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Preface

Weight loss – in many cases, as little as 4 kg – with its pleiotropic benefits and optimal

safety profile appears as the most effective means of managing type 2 diabetes

(T2DM) (Harris 1991; Pories et al. 1995; Sjostrom et al. 2004; Pontiroli et al. 2005;

Ratner et al. 2005; Pi-Sunyer et al. 2007; Dixon et al. 2008). In addition, the

pharmacotherapeutic armamentarium seems well equipped with ten different classes

of antidiabetic drugs; providing potent tools to achieve predefined HbA1c goals (i.e.

insulin, sulphonylureas, metformin, thiazolidinediones, alpha-glucosidase inhibitors,

glinides, GLP1-analogues, DPP-4 inhibitors, pramlintide, and colesevalam) (Rodbard

et al. 2009).

What then are we struggling for? First, in most of the T2DM patients, present

clinical praxis fails to attain sustained weight loss and glycemic control (Nathan

et al. 2009). Second, even if optimal management of HbA1c, lipid profile and blood

pressure could hypothetically be supplied, increased morbidity and mortality rates

would still leave much room for improvement (Mourad and Le Jeune 2008). Third,

unravelling the molecular pathophysiology of nutrient excess should allow to target

the thrifty genotype roots of obesity and T2DM directly and should thus facilitate

the development of highly efficient novel therapies (Neel 1999). Respectively,

distinct encouragement evolves from potential mechanisms underlying treatments

through metformin and bariatric surgery (Cummings et al. 2004; Foretz et al. 2010).

The chapters of this book report cutting-edge research on molecular events in

adiposity and T2DM, thus opening the way for innovative drug-based therapeutic

strategies. Beyond that, profound insights and exciting ideas are unveiled. Please,

go ahead and explore!

Braunschweig M. Schwanstecher

October 2010
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Abstract The evolving concept of how nutrient excess and inflammation modulate

metabolism provides new opportunities for strategies to correct the detrimental

health consequences of obesity. In this review, we focus on the complex interplay

among lipid overload, immune response, proinflammatory pathways and organelle

dysfunction through which excess adiposity might lead to type 2 diabetes. We then

consider evidence linking dysregulated CNS circuits to insulin resistance and

results on nutrient-sensing pathways emerging from studies with calorie restriction.

Subsequently, recent recommendations for the management of type 2 diabetes are

discussed with emphasis on prevailing current therapeutic classes of biguanides,

thiazolidinediones and incretin-based approaches.
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1 Inflamed About Obesity: Adipose Tissue and Insulin

Resistance

Within the last decade, increasing rates of obesity drove adipose tissue into the

focus of scientific interest. This wave gained additional vigorous support from

recognition of the tissue’s critical role in a broad array of homeostatic processes,

particularly its link to the immune response in metabolically triggered inflammation

(Hotamisligil 2006; Kahn et al. 2006b; Schenk et al. 2008; Shoelson et al. 2006).

Promoting development of insulin resistance and type 2 diabetes (T2DM), this

chronic inflammation was unequivocally shown to be initiated within adipose

tissue, thus rendering adipocytes to represent the major interface connecting

metabolism to the immune system (Hotamisligil 2006; Kahn et al. 2006b; Schenk

et al. 2008; Shoelson et al. 2006).

Interestingly, this conclusion was convincingly reinforced by evolutionary

aspects (Hotamisligil 2006): (1) favouring the ability to withstand starvation and

survive epidemics of infectious disease, evolution was likely to give rise to systems

highly capable of both storing energy and eliciting a powerful immune response; (2)

within ancestral structures, key metabolic and immune functions were initially

combined. This is – for example – indicated by the fly’s fat body, a structure

recognized to represent the mammalian homologue of adipose tissue, liver and

haematopoietic/immune systems (Leclerc and Reichhart 2004; Sondergaard 1993)

(Fig. 1). In the fly this locus is crucial for sensing nutrient availability and coordinat-

ing energy status with metabolism and survival/immune response (Sondergaard

1993). Thus, in terms of an evolutionary approach, shared developmental heritage

between the adipose tissue and the immune system points towards overlapping

pathways controlling both metabolic and immune functions through common key

regulatory molecules and signalling cascades (Hotamisligil 2006). This might pro-

vide the basis, enabling nutrients to act through pathogen-sensing mechanisms as

Toll-like receptors and hence – in case of overload – to elicit metabolically induced

inflammation (Sondergaard 1993; Beutler 2004; Shi et al. 2006; Song et al. 2006).

Drosophila
fat body 

Liver
Immune and
blood cellsAdipose tissue

Fig. 1 Developmental

divergence of adipose tissue,

liver and the haematopoietic

system
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Successive enlargement of predominantly visceral adipocytes in progredient

weight gain is believed to generate areas of microhypoxia and in turn, activation

of the proinflammatory JNK/activator protein 1 (AP1) and IKK/NF-kappaB signal-

ling pathways as well as endoplasmic reticulum (ER) stress (Hosogai et al. 2007;

Wang et al. 2007; Ye et al. 2007; Schenk et al. 2008) (Fig. 2). Consequently,

cytokine release is triggered with recruitment of macrophages, which – gathered

around apoptotic adipocytes – are primarily prone to removing cell debris (Cinti et al.

2005; Strissel et al. 2007; Ye et al. 2007). In addition, however, and presumably

aggravated by microhypoxia, these macrophages liberate large amounts of proin-

flammatory cytokines. Through paracrine activation of JNK/IKK signalling within

neighbouring adipocytes, this is thought to represent the critical step towards induc-

tion of insulin resistance (Schenk et al. 2008) (Fig. 2).

Besides hypoxia, ER stress is triggered through overloading cells with nutrients,

particularly with fatty acids (Gregor and Hotamisligil 2007; Ron and Walter 2007;

Eizirik et al. 2008). Once activated, ER stress results in stimulation of the unfolded

Lean
BMI ~ 22

Overweight
BMI > 25

Adipose tissue Adipocyte

Microhypoxia
Nutrient overload

ER-stress

JNK /AP1
IKK1/NFκB

Proinflamma-
tory cytokines  
(TNFα, IL-6)

Obese
BMI > 30

Apoptotic
adipocyte
death

Enhanced 
Mf recruitment
and activation

Mf recruitment

M1 activation

Insulin 
resistance

Chronic
Inflammation

Paracrine effects

Systemic effects
Plasma [FFA]
Lipotoxicity

[FFA]

Fig. 2 Adipose tissue, inflammation and insulin resistance. BMI, body mass index in [kg/m2]; ER,

endoplasmic reticulum; FFA, free fatty acids; Mf, bone marrow-derived macrophages; M1, M1-

type inflammatory macrophages
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protein response (UPR) (Gregor and Hotamisligil 2007; Ron and Walter 2007;

Eizirik et al. 2008). The UPR in turn induces a set of genes involved in protein

processing, thus seeking to halt transcription and promote folding (Gregor and

Hotamisligil 2007; Ron and Walter 2007; Eizirik et al. 2008). Activation of the

UPR, however, aggravates insulin resistance by stimulating expression and release

of proinflammatory cytokines (e.g., TNFa, IL-6 and Cd2) (Li et al. 2005b; Gregor

and Hotamisligil 2007; Ron and Walter 2007; Eizirik et al. 2008). These in turn

incite JNK/IKKbeta pathways, which leads to serine phosphorylation of IRS-1 and

consecutive disruption of insulin signalling (see also below and Fig. 4) (Ozcan et al.

2004). In line with a critical role of ER stress in development of insulin resistance,

knockout of a transcription factor boosting the expression of UPR-relieving cha-

perones (Xbp1, see also below and Fig. 6) decreased insulin sensitivity in HFD-fed

mice (Ozcan et al. 2004), with orally active chemical chaperones (4-phenyl butyrate

or tauroursodeoxycholic acid) antagonizing this effect (Ozcan et al. 2006).

Selective knockout of JNK1, IKKbeta or TNFalpha within myeloid progenitor

cells protected obese mice from HFD-induced loss of insulin sensitivity, further

affirming the essential role of inflammation in the pathophysiology of insulin

resistance (Arkan et al. 2005; Solinas et al. 2007). Bone marrow-derived macro-

phages within adipose tissue track with the degree of obesity and were shown to

comprise 40% of the tissues’ total cell content in obese rodents or humans versus

10% in lean counterparts (Weisberg et al. 2003) (Fig. 3). During induction of

obesity proinflammatory M1-type macrophages are attracted, while prior HFD

feeding the anti-inflammatory M2 type is resident (Lumeng et al. 2007). M2

macrophages are specified by releasing high levels of anti-inflammatory factors

such as IL-4 and IL-10 (Mantovani et al. 2004). In contrast, M1 macrophages

are characterized by increased inflammatory gene expression, proinflammatory

cytokine release and reactivity to fatty acids and lipopolysaccharides (LPS)

(Mantovani et al. 2004). The surface markers F4/80 and CD11b are found in

both types, but only M1 macrophages are positive for CD11c (Nguyen et al. 2007;

Strissel et al. 2007). Notably, PPARg activation polarizes towards the anti-inflam-

matory M2 type suggesting the PPARg agonistic thiazolidinediones (TZDs, e.g.,

pioglitazone, rosiglitazone) to act partially through this mechanism (Bouhlel et al.

2007; Hevener et al. 2007; Odegaard et al. 2007). M1-type macrophages were

demonstrated to express enhanced levels of pattern recognition receptors TLR2/

TLR4, suggesting a critical role in fatty acid triggered proinflammatory activation

of adipocytes and leukocytes (Nguyen et al. 2007). Consistently, HFD-induced

insulin resistance was prevented through TLR4 knockout (Shi et al. 2006;

Tsukumo et al. 2007). Similar protection was observed in mice deficient of the

surface receptor for gut-derived bacterial LPS (CD14) and the chemoattractants

CCL2 and osteopontin, which are released by stimulated adipocytes and appear

critical in monocyte recruitment (Kanda et al. 2006; Weisberg et al. 2006; Cani

et al. 2007; Nomiyama et al. 2007).

Myeloid specific knockout of JNK1 fully reversed insulin resistance of the

liver, suggesting (1) analogous to the situation within adipose tissue, activation

of inflammatory pathways within hepatocytes to account for defective insulin
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signalling and (2) Kupffer cells (i.e., bone-derived macrophages within the liver) to

represent essential paracrine triggers of proinflammatory pathways within hepato-

cytes (Solinas et al. 2007). Consistently, insulin resistance was aggravated by

selective overexpression of IKKb within hepatocytes and alleviated through inhi-

bition of NF-kappaB and liver-specific knockout of IKKb (Arkan et al. 2005; Cai

et al. 2005). Notably, myeloid specific knockout of JNK1 did not protect from

hepatic steatosis, indicating that the lipid-rich milieu of non-alcoholic fatty liver

(NAFLD) disease might induce chronic inflammation and not vice versa (Solinas

et al. 2007).

In adipose tissue, liver and skeletal muscle insulin signalling involves tyrosine

phosphorylation of insulin receptor substrate 1 (IRS-1) with downstream activation

of phosphatidylinositol 3-kinase (PI3K), PKB/Akt and PKC-l/z (Taniguchi et al.

2006; Thirone et al. 2006; Solinas et al. 2007) (Fig. 4). On the level of adipose tissue

and skeletal muscle, this cascade results in translocation of GLUT4 and stimulation

Lean Obese

Mφ
within adipose 

tissue

M2-type M1-type

Inflammatory state Inflammatory state

Antiinflammatory
cytokines (IL-4, IL-10)

Proinflammatory
cytokines (TNF,α )IL-6

F4/80, CD11b

TZDs

TLR2/TLR4

Cd11c

CD14/CCL2/osteopontin

Infiltration low
(10 % of total cells)

Infiltration high
(40 % of total cells)

Fig. 3 Body weight-dependent invasion of M1-type macrophages into adipose tissue. Mf , bone

marrow-derived macrophages; M1, M1-type inflammatory macrophages; M2, M2-type anti-

inflammatory macrophages
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of cellular glucose uptake (Taniguchi et al. 2006; Thirone et al. 2006; Solinas et al.

2007). In the liver, glucose release is reduced through inhibition of glycogenolysis

and gluconeogenesis (Wahren and Ekberg 2007). Serine phosphorylation of IRS-1

(e.g., ser307, 661, 731, 1101) impedes this signalling by hindering association of

the substrate to the insulin receptor (Aguirre et al. 2002; Gual et al. 2005). Proin-

flammatory cytokines, fatty acids, certain amino acids and multiple additional

factors have been shown to induce insulin resistance at least partially through this

mechanism (Aguirre et al. 2002; Gual et al. 2005) (Fig. 4). Importantly, serine

phosphorylation of IRS-1 is induced by JNK and IKKb, thus linking inflammation

to insulin resistance (Karin et al. 2001; Aguirre et al. 2002; Gual et al. 2005). In

turn, numerous models of obesity and T2DM were associated with both increased

Fig. 4 Serine phosphorylation of IRS1/2 and insulin resistance. ER-stress, endoplasmic reticulum

stress; [FFA], extracellular concentration of free fatty acids; Glut4, glucose transporter subtype 4;

IRS-1/2, insulin receptor substrate subtype 1 or 2; MAPK, mitogen activated protein kinase; ROS,

reactive oxygen species; TG intermediates, triglyceride intermediates. Inflammatory signalling

does not affect the MAPK pathway
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JNK/IKKb signalling and IRS-1 serine phosphorylation (Yuan et al. 2001; Hirosumi

et al. 2002; Itani et al. 2002; Arkan et al. 2005; Bandyopadhyay et al. 2005; Cai et al.

2005).

Marked improvement of insulin resistance in dietary restriction significantly

precedes weight loss, implying cellular pathways capable of sensing deficient

nutritional supply (Kelley et al. 1993; Assali et al. 2001; Cai et al. 2005). These

include regulatory subunits of PI3K (i.e., p50, p55, p85), the serine/threonine

protein kinase mTOR and the protein deacetylase sirtuin 1 (SIRT1) (Um et al.

2004; McCurdy et al. 2005; Cornier et al. 2006; Tzatsos and Kandror 2006;

Civitarese et al. 2007; Krebs et al. 2007; Sun et al. 2007). Initiation of calorie

restriction reduced expression of p50/55, which was paralleled by enhanced PI3K

activity and regain of insulin sensitivity (Fig. 4). In humans, similar results were

reported for the mTOR/p70S6 kinase pathway and expression of SIRT1.

2 The Lipotoxicity Concept

In the course of developing T2DM, insulin resistance significantly precedes overt

hyperglycaemia (DeFronzo 1988; Abdul-Ghani and DeFronzo 2010). Thus, obese

with normal glucose tolerance and without family history of T2DM revealed

35–50% loss of whole body insulin-induced glucose disposal, with 80% of this

loss attributed to skeletal muscle (Bogardus et al. 1984; DeFronzo et al. 1985; Kahn

et al. 2006b). Similar levels of insulin resistance were reported for many disease

states (e.g., essential hypertension, ischemic heart disease, dyslipidemia, i.e.,

increased plasma triglyceride/decreased HDL cholesterol, polycystic ovary syn-

drome, chronic kidney failure, myotonic dystrophy, lipodystrophy, acute injury or

sepsis), secondary to drug therapy (e.g., protease inhibitors in HIV therapy, gluco-

corticoids and beta-blockers) and in association with the normal aging process

(Abdul-Ghani and DeFronzo 2010).

Elevated plasma levels in free fatty acids (FFA) typically trait with obesity and

there is strong evidence causally linking this hallmark of obesity to insulin resis-

tance, thus establishing the “lipotoxicity” concept (Unger 1995). For example,

reduction of insulin sensitivity through FFA was shown to be dose dependent and

both acute (4 h) as well as chronic (4 days) elevation were effective (DeFronzo et al.

1978; Boden and Chen 1995; Dresner et al. 1999; Griffin et al. 2000; Itani et al.

2002; Yu et al. 2002; Belfort et al. 2005; Richardson et al. 2005). Further support of

the lipotoxicity concept emerges from association of insulin resistance with intra-

myocellular (IMCL) fat content (~1% of whole skeletal muscle fat content): (1)

NMR biopsy studies indicated IMCL versus extramyocellular (EMCL) fat

to strictly correlate with development of insulin resistance independent of total

body fat mass and glucose tolerance (Boden and Chen 1995; Krssak et al. 1999;

Perseghin et al. 1999); (2) acipimox-induced reduction of FFA, dose-dependently

paralleled decreased IMCL content of fatty acid CoenzymA (FACoA) (Bajaj et al.

2005); (3) gradual augmentation of IMCL fat content was coupled to successive
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loss of insulin sensitivity (Boden et al. 2001); (4) adiponectin-induced amelioration

of insulin resistance associates with enhanced IMCL fat oxidation and reduced fat

content (Yamauchi et al. 2001); (5) muscle-specific overexpression of lipoprotein

lipase traits with increased IMCL fat content and severe loss of insulin-induced

muscle glucose uptake, but does not affect insulin sensitivity of adipose tissue and

liver (Kim et al. 2001); (6) bariatric surgery sequels normalization of insulin

sensitivity paralleled by reduced IMCL fat content, despite persisting severe obe-

sity (BMI 39 vs. 49 kg/m2) (Greco et al. 2002).

Transport of FFA into muscle cells appears driven by a combination of lipophilic

diffusion plus facilitated transport with three proteins putatively involved: (1) the

plasma-membrane fatty acid binding protein (FABP), (2) fatty acid transport

protein (FATP) and (3) fatty acid translocase (CD36) (Abumrad et al. 1999;

Bonen et al. 2003; Pownall and Hamilton 2003) (Fig. 5). CD36 deficient mice

displayed reduced FFA transport rates suggesting CD36 to be particularly critical

(Febbraio et al. 1999). Consistently, it might be involved in IMCL fat accumulation,

since in obese and T2DM individuals, CD36-mediated transport is increased with

concomitant reduction of fat oxidation (Bonen et al. 2003, 2004; Kiens et al. 1999;

Roepstorff et al. 2004).

Once having reached myocellular (MCL) cytoplasm, FFA are either inclined to

mitochondrial b-oxidation or triglyceride synthesis (intramuscular triglyceride,

IMTG) (Coleman and Lee 2004) (Fig. 5). While IMTG itself appears inert in

terms of insulin signalling, IMTG intermediates (1) lysophosphatidic acid (LPA),

(2) phosphatidic acid (PA) and (3) diacylglycerol (DAG) are thought to play a key

role in development of insulin resistance (see Fig. 5) (Pan et al. 1997; Bandyopadhyay

et al. 2006; Liu et al. 2007). An additional product of MCL FFA metabolism

presumably critical in insulin action is ceramide, the synthesis of which is driven

through high concentrations of saturated C15-17 FFA, particularly palmitate

(Summers 2006; Holland et al. 2007). In obesity and models with lipid/heparin

infusion, enhanced MCL levels of fatty acyl-CoA, IMTG intermediates and

ceramide paralleled with increased plasma [FFA] (Bandyopadhyay et al. 2006;

Goodpaster et al. 2001; Holland et al. 2007; Liu et al. 2007; Pan et al. 1997).

Consistently, inhibition of lipolysis or stopping of infusions was associated with

reduced MCL concentrations of these metabolites (Yu et al. 2002; Bajaj et al. 2005).

Yet, how do these derivates of lipid metabolism link to insulin signalling? Impor-

tantly, LPA, PA, DAG and ceramide can activate the mTOR/p70S6K, JNK and IKK

pathways with subsequent suppression of insulin action through serine phosphory-

lation of IRS1 (Sathyanarayana et al. 2002; Jean-Baptiste et al. 2005; Sampson and

Cooper 2006; Wang et al. 2006) (Fig. 5). Ceramide also directly interferes with

PKB/AKT (Stratford et al. 2001). Accordingly, pharmacologic or genetic suppres-

sion of these pathways or inhibition of ceramide production rescued from insulin

resistance through nutrient/lipid overload or obesity in humans and various animal

models (Hundal et al. 2002; Um et al. 2004; Arkan et al. 2005; Cai et al. 2005;

Nguyen et al. 2005; Tzatsos and Kandror 2006; Holland et al. 2007; Krebs et al.

2007). Another pre-eminent link to IRS-1 inactivation (i.e., serine phosphorylation)

is provided by activation of the protein kinase C family of serine-threonine kinases
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with mice deficient in PKC-y being protected against fat-induced insulin resistance
and insulin insensitive obese humans displaying MCL stimulation of PKC-b2,
d and y (Schmitz-Peiffer et al. 1997; Griffin et al. 1999; Itani et al. 2001; Aguirre

et al. 2002; Itani et al. 2002; Yu et al. 2002; Kim et al. 2004; Samuel et al. 2010)

(Figs. 4 and 5).

Reduced fatty acid oxidative capacity and impaired mitochondrial function of

skeletal muscle are thought to further contribute to IMCL accumulation of fatty

acid metabolites and thus aggravate loss of insulin action in obesity and T2DM

(Mootha et al. 2003; Patti et al. 2003; Morino et al. 2006; Houmard 2008). Another

line of evidence suggests deterioration of insulin signalling by enhanced mitochon-

drial release of incompletely oxidized products (i.e., acylcarnitines) (Koves et al.

2008) (Fig. 5).

Notably, expression of nitric oxide synthase is enhanced through IRS-1/PI3-K

signalling and thus restraint of this pathway in states of insulin resistance might

contribute to endothelial dysfunction/accelerated atherosclerosis in T2DM and
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Fig. 5 Insulin resistance in skeletal muscle and liver: the “lipotoxicity concept”. DAG, diacyl-

glycerol; [FFA], extracellular concentration of free fatty acids; IRS-1/2, insulin receptor substrate

subtype 1 or 2; LPA, lysophosphatidic acid; PA, phosphatidic acid
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obesity (Breen and Giacca 2010). Inactivation of IRS1/IRS2, however, does not

affect insulin receptor signalling through the adapter proteins Shc/Grb2 with

downstream stimulation of the mitogen-activated protein kinase (MAPK) pathway

and subsequent promotion of cellular proliferation and differentiation (Cusi et al.

2000; Krook et al. 2000) (Fig. 4). Thus, hyperinsulinaemia will induce proliferation

of vascular smooth muscle, collagen formation and production/release of proin-

flammatory cytokines, which is thought to significantly contribute to the pernicious

consequences of insulin resistance per se in terms of arterial hypertension and

cardiovascular disease (CVD) (Hsueh and Law 1999; Jiang et al. 1999).

3 b-Cell Failure: Link to Hyperglycaemia and T2DM

In most cases of obesity, pancreatic b-cells are capable of outweighing loss of

insulin sensitivity through increased insulin release (Kahn et al. 2006b). Deve-

lopment of hyperglycaemia and overt T2DM indicate breakdown of this compen-

sation in consequence of b-cell failure (Defronzo 2009). Susceptibility to b-cell
failure is thought to critically depend on genetic background (Kahn et al. 2006b;

Muoio and Newgard 2008). Obese BTBR/leptinob mice, for example, display

defective islet proliferation and severe diabetes, while C57BL6/leptinob mice are

protected against diabetes (Stoehr et al. 2000). In humans, maturity onset diabetes

of the young (MODY) results from mutations in b-cell key proteins (e.g., MODY1:

HNF4alpha; MODY2: glucokinase; MODY4: PDX1) (Winter et al. 1999). Typi-

cal, obesity-associated T2DM, however, appears to be based on an array of single

nucleotide polymorphisms (SNPs) resulting in increased vulnerability of pancre-

atic b-cells to overnutrition and chronic inflammation (Barroso 2005; Muoio and

Newgard 2008). Interestingly, one of these SNPs (E23K within KCNJ11) appears

to reside within the pore forming subunit of the ATP-sensitive potassium channel

(KATP, see also below), and was demonstrated to discretely modify the channels’

open probability in the heterozygous state (Schwanstecher et al. 2002; Schwanstecher

and Schwanstecher 2002; Florez et al. 2004; Li et al. 2005a; O’Rahilly 2009).

Within pancreatic b-cells, overnutrition plus increased plasma [FFA] might

induce CPT1 plus enzymes of FA b-oxidation leading to enhanced intramitochon-

drial [acetyl-CoA], allosteric activation of pyruvate carboxylase and enhanced

pyruvate cycling (Chen et al. 1994; Poitout and Robertson 2002; Prentki et al.

2002; Khaldi et al. 2004; Muoio and Newgard 2008) (Fig. 6). This in turn might

result in the defect of glucose-stimulated insulin release (GSIS) characteristic of

prediabetic and diabetic states: constitutive basal insulin hypersecretion with loss of

the first phase of glucose-induced insulin release, which is paralleled by lack of the

glucose-stimulated rapid increment in pyruvate flux (Poitout and Robertson 2002;

Prentki et al. 2002; Muoio and Newgard 2008).

Genetic inactivation of PERK/eIF2a resulted in b-cell dysfunction and diabetes

suggesting that ER stress might be of key importance for b-cell failure (Harding

et al. 2001; Muoio and Newgard 2008) (Fig. 6). This pathway couples the UPR
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to inhibition of protein translation. In obesity, compensatory enhancement of

insulin release might exceed ER capacity with downstream activation of the

UPR/PERK/eIF2a pathways. Chronic conditions of insulin resistance plus over-

nutrition might then result in successive desensitization of these pathways and

finally end up in cumulative cellular damage and T2DM-typical apoptotic loss of

b-cell mass. Consistently, heterozygous eIF2a mutant HFD-fed mice displayed

distension of b-cell ER, b-cell failure and diabetes (Scheuner et al. 2005).

Moreover, deposits of islet amyloid polypeptide (IAPP) might contribute to

b-cell failure (Fig. 6). IAPP is secreted from pancreatic b- and delta-cells and

toxic fibrils were demonstrated in islets from humans with T2DM (Cooper et al.

1987; Westermark et al. 1987). Consistent with this concept, mice overexpressing

human IAPP developed increased rates of b-cell apoptosis, defective GSIS, glucose
intolerance and diabetes (Matveyenko and Butler 2006).

IRE1

XBP1

[FFA] [Glucose] Insulin
Amylin

Secretory
granules

Amyloid fibrills

Nucleus

Endoplasmic reticulum

Unfolded protein response

[Fatty acyl CoA]

β-cell failure
apoptotic cell death

workload

PyruvatePC

Protein misfolding ER-stress

Mitochondrion

Dysfunction

[Acetyl-CoA] [Oxalacetate]

+

triggering
signals 

Pyruvate
cycling

PERK/eIF2a

stress relief

CPT1

Fig. 6 b-cell failure in T2DM: the “glucolipotoxicity concept”. CPT1, carnitine palmitoyltrans-

ferase 1; eIF2a, eukaryotic translation initiation factor-2a; ER-stress, endoplasmic reticulum

stress; [FFA], extracellular concentration of free fatty acids; IRE1, inositol-requiring kinase 1;

PC, pyruvate carboxylase; PERK, protein kinase RNA(PKR)-like endoplasmic reticulum asso-
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4 Role of the CNS in Glucose Homeostasis

The CNS represents a key player in glucose metabolism, transposing neural,

hormonal and nutrient signals in response to the ingestion of food into direct

regulatory control of glucagon/insulin secretion, peripheral insulin sensitivity and

hepatic glucose output (Obici et al. 2001; Obici et al. 2002a, b; Obici et al. 2002c;

Lam et al. 2005a; Lam et al. 2005b; Lam et al. 2005c; Pocai et al. 2005a; Pocai et al.

2005b; Sandoval et al. 2008);. Impairment of this function in overnutrition and

obesity suggests an essential role in the development of T2DM (Coppari et al. 2005;

Morrison et al. 2005; Pocai et al. 2006; Ono et al. 2008).

In rodents, insulin was demonstrated to control hepatic glucose production

(HGP) through neurons within the medio-basal hypothalamus (Obici et al. 2002b;

Pocai et al. 2005) (Fig. 7). Consistently, HGP was reduced by insulin infusions into

this region, while selective deletion of the insulin receptor within neurons expres-

sing Agouti-related peptide (AGRP) yielded liver insulin resistance (Obici et al.

2002a, b; Pocai et al. 2005; Konner et al. 2007). Effects on HGP were blunted by

PI3K inhibition and glibenclamide, suggesting downstream signalling through

PI3K to finally result in activation of the ATP-sensitive potassium channel

(KATP; see also below) (Obici et al. 2002a, b; Pocai et al. 2005).

Fig. 7 Hypothalamic nutrient-sensing and glucose homeostasis. ACC, acetyl-CoA carboxylase;

CPT1, carnitine palmitoyltransferase 1; DMX, motor nucleus of the vagus in the brainstem; [FFA],

extracellular concentration of free fatty acids; HGP, hepatic glucose production; IR, insulin receptor;

KATP, ATP-sensitive potassium channel; LR, leptin receptor; TCA, tricarboxylic acid cycle
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Leptin resembles insulin in inducing satiety as well as controlling HGP through

hypothalamic nuclei (Liu et al. 1998; Schwartz et al. 2000; Gutierrez-Juarez et al.

2004) (Fig. 7). Receptor reactivation within the nucleus arcuatus (ARC) of leptin

receptor deficient mice suggests the effect on HGP to be independent of the

peptide’s effect on food intake and body weight (Coppari et al. 2005). Downstream

signalling seems to include JAK2/STAT3, PI3K, AMPK and mTOR (Dennis et al.

2001; Bates et al. 2003; Andersson et al. 2004; Morton et al. 2005; Buettner et al.

2006; Cota et al. 2006; Plum et al. 2006). Similar to pancreatic b-cells (see also

above), ER stress might be involved in overnutrition/obesity-induced central leptin

resistance through interference with STAT3 (Zhang et al. 2008; Ozcan et al. 2009).

Accordingly, chemical chaperones were shown to rescue leptin sensitivity in

models with resistance (Zhang et al. 2008; Ozcan et al. 2009).

Distinct from its direct peripheral effects, GLP1 was shown to affect central

glucose control (Perrin et al. 2004; Sandoval et al. 2008). Instillation into ARC and

portal infusions both reduced HGP, with parasympathetic afferent signalling pre-

sumably explaining the peripheral effect (Dardevet et al. 2005; Ionut et al. 2005;

Sandoval et al. 2008). Akin to direct action of GLP1 on islet b-cells, central
administration also enhanced pancreatic glucose-induced insulin release (Knauf

et al. 2005; Sandoval et al. 2008, 2009).

CNS [glucose] was demonstrated to affect peripheral glucose homeostasis (Lam

et al. 2005a; Sandoval et al. 2009). In line, HGP was suppressed by hypothalamic

glucose instillation (Lam et al. 2005a; Sandoval et al. 2009). Attenuation of this

effect through local inhibition of LDH (lactate dehydrogenase) and stimulation of

pyruvate dehydrogenase suggests – as in pancreatic b-cells – mitochondrial oxida-

tion to exert an essential role in neuronal glucose signalling (Fig. 7). Further, alike

the hepatic GLP-1 effect, direct intestinal application of glucose induces – besides

inhibition of food intake – improved glucose tolerance through stimulation of a

vagal afferent response (Woltman and Reidelberger 1995; Zhou et al. 2008).

Similarly, hypothalamic [FFA] has been postulated to be involved in control of

HGP (Obici et al. 2002a, 2003; Lam et al. 2005b; Pocai et al. 2006) (Fig. 7).

Hypothalamic [FFA] sensing was suggested to critically depend on an increase of

cytosolic [malonyl CoA] which in turn induces enhanced levels of FA intermedi-

ates (Obici et al. 2003). These are thought to result in activation of KATP channels

with consecutive cellular hyperpolarization triggering downstream neuronal cir-

cuits (see also below) (Obici et al. 2003; Lam et al. 2005b). Consistently, elevated

cerebral [malonyl CoA] incited satiety, anorexia and weight loss and hypothalamic

application of FA-CoA/block of CPT1 decreased HGP through activation of vagal

efferent nerves to the liver (Loftus et al. 2000; Obici et al. 2002b; Shimokawa et al.

2002; Hu et al. 2005; Lam et al. 2005b; He et al. 2006; Pocai et al. 2006; Wolfgang

and Lane 2006; Proulx et al. 2008) (Fig. 7).

Defective central AMPK stimulation was associated with the inadequate counter

regulatory response of diabetic individuals to repeated episodes of hypoglycaemia

(Alquier et al. 2007). Concurrently, hypothalamic AMPK activity increased

under conditions of calorie restriction and decreased under CNS administration of

glucose or leptin (Andersson et al. 2004; Minokoshi et al. 2004). Also, enhanced
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hypothalamic AMPK activity was paralleled by increased HGP and muscle glyco-

gen synthesis (Perrin et al. 2004). Besides AMPK, the mTOR pathway was related

to central nutrient sensing, with loss of leptin sensitivity under conditions of chronic

overfeeding coupled to reduced mTOR signalling in key neurons (see also above)

(Cota et al. 2006; Ono et al. 2008) (Fig. 7).

Analogous to their role in pancreatic b-cells, KATP channels were supposed to be

of key importance in central nutrient sensing/homeostatic control (Obici et al.

2002b; Lam et al. 2005a; Pocai et al. 2005; Sandoval et al. 2008) (Fig. 7). Accord-

ing to this concept, central suppression of HGP is mediated by activation of these

channels through increased levels of cytosolic FA intermediates with consecutive

triggering of vagal output to the liver (Obici et al. 2002b; Lam et al. 2005a; Pocai

et al. 2005; Sandoval et al. 2008). Consistently, the effects of locally applied

insulin, glucose, oleic acid and GLP1 on HGP were eliminated by the channel

blocker glibenclamide and reproduced by the opener diazoxide. Also in rodents,

glucose intolerance was associated with reduced hypothalamic expression or selec-

tive inactivation of KATP (Gyte et al. 2007; Parton et al. 2007).

Dopamine agonists (e.g., bromocriptinand rotigotin) are well known to decrease

food intake, reduce body weight and ameliorate insulin resistance, while dopamine

antagonists, particularly with selectivity for receptor subtype D4 (e.g., clozapine and

olanzapine), are associated with the opposite effects (Cincotta et al. 1997; Meguid

et al. 2000; Ader et al. 2005; Lieberman et al. 2005; Houseknecht et al. 2007; Chintoh

et al. 2008).Within the serotoninergic system, selective knockout of receptor subtype

5HT2C produced obesity, insulin resistance and glucose intolerance with reversal

through specific reactivation in POMC neurons (Mirshamsi et al. 2004; Xu et al.

2008b). In addition, administration of a selective 5HT2C agonist corrected insulin

sensitivity and glucose tolerance in HFD-fed rodents (Zhou et al. 2007).

Dysregulation of the endocannabinoid (EC) system has been proposed to play a

pre-eminent role in the pathophysiology of obesity, insulin resistance and T2DMwith

strong evidence in support of this concept arising from clinical studies on therapy

with the CB1 receptor inverse agonist rimonabant (see also below) (Di Marzo 2008).

5 Nutrient-Sensing Pathways in Calorie Restriction

Dietary restriction in adult rhesus monkeys (30%, 20-year follow-up) prevented

insulin resistance, glucose intolerance and diabetes paralleled by a 50% decrement

in neoplasia and CVD (Colman et al. 2009). Inflammation markers, immune

senescence, sarcopenia and brain atrophy were markedly attenuated (Colman

et al. 2009). In humans, significant amelioration was demonstrated in terms of

obesity, insulin resistance, glucose intolerance, inflammation and cardiac function

(Fontana and Klein 2007). Insulin, triiodothyronine, testosterone and cardiovascu-

lar risk factors (LDL cholesterol, C-reactive protein, blood pressure, intima-media

thickness of the carotid arteries) were lowered while adiponectin was increased

(Fontana et al. 2004; Fontana and Klein 2007). Based on studies in other species,
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these changes were partly attributed to reduced growth hormone (GH)/IGF-1

signalling (Fontana et al. 2010). Consistently, GH-deficient individuals revealed

reduced incidence of diabetes, cancer and CVD, albeit obesity and hyperlipidaemia

were aggravated (Shevah and Laron 2007). Also, specific single nucleotide poly-

morphisms (SNPs) within the IGF-1 receptor or downstream factor FOXO were

shown to trait with human longevity (Kuningas et al. 2007).

6 Current Therapy

6.1 Published Algorithms

Based on the complex pathophysiology of T2DM it was recently concluded, that

therapy should (1) target established defects instead of plasma [HbA1c] and (2)

start as early as possible to prevent progressive b-cell failure (Defronzo 2009).

Currently, these postulates are best met by the treatment recommendations of the

AACE and ACE (American Association of Clinical Endocrinologists and American

College of Endocrinology) (Fig. 8), which differ from corresponding recommenda-

tions of the ADA/EASD (American Diabetes Association and European Associa-

tion for the Study of Diabetes) with respect to (Nathan et al. 2009; Rodbard et al.

2009; Rodbard and Jellinger 2010) (1) placing increased emphasis on incretin-

based therapies (i.e., GLP-1 agonists and DPP4-inhibitors); (2) lower priorities on

thiazolidinediones due to frequent adverse events of weight gain/fluid retention and

increased risk of congestive heart failure and bone fractures; (3) much lower

priority on the use of sulfonylureas due to (a) significant risk of hypoglycaemia

and weight gain; (b) effectiveness for only a short period of time because of lacking

b-cell protection; (4) adjustment of HbA1c goal for patients with hypoglycaemia/

hypoglycaemia unawareness (see also above) or long duration diabetes and/or

established coronary heart disease; (5) stratification by HbA1c at the time point

of presentation for therapy:

(a) In case of an initial HbA1c < 7.5%, lifestyle modification alone might be

sufficient to achieve the goal of 6.5%. If this fails, then monotherapy is

recommended with metformin representing the preferred agent.

(b) In case of an initial HbA1c between 7.6 and 9.0%, pharmacotherapy should be

started with a dual approach, because monotherapy would hardly be sufficient

to attain the goal of 6.5% and appear inadequate to address the underlying

pathophysiology (i.e., insulin resistance plus advanced b-cell failure plus

inflammation plus lipotoxicity). In addition to metformin, GLP-1 agonists/

DPP4-antagonists are recommended as first choice with optional substitution

through TZDs in case of metabolic syndrome and/or NAFLD.

(c) If the initial HbA1c is above 9.0%, therapy should start with either a dual or

triple approach. Triple therapy should include TZDs in addition to metformin

plus GLP-1 agonist/DPP4 antagonist. In case of failure to reach the target of
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6.5% on a previous regime or symptomatic hyperglycaemia, the algorithm

recommends moving directly to insulin therapy.

In all regimes, patients should be closely monitored at 2–3 months intervals with

appropriate adjustment (i.e., either increasing dosage or moving to the next level) if

the target HbA1c is not met.

6.2 Metformin

Current guidelines for management of type 2 DM unison recommend lifestyle

change followed by rapid or even concomitant introduction of metformin as

the drug of first choice (e.g., Nathan et al. 2009; Rodbard et al. 2009). Metformin

inhibits complex I of the respiratory chain, which is thought to result in a disruption

of liver cell energy metabolism with consecutive fall in cytosolic [ATP]/[ADP]

Lifestyle modification

Dual therapy drug naive/
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under treatment/
symptomatic

Triple therapy

Monotherapy

Dual therapy

Triple therapy

usually Metformin;
TZD, if metabolic syndrome and / or NAFLD;

GLP-1 agonist  if      PPG↑↑
DPP4-inhibitor, if   PPG or  FPG;↑  ↑ 

GLP1-agonist /DPP4-inhibitor, + TZD
in case of metformin contraindications

usually Metformin + GLP-1 agonist or DPP4;

Metformin + TZD in case of metabolic
syndrome and /or NAFLD;

usually Metformin
+ GLP1/agonist or DPP4/inhibitor
+ TZD 

Insulin

A1c 6.5 - 7.5 % A1c 7.6 - 9.0 % A1c > 9.0 % 

A1c goal > 6,5 % in case of
hypoglycemia / severe CVD

A1c goal
≤ 6,5 %

If A1c goal not
achieved safely
within 2-3 months

Monotherapy

Fig. 8 T2DM treatment

algorithm, simplified

according to the AACE/ACE

consensus statement

(Rodbard et al. 2009). A1c,

HbA1c; CVD, cardiovascular

disease; FPG, fasting plasma

glucose concentration;

NAFLD, non-alcoholic fatty

liver disease; PPG,

postprandial plasma glucose

concentration; T2DM, type

2 diabetes mellitus
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and subsequent inhibition of [ATP] dependent steps in gluconeogenesis (El-Mir

et al. 2000; Owen et al. 2000). Based on recent evidence and in contrast with a

widely accepted concept, this action does not seem to involve LKB1-AMPK/SIK1/

CRTC2 signalling (Foretz et al. 2010). The LKB1/AMPK pathway might, however,

be involved in other effects of the drug.

Metformin’s clinical efficacy is mainly based on enhancing liver glucose uptake,

implicating decreased HGP through suppression of gluconeogensis and glycogen-

olysis (Goodarzi and Bryer-Ash 2005). Moreover, it may discretely augment

glucose disposal within the gastrointestinal tract, increase fatty acid oxidation,

enhance insulin sensitivity in skeletal muscle and adipose tissue and elevate the

postprandial GLP-1 response (Mannucci et al. 2001; Lenhard et al. 2004; Bailey

2005). Metformin might also moderately reduce inflammatory markers (e.g., CRP),

but did not lower the number of adipose tissue macrophages (Chu et al. 2002;

Di Gregorio et al. 2005; Bodles et al. 2006). In human leukocytes, it was shown to

decrease ROS levels and in a rat model of T2DM to ameliorate mitochondrial

oxidative stress (Bonnefont-Rousselot et al. 2003; Rosen and Wiernsperger 2006).

Within the UKPDS substudy (UKPDS 1998) of overweight patients, metformin

was the only drug (i.e., in comparison with sulfonylureas and insulin) displaying

positive effects on CVD and reduced all cause mortality. Metformin monotherapy

decreased fasting plasma glucose within the first year by ~65 mg/dl and HbA1c by

1.5–2%, but only 25% of patients achieved the goal of HbA1c <7.0% (DeFronzo

and Goodman 1995; DeFronzo 1999). Secondary to initiation, however, glycaemic

control progressively deteriorated due to progressive decline in insulin release

(UKPDS 1998) indicating that metformin does not protect b-cell function.

