we consider more groups, more complicated 
trends over time, and further levels of clustering.

Much research has been devoted in recent years to power calculations for mixed mod-
els (see e.g., Tu et al. (2004), Tu et al. (2007), Roy et al. (2007)), including non-linear growth 
models (Zhang and Wang, 2009) and methods for binary outcomes (Dang et al., 2008). In 
general, simulation methods are the only reasonable alternative for non-normal outcomes 
with complicated variance–covariance structures (see Chapter 16 in Stroup (2013)). More 
details about power calculations with or without simulations are provided in Chapter 12 
of Littell (2006).

11.4.2.4 Power Calculations for GEE Models

Comparison of slopes between groups or other tests of interest can also be done in the 
context of GEE models. In GEE models, one only needs to specify the mean model cor-
rectly, and then even if the correlation structure of the repeated measures is miss-spec-
ified, estimates of the parameters describing the mean will be consistent. Nevertheless, 
if the working correlation structure is not well chosen, some loss of efficiency may 
occur. Like mixed models, GEE can be used for different types of data: continuous, 
binary, and count. To perform power calculations, one needs to specify the model (type 
of outcome, link, and predictors), the effect of interest (e.g., difference in slopes over 
time, overall group effect), mean patterns over time under the null and the alterna-
tive hypotheses, the working correlation structure that will be used (e.g., exchangeable, 
AR(1)), the significance level, and the required power level. To illustrate the process, 
we present a data example with binary data. We use the GEESize SAS macro (Version 
3.1) based on the work of Rochon (1998) and Dahmen et al. (2004) (http://www.imbs-
luebeck.de/imbs/node/30).

Our design is again a parallel group study with four repeated measures (at times 0, 1, 2, 
and 3). The underlying model under the alternative hypothesis is

 logit p t Group tij ij iji( ) = − + +1 0 0 2 0 3. . .  

where pij is the probability of observing 1 for subject i at time j Groupi is an indicator vari-
able (1 for the active group and 1 for the control group)

Under the null hypothesis, the coefficient for the difference in slopes is 0 rather than 
0.3. We are interested in the required sample size that would give us 80% power to detect 
an absolute difference in slopes as big as 0.3 or larger at a two-sided significance level of 
0.05. We assume a 5% attrition rate between consecutive time points and an AR(1) working 
correlation structure. Table 11.6 shows the required sample sizes. We consider slope differ-
ences of 0.4 and 0.3.

From Table 11.6, we see that the magnitude of the slope difference and the correlation 
value affect the sample size calculation with a several-fold difference among the esti-
mates. This illustrates how important it is to determine carefully what values are reason-
able before the start of the study. Unlike normal data, where the identity link is used and 
hence it is easy translate slope differences into mean differences, in the case of binary data, 
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one needs to apply non-linear transformation to the linear predictor (i.e., the inverse logit 
transformation) in order to see how intercept and slope values translate into probabilities. 
In the example that we considered we use the transformation:

 p
lp

lp
= ( )

+ ( )
exp

exp1
 

where lp stands for linear predictor and p stands for probability.
Based on the values of the linear predictor at the four time points for the two groups 

(i.e., (−1, −0.5, 0, 0.5) in the active group and (−1, −0.8, −0.6, −0.4) in the placebo group when 
the slope difference is 0.3) we obtain the following probabilities (up to two digits after 
the decimal point): (0.27, 0.38, 0.50, 0.62) in the active group versus (0.27, 0.31, 0.35, 0.40) in 
the placebo group. This is a more meaningful metric in many applications and serves as 
a check on whether the effect sizes expressed as slope differences are reasonable when 
expressed as differences in proportions between treatment groups.

We chose to illustrate power calculations for GEE based on a slope difference for binary 
data, but there are many other options both for outcomes (e.g., count, ordinal, skewed 
continuous) and effects that one can power for (overall main effect, interactions, specific 
contrasts of the means). Different scenarios and theoretical justifications for power cal-
culations for GEE data can be found in Chapter 4 of Ahn et al. (2015). Having illustrated 
a number of approaches for power calculations in longitudinal studies, we now turn our 
attention to another important aspect of study design; namely, consideration of different 
randomization methods.

