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Preface

This volume includes a collection of peer-reviewed contributions from among those
presented at the third Bayesian Young Statisticians Meeting (BAYSM 2016).
The conference was organized by the Istituto di Matematica Applicata e Tecnologie
Informatiche “E. Magenes” (IMATI) of the National Research Council of Italy
(CNR), in collaboration with the Dipartimento di Statistica, Informatica,
Applicazioni “G. Parenti”, University of Florence, and the Department of Decision
Sciences, Bocconi University. The conference was held in Florence from 19 to 21
June 2016.

The Bayesian approach to statistics is becoming increasingly popular within the
scientific community. Over the years, various problems involving complex data
(e.g., big data) and posing challenging methodological issues have stimulated the
scientific community to develop and apply novel Bayesian statistical methods.
BAYSM represents an opportunity for MS and Ph.D. students, post-docs, and
young researchers interested in Bayesian statistics to connect with their scientific
community at the beginning of their careers. The goal of BAYSM is to stimulate
collaborations and encourage discussions both with colleagues at the same level of
experience and with more senior researchers, in order to promote research in a wide
spectrum of fields where Bayesian methods can be employed.

The scientific program of BAYSM 2016 included contributions that develop and
apply Bayesian methods in a variety of fields, ranging from the traditional (e.g.,
biostatistics and reliability) to the most innovative (e.g., big data and networks).

BAYSM 2016 included four plenary sessions and a keynote session as well as
contributed talk sessions and a poster session. The plenary sessions offered four
brilliant lectures by Fabrizia Mealli (University of Florence, Italy), Peter Müller
(The University of Texas at Austin, TX, USA), Steve Scott (Google Inc., CA,
USA), and Marina Vannucci (Rice University, TX, USA). The exciting keynote
speech on the foundations of Bayesian statistics was delivered by Alessandra
Guglielmi (Politecnico di Milano, Italy). Each standard session was chaired by a
senior discussant, who provided helpful feedback to the young speakers on their
current activity, encouraging them to pursue their research. Networking among the
young participants was supported by vivid and inspirational discussions.
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Three prizes were assigned: best methodological talk, best talk on applications,
and best poster.

We acknowledge all participants who made BAYSM 2016 an outstanding sci-
entific event and an enjoyable experience. We thank all of the speakers, young and
senior. We express our gratitude to the discussants (Daniela Cocchi, Emanuela
Dreassi, Brunero Liseo, Antonio Pievatolo, and Fabrizio Ruggeri) for their valuable
work. Special acknowledgments are also owed to Ilaria Bianchini (Politecnico di
Milano, Italy) and Michela Tizzani (Promoest S.r.l., Italy) for their support in
organizing the conference. Finally, we give credit to our sponsors for their out-
standing support: Google Inc., Comune di Firenze, International Society for
Bayesian Analysis (ISBA), and Società Italiana di Statistica (SIS).

Hosting this meeting was an exciting and rewarding experience for the orga-
nizers. We expect that future BAYSM conferences will continue to have the same
success as the first three editions, inspiring the new generations of Bayesian
statisticians. Stay tuned at www.baysm.org!

This volume includes contributions from younger Bayesian statisticians in which
theoretical aspects and application issues, often considered separately, are blended
together to successfully tackle complex problems. It is structured in two parts. The
first, Theory and Methods, is mainly devoted to mathematical statistics, model
building, and methodological works. The second, Applications and Case Studies,
deals with applications of complex methods to real-world problems and data.

Turin, Italy Raffaele Argiento
Milan, Italy Ettore Lanzarone
Milan, Italy Isadora Antoniano Villalobos
Florence, Italy Alessandra Mattei
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Sequential Monte Carlo Methods in Random
Intercept Models for Longitudinal Data

Danilo Alvares, Carmen Armero, Anabel Forte and Nicolas Chopin

Abstract Longitudinal modelling is common in the field of Biostatistical research.
In some studies, it becomes mandatory to update posterior distributions based on
new data in order to perform inferential process on-line. In such situations, the use
of posterior distribution as the prior distribution in the new application of the Bayes’
theorem is sensible. However, the analytic form of the posterior distribution is not
always available and we only have an approximated sample of it, thus making the
process “not-so-easy”. Equivalent inferences could be obtained through a Bayesian
inferential process based on the set that integrates the old and new data. Nevertheless,
this is not always a real alternative, because it may be computationally very costly
in terms of both time and resources. This work uses the dynamic characteristics of
sequential Monte Carlo methods for “static” setups in the framework of longitudi-
nal modelling scenarios. We used this methodology in real data through a random
intercept model.

Keywords Bayesian analysis · IBIS algorithm ·Marginal likelihood · Particle filter

1 Introduction

Observations of subjects that are measured repeatedly over time is a broad definition
for longitudinal data. The modelling for this correlated data structure had its starting
point through work of [10] and since then the statistical methods to this data type

D. Alvares (B) · C. Armero · A. Forte
Universitat de València - Calle Dr. Moliner 50, 46100 Burjassot, Spain
e-mail: daldasil@alumni.uv.es
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e-mail: anabel.forte@uv.es

N. Chopin
CREST-ENSAE and HEC Paris, 3, Avenue Pierre Larousse, 92245 Malakoff, France
e-mail: nicolas.chopin@ensae.fr

© Springer International Publishing AG 2017
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4 D. Alvares et al.

have been constantly growing. Furthermore, in many applications as well as in this
study, new data are routinely incorporated in the analysis, making it necessary to
update the inferential process for decision-making.

In this context, the Bayesian approach is natural and intuitive on the concept of
updating the previous information from the data. However, in the majority of cases
the posterior distribution has not analytic form and we only have an approximated
sample of it. The most common mechanism is to remake the inference but this
procedure may be computationally expensive.

An alternative approach based on simulation of posterior distributions is the
Sequential Monte Carlo (SMC) methods [5]. In addition, for the our particular case
of “static” models, we have the iterated batch importance sampling (IBIS) algorithm
[3]. Given the need to save computational time and resources, it is fundamental to
use a dynamic inferential methodology, in which we focus on SMCmethods through
the IBIS algorithm. As an illustration, we explore the longitudinal framework of data
on the growth of Sitka spruce trees through a random intercept model.

2 Bayesian Random Intercept Model

A particular case of linear mixed-effects models, and also our interest to study, is the
random intercept model, which allows each subject to deviate from the overall mean
response by a subject-specific term that applies equally over time [7]:

yi = xiβ + 1ni b0i + εi , (1)

where yi is the vector of observations associated to i th subject, i = 1, . . . , I , xi
known design matrix for the fixed-effects regression coefficients vector β, and 1ni is
the unit vector of length ni . We assume prior independence for β with βk ∼ N(0, ν2

k )

for k = 1, . . . , K .We consider that the vector of random effects b0 are independently
normally distributed with standard deviation σ0 and set an uniform prior distribution
U(0, u0) for this deviation. The error terms, εi j ’s, where j = 1, . . . , ni (number of
observations for the i th subject), are independent and identically normally distributed
with standard deviation σ ∼ U(0, u) and these errors are assumed independent of
the random-effect b0i , i.e., Cov(εi , 1ni b0i ) = 0 for i = 1, . . . , I . The values ν2

k for
k = 0, . . . , K , u0, and u are predefined constants and their values characterize the
level of information in the prior distributions involved.

3 Sequential Monte Carlo Methods

Sequential Monte Carlo (SMC), also known as particle filters, methods are a set
of simulation-based methods which provide a convenient and attractive approach to
computing posterior distributions [5]. SMC strategies have become quite popular due
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the limitations of the Markov chain Monte Carlo (MCMC) techniques in dynamic
settings, since the MCMC approach involves accessing the entire sequence of data
for each iteration and becomes computationally unusable for complex models and/or
massive data sets [2].

Generally, SMC methods are designed to update dynamic parameters, i.e., para-
meters that depend on the time somehow. Therefore, the application of the (default)
particle filter algorithm [1] in the model (1) needs to be adapted for the configuration
of “static” parameters. Based on resample-move particle filter [8] we have an update
procedure for “static” models, the Iterated Batch Importance Sampling (IBIS) algo-
rithm [3]. Even though this approach does not consider models with random effects,
the latent variable context provides a smart way to deal with them.

To show the operating of the IBIS algorithm in random effects models, we used
the model (1) to develop a toy example, since, in this case, the exact form of the
posterior distribution is known. Hereafter, we present the different stages of the IBIS
algorithm for our particular example

Step 1. Simulate θ (s), for s = 1, . . . , S, from the joint posterior distribution for
the common parameters and hyper-parameters in model (1), π(θ | y(1:n)),
basedon initial datay(1:n) = (y(1,1:n1), . . . , y(I,1:nI ))wherey(i,1:ni ) = (y(i,1),

. . . , y(i,ni ))
�.

Step 2. Reweighting: given qi new data for the i th subject y(i,ni+1:ni+qi ) compute
the importance weights

w(s) ← p
(
y(i,ni+1:ni+qi ) | θ (s), y(i,1:ni )

)

that comes from the marginal likelihood of the model (1).
Step 3. Resampling: resample

(
θ (s),w(s)

)
s=1,...,S ← (

θ̃ (s), 1
)
s=1,...,S

according to the multinomial selection scheme [9].
Step 4. Move: draw

θ (s)
m ∼ K

(
θ̃ (s), ·)

where K is a transition kernel with stationary distribution π(θ | y(1:n),

y(i,ni+1:ni+qi )) of the marginal model that comes from (1).
Step 5. Loop: ni ← ni + qi , [θ (s) ← θ (s)

m ]s=1,...,S , sample (b01, . . . , b0I )(s) for s =
1, . . . , S from their full conditional posterior distributions and if we have
new data then return to Step 2.

The strategy is to integrate out the random intercepts to return to the standard IBIS
algorithm. Thus we are able to update the population parameters and then the random
effects from their full conditional posterior distributions (Step 5).

In order to illustrate the algebraicmanipulation required, we consider themarginal
likelihood for model (1) with p covariates when integrating out the random intercept
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L(y(1:n) | θ) =
∫

L
(
y(1:n) | θ ,b0

)
π

(
b0 | σ 2

0

)
db0 =

∫
L

(
y(1:n) | θ ,b0

) I∏

i=1

π
(
b0i | σ 2

0

)
db0

=
I∏

i=1

(
1

2πσ 2

)ni /2
(

σ 2

σ 2 + niσ 2
0

)1/2

exp

⎧
⎪⎨

⎪⎩

1

2σ 2

⎡

⎢
⎣

σ 2
0

σ 2 + niσ 2
0

⎛

⎝
ni∑

j=1

ψi j

⎞

⎠

2

−
ni∑

j=1

ψ2
i j

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

(2)

where ψi j = y(i, j) − β0 − β1X1i j − β2X2i j − . . . − βp X pi j . Equation (2) is partially (only
for the subject that contain the new data) used to compute the importance weights
(Step 2). Its complete form is required in independent Metropolis–Hastings kernel
(Step 4), in which the proposed particle is generated independently from a Gaussian
instrumental distribution as suggested in [3].

4 Application

To exemplify the sequential approach in our longitudinal model, we used data from
a study of the effect of ozone pollution on the growth of Sitka spruce trees [4].
In particular, we considered 25 trees growing under normal conditions, and selected
calendar time in days, since 1 January 1988. Our response variable is the logarithm of
the product of tree height and diameter square (from now on log-size). Additionally,
each tree was measured 5 times (days: 152, 174, 201, 227, 258).

Figure1 shows the spaghetti plot of these data. Two features of the data are quickly
identified. Firstly, there is a clear quasi-linear relationship between the growth of the
trees and the time. The second pattern is the high degree of parallelism between the
growth of each tree. Consequently, model (1) seems a sensible model for our Sitka
data.

Fig. 1 Longitudinal measures of log-size for Sitka spruce trees grown in normal environments
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Fig. 2 Update of the posterior mean for the log-size of tree 23, after the inclusion of a fifth new
observation, through WinBUGS and IBIS algorithm

We estimated themodel and explored the behaviour of the dynamic update. Firstly,
we excluded the last measurement (day 258) of one of the trees (tree 23). Then, we
update the estimation through the incorporation of this ‘new’ data, but replacing its
actual value (log-size 4.541) by an ‘outlier’ (log-size 6) to identify the accuracy of
the IBIS algorithm in the presence of extreme values.

The performance of the IBIS algorithm was compared with the approximated
posterior distribution by MCMC methods [6] through the software WinBUGS [12].
In the IBIS setting, we used 10000 particles and 4 iterations for the independent
Metropolis–Hastings kernel. In WinBUGS, we ran one MCMC chain for 200000
iterations plus 20000 dedicated to the burn-in period. The sample was thinned by
only storing one of every 5 iterations in order to reduce autocorrelation in the saved
sample. Both configurations are minimal to achieve convergence and accuracy. This
process is sequentially presented in Fig. 2. Figure2(1) shows the posterior mean
of the log-size based on the data without information from day 258 through Win-
BUGS. Figure2(2) incorporates themeasurements corresponding to day 258. Finally,
Fig. 2(3) and (4) show the subsequent posterior means computed from WinBUGS
(integrates initial and new data into a single set and estimates the parameters again)
and IBIS, respectively.

Notice that the Fig. 2(3) and (4) are practically identical (except a minimal
difference after the third decimal of the estimated regression coefficients). This
resemblance meets all our expectations of the IBIS algorithm for the marginal model
combined with the computation of the random effects from their full conditional pos-
terior distributions. Another essential factor was the reduction in the computational
time, with an average saving of about 20%.
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5 Conclusions

We have implemented a toy application of the IBIS algorithm to illustrate its perfor-
mance in longitudinal scenarios with random intercepts. Results showed equivalence
between IBIS and WinBUGS re-estimation. Moreover, there was a saving of about
20% in computational timewhen using the SMC algorithm. In addition, the inclusion
of more than one observation is acceptable to the IBIS algorithm and its performance
is not affected. However, if the amount of new data is much larger than the quantity
initially available, then its performance can be slightly better or equivalent to the
MCMC approach.

The implementation of the IBIS algorithm is simple. The great difficulty is to
integrate out the random effects because in most cases the integral is intractable
(no closed form) and hence some method of numerical integration or simulation is
required [11].

Anyway, the success for integration procedure gives evidence that SMC methods
could be extended to more complex and flexible longitudinal models, such as the
joint models of longitudinal and survival data [13], maintaining a good performance
in processing time.

Acknowledgements Alvares is partially supported by the research grants Coordination for the
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On the Truncation Error of a Superposed
Gamma Process

Julyan Arbel and Igor Prünster

Abstract Completely random measures (CRMs) form a key ingredient of a wealth
of stochastic models, in particular in Bayesian Nonparametrics for defining prior
distributions. CRMs can be represented as infinite series of weighted random point
masses. A constructive representation due to Ferguson and Klass provides the jumps
of the series in decreasing order. This feature is of primary interest when it comes
to sampling since it minimizes the truncation error for a fixed truncation level of the
series. In this paper we focus on a general class of CRMs, namely the superposed
gamma process, which suitably transformed has already been successfully imple-
mented in Bayesian Nonparametrics, and quantify the quality of the approximation
in two ways. First, we derive a bound in probability for the truncation error. Second,
following [1], we study a moment-matching criterion which consists in evaluating a
measure of discrepancy between actual moments of the CRM and moments based
on the simulation output. To this end, we show that the moments of this class of
processes can be obtained analytically.

Keywords Bayesian Nonparametrics · Completely random measures · Ferguson
and Klass algorithm ·Moment-matching ·Normalized randommeasures · Posterior
sampling · Superposed gamma process

1 Introduction

Completely random measures (CRMs), also known as independent increment
processes, have blossomed in the last decades in modern stochastic modeling and
inference as a basic building block of countless popular models. A prominent usage
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of CRMs is within Bayesian nonparametric statistics (see [15, 18]). For instance, the
popular Dirichlet process [9] can be obtained as normalization or exponentiation of
suitable CRMs (see [10]). Survival analysis, [2, 17], random sparse networks, [6],
biology [20, 28], are only a few of the various modern applications tackled with
CRMs.

Implementation of CRM-based models usually requires to simulate the CRMs
trajectories. As infinite dimensional objects, they need to be truncated, leading to
an approximation error. The representation due to Ferguson and Klass [11] (see
also [30]) is arguably one of the most useful ones in that it displays the weights
in decreasing order. This implies that the approximation error is minimized over
the whole sample space for a given truncation level. This appealing feature was
exploited in many works, including [3, 4, 7, 8, 13, 22–26] to cite just a few in
Bayesian Nonparametrics. The quality of the approximation, hardly addressed by
those previous works, is the focus of this paper.

Many classical methods in statistics and econometrics use moments, such as,
for instance, the method of simulated moments [21] and the general method of
moments [12]. In this paper, we follow another research line and show howmoments
of the CRMs can be used in order to assess the quality of the approximation due
to the truncation [1]. It is based on the observation that moments of CRMs are
simple to compute, hence one can quantify the quality of the approximation by
evaluating a measure of discrepancy between the actual moments of the CRM at
issue and the moments computed based on the sampled realizations of the CRM.
The truncation level is then selected so that the measure of discrepancy does not
exceed a given threshold, say 5%. In Arbel and Prünster [1] the methodology is
illustrated on two classes of CRMs, namely the generalized gamma process and the
stable-beta process. In the present paper we focus on another broad class called the
superposed gammaprocess (see [19, 27]).More specifically, after a brief presentation
of CRMs and of the Ferguson and Klass algorithm in Sect. 2, we derive a bound in
probability on the truncation error in Sect. 3.1 and then show the applicability of the
moment-matching criterion by deriving analytically the moments of the superposed
gamma process in Sect. 3.2.

2 Sampling Completely Random Measures

2.1 Completely Random Measures

A CRM μ̃ on X is a random measure which spreads out mass independently in
the space. More precisely, the random variables μ̃(A1), . . . , μ̃(An) are mutually
independent for any disjoint sets A1, . . . , An .

Kingman [16] showed that the onlyway to spread outmass in a completely random
fashion (without deterministic components) is by randomly scattering point masses
in the space. In other words, CRMs select (almost surely) discrete measures and
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hence can be represented as
μ̃ =

∑

i≥1

JiδZi (1)

where the jumps Ji and locations Zi are random. Both jumps and locations are
controlled by the so-called Lévy intensity which characterizes the CRM. It is a
measure on R+ × X which can be written as ν(dv, dx) = ρ(dv)α(dx) for so-called
homogeneous CRM, which are considered here and correspond to the case of jumps
independent of the locations. The function ρ controls the intensity of the jumps. The
measure α, if the CRM is (almost surely) finite, which is assumed throughout, splits
up in α = aP0 where a > 0 is called the total mass parameter and the probability
distribution P0 tunes the locations.

Ever-popular CRMs include the generalized gamma process introduced by Brix
[5] and the stable-beta process, or three-parameter beta process, defined by Teh and
Gorur [29] as an extension of the beta process [14]. Here we consider another large
class of completely randommeasures called superposed gamma process, introduced
by Regazzini et al. [27]. It is identified by the jump intensity

ρ(dv) = 1 − e−ηv

1 − e−v

e−v

v
dv, η > 0. (2)

As noted by Lijoi et al. [19], one usually restricts attention to the case of positive inte-
ger η. Under this assumption, the superposed gamma processtakes the form of a gen-
uine superposition of independent gamma processes with increasing integer-valued
scale parameter, with jump intensity ρ(dv) = 1

v

(
e−v + e−2v + . . . + e−ηv

)
dv/v.

The specification of integer values for η has also the advantage to lead to analyt-
ical computation of the moments. Note that the special case η = 1 reduces to the
gamma process, which gives rise to the Dirichlet process by normalization. Alterna-
tively, the normalization of the superposed gamma processfor unspecified η provides
the so-called generalized Dirichlet process [19].

2.2 Ferguson and Klass Algorithm

Ferguson and Klass [11] devise a constructive representation of a CRM which
produces the jumps in decreasing order. This corresponds to the (almost surely
unique) ordering of the sum elements in (1) where J1 > J2 > · · · . Indeed, the
jumps are obtained as ξi = N (Ji ), where N (v) = ν([v,∞),X) is a decreasing func-
tion, and ξ1, ξ2, . . . are jump times of a standard Poisson process (PP) of unit rate:

ξ1, ξ2 − ξ1, . . .
i.i.d.∼ Exp(1). Figure1 illustrates the function N ( · ) which takes the

following form in the superposed gamma process case
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5

Fig. 1 Left illustration of Ferguson and Klass representation through the inversion of the jumps
times ξ1, . . . , ξ5 for a homogeneous Poisson process on R+ to the jumps J1, . . . , J5 of a CRM.
Right tail of the Lévy measure N ( · ) of the superposed gamma processwith η ∈ {1, . . . , 10}, η = 1
for the lowest curve, η = 10 for the highest curve

N (v) = aEη(v), where Eη(v) =
η∑

k=1

E1(kv) and E1(v) =
∫ ∞

v

u−1e−udu, (3)

and where the function E1 denotes the exponential integral function.
Since it is impossible to sample an infinite number of jumps, approximate sim-

ulation of μ̃ is in order. This becomes a question of determining the number M of
jumps to sample leading to the truncation μ̃M and truncation error TM as follow

μ̃M =
M∑

i=1

JiδZi , TM =
∞∑

i=M+1

Ji . (4)

The Ferguson andKlass representation has the key advantage of generating the jumps
in decreasing order implicitly minimizing such an approximation error. However, a
precise evaluation of TM , for example in expectation, is a daunting task due to the non
independence of the jumps in the Ferguson and Klass representation. The algorithm
is summarized in Algorithm1.

Then, the natural path to determining the truncation level M would be the evalu-
ation of the Ferguson and Klass tail sum

∞∑

i=M+1

N−1(ξi ). (5)

Brix ([5], TheoremA.1) provided an upper bound in probablity for (5) in the gener-
alized gamma case. In Proposition1 of Sect. 3 we derive also an upper bound for the
tail sum of the superposed gamma process. However, both bounds are far from sharp
and therefore of little practical use as highlighted in Sect. 3. This motivates the idea
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of looking for a different route and our proposal consists in the moment-matching
technique detailed in the next section.

From Fig. 1 it is apparent that increasing η leads to larger jumps which in turn
leads to the need of a higher truncation level in order to match a given precision level.
This is not surprising given the CRM at hand can be thought of as a superposition of
η gamma CMRs. Such an intuition is made precise in the next section.

Algorithm 1 Ferguson & Klass algorithm
1: sample ξi ∼ PP for i = 1, . . . , M
2: define Ji = N−1(ξi ) for i = 1, . . . , M
3: sample Zi ∼ P0 for i = 1, . . . , M
4: approximate μ̃ by

∑M
i=1 Ji δZi

3 Truncation Error of the Superposed Gamma Process

3.1 Bound in Probability

We provide an evaluation in probability of the truncation error TM in (4).

Proposition 1 Let (ξ j ) j≥1 be the jump times for a homogeneous Poisson process on
R

+ with unit intensity. Then for any ε ∈ (0, 1), the tail sum of the superposed gamma
process (4) satisfies

P

(
TM ≤ tεM

)
≥ 1 − ε, for tεM = C

(η!)1/η e
1− M

C , where C = 2eaη

ε
.

Proof Theproof follows along the same lines as the proof ofTheoremA.1. byBrix [5]
for the generalized gammaprocess and Proposition4 byArbel and Prünster [1] for the
stable-beta process. Let q j denote the ε2M− j quantile, for j = M + 1, M + 2, . . .,
of a gamma distribution with mean and variance equal to j . Then

P

( ∞∑

j=M+1

N−1(ξ j ) ≤
∞∑

j=M+1

N−1(q j )

)
≥ 1 − ε.

Denote t̃εM = ∑∞
j=M+1 N

−1(q j ) = ∑∞
j=M+1 E

−1
η (q j/a), and let us upper bound

E−1
η . By using E1(u) ≤ 1 − log(u), one gets

Eη(u) =
η∑

l=1

E1(lu) ≤ η −
η∑

l=1

log(lu) = η − log
(
η!uη

)
,
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which can be inverted to obtain

E−1
η (x) ≤ 1

(η!)1/η e
1− x

η .

Additionally, since the quantiles satisfy q j ≥ ε
2e j , we can conclude that

t̃εM ≤ 1

(η!)1/η
∞∑

j=M+1

e1−
q j
aη ≤ 1

(η!)1/η
∞∑

j=M+1

e1−
ε j

2eaη ≤ 2eaη

ε(η!)1/η e
1− εM

2eaη . ��

Remark It is interesting to note that the bound tεM for the superposed gammaprocess is
equal to its counterpart for the beta processwith concentration parameter c set to η, all
else things being equal (total mass parameter a and threshold ε). See Proposition4
in [1]. This finding provides a nice connection between both processes otherwise
seemingly unrelated.

The bound tεM obtained in Proposition1 is exponentially decreasingwithM , which
is reminiscent of the results obtained by Brix [5] and Arbel and Prünster [1], respec-
tively, for the generalized gamma process and the stable-beta process with no stable
component. As already pointed out by these authors, the bound tεM is very conserva-
tive due to a crude lower bound on the quantiles q j (notation of the proof). The left
panel of Fig. 2 displays this bound tεM , while the right panel illustrates the truncation
level M (in log-scale) required in order to guarantee with 95% probability an upper
bound on TM of tmax ∈ {1, 10, 100}, for varying values of η. Inspection of the plots
demonstrates the rapid increase with η of the number of jumps needed in order to
assess a given bound in probability.

As suggested by a Referee, a possible strategy for improving the result in Propo-
sition1 is to rely on concentration of measure techniques. This will be the object of
future investigations. A numerical strategy to improve the approximation consists in

M

t Mε

0 500 1000
0

3000
η = 10
η = 5
η = 2
η = 1

η

M

0 10 20
102

103

104

tmax = 1
tmax = 10
tmax = 100

Fig. 2 Left variation of M 	→ tεM for η ∈ {1, 2, 5, 10}. Right variation of the threshold function
η 	→ M needed to match an error bound of tmax ∈ {1, 10, 100} with η ∈ {1, . . . , 20}, log scale on
y-axis
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directly calculating the quantiles q j (instead of resorting to the lower bound), thus
loosing the closed form expression of the bound.

3.2 Moment-Matching Criterion

We first concisely recall the moment-matching methodology introduced by Arbel
and Prünster [1] and then tailor it to the superposed gamma process. We assess the
quality of approximation of the Ferguson &Klass algorithm by comparing the actual
distribution of the random total mass μ̃(X) = ∑∞

i=1 Ji with its empirical distribution
(obtained by the sampled trajectories). Motivated by the fact that the first moments
carry much information about a distribution, the comparison is made by comparing
theoretical and empirical moments of μ̃(X). As measure of discrepancy, we use the
mean squared error between theoretical and empirical moments. We refer to [1] for
illustrations of this moment-matching criterion on the generalized gamma process
and the stable-beta process.

In order to apply this methodology also to the superposed gamma process, we
need to derive its theoretical moments. The n-th (raw) moment of the random total
mass is defined as

mn = E
[
μ̃n(X)

]
.

For general homogeneous CRMs, it takes on the form (see, e.g., Proposition1 in [1])

mn =
∑

(∗)

( n
k1 ···kn)

n∏

i=1

(
κi/ i !

)ki
, (6)

where the sum (∗) is over all n-tuples of nonnegative integers (k1, . . . , kn) satisfying
the constraint k1 + 2k2 + · · · + nkn = n and where κi is the i th cumulant defined by

κi = a
∫ ∞

0
viρ(dv).

In the case of the superposed gamma process, simple algebra leads to the following
expression for the cumulants

κi = a(i − 1)!ζη(i) (7)

which are in terms of the incomplete Euler–Riemann zeta function ζη(i) = ∑η

l=1
1
li .

Hence the moment-matching methodology introduced by Arbel and Prünster [1] can
be readily applied by resorting (6) and (7).
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On the Study of Two Models
for Integer-Valued High-Frequency Data

Andrea Cremaschi and Jim E. Griffin

Abstract Financial prices are usually modelled as continuous, often involving
geometric Brownian motion with drift, leverage and possibly jump components.
An alternative modelling approach allows financial observations to take integer val-
ues that are multiples of a fixed quantity, the ticksize - the monetary value associated
with a single change during the price evolution. In the case of high-frequency data,
the sample exhibits diverse trading operations in a few seconds. In this context, the
observables are assumed to be conditionally independent and identically distributed
from either of two flexible likelihoods: the Skellam distribution - defined as the dif-
ference between two independent Poisson distributions - or a mixture of Geometric
distributions. Posterior inference is obtained via adaptiveGibbs sampling algorithms.
Comparisons of the models applied to high-frequency financial data is provided.

Keywords Time series · High-frequency data · Integer-valued random variables ·
Bayesian Econometrics · Adaptive MCMC

1 Introduction

The last decades of financial activities have seen rapid technological change in the
execution of financial transactions. This has allowed the recent introduction of high-
frequency trading (HFT), an automated way of performing transactions based on the
use of algorithms interacting with electronic price books, called limit order books
(see [5] for an overview of market dynamics and existing statistical literature). The
electronic system generating the financial data is characterised by a very high trans-
action speed, conveying a large volume of data, making high-frequency trading an
increasingly promising field for statistical analysis. Indeed, being able to observe the
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price processes so often in time could providemore information about their dynamics.
From a structural point of view, bid and ask prices are characterised by being integer
multiples of a fixed quantity, the ticksize, the minimum monetary value tradable in
the market. This discrete interpretation of the price processes represents one of the
peculiarity of high-frequency data modelling (we refer to [7] for a statistical analysis
based on ticksize). In particular, the focus of this work will be on the NewYork Stock
Exchange (NYSE), where the ticksize is of one dollar cent (0.01). Electronic markets
such as the NYSE are characterised by their high-depths, meaning that the different
bid/ask prices present in the limit order book take values in a wide range (i.e., the
depth of amarket is the number of different prices available for transaction), allowing
for market and limit orders to be fulfilled very quickly and hence increase the liquid-
ity while reducing the bid-ask spread (usually equal to a single tick). This feature of
the market affects the dynamic of the price processes, influencing the relationships
between returns at different time points. This paper is structured as follows: the next
Section will introduce the object of the study, the integer-valued returns, and two
conditional distributions used to model them. Section3 will introduce the algorithms
used to perform posterior inference, while an application to real stock market data is
presented in Sect. 4. Section5 concludes.

2 Distributions for Tick Data

The nature of the prices makes them interpretable as positive integers, indicating
the multiple of the ticksize at which a specific transaction takes place. Let pt be the
price process at time t > 0, and Pt the discretised version of it, simply computed
as Pt = pt

ticksize . It is assumed that T > 0 transactions are observed in a finite time
interval, hence the observed prices are P1, . . . ,PT , taking values over the set of
positive integers N. Despite the notation, time dependency will not be assumed
in the analysis, in order to present a preliminary study of the alternative discrete
transformation of the data, together with an outline of the pros and cons related
with the different modelling choices. It is of interest to study the behaviour of the
price process, with particular attention to its fluctuations in terms of variability. In
order to do so, in Financial Econometrics the concept of a return is introduced: a
transformation of the raw price data that is able to provide information about the
variability of the data generating process underlying the observations. When the data
are assumed to be continuous, the standard definition of return is the log-ratio of
two consecutively observed prices. Clearly, this is not useful in the context of this
work, due to the discretisation adopted at the basis of the study. Hence, following [3],
the ticksize returns are defined as the difference of two consecutive discrete valued
prices, such that for each t > 0, Yt := Pt − Pt−1 ∈ Z. While, in the continuous case,
the returns can be easily modelled by using a Normal distribution, this alternative
definition of returns requires a suitable probability distribution defined on Z in order
to build a valid statistical model. In this work, two such distributions are specified,
namely the Skellam distribution and the Folded Geometric distribution, and their
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inference properties are compared. The first distribution is defined as the difference of
two independent Poisson distributed random variables, which has been used, among
others, in the analysis of intra-day high-frequency trading data in the work of [4, 10].
A feature of their model is the presence of a zero-inflation parameter to accommodate
a mode at zero. This choice is motivated by the high-depth of the electronic market.
In this work, a similar issue is tackled by the introduction of the Folded Geometric
distribution, defined as a mixture of two Geometric distributions on the positive and
negative integers,with two additional parameters to represent centrality andmodality.
In the rest of this section, the two distributions are introduced, as well as the two
models arising from these choices.

2.1 Skellam Distribution

With reference to [3], the integer returns aremodelled by using the difference between
two positive quantities representing the positive and the negative jumps governing
the price evolution, such that Yt = L+

t − L−
t , with Yt ∈ Z, for t = 1, . . . ,T . Notice

that here the jump processes L+
t and L−

t are used to support the modelling choice that
will follow, and have a different meaning from the integer-valued prices Pt and Pt−1

defined above. The two independent distributions can be interpreted as responsible
for the evolution of the returns, by making it move up (L+

t ) or down (L−
t ). When

{L+
t }Tt=1 and {L−

t }Tt=1 are two independent Poisson distributions of intensities φ+ and
φ−, then Yt is Skellam distributed, with probability mass function as follows:

P(Yt = k) = e−t(φ++φ−)

(
φ+

φ−

)k/2

I|k|(2t
√

φ+φ−),

Ik(x) =
(
1

2
x

)k ∞∑
n=0

( 14x
2)n

n!(n + k)! ,

where Ik(x) is the modified Bessel function of the first kind of positive arguments x
and k (see [1]). Figure1a presents the p.m.f.’s of the Skellam distribution for different
combinations of the intensity parameters. In this work, we consider an alternative
parameterisation of the Skellam distribution in terms of the variance and skewness
of the distribution, such as:

φ+ = 1+a
2 eh

φ− = 1−a
2 eh

→ a = φ+−φ−
φ++φ− = E(L)

Var(L)

h = log(φ+ + φ−) = log(Var(L))

Notice that the newly introduced parameters can be interpreted using the moments
of the Skellam distribution. In particular, the real-valued parameter h represents the
log-volatility of the distribution, while a ∈ (−1, 1) can be seen as a scaled skew-
ness parameter, since when Y ∼ Sk(φ+, φ−), then Skew(Y) = φ+−φ−

(φ++φ−)3/2
= e−h/2a.
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A computational issue with the Skellam model is the dependence on the modified
Bessel function of the first kind, Ik (x). The computation of this hypergeometric series
greatly affects the accuracy of the computed probabilities hence influencing the infer-
ence. This is usually the case for large values of (k, x), such as when a rapid change
in price is observed, i.e. k = |yt|, or when the intensity parameters are such that
x = √

2ψ+ψ− takes large values. It is worth noting that, in the latter case, large val-
ues of x correspond to large values of the variance of the returns, but could as well be
associated to small values of the conditional mean. In order to avoid this problematic
aspect, a latent variable is introduced in the model to represent the negative jumps
in the evolution of the returns, {L−

t }Tt=1. The resulting likelihood for the returns is
therefore a shifted Poisson, shifted by −L−

t units. In a Gibbs sampler targeting the
posterior distribution, this yields a much easier expressions for the full condition-
als of the parameters, and hence eases the computation. The final Skellam model
analysed in this work is the following:

Yt|L−
t , h, a

ind∼ ShPoi

(
−L−

t ,
1 + a

2
eh

)
, h ∼ N(μ,ψ),

L−
1 , . . . ,L−

T |h, a iid∼ Poi

(
1 − a

2
eh

)
, μ ∼ N(0, 1),

a + 1

2
∼ Beta(0.5, 0.5), ψ ∼ inv − gamma(3, 2),

where X ∼ ShPois(s, η) is distributed according to a shifted Poisson with shifting
parameter s and intensity η, if (X − s) ∼ Poi(η). Moreover, N(m, s2) indicates the
normal distribution with mean m and variance s2, and inv − gamma(a, b) indicates
the inverse-Gamma distribution with mean b

a−1 and mode b−1
a+b−2 . Notice how the

parameter a is modelled as a linear transformation of the Beta distribution Beta(a, b)
with mean a

a+b and mode a−1
a+b−2 , as done in [9].

2.2 Folded Geometric Distribution

As mentioned before, it is useful to avoid the computation of the Bessel function
k(x). An alternative modelling approach defines a different distribution to model
the returns. As mentioned above, the market considered in this work is a one-tick
high-depth market (such as the New York Stock Exchange market), meaning that
the bid-ask spread is usually equal to one tick, producing transaction returns that
fluctuate very little, and that present a lot of zeros. In order to capture this behaviour,
a probability distribution F is introduced satisfying the following requirements:

(a) it has support on Z,
(b) it allows the presence of a mode at zero,
(c) it does not include convolution terms (such as the Bessel function Ik(x)),
(d) it is flexible enough to represent the evolution of ticksize normalised returns.
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To start, define the discrete random variables X+ and X− with support on N \ 0 and
Z \ N, distributed according to F+ and F−, respectively. Hence, assume that the two
distributions F+ and F− admit probability measures indicated with P

+ and P
−. Let

X be a discrete random variable defined on Z with the following p.m.f.:

P(X = k) = 1

c

⎧⎨
⎩
P

−(X− = k + l) k < l
a k = l

P
+(X+ = k − l) k > l

where a is proportional to the probability of taking the value l, representing the centre
of the distribution. The term c is the normalising constant of the distribution, and is
equal to c = 2 + a − P

+(X+ = l) − P
−(X− = l). Themixture of these three random

variables covers the whole sample space Z, satisfying (a), and can be constructed
such that there is a mode at l = 0, satisfying (b). Condition (c) and (d) are also
satisfied, since this is a mixture density without any convolution, and the two halves
can be chosen arbitrarily, providing suitable flexibility for different applications. The
resulting distribution is hereby called a Folded distribution. In this work, a mixture
of two Geometric distributions with success probabilities denoted as p+ and p− is
considered, together with a mode at l = 0, and it will be called Folded Geometric
distribution, indicated as FG(p+, p−, l, a). The first three moments of the random
variable X, when l = 0, are:

E(X) = E(X+) − E(X−)

c
,

E(X2) = E(X+2) + E(X−2)

c
,

E(X3) = E(X+3) − E(X−3)

c
.

Consider using this p.m.f. to describe the distribution of the returns. For t = 1, . . . ,T :

P(Yt = k) = 1

c

⎧⎨
⎩
p−(1 − p−)l−k k < l

a k = l
p+(1 − p+)k−l k > l

notice that a ≥ 1
4 guarantees the unimodality of the distribution at l = 0, since

p(1 − p) ≤ 1
4 for the Geometric distribution, and that the normalising constant is

c = 2 + a − p− − p+. Finally, notice how the choice of the two success probabil-
ities is completely arbitrary, and no restriction is imposed, apart from the obvious
p+, p− ∈ (0, 1). Figure1b and c show the different shapes of the Folded Geometric
distribution, when the Symmetric (p+ = p−) or Asymmetric (p+ 	= p−) setting is
chosen. Finally, the Folded Geometric model can be outlined as:
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(a) Skellam (b) FG(p,1− p,0,1) (c) FG(p, p/2.5,0,3.5)

Fig. 1 Different p.m.f.’s used to describe the conditional distribution of the integer-valued returns

y1, . . . , yT |h+, h−, a
iid∼ FG

(
eh

+

1+eh+
, eh

−

1+eh−
, l = 0, a

)
,(

a − 1
4

) ∼ Exp( 34 ),

h+ ∼ N(μ+, ψ+), h− ∼ N(μ−, ψ−),

μ+ ∼ N(0, 1), μ− ∼ N(0, 1),
ψ+ ∼ inv − gamma(3, 2), ψ− ∼ inv − gamma(3, 2).

Notice how the centrality parameter a is set to be positive, and greater than the
value 1

4 , in order to guarantee the unimodality of the conditional distribution of the
observations. Prior specification is analogous to the one used for the Skellam model.

3 Algorithms

Posterior computations for the specified models are obtained via the implementation
of adaptive Gibbs sampler algorithms, outlined in this section. The adaptive part of
the algorithm scheme is an implementation of the adaptive random walk Metropolis
algorithm described in [2]. In their work, the authors present an innovative sam-
pling scheme for the random walk Metropolis-Hastings, where the proposal kernel
is allowed to depend on the history of the process, i.e. to depend from the previ-
ously sampled values of the parameters. An extensive review of various adaptive
algorithms can be found in [8]. To give an illustration of such a procedure, the AMH
algorithm is reported in the frame below, outlining the sequence of steps necessary
to update a non-conjugate parameter q of a given model.

Adaptive random walk Metropolis-Hastings algorithm

Choose a burn-in value g0, and initialise θ at iteration g = 1;
run g0 > 0 iterations with a fixed value of the proposal variance s2θ ;
for g > g0, perform the following log-scale update: log(s2θ
(g + 1)) = log(s2θ (g)) + (g−0.55(αθ − τ)).
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In the algorithm, αθ is the acceptance rate of the Metropolis-Hastings step, and τ

is a reference optimal acceptance rate fixed equal to the value 0.234, following the
work of [11, 12]. The parameters for which it is possible to adopt theAMH algorithm
are the non-conjugate ones, that is a and h in this work (for all the models).

4 Application

In this Section, we present an application to a subset of the Disney transaction data,
originally sampled every minute during the years 2004–2015 from the New York
Stock Exchange market, and here restricted to the months of September and thinned
each 10min. The reduction and the thinning are adopted in order to reduce the
computational burden. Figure2a shows thewhole dataset for theDisney stock (2004–
2015), while Fig. 2b shows the year 2008 only, from which the month of September
(Fig. 2) is extracted for the analysis.

Gibbs sampler algorithms are run for 525.000 iterations, of which 500.000 con-
stitute the burn-in period, and 5000 are subsequently saved every fifth iteration.The

(a) from 2004 to 2015 (b) 2008 (c)

Fig. 2 Disney HFT raw data

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3 Traceplots of the posterior MCMC chains for some parameters of the models described.
a–d Skellam model f–i FG-Symmetric model e and j Skewness of Skellam and FG-Asymmetric
model, respectively
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Table 1 Acceptance rates and predictive indices log-BF and LPML

Acceptance rates
������log-BF

LPML
Skellam FG - Symm FG - Asymm

a 0.22602 Skellam �
�

−170.323 −157.1342

h 0.23423

a 0.23407 FG - Symm 2.9389 · 103 �
�

13.1887

h 0.2352

a 0.23359 FG - Asymm 2.9213 · 103 −17.6052 �
�

h+ 0.23356

h− 0.2341

(a) Predictive distribution under different models (b) CPO under different models

Fig. 4 Predictive comparisons

resulting traceplots with histograms for the Skellam and the Folded Geometric Sym-
metric models are presented in Fig. 3. Furthermore, a summary of the average accep-
tance rates is provided in Table1 (first column). From inspection of the traceplots, it
can be argued that the posterior chains have converged for all the parameters, except
for the parameter h in the Skellam model, clearly affected by the introduction of the
latent variables L−

1 , . . . ,L−
T (the Asymmetric case is not reported here for unavail-

ability of space, but leads to the same conclusions as the Symmetric case), while the
values of the acceptance rates are all very close to the gold standard value 0.234,
suggesting that the adaptive algorithms have reached stability. Moreover, density
estimation is presented in Fig. 4a, where the predictive distributions for the three
different models are displayed. A clear difference in the tails of the distributions
can be observed. In particular, the Skellam distribution seems to allocate more mass
away from zero, possibly because of the aggregation effect induced by thinning the
observations, and the ability of the Skellam distribution to approximate the Normal
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distributionwhen the intensity parameters are equal (see [3] for an analogous result on
the Skellam process). Not surprisingly, the FoldedGeometric models are instead able
to capture the zero-inflated aspect of the distribution of the returns much better than
the Skellam model does. Further analysis considered the choice of the most suitable
model among the suggested ones, evaluating the Log Pseudo-Marginal Likelihood
(LPML), as defined by [6] in terms of the Conditional Predictive Ordinate:

(CPOj
t)

−1 = 1

G

G∑
g=1

1

f j(yt|θ j(g))

LPMLj =
T∑
t=1

log(CPOj
t),

where G = 5000 is the number of iterations saved, f j(yi|θ j(g)) is the likelihood
function for the j-th model, and θ j(g) is the g-th MCMC sample of the parameter
vector for the j-th model. The higher the values of the LPML, the better the fitting
of the data to the j-th model. As it can be seen from Fig. 4b, the Skellam model has
higher CPO values for some of the observations, while the two Folded Geometric
models look more stable, and in agreement with each other. A measure indicating
whether a model is suitable to describe the data at hand is indeed the log-ratio of
LPMLs. These values are reported in the right hand side of Table1, together with
the estimates of the log-Bayes Factors for each pair of models. From such values, it
appears that the Folded Geometric models are to be preferred to the Skellam model,
probably as a consequence of introducing the latent variables L−

1 , . . . ,L−
T . Between

the two Folded Geometric models, it seems like the Symmetric one is performing
better than the Asymmetric one, suggesting little evidence of asymmetry in the data,
as it is also shown by the traceplots of the skewness parameters for the Skellam and
Folded Geometric Asymmetric models, in Fig. 3e and j.

5 Discussion

In this work, two different models for the statistical analysis of discretised high-
frequency data are presented. The conditional distribution of the observables in the
two scenarios is set to be either the Skellam distribution or the Folded Geometric
distribution, the latter being in turn distinguishable between its Symmetric andAsym-
metric case. An adaptiveGibbs sampling algorithm is described that is able to provide
goodmixing properties for the posterior chains of the parameters of the differentmod-
els.Model comparison revealed some discrepancies between the performances of the
different models. In particular, the predictive distribution of YT+1|Y1:T seems to be
quite different for the Skellam and the Folded Geometric models, probably due to
the heavier-tailed Geometric mixture distribution, that is capable of capturing more
extreme behaviours and outliers in the returns, while the predictive distribution for
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the Skellam model is closer to a Normal distribution centered at zero. As expected,
the Folded Geometric distribution is able to capture the zero-inflated aspect of the
returns, differently from the Skellam one. Furthermore, some predictive quantities
such as log-LPML and log-Bayes Factor are compared, supporting the idea that the
Folded Geometric model might be a better choice for the analysis of high-frequency
data when no time dependency is included in the parameter space, this point being
crucial in interpreting the results obtained so far. The results provided by the Skel-
lam model can be explained by recalling that the Skellam distribution can be seen
as a discretised version of the Normal distribution. On the contrary, in the Folded
Geometric case, there is space for detection of extremal behaviours. To conclude, the
analysis presented in this work has shown how, under suitable algorithmic conditions
and standard prior elicitation choices, the assumption of independent and identically
distributed data is accommodated in different ways by different model choices. In
order to deepen the study of this matter, it is our intention to study the property of
models where time dependence is included at parameter level, as well as in the like-
lihood term, via the introduction of a stochastic volatility process. In this case, the
two models might provide more consistent results, not so distant from one another.
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Identification and Estimation of Principal
Causal Effects in Randomized Experiments
with Treatment Switching

Emanuele Gramuglia

Abstract In randomized clinical trials designed to evaluate the effect of a treatment
on patients with advanced disease stages, treatment switching is often allowed for
ethical reasons. Because the switching is a prognosis-related choice, identification
and estimationof the effect of the actual receipt of the treatment becomesproblematic.
Existing methods in the literature try to reconstruct the ideal situation that would be
observed if the switchers had not switched. Rather than focusing on reconstructing
the a-priori counterfactual outcome for the switchers, had they not switched, we
propose to identify and estimate effects for (latent) subgroups of units according to
their switching behaviour. The reference framework of the proposed method is the
potential outcomeapproach. In order to estimate causal effects for sub- groups of units
not affected by treatment, we rely on the principal stratification approach (Frangakis
and Rubin in Biometrics 58(1): 21–29 2002) [1]. To illustrate the proposed method
and evaluate the maintained assumptions, we analyse a dataset from a randomized
clinical trial on patients with asymptomatic HIV infection assigned to immediate (the
active treatment) or deferred (the control treatment) Zidovudine (ZDV). The results,
obtained through a full-Bayesian estimation approach, are promising and emphasize
the high heterogeneity of the effects for different latent subgroups defined according
to the switching behaviour.

Keywords Bayesian causal inference · Rubin causal model · Treatment switching

1 Introduction

Randomized clinical trials are the most widely used designs to assess the effect
of a new treatment versus placebo or standard treatment. In studies focusing on
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survival outcomes for patients suffering from Acquired Immune Deficiency Syn-
drome (AIDS)-related illnesses and particularly painful cancers in advanced stages,
patients are often allowed to switch from their allocated arm for ethical reasons. This
situation can be in general viewed as a non-adherence to the protocol. Often switch-
ing is a prognosis-related choice; for instance in some patients, during the follow-up
period, the assigned treatment causes unwanted side effects preventing the contin-
uation of the study or, for weaker units, a sudden worsening of the disease forces
physicians to allow the switch. An Intention-To-Treat analysis, comparing groups
formed by randomization regardless of the treatment actually received, is often used;
however, it provides valid causal estimates of the effect of assignment, but it does not
give information about the effect of the actual receipt of the treatment. Other existing
methods in the literature aim at reconstructing the outcome a unit would have had
if he/she had not switched. The principal drawback of these methods is, however, to
assume that there is no relation between patient’s prognosis and switching behaviour.
We instead provide estimates of the effect of the actual receipt of the new treatment
versus the actual receipt of the standard treatment for (latent) subgroups of units,
defined according to their switching behaviours.

2 Principal Stratification Approach to Treatment Switching

We use the potential outcome paradigm [2], which associates each unit-treatment
pair with a potential outcome, defining the causal effects as the comparisons between
potential outcomes. Consider for example a clinical trial, involving N units indexed
by i, designed to test the effect of a new drug (the active treatment) with respect
to an old one (the control treatment). Let Yi (0) and Yi (1) denote, respectively, the
outcome under the control treatment and the outcome under the active treatment; the
treatment level indicator we use is Z = {0, 1}. The unit-level causal effect is defined
as a comparison between Yi (1) and Yi (0). The outcomes are referred to as potential,
because only the one corresponding to the treatment actually taken will be realized
and possible observed.

In order to identify subgroups of units not affected by the treatment, we rely on
the principal stratification approach [1]. This approach consists of partitioning the
units according to the potential values of a post-treatment intermediate variable, S,
under standard and active treatment

{i : Si (0) = s0, Si (1) = s1}.

Hence, the couple of potential outcomes for S defines strata. Principal causal effects
(PCEs), that is, effects defined on the common set of units with the same joint poten-
tial values of the intermediate variable are always causal.
We consider survival as the outcome of primary interest and the post-treatment vari-
able S represents the switching behaviour. Specifically, we focus on situations where
it is allowed to switch from the control to the active treatment only; thus, the strata
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will be functions only of the potential outcome of the switching time under the control
treatment.

3 Identification Assumptions

Although survival and switching time are continuous variables, to ease explanation,
both of them are transformed into categorical variables having 3 levels according
to the interval on which the principal event (e.g. disease, death, etc.) for Y (0) and
Y (1), and the switching for S(0) happens. Assuming all units enter the study at the
same time and the observation period is the same for all patients, denoted by Δ, the
discretization consists of generating the following variables

Y d
i (z) =

⎧
⎪⎨

⎪⎩

1 if 0 ≤ Yi (z) < a

2 if a ≤ Yi (z) < Δ

3 if Yi (z) ≥ Δ

Sdi (0) =

⎧
⎪⎨

⎪⎩

1 if 0 ≤ Si (0) < a

2 if a ≤ Si (0) < Δ

3 if Si (0) ≥ Δ

where a � Δ.
Each unit can possibly be a switcher at time 1 (Sdi (0) = 1), a switcher at time 2

(Sdi (0) = 2) or a non switcher (Sdi (0) = 3).
Based on this setting, the focus is on the causal effect of the new treatment on the

survival beyond the end of study

τ 3
s =

∑

i∈Sdi (0)=s

I (Y d
i (1) = 3) − I (Y d

i (0) = 3)

Ns

or after the time point a, i.e. for a = 2 we have

τ 2s =

∑

i∈Sdi (0)=s

I (Yd
i (1) = 3) − I (Yd

i (0) = 3)

Ns
+

∑

i∈Sdi (0)=s

I (Yd
i (1) = 2) − I (Yd

i (0) = 2)

Ns

for each type s of switcher.
Although the effects computed in each principal stratum have a causal meaning

our interest is mainly for the principal stratum of non switchers, because they are
patients complying for all the study period with the initial protocol.