6.3 Thiazolidinediones

The thiazolidinediones (TZDs, pioglitazone and rosiglitazone), are thought to exert

their therapeutic effects through PPARg agonism (Spiegelman 1998). Downstream

to activation, PPAR-g dimerizes with the retinoid X receptor and induces complex

transcriptional control through interaction with PPAR-response elements (Kliewer

et al. 1997; Mootha et al. 2003). PPAR-g is predominantly expressed in adipocytes,

thus regulating adipogenesis and glucose/lipid metabolism (Olefsky 2000; Willson

et al. 2000; McGuire and Inzucchi 2008). However, PPAR-g also resides within

hepatocytes, macrophages, skeletal muscle, cardiac muscle and vascular endothe-

lium (Olefsky 2000; Willson et al. 2000; McGuire and Inzucchi 2008).

TZDs induce adipocyte differentiation and thus increase body weight (Okuno

et al. 1998). Mean adipocyte size, however, is reduced and fat redistributed from

visceral to subcutaneous depots (Adams et al. 1997; Okuno et al. 1998). Plasma

levels of proinflammatory cytokines (e.g., TNF-alpha, IL-6) are decreased and

those of adiponectin elevated (Adams et al. 1997; Shimizu et al. 2006). Importantly,

[CD36] is upregulated within skeletal muscle, thus presumably increasing periph-

eral FFA uptake and contributing to decreased plasma [FFA], with potentially
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positive implications for b-cell function, liver metabolism, endothelial function,

myocardial viability and general state of chronic inflammation (Oliver and Opie

1994; Martin et al. 1997; Spiegelman 1998; McGarry and Dobbins 1999; Tripathy

et al. 2003). Consistently, recruitment of M1-type macrophages within adipose

tissue was found to be reduced (Patsouris et al. 2009).

Similar to metformin and sulfonylureas, TZD monotherapy reduces HbA1c by

1–2% (Inzucchi 2002). This was demonstrated to be mainly due to significant

amelioration of insulin sensitivity with the effect on the liver being less pronounced

than that on skeletal muscle (Petersen et al. 2000). Importantly however, and in

contrast to metformin, the improvement of glycaemic control was durable, providing

strong evidence in support of a b-cell protective action (Diani et al. 2004; Gerstein

et al. 2006; Kahn et al. 2006a). Beneficial outcomes in terms of CVD were yet

demonstrated for pioglitazone only, which might be due to an additional PPAR-

alpha agonistic action not observed for rosiglitazone (Smith 2001; Dormandy et al.

2005).

Although generally well tolerated, there are some serious concerns: (1) Risk of

heart failure appears to be increased, presumably due to weight gain and fluid

retention induced by PPARg agonism (see also above) (McGuire and Inzucchi

2008; Barnett 2009). (2) Incidence of bone fractures seems elevated (Vestergaard

2009). (3) Increased risk of cardiac ischemia was reported for rosiglitazone (but not

for pioglitazone) (McGuire and Inzucchi 2008; Barnett 2009).

6.4 GLP-1 Agonists and DPP-4 Inhibitors

Intestinal augmentation of insulin secretion (i.e., the incretin effect) is generally

attributed to GLP-1 and GIP. This effect appears to be diminished in T2DM, with

reduced plasma [GLP-1] and normal/elevated [GIP] (Nauck et al. 1986; Nauck

et al. 1993). Cellular responsiveness to GLP-1, however, is conserved, while that to

GIP tends to be decreased (Nauck et al. 1993).

Both GLP-1 and GIP are degraded by the enzyme DPP-4, a cell-surface exopep-

tidase that preferentially cleaves peptides with a proline or alanine residue in the

second aminoterminal position (Deacon et al. 1995a). DPP-4 is not specific for

GLP-1 and GIP but known to cleave numerous additional peptides (e.g., Substance

P, Neuropeptide Y, Peptide YY, interferons, Macrophage-derived chemokines) and

play a role in the immune system through interaction with various molecules,

including cytokines and chemokines (Drucker and Nauck 2006; Stulc and Sedo

2010).

DPP-4 is ubiquitously expressed with particularly high concentrations in intestinal

mucosa, suggesting that the majority of GLP-1 and GIP is inactivated prior to entry

into the systemic circulation (Hansen et al. 1999). Plasma half-lives for intravenously

applied exogenous GLP-1 and GIP were 1–2 min and 5–7 min, respectively (Hansen

et al. 1999; Mentlein 1999).
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Effects of GLP-1 and GIP are mediated through interaction with their specific

plasma membrane receptors, which both belong to the seven-transmembrane

domain receptor family of G-protein coupled receptors (GPCRs) (Baggio and

Drucker 2007). Downstream signalling involves activation of Gs, adenylate cyclase

and PKA and in case of pancreatic b-cells subsequent increase of cytosolic [Ca2+]
and insulin release (Mentlein 1999; Baggio and Drucker 2007). GLP-1 and GIP

receptors are expressed in a multitude of tissues, including hypothalamic neurons

(see also above) (Fehmann et al. 1995; Baggio and Drucker 2007).

In patients with T2DM, GLP-1 was demonstrated to enhance glucose-dependent

insulin secretion, normalize glucagon release, slow gastric emptying, diminish food

intake and induce weight loss, thus suggesting significant therapeutic potential

(Deacon et al. 1995b; Flint et al. 1998; Zander et al. 2002; Nauck and Meier

2005). Use of GLP-1, however, is hampered by its short half-life within circulation,

leading to the development of two incretin based approaches (Mentlein et al. 1993;

Deacon et al. 1995b): (1) DPP-4 resistant GLP-1 receptor agonists (e.g., exenatide

and liraglutide) with half-lives in the range of hours. (2) DPP-4 inhibitors (e.g.,

sitagliptin, vildagliptin and saxagliptin) that act through augmentation of endoge-

nous [GLP-1] and [GIP] by reducing their rate of degradation.

In clinical trials, GLP-1 agonists improved HbA1c similar to insulin regimes

(�0.97% vs. placebo) with weight loss of 1.4 kg and 4.8 kg versus placebo or

insulin, respectively (Davidson 2009). Slightly weaker but comparable glycaemic

control (HbA1c reduction 0.74 %) was demonstrated for DPP-4 inhibitors which,

however, in contrast to the GLP-1 agonist class proved to be weight neutral

(Davidson 2009). In addition, clinical evidence suggests either GLP-1 agonists as

well as DPP-4 inhibitors to exert significant b-cell protective effects (Mari et al.

2006, 2007, 2008; Xu et al. 2008a; Bunck et al. 2009; Davidson 2009). Adverse

events in both classes were generally mild, including nausea, vomiting, mild

hypoglycaemia and nasopharyngitis (Davidson 2009).

7 Conclusions

Complexity of T2DM pathophysiology may force novel therapeutic strategies to

focus on root causes of the disease – overnutrition, energy imbalance and cellular

metabolic overload, implying calorie restriction as one promising strategy. Recent

evidence, however, suggests this approach to be particularly delicate. While the

CB-1 receptor antagonist rimonabant induced durable effects in terms of weight

loss, insulin sensitivity and glycaemic control, drug action appeared to be inher-

ently coupled to increased rates of depressed mood (Di Marzo 2008; Leite et al.

2009). Further progress in unravelling the neuronal circuits involved in feeding

control might help to solve this problem. The example, however, highlights intrin-

sic obstacles associated with targets involved in the enigmatic pathways of meta-

bolic control (Fig. 9).
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Abstract The thiazolidinedione PPAR-g activator drugs rosiglitazone and piogli-

tazone suppress insulin resistance in type 2 diabetic patients. They lock lipids into

adipose tissue triglyceride stores, thereby preventing lipid metabolites from causing

insulin resistance in liver and skeletal muscle and b-cell failure. They also reduce

the secretion of inflammatory cytokines such as TNFa and increase the plasma level

of adiponectin, which increases insulin sensitivity in liver and skeletal muscle.

However, they have only a modest effect on dyslipidaemia, and they increase fat

mass and plasma volume. Fibrate PPAR-a activator drugs decrease plasma trigly-

cerides and increase HDL-cholesterol levels. PPAR-d activators increase the capa-

city for fat oxidation in skeletal muscle.

Clinical experience with bezafibrate, which activates PPAR-d and -a, and studies on
the PPAR-a/d activator tetradecylthioacetic acid, the PPAR-d activatorGW501516, and

combinations of the PPAR-a activator fenofibrate with rosiglitazone or pioglitazone
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have encouraged attempts to develop single molecules that activate two or all three

PPARs.Most effort has focussed on dual PPAR-a/g activators. These reduce both
hyperglycaemia and dyslipidaemia, but their development has been terminated

by issues such as increased weight gain, oedema, plasma creatinine and myocar-

dial infarction or stroke. In addition, the FDA has stated that many PPAR ligands

submitted to it have caused increased numbers of tumours in carcinogenicity

studies.

Rather than aiming for full potent agonists, it may be best to identify subtype-

selective partial agonists or compounds that selectively activate PPAR signalling

pathways and use these in combination. Nutrients or modified lipids that are low-

affinity agonists may also have potential.

Keywords Fibrate � Insulin sensitiser � Peroxisome proliferator-activated receptor �
PPAR-a/g activator � Thiazolidinedione

1 Introduction

The discovery of the three peroxisome proliferator-activated receptors (PPARs) as

nuclear receptors functioning as lipid sensors hinged on the discovery of certain

thiazolidinediones as insulin sensitiser agents. The original discovery stemmed

from the finding by Takeda toxicologists that a potential triglyceride lowering

agent of the fibrate type in which the carboxylate moiety was replaced by the acidic

mimetic thiazolidinedione maintained normoglycaemic levels during long-term

toxicology studies, whereas ageing control animals developed hyperglycaemia.

Subsequent structure activity studies resulted in the compound ciglitazone. Further

structure activity work at Sankyo, Beecham, and Takeda resulted in three com-

pounds being progressed to market. These were troglitazone, which was subse-

quently withdrawn as a result of a liability for liver damage in some patients,

rosiglitazone and pioglitazone.

It was the availability of these compounds, particularly the more potent agent

rosiglitazone (then called BRL49653), that allowed the identification of the nuclear

receptor PPAR-g as the target for the thiazolidinedione insulin sensitiser drugs

(Lehmann et al. 1995).
The three PPAR receptors [PPAR-a, PPAR-b (also called PPAR-d, fatty acid-

activated receptor) and PPAR-g] form a subfamily of nuclear receptors. They

function as lipid sensors and coordinate the regulation of expression of a large

number of genes associated with metabolism. Each of the PPARs forms an

obligate heterodimer with another nuclear receptor called the retionid X receptor

(RXR), which binds to peroxisome proliferator response elements (PPREs)

that are located within the regulatory domains of target genes. Activation of the

PPAR by an appropriate ligand results in recruitment of co-activators and loss of

co-repressors that remodel the chromatin and activate transcription (Desvergne

and Wahli 1999).
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2 PPAR-g

Although PPAR-g is widely expressed in tissues, it is present in high concentrations
in adipose tissue (Fajas et al. 1997). It is essential for adipocyte differentiation

and promotes lipid accumulation in adipocytes (Tontonoz et al. 1994). Moreover,

adipose-specific knock-out of PPAR-g in mice results in adipocyte hypocellularity

and the development of insulin resistance in liver but not in muscle (He et al. 2003).
The anti-diabetic thiazolidinediones suppress endogenous insulin resistance in

adipose tissue but also have effects in liver and muscle despite low concentrations

of PPAR-g in these tissues. As noted above, the effect in liver is probably indirect

and it is noteworthy that insulin-resistant, muscle-specific PPAR-g null mice

respond to the insulin sensitising effects of PPPRg activators such as the thiazoli-

dinediones (Hevener et al. 2003; Norris et al. 2003).

Gene expression studies have shown that the thiazolidinedione insulin sensiti-

sers alter the expression of genes involved in lipid uptake, lipid metabolism and

insulin action in adipocytes resulting in increased lipid accumulation in adipose

tissue and decreased release of free fatty acids. This partitions lipid away from liver

and muscle and reverses lipotoxicity-induced insulin resistance in these tissues

(Mayerson et al. 2002; Spiegelman 1998).

A consequence of the adipocentric mechanism of action is a gain in fat mass.

This is seen in animal models as well as in clinical studies. However, the PPAR-g
activators function as adipose site remodelling agents with a redistribution of fat

from large insulin-resistant, lipolytic visceral fat adipocytes to small, newly differ-

entiated insulin-responsive subcutaneous adipocytes (Kawai et al. 1999). This is

consistent with human probands with inhibitory PPAR-g mutations having

decreased subcutaneous fat but increased visceral fat together with hyperglycaemia

and insulin resistance (Hegele et al. 2002).
In addition to their effects on lipid metabolism, thiazolidinediones have a major

effect on the secretion of adipokines. Thus, they reduce the secretion of inflamma-

tory cytokines and chemokines that promote insulin resistance, such as TNFa.
These actions occur in both the adipocyte and associated macrophages. Other

adipokines are up-regulated, particularly adiponectin, which is known to potentiate

insulin sensitivity in liver and skeletal muscle (Berg et al. 2001; Yamauchi et al.

2001). The effects of the thiazolidinedione insulin sensitisers in improving insulin

sensitisation in liver and muscle are likely to be mediated in part through alterations

in adipokine gene expression through PPAR-g receptor activation.

Diabetes in animals and humans does not occur unless there is an islet cell

malfunction. Thus, in the presence of a fully operational pancreatic islet, obesity-

induced insulin resistance will result in impaired glucose tolerance but not frank

diabetes. There is growing evidence that lipotoxicity plays an important role in

pancreatic islet b-cell failure. By reversing the lipotoxicity, there is an inhibition of
apoptosis in the islet cell and an increase in b-cell mass (Han et al. 2008; Ishida

et al. 2004; Zeender et al. 2004). Indeed, analyses of diabetes prevention trials have
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demonstrated that pioglitazone and rosiglitazone are able to reverse b-cell decline
in pre-diabetic populations (Defronzo 2009).

In addition to macrophages, PPAR-g is expressed in endothelial cells, vascular

smooth muscle cells and macrophage-derived foam cells that form the cells of

atherosclerotic lesions. Consequently, it has been hoped that activating PPAR-g
might have important anti-atherosclerotic effects. Indeed, PPAR-g ligands have

been shown to decrease the size of atherosclerotic lesions in low-density lipoprotein

receptor null mice (Li et al. 2000) and in apolipoprotein E null mice (Chen et al.
2001). The mechanism of this effect appears to relate to the anti-inflammatory

properties of PPAR-g activators together with reduced levels of chemotaxis and

promotion of apoptosis. In humans, there has been a clear demonstration that

treatment of type 2 diabetes mellitus (T2DM) patients with PPAR-g activators

reduces levels of inflammatory biomarkers of cardiovascular disease. However, a

reduction in cardiovascular disease has not been categorically shown. Indeed, there

have been claims that rosiglitazone increases macrovascular disease, based on a

meta-analysis (Nissen and Wolski 2007) study. This analysis has been criticised on

the statistical grounds and that it included a high proportion of trials, which had a

very low number of cardiovascular incidents and excluded trials where there was no

incidence of macrovascular disease or death. The Food and Drug Administration

(FDA) analysis reported by Dr Mahoney at the American Diabetes Meeting in 2008

found no evidence of increased cardiovascular events in patients taking either

rosiglitazone or pioglitazone.

3 PPAR-a

The first identified PPAR receptor was PPAR-a, activation of which was associated
with increased liver weight in rodents but not in humans. PPAR-a is the molecular

target for the fibrate hypolipidaemic agents such as fenofibrate and gemfibrozil.

PPAR-a is highly expressed in liver and activation of the receptor results in

increased hepatic lipid uptake and oxidation. Thus, the phenotype of the PPAR-a
knock-out mouse in the fasted state is hypoglycaemia, hypoketonaemia, hypertri-

glyceridaemia and hepatic steatosis (Kersten et al. 1999).
Activators of PPAR-a are used to treat dyslipidaemia. They decrease plasma

triglyceride levels and increase high-density lipoprotein cholesterol (HDL-C) levels

(Plutzky 2000). The latter effect is probably mediated by augmentation of hepatic

production of major components of HDL-C, namely apolipoprotein AI and AII

(Vu-Dac et al. 1994, 1995).

It is also possible that, like PPAR-g activators, PPAR-a activators might have a

direct vascular protective effect through action at the PPAR-a receptor in endothe-

lial cells resulting in blockade of cytokine-induced cell adhesion. Moreover, by

increasing the expression of the HDL receptor CLA-1/SR-BI (Chinetti et al. 2000)

and the cholesterol transporter ABCA1 (Chinetti et al. 2001), they promote choles-

terol efflux from the macrophages. Through all of these mechanisms, PPAR-a
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activators have been shown to reduce the progression of atherosclerosis and

decrease the incidence of coronary events in several major clinical studies.

4 PPAR-d

Unlike PPAR-a and PPAR-g, PPAR-d is ubiquitously expressed but its pharmacology

is less understood than that of the other subtypes. PPAR-d knock-out mice show an

obese phenotype when fed on a high fat diet. Over-expression of PPAR-d or over-

activation by the selective ligand GW501516 resulted in induction of oxidative,

mitochondrial rich type 1 muscle fibres that allowed the mice to undertake greater

levels of running activity – the so-called marathon mouse (Wang et al. 2004). These

transgenic mice were also resistant to diet-induced obesity and insulin resistance.

GW501516 also attenuates weight gain and insulin resistance in mice fed on high fat

diets. This action appears to result from an increase in the expression of genes in

skeletal muscle that promote lipid catabolism and mitochondrial uncoupling resulting

in increased b-oxidation of fatty acids in skeletal muscle (Tanaka et al. 2003).

5 Logic for Dual and Triple PPAR Activators

in the Treatment of Diabetes and Insulin Resistance

T2DM patients generally are overweight or obese and may additionally be dysli-

pidaemic. The major cause of mortality in diabetic patients is atherosclerotic

macrovascular disease culminating in myocardial infarction. These events are

linked to the diabetic dyslipidaemia. Unfortunately, the currently available

PPAR-g insulin sensitisers provide only negligible or modest effects on lipid

parameters.

In addition to the weak effects on plasma lipids, the thiazolidinediones rosigli-

tazone and pioglitazone have been associated with adverse effects including plasma

volume expansion, haemodilution, oedema, increased adiposity and weight gain

and increased fat deposits in bone marrow (Yki-Jarvinen 2004). These undesirable

side effects and the potential to cause congestive heart failure in a subset of diabetic

patients with underlying cardiopathies and bone fractures have enhanced the search

for PPAR-g activators with an improved therapeutic window. One approach, based

on selective oestrogen receptor modulators, which have equal efficacy, but less

toxicity than full agonists at the oestrogen receptor (Miller 2002), has been to seek

selective PPAR-g activators, so-called SPPAR-g modulator or SPPARMs. An

alternative approach is to combine PPAR subtypes to enhance the metabolic effects

(see Table 1). Thus, combining PPAR-a and PPAR-g should lead to additional anti-
hyperglycaemic effects by increasing hepatic fatty acid oxidation, alleviation of the

dyslipidaemia and enhanced anti-atherosclerotic profile. By combining PPAR-g
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and PPAR-d, one might expect a further improvement in insulin sensitivity with

less or no weight gain and an improved ability to exercise and gain the beneficial

effects of exercise. Clearly, there is also the potential to combine activation of all

three PPAR receptors. Work to date has largely been to try to find dual or triple

activator activity in a single molecule. This is an enormous challenge in obtaining

acceptable therapeutic indices with regard to the potential receptor-mediated

adverse effects. However, since there are currently both PPAR-g activators (rosi-

glitazone and pioglitazone) and PPAR-a activators (fenofibrate) on the market, it is

logical to examine the clinical effects of this combination.

6 The Bezafibrate Experience

Bezafibrate has been available for many years. It has been shown to be a good

activator of PPAR-d and -a but is only a weak activator of PPAR-g (Krey et al.
1997). Elkeles et al. (1998) examined the effect of bezafibrate in diabetic patients

given conventional diabetes treatment (diet and/or oral hypoglycaemic agents –

presumably sulphonylureas and/or metformin but not glitazones, as the study was

undertaken pre-marketing of these agents). The bezafibrate treatment was asso-

ciated with significant reductions over 3 years in serum triglycerides, total choles-

terol and total to HDL-cholesterol ratio and an increase in HDL-cholesterol. There

was a trend to reduce fibrinogen. However, there was no effect on the progression of

ultrasonically measured arterial disease. In general, the incidence of coronary heart

disease in studies using bezafibrate has tended to be lower, but did not reach

statistical significance (Tenenbaum et al. 2005a). However, in patients with meta-

bolic syndrome and a history of recent myocardial infarction and/or stable angina,

bezafibrate reduced the incidence of myocardial infarction and cardiac mortality

(Tenenbaum et al. 2005b).

Table 1 Principal location of PPAR subtypes and metabolic effects

PPAR-a PPAR-g PPAR-d
Location Liver endothelial

cells

Adipocytes vascular cells Skeletal muscle

Main actions in target

tissues

" FA uptake " FA uptake " FA oxidation

" FA oxidation # FA release " Mitochondrial

genesis

" Apo AI, Apo AII # Pro-inflammatory

cytokines

" Insulin action

Consequential effects # Circulating TG # Insulin resistance # Body fat

" HDL-C " Body weight gain # Circulating TG

# Atherosclerosis " Vasoprotection " HDL-C

# Liver fat " Insulin action

FA fatty acid, TG triglyceride, HDL-C HDL-cholesterol
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Beneficial effects of bezafibrate on glucose and insulin have been demonstrated

by showing that there was a decreased incidence and delayed onset of T2DM in

patients with impaired fasting glucose concentrations (Tenenbaum et al. 2004) and
in obese patients (Tenenbaum et al. 2005c). However, studies on the treatment of

patients with T2DM are lacking.

7 Use of Combined Therapy with Fenofibrate and Glitazones

Since fenofibrate is a potent PPAR-a activator, it is logical that the combination of

this agent with the marketed glitazones should be examined in clinical studies.

These clinical studies followed amouse study (Carmona et al. 2005) in which C57Bl/6
ob/obmicewere given fenofibrate, rosiglitazone or the combination.Co-administration

of fenofibrate prevented weight gain and increased fat mass induced by rosiglitazone.

Although fenofibrate decreased blood glucose in ob/obmice, it had no effect on plasma

insulin, whereas, like rosiglitazone, both glucose and insulin concentrations were

reduced by the combined treatment.

The published clinical studies were investigational rather than establishing

therapeutic benefit. Thus, Boden et al. (2007) treated eight patients with rosiglita-

zone (8 mg/day) plus fenofibrate (160 mg/day) for 2 months and compared them

with five rosiglitazone patients from an earlier study. The combination produced the

benefits of the individual components on glycaemic and lipid parameters and

surprisingly showed prevention of the fluid retention associated with rosiglitazone.

A better controlled study examined the effect of fenofibrate or pioglitazone for

3 months followed by the addition of the other agent for 3 months in an open-label

study (Bajaj et al. 2007). Pioglitazone alone decreased fasting blood glucose and

HbA1C, increased adiponectin and insulin-stimulated glucose disposal and reduced

fasting plasma free fatty acids, triglycerides and hepatic fat content. Fenofibrate had

no effect on any glycaemic parameter and the only lipid change was a fall in plasma

triglycerides. Addition of pioglitazone to fenofibrate therapy resulted in all the

benefits of pioglitazone being shown, whereas addition of fenofibrate to pioglita-

zone therapy only gave a further lowering of plasma triglycerides.

In a third trial involving 40 T2DM patients with poor metabolic control, the

patients received rosiglitazone (4 mg/day) for 12 weeks on top of their existing

therapy. Later, 200 mg/day fenofibrate was added for a further 12 weeks. The

addition of fenofibrate did not significantly affect the HbA1C level, but the change

in LDL-cholesterol level became highly significant. Overall, the concomitant

administration of rosiglitazone and fenofibrate did not produce significant improve-

ment in glycaemic control relative to rosiglitazone alone. However, the combina-

tion did improve the atherogenic dyslipidaemic profile. Fenofibrate addition did not

reverse the effect of rosiglitazone on body mass index (Seber et al. 2006).

Whilst these results are encouraging, large double-blind trials are needed to

elucidate any advantage of combining fenofibrate with rosiglitazone or pioglitazone.
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8 Dual PPAR-a/g Activator Drugs

A number of pharmaceutical companies have attempted to develop compounds with

dual PPAR-a and -g activity. It is a difficult task, however, to predict the appropriate
balance between these activities without undertaking whole animal, let alone

clinical, studies.

Some of the compounds are listed in Table 2. As can be seen, many of the

compounds have been discontinued, largely as a result of side effects rather than

lack of therapeutic efficacy.

The compounds were all selected for entry into clinical studies following studies

in rodents. These studies concentrated on showing efficacy at least similar to

rosiglitazone and pioglitazone, although there were few direct comparisons. Some

showed additional effects. Thus, Oakes et al. (2005) demonstrated that tesoglitazar

gave improved lipid tolerance, reduced hepatic triglyceride secretion and enhanced

plasma triglyceride clearance. The same compound was found to increase the

clearance of non-esterified fatty acids (NEFA) under both basal and elevated

NEFA availability (Hegarty et al. 2004). Their data produced the first direct

evidence that a dual activator increased the ability of white fat, liver and skeletal

muscle to use fatty acids whilst also improving insulin action in these tissues.

Guo et al. (2004) found that the experimental Merck compound TZD 18 [5-(3-[3-

(4-phenoxy-2-propylphenoxy)propoxy]phenyl)-2,4 thiazolidinedione] lowered cho-

lesterol and triglycerides in hamsters and dogs (which are better models for human

lipid metabolism) and induced the genes for fatty acid degradation and triglyceride

clearance. The authors also demonstrated complete normalisation of glycaemic con-

trol in diabetic db/db mice. Also, this compound appears generally well balanced

between potency at PPAR-a and -g receptors, but does have some activity at the

PPAR-d receptor, at least against the human receptor. The authors showed 100-fold

higher potency for transactivation of both human PPAR-a and -g versus human

PPAR-d but surprisingly did not test against the rodent receptor.

Table 2 Dual PPAR-a/g activators that have been in clinical development

Muraglitazar BMS Approved then withdrawn from market

Tesoglitazar AstraZeneca Discontinued following phase III trials

Ragaglitazar Dr Reddy Discontinued 2003

Chiglitazar Shenzhen Chipscreen, China Development suspended

MK-767/KRP-297 Merck/Kyorin Discontinued 2003

TZD 18 Merck Unknown

PAR-5359 Dong-A, Korea Pre-clinical

E3030 Eisai, Japan Phase II?

Cevoglitazar Novartis Discontinued 2008

Aleglitazar Hoffman-La-Roche Phase III 2010

TAK-559 Takeda Discontinued 2005

Naveglitazar Lilly Phase II?

AVE-0847 Aventis Phase II?

Sipoglitazar Takeda Discontinued 2006
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Chira et al. (2007) tested the ability of tesaglitazar to reduce atherosclerosis in a

mouse model on the basis that activation of vascular cell PPAR-a and -g would

provide anti-inflammatory and anti-proliferative effects. LDL-receptor null mice

fed on a “Western-type” diet for 12 weeks results in marked and predictable

atheosclerotic lesions. Co-administration of tesoglitazar with the diet reduced

atherosclerosis in female but not male mice without affecting cholesterol or triglyc-

eride levels. Extension of these studies showed that tesaglitazar could reduce the

effect of cholesterol on atherosclerosis and block the progression of pre-existing

atherosclerosis in APOE*3 Leiden CETP transgenic mice (van der Hoorn et al.

2009; Zadelaar et al. 2006). The authors found that tesaglitazar reduced plasma

cholesterol and triglycerides and the mass and activity of cholesterol ester transfer

protein (CETP) and increased HDL-cholesterol. Moreover, it reduced vessel wall

inflammation, modified lesions to a more stabilised phenotype and completely

blocked progression of the pre-existing lesions.

Muraglitazar has a similar potency at human PPAR-a and PPAR-g receptors in

transactivation assays (EC50 0.28 and 0.16 mM, respectively). It has a similar

potency to rosiglitazone at hPPAR-g (EC50 0.06 mM). Rosiglitazone has negligible

potency at PPAR-a (Mittra et al. 2007). Pre-clinical studies have largely focussed

on animal models of diabetes such as db/db mice in which potent anti-diabetic

effects, preservation of pancreatic islet insulin content, reduced hyperlipidaemia

and hepatic steatosis were shown (Harrity et al. 2006). In follow-up studies,

muraglitazar was found to prevent both the development of diabetes in db/db
mice, including loss of normal b-cell morphology and function, and the deteriora-

tion of established diabetes (Tozzo et al. 2007). Treatment of mice with PPAR-g
activators increases weight gain in diabetic animals. This is particularly the case in

db/db mice and arises from both oedema and adipogenesis. The question whether

the addition of PPAR-a activity might reduce weight gain was raised . In fact,

muraglitazar had a greater potential than rosiglitazone on weight gain and this

involved both oedema and adipogenesis (Mittra et al. 2007). The oedema was

coincident with increased expression of mRNA for Enacg and Na+, K+-ATPase in

kidneys, mediated by PPAR-g.
Ragaglitazar also showed similar potency to rosiglitazone in the human PPAR-g

transactivation assay (Chakrabarti et al. 2003). Despite this, it appears more active

than rosiglitazone and fenofibrate in head-to-head studies in Zucker fa/fa rats, high

fat-fed hyperlipidaemic rats and high fat-fed hamsters. Moreover, in a late-stage

intervention study in ZDF diabetic rats, ragaglitazar reduced HbA1C by 2.3%

compared with 1.1% by rosiglitazone (Brand et al. 2003).

A series of dual activators have been examined in other pre-clinical studies

giving similar results. These include chiglitazar (Li et al. 2006), PAR 5359 (Kim

et al. 2008), E3030 (Kasai et al. 2008), cevoglitazar (Laurent et al. 2009), and

aleglitazar (Benardeau et al. 2009). Takeda attempted to take predictive pre-clinical

work a step forward by undertaking rhesus monkey studies in a well-defined colony

that is representative of humans and found improvements in glycaemic and lipid

parameters without weight gain. Although suggestive that further human trials

were warranted, the work was published 2 years after Takeda announced that
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development was discontinued due to the lack of a sufficiently positive benefit/risk

relationship in clinical studies (Ding et al. 2007).

Clinical studies on muraglitazar showed that the 5 mg dose reduced HbA1C

levels significantly more than pioglitazone (30 mg) in metformin-treated patients

with T2DM in a phase III study (Kendall et al. 2006). Significant improvements

over pioglitazone therapy were also seen in plasma triglycerides, apolipoprotein B,

non-HDL-cholesterol and in increasing HDL-cholesterol. However, weight gain

was greater with muraglitazar as was the oedema incidence.

Analysis of the phase II and phase III trial data in yet another meta-analysis by

Nissen et al. (2005) indicated that death, myocardial infarction or stroke occurred in

35 out of 2,374 patients on muraglitazar as opposed to 9 out of 1,351 in the

combined placebo- and pioglitazone-treated patients. The incidence of chronic

heart failure was 13 out of 2,374 (0.55%) in muraglitazar-treated patients and 1

out of 1,351 in the controls. Both BMS and its marketing partner Merck abandoned

the drug.

Measured by number of publications, clinical studies on tesaglitazar have been

more extensive than on muraglitazar, although the total number of patients has been

of a similar order. Tesaglitazar (0.5 or 1.0 mg/day) gave consistent improvements in

glycaemic control and in lipid parameters, but studies reported consistent increases

in serum creatinine levels, peripheral oedema and weight gain (Bays et al. 2007;

Goke et al. 2007; Goldstein et al. 2006; Ratner et al. 2007; Schuster et al. 2008;

Wilding et al. 2007).

As a result of the elevated creatinine levels found in its first four of eight phase

III studies (Gallant 6-9) and the associated decrease in glomerula filtration rate,

AstraZeneca decided to terminate its development programme on tesaglitazar on

the basis that the overall benefit/risk profile was unlikely to offer patients significant

advantage over marketed therapies.

9 Outlook for Dual PPAR-a/g Activators

The data to date show that adding PPAR-a activation to the PPAR-g profile results

in improved lipid profile. However, it is clearly a very difficult task to obtain a

balance of two separate properties in a single molecule. The logical approach would

be to develop the safest and most appropriate PPAR-a activator and co-administer it

with the safest and most efficacious PPAR-g activator.

It is clear that the therapeutic window for PPAR-g activation is quite narrow. It

seems likely that muraglitazar and tesaglitazar failed largely because of their

potency in PPAR-g activation. The same probably applies to ragaglitazar. With

hindsight the liabilities were probably apparent in pre-clinical studies.

Improving insulin sensitivity has added a powerful armamentarium to the

treatment of diabetes and as yet the thiazolidinediones such as rosiglitazone and

pioglitazone are the only drugs that are clinically proven to suppress pancreatic

b-cell failure (Defronzo 2009). Now that the claim of adverse cardiovascular
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mortality has been discredited, the side effects of these drugs of weight gain and water

retention can be managed and the drugs should not be given to potential congestive

heart failure patients. However, there still remains the issue of potential fractures in

women through a reduction in bone mineral density (Glintborg et al. 2008).

The therapeutic challenge for the pharmaceutical industry is to develop novel

PPAR-g activators with the therapeutic efficacy in improving insulin sensitivity,

but with a lower risk of weight gain through adipogenesis and water retention.

It seems unlikely that this will be achieved through a conventional full agonist

and therefore researchers have focussed on partial agonists or so-called SPPARMs

(selective PPAR-g modulators) such as metaglidasen (Chandalia et al. 2009). This

agent is claimed to retain PPAR-g-related anti-diabetic properties in the absence

of weight gain and oedema and selectively modulates a subset of PPAR-g
target genes.

10 PPAR-Pan Activators and PPAR-d Dual Activators

Earlier in this chapter, it was noted that bezafibrate was a pan-PPAR activator,

although its PPAR-g activation relative to PPAR-a and -d was weak. This has

prompted companies to seek single compounds with all three activities (Evans et al.

2005). Typically, these companies have used high throughput screening systems

and adopted their usual approach of seeking compounds with high potency at each

receptor. Seeking a compound with high potency at one receptor is a challenge, but

seeking one compound with high potency and efficacy at three receptors is an

“Everest of a task” and potentially likely to produce toxic liabilities. It may be

better to seek low-affinity compounds. One such low-affinity ligand is tetrade-

cylthioacetic acid (Bocos et al. 1995). In clinical studies in T2DM patients, it

improved the lipid profile but had no effect on glucose metabolism possibly because

it is predominantly PPAR-a/-d with little PPAR-g activity (Lovas et al. 2009; Rost

et al. 2009).

The development of PPAR-a/-d and PPAR-g/-d dual activators has not taken off
in the same way as PPAR-a/-g. This is possibly because the structure–activity

around the PPAR-d receptor has not been fully addressed. However, the studies to

date on PPAR-d suggest that it could be a good target to go alongside PPAR-g in the
treatment of T2DM, which is almost exclusively an obese population (Barish et al.

2006; Lee et al. 2006). Thus, Oliver et al. (2001) found that GW501516 increased

the expression of the reverse cholesterol transporter ATP-binding cassette A1 and

induced apolipoprotein A1-specific cholesterol efflux. In insulin-resistant, obese,

middle-aged rhesus monkeys, GW501516 caused a dramatic and dose-dependent

rise in serum HDL-C while lowering the levels of small-dense low-density lipopro-

tein, fasting triglycerides and insulin. In a recent clinical study (Riserus et al.

2008), GW501516 (10 mg/kg o.d.) given to overweight, but otherwise healthy,

men for 2 weeks resulted in significant reductions in fasting plasma triglycerides

(�30%), apolipoprotein B (�26%), LDL-cholesterol (�23%), and insulin (�11%).
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There was a 20% reduction in liver fat and a 30% reduction in liver isoprostanes;

HDL-cholesterol was unchanged. Biopsy samples of skeletal muscle and a 6 h meal

tolerance test with stable fatty acid isotopes revealed more exhaled carbon dioxide

coming from the meal and increased expression of carnitine palmitoyl transferase

1b. Together, these data support PPAR-d activators increasing fat oxidation in

skeletal muscle.

It is suggested that the identification of a safe and effective PPAR-d activator

would be a good partner for PPAR-g activators in the treatment of T2DM and the

metabolic syndrome.

11 Cancer Liability of PPAR Activators

A large number of PPAR ligands have been submitted to the US FDA over the past

15 years. Many of these, but not all, have been subsequently shown to cause an

increased number of tumours in carcinogenicity studies. This involves multiple

tumour types in mice and rats of both sexes and multiple strains. The site of tumour

development is consistent with the distribution of the PPAR receptors, e.g. adipose,

vascular endothelium, bladder, skin, and renal tubules. Consequently, the FDA has

been requesting performance of 2-year carcinogenicity studies prior to the initiation

of clinical studies longer than 6 months (Aoki 2007).

12 Concluding Remarks

The development of dual and triple activators of PPAR receptors has proved to be

difficult and to date no compound that is able to favourably influence the benefit/

risk ratio relative to current treatments for T2DM including the thiazolidinediones,

rosiglitazone, and pioglitazone has been identified . The widespread involvement of

PPAR receptors as lipid sensors that regulate fatty acid and carbohydrate metabo-

lism, together with knowledge that the natural ligands are almost certainly low-

affinity activators, perhaps suggests that the standard pharmaceutical approach of

seeking high-affinity ligands might be doomed to failure. This is likely to apply

even more to a search for high-affinity dual or triple activators.

Despite these reservations, there appears to be potentially significant clinical

benefits in adding either PPAR-a or PPAR-d activation to the existing profile of the
PPAR-g-mediated insulin sensitisers.

Perhaps the best approach would be to identify subtype-selective partial agonists

or SPPARMs for each receptor and use these clinically in appropriate combina-

tions. Meanwhile, there may be scope for identifying nutrients or modified lipids

that are low-affinity compounds that could be either used as pharmaceuticals or

incorporated into foods such as spreads, ice cream, etc.
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Abstract Novel therapeutic options for type 2 diabetes based on the action of the

incretin hormone glucagon-like peptide-1 (GLP-1) were introduced in 2005. Incretin-

based therapies consist of two classes: (1) the injectable GLP-1 receptor agonists

solely acting on the GLP-1 receptor and (2) dipeptidyl-peptidase inhibitors (DPP-4

inhibitors) as oral medications raising endogenous GLP-1 and other hormone levels

by inhibiting the degrading enzyme DPP-4. In type 2 diabetes therapy, incretin-based

therapies are attractive and more commonly used due to their action and safety

profile. Stimulation of insulin secretion and inhibition of glucagon secretion by the

above-mentioned agents occur in a glucose-dependent manner. Therefore, incretin-

based therapies have no intrinsic risk for hypoglycemias. GLP-1 receptor agonists
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allow weight loss; DPP-4 inhibitors are weight neutral. This review gives an over-

view on the mechanism of action and the substances and clinical data available.

Keywords Antidiabetic therapy � DPP-4 inhibitors � GLP-1 � GLP-1 agonists �
Incretins � Type 2 diabetes

1 Type 2 Diabetes, Its Epidemiology, and the Need

for Further Treatment Options

Type 2 diabetes incidence and prevalence are increasing tremendously around the

world, especially in the countries with lifestyles that go along with less physical

activity and high caloric nutrition available at low costs. The prevalence rates are

expected to more than double within the next 20 years. Estimates expect 440

million type 2 diabetic people by 2030 (International Diabetes Federation 2009).

Additionally, type 2 diabetes changes its prevalence by affecting increasingly

younger parts of the population, with higher and growing incidence rates in children

and adolescents (Zeitler 2009).

Large parts of the type 2 diabetic population also suffer from ineffective treatment

and do not reach the therapeutic goals. This leaves effective and patient-orientated

treatment forms to achieve a near-normal HbA1c value as one criterion for an

acceptable glycemic control as a major task for diabetes therapy. Besides, further

important treatment goals such as body weight reduction or the prevention of hypo-

glycemia are seldomly accomplished. Insufficient metabolic control in type 2 diabetes

is associated with microvascular and macrovascular complications. The cardiovascu-

lar mortality risk is increased and 75% of type 2 diabetic patients die from cardiovas-

cular events. The microvascular and macrovascular complication risk can be lowered

by an improved metabolic control (Gaede et al. 2003; Holman et al. 2008).

The older insulinotropic treatment regimes with sulfonylureas or metiglinides

are associated with an elevated incidence of hypoglycemic events or with an

unwanted weight gain. Glitazones are also associated with weight gain, heart

failure, and fractures. Insulin therapy leads to weight gain and increases the risk

for hypoglycemic episodes (Nathan et al. 2006). These therapies are also not able to

alter or stop the disease progression of type 2 diabetes that is caused by the decline

of beta-cell function. This functional loss is characterized by an increasing defect in

the insulin response to glucose as well as a loss of beta-cell mass over time.

2 Incretin Hormones

The physiological and pharmacological actions of the incretin hormone glucagon-

like peptide-1 (GLP-1) were used to develop two novel drug classes for type

2 diabetes treatment: the GLP-1 receptor agonists and the dipeptidyl-peptidase IV

inhibitors (DPP-4 inhibitors) (Drucker and Nauck 2006).
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The gastrointestinal hormones GLP-1 and GIP (gastric inhibitory polypeptide or

glucose-dependent insulinotropic polypeptide) are secreted following a meal from

the endocrine L- and K-cells in the intestinal mucosa, respectively (Wellendorph

et al. 2009). GLP-1 and GIP contribute to approximately 60% of the insulin

secretion postprandially and are responsible for the incretin effect. This effect

describes the phenomenon that orally ingested glucose leads to a much larger

insulin response than an isoglycemic intravenous glucose load (Creutzfeldt 1979;

Nauck et al. 1986). In patients with type 2 diabetes, the incretin effect is diminished

(see Fig. 1 for the incretin effect in healthy subjects and type 2 diabetes). One

important reason for the diminished incretin effect in type 2 diabetes is that GIP

does not act as an insulinotropic hormone under chronic hyperglycemia for reasons

that are not completely understood yet. GLP-1, on the other hand, is still able to

stimulate insulin secretion under hyperglycemic conditions in type 2 diabetes

(Nauck et al. 1993a). It should be noted, however, that hyperglycemia acutely

reduces the postprandial levels of GIP and GLP-1, possibly through a deceleration

of gastric emptying. Therefore, the reduced incretin hormone concentrations in

some patients with type 2 diabetes may be a consequence rather than a cause of type

2 diabetes (Vollmer et al. 2009).