11.5 Randomization Methods for Experimental Studies

In clinical trials and other experimental studies, causal inference can be performed 
because randomization ensures balance on potentially confounding variables. There are 
different methods of randomization that can be used, and some of them perform better in 
small samples than others. Herein, we present some of these methods at a non-technical 
level. The emphasis is again on basic concepts rather than on details. More information 
 regarding issues of randomization can be found in Kalish and Begg (1985), Lachin (1988a), 

TABLE 11.6 

Required Sample Size for Difference in Slopes in GEE Model for Binary 
Data with Logit Link under Different Assumptions

Difference in Slopes Correlation Required Number of Individuals 

0.3 0.5 338
0.3 0.8 192
0.3 0.2 368
0.4 0.5 194
0.4 0.8 110
0.4 0.2 212

Note: Power is fixed at 80% and significance level is fixed at 0.05. Attrition is set at 5% 
between consecutive time points. AR(1) working correlation matrix is used.
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Lachin  (1988c), Chapter 5 of Altman (1991), and Suresh (2011). A sequence of papers in 
the journal Controlled Clinical Trials presents the most common procedures (Lachin, 1988b; 
Matts and Lachin, 1988; Wei and Lachin, 1988) and finishes with conclusions and recom-
mendations for their use (Lachin et al., 1988).

To present the most common randomization methods, we consider a parallel group lon-
gitudinal study with two treatments (A and B). We focus on randomization at the indi-
vidual level. This is in contrast to cluster randomization where randomization may be at 
the provider, clinician, or hospital level. The main randomization methods can be applied 
either at the individual or at the cluster level, but when randomization is carried out at the 
cluster level and outcomes are measured at the individual level, statistical analysis needs 
to take correlation of observations within clusters into account.

Simple randomization involves randomly assigning each individual to treatment A with 
a fixed probability p (often equal to 0.5) and to treatment B with probability 1 − p. The sim-
plest way to execute such a randomization is by flipping a coin as each individual joins 
the study. As an example, consider that A corresponds to the “face” of the coin and B cor-
responds to the “tail.” The following sequence is coded after flipping the coin 20 times:

AAABBABBAAABAAAABABA

In large samples, one can expect to get an approximately equal number of As and Bs in 
the sequence. However, in small samples, an imbalance may occur (in this particular 
sequence, which is random, there are 13 As and 7 Bs). Thus, there are several problems 
with this approach.

First, simple randomization can lead to a lack of balance in the number of individu-
als assigned to the two treatment groups and long sequences of A or B assignments 
could occur. Second, a flip of a coin cannot be reproduced, and hence no one could verify 
post-factum how the assignments were generated, whether the coin was indeed flipped 
20 times, and whether the outcomes of the flips were as recorded. Third, in small samples, 
individuals assigned to treatment A could differ from individuals assigned to treatment B 
on a variety of other characteristics, some of which could potentially confound the associa-
tion between treatment and the outcome.

To resolve these issues more sophisticated methods of randomization are used. The 
methods are categorized depending on whether they are fixed (i.e., randomization sequence 
is generated before individuals are recruited) or adaptive (information about treatment 
assignments, covariates, and, potentially, outcomes are used in order to inform future ran-
domization assignments), and completely unrestricted (e.g., the simple randomization pre-
viously described) or restricted (e.g., the block randomization described in the following 
paragraph). Note that the goals of randomization are to ensure balance of treatment assign-
ments (i.e., the proportion of individuals on each treatment is as according to the target), 
covariate balance (i.e., covariate distributions are similar in the different treatment groups), 
and in many cases to help keep individuals and/or providers blinded to treatment assign-
ment. The latter is necessary so that systematic assessment bias is avoided.

The most common fixed randomization method that ensures balance of treatments even 
in small samples is block randomization. Rather than randomizing each individual sepa-
rately, several consecutively recruited individuals form a block, and within this block, the 
treatment assignments are balanced. In the context of the earlier example with two treat-
ments and equal probabilities of randomization to A or B, let us consider block random-
ization of block size four. There are six possible sequences of four treatments (two As and 
two Bs):
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AABB, ABAB, ABBA, BAAB, BABA, BBAA

The randomization list consists of a sequence of such blocks. Thus, if, for example, 20 
individuals are to be randomized, five blocks of four treatment assignments are randomly 
chosen with replacement. This randomization scheme guarantees that after each fourth 
patient, there is an equal number of individuals assigned to A and B. Note that the block 
size could be random (i.e., one can choose among blocks of size two, four, or six for exam-
ple), which is often done in order to limit the possibility of individuals and/or providers 
guessing the treatment assignment. In addition, different randomization ratios can be used 
(e.g., twice as many individuals could be randomized to A, in which case the ratio of A to 
B assignments will be 2:1 within each block and overall). Block randomization guarantees 
balance of treatment assignments but does not ensure covariate balance in small samples.