However, due to the latency of the intermediary variable Sd(0), without further
assumptions it is not possible to identify the distribution of potential outcomes within
principal strata. The latency is partial for the units assigned the control treatment and
total for the units assigned the active treatment. Consider, for example, a patient
randomized the control treatment who died at time 1 and had not switched; his/her
switching time could have been at time 2 or he/she could have been a non switcher.
For the units randomized to take the active treatment, wewill never be able to observe
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their switching behaviour being them randomized to take the control, resulting on a
total latency of Sd(0).

To overcome the identifiability problem for the control group we stated the fol-
lowing assumption

Patients who die during the first or the second time interval and have not switched,
are considered potential switchers in the next intervals.

This assumption excludes the possibility for patients dying without switching, to
switch in the same interval allowing the total identifiability of the switching behav-
iour. However, it cannot be checked from the data but relies on knowledges about
the behaviour of the units and the length of the intervals.

Regarding the units belonging to the active treatment group we make an assump-
tion about the probabilistic dependency structure of the potential outcome Y d(1) and
some selected pre-treatment covariates.

Recent interesting results have been developed (see Stanghellini et al. [4]) about
identifying, under suitable conditional independence restrictions, the joint distribu-
tion of k + 1 random variables, one of which is hidden. These results are achieved
by exploiting the dependence structure among the variables taken into account. A
helpful representation of the association structure of the variables involved can be
obtained by means of concentration graphs, undirected graphs where nodes repre-
sents random variables and the presence or absence of an arch represents conditional
association o independence of two variables, given all the others in the graph. As
outlined in Mealli et al. [3], we exploit these result in our causal framework by spec-
ifying the joint distribution of the potential outcome Y d(1), the (latent) switching
time under control treatment Sd(0) and a set of binary baseline covariates.

4 Partially Simulated Case Study

To illustrate the proposed method and evaluating the plausibility of the assumptions
stated, we carry out an analysis based on a partially simulated dataset on a group of
units with asymptomatic HIV infection randomized to immediate (the active treat-
ment) or deferred (the standard treatment) Zidovudine, initially created by White
et al. [6]. It was intended that patients in control group would not receive Zidovudine
until they progressed to AIDS-related complex (ARC) or AIDS. However, on the
basis of persistently low CD4 cell counts (a prognostic marker for disease progres-
sion), Zidovudine was allowed to patients in control group before presence of ARC
or AIDS. The outcome used was time-to-disease progression or death. We refer to
our data as partially simulated because, in order to present the method, three base-
line covariates, labelled X1, X2, X3, were simulated while the outcomes were used
as originally created. In order to exploit the identification results discussed in the
previous section, we assume a global conditional dependence structure according to
identified concentration graph in Fig. 1. It represents a situation where the patients
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Fig. 1 Concentration graph

free-disease lifetime is independent of the covariates X1 and X2 conditionally to
Sd(0) and X3. According to Fig. 1, the joint model, which is identified, factorizes to

f (X1, X2, X3,Y
d(1), Sd(0)) = f (X3|X2, S

d(0)) · f (Y d(1)|X3, S
d(0))

× f (X1|Sd(0)) · f (X2|Sd(0))
× f (Sd(0)).

To show the flexibility of ourmethod, we propose three different scenarios, according
to the relation between the switching time and the potential outcomes. The first
scenario resembles the common situation where patients switching sooner are in
worse clinical conditions and consider the switching as a benefit possibly improving
their conditions. The second scenario considers the switching time under active
treatment being random. Interestingly we had a situation where the effect of the
new treatment on the survival beyond the end of the study for non switchers is
positivewhile that beyond time 2 is negative. The third scenario represents an extreme
situation where switchers at time 1 have a greater probability of surviving beyond
the end of the study if assigned to the control treatment. This can reflect a situation
where the immediate Zidovudine causes unwanted side effects for weaker units.

4.1 Estimation Strategy

The process of estimation in a model-based approach appears to be rather straight-
forward from a Bayesian perspective. Potential outcomes are viewed as random
variables and hence any function of them is also a random variable, including any
causal estimand of interest. Considering the population of interest of size N, we
have a N-vector Z and two N × 2 matrices, Sd and Y d , for, respectively, the inter-
mediate variable and the primary outcome. A N × 3 matrix X is used to represent
the observed values of the three baseline covariates of all units. Under row (unit)
exchangeability of the matrices Y d , Sd and X and by appealing to the DeFinettis
theorem, we can assume, with no loss of generality, that the rows of (Y , S, X) are
independent and identically distributed random variables given a parameter vector θ

with prior distribution P(θ). According to the dependence structure represented in
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Fig. 1, we have the following likelihood function

f (Y d(0),Y d(1), X, Sd(0)|θ) =
N∏

i=1

f (Y d
i (0)|X1,i , X2,i , X3,i , S

d
i (0), θ)

× f (Y d
i (1)|X3,i , S

d
i (0), θ)

× f (X1,i |Sdi (0), θ) · f (X2,i |Sdi (0), θ)

× f (X3,i |X2,i , S
d
i (0), θ)

× f (Sdi (0)|θ).

As Sdi (0) takes values on {1, 2, 3} and Zi takes values on {0, 1}, we can decompose
this complete likelihood function, into six parts each representing the likelihood
L z,s

comp of a subsetS(z, s) of the sample such that (Z = z, Sd(0) = s). All the different
parts L z,s

comp joint together constitute the complete likelihood function, namely the
likelihood function we would have if, for each unit, the values of all the involved
variables were observed. Unfortunately as we said previously, for some subsets of
units there will be missing values in the variable Sd(0), leading to a mixture of
outcomes distributions generating the so called observed likelihood function.

In order to make posterior inference for θ , we rely on a Data Augmentation
(DA) step [5]. A DA consists in drawing Sd(0) from the posterior distribution of
missing data conditional on parameters and observed data.Note that this is an iterative
imputation method and thus relies on the current estimates of the parameters. After
the DA step, Bayes’ Rule is used to compute the posterior distribution of θ and hence
the posterior distribution of the causal estimands of interest.

4.2 Results and Comments

Because the simulation concerns only the baseline covariates and the switching time,
the overall ITT estimate, defined as the difference between the proportion of surviving
patients assigned the active treatment arm and surviving patients assigned the control
arm, is the same for each scenario. The estimated ITT on the survival after the end

of the study is ̂I T T
3 = 0.068. This effect, however, does not take into account the

switching from control to active treatment (Table1).
We focus on the principal stratum of non switchers, being their outcomes not

affected by the switching, computing the posterior distribution of the effect of the
treatment on the survival beyond the end of the study, τ 3

3 , and the effect on survival
after time 1, τ 2

3 . The results show that the effects can be highly heterogeneous depend-
ing on the latent switching behaviour and its relation with the outcome. Despite the
fact that the switching behaviour is missing for some units, the Bayesian inferential
analysis, conducted under the proposed structural assumptions, is able to recover the
principal causal effects.
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Table 1 Posterior estimates

Scenario τ Mean q .025 q .975

1 τ 33 0.054 −0.090 0.201

τ 23 0.002 −0.128 0.1445

2 τ 33 0.023 −0.133 0.187

τ 23 −0.049 −0.169 0.063

3 τ 33 0.273 0.171 0.374

τ 23 0.111 0.001 0.212

Table 2 True effects

Scenario Effect

τ 33 τ 23

1 0.04 0.006

2 0.044 −0.003

3 0.173 0.005

Although the results are promising, repeated sample simulations would be
required to check the frequentist properties of the Bayesian credibility intervals. For
a significant improvement of the proposed method, assumptions and model spec-
ification should be generalized to allow continuous outcomes and switching time
(Table2).
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A Bayesian Joint Dispersion Model
with Flexible Links

Rui Martins

Abstract The objective is to jointly model longitudinal and survival data taking into
account their interdependence in a real HIV/AIDS dataset inside a Bayesian frame-
work. We propose a linear mixed effects dispersion model for the CD4 longitudinal
counts with a between-individual heterogeneity in the mean and variance, relaxing
the usual assumption of a common variance for the longitudinal residuals. A haz-
ard regression model is considered in addition to model the time since HIV/AIDS
diagnostic until failure, where the coefficients accounting for the linking between
the longitudinal and survival processes are time-varying. This flexibility is speci-
fied using penalized Splines and allows the relationship to vary in time. Because
residual heteroscedasticity may be related with the survival, the standard deviation
is considered as a covariate in the hazard model thus enabling to study the effect of
the CD4 counts’ stability on the survival. The proposed framework outperforms the
traditional joint models, highlighting the importance in correctly taking account the
individual heterogeneity for the measurement errors variance.

Keywords Repeated measurements · Variance model · Time-to-event · Penalized
Splines · Time-dependent coefficients

1 Introduction

A joint model is, in simple terms, an approach to the construction and analysis of
the joint distribution of a set of correlated response variables, which may be of dif-
ferent types. In this work we are interested in simultaneously analyse longitudinal
and survival data, taking advantage of the information that flows between these two
data sources collected on the same patients. The incorporation of survival informa-
tion into the longitudinal process it is somewhat equivalent to take into account the
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effect of an informative missing-data mechanism in order to assess the trends of the
repeatedmeasures. On the other hand, including adjusted longitudinal characteristics
into the survival model improves the fit of the survival regression. It is this latter fea-
ture of joint models that will permit this work to reach its objectives. We intend to
perform a survival analysis of the time-to-event since the diagnostic of HIV/AIDS in
infected individuals using simultaneously the longitudinal information coming from
the CD4+T lymphocyte counts (CD4 counts for short) among other covariates (see
Sect. 4 for a brief description of the dataset).

In a joint analysis context the dynamics of the longitudinal repeated measures
are usually postulated to belong to the class of the linear mixed-effects models with
Gaussian errors [2, 11]. Generally it is assumed that the residual variance for the
individual longitudinal trajectory is common to all subjects. Few papers on joint
modellinghavebeenpublished considering amodel for this source of variation,which
means assuming different individual residual variances (dispersion modelling). The
work ofGao et al. [3] is an example,where thewithin-subject variability is assumed to
have a log-normal prior distribution. McLain et al. [12] presents a dispersion model
in a frequentist framework, being the variation patterns modelled as a particular
function of other variables (videSect. 2). In our study,we resorted to this strategywith
promising results (Sect. 4.2). Instead, some authors assume a latent class model for
that variability [8] and others model the error process with a skew-t distribution [1].

One of the investigators’ biggest concerns in this field is how and what character-
istics should be shared by the longitudinal and survival processes. Rizopoulos et al.
[13] discuss this problem by means of general families of parametrisations describ-
ing the main features of the relationship between the two processes. The most used
approach is to share a set of individual random effects believed to be the basis of a
latent relationship.Generally those effects are used to explain the differences between
the populationmean longitudinal response and the individual-specific ones in amixed
model representation. We will extend this vision proposing the individual-specific
longitudinal standard deviation as a covariate for the hazard model.

The most popular choices for the baseline hazard function specifications are the
parametric forms (e.g. Weibull - [4]) or the piecewise constant approximations [15].
In seeking themost flexibility as possiblewewill use an approach rooted on penalized
cubic B-Spline functions (P-Splines for short).

The majority of the joint analysis assume that the relationship between the longi-
tudinal and survival processes has the same strength over time, i.e. the coefficients
of the survival model accounting for the effect of a particular longitudinal charac-
teristic are time-invariant. But, if we believe, for example, that an initial significant
relationship will become non-significant some time later (or vice versa), what we
are assuming is that the effect of the shared longitudinal characteristics on survival
varies with time. We address this aspect using time-dependent coefficients approx-
imated by P-Splines. Despite having a moderately use in survival analysis [6, 7]
time-varying coefficients are not a first option in joint models. Fortunately there are
some exceptions. For instance Yu et al. [17] use Splines to model these coefficients in
a frequentist context; Hanson et al. [5] rely on a linear combination of Gaussian ker-
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nels and Song et al. [14] use first order Taylor expansions of the function representing
the time-varying coefficients.

2 Model Specification

Let us consider a study where an individual should come to an health centre periodi-
cally in order to perform some blood tests (longitudinal process) and we follow him
until he experiences the event of interest (failure) or be censored (lost to follow-up or
endof the study). The longitudinal process for the i th individual,mi (t), i = 1, . . . , N ,
is measured with error. So, the observed one is yi (t) = mi (t) + ei (t), t > 0.

The i th vector of the ni observed repeatedmeasures is defined as yi =(yi (ti1), . . . ,
yi (tini ))≡(yi1, . . . , yini ) being ti =(ti1, . . . , tini ) a vector of fixed individual times.
This encompasses the possibility of having N different measurement schedules and
follow-up times. We take Ti to be the observed (possibly right censored) time to
event for the i th individual and δi is the failure indicator. The observed data without
covariates for the N independent subjects is D = {Di }Ni=1 = {(yi , ti , Ti , δi )}Ni=1.

2.1 Longitudinal Mixed Dispersion Model

In longitudinal models, the common assumption of residual homoscedasticity may
not always be reasonable. For example, considering our dataset (Sect. 4), the plot
of the individual

√
CD4 values versus the standard deviation (Fig. 1) suggests con-

siderable within-subject variance heterogeneity. A higher individual mean appears
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Fig. 1 Plot of the
√
CD4 values against the subject number ordered according to the standard

deviation of their
√
CD4. The

√
CD4 values for one subject are plotted using the same colour and

two adjacent subjects have different colours. The solid line represents the lowess smooth of the√
CD4 values and the dashed one is simple the connection between the 500 standard deviations
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to be associated with a higher variability. Few papers on joint modelling have been
published considering a model for this source of variation (dispersion modelling).
McLain et al. [12] presents a dispersion model in a frequentist framework but we
can see it as an hierarchical model, easily implemented in Bayesian terms. Consider
the longitudinal outcomes, yi j ’s, described by a mixed effects dispersion model,

yi j |bi , σ 2
i ∼ N (

mi (ti j ), σ
2
i

)
, j = 1, . . . , ni (1)

mi (ti j ) = β�
1 x1i (ti j ) + b�

1iw1i (ti j ), (2)

σ 2
i = σ 2

0 exp{ β�
2 x2i (ti j ) + b�

2iw2i (ti j ) }, (3)

where x1i , x2i , w1i and w2i are appropriate subject-specific vectors of covariates
(possibly time-dependent); β1 and β2 are vectors of population regression parame-
ters; (b�

1i , b
�
2i ) = bi |Σ ∼ Np(0,Σ) are time-independent subject-specific random

effects capturing the inherent biological variability between individuals in the mean
and variance, respectively.

Here the residual variance, σ 2
i , is assumed to be an individual property allowing

for heterogeneity in the variance trends among the individuals. Modelling it and
identify the covariates x2i and w2i influencing the within-subjects variance seems
wise. Particularly, in many HIV/AIDS studies, where investigators are interested
in understanding the trends of the variability, having an individual estimate of the
subject-residual variance can be a plus in the assessment of whether individuals with
different biomarker’s stability have different prognosis. In addition, the specification
in (3) can be considered as an extension to the dispersion model defined in Lin et al.
[9] or the one defined in Gao et al. [3]. The former modelled the individual-specific
measure of stability, σ 2

i , through an inverse gamma prior distribution, which is a
special case of (3). The latter do not consider possible covariate effects. Indeed, if
we consider that exp{ β�

2 x2i (ti j ) + b�
2iw2i (ti j ) } = 1 in (3) we have σ 2

i = σ 2
0 and we

are back to the simple models where σ 2
i accounts for the randomness in stability by

using some prior distribution for this parameter. More details about the choose of
this prior distribution are discussed in Sect. 4.1.

2.2 Hazard Model with Time-Varying Coefficients

Various approaches have been proposed to link the longitudinal and survival
processes, namely sharing a set of individual random effects believed to be the basis
of a latent relationship [13]. In this work, additionally to these random effects, we
include the standard deviation, σi , as a covariate into the hazard model:

hi (t | bi , σi ) = h0(t) exp{ β�
3 x3i + Ci {bi , σi ; g(t)} } = h0(t) exp{ψi (t)}, (4)

where x3i is a subject-specific vector of baseline covariates and β3 is the respective
population parameters vector. Ci {.} is a function specifying which components of the
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longitudinal process are directly related to hi (.). Finally, g(t)=(g1(t), . . . , gL(t))
is an appropriate vector of L smooth functions (approximated by P-Splines using
a 1st order random-walk) representing the time-varying regression coefficients [6],
which measure the effect of some characteristics of the longitudinal outcome to the
hazard. These coefficients are particularly useful in explaining the effect of a time-
independent covariate on survival when its impact is not constant throughout the
time. Finally, the baseline hazard, h0(t), can have a parametric form (e.g. Weibull)
or be specified using P-Splines or a piecewise constant function.

3 The Posterior Distribution

To form the contribution of the i th individual to the likelihood we assume: (i) a
non-informative right censoring; (ii) events and censoring are independent of the
process measurement schedule; (iii) longitudinal and survival processes are inde-
pendent given the random effects, bi , and in addition (iv) the elements of the vector
yi are assumed independent given the same set of random effects. Thus, the posterior
distribution, π(θ |D), will be proportional to

N∏

i=1

{L1i (θ | Di ) × L2i (θ | Di )} × π(θ)

=
N∏

i=1

⎧
⎨

⎩

⎡

⎣
ni∏

j=1

f (yi j |bi , σ 2
i )

⎤

⎦ × [
h(Ti |bi )δi S(Ti |bi )

]
⎫
⎬

⎭
× π(θ), (5)

where π(θ) denotes the prior distribution of the full parameters vector including the
random effects, bi ; L1i (θ |Di ) is the i th individual longitudinal contribution, being
f (.) the Gaussian probability density function. h(.) and S(.) are, respectively, the
hazard and the survival function for Ti . If one assumes that each Ti , i = 1, . . . , N ,
has a Weibull distribution, W(ρ, eψi (t)), this implies the following i th individual
survival contribution to the likelihood

L2i (θ | Di ) =
{
ρT ρ−1

i eψi (Ti )
}δi

exp
{−eψi (Ti ) T ρ

i

}
. (6)

In case of a P-Spline approach to the reparametrized baseline hazard, g0(t) =
log[h0(t)], we have

L2i (θ | Di ) = {
eg0(Ti )+ψi (Ti )

}δi exp

{
−

∫ Ti

0
eg0(u)+ψi (u) du

}
. (7)

Finally, if we define the baseline hazard to be a piecewise constant function over
a finite partition of the time, 0=a1, a2, . . . , aK , aK+1 = ∞, we have that h0(t) =
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∑K
k=1 λk1[ak ,ak+1[(t), where λ = (λ1, . . . , λK ) is a vector of positive but unknown

parameters, each one representing the constant local hazard for t ∈ [ak, ak+1[, k =
1, . . . , K , thus we can write

L2i (θ | Di ) = {
λk̊ e

ψi (Ti )
}δi exp

⎧
⎨

⎩
−

⎡

⎣λk̊(Ti − ak̊) +
k̊−1∑

k=1

λk(ak+1 − ak)

⎤

⎦eψi (Ti )

⎫
⎬

⎭
,

(8)
where k̊ is the largest integer such that ak̊ ≤ Ti .

4 HIV/AIDS Data Analysis

The longitudinal and survival data were collected in a network of 88 laboratories
located in every 27 states of Brazil during the years 2002–2006. CD4 counts and
survival time were the responses collected in a random sample of N = 500 individ-
uals. The explanatory variables were: age ([15, 50[, codded 0; ≥ 50, codded 1), sex
(Female, codded 0; Male, codded 1) and PrevOI (previous opportunistic infection at
study entry, codded 1; 0 otherwise). Survival time is the period between HIV/AIDS
diagnosis and death, if happened before 31st December 2006. Otherwise it is cen-
sored. There were 34 deaths; 440 (88%) patients were between 15 and 49 years old;
298 (59.6%) were males of whom 23 died. 302 (60.4%) individuals had no previous
infection. The initial median CD4 count was 269 cells/mm3 (men - 250 cells/mm3;
women - 295 cells/mm3) and patients made on average 5.51 CD4 exams resulting in
a total of 2757 observations. The mean time of a censored patient in the study was
930 days and for those which had the event, that mean time was 862 days. For more
about this dataset and for a modelling strategy which is similar in some aspects to
the one implemented in Sect. 4.1, we refer the reader to [11] for comparisons.

4.1 Fitted Models

Considering the four assumptions refereed at the beginning of Sect. 3, Table1 shows
the form of the 33 joint models fitted to the data and the respective WAIC values
(Widely Applicable Information Criterion [16]) for comparison. The adjusted lon-
gitudinal mean response, mi (ti j ), will always have the representation

mi (ti j ) = β10 + β11ti j + β12sexi + β13agei + β14PrevOIi + b1i,1 + b1i,2ti j .
(9)

The dispersion model (3) will assume several formulations. Namely,

σ 2
i = σ 2

0 exp{β21sexi + β22agei + β23PrevOIi + b2i }; σ 2
0 ∼ π(θσ 2

0
) (10)
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σ 2
i = σ 2

0 exp{b2i }; σ 2
0 ∼ π(θσ 2

0
) (11)

σ 2
i ∼ π(θσ 2

i
), (12)

σ 2
i = σ 2

0 ∼ π(θσ 2
0
), i = 1, . . . , N (13)

where π(.) is a suitable prior distribution. In the survival part we always consider

β�
3 x3i = β31sexi + β32agei + β33PrevOIi , (14)

conjugated with four forms for the function Ci (.):

Ci (.) = g1(t)b1i,1 + g2(t)b1i,2 + g3(t)b2i , (15)

Ci (.) = g1(t)b1i,1 + g2(t)b1i,2 + g3(t)σi , (16)

Ci (.) = g1(t)b1i,1 + g2(t)b1i,2, (17)

Ci (.) = g1b1i,1 + g2b1i,2. (18)

The P-Spline approach to the time-varying coefficients always considers 21 knots,
corresponding to a knot every 3 months during the 5 years. In the case of a piecewise
constant baseline-hazard, we used 20 subintervals with equal lengths, corresponding
also to a length of 3 months each during the 5 years.

Assuming independence for all the elements in θ , model fitting were performed
in WinBUGS. The following prior specifications were considered: all the elements
of the vectors β1, β2 and β3 are independent of each other and Gaussian distributed,
N (0, 100); Σ−1 ∼ Wish(diag(100), 4); when needed λk ∼ G(0.001, 0.001), k =
1, . . . , K ; for the common/individual residual variance, we considered log(σ0) ∼
U(−100, 100) and log(σi ) ∼ U(−100, 100), respectively.

4.2 Results

Based on the smallest WAIC value (Table1), a P-Spline approach to the baseline
hazard seems to be the best strategy. The chosen model � assumes a heterogeneous
within subject variability as in (12) considering log(σi ) ∼ U(−100, 100). Addition-
ally, because we use the linking structure (16), the patient-specific random intercept,
slope and standard deviation are considered as covariates for the hazard model. The
inclusion of the subject-specific variability as a covariate to explain the survival
outcome improves the results (lower WAIC) compared to the models without this
feature (Ci = (15) or Ci = (17)). This is scientifically appealing, because the CD4’s
stability might contain extra information about health-related risks, complementing
that provided by the mean-level trajectory. Although, for this particular case, our
initial feeling – a possible effect of some set of covariates related to the individual
heterogeneity – did not show up (models ; σ 2

i = (10)).
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Table 1 WAIC values for the 33 Bayesian joint dispersion models with flexible links

Longitudinal model Hazard model

mi σ 2
i ψi (t) =

β�
3 x3i + Ci

h0

Weibull P-Spline Piecewise

(9) (10) (14) + (15) 14671 12573 14317

(9) (11) 14700 12848 14483

(9) (10) (14) + (16) 14307 12605 13365

(9) (11) 14452 12917 13571

(9) (12) 13134 12104 12921

(9) (13) 13956 12887 13533

(9) (10) (14) + (17) 14811 13334 14463

(9) (11) 14923 13688 14599

(9) (12) 14314 13144 13968

(9) (13) 14627 13553 14355

(9) (13) (14) + (18) 16984 15779 16383

The “traditional model” to jointly analyse longitudinal and survival data [2] con-
siders: (i) a common residual variance as in (13), (ii) a set of two shared random
effects (b1i,1 and b1i,2) believed to drive the relation between the two processes and
(iii) the coefficients accounting for the effects of these latent variables on the haz-
ard are time-independent, i.e., g1 and g2 do not depend on t , being the function
Ci that specifies which components of the longitudinal process are shared with the
survival process defined as in (18). In most of the literature, the baseline hazard has
been tackled considering a Weibull form, but approaches considering splines or a
piecewise-constant approximation also have its place [13]. Last row of Table1 has
been added so we can compare the performance of these “traditional” approaches
(models ) with our proposed models, namely , and . Considering only the sit-
uations where h0 is adjusted using P-Splines, we note that the traditional model is
the worst in terms of its WAIC value.

Table2 shows the posterior mean estimates together with the 95% Credible Inter-
val (CI) for a set of parameters for the best model compared to its counterparts for
the traditional model . One can see that the variables sex, age and PrevOI are
all significant in explaining the different longitudinal trajectories and survival times.
Older males with opportunistic infections at the study entry have lower

√
CD4 values

(negative estimates). Younger females without opportunistic infections at the study
entry have a lower hazard of death (positive estimates). Model has been able to
capture the effect of the sex on the survival outcome as opposed to the model .
There is another important thing coming out of these estimates. The unique elements,
σ b
11, σ

b
12 and σ b

22, of the random-effects covariance matrix, Σ , for the chosen model,
are lowered compared to its counterparts for the model , which means that we
have been able to shrink more the individual random-effects under the presence of
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Table 2 Posterior parameters estimates and 95% Credible Intervals (CI) for the selected model
and for the traditional joint model with a baseline adjusted with P-Splines

Parameter Model Model

Mean 95% CI Mean 95% CI

Longitudinal:

Intercept (β10) 17.26 (16.59, 17.94) 17.3 (16.57, 18.02)

Time (β11) 1.74 (1.46, 2.04) 1.92 (1.66, 2.19)

sex (β12) −0.66 (−1.42,−0.02) −0.60 (−1.42, 0.21)

Age (β13) −1.34 (−2.51,−0.41) −1.59 (−2.58,−0.58)

PrevOI (β14) −1.62 (−2.23,−0.99) −1.80 (−2.77,−0.81)

σ b
11 20.85 (17.83, 24.22) 24.58 (21.32, 28.24)

σ b
22 4.71 (3.80, 5.78) 6.12 (5.03, 7.36)

σ b
12 −3.07 (−4.46,−1.77) −4.15 (−5.77,−2.67)

σ0 − − 2.59 (2.50, 2.67)

Survival:

sex (β31) 0.74 (0.49, 1.01) 0.49 (−0.30, 1.29)

Age (β32) 0.99 (0.72, 1.27) 0.93 (0.04, 1.76)

PrevOI (β33) 1.04 (0.80, 1.28) 0.95 (0.19, 1.67)

a dispersion model for the individual-specific standard deviation than considering a
common within-individual variance. This happens because the dispersion model is
now explaining some of that additional variability. Some authors, namely Lyles et
al. [10] have already noted this feature – random within-subject variances appears
to describe a collection of longitudinal biomarker measurements well, as compared
to a broad range of alternative models for the correlation structure.

5 Discussion

The three new aspects presented in this work seem to improve the traditional frame-
work, videlicet: the time-dependent coefficients that account for the linking between
the two processes, and estimated via P-Splines, allow us to understand the influence
of the biomarker’s values and its variability throughout the time in the survival-related
outcome; the dispersion model is capturing some extra-variability in the individual
repeated measures implying a reduction in the variability of the individual-specific
random effects; the use of the individual level standard deviation as a covariate in
the hazard model is scientifically appealing, highlighting that the biomarker’s sta-
bility might contain extra information about health-related risks, complementing
that provided by the mean-level trajectory. Unlike the random effects, bi , the bio-
marker variability, σi , has an intuitive meaning for the physicians and respective
patients. In a joint model context, with the linking function (16), its interpretation
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is straightforward, because its contribution to understand the time-to-event can be
readily quantified as a hazard ratio (HR). For instance, considering two subjects only
differing in their repeated measures variability, everything else being equal for a
specific time, the hazard ratio is HR = exp{g3(t)}, which is familiar to the clinical
staff. Obviously, all these results need more studies to support them, but they seem to
be encouraging. Beyond AIDS framework, there is an enormous potential to apply
the methods developed in this work to other epidemiological situations.
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Local Posterior Concentration Rate
for Multilevel Sparse Sequences

Eduard Belitser and Nurzhan Nurushev

Abstract We consider empirical Bayesian inference in the many normal means
model in the situation when the high-dimensional mean vector is multilevel sparse,
that is, most of the entries of the parameter vector are some fixed values. For instance,
the traditional sparse signal is a particular case (with one level) of multilevel sparse
sequences. We apply an empirical Bayesian approach, namely we put an appropriate
prior modeling the multilevel sparsity and make data-dependent choices of certain
parameters of the prior. We establish local (i.e., with rate depending on the “true”
parameter) posterior contraction and estimation results. Global adaptive minimax
results (for the estimation and posterior contraction problems) over sparsity classes
follow from our local results if the sparsity level is of polynomial order. The results
are illustrated by simulations.

Keywords Local posterior concentration rate · Multilevel sparse sequences ·
Empirical Bayesian approach

1 Introduction

Suppose we observe X = X (n) = (X1, . . . , Xn) ∈ R
n , with

Xi = θi + ξi , i ∈ Nn = {1, . . . , n}, (1)

where θ = (θ1, . . . , θn) ∈ R
n is an unknown high-dimensional parameter of interest,

the noise variables ξi ’s are independent standard Gaussian. In what follows, we let
n ≥ 3. The general goal is to make inference about θ based on the observed data
X by using a Bayesian approach: in particular, recovery of the parameter θ and the
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derivation of the local contraction rate of the empirical Bayes posterior. We consider
mainly the non-asymptotic results, which imply asymptotic assertions if needed.

In this canonical high-dimensional problem, useful inference is clearly not possi-
ble without some structure on the parameter. One of the popular structural assump-
tions is sparsity. In this paper, we are concerned with a more generalized version of
sparsity, namely, multilevel sparsity. The vector θ = (θ1, . . . , θn) is assumed to be a
multilevel sparse, i.e., the large proportion of the entries of θ consist of some values
a1, . . . , am . These values are known, but the proportions and the entries of θ at which
these are taken are unknown. If m = 1 and am = 0, we obtain the traditional sparse
signal.

One can extend the traditional sparsity class of nearly black vectors to multilevel
sparsity class, but, to the best of our knowledge, multilevel sparsity structure is not
considered in the literature and the minimax rate for this structure is not studied. For
the traditional one-level (m = 1) sparsity structure, there is a variety of estimation
methods and results are available in the literature: Donoho and Johnstone [7], Birgé
andMassart [4], Johnstone and Silverman [9], Abramovich, Benjamini, Donoho and
Johnstone [1], Abramovich, Grinshtein and Pensky [2], Castillo and van der Vaart
[5], van der Pas, Kleijn and van der Vaart [10].

We pursue the novel local approach, namely, the posterior contraction (and esti-
mation) rate r2(θ) is allowed to be a function of θ , i.e., it is a local quantity. The
local approach is more flexible than the global one; more on this is in Appendix 2.
The point is that we do not need to impose any specific sparsity structure on θ ,
because the proposed local approach automatically exploits the “effective” sparsity
of each underlying θ . For instance, if θ happens to lie in a sparsity class (say, �0([pn]
or ms[pn], see Appendix 2) and the sparsity level pn is of polynomial order, then
the adaptive (global) minimax results (in fact, for the two problems: estimation and
posterior contraction rate) over the sparsity class follow from the local results. In
particular, our local results imply the same type of certain (global) minimax estima-
tion results over sparsity classes as in Johnstone and Silverman [9], and the same
type of global minimax (over sparsity classes) results on contraction posterior rates
as in Castillo and van der Vaart [5].

The paper is organized as follows. In Sect. 2we introduce the notation and describe
the empirical Bayes procedure for multilevel sparse sequences. Section3 contains
the main results: the local (oracle) posterior contraction and estimation results for
the constructed empirical Bayes posterior and the corresponding empirical Bayes
posterior mean estimator, respectively, in terms of the local rate r2(θ0) uniformly
over θ0 ∈ R

n . If the sparsity level is of polynomial order, then the global adaptive
minimax (over sparsity classes) results on contraction posterior and estimation rates
follow as a consequence of our local results. The proofs, implications of the local
results and the simulation study are presented in the three Appendix sections.

2 Preliminaries

First we introduce some notation, then construct an empirical Bayes posterior.
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2.1 Notation

Denote the probability measure of X from the model (1) by Pθ = P(n)
θ . For the nota-

tional simplicity we often skip the dependence on n of this quantity and many others.
Denote by 1{s ∈ S} = 1S(s) the indicator function of the set S, by |S| the cardi-
nality of the set S, the difference of sets S\S0 = {s ∈ S : s /∈ S0}, Nk = {1, . . . , k}
for k ∈ N = {1, 2, . . .}. For I ⊆ Nn define I c = Nn\I . Denote by Iak be the index
set of coordinates with a value ak , by I be the set of index coordinates with values
which are not equal to a1, . . . , am , so that I = (I a1 , . . . , I am , I ) forms the partition
of Nn = {1, . . . , n}. Without loss of generality, we assume that a1 = 0. Let Mm

n be
the family of all possible partitions I, except for the partitions with I = ∅. Then
|Mm

n | = (m + 1)n − mn . Throughout Z ∼ N(0, 1) will denote a generic standard
normal random variable, with distribution function Φ(z) = P(Z ≤ z) and density
φ(z) = Φ ′(z). Let φ(x, μ, σ 2) be the density of μ + σ Z ∼ N(μ, σ 2) at point x . By
convention, N(μ, 0) = δμ denotes a Dirac measure at point μ.

2.2 Empirical Bayes Posterior

Aswementioned in the introduction,wedealwith the classical high-dimensional nor-
mal model X = (Xi , i ∈ Nn) ∼ Pθ = ⊗n

i=1 N(θi , 1), θ = (θi , i ∈ Nn) ∈ R
n . We

would like to design a prior that models multilevel sparse sequences θ with m
levels. Namely, there are m + 1 groups in vector θ = (θI a1 , . . . , θI am , θI ), where
θI a1 = (θi = a1, i ∈ I a1), . . . , θI am = (θi = am, i ∈ I am ), θI = (θi , i ∈ I ). It is rea-
sonable to impose a prior on θ given the partition I = (I a1 , . . . , I am , I ) as follows:

πI =
n⊗

i=1

N(μi (I), τ
2
i (I)) =

[⊗

i∈I a1
δ
a1

]
× · · · ×

[ ⊗

i∈I am
δ
am

]
×

[ ⊗

i∈I
N(μm+1,i , K )

]
,

(2)

where μi (I) = ∑m
j=1 a j1{i ∈ I a j } + μm+1,i1{i ∈ I } and τ 2

i (I) = K1{i ∈ I }, for
some fixed K > 0. Next, we introduce the prior λ on I ∈ Mm

n as follows: for κ ≥ 1,

λ(I = I) = λI = cn exp
{ − κ[|I | +

m∑

j=2

|I a j |] log n}
, I ∈ Mm

n . (3)

Since
∑

I∈Mm
n
λI = 1 and |I | > 0, the normalizing constant is cn = cn(κ) = 1/

[
(1 +

n−κ + (m − 1)n−κ1{m ≥ 2})n − (1 + (m − 1)n−κ1{m ≥ 2})n]. Putting a prior λ on
Mm

n yields the resulting mixture prior for θ :

π =
∑

I∈Mm
n

λIπI, (4)
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where πI is defined by (2). This in turn leads to the marginal distribution of X

PX =
∑

I∈Mm
n

λIPX,I, PX,I =
n⊗

i=1

N(μi (I), τ
2
i (I) + 1). (5)

It remains to choose the parameters μm+1,i in the prior and we do this by using
an empirical Bayes approach. The marginal likelihood PX is readily maximized with
respect to μm+1,i : μ̂m+1,i = Xi . Then we obtain the empirical Bayes posterior

π̂(θ |X) =
∑

I∈Mm
n

π̂(θ,I = I|X) =
∑

I∈Mm
n

π̂(θ |X,I = I)π̂(I = I|X), (6)

where the empirical Bayes conditional posterior (recall that N(0, 0) = δ0)

π̂(θ |X,I = I)= π̂I(θ |X)=
[⊗

i∈I a1
δ
a1

]
×· · ·×

[ ⊗

i∈I am
δ
am

]
×

[ ⊗

i∈I
N

(
Xi ,

K
K+1

)]
(7)

and the empirical Bayes posterior for I ∈ Mm
n

π̂(I = I|X) = λI
⊗n

i=1 φ(Xi ,
∑m

j=1 a j1{i ∈ I a j } + Xi1{i ∈ I }, τ2i (I) + 1)
∑

J∈Mm
n

λJ
⊗n

i=1 φ(Xi ,
∑m

j=1 a j1{i ∈ Ja j } + Xi1{i ∈ J }, τ2i (J) + 1)
.

(8)

Denoting μ̂(I) = ∑m
j=1 a j1{i ∈ I a j } + Xi1{i ∈ I }, i ∈ Nn, we get an estimator

based on π̂(·|X), namely,

θ̂ = θ̂ (I) = Ê(θ |X) =
∑

I∈Mm
n

μ̂(I)π̂(I = I|X), (9)

which is nothing else but the empirical Bayes mean, with respect to the empirical
Bayes posterior π̂(θ |X) defined by (6).

3 Main Results

In this sectionwe introduce the local contraction rate for the empiricalBayes posterior
π̂(·|X). Notice that π̂(·|X) is a random mixture over π̂I(·|X), I ∈ Mm

n . From the
Pθ0 -perspective, each π̂I(·|X) contracts to the true parameter θ0 with the local rate
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R2(I, θ0) = R2(I, θ0, n, a2, . . . , am)

=
∑

i∈I a1
θ2
0,i +

m∑

j=2

∑

i∈I a j
(θ0,i − a j )

2 + |I |, I ∈ Mm
n . (10)

Indeed, since μ̂(I) = ∑m
j=1 a j1{i ∈ I a j } + Xi1{i ∈ I }, i ∈ Nn , theMarkov inequal-

ity yields

Eθ0 π̂I(‖θ − θ0‖2 ≥ M2R2(I, θ0)|X) ≤ Eθ0

(‖μ̂(I) − θ0‖2 + K |I |
K+1

)

M2R2(I, θ0)

= (1 + K
K+1 )|I | + ∑

i∈I a1 θ2
0,i + ∑m

j=2

∑
i∈I a j (θ0,i − a j )

2

M2R2(I, θ0)
≤ 2

M2
.

For each θ0 ∈ R
n , there exists the best choice Io = Io(θ0, a2, . . . , am) of the par-

tition I ∈ Mm
n corresponding to the fastest local rate over the family of local rates

R2(Mm
n ) = {R2(I, θ0), I ∈ Mm

n }: with R2(I, θ0) defined by (10),

R2(θ0) = min
I∈Mm

n

R2(I, θ0) =
∑

i∈I a1o
θ2
0,i +

m∑

j=2

∑

i∈I a jo

(θ0,i − a j )
2 + |Io|. (11)

Ideally,wewould like to have the quantityR2(θ0)definedby (11) as the benchmark
for the contraction rate of the empirical Bayes posterior π̂(·|X) defined by (6).
However, this turned out to be impossible, which is also confirmed by following
estimation result of Donoho and Johnstone [6] for sparse signals:

lim inf
n→∞

1

log n
inf
θ̂

sup
θ∈Rn

[
Eθ0‖θ − θ̂‖2

1 + ∑n
i=1 min{θ2

0,i , 1}
]

≥ 2,

where the infimum is takenover all estimators,measurable functions of X . This shows
that a reasonable benchmark for the contraction ratemust contain a logarithmic factor,
as was also shown by Birgé and Massart [4] for the estimation problem.

For a parameter s > 1, introduce the family of the so called s-local rates with a
logarithmic factor:

r2m(I, θ0) =r2m(I, θ0, s, n, a2, . . . , am)

=
∑

i∈I a1
θ2
0,i +

m∑

j=2

( ∑

i∈I a j
(θ0,i − a j )

2 + s−1|I a j | log n
)
+|I | log n,

where

a2k ≤ K log n, k = 1, . . . ,m, f or some K > 0. (12)
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There exists the best choice Io = Io(θ0, s, n, a2, . . . , am) of the partition I ∈ Mm
n such

that

r2m(θ0) = r2m(Io, θ0) = min
I∈Mm

n

r2m(I, θ0)

=
∑

i∈I a1o
θ2
0,i +

m∑

j=2

(∑

i∈I a jo

(θ0,i − a j )
2+s−1|I a j

o | log n
)
+|Io| log n. (13)

We call the quantity r2m(θ0) and the choice Io oracle rate and oracle partition,
respectively. If m = 1, then the quantity r21 (θ0) is nothing else but the oracle rate
for sparse signals considered by Belitser and Nurushev [3]. It is easy to see that
r2m(θ0) ≤ r21 (θ0) for all m > 1. Indeed, this follows immediately, since r2m(θ0) ≤
minI⊆Nn r

2
m(I∗(I ), θ0) = minI∈M1

n
r21 (I, θ0), where I∗(I ) = (I c, ∅, · · · , ∅, I ).

The following theorem establishes that the empirical Bayes posterior π̂(θ |X)

contracts to θ0 with the oracle rate r2m(θ0) from the Pθ0 -perspective, and the empirical
Bayes posterior mean θ̂ , defined by (9), converges to θ̂0 with the oracle rate r2m(θ0),
uniformly over the entire parameter space.

Theorem 1 Let the relation (12) be fulfilled and let the empirical Bayes posterior
π̂(θ |X) and the oracle rate r2m(θ0) be defined by (6) and (13), respectively. Then there
exist a constant Cor = Cor (K , κ,m, s) > 0 such that for any θ0 ∈ R

n and M > 0,

Eθ0 π̂
(‖θ − θ0‖2 ≥ M2r2m(θ0)|X

) ≤ Cor

M2
, (i)

Eθ0‖θ̂ − θ0‖2 ≤ Corr
2
m(θ0). (ii)

The oracle interpretation of this result is as follows. A family of priors {πI, I ∈ Mm
n }

leads to the family of empirical Bayes posteriors {π̂I(θ |X), I ∈ Mm
n }. The best choice

π̂Io(θ |X) (with the fastest (oracle) concentration rate r2m(θ0)) is not available to the
observer, it can only be picked by the oracle who knows the true θ0. We propose
the mixture prior π̂(θ |X) which does not use any knowledge of the oracle Io. The
above theorem says basically that the proposed empirical Bayes posterior π̂(θ |X)

mimics the oracle in the posterior contraction and estimation problems, i.e., π̂(θ |X)

performs as good as the oracle choice π̂Io(θ |X).

Remark 1 Notice that we can make the oracle rate (13) smaller by choosing bigger
values of the parameter s, but then the resulting constantsCor andCest (which depend
on s) will become bigger.
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Appendix 1

Proofs

We provide a couple of technical lemmas used in the proof of the main result. For a
τ0 > 0 and θ0 ∈ R

n , introduce the families of sets:

O(τ0) = O(τ0, θ0) = {
I ∈ Mm

n : r2(I, θ0) ≤ τ0r2(θ0)
}
, (14)

Oc(τ0) = Oc(τ0, θ0) = {
I ∈ Mm

n : r2(I, θ0) > τ0r2(θ0)
}
, (15)

where the oracle partition Io = Io(θ0) is given by (13). The familiesO(τ0) andOc(τ0)

form a partition of Mm
n , as they do not intersect and Mm

n = O(τ0) ∪ Oc(τ0). Denote
for brevity π̂I = π̂(I = I|X), where π̂(I = I|X) is defined by (8).

Lemma 1 Let themeasure π̂I be defined by (8), the oracle rate r2(Io, θ) be defined by
(13), K > 0, s > 1 and κ > max

{
5
9 log 10, 0.9K

} + 2.49. Then there exist positive
constants c1 = c1(κ) > 2, c2 and c3 = c3(K , κ, s) such that

Eθ0 π̂I ≤ n−c1(|I |+∑m
j=2 |I a j |) exp

{
− c2

(
r2(I, θ0) − c3r

2(θ0)
)}

.

Proof Since π̂ (X1, . . . , Xn|I = I) is the product of distributionsN
(
μ̂i (I), τ 2

i (I)+1
)
,

i = 1, . . . , n, where μ̂i (I) = ∑m
j=1 a j1{i ∈ I a j } + Xi1{i ∈ I }, i ∈ Nn and

τ 2
i (I) = K1{i ∈ I }, with densities φ

(
Xi , μ̂i (I), τ 2

i (I) + 1
)
, we compute for any

h ∈ [0, 1) and Io ∈ Mm
n ,

Eθ0 π̂I = Eθ0

λI
⊗n

i=1 φ

(
Xi ,μ̂i (I),τ 2

i (I)+1
)

∑
J∈Mm

n
λJ

⊗n
i=1 φ

(
Xi ,μ̂i (J),τ 2

i (J)+1
) ≤ Eθ0

[
λI

⊗n
i=1 φ

(
Xi ,μ̂i (I),τ 2

i (I)+1
)

λIo

⊗n
i=1 φ

(
Xi ,μ̂i (Io),τ 2

i (Io)+1
)
]h

= Eθ0

[ λI

λIo

]h
exp

{
−

m∑

j=1

∑

i∈I a j

h(Xi−a j )
2

2 +
m∑

k=1

∑

i∈I ako

h(Xi−ak )2

2 + h(|Io|−|I |) log(K+1)
2

}

≤ Eθ0

[ λI

λIo

]h
exp

{
−

m∑

j=1

∑

i∈I a j \∪m
k=1 I

ak
o

h(Xi−a j )
2

2 +
m∑

k=1

∑

i∈I ako \∪m
j=1 I

a j

h(Xi−ak )2

2

}

× exp
{ m∑

j,k=1, j =k

∑

i∈I ako ∩I a j

h(2Xi a j−2Xi ak+a2k−a2j )

2 + h|Io| log(K+1)
2

}
. (16)

Recall the elementary identity for Y ∼ N(μ, σ 2), a, d ∈ R and b > −σ 2:
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E[exp{−b(Y − a)2/2}] = exp

{

− (μ − a)2b

2(1 + bσ 2)
− 1

2
log(1 + bσ 2)

}

, (17)

E[exp{dY }] = exp

{
d(dσ 2 + 2μ)

2

}

. (18)

Now take h = 0.9 in (16). By using (17), we derive

Eθ0 π̂I ≤
[ λI

λIo

]0.9
exp

{
− 9

38

m∑

j=1

∑

i∈I a j \∪m
k=1 I

ak
o

(θi − a j )
2 + 0.45|Io| log(K + 1)

}

× exp
{
4.5

m∑

k=1

∑

i∈I ako \∪m
j=1 I

a j

(θi − ak)
2 + 0.5|I | log 10

}
Eθ0e

T (X), (19)

where T (X) = 0.45
∑m

j,k=1, j =k

∑
i∈I ako ∩I a j (2Xi (a j − ak) + a2k − a2j ).

By using the relations (12) and (18), we obtain

Eθ0e
T (X) = Eθ0 exp

{
0.45

m∑

j,k=1, j =k

∑

i∈I ako ∩I a j

(
2Xi (a j − ak) + a2k − a2j

)}

= exp
{
0.45

m∑

j,k=1, j =k

∑

i∈I ako ∩I a j

(
(θi − ak)

2 − (θi − a j )
2 + 0.9(ak − a j )

2
)}

≤ exp
{ m∑

j,k=1

∑

i∈I ako ∩I a j

(
4.5(θi − ak)

2 − 9
38 (θi − a j )

2
)}

× exp
{
0.81K

( m∑

k=2

|I ako | +
m∑

j=2

|I a j |) log n
}
. (20)

Denote the constants c0 = max{0.9K , 5
9 log 10} + 5

19 < max{0.9K , 5
9 log 10} +

2.49 < κ and c1 = 0.9(κ − c0) > 2. The definition (3) of λI, n ≥ 3 and s > 1 entail
that

[ λI

λIo

]0.9
exp

{
0.5|I | log 10 + 0.81K

( m∑

j=2

|I a j |) log n
}

≤ exp
{

− [
(c1+ 9

38 )|I | + (c1 + 9
38s )

( m∑

j=2

|I a j |)] log n + 0.9κ(|Io|+ 1
s

m∑

k=2

|I ako |) log n
}
.

Using the relations (19), (20) and the last inequality, we derive that
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Eθ0 π̂I ≤ n−c1(|I |+∑m
j=2 |I a j |) exp

{
− 9

38

( m∑

j=1

∑

i∈I a j
(θi − a j )

2 + (|I | + 1
s

m∑

j=2

|I a j |) log n)}

× exp
{
C

( m∑

k=1

∑

i∈I ako
(θi − ak)

2 + (|Io| + 1
s

m∑

k=2

|I ako |) log n
}
,

whereC = C(K , κ, s) = smax{4.5, 0.9κ + 0.81K }. This completes the proof, with
the constants c2 = 9

38 and c3 = c3(K , κ, s) = 38s
9 max{4.5, 0.9κ + 0.81K }.

Lemma 2 Let θ0 ∈ R
n and let θ̂ (I), I ∈ Mm

n , be defined by (9), and the setO(τ0) by
(14). Then

Eθ0

[ ∑

I∈O(τ0)

‖θ̂ (I) − θ0‖2π̂I

]
≤ 6τ0r

2(θ0).

Proof Recall that ξi = (Xi − θ0)
ind∼ N(0, 1), i ∈ Nn, under X ∼ Pθ0 . Write

Eθ0

[ ∑

I∈O(τ0)

‖θ̂ (I ) − θ0‖2π̂I

]
= Eθ0

[ ∑

I∈O(τ0)

( ∑

i∈I
ξ 2
i +

m∑

j=1

∑

i∈I a j
(θ0,i − a j )

2
)
π̂I

]

≤ Eθ0

[ ∑

I∈O(τ0)

(∑

i∈I
ξ 2
i

)
π̂I

]
+ τ0r

2(θ0). (21)

It is known fact that

exp{tE[max
1≤i≤n

ξ 2
i ]} ≤ E exp{t max

1≤i≤n
ξ 2
i } ≤

n∑

i=1

E exp{tξ 2
i } = n√

1 − 2t
.

Here we used Jensen’s inequality. Therefore E[max
1≤i≤n

ξ 2
i ] ≤ log n

t − log(1−2t)
2t . Taking

t = 2
5 , we derive that for any n ≥ 3

E[max
1≤i≤n

ξ 2
i ] ≤ 5 log n

2
+ 5 log 5

4
≤

(5

2
+ 5 log 5

4 log 3

)
log n < 5 log n. (22)

Since I ∈ O(τ0), it is not difficult to see that |I | ≤ τ0r2(θ0)
log n . Applying this and (22),

we obtain

Eθ0

[ ∑

I∈O(τ0)

( ∑

i∈I
ξ 2
i

)
π̂I

]
≤ Eθ0

[
max
1≤i≤n

ξ 2
i

∑

I∈O(τ0)

(
|I |π̂I

)]

≤ τ0r2(θ0)

log n
Eθ0

[
max
1≤i≤n

ξ 2
i

]
≤ 5τ0r

2(θ0). (23)

Combining the last relation with (21) completes the proof of the lemma.
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Now we are ready to prove the main result, Theorem 1.