Exogenous GLP-1 application either by subcutaneous or intravenous injection

resulting in supraphysiological GLP-1 plasma concentrations restores the incretin

effect with an adequate insulin response under hyperglycemic conditions (Nauck

et al. 1993b).
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Fig. 1 The incretin effect in healthy subjects (left panel) and in type 2 diabetes (right panel).
Oral glucose (closed line) elicits a much greater insulin response than an intravenous glucose

infusion (dashed line) mimicking the glucose rise after oral glucose. The differences in the

insulin responses after oral and intravenous glucose are due to the physiological effects of the

incretin hormones GLP-1 and GIP and are described as incretin effect. Note that the incretin

effect is diminished in type 2 diabetes (adapted from Nauck et al. 1986)
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2.1 GLP-1 Actions

The glucagon gene encodes for a large peptide that contains the message not only

for glucagon, but also for other peptides that are formed posttranslationally such as

GLP-1. GLP-1 is cleaved posttranslationally from preproglucagon in the neuroen-

docrine L-cells of the intestinal mucosa and in the central nervous system, but not in

the pancreatic alpha cells of the islets. It binds to highly specific GLP-1 receptors

that belong to the G-protein-coupled receptors (Drucker and Nauck 2006). GLP-1

shows numerous physiological actions in various tissues and a broad therapeutic

potential (see Fig. 2 for details).

GLP-1 stimulates insulin secretion of the beta cells and additionally inhibits

glucagon secretion from the alpha cells. These two actions occur in a strictly

glucose-dependent manner and lead to a normalization of glycemia either in

Fig. 2 Multiple physiological effects of GLP-1 (adapted from Baggio and Drucker 2007; Drucker

and Nauck 2006)
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the fasting or the postprandial state. Under hypoglycemic conditions, the counter-

regulation by glucagon is not affected and insulin secretion is not stimulated. GLP-1 is

therefore not able to elicit hypoglycemia by itself (Drucker and Nauck 2006).

In the gastrointestinal tract, GLP-1 slows gastric emptying after a meal. This

effect also contributes to a normalization of postprandial hyperglycemia. GLP-1

additionally binds to its receptor on hypothalamic neurons and stimulates satiety by

direct action. These two effects explain that long-term treatment with GLP-1

receptor agonists lead to weight loss in the long run (Drucker and Nauck 2006).

Studies in different rodent species and studies in isolated human islets showed

beneficial long-term actions of GLP-1: insulin synthesis is stimulated and beta-cell

mass is increased (Brubaker and Drucker 2004; Drucker and Nauck 2006; Fehmann

and Habener 1992). So far, it is not known whether these findings translate into a

benefit in type 2 diabetes therapy with a positive effect on stopping or slowing

disease progression. Long-term study data from clinical studies in type 2 diabetes

with a sufficient observation time are still not available. Furthermore, there are

presently no good validated methods to quantify beta-cell mass in humans in a

clinical setting.

Recent studies additionally revealed that pharmacological application of GLP-1

or GLP-1 receptor agonists improved cardiovascular parameters (reduction of

systolic blood pressure, beneficial effects on myocardial ischemia in animal mod-

els, and positive effects on left ventricular function in heart failure). These

promising effects may also have important clinical implications for type 2 diabetes

therapy with GLP-1 receptor agonists (Courreges et al. 2008; Klonoff et al. 2008;

Sokos et al. 2006).

2.2 Dipeptidyl-Peptidase IV

The ubiquitous enzyme dipeptidyl-peptidase IV (DPP-4) is responsible for GLP-1

degradation resulting in a biological half-life of GLP-1 that amounts to 1–2 min

after intravenous injection of GLP-1 (Drucker and Nauck 2006). Subcutaneous

injections of GLP-1 also do not result in a sufficiently high and long-lasting

elevation of GLP-1 concentrations to use native GLP-1 as a practical therapeutic

agent in type 2 diabetes. An animal study in rodents demonstrated that DPP-4

expression in the intestine and the kidneys is also dependent on metabolic factors

and is increased with high-fat feeding and type 2 diabetes (Yang et al. 2007). In

order to utilize GLP-1 action for type 2 diabetes therapy, two options are presently

available (Drucker and Nauck 2006):

1. GLP-1 receptor agonists as injectable compounds

2. Dipeptidyl-peptidase IV (DPP-4) inhibitors as orally active substances

This chapter deals with the approved substances for type 2 diabetes therapy

within these classes (state 2010).
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3 GLP-1 Receptor Agonists

Exenatide (Byetta®, Amylin and Eli Lilly Pharmaceuticals) was the first GLP-1

receptor agonist for the treatment of type 2 diabetes. It is presently approved in

combination with metformin and/or a sulfonylurea in patients failing to reach the

therapeutic goals with this oral medication (Gallwitz 2006). Exenatide is the

synthetic form of exendin-4, a peptide discovered in the saliva of the gila monster

(heloderma suspectum) in 1992. Exenatide has a 53% amino acid sequence simi-

larity to human GLP-1 and is a strong GLP-1 receptor agonist (Eng et al. 1992). In

type 2 diabetes treatment, it is injected subcutaneously twice daily. A slow release

formulation for once-weekly administration is presently in the approval process

after completing important clinical phase III studies (Drucker et al. 2008; Gedulin

et al. 2005; Kim et al. 2007). The long-acting human GLP-1 analogue liraglutide

(Victoza®, Novo Nordisk Pharmaceuticals) for once-daily injection has been

approved and is also available in Europe and the USA (Agerso et al. 2002; Chang

et al. 2003; McGill 2009). Figure 3 shows the structural similarities and differences

between GLP-1, exenatide, and liraglutide. Further compounds for once-daily or

once-weekly application are being developed and in the clinical phase III study

Glu

amide

Albumin

GLP-1

Liraglutide, Victoza®

amide

Exendin-4, Exenatide, Byetta®

Pro SerGly Ala ProPro

C-16 fatty acid
(albumin binding)

Proteolytic cleavage
(DPP-4)

7

GLP-1 receptor agonists

Glu Gly Thr Thr SerAspVal Ser SerAlaHis TyrLeuGlu Gly Gln Ala Ala ArgPhe Ile TrpAla LeuVal Lys GlyGluLys

Glu Gly PheThr Thr SerAspVal Ser SerAlaHis Tyr LeuGlu Gly Gln Ala Ala Arg GlyPhe Ile TrpAla Leu Val Arg GlyGluLys7

Phe

Glu Gly PheThr Thr SerAspLeuSerLysGlyHis GlnMetGlu Glu Glu Ala Val Gly ProPhe Ile TrpGlu LeuLysAsnGlyLeuArg SerSer

Fig. 3 Native GLP-1, exenatide and liraglutide, and their amino acid sequences. Amino acid

sequence similarities are highlighted. Note the arrows in the N-terminal position of the peptides

between the amino acids 2 and 3: the top arrow (solid line) on the GLP-1 molecule shows the

cleavage site of DPP-4. Themiddle arrow (dashed line) on the liraglutide molecule symbolizes the

potential DPP-4 cleavage site of the peptide chain. DPP-4 action is inhibited in this area due to

albumin binding and heptamer formation of the liraglutide molecule protecting the potential

cleavage site. The arrow on the bottom of the exendin-4 molecule with the two crossed lines
symbolizes the lack of a DPP-4 cleavage site due to an amino acid exchange in the N-terminal

position 2 of the molecule compared to native GLP-1
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programs such as Taspoglutide, Roche Pharmaceuticals (Nauck et al. 2009b;

Retterstol 2009); Lixisenatide (AVE0010), Sanofi-Aventis Pharmaceuticals

(Werner 2008); Albiglutide, GlaxoSmithKline Pharmaceuticals (Rosenstock et al.

2009b) and more.

3.1 Exenatide

Exenatide has a half-life of approximately 3.5 h, and after subcutaneous injection,

sufficient plasma concentrations are reached over a time period of at least 4–6 h

(Barnett 2005; Gallwitz 2006; Kolterman et al. 2005). Exenatide reduced the

HbA1c by 0.8–1.1% in various clinical studies (Buse et al. 2004; DeFronzo et al.

2005; Kendall et al. 2005). The HbA1c reduction was sustained and remained

constant over a period of 3 years in one study (Klonoff et al. 2008). Comparative

clinical studies show that the efficacy of exenatide on glycemic parameters is

comparable to that of a newly implemented insulin therapy (Barnett et al. 2007;

Gallwitz 2006; Heine et al. 2005; Klonoff et al. 2008; Nauck et al. 2007a; Zinman

et al. 2007).

Besides the favorable effects on glycemic parameters, exenatide therapy also

induced weight loss in patients with type 2 diabetes. In clinical studies, a significant

loss in body weight by 1.5–3.0 kg was documented after 30 weeks. This effect

continued and led to a further weight loss of 5.3 kg after 3 years (see Fig. 4) (Barnett

2007; Klonoff et al. 2008). Comparing the weight effects of exenatide and insulin

therapies, a difference in weight development of 4–5 kg in 30 weeks between the
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Fig. 4 HbA1c reduction and body weight development over 3 years in patients with type

2 diabetes and an add-on therapy with exenatide (2 � 10 mg/d) to metformin and/or sulfonylurea

(adapted from Klonoff et al. 2008)
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insulin- and exenatide-treated groups was observed (Barnett et al. 2007; Heine et al.

2005; Nauck et al. 2007a).

Beta-cell function also improved with exenatide and the clinical surrogate

parameters insulin secretion rate, HOMA-B [homeostatic modeling assessment of

beta-cell function], and the proinsulin/insulin ratio changed in a favorable way.

Additionally, the first phase of insulin secretion, which is lost already in the early

stages of type 2 diabetes, is restored under treatment with exenatide when examined

with an intravenous glucose tolerance test (Barnett 2007; Gallwitz 2006). In a

1-year study with exenatide, however, the improvements of the above-mentioned

beta-cell function parameters were no longer present following a washout period of

12 weeks (Bunck et al. 2009).

Exenatide itself has no intrinsic risk for causing hypoglycemias. Severe hypo-

glycemic events were only observed in exenatide-treated patients who had a

combination therapy with a sulfonylurea. The hypoglycemic episodes were caused

by the sulfonylurea treatment, and it is generally suggested to reduce the sulfonyl-

urea dose when starting exenatide treatment as add-on therapy. In clinical studies

comparing the sulfonylurea plus exenatide combination versus insulin alone,

similar rates of hypoglycemic episodes were found. However, the incidence of

nocturnal hypoglycemic events was less in the exenatide-treated patients (Barnett

2007; Gallwitz 2006).

The most frequent adverse events associated with exenatide therapy were full-

ness and nausea. These adverse events were less pronounced when the exenatide

dose was titrated from a small dose to the full dose at the beginning of treatment.

Dose titration is therefore recommended with exenatide starting with a dose of 5 mg
twice daily and an increase to 10 mg twice daily after 4 weeks. Generally, nausea was
only mild to moderate and occurred in the first weeks of treatment ceasing with time.

Nausea was the most common reason to stop therapy with 2–6.4% dropouts in the

clinical studies with exenatide (Barnett 2007; Gallwitz 2006; Klonoff et al. 2008).

Since exenatide is a nonhuman peptide, in approximately 40% of exenatide-

treated patients, anti-exenatide antibodies can be detected. These antibodies do not

seem to be neutralizing antibodies and do not cross-react with human GLP-1. At

least over a time period of 3 years, these antibody titers did not have any obvious

effect on glycemic control (Drucker et al. 2008).

After the approval of exenatide, cases of acute pancreatitis were reported

(Ahmad and Swann 2008; Cure et al. 2008) and led to the publication of a warning

by the Food and Drugs Administration of the United States (FDA). In total, the

incidence of pancreatitis is very low and rather corresponds to the elevated risk of

pancreatitis in obese type 2 diabetic patients. Type 2 diabetic patients have an

elevated pancreatitis risk due to a higher prevalence of gallstones, hypertriglycer-

idemia, and other factors, which was confirmed in a recent meta-analysis (Dore

et al. 2009).

Exenatide is mainly eliminated by glomerular filtration followed by proteolytic

degradation (Yoo et al. 2006). Exenatide is not recommended in severe renal

impairment (creatinine clearance <30 ml/min). In a study with patients with end-

stage renal disease on dialysis, exenatide 5 mg has been poorly tolerated because of
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gastrointestinal side effects (Barnett 2007; Gallwitz 2006). The FDA published a

warning after having observed altered renal function associated with exenatide

treatment. A total of 62 patients with acute renal failure and 16 cases of renal

insufficiency were found in a time period of 3 years. Mostly, patients with preex-

isting kidney disease or with one or more risk factors for developing kidney

problems showed a deterioration of renal function with exenatide, which might

have been triggered by drug-induced nausea, vomiting, and consecutive dehydra-

tion (Food and Drug Administration 2009). According to the warning by the FDA,

exenatide should not be used in patients with severe renal impairment (creatinine

clearance <30 ml/min) or end-stage renal disease.

In a pediatric study, single doses of 2.5 and 5.0 mg exenatide were well tolerated
and normalized postprandial glucose and glucagon concentrations compared with

placebo. No hypoglycemic events were recorded during the study (Malloy et al.

2009).

3.2 Liraglutide

Liraglutide is the first human GLP-1 analogue. In contrast to native GLP-1 there are

two modifications in the amino acid sequence of native GLP-1 and an attachment of

a fatty acid side chain to the peptide. It is injected subcutaneously once daily

(Agerso et al. 2002).

In rodent models for type 2 diabetes, liraglutide increased beta-cell mass and

lowered body weight and food intake in a broad selection of animal models (Sturis

et al. 2003). In approval relevant clinical studies in approximately 4,200 type

2 diabetic patients receiving the drug, it is efficacious and safe across all stages of

the natural course of type 2 diabetes, in monotherapy, as well as in combination

with either one or more oral antidiabetic agents (see Fig. 5) (Garber et al. 2006;

Garber and Spann 2008; Nauck et al. 2009a, b; Marre et al. 2009; McGill 2009;

Zinman et al. 2009).

In a 2-year study with newly diagnosed type 2 diabetic patients, liraglutide in

monotherapy led to a sustained and stable HbA1c reduction of 0.9 or 1.1% in a dose

of 1.2 or 1.8 mg once daily, respectively (Garber et al. 2008, 2009).

In further studies, 1.2 or 1.8 mg liraglutide once daily effectively lowered

HbA1c in various combinations with oral antidiabetic drugs by approximately

1.0–1.5%. Liraglutide therapy also caused a significant weight loss comparable to

that previously observed in studies with exenatide (Deacon 2009; Vilsboll 2009).

The weight loss was accompanied by a more pronounced loss in visceral fat than

subcutaneous fat (Deacon 2009; Nauck and Marre 2009; Vilsboll 2009).

Furthermore, systolic blood pressure was lowered by 2–6 mmHg in the

liraglutide-treated patients. This effect was independent from the weight loss, as

the reduction of blood pressure was already observed early on in therapy, when

weight loss had not occurred yet (Garber et al. 2008, 2009; Nauck and Marre

2009; Zinman et al. 2009).
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Hypoglycemia incidence rates were comparable to placebo in all studies,

provided no sulfonylurea was used in the combination with liraglutide (Deacon

2009; Vilsboll 2009). Gastrointestinal symptoms were also common in the clinical

studies with liraglutide, but in a direct head-to-head study compared to exenatide

nausea and vomiting were less frequent and only reported for a shorter period at the

beginning of therapy (Buse et al. 2009). In clinical studies, antibodies against

liraglutide were detected in no more than 8.6% (Deacon 2009; Garber et al. 2008,

2009; Vilsboll 2009). In a study, directly comparing the clinical efficacy and safety

of exenatide and liraglutide, liraglutide proved advantageous with regard to lower-

ing the glycemic parameters HbA1c, fasting glucose, and improving HOMA-B

(Buse et al. 2009). Liraglutide improves the first phase of insulin secretion after

intravenous glucose as well as the insulin response to a maximal stimulation with

arginine (Vilsboll et al. 2008).

Mild-to-moderate renal impairment did not alter the pharmacokinetic profile of

liraglutide (Deacon 2009; Vilsboll 2009).

4 DPP-4 Inhibitors

DPP-4 inhibitors are small molecules and orally active. They are tolerated well.

After once- or twice-daily dosing they inhibit DPP-4 effectively and lead to a

postprandial elevation of endogenous GLP-1 concentrations to the 2- to 3-fold of
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the normal physiological levels after a meal (Ahren 2008a; Mest 2006). The

presently available compounds are Sitagliptin (Januvia®, Merck Pharmaceuticals),

Vildagliptin (Galvus®, Novartis Pharmaceuticals), and Saxagliptin (Onglyza®,

AstraZeneca and Bristol-Myers Squibb Pharmaceuticals) (see Fig. 6) (Gallwitz

2008). They are approved in combination with metformin, a sulfonylurea or a

glitazone or a combination of metformin and a sulfonylurea. Sitagliptin is the first

DPP-4 inhibitor with a wider indication that also includes insulin therapy as well as

monotherapy (general monotherapy indication USA only, monotherapy indication

in Europe for patients with metformin contraindications or intolerance) (Ahren

2008a). There are fixed dose combinations for both sitagliptin and vildagliptin with

metformin (sitagliptin plus metformin: Janumet®, Merck Pharmaceuticals, vilda-

glitpin plus metformin: Eucreas®, Novartis Pharmaceuticals). Further DPP-4 inhi-

bitors are in clinical studies (alogliptin, Takeda Pharmaceuticals (Pratley et al.

2009); linagliptin, Boehringer Ingelheim Pharmaceuticals (Heise et al. 2009) and

others) (Pratley 2008). Long-term studies investigating cardiovascular outcomes

and a possible positive influence on disease progression of type 2 diabetes are being

carried on with the DPP-4 inhibitors.

4.1 Sitagliptin

The first DPP-4 inhibitor that was approved was sitagliptin. In mono- as well as in

combination therapy, sitagliptin lowers HbA1c by 0.6–1.1% compared to placebo

in a standard dose of 100 mg once daily (Ahren 2008a; Barnett 2009; Karasik

et al. 2008; Pratley 2008). It also reduces fasting plasma glucose and postprandial

glucose significantly. Sitagliptin was weight neutral in all clinical studies

Vildagliptin

Sitagliptin

Saxagliptin

Fig. 6 Structural formulas of

the DPP-4 inhibitors

saxaglitpin, sitagliptin, and

vildagliptin
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(Ahren 2008a; Barnett 2009; Karasik et al. 2008; Pratley 2008). As add-on treatment

to an existing metformin therapy, sitagliptin lowered the HbA1c by 0.7%. In a

primary combination therapy with metformin, a constant and sustained reduction of

HbA1c and fasting plasma glucose was observed over a period of 2 years (Green and

Feinglos 2008). Hypoglycemia incidence observed under sitagliptin was com-

parable to that under placebo (Karasik et al. 2008). As a surrogate parameter of

beta-cell function, an improvement of the proinsulin/insulin ratio was observed in

clinical studies with sitagliptin (Ahren 2008a; Barnett 2009; Green and Feinglos

2008; Pratley 2008). The most common side effects of sitagliptin were unspecific,

like headache, arthritis, nasopharyngitis, respiratory or urinary tract infections, and

rarely skin reactions (Karasik et al. 2008; Williams-Herman et al. 2008).

The elimination of sitagliptin is mainly renal (75% in the urine as unchanged

drug), with a half-time of 12–14 h (Herman et al. 2006a, b, c). Sitagliptin was also

generally well tolerated and effective in patients with impaired renal function. In a

study with patients with impaired renal function, a dose of 25 mg/d was chosen for

patients with a creatinine clearance of <30 ml/min or end-stage renal disease and a

dose of 50 mg/dl was given to patients with a creatinine clearance between 30 and

50 ml/min (Chan et al. 2008; Scott et al. 2007).

4.2 Vildagliptin

Vildagliptin is the second available compound of the DPP-4 inhibitors. Its dosage is

50 mg twice daily. In clinical studies testing vildaglitpin in monotherapy or in

combination therapies with metformin, glimepiride, pioglitazone, or insulin, vilda-

gliptin decreased the HbA1c by approximately 0.5–1.0% (Ahren 2008b; Barnett

2009; Pratley 2008). As an add-on therapy to metformin, it decreased the HbA1c by

0.65–1.1% (Ahren 2008b). Vildagliptin has a good safety and tolerability profile,

and the most common adverse events are unspecific (flue-like symptoms, headache,

dizziness, and rarely liver enzyme elevations during the initiation of therapy). The

incidence of hypoglycemic episodes is also comparable to placebo. Vildagliptin,

like the other DPP-4 inhibitors, is also weight neutral. Acute and medium-term

parameters for insulin secretion were improved under vildagliptin treatment (Ahren

2008a, b; Barnett 2009). Similar improvements were observed for HOMA-B, the

proinsulin/insulin ratio, and the first phase of insulin secretion after intravenous

glucose (Ahren and Foley 2008). Vildagliptin has been tested in an elderly popula-

tion, where it was shown to be efficacious and safe (Pratley et al. 2007).

4.3 Saxagliptin

Saxagliptin was approved in 2009. It was shown to dose dependently reduce fasting

plasma glucose and HbA1c (0.7–0.9%, baseline 7.9%) (Rosenstock et al. 2008).
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In a study with drug-naı̈ve patients, saxagliptin lowered the glycemic parameters

HBA1c, fasting plasma glucose, and postprandial glucose significantly (Rosenstock

et al. 2009a). As add-on medication to a therapy with either metformin or a

glitazone, saxagliptin also led to significant metabolic improvements comparable

to other DPP-4 inhibitors (Chacra et al. 2009; Deacon and Holst 2009; DeFronzo

et al. 2009; Gallwitz 2008; Tahrani et al. 2009). Saxaglitpin also did not cause

hypoglycemias, was well tolerated, and was weight neutral just as the other

available DPP-4 inhibitors. A meta-analysis of the clinical phase III studies showed

favorable data on the development of cardiovascular events (Wolf et al. 2009).

5 Incretin-Based Therapies: Common Characteristics

and Differences

GLP-1 receptor agonists and DPP-4 inhibitors offer a good alternative to the

established antidiabetic compounds due to their satisfying and glucose-dependent

antihyperglycemic efficacy, their lack of risk for causing hypoglycemia, as well as

their positive effects on body weight development demonstrating weight loss with

GLP-1 receptor agonists and weigh neutrality with DPP-4 inhibitors. A further

advantage is their positive effect on surrogate parameters for beta-cell function. At

this time, however, it is not clear yet whether incretin-based therapies will lead to a

sustained and durable positive effect on beta-cell function and mass under clinical

conditions in patients with type 2 diabetes (see above). Animal data suggest that the

novel compounds may lead to a retardation or halt of the progression of type

2 diabetes.

The most patient-relevant and striking difference of both incretin-based thera-

pies is that GLP-1 receptor agonists are injectable agents, while DPP-4 inhibitors

are effective orally (Table 1). Glycemic control seems to be improved more

effectively by GLP-1 receptor agonists in comparison to DPP-4 inhibitors, but the

data of a study directly comparing the efficacy and safety of liraglutide with

sitagliptin are not available yet. Also, only GLP-1 receptor agonists lead to a

reduction in body weight, whereas DPP-4 inhibitors are weight neutral. Further-

more, positive cardiovascular effects have been shown for GLP-1 receptor agonists.

Nausea, the most common adverse event observed with GLP-1 receptor agonist

therapy, is not observed in the treatment with DPP-4 inhibitors. So far, no charac-

teristic pattern of adverse events has been observed with the DPP-4 inhibitors.

DPP-4 is also expressed on the plasma membrane of T-lymphocytes, where it was

first described as CD-26 receptor. However, no immunological alterations have

been observed with DPP-4 inhibitor therapy. Furthermore, DPP-4 has multiple

substrates (all peptides with a penultimate alanine or proline in the N-terminal

position); the physiological effect of DPP-4 inhibition on all substrates has not been

characterized in detail yet. Further long-term studies should clarify the long-term

effects and safety of DPP-4 inhibitors.
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6 Indications for Incretin-Based Therapies and Their

Placement in Treatment Guidelines for Type 2 Diabetes

The DPP-4 inhibitors sitagliptin, vildagliptin, and saxagliptin are approved in many

countries for an oral combination therapy, when therapeutic goals are not reached

with a lifestyle intervention and metformin monotherapy. The DPP-4 inhibitors

have a place in this indication in the German guidelines and a recommendation by

the British National Institute for Health and Clinical Excellence (NICE) for patients

who should not be treated with sulfonylureas in order to prevent hypoglycemia or

further weight gain (Matthaei et al. 2009; National Institute for Health and Clinical

Excellence 2009). A recent retrospective study has shown that a higher incidence of

hypoglycemia might promote the development of dementia (Whitmer et al. 2009).

In this respect, hypoglycemia avoidance as stated by NICE is an important thera-

peutic goal. It should be noted that DPP-4 inhibitors lower the HbA1c by approxi-

mately 1.0% and that other treatment options (namely insulin) should be considered,

if the HbA1c is elevated by more than 1.0% or if metabolic control has decom-

pensated. The combination of metformin with DPP-4 inhibitors combined two

synergistic treatment principles: metformin acting on insulin resistance and the

DPP-4 inhibitor acting on the glucose-dependent stimulation of insulin secretion

and inhibition of glucagon secretion (the same synergistic principle of action applies

to the combination of a glitazone and a DPP-4 inhibitor). DPP-4 inhibitors are not

inferior to sulfonylureas in the combination with metformin regarding glycemic

parameters (see Fig. 7) (Nauck et al. 2007b). Theoretically, DPP-4 inhibitors may

succeed sulfonylureas as insulinotropic agents, if the above-mentioned advantages

are underlined by positive outcomes in long-term studies concerning glycemic and

other relevant endpoints as well as safety outcomes.

Therapy with a GLP-1 receptor agonist is a favorable treatment option when an

oral therapy with metformin or a combination therapy with metformin and a

Table 1 Differences between GLP-1 receptor agonists and DPP-4 inhibitors

Properties/action GLP-1 receptor agonists DPP-4 inhibitors

Application Subcutaneous Oral

“GLP-1” levels Pharmacological (>5�) Physiological (2–3�)

GLP-1 effects Interaction with receptors on

target organs (hormonal

signal pathway)

Interaction with receptors on

afferent nerves (mixed neural/

hormonal signal pathway)

Duration of “GLP-1”-

elevation

Long, continuously On–off, postprandially

Other mediators No GIP, PACAP, others

Effect on gastric emptying Yes No/hardly

Appetite Reduced Hardly influenced

Effect on body weight Weight loss Weight neutral

Adverse events Nausea/fullness exenatide:

antibodies (?)

No significant effects observed

PACAP pituitary adenylate cyclase activating polypeptide
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sulfonylurea are insufficient and a simultaneous loss of body weight is another

therapeutic goal (e.g. obesity-associated complications and concomitant morbidity)

or hypoglycemia strictly has to be avoided (s.a.). The therapy with a GLP-1 receptor

agonist at this stage may be a favorable alternative to initiating insulin treatment. In

case sulfonylureas were used before initiation of GLP-1 receptor agonist therapy,

the sulfonylurea dose should be at least reduced when adding the GLP-1 receptor

agonist. In a large proportion of patients, the sulfonylurea treatment can even be

stopped.

Incretin-based therapies may help to bring a larger percentage of patients to their

glycemic goals. Fixed dose combinations of a DPP-4 inhibitor with metformin may

be a favorable alternative as the patient does not have to take more tablets when

intensifying oral antidiabetic therapy with a DPP-4 inhibitor. Obese patients with

weight loss as another important therapeutic goal may profit from a therapy with a

GLP-1 receptor agonist. The higher price of the novel incretin-based therapies is

outweighed in some respect by the possibility to reduce the cost for blood glucose

monitoring that is not necessary for safety reasons as long as the patient is not

simultaneously treated with sulfonylurea and/or insulin.

Prevention of hypoglycemic events and prevention of further weight gain are

important therapeutic goals considering the results of the ACCORD trial that showed

an increased mortality in patients with type 2 diabetes who were allocated to the

intensified treatment arm with an HbA1c goal<6.0% and were treated with multiple
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2 diabetic patients not well controlled with metformin monotherapy (adapted from Nauck et al.

2007b)
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combinations of the classical antidiabetic agents (Gerstein et al. 2008). The increased

mortality rate in this group may be explained by the higher gain in body weight and

by the increased incidence of hypoglycemic episodes. On the other hand, the 10-year

follow-up data of the UKPDS show that an early and effective diabetes treatment

lowers not only microvascular complications, but also macrovascular endpoints

significantly (Holman et al. 2008). With respect to these study results, patients with

a newly diagnosed type 2 diabetes should have a treatment that enables them to reach

normoglycemia in a safe way without the risk of hypoglycemia or weight gain.

A consensus statement published in 2008 by the American Diabetes Association

(ADA) and the European Association for the Study of Diabetes (EASD) separates

the existing antidiabetic compounds and treatment algorithms into well-validated

therapies (“tier 1”, comprising metformin, sulfonylureas, and insulin) and less-

validated therapies (“tier 2”, comprising pioglitazone and GLP-1 receptor ago-

nists). In this statement, the established substances are preferred according to

their published endpoint and safety data as well as pharmaco-economic data. In

the less-validated therapies, GLP-1 receptor agonists, however, have their place as

second therapeutic escalation after metformin failure in the same line with the

widely used therapy with pioglitazone (Nathan et al. 2009). In the German guide-

lines, DPP-4 inhibitors and GLP-1 receptor agonists are placed in second line after

metformin failure, if the HbA1c does not exceed >7.5% (Matthaei et al. 2009).

Both incretin-based therapies may also have a place in earlier or later stages of

type 2 diabetes when effectiveness is shown in these stages. Preliminary data show

that the addition of a DPP-4 inhibitor to an existing insulin therapy further reduces

HbA1c and may have a positive effect on hypoglycemic events (Vilsboll et al.

2009; Fonseca et al. 2008). Combination studies with insulin and GLP-1 receptor

agonists are also carried out and should bring results soon. Furthermore, long-term

studies are under way, investigating the effect of incretin-based therapies on disease

progression with results being awaited around 2015. If these studies show an effect

on disease progression, another argument for using incretin-based therapies early in

the disease will be supported by study data. Recently, animal and human studies

showed a positive influence of GLP-1 or GLP-1 receptor agonists on the cardiovas-

cular system and on the nervous system describing neuroprotective effects (M€ussig
et al. 2008; Nikolaidis et al. 2004, 2005a, b; Perry et al. 2007; Sokos et al. 2006).

These fields may also open novel indications for incretin-based therapies (Sokos

et al. 2006). But long-term studies on hard cardiovascular endpoints and safety

finally have to reveal the important data to clarify the efficacy, safety, and place-

ment of incretin-based therapies in type 2 diabetes therapy.

7 Incretin-Based Therapies and Type 1 Diabetes

Since GLP-1 has a positive effect on beta-cell mass in rodents as well as a beneficial

effect on survival of isolated human islets in cell culture (Baggio and Drucker 2007;

Drucker and Nauck 2006; Farilla et al. 2003), incretin-based therapies might also
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prove advantageous in type 1 diabetes alone or in combination with immune

therapy. Evidence in support of this concept is provided by first preclinical studies

(Waldron-Lynch et al. 2008). Besides the positive effect on the beta cells, GLP-1

may also influence glycemic parameters in a favorable way by slowing gastric

emptying and affecting glucagon secretion in type 1 diabetes (Raman and Heptulla

2009). A small mechanistic study in type 1 diabetic individuals showed that an

intravenous GLP-1 infusion reduced fasting hyperglycemia in the morning that was

provoked by omitting the basal insulin injection at night (Creutzfeldt et al. 1996).

Preclinical and animal studies should be undertaken to clarify the potential influ-

ence of GLP-1 on beta-cell mass in type 1 diabetes and on possible alterations of the

autoimmune process. Clinical studies could then be implemented to investigate the

metabolic effects of the autoimmune process and in case of positive outcomes

should be followed by clinical studies in type 1 diabetes.
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Abstract The cannabinoid receptors for D9-THC, and particularly, the CB1 recep-

tor, as well as its endogenous ligands, the endocannabinoids anandamide and

2-arachidonoylglycerol, are deeply involved in all aspects of the control of energy

balance in mammals. While initially it was believed that this endocannabinoid

signaling system would only facilitate energy intake, we now know that perhaps

even more important functions of endocannabinoids and CB1 receptors in this

context are to enhance energy storage into the adipose tissue and reduce energy

expenditure by influencing both lipid and glucose metabolism. Although normally

well controlled by hormones and neuropeptides, both central and peripheral aspects
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of endocannabinoid regulation of energy balance can become dysregulated and

contribute to obesity, dyslipidemia, and type 2 diabetes, thus raising the possibility

that CB1 antagonists might be used for the treatment of these metabolic disorders.

On the other hand, evidence is emerging that some nonpsychotropic plant canna-

binoids, such as cannabidiol, can be employed to retard b-cell damage in type 1

diabetes. These novel aspects of endocannabinoid research are reviewed in this

chapter, with emphasis on the biological effects of plant cannabinoids and endo-

cannabinoid receptor antagonists in diabetes.

Keywords CB1 receptor � Endocannabinoid � Lipids � Phytocannabinoid �
Rimonabant

1 A Brief Introduction to the Endocannabinoid System

The discovery of the endogenous signaling system that is now referred to as the

endocannabinoid system started with the chemical identification in the mid-1960s

of the major psychoactive component of Cannabis sativa and marijuana,

D9-tetrahydrocannabinol (D9-THC) (Gaoni and Mechoulam 1964). Almost three

decades later, another milestone was the finding that D9-THC owes its psychotropic

and immunomodulatory effects to its capability to bind to and activate specific

plasma membrane proteins: (1) the cannabinoid CB1 receptor, one of the most

abundant G-protein-coupled receptors in the central nervous system (Devane et al.

1988); and (2) the cannabinoid CB2 receptor, expressed abundantly in several

immune cells and tissues (Munro et al. 1993). In fact, brain CB1 receptors are

coupled, among other things, to inhibition of neurotransmitter release (Schlicker

and Kathmann 2001), whereas CB2 receptors participate in the regulation of

cytokine release and function (Klein 2005).

The tissue and organ distributions of CB1 and CB2 receptors are not as segregated

as they were originally thought after their identification, and it is now becoming

increasingly accepted that while CB1 receptors play important functions in periph-

eral tissues, CB2 receptors are also present in the brain and in nonimmune cells

(Ashton et al. 2006; Gong et al. 2006; Van Sickle et al. 2005). In addition, the

existence of other receptors for cannabimimetic compounds has been suggested

based on pharmacologic data, but these putative proteins have not been fully

characterized yet (Di Marzo and De Petrocellis 2005).

The discovery of CB1 and CB2 receptors suggested the existence of endogenous

compounds capable of binding to and activating them, the endocannabinoids, the
two best studied of which are anandamide (N-arachidonoylethanolamine) (Devane

et al. 1992) and 2-arachidonoylglycerol (2-AG) (Mechoulam et al. 1995; Sugiura

et al. 1995) (Fig. 1). These, as well as other proposed endocannabinoids, derive

from the nonoxidative metabolism of the essential o6-polyunsaturated fatty acid,

arachidonic acid. The cannabinoid receptors, the endocannabinoids, and the

proteins catalyzing endocannabinoid biosynthesis and inactivation constitute the

endocannabinoid system (Di Marzo et al. 2004).
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The endocannabinoids produce different cellular effects through their ability to

differentially activate the different G-proteins that are normally coupled to CB1 and

CB2 receptors. For example, 2-AG induces and exhibits maximal stimulation of

both Go and Gi, whereas anandamide seems to be able to activate only Gi. Both

cannabinoid receptor types are coupled to inhibition of adenylate cyclase via Gi, but

whereas 2-AG always acts as a full agonist for the inhibition of cyclic adenosine

monophosphate (cAMP) formation, anandamide is significantly more efficacious at

CB1 than CB2 receptors (Glass and Northup 1999). CB1 activation is also coupled,

again via Gi/o proteins, to the inhibition of voltage-dependent N-, P-, and Q-type

calcium channels and to the activation of inwardly rectifying potassium channels

(McAllister and Glass 2002), and, in certain cells, to Gq/11 proteins with subsequent

stimulation of intracellular Ca2+ transients (De Petrocellis et al. 2007). Some of

these intracellular effects may underlie the neuromodulatory effects of endocanna-

binoids in the central and peripheral nervous systems as well as in their intervention

in retrograde signaling (Wilson and Nicoll 2002).

It is nowwell established that the twomost studied endocannabinoids, anandamide

and 2-AG, are not prestored into secretory vesicles, but are biosynthesized de novo

following an increase of the intracellular concentration of Ca2+, within a framework of

phospholipid metabolic reactions (Fig. 1). In fact, both the formation of the two direct

and distinct biosynthetic precursors of anandamide and 2-AG and their conversion

into the two endocannabinoids are catalyzed by Ca2+-sensitive enzymes (Di Marzo

et al. 2004). This means that the whole cascade of endocannabinoid production is

triggered “on demand,” thus leading to endocannabinoid levels that will also ulti-

mately depend on the availability of arachidonic acid on the sn-1 or -2 position of

phosphoglycerides for anandamide and 2-AG, respectively, and, as the levels of
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arachidonic acid depend on essential fatty acids, also on the type of the diet. Endo-

cannabinoids are then released from the cell immediately after their biosynthesis in

order to activate their targets and then rapidly removed from the extracellular space by

rapid and selective uptake into the cell and intracellular enzymatic hydrolysis (Di

Marzo et al. 2004).

The enzymes most likely responsible for formation of anandamide and 2-AG

biosynthesis from their direct biosynthetic precursors (Fig. 1), the N-acyl-phospha-
tidyl-ethanolamine-selective phospholipase D (NAPE-PLD) and the sn-1-selective
diacylglycerol lipases (DAGLa and b), respectively, have been recently cloned

(Bisogno et al. 2003; Okamoto et al. 2004). N-Arachidonoyl-phosphatidyl-ethanol-
amine (NArPE) is converted into anandamide by NAPE-PLD, although other

pathways exist for the processing of NArPE (Leung et al. 2006; Sun et al. 2004).

NArPE in turn is produced from phospholipid remodeling and N-arachidonoylation
of phosphatidylethanolamine. The formation of 2-AG in the brain occurs instead

mostly through the hydrolysis of the sn-2-arachidonate-containing diacylglycerols

(DAGs), which are catalyzed by the sn-1-selective diacylglycerol lipases (DAGLa
and b) (Bisogno et al. 2003). Different types of 2-arachidonate-containing

phosphoglyceride precursors, including phosphoinositide, phosphatidylcholine,

and phosphatidic acid, act as precursors of 2-arachidonate-containing DAGs via

Ca2+-sensitive phospholipases C or phosphatidic acid hydrolase, respectively

(Bisogno et al. 1999; Di Marzo et al. 1996).

Also, the enzymes mostly involved in the degradation of anandamide and 2-AG

have been identified and cloned (Fig. 1). An intracellular integral membrane protein

of 597 amino acids belonging to the amidase family of enzymes, known as “fatty

acid amide hydrolase” (FAAH), catalyzes the hydrolysis of anandamide and 2-AG

(Cravatt et al. 1996). It is found in the brain (Thomas et al. 1997; Tsou et al. 1998),

but also, among various peripheral tissues, in the vasculature (Bilfinger et al. 1998),

pancreas, and adipose tissue (Engeli et al. 2005; Matias et al. 2006). The mono-

acylglycerol lipase (MAGL), another hydrolase belonging to a different family of

Ser proteases, plays a key role, in most cases a more important one than FAAH, in

the enzymatic hydrolysis of 2-AG (Dinh et al. 2002).

2 Central Endocannabinoid Control of Energy Balance

Activation of CB1 receptors is responsible for the well-known appetite-inducing

actions of D9-THC and, perhaps more importantly, also of anandamide and 2-AG

(Kirkham et al. 2002; Williams and Kirkham 1999). While the consumption of

palatable foods and drinks can be stimulated by CB1 agonists and blocked by CB1

antagonists even in satiated animals, the intake of “normal” food is reduced by CB1

receptor blockade more efficiently when animals have been deprived of food for a

few hours (Colombo et al. 1998; Di Marzo et al. 2001; Gallate et al. 1999; Koch

2001; Williams et al. 1998). These observations suggested a potential role of the

endocannabinoid system in the control of both hedonic and appetitive aspects of
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food intake and that an endocannabinoid “tone” can be triggered by brief food

deprivation as well as by exposure to palatable foods. In fact, CB1 receptors have

been detected in the brain nuclei involved in all aspects of food intake, including the

hypothalamus (Gonzalez et al. 1999), which “senses” a negative energy balance,

and the nucleus accumbens (Robbe et al. 2002), which contains circuitries involved

in the “liking” and “wanting” of food and hence mediating its incentive and

motivational value (Cota et al. 2006). Furthermore, the endocannabinoid system

is also active in the vagus nerve and its termination at the level of the nodose

ganglion (Burdyga et al. 2004), as well as in other brainstem areas “sensing”

gastrointestinal content and controlling satiety and emesis, such as the nucleus

tractus solitarius and area postrema (Partosoedarso et al. 2003). On the other hand,

as previously observed for several other proposed orexigenic signals, it has been

found that the levels of anandamide and/or 2-AG decrease during food consumption

and increase during food deprivation in both the limbic forebrain (which contains

the nucleus accumbens) and hypothalamus, whereas CB1 receptor expression

increases in the nodose ganglion during food deprivation and decreases, under the

negative control of cholecystokinin, following food intake (Burdyga et al. 2004;

Gomez et al. 2002; Kirkham et al. 2002). It is important to emphasize that the

central effects of endocannabinoids on energy balance reflect the high degree of

interactions among the neural circuitries belonging to the hypothalamus, mesolim-

bic system, and brainstem. For example, direct or “indirect” (i.e., via inhibition of

endocannabinoid degradation) activation of CB1 receptors in the nucleus accum-

bens, while inducing food intake, also activates several neurons in the hypothala-

mus (Soria-Gómez et al. 2007). Likewise, direct or “indirect” activation of CB1

receptors in the pontine parabrachial nucleus, which is located in the brainstem and

gates neurotransmission associated with, but not limited to, the gustatory properties

of food, selectively induces intake of palatable food (DiPatrizio and Simansky

2008a, b).