When certain covariates are expected to be strong confounders of the relationship 
between treatment and outcome, it is advisable to stratify the randomization on these covari-
ates. For example, if it is expected that gender may be a potentially confounding variable, 
separate randomization lists should be generated for each gender. Gender is a stratification 
variable, and if methods that achieve balance of treatment assignments are used within 
each stratum (e.g., block randomization), then we are also guaranteed to have balance on 
the stratification variable. Note that it is not necessary that the number of individuals be 
the same in each stratum. That is, we do not need to have the same number of male and 
female subjects in order to achieve balance on the covariate. Rather, stratified blocked ran-
domization guarantees that the ratio of female to male subjects on each treatment is the 
same and thus there is balance of the covariate distribution across the two treatments.

Stratified blocked randomization is considered the gold standard for fixed random-
ization, and is especially useful in small clinical trials where stratification factors are 
prognostic of the outcome. However, it is limited in terms of the number of stratification 
variables that can be used. Additionally, since the list of participants is often not known at 
the onset of the study, it may be difficult to define the strata a priori. Finally, in large sample 
size studies, when the stratification factors are not substantially predictive of the outcome, 
stratified randomization does not provide clear advantages (see Kernan et al., 1999).

Note that fixed randomization schemes are usually generated by computer programs 
using pseudorandom numbers. The advantage of this approach over a coin toss is that it 
can be replicated.

Adaptive randomization schemes include urn randomization, biased-coin randomization, 
covariate-adaptive randomization, and play-the-winner randomization. The basic idea in all 
these methods is to update the assignment probabilities for future individuals enrolled in 
the clinical trial by using information about the current balance of treatment assignments, 
covariate distributions, and/or outcomes. In urn and biased-coin randomization, if there is 
lack of balance of treatment assignments (e.g., more individuals happen to be assigned to A 
than to B at some point in the study), then future assignment probabilities are adjusted so 
that the less commonly represented treatment is assigned more often. In play-the-winner 
randomization, more individuals are assigned to the treatment with the better outcome—
this is often done for ethical reasons so that individuals are not assigned to an ineffective 
treatment as more evidence emerges. Perhaps the most widely used adaptive randomiza-
tion procedure is covariate-adaptive randomization. This method can achieve balance on mul-
tiple potentially confounding variables. Assignment probabilities for future individuals 
enrolled in the clinical trial are updated based on information about the current balance 
of treatment assignments and covariate distributions across groups. For example, if at a 
certain recruitment point more older male individuals have been assigned to treatment A, 
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then the probability of future treatment assignments to treatment A for older males is 
decreased. Rather than 0.5, the probability may be 0.4 or even lower. With a higher prob-
ability (0.6 or higher), individuals with such a combination of covariates are assigned to 
the alternative treatment B. Note that there is still an element of randomness; however, the 
idea is to gradually adjust for the lack of balance on covariates and treatments.

An alternative method to balance treatment assignments and covariates is the method 
of minimization. It assigns individuals to the treatment that leads to the least imbalance of 
treatments and covariates. However, because it is not random and allows the possibility of 
guessing the treatment assignments at some point in the study, this approach has not been 
extensively used. More information is provided in the review by Scott et al. (2002), who 
advise that minimization should be used more often.

In order to decide which randomization methods to use, one needs to consider the size of 
the trial, whether it is double-blind, single-blind, or not masked at all, and what the avail-
able resources are. Since randomization method needs to be taken into account in the 
analysis, fixed randomization schemes are often preferred, as they are simpler to analyze 
(e.g., stratification factor is included as a potential moderator in the analysis). Other proce-
dures lead to more challenging statistical analyses. More information can be obtained in 
Kalish and Begg (1985), Wei and Lachin (1988), and Lachin et al. (1988).

11.6 Summary

In this chapter, we discussed study planning, presented the most commonly used designs 
for clustered and longitudinal studies, explained power calculations for cross-sectional 
and repeated measures data, and described different randomization options for experi-
mental studies. Since serious mistakes at the study planning stage (e.g., confounding of 
the effects of treatment with the effects of time or other covariates) usually cannot be recti-
fied at the analysis stage, it is crucially important to make the right decisions at the design 
stage. This includes clearly defining the goals of the study, carefully selecting the target 
population and clarifying inclusion and exclusion criteria, choosing an appropriate sam-
pling method, outcome measure(s), and study design, calculating a sample size that gives 
a high probability that the goals of the study will be achieved, developing a plan for ran-
domization, and an appropriate analysis approach. It also involves decisions about data 
collection, management, monitoring, and approaches to handling missing data.