Proof Let Ê and v̂ar denote the (random) expectation and variance with respect to
π̂(θ |X,I = I ) given by (7). Then from (7), it follows that

Ê
(‖θ − θ0‖2|X,I = I

) =
∑

i∈Nn

v̂ar(θi |X,I = I )+
∑

i∈Nn

(
Ê(θi |X,I = I ) − θ0,i

)2

= K |I |
K + 1

+
∑

i∈I
ξ 2
i +

m∑

j=1

∑

i∈I a j
(θ0,i − a j )

2 ≤ r2(I, θ0) +
∑

i∈I
ξ 2
i ,

where ξi = (Xi − θ0,i ) ∼ N(0, 1).
The last relation and the Markov inequality imply that

Eθ0 π̂
(‖θ − θ0‖ ≥ Mr(θ0)|X

) = Eθ0

∑

I∈Mm
n

π̂
(‖θ − θ0‖ ≥ Mr(θ0)|X,I = I

)
π̂I

≤ Eθ0

∑

I∈Mm
n

Ê
(‖θ − θ0‖2|X,I = I

)

M2r2(θ0)
π̂I

≤
∑

I∈Mm
n
r2(I, θ0)Eθ0 π̂I

M2r2(θ0)
+

Eθ0

[ ∑
I∈Mm

n

(∑
i∈I ξ 2

i

)
π̂I

]

M2r2(θ0)
. (24)

Let the sets O(τ0) and Oc(τ0) be defined by (14) and (15), respectively. Let τ0
be chosen in such a way that τ0 > c3 = (38s/9)max{4.5, 0.9κ + 0.81K } is defined
in the proof of Lemma 1 and κ > max

{
0.9K , 5

9 log 10
} + 2.49. For I ∈ Oc(τ0), we

evaluate

r2(I, θ0) − c3r
2(θ0) ≥ (

1 − c3
τ0

)
r2(I, θ0). (25)

Denote B = B(K , κ, s, τ0) = c2(τ0−c3)
2τ0

= 9(τ0−c3)
76τ0

, where c2 = 9
38 is defined in the

proof of Lemma 1. Using Lemma 1, (25) and the facts that maxx≥0{xe−cx } ≤ (ce)−1

(for any c > 0) and (1 + mn−c1/2)n ≤ em , we obtain that

∑

I∈Oc(τ0)

r2(I, θ0)
[
Eθ0 π̂I

] 1
2

≤
∑

I∈Oc(τ0)

r2(I, θ0)n
−c1(|I |+∑m

j=2 |I a j |) exp
{

− c2
(
r2(I, θ0) − c3r

2(θ0)
)}

≤
∑

I∈Oc(τ0)

n−c1(|I |+∑m
j=2 |I a j |)r2(I, θ0)e−Br2(I,θ0) ≤ 1

Be

∑

I∈Oc(τ0)

n−c1(|I |+∑m
j=2 |I a j |)

≤ 1

Be

∑

k1+k2+···+km+1=n

( n
k1,k2,...,km+1

)
n− c1

∑m+1
j=2 k j

2 ≤ em−1

B , (26)
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where c1 = c1(κ) = 0.9(κ − c0) > 2 is defined in the proof of Lemma 1.
If I ∈ O(τ0), then |I | ≤ τ0r2(θ0)

log n . Combining this with Lemma 2 yields

Eθ0

[ ∑

I∈O(τ0)

π̂I

∑

i∈I
ξ 2
i

]
≤ Eθ0

[
max
1≤i≤n

ξ 2
i

∑

I∈O(τ0)

|I |π̂I

]

≤ τ0r2(θ0)

log n
Eθ0

[
max
1≤i≤n

ξ 2
i

]
≤ 5τ0r

2(θ0). (27)

We have E(
∑

i∈I ξ 2
i )2 = |I |2 + 2|I | ≤ 3|I |2. Using this, Cauchy–Schwarz inequal-

ity and (26), we evaluate

Eθ0

[ ∑

I∈Oc(τ0)

π̂I

∑

i∈I
ξ 2
i

]
≤

∑

I∈Oc(τ0)

[
Eθ0

( ∑

i∈I
ξ 2
i

)2] 1
2
[
Eθ0 π̂

2
I

] 1
2

≤ √
3

∑

I∈Oc(τ0)

r2(I, θ0)
[
Eθ0 π̂I

] 1
2 ≤

√
3em−1

B
. (28)

From (27) and (28), it follows that

Eθ0

[ ∑

I∈Mm
n

(
π̂I

∑

i∈I
ξ 2
i

)]
= Eθ0

[ ∑

I∈O(τ0)

(
π̂I

∑

i∈I
ξ 2
i

)
+

∑

I∈Oc(τ0)

(
π̂I

∑

i∈I
ξ 2
i

)]

≤ 5τ0r
2(θ0) +

√
3em−1

B
. (29)

Recall that
∑

I π̂I = 1 and r2(I, θ0) ≤ τ0r2(θ0) for all I ∈ O(τ0). Using these
relations and (26), we have

∑

I∈Mm
n

r2(I, θ0)Eθ0 π̂I =
∑

I∈O(τ0)

r2(I, θ0)Eθ0 π̂I +
∑

I∈Oc(τ0)

r2(I, θ0)Eθ0 π̂I

≤ τ0r
2(θ0) +

∑

I∈Oc(τ0)

r2(I, θ0)Eθ0 π̂I ≤ τ0r
2(θ0) + em−1

B
. (30)

Finally, combining the relations (24), (29) and (30), and taking into account that
r2(θ0) ≥ 1, we finish the proof of assertion (i):

Eθ0 π̂
(
‖θ − θ0‖2≥ M2r2(θ0)|X

)
≤ 6τ0

M2
+ (

√
3 + 1)em−1

M2r2(θ0)B
≤ Cor

M2
,

whereCor = 6τ0 + (
√
3+1)em−1

B = 6τ0 + 76τ0(
√
3+1)em−1

9(τ0−c3)
, andwe take, say, τ0 = c3 + 1.

The proof of assertion (ii) is essentially contained in the proof of the first assertion
(i). Indeed, notice from (24), (29) and (30) that we proved a slightly stronger bound
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Eθ0 Ê(‖θ − θ0‖2|X) = Eθ0

∑

I∈Mm
n

Ê
(‖θ − θ0‖2|X,I = I

)
π̂I ≤ Corr

2(θ0).

This bound and ‖θ̂ − θ‖2 = ‖Ê(θ |X) − θ‖2 ≤ Ê(‖θ − θ0‖2|X) imply the second
assertion (ii): Eθ0‖θ̂ − θ0‖2 ≤ Eθ0 Ê(‖θ − θ0‖2|X) ≤ Corr2(θ0).

Appendix 2

Implications: The Minimax Results over Sparsity Classes

We elucidate the potential strength of the oracle approach for sparse signals (i.e.,
m = 1). When applied appropriately, the local approach is more flexible than global
in that local result imply a whole panorama of global minimax results for all sparsity
scales (covered by the local rate) at once. Namely, suppose we have a sparsity scale
{Θ[p], p ∈ P} so that θ ∈ Θ[p] with unknown sparsity parameter p ∈ P . Next,
suppose we established for some local rate r(θ) that

r(θ) ≤ cR(Θ[p]) for all θ ∈ Θ[p], p ∈ P, (31)

with some uniform c > 0. Then, clearly, the local results (for the posterior contraction
and estimation problems) with local rate r(θ0) will imply the global adaptive results
simultaneously for all scales {Θ[p], p ∈ P} with global rate R(Θ[p]) for which
(31) is satisfied. We say that the local rate r(θ) covers these scales.

Let us consider a couple of examples of sparsity scales {Θ[p], p ∈ P} which
are covered by our local rate rm(θ0) ≤ r1(θ0) defined by (13). Let the conditions of
Theorem 1 be fulfilled.

Nearly black vectors with sparsity level pn = nγ , γ ∈ (0, 1) as n → ∞,

�0[pn] = {θ ∈ R
n : #(1 ≤ i ≤ n : θi = 0) ≤ pn}.

It is a well-known fact that the minimax estimation rate over the class of nearly
black vectors �0[pn] is R2(�0[pn]) = 2pn log(n/pn)(1 + o(1)) as n → ∞ (see
Donoho et al. [8]). For pn = nγ with γ ∈ (0, 1), this reduces to R2(�0[pn]) =
2pn log(n/pn)(1 + o(1)) = O(pn log n).

We relate this minimax rate to the one-level oracle rate r21 (θ0) (i.e., m = 1), θ0 ∈
�0[pn], by taking I∗ = I∗(θ0) = (I c∗ , I∗) with I∗ = I∗(θ0) = {i ∈ Nn : θ0,i = 0}:

sup
θ0∈�0[pn ]

r21 (θ0) ≤ sup
θ0∈�0[pn ]

r21 (I∗, θ0) ≤ pn log n = O(R2(�0[pn])).

We thus have the property (31) for Θ[p] = �0[pn]. Hence, Theorem 1 immediately
implies the adaptive minimax results on the estimation and contraction rate prob-
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lems for the empirical Bayes posterior π̂(θ |X). We summarize these results in the
following corollary.

Corollary 1 Let the empirical Bayes posterior π̂(θ |X) be defined by (6) and θ̂ be
defined by (9). Then there exist constants C, c > 0 (depending only on K , κ) such
that for any M > 0,

sup
θ0∈�0[pn ]

Eθ0‖θ̂ − θ0‖2 ≤ c pn log n,

sup
θ0∈�0[pn ]

Eθ0 π̂
(‖θ − θ0‖2 ≥ Mpn log n|X) ≤ C

M
.

Weak �s-balls for s ∈ (0, 2) with sparsity level pn = nγ , γ ∈ (0, 1) as n → ∞,

ms[pn] =
{
θ ∈ R

n : 1
n max
1≤i≤n

i |θ[i]|s ≤ ( pn
n

)s
}
,

where |θ[1]| ≥ · · · ≥ |θ[n]| are ordered values of (|θi |, i ∈ Nn).
Denote j = Oθ (i) if |θi | = |θ[ j]|, with the convention that in the case |θi1 | =

· · · = |θik | for i1 < · · · < ik we let Oθ (il+1) = Oθ (il) + 1, l = 1, . . . , k − 1. The

minimax estimation rate over this class is R2(ms[pn]) = n(
pn
n )s

(
log( n

pn
)
)(2−s)/2

(1 +
o(1)) as n → ∞ (see Donoho and Johnstone [7]). Since pn = nγ , γ ∈ (0, 1),
R2(ms[pn]) = n(

pn
n )s

(
log( n

pn
)
)(2−s)/2

(1 + o(1)) = O(n1−s psn(log n)(2−s)/2). Then,

with p∗
n = ( p2nn

(2/s−2)

log n

)s/2
, I∗ = I∗(θ0) = (I c∗ , I∗), I∗ = I∗(θ0) = {i ∈ Nn : Oθ0(i) ≤

p∗
n}, we derive that for large enough n

sup
θ0∈ms [pn ]

r21 (θ0) ≤ sup
θ0∈ms [pn ]

r21 (I∗, θ0) ≤ p∗
n log n + p2nn

(2−2s)/s
∞∑

i=p∗
n+1

i−2/s

≤ p∗
n log n + s

2−s p
2
nn

(2−2s)/s p∗(s−2)/s
n ≤ cn1−s psn(log n)(2−s)/2 = O(R2(ms[pn])).

(32)

We established (31) for Θ[p] = ms[pn], thus Theorem 1 implies the next corollary.

Corollary 2 Let the empirical Bayes posterior π̂(θ |X) be defined by (6) and θ̂ be
defined by (9). Then there exist constants C, c > 0 (depending only on K , κ) such
that for any M > 0,

sup
θ0∈ms [pn ]

Eθ0 π̂
(‖θ − θ0‖2 ≥ Mn1−s psn(log n)(2−s)/2|X) ≤ C

M
,

sup
θ0∈ms [pn ]

Eθ0‖θ̂ − θ0‖2 ≤ c n1−s psn(log n)(2−s)/2.
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Remark 2 Recall that r2m(θ0) ≤ r21 (θ0) ≤ R2(Θ) with both Θ = �0[pn] or Θ =
ms[pn], for all m ≥ 2, a2, . . . , am . Therefore by using multilevel sparsity model,
we always improve upon the traditional minimax results for sparsity classes.

Appendix 3

Simulation Study

We simulated data according to the model (1) with dimension n = 500. We used sig-
nals θ0 = (θ0,1, . . . , θ0,n) of the form θ0 = (a1, . . . , a1, . . . , am, . . . , am, A, . . . , A),
where a1 = 0 and the value A is assumed to be unknown. Denote the cardinality of
a j values in the signal θ0 by Naj , j = 1, . . . ,m. When performing simulations for
the empirical Bayes posterior π̂(θ |X) and some posterior based quantities, we used
the values of the parameters K = 10 and κ = 0.55.

First, we did a small simulation study for the four estimators based on π̂(θ |X):
empirical Bayes posterior (EBP) mean given by (9) for multilevel sparse sequences
(a1, a2, . . . , am are known values in advance, i.e., m > 1), EBP mean for one-level
sparsity (only a1 = 0 is known, a2, . . . , am are unknown, i.e., m = 1) and the esti-
mator θ̌ (to be defined later) for multilevel sparse sequences and one-level sparsity,
respectively. The construction of the estimator θ̌ is straightforward (basically, it can
be reduced to a hard thresholding estimator with a certain threshold). Computation
of EBP mean, which is a shrinkage estimator, is bit more involved. We provide some
technical preliminaries for efficient computation of the mean and θ̌ with respect to
the empirical Bayes posterior π̂(θ |X).

EBPmean. According to (9), the EBP mean θ̂ = ∫
θdπ̂(θ |X) is a random vector in

R
n . We can compute its ith coordinate as follows:

θ̂i =
m∑

j=2

a jφ(Xi , a j , 1)

nκQi
+ Xi

nκ
√
2π(K + 1)Qi

, i = 1, . . . , n,

where

Qi = φ(Xi , 0, 1) +
m∑

j=2

φ(Xi , a j , 1)

nκ
+ 1

nκ
√
2π(K + 1)

, i = 1, . . . , n.

Estimator θ̌ . By applying the empirical Bayes approach with respect to I, we obtain
that
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Ǐ = arg max
I∈Mm

n

π̂(I = I|X) = arg max
I∈Mm

n

{
−

m∑

j=1

∑

i∈I a j
(Xi−a j )

2

2 + log λI − |I |
2

log(K + 1)
}

= arg min
I∈Mm

n

{ m∑

j=1

∑

i∈I a j
(Xi −a j )

2 + 2κ
m∑

j=2

|I a j | log n+ |I |(2κ log n + log(K + 1)
)}

. (33)

Plugging in this into π̂I(θ |X) defined by (7) gives the corresponding empirical
(now “twice empirical”: with respect toμm+1,i and with respect to I) Bayes estimator
for θ :

θ̌ = θ̌ (Ǐ) =
m∑

j=1

a j1{i ∈ Ǐ a j } + Xi1{i ∈ Ǐ }, i ∈ Nn. (34)

Table1 shows estimates of the mean square errors Eθ0‖θ̂ − θ0‖2. These results
are the average (square) error of 100 estimates θ̂1, . . . , θ̂100 computed from 100
data vectors simulated independently from the model (1). Besides, we also simulate
the classical hard-thresholding HT, hard-thresholding oracle HTO and the empirical
Bayes mean EBM considered by Johnstone and Silverman (2004) with a standard
Laplace prior. The hard-thresholding HT and hard-thresholding oracle HTO, given
by θ̂ HT

i = Xi1{|Xi | >
√
2 log n} and θ̂ HT O

i = Xi1{|Xi | >
√
2 log(n/pn)}. Note that

the last estimator uses the “oracle” value of the sparsity parameter pn , all the other
estimators do not.

According to the results of Table1, our estimators based on the empirical Bayes
posterior π̂(θ |X) are competitive to the other ones.

For further illustration in Fig. 1 we visualize 95% credible intervals (gray bars) for
θ0 with parameters a1 = 0, a2 = 5, A = 9, Na1 = 45, Na2 = 45, NA = 10, n = 100
and the empirical Bayes posterior means (red dots), by simulating 1000 draws from

Table 1 Average square errors of seven estimators computed on 100 data vectors X of length
n = 500 simulated from model (1) with θ0 = (a1, . . . , a1, . . . , am , . . . , am , A, . . . , A)

Estimators Average square errors Average square errors

a1 = 0, a2 = 5, A = 9
Na1 = 225, Na2 = 225,
NA = 50

a1 = 0, a2 = 3, a3 = 6, A = 9
Na1 = 150, Na2 = 150,
Na3 = 150, NA = 50

EBP mean, m > 1 187 449

EBP mean, m = 1 411 807

θ̌ ,m > 1 214 598

θ̌ ,m = 1 385 980

EBM 612 688

HT 607 1249

HTO 384 477
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Fig. 1 Empirical Bayes posterior means (red dots) and 95% credible intervals (gray bars) for
the signal θ0 = (0, . . . , 0, 5, . . . , 5, 9, . . . , 9) of length n = 100, where N0 = 45, N5 = 45 and
N9 = 10

the empirical Bayes posterior distribution π̂(θ |X) and plotting the 95% draws out
of the 1000 that are closest to the EBP mean. Note that this picture shows good
coverage.
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Likelihood Tempering in Dynamic Model
Averaging

Jan Reichl and Kamil Dedecius

Abstract We study the problem of online prediction with a set of candidate mod-
els using dynamic model averaging procedures. The standard assumptions of model
averaging state that the set of admissible models contains the true one(s), and that
these models are continuously updated by valid data. However, both these assump-
tions are often violated in practice. Themodels used for online tasks are oftenmore or
less misspecified and the data corrupted (which is, mathematically, a demonstration
of the same problem). Both these factors negatively influence the Bayesian infer-
ence and the resulting predictions. In this paper, we propose to suppress these issues
by extending the Bayesian update by a sort of likelihood tempering, moderating the
impact of observed data to inference. Themethod is compared to the generic dynamic
model averaging and to an alternative solution via sequential quasi-Bayesianmixture
modeling.

Keywords Model averaging · Model uncertainty · Prediction · Sequential estima-
tion · Tempered likelihood

1 Introduction

In many real-world applications of the statistical control theory we are interested
in online prediction of process outcomes, evaluated by an a priori specified process
model. In practice, it is mostly assumed that the adopted process model is suffi-
ciently close to the true observations-generating model. However, this (surprisingly
still prevailing) assumption is often violated due to various reasons, e.g., different
operational regimes, noise heteroskedasticity or even unknown but complicated dis-
tribution, imperfect physical characterization of the observed process etc. If there
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exists a class of potentially admissible candidate models, maybe with different input
explanatory data and valid through different periods of time, the model switching
and averaging procedures represent an appealing way around the model uncertainty
problem [7, 17]. Model switching is mostly based on the assumption of mutually
exclusive models. Their probabilities are sequentially assessed and the model with
the highest probability is used for a corresponding period of time. Model averag-
ing virtually removes this exclusivity via concurrent predictive-performance-based
assessment of uncertainty about the candidate models.

Although the model switching and averaging approaches admit that the adopted
process models are not exact, they still ignore the possible misspecification issue in
their inference. Indeed, even the best available models may be more or less misspec-
ified, and provide only an approximation to the distribution of the observations.
Although the consistency of the Bayesian inference guarantees the convergence
of parameter estimates to the value minimizing the Kullback–Leibler divergence
between the true distribution and its (imprecise) model [4], the results may be unac-
ceptable for real applications. Among the typical demonstrations of such effects are
negative estimates of strictly positive variables (fuel consumption, number of parti-
cles, object length etc.). Even worse, the standard Bayesian procedures are generally
not robust to contamination by observations following other than the specifiedmodel,
or to complete model misspecification [14].

This paper adheres to the dynamic model averaging (DMA) realm, providing
parallel online assessment of candidate models probabilities. If the modeling goal
lies in evaluating the predicted values, the DMA-point prediction is represented by
a convex combination of individual models’ predictions, whose contributions are
proportional to the candidate model probabilities. The DMA method was originally
proposed for linear models by Raftery et al. [17] as an online extension of the sta-
tic Bayesian model averaging [12, 16], and later formulated for sequential logistic
regression by McCormick et al. [13]. Since then, DMA attained a significant focus,
mostly in econometrics and finance, e.g. [2, 3, 6, 9–11] to name a few.

More specifically, we focus on the issue of assimilation of model-incompatible
information (observations) into the prior distribution during the online estimation
process, where the prior distributions involved in DMA are updated regardless of
the candidate models probability. It leads to unreliable estimates and may degrade
the prediction quality for a long time period. Although the invalid information may
be gradually eliminated by means of forgetting procedures (see [5] for an extensive
overview), a rational argument is to prevent it from entering the prior distribution.
For this reason, we study the possibilities of online likelihood tempering during the
Bayesian inference and prediction. Ourmethod is inspired by theweighted likelihood
[20], recently appearing also in the c-posterior approach [14] aiming at the same
objective – the robustness to model misspecification. The approach sketched in this
paper is the first step towards extending of the c-posteriors to online modeling. The
determination of tempering factors is based on the actual predictive performance
of the particular models. In particular, we study two possibilities: (i) a simplified
approach based on the (dis)similarity of the most likely observation and the true
one, and (ii) a model-oriented approach where the model weights and tempering
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factors are estimated by means of the quasi-Bayesian framework for online mixture
inference [8, 19].

For completeness we remark that the likelihood tempering may be found in the
Markov chain Monte Carlo as the MC3 likelihood tempering method [1], however,
the motivation is different.

The paper is organized as follows: Sect. 2 overviews the principles of the dynamic
model averaging method. It also sheds some light on the studied problem of the
connection between model uncertainty and observations assimilation. Section3 is
devoted to the proposed tempered sequential Bayesian update. Section4 studies an
alternative approach inspired by the quasi-Bayesian mixture modeling. The ongoing
Sect. 5 illustrates the effect of tempering on a simulation example. Finally, Sect. 6
concludes the paper.

2 On-Line Prediction with a Set of Admissible Models

In this section we describe the principles of the dynamic model averaging applied
to a set of K admissible candidate models indexed by k = 1, . . . , K . We consider
discrete-time Bayesian modeling of a dynamic process with common observations
yt that are more or less determined by known possibly model-specific explanatory
variables xk,t , where t = 0, 1, . . . is the discrete time index. Assume, that some
parametric models – probability density functions pk(yt |xk,t , θk) parameterized by
θk –are the admissible candidates for this purpose, and that (proper) prior distributions
πk(θk |xk,0:t−1, y0:t−1) serve for their inference. The variables

xk,0:t−1 = {xk,0, . . . , xk,t−1} and y0:t−1 = {y0, . . . , yt−1}

express the statistical knowledge about θk up to time instant t − 1, and xk,0 and y0
stand for pseudo-observations, expressing the initial prior knowledge before incorpo-
ration of the first observations. Let the modeling be performed under the uncertainty
which model is true at the moment. The task is online prediction of yt from xk,t and
θk by means of model averaging.

2.1 Dynamic Model Averaging

Asmentioned in the Introduction, the dynamicmodel averaging (DMA)methodology
of Raftery et al. [17] extends Leamer’s static Bayesianmodel averaging [12] to online
problems, where the predictions are evaluated from sequentially acquired data.

The basic principle of DMA is that it assigns the candidate models pk(yt |xk,t , θk)

with probabilities (weights) wk,t taking values in the probabilistic (K − 1)-simplex,
that express the degree of evidence that these models are valid at the particular time
instants. Recall, that the goal is the online prediction of the next observation yt
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given known explanatory variables xk,t . Each of the models provides its own point
prediction, mostly represented by the expected value

ŷk,t = E
[

yt |xk,0:t,y0:t−1

] =
∫

yt pk(yt |x0:t , y0:t−1)dyt , (1)

where

pk(yt |x0:t , y0:t−1) =
∫

pk(yt |xt , θk)πk(θk |xk,0:t−1, y0:t−1)dθk (2)

is the predictive distribution connected with the kth model pk(yt |xk,t , θ). The inte-
grations are over the spaces of yt and θk , respectively. The DMA point prediction
reflects the uncertainty about the particular models by taking their probabilities into
account, that is, it averages over all the available predictions,

ŷt =
K

∑

k=1

wk,t−1 ŷk,t . (3)

After acquiring the observation yt , the update of the probabilities wk,t−1 reflects the
predictive performance of the particular models,

wk,t ∝ wk,t−1 · pk(yt |xk,0:t , y0:t−1). (4)

In practice, the distribution of model weights may be considerably influenced by
outdated information. This issue can be resolved by an artificial increase of the uncer-
tainty about theweights, e.g., by exponential forgetting, flatteningw1,t−1, . . . , wK ,t−1

by a factor α ∈ [0, 1] as proposed by Peterka [15]. Furthermore, aberrant observa-
tions may get some wk,t−1 too close to zero. This situation virtually eliminates the
related models, as it is hard to recover from it. A workaround is to proceed with a sta-
bilization additive constant during the weights update (4), e.g. c = 10−3/K proposed
in [17]. The resulting equivalent of (4) then has the form

wk,t ∝ (wα
k,t−1 + c) · pk(yt |xk,0:t , y0:t−1). (5)

The estimation of parameters θk, k = 1, . . . , K is not influenced by DMA and
has the form of the standard Bayes’ theorem

πk(θk |xk,0:t , y0:t ) ∝ pk(yt |xk,t , θk)πk(θk |xk,0:t−1, y0:t−1). (6)

We emphasize, that this is where the following question arises:

The dynamic model averaging (DMA) is used to assess the probability of several candidate
models. Would it be possible and useful to take this probability into account in Eq. (6)?
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In other words, if one knows from wk,t that yt are not well explained by
pk(yt |xk,t , θk), why should one violate the estimates provided by πk(θk |·)? For
instance, if the reality switches between two models, their prior distributions are
updated regardless of which of the models is currently valid.

Below, we propose to solve this issue by likelihood tempering.

3 Tempered Bayesian Update

Let us drop themodel indices k in this section. The standard Bayesian theory assumes
that there is a true observations-generating model q(yt |xt ) which is approximated
by the statistician using a parametric model p(yt |xt , θ), ideally as close as possi-
ble. Under certain assumptions, the posterior estimates then converge to the value
minimizing the Kullback–Leibler divergence of the two models,

̂θ = argmin
θ∈Θ

D
(

q(yt |xt )
∣

∣

∣

∣p(yt |xt , θ)
)

,

where Θ is the parameter space, see, e.g., [4]. That is, the classical Bayesian way of
thinking admits, that there is a possible disagreement between the true but unknown
model and the employed (approximate) model, and relying on the consistency of the
Bayesian posterior distribution of θ , it updates the prior distribution via the Bayes’
theorem

π(θ |x0:t , y0:t ) ∝ p(yt |xt , θ)π(θ |x0:t−1, y0:t−1). (7)

However, from the Bayesian asymptotic theory it is well known that (7) requires
certain assumptions to provide “reasonable” results. Naturally, if these assumptions
are not satisfied, e.g., some observations are not explained by themodel, the posterior
estimates are inappropriately influenced (biased) and unusable for prediction. This
effect is pronounced in DMA, where the standard Bayesian update is used, too.

We propose to solve this issue by a weighted variant of the Bayesian update,
suppressing the influence of such observations similarly as in theMiller andDunson’s
version for static estimation [14]. It consists of a step to increase the uncertainty about
the model using a tempering (flattening) factor ζt ∈ [0, 1],

π(θ |x0:t , y0:t ) ∝ [p(yt |xt , θ)]ζt π(θ |x0:t−1, y0:t−1). (8)

Miller andDunson also propose amethod for choosing a suitable value of ζt , however,
it is not suitable for online cases.

A suboptimal solution of the first choicemay be to base the factor on the predictive
density and to compare the likelihood of the actually observed yt with the expected
ŷt , i.e., the point estimate,

ζt = p(yt |x0:t , y0:t−1)

p(ŷt |x0:t , y0:t−1)
. (9)
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Naturally, it is possible to use the mode or other statistics in place of the mean
value. Although this solution may lead to uncertainty underestimation, it could be
easily counterbalanced by flattening of the posterior distribution, routinely used in
engineering practice [5]. The predictive likelihood is analytically tractable in many
practical cases, e.g. the linear regression models or Kalman filters, which allows for
an easy computation of the factors in real time.

To summarize, the purpose of the proposed tempering update is to (i) penalize
model misspecification, and (ii) to increase the robustness of estimation to conta-
mination with other processes. The coefficient ζt can easily suppress the effect of
unlikely observations (with respect to the predictive likelihood). If ζt → 0,

π(θ |x0:t , y0:t ) = π(θ |x0:t−1, y0:t−1),

suppressing the influence of the extremely unlikely observation, while ζt → 1 recov-
ers the standard Bayesian update. We suggest that this procedure should be used for
estimation of parameters of models involved in DMA.

4 Mixture-Based Approach

Another possibility of model mixing1 is to adopt the viewpoint that the class
{pk(yt |xk,t , θk), k = 1, . . . , K } is a set of mixture components with weightsw1, . . . ,

wK , and to model these weights via the Dirichlet prior distribution whose hyperpa-
rameters [κ1, . . . , κK ] are updated in the sense of the quasi-Bayesian approach [19],

π(w|x1:K ,0:t , y0:t ) ∝
K

∏

k=1

w
ζk,t

k

︸ ︷︷ ︸

multinomial

K
∏

k=1

w
κk,t−1−1
k

︸ ︷︷ ︸

Dirichlet prior

, (10)

where ζk,t is the estimate of the active component indicator,

ζk,t ∝ κk,t−1
∑K

l=1 κl,t−1

pk(yt |xk,0:t , y0:t−1).

Similarly to the Bayesian counterparts of the expectation-maximization algorithms,
the quasi-Bayesian mixture estimation already assumes weighted Bayes’ theorem
for the estimation of component parameters,

π(θk |xk,0:t , y0:t ) ∝ [

pk(yt |xk,t , θk)
]ζk,t

π(θk |xk,0:t−1, y0:t−1).

1Proposed in personal communication by Dr. Kárný (Institute of Information Theory and Automa-
tion, Czech Academy of Sciences).



Likelihood Tempering in Dynamic Model Averaging 73

The analytical updates of Dirichlet prior hyperparameters (10) are given by

κk,t = κk,t−1 + ζk,t .

Finally, the prediction of the upcoming observation is similarly to DMA a convex
combination of component predictions weighted by component weights,

ŷt = 1

κ0,t

K
∑

k=1

κk,t ŷk,t , where κ0,t =
K

∑

k=1

κk,t . (11)

The key differences between this approach and the weighted DMA proposed above
are apparent from the equations. First and foremost, the component weights are
modelled as static (or slowly varying if a forgetting procedure is used). In the authors’
viewpoint, this is where the main drawback lies. In many practical situations, the
models switch rather abruptly, which needs to be reflected by quick changes of their
weights. However, the forgetting procedures can be effective only in the cases of
slow variations [5], and under abrupt changes lead to significantly biased weights
estimation. This will be demonstrated in the following section. For this reason, this
section is rather conceptual and included for completeness as another model-based
dynamic approach to model mixing.

5 Simulation Results

In this section we present some simulation results comparing the studied strategies.
The experiment is done on synthetic data generated by threemodels and contaminated
with Laplacian noise. The performance is measured by the prediction mean squared
error (MSE) and the mean absolute error (MAE).

The data set consists of 500 samples generated from the following normal models

yt = −0.2 − 0.15x (1)
t + εt , t = 150, . . . , 300,

yt = 0.5 + 0.75x (2)
t + εt , t = 1, . . . , 150 and t = 300, . . . , 400,

yt = 0.95x (3)
t + εt , t = 400, . . . , 500,

with regressors x (i)
t ∼ N (μi , 1), where μ1 = 0, μ2 = 2 and μ3 = 3. The normal

noise variable εt is drawn from N (0, 1.252).
Two different scenarios are studied:

1. ‘True’ model scenario where the three models are used to generate data and no
misspecification is present. Effectively, it is a true model switching scenario.

2. Misspecification scenariowhere the data is additionally contaminated by a heavy-
tailed Laplacian noise, namely by 200 samples from zero-mean Laplace distrib-
ution with a scale 2. These samples are randomly added to the data.
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Fig. 1 Comparison of contaminated and non-contaminated data set

The resulting data sets depicts Fig. 1, where the red crosses indicate the ‘true’ model
scenario data, while the blue dots show Laplacian noise-contaminated data for the
misspecified scenario.

The process yt is modeled with three normal linear models

yt

∣

∣xt , β, σ 2 ∼ N (

xᵀβ, σ 2
)

, (12)

where xt represents 2-dimensional real regressors x (1)
t , . . . , x (3)

t . Clearly, these mod-
els are not appropriate for the misspecification scenario with the Laplacian noise.

The prior placed on β(i), σ 2,(i) is the normal-inverse gamma distribution in the
compatible form conjugate to the exponential family form of the normal model (12)
(more on this can be found, e.g., in [15]) with the same initialization for all considered
models, namely with the sufficient statistic accumulating hyperparameter and the
scalar degrees of freedom

ξ
(i)
0 = diag(0.1, 0.01, 0.01) and ν

(i)
0 = 10,

respectively. The posterior predictive distribution is in this setting the Student’s dis-
tribution [15].

Three averaging strategies are studied:

1. Basic dynamic model averaging (DMA) of Raftery et al. [17],
2. Tempered dynamic model averaging (t-DMA) proposed in Sect. 3, and
3. Quasi-Bayesian approach (q-B) inspired by mixture modelling and discussed in

Sect. 4.
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Table 1 PredictionMSEs andMAEs and averagedmodels weights ω̂ of all tested strategies (DMA,
tempered DMA and the quasi-Bayesian approach) and single models without switching/averaging.
For comparison, MSE true andMAE true denote error statistics computed with respect to the actual
non-contaminated observation

Model/Strategy MSE MAE MSE
true

MAE
true

ω̂1 ω̂2 ω̂3

p1 7.59 1.92 5.13 1.75 – – –

p2 5.44 1.47 2.61 1.22 – – –

p3 5.22 1.37 2.51 1.13 – – –

DMA 4.86 1.29 2.14 1.08 0.21 0.41 0.36

t-DMA 4.47 1.14 1.77 0.91 0.32 0.38 0.30

q-B 6.11 1.35 3.21 1.16 0.17 0.37 0.44

The initial setting of all three strategies is identical. Namely, the initial model weights
are uniform, the initial prior for weights in q-B is the flat Dirichlet distribution,
symmetric and uniform over the related simplex.

The predictive performance ismeasured in terms of themean squared error (MSE)
and themean absolute error (MAE). Consistentlywith the forecasting theory, the goal
is to minimize these measures.

The results are summarized inTable1 for the individualmodelswithout switching,
and for all three studied averaging approaches. Both the misspecification scenario
(MSE andMAE) and the ‘true model’ scenario (MSE true andMAE true) are shown.
From the results one may conclude that the tempered DMA performs best (in terms
of MSE and MAE). That is, the weighted Bayesian update (8) effectively suppresses
the influence of data that are not explained by the model(s) in use. The classical
DMA strategy performs a bit worse as expected. The quasi-Bayesian approach leads
to a prediction quality inferior to both t-DMA and DMA. Anyway, it can provide
results better than certain isolated models.

The time evolution of the models weights is depicted in Fig. 2 for both the original
DMA and the proposed tempered version. The evolution of q-B is omitted for its
inferior quality. Apparently, the initial learning period is very similar in both DMA
and t-DMA, however, the model switching after t = 150 is much better reflected
by t-DMA (the weight of the corresponding model is mostly close to 1). Another
model switches are better detected by t-DMA too, although the weights are not so
pronounced. One can conclude that t-DMA is significantly more sensitive than the
basic DMA.2

To summarize, the experimental results show that the dynamic model averaging
strategy performswell even in complicated conditions, where the noise properties are
different from the assumed and the models differ from the true ones. The proposed
tempering strategy leads to better results than the pure DMA ignoring the fact that
the observations are not well described by the models and fully assimilating them

2A thorough sensitivity analysis is postponed to further research.
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Fig. 2 Time evolution of model weights for the DMA and tempered-DMA. The correspondence
between models and line types is the same in both plots

into the prior distributions. Our experience confirms that if the true model is present,
its weight is dominant.

6 Conclusion

Applied statistical theory assumes that themodels in use are relatively close to the true
observations-generating models, and hence that the results (predictions, estimates)
are close to the true values. However, the real-world phenomena are often rather
roughly approximated by models. The standard dynamic model averaging provides
a way around this issue by means of a concurrent assessment of models uncertainty,
and by averaging over the results taking this uncertainty into account. However, it still
neglects it at the level of the Bayesian update. In this paper, we focus specifically on
this issue and propose to use a weighted – tempered – version of the Bayes’ theorem,
suppressing the impact of unlikely observations to the inference. The simulation
example demonstrates that it provides an improvement of estimation quality.
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Localization in High-Dimensional Monte
Carlo Filtering

Sylvain Robert and Hans R. Künsch

Abstract The high dimensionality and computational constraints associated with
filtering problems in large-scale geophysical applications are particularly challenging
for the Particle Filter (PF). Approximate but efficient methods such as the Ensem-
ble Kalman Filter (EnKF) are therefore usually preferred. A key element of these
approximate methods is localization, which is a general technique to avoid the curse
of dimensionality and consists in limiting the influence of observations to neighbor-
ing sites. However, while it works effectively with the EnKF, localization introduces
harmful discontinuities in the estimated physical fieldswhen applied blindly to thePF.
In the present paper, we explore two possible local algorithms based on the Ensem-
ble Kalman Particle Filter (EnKPF), a hybrid method combining the EnKF and the
PF. A simulation study in a conjugate normal setup allows to highlight the trade-
offs involved when applying localization to PF algorithms in the high-dimensional
setting. Experiments with the Lorenz96 model demonstrate the ability of the local
EnKPF algorithms to perform well even with a small number of particles compared
to the problem size.

Keywords Particle Filter · Ensemble Kalman Filter · Data Assimilation · Filtering
in High Dimension · Curse of Dimensionality · Localized Filter Algorithms

1 Introduction

Monte Carlo methods are becoming increasingly popular for filtering in large-scale
geophysical applications, such as reservoir modeling and numerical weather pre-
diction, where they are often called ensemble methods for data assimilation. The
challenging (and interesting) peculiarity of this type of applications is that the state
space is extremely high dimensional (the number of dimensions of the state x is typ-
ically of the order of 108 and the dimension of the observation y of the order of 106),
while the computational cost of the time integration step limits the sample size to
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less than a hundred. Because of those particularly severe constraints, the emphasis is
on developing approximate but highly efficient methods, typically relying on strong
assumptions and exploiting parallel architectures.

The Particle Filter (PF) provides a fully general Bayesian solution to filtering [1,
6, 13], but it is well-known that it suffers from sample degeneracy and cannot be
applied to high-dimensional settings [16]. The most popular alternative to the PF in
large-scale applications is the Ensemble Kalman Filter (EnKF) [2, 3], a successful
but heuristic method, which implicitly assumes that the predictive distribution is
Gaussian.

Three main routes for adapting the PF to high-dimensional settings can be identi-
fied. Thefirst one is to use an adaptivePFwith a carefully chosen proposal distribution
[13, 18]. A second approach is to build hybrid methods between the EnKF and the
PF, as for example the Ensemble Kalman Particle Filter (EnKPF) [4]. A third route
is localization, as it is a key element of the success of the EnKF in practice and could
avoid the curse of dimensionality [14, 16].

The first approach requires an explicit model for the transition probabilities, which
is typically not available in practical applications. Furthermore [17] showed that even
with the optimal proposal distribution the PF suffers from the curse of dimension-
ality. Therefore in the present paper we focus on the second and third approaches
and explore some possible localized algorithms based on the PF and the EnKPF. In a
simulation study, we extend an example of [16] to illustrate how localization seem-
ingly overcomes the curse of dimensionality, but at the same time introduces some
harmful discontinuities in the estimated state. In a second experiment we show how
local algorithms can be applied effectively to a filtering problem with the Lorenz96
model [10]. The results from these numerical experiments highlight key differences
between the algorithms and demonstrate that local EnKPFs are promising candidates
for large-scale filtering applications.

2 Ensemble Filtering Algorithms

Consider a state space model with state process (xt ) and observations (yt ), where
the state process evolves according to some deterministic or stochastic dynamics
and the observations are assumed to be independent given the state process, with
likelihood p(xt |yt ). The goal is to estimate the conditional distribution of xt given
y1:t = (y1, . . . , yt ), called the filtering distribution and which we denote by π

f
t . In

general it is possible to solve this problem recursively by alternating between a
prediction step where the filtering distribution at time (t − 1) is propagated into the
predictive distribution π

p
t at time t , and an update step, also called assimilation,

where the predictive distribution is updated with the current observation to compute
π

f
t . The update step is done by applying Bayes’ rule as π

f
t (x) ∝ π

p
t (x) · p(x |yt ),

where the predictive distribution is the prior and the filtering distribution the posterior
to be estimated.

Sequential Monte Carlo methods [1] approximate the predictive and filtering
distributions by finite samples, or ensembles of particles, denoted by (x p,i

t ) and
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(x f,i
t ) respectively, for i = 1, . . . , k. The update step consists in transforming the

predictive ensemble (x p,i
t ) into an approximate sample from the filtering distribution

π
f
t . We briefly present the PF and EnKF in this context and give an overview of

the EnKPF. Henceforth we consider the update step only and drop the time index t .
Additionally for the EnKF and EnKPF we assume that the observations are linear
and Gaussian, i.e. p(x |y) = φ(y; Hx, R), the Gaussian density with mean Hx and
covariance R evaluated at y.

The Particle Fillter approximates the filtering distribution as a mixture of point
masses at the predictive particles, reweighed by their likelihood. More precisely:

π̂
f
PF (x) =

k∑

i=1

wi δx p,i (x), wi ∝ φ(y; Hx p,i , R). (1)

A non-weighted sample from this distribution can be obtained by resampling, for
example with a balanced sampling scheme [9]. The PF is asymptotically correct (also
for non-Gaussian likelihoods), but to avoid sample degeneracy it needs a sample size
which increases exponentially with the size of the problem (for more detail see [16]).

The Ensemble Kalman Filter is a heuristic method which applies a Kalman Filter
update to each particle with stochastically perturbed observations. More precisely it
constructs (x f,i ) as a balanced sample from the following Gaussian mixture:

π̂
f
EnK F (x) =

k∑

i=1

1

k
φ(x; x p,i + K̂ (y − Hx p,i ), K̂ RK̂ ′), (2)

where K̂ is the Kalman gain estimated with �̂ p, the sample covariance of (x p,i ).
The stochastic perturbations of the observations are added to ensure that the filter
ensemble has the correct posterior covariance on expectation.

The Ensemble Kalman Particle Filter combines the EnKF and the PF by decom-
posing the update step into two stages as π f (x) ∝ π p(x) · p(x |y)γ · p(x |y)1−γ ,
following the progressive correction idea of [11]. The first stage, going from π p(x)
to πγ (x) ∝ π p(x) · p(x |y)γ is done with an EnKF. The second stage is done with
a PF and goes from πγ (x) to π f (x) ∝ πγ (x) · p(x |y)1−γ . The resulting posterior
distribution can be derived analytically as the following weighted Gaussian mixture:

π̂
f
EnK PF (x) =

k∑

i=1

αγ,i φ(x; μγ,i , �γ ), (3)

where the expressions for the parameters of this distribution and more details on
the algorithm can be found in [4]. To produce the filtering ensemble (x f,i ), one first
samples the mixture components with probability proportional to the weights αγ,i ,
using for example a balanced sampling scheme, and then adds an individual noise
term with covariance �γ to each particle. The parameter γ defines a continuous
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interpolation between the PF (γ = 0) and the EnKF (γ = 1). In the present study
the value of γ is either fixed, for the sake of comparison, or chosen adaptively.
In the later case γ is chosen such that the equivalent sample size of the filtering
ensemble is within some acceptable range. Alternative schemes for choosing γ such
as minimizing an objective cost function are currently being investigated but are
beyond the scope of this work.

3 Local Algorithms

Localization consists essentially in updating the state vector by ignoring long range
dependencies. This is a sensible thing to do ingeophysical applicationswhere the state
represents discretized spatially correlated fields of physical quantities. By localizing
the update step and using local observations only, one introduces a bias, but achieves
a considerable gain in terms of variance reduction for finite sample sizes. For local
algorithms the error is asymptotically bigger than for a global algorithm, but it is
not dependent on the system dimension anymore and therefore avoids the curse
of dimensionality. Furthermore, local algorithms can be efficiently implemented in
parallel and thus take advantage of modern computing architectures.

The Local EnKF (LEnKF) consists in applying a separate EnKF at each site, but
limiting the influence of the observations to sites that are spatially close (there are
differentways to accomplish this in practice, see for example [7, 8, 12]).Analogously,
we define the Local PF (LPF) as a localized version of the PF, where the update
is done at each location independently, considering only observations in a ball of
radius �. In order to avoid arbitrary “scrambling” of the particles indices, we use
a balanced sampling scheme [9], and some basic ad-hoc methods to reduce the
number of discontinuities, but we do not solve this problem optimally as it would
greatly hinder the efficiency of the algorithm.

For the EnKPF we define two different local algorithms: the naive-local EnKPF
(naive-LEnKPF), in which localization is done exactly as for the LEnKF, and the
block-local EnKPF (block-LEnKPF), in which the observations are assimilated
sequentially but their influence is restricted to a local area. The naive-LEnKPF does
not take particular care of the introduced discontinuities beyond what is done for the
PF, but it is straightforward to implement. The block-LEnkPF, on the other hand,
uses conditional resampling in a transition area surrounding the local assimilation
window, which ensures that there are no sharp discontinuities, but it involves more
overhead computation. For more detail about the local EnKPF algorithms see [15].

4 Simulation Studies

We conducted two simulation studies: first a one-step conjugate normal setup where
the effect of localization can be closely studied, and second a cycled experiment
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with the Lorenz96 model, a non-linear dynamical system displaying interesting non-
Gaussian features.

4.1 Conjugate Normal Setup

We consider a simple setup similar to the one in [16], with a predictive distribution
π p assumed to be a N -dimensional normal with mean zero and covariance � p.
To imitate the kind of smooth fields that we encounter in geophysical applications,
we construct the covariance matrix as �

p
ii = 1 and �

p
i j = KGC(d(i, j)/r), where

KGC is the Gaspari-Cohn kernel [5], d(i, j) the distance between sites i and j on a
one-dimensional domain with periodic boundary conditions, and the radius r in the
denominator is chosen such that the covariance has a finite support of 20 grid points.
From this process we generate observations of every component of x and standard
Gaussian noise:

x ∼ N (0, � p), y|x ∼ N (x, I ). (4)

In order to study the finite sample properties of the different algorithms, we
compute the Mean Squared Error (MSE) of the ensemble mean in estimating the
value x at each location, which we denote by mse(x). Because the prior is conjugate
to the likelihood, we can compute the mse(x) of the posterior mean analytically for
known � p as the trace of the posterior covariance matrix and use this as a reference.
For the simulation we use a sample size of k = 100 and average the results over 1000
runs. It should be noted that because the predictive distribution is normal, this setup is
favorable to the EnKF and LEnKF, but the EnKPFs should still perform adequately.
For the local algorithms the localization radius � was set to 5, resulting in a local
windowof 11 grid points,which is smaller than the correlation length used to generate
the data. Later on we study the effect of � on the performance of the algorithms. For
the EnKPF algorithms the parameter γ was fixed to 0.25, which means a quarter of
EnKF and three-quarter of PF. In practice one would rather choose the value of γ

adaptively, but the exact value does not influence the qualitative conclusions drawn
from the experiments and fixing it in this way makes the comparison easier.

An example of a sample from the filtering distribution produced by different local
algorithms is shown in Fig. 1, with each particle represented as a light blue line, the
true state in dark and the observations in red. For more clarity the ensemble size is
set to 10 and the system dimension to 40. While all algorithms manage to recover
more or less the underlying state, it is clear that they vary in terms of quality. The
LPF in particular suffers from sample depletion, even when applied locally, and
displays strong discontinuities. If one looks closely at the naive-LEnKF ensemble,
discontinuities can also be identified. The block-LEnKPF and the LEnKF, on the
other hand, produce smoother posterior particles. This example is useful to highlight
the behavior of the different local algorithms qualitatively, but we now proceed to a
more quantitative assessment with a repeated simulations experiment.
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Fig. 1 Example of analysis ensemble with different local algorithms. Each particle is a light blue
line, the true state in dark and the observations in red. The ensemble size is restricted to 10 and the
domain size to 40 for better legibility

Beating the curse of dimensionality: In the first row of Fig. 2, the mse(x) is plotted
as a function of the system dimension N , for the global algorithms on the left and
the local algorithms on the right. The values are normalized by the optimal mse(x)
to make them more interpretable. The PF degenerates rapidly, with an mse(x) worse
thanusing the priormean (upper dashed line). TheEnKFand theEnKPF suffer aswell
from the curse of dimensionality, although to a lesser extent. The local algorithms,
on the other hand, are immune to the increase of dimensions N and their mse(x) is
constant and very close the optimum, which confirms that localization is working
as expected. The LEnKF, naive-LEnKPF and block-LEnKPF make an error of less
than 5% while the LPF is 20% worse than the optimum.

The cost of localization: As the old statistical adage goes, there is no free lunch:
localization comes at a cost, particularly for PF algorithms. When doing the update
locally with the EnKF, the filtering samples are relatively smooth fields, because the
update applies spatially smoothly varying corrections to the predictive ensemble.
However, for the LPF, when different particles are resampled at neighboring sites,
arbitrarily large discontinuities can be created. While this might be discarded as
harmless, it is not the case when the fields of interest are spatial fields of physical
quantities used in numerical solvers of partial differential equations. One way to
measure the impact of discontinuities is to look at the MSE in estimating the lag one
increments 	x , which we denote as mse(	x). While the mse(x) is computed for
the posterior mean, the mse(	x) is computed for each particle separately and then
averaged. We again compute the expected mse(	x) under the conjugate posterior
distribution and use it as reference.
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Fig. 2 Illustration of the relationship between the system dimension N and different quantities. In
the first row is the mse(x) for the global algorithms on the left and the local algorithms on the right.
In the second row the same but for the mse(	x). All the values are given relative to the optimal
one obtained with the true posterior distribution (dashed line at 1). The relative MSE of using the
prior without using any observation is given by the second dashed line. Notice the log-scale on the
y-axis

The plots in the second row of Fig. 2 show this quantity for the different algorithms
averaged over 1000 simulation runs. The mse(	x) of the local algorithms is still
constant as a function of N , as expected, but in the cases of the naive-LEnKPF and
the LPF its value is worse than for the respective global algorithms. On the other
hand, the LEnKPF and the block-LEnKPF improve on their global counterparts and
have an error relatively close to the optimum.

Localization trade-off: In the previous experimentwefixed �, the localization radius,
to 5, and looked at what happens in terms of prediction accuracy with the mse(x),
and in terms of discontinuities with the mse(	x). In Fig. 3 we now look at MSE as
a function of �, fixing N to 200 and k to 100. For large values of � the mse(	x) is
smallest as discontinuities are avoided, but themse(x) is not optimal, particularly for
the LPF. As � is reduced themse(x) decreases for all methods, whilemse(	x) is kept
constant for a wide range of � values. At some point, different for each algorithm, the
localization is too strong and becomes detrimental, with both mse(x) and mse(	x)
sharply increasing. This behavior illustrates the trade-off at hand when choosing the
localization radius: picking a too small value introduces a bias by neglecting useful
information and creates too much discontinuities, while choosing a too large value
does not improve mse(	x) but leads to poorer performance in terms of mse(x).
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Fig. 3 Trade-off of localization: influence of � on mse(x) and mse(	x) for the local algorithms.
The ensemble size k was fixed to 100 and the system dimension N to 200. Notice the log-scale on
the y-axis

4.2 Filtering with the Lorenz96 Model

The Lorenz96 model [10] is a 40-dimensional non-linear dynamical system which
displays a rich behavior and is often used as a benchmark for filtering algorithms.
In [4] it was shown that the EnKPF outperforms the LEnKF in some setups of the
Lorenz96 model, but the sample size required was of 400. In the present experiment
we use the same setup as in [4] but with much smaller and realistic ensemble sizes.
The data are assimilated at time intervals of 0.4, which leads to strong non-linearities
and thus highlights better the relative advantages of the EnKPF. Each experiment is
run for 1000 cycles and repeated 20 times, which provides us with stable estimates
of the average performance of each algorithm. As in [4], the parameter γ of the
EnKPFs is chosen adaptively such that the equivalent sample size is between 25 and
50% of the ensemble size. It should be noted that for local algorithms, a different
γ is chosen at each location, which provides added flexibility and allows to adapt
to locally non-Gaussian features of the distribution. We consider mse(x) only and
denote it simply by MSE. It also takes errors in the estimation of increments into
account through integration in time during the propagation steps.