Brain CB1 receptors control energy intake mainly in two ways, depending on

their subcellular distribution (Fig. 2). When they activate presynaptic CB1 recep-

tors, postsynaptically derived endocannabinoids act as retrograde signals (Wilson

and Nicoll 2002), which normally leads to rapid modulation of glutamate or GABA

release, with subsequent tuning of the activity of orexigenic or anorectic postsyn-

aptic neurons. Conversely, when postsynaptic CB1 receptors are stimulated, this

might lead to long-term regulation of the expression of genes encoding for orexi-

genic or anorectic neuropeptides or to modulation of the postsynaptic receptors of

such mediators. In the former case, electrophysiological data support the involve-

ment of endocannabinoids, under the negative control of leptin, as modulators of

short-term synaptic plasticity in the hypothalamus (Jo et al. 2005), with subsequent

decrease of GABA release onto orexigenic melanin concentrating hormone

(MCH)-releasing neurons of the lateral hypothalamus (LHA). Since MCH is an

orexigenic neuropeptide controlling both hypothalamic and neucleus accumbens

activity, this effect is consistent with increased feeding behavior. Likewise, in the

paraventricular nucleus (PVN), endocannabinoids acting retrogradely on CB1,

expressing parvocellular neurons and produced following activation of ghrelin or
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nuclei of the midbrain, EC levels under the positive control of glucocorticoids (Gluco) and ghrelin

(possibly also via NPY) and under the negative control of leptin, but not insulin. CB1 receptors

control negatively the expression of corticotropin-releasing hormone (CRH) and of cocaine- and
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(ARC), respectively, as well as MCH release in the lateral hypothalamus (LHA) and, possibly,

CRH release in the PVN via retrograde signaling. Finally, they both enhance and reduce the

activity of POMC-expressing neurons in the ARC via retrograde inhibition of GABA-ergic and

glutamatergic inputs, respectively. Adapted from Matias and Di Marzo (2007). Symbols: dark
circles denote endocannabinoid inhibitory actions; light circles denote stimulatory action; black
diamonds denote inhibition by non-endocannabinoid mediators; black arrows denote stimulation/

production
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“fast” glucocorticoid receptors in postsynaptic PVN neurons, inhibit glutamatergic

signaling, and subsequently, the activity of these neurons, which often produce the

anorectic corticotropin-releasing hormone (CRH) (Kola et al. 2008; Malcher-Lopes

et al. 2006). These effects are often under the negative control of postsynaptic ob
receptors for leptin, which, by decreasing intracellular calcium, reduce endocanna-

binoid biosynthesis (Di Marzo et al. 2001; Jo et al. 2005). On the other hand,

CB1 receptors potentially localized postsynaptically in anorectic CRH-expressing

neurons of the PVN and preopiomelanocortin (POMC) and cocaine- and amphet-

amine-regulated transcript (CART)-expressing neurons of the arcuate nucleus

(ARC) appear to control negatively the expression of CRH and CART. In fact,

CRH mRNA levels in the PVN are higher in CB1-deficient mice (Cota et al. 2003,

2007), whereas elevation of endogenous anandamide levels, obtained by knocking

out the FAAH enzyme, is accompanied by reduced CART release in several

hypothalamic regions, an effect antagonized by a CB1 antagonist (Hilairet et al.

2003; Osei-Hyiaman et al. 2005a).

In agreement with the former finding, blood corticosterone levels are increased

following CB1 antagonism in obese Zucker rats (Doyon et al. 2006), which contain

high hypothalamic levels of endocannabinoids (Di Marzo et al. 2001). Finally,

another type of effect by postsynaptic CB1 receptors might be to enhance orexin

A signaling. In fact, it has been shown that orexin A receptors can be sensitized by

CB1 receptors coexpressed in the same cells (Ellis et al. 2006; Hilairet et al. 2003),

and unpublished immunohistochemical work carried out in Di Marzo’s laboratory

showed that, in the mouse hypothalamus, CB1 and orexin A receptors are indeed

strongly colocalized in the ARC and PVN, at both the presynaptic and postsynaptic

level.

The effect of endocannabinoids in milk on pup growth has also been examined.

While the levels of anandamide are negligible, milk – the only food of young

mammalians – contains considerable amounts of 2-AG (Di Marzo et al. 1998;

Fride et al. 2001). This finding led to an examination of the role of the CB1 receptor

in suckling. The cannabinoid CB1 receptor antagonist, rimonabant, completely

inhibited the physical growth of mouse pups and caused death within 1 week, by

depriving them of the essential benefits of suckling. This effect of rimonabant was

seen either after a single injection of the compound, administered within the first

24 h after birth, or after daily injections between days 2 and 8. Thus, the first 24 h of

life seem to be most critical for the endocannabinoid-induced suckling-promoting

effect, which is compatible with the levels of 2-AG in milk. Accordingly, 2-AG

partly reversed the effect of rimonabant on suckling, and its activity was signifi-

cantly enhanced by 2-palmitoyl glycerol and 2-linoleoyl glycerol, which have no

activity per se – an effect named “entourage effect” (Ben-Shabat et al. 1998), which

is a unique route to enhance biological activity. These data strongly suggest that the

anti-suckling and growth-inhibiting effects of rimonabant are mediated at least in

part by blockage of CB1 receptors. Surprisingly, however, milk intake and survival

were also impaired upon administration of the CB1 receptor antagonist in CB1

receptor-deficient pups, although not as dramatically as in wild-type pups. These

results support evidence for the existence of additional cannabinoid receptors.
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In fact, Zimmer et al. (1999) found that cannabinoid CB1 receptor knockout

mice survive the initial stages of life, which obviously involve suckling. Presum-

ably, other mechanisms compensate for the lack of CB1 receptor-based suckling.

These mechanisms may involve endogenous opioids or lysophosphatidic acid as

both types of compounds have been shown to be involved in suckling. Indeed, the

chemical structures of 2-AG and lysophosphatidic acid (with 2-arachidonoyl as the

acyl moiety) only differ by the absence of a phosphate group in 2-AG (Mechoulam

et al. 2006).

3 Peripheral Endocannabinoid Control of Energy Balance

Endocannabinoids and cannabinoid CB1 receptors are present in peripheral cells

and tissues involved in the control of energy homeostasis, including the mesenteric

neurons and epithelial cells of the small and large intestine (Coutts and Izzo 2004),

the liver and hepatocytes (Osei-Hyiaman et al. 2005b), the white adipose tissue

(Engeli et al. 2005) and adipocytes (Bensaid et al. 2003; Cota et al. 2003; Roche

et al. 2006), the skeletal muscle (Pagotto et al. 2006), and the pancreas (Juan-Pico

et al. 2006; Matias et al. 2006). In fact, the endocannabinoid system is emerging as

one of the key players in the peripheral control of metabolism, including nutrient

assimilation, processing, and storage.

Cota and colleagues (Cota et al. 2003) showed for the first time that wild-type

mice exhibit significantly higher amounts of fat mass than CB1 receptor-null mice,

as well as a trend toward lower energy expenditure, even when fed with the same

amount of food. Furthermore, it was shown that functional CB1 receptors coupled

to stimulation of lipoprotein lipase activity are present in adipocytes. These findings

suggested for the first time that the endocannabinoid system contributes to fat

accumulation, independently from the amount of food ingested and by acting

directly on the adipose tissue. Indeed, studies carried out in mouse 3T3 adipocyte

cell lines have shown that (1) stimulation and blockade of CB1 receptors arrest and

stimulate adipocyte proliferation, respectively (Gary-Bobo et al. 2006; Bellocchio

et al. 2008); (2) formation of endocannabinoids precedes preadipocyte differentia-

tion into mature adipocytes; and (3) chronic stimulation of CB1 receptors during

adipocyte differentiation enhances the expression of an early marker of differentia-

tion, the peroxisome proliferator-activated receptor (PPAR)-g, while inducing

accumulation of lipid droplets (Matias et al. 2006). These findings indicate that

the endocannabinoid system directly participates in adipogenesis and adipocyte

lipogenesis. Importantly, in this model of adipocytes, CB1 activation and blockade

also enhance and reduce, respectively, fatty acid synthase (FAS), acetyl-CoA

carboxylase (ACC), stearoyl-CoA desaturase, and diacylglycerol transferase-2

(Bellocchio et al. 2008). Since the endocannabinoid anandamide binds to PPAR-g
and stimulates its transcriptional activity also independently from CB1 (Bouaboula

et al. 2005), it is possible that both CB1 and non-CB1 receptors might be involved in

these phenomena. Interestingly, the stimulatory effect of CB1 stimulation on
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PPAR-g expression has also been recently confirmed in human adipocytes (Pagano

et al. 2007). Furthermore, data exist in support of other mechanisms through which

CB1 stimulation can ensure de novo lipogenesis in adipocytes. In fact, studies

carried out in both mouse 3T3 and human adipocytes recently showed that CB1

agonists can stimulate glucose uptake, very probably via translocation of the

glucose 4 transporter to the plasma membrane, and that these effects are reversed

by the CB1 receptor antagonist rimonabant (Gasperi et al. 2007; Pagano et al. 2007).

Enhanced intracellular glucose, following glucose oxidation, might provide the

adipocytes with the biosynthetic precursors for de novo fatty acid biosynthesis,

especially in the presence of upregulated FAS and of inhibited cAMP formation and

AMP kinase activity, two lipogenetic responses that (endo)cannabinoids have been

reported to induce in the adipose tissue in vivo (Kola et al. 2005; Matias et al. 2006;

Osei-Hyiaman et al. 2005b).

The endocannabinoid system also stimulates lipogenesis in the liver. CB1 recep-

tors are expressed in hepatocytes, where they stimulate the expression of the

important transcription factor sterol response element binding protein (SREBP)-

1c and of its targets ACC and FAS. These effects are likely to explain why

CB1 receptor stimulation causes fatty acid synthesis and lipogenesis in these cells

(Osei-Hyiaman et al. 2005b), although this mechanism is unlikely to occur in the

healthy liver, where CB1 expression is relatively low.

Preliminary findings suggest that endocannabinoids are also involved in the

control of metabolism by regulating insulin release from b-cells as well as glucose
uptake and utilization by tissues, with subsequent impact on glucose tolerance

(Bermudez-Silva et al. 2006; Juan-Pico et al. 2006). Juan-Pico et al. (2006), using

mouse islets of Langerhans, showed that stimulation of CB2 – and, to a lesser

extent, CB1 – receptors reduces insulin release via inhibition of calcium transients.

Accordingly, little, if any, CB1 receptors are expressed in mouse b-cells (Starowicz
et al. 2008). However, Matias et al. (2006) and Bermúdez-Silva et al. (2008) later

found that in rat insulinoma and human b-cells CB1 receptors are indeed expressed,

a finding also confirmed by Starowicz and colleagues (Starowicz et al. 2008). It

was suggested that in both rat insulinoma and human b-cells, CB1 stimulation

enhances glucose-induced insulin release, whereas in human b-cells CB2 activation

reduces this effect. However, it was also reported that systemic CB1 or CB2 receptor

stimulation reduces or enhances plasma glucose clearance in rats (Bermudez-Silva

et al. 2006), two effects that are opposite to those expected from the above-

mentioned actions of the two receptor types on insulin release. This suggests that

the endocannabinoid system might affect glucose utilization at the level of insulin

sensitivity rather than of its release, with possible impact on glucose uptake by the

skeletal muscle and liver and subsequent energy expenditure.

Indirect evidence for a food intake-independent and tonic retarding action of

the endocannabinoid system and CB1 receptors on metabolism came recently

from studies using two distinct selective CB1 receptor antagonists/inverse agonists,

i.e., rimonabant (Kunz et al. 2008) and AVE1625 (Herling et al. 2007). In the

former study, when compared with vehicle-treated rats, rats administered 3 and

10 mg/kg rimonabant together with their food showed an 18 and 49% increase in O2
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consumption, respectively, after 3 h. Respiratory quotients revealed no effect of

rimonabant on the relative rate of carbohydrate and fat oxidation. Analysis of the

correlation between O2 consumption and physical activity indicated that factors

other than increased physical activity contributed to the increase in O2 consump-

tion. Similar studies in mice demonstrated that wild-type but not CB1
�/� mice

showed a change in O2 consumption and physical activity following rimonabant

administration, suggesting that these effects were mediated by the cannabinoid CB1

receptor. These studies suggested that rimonabant stimulates significant acute

energy expenditure in nonobese rodents, which is not completely accounted for

by an increase in physical activity (Kunz et al. 2008). In the second study, the

authors reported that AVE1625, when acutely administered postprandially to rats,

causes instead slight as well as rapid increase in basal lipolysis and, 6 h after

administration, also strong glycogenolysis. These two metabolic effects were

accompanied by immediate increase in energy expenditure, a long-lasting increase

of fat oxidation and a transient increase of glucose oxidation. These latter findings

agree with the aforementioned potential tonic inhibition by CB1 receptors of

lipolysis and insulin sensitivity and are also supported by the recent finding that

CB1 receptor inactivation with rimonabant or siRNA selectively increases glucose

uptake by human differentiated L6 myotubes in a time- and dose-dependent manner

(Esposito et al. 2008). This latter effect was due to activation of the phosphoinsotide-

3-kinase pathway, which might have sensitized skeletal muscle cells to the action of

insulin.

In summary, from the results described in this section it is clear that the

endocannabinoid system affects energy metabolism not only via a central control

of food intake, but also by enhancing lipogenesis and reducing lipid and glucose

oxidation. This system might be one of the proposed “thrifty” mechanisms aimed at

optimizing energy intake and storage, and minimizing energy expenditure, following

food consumption and after periods of food deprivation.

4 Regulation and Dysregulation of the Endocannabinoid

System in the Control of Metabolism

Several hormones coordinate the local effects of endocannabinoids on energy

balance in organs and tissues as the hypothalamus, nucleus accumbens (Fig. 2),

duodenum, adipose tissue, and liver. Higher hypothalamic levels of endocannabi-

noids are observed in rats following brief food deprivation (Kirkham et al. 2002),

and this might be due to the fact that leptin, an adipocyte-derived hormone the

levels of which are increased following food consumption and decreased following

food deprivation, significantly reduces the levels of anandamide and 2-AG in the rat

hypothalamus (Di Marzo et al. 2001) much in the same way it reduces the levels of

hypothalamic orexigenic mediators and increases those of anorexic ones. Another

group (Hanus et al. 2003) confirmed the significant enhancement of hypothalamic
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2-AG levels after 24 h of fasting in mice. However, diet restriction over 12 days,

instead, lowered the levels of 2-AG in both the hippocampus and the hypothalamus.

Thus, while Kirkham et al. apparently measured the effects of hunger, Hanus et al.

presumably recorded the effect of semistarvation, which might be partly due to the

shortage of crucial ultimate biosynthetic precursors for 2-AG biosynthesis, which

originate from the diet. If these observations in mice parallel the human condition,

we can expect that diet restriction self-imposed by humans, as in anorexia, may

cause lowering of hypothalamic 2-AG levels leading to further reduction of food

consumption, thus perpetuating the clinical condition.

Ghrelin, another important peripheral hormone involved in food intake and

released into the bloodstream from the stomach during food deprivation to stimu-

late energy intake, instead affects hypothalamic endocannabinoid levels positively.

In fact, blockade of CB1 receptors with rimonabant strongly reduces the orexigenic

action of intrahypothalamic injections of the hormone, which has also been shown

to act through elevated 2-AG levels (Tucci et al. 2004). Direct elevation of 2-AG

levels in the hypothalamus by ghrelin was also demonstrated (Kola et al. 2008).

Glucocorticoid is another likely candidate for the regulation of pre- and postpran-

dial hypothalamic endocannabinoids. In fact, activation of fast plasma membrane

glucocorticoid receptors was found to stimulate the biosynthesis of endocannabi-

noids in this brain area (Malcher-Lopes et al. 2006), and the circulating levels of

corticosterone are known to increase after food deprivation and decrease after food

consumption. The tonic inhibition by CB1 receptors of the release of corticosterone

into the bloodstream (Doyon et al. 2006) might thus represent a negative feedback

loop on glucocorticoid-stimulated endocannabinoid formation.

Leptin also decreases endocannabinoid levels in other cells or tissues that

express the leptin receptors, such as T lymphocytes and the uterus (Maccarrone

et al. 2003, 2005). This widespread tonic inhibition of endocannabinoid levels by

the hormone also likely occurs in humans, since a negative correlation between

blood leptin and anandamide levels was found in normoweight and anorexic

women (Monteleone et al. 2005). In the latter case, the low levels of leptin typical

of this eating disorder were consequently accompanied by significantly increased

blood anandamide levels, possibly in the attempt of overcoming the effect of the

shortage of dietary endocannabinoid precursors, mentioned above.

Indeed, endocannabinoid levels are also regulated in several peripheral tissues. In

the duodenum, both anandamide and 2-AG levels are increased after food depriva-

tion possibly in order to act on sensory and vagal nerves terminating in the brainstem

and regulating satiety (Gomez et al. 2002; Izzo et al. 2009). In the adipose tissue,

instead, no changes in endocannabinoid levels are observed following food depriva-

tion (Izzo et al. 2009), as expected from the fact that this condition should be

accompanied by activation of lipolytic, rather than lipogenic, mechanisms in this

organ. Indeed, several mechanisms exist that ensure a strict regulation of endocan-

nabinoid levels in adipocytes. Firstly, PPAR-g stimulation with ciglitazone or rosi-

glitazone can (1) inhibit the levels of 2-AG in mature, but not hypertrophic, 3T3

F442A mouse adipocytes (Matias et al. 2006); and (2) downregulate CB1 expression

and upregulate FAAH expression in human adipocytes (Pagano et al. 2007). Thus,
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CB1 receptors act as an early inducer of adipocyte differentiation, perhaps even

upstream of PPAR-g and are subsequently “turned off” by this nuclear receptor once
that differentiation is complete and PPAR-g expression is maximal. Secondly,

PPAR-d, which can be activated following physical exercise, also inhibits CB1

receptor expression (Yan et al. 2007). Finally, both insulin and leptin, the blood

levels of which are increased after a meal or after fat accumulation in adipocytes,

respectively, both inhibit endocannabinoid levels in these cells (Matias et al. 2006)

(D’Eon et al. 2008), possibly by enhancing FAAH expression (Murdolo et al. 2007).

Also in RIN-m5F, rat insulinoma b-pancreatic cells insulin inhibits glucose-

stimulated elevation of anandamide and 2-AG levels (Matias et al. 2006), thus

suggesting that the negative control by this hormone over endocannabinoid tone

might occur in all insulin-sensitive cells and be impaired during conditions of

insulin resistance. Indeed, evidence for this has been recently provided for humans

(Di Marzo et al. 2009b). In the rat liver, elevated endocannabinoid levels are found

following food deprivation (Izzo et al. 2009) and this phenomenon, given the

coupling of CB1 receptors to reduced fatty acid oxidation and increased fatty acid

synthesis (Osei-Hyiaman et al. 2005b), might prevent the liver from oxidizing fatty

acids that are needed by other tissues as an alternative to glucose. On the other hand,

following food intake, when easily utilizable “fuel” becomes again available,

hepatic 2-AG (but not anandamide) levels remain elevated to make sure that at

least some of this fuel is directed into fatty acid synthesis.

The same mechanisms that are used to keep the endocannabinoid system under

control in various central and peripheral tissue, if disrupted, might determine

dysregulation of anandamide and 2-AG levels or of CB1 receptor expression. For

example, as a consequence of leptin or leptin receptor deficiency, in the hypothala-

mus of obese and hyperglycemic ob/obmice, or of rodents that are characterized by

impaired leptin receptor (db/db mice and fa/fa Zucker rats), permanently elevated

endocannabinoid levels are found (Di Marzo et al. 2001). This situation might also

occur in obese human beings, in whom central leptin insensitivity develops, and

might represent one of the reasons why, although blockade of CB1 receptors

inhibits food intake and decreases body weight in lean animals, it undoubtedly

does so more efficaciously in genetically obese rodents or in rodents that become

obese because of a prolonged high-fat diet. In fact, in lean animals, CB1 receptor

antagonists always appear to be more efficacious in the presence of a demonstrated

higher tone of the endocannabinoid system in those brain areas controlling food

intake, that is following brief periods of food deprivation or when the animals are

exposed to palatable foods (McLaughlin et al. 2003). Therefore, the higher efficacy

observed with CB1 antagonists like rimonabant (SR141716A) (Rinaldi-Carmona

et al. 1994) or AM251 (Chambers et al. 2004) in obese vs. lean animals, or the fact

that obese rodents do not need to be deprived of food to be shown to be sensitive to

treatments with these antagonists, is suggestive of a similarly higher endocannabi-

noid tone in obesity. Furthermore, since daily CB1 receptor antagonism in obese

rodents causes a transient (~1 week) inhibition of food intake, as opposed to effects

on body weight that persist for several weeks (Ravinet Trillou et al. 2003), it is

possible that it is the part of the endocannabinoid system that controls the peripheral
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aspects of energy balance (e.g., fat accumulation and energy expenditure, rather

than food intake) that becomes more active during obesity and for a longer time and

which, therefore, better responds to CB1 antagonists. This hypothesis is supported

by the observation that congenital blockade of CB1 receptor expression, as in CB1

knockout mice (Ravinet Trillou et al. 2004), or chronic treatment with CB1 antago-

nists, prevents in mice not only the development of high-fat diet-induced obesity

(DIO) (Ravinet Trillou et al. 2003), but also the metabolic consequences of these

conditions such as high triglycerides, low HDL cholesterol, hyperglycemia, and

hyperinsulinemia (Poirier et al. 2005; Ravinet Trillou et al. 2003, 2004), whereas

pair-feeding (i.e., giving control animals the same amount of food consumed by

animals in which CB1 receptors is pharmacologically blocked or genetically

impaired) produces significantly smaller effects. Accordingly, the dramatic altera-

tions of the expression of white and brown adipose tissue enzymes and proteins

involved in metabolism and energy expenditure in DIO mice are not observed if

CB1 receptors are genetically or pharmacologically impaired (Jbilo et al. 2005).

Furthermore, in mice, selective genetical impairment of CB1 receptors in hepato-

cytes prevents the development of high-fat diet-induced fatty liver, low HDL

cholesterol, hyperglycemia, insulin resistance, and, to some extent, high triglycer-

ides (Osei-Hyiaman et al. 2008), whereas, in rats, peripheral administration of

rimonabant enhances lipolysis in adipocytes in a food intake-independent way

(Nogueiras et al. 2008). These observations are in agreement with the idea that,

during obesity and hyperglycemia, CB1 signaling might become overactive in

peripheral organs controlling energy accumulation, transformation, and expendi-

ture, thereby contributing to high-fat diet-induced metabolic alterations.

That the levels of either endocannabinoids or CB1 receptors, or both, are

permanently upregulated in several peripheral organs and tissues of obese/hyper-

glycemic animals and humans is now a well-accepted concept. Evidence of endo-

cannabinoid upregulation has been recently reported in adipocytes and b-cells
(Matias et al. 2006). When treated with a high concentration of insulin, under

conditions mimicking hyperglycemia and leading to insulin resistance and adipo-

cyte hypertrophy, the levels of endocannabinoids and of CB1 receptors are still

significantly higher than in preadipocytes and mature adipocytes (D’Eon et al.

2008; Matias et al. 2006). The effect on 2-AG levels appears to be the result of

changes in the regulation of 2-AG biosynthesis by PPAR-g when passing from

mature to hypertrophic adipocytes (Matias et al. 2006). In agreement with these

findings in isolated adipocytes, enhanced levels of 2-AG, but not anandamide,

have been reported in the epididymal fat of DIO mice compared with mice fed

a normal diet (Matias et al. 2006). However, in both DIO mice and Zucker rats,

when compared to lean animals of the same age, endocannabinoid levels are

strongly decreased in the subcutaneous fat (Izzo et al. 2009; Starowicz et al.

2008), thus indicating that in obese/hyperglycemic rodents there is clearly a

hypoactive endocannabinoid system in this adipose depot, whereas in the mesen-

teric fat of DIO mice, endocannabinoid levels are unaltered (Starowicz et al. 2008).

In RIN-m5F rat insulinoma b-pancreatic cells, where a high glucose “pulse”

elevates both anandamide and 2-AG levels, insulin keeps this latter effect under
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negative control when the cells are maintained in a relatively low concentration of

glucose. However, under conditions mimicking hyperglycemia, insulin does not

inhibit glucose-induced endocannabinoid levels and it even stimulates these levels

per se (Matias et al. 2006). Accordingly, enhanced levels of both anandamide and

2-AG were observed in the pancreas of DIO mice as compared with mice fed a

normal diet (Matias et al. 2006) and in that of Zucker rats as compared with lean rats

(Izzo et al. 2009). Elevation of endocannabinoid levels is also observed in the liver

of DIO mice and Zucker rats (Izzo et al. 2009; Osei-Hyiaman et al. 2005b), in the

heart and kidneys of DIO mice (Matias et al. 2008), and in the duodenum of Zucker

rats (Izzo et al. 2009). An early elevation of endocannabinoid levels was also found

in the brown adipose tissue and in the skeletal muscle of DIO mice (Matias et al.

2008), where this phenomenon, like in the liver (Osei-Hyiaman et al. 2005b), is also

accompanied by upregulation of CB1 receptors (Pagotto et al. 2006).

4.1 Role of Dysregulated Endocannabinoid Signaling in Type 2
Diabetes and Obesity-Related Metabolic and Cardiovascular
Disorders

The dysregulation of endocannabinoid tone in so many key organs for the control of

metabolism cannot but have a strong impact on metabolism itself (Fig. 3). For

example, overstimulation of CB1 receptors in hypertrophic adipocytes leads to

inhibition of adiponectin expression (Matias et al. 2006; Bellocchio et al. 2008)

and this explains why (1) CB1 receptor antagonism causes elevation of adiponectin
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Fig. 3 Potential causes of the dysregulation of the endocannabinoid (EC) system in various

peripheral tissues, and their consequences on metabolic risk factors. Abbreviations: FFA free

fatty acids, HDL high-density lipoprotein, T2D type 2 diabetes, TG triglycerides
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expression in adipocytes much more effectively in obese than in lean mice (Bensaid

et al. 2003); and (2) the expression of several adiponectin-depending genes, which

is strongly dysregulated in the adipose tissue of DIO mice, is restored to that of a

lean phenotype following blockade of CB1 receptors (Jbilo et al. 2005). Given the

important protective role played by adiponectin against insulin resistance and

atherogenic inflammation, it is tempting to speculate that endocannabinoid overac-

tivity in some adipose depots might contribute to reduced levels of this hormone in

obesity and, hence, to insulin resistance and atherosclerosis. By contrast, a lower

endocannabinoid tone in subcutaneous vs. visceral (e.g., epidydimal or mesenteric)

fat is likely to eventually contribute to excessive accumulation of this latter adipose

depot at the expense of the more “beneficial” subcutaneous depots.

In view of the data described in the previous section, the overactivity of the

endocannabinoid system in the pancreas is likely to have a strong impact on insulin

levels and perhaps underlies the hyperinsulinemia that characterizes obesity. This is

likely to lead to b-cell hypertrophy and damage, thus eventually contributing to the

development of type 2 diabetes. In agreement with this hypothesis, a recent study

showed how, in isolated pancreatic islets from Zucker diabetic rats or in islets from

lean rats incubated with high glucose and palmitic acid, rimonabant decreases basal

insulin hypersecretion without affecting glucose-stimulated insulin secretion

(Getty-Kaushik et al. 2009). In the mouse liver, overactivity of CB1 receptors

alone might determine large part of the insulin resistance and hepatosteatosis,

which are consequences of obesity (Osei-Hyiaman et al. 2008). In the skeletal

muscle, given the observation that CB1 receptor blockade improves glucose uptake

and AMP kinase expression (Cavuoto et al. 2007; Esposito et al. 2008), the overac-

tivity of CB1 receptors might contribute to reduced insulin sensitivity, glucose

uptake, and fatty acid oxidation.

That endocannabinoid dysregulation contributes not only to hyperphagia and

increased body weight but also to the metabolic consequences of obesity, starting

with reduced energy expenditure, insulin resistance, dyslipidemia, and dyslipopro-

teinemia and ending with type 2 diabetes and atherosclerosis, is being more and

more confirmed by in vivo data obtained using CB1 receptor antagonists in obese

rodents. For example, CB1 receptor blockade causes enhanced glucose uptake by

the soleus muscle and increases oxygen consumption in ob/ob mice (Liu et al.

2005). In female candy-fed Wistar rats treated with rimonabant (10 mg/kg) and

matched with pair-fed rats to distinguish between hypophagic action and hypothe-

sized effects on energy expenditure, rimonabant reduced body weight nearly to

levels of standard rat chow-fed rats within the first week of treatment. Evaluation of

energy balance (energy expenditure measured by indirect calorimetry in relation to

metabolizable energy intake calculated by bomb calorimetry) revealed that

increased fat oxidation contributed more to sustained body weight reduction than

reduced food intake. The acute effect of rimonabant on lipolysis was further

investigated in postprandial male rats, demonstrating an inherent pharmacological

activity of rimonabant to induce lipolysis in a way not secondary to postabsorptive

reduced food intake. The authors concluded that the weight-reducing effect of

rimonabant is due to continuously elevated energy expenditure based on increased
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fat oxidation driven by lipolysis from fat tissue as long as fat stores are elevated,

whereas when the amount of endogenous fat stores decline, rimonabant-induced

increased energy expenditure is maintained by a re-increase in food intake (Herling

et al. 2008a). Importantly, in the same model, it was also found that treatment with

rimonabant for the last 6 weeks of a 12-week candy-feeding causes a preferential

loss of visceral vs. subcutaneous fat, and a corresponding loss of hepatic and

skeletal muscle fat (Herling et al. 2008b), in agreement with the aforementioned

higher tone of the endocannabinoid system in nonsubcutaneous fat depots and in the

liver and skeletal muscle and with its likely role in determining reduced energy

expenditure in obesity.

Three important studies have been carried out with rimonabant in Zucker rats at

an age in which these obese rodents exhibit several of the features of the “metabolic

syndrome.” First, it was shown that oral treatment of these rats with rimonabant

(30 mg/kg) daily for 8 weeks abolished obesity-associated hepatic steatosis and

related features of metabolic syndrome: inflammation (elevated plasma levels of

tumor necrosis factor alpha [TNF-a]), dyslipidemia, and reduced plasma levels of

adiponectin (Gary-Bobo et al. 2007). The treatment also reduced hepatomegaly,

elevation of plasma levels of enzyme markers of hepatic damage (alanine amino-

transferase, gamma glutamyltransferase, and alkaline phosphatase), and the high

levels of circulating TNF-a associated with steatohepatitis. Finally, rimonabant

treatment also improved dyslipidemia by both decreasing plasma levels of trigly-

cerides, free fatty acids, and total cholesterol and increasing the HDL/LDL choles-

terol ratio. Importantly, all these effects of rimonabant were not or only slightly

observed in pair-fed obese animals, highlighting the additional beneficial effects of

treatment with rimonabant compared to diet. In the second study, the effect of CB1

receptor antagonism on mortality and chronic renal failure associated with obesity

in Zucker rats was investigated (Janiak et al. 2007). The rats received either

rimonabant or vehicle for 12 months and were compared to a pair-fed but untreated

group of obese rats. Mortality in the obese rats was significantly reduced by

rimonabant along with a sustained decrease in body weight, transient reduction in

food intake, and an increase in plasma adiponectin. As expected from previous

studies, this was associated with significant reduction not only in plasma total

cholesterol, LDL/HDL cholesterol ratio, triglycerides, and glucose, but also in

norepinephrine, plasminogen activator inhibitor 1, and preservation of pancreatic

weight and b-cell mass index. The CB1 antagonist attenuated the increase in

proteinuria, urinary N-acetylglucosaminidase excretion, plasma creatinine, and

urea nitrogen levels while improving creatinine clearance and reduced renal hyper-

trophy and glomerular and tubulointerstitial lesions. Although the drug did not

modify hemodynamics, it normalized the pressor response to angiotensin II. Again,

most of these effects were induced only to a smaller extent by diet restriction,

pointing to the existence of direct effects of CB1 receptor antagonism in peripheral

organs. In the third study, Sch€afer et al. (2008) investigated the effect of rimonabant

on inflammation and enhanced platelet reactivity. The CB1 antagonist (10 mg/kg by

gavage) was fed for 2 weeks to 3-month-old male obese Zucker rats as an impaired

glucose tolerance model and for 10 weeks to 6-month-old male obese Zucker rats as
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a model of the metabolic syndrome. In these rats, RANTES (Regulated upon

Activation, Normal T-cell Expressed, and Secreted) and MCP-1 (monocyte che-

motactic protein-1) serum levels were increased in obese vs. lean rats and signifi-

cantly reduced by long-term treatment with rimonabant, which slowed weight gain

in rats with the metabolic syndrome. Neutrophils and monocytes were significantly

increased in young and old obese vs. lean Zucker rats and again lowered by

rimonabant. Platelet-bound fibrinogen was significantly enhanced in obese vs.
lean Zucker rats of both age, and this effect was also reduced by rimonabant,

which also attenuated thrombin-induced aggregation and adhesion to fibrinogen

of platelets from obese rats. The authors suggested that these effects of CB1

antagonism, if translated to human beings with a metabolic syndrome, may poten-

tially contribute to a reduction of cardiovascular risk. This conclusion is also

supported by a very recent investigation carried out using an animal model of

atherosclerosis, the low-density lipoprotein receptor-null [LDLR(�/�)] mouse.

Rimonabant (50 mg/kg/d in the diet) significantly reduced food intake, weight

gain, serum total cholesterol, and atherosclerotic lesion development in the aorta

and aortic sinus of LDLR(�/�) mice fed a western-type diet for 3 months.

Rimonabant also strongly reduced plasma levels of the proinflammatory cytokines

MCP-1 and interleukin (IL)-12 and decreased lipopolysaccharide- and IL-1b-
induced proinflammatory gene expression in mouse peritoneal macrophages

in vitro as well as thioglycollate-induced recruitment of macrophages in vivo.

Pair-fed animals had reduced weight gain, but developed atherosclerotic lesions

that were as large as those of untreated animals, showing that the antiatherosclerotic

effect of rimonabant is not related to reduced food intake. Interestingly, rimonabant

at a lower dose (30 mg/kg/d in the diet) reduced atherosclerosis development in the

aortic sinus, without affecting serum total cholesterol. The findings of these studies,

taken together, support the role of a peripherally, rather than centrally, overactive

endocannabinoid system in determining some deleterious consequences of obesity

and substantiate the possibility that CB1 receptor antagonists can be used for the

treatment of obesity-associated metabolic and cardiovascular disorders.

In agreement with the above observations, a recent study used a different

approach to investigate the consequences of the overactive endocannabinoid sys-

tem on obesity-related metabolic dysfunction. Ruby et al. (2008) used a chemical

approach to evaluate the direct effects of increased endocannabinoid signaling in

mice by inducing acute elevations of endogenously produced anandamide and 2-

AG through pharmacological inhibition of their enzymatic hydrolysis by isopropyl

dodecylfluorophosphonate (IDFP). Acute IDFP treatment increased plasma levels

of triglyceride (2.0- to 3.1-fold) and cholesterol (1.3- to 1.4-fold) in conjunction

with an accumulation in plasma of apolipoprotein (apo) E-depleted triglyceride-

rich lipoproteins. These changes did not occur in either CB1
�/� or apoE�/� mice,

were prevented by pretreatment with CB1 antagonists, and were not associated with

reduced hepatic apoE gene expression. Although IDFP treatment increased hepatic

mRNA levels of some lipogenic genes, there was no effect on triglyceride secretion

into plasma. Instead, IDFP treatment impaired clearance of an intravenously admi-

nistered triglyceride emulsion, despite increased lipoprotein lipase activity.
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Importantly, these effects were not observed following inhibition of FAAH alone,

indicating either that elevation of anandamide levels alone is not sufficient to affect

triglyceride levels or that the endocannabinoid uniquely responsible for this effect

is 2-AG (see below). The authors suggested that overactive endocannabinoid

signaling elicits an increase in plasma triglyceride levels, which is associated

with reduced plasma triglyceride clearance and an accumulation in plasma of

apoE-depleted triglyceride-rich lipoproteins rather than enhanced lipogenesis,

thus underscoring the potential efficacy of CB1 antagonists in treating hypertrigly-

ceridemia.

4.2 Endocannabinoid Dysregulation in Human Abdominal
Obesity and Hyperglycemia: Relationship with
Cardiometabolic Risk Factors and Type 2 Diabetes

The association between high intra-abdominal adiposity (IAA) and type 2 diabetes

and between atherogenic inflammation and increased risk of experiencing serious

cardiovascular disorders has been well documented by the medical literature

(Després and Lemieux 2006). Data are now available that suggest that an upregula-

tion of endocannabinoid signaling also occurs in humans and in association not only

with obesity, but also with high visceral adiposity and hyperglycemia. In agreement

with the aforementioned observations in DIO mice, significantly higher levels of 2-

AG, but not anandamide, were detected in the visceral, but not subcutaneous, fat of

obese patients (Matias et al. 2006). A recent study by Pagano and coworkers (2007)

strengthened the link between endocannabinoid dysregulation and abdominal adi-

posity by showing that in both the abdominal subcutaneous and visceral fat of obese

patients, both CB1 receptor expression and endocannabinoid turnover (in terms of

the expression of endocannabinoid biosynthetic and degrading enzymes) were

upregulated in comparison to analogous tissues from lean individuals, whereas a

reduction was observed in the gluteal subcutaneous fat, again similar to what

described in the subcutaneous fat of DIO mice (Starowicz et al. 2008). Also

obese patients with type 2 diabetes were recently described to exhibit an overall

lower tone of endocannabinoids in the subcutaneous adipose tissue as compared to

normoweight volunteers (Annuzzi et al. 2010). This phenomenon, in view of the

aforementioned prolipogenetic role of the endocannabinoid system in the adipose

tissue, might eventually result in more and more fat being stored in the abdominal

depots and less and less in the subcutaneous depots, with potential deleterious

consequences on cardiometabolic risk factors (Després and Lemieux 2006).

A direct relationship between IAA and high circulating 2-AG levels was estab-

lished by two independent studies (Bluher et al. 2006; Cote et al. 2007). When

examining two cohorts of obese patients with quite different antropometric fea-

tures, both groups of investigators found a strong direct correlation between the

concentration of 2-AG, but not of the other endocannabinoid anandamide, in the
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blood and the amount of IAA determined by computer tomography. More impor-

tantly, high 2-AG levels also directly correlated with several cardiometabolic risk

factors, including low HDL cholesterol, high triglycerides, low insulin sensitivity,

and glucose tolerance and, in the case of the study by Cote et al. (2007), also low

plasma adiponectin levels. Accordingly, in nonobese (28 < BMI < 32) patients

with partially corrected hyperglycemia caused by type 2 diabetes, the levels of both

anandamide and 2-AG were again significantly higher than in age-, BMI-, and

gender-matched nondiabetic volunteers (Matias et al. 2006). In a very recent study,

the changes in plasma endocannabinoid levels in a cohort of viscerally obese men

following a 1-year lifestyle modification program were measured and correlated

with changes in visceral adipose tissue and metabolic risk factors (Di Marzo et al.

2009a). Forty-nine viscerally obese men underwent a 1-year lifestyle modification

program including healthy eating and physical activity. As a result, most risk

factors were improved by the intervention, including body weight, waist circumfer-

ence, and visceral adipose tissue, and these changes were accompanied by a strong

reduction of plasma anandamide (�7.1%, p ¼ 0.005) and, particularly, 2-AG

(�62.3%, p < 0.0001) levels. Importantly, only the decrease of 2-AG levels

correlated with decreases of visceral adipose tissue and triglyceride levels, with

the increase of HDL3 cholesterol levels and with the decrease of a parameter of

insulin resistance. Multivariate analyses suggested that decreases in 2-AG and

visceral adipose tissue were both independently associated with decreases in

triglycerides. These findings represent strong evidence of a link of visceral obe-

sity-related metabolic risk factors, including hyperglycemia and type 2 diabetes,

with peripheral endocannabinoid dysregulation. However, it must be emphasized

that endocannabinoids are not normally released from tissues into the bloodstream

to act as hormone-like molecules, and, therefore, it remains to be clarified whether

and to what extent circulating 2-AG and anandamide levels reflect an overproduc-

tion by peripheral tissues (“spillover” effect).

5 Clinical Use of CB1 Receptor Antagonists/Inverse Agonists

Against Type 2 Diabetes

The study of the role of the endocannabinoids and their receptors in food intake and

energy balance led, only little more than a decade after the identification of this

signaling system, to the development of several new therapeutic drugs. The CB1

receptor antagonist rimonabant has successfully completed four phase III and two

phase IIIB clinical trials in obese patients with and without comorbidities (dyslipi-

demia and/or type 2 diabetes) (Després et al. 2005; Pi-Sunyer et al. 2006; Scheen

et al. 2006; Van Gaal et al. 2005) and was on the market in Europe until October 23,

2008, under the trademark name of AcompliaTM, as a therapeutic aid to dietary

restriction and exercise for the treatment of obesity (in patients with BMI > 30) or

of abdominal obesity accompanied by metabolic disorders such as dyslipidemia and

Cannabinoids and Endocannabinoids in Metabolic Disorders with Focus on Diabetes 93



type 2 diabetes (in patients with BMI > 27). The pooled results of the four

Rimonabant in Obesity (RIO) trials have been very recently analyzed (Van Gaal

et al. 2008). Other compounds with the same mechanism of action, such as

taranabant and otenabant, have just completed or are completing phase III trials

(see Di Marzo 2008a, for review). Such compounds not only reduce food intake and

body weight in obese patients, but also significantly ameliorate the signs of the

metabolic syndrome in overweight/viscerally obese and/or type 2 diabetes patients.

In particular, in obese patients with type 2 diabetes, three clinical studies using

rimonabant at the daily oral dose of 20 mg have been published. The RIO-Diabetes

trial enrolled 1,045 overweight and obese subjects with type 2 diabetes. Subjects in

this trial had to have taken metformin or sulfonylurea monotherapy for at least 6

months and to have fasting plasma glucose levels between 100 and 271 mg/dL and

hemoglobin A1c levels (HbA1c, a standard blood measure value that is indicative

of a patients’ glucose for about 2 months) between 6.5 and 10%. All subjects

continued treatment with metformin or sulfonylurea throughout the study. Subjects

treated with rimonabant (20 mg/d for 1 year, intention-to-treat population) had

significant decreases in body weight and improvements in glycemic control com-

pared with placebo (Scheen et al. 2006). This latter effect of rimonabant appeared to

be partly independent of weight loss. The SERENADE trial (Study Evaluating

Rimonabant Efficacy in Drug-NAı̈ve DiabEtic Patients) was conducted on 278

patients with T2D, HbA1c levels >7% and <10%, and not adequately controlled

by diet alone for a period of 6 months in the absence of other medications. Baseline

HbA1c (7.9%) was reduced by �0.8% with rimonabant vs. �0.3% with placebo,

with a larger rimonabant effect in patients with baseline HbA(1c) � 8.5% (Delta

HbA(1c) �1.25%; P ¼ 0.0009). Weight loss from baseline was �6.7 kg with

rimonabant vs. �2.8 kg with placebo. Rimonabant induced improvements from

baseline in waist circumference, fasting plasma glucose, triglycerides, and HDL

cholesterol. Again, statistical analyses suggested that approximately 57% of the

improvements in HbA1c were independent of weight loss (Rosenstock et al. 2008).