The main advantages of studies with repeated measures compared with cross-sectional 
studies is that individuals serve as their own controls and thus it is possible to evaluate the 
effect of treatment or exposure within individuals. However, when repeated measures are 
collected over time, the effects of treatment or exposure need to be disentangled from the 
effects of time. Furthermore, dropout needs to be carefully planned for and controlled if 
possible. Thus, studies with longitudinal data present unique challenges and opportunities.

Some general recommendations at the planning stage of studies with repeated measures 
and future topics are as follows:

• Choose randomized study designs (such as parallel group clinical trials) whenever 
possible. Randomization is the only reliable method to achieve balance on mea-
sured and unmeasured covariates and thus allow for causal inference. Although 
methods for causal inference can also be used in observational studies, they rely 
on assumptions that are often not satisfied.
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• Perform power calculations based on clinically meaningful effects before the 
study is initiated. Post hoc power calculations do not serve any useful purpose. 
Also, it is not appropriate to directly use the effect size from a small pilot study as 
the target effect in power calculations (see e.g., Leon et al. (2011)). Such estimates 
are usually imprecise and do not necessarily provide information about clinically 
meaningful differences. Previous studies could be used to provide information 
about the expected variability in the planned investigation (although this is also 
imprecise, it is often the best we have available) and the response in the control 
group. The effect size should be based on clinically meaningful effects (i.e., dif-
ferences that one does not want to miss because of subject-matter considerations).

• Although power calculations are traditionally based on hypotheses tests, it is pos-
sible and often preferable to select the sample size so that the effect of interest can 
be estimated with good precision. Thus, power calculations based on confidence 
intervals could and should be used more often.

• Every power calculation should take into account the effects of missing data. 
Missing data can both bias estimates and lead to a decrease in power. Thus, sam-
ple size usually needs to be adjusted upward and sensitivity analyses need to be 
planned to examine the effects of missing data.

• Although sample size is determined at the onset of the study, one can plan an 
interim analysis at the design stage and define rigorous criteria for stopping 
the study for reasons of efficacy or futility at the interim time point. It is pos-
sible that a new treatment may be more effective than anticipated, and that this 
can be shown when only a fraction of the planned sample has been enrolled. 
On the other hand, it is also possible that, based on the outcomes observed up 
to the time of interim analysis, there is no possibility of demonstrating superi-
ority of the new treatment by the end of the study. Thus, it may be futile to con-
tinue the study. In both cases, stopping the study early is indicated. Rigorous 
criteria for such decisions are described in O’Brien and Fleming (1979). More 
recent discussion and an overview of methods are available in Pocock (2006) 
and Chow (2014).

• Herein, we did not consider studies with more than one design stage. However, 
a sequence of treatments is often necessary to achieve an optimal response. In 
recent years, sequential study designs have increasingly been used, and much 
research is devoted to dynamic treatment regimes (e.g., Chakraborty and Murphy 
(2014)). In these types of studies, a sequence of decisions are made for each patient 
based on treatment and covariate histories. The ultimate goal is to personalize 
treatment assignments for the individual patients in order to achieve the best pos-
sible outcome.

In conclusion, study planning is a crucially important stage in any data investigation, 
involving careful consideration of many aspects. There are unique challenges to consider 
when clustered or longitudinal data are collected. One needs to select a proper design, an 
analysis method that allows correlated data to be handled, and to decide how to handle 
dropout and other missingness. Sample size calculations are more complicated for cor-
related data than for cross-sectional data and require many more assumptions. There is a 
wide variety of study designs to choose from, which makes this both a very challenging 
and exciting process involving close collaboration between subject-matter researchers and 
statisticians.
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12
Summary and Further Readings

This book has focused on advanced statistical methods for the analysis of correlated data 
in clinical trials and observational studies with emphasis on applications in psychiatry 
and related fields. Data collected in psychiatric longitudinal studies are complex because 
outcomes are rarely directly observed, there are multiple correlated repeated measures 
within individuals, and there is natural heterogeneity in treatment responses and other 
characteristics in the populations. Simple statistical methods do not work well with such 
data as described in Chapter 2. More advanced statistical methods capture the complexity 
of psychiatric data better but are difficult to apply appropriately and correctly by investiga-
tors who do not have advanced training in statistics.