In the left panel of Fig. 4 the MSE of the global algorithms is plotted against
ensemble size. The PF is not represented as it diverges for such small values. The
MSE is computed relative to the performance of the prior, which is simply taken
as the mse(x) of an ensemble of the same size evolving according to the dynamical
system equations but not assimilating any observations. With ensemble sizes smaller
than 50, the filtering algorithms are not able to do better than the prior, which means
that trying to use the observations actually makes them worse than not using them
at all. Only for ensemble sizes of 100 and more do the global algorithms start to
become effective. In practice we are interested in situations where the ensemble size
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Fig. 5 Interplay of ensemble size k and localization radius � for the the Lorenz96 model. The
relative MSE is plotted as a function of � for different value of k in the different panels. Notice the
log-scale on the y-axis

is smaller than the system dimension (here 40), and thus the global methods are
clearly not applicable.

On the right panel of Fig. 4 we show the same plot but for the local algorithms.
For sample sizes as small as 20 or 30 the performances are already quite good. The
LPF, however, does not work at all, probably because it still suffers from sample
depletion and because the discontinuities it introduces have a detrimental impact
during the prediction step of the algorithm. The block-LEnKPF clearly outperforms
the other algorithms, particularly for smaller sample sizes. This indicates that it can
localize efficiently the update without harming the prediction step by introducing
discontinuities in the fields.

In order to better highlight the trade-off of localization, we plot similar curves
but as a function of the localization radius � in Fig. 5. One can see that for small k
(left panel), the error is increasing with �, which shows that localization is absolutely
necessary for the algorithm towork. For k = 40 (right panel), theMSEfirst decreases
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and then increases, with an optimal �. Experiments with larger values display curves
that get flatter and flatter as k increases, showing that as the ensemble size is larger,
the localization strength needed is smaller, as expected.

5 Conclusion

Localization is an effective tool to address some of the difficulties associated with
high-dimensional filtering in large-scale geophysical applications. Methods such as
the EnKF can be localized easily and successfully as they vary smoothly in space.
At first sight, the LPF does seem to overcome the curse of dimensionality; however,
looking more carefully, one notices that it introduces harmful discontinuities in the
updated fields. The two localized EnKPFs both overcome the curse of dimensionality
and handle better the problem of discontinuities.

The simple conjugate example studied in this paper highlighted the potential
improvements coming from localization, as well as the pitfalls when applied blindly
to the PF. The trade-off between the bias coming from localization and the gain
coming from the reduced variance was illustrated by exploring the behavior of the
algorithms as a function of the localization radius �. Experiments with the Lorenz96
model showed that local algorithms can be successfully applied with ensemble sizes
as small as 20 or 30, and highlighted the localization trade-off. In particular, the
block-LEnKPF fared remarkably well, outperforming both the naive-LEnKPF and
the LEnKPF in this challenging setup. This confirms other results that we obtained
with more complex dynamical models mimicking cumulus convection [15] and
encourages us to pursue further research with localized EnKPFs in a large-scale
application in collaboration with Meteoswiss.
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Linear Inverse Problem with Range Prior
on Correlations and Its Variational Bayes
Inference

Ondřej Tichý and Václav Šmídl

Abstract The choice of regularization for an ill-conditioned linear inverse problem
has significant impact on the resulting estimates. We consider a linear inverse model
with on the solution in the form of zero mean Gaussian prior and with covariance
matrix represented in modified Cholesky form. Elements of the covariance are con-
sidered as hyper-parameters with truncated Gaussian prior. The truncation points are
obtained from expert judgment as range on correlations of selected elements of the
solution. This model is motivated by estimation of mixture of radionuclides from
gamma dose rate measurements under the prior knowledge on range of their ratios.
Since we aim at high dimensional problems, we use the Variational Bayes inference
procedure to derive approximate inference of the model. The method is illustrated
and compared on a simple example and on more realistic 6h long release of mixture
of 3 radionuclides.

Keywords Linear inverse problem · Variational Bayes inference · Convex opti-
mization ·Uncertain correlations ·Gamma dose rate measurements ·Nuclide ratios

1 Introduction

Linear inverse problems are fundamental inmany areas of science, signal processing,
or machine learning. The conventional least squares method fails when the problem
is ill-conditioned. In these cases, appropriate regularizations are beneficial to obtain
desirable solution. Most commonly used regularizations are the Tikhonov [3] and
LASSO [12] where different norms of the unknown vector are used, l2 and l1 respec-
tively.
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Both of these methods have Bayesian interpretation with different prior dis-
tribution of the unknown vector. However, parameters of these prior distribu-
tions are assumed to be known. More flexible models allow for estimation of the
hyper-parameters, e.g. in the formof diagonal elements of the prior covariancematrix,
which is known as the automatic relevance determination principle [14] since it favors
sparse solutions. Theoretically, full covariance matrix can be also estimated using
Wishart distribution [6, 13]. However, the problem is then over-parametrized and
the influence of additional regularization is significant. In this contribution, we are
concerned with models where some elements of the covariance matrix are vaguely
known and need to be estimated from the data. We assume the knowledge of ranges
of selected elements of the covariance matrix.We follow idea of Daniels and Pourah-
madi [2] where modified Cholesky decomposition of the covariance matrix is used
for longitudinal data. In our model, we restricted the possible interval for specific ele-
ments of the covariancematrix using truncatedGaussian distribution. These intervals
are expert information and are considered as input of our algorithm.

The proposed approach is illustrated on simple synthetic example where com-
parison with Tikhonov and LASSO regularizations will be given. In addition, we
apply the resulting algorithm on a problem of determination of the source term of
an atmospheric release of radiation where ratios of the released nuclides are vaguely
known. This scenario is relevant to the case of the Fukushima Daiichi nuclear power
plant accident [8]. We aim for estimation of the time profile of the release using
gamma dose rate (GDR) measurements, so our measurement vector does not contain
nuclide-specific concentration activity measurements but bulk gamma dose rates
from a mixture of nuclides. Particularly important are prior assumptions on the
nuclide ratios and their treatment. These can be obtained, e.g., from physical analy-
sis of the power plant state (reactor inventory combined with assumptions on the
accident type) or from a few available nuclide-specific activity concentration sam-
ples downwind the release. In our simulated scenario, 6h release of a mixture of 3
nuclides is considered and Austria monitoring network is used together with realistic
meteorological data.

2 Mathematical Method

We study the following linear inverse problem

y = Mx + e, (1)

where y ∈ Rp×1 is vector of measurements corrupted by error vector e of the
same size, M ∈ Rp×n is known matrix, and x ∈ Rn×1 is the unknown vector to
be estimated. Solution of the noise-less problem via ordinary least square method is
x = (MT M)−1MT y, which is often infeasible due to ill-conditioned matrix M .

The problem is typically recast as an optimization problem
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x∗ = argmin
x∈X

{||y − Mx||22 + αg(x)
}
, (2)

where g(x) is a regularization term andα is its weight. Common regularization terms
are Tikhonov regularization [3] or LASSO regularization [12]:

gTikhonov(x) =||x||22, gLASSO(x) =||x||1, (3)

however, the parameterα needs to be carefully selected or determined. The optimiza-
tion approach (2) can be interpreted as amaximum a posteriori estimate of a Bayesian
model. Many detailed analysis of Bayesian interpretations and also extensions are
available, e.g. [7]. For the purpose of this text, we only note that the Tikhonov regu-
larization is equivalent to MAP estimation of probabilistic model

x∗ = argmin
x∈X

{− log p(y|M, x) − log p(x|α)} , (4)

with

p(y|M, x) = Ny
(
Mx, Ip

)
, p(x|α) = Nx

(
0,α−1 In

)
, (5)

whereN denotesGaussian distribution and Ip denotes identitymatrixwith given size.
For given α, the Bayesian model is fully equivalent to the optimization problem (2).
However, the unknown parameters, α in this case, can be modeled using hierarchical
priors and estimated within the model [1].

For problem specific tasks where assumption on same parameters arise such as
non-negativity of x, the optimization approach (2) can be supplemented using “sub-
ject to” condition. In Bayesian formulation, this condition can be enforced using
truncated Gaussian prior denoted as tN , see one dimensional example in Fig. 1 and
Appendix for details.

Fig. 1 Example of the
Gaussian distribution
N (1, 1), blue line, and the
truncated Gaussian
distribution
tN (1, 1, [0,∞]), red line
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2.1 Bayesian Hierarchical Model

Consider probabilistic formulation of linear inverse problem (1) with isotropic
Gaussian noise

p(y|x,ω) = Ny
(
Mx,ω−1 Ip

)
, (6)

where ω is precision of noise. For unknown ω, we assume prior model in the form of
GammaGω(ϑ0, ρ0). All prior parameters (subscripted by 0) are set to non-informative
values of 10−10. We assume the unknown vector x to have Gaussian prior; however,
with truncated support to positive values,

p(x|Ω) = tN x
(
0,Ω−1, [0,+∞]) . (7)

We aim to model the precision matrix Ω in more detail; hence, we assume Ω in the
form of modified Cholesky decomposition as

Ω = LΥ LT , (8)

whereΥ is diagonalmatrixwith diagonal entriesυ = [υ1, . . . , υn]with priorGamma
model Gυ j (α0,β0) for each element and L is lower triangular matrix

L =

⎛

⎜
⎜
⎜
⎝

1 0 0 0
l2,1 1 0 0
...

. . . 1 0
ln,1 . . . ln,n−1 1

⎞

⎟
⎟
⎟
⎠

, (9)

with unknown off-diagonal elements forming column vectors li =[
li+1,i , li+2,i , . . . , ln,i

]T ∈ R(n−i)×1 for i = 1, . . . n − 1. We will introduce prior
model for vectors li whose estimates together with estimate of vector υ fully deter-
mine the covariance matrix decomposition (8). The prior model for each non-zero
element of L , li,k , are chosen as

p
(
li,k |ψi,k

) = tN li,k

(
0,ψ−1

i,k , [ai,k, bi,k]
)
, (10)

whereψi,k is unknown precision parameterwith priorGammamodelGψi,k (ζ0, η0) and
with selected interval [ai,k, bi,k] of truncated Gaussian distribution. These intervals
allow us to select boundaries for each element of the covariance matrix.

Estimation of the model parameters is analytically intractable; hence, we employ
the Variational Bayes method [10] to yield an approximate solution. The Varia-
tional Bayes method estimates the posterior solution in the form of conditionally
independent distributions that minimize the Kullback–Leibler divergence to the true
posterior. This minimization leads to a set of implicit equations which have to be
solved iteratively. Here, shaping parameters of recognized posterior distributions
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p̃(x|y) = tN x (μx,Σx, [0,+∞]) , (11)

p̃(υ j |y) = Gυ j

(
α j ,β j

)
, (12)

p̃(li,k |y) = tN li,k

(
μli,k ,Σli,k , [ai,k, bi,k]

)
, (13)

p̃(ψi,k |y) = Gψi,k

(
ζi,k, ηi,k

)
(14)

p̃(ω|y) = Gω (ϑ, ρ) , (15)

are iteratively evaluated, see Algorithm 1. The algorithm will be denoted as the
least square with the prior adaptive covariance with interval restrictions (LS-APCi)
algorithm.

3 Experiments

To test and compare the studiedLS-APCi algorithm,wefirst design a simple synthetic
dataset. Second, we perform experiment on realistic gamma dose rate measurement
with vaguely known ratios of selected radionuclides.

3.1 Toy Example

We select an ill-conditioned matrix M ∈ R6×3 with elements within 0 and 1 with
eigenvalues [2 × 10−7, 0.19, 0.23]. The original vector x is selected as xtrue =
[1, 2, 3]T and measurement vector is generated according to the assumed model
(1) with e ∼ N (0, 0.1). The negative elements of y are cropped to 0. We will test
two settings of the LS-APCi algorithm: (i) the space of possible solutions is restricted
using fixed ratios of elements of vector υ: υ = [υ1, 10υ1, 10υ1], and (ii) unrestricted
υ. The prior intervals for the unknown elements of matrix L are

[a2,1, b2,1] = [−10;−1], [a3,1, b3,1] = [−10;−1], (22)

while the simulated are l2,1 = −2 and l3,1 = −3.
The results of the LS-APCi algorithm are given in Fig. 2. The results suggest

that the restriction of the space of possible solutions are beneficial and the estimates
converge to the true values, see Fig. 2a. On the other hand, estimation of full vector
υ = [υ1, υ2, υ3] results in over-parametrization of the problem and the estimates of
the ratios in matrix L converge to the centers of the selected intervals. In result, the
estimated vector x differs from the true vector, see Fig. 2b.

For comparison, we provide results of the LASSO algorithm, Fig. 3 left, and
of the Tikhonov algorithm, Fig. 3 right. Since both algorithms need to preselect
suitable regularization parameter, we run both algorithms for a wide range of the
regularization parameters and select the best result for each algorithm. The key
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Algorithm 1The least square with the prior adaptive covariance with interval restric-
tions (LS-APCi) algorithm.
1. Initialization

(a) Set all prior parameters (subscripted by 0) to 10−10.
(b) Set initial values: 〈L〉 = 〈Υ 〉 = In and 〈ω〉 = 1

max(MT M)
.

2. Iterate until convergence or maximum number of iteration is reached:

(a) Compute moments of 〈x〉 using Appendix and shaping parameters of (11):

Σx =
(
〈ω〉MT M +

〈
LΥ LT

〉)−1
, (16)

μx = Σx

(
〈ω〉MT y

)
, (17)

(b) Compute moment 〈Υ 〉 using shaping parameters of (12):

α = α0 + 1

2
1n,1, β = β0 + 1

2
diag

(〈
LT xxT L

〉)
, (18)

(c) Compute moments of 〈L〉 with restricted ranges using Appendix and shaping parameters
of (13):

Σli,k =
(
〈υi 〉

〈
x(i+1),k x

T
(i+1),k

〉
+ diag(

〈
ψi,k

〉
)
)−1

, (19)

μli,k = Σli,k

(−〈υi 〉
〈
xi x(i+1),k

〉)
, (20)

(d) Compute moment 〈ω〉using shaping parameters of (15):

ϑ = ϑ0 + p

2
, ρ = ρ0 + 1

2
tr

(〈
xxT

〉
MT M

)
− yT M〈x〉 + 1

2
yT y, (21)

3. Report resulting estimated source term 〈x〉

differences is in estimation of x1. The LASSO algorithm estimates exact 0 which
corresponds to its preference of a sparse solution. The Tikhonov algorithm estimates
very similar result to the LS-APCi with unrestricted parameter υ. However, the
LS-APCi with restriction is clearly closer to the true vector x as well as to the true
covariancematrix andwewill use this version of the algorithm in the next experiment.

3.2 Realistic Example

The linear inverse problem (1) is common in estimation of the source term of an
atmospheric release. Here, the vector y contains gamma dose rate (GDR) measure-
ments and the matrix M is a source-receptor-sensitivity matrix computed using an
atmospheric transport model [9]. Note that the vector y does not contain any nuclide-
specific information but only sum of GDR of a mixture of nuclides and the matrix



Linear Inverse Problem with Range Prior on Correlations … 97

1 2 3
0

1

2

3

4

LS
−A

P
C

i a
lg

or
ith

m

source term
0 500 1000

−2

−1.5

−1
L3,1

iteration
0 500 1000

−3

−2.5

−2

−1.5

−1
L3,2

iteration

estimate
true

estimate
true

estimate
true

1 2 3
0

1

2

3

4

LS
−A

P
C

i a
lg

or
ith

m

source term

0 500 1000

−4

−3

−2

L3,1

iteration

0 500 1000
−5

−4

−3

L3,2

iteration

estimate
true

estimate
true

estimate
true

(a)

(b)

Fig. 2 The results of the LS-APCi algorithm with restricted (a) and unrestricted (b) parameter υ
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Fig. 3 The results of the LASSO algorithm (left) and Tikhonov algorithm (right)

M cumulates errors from atmospheric model including errors from the estimates of
meteorological conditions (in this case, ECMWF Era-Interim data).

In this case, a 6h long constant rate release is simulated using 3 nuclides: Cs-137,
I-131, and Xe-133 from the Czech nuclear power plant Temelin. The Austrian radi-
ation monitoring network is considered to provide measurements from more than
300 receptors implying M ∈ R4032×18, see Fig. 4. To simulate realistic conditions,
different meteorological data were used for generation matrix M and for generation
of simulated measurements y. The problem is critically ill-conditioned and classi-
cal optimization methods provide unsuitable results. For our algorithm, we use the
following expert-defined intervals of nuclide ratios:

[a7:12,1, b7:12,1] = [−10,−3], [a13:18,1, b13:18,1] = [−20,−50], (23)
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Fig. 4 Gamma dose rate from the cloud shine and deposition

covering the true (simulated) ratios l7:12,1 = −3.8 and l13:18,1 = −31.3 (which is,
however, unknown in reality).

The results of the LS-APCi algorithm are given in Fig. 5 using subplot for each
nuclide.We conclude that the results well correspond to the true releases. Note that in
sums of the elements, xtrue and the estimated x are almost equal. The dissimilarities
can be caused bymismatch in themeteorological conditions as well as by uncertainty
of themeasurement.We perform also run of the LS-APCi algorithmwith unrestricted
υ with significantly worse results; hence, we conclude that the restriction of υ is
crucial for the algorithm.

The results are compared with those of optimization approach with LASSO and
Tikhonov regularization with the same ranges restrictions (23) as the LS-APCi algo-
rithm. For this experiment, we used CVX toolbox [4, 5] where the optimization
problem (2) can be formulated to respect the ranges given in (23). Since the crucial
parameter of the optimization approach (2) is α, we run the LASSO and Tikhonov
algorithms with α ∈ [

10−5, 105
]
. Similarly, we identify as the most significant ini-

tial parameter of the LS-APCi algorithm as Υ = αIn; hence, we compare these 3
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Fig. 5 The results of the source term estimation of 6h constant release of 3 nuclides using LS-APCi
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Fig. 6 Top row mean squared error between the true source term and the estimated source term
for each tested algorithm and each parameter α. Bottom row sum of total activity of the source
term for each algorithm accompanied by the true sum of the source term (red dashed line)

algorithm with respect to this parameter α. We normalize each nuclide activity to
interval [0, 1] and compute mean squared error (MSE) for each α and for each
algorithm. The MSE depending on selected parameter α are given in Fig. 6, top,
accompanied by the estimated sum of total activity of the source term. From these
results, we can identify two main modes of the LS-APCi solution. Note that the
natural choice Υ = In , see Algorithm 1, lies in the correct mode of the solution, see
Fig. 5, while the second mode of solution is clearly degenerate. Another situation is
in the case of the optimization approaches where continuum of results are observed.
Both optimization approaches were able to obtain slightly better results in terms of
MSE for specific α; however, it would be difficult to select the correct parameter α
without knowledge of the true solution.
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4 Conclusion

The linear inverse problem was studied with specific regularization using modeling
of a covariance matrix in the modified Cholesky form. We employed the Variational
Bayes inference which allows us to deal with vague prior information about range of
elements of the covariance matrix using truncated Gaussian prior. We have shown an
advantage of the proposed LS-APCi method over the classic optimization approach
with LASSO or Tikhonov regularizations. Moreover, we applied the methods to
estimation of the source term of atmospheric release from realistic scenario where 6h
release of mixture of 3 nuclides is simulated. The results suggest that all methods are
capable to reach a suitable solution using particular setting of parameters; however,
LS-APCi method is much more robust to selection of the tuning parameters.
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Appendix

Truncated Gaussian distribution, denoted as tN , of a scalar variable x on interval

[a; b] is defined as tN x (μ,σ, [a, b]) =
√
2 exp(− 1

2σ (x−μ)2)√
πσ(er f (β)−er f (α))

χ[a,b](x), where α = a−μ√
2σ
,

β = b−μ√
2σ
, function χ[a,b](x) is a characteristic function of interval [a, b] defined as

χ[a,b](x) = 1 if x ∈ [a, b] and χ[a,b](x) = 0 otherwise. erf() is the error function
defined as erf(t) = 2√

π

∫ t
0 e

−u2du.
The moments of truncated Gaussian distribution are 〈x〉 =

μ − √
σ

√
2[exp(−β2)−exp(−α2)]√

π(erf(β)−erf(α))
and

〈
x2

〉 = σ + μx̂ − √
σ

√
2[b exp(−β2)−a exp(−α2)]√

π(erf(β)−erf(α))
.Formul-

tivariate case, see [11].
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Bayesian Hierarchical Model for Assessment
of Climate Model Biases

Maeregu Woldeyes Arisido, Carlo Gaetan, Davide Zanchettin and Angelo
Rubino

Abstract Studies of climate change rely on numerical outputs simulated from
Global Climate Models coupling the dynamics of ocean and atmosphere (GCMs).
GCMs are, however, notoriously affected by substantial systematic errors (biases),
whose assessment is essential to assert the accuracy and robustness of simulated
climate features. This contribution focuses on constructing a Bayesian hierarchical
model for the quantification of climate model biases in a multi-model framework.
The method combines information from a multi-model ensemble of GCM simula-
tions to provide a unified assessment of the bias. It further individuates different
bias components that are characterized as non-stationary spatial fields accounting
for spatial dependence. The approach is illustrated based on the case of near-surface
air temperature bias over the tropical Atlantic and bordering regions from a multi-
model ensemble of historical simulations from the fifth phase of the Coupled Model
Intercomparison Project.

Keywords Bayesian hierarchical model · Climate bias · CMIP5 · Posterior infer-
ence · Spatial analysis

1 Introduction

During the last decades, GCMs generated numerical outputs data that deeply con-
tributed to the understanding of climate dynamics and variability. The outputs provide
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quantitative estimates of many geophysical quantities such as atmospheric and
oceanic temperatures and precipitation at discrete spatial locations and temporal
intervals [4, 10]. Analyses of the outputs are based on the crucial assumption that
a GCM represents the real climate system, hence, it is in agreement with observa-
tions. However, the current generation of GCMs is affected by substantial biases
over extensive regions [11]. Accuracy and robustness of simulated climate features
have to be carefully assessed when GCMs are used to understand climate variability
and/or produce projections or predictions.

When analyzing GCMs outputs, often a multi-model approach is used as it allows
to overcome the peculiarities of individual simulations, like those linked to the chosen
initial conditions and applied external forcing, and the deficiencies of individual
models, by combining the information into a multi-model consensus [10]. Multi-
model intercomparisons have also demonstrated that there are common features in the
bias generated by different models [11]. An elaborated statistical method is required
to account for these relevant features. Here, we present a Bayesian hierarchical model
to provide a unified assessment of climate model biases using spatially referenced
data. We estimate an overall bias which is common for all GCMs and individual
GCM biases, further characterizing each model contribution to the common bias
component. Our approach demonstrates the improved quantification of the bias,
culminating in interpretative results allowed by the posterior distributions.

Bayesian analysis is an attractive tool to provide probabilistic distributions for
unknown quantities and related uncertainties [6]. The use of Bayesian hierarchical
models for climate assessments using multi-model outputs is increasingly appeal-
ing [10]. These assessments often depend on spatially aggregated multi-model out-
puts [2]. Here, we define the overall climate model bias and other components in
the Bayesian hierarchical model as spatial fields in which spatial dependencies are
accounted for. We describe our methodology in Sect. 2; an application of the method
and associated results are presented in Sect. 3. Final concluding remarks are given
in Sect. 4.

2 Bayesian Hierarchical Approach for Climate
Model Biases

Biases are quantified by comparing GCM outputs to observations. Let {Mj (s) :
s ∈ D} denote the bias process for GCM j at the spatial location s ∈ D for the
domain D ⊂ R

2. Suppose that at n sites in D, we have observed biases on Mj (s),
namely {Bj (si ), . . . , Bj (sn)}, and we consider the error model of the form

Bj (s) = Mj (s) + ε j (s), j = 1, . . . , J, (1)

where ε j (s) ∼ N (0, σ 2
ε ) is Gaussian white noise, where σ 2

ε is unknown. The white
noise corresponds to the error associated with representing the true bias process by
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Mj (s). Spatial dependence for the bias of climatemodel j is captured byMj (s)which
is independent of ε j (s). Using specification (1), the likelihood, which comprises
the observed data is Gaussian conditional on the spatial process, Bj (s)|Mj (s) ∼
N (Mj (s), σ 2

ε ). Our interest is to model the true bias process Mj (s). We assume the
following low-dimensional deterministic specification for it

Mj (s) =
p∑

k=1

wk(s)β j,k, j = 1, . . . , J ; k = 1, . . . , p (2)

where wk(s) is a weighting kernel with number of components p << n, and
{β j,1, . . . , β j,p}′ is a vector of coefficients with dimension p for climate model j .
The weighting kernels are discussed in the next section. Further, let μ(s) repre-
sent the overall bias which is common for each { j : 1, . . . , J }, and we specify as
μ(s) = ∑p

k=1 wk(s)βk , where (β1, . . . , βp)
′ is a vector of independent coefficients

distributed as N (0, σ 2
β Ip), for which Ip is the p × p identity matrix. Because we

assume thatμ(s) represents a systematic average of {Mj (s), j = 1, . . . , J }, the indi-
vidual parameter β j,k is centered at the overall bias parameter βk

β j,k = βk + ν j,k, j = 1, . . . , J ; k = 1, . . . , p (3)

where ν j = {ν j,1, . . . , ν j,p}′ denotes a vector of independently distributedmean zero
Gaussian processes, ν j ∼ N (0, τ 2

j Ip). The variance parameters τ 2
j capture different

amount of variability in various climate models after accounting for the underlying
common overall bias signal. If we assume that τ 2

1 = τ 2
2 = · · · = τ 2

J , this corresponds
to the common overall bias μ(s) being a simple average of {M1(s), . . . , MJ (s)}.
Here allowing τ 2

j to vary across the different climate models grants to determine the
contribution of each climatemodel in predicting the commonoverall bias. Combining
(2) and (3), the bias signal process Mj (s) is expressed as

Mj (s) =
p∑

k=1

wk(s)
[
βk + ν j,k

] = μ(s) + η j (s), (4)

where η j (s) = ∑p
k=1 wk(s)ν j,k describes the departure of each climate model bias

from the common overall bias. Further, η j (s) follows the mean zero Gaussian distri-
bution, η j (s) ∼ N

(
0, τ 2

j w(s)w(s)′
)
, wherew(s) = {w1(s), . . . ,wp(s)}. For identi-

fiability reason, we assume that
∑J

j=1 η j (s) = 0. In general, model (4) suggests that
the bias process Mj (s) is a combination of the overall component μ(s), which cap-
tures large-scale variations, and the individual component η j (s), which describes the
small-scale variations. In the parameter level of the hierarchical model, prior distri-
butions for the variance components τ 2

j and σ 2
β are specified. We assign the inverse-

gamma (IG) prior on these variance parameters, τ 2
j ∼ IG(a1, b1) independently for

j = 1 . . . , J and σ 2
β ∼ IG(a2, b2), where the a ’s and the b ’s are hyperparameters

whose values are chosen. For our particular application given in the next section, we
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choose the same value, 0.001, for each hyperparameter so that the prior distributions
are approximately non-informative.

3 Application to Temperature Bias in the Tropical
Atlantic Region

In this section, we present an application of the model using near surface air temper-
ature (unit: Kelvin) data for the Tropical Atlantic and bordering regions covering the
domain 40W–20E longitude and 35S–15N latitude. Our database comprises informa-
tion about observations and ensemble of climate output data. For observational data,
we use reanalysis data, which are the output of a state-of-the-art analysis/forecast
system with data assimilation using past data from 1948 to the present. The climate
output data are an ensemble of six historical full-forcing climate simulations con-
tributing to the fifth phase of the Coupled Model Intercomparison Project (CMIP5).
An overview of the models’ characteristics is provided in Table1. These GCMs have
been developed at different research institutes and have different major characteris-
tics. We consider the employed ensemble to be representative of the range of model
characteristics of current global climate models. The application covers the period
of 1950–2005 CE in which we derive climatologies of annual-mean values starting
from the monthly-mean time series of both observations and climate output.

3.1 Choice of Weighting Functions

Several types of functions have been used in the literature, including the B-splines
[1], Gaussian kernels [9] and bisquare functions [8]. In this contribution, we consider
the Gaussian kernel function, namely

wk(s) ∝ exp{−(s − ck)
′Σ−1(s − ck)/2}, k = 1, . . . , p (5)

Table 1 Six climate models and thir specific related information which are used in this study

Research centre Country Model ID Resolution

National Center for Atmospheric Research USA CCSM4 288×192

Beijing Climate Center China BCC 128×64

NASA/Goddard Institute for Space Studies USA GISS 144×90

Institut Pierre Simon Laplace France IPSL 96×96

Max Planck Institute for Meteorology Germany MPI 192×96

Center for Climate System Research Japan MIROC 128×64
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Fig. 1 Empirical variograms of the six GCM biases of near-surface temperature over the tropical
Atlantic region for four different directions (black solid 0◦, red dash 45◦, gray dotted 90◦, blue
dash 135◦). The variograms were analyzed using the robust estimator as given by [3]

where ck is the center of the kernel and Σ determines the shape and smoothness of
the kernel. The number of components p, Σ and the location of the kernels must be
chosen. These choices are often based on the presence of prior information such as
smoothness and spatial dependence related to the spatial process [9]. If we choose
equally sizedGaussian kernels, i.e., spherically shapedkernels,weobtain an isotropic
spatial process. Alternatively, a geometrically anisotropic process may be obtained
if we choose non-spherical Gaussian kernels. One way to investigate whether the
spatial biases are direction-dependent or not is to perform variogram analyses for
different directions [3]. Figure1 illustrates the empirical variograms of the six GCM
biases for the directions: 0◦, 45◦, 90◦, 135◦ (i.e. North, Northeast, East and Southeast
direction, respectively). The variograms in the four directions do not reveal largely
different spatial patterns, thus we assume an isotropic spatial bias process.

Furthermore, we assume Σ is the same for each kernel. Another advantage of the
chosen kernel functions is that they allow to obtain non-stationary spatial covariance
for Mj (s). If K j (si , sl) is the covariance between two locations si and sl , a simple
algebraic manipulation lead to obtain a non-stationary covariance

K j (si , sl) = (σ 2
β + τ 2

j )

p∑

k=1

wk(si )wk(sl) (6)
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The kernel specification (5) is a discrete form of the process convolution method
that is largely used to build non-stationary spatial models allowing flexibility and
computational simplicity [5].

3.2 Results

The Bayesian hierarchical model is fitted to obtain the unknowns. Inferences about
these unknowns are based on posterior distributions. The posterior distributions
cannot be obtained in closed form, hence we rely on Markov Chain Monte Carlo
(MCMC) simulation [7], with Gibbs sampler to draw samples from the posterior of
full conditional distributions given the data. Posterior convergence is assessed by
inspecting the simulation history using graphical tools. We performed 50000 simu-
lations discarding the first 20000 as burn-in. The remaining samples were thinned at
every tenth step to reduce autocorrelations of successive samples and to save storage
space. The whole simulation takes about 3 hours on a 64-bit OS X 10.10.5 Intel
Core i5 1.6GHz. Once we were confident that the draws are from the stationary
distribution of the Markov chain, we summarized these draws to make inferences.

Figure2 summarizes the posterior results with respect to the overall climate
model bias, μ(s), and departure of individual components from the overall esti-
mate, {η j (s) : j = 1, . . . , 6}, fixing p = 12 as in Fig. 2a. The overall common bias
appears to be stronger in the southeast of the tropical Atlantic Ocean. Posterior esti-
mates associated to η j (s) are widely heterogeneous across the six climate models
from estimating the maximum warm bias in CCSM4 to the point of obtaining a cold
bias of −2Kelvin in MIROC. The individual bias component for CCSM4 essen-
tially describes a generally warmer bias over the central southern tropical Atlantic
Ocean. IPSL, MPI andMIROC produce warmer biases over the sub-Saharian Africa
compared to the overall common bias.

To better understand the posterior distributional variability of the individual com-
ponents, Fig. 3 depicts the posterior distribution of variance components {τ 2

j : j =
1, . . . , 6}. As pointed out in the previous section, these variance parameters represent
the differences between the random effects β j and the random effects of the overall
common bias α. Hence, they are useful to assess how each climate model bias varies
around the overall common bias. It is worth noting that there is marked difference
across the random effects of the individual GCMs about the overall common random
effects. CCSM4 varies the least, whereas IPSL and GISS vary the most about the
overall common bias. Thus, in terms of weighting the contributions of each GCMS
in synthesizing the overall common bias, CCSM4 is ranked first, whereas IPSL and
GISS have smaller weights.

One way to check the adequacy of our modeling approach is to assess the robust-
ness of the results with respect to the choices of the kernel weighting functions and
hyperparameters. We investigated the sensitivity of μ(s) for different choices of p
and Σ of the Gaussian kernels (results not shown). When we used smaller p, i.e.,
p < 9, μ(s) is oversmoothed and unable to capture the smaller details of the spatial
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pattern. With a larger number of kernels (p = 20), μ(s) appears to be more jagged,
although it produces a more detailed spatial pattern. The choice of p = 12 seems
to produce more appropriate μ(s) in terms of spatial smoothness. The choice of Σ

seems to have the opposite impact of the choice of p: smaller Σ values led to obtain
inadequately smoothed μ(s) (panel d), while larger Σ oversmoothes μ(s). Overall,
the choice of the kernel parameters is crucial to capture the inherent spatial bias
process, and particularly to the number of kernels p. In fact, increasing p brings not
only increased spatial details but also noticeable changes in the large scale shape of
the posteriori mean of the overall common bias.

4 Conclusions

We have proposed a Bayesian hierarchical method for the probabilistic assess-
ment and quantification of climate model biases using a multi-model ensemble.
The approach synthesizes an overall common bias as non-stationary spatial field
and associated uncertainty based on the assumption that the uncertainties of outputs
from different models reflect similar spatial patterns as they try to capture the same
large-scale features in a particular geographic region. The approach is particularly
important when there is no optimal weighting metric for the ensemble members in
order to combine information from the ensembles. Our approach is, therefore, a step
forward compared to the common ensemble averaging method where each ensemble
member has the same weight. Our method accounts for variability of bias across
ensemble members and the contribution of each member to the overall common bias
is determined based on the posterior inferences on each model’s variability parame-
ter.We have focused on amulti-model ensemble of six CMIP5 historical simulations.
The basic idea is, however, generic and could be applied to a wider range of climate
models, geographical locations, and geophysical variables.
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An Application of Bayesian Seemingly
Unrelated Regression Models
with Flexible Tails

Charles Au and S.T. Boris Choy

Abstract Seemingly unrelated regression (SUR) models are useful for capturing
the correlation structure between different regression equations. While the multi-
variate normal distribution is a common choice for the random error term in an SUR
model, the multivariate t-distribution is also popular for robustness considerations.
However, the multivariate t-distribution is elliptical which leads to the limitation
that the degrees of freedom of its marginal distributions are identical. In this paper,
we consider a non-elliptical multivariate Student-t error distribution which allows
flexible shape parameters for the marginal distributions. This non-elliptical distrib-
ution is constructed via a scale mixtures of normal form and therefore the Markov
chain Monte Carlo (MCMC) algorithms are used for Bayesian inference of SUR
models. In the empirical study of the capital asset pricing model (CAPM), we show
that this non-elliptical Student-t distribution outperforms the multivariate normal
and multivariate Student-t distributions.

Keywords Modifiedmultivariate t-distribution · Scale mixtures of normal (SMN) ·
Markov chain Monte Carlo (MCMC) · Capital Asset Pricing Model (CAPM)

1 Introduction

The seemingly unrelated regression (SUR) model, proposed by [12], is useful for
modelling the relationship amongst several variables. In particular, it captures the
correlation structure between several linear regression equations in the model. To
provide a better fit to the error terms, [13] proposed a Bayesian algorithm for the
SUR model with the multivariate t error distribution. [1] showed that the univariate
Student-t distribution has a scale mixtures of normal (SMN) representation, which is
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also valid for the multivariate t-distribution. However, the multivariate t-distribution
belongs to the elliptical family and therefore all shape parameters of its marginal dis-
tributionsmust be identical. Toovercome this deficiency, [3] proposed a non-elliptical
multivariate t-distribution whose marginal distributions are allowed to have differ-
ent degrees of freedom and they called this distribution the modified multivariate
t-distribution (Mod-t distribution).

The Capital Asset Pricing Model (CAPM) [5–8, 10] postulates a relationship
between the excess return of an individual asset and the excess return of the market
portfolio. Thismodel has been studiedwidely in econometrics and finance. For exam-
ple, [9] fitted a copula regression model with Student-t marginals to the multivariate
CAPM.

In this paper, we study the excess market returns under the CAPMs and the
SURmodels are used to explore the correlation structure amongst different CAPMs.
Section2 presents the Mod-t distribution and its statistical properties and the SUR
model, along with the necessary Markov chain Monte Carlo (MCMC) algorithm
for statistical inference. In Sect. 3, we compare the performance of various error
distributions in the CAPM analysis. The paper is concluded in Sect. 4.

2 Bayesian SUR Model with Mod-t Distribution

2.1 Mod-t Distribution

In the SMN representation, the m-dimensional elliptical multivariate t-distribution
with the degrees of freedom ν has the following probability density function (p.d.f.)

fX(x) =
∫ ∞

0
Nm(x|μ,λ−1Σ)Ga

(
λ|ν

2
,
ν

2

)
dλ, (1)

where λ is the scale mixture variable,Nm(x|c, D) is them-dimensional multivariate
normal p.d.f. with location c and scale matrix D, and Ga(λ|a, b) is the gamma p.d.f.
given by

Ga(λ|a, b) = ba/Γ (a) × λa−1 exp(−bλ). (2)

Letλ = (λ1, . . . ,λm)T be the vector of scale mixture variables,Λ = diag(λ) and
ν = (ν1, . . . , νm)T be the vector of degrees of freedom.The p.d.f. of the non-elliptical
Mod-t distribution, proposed by [3], is given by

fX(x) =
∫ ∞

0
· · ·

∫ ∞

0︸ ︷︷ ︸
m

Nm(x|μ,Λ− 1
2 ΣΛ− 1

2 ) ×
m∏
j=1

Ga
(
λ j |ν j

2
,
ν j

2

)
dλ1, . . . , dλm .

(3)
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[3] revealed that the marginal distribution of X j , j = 1, . . . ,m, is the Student-t
distribution with location μ j , scale Σ j j (the j j-th element of Σ) and degrees of
freedom ν j . Moreover, they also showed that the correlation coefficient between X j

and Xk ( j = 1, . . . ,m; k = 1, . . . ,m) is given by

Corr(X j , Xk) = ρ jk

2

√
(ν j − 2)(νk − 2)

Γ
(

ν j−1
2

)
Γ

(
νk−1
2

)
Γ

( ν j

2

)
Γ

(
νk
2

) , ν j > 2, νk > 2, (4)

where ρ jk is the correlation coefficient of X j and Xk of the elliptical multivariate
Student-t distribution.

The multivariate normal and multivariate Student-t distributions are special cases
of theMod-t distribution. For the normal distribution, allλi j degenerate to 1, whereas
for the Student-t distribution, λ1 = λ2 = · · · = λm = λ, where λ ∼ Ga(ν/2, ν/2).

The contour plots for various standard bivariate t and standardMod-t distributions
are shown in Fig. 1. The bivariate t distributions are on the left column and theMod-t
distributions are on the right column. It is obvious that the contour plots of theMod-t
distributions are non-elliptical but they are getting closer to an elliptical shape as ν1
and ν2 increase.
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Fig. 1 Bivariate t and Mod-t distributions — Contour plots



118 C. Au and S.T.B. Choy

2.2 SUR Model

The SUR model, proposed by [12], is given below.

yi j = xTi jβ j + εi j (i = 1, . . . , n, j = 1, . . . ,m). (5)

There are n observations in each of the m dimensions in the SUR model. In vector
form, it is expressed as

yi = Xiβ + εi (i = 1, . . . , n), (6)

where yi = (yi1, yi2, . . . , yim)T are the dependent variables, Xi are the independent
variables (m × p matrix), β are the regression coefficients (p × 1 vector) and εi =
(εi1, εi2, . . . , εim)T are the error terms. The subscript i denotes the i-th observation
in the model.

The errors εi follow the Mod-t distribution with location 0, scale matrix Σ and
degrees of freedom vector ν. Expressing the Mod-t distribution in the SMN form,
the error terms has the conditional distribution given below

εi |λi ∼ Nm(0,Λ−1/2
i ΣΛ

−1/2
i ), (7)

whereΛi is anm × m matrix of scale mixture variables in the SMN distribution with
Λi = diag(λi ) and λi = (λi1,λi2, . . . ,λim)T. Σ is a positive-definite symmetrical
m × m matrix with elements σ2

j on its diagonals and ρ jkσ jσk on row j and column
k (ρ jk = ρk j ) for all j, k = 1, . . . ,m. ρ jk = 1 and σ j = σk if j = k, and |ρ jk | < 1
otherwise.

For the Mod-t error distribution, λi j ∼ Ga(ν j/2, ν j/2), as the marginal
t-distribution of each dimension j has ν j degrees of freedom. The multivariate nor-
mal and t error distributions are special cases. For themultivariate t error distribution,
λi j ∼ Ga(ν/2, ν/2), and for the multivariate normal error distribution, all λi j degen-
erate to 1.

2.3 MCMC Algorithm

A commonly used MCMC algorithm for performing simulation-based Bayesian
inference is the Gibbs sampler. For an SUR model with the Mod-t error distribution,
posterior samples ofmodel parametersβ,Σ andν and scalemixture variablesλi j are
generated successively from their full conditional distributions. Starting values for
all model parameters are provided. Before a Gibbs sampler is initiated, the following
prior distributions are used in the empirical study of this paper.
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• β ∼ Np(0, 100I p)

• Σ ∼ IW m(0.01Im,m) (inverse Wishart distribution)
• ν j ∼ Exp(0.1)I (2 ≤ ν j ≤ 30) for j = 1, . . . ,m

Posterior samples are generated in the following order using the Gibbs sampler.

1. Simulate the regression coefficients β from a multivariate normal distribution.
2. Simulate the matrix Σ from an inverse Wishart distribution.
3. Simulate the scale mixture variables λi j from a non-standard distribution for

i = 1, . . . , n and j = 1, . . . ,m.
4. Simulate the degrees of freedom parameters ν j for j = 1, . . . ,m from a non-

standard distribution.

The Metropolis–Hastings (M–H) algorithm is used within a Gibbs sampler to simu-
late random variates from a non-standard distribution. For themultivariate t error dis-
tribution with ν degrees of freedom, λi j are simulated independently from a gamma
distribution and ν is simulated using the M–H algorithm. Furthermore, for the mul-
tivariate normal error distribution, only Steps 1 and 2 are required.

3 Application

3.1 Capital Asset Pricing Model (CAPM)

In this section, we compare the performance of SUR models with different multi-
variate error distributions in the CAPM, which, in the form of a regression model, is
expressed as

yi j = β1 j + β2 j xi j + εi j (i = 1, . . . , n, j = 1, . . . ,m), (8)

where yi j are the excess returns of security j at time i , xi j are the excess returns
on the market portfolio, β1 j are the intercepts, β2 j are the beta coefficients in the
CAPM for security j and εi j are the error terms. If β2 j > 1 (β2 j < 1), there is a
higher (lower) risk for security j than the market portfolio. If β2 j = 1, security j is
as risky as the market portfolio.

[4] studied the CAPM for portfolios of stock in four regions: Asia Pacific (exclud-
ing Japan) (Region 1), Europe (Region 2), Japan (Region 3) and North America
(Region 4). We extend their work by modelling the correlation structure between the
excess returns of the portfolio of stocks in all four regions. The data used for statistical
analysis is chosen from July 1990 to March 2016 (309 months) and is obtained from
the Kenneth French data library (http://mba.tuck.dartmouth.edu/pages/faculty/ken.
french/data_library.html). [4] divided the portfolios in these regions into five quin-
tiles based on size and five quintiles based on the ratio of book equity to market
equity (B/M) to obtain 25 portfolios. yi j are the excess returns of the portfolio from

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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the third size quintile and first B/M quintile of region j ( j = 1, . . . , 4) at month
i (i = 1, . . . , 309) and xi j are the excess returns on the market portfolio from region
j at month i .

In the Bayesian inference, we adopt the prior distributions shown in Sect. 2.3 for
all model parameters. The degrees of freedom parameters are restricted to the range
between 2 and 30. The Gibbs sampler is run for a total of 20000 iterations. The
first 10000 iterations are discarded as the burn-in period and the remaining 10000
iterations are used for statistical inference.

The performance of the three SUR models are compared using the Deviance
Information Criterion (DIC) [11], and the model with the smallest DIC is preferred.
However, for ease of calculation, the conditional DIC, DIC7 in [2], is used instead.
DIC7 is given by

DIC7 = −4Eθ,λ

[
log f ( y|θ,λ)| y] + 2 log f ( y|̂θ( y), λ̂( y)), (9)

where y = ( yT1 , . . . , y
T
n )

T is the vector for the response variable in the SUR model,
θ = (β,Σ,ν) and λ is the vector for the scale mixture variables. (̂θ( y), λ̂( y)) is
the joint maximum a posteriori (MAP) estimator. The conditional log-likelihood

is given by f ( y|θ,λ) = ∏n
i=1 f ( yi |θ,λi ) = ∏n

i=1 Nm( yi |μ,Λ
− 1

2
i ΣΛ

− 1
2

i ). Note
that for the SUR model with multivariate normal error distribution, θ = (β,Σ),
f ( y|θ) = ∏n

i=1 Nm( yi |μ,Σ) and Eθ,λ

[
log f ( y|θ,λ)| y] = Eθ

[
log f ( y|θ)| y].

3.2 Results

The posterior mean, posterior standard deviation and 95% credible interval (CI) for
the model parameters in three different SUR models are given in Table1. The error
distributions used are themultivariate normal, multivariate t andMod-t distributions.
For each error distribution, the 95% CI is listed underneath the posterior mean and
standard deviation.

All the slope parameters β21, β22, β23 and β24 are significant. Across all three
error distributions, the beta coefficients for Asia Pacific (excluding Japan) (β21), and
Europe (β22) are close to 1, meaning that the portfolio of stocks for these regions
is just as risky as the market portfolio. For Japan, the parameter β23 is around 1.1,
and the portfolio of stocks for Japan is riskier than the market portfolio in Japan. For
North America, the beta coefficients are highest across the three error distributions,
with β24 between 1.26 and 1.30. β11 is the only intercept parameter that is significant,
whereas the other three parameters β12, β13 and β14 are not.

The posteriormeans ofσ1,σ2,σ3 andσ4 are the greatest for themultivariate normal
error distribution, with 3.52, 2.81, 3.71 and 3.97 respectively. For the multivariate t
error distribution, the posterior means of σ1, σ2, σ3 and σ4 are 2.97, 2.00, 3.11 and
2.74. For the Mod-t error distribution, these are 2.81, 1.83, 3.27 and 2.44, which are
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Table 1 Posterior means, standard deviations and the 95% credible intervals for the parameters in
SUR models with the multivariate normal, multivariate t and Mod-t error distributions

Normal t Mod-t

Mean S.D. Mean S.D. Mean S.D.

β11 −0.5949 0.2022 −0.5565 0.1888 −0.6578 0.1826

[−0.9907,−0.2067] [−0.9212,−0.1837] [−1.0187,−0.2974]
β21 1.0462 0.0334 1.0238 0.0354 1.0140 0.0344

[0.9823, 1.1128] [0.9540, 1.0943] [0.9472, 1.0815]

β12 −0.1868 0.1598 −0.0773 0.1269 −0.1349 0.1272

[−0.5054, 0.1228] [−0.3311, 0.1712] [−0.3855, 0.1153]
β22 1.0419 0.0309 0.9981 0.0277 0.9868 0.0270

[0.9822, 1.1030] [0.9432, 1.0520] [0.9353, 1.0407]

β13 −0.1319 0.2122 −0.2737 0.1985 −0.2423 0.2046

[−0.5461, 0.2890] [−0.6615, 0.1200] [−0.6395, 0.1641]
β23 1.1217 0.0353 1.1039 0.0356 1.1073 0.0356

[1.0529, 1.1911] [1.0352, 1.1740] [1.0389, 1.1774]

β14 −0.0679 0.2287 −0.1107 0.1749 −0.1577 0.1725

[−0.5153, 0.3821] [−0.4559, 0.2299] [−0.4946, 0.1797]
β24 1.3025 0.0513 1.2875 0.0429 1.2635 0.0400

[1.2007, 1.4031] [1.2045, 1.3729] [1.1845, 1.3425]

σ1 3.5213 0.1421 2.9700 0.1525 2.8116 0.2256

[3.2629, 3.8161] [2.6790, 3.2819] [2.3779, 3.2643]

σ2 2.8095 0.1140 2.0027 0.1059 1.8338 0.1312

[2.5991, 3.0465] [1.8059, 2.2196] [1.5909, 2.0995]

σ3 3.7113 0.1506 3.1142 0.1576 3.2656 0.2154

[3.4311, 4.0238] [2.8178, 3.4385] [2.8408, 3.6770]

σ4 3.9691 0.1602 2.7414 0.1465 2.4427 0.1761

[3.6737, 4.2959] [2.4693, 3.0401] [2.1100, 2.7967]

ρ12 0.2259 0.0539 0.2244 0.0584 0.2642 0.0590

[0.1177, 0.3295] [0.1080, 0.3352] [0.1456, 0.3767]

ρ13 −0.0177 0.0574 −0.0178 0.0632 −0.0155 0.0607

[−0.1288, 0.0953] [−0.1405, 0.1064] [−0.1338, 0.1043]
ρ14 0.1652 0.0559 0.1817 0.0591 0.2122 0.0608

[0.0552, 0.2735] [0.0646, 0.2967] [0.0903, 0.3309]

ρ23 0.2012 0.0556 0.1587 0.0608 0.1675 0.0623

[0.0891, 0.3106] [0.0385, 0.2776] [0.0439, 0.2873]

ρ24 0.4139 0.0474 0.3184 0.0574 0.3608 0.0580

[0.3171, 0.5049] [0.2022, 0.4281] [0.2438, 0.4705]

ρ34 0.0540 0.0577 0.0391 0.0622 0.0517 0.0644

[−0.0598, 0.1653] [−0.0869, 0.1608] [−0.0750, 0.1779]
ν — — 5.2095 0.7516 — —

[3.9168, 6.8434]

(continued)
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Table 1 (continued)

Normal t Mod-t

Mean S.D. Mean S.D. Mean S.D.

ν1 — — — — 5.9478 2.7313

[2.9664, 12.9272]

ν2 — — — — 3.6109 0.7725

[2.4263, 5.3731]

ν3 — — — — 10.6512 5.2546

[4.2580, 25.0797]

ν4 — — — — 3.5181 0.7379

[2.4193, 5.3183]

Table 2 Deviance Information Criterion (DIC) for the three SUR models

Distribution Normal t Mod-t

DIC 6517.62 6171.27 6095.94

the smallest out of all three error distributions with the exception of the posterior
mean of σ3.

The 95% CIs for ρ13 and ρ34 include 0, whereas those for ρ12, ρ14, ρ23, and ρ24
do not include 0. This indicates that the excess returns of portfolios between Asia
Pacific (excluding Japan) and Japan, and between Japan and North America are not
correlated, whereas the other combinations of the four regions are correlated.

For theMod-t model, the degrees of freedom for the excess returns on the portfolio
in Asia Pacific (Region 1), Europe (Region 2), Japan (Region 3) and North America
(Region 4) are 5.95, 3.61, 10.65 and 3.52 respectively. The excess returns on the
portfolio in Japan (Region 3) are relatively lighter-tailed than those of the other three
regions, as the degrees of freedom parameter for this region is higher than those of the
other three. For the t model, the only degrees of freedom parameter has a posterior
mean 5.21, posterior standard deviation 0.75, and the 95% CI [3.92, 6.84].