The results of the ARPEGGIO trial, the first trial of rimonabant in patients with type

2 diabetes, not adequately controlled with insulin therapy, were recently published

(Hollander et al. 2010). The 368 type 2 diabetic patients participating in this 11-

month trial had been treated with insulin for an average duration of 6 years prior to

entering the 48-week treatment with the CB1 antagonist. Rimonabant 20 mg signif-

icantly improved HbA1c by 0.89% from the baseline value and 0.64% over the

control group (p < 0.0001). Rimonabant tripled the number of diabetic patients

reaching the 7% HbA1c level recommended by the international medical guidelines

(18.4% for the rimonabant group below 7% and 6.75% patients for the control

group). A statistically significant reduction of fasting plasma glucose over control,

resulting in a mean treatment difference of �0.88 mmol/l in favor of rimonabant

20 mg/day, consistent with the HbA1c reduction, was observed. This action on

glucose control was three times more pronounced when rimonabant was added than

insulin and lifestyle advice alone. Also in this case, rimonabant demonstrated a

statistically significant body weight loss over placebo, resulting in a mean treatment

difference of �2.56 kg (Hollander et al. 2010). Concern has been raised regarding
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the side effects of chronic treatment with rimonabant 20 mg/day in obese and/or

type 2 diabetes patients. While such treatment increases the odds of experiencing

nausea, dizziness, and diarrhea (Di Marzo 2008b; Van Gaal et al. 2008), it is the

worsening effects on anxiety and depression that caused the strongest preoccupa-

tion (see below), also due to the fact that obesity and type 2 diabetes are associated

with increased depression, and weight loss per se is also cause of depressed mood.

One way to circumvent this problem is to treat only those patients with no previous

history of strong anxiety and depression. In fact, it has been estimated that in this

case depressive disorders are observed in 3.2% of the patients, and anxiety in 5.6%

of the patients, as compared to 1.6 and 2.4% in placebos, respectively. In the

ARPEGGIO trial, fewer patients in the rimonabant group compared with the

control group experienced serious treatment emergent adverse events (16.8% vs.
19.3%, respectively). Anxiety was reported in 5% of the patients in the control arm

vs. 14% in the rimonabant arm. Depression (including depressed mood) was 7.5%

in the control group vs. 14% in the rimonabant group. However, in this trial, a

previous history of depression was not an exclusion criterion. On the other hand,

similar numbers of severe hypoglycemia were reported with rimonabant 20 mg/day

and control. In the SERENADE study, these adverse events occurred less fre-

quently than in the ARPEGGIO study, i.e., anxiety was reported in 5.8% vs. 3.6%
and depressed mood in 5.8% vs. 0.7% in rimonabant vs. the placebo groups.

As shown by these clinical trials, the metabolic effects of rimonabant are elicited

in a way that seems to be only partially due to weight loss, in agreement with the

hypothesis that CB1 receptor antagonists target a potentially overactive endocan-

nabinoid system acting directly on peripheral cells and organs. Further studies had

been planned to explore the possibility that rimonabant, alone or in combination,

can be used as a therapy to ensure glycemic control in patients with type 2 diabetes.

For example, the safety and effectiveness of combining drugs with different

mechanisms of action for the treatment of obesity and diabetes were under investi-

gation in the REASSURE and ALLEGRO trials. In these trials, obese patients with

type 2 diabetes would have received concomitant treatment with rimonabant,

metformin, and sulfonylureas. In the REASSURE trial, rimonabant was being

administered to subjects not adequately controlled on metformin and sulfonylures,

whereas in the ALLEGRO trial, glimepiride treatment would have been compared

with rimonabant plus metformin combination treatment (ClinicalTrials.gov Identi-

fiers NCT00546325 and NCT00449605). However, these two trials have been

interrupted due to the discontinuation of rimonabant clinical development by

Sanofi-Aventis.

Indeed, during the preparation of this article the European Medicine Agency

(EMEA) decided to suspend the marketing of Acomplia in the EU since it has

become the opinion of the EMEA’s Committee for Medicinal Products for Human

Use (CHMP) that the benefits of this drug in its “real life” use (i.e., outside of the

well-controlled boundaries of the clinical trial) “no longer outweigh its risks,”

possibly also due to the fact that “available data indicate that patients generally

take Acomplia only for a short period.” This decision prompted Sanofi-Aventis to

interrupt, in the fall of 2008, the marketing and further clinical development of
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rimonabant and other pharmaceutical companies to suspend the development of

their CB1 receptor inverse agonists/antagonists. However, the suspension of Acom-

plia for obesity should not preclude the development of a second generation of CB1

antagonists, for example those that, because of lesser penetration in the brain (see

Tam et al. 2010, for a recent example), should be devoid of the psychiatric side

effects that have led to the discontinuation of rimonabant. As discussed by Di

Marzo & Després (2010), rather than global obesity, which is very often associated

with depressive disorders, the indication of such novel compounds, as well as of

other strategies aiming at reducing endocannabinoid overactivity, should be instead

for those metabolic dysfunctions that are associated with abdominal obesity. For

example, the administration of second-generation CB1 receptor antagonists to

moderately obese patients (27 < BMI < 33) with high IAA, low HDL cholesterol,

high triglycerides, and high fasting glycemia, is likely to improve considerably the

benefit/risk ratio of these compounds and result in long-term beneficial outcomes

on type 2 diabetes.

6 Plant Cannabinoids and Type 1 Diabetes

Cannabis sativa is the unique source of a group of terpeno-phenols known as

cannabinoids. (Mechoulam 1970; Hanus and Mechoulam 2008) Only two of them

– D9-THC and cannabidiol (CBD) – have been studied extensively. The propyl

homologue of D9-THC (named D9-tetrahydrocannabivarin, D9-THCV) has recently

been found to act as cannabinoid antagonist (Mechoulam 2005; Thomas et al.

2005). While some of the relevant activities of D9-THC are discussed above, the

major nonpsychoactive constituent CBD has only recently become the object of

detailed studies (Mechoulam and Hanus 2002; Mechoulam et al. 2002, 2007). This

compound causes a myriad of pharmacological effects. Its binding to the cannabi-

noid receptors is extremely weak and its effects are apparently based on numerous

mechanisms, such as inhibition of adenosine uptake, anti-oxidant activity, action

on 5-HT receptors (Mechoulam et al. 2007), or on TRPV2 and TRPA1 channels

(De Petrocellis et al. 2008; Qin et al. 2008) and possibly others. Its relevance to the

topics discussed in this review is mainly its activity on diabetes type1.

6.1 Type 1 Diabetes Mellitus

Type 1 diabetes mellitus (insulin-dependent diabetes) is an autoimmune disease

resulting in destruction of insulin-producing pancreatic b-cells, a process which is

assumed to be mediated mainly by CD4 Th1 and CD8 T lymphocytes (Atkinson

and Leiter 1999; Mandrup-Poulsen 2003). The nonobese diabetes-prone (NOD)

mouse is the animal used most often for preclinical evaluation of prophylactic and

therapeutic treatments of type 1 diabetes. When NOD mice are not treated, they
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develop a disease with characteristics similar to autoimmune insulitis in humans

(Anderson and Bluestone 2005). Insulitis is an inflammation of the islets of

Langerhans and is the initial lesion of insulin-dependent diabetes mellitus, during

which leukocytes, and lymphocytes in particular, surround and infiltrate the islets.

As CBD has been shown to suppress cell-mediated autoimmune joint destruction

in an animal model of rheumatoid arthritis, and as diabetes type 1 has an autoim-

mune basis, its activity was studied on an animal model of this disease (Weiss et al.

2006). It was found that CBD treatment of 6- to 12-week-old NOD mice signifi-

cantly reduces the incidence of diabetes from 86% in nontreated control mice to

30% in CBD-treated mice. CBD treatment also resulted in the significant reduction

of plasma levels of the proinflammatory cytokines, IFN-g and TNF-a. Th1-asso-
ciated cytokine production of in vitro-activated T-cells and peritoneal macrophages

was also significantly reduced in CBD-treated mice, whereas production of the

Th2-associated cytokines, IL-4 and IL-10, was increased when compared to

untreated control mice. Histological examination of the pancreatic islets of CBD-

treated mice revealed significantly reduced insulitis. These results indicated that

CBD can inhibit and delay destructive insulitis and inflammatory Th1-associated

cytokine production in NOD mice, resulting in a decreased incidence of diabetes

possibly through an immunomodulatory mechanism shifting the immune response

from Th1 to Th2 dominance.

While numerous approaches have successfully been used to prevent diabetes

type 1 in NOD young mice, the amelioration of diabetes after onset, or around onset

time, is much more difficult to achieve. Importantly, however, some of the therapies

initiated in this model around onset time were found to show efficacy in clinical

trials. Hence, Weiss and coworkers repeated the CBD treatment in 11- to 14-week-

old female NOD mice, which were either in a latent diabetes stage or with initial

symptoms of diabetes. It was noted that CBD ameliorates the manifestations of the

disease (Weiss et al. 2008). At the end of the treatment, diabetes was diagnosed in

only 32% of the mice in the CBD-treated group, compared to 86 and 100% in the

emulsifier-treated and untreated groups, respectively. In addition, the levels of the

proinflammatory cytokine IL-12 produced by splenocytes was significantly

reduced, whereas the levels of the anti-inflammatory IL-10 was significantly ele-

vated following CBD treatment. Histological examination of the pancreas of CBD-

treated mice revealed more intact islets than in the controls. These data strengthen

the previous assumption that CBD, known to be safe in humans, can possibly be

used as a therapeutic agent for treatment of type 1 diabetes.

7 Concluding Remarks

The endocannabinoid system has been in the center of interest in numerous fields

over the last few years. In this review, we have summarized its involvement in

feeding and energy metabolism. Originally, it was believed that the endocannabinoid

system mostly affected appetite. Additional research, however, led to findings that
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strongly indicate its involvement in energy storage in adipose tissue and reduction

of energy expenditure. It was also found that the endocannabinoid system affects

both lipid and glucose metabolism. Its dysregulation is now known to cause effects

leading to a number of pathological metabolic conditions, such as obesity, dyslipi-

demia, and type 2 diabetes. A drug, rimonabant, acting as an antagonist/inverse

agonist at the CB1 receptor was developed and used in the clinic mostly as an anti-

obesity drug rather than to correct the metabolic effects of endocannabinoid

dysregulation. Unfortunately, its side effects associated with the actions of the

endocannabinoid system on mood led to its withdrawal. The possibility of using

lower (and safer) doses of rimonabant and other second-generation CB1 antago-

nists/inverse agonists was not so much to reduce total body weight, but instead a

special type of obesity, known as abdominal (“central”) obesity, and its direct

consequence, i.e., dyslipidemia, as well as against prediabetes and type 2 diabetes

still exists. Indeed, peripherally restricted CB1 antagonists, which seem to be

devoid of central side effects in rodents, are being developed (Tam et al. 2010).

Finally, the use of nonpsychotropic plant cannabinoids, such as CBD, against type 1

diabetes should now be tested in specific clinical trials.
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Abstract Recently, the idea has been developed to lower blood glucose levels in

diabetes by inhibiting sugar reabsorption in the kidney. The main target is thereby

the early proximal tubule where secondary active transport of the sugar is mediated

by the sodium-D-glucose cotransporter SGLT2. A model substance for the inhibi-

tors is the O-glucoside phlorizin which inhibits transport competitively. Its binding

to the transporter involves at least two different domains: an aglucone binding site

at the transporter surface, involving extramembranous loops, and the sugar binding/

translocation site buried in a hydrophilic pocket of the transporter. The properties of
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these binding sites differ between SGLT2 and SGLT1, which mediates sugar

absorption in the intestine. Various O-, C-, N- and S-glucosides have been synthe-

sized with high affinity and high specificity for SGLT2. Some of these glucosides

are in clinical trials and have been proven to successfully increase urinary glucose

excretion and to decrease blood sugar levels without the danger of hypoglycaemia

during fasting in type 2 diabetes.

Keywords Blood glucose control � Diabetes � Glucosides � Renal sugar transport �
Sodium-D-glucose cotransporter

1 Preface

One of the main features of diabetes is the elevation of blood sugar with its

deleterious consequences in a variety of tissues (Ceriello 2005). Thus, control of

the plasma glucose level is of utmost importance in the treatment of this disease. In

recent years, the idea has evolved that affecting glucose absorption in the intestine

and/or the glucose reabsorption in the kidney might be a possible way to control the

sugar level. Therefore, initially inhibitors of sugar absorption have been developed

which inhibit the hydrolysis of sucrose and lactose by disaccharidases in the

intestinal lumen. Examples that have been successfully introduced in the market

are acarbose (Precose R or Glucobay R), voglibose (Basen R) and miglitol (Glyset

R) (Asano 2003; de Melo et al. 2006). As the molecular understanding of sugar

transport progressed, inhibitors of the transport molecule itself have been synthe-

sized, some of which are currently undergoing preclinical and clinical testing. The

main emphasis was thereby placed on specific inhibitors of the sugar reabsorption

in the kidney. The following chapter briefly reviews the cellular and molecular

basis of transepithelial sugar transport. It then summarizes the properties of the lead

substance phlorizin and defines the pharmacologically important regions of the

molecule. A description of the “phlorizin receptor” and its binding sites for phlor-

izin follows. Then screening procedures for sodium-D-glucose cotransporter

(SGLT) inhibitors are introduced and the results of preclinical and clinical tests

are compiled. In a synopsis, the current state of art in the development of SGLT

inhibitors and their potential therapeutic use are discussed.

2 The Sodium-D-Glucose Cotransporter as Target

2.1 Role of Sodium-D-Glucose Cotransport in Transepithelial
Sugar Transport

The SGLT plays a pivotal role in the translocation of sugars across epithelial

membranes. In the small intestine and the renal tubule, transport of the sugar
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is active and requires the coupling of cellular energy metabolism to the transepithe-

lial translocation. The SGLT is the site where such coupling occurs. The coupling is

not direct, i.e. there is no hydrolysis of ATP involved as in other so-called primary

active transport events such as those mediated by ion translocating ATPases.

Instead, the transporter uses the energy “stored” in an ion gradient to transport

sugars against their concentration difference. Such processes are called secondary

active and are used widely in unicellular and multicellular organisms. In mamma-

lian species, the most prominent ion whose gradient across the cell membrane is

used as driving force is sodium. The secondary active transport of organic sub-

stances – sugars, amino acids, carboxylic acids and inorganic ions such as chloride

and phosphate involves the simultaneous movement of sodium ions – one, two or

three – mostly in the same direction as the substrate in a symport mode. For

vectorial transcellular transport also an asymmetry of the cell must be established,

so that the plasma membrane facing one compartment has to contain different

transporters than the membrane facing the other compartment into which translo-

cation occurs (Kinne 1991).

Both of these elements are incorporated in current models on active transepithe-

lial sugar transport. Only the apical membrane of the epithelial cell (termed brush

border in the small intestine and in the renal proximal tubule) contains the SGLT.

The sodium gradient across the brush border is generated by the sodium–potassium

stimulated ATPase, a primary active ion transport ATPase which removes sodium

from the cell interior in exchange to potassium ions. Thus, D-glucose can be

accumulated in the epithelial cells uphill from the intestinal or renal tubular

lumen above the sugar concentration in the blood. The sugar leaves the cell along

its concentration difference in a carrier-mediated, sodium-independent, passive

movement (Wright et al. 2007).

Sugar absorption in the human gut occurs in the first segments and there it has a

high affinity and high velocity. As of the colon, sugar absorption ceases and sugar

required for the intracellular metabolism enters the intestinal cells from the cell side

exposed to the blood. Studies on the presence of SGLT1 mRNA and protein

expression in the various intestinal segments confirmed and extended the knowl-

edge on the intra-intestinal distribution. It should be noted that sugar transport in the

intestine is also a mode to absorb sodium across the epithelium; therefore, the

enteral application of a sodium–sugar solution is one of the most effective ways to

compensate for the fluid and electrolyte loss in diarrhoea (Wright et al. 2007).

The other main organ where active sugar transport occurs is the kidney. In the

early part of the proximal tubule, bulk reabsorption of filtered glucose against a

small gradient occurs, in the late part residual glucose is removed against a steep

concentration difference. Transport studies in the early and late segments of the

proximal tubule as well as vesicle studies showed that the kidney contains two

D-glucose cotransporters which differ in their stoichiometry for sodium in the early

proximal tubule, one sodium and one sugar molecule are translocated together

across the luminal membrane whereas in the late part two sodium ions are translo-

cated with one sugar molecule. The two transporters also differ in their affinity for

D-glucose; in the early part the apparent transport affinity (Km) is about 2 mM, in the
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late part the affinity is higher – Km less than 0.5 mM. The two SGLTs also exhibit a

different substrate specificity – distinction between D-galactose in the early part but

not in the late part (Burckhardt and Kinne 1992).

The transporter in the late part is similar to the one found in the intestine termed

SGLT1 whereas the one in the early proximal tubule is now referred to as SGLT2.

The inherited disease of familial renal glucosuria can indeed be traced to a lack in

SGLT2 in the early proximal tubule (Feld 2001; Calado et al. 2008). Interestingly,

in these patients the reabsorptive capacity of the late proximal tubule seems to

suffice to maintain a normal plasma glucose level. Thus, the only symptom is the

increased urinary glucose excretion (Kleta et al. 2004). A lack of SGLT1 causes

glucose–galactose malabsorption in the intestine with severe diarrhoea and salt and

fluid loss (Wright et al. 2007).

2.2 Molecular Basis of Sodium-D-Glucose Cotransport

In 1987, Ernie Wright and his associates were able to identify the genetic message

coding for the human intestinal SGLT by expression cloning using functional

expression in oocytes and fractionation of the mRNA as a tool (Hediger et al.

1987). The gene codes for a protein of ~75 kDa which is heavily glycosylated. The

glycosylation apparently does not affect its function but is probably related to its

presence in the luminal brush border membrane, which is covered by an extensive

glycocalyx.

Availability of the SGLT1 gene led thereafter to the identification of an identical

gene in the kidney (Morrison et al. 1991) and to the similarity cloning of SGLT2

(Kanai et al. 1994). It also allowed performing mutagenesis studies to further

elucidate the substrate binding sites, phosphorylation sites and inhibitor binding

sites (Wright et al. 2007). In addition, overexpression in cells could be achieved

which in the end led to the isolation of the transporter after heterologous expression

in yeast (Tyagi et al. 2005).

The molecule responsible for the sodium-independent translocation of sugars

has also been identified – there is a whole GLUT family whose properties have been

reviewed recently. There is only a very limited sequence homology between SGLT

and GLUT (Stuart and Trayhurn 2003).

Knowledge of the sequence also allowed for prediction and experimental analy-

sis of the membrane topology of the transporter. The results of these studies

consistently show that the N-terminus is pointing to the outside of the cell and

that the molecule has 14 transmembrane segments. A major discrepancy exists

concerning the topology at the C-terminus. Wright and associates position the loop

between the 13th and 14th transmembrane segment (loop 13–14) into the cytoplasm

(Hediger et al. 1987) whereas Puntheeranurak et al. have evidence for a location of

at least the late part of the loop on the extracellular surface of the transporter

(Puntheeranurak et al. 2006). The location of loop 13–14 is essential because, as

108 R.K.H. Kinne and F. Castaneda



will be shown later, this loop appears to be part of the phlorizin binding site of the

transporter.

The C-terminus also constitutes the transmembrane segments X–XIII of the

transporter which are involved in sugar recognition and sugar translocation (Wright

et al. 2007); the N-terminal segments IV–V are involved in sodium recognition as

well as glucose binding and coupling of the sodium gradient to the sugar movement

during cotransport.

2.3 Sugar Binding Sites of the SGLT

2.3.1 Substrate Specificity of the Sodium-D-Glucose Cotransporters

Extensive investigations on the essential features of the D-glucose molecule were

undertaken to define the substrate specificity of transport. Only sugars in a hexose

and the D-configuration are translocated whereas fructose as well as L-glucose and

other sugars with the L-conformation are not transported. The positioning of the

hydroxyl group at C1 is important as beta sugars are transported more avidly than

alpha sugars. Short aliphatic and aromatic residues as in alpha-methyl D-glucose

and arbutin (beta-phenyl D-glucoside) are also tolerated (Wright et al. 2007).

Beta-glucosides with larger aromatic aglucones and the aglucones themselves

are bound to the transporter and not translocated; they act as inhibitors of the

transport.

The hydroxyl group at C2 has to be present in an equatorial position, thus

2-deoxy D-glucose, mannose and N-glucosamine are not transported. The presence

of the hydroxyl group at C3 and its positioning has also some effect on transport,

but 3-deoxy D-glucose, allose and 3-O-methyl D-glucose are transported although

with a lower affinity and velocity. Galactose with a modification at the hydroxyl

group at C4 is transported by SGLT1 but only to a limited extent by SGLT2. The

hydroxyl group at C6 is of minor importance, 6-deoxy-glucose is transported by

both SGLTs. At position C6, the SGLT2 seems to have an interesting additional

hydrophobic binding site with a rather high binding capacity. Thus, C6 alkyl

residues have a higher affinity for SGLT2 than for SGLT1 (Kipp et al. 1997).

It has to be pointed out that the substrate specificity at the inner or cytoplasmic

side of the carrier is different. At the cytoplasmic side, the selectivity with regard to

L-glucose is reduced, the affinity for sugars is very much lower and the sodium

sensitivity is also considerably decreased (Firnges et al. 2001).

There are differences in the substrate specificity of the overall transport process

and the initial binding events at the outer surface of the transporter that precede the

translocation. At the initial binding site, the primary sorting of the sugars according

to the D- or L-configuration and the presence of the hydroxyl group at C3 occurs.

At the entry to the translocation step, a further selection of the sugars with regard to

the position and presence of the OH-groups at the other C-atoms takes place

(Puntheeranurak et al. 2007b; Tyagi et al. 2011).
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C-arylglucosides and S-glycosides. For details see text
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2.3.2 Sugar Binding Site(s) of the Sodium-D-Glucose Cotransporter

According to mutagenesis studies, amino acids involved in sugar transport are

clustered in transmembrane segments X, XI, XII and XIII. These amino acids are

accessible from the outside of the membrane and are located in a hydrophilic pocket

(Tyagi et al. 2007). The binding pocket has a depth of about 7 Å. A recent

publication on the structure of an archetype of a sugar sodium cotransporter

confirms the assumption of the presence of a hydrophilic pocket in the outside-

facing conformation and in the inside-facing conformation. The gates between

these two pockets are formed by clusters of hydrophobic amino acids (Faham

et al. 2008).

Atomic force microscopy (AFM) studies combined with accessibility and muta-

genesis studies have recently shown that disulfide bridges between extramembra-

nous loops are also important in forming the initial sugar binding site at the carrier.

Thus, extramembranous loops 6–7 and 13–14 seem to be interconnected by a

disulfide bridge to form a binding pocket which also brings loop 8–9 and TMs VI

to XIII closely together, thereby facilitating the formation of the sugar translocation

pathway (Puntheeranurak et al. 2007a; Tyagi et al. 2011).

3 The Prototype of SGLT Inhibitors: Phlorizin

3.1 General Remarks

The structure of the most frequently studied O-glucoside inhibitor of the SGLT,

phlorizin, is shown in Fig. 1 (compound 1). Phlorizin, a beta glucoside derived from

the bark of apple roots inhibits glucose transport in the intestine and in the kidney

(Ehrenkranz et al. 2005). The affinity of phlorizin in transport studies, i.e. in the

presence of D-glucose is about 1 mM for hSGLT1 and 20 nM for hSGLT2 (Pajor

et al. 2008). Phlorizin was also shown to competitively inhibit the transport without

evidence that it is translocated across the membrane. In a series of transport studies

in microperfused rat renal tubules (Vick et al. 1973), it was found that the affinity of

phlorizin congeners mirrored the stereospecific requirements for sugar transloca-

tion, supporting the view that interaction of phlorizin with the transporter occurs at

the sugar binding/translocation site of the transporter. On the other hand, the nature

of the aglucone influenced the inhibitory potency. It had also been observed

previously that phloretin, the aglucone of phlorizin inhibits sugar transport but in

a non-competitive way and with a low affinity (Vick et al. 1973). Thus, it was

concluded that phlorizin binds to the outside of the SGLT at two domains, one

represents the sugar binding site and the other acts as an aglucone binding site.

These multiple interactions can explain the high affinity of phlorizin compared to

the substrate D-glucose.
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3.2 SGLT as Phlorizin Receptor

3.2.1 Binding Studies on Brush Border Membranes

The availability of radioactively labelled phlorizin made it possible to study the

interaction between phlorizin and the SGLT directly. On isolated brush border

membranes of rat kidney high affinity binding of phlorizin could be demonstrated,

which was sodium dependent and competitively inhibited by D-glucose but not by

L-glucose. The maximum amount of phlorizin bound specifically to the brush

border membrane was found to be 10 nmol/mg membrane protein and the number

of receptors (transporters) per apical cell surface was estimated to be about 6,000

per cell (Bode et al. 1970). Sodium-dependent, D-glucose-inhibitable binding of

phlorizin was also used in our laboratory as a signal in initial attempts to purify the

transporter, as was the interaction with a phlorizin polymer.

It should be noted here that for the binding studies renal but not intestinal brush

border membranes had to be used, because the renal membranes do not contain the

disaccharidases that hydrolyze O-glycosides in the intestine.

3.2.2 Interactions of Phlorizin with the Isolated Transporter

and Its Subdomains

Heterologous expression of hSGLT1 in yeast and isolation of the protein by affinity

chromatography made it possible to study the interactions of the phlorizin receptor

with phlorizin in more detail. As determined by tryptophan fluorescence experi-

ments, phlorizin is bound to the isolated receptor in a sodium-dependent manner

with an affinity of about 5 mM. It also could be shown that phlorizin but not

phloretin induces the same conformational changes in the substrate binding site

as D-glucose, adding proof to the assumption of an interaction of the glucose moiety

of phlorizin with the sugar binding site of the phlorizin receptor (Tyagi et al. 2007).

The location of the aglucone binding site was investigated initially in rabbit

SGLT1 by mutagenesis and transport studies in transfected cells which showed

that the region between aa 602 and 610 is critically involved in phlorizin binding

but not in sugar binding (Novakova et al. 2001). The same conclusion was reached

in Trp fluorescence studies on the isolated transporter (hSGLT1) which showed

that positions 602 and 609 undergo major changes in conformation when phlorizin

or phloretin is present in the solution but undergo only minor changes in the

presence of D-glucose (Tyagi et al. 2007). Evidence for a location on the surface

of the transporter was derived from AFM studies using cantilever tips primed with

an antibody against aa 606 to 630. The antibody interacted specifically with

rbSGLT1 in intact cells under physiological conditions suggesting that this region

of the receptor is accessible from the extracellular site. In the presence of phlorizin,

the probability of binding of the antibody was drastically reduced indicating a

strong conformational change in this region of the transporter. The aa 606 to 630
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represent the late part of loop 13–14 – presumably one of the extramembranous

loops of the transporter – as discussed earlier (Puntheeranurak et al. 2007a).

The molecular mechanism of the binding of phlorizin was further investigated on

isolated subdomains of rbSGLT1. Binding studies with loop 13 in solution confirmed

a specific interaction of phlorizin with this domain of the transporter. Phlorizin

unfolds part of the loop and then brings the two small helical segments closely

together, leading to a condensed conformation of the loop (Raja et al. 2003). Such

condensation – increased hydrophobicity of the peptides – is also observed in the

complete isolated carrier (hSGLT1) in the presence of phlorizin. Alkylglucosides

which have also been found to inhibit SGLT bind with a high affinity to the isolated

loop, they induce a different but also condense conformation (Kipp et al. 1997).

3.2.3 Differences Between hSGLT1 and hSGLT2

For the discussion in this chapter, it is of interest to compare the sequence of SGLT1

and SGLT2. As expected there are many sequence similarities or conservative

replacements and identities in particular in the transmembrane segments. The

extramembranous loops are more variable, in particular in the C-terminus where

the aglucone binding site of the phlorizin receptor is located (Althoff et al. 2006).

Thus, loop 13–14 of the hSGLT2 has ten more amino acids than hSGLT1 and two

more cysteines close to the assumed binding site. In addition, several hydrophilic

amino acids have been replaced by hydrophobic residues. Only recently, the two

human transporters were compared with regard to the properties and the importance

of the amino acids in the aglucone binding region. Pajor et al. (2008) described that

hSGLT2 has a higher affinity for the aglucone phloretin than hSGLT1, confirming

differences in the properties of the binding site and explaining the higher affinity of

hSGLT2 for phlorizin. Furthermore, mutation of the conserved cysteine in position

610 in hSGLT1 led, as expected, to a decrease in the affinity of the transporter to

phlorizin whereas mutation of the equivalent Cys 615 in hSGLT2 caused an

increase in affinity. Thus, the two transporters differ significantly not only in their

sugar binding sites but also in the conformation and the physical chemical proper-

ties of their aglucone binding sites.

3.3 Pharmacophore Analysis and Dimensions of
the Phlorizin Binding Pocket

In a study combining 2D-NMR, molecular dynamics and pharmacophore analysis,

the essential elements for the interaction of phlorizin with its binding pocket in

nonhuman SGLTs were determined. The most probable phlorizin conformation

shows a nearly perpendicular arrangement of the two aromatic rings (A and B) with

the ring B situated above the sugar ring. As shown in Fig. 2, hydrogen bonding via
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hydroxyl groups of the glucose moiety at C(2), C(3), C(4) and C(6) and at C(4) and

C(6) of aromatic ring A and hydrophobic interactions via the pyranoside ring and

aromatic ring A are the essential features. From these conformational features of the

pharmacophore, the dimension of the phlorizin binding site on the SGLT was

estimated to be 13 � 10 � 7 Å (Wielert-Badt et al. 2000). Combined with the

fluorescence studies mentioned earlier, the 7 Å probably correspond to the hydro-

philic pocket into which the sugar molecules and the sugar moiety of phlorizin

orient themselves. The area above the pocket probably represents the (mostly

hydrophobic) aglucone binding site on the surface of the transporter (late part of

loop 13–14). A tentative model of the phlorizin binding site of hSGLT1 is shown in

Fig. 3. The sugar moiety thereby interacts with amino acids in the sugar binding

pocket of the transporter whereas the aglucone moiety interacts with amino acids

located on the surface of the transporter in the late part of loop 13–14 (Tyagi et al.

2007, 2011). In rat kidney also the hydroxyl group at the 6 position of the B ring

proved to be important for the action of various compounds on the glucose

reabsorption (Hongu et al. 1998b).

4 Synthesis and Screening of Derivates of Phlorizin

4.1 O-glucosides, C-arylglucosides, N-glucosides
and S-glycosides

Phlorizin (glucose, 1-[2-(b-D-glucopyranosyloxy)-4,6-dihydroxyphenyl]-3-(4-
hydroxyphe-nyl)-1-propanone, compound 1 in Fig. 1) can be considered as the

Fig. 2 Pharmacophore

analysis of phlorizin (white
bars carbon atoms, grey bars
hydrogen atoms, black bars
oxygen atoms and circles
pharmacophoric elements)

(reprinted from Wielert-Badt

et al. 2000)
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lead substance for inhibitors of SGLT. Despite the observed anti-diabetic effect of

phlorizin, it is not suited as a potential drug for the treatment of diabetes because of

its low absorption caused by the hydrolysis of the O-glycosidic bond by intestinal

disaccharidases. As a consequence, other glycosides have been developed some of

which are shown in Fig. 1. One of these substances is T-1095 (compound 2: 3-(benzo

[b]furan-5-yl)-2,6-dihydroxy-4-methyl propiophenone 2-O-(6-O methoxy-car-

bonyl-b-D-glucopyranoside), a phlorizin-based SGLT inhibitor (Adachi et al.

2000; Arakawa et al. 2001; Oku et al. 1999, 2000a; Tsujihara et al. 1999). T-1095

has been shown to correct elevated blood glucose levels in rodents (Oku et al. 1999,

2000c; Ueta et al. 2005, 2006).

In glucosylated dihydrochalcones modification of the benzofuran moiety to

benzodioxane (compound 3) or 4-ethoxyphenyl (compound 4), the 4-substituent

of the phenyl ring improve SGLT2 selectivity. Another example is the modification

of the ketone/phenol moiety of compound 2 leading to the indole-O-glucosides

(compound 5 and compound 6). Recently, canagliflozin, a novel C-glucoside with a

thiophene ring has been added as potential drug. Also N-glucosides have been

considered as interesting compounds (Washburn 2009).

Finally, thioglycosides, such as phenyl-1-thio-b-D-glucopyranoside (compound

11) and 2-hydroxymethyl-phenyl-1-thio-b-D-galacto-pyranoside (compound 12),

have been shown to exert a pronounced inhibitory effect on SGLT2 and SGLT1,

respectively (Castaneda et al. 2007)

Several SGLT inhibitors are currently in clinical trials. This is the case for sergli-

flozin (compound 7) and dapagliflozin. Sergliflozin is a benzylphenol glucoside

(Katsuno et al. 2007) and dapagliflozin is a C-aryl glucoside (Meng et al. 2008).

Fig. 3 Hypothetical scheme of major interaction sites between phlorizin (Phlz) and hSGLT1. The

sugar moiety of phlorizin interacts with residues Gln457 and Thr460 present in transmembrane

helix XI probably by the same hydrogen bond interactions as D-glucose does; the aromatic ring

A of the aglucone interacts with Phe609/Phe602, and ring B makes contact with Phe602/Phe609;

both are present in the extracellular loop 13 of hSGLT1 (reprinted from Tyagi et al. 2005)
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Dapagliflozin is the SGLT2 inhibitor with themost clinical data available to date, with

other SGLT2 inhibitors currently in the developmental pipeline. It has demonstrated

sustained, dose-dependent glucosuria over 24 h with once-daily dosing in clinical

trials (Hanefeld and Forst 2010; Neumiller et al. 2010).

4.2 Screening Methods

4.2.1 Cellular Assays

The activity of SGLT has been analyzed by different methods, including transport

assays with radioactively labelled sugars in brush border membrane vesicles (Kinne

et al. 1975; Murer et al. 1974), Xenopus oocytes (Parent et al. 1992a) and transiently
or permanently transfected cells (Brot-Laroche et al. 1987). The Xenopus oocyte
expression system in combination with voltage-clamp techniques has yielded

important details on the mechanisms underlying the binding and translocation

reactions of the transporter (Kimmich 1990; Parent et al. 1992b; Sakhrani et al.

1984; Wright et al. 2007). One of the most widely used cell line is the Chinese

Hamster Ovary (CHO) cell line (Lin et al. 1998; Sakhrani et al. 1984). Stably

transfected CHO cells expressing hSGLT1 or hSGLT2 (Castaneda and Kinne 2005)

or transiently transfected CHO (Katsuno et al. 2007) and COS-7 cells (Pajor et al.

2008) have also been used for functional characterization and screening of mutants

and analysis of inhibitors.

Current methods that use radioactive labelled substances, however, are expen-

sive due to the amount of radioactive compounds required and the large amount of

substance necessary for inhibitor-type studies. For these reasons, we developed an

alternative 96-well automated method to study the activity of hSGLT1 and hSGLT2

using stably transfected CHO cells (Castaneda and Kinne 2005). The advantage of

using the 96-well method is the low amount of radioactive compounds and inhibi-

tory substances required, as well as the ability to establish reproducibility because

of the repetition built into the assay. Furthermore, this method can easily be

performed semi-automatically to yield quantitative data regarding key aspects of

glucose membrane transport and kinetic studies of potential inhibitors of human

SGLT1 and SGLT2.

In addition to electrophysiology and radioactivity, fluorescence methods have

also been reported. Fluorescence resonance energy transfer has been used to

monitor changes of membrane potential as an indicator of uptake caused by

SGLT (Castaneda et al. 2007; Weinglass et al. 2008). Also, fluorophore-conjugated

SGLT2 inhibitors have been synthesized (compound 10, Fig. 1) (Landsdell et al.

2008). It has been suggested that these compounds could be used in binding studies.

Fluorescence presents some advantages over radioactivity, specifically with regard

to waste disposal and safety. Furthermore, fluorescence assays can be used for high-

throughput screening (Weinglass et al. 2008).
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4.2.2 Animal Models

Animals have been used widely as experimental models in diabetes research. The

importance of animal models in this type of research was demonstrated in studies

using pancreatectomised dogs. These studies revealed the essential role of the

pancreas and insulin in glucose homeostasis (Finkelstein et al. 1975). They also

provide important information about pharmacokinetics, pharmacodynamics,

ADME and toxicity. All of this information is mandatory to continue with clinical

trials, which is the next and last step in drug development.

Each of these models is characterized by the presence of specific metabolic

alterations found in diabetes such as hyperglycaemia, obesity, early hyperinsuli-

naemia and insulin resistance (Berglund et al. 1978; Herberg and Coleman 1977).

One of the most used animal models is the Zucker diabetic fatty (ZDF) rat model

(Zhang et al. 2006). However, other specific models for the study of glucose

intolerance and diabetic complications have also been developed. For example,

Goto-Kakizaki (GK) rats have been developed by selectively breeding them from

non-diabetic Wistar rat with glucose intolerance (Goto et al. 1988). In addition, the

C57BL/KsJ-db/db mouse represents a diabetic nephropathy animal model that is

often used (Arakawa et al. 2001).

Several studies using animal models reported the effect of SGLT inhibitors for

the treatment of diabetes. For example, chronic subcutaneous administration of

phlorizin has been shown to reduce plasma glucose levels in diabetic rodents (Jonas

et al. 1999). T-1095 reduces blood glucose levels in both type 1 (Adachi et al. 2000;

Oku et al. 1999) and type 2 (Arakawa et al. 2001; Oku et al. 1999; Ueta et al. 2005)

diabetic animal models. Canagliflozin also showed pronounced anti-hyperglycae-

mic effects in high-fat fed KK-mice (Nomura et al. 2010).

5 Therapeutic Efficacy of SGLT Inhibitors

5.1 In Vitro Studies on Sugar Transport by Cultured
Transfected Cells

The first evidence for the potential of glucosides in inhibiting glucose transport is

obtained in in vitro cell-based studies (Ohsumi et al. 2003; Oku et al. 1999). These

studies represent the first stage in drug discovery and development. The concentra-

tion required for 50% inhibition of the [14C]AMG-uptake rate (IC50) represents an

important indicator of the potential therapeutic effect of SGLT inhibitors for the

control of hyperglycaemia. The SGLT inhibitors exert their action by competitive

inhibition. For this reason, the inhibitory constant (Ki) can also be used as an

indicator of the effect of SGLT inhibitors. The IC50 values and Ki values of

SGLT inhibitors described in the literature are given in Table 1. In addition to

their affinity to the transporter – which determines the dose of the compound – the
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selectivity for SGLT2 is important, since inhibition of glucose reabsorption in the

kidney but not of the sugar absorption in the intestine has to be achieved. Therefore,

the ratio of the affinities for SGLT1 and SGLT2 is also given in the table. According

to both criteria compound 9 seems to be optimal, it shows a high affinity to SGLT2

combined with high selectivity for SGLT2. For these reasons, compound 9 (Fig. 1)

seems to be a promising therapeutic substance for the treatment of hyperglycaemia.

5.2 Effect of SGLT Inhibitors in Preclinical and Clinical Studies

5.2.1 Urinary Glucose Excretion

The SGLT inhibitors induce a dose-dependent increase of urinary glucose excretion

in different diabetic animal models including rats, mice and dogs (Adachi et al.

2000; Arakawa et al. 2001; Ellsworth et al. 2008; Oku et al. 1999, 2000b; Ueta et al.

2005). Inhibition of SGLT2 activity reduces tubular glucose reabsorption and due

to the reduction of TmG, excess plasma glucose is excreted into the urine (see

Fig. 4), thus reducing hyperglycaemia after glucose loading (Katsuno et al. 2007;

Tsujihara et al. 1996, 1999). Due to the selective inhibition of SGLT2 a residual

reabsorption of about 20–25% of the filtered load for glucose remains, attributable

to the operation of SGLT1 in the late proximal tubule. The effect of SGLT

inhibitors on urinary glucose excretion has also been associated with reduction of

Table 1 Effect of O-glucosides, C-arylglucosides and S-glucosides based on IC50 values

obtained in in vitro studies. For structure of compounds see Fig. 1

Compound hSGLT1

(IC50), mM
hSGLT2

(IC50), mM
SGLT1/

SGLT2

Therapeutic

effect

References

O-glucosides

1 0.16 0.16 1 � Oku et al. 1999

2 0.20 0.05 4 + Oku et al. 1999b

3 6.28 0.015 418.7 n.d. Dudash et al. 2004a

4 8.39 0.034 246.8 n.d. Dudash et al. 2004a

5 0.145 0.024 6 n.d. Zhang et al. 2006

6 2.14 0.028 76.4 n.d. Zhang et al. 2006

7 2.1 0.010 210 + Pajor et al. 2008b

8 4.5 0.012 364.5 + Fujimori et al. 2008

C-arylglucosides

9 1.4 0.001 1,263.6 + Meng et al. 2008b

10 n.d. 0.055 n.d. n.d. Landsdell et al. (2008)

S-glucosides

11 30 10 3 n.d. Castaneda et al. 2007

12 14 88 0.2 n.d. Castaneda et al. 2007
aKi
bUsed in clinical trials

Recently, also the results of transport studies with canagliflozin have been published (Nomura

et al. 2010). The IC50 for hSGLT2 is 2.2 nmol and the specificity ratio is 413
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body weight gain in diabetic rats resulting in a sustained improvement of hypergly-

caemia (Ueta et al. 2005).

5.2.2 Effect on Plasma Glucose Levels

The SGLT inhibitors regulate blood glucose levels in a dose-dependent manner

(Adachi et al. 2000; Katsuno et al. 2007). This effect is similar to that observed with

other anti-diabetic drugs, such as insulin secretagogues or glucosidases, and results

in improvements of postprandial hyperglycaemia (Ichikawa et al. 2002; Ikenoue

et al. 1997). In addition to reducing blood glucose, SGLT inhibitors also decrease

HbA1c levels. This effect improves glucose intolerance and insulin resistance, and

prevents the development of diabetic neuropathy in Goto-Kakizaki rats (Ueta

et al. 2005).