To facilitate understanding and increase appreciation of the versatility of these meth-
ods, we presented, at a non-technical level, several approaches for the analysis of cor-
related data, namely, mixed-effects and generalized estimating equation (GEE) models 
(Chapters 3 and 4), mixture models for longitudinal data (Chapter 10), and non-parametric 
methods for repeated measures studies (Chapter 5). These methods have revolutionized 
our ability to analyze data from clinical trials and epidemiological studies. In particular, 
mixed models use all data on subjects without the need for imputation, properly account 
for correlations of the repeated measures within individuals, minimize bias in estimates, 
and are appropriate for a wide range of applications from longitudinal to brain imag-
ing data. GEE have similar advantages but require careful consideration of missing data. 
Mixture models allow for data-driven estimation of underlying latent classes of subjects 
with particular characteristics or trajectories over time. Non-parametric methods are use-
ful when data exhibit floor and ceiling effects or when distributions vary wildly across 
time points and are otherwise unwieldy.

By presenting these methods at a non-technical level, focusing on the assumptions of 
the methods, applicability, and interpretation, and providing online resources for their 
use, we aimed to increase understanding of the advantages and potential caveats of these 
methods and to contribute to their more extensive and appropriate use. The examples pro-
vided from published studies in psychiatry, neuroscience, and mental health throughout 
the book were meant to illustrate the methods and to provide guidelines as to how com-
monly encountered data should be analyzed and interpreted.

We also focused on several important topics in the analysis of longitudinal and clus-
tered data that deserve special attention. In particular, we presented methods of adjust-
ment for multiple testing (Chapter 6), which are essential when one analyzes multiple 
outcome measures or needs to adjust for multiple post hoc tests. We also devoted a chapter 
(Chapter 7) to methods for dealing with missing data including gold standard approaches 
such as multiple imputation and full information maximum likelihood. Proper methods 
of adjustment for potentially confounding variables in experimental and observational 
studies were also presented and discussed (Chapter 8). We also covered assessment of 
moderator effects that allow us to determine for whom or under what circumstances a 
particular treatment works, and of mediator effects that allow us to evaluate how (i.e., via 
what potential mechanism) a treatment exerts its effect. We also briefly covered design 
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considerations for planning studies with clustered and longitudinal data (Chapter 11), 
including sample size estimation, randomization, and most commonly used longitudi-
nal designs. References to relevant publications in both the statistical literature and the 
subject-matter literature were provided throughout the book. Further reading suggestions 
with applications in psychiatry and related fields are as follows. The textbook of Hedeker 
and Gibbons (2006) is an excellent but more technical reference for longitudinal data anal-
ysis. The book edited by Jones et al. (2012) covers a wide range of topics with applications 
in aging. The book by Long (2011) focuses on applications in the behavioral sciences and 
shows how R software could be used for longitudinal modeling. The book of Dunn (2000) 
is focused specifically on psychiatry, but emphasizes issues of measurement, agreement, 
and factor analysis rather than methods for clustered and longitudinal data.

There are a number of topics that we considered beyond the scope of this book and 
hence did not cover. Sections 12.1 through 12.9 introduce some of these and include refer-
ences for further reading.

12.1 Models for Multiple Outcomes

Mixed-effects and GEE models have been extended in the statistical literature to situa-
tions when multiple outcome measures are repeatedly collected. For example, multiple 
measures of disease severity could be recorded over time, or one might be interested in 
a simultaneous analysis of efficacy and safety outcomes. If the outcomes are analyzed 
separately, one does not obtain information about their correlation and either needs to 
adjust the significance level for performing separate analyses, thus potentially decreasing 
power, or risk inflating the familywise type I error rate, thus increasing the risk of  false 
positive findings. Joint analysis of the outcome variables allows us to make inferences 
about the correlation of the different measures and allows us to test or estimate an overall 
treatment effect on all outcomes, thus reducing the need to correct for multiple testing. In 
addition, if the outcomes are highly correlated, then one could potentially gain efficiency 
in the estimates for an outcome by borrowing information from the other outcomes. This 
is especially attractive if some of the outcome measures are more precise but not measured 
as frequently, and other measures are less precise but are collected more frequently.

Joint analysis also comes with the disadvantage that models become more complex, more 
difficult to formulate and estimate, and there is an increased probability of convergence 
issues or other computational problems. This is especially relevant when the outcomes are 
of different types (e.g., continuous and categorical).