Table2 presents the DIC values of the SUR models with multivariate normal,
Student-t and Mod-t error distributions. It is observed that the multivariate t and
Mod-t error distributions achieve a lower DIC than the multivariate normal error
distribution, and this is unsurprising because financial data are always heavy-tailed.
However, the Mod-t distribution outperforms the t distribution in data fitting.

Figure2 shows the posterior distribution of ν for the SUR model with the multi-
variate t error distribution. The posterior distribution is skewed slightly to the right.
Similarly, from Fig. 3, the posterior distributions for ν1, ν2, ν3 and ν4 in the SUR
model with the Mod-t error distribution are also obviously skewed to the right to
different extents.

Figure4 shows the plots of the correlation matrices for the SURmodels with mul-
tivariate normal, multivariate t and Mod-t error distributions. The colours indicate
the strength and direction of the correlation between any two of the four regions.
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Fig. 2 Histogram of the posterior samples for ν in the multivariate t error distribution
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Fig. 3 Histograms of the posterior samples for ν1, ν2, ν3 and ν4 in the Mod-t error distribution

Colours closer to brown, green and blue indicate correlation coefficients closer to
1, 0 and −1 respectively. For the multivariate normal and t-distributions, the off-
diagonal elements of the correlation matrices are the posterior means of ρ jk for all
j, k = 1, . . . ,m and j �= k. For the Mod-t distribution, the off-diagonal elements
are calculated by the formula for Corr(X j , Xk) shown in Eq.4, using the posterior
means of ρ jk , ν j and νk for all j, k = 1, . . . ,m and j �= k. The correlation coeffi-
cients between Regions 2 and 3 and between Regions 2 and 4 are furthest from 0
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Fig. 4 Plots of the correlation matrices for SUR models with the multivariate normal, multivariate
t and Mod-t error distributions

for the multivariate normal error distribution and closest to 0 for the Mod-t error
distribution. There is not much difference for the correlation coefficients between
any of the other regions.

4 Conclusion

In this paper, we propose a non-elliptical multivariate Student-t distribution whose
marginal t-distributions are allowed to have flexible degrees of freedom. This Mod-t
distribution is constructed via a scale mixture of normal form and therefore, it can be
easily implemented using Bayesian MCMC algorithms. In the empirical study of the
CAPM,we show that theMod-t distribution outperforms themultivariate normal and
multivariate t-distributions in fitting the excess portfolio return data. The standard
deviations in the covariance matrix of the error term are smaller under the Mod-t
distribution than the Student-t distribution, confirming a better fit being obtained.
Therefore, it is worth considering the Mod-t distribution in multivariate statistical
analysis where the marginal distributions are less likely to be identical.
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Bayesian Inference of Stochastic Pursuit
Models from Basketball Tracking Data

Harish S. Bhat, R.W.M.A. Madushani and Shagun Rawat

Abstract We develop a Metropolis algorithm to perform Bayesian inference for
models given by coupled stochastic differential equations. A key challenge in devel-
oping practical algorithms is the computation of the likelihood. We address this
problem through the use of a fast method to track the probability density function of
the stochastic differential equation. The method applies quadrature to the Chapman–
Kolmogorov equation associated with a temporal discretization of the stochastic
differential equation. The inference method can be adapted to scenarios in which we
have multiple observations at one time, multiple time series, or observations with
large and/or irregular temporal spacing. Computational tests show that the result-
ing Metropolis algorithm is capable of efficient inference for an electrical oscillator
model.

Keywords Bayesian inference · Stochastic differential equations · Nonlinear
systems · Sports analytics

1 Introduction

In 2010, the National Basketball Association (NBA) began to install a camera system
to track the positions of the players and the ball as a function of time. For the ball and
for each of the 10 players on the court, the system records an (x, y) position 25 times
per second. Ultimately, this wealth of data should enable us to answer a number of
questions regarding basketball strategy that would have seemed intractable just a few
years ago. To bring this vision to reality, we must develop new algorithms that can
efficiently use the data for inference of appropriate models.
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In this work, we focus on so-called “fast break” situations where an offensive
player races towards the basket in an attempt to score before the defensive team has
time to set up their defense. In many such situations, it is relatively easy to identify
from the data a runner and a chaser. This motivates the following question that is
central to the present paper: using the NBA’s spatial tracking data, how can we infer
a stochastic model for the chaser’s pursuit of the runner?

To answer this question, we first formulate a stochastic version of the classical
pursuit model. Our model consists of a set of coupled, nonlinear stochastic differ-
ential equations with time-dependent coefficients. To perform Bayesian inference
for this stochastic model, we develop a Markov Chain Monte Carlo (MCMC) algo-
rithm. The MCMC algorithm is derived using a Metropolis scheme; our innovation
is to evaluate the log likelihood efficiently using a novel, deterministic method called
density tracking by quadrature (DTQ). The DTQ method applies quadrature to the
Chapman–Kolmogorov equation associated with a time-discretization of the original
stochastic differential equation (SDE). For the case of scalar SDE, we have estab-
lished conditions under which the DTQ approximation converges to the true density
of the SDE at a rate that is linear in the time step [3].

The MCMC algorithm developed here can be applied to Bayesian inference for
a class of two-dimensional SDE, not just the pursuit model considered here. Note
that inference of SDE models is a challenging problem, due to the fact that a closed-
form likelihood function is generally unavailable [4, 5, 9]. Most existing parametric
inference methods for discretely observed SDE require inter-observation times to be
small. As a way to facilitate approximation of the transition density for parametric
inference for large inter-observation times, Bayesian methods are used to simulate
missing values of the observations to form a high-frequency data set. In situations
where the likelihood function is either analytically unavailable or computationally
prohibitive to evaluate,Bayesian inferenceofSDEmakes use of likelihood-freemeth-
ods such as Approximate Bayesian Computation [7], variational methods [2, 10],
and/or Gaussian processes [1, 8]. In ongoing and future work, we will conduct a
careful comparison of our method against these other methods. For the purposes of
the present paper, we are more interested in establishing the appropriateness of a
stochastic pursuit model for basketball fast breaks.

2 Derivation of the Model and Inference Method

Let the runner be the player (on offense) who has the ball and is running toward
the basket. Let the chaser be the player (on defense) who is trying to prevent the
runner from scoring. Let the current spatial coordinates of the runner and chaser be,
respectively, (xr (t), yr (t)) and (xc(t), yc(t)).

Since the chaser is moving towards the runner, the velocity vector of the chaser
points toward the runner’s current position. Let φ = (xr − xc, yr − yc). Then the
unit vector that points toward the runner from the chaser is φ/‖φ‖. The velocity of
the chaser, (ẋ c, ẏc), can thus be given as
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(ẋ c, ẏc) = γ (t)φ/‖φ‖, (1)

where γ (t) = ‖(ẋ c, ẏc)‖, the instantaneous speed of the chaser. Note that (1) is a
coupled system of nonlinear ordinary differential equations known as the pursuit
model—classically, one assumes that γ (t) and (xr (t), yr (t)) are given, in which
case one typically solves an initial-value problem for (xc(t), yc(t)). To generalize
the classical model to the real data context considered here, we multiply both sides
of (1) by dt and then add noise to each component:

d(xc, yc) = γ (t) [φ/‖φ‖] dt + (ν1 dW
1
t , ν2 dW

2
t ) (2)

HereW1,t andW2,t denote two independent Wiener processes withW1,0 = W2,0 = 0
almost surely. We refer to this model as the stochastic pursuit model.

Given time-discrete observations of (xc, yc) and (xr , yr ), how do we infer γ (t)
together with ν1 and ν2? Consider (2) as a particular example of:

dX1,t = f1(t,Xt , θ) d t + g1(t,Xt , θ) dW1,t (3a)

dX2,t = f2(t,Xt , θ) d t + g2(t,Xt , θ) dW2,t . (3b)

Here Xt = (X1,t , X2,t ) is a two-dimensional stochastic process. For j = 1, 2, we
refer to f j and g j as, respectively, drift and diffusion functions. Both drift and diffu-
sion functions may depend on a parameter vector θ ∈ R

N .
For the stochastic pursuit model (2), we takeXt = (xc(t), yc(t)). We treat γ (t) as

piecewise constant. Each constant value of γ (t) is one component of the parameter
vector θ ; the final two components of θ are ν1 and ν2. If we treat (xr (t), yr (t)) as
given, then we can identify the time-dependent drift functions f1 and f2 as the two
components of γ (t)φ/‖φ‖.

Our goal is to infer θ from discrete-time observations of Xt . Suppose that
at a sequence of times 0 = t0 < t1 < · · · < tM = T , we have observations x :=
{(x1,m, x2,m)}Mm=0. Here xm = (x1,m, x2,m) is a sample of Xtm . In this paper, we will
assume equispaced temporal observations, i.e., tm = mΔt for fixed step sizeΔt > 0.
We make this assumption purely for notational simplicity; the method we describe
can be easily adapted for nonequispaced temporal observations.

We discretize the SDE (3) in time using the Euler–Maruyama scheme:

Xn+1
1 = Xn

1 + f1(tn, X
n
1 , X

n
2 , θ)h + g1(tn, X

n
1 , X

n
2 , θ)

√
hZn+1

1 (4a)

Xn+1
2 = Xn

2 + f2(tn, X
n
1 , X

n
2 , θ)h + g2(tn, X

n
1 , X

n
2 , θ)

√
hZn+1

2 . (4b)

Here h > 0 is a fixed time step, the time step of our numerical method. We shall
choose h to be a fraction ofΔt , i.e., Fh = Δt for integer F ≥ 2.The randomvariables
Xn
i for i = 1, 2 are approximations of Xi,nh . The Zn

i are independent and identically
distributed random variables, normally distributed with mean 0 and variance 1, i.e.,
Zn
i ∼ N (0, 1).
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The posterior density of the parameter vector given the observations is p(θ | x) ∝
p(x | θ)p(θ), where p(x | θ) is the likelihood and p(θ) is the prior. Let p̃(x | θ)

denote the likelihood under the discrete-time model (4), an approximation to the
true likelihood p(x | θ). Note that (4) describes a discrete-timeMarkov chain. By the
Markov property, the likelihood p̃(x | θ) factors and we can write:

p(x | θ) ≈ p̃(x | θ) =
M−1
∏

m=0

p̃(xm+1 | xm, θ). (5)

The term p̃(xm+1 | xm, θ) is the transition density for (4), from state xm at time tm to
state xm+1 at time tm+1. This suggests a numerical method for computing this density,
which we explore in the next subsection.

2.1 Density Tracking by Quadrature (DTQ)

Equation (4) describes a Markov chain over a continuous state space. If we let
p̃n(x1, x2 | θ) denote the joint probability density function of Xn

1 and Xn
2 given θ ,

then the Chapman–Kolmogorov equation associated with (4) is

p̃n+1(x1, x2 | θ) =
∫

y1,y2∈R2
K (x1, x2, y1, y2, tn; θ) p̃n(y1, y2 | θ) dy, (6)

where

K (x1, x2, y1, y2, tn; θ) = p̃n+1|n(x1, x2|y1, y2, θ)

= (2πσ 2
1 )−1/2 exp

[−(x1 − μ1)
2/(2σ 2

1 )
]

(2πσ 2
2 )−1/2 exp

[−(x2 − μ2)
2/(2σ 2

2 )
]

.

Here μ1 = y1 + f1(tn, y1, y2; θ)h, μ2 = y2 + f2(tn, y1, y2; θ)h, σ 2
1 = g21(tn, y1,

y2; θ)h and σ 2
2 = g22(tn, y1, y2; θ)h. That is, K (x1, x2, y1, y2, tn; θ) is the conditional

density of Xn+1
1 and Xn+1

2 given Xn
1 = y1, Xn

2 = y2 and a fixed θ , evaluated at the
point (x1, x2). The fact that the conditional density is a product of normal distribu-
tions with means μ1, μ2 and variances σ 2

1 , σ 2
2 can be shown using (4) together with

the fact that Xn+1
1 and Xn+1

2 are conditionally independent given Xn
1 and Xn

2 . This
conditional independence is a direct consequence of having two independent random
variables Zn

1 and Zn
2 in (4).

The crux of the DTQ method is to apply quadrature to (6) to evolve an initial
density forward in time. We use the trapezoidal rule for quadrature because, for
analytic drift and diffusion functions, this leads to exponential convergence of p̂
to p̃ [3]. While other quadrature rules may yield improvements for non-analytic
drifts/diffusions, the overall error between p and p̂ will still be dominated by the
O(h) error between p̃ and p stemming from the Euler–Maruyama discretization.
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Consider a (2M + 1) × (2M + 1) spatial grid with fixed spacing k > 0 and grid
points xi1 = ik, x j

2 = jk, yi
′
1 = i ′k, and y j ′

2 = j ′k, where i, i ′, j, j ′ ∈ {−M, M}.
Then we apply the trapezoidal rule in both the y1 and y2 variables to obtain:

p̂n+1(xi1, x
j
2 ; θ) = k2

∞
∑

i ′=−∞

∞
∑

j ′=−∞
K (xi1, x

j
2 , y

i ′
1 , y j ′

2 , tn; θ) p̂n(yi
′
1 , y j ′

2 ; θ) (7)

It is unnecessary to sum over all of Z2. We know that a two-dimensional Gaussian
decays to zero far from its mean. Since the mean (μ1, μ2) is approximately (y1, y2),
we sum only from y1 = x1 − ζk to y1 = x1 + ζk and similarly for y2:

p̂n+1(xi1, x
j
2 ; θ) = k2

i+ζ
∑

i ′=i−ζ

j+ζ
∑

j ′= j−ζ

K (xi1, x
j
2 , y

i ′
1 , y j ′

2 , tn; θ) p̂n(yi
′
1 , y j ′

2 ; θ) (8)

We choose ζ manually to ensure the accuracy of the computation. We now have
our method to evaluate p̃(xm+1 | xm, θ). Let us take n = 0 in (8) to correspond to
the time tm . We start with the deterministic initial condition X0 = xm , correspond-
ing to the density p̃0(x) = δ(x − xm). Inserting this point mass into (6), we obtain
a Gaussian density for p̃1(x). For each i, j ∈ {−M, M} on the spatial grid, we set
p̂1(xi1, x

j
2 ; θ) = p̃1(xi1, x

j
2 ; θ). Now that we have p̂1, we use (8) repeatedly to com-

pute p̂2, p̂3, and so on until we reach p̂F . The object p̂F is then a spatially discrete
approximation of the transition density from time tm to time tm + Fh = tm+1. For this
last density, instead of evaluating it on the spatial grid used by the trapezoidal rule,
we evaluate the density at the data xm+1. This avoids interpolation. In this way, we
compute a numerical approximation of p̃(xm+1 | xm, θ), as required for the likelihood
function.

2.2 Metropolis Algorithm

Here we embed the DTQ method’s likelihood computation into a Metropolis
algorithm to sample from the posterior. In the Metropolis algorithm, we con-
struct an auxiliary Markov chain {θ̂ N }N≥0 which is designed to have an invariant
distribution given by the posterior p(θ | x). This Markov chain is constructed as
θ̂ N+1 = θ̂ N + ZN+1, where ZN+1 is a random vector with dimension equal to that
of the parameter vector θ . In this paper, we choose all components of ZN+1 to be
independent normal random variables with known means and variances.

The Metropolis algorithm is as follows:

• Choose value q0 for θ̂0.
• Once the values q0, . . . , qN of θ̂0, . . . , θ̂ N have been found:
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– Generate a proposal from the auxiliary Markov chain: q∗
N+1 = qN + ZN+1.

– Calculate the ratio ρ = p(q∗
N+1 | x)

p(qN | x) , where p(q∗
N+1 | x) ≈ p̃(x | q∗

N+1)p(q
∗
N+1) =

p(q∗
N+1)

∏M−1
m=0 p̃(xm+1 | xm, q∗

N+1). Now each term p̃(xm+1 | xm, q∗
N+1) can be

computed using the DTQ method discussed in Sect. 2.1.
– Sample uN ∼ U (0, 1). If ρ > uN set θ̂ N+1 = q∗

N+1; in this case, the proposal

is accepted. Else set θ̂ N+1 = qN and the proposal is rejected.

Oncewe have obtained all the samples q0, q1, . . . , qN from theMetropolis algorithm,
we discard a sufficient number of initial samples to ensure the Markov chain has
converged to its invariant distribution.

3 Numerical Tests

We implement the Metropolis algorithm in R. Inside the Metropolis algorithm, we
evaluate the likelihood function using the DTQ method, which is implemented in
C++ as an R package. To test the method, we first consider the nonlinear SDE

dX1,t = θ1 X2,t d t + (0.1 + θ2
4 e

−X2
1,t ) dW1,t , (9a)

dX2,t = (−θ2 X1,t + θ3X2,t (1 − X2
1,t )) d t + (0.1 + θ2

5 e
−X2

2,t ) dW2,t . (9b)

This system describes a noisy van der Pol oscillator. The presence of X1,t and X2,t in
the diffusion function ensures that the transition density is not Gaussian. To generate
simulated data, we start with known values of the parameters: θ1 = 1, θ2 = 1, θ3 = 4
and the noise parameters θ4 = θ5 = 0.5. Using a fixed initial condition (X1,0, X2,0),
we then use the Euler–Maruyama method to step (9) forward in time until a final
time T > 0. When we carry out this time-stepping, we use a step size of 0.001
and simulate up to T = 20. We then retain every 100-th element to yield a data set
consisting of 201 observations of X1 and X2 with spacing Δt = 0.1. In this way, we
simulate large inter-observation times for a process that in reality operates at a finer
time scale.

Using the samples {xm}Mm=0 thus constructed, we run the Metropolis algorithm.
We infer only the parameters in the drift function, i.e., θ1, θ2 and θ3, keeping other
parameters fixed at their known values. We initialize θ at (0.1, 0.1, 0.1), far from the
true θ values. We use a diffuse Gaussian prior with mean 0 and standard deviation
100. For the proposal distribution ZN+1 in the auxiliary Markov chain, we choose
i.i.d. Gaussians with mean 0 and standard deviation 0.05.

Our goal here is to test the performance of the algorithm using simulated data
and compare it against Bayesian particle filtering/inference method implemented
in the R package “pomp” [6]. This method gives us an alternative, sampling-based
approach to approximate the likelihood function. Note that we also compare DTQ
against a purely Eulerian approximation of the transition density, i.e., a method
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where p̃(xm+1|xm, θ) is approximated by a Gaussian pdf; this is equivalent to the
DTQ method with zero internal quadrature steps, i.e., h = Δt = 0.1.

When we run the Metropolis algorithm, we discard the first 1000 samples and
retain the next 20000 samples. We have settled on 20000 samples because, in this
case, using the first 10000 post-burn-in samples does not yield significantly different
results than what we obtained, i.e., we see no reason to continue sampling.We record
the inferred parameter values, acceptance rate of themethod (AR), andmean absolute
percentage error (MAPE) for varying values of h for the 3 methods, Euler, DTQ and
Pomp.

Parameters θ1 θ2 θ3 AR MAPE Method
Δt = 0.1; h = 0.1/1 0.747 0.906 3.070 0.296 0.193 Euler
Δt = 0.1; h = 0.1/2 0.866 1.300 4.260 0.285 0.168
Δt = 0.1; h = 0.1/4 0.892 1.160 4.430 0.254 0.124 DTQ
Δt = 0.1; h = 0.1/8 0.980 1.170 4.210 0.239 0.081
Δt = 0.1; h = 0.1/2 1.250 0.257 4.340 0.0003 0.361
Δt = 0.1; h = 0.1/4 1.110 0.647 4.060 0.001 0.158 Pomp
Δt = 0.1; h = 0.1/8 1.040 0.752 3.940 0.0004 0.102

The first four rows of the table show that using the DTQ method to compute the
likelihood yields more accurate posteriors than using a purely Gaussian likelihood
(Eulerian method). In comparison to Pomp, our method does slightly better in terms
of the means of the posteriors. If we look at the Metropolis samples generated by
the two methods, the DTQ method has radically higher acceptance rates than Pomp.
The non-adaptive version of the Metropolis sampling for Pomp does not explore
the posterior adequately, rejecting thousands of consecutive proposals. A carefully
executed adaptive Metropolis algorithm for Pomp does generate better results than
the non-adaptive version:

Parameters θ1 θ2 θ3 AR MAPE Method
Δt = 0.1; h = 0.1/2 0.960 0.809 4.010 0.110 0.078
Δt = 0.1; h = 0.1/4 1.000 0.954 3.990 0.164 0.017 Pomp-adaptive
Δt = 0.1; h = 0.1/8 1.010 1.010 4.020 0.171 0.009

One should take care to interpret these results: we have invested a great deal of time
to tune parameters in the adaptive MCMC scheme for pomp with full knowledge of
the “true” parameter vector θ . Overall, what we have learned from this exercise is that
there are two main investments of effort that one can make. In the DTQ method, we
have invested effort into making the likelihood calculation more accurate, efficient
and stable to initial choice of parameters. This allows us to use the DTQ method
with a vanilla Metropolis algorithm and obtain reasonable results. One could instead
have chosen to improve the vanilla Metropolis algorithm in various ways: adaptive
MCMC, sequential MC, HamiltonianMC, etc. This is the strategy pursued by Pomp.
While both strategies have their merits, it seems that the likelihood computed by
Pomp is not accurate enough to enable a vanilla Metropolis method to work well.
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To understand this point in more detail, we have computed log likelihood surfaces
in (θ2, θ3) space using both the Pomp and DTQ methods. If we rescale the log
likelihood values from both methods so that they achieve a maximum of 0 and then
exponentiate, we find that the DTQ likelihood has more reasonable gradients than
the Pomp likelihood, which varies over 3 orders of magnitude. The accept/reject
ratio depends on the actual density, i.e., the exponential of the log likelihood plus
the log prior. Therefore, the sharp dropoff in the likelihood function at points very
close to the maximum—seen in Pomp—will cause thousands of consecutive rejected
steps. The more gradual dropoff in the DTQ likelihood function leads to a reasonable
fraction of accepted steps in a vanilla Metropolis algorithm.

Next, we test the method using the pursuit SDE (2). We set the runner’s trajectory
equal to a sinusoidal curve y = sin(πx) from x = −1 to x = 1. We assume the
runner covers this trajectory over the time period 0 ≤ t ≤ 8. The chaser’s trajectory
is simulated using the Euler–Maruyama method to step (2) forward in time from a
fixed initial conditionX0 = (xc0, y

c
0). During the generation of the data, we use a step

size of 10−4. By downsampling this single time series, we generate time series with
spacings Δt = 0.4, 0.2, 0.1.

We set ν1 = 0.15, ν2 = 0.1, γ (t) = γ1 = 0.4 for 0 ≤ t < 4, and γ (t) = γ2 = 1.0
for 4 ≤ t ≤ 8. Because we want all speeds and diffusion constants to be positive,
we take γi = eθi and νi = eθi+2 for i = 1, 2. The priors for θ1 and θ2 are normal with
variance one and mean equal to the log of the mean speed of the chaser computed
over the chaser’s entire trajectory. The priors for θ3 and θ4 are normal with mean
log(0.4) and variance 1. We use mean zero Gaussian proposals for all components
of θ . We choose the variances of these proposals so that the acceptance rate for all
runs is near 30%.

Using the samples {xm}Mm=0 thus constructed, we run the Metropolis algorithm
with h = Δt/ i with i = 1, 2, 3, 4. For each choice of parametersΔt and h, we com-
pute 10100 samples and discard the first 100. To compute the runner’s trajectory at
intermediate points, we use linear interpolation between times tm and tm+1. We tabu-
late the results below; each value of γ1 represents the mean of eθ1 over all Metropolis
samples of θ1:

Parameters γ1 γ2 ν1 ν2 RMSE
Δt = 0.1; h = 0.1/1 0.301 0.748 0.124 0.088 0.136
Δt = 0.1; h = 0.1/2 0.311 0.956 0.124 0.085 0.051
Δt = 0.1; h = 0.1/3 0.307 1.011 0.117 0.080 0.050
Δt = 0.1; h = 0.1/4 0.308 1.025 0.120 0.082 0.050
Δt = 0.2; h = 0.2/1 0.306 0.650 0.142 0.114 0.181
Δt = 0.2; h = 0.2/2 0.310 0.877 0.137 0.119 0.077
Δt = 0.2; h = 0.2/3 0.309 1.015 0.112 0.084 0.050
Δt = 0.2; h = 0.2/4 0.304 1.019 0.111 0.085 0.053
Δt = 0.4; h = 0.4/1 0.292 0.514 0.188 0.201 0.254
Δt = 0.4; h = 0.4/2 0.312 0.960 0.177 0.177 0.063
Δt = 0.4; h = 0.4/3 0.307 0.987 0.124 0.144 0.053
Δt = 0.4; h = 0.4/4 0.303 1.014 0.145 0.113 0.049
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Overall, the results show that our algorithm produces mean posterior estimates
that are reasonably close to the ground truth values.When the spacing of the dataΔt is
large, we see dramatic improvement whenwe use the DTQmethod andmore internal
time steps. For instance, whenΔt = 0.4, the RMS error improves dramatically from
0.254 to 0.049 as we decrease h, i.e., as we take more internal DTQ steps. Similar
trends can be seen for the mean estimates of γ2, ν1 and ν2.

Note that all codes and data used in this work are available online at: https://
github.com/hbhat4000/sdeinference.

4 NBA Tracking Data

We now turn to real tracking data taken from the game played between the Golden
StateWarriors and the Sacramento Kings on October 29, 2014. Reviewing this game,
we found a fast break where Stephen Curry (of the Warriors) was the runner and
Ramon Sessions (of the Kings) was the chaser. The entire fast break lasts 4.12 s. The
spatial tracking data is recorded at intervals of 0.04s, for a total of 104 observations.
The tracking data uses the position on a court of dimension 94 × 50.Wehave rescaled
the data to lie in a square with center (0, 0) and side length equal to one.

To parameterize the chaser’s speed γ (t), we have used a piecewise constant
approximation with 8 equispaced pieces. Combined with the diffusion constants
ν1 and ν2, this yields a 10-dimensional parameter vector θ . As in the previous sim-
ulated data test, we set the true parameters γi and νi to be the exponentials of the
corresponding elements of the θ vector.

For the Metropolis sampler, the priors and proposals are higher-dimensional ver-
sions of those described in the simulated data test above. The main difference is that
we now generate only 1000 post-burnin samples.

Using the Metropolis samples, we compute a kernel density estimate of each
parameter. We then treat the mode of each computed density as the MAP (maximum
a posteriori) estimate of the corresponding parameter.We then use theMAPestimates
of the parameters in the pursuit SDE (2). We generate 100 sample paths of this SDE
using the Euler–Maruyama method with time step 10−4. As shown in Fig. 1, the
mean of these sample paths (plotted in black) agrees very well with the chaser’s
trajectory (plotted in red). This gives evidence that our stochastic pursuit system is
an appropriate model for NBA fast breaks involving one runner and one chaser.

To visualize the insight provided by themodel,we plot in Fig. 2 theMAPestimated
γ (t) function over the time period of the fast break, 0 ≤ t ≤ 4.12. The speed γ (t)
is the piecewise constant function plotted in black, while the mean speed computed
directly from the data is given by a red horizontal line. The inferred speed shows that
the chaser slows down dramatically approximately 1.5s into the fast break. If one
reviews the video footage of the play, this corresponds to the runner confusing the
chaser and evading him.

Given our stochastic pursuit model’s success in fitting the real data, in futurework,
we seek to apply the same methodology to a much larger sample of fast breaks. In

https://github.com/hbhat4000/sdeinference
https://github.com/hbhat4000/sdeinference
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Fig. 1 The agreement
between the black curve
(mean of simulated
stochastic pursuit trajectories
using MAP estimated
parameters) and the red
curve (chaser’s trajectory)
shows that the stochastic
pursuit model is appropriate.
The runner’s trajectory is
given in blue
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tracking data described in the
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this way, we can quantify a runner’s ability to evade a chaser and/or a chaser’s ability
to stay near a runner who is actively trying to score.
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Identification of Patient-Specific Parameters
in a Kinetic Model of Fluid and Mass
Transfer During Dialysis
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Abstract Hemodialysis (HD) is nowadays the most common therapy to treat
renal insufficiency. However, despite the improvements made in the last years,
HD is still associated with a non-negligible rate of co-morbidities, which could
be reduced by means of an appropriate treatment customization. Many differential
multi-compartment models have been developed to describe solute kinetics during
HD, to optimize treatments, and to prevent intra-dialysis complications; however,
they often refer to an average uremic patient. On the contrary, the clinical need
for customization requires patient-specific models. In this work, assuming that the
customization can be obtained by means of patient-specific model parameters, we
propose a Bayesian approach to estimate the patient-specific parameters of a multi-
compartment model and to predict the single patient’s response to the treatment,
in order to prevent intra-dialysis complications. The likelihood function is obtained
through a discretized version of a multi-compartment model, where the discretiza-
tion is in terms of a Runge–Kutta method to guarantee the convergence, and the
posterior densities of model parameters are obtained through Markov Chain Monte
Carlo simulation.
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1 Introduction

The elective option to treat End Stage Renal Disease (ESRD) is Hemodialysis (HD).
However, despite the improvements of the last years, HD is still associated with
a non-negligible rate of comorbidities [1]. Indeed, due to therapy discontinuity,
HD procedure induces considerable changes in osmotic balances and rapid varia-
tions in fluid volumes [2–4] and electrolytic concentrations [5] within the patient’s
body compartments. Moreover, a need for treatment customization emerged over
the years, in order to reduce the associated comorbidities, because the individual
tolerance to HD may vary from patient to patient also in the presence of similar
treatments [6, 7].

Instruments that simulate and predict the single patient’s response toHD treatment
in terms of electrolyte and catabolite kinetics are a necessary step toward customiza-
tion, to identify the most suitable therapy for reducing intra-dialysis complications
and the associated long-termdysfunctions. In the literature,manymulti-compartment
models have been developed to describe solute kinetics during HD, but they often
refer to an average uremic patient [8, 9]. On the contrary, the clinical need for cus-
tomization require patient-specific multi-compartment models [10].

In this work, we refer to the parametric multi-compartment model of Casagrande
et al. [10], and we assume that the customization can be obtained by means of
patient-specific model parameters. We propose a Bayesian estimation approach to
determine the patient-specific parameters of this multi-compartment model and to
predict the single patient response to HD treatment. Differently from [10], where a
constrained non-linear optimization algorithm was used to get the parameter values,
the Bayesian approach allows us to formally include the clinical prior knowledge on
the parameters and to directly evaluate the uncertainty associated with the estimates,
by means of their posterior probability density functions.

In the literature, Bayesian approaches have been successfully applied to estimate
the parameters and the response of differential systems, e.g., we previously applied
to estimate the inertance of a hydraulic simulator of the human circulation [11], the
thermal conductivity and the temperature profile in a polymer [12], the aortic stiffness
from non-invasive measurements [13], and the mortality terms in a stage-structured
demographic model [14]. However, to the best of our knowledge, this is the first
attempt to apply this framework to HD.

2 Multi-compartment Model

Thedifferentialmulti-compartmentmodel ofCasagrande et al. [10] allows to evaluate
the temporal trend of blood concentration for different plasmatic electrolytes and
breakdown products (defined as solutes in the following), and the blood volume
variations for the whole duration of a HD treatment, which is crucial from a clinical
viewpoint [15–17]. The model is based on mass and fluid balance equations, and
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Fig. 1 Body compartments of a HD patient, with fluid and mass exchanges across the biological
and artificial membranes (patient-specific parameters ρ, k(s) and η(s) highlighted where they act)

both fluid and mass exchanges among patient’s body compartments and across the
dialyzer membrane are taken into account. The body compartments are represented
as two pools (intracellular and extracellular) for the mass exchange of solutes, and
as three pools (plasmatic, interstitial and intracellular) for the fluid transfer (Fig. 1).
All symbols in Fig. 1 and in the following equations are defined in Table1.

Mass, fluid and pressure balance equations that account for mass and fluid
exchanges among the body compartments are as follows:

dM (s)
ic (t)

dt
= φ

(s)
ic (t) (1)

dM (s)
ex (t)

dt
= −φ

(s)
ic (t) − φ

(s)
dial (t) + φ

(s)
dil (2)

dVic (t)

dt
= Qic (t) (3)

dVis (t)

dt
= −Qic (t) + Q f cap (t) (4)

dVpl (t)

dt
= −Q f cap (t) − Qu f (5)
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Table 1 Nomenclature

Name Description

M (s)
ic (t) Intracellular mass of solute s

φ
(s)
ic (t) Molar flux of solute s across the cell membrane

M (s)
ex (t) Extracellular mass of solute s

φ
(s)
dial (t) Molar flux of solute s across the dialyzer

φ
(s)
dil Molar dilution flux of solute s

Vic (t) Intracellular volume

Qic (t) Fluid flow rate across the cell membrane

Vis (t) Interstitial volume

Q f cap (t) Fluid flow rate across the capillary membrane

Vpl (t) Plasmatic volume

Qu f Ultrafiltration flow rate across the dialyzer membrane

Pac (t) Arterial capillary pressure

Cc Capillary compliance

Pis (t) Interstitial pressure

Eis Interstitial elastance

φ
(s)
di f f (t) Diffusive molar flux of solute s across the dialyzer membrane

Q f Filtration flow rate of the HD machine

C (s)
in (t) Concentration of solute s in plasma water at the dialyzer inlet

Lc Capillary permeability

Pn (t) Total net filtration pressure (difference between hydraulic and osmotic pressures)

C (s)
ic (t) Concentration of solute s in the intracellular compartment

β Ratio between intracellular and interstitial equilibrium concentrations

C (s)
is (t) Concentration of solute s in the interstitial compartment

dPac (t)

dt
= 1

Cc

dVpl (t)

dt
(6)

dPis (t)

dt
= Eis

dVis (t)

dt
(7)

where (1) and (2) refer to the mass balance for the intracellular and extracellular
compartments, respectively, (3)–(5) to the fluid balance in the intracellular, interstitial
and plasmatic compartments, respectively, and (6) and (7) to the pressure balance
at the arterial capillary side and in the interstitium, respectively. Time is denoted
by t , and the index s = 1, . . . , 8 refers to the solutes (sodium, potassium, chlorine,
calcium, bicarbonate, magnesium, urea, and creatinine).

Individual HD control in terms of mass and fluid exchange is achieved by iden-
tifying the following patient-specific parameters related to the membranes across
which fluid and mass transports occur:

• η(s): performance of dialyzer membrane in terms of filtration for solute s;
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• ρ: relative capillary wall permeability;
• k(s): modulation of mass transfer efficiency across cell membrane for solute s.

Variables φ
(s)
dial (t), Q f cap (t) and φ

(s)
ic (t) depend on η(s), ρ and k(s) as follows:

φ
(s)
dial (t) = φ

(s)
di f f (t) + η(s) · Q f · C (s)

in (t) (8)

Q f cap (t) = ρ · Lc · Pn (t) (9)

φ
(s)
ic (t) = −k(s)

(
C (s)
ic (t) − βC (s)

is (t)
)

(10)

where (8) is valid for standard hemodialysis. Further details are reported in [10].

3 Bayesian Estimation Approach

The patient-specific parameters to estimate with the Bayesian method are globally
denoted as Θ = {η(1), . . . , η(8), ρ, k(1), . . . , k(8)} in the following. The likelihood
function is based on a discretized version of the multi-compartment model. Given
the structure of themodel, the posterior densities of theΘ parameters are numerically
obtained with a Markov Chain Monte Carlo (MCMC) algorithm.

3.1 Discretized Model and Likelihood Function

The likelihood function is obtained from the discretized formulation of the ODE
system in (1)–(7). To guarantee the convergence, the temporal discretization is per-
formed with the 4th order Runge–Kutta method.

Each patient-specific parameter in Θ is assumed to be a random variable. In this
way, each discretized equation is a random process and we can express the density
of each state variable Xi (th) at discrete time th as conditioned to Θ and to all values
X1(th−1), . . . , Xn(th−1) at time th−1:

Xi (th) ∼ L
(
Xi (th)|X1(th−1), . . . , X

n(th−1),Θ
) ∀i, h (11)

whereL denotes the conditioned probability law, which does not follow any known
form due to the structure of the system, and n is the number of state variables in
model (1)–(7). Other variables different from the state variables are also present in
the model, but we can express them as function of the state variables at the same
time instant th−1.

We consider that observations Xi
obs of X

i (i = 1, . . . , n) are taken at some time
instants th∗ , where the set {th∗ } in which the observations are available is a subset of
{th}. This holds because the discretization stepΔ, chosen according to the differential
equations, is usually thicker than the frequency of the observations.
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We assume that all observations Xi
obs(th∗) are associated with an error (e.g., a

measurement error). Thus,wemodel themas stochastic variables following aGamma
distribution with modal value Xi (th∗) and standard deviation αXi (th∗):

Xi
obs(th∗) ∼ G

(
1 + 1 + √

1 + 4α2

2α2
,
1 + √

1 + 4α2

2α2Xi (th∗)

)
∀i, h∗ (12)

where G denotes the Gamma distribution, 1 + 1+√
1+4α2

2α2 is the shape parameter, and
1+√

1+4α2

2α2Xi (th∗ )
the rate parameter.

In particular, we consider three different parameters α based on the state vari-
able, i.e., αv for Vis and Vpl , αmex for all M (s)

ex , and αmic for M (s)
ic . They are

other parameters to estimate; thus, the vector of the parameters to estimate is
Θ∗ = Θ ∪ {αv, αmex , αmic}.

The combination of (11) and (12) gives ∀i the conditional law of the observations
at each instant th∗ . Their product over th∗ and over i gives the likelihood function

f
(
X̂obs |Θ∗

)
of the observations given the parameter vector Θ∗:

f
(
X̂obs |Θ∗

)
=

∏
i,h∗

G

(
1 + 1 + √

1 + 4α2

2α2
,
1 + √

1 + 4α2

2α2Xi (th∗)

)

× L̂
(
Xi (th∗)|X1(th∗−1), . . . , X

n(th∗−1),Θ
)

(13)

where X̂obs denotes the overall set of observations ∀i, h∗, and the law L̂ represents
the marginal density of Xi (th∗), which is derived combining all densities L in (11)
between the observation at th∗ and the previous observation at th∗−1. In the notation,
α has to be specified (αv, αmex or αmic) based on the specific variable Xi .

3.2 Prior Densities and Computation of the Posterior
Densities

The following independent prior densities are chosen, according to the HD litera-
ture [10, 18] that provides some information about standard values and ranges of
parameters in Θ∗:

• η(s): Uniform density with minimum value equal to 0 and maximum value equal
to 1 ∀s;

• ρ:Gamma density with mean value equal to 1 and standard deviation equal to 0.1;
• k(s):Gamma density with mean value equal to 2.50 · 10−3 for sodium, 3.30 · 10−3

for bicarbonate, 1.30 · 10−3 for urea, 1.30 · 10−4 for creatinine, 1.67 · 10−4 for
all other solutes, and standard deviation equal to the 10% of the respective mean
value ∀s;
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• αv, αmex , αmic: Gamma density with mean value and variance equal to 0.05.

The posterior density of Θ∗ is numerically obtained with a Markov Chain Monte
Carlo (MCMC) method. In particular, we use STAN [19], which implements the
Hamiltonian Monte Carlo algorithm to sample from each marginal posterior density.
Estimates are obtained with 1200 iterations, including a warm up of 500 iterations.
The discretization time step Δ is equal to 5 s.

4 Computational Validation of the Approach

In this chapter, we show the validation of the proposed approach on a test instance
that replicates aHD session, inwhich theBayesianmethod is applied using simulated
observations of the state variables Vpl , Vis , M (s)

ex , M
(s)
ic .

4.1 Test Instance

To obtain the test instance, the ODE system in (1)–(7) was integrated over a period of
4 h (the typical duration of a HD treatment). Clinical data acquired at the beginning
of a HD session were used to initialize the model. Moreover, fixed model parameters
were assigned considering standard therapy settings, and patient-specific parameters
from average literature values (the latters are reported in the last column of Table2).

In particular, the patient was 151cm tall and started the treatment with weight
equal to 63.6kg, and sodium, potassium and urea concentrations equal to 138, 5.2
and 32.5 mmol, respectively. The therapy was hemodiafiltration with pre-dilution
(blood and dialysis flow rates equal to 300 and 500 ml/min respectively), conducted
using a FX100 Cordiax dialyzer (Fresenius Medical Care, Bad Homburg vor der
Höhe, Germany) and a dialysis fluid with sodium and bicarbonate concentrations
equal to 137 and 35 mmol, respectively. The ultrafiltration volume prescribed by the
physician was equal to 3.5 L.

Clinical data used to initialize the integration were acquired during the DialysIS
Project at the Dialysis and Nephrology Unit of the Regional Hospital of Lugano
(Lugano, Switzerland).

Integration was performed with the ode15s solver in Matlab (The MathWorks
Inc., Natick, MA, USA) and a value every minute was stored for each state variable.

4.2 Results

Nice traceplots and autocorrelations are obtained, showing a satisfactory convergence
of the chain. Moreover, values R̂ of the Gelman-Rubin convergence statistics are
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always equal or higher than 1 for each estimated parameter in Θ∗, confirming the
convergence of the chain.

The computational time has been equal to 15 h on a Server with processor X86-64
AMD Opteron 6328 and 64 GB of dedicated RAM. This time is largely lower than
the common interval between two consecutive HD sessions, which is a fundamen-
tal requirement to apply the method in the clinical practice, where patient-specific
parameters must be estimated with the data of a session and then used to optimize
the kinetic response of the following session.

Results are reported in Table2, in terms of the posterior densities of the estimated
model parameters, compared with the real parameter values (those used for gener-
ating the test dataset). Results show that in most of the cases the posterior 25–75%
credible intervals contain the real value and that the order of magnitude is almost
always correctly estimated.

However, some differences are present. Thus, to validate the approach, we com-
pare in Fig. 2 the simulated (generated with the real parameter values) and the esti-
mated trends for three of the state variables: a volume, an extracellular mass and an
intracellular mass. As the estimated trends are stochastic, due to the posterior den-
sity of the estimated parameters, they are reported in terms of their median value and
25–75% confidence band. Results show a good reproducibility of the test dataset,
with low differences between simulated and estimated trends.

Table 2 Estimated posterior densities of model parameters versus their real values

Parameter Min 25% 50% 75% Max Real

η(1) 0.50 0.50 0.50 0.50 0.50 0.50

η(2) 0.49 0.49 0.49 0.49 0.49 0.50

η(3) 0.50 0.50 0.50 0.50 0.50 0.50

η(4) 0.50 0.50 0.50 0.50 0.50 0.50

η(5) 0.40 0.41 0.41 0.42 0.42 0.50

η(6) 0.49 0.50 0.50 0.51 0.51 0.50

η(7) 0.44 0.45 0.45 0.45 0.46 0.50

η(8) 0.46 0.47 0.48 0.48 0.50 0.50

ρ 0.86 0.87 0.87 0.87 0.87 1.00

k(1) 1.69·10−3 2.04·10−3 2.14·10−3 2.23·10−3 2.55·10−3 2.50·10−3

k(2) 1.67·10−4 1.73·10−4 1.75·10−4 1.77·10−4 1.84·10−4 1.67·10−4

k(3) 8.13·10−5 9.82·10−5 1.04·10−4 1.10·10−4 1.31·10−4 1.67·10−4

k(4) 8.70·10−19 9.96·10−19 1.03·10−18 1.07·10−18 1.21·10−18 1.67·10−4

k(5) 8.89·10−3 9.56·10−3 9.80·10−3 1.00·10−2 1.11·10−2 3.30·10−3

k(6) 1.65·10−4 1.70·10−4 1.72·10−4 1.73·10−4 1.78·10−4 1.67·10−4

k(7) 1.32·10−3 1.34·10−3 1.34·10−3 1.35·10−3 1.36·10−3 1.30·10−3

k(8) 1.28·10−4 1.30·10−4 1.30·10−4 1.31·10−4 1.33·10−4 1.30·10−4
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Fig. 2 Comparison between simulated and estimated trends (plasmatic volume, extracellular mass
of urea, intracellular mass of potassium)
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We remark that similar estimation errors were found with constrained non-linear
optimization algorithm of Casagrande et al. [10], thus assessing the goodness of the
approach here proposed.

5 Discussion and Conclusion

In this chapter we present the first attempt in the literature of Bayesian estimation
applied to HD, and in particular we estimate the patient-specific parameters of a
multi-compartment model to improve HD treatment customization. Results from the
validation show good performance of the approach, i.e., the capability to detect the
real values of the parameters and to draw good trajectories. Future work will be
conducted to apply the approach to real patient data, and then to use the outcomes
of the estimation to optimize HD treatments.
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A Bayesian Nonparametric Approach
to Ecological Risk Assessment
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Abstract We revisit a classical method for ecological risk assessment, the Species
Sensitivity Distribution (SSD) approach, in a Bayesian nonparametric framework.
SSD is a mandatory diagnostic required by environmental regulatory bodies from the
European Union, the United States, Australia, China etc. Yet, it is subject to much
scientific criticism, notably concerning a historically debated parametric assumption
for modelling species variability. Tackling the problem using nonparametric mixture
models, it is possible to shed this parametric assumption and build a statistically
sounder basis for SSD. We use Normalized Random Measures with Independent
Increments (NRMI) as themixingmeasure because theyoffer a greater flexibility than
the Dirichlet process. Indeed, NRMI can induce a prior on the number of components
in the mixture model that is less informative than the Dirichlet process. This feature
is consistent with the fact that SSD practitioners do not usually have a strong prior
belief on the number of components. In this short paper, we illustrate the advantage of
the nonparametric SSD over the classical normal SSD and a kernel density estimate
SSD on several real datasets. We summarise the results of the complete study in [18],
where the method is generalised to censored data and a systematic comparison on
simulated data is also presented, along with a study of the clustering induced by the
mixture model to examine patterns in species sensitivity.
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1 Introduction

Assessing the response of a community of species to an environmental stress is
critical for ecological risk assessment. Methods for this purpose vary in levels of
complexity and realism. Species Sensitivity Distribution (SSD) represents an inter-
mediate tier, more refined than rudimentary assessment factors [22] but practical
enough for routine use by environmental managers and regulators in most developed
countries (Australia, Canada, China, EU, South Africa, USA…). The SSD approach
is intended to provide, for a given contaminant, a description of the tolerance of all
species possibly exposed using information collected on a sample of those species.
This information consists of Critical Effect Concentrations (CECs), a concentration
specific to a species which marks a limit over which the species suffers a critical level
of effect. This is for instance the concentration at which 50% of the tested organisms
died (Lethal Concentration 50% (LC50)), or the concentrationwhich inhibited growth
or reproduction by 50% compared to the control experiment (Effect Concentration
50% (EC50)). Each CEC is the summary of long and costly bioassay experiments for
a single species, so they are rarely available in large number. Typical sample sizes
range from 10 to 15 [7].

To describe the tolerance of all species to be protected, the distribution of the
CECs is then estimated from the sample. In practice, a parametric distributional
assumption is often adopted [8]: the CECs are assumed to follow a log-normal [1],
log-logistic [19], triangular [28, 34] or BurrIII [25] distribution.

Once the response of the community is characterised by the distribution, the
goal of risk assessment is to define a safe concentration protecting all or most of
the species. In the case of distributions without a lower threshold strictly above
0, a cut-off value is often chosen as the safe concentration. Typically, this is the
Hazardous Concentration for 5% of the Species (HC5), which is the 5th percentile
of the distribution. Reasonings behind this choice include: that the lowest bound of
the confidence interval around the 5th percentile will be used instead of the estimate,
that a safety factor will be subsequently applied to that value and that ecosystems
have a certain resilience to perturbations.

The lack of justification for the choice of any given parametric distribution has
sparked several research directions. Some authors [10, 12, 28, 31, 32, 34] have
sought to find the best parametric distribution by model comparison using goodness-
of-fit measures. The general understanding is that no single distribution seems to
provide a superior fit and that the answer is dataset dependent [8]. Therefore, the
log-normal distribution has become the customary choice, notably because it read-
ily provides confidence intervals on the HC5, and because model comparison and
goodness of fit tests have relatively low power on small datasets, precluding the
emergence of a definite answer to the question. Another research direction consisted
in seeking to avoid any reference to a distribution, using so-called nonparametric or
distribution-free approaches. Those efforts included using the empirical distribution
function [14, 26], methods based on ranks [4, 27], bootstrap resampling [12, 29] or
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nonparametric kernel density estimation [30]. All these approaches have in common
that they require large sample sizes to be effectively applicable. Finally, authors have
considered the possibility that the distribution of the CECs might not be a single
distribution but rather a mixture of distributions [33], datasets being an assemblage
of several log-normally distributed subgroups [5, 16]. This is more realistic from an
ecological point of view because several factors influence the tolerance of a species
to a contaminant such as the taxonomic group or the mode of action, and contam-
inant such as pesticides might even target specific species groups. Therefore, there
is strong evidence in favour of the presence of groups of CECs, although the CECs
within a group might remain log-normally distributed.

Ignorance of the group structure is a strong motivation for a nonparametric
approach. However, the methodmust remain applicable to small datasets, which sug-
gests trying to improve on the existing frequentist nonparametric methods. Bayesian
nonparametric mixture models offer an interesting solution for both large and small
datasets, because the complexity of themixturemodel adapts to the size of the dataset.
It offers a good compromise between a simplistic one-component parametric model
and a kernel density method which in a certain sense lacks flexibility andmight cause
overfitting. Moreover, the low amount of information available in small datasets to
estimate the groups parameters can be complemented via the prior, as some a pri-
ori degree of information is generally available from other species or contaminants
[2, 5, 6]. This paper summarises the results of the complete study in [18].

The rest of the article is organised as follows. In Sect. 2 we present the Bayesian
nonparametric (BNP) model and existing frequentist models for SSD and explain
how to obtain a density estimate. Then in Sect. 3 we compare the different methods
on a real dataset, illustrating the benefits of the BNP SSD. We conclude with a final
discussion in Sect. 4.

2 Models for SSD

Given that concentrations vary on awide range, it is common practice to work on log-
transformed concentrations. Consider a sample of n log-concentrations denoted by
X = (X1, . . . , Xn). We propose to carry out density estimation for the SSD based on
sample X by use of nonparametric mixtures. Bayesian nonparametric mixtures were
introduced in [21] with Dirichlet process mixtures (DPM). Generalizations of the
DPMcorrespond to allowing themixing distribution to be any discrete nonparametric
prior. A large class of such prior distributions is obtained by normalizing increasing
additive processes [24]. The normalization step, under suitable conditions, gives rise
to so-called normalized measures with independent increments (NRMI) as defined
by Regazzini et al. [23], see also [3] for a recent review. An NRMI mixture model is
defined hierarchically as:
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Xi |μi ,σ
ind∼ k(·|μi ,σ), μi |P̃ i.i.d.∼ P̃, i = 1, . . . , n, (1)

P̃ ∼ NRMI, σ ∼ Ga(aσ, bσ).

where k is a kernel, which we assume parametrized by some θ = (μ,σ) ∈ R × R+,
and P̃ is a random probability on R whose distribution is an NRMI. In our model,
all clusters have a common variance. This is easier to fit on a small dataset, because
information about the variance is pooled across clusters. Similarmixture SSDmodels
described in [5] also assume common variance. As described in the Introduction,
concentrations are commonly fitted with a log-normal distribution. Our aim is to
move from this parametric model to the nonparametric one in (1). In order to allow
comparisons to be made, we stick to the normal specification for k on the log-
concentrations X by letting: k(x |μ,σ) = N (x |μ,σ). Under this framework, density
estimation is carried out by evaluating the posterior predictive density along the lines
of [3]:

f̂ (x |P̃, X) =
∫∫

k(x |μ,σ)dπ(σ)d P̃(μ) (2)

for any x in R, where π denotes the posterior distribution of σ.
To specify the prior, we choose as mixing random measure the normalized stable

process [17] with:

(i) a stability parameter γ = 0.4, which controls the flatness of the prior on the
number of clusters. The parameter γ can take values in (0, 1). Taking the limit
γ → 0 reduces the model to a Dirichlet process, larger values of γ lead to less
informative priors on the number of clusters. The parameter γ was chosen as a
good compromise between model flexibility and numerical stability. The total
mass parameter is, without loss of generality, set equal to 1.