5.2.3 Effect on Fasting Hypoglycaemia

One of the most severe potential side effects of anti-diabetic drugs is the induction

of fasting hypoglycaemia. Animal studies demonstrated that SGLT inhibitors, such

as T-1095 (Adachi et al. 2000; Oku et al. 2000c) and sergliflozin (Katsuno et al.

2007), do not cause hypoglycaemia (equivalent to plasma glucose level below

70 mg/dl) even in a 6-h fasting condition. The reason for this behaviour is that

the inhibitors used mainly inhibit SGLT2 and not SGLT1. As evident from the

familial renal glucosuria, even a complete absence of SGLT2 does not lead to

hypoglycaemia (Kleta et al. 2004) because the residual reabsorption of glucose in

Fig. 4 Effect of SGLT2 inhibitor remogliflozin on urinary glucose excretion (UGE) and on

plasma glucose during an oral glucose tolerance test (reprinted from Fujimori et al. 2008). The

obtained UGE for vehicle was zero
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the late proximal tubule mediated by SGL1 suffices to maintain close to normal

plasma glucose level. Therefore, the risk of hypoglycaemia with these drugs is

predicted to be low, making them potentially safe drugs even in the instance of an

overdose.

6 Benefits and Pitfalls of SGLT Inhibitors

6.1 Benefits

The SGLT2 represents an important molecular target for the treatment of diabetes

because it plays a major role in renal glucose reabsorption and its tissue distribution

is limited to the kidney, thus reducing side effects.

It has been suggested that the effect of SGLT inhibitors on blood glucose control

via an increase in urinary glucose excretion results in negative energy balance with

body weight control and preservation of insulin secretion (Katsuno et al. 2007).

Weight reduction and improved insulin sensitivity caused by SGLT inhibitors

would offer some advantages over other anti-diabetic drugs, such as sulfonylureas,

a-glucosidase inhibitors, thiazolidinediones and biguanides. These effects would be
particularly important for the treatment of type 2 diabetes.

The SGLT inhibitors correct both hyperglycaemia and energy imbalance

(Hongu et al. 1998a, b; Tsujihara et al. 1996). A negative energy balance contri-

butes to a reduction of diabetes complications without necessarily decreasing body

weight or the risk of hypoglycaemia (DeFronzo 2004). In addition to the effect on

hyperglycaemia with reduction of diabetic complications observed with the use of

SGLT inhibitors, these inhibitors have also been found to be associated with

restoration of impaired insulin secretion from pancreatic ß-cells (DeFronzo 2004).

Another important characteristic of SGLT inhibitors is that they do not alter the

glucose transport via GLUT. As a consequence, glucose delivery to the brain, liver

and muscle is not affected. Moreover, the high specificity of some SGLT inhibitors,

such as sergliflozin (Katsuno et al. 2007), dapagliflozin (Meng et al. 2008) and

canagliflozin (Nomura et al. 2010), precludes any negative gastrointestinal side

effects associated with SGLT1 inhibition.

6.2 Pitfalls

The expression of SGLT1 in other tissues in addition to the kidney represents a

restriction for the use of SGLT inhibitors that are not selective to SGLT2. The

SGLT1 is expressed in the capillary endothelial cells of rat heart and muscle

(Wright et al. 2007), in capillary endothelial cells of the blood brain barrier in rat

(Elfeber et al. 2004) as well as in other tissues (trachea, testis, prostate, mammary
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and salivary glands) (Kinne unpublished; Wright et al. 2007). Therefore, the effect

of SGLT inhibitors on other tissues in which SGLT is expressed must be further

investigated.

Another important factor that remains to be evaluated is the effect of glycosuria

and osmotic diuresis induced by SGLT inhibitors. Glucosuria has been reported as a

risk factor associated with bacterial urinary tract infection. Interestingly, the con-

centration of glucose excreted into the urine is higher if bacterial growth has been

observed (Tsujihara et al. 1999). However, patients with familial renal glucosuria

due to a defect in the SGLT2 gene remain asymptomatic (van den Heuvel et al.

2002; Scholl-Burgi et al. 2004). Furthermore, altered bladder function secondary to

diabetes seems to play an additional role in the development of urinary tract

infections (Patterson and Andriole 1995) and not only the amount of glucose

excreted into the urine. For that reason, clinical trials are necessary to evaluate

the role of SGLT inhibitors in the development of urinary tract infections.

The SGLT inhibitors, such as sergliflozin, produce a slight and temporary

diuretic effect when they are used at high concentrations (equivalent to 30 mg/kg)

(Katsuno et al. 2007). At low concentration (of about 3 or 10 mg/kg), however, no

significant change in urinary volume has been reported. Osmotic diuresis in nor-

moglycaemic conditions remains asymptomatic but under hyperglycaemic condi-

tions might be associated with adverse reactions (Venkatraman and Singhi 2006).

Osmotic diuresis leads to depletion of intravascular volume and decreased renal

perfusion. As a result, the amount of glucose that can be excreted is reduced

(Adrogue 1992). The resultant hyperosmolarity and dehydration stimulates

the production of cortisol, catecholamines and glucagon, and further increases the

degree of hyperglycaemia (Kitabchi et al. 2001). These side effects need to be

investigated further to better understand the safety of SGLT inhibitors.

7 Current State and Future Developments

Based on the observed effects of different SGLT inhibitors in diabetes and hyper-

glycaemia, they have been proposed as potential therapeutic substances and new

compounds are currently under investigation. One of these compounds was a

benzylpyrazole glucoside known as remogliflozin (compound 8, Fig. 1) (Fujimori

et al. 2008). Studies performed in vitro and using diabetic animal models have

demonstrated that remogliflozin is a potent and highly selective SGLT2 inhibitor, as

shown by increased urinary glucose excretion, reduced fasting plasma glucose and

glycated haemoglobin levels, improved hyperglycaemia, hyperinsulinaemia,

hypertriglyceridaemia and insulin resistance in rodents (Fujimori et al. 2008).

However, its further development has been discontinued by GlaxoSmithKline

(Kissei Pharmaceutical Co. Ltd 2009). The most promising candidate is currently

dapagliflozin (Hanefeld and Forst 2010).

Another substance that currently is under investigation is desoxyrhaponticin, an

O-glucoside, found in extracts of the rhubarb plant. Studies in diabetic rats
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demonstrated that desoxyrhaponticin has an inhibitory effect on SGLT (Li et al.

2007). The exact mechanism of action of this substance remains to be determined.

The SGLT2 represents a promising molecular target for the development of new

alternatives in the treatment of diabetes based on the following aspects: (a) SGLT2

is expressed exclusively in the renal proximal tubules, and thus a selective SGLT2

inhibitor should not affect other tissues and (b) enhancement of urinary glucose

excretion via SGLT2 inhibition leads to a negative energy balance, which currently

is not really achieved by any existing clinical pharmacological intervention. Inhi-

bition of glucose transport in the kidney through SGLT inhibitors represents a

different mechanism of action from other hypoglycaemic agents. For these reasons,

SGLT inhibitors should be considered as a potential new therapeutic alternative for

the treatment of diabetes either alone or in combination with other anti-diabetic

drugs. Moreover, therapeutic alternatives to achieve a reduction of glucose reab-

sorption in the proximal tubules, which represents the last step in the fate of glucose

in the organism, represent an additional strategy for the treatment of diabetes that

needs to be investigated further.
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Abstract Glucocorticoid action is mediated by glucocorticoid receptor (GR),

which upon cortisol binding is activated and regulates the transcriptional expression

of target genes and downstream physiological functions. 11b-Hydroxysteroid dehy-
drogenase type 1 (11b-HSD1) catalyzes the conversion of inactive cortisone to

active cortisol. Since cortisol is also produced through biosynthesis in the adrenal

glands, the total cortisol level in a given tissue is determined by both the circulating

cortisol concentration and the local 11b-HSD1 activity. 11b-HSD1 is expressed in

liver, adipose, brain, and placenta. Since it contributes to the local cortisol levels in

these tissues, 11b-HSD1 plays a critical role in glucocorticoid action. The meta-

bolic symptoms caused by glucocorticoid excess in Cushing’s syndrome overlap

with the characteristics of the metabolic syndrome, suggesting that increased

glucocorticoid activity may play a role in the etiology of the metabolic syndrome.

Consistent with this notion, elevated adipose expression of 11b-HSD1 induced

metabolic syndrome-like phenotypes in mice. Thus, 11b-HSD1 is a proposed
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therapeutic target to normalize glucocorticoid excess in a tissue-specific manner

and mitigate obesity and insulin resistance. Selective inhibitors of 11b-HSD1 are

under development for the treatment of type 2 diabetes and other components of the

metabolic syndrome.

Keywords 11b-Hydroxysteroid dehydrogenase � Cortisol � Cushing’s syndrome �
Glucocorticoid excess � HPA axis � Metabolic syndrome

1 Glucocorticoid Metabolism and Action

The active glucocorticoid cortisol in humans (or corticosterone in rodents) is pro-

duced through both adrenal biosynthesis and tissue-specific regeneration. In contrast,

the inert glucocorticoid cortisone [or 11-dehydrocorticosterone (11-DHC) in rodents]

is only generated in kidney through enzymatic conversion of cortisol. The intercon-

version of cortisol and cortisone is catalyzed by two isozymes of 11b-hydroxysteroid
dehydrogenase (11b-HSD), type 1 (11b-HSD1) and type 2 (11b-HSD2). 11b-HSD1
is expressed in liver, adipose, brain, and placenta; 11b-HSD2 is mainly expressed in

kidney. Both enzymes have reductase and dehydrogenase activities in vitro. But

in vivo, 11b-HSD1 is primarily a reductase and 11b-HSD2 is a dehydrogenase

(Bujalska et al. 1997; Jamieson et al. 1995, 2000). 11b-HSD1 is responsible for

tissue-specific regeneration of cortisol using cortisone as substrate, whereas 11b-
HSD2 catalyzes the opposite reaction as the main source of endogenous cortisone

production. Cortisol mediates diverse physiological actions as endogenous ligand of

glucocorticoid receptor (GR), which upon ligand-induced activation triggers tran-

scriptional activation or suppression of downstream target genes. GR is a nuclear

receptor with ubiquitous tissue expression. Both the local cortisol concentration and

the GR expression level in a given tissue dictate the degree of glucocorticoid action.

There are two sources of cortisol in liver and adipose where 11b-HSD1 is expressed,
the fraction diffused from blood circulation and that produced by 11b-HSD1 within

the tissue. Unlike cortisone, which is completely in the free unbound form, the

circulating cortisol is protein bound with 6% and 90% to albumin and corticosteroid

binding globulin (CBG), respectively (Dunn et al. 1981). Since only free cortisol can

penetrate tissues and drive glucocorticoid action, CBG and albumin binding restrict

the access of cortisol to target tissues. Taken together, there are several levels of

regulation that are important determinants of glucocorticoid action: the adrenal

cortisol production rate, the protein binding by cortisol, the density of GR in tissues,

and the local cortisol production by 11b-HSD1 within a tissue.

The adrenal cortisol biosynthesis is regulated by a neuroendocrine feedback

circuit involving the hypothalamic, pituitary, and adrenal functions. This circuit is

activated by physiological stimuli such as stress (Fig. 1), resulting in the release of

the hypothalamic peptide corticotrophin-releasing hormone (CRH), which subse-

quently acts on the anterior pituitary to stimulate the secretion of adrenocortico-

tropic hormone (ACTH), a peptide hormone that augments adrenal cortisol

production and release. The circulating cortisol level itself is a regulatory feedback
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signal for CRH and ACTH release. This endocrine regulatory network constitutes

the hypothalamic–pituitary–adrenal (HPA) axis (Delbende et al. 1992). The circu-

lating cortisol follows a diurnal pattern throughout the day, reaching its maximum

concentration in the morning and nadir in late afternoon in humans (Walker et al.

1992). In contrast, the blood cortisone level remains almost constant throughout the

day (Walker et al. 1992). The HPA axis maintains the circulating cortisol concen-

tration by responding to stimuli such as diurnal changes. Since 11b-HSDs also

contribute to cortisol and cortisone production at the tissue level, the systemic

glucocorticoid homeostasis is achieved by the activities of the HPA axis and

11b-HSDs (Fig. 1). The metabolism of both cortisol and cortisone occurs in liver

involving A-ring reductases (Walker and Stewart 2003). The main final metabolites

of cortisol and cortisone, 5a- and 5b-tetrahydrocortisol (5a- and 5b-THF) and

5b-tetrahydrocortisone (THE) (Fig. 1), are eliminated through urinary excretion

along with much lower levels of free cortisol and cortisone (Stewart et al. 1999;

Tomlinson et al. 2002). Since only free cortisol is available for catabolism, CBG

and albumin binding plays a role in its metabolic clearance.

2 Glucocorticoid Excess and the Development

of the Metabolic Syndrome

Most patients that develop cardiovascular disease share several common risk

factors. The clustering of these factors was first named Syndrome X by Reaven

(1988) and in recent years more often referred to as the metabolic syndrome

Cortisol

Cortisone

Adrenal gland

11β-HSD2
(100% free unbound)

(4% free unbound)

ACTH CRH Hypothalamus
Pituitary
gland

HPA axis

5α-THF and 5β-THF

5β-THE

Circulation Metabolites

Kidney

11β-HSD1Liver
Adipose tissues

Fig. 1 Schematic representation of the HPA axis and glucocorticoid metabolism. For simplicity,

only liver and adipose tissues are included as main tissues expressing 11b-HSD1. ACTH adreno-

corticotropic hormone, CRH, corticotrophin-releasing hormone; 5a- and 5b-THF, 5a- and 5b-
tetrahydrocortisol; 5b-THE, 5b-tetrahydrocortisone
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(Grundy et al. 2004). The metabolic syndrome is defined as a collection of meta-

bolic abnormalities including central obesity, insulin resistance, atherogenic dysli-

pidemia, hyperglycemia, and hypertension (Grundy et al. 2004). Not all of the listed

characteristics may be found in the same patient. The diagnosis of the metabolic

syndrome can be made when an individual presents with three of the five char-

acteristics (Grundy et al. 2004). Although insulin resistance was postulated as a

major underlying factor (Reaven 1988), the etiology of the metabolic syndrome is

still not well defined. The prevalence of the metabolic syndrome among the US

adult population is more than 20% (Ford et al. 2002). Further, about 80% of type

2 diabetics meet the criteria for the diagnosis of this disorder (Isomaa et al. 2001).

The metabolic syndrome is a major factor that increases the risk of cardiovascular

disease and type 2 diabetes. However, it has not been recognized as a therapeutic

indication by regulatory authorities. Separate treatments of the individual features

of the metabolic syndrome have been common practice, but complete mitigation of

all the metabolic abnormalities can hardly be achieved even with the combination

of existing individual treatments.

The role of glucocorticoid action in the development of the metabolic syndrome

is implicated by findings in Cushing’s syndrome. Patients with Cushing’s syndrome

have elevated circulating cortisol levels mainly due to increased ACTH secretion

caused by pituitary adenoma (Arnaldi et al. 2003). The elevated cortisol exposure,

namely glucocorticoid excess in a systemic manner, leads to symptoms that overlap

with those of the metabolic syndrome (Arnaldi et al. 2003). Further, clinical use of

glucocorticoids leads to metabolic complications that resemble the characteristics

of the metabolic syndrome (Davis 1986; Gallant and Kenny 1986). Upon surgical

removal of the pituitary adenoma in Cushing’s syndrome, plasma cortisol levels

were normalized and as a result, blood pressure, wait-to-hip ratio (WHR) and LDL

cholesterol decreased (Faggiano et al. 2003). These observations suggest that there

may be a role of glucocorticoid excess in the development of the metabolic

syndrome and suppression of glucocorticoid action can correct some of the meta-

bolic disturbances. However, it is noteworthy that the patients were still at high

cardiovascular risk after surgery, perhaps due to established vascular damage and

atherosclerotic plaques that cannot be reversed by normalizing cortisol levels

(Faggiano et al. 2003). Treatment of Cushing’s syndrome with antiglucocorticoids

also improved metabolic functions. Administration of GR antagonist RU 486

reduced central obesity and glycosylated hemoglobin A1c and reversed heart failure

in patients with Cushing’s syndrome (Chu et al. 2001; Nieman et al. 1985). In

addition, ketoconazole, a potent inhibitor of 11b-hydroxylase and cholesterol side-

chain cleavage and therefore a blocker of adrenal cortisol production, was also

effective in treating Cushing’s syndrome (Sonino 1987). These clinical experience

indicate that blockade of glucocorticoid action is a viable approach to improve

metabolic functions in humans, especially under conditions of glucocorticoid

excess. In light of these findings, one relevant question is whether type 2 diabetics

have glucocorticoid excess so that glucocorticoid blockade can be used as a treat-

ment strategy. Several reports indicate that there is hypercortisolism in some subjects

with type 2 diabetes (Cameron et al. 1987; Lee et al. 1999; Oltmanns et al. 2006).
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However, these studies were conducted with small numbers of subjects. A general

conclusion needs to be substantiated by a larger study. It seems that only 2–5% of

type 2 diabetics have hypercortisolism (Findling and Raff 2005), suggesting that

glucocorticoid excess is not a common factor in the disease. Despite this caveat, the

question still remains whether suppression of glucocorticoid action is metabolically

beneficial to patients with type 2 diabetes. Such a treatment strategy can be

implemented with GR antagonists and ketoconazole, a potent inhibitor of cortisol

biosynthesis. However, the use of these agents is not clinically desirable because

they cause HPA axis activation (Lamberts et al. 1991; Laue et al. 1990; Pont et al.

1984). Further, ketoconazole is not a selective inhibitor of cortisol biosynthesis;

it also inhibits testosterone biosynthesis leading to unacceptable clinical side effects

(Pont et al. 1984; Sonino 1987). Since the HPA axis activation caused by RU 456

treatment is thought to be triggered by GR antagonism in brain, an alternative

approach is liver-specific GR blockade. GR antagonists with liver-selective distri-

bution were designed by conjugating bile acids to RU 486 (von Geldern et al. 2004).

One liver-selective GR antagonist from this effort suppressed hepatic glucose

production and improved insulin sensitivity in animal models of type 2 diabetes

(Jacobson et al. 2005; Zinker et al. 2007). These data suggest that blockade of

hepatic glucocorticoid action can improve metabolic characteristics in patients

with type 2 diabetes. However, to this date, there has been no reported clinical

success with this approach, perhaps due to limited bioavailability of the conjugated

molecules. A new strategy is to target tissue-specific glucocorticoid action by

inhibiting 11b-HSD1 in subjects with type 2 diabetes. This begs the question of

whether 11b-HSD1 expression is dysregulated in type 2 diabetes and further, if

inhibition of glucocorticoid action at the tissue level is sufficient to improve insulin

sensitivity.

3 Association of 11b-HSD1 with Obesity and

Insulin Resistance

The expression and activity of 11b-HSD1 have been closely examined in animal

models of type 2 diabetes and obese human subjects. The hepatic expression of

11b-HSD1 is reduced in ob/obmice (Liu et al. 2003). A similar impairment was seen

in obese Zucker rats, but the adipose expression was elevated in these animals

(Livingstone et al. 2000a, b). Tissue-specific cortisol metabolism was examined in

three groups of age-matched men with low, middle and high body mass index (BMI)

values. The study found that the hepatic 11b-HSD1 activity decreased with the

degree of obesity while the adipose 11b-HSD1 activity was positively correlated

with BMI (Rask et al. 2001). These data are consistent with the results from several

additional studies (Rask et al. 2002; Stewart et al. 1999; Wake et al. 2003). In

addition, the omental 11b-HSD1 activity in obese women is positively correlated

with larger omental adipocytes, increased omental lipolysis, increased lipoprotein
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lipase activity, decreased high-density lipoprotein cholesterol, decreased adiponectin

levels, and increased insulin resistance (Veilleux et al. 2009). The adipose 11b-
HSD1 expression was also examined in 17 young adult monozygotic twin pairs with

an intrapair difference in BMI of 3.8 kg/m2 (Kannisto et al. 2004). This study was

intended to investigate the relationship of adipose 11b-HSD1 expression and the

degree of obesity independent of genetic influence. The adipose 11b-HSD1 expres-

sion is higher in the obese twin than the lean counterpart and the degree of elevation

in expression is positively correlated with the difference in BMI in this study

(Kannisto et al. 2004), suggesting that 11b-HSD1 expression in adipose tissue is

increased in acquired obesity.

The physiological role of elevated adipose 11b-HSD1 expression in obese

human subjects was examined in animal models. Transgenic mice were created

with selective overexpression of 11b-HSD1 in adipose tissue at a level similar to

that observed in human obesity (Masuzaki et al. 2001). These animals had increased

adipose corticosterone regeneration and developed central obesity, insulin resis-

tance, hyperlipidemia and hypertension (Masuzaki et al. 2001, 2003). This collec-

tion of phenotypes resembles those in human metabolic syndrome. Like obese

humans, these mice developed hyperleptinemia (Masuzaki et al. 2001). The insulin

resistance in these animals correlated with impaired glucose, reduced insulin

sensitivity and increased mesenteric and subcutaneous adipocyte size (Masuzaki

et al. 2001). Selective overexpression of 11b-HSD1 in liver only caused mild

insulin resistance without altering body fat mass (Paterson et al. 2004). These

animals had elevated liver triglyceride and serum non-esterified fatty acid

(NEFA) levels (Paterson et al. 2004). They also developed hypertension paralleled

by increased hepatic angiotensinogen expression (Paterson et al. 2004). These

data demonstrate the important metabolic role of 11b-HSD1 in both liver and

adipose tissue. Further, the results suggest that the adipose glucocorticoid regener-

ation by 11b-HSD1 appears to be more critical in mediating metabolic effects in

animals. Mice deficient in 11b-HSD1 were unable to regenerate corticosterone

from 11-DHC [i.e. the rodent cortisone analogue, see above] and had attenuated

activation of the key hepatic gluconeogenic enzymes phosphoenolpyruvate carbox-

ykinase (PEPCK) and glucose-6-phosphatase (G6Pase) (Kotelevtsev et al. 1997).

These animals exhibited HPA axis activation and developed adrenal hyperplasia

(Kotelevtsev et al. 1997). Despite the potential neutralizing effects of increased

glucocorticoid exposure caused by HPA axis activation, these animals had improved

glucose tolerance, elevated HDL, and reduced triglyceride levels (Morton et al.

2001). Moreover, 11b-HSD1 knockout mice exhibited increased adipose expression

of adiponectin, PPARg, and UCP-2 but reduced expression of leptin, resistin, and

TNFa in the same tissue (Morton et al. 2004a). Consistent with this finding, these

animals had reduced visceral fat accumulation upon high fat feeding, improved

insulin sensitivity, and increased energy expenditure (Morton et al. 2004a). These

data suggest that inhibition of 11b-HSD1 is an interesting strategy to improve insulin

sensitivity and mitigate other characteristics of the metabolic syndrome. Since the

adipose 11b-HSD1 seems to play a more important role in metabolic homeostasis

and its expression in obese humans is elevated, inhibition of the adipose 11b-HSD1
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is thought to be more therapeutically relevant than the liver enzyme. Mice with

selective overexpression of 11b-HSD2 were generated to suppress glucocorticoid

action specifically in adipose tissue (Kershaw et al. 2005). Since the two 11b-HSD
isozymes catalyze the opposite reactions of glucocorticoid interconversion, the

biological effect of 11b-HSD2 overexpression is equivalent to inhibition of the

adipose 11b-HSD1. As expected, the systemic glucocorticoid exposure did not

change in these animals (Kershaw et al. 2005). They were resistant to high fat

diet-induced weight gain and had increased energy expenditure as well as improved

insulin sensitivity (Kershaw et al. 2005). Like the 11b-HSD1 knockout mice

(Morton et al. 2004a), the 11b-HSD2 adipose transgenic mice on high fat diet

had increased adipose expression of adiponectin, PPARg, and UCP-2 (Kotelevtsev

et al. 1997). These data support the premise that suppression of glucocorticoid

action by inhibiting the adipose 11b-HSD1 is a viable strategy to improve insulin

sensitivity and treat type 2 diabetes.

Pharmacological studies with 11b-HSD1 inhibitors in animal models of obesity

and insulin resistance produced results similar to those observed in the adipose-

specific 11b-HSD2 transgenic mice. BVT.2733 is a selective mouse 11b-HSD1
inhibitor identified through medicinal chemistry efforts (Barf et al. 2002). After

administration to ob/ob and KKAy mice, this compound lowered blood glucose,

improved glucose tolerance and utilization, and suppressed endogenous glucose

production (Alberts et al. 2002, 2003). Compound 544 is a selective 11b-HSD1
inhibitor from a different chemical class. Treatment of diet-induced obesity (DIO)

mice with this compound led to the reduction of body weight gain, retroperitoneal fat

mass, fasting glucose, serum insulin, triglycerides, and cholesterol (Hermanowski-

Vosatka et al. 2005). Further, the same compound decreased fasting glucose, serum

insulin, triglycerides and NEFAs, and improved glucose tolerance in high fat-fed and

streptozotocin-treated (HF/STZ) mice (Hermanowski-Vosatka et al. 2005). Interest-

ingly, compound 544 also decreased aortic lesion areas as well as the cholesterol

content in atherosclerotic lesions in apoE knockout mice (Hermanowski-Vosatka

et al. 2005), suggesting that 11b-HSD1 inhibitors may be effective in treating

atherosclerosis.

4 11b-HSD1 Biochemistry and Regulation

11b-HSD1 is anchored to the endoplasmic reticulum (ER) via a short N-terminal

transmembrane region with the bulk of the protein in the ER lumen (Ozols 1995).

Several putative N-linked glycosylation sites in the luminal bulk region were

identified (Oppermann et al. 1995; Ozols 1995), and mutations of these sites were

reportedly to affect the enzymatic activity (Agarwal et al. 1995). However, a later

study by direct deglycosylation demonstrated that the N-linked glycosylation is

not required for enzymatic activity (Blum et al. 2000). 11b-HSD1 exists as a

homodimer (Maser et al. 2002), although a monomeric form was also observed in

human liver extracts (Walker et al. 2001). 11b-HSD1 utilizes cortisone in human
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and 11-DHC in rodents as substrates. It also catalyzes the conversion of the

synthetic steroidal substrate prednisone to prednisolone. 11b-HSD1 is a typical

member of the small chain dehydrogenase/reductase (SDR) superfamily with 3,000

known members (Oppermann et al. 2003). The catalytic domain in a SDR contains

the YXXXK signature sequence, which is represented as YSASK in 11b-HSD1.
The two serines are not critical in substrate binding but involved in determining

catalytic rate (Obeyesekere et al. 1998). The reductase activity of 11b-HSD1
requires the presence of NADPH as a co-factor. The regeneration of NADPH

by hexose-6-phosphate dehydrogenase (H6PDH), which is also within the ER

lumen, drives the reductase activity of 11b-HSD1 (Walker et al. 2007). Glucose-

6-phosphate (G6P) is the main substrate of H6PDH and therefore a key component

for NADPH regeneration. G6P must be translocated from the cytosol to the ER

lumen via a G6P transporter (G6PT). After reaching the ER lumen, G6P can be

hydrolyzed by G6Pase-a (van Schaftingen and Gerin 2002). Therefore, the traffick-

ing and accumulation of G6P in the ER is important for NADPH accumulation and

regulates 11b-HSD1 activity (Walker et al. 2007). Since G6P is an intermediate

product in gluconeogenesis and glycogenolysis and cortisol augments glucose

production, the regulation of 11b-HSD1 activity by H6PDH represents a link

between glucose metabolism and glucocorticoid action (Fig. 2).

The expression of 11b-HSD1 is regulated at multiple levels. HIV patients on

highly active antiretroviral therapy (HAART) develop poorly understood lipody-

strophy, hypertriglyceridemia, and insulin resistance (Carr and Cooper 2000). This

disorder is named pseudo-Cushing’s syndrome due to its symptomatic resemblance

to Cushing’s syndrome. For instance, the distribution of fat accumulation in these

patients is similar to that induced by glucocorticoid excess in Cushing’s syndrome

(Miller et al. 1998). However, the circulating cortisol levels are not elevated

in these patients (Miller et al. 1998). Interestingly, the adipose expression of

Cortisone Cortisol

NADPH NADP+

G6P6PGL G6P

CytoplasmER

11β-HSD1

H6PDH

Nucleus

GR activation

Fig. 2 The reaction catalyzed by 11b-HSD1 and its dependence on the NADPH regeneration by

H6PDH. G6P, glucose-6-phosphate; 6PGL, 6-phosphogluconate; ER, endoplasmic reticulum; GR,
glucocorticoid receptor
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11b-HSD1 in these patients is elevated implicating tissue glucocorticoid excess in

the development of the disease. In addition, the hepatic 11b-HSD1 expression is

elevated by fivefold in alcoholic liver disease (ALD) (Ahmed et al. 2008), suggest-

ing that hepatic glucocorticoid excess may play a role in the development of insulin

resistance in this disease. Further, the adipose 11b-HSD1 expression is suppressed

by rosiglitazone in obese human subjects with impaired glucose tolerance

(Mai et al. 2007), which may in part account for the beneficial effects of thiazoli-

dinediones (TZDs). One interesting aspect of the adipose 11b-HSD1 expression is

that it responds to obesity differently in humans and rodents. The expression of

11b-HSD1 in subcutaneous adipose tissue is elevated with human obesity (Rask

et al. 2001; Wake et al. 2003). However, its adipose expression is reduced in DIO

animals compared with lean controls (Drake et al. 2005; Morton et al. 2004b). This

could represent an adaptation mechanism in rodents that protects against metabolic

complications of obesity.

5 Non-selective 11b-HSD1 Inhibitors as Tools

Glycyrrhetinic acid (GA) is a naturally occurring 11b-HSD1 inhibitor that is

typically used for allergic or infectious inflammation of the skin. Its synthetic

hemisuccinate ester, carbenoxolone (CBX), is a licensed drug in the UK for

oesophageal ulceration and inflammation and the treatment of oral and perioral

lesions. Neither CBX nor GA is a selective 11b-HSD1 inhibitor because they also

inhibit 11b-HSD2 (Diederich et al. 2000; Hult et al. 1998). Despite this limitation,

CBX has been used as an 11b-HSD1 inhibitor in animal and human studies. CBX

attenuated fasting plasma lipid and insulin levels, decreased liver triglyceride and

free cholesterol, and reduced atherosclerotic lesion areas in severely obese mice

derived from heterozygous agouti (Ay/a) and homozygous LDLR�/� breeding pairs

(Ay/a;LDLR�/�mice) (Nuotio-Antar et al. 2007). In type 2 diabetic human subjects,

CBX reduced hepatic glucose production through suppression of glycogenolysis

(Andrews et al. 2003). CBX also decreased lipolysis in human subjects (Tomlinson

et al. 2007). These data suggest that 11b-HSD1 inhibition may lead to beneficial

metabolic effects. Interestingly, CBX improved cognitive function in healthy

elderly men and type 2 diabetics (Sandeep et al. 2004). This is consistent with

a similar observation made in 11b-HSD1 knockout mice (Yau et al. 2001), suggest-

ing that 11b-HSD1 inhibitors could be used to treat neurological disorders.

However, it is important to stress that CBX is not a selective 11b-HSD1 inhibitor.

Thus, these findings should be validated with studies using selective 11b-HSD1
inhibitors. In addition to licorice derivatives, several bile acids are also 11b-HSD1
inhibitors but with much lower potency values (Diederich et al. 2000). The 11b-
hydroxylase inhibitor metyrapone is also a weak inhibitor of 11b-HSD1 with a

potency value in the sub to single mM range (Diederich et al. 2000; Sampath-

Kumar et al. 1997). The in vivo effect of metyrapone on 11b-HSD1 may be

therefore limited.

Inhibitors of 11b-Hydroxysteroid Dehydrogenase Type 1 in Antidiabetic Therapy 135



CBX has been a useful tool to better understand the active site structure of

11b-HSD1 and even design selective inhibitors. The cocrystal structure of CBX

with human 11b-HSD1 demonstrated that the enzyme is a homodimer (PDB code:

2BEL.pdb). In the cocrystal structure, the C-terminus appears to have some flexi-

bility and its role in CBX binding by the dimer partner is not clear (Kim et al. 2007).

We have conducted mutagenesis studies and found the C-terminus is not important

in CBX binding (Kim et al. 2007). The binding of GA by 11b-HSD1 is substantially
different from that of CBX. We carried out modeling studies and discovered that

residue Y177 is involved in the binding of the A ring of GA through van der Waals

interactions (Kim et al. 2006).

6 Studies with Selective 11b-HSD1 Inhibitors

Different chemical classes of selective 11b-HSD1 inhibitors have been made with

medicinal chemistry efforts. The first published selective inhibitors were from

Biovitrum (Barf et al. 2002). One interesting finding is the species selectivity of

compounds with respect to potency. BVT.2733 is more potent against the mouse

enzyme than the human enzyme (Barf et al. 2002). In contrast, BVT.14225, a close

analog of BVT.2733, is more potent against human 11b-HSD1 than the mouse

enzyme (Barf et al. 2002). This is not surprising because based on the crystal

structures of the human and mouse 11b-HSD1 (Hosfield et al. 2005; Zhang et al.

2005), there are significant differences at the steroidal binding sites where the

binding of a compound could be favored by one enzyme relative to the other.

This phenomenon is further exemplified by the cross-species potency shifts of

several other compounds summarized in Table 1. The first three compounds in

Table 1 exhibit higher potency for rat 11b-HSD1 than the human enzyme (Richards

et al. 2006). The other three compounds, however, have higher potency for human

11b-HSD1 than the mouse enzyme (Rohde et al. 2007; Sorensen et al. 2006; St Jean

et al. 2007). Not all 11b-HSD1 inhibitors have species selectivity with respect to

human and rodent activities; there are many compounds with comparable human

and rodent potency values.

Several well studied 11b-HSD1 inhibitors include compound 544 from Merck

(Hermanowski-Vosatka et al. 2005), compound 2922 from Amgen (Hale et al.

2008; St Jean et al. 2007), and compound PF-915275 from Pfizer (Bhat et al.

2008). The selectivity of both compounds 544 and 2922 over other human targets

were demonstrated by counter screens or assays (Hale et al. 2008; Hermanowski-

Vosatka et al. 2005). Compound 544 was tested in ex vivo assays using mouse

adipose, liver, and brain. The assay method is based on the notion that the

compound is distributed to tissues via circulation after oral dosing. When a

harvested tissue piece is incubated with a substrate (i.e., cortisone) in an ex vivo

assay, the conversion of the substrate to product is mediated by the remaining

11b-HSD1 activity in the tissue. The reduction in total activity compared with

control tissues should represent the inhibitory effect of the compound. This ex vivo
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Table 1 Representative 11b-HSD1 inhibitors with differential cross-species potency values

Structure Company h-HSD1

Ki (nM)

Rodent 11b-
HSD1 Ki (nM)

References

Cl

NH2

Cl

N

O

O NH

OH

O

Abbott 700 20 (r-HSD1) Richards

et al.

(2006)

NH2

Cl

Cl

N

O

O N
N

Abbott 560 9 (r-HSD1) Richards

et al.

(2006)

Cl

NH2

Cl

N

O

O NH

N

Abbott 1,100 17 (r-HSD1) Richards

et al.

(2006)

HO2C

N
N

N

CF3

O N

H Abbott 7 500 (m-

HSD1)

Sorensen

et al.

(2006)

H
N

N
N

CF3

O NHO

Abbott 8 34 (m-HSD1) Rohde et al.

(2007)

(continued)
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method generates results consistent with those from in vivo enzymatic assays,

where the synthetic glucocorticoid prednisone was given to compound-treated

animals and the conversion of prednisone to prednisolone in vivo is monitored to

assess the whole body 11b-HSD1 activity (Bhat et al. 2008; Hale et al. 2008).

Under such a condition, the measured enzymatic activity is primarily the hepatic

11b-HSD1 activity. Amgen tested compound 2922 in an adipose ex vivo assay and

an in vivo prednisone to prednisolone conversion assay (Hale et al. 2008). Pfizer

tested their compound PF-915275 in monkeys with an in vivo prednisone to

prednisolone conversion assay (Bhat et al. 2008). All these data demonstrated

that these compounds inhibited 11b-HSD1 activity. In addition to the pharmaco-

logical studies conducted with compound 544 and BVT.2733 as described above

(Alberts et al. 2002, 2003; Hermanowski-Vosatka et al. 2005), compound 2922

from Amgen was also demonstrated to improve insulin sensitivity in DIO mice

(Véniant et al. 2009). Interestingly, we noticed that the time of the day for

compound administration plays a role in efficacy due to the circadian variation

of the circulating glucocorticoids (Véniant et al. 2009). Moreover, Merck’s com-

pound A was tested in DIO rats and it decreased the expression of genes involved

in lipid synthesis and fatty acid cycling in mesenteric fat (Berthiaume et al. 2007a).

It also reduced hepatic triglyceride secretion and increased lipid oxidation in

muscle and heart (Berthiaume et al. 2007b). Further, this compound increased

fatty acid oxidation and the expression levels of several enzymes involved in

mitochondrial and peroxisomal b-oxidation in the liver of rats fed an obesogenic

diet (Berthiaume et al. 2010). In Ldlr 3KO (Ldlr(�/�)Apob(100/100)Lep(ob/ob))

mice, a genetic model of obesity, insulin resistance, dyslipidemia, and atheroscle-

rosis, we demonstrated that compound 2922 improved glucose metabolism (Her-

manowski-Vosatka et al. 2005). Unlike compound 544 which decreased

atherosclerotic lesions in apoE knockout mice (Hermanowski-Vosatka et al.

2005), compound 2922 did not have any effect on the atherosclerotic lesions in

the 3KO model (Lloyd et al. 2009). These data indicate that inhibition of 11b-
HSD1 is metabolically beneficial but the improved metabolic profiles are likely to

depend on the models used.

Table 1 (continued)

Structure Company h-HSD1

Ki (nM)

Rodent 11b-
HSD1 Ki (nM)

References

N
H S

N

F

O

CF3

Amgen 22 130 (m-

HSD1)

St Jean

et al.

(2007)

h-HSD1, human 11b-HSD1; m-HSD1, mouse 11b-HSD1; r-HSD1, rat 11b-HSD1.
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7 Clinical Experience with 11b-HSD1 Inhibitors

The first reported clinical study with an 11b-HSD1 inhibitor is the evaluation of

CBX in a small number of type 2 diabetic patients. Although CBX marginally

improved insulin sensitivity in type 2 diabetics (Andrews et al. 2003), the study is

not ideal because CBX is not a selective 11b-HSD1 inhibitor. The Pfizer compound

PF-915275 was tested in a phase 1 clinical trial with 60 healthy adult volunteers.

After multiple oral doses, this compound was generally safe and well tolerated

(Courtney et al. 2008). Using an in vivo prednisone to prednisolone conversion

assay, it was demonstrated that 11b-HSD1 activity was inhibited by this compound

in the individuals that received the drug (Courtney et al. 2008). In the meantime, the

ratio of key cortisol and cortisone metabolites (5aTHF + 5bTHF:THE ), a bio-

marker for 11b-HSD1 activity, was also reduced (Courtney et al. 2008). These data
demonstrate that PF-915275 exhibited pharmacodynamic effect on 11b-HSD1
in vivo and may be suitable for a study in type 2 diabetic patients. To date, there

is no report on whether this compound improves insulin sensitivity in human

subjects with type 2 diabetes.

Incyte Corporation released data from a phase 2a study in type 2 diabetics using

their 11b-HSD1 inhibitor INCB13739. In this study, obese type 2 diabetic patients

were treated with the 11b-HSD1 inhibitor for 4 weeks and at the end of the

treatment, there was a trend of reduced fasting glucose and glucose production

and increased glucose disposal (Incyte 2007, 2008). In a phase 2b trial involving

302 type 2 diabetic patients on metformin but with inadequate glycemic control,

daily oral administration of 200 mg of INCB13739 for 12 weeks resulted in

significant reductions in HbA1c, fasting plasma glucose and HOMA-IR with

additional beneficial effects on plasma lipids and body weight (Rosenstock et al.

2010). Although the compound caused elevation of ACTH, these results demon-

strate that inhibition of 11b-HSD1 is a valid approach to treat elements of the

metabolic syndrome.

8 Potential Therapeutic Challenges with 11b-HSD1 Inhibitors

Accumulating evidence in preclinical animal models of obesity and insulin

resistance suggest that 11b-HSD1 is an interesting target for the treatment of

type 2 diabetes. This notion is further supported by elevated expression of 11b-
HSD1 in the adipose tissue of obese human subjects. Although systematic

glucocorticoid excess has been observed in some type 2 diabetics (Cameron

et al. 1987; Lee et al. 1999; Oltmanns et al. 2006), the percentage of patients

with this abnormality is fairly small (Findling and Raff 2005), suggesting that

glucocorticoid excess is not the major underlying mechanism for the metabolic

abnormalities in these patients. However, suppression of glucocorticoid action in
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these patients may still provide beneficial metabolic effects and therefore

represents a viable treatment strategy. The phase 2a and 2b studies with patients

suffering from type 2 diabetes by Incyte Corporation (Incyte 2007, 2008;

Rosenstock et al. 2010) demonstrated concrete evidence of human efficacy

with 11b-HSD1 inhibitors as antidiabetic therapy.

One major concern with 11b-HSD1 inhibitors is potential HPA activation.

11b-HSD1 is an enzyme that generates the active glucocorticoid in tissues. Since

it is expressed in brain, inhibition of the enzyme could result in reduced local

glucocorticoid in certain brain regions and consequently leads to compensatory

feedback response by the HPA axis. HPA axis activation has been observed in

11b-HSD1 knockout mice, where the 24-h circadian concentration of corticoste-

rone remains elevated throughout most of the day (Harris et al. 2001). Mild HPA

axis activation was observed in humans deficient in 11b-HSD1 (Jamieson et al.

1999; Phillipou and Higgins 1985). Further, a 3-week repeated treatment of rats

with an 11b-HSD1 inhibitor increased adrenal weight by 38%, an indication of

HPA axis activation (Berthiaume et al. 2007a). Although no signs of HPA axis

activation were observed in either the Incyte phase 2a or the Pfizer 11b-HSD1
clinical study (Incyte 2007, 2008; Courtney et al. 2008), there is clear evidence of

ACTH elevation in the Incyte phase 2b study (Rosenstock et al. 2010), confirming

that activation of the HPA axis is a potential effect associated with 11b-HSD1
inhibition.