There are multiple methodological publications on this topic in recent years in the statis-
tical literature. The recent review by Verbeke et al. (2014) and Verbeke and Davidian (2009) 
are good starting points and cite many other relevant publications.

12.2 Non‑linear and Spline Modeling of Time Effects

In all models for longitudinal data presented so far, we modeled the time effect using a 
simple categorical predictor for balanced designs or polynomial trends to describe change 
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over time parsimoniously. However, the categorical time approach is only applicable for 
balanced designs when individuals are measured at the same time points, and works only 
when the number of repeated assessments is not large. It also does not allow prediction of 
the outcome at intermediate time points. Modeling time with polynomials (i.e., linear, qua-
dratic, cubic, and other trends) is rather limited in describing different patterns of change. 
Very often, the response is not described well by a straight line or by part of a parabola, 
and this lack of fit may lead to bias in parameter estimates and invalid conclusions. There 
are several alternative approaches that one could consider if more flexibility in modeling 
time effects is needed.

In particular, non-linear models for longitudinal data, where a non-linear function in the 
parameters is used to describe the pattern of change over time, are discussed in the book 
of Davidian and Giltinan (1995) and in Davidian (2009). Such models are routinely used in 
pharmacokinetics and pharmacodynamics and less often in other areas. The form of the 
model (e.g., S-shaped curve, exponential curve) is often suggested by mechanistic theo-
retical considerations and describes phenomena at the individual level. Thus, non-linear 
models are most commonly used in a random effects framework but marginal (GEE-type) 
models are also available and can be fit. A fairly non-technical review of these approaches 
is provided by Serroyen et al. (2009).

Another possibility is to describe the time effect using models based on splines. Splines 
are piecewise polynomials that are tied together at different time points so that there is 
a seamless (smooth) transition from one polynomial to the other. One can think of such 
models as having the time range divided into different windows, within each of which we 
fit a polynomial model, and force these individual polynomials to join hands with polyno-
mials from neighboring windows at the borders. This approach allows us to fit virtually 
any pattern of change over time but of course comes with an added complexity level, espe-
cially in the context of longitudinal data, where correlations among repeated observations 
on the same individual over time also need to be taken into account. There are different 
types of spline models that can be used for longitudinal data, such as regression splines, 
smoothing splines, and penalized splines. A gentle introduction to the spline approach for lon-
gitudinal data is provided in Chapter 7 of Weiss (2005) and in Chapter 19 of Fitzmaurice 
et al. (2011). Theoretical details of the methods can be found in Chapters 8 through 12 of 
Fitzmaurice et al. (2009).

12.3 Transition Models

In this book, we focused on two major types of models for longitudinal data based on 
the generalized linear model: subject-specific models with random effects and marginal 
models with structured variances and covariances (GEE). There is a third type of models 
that extends the generalized linear models for longitudinal data, in which previous out-
comes are included in the linear predictor. Thus, one can estimate the effect of past out-
comes on current and future outcomes with the added advantage of seamlessly taking into 
account serial correlations among the repeated measures. These models are called transi-
tion (or Markov) models and are also sometimes referred to as conditional models because they 
express the conditional distribution of each response as a function of previous responses 
and covariates. One of the simplest transition models is the first-order autoregressive gen-
eralized linear model, in which the previous outcome affects the current outcome. Markov 
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models of order k are achieved when the previous k outcomes are affecting the current 
outcome. When the outcome is categorical, these models are known as Markov chains. More 
details about transition models for longitudinal data can be obtained in Chapter 10 of 
Diggle et al. (2002).

A further extension of this approach are latent Markov models for longitudinal data, 
where one assumes that there are unobserved latent classes, and individuals stay in the 
same class over time or transition from one latent class to another with certain probabili-
ties. Both the number of latent classes and the parameters describing the effect of covari-
ates and potentially previous outcomes on the transition probabilities are estimated from 
the data. A good reference on such models is the book of Bartolucci et al. (2012).

12.4 Survival Analysis

Another topic that we did not cover in this book is survival analysis. In survival analysis, 
the outcome is time until an event of interest occurs. The event may be death, treatment 
response, remission, or any other outcome that could be reliably ascertained to have hap-
pened. Typically, the event occurs once during the study for an individual (and hence we 
do not have multiple repeated measures within the individual on this outcome); however, 
there are situations when the event could be recurring. For example, an alcohol-dependent 
individual who has achieved abstinence could relapse to heavy drinking repeatedly.