(ii) a base measure (which corresponds to the mean of the random probability mea-
sure) P0( · ) = N ( · | ϕ1,ϕ2)with meanϕ1 and standard deviationϕ2, hyperpara-
meters fixed a priori to specify a certain knowledge in the degree of smoothness.

(iii) a commonvariance for all the clusterswith a vaguely informative prior distribution
Ga(0.5, 0.5).

Recent years have witnessed the appearance of a wealth of softwares dedicated
to implement Bayesian nonparametric models and sample from their posterior. To
cite a few, the R package DPpackage [13], is a rather comprehensive bundle of
functions for Bayesian nonparametric models, while Bayesian Regression [15] is
a software for Bayesian nonparametric regression. For posterior sampling, we use
the R package BNPdensity and the function MixNRMI1 which implements BNP
density models under a general specification of normalized random measures based
on the generalised gamma processes (see [3]). The package is available from the
Comprehensive R Archive Network (CRAN).

To illustrate the interest of the Bayesian nonparametric SSD, we compare our
proposed BNP model to two commonly used frequentist models: the normal distri-
bution [1] and the nonparametric Kernel Density Estimate (KDE) recently proposed
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by Wang at al. [30]. For both frequentist approaches, the data is assumed to be iid.
Density estimates take on respectively the following form (μ̂ and σ̂ are MLE)

f̂N (x) = N (x | μ̂, σ̂) and f̂K DE (x) = 1

n

n∑
i=1

N (x | Xi , 1.06σ̂n
− 1

5 ). (3)

2.1 Model Comparison and Cross-Validation

For the purpose of comparing the predictive performance of the model, we resort to
Leave-One-Out (LOO) cross-validation.We compute the LOOs for each of themeth-
ods as ∀i,LOOi = f̂ (Xi | X−i ) where f̂ (x | X−i ) is the density for one of the three
methods estimated from X with Xi left out. The LOOs for the BNP model corre-
spond to the conditional predictive ordinates (CPOs) statistics which are commonly
used in applications, see [9]. A CPO statistic is defined for each log-concentration
Xi as follows:

CPOi = f̂ (Xi |X−i ) =
∫

k(Xi |θ)dπ(θ|X−i ) (4)

where X−i denotes thewhole sample X but Xi , dπ(θ|X−i ) is the posterior distribution
associated to X−i and f̂ is the posterior predictive distribution of Eq. (2). As shown
by [3], CPOs can be easily approximated by Monte Carlo as

̂CPOi =
(
1

T

T∑
t=1

1

k(Xi |θ(t))
)−1

(5)

where {θ(t), t = 1, 2, . . . , T } is an MCMC sample from the posterior distribution.

2.2 Quantile Estimation and HC5

The quantity of interest for ecological risk assessment is the HC5, which corresponds
to the 5th percentile of the SSD distribution. We choose as an estimator the median
of the posterior distribution of the 5th percentile, while the 95% credible bands
are formed by the 2.5 and 97.5% quantiles of the posterior distribution of the 5th
percentile. The 5th percentile of the KDE is obtained by numerical inversion of the
cumulative distribution function, and the confidence intervals using nonparametric
bootstrap. The 5th percentile of the normal SSD and its confidence intervals are
obtained following the classical method of [1].
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3 Application to Real Data

We applied this model to a selection of contaminants extracted from a large database
collected by the National Institute for Public Health and the Environment (RIVM).
This database was prepared, studied and published by Hickey et al. [11]. We only
considered non censored data. Left or right censored data were discarded, while
interval censored datawere replaced by the centre of the interval. KonKamKing et al.
[18] will describe how the method can be adapted to include censored data. Using
a continuous distribution for the CECs implies that the model does not support ties
(or, in other words, observing ties has zero probability). However, ties may appear
in the dataset due to the rounding of concentrations. Hence, we used a small jittering
of the data.

We selected three example datasets which feature three typical sample sizes: a rel-
atively large carbaryl dataset (CAS: 63-25-2, insecticide, 55 species), a medium-
sized temephos dataset (CAS: 3383-96-8, mosquito larvicide, 21 species), and a
smallcaptan dataset (CAS: 133-06-2, fungicide, 13 species). Datasets for new con-
taminants are always small, the minimum requirement set by the European Chemical
Agency being 10 species. The datasets can be visualised on the histograms of Fig. 1
(left panel).

These datasets illustrate different features of the three approaches: when there
is a clear multimodality in the data, the BNP SSD is more flexible than the fixed
bandwidth KDE SSD (Fig. 1, carbaryl and captan). When the data do not
exhibit strong multimodality, as for temephos, the BNP reduces to the normal
SSD model, whereas the KDE remains by construction a mixture of many normal
components.

One might think to increase the flexibility of the KDE by simply decreasing the
bandwidth. However, that would also decrease the robustness of the method. On the
middle panel of Fig. 1, the LOOs give an indication of the robustness to over-fitting
of the three methods. For carbaryl and captan, they show that the superior
flexibility of the BNP SSD compared to the KDE SSD does not come at the expense
of robustness, because the median CPO of the BNP SSD is higher than the other two.
In the case of temephos, the median LOO likelihood estimate of the normal model
is very similar to themedianCPO for theBNPSSD, sign that there is little over-fitting.
This generally illustrates the fact that model complexity in a BNP model scales with
the amount and structure of the data. On the right panel of Fig. 1, the credible intervals
of the HC5 for the BNP SSD are generally larger than the confidence interval of the
normal SSD, which is coherent with the model uncertainty of the nonparametric
approach.
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Fig. 1 The top panel represents the large-size carbaryl dataset, the middle panel represents the
medium-sized temephos dataset, the bottom panel represents the small-sized captan dataset. The
Normal is in green, The KDE in red and the BNP in blue. Concentrations are log transformed. Left:
Histogram and density estimates. Centre: Boxplot for the LOOs (for Normal and KDE) and the
CPO (for BNP) on logarithmic scale. The horizontal line corresponds to the median. The box hinges
extend to the inner quartiles. The whiskers extend to cover points up to one and a half times the
inter-quartile distance away from the hinges. For both frequentist methods, the n LOOs are obtained
by fitting the model n times, while an analytical expression is available for the BNP method (Eq.5).
Right: log HC5 and associated confidence/credible intervals (for Normal, KDE and BNP)

4 Discussion

The BNP SSD seems to perform well when the dataset deviates from a normal
distribution. Its great flexibility is an asset to describe the variability of the data, while
it does not seem prone to over-fitting. It can be thought of as an intermediate model
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between the normal SSD with a single component on the one hand, and the KDE
which counts as many components as there are species on the other hand. We chose
to base the BNP SSD on NRMI rather than on the more common Dirichlet Process,
because it is more robust in case of misspecification of the number of clusters [3, 20].
The BNP SSD provides several benefits for risk assessment: it is an effective and
robust standard model which adapts to many datasets. Moreover, it readily provides
credible intervals. While it is always possible to obtain confidence intervals for a
frequentist method using bootstrap, it can be difficult to stabilise the interval for
small datasets even with a large number of bootstrap samples. As such, the BNP
SSD represents a safe tool to remove one of the arbitrary parametric assumptions of
SSD [8].

The extended paper supporting the BNP SSD [18] will include a comparison of
methods on simulated data, an extension to the case of censored data and an emphasis
on the potential benefits of the approach from a biological point of view.
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Approximate Bayesian Computation
Methods in the Identification of Atmospheric
Contamination Sources for DAPPLE
Experiment

Piotr Kopka, Anna Wawrzynczak and Mieczyslaw Borysiewicz

Abstract Sudden releases of harmful material into a densely-populated area pose
a significant risk to human health. The apparent problem of determining the source
of an emission in urban and industrialized areas from the limited information pro-
vided by a set of released substance concentration measurements is an ill-posed
inverse problem. When the only information available is a set of measurements of
the released substance concentration in urban and industrial areas, it is difficult to
determine the source of emission. The Bayesian probability framework provides
a connection between model, observational and additional information about the
contamination source. The posterior distribution of the source parameters was sam-
pled using an Approximate Bayesian Computation (ABC) algorithm. The stochastic
source determination method was validated against the real data set acquired in a
highly disturbed flow field in an urban environment. The datasets used to validate the
proposed methodology include the dispersion of contaminant plumes in a full-scale
field experiment performed within the project ‘Dispersion of Air Pollutants and their
Penetration into the Local Environment in London (DAPPLE)’.

Keywords Atmospheric contamination sources · Approximate Bayesian
computation

1 Stochastic Event Reconstruction Procedure

In emergency responsemanagement it is important to know the extent of the area that
might become contaminated following the release of dangerous material in cities and
the subsequent movement of polluted air. The lack of pertinent experimental infor-
mation means there is a gap in the understanding of short-range dispersion behavior
in highly urbanized areas. Given a gas source and wind field, we can apply an appro-
priate atmospheric dispersion model to calculate the expected gas concentration for
any location. Conversely, given concentration measurements and knowledge of the
arrangement of buildings, wind field, and other atmospheric air parameters, identify-

P. Kopka (B) · A. Wawrzynczak · M. Borysiewicz
National Centre for Nuclear Research, Otwock, Poland
e-mail: piotr.kopka@ncbj.gov.pl

© Springer International Publishing AG 2017
R. Argiento et al. (eds.), Bayesian Statistics in Action, Springer Proceedings
in Mathematics & Statistics 194, DOI 10.1007/978-3-319-54084-9_15

161



162 P. Kopka et al.

ing the actual location of the release source and its parameters is difficult. This prob-
lemhas no unique solution and can be analyzed using probabilistic frameworks. In the
framework of Bayesian approach, all quantities included in the mathematical model
are modeled as random variables with joint probability distributions. This random-
ness can be interpreted as a lack of knowledge of parameter values, and is reflected
in the uncertainty of the true values. Bayesian methods formulate this problem into
searching for a posterior distribution based on efficient sampling of an ensemble of
simulations using priori knowledge and observed data. Previously [1, 2], we have
tested the methodology by combining Bayesian inference with Markov chain Monte
Carlo (MCMC) and Sequential Monte Carlo (SMC) methods and applied these to
the problem of dynamic, data-driven contaminant source localization, based on data
from the synthetic experiment.

We propose algorithms to locate the source of contamination based on the data
from the central London DAPPLE experiment that was performed in May and June
2007 (see Sect. 2) [3]. We used the fast running QUIC-URB model for computing
mean flow fields around buildings and QUIC-PLUME [4] as the forward model to
predict the concentrations at the sensor locations (Sect. 3). As a sampling approach
in the event reconstruction procedure we used a modern algorithm from the class of
likelihood-free Bayesian methods [5] with some extension, described in Sect. 4.
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Fig. 1 Left panel - The map shows the DAPPLE area of central London and is centered at the focal
intersection, that of Marylebone Road and Gloucester Place (at 51.5218N 0.1597W). The sampling
receptors are numbered 1–18 (yellow dots). Three fixed-point tracer sources (green dotsX,Y andZ);
red star - Westminster City Council (WCC). The white rectangle shows the computational domain.
Right panel - The rotated DAPPLE area, with the selected buildings (black rectangles) and greenery
(green ellipses)
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2 DAPPLE Experiment

The DAPPLE experiment took place in central London (see Fig. 1). The two major
roads in the vicinity are Marylebone Road, which runs from west to east, and
Gloucester Place, which intersects perpendicularly with Marylebone Road near the
Westminster City Council building (the red star in Fig. 1) [3]. A release was carried
out on the fourth day of the experiment, 28th June 2007, in which a sequence of
ten samples was taken over a 30 min sampling period at each of the 18 receptor
positions. The sampling process included the collection of ten 150 s samples at each
of the 18 sites, each sample separated from the next by 30 s. The source locations
(green X point) andmonitoring sites (numbered yellow points) are shown on the map
included in Fig. 1. The total mass emitted from the point-source release was 323mg
of perfluoromethyl-cyclohexane (PMCH,C7F14), in accordance with experimental
requirements. Two sets of long-term reference measurements were taken to generate
the wind data sets: the rooftop Westminster City Council (WCC) (18m) and tower
top (190m) winds.

In Fig. 1 the rectangle area was selected as a computing domain (white line). The
positions of all the objects (sensors, source, buildings, wind direction, etc.) have
been rotated by a 17◦ angle, to bring the main streets parallel to the edges of the
domain. The latitude − longitude geographic coordinate system was changed to the
metric system with a reference point (0, 0). This reference point denotes the lower
left corner of the white rectangle, both for the convenience of creating a domain and
the presentation of results.

3 Dispersion Model

The Quick Urban Industrial Complex (QUIC) Dispersion Modeling System is
intended for applications where the dispersion of air pollutants released near build-
ingsmust be computed very quickly [4]. The QUIC system comprises a windmodel -
QUIC-URB, a dispersion model QUIC-PLUME, and a graphical user interface. The
modeling strategy adopted inQUIC-URBwas originally developed byRockle [6] and
uses a 3D mass-consistent wind model to combine properly resolved time-averaged
wind fields around buildings [7]. The mass-consistent technique is based on a 3D
complex terrain diagnostic wind model. The basic methodology involves first gen-
erating an initial wind field that includes various empirical parameterizations to
account for the physics of flow around buildings. Next, this velocity field is forced
to be divergence free, subject to the weak constraint that the variance of the dif-
ference between the initial velocity field and mass consistent final velocity field is
minimized. The QUIC-PLUME is Lagrangian particle models which describe gas
dispersion by simulating the releases of particles and moving them with an instan-
taneous wind composed of a mean and turbulent wind. The Eq. (1) describe the
positions of particles in x,y,z domain:
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x = xp + UΔt + u′
p + u′

2
Δt,y = yp + VΔt + v′

p + v′

2
Δt,

z = zp + WΔt + w′
p + w′

2
Δt (1)

where x, y, and z are the current position of the particle in the domain and the
subscript p invoke to the previous positions. The U, V ,W are the mean winds, while
u′, v′, w′ are the fluctuating components of the instantaneous wind. The Δt factor is
the time step in dispersion model. The fluctuating constituents of the instantaneous
winds are calculated from:

u′ = u′
p + du, v′ = v′

p + dv, w′ = w′
p + dw (2)

The equations for du, dv, and dw are quite complicated and described in detail
in [4]. The average concentrations Cijk , normalized to unit release, are estimated by
summing over all particles Q that are found within the sampling box i, j, k during
the concentration averaging time tave:

Cijk =
∑ QΔtc

Ntotaldxboxdyboxdzboxtave
(3)

where Ntotal is the total number of particles released during the gas simulation, dxbox

is the sampling box size in direction x, dybox
is the sampling box size in y direction,

dzbox is the sampling box size in the direction z, Δtc is particle time step. All others
unique procedures related to turbulence associatedwithwalls and rooftops, reflection
by walls and non-local mixing are presented in [4].

4 Approximate Bayesian Computation Algorithm

In ABC − SMC methods, the set of samples with weights, called particles, sam-
pled from the population with the prior distribution π(θ), are propagated through a
sequence of intermediate posterior distributions π(θ |ρ(xt, xtobs) < εt), t = 1, . . . ,T ,
until it represents a sample from the target distribution π(θ |ρ(xT , xTobs) < εT ).
In [5] the authors propose strategies called ABCSMC with Adaptive Weights
(ABC − SMC − AW ). Algorithm 1 shows the description of ABC − SMC − AW .

InABC − SMC − AW procedure after initialization of the threshold schedule, first
N samples are simulated based on the predefined a priori distribution π(θ) and the
corresponding acceptance condition ρ(x1, x1obs) < ε1. In time step t = 2 simple uni-
form weights are changed based on additional kernel Kx,t(xtobs|xt−1

i ) proposed in [5].
Samples, denoted by a tilde are drawn from the previous generationwith probabilities
vt−1
j . Using perturbation kernel Kθ,t(θ

t
i |θ̃i) new “fresh” samples θ t

i are obtained, with
the veracity of the condition ρ(xt, xtobs) < εt . The weights are calculated according
to the formula in step (11); in step (12) the weights are normalized and the time
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Algorithm 1 ABC-SMC-AW
1. Initialize threshold schedule ε1 > ε2 > · · · > εT
2. Set t = 1
for i = 1 to N do

3. Simulate θ ti ∼ π(θ) and xt ∼ π(xt |θ ti )
4. Until ρ(xt, xtobs) < εt

5. Set wt
i = 1

N
end for
for t = 2 to T do

6. Compute new weights vt−1
i ∝ wt−1

i Kx,t(xtobs|xt−1
i ) for i = 1, . . . ,N

7. Normalize weights vt−1
i for i = 1, . . . ,N

for i = 1 to N do
8. Pick θ̃i from the set {θ t−1

j }1≤j≤N with probabilities {vt−1
j }1≤j≤N

9. Draw θ ti ∼ Kθ,t(θ
t
i |θ̃i) and xt ∼ π(xt |θ ti )

10. Until ρ(xt, xtobs) < εt
11. Compute new weights as

wt
i ∝ π(θ ti )∑

j v
t−1
j Kθ,t (θ

t
i |θ(t−1)

j )

12. Normalize weights wt
i for i = 1, . . . ,N

end for
end for

step is increased - t = t + 1. The procedure is repeated until t ≤ T . In the following
sections the details are discussed, along with the motivation for choosing specific
components of the Algorithm 1 for the problem of stochastic event reconstruction.

4.1 Data and Model

To compute theρ(xt, xtobs) valuewe use data from the sensor networkwhichmeasures

gas concentration ĈSj
i where i corresponds to the time step and Sj is the sensor iden-

tifier in the following way xtobs ≡ |ĈSj
1 , ĈSj

2 , . . . , ĈSj
t | for j = 1, 2, . . . , 18, because

in this test case we have 18 sensors (S1, S2, . . . , S18), whose positions are given in
Fig. 1 as yellow dots. We assume that the substance concentrations registered by the
sensors arrive subsequently at time intervals, hereafter referred to as ‘time steps’.
It is important to know that for time step t only data ĈSj

1 Ĉ
Sj
2 . . . ĈSj

t are available
and finally we have ten time steps (t = 10). The reconstruction algorithm starts to
search a source location (x, y) and release rate (q) just after the first 6min (t = 2).
To get the predicted concentration a QUIC-PLUME forward model is running and
it refers to the procedure xt ∼ π(xt|θ t

i ) in Algorithm 1. To run a dispersion model
and obtain data xt we use source parameter vector θ t

i and the information obtained
from the QUIC-URB subsystem. The simulated data also have a form of concentra-
tion value xt ≡ |CSj

1 ,CSj
2 , . . . ,CSj

t | for j = 1, 2, . . . , 18 where Sj corresponds to the
known locations of j sensor.
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4.2 Distance Measure

The choice of distance measure or summary statistics is a crucial step in ABC. Since
distance measures are not sufficient in many cases, this choice involves a trade-off
between loss of information and reduction of dimensionality. In those cases we chose
to normalize approximation error between all the data obtained to the current time
step t which is also called Fractional Bias (FB) [8]. The FB is used to indicate a bias
towards underprediction or overprediction of concentration data by the model. Due
to the data type for all sensors in time step t the ρ(xt, xtobs) measure is as follows:

ρ(xt, xtobs) = 1

18

18∑

j=1

(
1

t

t∑

i=1

|CSj
i − ĈSj

i |
CSj
i + ĈSj

i

)
, (4)

under additional definition, that |CSj
i −ĈSj

i |
CSj
i +ĈSj

i

= 0 when CSj
i = 0 and ĈSj

i = 0. Given that

the concentration CSj
i ≥ 0, the value of ρ(xt, xtobs) is always between 0 and 1. Let

us notice that ρ(xt, xtobs) = 0 is the situation when our prediction is perfect. In the
opposite case, when ρ(xt, xtobs) = 1 the prediction is wrong. In finding source para-
meters one of the most important areas is the detection time window, when there is a
measurement in the current sensor. The measure (1) supports this approach, because
when we have non-zero concentration in some time steps but our model shows that
there should be 0 concentration value, the penalty value for this step will be 1. The
situation is the same, if the observed value is equal to 0 and the model shows a
positive value of the concentration. On the other hand, if CSj

i > 0 and ĈSj
i > 0 then

the absolute difference also has an impact on the value of ρ(xt, xtobs) measure. Addi-
tionally, each sensor has an equal contribution to the ρ(xt, xtobs) measure, regardless
of the level of concentration, which is of course smaller in sensors located further
from the source.

4.3 Weights and Threshold Schedule

The most commonly used adaptive scheme for threshold choice is based on the
quantile of the empirical distribution of the distances between the simulated data and
observations from the previous population, (see [9, 10]). The method determines εt
at the beginning of the t time-iteration by sorting the measure ρ(xt−1

i , xt−1
obs )1<i≤N

and setting εt such that αt percent of the simulated data ρ(xt−1
i , xt−1

obs )1<i≤N are below
it, for some predetermined αt . In [11] the authors show a new strategy based on an
acceptance rate curve but also discuss a cumulative number of simulation versus
different threshold schedules. In this, and many other cases, quantile-based meth-
ods seem to be an easy and appropriate solution of estimating εt . Based on our own
preprocessing experiencewe set quantileα2 = 0.7 in the second time step, that subse-
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quently decreases to α10 = 0.3 for t = 10 [11]. The additional kernel Kx,t(xtobs|xt−1
i )

in Algorithm 1 state 6, which is used in calculating the weights, depends on observed
and simulated data. Since weights are normalized in step (7), in Algorithm 1 we can
simply use the ρ(xt, xtobs) measure as the proposed kernel. Due to the restriction
0 ≤ ρ(xt, xtobs) ≤ 1 we can define Kx,t(xtobs|xt−1

i ) ≡ 1 − ρ(xt−1
i , xtobs), because the

greater weight should correspond to a better solution.

4.4 Transition Kernel

Wechose transition kernelKθ,t(·|·) to be aGaussian kernel. Unfortunately in this type
of inverse problems the parameters are often highly correlated and multimodality is
very common. Especially when the (x, y) domain contains a lot of prohibited regions,
like buildings. Samples may tend to split in a disjointed group by filling out different
street canyons. In such cases it is interesting to consider the use of a local mean
and covariance matrix. Instead of computing the covariance matrix based on all
the samples from (t − 1), a better idea is to use only limited information about the
local correlation. In [12] one of the proposed methods is to use the multivariate
normal kernel based on the M neighbours. The authors in [12] pay attention to the
disadvantages of choosing this perturbation kernel. First, the parameter M typically
has to be fixed before any of the information about the posterior are known (too
small a value of M may lead to a lack of exploration of parameter space, while too
large would offer little or no advantage compared to the standard multivariate normal
kernel). In our case the number of samples allocated to one time step is N = 1000
samples for each time step. Based on pre-processed experiments we determined the
number of neighbors M = 70 and Mahalanobis distance.

5 Results and Conclusions

Figure2 shows the locations of the buildings in the DAPPLE London area, together
with all the samples generated in subsequent time steps t = 2, 3, . . . , 10 which are
decomposed directly to 6, 9, . . . , 30 experimental minutes. As we can see, samples
after the 4th time step converge from all possible (x, y) space to the vicinity of the
actual source location. Using these samples, we construct the marginal probability
distributions for the source location and release rate, as shown in Fig. 3 for all time
intervals. As time goes on, the mass of probability distribution is concentrating in
the vicinity of the proper values of x and y. This looks quite different for emis-
sions amounts, where posterior distribution for the parameter q looks like a bimodal
distribution.

A color pattern reflected in Fig. 4 was used to show empirical 2D probability
distribution of all parameters combinations. The colored contour lines are envelop-
ing higher probability at the joint posterior distributions. The diagonal plots are
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Fig. 2 A scatter plot of all samples generated in the subsequent time steps t = 2, 3, . . . , 10 in (x, y)
space of source location. The red cross marks the true source position

marginal empirical posterior distributions of the forward model parameters. The
real parameter values from the field experiment are highlighted with red vertical
lines in diagonal plots and black cross markers on the other subplot, which are
successfully captured by the high posterior probability region. The target contami-
nation source parameters obtained after the transformation of the relative domain are
x = 243m, y = 282m and q = 323mg, where the estimated most probable parame-
ters values are P(x = 223.0 ± 7.6m) = 0.0632, P(y = 291.4 ± 6.7m) = 0.1990
and P(q = 144.9 ± 5.3mg) = 0.0218.

Posterior probability distributions of model parameters were used to build prior
distribution when new concentration data became available. Although the ABC
framework is, generally a comprehensive operational event reconstruction tool it
needs to address various release scenarios. The present study focused on steady
point source releases in a highly urbanized area. However, possible release scenarios
may include moving sources. Furthermore, the scale of the event may range from
local sites to areas of greater size. Future work will concentrate on adding new pos-
sible hazardous scenarios to the presented stochastic event reconstruction tool, not
necessarily the release of gasses into the atmosphere.
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Fig. 3 Evolution of the marginal posteriori probability distribution for x, y and q parameters for
time steps t = 2, 3, . . . , 10. The red vertical line represents target value of parameters
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Fig. 4 Bivariate and marginal posterior distributions for all parameters θ ≡ (x, y, q). The plot is
colored according to a probability density, where the most probable regions are colored the deepest
red (i.e., a heatmap). The red vertical lines in diagonal plots (black cross in bivariate) show the
real value of each parameter. The distributions are built based on all the samples generated in the
reconstruction procedure
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Bayesian Survival Analysis to Model Plant
Resistance and Tolerance to Virus Diseases

Elena Lázaro, Carmen Armero and Luis Rubio

Abstract Viruses constitute a major threat to large-scale production of crops
worldwide producing important economical losses and undermining sustainability.
We evaluated a new plant variety for resistance and tolerance to a specific virus
through a comparison with other well-known varieties. The study is based on two
independent Bayesian accelerated failure time models which assess resistance and
tolerance survival times. Information concerning plant genotype and virus biotype
were considered as baseline covariates and error terms were assumed to follow a
modified standard Gumbel distribution. Frequentist approach to these models was
also considered in order to compare the results of the study from both statistical
methodologies.

Keywords Accelerated failure regression model · Interval-censoring · Plant
breeding

1 Introduction

Viruses constitute a major threat to large-scale production of crops worldwide thus
producing important economical losses and undermining sustainability [2]. Intro-
gression of genes conferring resistance and/or tolerance by plant breeding is the
most efficient and simplest strategy for disease control [7]. Most breeding programs
are aimed to find and implement resistance based on the absence of systemic infec-
tion. But, new proposals suggest that considering degrees of resistance (reduction
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of virus infectivity and/or multiplication), and/or tolerance (reduction of symptom
severity) may be useful to rescue valuable phenotypes. This requires developing new
analytical tools to assess the different levels of resistance and tolerance [9].

In this context, Bayesian survival analysis can provide a suitable framework to
assess resistance and tolerance patterns among different plant valuable varieties as
well as to capture the uncertainties associated to these estimations. This approach
can deal with censoring issues and small sample sizes avoiding the usual frequentist
requirement of implementing asymptotic calculations to make exact inferences in
complex models. Furthermore, thanks to recent advances in computing, software
development such as BUGS [8], and practical methods for prior elicitation, Bayesian
survival analysis has become feasible for both practitioners and researchers [4].

The main scientific question addressed in this study was to evaluate a new plant
variety, characterised by its genotype, for resistance and tolerance to a specific virus
through a comparisonwith other well-known varieties. The comparisonwas based on
two independent Bayesian accelerated failure time models which assess resistance
and tolerance survival times, respectively. The same baseline covariates were used in
both models to facilitate the posterior comparison between them. Variables related
to plant genotypes and virus biotype crosses were considered as baseline covariates
in the analysis and error terms in the regression model were assumed to follow a
modified standard Gumbel error. Models were also estimated under the frequentist
approach in order to compare the outcomes from both statistical methodologies.

2 Data Description

Three genotype characterizations (G1 for susceptible plants, G2 for resistant, and
G3 for plants to evaluate) and two different virus biotype (V1 with capacity to
only infect susceptible plants (G1) and V2 with a resistance-breaking capacity to
infect also resistant plants (G2)) were considered. A total of 180 plants belonging to
genotypes G1, G2 and G3 were inoculated with virus biotype V1 and V2 according
to a balanced two-factor factorial design which generated six groups with 30 plants
each. All plants were evaluated in terms of resistance and tolerance at monitoring
times 7, 14, 21, and 28days post inoculation (dpi).

Resistance was defined as the time, in days, from virus inoculation to virus infec-
tion detection, and measured through a reliable molecular detection test. Tolerance
was the time, in days, from virus inoculation to the appearance of severe symp-
toms. It was assessed by expert visual observation. Time zero was in both sur-
vival processes synchronised with the time at virus inoculation. Survival times were
interval-censored when the event of interest occurred between two consecutive mon-
itoring times or right-censored when it was not observed at the end of the study (28
dpi).

Table1 shows the observed resistance and tolerance frequency for the plants of
each of the six groups considered. Groups G2V1 and G3V1 contain a great number
of individuals right censored for both events. This is not the case of the G1V1 group
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Table 1 Frequency of resistance and tolerance survival times regarding to plant genotype and virus
biotype

Genotype Virus Resistance (dpi) Tolerance (dpi)

(0, 7] (7, 14] (14, 21] (21, 28] 28< (0, 7] (7, 14] (14, 21] (21, 28] 28<

G1 V1 8 14 7 1 0 0 2 23 5 0

V2 21 9 0 0 0 1 3 26 0 0

G2 V1 0 0 0 0 30 0 0 0 0 30

V2 2 12 3 6 7 0 4 11 15 0

G3 V1 1 2 1 3 23 0 0 0 0 30

V2 2 12 3 6 7 0 0 0 0 30

where all plants experienced both events before the end of the study. Remarkably,
for virus V2 the number of right censored plants was at most 7 in nearly all groups.
However, in the G3V2 group neither of the plants developed severe symptoms at the
end of the study.

3 Accelerated Failure Time Regression Models

We considered an Accelerated Failure Time (AFT) regression model [6]. Time-to-
event, Ti , for individual i , i = 1, . . . , n is expressed as

log (Ti ) = x′
iβ + σεi , i.i.d. εi ∼ Sε(·), (1)

where x′
i is a p-dimensional vector of covariates, β the subsequent vector of regres-

sion coefficients, σ a scale parameter, and Sε(·) a known baseline survival function
which is assumed to follow a modified standard Gumbel distribution. This AFT
model implies a conditional (on β and σ) Weibull survival model for Ti with shape
1/σ and scale (log(2) e−x′

iβ/σ) parameters [1].
This model was independently estimated for resistance and tolerance survival

times. In both cases the baselines covariates were indicator variables for identifying
the relevant plant genotype (G1, G2 and G3) and virus biotype (V1 and V2) crosses
in the study; G1 plants inoculated with biotype V1 (G1V1) was always the reference
category. Both Bayesian models were completed with the specification of a prior
distribution for the subsequent parameters. We assumed a prior independent default
scenario. The marginal prior distribution for each regression coefficient βG jVk , j =
1, 2, 3, k = 1, 2, was elicited as a normal distribution centered at zero and a wide
variance, π(βG jVk ) = N(0, 1000). A uniform distribution Un(0, 100) was selected
as the marginal prior distribution for σ.

The likelihood function of (β,σ) for the observed data was the product of the like-
lihood function for each individual. Individual time-to-event datawas right or interval
censored. A right censored data corresponds to individuals that have not experienced
the event of interest at the end of the period of the study, 28 dpi. Its contribution to the
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likelihood is P(Ti > 28 | xi ,β,σ), its survival function at 28 dpi. Interval censored
data for individual i arises when the event of interest occurred between the current
monitoring time (tiu) and the previous one (til) and its contribution to the likelihood
is Si (til | xi ,β,σ) − Si (tiu | xi ,β,σ). Consequently

L(β,σ) = ∏n
i=1 Li (β,σ)

= ∏
i∈R Si (28 | xi ,β,σ)∏i∈I [Si (til | xi ,β,σ) − Si (tiu | xi ,β,σ)],

where R (I) is the set of right (interval) censored data, and Si (t | xi ,β,σ) the
survival function for individual i

Si (t | xi ,β,σ) = exp{−log (2) t (1/σ) e−x′
iβ/σ}.

4 Results

The posterior distribution of the parameters for each model was approximated by
means of Markov Monte Carlo methods (MCMC) through WinBUGS software [8].
Specifically, simulation was run considering three Markov chains with 100 000 iter-
ations and a burn-in period with 10 000. In addition, the chains were thinned by
storing every 10th iteration in order to reduce autocorrelation in the saved sample
and avoid space computer problems. Trace plots of the simulated values of the chains
appear overlapping one another, indicating stabilization. Convergence of the chains
to the posterior distribution was assessed using the potential scale reduction factor,
R̂, and the effective number of independent simulation draws, neff. In all cases, the
R̂ values were equal or close to 1 and neff> 100, thus indicating that the distribution
of the simulated values between and within the three chains was practically identical,
and that sufficient MCMC samples had been obtained, respectively [3].

Both models were also estimated under the frequentist approach in order to com-
pare Bayesian and frequentist results. Frequentist estimation was performed through
the function survreg() of the survival R package [10, 11]. Note that in this
implementation, the error term ε of (1) is assumed to follow a standard Gumbel
distribution instead of a modified Gumbel distribution.

Results were arranged in two parts for tolerance and resistance separately. How-
ever, as both survival timeswere studiedwith the same type ofmodel the outcomes are
presented under the same scheme to detect similarities and differences between them.
We focused on the effect of covariates on the estimated probabilities of remaining
free of infection and free of the appearance of severe symptoms. A small subsection
for comparing Bayesian and frequentist results is also included.
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4.1 Resistance

Posterior summaries of the approximated posterior distribution for the regression
coefficients and the error scale parameter are shown in Table2. Genotype plants G1
have the shortest resistance times among the plants inoculated with V1. Posterior
probabilities P(βG2V1 > 0 | D) = 1 and P(βG3V1 > 0 | D) = 1, whereD represent
the data, provide strong evidence that G2 and G3 plants show a better resistance
behaviour with regard to G1 under V1 infection. In addition, genotype G2 is the
most resistant variety with P(βG2V1 > βG3V1 | D) = 1 despite of the wide variability
of its estimated coefficient. Under biotype infection V2, resistance is worse for all
genotypes although G3 genotype improves resistance in relation to G2 (P(βG3V2 >

βG2V2 | D) = 0.99).
Figure1 shows the posterior mean of the probability of remaining free of infection

red over time (from 0 to 28 dpi) for each genotype plant under virus infection V1 and
V2. For both virus, G1 plants show the lowest probability values in all the monitoring

Table 2 Summary of theMCMCapproximate posterior distribution for the resistancemodel:mean,
standard deviation, 95% credible interval, and posterior probability that the subsequent parameter
is positive. Group G1V1 is the reference category

Parameter Mean Sd CI95% P(· > 0)

βG1V1 2.27 0.12 [2.02, 2.51] 1.00

βG2V1 4.97 1.24 [2.62, 7.00] 1.00

βG3V1 1.64 0.26 [1.15, 2.24] 1.00

βG1V2 −0.66 0.15 [−0.96, −0.36] 0.00

βG2V2 0.22 0.16 [−0.08, 0.55] 0.93

βG3V2 0.65 0.16 [0.34, 0.98] 1.00

σ 0.55 0.06 [0.46, 0.67]

Fig. 1 Posterior mean of the probability of remaining free of infection over time (from 0 to 28 dpi)
for G1 (in solid red line), G2 (in solid green line) and G3 (in dotted orange line) genotypes under
infection V1 and V2. Monitoring times 7, 14, 21 and 28 dpi are highlighted with dots
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times (7, 14, 21 and 28 dpi). Plants G2 exhibit the highest probability values under
V1 infection and G3 under V2 infection. Remarkably, the pattern of the differences
between genotypes G2 and G3 under virus V1 and V2 is very different. Under V2
infection, differences among posterior probabilities (in favour of no infection for G3)
are enough stable from 14 dpi and for any time they exceed the value of 0.27. In the
case of V1, there is an increasing difference over time in favour of no infection for
G2 with a maximum distance of 0.21 at 28 dpi. Posterior mean of the probability
of remaining free of infection decreases with time for all genotypes under infection
V2 bringing to light V2 resistance-breaking capacity. At 14 dpi (the midpoint of
the monitoring times), the estimated mean of that probability is 0.26, 1, and 0.93
for groups G1V1, G2V1 and G3V1, and 0.02, 0.40, and 0.65 for G1V2, G2V2 and
G3V2, respectively.

4.2 Tolerance

Table3 shows a summary of the posterior distribution for the regression coefficients
and the error scale parameter in the AFT model for tolerance times. Estimation in
terms of the sign of the posterior outcomes are quite similar to the subsequent results
of the resistance model, but we can also appreciate some noticeable differences. It
is worth mentioning the similar effect of biotype V1 on G2 and G3 plants and the
overwhelming estimated effect related to G3 genotype under V2 infection. Plants
G3 show a similar tolerance pattern for both virus biotypes.

The posteriormean of the probability of remaining free of the appearance of severe
symptoms during time study (from 0 to 28 dpi) for biotype and virus groups is dis-
played in Fig. 2. Under V1 infection, plants G2 and G3 exhibit similar probabilities
values very close to one. They are higher than G1 values, which shows a decreasing
trend with a strong slope between 14 and 21 dpi’s. Plants G1 and G3 behave analo-
gously under V1 and V2 infection. However, probabilities for G2 are very different

Table 3 Summary of theMCMC approximate posterior distribution for the tolerancemodel: mean,
standard deviation, 95% credible interval, and posterior probability that the subsequent parameter
is positive. Group G1V1 is the reference category

Parameter Mean Sd CI95% P(· > 0)

βG1V1 2.91 0.04 [2.84, 2.98] 1.00

βG2V1 3.90 1.77 [1.08, 6.95] 1.00

βG3V1 4.09 1.74 [1.16, 6.93] 1.00

βG1V2 −0.12 0.05 [−0.23, −0.03] 0.00

βG2V2 0.12 0.05 [0.02, 0.21] 1.00

βG3V2 4.00 1.81 [1.07, 6.89] 1.00

σ 0.15 0.02 [0.12, 0.19]
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Fig. 2 Posterior mean of the probability of remaining free of the appearance of severe symptoms
over time (from 0 to 28 dpi) for G1 (in solid red line), G2 (in solid green line) and G3 (in dotted
orange line) genotypes under infection V1 and V2. Monitoring times 7, 14, 21 and 28 dpi are
highlighted with dots

for both virus: G2 is similar to G3 for infection V1 but its behaviour changes under
V2 infection. In particular, G2 shows a decreasing probability of remaining free of
infection from 14 dpi on, which at the end of the monitoring time is equal to the
value of variety G1. At 14 dpi (the midpoint of the monitoring times), the posterior
mean of the probability of remaining free of the appearance of severe symptoms is
0.89, 1, and 1 for G1V1, G2V1 and G3V1 crosses, and 0.77, 0.95, and 1 for G1V2,
G2V2 and G3V2, respectively.

4.3 Tolerance and Resistance: Frequestist and Bayesian
Models

Results in this subsection are focused on the frequentist approach to the resistance
(Table4) and the tolerance (Table5) model. Both tables try to reproduce the struc-
ture of Table2 (Bayesian resistance model) and Table3 (Bayesian tolerance model)
with regard to the frequentist concepts (estimate, standard error, 95% confidence
interval, and p-value) which could be considered as somehow parallel to Bayesian
posterior mean, standard deviation, 95% credible interval, and posterior probability
for a positive regression coefficient.

At first glance, most of the numerical (but not conceptual) results provided by
the two approaches seem not to be very different. But a more leisurely observation
of them shows relevant differences in the punctual and interval estimation of the
regression coefficients, particularly in those groups in which all the observations
were right censored. This is the case of the G2V1 group for the resistance model and
groups G2V1, G3V1 and G3V2 for tolerance. In the case of the resistance model for
group G2V1, the punctual frequentist and Bayesian estimates are 11.54 and 4.97,
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Table 4 Summary of the regression parameter estimation for the resistance model under the fre-
quentist approach: estimate, standard error, 95% confidence interval and p-value. Group G1V1 is
the reference category

Parameter Estimate Sd. error CI95% p-value

βG1V1 2.47 0.10 [2.27, 2.67] <0.05

βG2V1 11.54 2523.17 [−4933.79, 4956.87] 1.00

βG3V1 1.55 0.24 [1.09, 2.02] <0.05

βG1V2 −0.65 0.15 [−0.94, −0.35] <0.05

βG2V2 0.22 0.14 [−0.06, 0.49] 0.13

βG3V2 0.63 0.15 [0.34, 0.93] <0.05

log(σ) −0.65 0.10 <0.05

Table 5 Summary of the regression parameter estimation for the tolerance model under the fre-
quentist approach: estimate, standard error, 95% confidence interval and p-value. Group G1V1 is
the reference category

Parameter Estimate Sd. error CI95% p-value

βG1V1 2.97 0.03 [2.90, 3.03] <0.05

βG2V1 3.60 1710 [−3340.72, 3347.92] 1.00

βG3V1 3.60 1710 [−3340.72, 3347.92] 1.00

βG1V2 −0.12 0.05 [−0.22, −0.02] <0.05

βG2V2 0.12 0.05 [0.02, 0.21] <0.05

βG3V2 3.60 1710 [−3340.72, 3347.92] 1.00

log(σ) −1.92 0.11 <0.05

respectively. But the more relevant differences between them are in their variability,
which gives enormous confidence intervals and p-values close to 1. This is also the
case of the frequentist results for tolerance in groups G2V1, G3V1 and G3V2 which
all have the same enormous 95% confidence interval.

The inferences achieved indicate that the AFT frequentist model has difficulties in
the estimation corresponding to groupswith datawith very little signal. This is not the
case of theBayesian analyses that accommodate verywell for the particular data of the
study. This situation agrees with the general comment in [4] about the advantages of
the Bayesian methodology over the frequestist one in survival analysis with regard
to the fitting problems in the presence of complex censoring data. Moreover, the
Bayesian results are more compatible with the agronomic expectations based on
preliminary studies.



Bayesian Survival Analysis to Model Plant … 181

5 Conclusions

Agronomical conclusions indicated that genotype G3 did not suppose an improve-
ment in terms of resistance with respect to G2. However, they showed a very high
tolerance to V2 virus. Future research will probably focus on data from experiences
in open field with commercial plants in which the source of tolerance is incorporated.
This process is not easy because it is necessary to identify the sources of tolerance
and subsequently select the appropriate procedures to be included in the study.

Bayesian survival regression models provide a useful tool for quantifying differ-
ences among the different genotype × virus biotype groups as well as to assess the
degree of resistance and of tolerance. They also make possible the incorporation of
censoring and truncation mechanisms that are frequent in this type of studies with
good inference results. Frailty models and bivariate modeling based on right trun-
cated data [5] are in progress in order to approach a more suitable model that can
better capture all the uncertainties of the real problem.
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Randomization Inference and Bayesian
Inference in Regression Discontinuity Designs:
An Application to Italian University Grants

Federica Licari

Abstract Motivated by the evaluation of Italian University grants, we will address
the problem of multiplicities in (fuzzy) Regression Discontinuity (RD) settings. Fol-
lowing Li, Mattei and Mealli [1], we adopt a probabilistic formulation of the assign-
mentmechanism underling RDdesigns andwe select suitable subpopulations around
the cutoff point on the basis of observed covariates using both randomization tests
and a Bayesian model-based approach both accounting for the problem of multiple
testing. We then conduct our analysis studying the effect of university grants on
two binary outcomes, dropout and a variable equal to one for students who realize
at least one University Credit (CFU), using both the Fisher-exact P-value approach
and a model-based Bayesian approach. In both cases we account for the multivariate
nature of the outcome by (a) proposing a multiple testing approach, and (b) defining
estimands on the joint outcome.

Keywords Regression discontinuity designs · Multiple outcome · Causal effect ·
Fisher exact p-value · MCMC

1 Introduction

The entrance in the university world results in a radical change in students’ life.
It requires financial resources that may obstacle the students’ University career,
prompting students from low income families to dropout. In order to give equal
opportunity to achieve higher education to motivated students, every year Italian
universities offer financial aids to a limited number of eligible students who apply for
a grant. The assignment rules underlying the Italian university grants define a Fuzzy
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Regression Discontinuity (FRD) design: students need to be eligible and apply for
a grant to receive a grant. In this work we focus on first year students, where the
eligibility status is only based on an indicator of the economic family situation, i.e.,
the ISEE indicator. Under the framework proposed by Li,Mattei, Mealli [1] we adopt
a probabilistic formulation of the assignment mechanism underling RD designs and
we select suitable subpopulations around the cutoff point on the basis of observed
covariates using both randomization tests and a Bayesian model-based approach
both accounting for the problem of multiple testing. We then evaluate causal effects
of university grants on two outcomes: dropout, a binary variable equal to one for
students who dropout by the end of the first academic year, and zero otherwise; and
CFU, a binary variable equal to one for students who realize at least one university
credit during the academic year, and zero otherwise. For inference we use both the
Fisher-exact P-value approach and a model-based Bayesian approach accounting for
the multivariate nature of the outcome by proposing multiple testing methods and
defining new estimands for the joint outcome.

2 Causal Estimands in FRD Design with Multiple
Outcomes

We first introduce the notation in the context of our application. The forcing variable
plays an important role in RD designs: it determines the assignment to treatment or to
control. Formally, consider a sample of N units (students) indexed by i = 1 . . . N . Let
Si be the forcing variable for student i , which is a combined economic measurement
of the student’s family income and assets (the ISEE indicator). Let Zi be the eligibil-
ity status, which is a deterministic function of Si . In our study we have Zi = 1{Si≤s0},
where 1(·) is the indicator function and s0 is the threshold, which is equal to 15000
euros. In our study there are students who do not comply with the eligibility status.
Therefore, Z plays the role of an “instrument” or an “encouragement” variable as in
randomized experiments with non-compliance. Formally, let Wi (z) be an indicator
for grant receipt status given eligibility status z, and letWobs

i = Wi (Zi ) be the actual
treatment received, equal to 1 if student i receives a grant and 0 otherwise. In our
study Wi (0) = 0 by design, because ineligible students cannot receive any grant.
Therefore, based on the grant status W , subjects can be classified into two (latent)
principal strata: never-takers (NT ), students who would never take the grant irre-
spective of their eligibility status (Wi (0) = Wi (1) = 0); and compliers (C), students
who would always comply with their eligibility status (Wi (z) = z for z = 0, 1). Let
Gi be the indicator of the compliance status for student i : Gi = g, for g ∈ {C, NT }
Let Ydropi (z) and YCFUi(z) be the potential outcomes for Dropout and CFU, respec-
tively, given eligibility status z, and let Y obs

dropi
= Ydropi (Zi ) and Y obs

CFUi
= Y obs

CFUi
(Zi )

be the corresponding observed outcomes. Finally, let Yi (z) = (Ydropi (z),YCFUi (z))
and Yobs

i = (Y obs
dropi

,Y obs
CFUi

), for i = 1 . . . N .
Following Li, Mattei and Mealli (2016), we adopt a probabilistic formulation of

the assignment mechanism underling RD designs viewing the forcing variable as a



Randomization Inference and Bayesian Inference … 185

random variable with a probability distribution. This framework is based on three
key assumptions:

Assumption 1 (Local overlap) Let U be the random sample (or population) of
units in the study. There exists a subset of units, Us0 , such that for each i ∈ Us0 ,
P(Si ≤ s0) > ε and P(Si > s0) > ε for some sufficiently large ε > 0.

Assumption 2 (Local RD-SUTVA) For each units i ∈ Us0 , consider two eligibility
statuses Z

′
i = 1{S′

i ≤s0} and Z
′′
i = 1{S′′

i ≤s0}, with possibly S
′
i �= S

′′
i . If Z

′
i = Z

′′
i , this

means, if either S
′
i ≤ s0 and S

′′
i ≤ s0, or S

′
i > s0 and S

′′
i > s0, thenWi (Z

′
) = Wi (Z

′′
),

and Yi (Z
′
) = Yi (Z

′′
).

Assumption 3 (Local Randomization) For each i ∈ Us0 ,

P(Si | Yi (1),Yi (0),Wi (1),Wi (0),Xi) = P(Si ),

where Xi is a vector of covariates.

Assumption 1 assumes that there exists at least one subpopulation of units, Us0 ,
such that for units belonging to such a population the probability of having a value of
the forcing variable lying in both sides of the threshold is sufficiently faraway from
both zero and one.

Assumption 2 makes the SUTVA for this subpopulation. Finally the last assump-
tion formalizes the concept of RD design as a local randomized experiment.
An important issue in practice is the selection of the subpopulation,Us0 . In principle
Us0 can have any shape. For convenience we focus on subpopulations that comprise
units with a realized value of the forcing variable S in a symmetric intervals around
the threshold. Specifically we make the following assumption:

Assumption 4 (Shape of the Subpopulation) ∃h > 0: ∀ε > 0, P(s0 − h ≤ Si ≤
s0 + h) > 1 − ε, ∀i ∈ Us0 .

Under local randomization, Assumption 3, we expect that in the subpopulation Us0 ,
pre-treatment variables are well balanced in the two subsamples defined by assign-
ment. We use this balanced property to select potential subpopulations. We adopt
both a Bayesian approach and a Fisher exact P-value approach to multiple testing
to find subpopulations of units where our RD assumptions hold. As we can see in
Tables1 and 2, the two approaches lead to similar results suggesting that suitable
subpopulations are defined using the following bandwidths: h = 500, 1000 and 1500.

Given the target population we can define local causal estimands within it. We
focus on causal effects for compliers within Us0 on Dropout and CFU, separately,
and on the joint outcome, Y, defined previously. Specifically, for the joint outcome,
we are interested in assessing if the receipt of the grant reduces the proportion of
students who dropout without taking any exam, therefore we focus on the event
(1, 0). Formally, the causal estimands of interest are:
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CACEdropUs0
= P(Ydropi (1) = 1 | Gi = C, i ∈ Us0 ) − P(Ydropi (0) = 1 | Gi = C, i ∈ Us0 ) (1)

CACECFUUs0
= P(YCFUi (1) = 1 | Gi = C, i ∈ Us0 ) − P(YCFUi (0) = 1 | Gi = C, i ∈ Us0 ) (2)

CACE10Us0
= P(Yi (1) = (1, 0) | Gi = C, i ∈ Us0 ) − P(Yi (0) = (1, 0) | Gi = C, i ∈ Us0 ) (3)

3 Randomization Based Inference and Bayesian Inference
in FRD Designs with Multiple Outcomes

We conduct randomization-based inference and Bayesian inference under the RD
assumptions both accounting for the fuzzy nature of the design and the multivari-
ate nature of the outcome variable. Specifically, we conduct two different types of
analysis. First we focus on causal effects of the treatment on dropout and CFU, sepa-
rately, testing the sharp null hypothesis of no treatment effect adjusting inferences for
multiple comparisons. Then, we focus on the joint outcome, Y, aiming at assessing
causal effects of the treatment on Dropout and CFU jointly. This approach allows us
to explicitly take into account the association structure between the two outcomes.