9 Concluding Remarks

The link of glucocorticoid action to the development of multiple metabolic dis-

orders in the metabolic syndrome has been implicated in Cushing’s syndrome.

This led to attempts to explain the etiology of metabolic syndrome with potential

glucocorticoid excess. However, glucocorticoid excess is not largely prevalent in

type 2 diabetic patients and therefore, it is unlikely to be the major underlying

mechanism for the development of obesity and insulin resistance. However, tissue-

specific glucocorticoid excess has been observed in obese humans in the form of

elevated adipose 11b-HSD1 expression. It is possible that tissue-specific gluco-

corticoid excess caused multiple metabolic defects in the metabolic syndrome.

This premise is supported by genetic studies with 11b-HSD1 transgenic and

knockout mice as well as pharmacologic studies with 11b-HSD1 inhibitors.

These data strongly suggest that 11b-HSD1 inhibitors are potential treatments

for type 2 diabetes and other metabolic disorders. A large variety of chemical

series of 11b-HSD1 inhibitors have been identified through independent medicinal

chemistry efforts. With the encouraging clinical results from the Incyte phase 2b

study (Rosenstock et al. 2010), additional clinical testing of some of these com-

pounds may continue to generate promising results in the near future in support of

this class of antidiabetic drugs.
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Abstract Nicotinamide phosphoribosyltransferase (Nampt) is a key nicotinamide

adenine dinucleotide (NAD) biosynthetic enzyme in mammals, converting nicotin-

amide into nicotinamide mononucleotide (NMN), an NAD intermediate. First

identified in humans as a cytokine pre-B-cell colony enhancing factor (PBEF)

and subsequently described as an insulin-mimetic hormone visfatin, Nampt has

recently excited the scientific interest of researchers from diverse fields, including

NAD biology, metabolic regulation, and inflammation. As an NAD biosynthetic

enzyme, Nampt regulates the activity of NAD-consuming enzymes such as sirtuins

and influences a variety of metabolic and stress responses. Nampt plays an impor-

tant role in the regulation of insulin secretion in pancreatic b-cells. Nampt also

functions as an immunomodulatory cytokine and is involved in the regulation of

inflammatory responses. This chapter summarizes the various functional aspects of

Nampt and discusses its potential roles in diseases, with special focus on type 2

diabetes mellitus (T2DM).
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1 Introduction

In the pathogenesis of type 2 diabetes mellitus (T2DM), the tight regulation of

insulin sensitivity and secretion is dysbalanced. This is caused by both environ-

mental and genetic factors.

While the physiological significance of nicotinamide phosphoribosyltransferase

(Nampt) in obesity, T2DM, and other metabolic disorders is still unclear, the

intracellular nicotinamide adenine dinucleotide (NAD) biosynthetic function of

Nampt is well characterized. In the NAD biosynthetic pathway from nicotinamide,

Nampt (EC 2.4.2.12) catalyzes the rate-limiting step, namely the transfer of a

phosphoribosyl group from 5-phosphoribosyl-1-pyrophosphate (PRPP) to nicotin-

amide, forming nicotinamide mononucleotide (NMN) and pyrophosphate (PPi)

(Rongvaux et al. 2002) (Fig. 1). NMN is then converted into NAD by the iso-

enzymes nicotinamide mononucleotide adenylyltransferase (Nmnat, EC 2.7.7.1)

1 – 3 (Fig. 1). While tryptophan and nicotinic acid are also precursors for NAD

biosynthesis in mammals, nicotinamide is predominantly used to synthesize NAD

(Magni et al. 1999; Rongvaux et al. 2003). NAD is a coenzyme with a well-

established role in cellular redox reactions. Recently, several lines of evidence

have implicated NAD biochemistry in a broad range of biological functions. For

example, NAD is used as a substrate in a number of important signaling pathways in

mammalian cells, including poly(ADP-ribosyl)ation in DNA repair (Ménissier de

Murcia et al. 2003), mono-ADP-ribosylation in both the immune response and

G-protein-coupled signaling (Corda and Di Girolamo 2003), and synthesis of cyclic

ADP-ribose and nicotinate adenine dinucleotide phosphate (NAADP) in intracellu-

lar calcium signaling (Lee 2001). Furthermore, NAD and its derivatives also play

important roles in transcriptional regulation (Lin and Guarente 2003). In particular,
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the discovery that yeast and mammalian Sir2 (silent information regulator 2)

proteins require NAD for their deacetylase activity (Imai et al. 2000) has drawn

much attention to this novel regulatory role for NAD.

Although Nampt enzymatic activity was reported and characterized as early as

1957 (Preiss and Handler 1957), the gene encoding Nampt was first identified in

Haemophilus ducreyi in 2001 (Martin et al. 2001). Since then, several groups have

characterized the enzymological features of mammalian Nampt (Revollo et al.

2004; van der Veer et al. 2005). The Km value of Nampt for nicotinamide is

~1 mM, and it does not use nicotinic acid as a substrate (Revollo et al. 2004). The

crystal structure of Nampt has been determined, which clearly demonstrates that

this protein belongs to the dimeric class of type II phosphoribosyltransferases

(Khan et al. 2006; Kim et al. 2006; Wang et al. 2006).

Whereas the biochemical and structural basis of Nampt as an intracellular NAD

biosynthetic enzyme has been well established, this protein seems to have several

other physiological functions. Human Nampt was originally characterized as a

cytokine named pre-B-cell colony enhancing factor (PBEF) (Samal et al. 1994).

Nampt was also claimed to function as an insulin-mimetic adipocytokine, predomi-

nantly secreted from visceral fat and therefore named visfatin (Fukuhara et al.

2005). We will discuss these different functional aspects of Nampt and its potential

roles in a variety of pathophysiological conditions including type 2 diabetes.

2 Nampt and Metabolic Disorders

The function of intracellular Nampt (iNampt) as NAD biosynthetic enzyme has

been well characterized. In contrast, the physiological role of extracellular Nampt

(eNampt) has been a matter of much debate. At least three different functions have

been assigned to eNampt – an insulin-mimetic, a cytokine-like, and a function as an

NMN producing enzyme (Pilz et al. 2007; Revollo et al. 2007a; Sethi 2007; Yang

et al. 2006). It is not clear which of these functions is important in what physiologi-

cal context. There is also no study that has demonstrated in what way eNampt enters

extracellular space and what distinguishes iNampt and eNampt on the molecular

level. This makes it difficult to investigate the role that iNampt and eNampt play in

various pathophysiological metabolic states as is discussed in more detail below.

2.1 eNampt and iNampt: Regulation of Pancreatic
b-Cell Function

The most controversial function assigned to the Nampt protein was the insulin-

mimetic activity as an adipocytokine named “visfatin” described by Fukuhara et al.

(2005). This study found that eNampt acted like insulin by binding to the insulin
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receptor, activating the associated downstream signaling pathway and eliciting

similar biological reponses in vitro and in vivo on adipogenesis, cellular glucose

uptake, and blood glucose levels. Their results immediately drew attention to a

possible connection between eNampt and metabolic complications, such as obesity

and T2DM. However, this paper has been retracted (Fukuhara et al. 2007). Three

subsequent studies have so far provided indirect evidence for the connection

between eNampt and insulin signaling (Dahl et al. 2007; Song et al. 2008; Xie

et al. 2007). One group has reported an insulin-like action of eNampt on osteoblasts,

which was blocked by the pretreatment with the insulin receptor kinase inhibitor

HNMPA-(AM)3 (Xie et al. 2007). In another study, it has been reported that the

same inhibitor blocked the effect of eNampt on matrix metalloproteinase (MMP)-9

activity in THP-1 cells and the production of TNF-a and IL-8 in PBMC (Dahl et al.

2007). A third group has found multiple actions of eNampt on cultured kidney

mesangial cells. eNampt induced uptake of glucose, glucose transporter (GLUT)-1

protein expression, and synthesis of profibrotic molecules, including transforming

growth factor (TGF)-b1, plasminogen activator inhibitor (PAI)-1, and type I colla-

gen (Song et al. 2008). Whereas a potent Nampt inhibitor FK866 (Hasmann and

Schemainda 2003) blocked this eNampt-mediated glucose uptake, knockdown of

the insulin receptor also inhibited this effect (Song et al. 2008). Unfortunately, none

of the above studies has examined whether eNampt directly binds to the insulin

receptor of respective target cells and whether the NAD biosynthetic activity is

required for the observed effect.

In another study, it was demonstrated that eNampt does not exert insulin-

mimetic effects in vitro or in vivo, but rather exhibits robust NMN biosynthetic

activity and that this eNampt-mediated NMN biosynthesis plays a critical role in

the regulation of glucose-stimulated insulin secretion (GSIS) in pancreatic

b-cells in vitro and in vivo (Revollo et al. 2007b). To address the physiological

significance of Nampt function in vivo, Nampt-deficient mice were generated.

While Nampt homozygous (Nampt�/�) mice are embryonic lethal likely due to

failure of adequate NAD biosynthesis, Nampt heterozygous (Namptþ/�) mice do

not differ visibly from wild-type mice but show significant decreases in total

NAD levels in tissues (Revollo et al. 2007b). Namptþ/� female mice revealed

moderately impaired glucose tolerance and a significant defect in GSIS. Whereas

islet morphology and size in Namptþ/� mice do not differ from control mice,

further analyses of isolated primary islets revealed that Namptþ/� islets have

functional defects in NAD biosynthesis and GSIS. Remarkably, insulin secretion

defects in Namptþ/� mice and islets can be corrected by administration of NMN,

confirming that the defects observed in Namptþ/�mice and islets are due to a lack

of the NAD biosynthetic activity of Nampt. Furthermore, FK866, a potent

chemical inhibitor of Nampt, significantly inhibited NAD biosynthesis and

GSIS in isolated wild-type primary islets. Again, administration of NMN ame-

liorated defects in NAD biosynthesis and GSIS in FK866-treated wild-type islets.

Thus, pancreatic b-cells require Nampt-mediated NAD biosynthesis to maintain

normal NAD biosynthesis and GSIS and are capable of incorporating NMN from

the extracellular space.
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These findings are supported by a study on the mouse pancreatic b-cell line
bTC6. Incubation with recombinant Nampt caused significant changes in the

mRNA expression of several key diabetes-related genes, including upregulation

of insulin, hepatocyte nuclear factor (HNF)-1b, HNF-4a, and nuclear factor-kB.
Significant downregulation was seen in angiotensin-converting enzyme and UCP2.

Insulin secretion was increased compared to that of control at low glucose and this

increase was blocked by coincubation with the specific Nampt inhibitor FK866.

Both Nampt and NMN induced activation of insulin receptor and extracellular

signal-regulated kinase (ERK)1/2. Nampt-induced insulin receptor and ERK1/2

activation were inhibited by FK866 (Brown et al. 2010).

The contradictory results on the insulin-mimetic activity of Nampt could be

explained by a possible crosstalk between eNampt-mediated and insulin signaling

pathways in a cell type-dependent manner. eNampt could possibly bind to and

activate an unidentified receptor that might indirectly affect insulin signaling.

Another possibility is that Nampt-mediated NAD biosynthesis might have an

impact on the insulin signaling pathway. To address these possibilities in future

studies, it is critical to examine (1) whether the existence of the insulin receptor is

necessary for the observed insulin-mimetic effects by using mutant cells that lack

the insulin receptor, (2) whether nicotinamide, which is usually included at very

high concentrations in cell culture media, is necessary to observe those effects, and

(3) whether mutant Nampt proteins that lack NAD biosynthetic activity can still

mediate the activity of interest in each condition. These analyses will resolve

contradictory results around the claimed insulin-mimetic activity of Nampt.

In humans, it has been reported that individuals who carry specific single

nucleotide polymorphism variants in the Nampt gene promoter region have lower

fasting plasma insulin levels (Bailey et al. 2006; Mirzaei et al. 2009), suggesting that

Nampt-mediated NAD biosynthesis might also regulate insulin secretion in humans.

Aging is one of the greatest risk factors for developing T2DM and other

metabolic complications (Chang and Halter 2003; Moller et al. 2003). Sirtuins

are a group of NAD-dependent enzymes that regulate metabolic responses to

nutritional availability in different tissues and cellular responses to a variety of

stresses and are also involved in the regulation of aging. Sirtuins deacetylate and/or

ADP-ribosylate lysine residues of many target regulatory factors (Blander and

Guarente 2004; Schwer and Verdin 2008). In their deacetylation reactions, sirtuins

produce acetyl-ADP-ribose, nicotinamide, and deacetylated proteins. Silent infor-

mation regulator 2 (Sir2), as the prototypical enzyme of this group, regulates the

replicative life span of yeast mother cells (Kaeberlein et al. 1999). Strikingly, Sir2

homologues also regulate life span in worms and flies (Rogina and Helfand 2004;

Tissenbaum andGuarente 2001) and, depending on the genetic background, mediate

life span extension caused by caloric restriction, the only dietary regimen that can

retard aging and extend life span in awide variety of organisms (Guarente 2005). It is

not yet known whether Sirt1, the mammalian Sir2 orthologue, regulates aging and

longevity in mammals. Because sirtuins absolutely require NAD for their function,

NAD biosynthesis and Nampt play a critical role in the regulation of mammalian

sirtuin activity.
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A recent study found that Nampt-mediated systemic NAD biosynthesis and Sirt1

activity are affected in pancreatic b-cells of aged mice. Pancreatic b-cell-specific
Sirt1-overexpressing (BESTO) mice exhibited significantly enhanced GSIS and

improved glucose tolerance (Moynihan et al. 2005). However, these phenotypes

were completely lost in both BESTO males and females when they reached 18–24

months of age (Ramsey et al. 2008). Plasma NMN levels and Sirt1 activity in

pancreatic islets were significantly reduced in those aged BESTO mice.

Consistent with this finding, NMN administration could restore enhanced GSIS

and improved glucose tolerance in aged BESTO females but not in males (Ramsey

et al. 2008), although the reason for the observed sex-dependent difference

remained unclear. These findings suggest that an age-dependent decline in

Nampt-mediated systemic NAD biosynthesis contributes to reduced Sirt1 activity

in aged pancreatic islets and likely in other aged tissues. Because sirtuins have

recently emerged as promising pharmaceutical targets to develop therapeutic inter-

ventions against age-associated diseases (Milne et al. 2007; Westphal et al. 2008),

the systemic enhancement of NAD biosynthesis might provide another pharmaco-

logical means to activate Sirt1 and to convey benefits against metabolic diseases

like T2DM (Imai and Kiess 2009).

2.2 eNampt in Human Circulation: A Biomarker for Obesity
and T2DM?

Nampt possesses neither a signal sequence nor a caspase I cleavage site (Rongvaux

et al. 2002). Therefore, several studies have suggested that eNampt might be

released simply by cell lysis or cell death (Hug and Lodish 2005; Stephens and

Vidal-Puig 2006). On the other hand, it was shown that eNampt release is governed

by a highly regulated positive secretory process in a cell type-dependent manner

(Revollo et al. 2007b). Fully differentiated mouse and human adipocytes are

capable of secreting eNampt through a nonclassical secretory pathway, which is

not blocked by inhibitors of the classical ER–Golgi secretory pathway, such as

brefeldin A and monensin (Revollo et al. 2007b; Tanaka et al. 2007). There is

evidence that other cell types, such as human primary hepatocytes (Garten et al.

2010) and leukocytes (D. Friebe, personal communication) are also a significant

source of eNampt in human circulation.

Numerous studies have been published, addressing possible associations

between plasma eNampt levels and anthropometric and metabolic parameters in

obesity and T2DM. So far, results have been conflicting, showing positive, nega-

tive, or no association (Arner 2006; Revollo et al. 2007a; Sethi 2007; Stephens and

Vidal-Puig 2006). For example, one study reported a positive correlation of plasma

eNampt concentrations with body mass index (BMI) and percent body fat (Berndt

et al. 2005), while another study found that plasma eNampt is reduced in human

obesity and not related to insulin resistance (Pagano et al. 2006). Two other studies
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reported that higher plasma eNampt levels are independently and significantly

associated with T2DM even after adjusting for known biomarkers (Chen et al.

2006; Retnakaran et al. 2008). These contradictory findings appear to be in part due

to significant differences in immunoassays and the treatment and type of samples.

Freeze–thaw cycles and different sample additives have considerable influence on

the measurement of eNampt concentrations (N€usken et al. 2007). Also, commer-

cially available immunoassays differ considerably in the specificity and sensitivity

of eNampt detection in human serum and plasma (K€orner et al. 2007).
Looking at recent studies (as summarized in Table 1), it appears that most groups

detected an elevation of plasma Nampt levels in obese subjects. However, the

association between plasma eNampt levels and metabolic disorders, such as obesity

and T2DM, is still unclear, and careful assessments with highly accurate assays for

the measurement of eNampt will be necessary to address this critical issue.

Interestingly, in a recent study, Nampt levels in cerebrospinal fluid (CSF) were

found to decrease with increasing plasma Nampt concentrations, BMI, body fat

mass, and insulin resistance, indicating that the transport of Nampt across the

blood–brain barrier might be impaired in obesity and that central nervous Nampt

insufficiency or resistance might be linked to pathogenetic mechanisms of obesity

(Hallschmid et al. 2009).

2.3 Role of Hepatic Nampt in T2DM

Hepatic insulin resistance is an underlying cause of the metabolic syndrome and the

development of T2DM. In particular, the failure of insulin to suppress hepatic

gluconeogenesis leads to hyperglycemia and, consequently, to the persistent stimu-

lation of insulin production (Leclercq et al. 2007).

Sirt1 has been implicated in the regulation of hepatic glucose metabolism

through the induction of gluconeogenic genes (Rodgers et al. 2005). Nampt reg-

ulates Sirt1 activity and also seems to be involved in the regulation of insulin

signaling in the liver, as has been shown in animal studies. One group reported

upregulation of Sirt1 and PPAR-a together with increasing NAD levels and Nampt

activity in fasting mice (Hayashida et al. 2010). In rats that were injected with a

Nampt overexpression plasmid insulin sensitivity was increased, while total cho-

lesterol plasma levels decreased. The animals also displayed an enhanced insulin

receptor substrate (IRS)-1 tyrosine phosphorylation in response to insulin as well as

increased mRNA expression of peroxisome proliferator-activated receptor gamma

(PPAR-g) and sterol regulatory element-binding protein 2 (SREBP-2) in the liver

and adipose tissues (Sun et al. 2009). SIRT1 protein and activity was increased by

treatment with metformin through an adenosine monophosphate kinase (AMPK)-

mediated increase in gene expression of Nampt in db/db mice (Caton et al. 2010).

Hepatic insulin resistance and a dysregulation of hepatic glucose and lipid

metabolism are also major reasons for the development of nonalcoholic fatty

liver disease (NAFLD), which has been recognized as a component of the
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Table 1 Most recent studies concerning correlation of plasma eNampt concentrations with

anthropometric and metabolic parameters

Plasma eNampt concentrations Correlation Study

" in obese children þ with visceral adipose tissue

area

Araki et al. (2008)

" in obese adolescents � with anthropometric or lipid

parameters in nonobese

Jin et al. (2008)

� with age

þ with high-density lipoprotein

(HDL)-cholesterol in obese

" in type 2 diabetes mellitus

(T2DM) without

macroangiopathy

� with body mass index (BMI),

insulin, glucose, or HOMA-

insulin resistance index

(HOMA-IR)

Alghasham and Barakat

(2008)

� with high sensitive C-reactive

protein (hsCRP) and IL-6

plasma concentration

� in patiens with coronary

heart disease

� with any variables of the

metabolic syndrome

Choi et al. (2008)

" in T2DM þ with proteinuria Yilmaz et al. (2008)

– þ with HDL-cholesterol

� with triglycerides

Wang et al. (2007)

" in obese women þ with epicardial fat thickness Malavazos et al. (2008)

" in preeclampsia þ with CRP

� with HOMA-IR

Fasshauer et al. (2008)

– þ with HDL in women Chen et al. (2007)

� with LDL in women and BMI

in males

� with height, weight, body

mass index, waist and hip

circumferences, waist-to-

hip ratio, blood pressure,

fasting serum insulin and

fasting plasma glucose,

lipid profiles, and uric acid

levels

" in coronary artery disease

(CAD) patients

– Cheng et al. (2008)

� with fat mass and bone

mineral density in men

Peng et al. (2008)

" in obese women

# after exercise

þ with BMI Choi et al. (2007)

þ with IL-6 plasma

concentration and diastolic

blood pressure

Seo et al. (2008)

" in obese patients with

impaired fasting glucose

and diabetes

þ with leptin plasma

concentration

Garcı́a-Fuentes et al.

(2007)

# after exercise þ with plasma insulin

concentration and glucose

AUC

Haus et al. (2009)

(continued)
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metabolic syndrome and can lead to liver cirrhosis. There are few studies on Nampt

expression in human livers. In patients with liver cirrhosis, it was found that hepatic

Nampt mRNA expression and Nampt levels in circulation were decreased com-

pared with healthy controls (de Boer et al. 2009). In severely obese patients with

NAFLD, Nampt serum levels were shown to be increased. After bariatric surgery,

Nampt expression in livers and Nampt serum levels decreased as the patients lost

weight (Moschen et al. 2009). Another report demonstrated a correlation of serum

Nampt levels with liver histology in NAFLD. Nampt levels predicted the presence

of portal inflammation in NAFLD patients (Aller et al. 2009).

From these results in animal and human studies, one can speculate that Nampt is

involved in regulating glucose metabolism in hepatocytes through activation of

Sirt1. The liver also seems to be a major source for circulating Nampt, and Nampt

levels in circulation are consequently influenced by impaired liver function.

3 eNampt: A Link Between T2DM and Inflammation

Human Nampt was originally identified by a screen of a human peripheral blood

lymphocyte cDNA library and named pre-B-cell colony enhancing factor (PBEF,

see above). This 52 kDa protein was reported to act as a presumptive cytokine that

increased pre-B-cell colony forming activity together with interleukin (IL)-7 and

stem cell factor (SCF) (Samal et al. 1994). iNampt is also highly expressed in human

fetal membranes, amnion, and placenta. Nampt mRNA expression increases in fetal

membranes after labor and in severely infected amnion membranes. Interestingly,

Table 1 (continued)

Plasma eNampt concentrations Correlation Study

" in lean glucose-tolerant

patients with PCOS

– Yildiz et al. (2010)

" in obese women þ with fat mass and AUC

insulin during OGTT

Unluturk et al. (2010)

↔ in morbidly obese patients
with and without T2DM

" transiently during OGTT

– Hofsø et al. (2009)

" in HD patients – N€usken et al. (2009)

� with TNF-a plasma

concentration in patients

with impaired fasting

glucose

de Luis et al. (2009)

# in patients with T1DM � with HbA1c Toruner et al. (2009)

" in GDM patients – Gok et al. (2010)

" in patients with GDM and

pre-GDM

– Coskun et al. (2010)

" in pregnant women � with glucose tolerance Szamatowicz et al.

(2009)

# in GDM patients at term þ with IL-6 and TNF-a mRNA

in SAT and placental tissue

Telejko et al. (2009)

" Increase, # Decrease, þ Positive correlation, � Negative correlation, � No correlation
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eNampt treatment upregulates the expression of inflammatory cytokines, such as

IL-6 and IL-8, in amnion-like epithelial cells. Thus, it has been speculated that

eNampt might have a cytokine-like function involved in the regulation of labor

and in infection-induced preterm birth (Ognjanovic and Bryant-Greenwood 2002;

Ognjanovic et al. 2005).

In the pathophysiology of obesity and T2DM, it has been revealed that chronic

inflammation plays an important role in the development of insulin resistance and

other associated complications, such as atherosclerosis (Guest et al. 2008; Poirier

et al. 2006; Schenk et al. 2008; Sowers 2003). In this regard, one might speculate

that eNampt could show an association with the development of vascular inflam-

mation induced by obesity and T2DM, instead of an association with anthropomet-

ric and metabolic parameters. Indeed, it has been shown that eNampt induces the

adhesion of leukocytes to endothelial cells and aortic endothelium by activating

intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule

(VCAM)-1 (Adya et al. 2008). This phenomenon appears to be mediated through

the proinflammatory transcription factor nuclear factor-kB (NF-kB) in a reactive

oxygen species (ROS)-dependent manner. The same study also revealed that

eNampt significantly increases the transcriptional activity of NF-kB in human

vascular endothelial cells, resulting in the activation of the MMP-2/9.

A study that was aimed at investigating the expression ofNampt in circulating blood

monocytes in obese and/or type 2 diabetic human subjects found that Nampt expression

was significantly upregulated in obese type 2 diabetic patients, whereas obese nondia-

betics exhibited similar levels compared to lean controls (Laudes et al. 2010).

In contrast, an upregulation of Nampt mRNA expression levels in peripheral

blood cells (PBCs) of obese compared with lean subjects was reported, along with a

correlation of Nampt plasma levels to cholesterol, triglycerides, and hepatic

enzymes in circulation (Catalán et al. 2010). Another group determined Sirt1

expression in peripheral PBMC and found that insulin resistance and metabolic

syndrome were associated with low PBMC Sirt1 gene and protein expression. Sirt1
gene expression was negatively correlated with carotid intima-media thickness

(CIMT). In the monocytic THP-1 cell line, high glucose and palmitate reduced

Sirt1 and Nampt expression and reduced the levels of intracellular NAD through

oxidative stress. These effects on Nampt and Sirt1 were prevented by resveratrol

in vitro (de Kreutzenberg et al. 2010). Moreover, a direct association of Nampt with

advanced carotid atherosclerosis and CIMT in patients with T2DM was determined

with increased Nampt serum levels, especially in patients with carotid plaques

(Kadoglou et al. 2010). Therefore, eNampt might play an important role in the

progression and/or the associated complications, especially inflammatory compli-

cations, of obesity and T2DM.

eNampt has also been shown to be involved in the regulation of apoptosis as a

cytokine. In human neutrophils, eNampt inhibits their apoptosis in response to

various inflammatory stimuli, although this particular effect of eNampt requires

the presence of iNampt to some extent (Jia et al. 2004). Recently, Nampt was

identified as an essential enzyme mediating granulocyte colony-stimulating factor

(G-CSF)-triggered granulopoiesis in healthy individuals and in individuals with
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severe congenital neutropenia. Both extracellularly and intracellularly administered

Nampt induced granulocytic differentiation of CD34(þ) hematopoietic progenitor

cells by NAD-dependent Sirt1 activation and subsequent upregulation of G-CSF

synthesis and G-CSF receptor expression (Skokowa et al. 2009).

Furthermore, serum eNampt levels are found to be upregulated in sepsis patients,

and rates of neutrophil apoptosis are found to be profoundly reduced in those

patients (Jia et al. 2004). In amniotic epithelial cells, eNampt treatment appears to

confer protection from apoptosis as a stretch-responsive cytokine (Kendal-Wright

et al. 2008). In patients with inflammatory bowel disease (Crohn’s disease and

ulcerative colitis), Nampt mRNA levels are increased in colon biopsy samples,

and plasma eNampt levels are elevated (Moschen et al. 2007). Because eNampt

stimulates the production of proinflammatory cytokines in PBMCs and upregulates

IL-6 mRNA and serum levels in vivo when given intraperitoneally to mice, it has

been suggested that eNampt itself also functions as a proinflammatory cytokine

(Moschen et al. 2007). Stimulation of the tumor necrosis factor family member

TNF- and APOL-related leukocyte-expressed ligand (TALL)-1, which is involved in

lupus-like autoimmune diseases, increased Nampt mRNA (Xu et al. 2002). Addi-

tionally, Nampt has been found to be upregulated in a variety of other immunologi-

cal disorders including acute lung injury, rheumatoid arthritis, and myocardial

infarction and is considered a novel mediator of innate immunity (Luk et al. 2008).

These studies all suggest that eNampt might function as an inflammatory cytokine.

In most studies, it has not been fully addressed which activity of eNampt, NAD

biosynthetic activity vs. cytokine-like activity, is responsible for the observed effects

of eNampt. However, two studies have reported an enzyme-dependent proinflamma-

tory action of Nampt: in inflammatory cells in vitro and in joints affected with

rheumatoid arthritis in vivo (Busso et al. 2008) and in cultured human aortic smooth

muscle cells (Romacho et al. 2009). In contrast, one group has demonstrated that

eNampt protects macrophages fromER stress-induced apoptosis through its cytokine-

like activity that is totally separated from itsNADbiosynthetic activity (Li et al. 2008).

There is evidence that Nampt exerts its proinflammatory actions through the

upregulation of monocyte chemoattractant protein (MCP)-1. MCP-1 levels were

significantly increased after Nampt administration in cultured human adipocyte

supernatant and serum of mice. The detectability of Nampt in serum predicted

circulating MCP-1 independent of age and gender in humans (Sommer et al. 2010).

Therefore, although how eNampt exerts its cytokine-like activity in different

cellular contexts still needs to be investigated, there is clear evidence that it

functions as an immunomodulatory cytokine.

4 Concluding Remarks and Future Aspects

Nampt functions as an intra- and extracellular NAD biosynthetic enzyme that is

important for the regulation of metabolism and stress resistance through sirtuins

and other NAD-consuming regulators. On the other hand, eNampt appears to act as
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a cytokine, independent of its enzymatic activity, and plays a major role in the

regulation of immune responses. The cytokine-like and the enzymatic functions of

Nampt still need to be investigated extensively. Thorough assessments of these two

roles will presumably greatly enhance our knowledge about its role in different

physiological contexts. In this regard, it will also be important to analyze the

mechanism and regulation of eNampt secretion and identify its putative receptor

and upstream signaling.

To further clarify the effects of iNampt on cellular metabolism, it will also be

important to understand the subcellular compartmentalization of Nampt and other

enzymes involved in the biosynthesis and the breakdown of NAD and the regula-

tion of their localization. Additionally, very little is known about the flux of NAD

substrates, intermediates, and metabolites. Therefore, it will be critical to study not

only the regulation of NAD biosynthesis and breakdown in each cellular compart-

ment, but also the spatial and temporal dynamics of NAD metabolism at a systemic

level using a metabolomics approach. For example, it will be of great interest to

clarify how NMN as a product from the eNampt enzymatic reaction is distributed to

target tissues, e.g., pancreatic b-cells, and how it mediates its physiological and

pharmacological effects in these tissues.

To date, a substantial part of the studies on the biological functions of Nampt has

been conducted in cell culture and mouse models, and the studies on possible

correlations between human plasma eNampt levels and metabolic parameters

have been contradictory. Therefore, more work needs to be done to elucidate the

physiological relevance of the eNampt function in normal individuals and patients

with metabolic and other diseases in humans.

Nampt itself or any component in Nampt-mediated systemic NAD biosynthesis

could be an effective therapeutic target/reagent for the prevention and the treatment

of metabolic disorders including obesity and T2DM, inflammation, and cancer.

Because downstream regulators, such as sirtuins and PARPs, have pleiotropic

functions, more rigorous investigations will be necessary to clarify possible benefits

from the manipulation of Nampt-mediated NAD biosynthesis.
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Abstract A new concept “Life style-related diseases, such as type 2 diabetes, are a

membrane microdomain disorder caused by aberrant expression of gangliosides”

has arisen. By examining this working hypothesis, we demonstrate the molecular

pathogenesis of type 2 diabetes and insulin resistance focusing on the interaction

between insulin receptor and gangliosides in microdomains and propose the new

therapeutic strategy “membrane microdomain ortho-signaling therapy”.
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1 Introduction

Caveolae are a subset of membrane microdomains (lipid raft) particularly abundant

in adipocytes. Critical dependence of the insulin metabolic signal transduction on

caveolae/microdomains in adipocytes has been demonstrated. These microdomains

can be biochemically isolated with their detergent insolubility and were designated

as detergent-resistant microdomains (DRMs). Gangliosides are known as structur-

ally and functionally important components in microdomains. We demonstrated

that increased GM3 expression was accompanied in the state of insulin resistance

in mouse 3T3-L1 adipocytes induced by TNFa and in the adipose tissues of obese/

diabetic rodent models such as Zucker fa/fa rats and ob/ob mice (Tagami et al.

2002). We examined the effect of TNFa on the composition and function of DRMs

in adipocytes and demonstrated that increased GM3 levels result in the elimination

of insulin receptor (IR) from the DRM, while caveolin and flotillin remain in the

DRMs, leading to the inhibition of insulin’s metabolic signaling (Kabayama et al.

2005). These findings are further supported by the report that mice lacking GM3

synthase exhibit enhanced insulin signaling (Yamashita et al. 2003). To gain insight

into molecular mechanisms behind interactions of IR, caveolin-1 (Cav1), and GM3

in adipocytes, we have performed immunoprecipitations, cross-linking studies of

IR and GM3, and live cell studies using fluorescence recovery after photobleaching

(FRAP) technique. We found that (1) IR forms complexes with Cav1 and GM3

independently; (2) in GM3-enriched membranes, the mobility of IR is increased by

dissociation of the IR–Cav1 interaction; (3) the lysine residue localized just above

the transmembrane domain of the IR b-subunit is essential for the interaction of IR
with GM3. Since insulin metabolic signal transduction in adipocytes is known to be

critically dependent on caveolae, we propose a new pathological feature of insulin

resistance in adipocytes caused by dissociation of the IR–Cav1 complex by the

interactions of IR with GM3 in microdomains (Kabayama et al. 2007).

2 Ganglioside GM3 Is an Inducer of Insulin Resistance

Insulin elicits a wide variety of biological activities, which can be globally categori-

zed into metabolic and mitogenic actions. The binding of insulin to IR activates IR

internal tyrosine kinase activity. The activated tyrosine-phosphorylated IR was able

to recruit and phosphorylate adaptor proteins such as insulin receptor substrate

(IRS). The phosphorylated IRS activates PI3 kinase, resulting in the translocation

of glucose transporter 4 (GLUT-4) to plasma membrane to facilitate glucose uptake.

This IR–IRS–PI3 kinase signaling cascade is the representative metabolic pathway

of insulin. On the other hand, the mitogenic pathway in insulin signaling initiates

phosphorylation of Shc by the activated IR and then activates Ras-MAPK signaling.

When mouse adipocytes were cultured in low concentrations of TNFa, which do
not cause generalized suppression of adipocyte gene expression including IRS-1
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and GLUT-4, interference of insulin action by TNFa occurred (Guo and Donner

1996). This requires prolonged treatment (at least 72 h), unlike many acute effects

of this cytokine. The slowness of the effect suggests that TNFa induces the

synthesis of an inhibitor that is the actual effector. We demonstrated that the state

of insulin resistance in adipocytes treated with 0.1 nM TNFawas accompanied by a

progressive increase in cell surface GM3. This was reflected by increases in cellular

GM3 content,GM3 synthase activity, and GM3 synthase mRNA content, indicating

that TNFa upregulates GM3 synthesis at the transcriptional level in cultured

adipocytes (Tagami et al. 2002). To elucidate whether the increased GM3 in 3T3-

L1 adipocytes treated with TNFa is involved in insulin resistance, we used an

inhibitor of glucosylceramide synthase, D-threo-1-phenyl-2-decanoylamino-3-

morpholino-1-propanol (D-PDMP) (Inokuchi and Radin 1987), to deplete cellular

glycosphingolipids derived from glucosylceramide. D-PDMP proved the ability to

counteract TNF-induced increase of GM3 content in adipocytes and completely

normalize the TNF-induced defect in tyrosine phosphorylation of IRS-1 in response

to insulin stimulation (Fig. 1a). These findings are supported by the observation that

knockout mice lacking GM3 synthase exhibits enhancement of insulin signaling

(Yamashita et al. 2003).

Hotamisligil et al. reported that treatment of adipocytes with TNFa induces

an increase in the serine phosphorylation of IRS-1 (Hotamisligil et al. 1993).

Fig. 1 TNFa increases the expression of GM3 and prevention of GM3 synthesis reverses TNFa-
induced suppression of insulin signaling in adipocytes. (a) 3T3-L1 adipocytes were cultured in

maintenance medium without (lanes 1, 2, and 4) or with (lanes 3 and 5) 0.1 nM TNFa for 96 h and

in order to deplete GM3, 20 mM D-PDMP was also included (lanes 4 and 5). Before insulin

stimulation (100 nM for 3 min), cells were starved in serum-free media containing 0.5% bovine

serum albumin in the absence or presence of TNFa and D-PDMP as above for 8 h. Proteins in cell

lysates were immunoprecipitated with antiserum to IR and IRS-1, fractionated by SDS-PAGE, and

transferred to Immobilon-P. Western blot was then proved with antiphosphotyrosine monoclonal

antibody, stripped, and reproved with antiserum to IR and IRS-1. (b) 3T3-L1 adipocytes were

incubated in the absence or presence of TNFa and D-PDMP as in (a) and the ganglioside fraction

was visualized by resorcinol staining on HPTLC
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This phosphorylation is an important event since immunoprecipitated IRS-1, which

has been serine phosphorylated in response to TNFa, is a direct inhibitor of IR

tyrosine kinase activity. We have shown that TNFa-induced serine phosphorylation
of IRS-1 in adipocytes was completely suppressed by inhibition of GM3 biosyn-

thesis with D-PDMP treatment, suggesting that the elevated GM3 synthesis induced

by TNFa caused the upregulation of serine phosphorylation of IRS-1 (Tagami et al.

2002) (Fig. 1b). Since TNF-induced serine phosphorylation of IRS-1 may occur

through the activation of a variety of kinases including protein kinase C, c-Jun

NH2-terminal kinase, p44/42 kinase, and PI3 kinase, it is important to identify the

actual kinase(s) activated by endogenous GM3.

It was shown that adipose tissues of the obese–diabetic db/db, ob/ob, KK-Ay

mice, and the Zucker fa/fa rat produced significant levels of TNFa (Hotamisligil

et al. 1993). Much less expression was seen in adipose tissues obtained from the lean

control animals. Interestingly, these obese–diabetic animals did not show evidence

of altered expression of other cytokines, such as IL-1 or IFNg (Hotamisligil et al.

1993; Hotamisligil and Spiegelman 1994). Thus, we were interested in measuring

the expression of GM3 synthase mRNA in the epididymal fat of Zucker fa/fa rats

and ob/ob mice. Northern blot analysis of GM3 synthase mRNA contents in the

adipose tissues from these two typical models of insulin resistance exhibited signifi-

cantly high levels compared to their lean counterparts (Fig. 2) (Tagami et al. 2002).

3 Caveolae Microdomains and Insulin Signaling

Caveolae are a subset of membrane microdomains particularly abundant in adipo-

cytes (Fan et al. 1983; Parpal et al. 2001). Critical dependence of the insulin

metabolic signal transduction on caveolae/microdomains in adipocytes has been

demonstrated (Bickel. 2002; Cohen et al. 2003a). Disruption of microdomains by

GM3

SAT-I mRNA

28S rRNA
18S rRNA 

ob/- ob/ob lean fatty

Fig. 2 Increased GM3 synthase mRNA in adipose tissue of typical rodent models of insulin

resistance. Northern blot analysis of GM3 synthase mRNA was performed using total mRNA from

adipose tissues of ob/ob mice and Zucker fa/fa rats and their lean counterparts
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cholesterol extraction with methyl-b-cyclodextrin resulted in progressive inhibition
of tyrosine phosphorylation of IRS-1 and activation of glucose transport in response

to insulin, although autophosphorylation of IR and activation of MAP kinase were

not impaired (Parpal et al. 2001). Similarities between these cell culture results and

the findings in many cases of clinical insulin resistance (Virkamaki et al. 1999)

suggest a potential role for microdomains in the pathogenesis of this disorder.

Couet et al. demonstrated the presence of a caveolin-binding motif

(fXXXXfXXf [f: an aromatic amino acid, X: any amino acid]) in the b-subunit of
IRs that could bind to the scaffold domain of caveolin (Couet et al. 1997).

Moreover, mutation of this motif resulted in the inhibition of insulin signaling

(Nystrom et al. 1999). Indeed, mutations of the IR b-subunit have been found in

type 2 diabetic patients (Imamura et al. 1994). Lisanti’s laboratory reported that

Cav1-null mice developed insulin resistance when placed on a high fat diet (Cohen

et al. 2003b). Interestingly, insulin signaling, as measured by IR phosphorylation

and its downstream targets, was selectively decreased in the adipocytes of these

animals, while signaling in both muscle and liver cells was normal. This signaling

defect was attributed to a 90% decrease in IR protein content in the adipocytes, with

no changes in mRNA levels, indicating that Cav1 serves to stabilize the IR protein

(Cohen et al. 2003a, b). These studies clearly indicate the critical importance of the

interaction between caveolin and IR in executing successful insulin signaling in

adipocytes.

Although the direct interaction between Cav1 and IR has been shown as

described above, studies of the presence of IRs in DRM have provided conflicting

data (Gustavsson et al. 1999; Iwanishi et al. 1993; Kimura et al. 2002; Mastick

and Saltiel 1997; Muller et al. 2001). Saltiel and colleagues found that insulin

stimulation of 3T3-L1 adipocytes was associated with tyrosine phosphorylation of

Cav1 (Mastick et al. 1995). However, since only trace levels of IR were recovered

in the caveolae microdomains in assays with a buffer of 1% Triton X-100, they

speculated on the presence of intermediate molecule(s) bridging IR and caveolin

(Mastick and Saltiel 1997). Gustavsson et al. also observed the dissociation of IRs

from caveolin-containing DRM after treatments of 0.3 and 0.1% Triton X-100

(Gustavsson et al. 1999). It has been reported that a comparison of protein and

lipid contents of DRM prepared with a variety of detergents indicated consider-

able differences in their ability to selectively solubilize membrane proteins and to

enrich sphingolipids and cholesterol over glycerophospholipids and that Triton

X-100 was the most reliable detergent (Schuck et al. 2003). Therefore, we performed

a flotation assay with a wide range of Triton X-100 concentrations to identify the

protein of interest, which might weakly associate with DRM. In an assay system

containing less than 0.08% Triton X-100, we were able to show that in normal

adipocytes IRs can localize to DRM. Thus, by employing low detergent concen-

trations we were able to demonstrate, for the first time, the presence of IR in DRM

(Kabayama et al. 2005). As summarized in Table 1, there is strong evidence

suggesting that the localization of IRs in caveolae microdomains is essential for

metabolic signaling of insulin.
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4 Insulin Resistance as a Membrane Microdomain Disorder

In a state of insulin resistance induced in adipocytes by TNFa, we presented

evidence that the transformation to a resistant state may depend on increased

ganglioside GM3 biosynthesis following upregulated GM3 synthase gene expres-

sion. Additionally, GM3 may function as an inhibitor of insulin signaling during

chronic exposure to TNFa (Tagami et al. 2002). Since GSL, including GM3, is an

important component of DRM/caveolae, we have pursued the possibility that

increased GM3 levels in DRM confer insulin resistance upon TNFa-treated adi-

pocytes. We examined the effect of TNFa on the composition and function of

DRM in adipocytes and demonstrated that increased GM3 levels result in the

elimination of IRs from the DRM, while raft marker proteins such as caveolin

and flotillin remain in the DRM (Kabayama et al. 2005). Although the localiza-

tion of IRs to DRM may be maintained by the association with Cav1 as

mentioned above, the excess accumulation of GM3 in the DRM may weaken

IR–caveolin interaction. Therefore, to examine interactions among IR, Cav1, and

GM3 in 3T3-L1 adipocytes, we initially performed coimmunoprecipitation

assays. Cav1 has a scaffolding domain to which IR and other functional

transmembrane proteins bind through a caveolin-binding domain in their cyto-

plasmic region (Couet et al. 1997; Nystrom et al. 1999). As expected from

another study (Nystrom et al. 1999), IR was coprecipitated with Cav1 (Fig. 3a).