The goal in survival analysis could be to estimate the distribution of time-to-event, to 
compare groups in terms of their survival times, or assess the effects of covariates on the 
time-to-event. A complicating factor with survival data is that for some individuals the 
event of interest does not occur during the observation time. Such individuals are said 
to have been censored since we do not know whether they had or did not have the event. 
Censoring necessitates the use of special methods for survival analysis. Some of the most 
recognized approaches are Kaplan-Meier estimates of the survival function, log-rank tests 
to compare survival times of groups of individuals, and the Cox proportional hazards model 
for evaluating the impact of predictors on survival times. Good references for survival 
analysis are the classical text of Sir David Cox (Cox et al., 1984), the introduction to survival 
analysis in a medical context by Collett (2003), and the comprehensive and more technical 
book of Kalbfleisch and Prentice (2002).

12.5 Joint Analysis of Survival Outcomes and Repeated Measures

In many studies, there is an interest in both repeatedly measured outcomes and survival 
outcomes. For example, one might measure disease severity repeatedly, and also time to 
treatment discontinuation, time to treatment response, or time to dropout. Methods for 
joint analysis of repeated measures and survival outcomes have received much attention 
in the statistics literature in recent years. The goals of such analyses can be to simultane-
ously assess influences of predictors on the longitudinal and survival outcomes (if both 
outcomes are considered to be equally important and are substantially correlated), to 
perform inference for the repeatedly measured outcome by accounting for the survival 
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outcome (this is especially useful if the survival outcome is dropout and accounting for 
that outcome allows us to correct for bias in the estimates of the repeatedly measured out-
come), or to perform inference for the survival outcome while accounting for the repeat-
edly measured outcome (this might be useful if the survival outcome is not frequently 
observed and we borrow information from the repeatedly measured outcome to improve 
estimates of the survival outcome).

Models for joint analysis are necessarily complex, as they require joining together mod-
els for different types of outcomes. They typically combine linear mixed-effects models for 
repeated measurements and Cox models for censored survival outcomes, although other 
combinations are possible. Due to model complexity, joint models could have convergence 
problems and issues with identifiability. While describing such methods is beyond the 
scope of our book, we refer the interested reader to a gentle introduction by Asar et al. 
(2015), or the more technical and comprehensive manuscripts of Henderson et al. (2000) 
and Diggle et al. (2008).

12.6 Models for Intensive Longitudinal Data

All examples presented in this book had a relatively low number of repeated observations 
per individual (less than 10). With the increased ease of collecting, storing, and analyzing 
data, studies that record information much more intensively (e.g., several times per day) 
are quite common. For example, ecological momentary assessment (EMA) studies collect data 
on feelings or actions (Shiffman and Stone, 1998) in groups of individuals often using 
smartphones and other hand-held devices. Although mixed-effects and GEE models could 
be used to analyze such data, the problem is not only the intensity of the data collection, 
but also that there are unique aspects of EMA data that are not well captured with the clas-
sical formulations of these models. In particular, the variety of individual trajectories with 
possible daily or weekly oscillations are not well captured by simple polynomial trends. 
Additionally, interest in EMA studies often centers not so much on the mean trends over 
time, but on fluctuations in individuals’ responses. Individuals who show more variabil-
ity may be inherently more unstable and more prone to adverse outcomes. Furthermore, 
how the response or variation in response affects what happens next may be of interest. 
In order to tackle the additional challenges that intensive longitudinal data present, spe-
cial methods often need to be adopted. These include functional data analysis, state-space 
models, dynamic systems modeling, and point process models. An excellent reference on these 
approaches with illustrative examples and many references from the behavioral sciences 
is the book edited by Walls and Schafer (2006).

12.7 Models for Spatial Data

Although we provided some examples with clustering, including an analysis of region 
of interest data from an fMRI study, we did not focus specifically on situations in which 
we model the spatial associations among the data points. Such data are encountered 
in structural and functional imaging studies, in disease mapping applications, and in 
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geographic information systems. Data can be intensively collected (e.g., one might have 
data on  thousands of voxels within individuals or hundreds of locations on a map). Both 
spatial and time components are present when one is interested in modeling how the 
response of the spatial network of points changes over time. In such applications, it is criti-
cally important to take into account the interrelationships among the observed responses 
in space and time. When modeling disease spread or brain connectivity, the strength of 
associations varies not only by proximity but also by the connections that exist among 
different observation units in space and time. Therefore, although some simple spatial 
applications can be handled with the methods described in this book by using the spatial 
power  variance–covariance structure of the repeated measures (Chapter 3), specialized 
methods are needed for more complex data. The book by Diggle (2003) is an excellent ref-
erence for analyzing spatial point patterns. Geostatistical modeling is described at a fairly 
non-technical level by Diggle and Ribeiro (2007). Temporal trend modeling in geographic 
information systems is presented from an applied perspective by Ott and Swiaczny (2001). 
The book of Gelfand (2010) is a general reference on spatial statistics. An overview of brain 
imaging analysis and statistical methods is provided by Bowman (2014).