We conduct the analyses under the following additional assumption:

Table 1 Posterior probabilities that pre-treatment variables arewell balanced in the two subsamples
defined by assignment

Bayesian approach

bandwidth (h) 500 Euro 1000 Euro 1500 Euro 2000 Euro

Variable (n=1042) (n=2108) (n=3166) (n=4197)

Sex 0.95 0.96 0.98 0.97

HS type (other)

Humanity 0.95 0.96 0.98 0.97

Science 0.91 0.93 0.95 0.89

Tech 0.81 0.81 0.82 0.62

HS grade 0.96 0.98 0.97 0.98

Year (2004)

2005 0.96 0.93 0.97 0.98

2006 0.92 0.91 0.96 0.93

University 0.92 0.98 0.69 0.10

(PI versus FI)

Major in University (other)

Humanity 0.90 0.80 0.80 0.93

Science 0.86 0.75 0.78 0.90

Social science 0.82 0.71 0.76 0.86

BioMed 0.78 0.68 0.74 0.84

Tech 0.63 0.62 0.70 0.79

s0 =15000, first year students, Florence and Pisa, 2004–2006
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Table 2 Adjusted p-values testing that pre-treatment variables are well balanced in the two sub-
samples defined by assignment

Randomization approach

bandwidth (h) 500 Euro 1000 Euro 1500 Euro 2000 Euro

Variable (n=1042) (n=2108) (n=3166) (n=4197)

Sex 1 1 1 1

HS type

Humanity 1 0.99 1 1

Science 1 0.99 1 0.89

Tech 1 1 1 1

Other 0.44 0.79 0.35 0.30

HS grade 0.97 1 1 1

Year of enrollement

2004 1 0.99 0.99 1

2005 1 0.91 1 1

2006 1 0.99 1 1

University (PI
versus FI)

0.99 1 0.10 0.01

Major in University

Humanity 0.92 0.32 0.45 0.89

Science 1 1 0.99 0.99

Social science 1 1 1 1

BioMed 1 0.85 1 1

Tech 0.92 0.96 1 1

Other 0.98 1 1 1

s0 =15000, first year students, Florence and Pisa, 2004–2006

Assumption 5 (Exclusion Restriction for Never-Takers)

Yi j (0) = Yi j (1) for each i : Gi = NT, j = drop,CFU,

which rules out direct effects of eligibility on dropout and CFU for never-takers.
Note that we do not use information on the covariates in the outcome analyses;

covariate are only used for the selection of the subpopulations. Indeed, once a sub-
population has been selected, under the RD assumptions, adjusting for the covariates
is not required, although they can help improving inferences.

Randomization Based Inference

We conduct randomization-based inference in the context of our FRD design appro-
priately handling issues of non-compliance by deriving Bayesian posterior predictive
p−values for complier causal effects [2, 3].
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Table 3 P-values adjusted for multiple comparisons across the three bandwidths

h = 500 h = 1000 h = 1500

Estimates p-value Estimates p-value Estimates p-value

CACEdrop −0.16 0.367 −0.15 0.240 −0.25 0.007

CACECFU 0.12 0.444 0.09 0.456 0.15 0.157

CACE10 −0.18 0.176 −0.08 0.413 −0.19 0.072

In the first type of analysis we appropriately adjust for multiple tests, using the
procedure proposed by Lee et al. [3] Specifically, we obtain familywise tests using
the following procedure. We first derive nominal posterior predictive p−values for
complier causal effects imputing the missing compliance statuses, drawing from
their posterior predictive distribution according to a compliance model that assumes
the null hypothesis. Then we calculate adjusted posterior predictive p−values using
the joint randomization distribution of the nominal p-values. In the second type
of analysis we derive Bayesian posterior predictive p−values for complier causal
effects on the joint outcome, specifying a multinomial distribution for Y. Table3
shows the results obtained by the two types of analyses and the estimates of the
statistics test used, Ĉ ACE . We can observe that the p-values are all quite high
for the subpopulations defined by bandwidths h = 500 and h = 1000, showing no
evidence against the null hypothesis of no effect. For the subpopulation defined by
the bandwidth h = 1500 we do not find any significant effect of university grants on
CFU either, but we find statistical evidence that university grants reduce students’
dropout: in fact the p-value based on CACEdrop is very small (0.007). Similarly,
the p-value for CACE10 is quite small (0.072), suggesting that there exist statistical
evidence that university grants positively affect students’ performances. These results
for the subpopulation defined by the bandwidth h = 1500 may be at least partially
due to the fact that this subpopulation is larger and includes students with values of
the forcing variable more heterogeneous.

Bayesian Inference

In the Bayesian analysis we focus on the joint outcome, Y, which has a multinomial
distribution defined by the four nominal category: (0, 0), (0, 1) (1, 0) and (1, 1).
Our attention is prompt on the category (1, 0) aiming at evaluating causal effect on
students who dropout and realized zero credits.

We assume a multinomial logistic regression model for the potential outcomes.
Formally:
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P
(
Yi (z) = j |Gi = g,Xi , i ∈ Us0; θ

) =
exp{β(zg)

0, j + β
(zg)
1, j S

∗
i + Xiβ j }

1 + ∑

j∈{(0,1),(1,0),(1,1)}
exp{β(zg)

0, j + β
(zg)
1, j S

∗
i + Xiβ j }

≡ π
(g)
j zi

for z = 0, 1; g = C, NT ; j ∈ {(0, 0), (0, 1), (1, 0), (1, 1)};
with β

(zg)
0,(0,0) = 0, β(zg)

1,(0,0) = 0, and β(0,0) = 0. Under exclusion restriction for Never
Takers, Assumption 5, we assume equality of the coefficients under z = 0, 1, (e.g.

β
(1NT )
0 j = β

(0NT )
1 j ; β(0NT )

1 j = β
(1NT )
1 j ), so we have π

(NT )
j0i = π

(NT )
j1i ≡ π

(NT )
ji

.
Another model involved in our analysis is the model for the compliance status,

which is dichotomous. We can assume for it a logistic model. Formally:

P(Gi = c|Xi , i ∈ Us0; θ) = exp{α0 + α1S∗
i + Xiα}

1 + exp{α0 + α1S∗
i + Xiα} ≡ πCi

where S∗
i = (Si − s0)/1000.

Weuse as priors for the parameters independentCauchydistributionswith location
parameter zero and scale parameter 2.5. We denote with θ = {β(zg)

0, j , β
(zg)
1, j ,β j , α0,

α1,α} the full parameters vector involved in our models and with p(θ) its prior
probability. Let fi,Cz be the outcome probability for y for students who are Compliers
by eligibility status:

fi,Cz ≡ π
(C)1{yi=(0,0)}
00zi · π

(C)1{yi=(0,1)}
01zi · π

(C)1{yi=(1,0)}
10zi · π

(C)1{yi=(1,1)}
11zi , by z = 0,1.

For Never Takers the outcome probability is:

fi,NT ≡ π
(NT )1{yi=(0,0)}
00i · π

(NT )1{yi=(0,1)}
01i · π

(NT )1{yi=(1,0)}
10i · π

(NT )1{yi=(1,1)}
11i

Then the distribution of θ is:

p(θ | Y, (X), Z ,W ) ∝ p(θ) × [
∏

i∈O(0,0)

[πCi · fi,C0 + (1 − πCi ) fi,NT ]

×
∏

i∈O(1,0)

(1 − πCi ) · fi,NT

×
∏

i∈O(1,1)

πCi · fi,C1 ], (4)

where O(0, 0), O(1, 0) and O(1, 1) are the three observed groups defined by
the combination of Zobs

i and Wobs
i : (Zobs = 0,Wobs = 0), (Zobs = 1,Wobs = 0),

(Zobs = 1,Wobs = 1). By design students have no way to obtain a grant if not eligi-
ble, so the realization of the fourth combination (Zobs = 0,Wobs = 1) is not possible.
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Table 4 Posterior distributions of finite-population causal estimands: summary statistics

h = 500 h = 1000 h = 1500

50% 2.5% 97.5% 50% 2.5% 97.5% 50% 2.5% 97.5%

CACEdrop −0.17 −0.42 0.09 −0.22 −0.40 −0.02 −0.28 −0.41 −0.12

CACECFU 0.18 −0.03 0.43 0.13 0.00 0.29 0.17 0.03 −0.35

CACE10 −0.17 −0.42 0.01 −0.12 −0.28 0.00 −0.16 −0.33 −0.04

Fig. 1 Plot of the posterior density of CACEdrop , CACECFU and CACE10 in the subpopulation
defined by bandwidth h = 1000

We use MCMC methods to derive the posterior distribution of the parameters, θ ,
and we run 62500 iterations, burning 12500 and saving each 10.

Our interest is on the Complier Average Causal Effect (CACE) relatively to the
category Y = (1, 0), that is a measure of the effect of the grants on the university
careers (Eq.3). Nevertheless, we can obtain the CACE for dropout and CFU, respec-
tively, by marginalization.

Table4 summarizes the quantiles of the posterior distribution of the three causal
estimands, across the three subpopulations definedby thebandwidthsh = 500, 1000,
1500. Figure1 shows the posterior density of the three CACE for the subpopulation
defined by the bandwidth h = 1000.
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Comparing the results obtained by the Randomization approach and by the
Bayesian approach we can observe that they do not differ so much. Our data provide
some evidence of positive effect of the university grants on the accademic career of
the students: the university grant reduces dropout and prompts students to success-
fully take exams.
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Bayesian Methods for Microsimulation
Models

Consuelo R. Nava, Cinzia Carota and Ugo Colombino

Abstract This article proposes Bayesian methods for microsimulation models and
for policy evaluations. In particular, theBayesianMultinomial Logit and theBayesian
Multinomial Mixed Logit models are presented. They are applied to labour-market
choices by single females and single males, enriched with EUROMOD microsimu-
lated information, to evaluate fiscal policy effects. Estimates using the two Bayesian
models are reported and compared to the results stemming from a standard approach
to the analysis of the phenomenon under consideration. Improvements in model per-
formances, when Bayesian methods are introduced and when random effects are
included, are outlined. Finally, ongoing work, based on nonparametric model exten-
sions and on analysis of work choices by couples is briefly described.

Keywords Bayesian Inference · Microsimulation · Multinomial Logit Model ·
Multinomial Mixed Logit Model · Random Utility Models

1 Introduction

In recent decades, describing and learning from individual choice behaviours have
become increasingly important in social sciences, especially in microeconomics
and marketing. In the presence of mutually exclusive discrete alternative choices,
well-established random utility models (RUM) [35] are employed and referred to
as “discrete choice models”. Indeed, they provide an interesting extension of the
classic theory of utility maximization among multiple discrete alternatives, with
challenging theoretical and empirical statistical implications. For an extensive and
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general review of discrete choice models applied to economic fields see [6, 43, 49].
Moreover, the economic literature takes advantage of RUMs also for policy evalua-
tions [1, 2, 8, 9, 50] which, in general, are performed by comparing events before
and after the policy’s implementation. However, recently, public policy implications
have also been explored by means of microsimulation models, which are often used
to anticipate and estimate the effects of socio-economic interventions. They are, in
fact, powerful tools with which to predict effects of tax and benefit reform inter-
ventions [3, 11, 15, 16, 18, 32, 46]. Such microsimulation models combine results
from observational studies, real data and expert opinions to simulate decision-maker
choices statically or dynamically. Here we make use of the static EUROMODmodel
for tax and benefits, briefly introduced in Sect. 3 and based on the Italian Survey
on Household Income and Wealth (SHIW) data. As well known, microsimulation
matched with discrete choice models has high potentialities [9] especially in the
evaluation of public programs and in the estimation of labour supply reactions.1

Moreover, the nature of the data and the research question suggest that it is necessary
to capture the heterogeneity of decision-makers, as well as to achieve a high level of
accuracy in the covariate effect estimation.

Within this framework, we propose more flexible RUMs obtained by adopting
a Bayesian approach, in order to increase flexibility in the use, interpretation, and
estimation of microsimulation models. In general, Bayesian procedures on the one
hand do not require any functionmaximization, and on the other, achieve consistency
and efficiency under assumptionsmilder than those of classic procedures. The interest
in Bayesian methods for social sciences, therefore, is rapidly growing in order to deal
with both theoretical, see e.g. [7, 25, 29, 31, 41], and empirical, see e.g. [13, 24, 26],
problems. In particular, considerable research attention is paid to parametric [4] and
non parametric [12, 19, 39] prior elicitation for multinomial discrete choice models.

Here we focus on a Bayesian hierarchical interpretation of a Multinomial Logit
model (MLM)2 for categorical variables [37]. We then enrich this model by intro-
ducing random effects. The resulting Multinomial Mixed Logit model (MMLM) is
endowed with suitable priors in Sect. 2. Recent studies, in fact, have shown that a
Bayesian approach guarantees a higher level of tractability and accuracy, as well
as an easier implementation of discrete choice models [39, 49]. This applies to the
entire class of Generalized Linear Mixed models [36], of which the Multinomial
Mixed Logit model is a special case.

Hence, the new applied contributions of this article are: (i) Bayesian methods
integrated into microeconometric models addressed also to the analysis of (partially)
simulated data; (ii) Bayesian estimates more interpretable and accurate than those
obtained under the usual frequentist assumptions [15, 16]; (iii) introduction of a
general framework enabling potential advances in (static) microeconomic simulation

1For evaluations of local reforms see, for instance [2, 15, 16] for Italy, [3] for Italy, Norway and
Sweden, [32] for Spain, [5] for France and [10] for Germany.
2For the sake of simplicity, we identify theMultinomial Logit model (MLM)with a generalmodel in
which the underlying utilities depend on individual characteristics, choice attributes and/or variables
combining individuals and choices. Sometimes, in econometrics, the latter is considered to be a
generalization of the MLM combined with a Conditional Logit model.
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studies; (iv) flexible Bayesian methods for (fiscal) policy evaluations based on more
parsimonious models which, in turn, are based on assumptions milder than those
of classic studies [2, 9, 15, 16, 32, 46]. To the best of our knowledge, in fact, this
is one of the few applications of Bayesian procedures to microsimulation models
(excluding calibration issues [44]), as well as to policy evaluations [17, 33].

The article is organized as follows. Section2 presents the Bayesian multinomial
models applied and comparatively discussed in Sect. 3, where a brief description
of the data is also provided. Some final comments and an outline of ongoing work
conclude the article.

2 Models

The microeconomic problem addressed in what follows is based on the j th ( j =
1, . . . , J ) decision-maker, which selects the i th choice among a finite set C =
{1, . . . , I } of mutually exclusive and exhaustive alternatives. This can be described
by a binary random variable Y ji , driven by a random utility maximization, so that

π j i = Pr(Y ji = 1|C) = Pr
(
U j i = max

h=1,...,I
U jh

∣∣∣C
)

with U j i = x
′
j iβ + ε j i . (1)

In the linear utility functionU j i , x j i represents the r × 1 vector of observed explana-
tory variables (for individual j and choice i), β is a r × 1 vector of fixed effects
and ε j i is an error component. Both x j i and ε j i can be individual-specific for the j th

decision-maker and/or choice-specific according to i , characterizingU j i in (1). In all
cases x′

j iβ represents the systematic part of the utility function, i.e. the representative
utility, while ε j i is the stochastic one.

The selection of an error distribution leads to different econometric models. Here
we are interested in i.i.d. standard Gumbel (or Extreme Value Type I [30]) errors ε j i

that lead to the MLM [37], i.e. to a special Generalized Linear model. Interestingly,
according to the extreme value theory, the asymptotic distribution of themaximum of
ε j1, . . . ε j I i.i.d standard normal random variables converges to a standard Gumbel
distribution (see the Fisher-Tippett-Gnedenko theorem [23, 27]). Therefore, its use
is close to assuming independent normal errors, except that the heavy tails allow
more robust analyses taking into account a “slightly more aberrant behavior than
the normal” (p. 39 [49]), crucial for RUMs. Moreover, the advantages of this error
component specification are that the difference between two Extreme Value Type I
random variables is a Logistic3 random variable and that the Extreme Value Type I

3It can be proved that the difference between two standard i.i.d. Gumbel randomvariables is a Logis-
tic by means of the characteristic function (c.f.). In general, if ε ∼ Gumbel(0, 1), its characteris-
tic function is φε(t) = E(eitε) = Γ (1 − i t). Thus, φεi−ε j (t) = φεi (t)φε j (−t) = Γ (1 − i t)Γ (1 +
i t) = Γ (1 − i t)Γ (i t)i t . By Euler’s reflection formula Γ (z)Γ (1 − z) = π

sin(π z) and by property

i2 = −1, hence φεi−ε j (t) = π i t
sin(π i t) = π t

−i sin(π i t) which is the c.f. for the Logistic distribution.
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is closed under maximization. Therefore, the choice probability (1) becomes4:

π j i = exp{x′
j iβ}∑I

h=1 exp{x′
jhβ} . (2)

As said, we propose to embed result (2) in the Bayesian hierarchical MLM described
below and implemented in Sect. 3:

Y ji ∼ Bern(π j i ) ∀ j = 1, . . . , J and i = 1 . . . , I (3)

logit(πi j ) = x′
j iβ (4)

β ∼ N(μβ, Vβ). (5)

Successively, weweaken the assumption (4) by adding a randomcomponent5 accord-
ing to individual-specific and/or choice-specific features:

logit(π j i ) = x′
j iβ + w j ib (6)

b ∼ N(0, Vb); Vb ∼ IW(Ψ, ν) (7)

4The form of the choice probability under a MLM model follows from the representation of
Pr(Y ji |C) as Pr(U j i > U jh ∀ h=1, . . . , I h �= i), which, for h �= i , reduces to

π j i=Pr(x
′
j iβ+ε j i > x

′
jhβ+ε jh ∀ h=1, . . . , I ) = Pr(ε j i − ε jh > x

′
jhβ − x

′
j iβ ∀ h = 1, . . . , I )

=
∫

ε

I(ε j i − ε jh > x
′
jhβ − x

′
j iβ ∀ h = 1, . . . , I ) f (ε j )dε j

Assuming that the errors are i.i.d.Gumbel distributed and resorting to the substitution t = exp(−ε j i )

π j i =Pr(Y ji = 1|C, ε j i )Pr(ε j i ) =
∫ ∞

−∞

⎛
⎝∏

h �=i

e−e
−(ε j i+x

′
j i β−x

′
jhβ)

⎞
⎠ e−ε j i e−e−ε j i

dε j i

=
∫ ∞

−∞

(∏
h

e−e
−(ε j i+x

′
j i β−x

′
jhβ)

)
e−ε j i dε j i =

∫ ∞

−∞
exp

{∑
h

e−(ε j i+x
′
j iβ−x

′
jhβ)

}
e−ε j i dε j i

=
∫ ∞

−∞
exp

{
−e−ε j i

∑
h

e−(x
′
j iβ−x

′
jhβ)

}
e−ε j i dε j i =

∫ ∞

0
exp

{
−t

∑
h

e−(x
′
j iβ−x

′
jhβ)

}
dt

= exp(−t
∑

h e
−(x

′
j iβ−x

′
jhβ)

)

− ∑
h e

−(x
′
j iβ−x

′
jhβ)

∣∣∣∞
0

= 1∑
h e

−(x
′
j iβ−x

′
jhβ)

= exp{x′
j iβ}∑I

h=1 exp{x′
jhβ}

as proved in [20] p. 63 and in [49], pp. 78–79.
5Alternatively, as suggested in [49] p. 143, random coefficients can be simply considered as part of
the utility error component, inducing correlations among alternative utilities.
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where w j i is a s × 1 known design vector, while b is a vector of s random effects.
We also assign an Inverse Wishart (IW) prior distribution6 to the random effect
(co)variance matrix Vb.7 According to the design of w j i , which can contain dummy
variables, covariates or both, the MMLM may exhibit, respectively, random inter-
cepts, random slopes, or both [45].

This extension is known as theMMLM(see for instance [38, 49]) and it overcomes
some Logit model limitations given that it allows for random taste variation as well
as substitution patterns.

Themain econometric advantages of theMMLMare, on the one hand, the absence
of the independence assumption from irrelevant alternatives (see [49] pp. 49–50),
and on the other, the possibility to account for individual heterogeneity.8 Moreover,
in the presence of the mixing distribution characterizing the MMLM, a Bayesian
approach guarantees significant computational advantages [39, 43, 49].

The next section describes the application of a Bayesian MLM and a Bayesian
MMLM to EUROMOD simulations based on SHIW data.

3 Data and Results

For model and method comparisons, we used EUROMOD, a static tax-benefit
microsimulation model covering member states of the European Union (here we
consider the Italian case), for fiscal reform effect analysis.9 The simulations were
based on individual micro-data representative of the national population of interest,
given the European Union Statistics on Income and Living Conditions (EU-SILC)
data [48]. Furthermore, this model makes it possible to store simulated and real
data, respectively from EUROMOD and SHIW, at a micro level, which enabled the
statistical analyses presented in Sect. 2. To this end, we used the illustrated micro-
econometric model of household labour supply (1).

We restricted the study to households with only one decision-maker, i.e. sin-
gles, ignoring couple data. Agents were aged between 20 and 55, neither retired
nor students. In particular, we observed 657 singles, 291 women and 366 men,
who were given the possibility to choose among 10 different types of jobs (i.e.
i = 1, . . . , 10) and non labour-market participation (indexed as job 0). The inclu-
sion of self-employment, moreover, required wage rates independent from hours of
work. Variables used as predictors were: weekly hours of work, gross wages, age

6Some other priors less informative than the Inverse-Wishart can also be considered following [28].
7This is one way among others to overcome possible limitations [47] due to the restrictive i.i.d.
assumption about the random component of the utility function in theMLM. Hence,MMLM allows
a proper representation of choice behaviour.
8This is a crucial feature if microsimulation models have to evaluate policy impacts properly [9].
9The fiscal policies considered were the ones measured in the EUROMOD model, applied to real
data provided by the Bank of Italy from the SHIW-1998. Thus, data were partially microsimulated
by EUROMOD, according to the 1998 Italian fiscal policy.
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class, taxes and benefits. The last two variables were simulated with EUROMOD
and the age class was considered as the grouping variable for random (job) intercepts
in the MMLM. Other details on data description can be found in [15, 16].

A Chi square test was performed to confirm differences in the 10+1(= I ) job type
frequencies in the two sub-populations (single females and single males). P-value
< 2.2 · 10−16 reinforce and justified our decision tomake use ofMultinomialmodels.

Bayesian estimates were obtained by Markov Chain Monte Carlo (MCMC)
methods: a Gibbs sampling algorithm (a special case of the Metropolis-Hastings
algorithm) was used to update most of model parameters. Hence, models were run
for 50000 iterations with a burn-in phase of 15000 and a thinning interval equal to
5. Standard diagnostic tools confirmed the convergence of runs. Hyperprior para-
meters were set to be as follows: μβ = 0, Vβ = I4 · 1010, with I4 denoting a 4 × 4

Table 1 Classic (first two columns) and Bayesian (last four columns) point estimates for single
female and singlemen,without andwith random intercepts (grouped by age classes). In theBayesian
case, they are denoted by “*” and “.” respectively when the corresponding 95% and 90% HPD
intervals are bounded away from zero

Mlm Bayesian Mlm Bayesian Mmlm

Variable
names

Female Men Female Men Female Men

Intercept
job 1

−3.39307 * −1.76703 * −2.52738 * −1.61559 * −2.70898 * −1.12120 *

Intercept
job 2

−1.50327 −1.59548 −2.34357 * −1.59101 * −2.83937 * −1.74396 *

Intercept
job 3

0.60008 0.15216 −2.25951 * −1.66466 * −2.83933 * −1.41215 *

Intercept
job 4

0.99819 0.54394 −2.36011 * −1.56762 * −2.62890 * −1.33762 *

Intercept
job 5

3.50702 3.42909 −2.10496 * −1.41377 * −2.68308 * −0.59950 *

Intercept
job 6

2.38043 2.43712 −2.41557 * −1.63019 * −2.89699 * −1.33678 *

Intercept
job 7

1.39848 2.67504 −2.20461 * −1.67959 * −2.71274 * −1.41510 *

Intercept
job 8

3.05579 2.49211 −2.32966 * −1.63187 * −2.91137 * −1.06941 *

Intercept
job 9

2.78303 1.92209 −2.31842 * −1.70870 * −2.65600 * −1.31812 *

Intercept
job 10

3.27083 2.16576 −2.16333 * −1.79336 * −2.70004 * −1.07083 *

Hours −0.07634 −0.05002 0.06969 * 0.04348 * 0.07353 * 0.03383 *

Wage 0.06270 * 0.03776 * 0.06693 * 0.04275 * 0.06225 * 0.04295 *

Taxes −0.00082 * −0.00052 . −0.00118 * −0.00072 * −0.00103 * −0.00060 *

Benefits 0.00229 * 0.00254 . 0.00079 . −0.00094 0.00052 0.00143 .



Bayesian Methods for Microsimulation Models 199

Hours

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Wage

0.00 0.05 0.10 0.15

Taxes

0.004 0.003 0.002 0.001 0.000 0.001

Benefits
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0.006 0.004 0.002 0.000 0.002 0.004

(a) (b)

Fig. 1 Single female (a) and single male (b) 95% HPD intervals given the Bayesian Multinomial
Logitmodel (red - continuous line) and theBayesianMultinomialMixedLogitmodel (blue - dashed
line) for hours, wages, taxes and benefits variables

identity matrix. The residual covariance matrix was 1
I · (II−1 + U), where II−1 is

a (I − 1) × (I − 1) identity matrix and U is a (I − 1) × (I − 1) unit matrix, as
suggested in [28], given I as the number of possible choices. Finally, for the inverse-
Wishart prior, Vb was set to be equal to II−1.

Models did not include a global intercept, so that the first 10 estimated coefficients
represented actual job type specific intercepts. Moreover, to enhance differences
among the employment behaviours of single men and single women, we estimated
model parameters separately for these two sub-populations. Point estimates are set
out in Table1 under the two Bayesian models (last four columns) and compared
with the classic estimates of the MLM (first two columns), using the R package
MCMCglmm [28].

These estimates are even more encouraging when compared to those of the stan-
dard models usually applied to such partially microsimulated data (see [16]). Our
Bayesian models, in fact, were more parsimonious with respect to [16] and pro-
duced more reasonable results: for instance, significant 95% highest posterior den-
sity (HPD) intervals for the majority of job type intercepts and for the amount of
working hours (see Table1). Moreover, Fig. 1 shows that MMLM results in tighter
HPD intervals [13, 31] for both single female and single male estimates. Therefore
the introduction of random effects into the Bayesian model yields more accurate
estimates while still preserving the significant 95% HPD intervals. This guarantees
higher precision when comparing different tax and benefit reform scenarios, as well
as when computing labour supply elasticity.
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4 Conclusions

The results presented in Fig. 1 and Table1 highlight how (fiscal) microsimulation
models treated with Bayesianmethods are more parsimonious and produce estimates
more accurate than those of microsimulation models treated with standard methods
[15, 16].

We are conducting further research to evaluate decisions undertaken by house-
holds (i.e. couples) and to compare labour demand elasticity with Bayesian
and frequentist methods. A Bayesian approach may also have advantages in terms
of model convergence, given the higher number of levels (11 × 11) in the dependent
variable. Moreover, to enhance population heterogeneity, the proposed methods and
suitably adjusted models are applied to a sample including also the inactive popu-
lation (pensioners, students, etc.) besides the active one considered in the present
article [32].

Finally, we are currently considering model extensions obtained by assigning
Bayesian nonparametric priors (like, for instance, the widely-used Dirichlet process
[12–14, 19, 43] or other more sophisticated process priors, see e.g. [22, 34, 40, 42])
to random effects, so as to induce, among other things, more accurate estimates as
suggested in [13, 26, 31].
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A Bayesian Model for Describing
and Predicting the Stochastic Demand
of Emergency Calls
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Valérie Bélanger and Angel Ruiz

Abstract Emergency Medical Service (EMS) systems aim at providing immediate
medical care in case of emergency. A careful planning is a major prerequisite for
the success of an EMS system, in particular to reduce the response time to emer-
gency calls. Unfortunately, the demand for emergency services is highly variable
and uncertainty should not be neglected while planning the activities. Thus, it is of
fundamental importance to predict the number of future emergency calls and their
interarrival times to support the decision-making process. In this paper, we propose
a Bayesian model to predict the number of emergency calls in future time periods.
Calls are described by means of a generalized linear mixed model, whose posterior
densities of parameters are obtained throughMarkov ChainMonte Carlo simulation.
Moreover, predictions are given in terms of their posterior predictive probabilities.
Results from the application to a relevant real case show the applicability of the
model in the practice and validate the approach.
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1 Introduction

Emergency Medical Service (EMS) consists of pre-hospital medical care and trans-
port to a medical facility. Almost all EMS requests arrive by phone, through calls
to an emergency number. The urgency of each request is evaluated and the location
is obtained. Then, an ambulance is dispatched to the call site and, if needed, the
patient is transported to a medical facility. Demand for such services is constantly
increasing throughout the world, according to population growth and aging, while
we observe a continuous pressure of governments to reduce health care costs; thus,
an efficient use of resources is fundamental to guarantee a good quality of the service
while maintaining the economic sustainability.

Several optimization planning models have been developed in the literature for
EMS systems (see Bélanger et al. [3] for an extensive review). Unfortunately, the
EMS demand is highly variable, and the uncertainty should not be neglected while
planning the activities. Hence, it is fundamental to fairly predict the future number
of emergency calls and their interarrival times.

The goal of this paper is thus to propose and validate a Bayesian model to predict
the number of emergency calls in future time slots. The number of calls is described by
means of a generalized linearmixedmodel, and the inference is based on the posterior
density ofmodel parameters, which is obtained through aMarkovChainMonteCarlo
simulation scheme. Then, predictions are given in terms of their posterior predictive
probabilities.

We demonstrate the applicability of the approach using the information available
from the city of Montréal, Québec, Canada. Results show the convergence of the
approach, good fitting, and low prediction errors.

The paper is organized as follows. A review of previous works dealing with
stochastic modeling of EMS calls is presented in Sect. 2; the general features of an
EMS system and the typical structure of the demand dataset are described in Sect. 3.
Then, the Bayesian model is proposed in Sect. 4, and its application to the Montréal
case is presented in Sect. 5. Conclusions of the work are finally given in Sect. 6.

2 Literature Review

Several studies deal with EMS calls prediction under a frequentist approach. An
interesting survey of the works dated before 1982 can be found in Kamenetsky
et al. [10]. In addition, the authors also presented regression models to predict EMS
demand as a function of population, employment, and other demographic variables.
Socio-economic parameters such as median income and percentage of people living
below poverty line have been considered by Cadigan and Bugarin [5]. More recently,
McConnell and Wilson [12] focused on the increasing impact of age distribution on
EMS demand, while Channouf et al. [6] developed ARIMA models.

To the best of our knowledge, Bayesian approaches have not been considered for
the EMS demand yet, even though they have been successfully applied in the health
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care literature. In fact, Bayesian approaches allow combining the available data with
prior information within a solid theoretical framework, and results can be used as
prior information once new data are available, which are important features in health
applications. A good example of application to another health care service (i.e., the
home care service) can be found in [1, 2].

3 Problem Description

An EMS system consists of an operations center and a certain number of ambu-
lances, including the related staff. Ambulances are located in predetermined sites,
ready to serve EMS requests. Requests arrive at the operations center via telephone,
where they are evaluated. If a call requires an intervention, it is assigned to one of
the available vehicles. The aim of an EMS is to serve all calls as fast as possible,
maximizing the number of calls served within a given threshold that depends on the
type of area (urban or rural).

For this purpose, due to the high uncertainty related to EMS calls, the decision
maker needs accurate estimates of the demand as input for any optimization model
underlying ambulance dispatching.

The typical EMS dataset includes several information about the calls and the
provided service. For the aim of developing a prediction model, we focus on the
calls. Three types of information are available:

• Type: required service and patient characteristics; this information is usually sum-
marized into a priority associated to the call.

• Arrival time: day and time of the call.
• Coordinates: latitude and longitude of the call, or alternatively the address.

Usually, for managing purposes, the territory is divided into zones; thus, coordi-
nates are translated into the zone z (z = 1, . . . , Z ) of the call. Moreover, concerning
the arrival times, in this work we group the time into slots. Thus, day i (i = 1, . . . , I )
and slot t (t = 1, . . . , T ) are associated to the call, and for each day i we register the
number of calls Ni

z,t arisen in slot t and zone z. In particular, we consider slots of
two hours, i.e., T = 12.

4 The Bayesian Model

We propose the following generalized linear mixed model for the number of
calls Ni

z,t :

Ni
z,t |λi

z,t
ind∼ Poisson

(
λi
z,t

)
(1)

log
(
λi
z,t

) = β1 pz + β2az +
K∑

k=1

β3,kφk,z + β4hi + γt (2)



206 V. Nicoletta et al.

where: pz and az are the population and the area of zone z, respectively; hi is a
binary covariate equal to 1 if day i is holiday and 0 otherwise; Φz = [

φk,z
]
is a

dummy vector of dimension K describing the type of zone z.
Zones z are classified into K + 1 types (e.g., residential, commercial, industrial);

φk,z = 1 if zone z is of type k (with k = 1, . . . , K ) and 0 otherwise, while φk,z is
always equal to 0 if zone z is of type K + 1, to avoid identifiability problems.

Model (1) and (2) is a generalized linear mixed model with four fixed-effects
parameters β1, β2, β3β3β3 and β4 (where β3β3β3 is K -dimensional), and a random-effects
parameter γt . The latter takes into account the similarity of the number of calls in
different zones during the same time slot t . In this formulation λi

z,t is the parameter
responsible for EMS calls: the higher the parameter λi

z,t is, the higher the expected
number of calls is.

Finally, independent non-informative priors, i.e., Gaussian distributions with 0
mean and large variance equal to 100, are chosen for β1, β2, β4, γt , and for the
components of vector β3β3β3:

β j
i id∼ N (0, 100) j = 1, 2, 4

β3,k
iid∼ N (0, 100) k = 1, . . . , K

γt
i id∼ N (0, 100) ∀t

5 Application to the Dataset

Data adopted in this work are those adopted in [4, 7, 11]. They refer to EMS calls
arisen in the city of Montréal and the near suburb of Laval, Québec, Canada, i.e., a
region with about 2.3 million of inhabitants and a territory of 744km2. According
to these data, the region is divided into Z = 595 demand zones. In addition to the
EMS data, information from Municipality of Montréal have been used to define the
vector Φz for each zone. Eleven different types of zone are present, as described in
Table1; moreover, to avoid collinearity due to the low number of zones belonging to
some types, types are regrouped as follows:

• Residential (k = 1);
• Workplace, regrouping commercial, office, industrial and institutional (k = 2);
• Street (k = 3);
• Other, regrouping park, agricultural, empty space, water, and golf field.

Finally, data about population has been divided by 1,000 to be of the same order of
magnitude of the other covariates.
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Table 1 Total number of calls and empirical mean divided by the type of zone

Type of zone Number of zones Total number of calls Mean number of calls

Residential 266 95,394 358.62

Commercial 14 4,325 308.93

Office 7 3,361 480.14

Industrial 19 4,359 229.42

Institutional 46 18,004 391.39

Park 30 8,003 266.77

Street 184 67,738 368.14

Agricultural 4 506 126.50

Empty space 19 4,190 220.53

Water 2 405 202.50

Golf field 4 615 153.75

Table 2 Empirical mean and
standard deviation of the
number of calls divided by
time slot

Time slot Mean number of
observations

Standard deviation
of the number of
observations

1 0.0606 0.2513

2 0.0535 0.2416

3 0.0409 0.2040

4 0.0529 0.2334

5 0.0908 0.3098

6 0.1039 0.3328

7 0.1010 0.3272

8 0.0991 0.3244

9 0.0937 0.3143

10 0.0915 0.3089

11 0.0893 0.3067

12 0.0776 0.2851

5.1 Descriptive Statistics

The dataset consists of 2,606,100 observations for Ni
z,t (I = 365 days, Z = 595

zones and T = 12 slots) together with the related covariates.
Tables1 and 2 report the main information about the data. Moreover, Fig. 1 shows

a map of the territory together with the number of calls.
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Fig. 1 Map of the city of Montréal together with the total number of calls. The number of calls
for each zone is represented by a point in the center of the zone. Green points correspond to lower
numbers of EMS calls, while red points represent higher numbers of EMS calls, according to the
division in quartiles reported in the legend

5.2 Posterior Analysis

5.2.1 Convergence Analysis

The model is implemented in STAN (http://mc-stan.org/), which uses the Hamil-
tonianMonte Carlo algorithm to reduce the correlation and obtain faster convergence
of the chains. Hence, 5,000 MCMC iterations have been run, with a burn-in of 1,000
iterations and a final sample size of 4,000.

Traceplots, autocorrelations and the Gelman–Rubin convergence statistics (R̂)
have been considered to verify that convergence is achieved. Moreover, we have
estimated the Monte Carlo Standard Error (MCSE) with the MC error, the Naive SE
and the Batch SE. See [8, 9] for further information.

Results show that R̂ is equal to 1 and that the MCSE is always less than the 5%
of the standard deviation for all parameters. Moreover, nice traceplots and autocor-
relations are obtained, showing that the convergence of the chain is satisfactory.

http://mc-stan.org/
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5.2.2 Credible Intervals of Model Parameters

Inference for eachmodel parameter is reported in terms of the posterior 95% credible
interval (CI).

CIs of the fixed-effects parameters are reported in Table3. The population para-
meter β1 yields a positive effect, thus increasing number of calls, while the area
parameter β2 gives a negative effect. This is in agreement with the considered data,
in which zones with large areas have small population densities; thus, the higher the
population density of a zone is, the higher the number of calls is. Vector β3β3β3 gives
the effect of the zone; results show that workplace zones and streets have more EMS
calls, followed by Residential Zones. Finally, CI of parameter β4 suggests that a
lower number of calls is to be expected during holidays.

Posterior CIs for the random-effects vector γt are reported in Fig. 2. They suggest
a clear distinction of the time slots: a higher number of calls arrive during the day
(slots t = 5, . . . , 11), while a lower number of calls arrive during night hours.

Table 3 95% CIs for the fixed-effects parameters

Parameter Covariate 2.5% 50% 97.5%

β1 Population 0.087 0.090 0.093

β2 Area −0.049 −0.047 −0.044

β31 Residential 0.277 0.297 0.316

β32 Workplace 0.347 0.369 0.389

β33 Street 0.332 0.352 0.371

β4 Holiday −0.067 −0.055 −0.044

Fig. 2 95% CIs for the random-effects vector γt
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5.2.3 Cross-Validation Prediction

A cross-validation approach is adopted to validate the model, by partitioning the
complete dataset. Thefirst 90%of the days (with i = 1, . . . , I − Ĩ ) is used as training
set to determine the posterior density, while the remaining 10% (with i = I − Ĩ +
1, . . . , I ) is used as testing set. The predictive distributions of each Ni

z,t (with i = I −
Ĩ + 1, . . . , I ) are computed, and the predictions are checked with the corresponding
observed data.

The accuracy of the predictions is evaluated in terms of the global Mean Absolute
Error (MAE), defined as:

MAE = 1

Ĩ Z T

I∑

i=I− Ĩ+1

Z∑

z=1

T∑

t=1

∣∣∣Ni obs
z,t − N̂ i

z,t

∣∣∣

where the product Ĩ Z T is the numerousness of the sample in the testing set, and
Ni obs
z,t and N̂ i

z,t represent the observed number of calls and the number predicted
by the model (median of the predictive distribution) at day i , zone z and slot t ,
respectively. The obtained value is 0.078, which is two orders of magnitude lower
than the unit, showing a good fit of the model.

We have also detailed the MAE for each combination of type of zone k and
time slot t . Results in Table4 show quite similar values, whose maximum is 0.111,
confirming a good fit of the model that does not significantly deteriorate for any pair
k and t .

Table 4 MAE for each combination of type of zone k and time slot t
�����������
Time slot
t

Type of zone
k 0 1 2 3 All

1 0.035 0.061 0.060 0.062 0.059

2 0.036 0.048 0.046 0.051 0.048

3 0.025 0.043 0.036 0.043 0.040

4 0.033 0.060 0.057 0.056 0.056

5 0.066 0.103 0.100 0.096 0.097

6 0.063 0.111 0.111 0.104 0.104

7 0.054 0.105 0.104 0.102 0.099

8 0.052 0.102 0.103 0.104 0.098

9 0.061 0.093 0.093 0.097 0.091

10 0.057 0.093 0.085 0.092 0.088

11 0.063 0.087 0.083 0.089 0.084

12 0.047 0.077 0.074 0.078 0.074

All 0.049 0.082 0.079 0.081 0.078
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Table 5 Comparison of the
MAE between the proposed
Bayesian model and the mean
frequentist approach, grouped
by type of zone z, time slot t ,
and holiday h

Bayesian model Frequentist mean

Type of zone 0 0.049 0.098

1 0.082 0.152

2 0.079 0.148

3 0.081 0.153

Time slot 1 0.059 0.112

2 0.048 0.096

3 0.040 0.078

4 0.056 0.103

5 0.097 0.171

6 0.104 0.188

7 0.099 0.181

8 0.098 0.178

9 0.091 0.169

10 0.088 0.164

11 0.084 0.159

12 0.074 0.141

Holiday 0 0.078 0.147

1 0.077 0.142

5.2.4 Comparison with the Mean Estimate

In this Section we compare the outcomes of the proposed model with those of a
very simple frequentist approach, in which the predictions are simply given by the
historical means. This approach gives as a predictor the mean number of calls for the
specific combination of type of zone z, time slot t and holiday parameter h. MAE
values are computed considering the same training and testing sets as in Sect. 5.2.3.

The global MAE of the frequentist approach is equal to 0.145, while the values
grouped by z, t and h are reported in Table5. Results show that the MAE under
the frequentist approach is higher, being about the double than the MAE under the
proposed Bayesian approach. This further confirms the good fit of the proposed
model to the data.

6 Conclusions

This paper presents a first attempt to deal with stochasticity in the EMS calls by using
the Bayesian approach. A generalized linear mixed model has been proposed, with
the aim of identifying relevant effects that influence the calls and giving predictions
of future EMS calls.



212 V. Nicoletta et al.

Results from theMontréal case suggest that population, area and type of zone have
a strong impact. Moreover, as expected, the time slot has a relevant effect, showing
lower predicted values of number of calls during the night. Finally, the model shows
good performance when used to make predictions, and documented by the lowMAE
values under cross-validation.

Moreover, themodel is general, and can be easily applied to describeEMSdemand
in other cities. On the contrary, as for rural situations, we expect that some modi-
fications are necessary to include the presence of rare events in an environment
characterized by a usually low demand. Another extension will be to consider the
area of each zone as an offset/exposure term of the Poisson regression.
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Flexible Parallel Split-Merge MCMC
for the HDP

Debora Parisi and Stefania Perego

Abstract The Hierarchical Dirichlet Process Mixture model is useful to deal with
topic modeling. Several sampling schemes have been developed to implement the
model. We implemented the previously existing Sub-Cluster HDP Sampler intro-
duced, since it can be parallelized. Our contribution consists in making the code as
flexible as possible, in order to allow for an extension to several applications. We
tested our code on synthetic and real datasets for topic modeling with categorical
data.

Keywords Big data · Topic modeling · Hierarchical Dirichlet process mixture ·
Markov chain Monte Carlo · Split-merge

1 Introduction

In our work we deal with topic modeling, a particular example of models for clus-
tering grouped data. The aim of topic modeling is to discover the latent structure of
topics in a collection of documents, called corpus. A topic is seen as a probability
distribution overwords of someknownvocabulary and documents are generallymod-
eled under an exchangeability assumption (the “bag of words” assumption), in which
the order of words in a document is ignored. Moreover, topics are shared between
documents. For instance, if we have a document about Milan’s fashion week and
another about Milan’s elections, the shared topic might be “Milan”. Our contribution
was in making the code as flexible as possible, in order to use the Sub-Cluster HDP
Sampler algorithm of [1] not only for the topic modeling but also for other appli-
cations. Sections2 and 3 give a brief description of the model and the algorithm. In
Sect. 4 we describe the implementation of the code and the posterior analysis, while
in Sect. 5 we report Bayesian inferences for simulated and real datasets.
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2 Hierarchical Dirichlet Process Mixture

The Hierarchical Dirichlet Process Mixture (HDPM) model [4] can be described as
follows. Data are organized into groups. Amixturemodel is associated to each group.
In particular, we have several clustering problems, one for each group. We want the
mixture components to be shared between groups, so these clustering problems must
be linked together. The HDPM model posits that:

x ji |φ j i
indep∼ f (x ji ;φ j i ) (1)

φ j i |G j
indep∼ G j (2)

G j |α,G0
i id∼ DP(α,G0) (3)

G0|γ, H∼DP(γ, H) (4)

where j = 1, . . . , D and i = 1, . . . , N j ; D is the number of groups and N j is the
number of elements in group j . In the context of topic modeling, we have a vocab-
ulary of W distinct words appearing in the corpus. To each word we associate a
numeric identifier, so x ji is the label for word i in document j . Here f (x ji ;φ j i )

is the distribution of a categorical variable, being φ j i the parameter specific to the
mixture component from which x ji is generated. We choose a symmetric Dirichlet
distribution with parameter λ for the base measure H : in this way, the inference
is simplified, because the Dirichlet distribution is conjugate to the likelihood for
categorical data.

A realization from aDirichlet process prior is a discrete measure (with probability
one). Therefore, we can use the stick-breaking representation of [3] for the global
measure G0:

G0 =
+∞∑

k=1

βkδθk (5)

where θk
iid∼ H and the probabilities βk associated to the atoms are constructed as

follows:

β
′
k ∼ Beta(1, γ ) βk = β

′
k

k−1∏

l=1

(1 − β
′
l ). (6)

From (5) it can be seen that G0 is a discrete measure and it has support at points
{θk}+∞

k=1. Given that each G j is distributed according to a Dirichlet process and that
G0 is the base measure, each G j is necessarily supported at the points {θk}+∞

k=1. Thus
we can rewrite as:

G j =
+∞∑

k=1

π jkδθk (7)
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and for the probabilities π jk we have:

π
′
jk ∼ Beta

(
αβk, α

(
1 −

k∑

h=1

βh

))
π jk = π

′
jk

k−1∏

h=1

(1 − π
′
jh). (8)

In (5), θk are the distinct values of the φ j i ’s in (2). The fact that, for each j , G j has
the same support as G0 implies the sharing of clusters between groups.

TheChinese Restaurant Franchisemetaphor describes how a draw from the HDP
prior is sampled. We have a franchise of Chinese restaurants with a shared menu.
When a client enters a restaurant, she sits at an occupied table with a probability
proportional to the number of clients already seated at that table, or she can sit at an
empty table. The first client who sits at a new table chooses the dish, which will be
shared by the following clients that will sit at that table. She can choose a previously
ordered dish, with a probability proportional to the number of tables at which that
dish is served, or she can choose a new dish from the menu. It is necessary to keep
counts of tables and customers, thus m jk is the number of tables in restaurant j
serving dish k and n j.k is the number of customers in restaurant j eating dish k.
Partial counts are represented with dots, so for instance m .k = ∑D

j=1 m jk .
The Sub-Cluster HDP Sampler uses the Direct Assignment sampling scheme,

which is simplified w.r.t. the Chinese Restaurant Franchise, because it directly asso-
ciates customers to dishes. For the application of topic modeling, restaurants corre-
spond to documents and dishes to topics, whereas the client choosing a table (and
thus a particular dish) corresponds to the association of a word to a topic. The reader
is referred to [4] for an exhaustive description of the Chinese Restaurant Franchise
metaphor and the Direct Assignment sampling scheme. We introduce the notation
that will be used in the following sections: β are the corpus-level topic proportions,
π j are the topic proportions specific to document j , θk is the latent parameter for
topic k, z ji is an indicator variable that associates word x ji to a topic.

3 The Sub-cluster HDP Sampler Algorithm

To implement the model described in the previous section we choose the algorithm
introduced in [1], which can be parallelized. The algorithm combines Gibbs sampler
and Metropolis Hastings steps.

The Gibbs sampler updates the quantities β, π, θ,m and z for the non-empty
clusters, using their full conditional distribution (see [1]). During these steps, the
number of clusters is fixed.

In the Metropolis–Hastings steps new clusters are proposed. In particular, in a
merge move two clusters are choosen to create a new cluster, while in a split move
one cluster is choosen to be divided into two new clusters. In order to propose splits
andmerges it is necessary to introduce sub-clusters: each cluster k is characterized by
the left and the right sub-clusters, kl and kr respectively. Each sub-cluster is described
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with the following variables: β̄k = {β̄kl, β̄kr }, π̄ jk = {π̄ jkl, π̄ jkr }, θ̄k = {θ̄kl, θ̄kr },
m̄ jk = {m̄ jkl, m̄ jkr } and z̄ j i ∈ {l, r}.

The steps of the algorithm are: 1. initialize β and z randomly; 2. sample π , π̄ , θ
and θ̄ ; 3. sample labels z and z̄ for all data; 4. propose

⌊
K
2

⌋
local merges and K local

splits; 5. propose a global merge and a global split; 6. sample m and m̄; 7. sample β

and β̄; 8. repeat from step 2 until the stop criterion is satisfied (in our case, number
of iterations choosen by the user). Steps 4 and 5 refer to Metropolis Hastings moves;
there are three versions of M–H, which differ in how labels ẑ for the new clusters
are proposed: one for local merge, one for local split and one for global moves. For
the specific sampling equations and steps of the M–H algorithm we refer to [1].

4 Implementation of the Algorithm

We implementedmodel (1)–(4) according to the Sub-ClusterHDPSampler described
in the previous section. We introduced parallelization with OpenMP to decrease the
execution time of simulations, especiallywhen they involve large datasets.Moreover,
we developed a posterior analysis suitable for the topic modeling. Our code is written
in C++. Model (1)–(4) is flexible, because it is possible to choose the distribution for
the basemeasure H and the likelihood f (x ji ;φ j i ), according to the specific clustering
problem. Our main effort was to keep this flexibility in the code: for this purpose, we
separated the implementation of the algorithm from everything that depends on the
model and we used template programming and inheritance techniques; this seems
to make the implementation of the code more difficult, but a future extension to a
different application is straightforward.

TheHDP_MCMC classmanages the steps of the algorithmand can be used for any
model. Document is a class which manages the data in each group; it is responsible
for sampling data-labels, as well as document specific topics’ weights and tables. The
Model class has the task of updating latent parameters, in other words it represents
the choice of the prior; it is also in charge of managing all the clusters inferred during
the algorithm’s execution. Finally, the PosteriorAnalisys class manages the posterior
analysis of results.

For all these classes, except for HDP_MCMC, we have decided to provide a
generic interface for all possible models, then each generic class must be specialized
for the chosen model. We implemented specialized class for our application of topic
modeling, where data are categorical and H is the Dirichlet distribution. In extending
the code to other models, the programmer must pay attention to the format of the
quantities needed to update latent parameters and to the computation of likelihood
and marginal distributions.
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4.1 Parallelization

Bayesian algorithms are known to be heavy from a computational point of view.
As the dataset size grows, the need of parallelizing the code becomes clear. We
made extensive use of for loop throughout the code, both in Gibbs sampler and
in Metropolis Hastings steps, so the choice of OpenMP is natural in order not to
modify the code excessively with respect to the serial version. The user can choose
the number of threads and this remains fixed during the execution.

The most expensive steps turned out to be the M–H moves and the update of
labels z, especially when all data are involved; the execution time of these steps
decreases as the number of threads increases, so the parallelization is useful. As the
number of threads grows, other steps seem to increase the execution time, but this is
negligible if compared to the most expensive steps and, in fact, the total execution
time of the algorithm decreases. Moreover, if we increase the dataset dimension,
the parallelization becomes convenient also for the less expensive steps. In the table
below, for each dataset, we show the percentage reduction in the execution timewhen
using T threads with respect to the serial execution; a negative percentage indicates
a reduction, while a positive one represents an increase (Table1).

Aswe can see, as themagnitude of the dataset grows, the reduction in the execution
time becomes more and more important. However, it is difficult to understand which
is the optimal number of threads. Indeed, if we fix the size but we change dataset,
the posterior distribution of the number of cluster changes, so the computation might
require more or less time.

It is necessary to pay attention to the correct generation of random numbers in
parallel. As noted in [5], setting a different seed for each thread does not guarantee
that the streams of random numbers are independent and an unlucky choice of seeds
can lead to bad behaviour of the algorithm. The solution is to use a parallel random
numbers generator. We chose the one of Matthew Bognar (http://www.stat.uiowa.
edu/~mbognar/omprng), which is designed specifically for OpenMP and is simply
to use. The generator is a C++ class that we slightly modified for our scopes.