12.8 Bayesian Methods

We presented the material in this book from a frequentist perspective. That is, we regard 
the parameters of the models as unobserved fixed quantities that are estimated from the 
information in the sample. Alternatively, one could adopt a Bayesian perspective and treat 
parameters as random quantities with some prior distribution (whether informative or 
non-informative). We update our belief about the distribution of these parameters based 
on the observed data and thus construct posterior distributions. The posterior modes are 
used as point estimates of the parameters, and 95% credible intervals provide information 
about the likely range in which the parameters vary. In addition to the conceptual differ-
ences regarding parameter interpretation, Bayesian models have potential computational 
advantages over their frequentist counterparts in small samples and when the number of 
random effects increases. However, they require more sophistication to use and software 
is not as widespread as for frequentist models. We refer readers interested in the Bayesian 
approach and inference methods to the books of Carlin and Louis (2009) and Gelman et al. 
(2014).

12.9 Software

We used SAS STAT software for illustration throughout the book. More information and 
a variety of examples for the analysis of longitudinal and clustered data using SAS can be 
found in Littell (2006). SAS Institute has a related software program (JMP) that has excel-
lent graphical capabilities and a friendly user interface that still allows to use the powerful 
SAS machinery behind the scenes. Sall et al. (2014) provide an introduction on the use of 
JMP.
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There are a number of other software programs that could be used for analysis of 
 longitudinal and clustered data. Of particular note is the free programming environment 
R, which provides great flexibility, is open source, and is accessible all around the world. 
A good reference for R is the book of Crawley (2007), whereas Li and Baron (2012) focus on 
applications from the behavioral sciences and show how models for longitudinal and clus-
tered data could be fit in R. Another programming environment that has modules for lon-
gitudinal and clustered data analysis is MATLAB® (see e.g., Gilat (2011) for an introduction).

Stata is a flexible and powerful software program for statistical analysis that can also 
handle the models covered in this book. A gentle introduction to data analysis with Stata 
is provided in Kohler and Kreuter (2005). A more comprehensive reference on models for 
repeatedly measured outcomes is the book of Rabe-Hesketh and Skrondal (2008).

Software commonly used by applied researchers for data analysis is the Statistical 
Package for the Social Sciences (SPSS). It does have a user-friendly interface and capabilities 
to fit mixed models, but is not as flexible as the other software options mentioned. An 
introduction to SPSS is provided by Argyrous (2005).

A number of more specialized programs for the analysis of different models for repeated 
measures are available. For example, MLWin (http://www.bristol.ac.uk/cmm/software/
mlwin/) and HLM (http://www.ssicentral.com/hlm/) are well suited for multilevel mod-
els, Supermix fits mixed models for continuous and categorical data (http://www.ssi-
central.com/supermix/), LISREL is focused on structural equation models (http://www.
ssicentral.com/lisrel/), and MPlus has wide-ranging capabilities for the analysis of corre-
lated data (https://www.statmodel.com/).

12.10 Concluding Remarks

While some novel statistical methods have been used to plan studies and analyze data in 
psychiatry and related fields, progress toward bridging the gap between methodological 
developments in statistics and analyses of psychiatric clinical trials and epidemiological 
studies has been slow. This is partly due to difficulties in “translating” statistical meth-
ods so that their assumptions, applicability, model fitting, and interpretation are under-
standable to quantitatively oriented applied researchers. Statistical methodological papers 
are often full of statistical notation and jargon that makes them hard to follow by less 
mathematically inclined readers. There are multiple other publications that aim to explain 
statistical methods to non statistical audiences but they are spread over many different 
subject-matter journals and often focus on just a particular aspect of statistical methods 
or only on a particular area of application. The current book summarizes recent statistical 
developments to a non statistical audience of quantitatively oriented researchers in psy-
chiatry and mental health, and will hopefully be a valuable resource promoting the use of 
appropriate statistical methods for analysis of complex psychiatric data sets.
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