Table 1 Percentage change in the mean execution time of one iteration

Size 1→2
(%)

1→4
(%)

1→6
(%)

1→8
(%)

1→10
(%)

1→12
(%)

1→14
(%)

1→16
(%)

1000 −9.23 −30.95 −45.05 −5.33 −17.27 +48.06 +102.52 +118.32

5000 −34.17 −55.78 −64.78 −70.04 −69.78 −64.31 −67.06 −65.39

10000 −21.32 −61.63 −71.74 −74.17 −75.72 −74.47 −74.92 −81.25

50000 −41.55 −68.14 −75.55 −80.68 −78.53 −81.01 −82.58 −79.66

http://www.stat.uiowa.edu/~mbognar/omprng
http://www.stat.uiowa.edu/~mbognar/omprng
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4.2 Interfacing with R

We need to interface C++ to R in order to perform posterior inferences from the
MCMC output. To this purpose we chose RInside and Rcpp packages. RInside opens
a protected R session inside a C++ application, while Rcpp converts C++ containers
into R data structures and viceversa. First we have analysed MCMC chains through
standard techniques, using R package coda. We found the “best” posterior partition
of the data according to the least square clustering criteria, as in [2]; we computed
the number of groups in this partition and the number of items in each group.

At each iteration, the distribution of words in the inferred topics and the number
of topics itself change. It is not possible to identify univocally a topic during the
execution, because it might disappear at one iteration or it might not be characterized
by exactly the same words with respect to a different iteration. Our aim is to find
topics at different iterations which might be very similar, so we would like to assign
the same label to these topics. We developed a method for tracking inferred topics in
the last one hundred iterations. At each iteration we have a batch of inferred topics.
First, we assign label zero to each topic in each batch. Then, we pick a topic in a batch,
we call it reference topic and we compare it with all the topics in each successive
batch. In each batch it can be found at most one topic similar to the reference one. To
assert similarity between two topics we use the following criteria. We compute the
cosine similarity between the vectors representing the topics, a standard technique
in text analysis; this quantity must be close to one. The two topics must have the
greatest number of words in common, but the sum of the weights associated to these
words must be greater than a threshold of 0.7. Finally, the label assigned to a topic
can be changed if it has more words in common with the reference topic than with
the topics with its same label. After all the comparisons, some topics may be left
with label zero: these topics appeared only once in the last hundred iterations. We
also know the global weights β associated to each inferred topic, so we can follow
their trend during the last iterations to see the dominant ones. We can represent the
distribution of words in a topic through a wordcloud (see Fig. 2): the dimension of the
word is proportional to its weight in the topic. The user can visualize the dominant
topics when they have higher β. Finally, we use the LPML index to identify the best
priors for γ and α hyperparameters and we choose the model with higher LPML.

5 Simulations

The user of our code is free of choosing fixed or random hyperparameters α and
γ ; in the latter case we put gamma priors on α and γ . We tested the algorithm
using a synthetic dataset with 500 data. Model (1)–(4) tends to overestimate the
real number of clusters, but we can fix α and γ in such a way that the number
of clusters is underestimated a priori. The behaviour of the algorithm improves by
using random α and γ : regardless of prior choice in terms of mean and variance of
the hyperparameters, the algorithm identifies the real number of clusters.
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When using likelihood for categorical data and a Dirichlet distribution H , the
hyperparameter λ has to be fixed. In order to understand the algorithm’s sensitivity
with respect to this quantity, we run a simulation using λ > 1 and another using
λ < 0.5, where the true value of λ is 0.5; for α and γ we assume gamma priors
centered on their real values. When λ > 1, the algorithm underestimates the number
of clusters,whilewithλ < 0.5 the number of clusters is overestimated. If theDirichlet
distribution is simmetric with λ < 1, the probability mass will be concentrated in
few components of the vector, while the others are close to zero. This leads to
distributions of words in the topics very different from each other, so it is easy to
distinguish among all of them. Ifλ > 1, themasswill be distributed uniformly among
all the components: this results in distributions of words which are very similar, so
the algorithm finds it difficult to distinguish them.

As an application to a real case, we chose the KOS dataset from the UCI Machine
Learning Repository. The data source is the Daily KOS (www.dailykos.com), an
american web blog about politics. The corpus is then a collection of posts on this
blog. We reduced a bit the dataset available on the Repository and we were left with
750 documents, 6366 distinct words, 96,942 total words. These posts were published
in 2004 during the campaign for the presidency of the United States. The candidates
were G.W. Bush for the Republican Party and J. Kerry for the Democratic Party. The
campaign followed the September 11 attacks, so war and terrorism were some of the
main topics discussed. We fitted model (1)–(4) to this dataset and we chose λ = 0.5,
γ ∼ Gamma(0.25, 0.05), α ∼ Gamma(2.0, 2.0).
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Fig. 1 Trend for the 10 most frequent topics
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(a) (b)

(c) (d)

Fig. 2 Wordclouds for the dominant topics

We processed the MCMC output as we have described in the previous section. In
particular, we applied our method to identify the inferred topics in the last iterations.
We selected the ten most frequent topics, where the frequence means the number of
times that a topic appears in the last iterations, then we followed their trend through
the associatedweightsβ. As Fig. 1 shows, there are 4–5 dominant topics in the corpus;
Fig. 2 reports the wordclouds: as we can see, the inferred topics are consistent with
our prior knowledge about the documents.

6 Conclusions

In this work we have focused on topic modeling, a particular example of clustering
for grouped data. Following a BNP approach, we adopted the Hierarchical Dirichlet
Process Mixture Model [4] to model the data and implemented the HDP Subcluster
Sampler [1], which can be parallelized. We structured the code in such a way that
the flexibility offered by the model is preserved, so it is possible to easily extend the
code for other applications. We tested the parallelization with OpenMP on synthetic
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datasets with different dimension; the gain in terms of reduction of execution time
increases as the dataset size increases, but it is difficult to identify the optimal number
of threads. The model is sensitive with respect to the hyperparameters λ, γ and α.
We run simulations with a synthetic dataset in order to understand the best choice
for them. It turned out that putting a gamma prior on γ and α and setting λ < 1
leads to better results. We overcame the label switching problem through a method
that identifies the topics inferred in the last iterations. We fitted the model and the
algorithm to the KOS dataset.

Acknowledgements Wewould like to thank Professor Alessandra Guglielmi for helping us to find
a suitable model and algorithm for our applications on topic modeling and for her helpful advice.
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Bayesian Inference for Continuous Time
Animal Movement Based on Steps and Turns

Alison Parton, Paul G. Blackwell and Anna Skarin

Abstract Although animal locations gained via GPS, etc. are typically observed on
a discrete time scale, movement models formulated in continuous time are preferable
in order to avoid the struggles experienced in discrete time when faced with irregular
observations or the prospect of comparing analyses on different time scales. A class
of models able to emulate a range of movement ideas are defined by representing
movement as a combination of stochastic processes describing both speed and bear-
ing. A method for Bayesian inference for such models is described through the use
of a Markov chain Monte Carlo approach. Such inference relies on an augmentation
of the animal’s locations in discrete time that have been observed with error, with
a more detailed movement path gained via simulation techniques. Analysis of real
data on an individual reindeer Rangifer tarandus illustrates the presented methods.

Keywords Movement modelling · Random walk · Rangifer tarandus · Data aug-
mentation · GPS data

1 Introduction

Movement ecology is a fast growing area of research concernedwith addressing ques-
tions of patterns in animal movements, their underlying mechanisms, driving causes
and constraints [6]. Animal movement data gained via GPS, etc. are commonly given
as 2-dimensional locations at a sequence of discrete—but not necessarily regular—
points in time. A widespread group of models for analysing such data are based on
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parameterising movement by turning angles and step lengths (see e.g. [4, 5, 7, 8]).
This movement is formulated in discrete time, with each subsequent location defined
by a ‘turn’ and ‘step’ following some circular and positive distribution, respectively.

Discrete time ‘step and turn’ models are intuitive to ecologists and statistical
inference given observed data can be carried out using a range of existing methods
and software. The reliance on a discrete time scale, however, poses a number of
issues. The chosen scale must be ecologically relevant to the movement decisions of
the animal, but is more often dictated by the sampling rate of the received data. These
models are not invariant under a change of time scale, leading to no guarantee of a
coherent extension to a different time scale, or how to interpret such an extension.
Irregular or missing data can therefore be difficult to model, and there is often no
way to compare multiple analyses defined on differing scales.

Movement models that are formulated in continuous time avoid the discrete time
difficulties; the true underlying mechanism of continuous movement is maintained,
no user-defined time frame is needed and flexibility is introduced by time scale
invariance. The following introduces a continuous time approach to modelling that
preserves the familiar description of movement based on ‘steps’ and ‘turns’.

2 The Continuous Time Model

At any time t ≥ 0, let the animal have a bearing θ(t) and a speed ψ(t) that evolve
according to the stochastic differential equations

dθ(t) = F1 (t, θ(t)) dt + F2 (t, θ(t)) dW1(t),

dψ(t) = F3 (t, ψ(t)) dt + F4 (t, ψ(t)) dW2(t), (1)

where Wi (t), i ∈ {1, 2} is Brownian motion and Fi (t, ·), i ∈ {1, . . . , 4} are known
functions.

Many discrete time ‘step and turn’modelsmake the assumption that animalsmove
with persistence, using a correlated random walk to reflect this. Such an assumption
can bemadewithin this continuous time framework by assuming θ(t) followsBrown-
ian motion with volatility σ 2

B by taking F1(t, θ(t)) = 0 and F2(t, θ(t)) = σB . Note
that although the direction the animal is facing is constrained to be within [−π, π ],
θ(t) itself is not constrained in this way. Although discussed no further here, a range
of other movement modes could be modelled under this framework, including direc-
tional bias and attraction to centres.

A 1-dimensional Ornstein–Uhlenbeck (OU) process is assumed for ψ(t) with
parameters {μ, λ, σ 2

S }, reflecting the idea that the animal’s speed is stochastic but
correlated over time, with some long-term average speed. This is achieved by tak-
ing F3(t, ψ(t)) = λ(μ − ψ(t)) and F4(t, ψ(t)) = σS . This choice is similar to [3],
in which movement is modelled by a 2-dimensional OU velocity process. In the
classic examples of discrete time models, the ‘step’ process is assumed to be inde-
pendent over disjoint time intervals. Although discussed no further here, this form
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of movement can easily be emulated by basing ψ(t) on a distance process that
follows Brownian motion with drift—where the drift describes the average speed of
the animal.

The continuous timemovementmodel canbe simulated by taking anEuler approx-
imation over the small increment δt . Given θ(t) and ψ(t) at time t ≥ 0,

θ (t + δt) |θ(t) ∼ N
(
θ(t), σ 2

Bδt
)
,

ψ (t + δt) |ψ(t) ∼ N

(
μ + e−λδt (ψ(t) − μ) ,

σ 2
S

2λ

(
1 − e−2λδt

))
. (2)

The familiar notion of a ‘turn’ is then given by θ(t + δt) − θ(t) and a ‘step’ by
ν(t) = ψ(t)δt .

3 Inference for the Continuous Time Model

Ananimal’s location (X,Y) at a series of discrete times t has beenobservedwith error.
Throughout the following, observation errors are assumed to be independent and
identically distributed in both space and time, following a circular bivariate Normal
distribution with variance σ 2

E . The aim of the following is to describe a method for
statistical inference on the movement and error parameters � = {

σ 2
B, μ, λ, σ 2

S , σ
2
E

}
,

given (X,Y).
It is not possible to evaluate the likelihood of (X,Y), given �. The approach for

inference described is to therefore augment (X,Y) with a ‘refined path’ defined by
(θ , ν). This refined path is given as a set of bearings, θ , and steps, ν, on some δt time
scale—assuming throughout that δt is small enough that such a refined path can be
taken as an approximation to the continuous time model of Eq. 1. A representation
of the relationship between (X,Y) and (θ , ν) is given in Fig. 1. The joint likelihood
of (X,Y) and (θ , ν) can be evaluated, given by

L (X,Y, θ , ν | �) = L (θ , ν | �)L (X,Y | θ , ν,�) . (3)

The first term on the r.h.s. of Eq. 3 is the likelihood of the refined path, given by

L (θ , ν | �) = πθ (θ1 | �) πν (ν1 | �)
∏

i=2

πθ (θi | θi−1,�) πν (νi | νi−1,�) , (4)

Fig. 1 Representation of the refined movement path (θ , ν) and observed locations (X,Y)
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where

θ1 | � ∼ U(−π, π), (5)

ν1 | � ∼ N

(
δtμ,

δt2σ 2
S

λ

)
, (6)

and πθ(θi | θi−1,�), πν(νi | νi−1,�) are given by Eq. 2 for i ≥ 2. The second term
on the r.h.s. of Eq. 3 is the likelihood of the observation error when (θ , ν) is the ‘true’
path.

The refined path is unknown and is simulated using a Metropolis-within-Gibbs
sampler to carry out full inference on the movement parameters. This sampler alter-
nately updates � and (θ , ν), both also conditioned on (X,Y). The respective full
conditional distributions cannot be directly sampled from, and so the Metropolis-
Hastings (MH) algorithm is used within each of the two steps.

3.1 Approach for Sampling the Movement Parameters

The full conditional distribution of the movement parameters �, given the refined
path (θ , ν) and the observed positions (X,Y) is given by

L (� | θ , ν,X,Y) ∝ π	 (�)L (X,Y, θ , ν | �) , (7)

where L (X,Y, θ , ν | �) is given in Eq. 3 and π	(�) is the prior distribution of
the movement parameters. The movement parameters are proposed within the MH
algorithm simultaneously using independent Normal randomwalks (truncated below
at zero and centred on the current realisation). Acceptance is then based on the
standard MH ratio using Eq. 7.

3.2 Approach for Sampling the Refined Path

The augmentation of refined movement paths is complicated by observed locations.
Forward simulation based only on movement parameters will be unlikely to agree
well with observations, proving infeasible within aMH step. The following describes
a simulation method that, in part, takes the observations into account.

The full conditional distribution of the refined path (θ , ν), given the movement
parameters � and the observed positions (X,Y) can be expressed as

L (θ , ν | �,X,Y) = L (θ | �,X,Y)L (ν | θ ,�,X,Y)

∝ L (θ | �)L (X,Y | θ ,�)L (ν | θ ,�,X,Y) , (8)



Bayesian Inference for Continuous Time Animal Movement Based on Steps and Turns 227

where L (θ | �) is given by the product of πθ(·) in Eq. 2. Each observed location
(Xi ,Yi ) can be expressed as

Xi = X0 +
∑

j

ν j cos(θ j ) + εi,x ,

Yi = Y0 +
∑

j

ν j sin(θ j ) + εi,y, (9)

which, given θ , are linear combinations of the Normally distributed ν, ε, and so
(X,Y | θ ,�) is Normally distributed with known mean and variance. The final term
in Eq. 8 is obtained by taking the Normally distributed (ν | θ ,�), with likelihood
given by πν(·), and conditioning this on (X,Y | θ ,�). The mean and variance of
(ν | θ ,�,X,Y) are therefore given by the standard results for multivariate condi-
tioned Normal distributions.

Within the MH algorithm, a refined path proposal is made by first propos-
ing bearings with density proportional to L (θ | �). Conditional on both these
bearings and observed locations, steps are proposed with density proportional to
L (ν | θ ,�,X,Y). Acceptance of a simulated refined path is then based only on
L (X,Y | θ ,�), by Eq. 8 and the standard MH acceptance ratio.

Proposing an entire refined path in this way is likely to yield a very low acceptance
rate due to the high dimensionality. In reality, only sections of the refined path are
updated at a time. This is carried out as above, but with additional conditioning
upon the fixed bearings, steps and locations at the endpoints of the chosen section—
i.e. πθ(·) is given by a Brownian bridge and πν(·) is given by an OU bridge. The
additional condition that the chosen section will need to meet its fixed end locations
leads to the step proposal distribution being singular, and so realisations are proposed
using singular value decomposition.

4 Reindeer Movement Example

The method described above for statistical inference is demonstrated using observa-
tions of Rangifer tarandus movement. A subset of 50 observations of the reindeer
‘b53.10’ walking in the Malå reindeer herding community in northern Sweden was
used, taken at mostly 2min intervals and shown as the points in Fig. 2, with a refined
path defined on a time scale of 0.5min. The inference method described above was
carried out with flat priors for all parameters apart from a dependence between the
speed parameters to reduce the possibility of negative speeds. The refined path was
sampled in short sections of between 5–12 points chosen randomly from the entire
refined path, with 50 updates to the path for every parameter update in the Gibbs
sampler.

A burn-in time of 105 iterations was discarded and the sampler run for a fur-
ther 105 iterations, thinned by a factor of 102. Posterior 90% credible intervals for
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(a)

(a)

(b)

(b)

Fig. 2 Observations of reindeer ‘b53.10’ (points) and examples of two sampled paths (block and
dashed lines). Sub-figures a and b show zoomed in sections of the path, indicated by the grey boxes,
with numbering showing the temporal ordering of observations

the remaining 103 samples of� are given as σ 2
B : (0.670, 1.53), μ : (24.2, 29.3), λ :

(0.465, 0.668), σ 2
S : (116.4, 135.4), σ 2

E : (80.4, 100.9). Theposterior credible inter-
val for σ 2

E agrees well with current levels of observation error, expected to be up to
20m.

Examples of two sampled paths from throughout the run are shown in Fig. 2. The
marked difference in the reconstruction between some pairs of observations exhibited
by the example sampled paths suggests that the linear interpolation employed by
discrete time methods could be ignoring important characteristics of movement.
Furthermore, in sub-plots (a) and (b) there are a number of ‘sharp’ turns between
observations 23–25 and 42–43 that have been ‘smoothed out’ in the example path
reconstructions. In a discrete time analysis this would amount to multiple turns of
approximately π radians, leading to large estimates of the turning volatility.
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5 Conclusion

We have introduced a framework for modelling animal movement in continuous time
based on the popular movement metrics of step lengths and turning angles. Amethod
for statistical inference via the augmentation of a refined path that is assumed to
approximate the continuous time path has been described and demonstrated on a
subset of reindeer location observations.

Parameter estimates for the proposed movement model give insight into the char-
acteristics of an animal’s movement in a form that is immediately interpretable,
such as the mean speed at which the animal travels. These judgements are useful
in addressing ecological questions relating to space/resource use, such as the size
of an animal’s ‘home range’. The augmentation method employed further supports
accessible inference by supplying reconstructions of the movement path at a finer
time scale than the observations. Therefore, the space use of the animal at the local
scale can immediately be estimated and this enables its combination with environ-
mental covariates, such as land cover data, whose resolution is fast increasing. The
interpretation of the estimated parameters is also furthered by the ability to visualise
the actual movement paths they describe.

Themethodhere assumes a simplisticmodel for observation error, beingNormally
distributed and independent through time. A common feature of telemetry data is
autocorrelation in observation error, and so in further applications more realistic
models for observation error will be sought that account for this feature.

In all of the work presented here, movement has been assumed to follow a sin-
gle behavioural mode, which is unrealistic in practice for animal tracks covering an
extended period of time. Behavioural switching for this model in continuous time
is currently being implemented based on the works of [1, 2], allowing switching
between a finite number of ‘behavioural states’ that represent quantitative or quali-
tative differences in movement.

References

1. Blackwell, P.G., Niu, M., Lambert, C., LaPoint, S.D.: Exact Bayesian inference for animal
movement in continuous time. Methods Ecol. Evol. (2015). doi:10.1111/2041-210X.12460

2. Harris, K.J., Blackwell, P.G.: Flexible continuous-time modelling for heterogeneous animal
movement. Ecol. Model. 255, 29–37 (2013). doi:10.1016/j.ecolmodel.2013.01.020

3. Johnson, D.S., London, J.M., Lea, M.A., Durban, J.W.: Continuous-time correlated random
walk model for animal telemetry data. Ecology 89(5), 1208–15 (2008). doi:10.1890/07-1032.1

4. Langrock, R., King, R., Matthiopoulos, J., Thomas, L., Fortin, D., Morales, J.M.: Flexible and
practical modeling of animal telemetry data: hidden Markov models and extensions. Ecology
93(11), 2336–2342 (2012). doi:10.1890/11-2241.1

5. McClintock, B.T., King, R., Thomas, L., Matthiopoulos, J., McConnell, B.J., Morales, J.M.: A
general discrete-timemodeling framework for animalmovement usingmultistate randomwalks.
Ecol. Monogr. 82(3), 335–349 (2012). doi:10.1890/11-0326.1

6. Minerva Center forMovement Ecology. Available viaDIALOG. http://move-ecol-minerva.huji.
ac.il/. Accessed 29 Jan 2016

http://dx.doi.org/10.1111/2041-210X.12460
http://dx.doi.org/10.1016/j.ecolmodel.2013.01.020
http://dx.doi.org/10.1890/07-1032.1
http://dx.doi.org/10.1890/11-2241.1
http://dx.doi.org/10.1890/11-0326.1
http://move-ecol-minerva.huji.ac.il/
http://move-ecol-minerva.huji.ac.il/


230 A. Parton et al.

7. Morales, J.M., Haydon, D.T., Frair, J., Holsinger, K.E., Fryxell, J.M.: Extracting more out of
relocation data: building movement models as mixtures of random walks. Ecology 85(9), 2436–
2445 (2004). doi:10.1890/03-0269

8. Patterson, T.A., Thomas, L., Wilcox, C., Ovaskainen, O., Matthiopoulos, J.: State-space models
of individual animal movement. Trends Ecol. Evol. Trends Ecol. Evol. 23(2), 87–94 (2008).
doi:10.1016/j.tree.2007.10.009

http://dx.doi.org/10.1890/03-0269
http://dx.doi.org/10.1016/j.tree.2007.10.009


Explaining the Lethality of Boko Haram’s
Terrorist Attacks in Nigeria, 2009–2014:
A Hierarchical Bayesian Approach

André Python, Janine Illian, Charlotte Jones-Todd and Marta Blangiardo

Abstract Since 2009, Nigeria has been the scene of numerous deadly terrorist
attacks perpetrated by the terrorist group Boko Haram. In response to this threat,
stakeholders in the fight against terrorism have deployed various counterterrorism
policies, the costs of which could be reduced through efficient preventive measures.
Statistical models able to integrate complex spatial dependence structures have not
yet been applied, despite their potential for providing guidance to assess character-
istics of terrorist attacks. In an effort to address this shortcoming, we use a flexible
approach that represents a Gaussian Markov random field through stochastic partial
differential equation and model the fine-scale spatial patterns of the lethality of ter-
rorism perpetrated by Boko Haram in Nigeria from 2009 to 2014. Our results suggest
that the lethality of terrorist attacks is contagious in space and attacks are more likely
to be lethal at higher altitudes and far from large cities.

Keywords Bayesian hierarchical model ·Boko Haram ·GMRF ·Terrorism ·SPDE

1 Introduction

In 2014, Nigeria experienced the world’s largest increase in deaths due to terrorism,
mostly due to the intensification of Boko Haram’s presence [11]. In the same year,
Boko Haram became the most lethal of the world’s extremist organisations before
the Islamic State (ISIS), to whom it pledged allegiance in March 2015 [11, 21].
Boko Haram, also known as “Jama’atu Ahlis Sunna Lidda’Awati Wal-Jihad” (People
Committed to the Propagation of the Prophet’s Teachings and Jihad), had conducted
mainly non-violent actions until it clashed with Nigerian authorities in July 2009,
which resulted in more than 800 deaths [40].
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Research in terrorism confirmed that terrorist groups do not act randomly
[20, 26, 34] and terrorist targets are usually not randomly distributed in space but
tend to form “hotspots” [4, 38]. However, most studies have analysed terrorism at
country-level [16, 23, 33], which does not provide an understanding of spatial mech-
anisms at sub-national level [7]. Moreover, when sub-national analyses were carried
out, it was typically in a descriptive perspective [5, 15, 25]. In an effort to address
these shortcomings, we apply a spatial Bayesian model based on a stochastic par-
tial differentiation equation (SPDE) approach implemented through computationally
efficient integrated nested Laplace approximation (INLA) techniques [28, 35].

This research, which integrates spatially explicit covariates and data on terror-
ist events, allows to capture local-scale spatial patterns of the lethality of terrorism
and hence, to better understand the mechanisms behind the patterns. Ultimately,
this study may provide complementary tools to enhance the efficacy of preventive
counterterrorism policies. First, the subnational nature of this work provides policy
makers with key information about the spatial heterogeneity of the lethality of ter-
rorism observed locally within Nigeria.1 Second, since terrorism activity could be
accurately measured in any location before and after counterterrorism missions, this
study could be used as a tool to evaluate the impact of counterterrorism policies [32].

2 Data

We put particular emphasis on the spatial accuracy of the data since this study
investigates terrorism, which is a phenomenon observed at subnational level (terrorist
attacks occur in specific locations and are geolocalised at city-level). We use the
Global Terrorism Database (GTD), which is currently the only available public
terrorism database that includes a variable assigning the spatial accuracy of each
individual observation [18]. Spatial accuracy is represented by an ordinal variable
called specificity, with five possible levels (from low to high spatial accuracy) (for
further information, see GTD codebook: https://www.start.umd.edu/gtd/downloads/
Codebook.pdf).

The selected model (described in Sect. 3) includes five covariates (Fig. 1).2

First, we assess the role of economy on terrorism, which has been under debate
[1, 16, 23, 33]. We use NOAA satellite lights at night (Version 4 DMSP-OLS),
which are high-resolution data (30 arc-second grid ≈1 km at the equator). They

1Note that in line with Kegley [22] and Sáanchez-Cuenca and De la Calle [36], we do not distinguish
“domestic” from “transnational” terrorism. Since the 1970s, almost all terrorist acts have generated
impacts across national borders through the international diffusion of media or external funding
from foreign countries for example. Boko Haram is no exception and its influence extends beyond
Nigerian national borders. Therefore, this study encompasses both types of terrorism without any
distinction.
2Note that from a total of six potential covariates, the most parsimonious selected model uses five
covariates. More detail about the procedure used to select the variables is provided in Sect. 3.

https://www.start.umd.edu/gtd/downloads/Codebook.pdf
https://www.start.umd.edu/gtd/downloads/Codebook.pdf
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Fig. 1 Nigeria (polygon), non-lethal (green circle) and lethal (red cross) terrorist attacks perpetrated
by Boko Haram in Nigeria from 2009 to 2014 (a). The covariates are: Gridded Population of the
World (GPW) - v4 (b), 2008 NOAA satellite lights at night - v4 DMSP-OLS (c), Travel time to
major cities (d), NOAA Global Relief Model - ETOPO1 (e), and the Georeferencing of ethnic
groups (GREG) (f)

have been used as a proxy for socio-economic development measures, including per
capita GDP estimation [12, 19, 41].3

Second, we assess the role of demography. Cities provide anonymity, mobility,
audiences and a larger recruitment pool in comparison to rural areas [10, p. 115],
[27, p. 41]. Densely populated areas are usually more prone to terrorism, since
they tend to provide a higher density of symbolic, human, and public targets
[9, 37, 42]. We use the Gridded Population of the World (GPW) (v4), which provides
population density at high-resolution (30 arc-second grid) [8].4 Third, we assess the
role of communication infrastructure based on Travel Time to Major Cities [29],
which provides the travel time from each terrorist event to the nearest large city
(more than 50,000 inhabitants) at a high spatial resolution (30 arc-second grid).

Fourth, we assess the role of altitude, which is expected to have a positive associ-
ation with terrorism since insurgent and terrorist groups have tactical advantages to
carry out attacks in less accessible areas, such as mountainous regions [1, 14, 30].
Data is obtained from NOAA Global Relief Model (ETOPO1) (1 arc-minute grid)
[2]. Fifth, we assess the role of ethnic diversity by computing the number of dif-

3Note that to avoid endogeneity (simultaneity), we use values of luminosity observed a year before
the study period (i.e. year 2008), calibrated according to the procedure described in Elvidge et al.
[13, Chap. 6]. Moreover, we use the Stable Lights version of the data, which filters background
noise and identifies zero-cloud free observations [31].
4Note that to avoid endogeneity (simultaneity), we use the first available year of population density
prior the study period (i.e. year 2005).
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ferent ethnic groups from the “Georeferencing of ethnic groups” (GREG) database,
which counts 1, 276 ethnic groups worldwide [44]. Ethnically fragmented societies
might be more prone to terrorism [16, 24] despite that ethnic heterogeneity does not
necessarily lead to violence per se [39, p. 68].

3 Model

The SPDE is used to represent a continuous stochastic process in two-dimensional
space (s ∈ D) as a Gaussian field (GF) discretised through a Gaussian Markov ran-
dom field (GMRF) [28]. The linear SPDE can be formulated as [6, Chap. 6]:

(κ2 − Δ)α/2(τξ(s)) = W (s), s ∈ D , (1)

with the Laplacian Δ, smoothness parameter α = λ + 1 (for two-dimensional
processes), scale parameter κ > 0, precision parameter τ , domain D , and Gaussian
spatial white noise W (s). The stationary solution of Eq. 1 is the GF (ξ(s)) with
Matérn covariance function (Fig. 2, solid line):

Cov(ξ(si ), ξ(s j )) = σ 2
ξi

1

Γ (λ)2λ−1

(
κ

∥∥si − s j

∥∥ )λ

Kλ

(
κ

∥∥si − s j

∥∥)
, (2)

where
∥∥si − s j

∥∥ denotes the Euclidean distance between two locations, σ 2
ξi

the mar-
ginal variance and Kλ the modified Bessel function of the second kind and order
λ > 0. The distance from which the spatial correlation becomes negligible (for
λ > 0.5) is given by the range r (Fig. 2, dotted vertical line), which can be empiri-
cally derived from the scale parameter r = √

8λ/κ to be estimated. The GF defined
through Eqs. 1 and 2 appears in the so-called latent field as given in Eq. 3b. Hence,
the GF (ξ(s)) is approximated as a GMRF through a finite element method using
basis functions defined on a Constrained Refined Delaunay Triangulation (mesh)
over Nigeria (Fig. 3a), which includes n = 141 vertices [28].

We extract 1,147 terrorist events perpetrated by Boko Haram in Nigeria in the
years 2009–2014. This number includes 895 lethal and 252 non-lethal observations
yi , which we assume to follow a Bernoulli distribution with probability of observing
a lethal terrorist attack πi and a non-lethal terrorist attack 1 − πi (Eq. 3a). Hence, we
use a three-stage Bayesian hierarchical modelling framework [3]:

yi |ηi , θ ∼ Bernoulli(πi ), i = 1, . . . , 1147. (3a)

ηi |θ = β0 +
nβ∑

k=1

βk zk,i + ξi , i = 1, . . . , 1147. (3b)

θ = p(θ). (3c)
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Fig. 2 Matérn correlation function (solid line) with parameters λ = 1, posterior mean κ ≈ 3.9 and
its 95% credible intervals (dashed lines), posterior mean range r ≈ 105 km (dotted vertical line)
and correlation ≈ 0.1 (dotted horizontal line)

(a) original mesh (b) mesh 2 (c) mesh 3

Fig. 3 Original mesh (n = 141) (a) which covers our study area, Nigeria (thick line). For robustness
tests, we used higher resolution meshes, including mesh 2, with the number of vertices n2 = 283
(b) and mesh 3 with n3 = 425 (c)

Equation 3b describes the linear predictor ηi =logit(πi ), which represents the latent
field, including: the intercept β0, nβ coefficients of the covariates zk,t , and the GMRF
field ξi with Matérn covariance function (Eq. 2). We apply a backward selection
procedure to select the covariates, using the Watanabe–Akaike information criterion
(WAIC) [43] as selection criterion, as suggested by Gelman et al. [17]. Hence, we
select the most parsimonious model which includes: satellite night light (βlum), the
natural logarithm of altitude (βlogalt ), the number of different ethnic groups (βgreg),
and travel time to the nearest large city (βt t ). The hyperparameters θ = {κ, σ 2

ξ } are
assigned a joint prior distribution (Eq. 3c) through log(τ ) and log(κ), which are
assumed to follow a joint Normal distribution.
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4 Results

As an alternative to Markov chain Monte Carlo (MCMC) methods, we use INLA
as an accurate and computationally efficient model fitting method, which drastically
reduces the computational costs due to the sparse matrix of GMRF (O(n3/2) in
contrast to O(n3) for a dense matrix of GF in R

2) [6, 35]. Our results (Table 1)
suggest that terrorist attacks are more likely to be lethal at higher altitudes and
far from large cities (95% credible intervals (C I95% βlogalt , βt t > 0). We did not
find evidence of a relationship between satellite night light, ethnic diversity, and
the lethality of terrorism (0 ∈ C I95% βlum, βgreg). In addition, Fig. 4 provides the
posterior probability of a lethal attack πs at each mesh vertex and in interpolated
values in all locations s ∈ D . The uncertainty in the spatial prediction is provided
through the posterior mean variance of the GMRF σ 2

ξs
(Fig. 4b). Moreover, our model

suggests that lethality is contagious in space (C I95% κ ≈ [0.5 − 14]) with a highly
uncertain range (C I95% r ≈ [6 − 258]km, posterior mean ≈105 km).

As robustness test, we change the prior distribution of κ and τ through modifi-
cations of the prior distribution of the variance of the GMRF σ 2

ξ and range r for a

Table 1 SPDE Bernoulli model: posterior mean, standard deviation, and 95% credible intervals of
the standardised coefficients of the covariate (β) and parameters of the GMRF (ξ ), including scale
parameter κ , variance σ 2

ξ , and empirical range r

Covariate coefficients (β) Post. mean Post. std. Post. 95% CI

β0(intercept) 1.24 0.19 (0.87; 1.62)

βlum 0.004 0.121 (−0.23; 0.24)

βlogalt 0.22 0.07 (0.076; 0.37)

βt t 0.31 0.12 (0.08; 0.55)

βgreg −0.20 0.13 (−0.46; 0.05)

GMRF (ξ ) parameters

κ 5.18 (0.49; 14.2)

σ 2
ξ 0.90 (0.04; 2.84)

r (km) 105 (6.04; 258)

(a) posterior mean ξs (b) posterior variance σξs
(c) posterior probability πs

2

Fig. 4 GMRF posterior mean ξs (a), variance σ 2
ξs

(b), and probability of lethal terrorist attack πs
(c) interpolated in the spatial domain D , which covers Nigeria
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better interpretation of the results. We use a relative low standard deviation value
(σξ = 0.007) along with range r1 = 50 km and r2 = 500 in the first and second
robustness model respectively. The results are not affected by this change in prior
(not reported). As an alternative to the original mesh (n = 141) (Fig. 3a), we use
mesh 2 (n2 = 283) (Fig. 3b) and mesh 3 (n3 = 425) (Fig. 3c). The alternative meshes
(mesh 2 and mesh 3) count roughly two and three more vertices and increase the com-
putation time required to fit the model by approximately 24% and 33%, respectively.
However, this does not affect the results (not reported).

Undoubtedly, this study could benefit from further improvement in using e.g.
elicited priors based on the opinion from experts in terrorism studies and the use
of additional covariates. Moreover, more accurate data along with access to more
computational power would allow investigating the phenomenon in finer spatial
and/or temporal resolution, and/or through the use of non-stationary spatial models
(i.e. models in which spatial correlation varies in space). Despite its shortcomings,
the findings of this research work contribute to a better understanding of the spatial
pattern of the lethality of terrorist attacks perpetrated by Boko Haram in Nigeria
from 2009 to 2014.
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Optimizing Movement of Cooperating
Pedestrians by Exploiting Floor-Field Model
and Markov Decision Process

Vladimíra Sečkárová and Pavel Hrabák

Abstract Optimizing movement of pedestrians is a topic of great importance,
calling for modeling crowds. In this contribution we address the problem of evacua-
tion, where pedestrians choose their actions in order to leave the endangered area. To
address such decision making process we exploit the well-known floor-field model
with modeling based on Markov decision processes (MDP). In addition, we also
allow the pedestrians to cooperate and exchange their information (probability dis-
tribution) about the state of the surrounding environment. This information in form of
probability distributions is then combined in the Kullback–Leibler sense. We show
in the simulation study how the use of MDP and information sharing positively
influences the amount of inhaled CO and the evacuation time.

Keywords Optimization of cooperating pedestrians · Floor-field model · Markov
decision process · Combination of transition probabilities

1 Introduction

The crowdmodeling (pedestrian modeling) is of great importance and arises in many
situations such as transportation, strike action and other areas of artificial intelligence
andmulti-agent systems.Generally usedmodels can yield undesirable behavior of the
crowd, e.g., no movement when the path is clear and collisions among pedestrians, in
situations requiring somewhat smooth and organized movement, such as evacuation.
We address the former problem by allowing more uncertainty in decision making
for the next move. To solve the latter problem we allow pedestrians to cooperate so
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that they can exploit information about decision making of other pedestrians. The
comparison of regular pedestrian model and more sophisticated decision making
technique with cooperation is of interest in this contribution.

There are two distinct approaches to modeling the pedestrians. First focuses on
individuals and works well for small crowds, second takes the whole group as one for
large crowds [5].We focus on the formerway ofmodeling in case of evacuation. If the
details about the environment are not available, the specification of the whole design
of evacuation is needed, e.g., arrangement of exits, fire-reducing equipment and
evacuation scenario [15]. Here, we model the environment by the two-dimensional
(predetermined) grid and refer to pedestrians as the agents on the grid. We assume
pedestrians would like to leave the endangered area and reach the exit as soon as
possible. To describe the decision making process of the agents on the grid we
consider two types of models: the floor-field (FF) model and theory of Markov
decision processes (MDP). The simplicity of FF model (static, dynamic) in applying
to evacuation problem in, e.g., [3, 7], is appealing. However, the evacuation time of
agents (the number of time instants leading to agent-free state of the grid) can be
high, since we predetermine how attracted they are towards the exit. To overcome
this, we focus on MDP, often exploited in area of autonomous robot systems for
prediction of pedestrians trajectories: ‘softened’ version of MDP accounting for
decision uncertainty [16], jump MDP for long-time predictions [6]. MDP includes
optimization step, which significantly decreases the evacuation time and still offers
a computationally efficient way how to model movement of agents.

If beside the evacuation time another variable such as upper bound on the inhaled
CO is present, we should prevent occurrence of collision between agents. In case of
collision, the agentmoves to the recently occupied position and has to step back to the
original position. Despite it does not change the position on the grid, it inhales more
CO than in case without a move. We address this issue by focusing on the interaction
among agents. Although some interaction is included in case of MDP agents by
assigning subjective transition probabilities to states of the grid, it deserves more
attention. In particular, we suggest to combine agents’ opinions about the situation on
the grid, i.e., their transition probabilities, according to the combination of probability
distributions described in [12]. This combination exploits the theory of Bayesian
decision making, but because the likelihood is not provided we use information
theory, i.e., minimum cross-entropy (Kullback–Leibler divergence) principle instead
of the Bayes rule. It is useful especially in cases when we would like to combine
opinions/preferences and we have little or no prior knowledge about global model
of the studied problem.

This contribution consists of two main parts: a theoretical overview and a
comparison of suggested approaches in a simulation study for scenarios with FF,
MDP and without/with combining from perspective of evacuation time and inhaled
CO.
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2 Theoretical Background

Let the environment be described by a finite gridX with a finite number of positions
x ∈ X , see Fig. 1 on the left. LetS denote the set of all states of the grid, where the
term state refers to a specific allocation of the agents on the grid. Actions, a ∈ A ,
allowed on the grid, are depicted in Fig. 1 on the right.

Let us have K agents (K ∈ {1, 2, . . .}), each of them would like to choose an
action a ∈ A and then move to a future position based on the current state s of the
grid, s ∈ S . In case K > 1 we also assume that agents are aware of the allocation
of other agents within the grid state s and they are

• interested in the whole future state s̃ (depending on scenario), s̃ ∈ S ,
• willing to cooperate and exchange their information with neighbors. A neighbor
is the agent at one-move distance.

As said, we consider modeling of pedestrians movement with FF model and MDP
together with combination of probabilities based on Kullback–Leibler divergence
with basic information given below. Such conception of modeling pedestrian evac-
uation is based on the cellular automata models of pedestrian flow reviewed, e.g., in
[11]. In such models, the cell of the grid is usually considered to cover an area of
40cm times 40cm, therefore the cells can be occupied by at most one agent.

2.1 Floor-Field Scenario for Pedestrian Movement

For agents following the floor-field (FF) model for pedestrian movement we assume
that the position of the exit e ∈ X is known. The choice of the destination position
is for the agent following FF model based on probability of a future position px̃ . This
probability includes information on the distance towards the exit:

px̃ ∝ exp−kS Sex̃ , (1)

1 2 3

4 5 6

7 8 9

10

Fig. 1 Left Example of environment for pedestrians – a gridwith 10positions. Position10 represents
the exit. Right 9 possible movement (actions) of the agent on the grid – 8 directions represented by
arrows + 1 “direction” with no movement
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where kS is the coupling constant and Sex̃ is the distance between exit and x̃ . For
higher value of the coupling constant the agent is more attracted towards the exit.
More details on floor-field model in discrete time and space can be found in [8].

2.2 Scenario Exploiting Markov Decision Process

To choose the new destination position for agents following Markov decision
processes (MDP) scenario we assume existence of

• a reward r(s, a), s ∈ S , a ∈ A ,
• a transition probability function p(s̃|s, a), s̃ ∈ S , which is composed of local
hopping probabilities (1).

We search for the action amaximizing total expected reward consisting of immediate
reward and expected terminal reward in one-period MDP

a∗ = arg max
a∈A

{
r(s, a) +

∑
s̃

p(s̃|s, a)v(s̃)

}
(2)

where v(s̃) is a specified function (terminal reward). More details on finite-horizon
MDP can be found in [9], their application to evacuation modeling is given in [4].

2.3 Description of Reward

Let us suppose the situation of people trying to escape from some premises due to
fire emergency.

The agents are motivated to leave the premises as soon as possible (i.e., every
second spend in the system decreases their comfortability) keeping the amount of
inhaled CO minimal (i.e., every action related to increased necessity of breathing
decreases the comfortability as well). Thus,

1. every attempt to move should decrease the reward,
2. collision (i.e., unsuccessful attempt to enter an occupied cell) should cost more

than motion to empty cell,
3. standing in current cell should decrease the reward in order to motivate the agents

to leave as fast as possible. It should cost less than motion; when waiting for the
target cell to be emptied, its cost should be lower than the costs for a collision.

The reward that we exploit later on reflects

• the possibility of collisions: agent inhalesmore by jumping to the occupied position
(see Fig. 2),
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A
B C

Starting positions

A
B C

Agent A moved

A
B C

Agent B moved

A
B

C

Agent C moved

Fig. 2 Example of collision. In the beginning agents A,B,C choose their action. Agent A moves
first, his targeted position was vacant. Second, Agent B moves to targeted position and steps back,
because this position is occupied. Third, Agent C moves to targeted position, which is vacant

• no activity: if the decision of the agent for the next time step is to stay in the current
position, agent should still inhale some amount of CO, but lower than in the case
of movement,

and has the following form (using negative sign since maximization of reward is
related to minimization of inhaled CO):

r(., .) =

⎧⎪⎪⎨
⎪⎪⎩

−1 jumps to vacant position,
−2 jumps to occupied position, has to jump back,
−1/2 avoids collision - stays in current position,
−10 hits the wall.

(3)

For the agent with FF model the attraction towards the exit is predetermined by the
coupling constant and the distance from the exit, both independent of the current
state of the grid (position of other agents). For MDP we assume that the situation is
reflected in the transition probability function, i.e., low probability for staying in the
current position if neighboring positions are empty.

2.4 Combining Transition Probabilities

To minimize the number of collisions between agents on the grid and thus to min-
imize the evacuation time and inhaled carbon oxide we assume agents are willing
to cooperate in scenario introduced in [12]. There, the so-called sources shared the
probability functions in order to obtain a compromise - aweighted linear combination
of their probability functions. With the agents on the grid representing the sources,
we would like to combine their transition probabilities

p j = p j (s̃|s, a), s, s̃ ∈ S , a ∈ A , (4)

to obtain new transition probabilities including the information from other agents.
We now briefly summarize the basic steps leading to the combination.

Assume that there exists an unknown transition probability function q = q(s̃|s, a)

representing the unknown compromise of p1, . . . , pK in MDP scenario on the grid.
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To express the uncertainty about the unknown combination we follow the theory of
the Bayesian decision making [10], i.e., we search for its estimator q̂ as minimizer of
the expected utility function. For computing expected utility between two (transition)
probability functions the Kullback–Leibler divergence is a proper measure [2], as it
expresses the mean gain of information from estimator q̌ to q

q̂ ∈ arg min
q̌

Eπ(q|p1,...,pK )KLD(q||q̌) = arg min
q̌

Eπ(q|p1,...,pK )

∑
s̃

qs̃ ln
qs̃
q̌s̃

. (5)

π(q|p1, . . . , pK ) is a probability density function (pdf) over set of all possibleq.Min-
imizer of (5) is the conditional expected value of q with respect to π(q|p1, . . . , pK )

q̂ = Eπ(q|p1,...,pK )[q|p1, . . . , pK ]. (6)

The non-existence of the likelihood prevents us from a direct use of the Bayes
theorem in the search for π(q|p1, . . . , pK ). In such case, theminimum cross-entropy
(Kullback–Leibler divergence) [14] is axiomatically recommended

arg min
π(q|p1,...,pK )

KLD(π(q|p1, . . . , pK )||π0(q)), (7)

where π0(q) = π0(q|p1, . . . , pK ) denotes the prior guess on π(q|p1, . . . , pK ).
Restrictions on the solution are formulated as the following K − 1 equations

Eπ(q|p1,...,pK )[KLD(pK ||q)|p1, . . . , pK ] = Eπ(q|p1,...,pK )[KLD(p j ||q)|p1, . . . , pK ],
(8)

j = 1, . . . , K − 1, expressing that expected information gain when transitioning
from q to particular p j is equal across the group of agents on the grid, shortly
referred to as agent’s selfishness, cf. [2].

The formula for conditional pdf resulting from (7) is

π(q|p1, . . . , pK ) ∝ π0(q|p1, . . . , pK )
∏
s̃

q
∑K−1

j=1 λ j (p j,s̃−pK ,s̃ )

s̃ , (9)

where λ j are the Lagrange multipliers. For the Dirichlet distribution Dir(ν0,s̃, s̃ ∈
S ) as the prior distribution in (9) we obtain π(q|p1, . . . , pK ) as the pdf of the
Dirichlet distribution Dir(νs̃, s̃ ∈ S ) with parameters

νs̃ = ν0,s̃ +
K−1∑
j=1

λ j (p j,s̃ − pK ,s̃) = ν0,s̃ +
K−1∑
j=1

λ j p j,s̃ − pK ,s̃

⎛
⎝K−1∑

j=1

λ j

⎞
⎠ . (10)
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Then, according to (10) the combination (6) is

q̂s̃ = ν0,s̃∑
s̃ ν0,s̃

+
K−1∑
j=1

λ j
(p j,s̃ − pK ,s̃)∑

s̃ ν0,s̃
. (11)

When no specific prior information is available, we use the arithmetic mean of
p1, . . . , pK

ν0,s̃ =
K∑
j=1

p j,s̃

K
, (12)

as prior guess on parameters of the Dirichlet distribution. The sum of parameters ν0,s̃
and νs̃ is according to (10) equal; combination (11) is thus viewed as reallocation of
the original (prior) guess. In this contribution we assume that

∑
s̃ ν0,s̃ = 1. Recent

development [13] showed, that choice
∑

s̃ ν0,s̃ = K is more suitable from theoretical
and practical point of view.

3 Simulation Experiment

In this section we show the results based on previously described theory on a simple
example. Let us have 3 agents on the grid shown in Fig. 1 on the left following
scenario:

• FF: with the coupling constant kS having values in {3, 8},
• MDP: with predefined transition probabilities and reward,
• starting positions: 4, 2, 1 for agents A, B, C,
• order of action execution is random,
• the data are averaged over 40 of simulations for each setting.

First, we inspect the non-cooperative scenario (without combining probabilities).
While action of an FF agent is chosen (randomly) according to hopping probability,
decision making of an MDP agent is based on deterministic transition probabilities.
Thus, collisions should occur and the agents should inhale more CO.

Second,we incorporate information about the current state of the grid by letting the
MDP agent(s) to combine its transition probability, i.e., its local hopping probability
with those from FF agent(s). The resulting amount of CO and evacuation time should
decrease.

3.1 Scenario - Without Combining

First, we consider all agents having FF model with
kS1 = 3, kS2 = 3, kS3 = 8.
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Fig. 3 Histograms: Left column Case (FF,FF,FF) with kS1 = 3, kS2 = 3, kS3 = 8.Middle column
Case (FF,FF,MDP) with kS1 = 3, kS2 = 3 and MDP. Right column Case (FF,MDP,MDP) with
kS1 = 8

How well the agents choose their actions to proceed to 10th position on the grid
(the exit) and the inhaled CO are shown in Fig. 3 on the left.

Next, Fig. 3 in the middle shows histograms of evacuation times and inhaled CO
for agents (FF,FF,MDP), FF agents with

kS1 = 3, kS2 = 3.
Finally, Fig. 3 on the right shows histograms of evacuation times and inhaled CO

for agents (FF,MDP,MDP), FF agent with kS1 = 8.
We see that the evacuation time (number of time instants leading to agent-free

grid) improvedwith incorporation ofMDPagent(s). Table1 gives the average amount
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Table 1 Average amount of CO for agents A, B, C and different scenarios

Scenarios Agent A Agent B Agent C Together

Without combining

(FF,FF,FF) 2.98 6.09 5.16 14.23

(FF,FF,MDP) 2.5 3.98 5.41 11.89

(FF,MDP,MDP) 2 4.5 3.5 10

With combining

(FF,FF,FF) – – – –

(FF,FF,MDP) 2.37 4.14 5.19 11.70

(FF,MDP,MDP) 2 4.5 3.5 10

of inhaled CO with decrease when including one MDP agent and with significant
decrease when including two MDP agents.

3.2 Scenario with Combining

We used the same scenarios for the case of combining agents’ probabilities (note that
only MDP agents can exploit this). The incorporation of combination had positive
influence on the amount of inhaled CO in case of one MDP agent (see Table1). The
results in case of two MDP agents coincide with results without combining since the
dimension of the grid is low. In this case, the agents were able to reach the exit in
the shortest possible way.

3.3 Performing Actions - Fixed Order of Agents

In the above part the order in which the agents perform their actions is random. If
we fix the order in case of one MDP agent, e.g., we let the ‘reasonable’ MDP agent
to go first (agent B second, agent A third), we can achieve even better results for the
amount of inhaled CO:

With combining Agent no.1 Agent no.2 Agent no.3 Together
(FF,FF,MDP) 2 3.5 6 11.5

4 Conclusions and Future Work

In this work we focused on improvement of pedestrian movement based on the
Markov decision processes in case of evacuation.We considered also commonly used
floor-field model and in a simple simulation study we showed how both modeling
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approaches performed in terms of the evacuation time and the amount of inhaled
CO. The incorporation of MDP agents immediately decreased the amount of inhaled
CO.

We also suggested that, because of possible collisions, agents should cooperate,
exchange their transition probabilities and combine them. This approach positively
influenced the results and yielded lower values of inhaled CO than in case without
combining.

The authors are now motivated to study more complex situations for larger grid
containing more cells and more agents. In this contribution we assumed that the
agent was choosing his decision according to the overall state of the system, i.e., the
state of every cell in the grid. Increasing the number of considered cells therefore
significantly increases the cardinality of the state space. Thus, for larger grid, agents
can possibly provide information only on a subset of the possible states of the grid,
e.g., a sub-grid containing cell with agent and neighboring cells. Agents’ sub-grids
then overlap partially or do not overlap, which yields incompatibility of transition
probabilities that we would like to combine. In such case, the outlined combining
approach is expected to demonstrate its full strength. It can be then enhanced by
employing partially observable MDP [1].
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