GM3 was coprecipitated with IR but not with Cav1 (Fig. 3b upper panel). In

addition, IR but not Cav1 was coprecipitated with GM3 (Fig. 3b, lower panel).

Thus, IR can bind both Cav1 and GM3, but there is no interaction between

GM3 and Cav1, suggesting that IR can form distinct complexes with each of

Table 1 Localization of insulin receptor in caveolae microdomains is essential for the metabolic

signaling of insulin

Function Evidence Reference

Direct biding of IR

and caveolin-1

IR has caveolin-binding domain Couet et al. (1997)

Coimmunoprecipitation of IR and

caveolin

Nystrom et al. (1999)

Colocalization of IR

and caveolin-1

IR and caveolin in light-density fractions

by sucrose density floatation assay

Kabayama et al. (2005)

Fluorescence microscope Gustavsson et al. (1999)

Electron microscope Karlsson et al. (2004), Foti et al.

(2007)

Signaling Stimulation of caveolin-1 tyrosine

phosphorylation by insulin

Mastick et al. (1995), Kimura

et al. (2002)

Caveolin-deficient mice show insulin

resistance due to accelerated

degradation of IR in adipose tissue

Cohen et al. (2003b), Capozza

et al. (2005)

Cholesterol depletion disrupts caveolae

and metabolic signaling of insulin

Parpal et al. (2001), Gustavsson

et al. (1996)

Increased GM3 eliminates IR from DRM

and inhibits IR–IRS-1 signaling

Kabayama et al. (2005),

Kabayama et al. (2007)
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them. The association between IR and the anti-GM3 antibody was abolished by

the presence of GM3, confirming the specific binding ability of the anti-GM3

antibody to GM3 in the immunoprecipitation medium (Fig. 3b, lower panel).

We next examined GM3–protein interactions occurring within the plasma mem-

brane of living cells by performing a cross-linking assay using a photoactivatable

radioactive derivative of GM3 (Fig. 3c). Adipocytes were preincubated with [3H]

GM3(N3) and then irradiated to induce cross-linking of GM3. Target proteins were

then separated by SDS-PAGE and visualized by autoradiography. A broad range of
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Fig. 3 The insulin receptor forms distinct complexes with Cav1 and GM3 in adipocytes. (a)

Coimmunoprecipitation assay of Cav1 and IR. Postnuclear supernatants (PNS) of whole cell

lysates were immunoprecipitated with an anti-Cav1 antibody or anti-mouse IgG (�), and the

precipitates were subjected to SDS-PAGE followed by immunoblotting with an anti-IRb antibody.

(b) GM3 associates with IR but not with Cav1. Upper panel: PNS were immunoprecipitated with

an anti-Cav1 antibody, an anti-IRb antibody, or an anti-mouse or anti-rat IgG (�). The precipitates

were subjected to TLC followed by immunostaining with the anti-GM3 antibody M2590. Lower
panel: Immunoprecipitation was performed with the anti-GM3 antibody DH2, in the presence or

absence of 50 mg GM3, or with anti-mouse IgG (�). The precipitates were then subjected to SDS-

PAGE followed by immunoblotting with an anti-IRb or anti-Cav1 antibody. (c) Cross-linking

assay of GM3 and IR. Adipocytes were treated with photoactivatable 3H-labeled GM3, washed,

and then irradiated. Cells were then lysed and subjected to immunoprecipitation with an anti-IRb
antibody. PNS, anti-IRb immunoprecipitates (IP), and the supernatant from the immunoprecipita-

tion (Sup) were subjected to SDS-PAGE, followed by immunoblotting with an anti-IRb antibody

and autoradiography (Kabayama et al. 2007)
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radioactivity reflecting GM3–protein complexes could be detected from 80 to

200 kDa, suggesting a close association between GM3 and a variety of cell

surface proteins, including IR. Moreover, a specific radioactive band corresponding

to the 90-kDa IR b-subunit was immunoprecipitated with anti-IRb antibodies,

confirming the direct association of GM3 and IR. Therefore, we found that IR

forms complexes with Cav1 and GM3 independently in 3T3-L1 adipocytes

(Kabayama et al. 2007).

Lipids are asymmetrically distributed in the outer and inner leaflets of plasma

membranes. In typical mammalian cells, most acidic phospholipids are located in

the inner leaflet, and only acidic glycosphingolipids such as sulfatides and ganglio-

sides are in the outer. The binding of proteins to lipid membranes is often mediated

by electrostatic interactions between the proteins’ basic domains and acidic lipids.

Gangliosides, which bear sialic acid residues, exist ubiquitously in the outer leaflet

of the vertebrate plasma membrane. GM3 is the most abundant ganglioside and the

primary ganglioside found in adipocytes (Ohashi 1979). Glycosphingolipids, includ-

ing gangliosides, share a common minimum energy conformational structure in

which the oligosaccharide chain is oriented at a defined angle to the axis of the

ceramide (Hakomori 2002). In addition, GM3 spontaneously forms clusters with its

own saturated fatty acyl chains, regardless of any repulsion between the negatively

charged units in the sugar chains (Sonnino et al. 2007). Thus, GM3 clusters with

other cell surface gangliosides generate a negatively charged environment just above

the plasma membrane. Conversely, IR has a sequence in its transmembrane domain,

homologous among mammals, which allows presentation of the basic amino acid

lysine (IR944) just above transmembrane domain. Therefore, during lateral diffu-

sion, an electrostatic interaction between the lysine residue at IR944 and the GM3

cluster could occur due to their proximity on the plasma membrane (Fig.4a).

We previously developed GM3-reconstituted cells by stably transfecting the

GM3 synthase (SAT-I) gene into GM3-deficient cells (Uemura et al. 2003)

(Fig. 4b, left panel). Using the FRAP technique, we examined the mobility of IR

in the plasma membranes of GM3-reconstituted (GM3 (+)) cells and mock (GM3

(�)) cells expressing equal levels of Cav1 (Fig. 4b, right panel inset). The mobility

of IR-GFP expressed in the GM3 (+) cells was statistically (10%) higher than that

in the GM3 (�) cells (Fig. 4b, right panel), providing further evidence that GM3 is

able to enhance IR mobility by dissociating the Cav1 and IR complex in living

cells.

The binding between IR and Cav1 has been studied in detail (Nystrom et al.

1999). To similarly analyze interactions between IR and GM3, we constructed

several mutants of IR in which the lysine at IR944 was replaced with the basic

amino acid, arginine, or with the neutral amino acid valine, serine, or glutamine

(Fig. 4c). The fluorescence recovery of IR(K944G), IR(K944S), and IR(K944V)

100 s after bleaching was decreased by 10% compared to those of IR(WT) and

IR(K944R) in GM3 (+) cells (Fig. 4c, lower left panel). However, in GM3 (�)

cells, no such difference in the mobility between IR(wt) and IR(K944S) was

observed (Fig. 4c, lower right panel). This demonstrates that the lysine in the
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wild type is essential for its binding to GM3 due to its basic charge (Kabayama

et al. 2007).

Here, we propose a mechanism behind the shift of IR from the caveolae to the

glycosphingolipid-enriched domain (GEM) in adipocytes during a state of insu-

lin resistance. Figure 5 shows a schematic representation of raft/microdomains

comprising caveolae and noncaveolae rafts such as GEM. Caveolae and GEM

reportedly can be separated by an anti-Cav1 antibody (Iwabuchi et al. 1998). IR

may be constitutively resident in caveolae via its binding to the scaffolding

domain of Cav1 through the caveolin-binding domain in its cytoplasmic region.

Binding of IR and Cav1 is necessary for successful insulin metabolic signaling

(Table 1). In adipocytes, the localization of IR in the caveolae is interrupted by

elevated levels of the endogenous ganglioside GM3 during a state of insulin

resistance induced by inflammatory response (e.g. TNFa) (Tagami et al. 2002).

By live cell studies using FRAP techniques we have proven a mechanism, at

least in part, in which the dissociation of the IR–Cav1 complex is caused by the

interaction of a lysine residue, located just above the transmembrane domain in

IR b-subunit, and the increased GM3 clustered at the cell surface (Kabayama

et al. 2007) (Fig. 5).

Fig. 4 The lysine residue IR944 is essential for the interaction of IR with GM3. (a) Schematic

representation of the proposed interaction of the lysine residue at IR944, which is located just

above the transmembrane domain, and GM3 at the cell surface. (b) Enhanced mobility of IR in

GM3-enriched membrane. Left panel: Glycosphingolipid (GSL) analysis of GM3-reconstituted

cells (GM3 (+)) and mock cells (GM3 (�)). GSLs extracted from these cells, corresponding to

1 mg of cellular protein, were separated on HPTLC plates and stained with resorcinol–HCl

reagent, to visualize gangliosides, or with cupric acetate–phosphoric acid reagent for neutral

GSLs. Right panel: FRAP analyses. Fluorescence recovery of IR-GFP in GM3 (�) and GM3

(+) cells expressing equal levels of Cav1(inset). (c) Specificity of the interaction between lysine at
IR944 and GM3 by FRAP analyses.Upper panel: Schematic structure of IR-GFP mutants in which

the lysine at IR944 is replaced with basic and neutral amino acids. Lower panel: Fluorescence
recovery of IR-GFP mutants in GM3(+) and GM3(�) cells
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5 Serum GM3 Levels as a New Biomarker of Metabolic

Syndrome

GM3 is the major ganglioside present in serum and is known to be associated with

serum lipoproteins (Senn et al. 1989). However, there have been no studies exam-

ining a relationship between serum GM3 levels and diabetes or abdominal obesity.

So, we investigated the relationship between serum GM3 levels and adiposity

indices, as well as between serum GM3 levels and metabolic risk variables (Sato

et al. 2008). Serum GM3 levels were higher in hyperglycemic patients (1.4-fold),

hyperlipidemic patients (1.4-fold), and hyperglycemic patients with hyperlipidemia

(1.6-fold) than in normal subjects. In addition, serum GM3 levels were significantly

increased in type 2 diabetic patients with severe obesity (visceral fat area>200 cm2

and BMI >30). The GM3 level was positively correlated with LDL-c (0.403,

p ¼ 0.012) in type 2 diabetes mellitus, but not affected by blood pressure. In

addition, the high levels of small dense LDL (>10 mg/dl) were associated with
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Fig. 5 Proposed mechanism behind the shift of insulin receptors from the caveolae to the glyco-

sphingolipid-enriched microdomains (GEM) in adipocytes during a state of insulin resistance. A

schematic representation of raft/microdomains comprising caveolae and noncaveolae rafts such as

GEM. Caveolae and GEM reportedly can be separated by an anti-Cav1 antibody. IR may be

constitutively resident in caveolae via its binding to the scaffolding domain of Cav1 through the

caveolin-binding domain in its cytoplasmic region. Binding of IR and Cav1 is necessary for

successful insulin metabolic signaling (Table 1). In adipocytes, the localization of IR in the

caveolae is interrupted by elevated levels of the endogenous ganglioside GM3 during a state of

insulin resistance induced by TNFa (Kabayama et al. 2005). This study has proved a mechanism,

at least in part, in which the dissociation of the IR/Cav1 complex is caused by the interaction of a

lysine residue at IR944, located just above the transmembrane domain, and the increased GM3

clustered at the cell surface
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the elevation of GM3. Serum GM3 levels were affected by glucose and lipid

metabolism abnormalities and by visceral obesity. Interestingly, increased small

dense LDL was reportedly associated with the development of atherosclerosis

(Austin et al. 1988; de Graaf et al. 1991; Tribble et al. 1995), and GM3 has been

detected in atherosclerotic lesions (Bobryshev et al. 2001, 1997). Thus, our findings

provide evidence that GM3 may be a useful marker for the management of

metabolic syndrome including insulin resistance, as well as for the early diagnosis

of atherosclerosis.

6 A Possible Therapeutic Intervention of Metabolic

Syndrome by Inhibiting Ganglioside Synthesis

Critical involvement of ganglioside GM3 in insulin resistance and metabolic

syndrome including type 2 diabetes has now become evident based on the following

key observations: (1) TNFa increases the expression of GM3 in adipocytes and the

TNFa-induced insulin resistance is prevented by treatment with a glucosylceramide

synthase inhibitor, D-PDMP, and decreases GM3 contents (Tagami et al. 2002); (2)

GM3 contents increase in the adipose tissue of Zucker fa/fa rats and ob/ob mice,

which are typical rodent models of obesity (Tagami et al. 2002) and diet-induced

obesity (unpublished observation); (3) insulin sensitivity is enhanced in GM3

synthase knockout mice (Yamashita et al. 2003); (4) the accumulation of GM3 in

insulin resistance results in dissociation of the IR from caveolae (Kabayama et al.

2005); (5) dissociation of the IR from caveolae is caused by electrostatic interaction

between GM3 and the lysine residue (Lys-944) located just above the transmem-

brane of the IR(Kabayama et al. 2007); and (6) treatment with glucosylceramide

synthase inhibitors significantly improved insulin sensitivity and glucose homeo-

stasis in rodent models of obesity (Aerts et al. 2007; Zhao et al. 2007). Taken

together, a new therapeutic intervention by inhibiting GM3 biosynthesis can be

proposed for the treatment of metabolic syndrome including type 2 diabetes.

7 Concluding Remarks

A growing body of evidence implicates glycosphingolipids including gangliosides

in the pathogenesis of insulin resistance. We demonstrated that in 3T3-L1 adipo-

cytes in a state of TNF-induced insulin resistance, the inhibition of insulin meta-

bolic signaling was associated with an accumulation of the ganglioside GM3, and,

moreover, the pharmacological inhibition of GM3 biosynthesis by the glucosylcer-

amide synthase inhibitor D-PDMP resulted in the nearly complete recovery of

TNFa-induced suppression of insulin signaling, suggesting a new target for therapy

against insulin resistance and type 2 diabetes (Tagami et al. 2002). Recently, an
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improved PDMP analogue (Zhao et al. 2007) and another type of glucosylceramide

synthase inhibitor (Aerts et al. 2007) were proven to have therapeutic value by oral

administration in diabetic rodent models. In addition, our data substantiate a

rationale for designing novel therapies against type 2 diabetes and related diseases

based on inhibition of ganglioside biosynthesis. Figure 6 represents a synopsis

of the proposed role of the aberrant expression of GM3 in metabolic syndrome,

type 2 diabetes, and atherosclerosis.
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Abstract The incidence of obesity and related co-morbidities such as insulin

resistance, dyslipidemia and hypertension are increasing at an alarming rate world-

wide. Current interventions seem ineffective to halt this progression. With the

failure of leptin as an anti-obesity therapeutic, ciliary neurotrophic factor (CNTF)

has proven efficacious in models of obesity and leptin resistance, where leptin

proved ineffective. CNTF is a gp130 ligand that has been found to act centrally and

peripherally to promote weight loss and insulin sensitivity in both human and

rodent models. Future research into novel gp130 ligands may offer new candidates

for obesity-related drug therapy.
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1 Introduction

Obesity is rapidly reaching epidemic proportions in many areas of the world. An

estimated 1.6 billion people worldwide are now classified as overweight, with 246

million people with diabetes and an additional 308 million with impaired glucose

tolerance (WHO 2006). Once considered diseases of age and affluence, the preva-

lence of obesity and diabetes has increased dramatically in both developing

countries and the younger population (Mascie-Taylor and Karim 2003). Obesity

is associated with dyslipidemia, elevated blood pressure, insulin resistance and

progressive b cell failure leading to type 2 diabetes. In fact, in western countries,

90% of type 2 diabetes cases are due to increased weight (James et al. 2003). As a

result, the financial and social costs of obesity and diabetes are profound. Advances

in treating obesity will reduce the occurrence and progression of associated diseases

such as insulin resistance and type 2 diabetes. Current therapies for obesity are

limited at best and as such, there is a requirement for new therapeutics. Compounds

that could combine weight loss and reduce insulin resistance would have a signifi-

cant clinical impact on these often co-existing diseases. Ciliary neurotrophic factor

(CNTF) and other gp130 ligands offer a unique class of potential therapeutics for

use in obesity and associated diseases.

2 Current Therapeutics for Obesity and Type 2 Diabetes

There is evidence that a dramatic reduction in the incidence of type 2 diabetes and

the prevention of an even larger number of cases are possible with the implementa-

tion of a healthy diet with increased activity (Knowler et al. 2002). Unfortunately,

it is becoming increasingly evident that the vast population is unable to adhere to

these lifestyle changes and thus require additional interventions. There are several

classes of therapeutics currently available for the treatment of type 2 diabetes: (1)

secretagogues (sulfonylureas and non-sulfonylureas), (2) sensitisers (biguanides,

TZDs), (3) a-glucosidase inhibitors and (4) incretin-based agents (Fonseca and

Kulkarni 2008; Penfornis et al. 2008). Secretagogues stimulate the pancreas to

secrete insulin, thus allowing the liver to suppress gluconeogenesis and increase

glucose uptake into the muscle. Biguanides (metformin) function not only by

suppressing hepatic gluconeogenesis and glycogenolysis but also increase insulin

sensitivity. Thiazolidinediones (TZDs, e.g. rosiglitazone, pioglitazone) act by re-

sensitising peripheral tissues to the action of insulin. The a-glucosidase inhibitors

(acarbose and miglitol) reduce the uptake of carbohydrates from the small intestine.

Finally, incretin-based agents include dipeptidyl peptidase IV (DPP-4) inhibitors

(e.g. sitagliptin, vildagliptin) and glucagon-like peptide-1 (GLP-1) analogues (e.g.

exenatide, liraglutide). DPP-4 inhibitors attenuate the break down of endogenously

secreted incretins (GLP-1 and GIP), while GLP-1 analogues increase circulating

GLP-1 levels to supraphysiological levels by virtue of being DPP-4 resistant. Both
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compounds lead to increased insulin secretion and decreased glucagon secretion.

Many of these compounds are used in combination with each other and with

exogenous insulin. The use of many of these compounds, however, is associated

with several side effects including hypoglycemia, weight gain and congestive heart

failure (TZDs).

Bariatric surgery has been particularly efficacious in reducing or eliminating

type 2 diabetes in addition to weight loss (Cummings et al. 2008). However,

surgical intervention is not a wide scale resolution for an escalating epidemic,

particularly considering patients are usually not considered candidates until they

reach a BMI of 35 or greater. Clearly, early intervention is far more desirable in

order to reduce morbidity and mortality associated with obesity and type 2 diabetes.

There are currently two therapeutics available to treat obesity (Padwal and Majumdar

2007). Orlistat (Xenical) is a gastric and pancreatic lipase inhibitor designed to reduce

the uptake of fats from the gut. Sibutramine is a monoamine-reuptake inhibitor that

works predominantly to increase satiety. Both the compounds induced modest weight

loss but studies have been plagued with lack of compliance and evidence of the effects

on long-termmorbidity andmortality. Furthermore, several adverse effects have been

reported including gastrointestinal effects (Orlistat) and increases in pulse rate and

blood pressure (Sibutramine). In light of this, there is a requirement to develop

additional therapeutics suitable for long-term use in obesity. Ideally, a compound

that could concomitantly induce weight loss and insulin sensitisation would offer a

dual pronged attack on obesity and its co-morbidities.

3 Leptin: A Flash in the Pan

Leptin was once heralded as the breakthrough for obesity. It was discovered as a

molecule that was secreted from adipose tissue and activated pathways in the brain

that affected energy balance and feeding (Elmquist et al. 1998; Friedman and

Halaas 1998; Schwartz et al. 2000; Zhang et al. 1994). Since then, leptin has also

been attributed to numerous peripheral metabolic effects including glucose uptake

and fatty acid oxidation in skeletal muscle (Minokoshi et al. 2002; Muoio et al.

1997; Steinberg et al. 2003; Watt et al. 2006a). Unfortunately, the discovery that

obese people had already elevated levels of circulating leptin, indicative of leptin

resistance, quickly ended any hope that exogenous leptin could be used therapeuti-

cally (Friedman and Halaas 1998). This leptin resistance is thought to arise via

several mechanisms. The first involves the reduced transportation of leptin across

the blood–brain barrier, since leptin retains its weight loss effects when adminis-

tered centrally to a mouse model of diet-induced obesity displaying peripheral

leptin resistance (Van Heek et al. 1997). This is further supported by findings that

the efficiency of leptin transport into the cerebrospinal fluid was reduced in obese

people with high levels of plasma leptin (Schwartz et al. 1996). In addition to this

mechanism, the induction of SOCS3 (suppressor of cytokine signalling 3) expres-

sion is also thought to contribute to leptin resistance. Leptin receptor signalling
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leads to activation of the JAK/STAT pathway and transcription of the STAT-

dependent gene, SOCS3. SOCS3 then binds via its src-homology-2 (SH-2) domain

to the phosphorylation sites on the active leptin receptor and associated JAK,

thereby inhibiting further receptor activation (Bjorbaek et al. 2000). Both obese

humans and rodents (Bjorbaek et al. 1998; Peralta et al. 2002) have been found to

overexpress SOCS leading to the belief that this negative feedback may contribute

to a reduction in leptin receptor activity and manifest as leptin resistance. Further to

this, haploinsufficient SOCS3 mice exhibit an increased sensitivity to leptin and

show resistance to high fat diet induced obesity (Howard et al. 2004; Mori et al.

2004).

4 Leptin Receptor Versus gp130 Receptor Signalling

The leptin receptor (ObR) was first identified in 1995 (Tartaglia et al. 1995). Splice

variants were discovered shortly thereafter and the LRb (ObRb) or the long form of

the receptor was identified as the receptor disrupted in the genetically obese and

diabetic db/db mice. The leptin receptor is a member of the cytokine receptor

superfamily and is most closely related to the gp130 receptor, the major signal

transduction receptor used by the IL-6 family of cytokines (Lee et al. 1996). Both

the leptin receptor and the gp130 receptor function as dimers and signal predomi-

nantly through the Janus kinase/signal transducer and activator of transcription

(JAK/STAT) pathway. Leptin also activates the MAPK, PI3K, AMPK and mTOR

pathways (Cota et al. 2008; Hegyi et al. 2004; Maroni et al. 2005; Minokoshi et al.

2002; Niswender et al. 2004). The gp130 receptor similarly activates the RAS/

MAPK, IRS/PI3K, AMPK as well as mTOR pathways (Boulton et al. 1994; Carey

et al. 2006; Cota et al. 2008; Daeipour et al. 1993; Watt et al. 2006a; Yokogami

et al. 2000).

The intracellular domain of the leptin receptor has two tyrosine residues

(Tyr985, Tyr1138), which upon phosphorylation by JAK leads to recruitment of

SHP-1 and STAT3, respectively, thereby mediating the activation of the MAPK,

PI3K and STAT pathways (Banks et al. 2000). Receptor activation leads to expres-

sion of SOCS3 which binds to phosphorylated JAK as well as tyrosine residue 985

on the leptin receptor mediating the inhibition of STAT3 signalling (Bjorbaek et al.

1999, 2000) (Fig. 1a). Further to this, SOCS3 has also been found to target JAK

proteins for proteasomal degradation (Kamura et al. 1998; Zhang et al. 1999). The

inhibition of gp130 receptor signalling occurs in an analogous manner. In the case

of IL-6, the human gp130 receptors contain five tyrosine residues (tyr 759, 767,

814, 905, 915) that are phosphorylated upon receptor activation. Similar to the

leptin receptor, SOCS3 can inhibit signalling by binding to the SHP-2 binding

tyrosine residue 759 as well as JAK. The gp130 receptor has four STAT3 binding

sites distal to tyrosine residue 759, three more than that found in the leptin receptor

(Fig. 1b). The existence of these extra STAT3 binding sites may explain why gp130

ligands can overcome SOCS3 inhibition of signalling, while leptin cannot.
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Fig. 1 Leptin signalling versus gp130 signalling. Leptin receptor signalling (a) occurs through

dimerisation of two leptin receptors (LRb). This results in the phosphorylation and activation of

JAK, and two tyrosine residues (tyr985, tyr1138) in the leptin receptor that leads to activation of

Overcoming Insulin Resistance with Ciliary Neurotrophic Factor 183



These findings may further explain why gp130 ligands (e.g. CNTF) are still effica-

cious in reducing weight in leptin-resistant models of obesity.

5 gp130 Receptor Ligands

The IL-6 family of cytokines includes interleukin-6 (IL-6), interleukin-11 (IL-11),

leukaemia inhibitory factor (LIF), oncostatin M (OSM), cardiotrophin-1 (CT-1),

cardiotrophin-like cytokine (CLC) and neuropoietin (NP). These cytokines function

by binding to their respective a receptors and inducing the dimerisation of the two b
receptors responsible for signal transduction (Fig. 2). For some cytokines, this

dimerisation consists of a gp130 homodimer (IL-6, IL-11) while others consist of

a gp130/LIFR heterodimer (CNTF, CT-1, LIF). OSM is capable of signalling

through both a gp130/OSMR and gp130/LIFR heterodimer. Unlike, other members,

OSM and LIF do not require an a receptor. CLC is a unique IL-6 family cytokine in

that it is capable of forming a dimer with two different a receptors, cytokine-like

receptor (CLF) (Elson et al. 2000) and sCNTFRa (Plun-Favreau et al. 2001).

Incapable of being secreted, CLC must form a dimer with either receptor intracel-

lularly in order to facilitate its secretion. Once secreted, this dimer is capable of

activating the gp130/LIFR heterodimer. Lastly, neuropoietin (NP) is the newest

member of the IL-6 family of cytokines (Derouet et al. 2004). Recently, NP, CLC

and CNTF have all been found to share the same cytokine binding site on CNTFRa,
supporting previous evidence that they are all alternative activators of the CNTFR/

gp130/LIFR complex (Rousseau et al. 2008).

It is the structural homology rather than sequence homology that classifies these

cytokines as gp130 cytokines, all sharing a 4-helical bundle structure (Bazan 1991).

This helical structure contains conserved motifs that are responsible for the binding

to certain components of the receptor complex. These motifs are found in discon-

tinuous modules and have been successfully swapped to create novel, chimeric

cytokines (Kallen et al. 1999). Not only did this finding highlight how gp130

cytokines interacted with their respective receptor components, but it has also led

to the possibility of generating novel cytokines that may offer novel therapeutic

value (discussed further in Sect. 7).

Fig. 1 (continued) down stream pathways (MAPK, PI3K, STAT3). Activated STAT3 initiates the

transcription of STAT3 dependent genes including SOCS3. SOCS3 is then capable of interacting

with tyr985 of the leptin receptor and JAK proteins to inhibit further signalling. (b) Gp130

signalling is similar to that of leptin. For example, IL-6 binds its a receptor, IL-6R, which then

induces the dimerisation of a gp130 homodimer. Receptor activation leads to phosphorylation of

JAK and five tyrosine residues (tyr759, 767, 814, 905, 915) in the gp130 receptor and activation of

down stream pathways (PI3K, MAPK, STAT3). SOCS3 can similarly inhibit gp130 receptor

signalling. However, unlike leptin, gp130 ligands can overcome the SOCS3 inhibition in obesity.

The reason for this is still unclear but may involve the existence of four STAT3 binding sites on the

gp130 receptor, three more than the leptin receptor. Taken from (Febbraio 2007)
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6 CNTF

CNTF was originally discovered as a factor that supported the survival of parasym-

pathetic neurons of the chick ciliary ganglion in vitro (Adler et al. 1979).

Subsequent studies have recognised its ability to promote cell survival or differen-

tiation in a number of neuronal and glial cell types (Sleeman et al. 2000). CNTF is a

200 amino acid, 23 kDa protein that lacks a signal sequence peptide. As a result,

CNTF is not regarded as a secreted protein. Despite this, CNTF has been found in

the serum in both healthy and diseased states (Vergara and Ramirez 2004). This has

led to the postulation that it may be secreted by a pathway similar to that proposed

for IL-1b or the non-classical pathway described for chick CNTF (Andrei et al.

1999; Reiness et al. 2001; Rubartelli et al. 1990).

The CNTF receptor (CNTFRa) is most highly expressed not only in neural tissue

(Davis et al. 1991) but is also detected in skeletal muscle, kidney, liver, testis, lung,

bone marrow and adrenal gland (Bellido et al. 1996; Davis et al. 1991; Ip et al.

1992; MacLennan et al. 1994). The receptor is approximately 70 kDa and is

attached to the membrane via a glycosyl–phosphatidyl–inositol link. This link

makes it possible for the receptor to be cleaved by phospholipase C to release the

gp130 homodimers

gp130 heterodimers

IL-6

LIF OSM

gp
13

0

gp
13

0

gp
13

0

gp
13

0

gp
13

0

gp
13

0

gp
13

0

gp
13

0

IL
-6

R

LI
F

R

LI
F

R

LI
F

R

C
N

T
F

-R

C
N

T
F

-R

C
N

T
F

-RLI
F

R

LI
F

R

LI
F

R

O
S

M
R

IL
-1

1R

gp
13

0

gp
13

0

gp
13

0

OSM CT-1

CNTF NP CLC/CLF

IL-11

?

Fig. 2 IL-6 Family of
Cytokines. The IL-6 family of

cytokines function by binding

to their respective a receptors

inducing dimerisation of the b
receptors. IL-6 and IL-11

bind their receptors (IL-6R
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soluble form of the CNTFR. This soluble CNTFR is then able to bind to CNTF and

activate tissues that otherwise might be refractory to the effects of CNTF due to

lack of receptor expression (Davis et al. 1993). Once CNTF binds the CNTFR, it

initiates dimerisation of the b receptors, LIFR and gp130, leading to receptor

tyrosine phosphorylation. Of critical biological significance, it has also been

noted that CNTF can use the IL-6R as an alternative a receptor and maintain

signalling through a LIFR/gp130 heterodimer (Fig. 3). The predominant pathway

activated by CNTF is the JAK/STAT pathway. Activated STAT3 dimerise, move to

the nucleus and induce transcription of target genes such as SOCS3, c-fos, tis-11,
cyclooxgenase-2 and fibrinogen (Helgren et al. 1994; Kelly et al. 2004; Nesbitt

et al. 1993). Other molecules activated by the CNTF include ERK1/2, PI3K, Raf-1,

STAT1, GRB2, SHC, pp120, phospholipase Cg and PTP1D (Boulton et al. 1994).

Crucial residues in CNTF have been found to alter the potency of human CNTF.

A substitution of glutamine 63 for an arginine and cysteine 17 for an alanine, in

addition to the deletion of 15 amino acids in the N-terminal end of the protein result

in increased potency, stability and solubility compared to the parent molecule (Di

Marco et al. 1996; Saggio et al. 1995). The resulting recombinant protein was

termed Axokine (CNTFAx15) and has been subsequently used in vivo and in vitro to

establish the role of CNTF signalling in obesity and metabolism (discussed later).

With escalating interest in the role of CNTF in obesity, it was then questioned

whether mutations or polymorphisms in the cntf gene might contribute to obesity.

A G–A null mutation in the first exon of the cntf gene, leading to absence of protein,
was not associated with early onset obesity (Munzberg et al. 1998). However, a later

study showed this mutation was associated with 10 kg increase in body mass in men

but not in women (O’Dell et al. 2002). Three novel polymorphisms were identified

in the CNTF receptor gene but only one, a C–T substitution at position 174, was
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associated with greater body mass and BMI (Roth et al. 2003). These findings are

clearly different from those for leptin and its receptor. Leptin and leptin receptor

mutations are known to cause severe obesity in both humans and rodents (Montague

et al. 1997; Tartaglia et al. 1995; Zhang et al. 1994). Genetic ablation of CNTF in

mice causes no obvious phenotype, except for loss of motor neurons in old age,

leading to muscle weakness (Masu et al. 1993). This, of course, can be explained by

the existence of an additional ligand for the CNTFR (CLC). However, loss of the

CNTFR leads to death postnatally due to an inability to suckle and significant loss of

motor neurons in the brain stem and spinal cord motor nuclei (DeChiara et al. 1995).

7 Metabolic Effects of CNTF

CNTF was first discovered to have a potential role in energy balance during a trial of

recombinant human CNTF (rhCNTF) for the treatment of amyotrophic lateral

sclerosis (ALS). Obese patients receiving rhCNTF noted decreased food intake

and involuntary weight loss (ACTS 1996; Miller et al. 1996). This finding was

supported by Ettinger et al. (2003) in a randomised dose-ranging study of CNTFAx15
revealing it was effective at inducing greater weight loss in obese patients than

placebo. These observations created significant interest in the feasibility of CNTF in

the treatment of obesity. Subsequent studies highlighted the effectiveness of CNTF

at reducing weight in both genetic (ob/ob, db/db) and diet-induced models of

obesity, the latter being in a state of leptin resistance (Bluher et al. 2004; Gloaguen

et al. 1997; Lambert et al. 2001; Liu et al. 2007a; Sleeman et al. 2003; Watt et al.

2006a). Initial concern was raised that the weight loss effects might be attributed to a

cachectic-like effect, as observed for other cytokines, e.g. IL-1. However, while

lower doses of CNTFAx15 resulted in significant weight loss, it neither activated

similar neural pathways as IL-1, nor did it result in taste aversion, muscle wasting or

increased circulating corticosteriods, as noted for IL-1 (Lambert et al. 2001). In

contrast, high doses of CNTFAx15 did lead to increased taste aversion, corticosterone

levels and muscle loss (Henderson et al. 1994; Lambert et al. 2001; Martin et al.

1996; Matthys and Billiau 1997). In addition to weight loss, CNTFAx15 administra-

tion improved hyperinsulinemia, hyperglycemia and hyperlipidemia associated

with obesity (Bluher et al. 2004; Gloaguen et al. 1997; Lambert et al. 2001; Sleeman

et al. 2003; Watt et al. 2006a). The mechanism by which CNTFAx15 achieves these

endpoints has been extensively investigated and involves both central and periph-

eral effects. A summary of in vivometabolic effects of CNTF is presented in Table 1.

7.1 Central Effects of CNTF

CNTF was first surmised to act in a similar fashion to leptin when it was discovered

that it activated the area of the hypothalamus involved with appetite and energy
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balance similarly to leptin (Gloaguen et al. 1997; Lambert et al. 2001). The

receptors for leptin and CNTF were then found co-expressed in the arcuate nucleus

(ARC) and paraventricular nuclei (PVN) of the hypothalamus and treatment with

both the compounds led to a rapid phosphorylation of STAT3 and induction of the

c-fos and tis-11 target genes (Gloaguen et al. 1997; Lambert et al. 2001). Further-

more, CNTFAx15 treatment inhibited the increase in neuropeptide Y (NPY), agouti-

related protein (AGRP), gamma-aminobutyric acid (GABA) and pCREB (cAMP

response element binding protein) in response to food restriction and fasting (Kalra

et al. 1998; Lambert et al. 2001; Pu et al. 2000; Xu et al. 1998). The NPY, AGRP

and GABA proteins are potent orexigenic proteins whose expression increases

rapidly in the arcuate and paraventricular nuclei in response to food deprivation

(Brady et al. 1990; Sahu et al. 1988). Similarly, the phosphorylation of CREB

increases in the PVN upon food deprivation. In addition, CNTFAx15 was found to

have reduced efficacy in stimulating c-fos expression and reducing weight in animals

where the gp130 receptor was specifically knocked out in pro-opiomelanocortin

Table 1 Metabolic effects of rhCNTF or CNTFAx15 in vivo

Phenotype following treatment Study

Induced marked weight loss in human and

rodent populations

ACTS (1996), Cota et al. (2008), Ettinger et al.

(2003), Lambert et al. (2001), Liu et al.

(2007a, b), Sleeman et al. (2003),

Steinberg et al. (2006), Watt et al. (2006a)

Maintained a decreased body weight after

cessation of CNTF treatment

Bluher et al. (2004), Ettinger et al. (2003),

Sleeman et al. (2003)

Promoted hypophagia Bluher et al. (2004), Cota et al. (2008),

Gloaguen et al. (1997), Lambert et al.

(2001), Steinberg et al. (2006), Watt et al.

(2006a)

Reversed hyperinsulinemia and promoted

insulin sensitivity in rodent models of obesity/

or infused with lipid

Bluher et al. (2004), Gloaguen et al. (1997),

Lambert et al. (2001),Watt et al. (2006a, b)

Acts on hypothalamic neurons to suppress AMPK

and alters expression of

orexigenic/anorexigenic transcripts

Janoschek et al. (2006), Kokoeva et al. (2005),

Lambert et al. (2001), Steinberg et al.

(2006), Xu et al. (1998), Ziotopoulou et al.

(2000)

Promoted activation of AMPK-dependent

fatty acid oxidation in skeletal muscle

Watt et al. (2006a)

Decreased the build up of lipid in skeletal muscle/

and or liver and the activation of serine kinase

cascades

Sleeman et al. (2003), Watt et al. (2006a, b)

Increased glucose uptake in skeletal muscle

and insulin signalling in skeletal muscle

and liver

Sleeman et al. (2003), Watt et al. (2006a, b)

Improved liver function and metabolic rate

in db/db mice

Bluher et al. (2004), Sleeman et al. (2003)

Increased mitochondrial complex 4 activity,

UCP1, NRF-1 and TFam expression

in brown adipose tissue

Bluher et al. (2004), Liu et al. (2007a, b)

Enhanced circulating adiponectin levels Bluher et al. (2008)
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(POMC) neurons (Janoschek et al. 2006). POMC neurons are a major site of

leptin action in the brain and are involved in energy balance (Gropp et al. 2005).

These findings demonstrate that CNTF elicits effects on hypothalamic neurons to

suppress food intake as well as the stress signals associated with food deprivation.

CNTF administration in both humans and rodents has noted reduced rebound weight

gain compared to placebo controls after cessation of treatment and food restric-

tion (Bluher et al. 2004; Ettinger et al. 2003; Gloaguen et al. 1997; Lambert et al.

2001). It has been proposed that changes in the hypothalamic expression of

appetite-stimulating peptides during fasting or food deprivation are associated

with a memory of missed calories and mediate post restriction binge eating and

rebound weight gain (Lambert et al. 2001). The finding that CNTF reduces the

induction of such signals may explain the absence of binge eating and abrogated

weight gain after treatment had ceased. In addition, the delay in weight gain

after CNTF treatment can also be attributed to neurogenesis. Kokoeva et al.

(2005) discovered centrally administered CNTF led to cell proliferation in the

hypothalamus of mice. Co-administration of a mitotic blocker had no effect on

the short-term weight reduction elicited by CNTF but completely abrogated the

long-term CNTF weight reduction effects. Upon cessation of treatment, mice

treated with the mitotic blocker immediately gained weight and returned to the

weight of vehicle-treated animals within 20 days. Subsequent to this study,

additional evidences cast some doubt as to whether CNTF treatment in the

aforementioned study resulted in the proliferation of bona fide neurons or rather

promoted the survival of immature pre-existing neurons (Vogel 2005). While

this effect is advantageous to weight reduction, the long-term effects of this

“neurogenesis” or neuronal survival are not known and may not be a desirable

effect of a long-term obesity therapy.

More recent research has revealed that both leptin and CNTF inhibit AMPK in

these areas of the brain (Andersson et al. 2004; Minokoshi et al. 2004; Steinberg

et al. 2006). Intracerebroventricular (icv) administration of CNTF increased STAT3

phosphorylation while reducing the phosphorylation and activity AMPKa2 as well

as the phosphorylation of ACC in the ARC (Steinberg et al. 2006). When mice were

fed a high-fat diet for 12 weeks before ip (intraperitoneal) administration of either

leptin or CNTFAx15, only CNTFAx15 maintained its inhibition of AMPKa2 activity

in the ARC and phosphorylation of ACC in ARC and PVN. AMPK is a central

mediator in the hypothalamic control of energy balance. Dominant negative AMPK

expression in the hypothalamus reduces food intake and body weight in mice while

expression of constitutively active AMPK leads to increased food intake and body

weight. Accordingly, these changes in AMPK lead to alterations in the expression

of orexigenic genes, NPY and AGRP, in ARC depending on fed state (Minokoshi

et al. 2004). Recent work has identified the ACC/malonyl-CoA/CPT-1 and mTOR

signalling pathways as possible downstream effectors of AMPK in the hypothala-

mus (Cota et al. 2006, 2008; Obici et al. 2003). Interestingly, it has been found that

AMPK is activated in astrocytes in the striatum and this activation is accompanied

by increases in phosphorylated ACC (pACC), and the oxidation of fatty acids and

ketone bodies. This is thought to be a protective function of astrocytes to prevent
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damage to neurons and glial cells in face of metabolic insults such as prolonged

palmitate exposure (Escartin et al. 2007). The reason why AMPK is inhibited in the

specific hypothalamic neurons while simultaneously being activated in different

parts of the CNS and the periphery by CNTF (discussed later) still remains under

debate.

7.2 Peripheral Metabolic Effects of CNTF

Original thoughts were that the effectiveness of CNTF, and indeed leptin, in

reducing weight was exerted solely through actions on the feeding centres of the

brain. However, extensive research has highlighted numerous positive metabolic

effects of CNTF in peripheral tissues.

Numerous studies have been conducted using multiple models of obesity to

establish the peripheral effects of CNTFAx15 in vivo. Sleeman et al. (2003) noted

that db/dbmice lost more weight, had increased metabolic rate, energy expenditure

and improved glucose tolerance, fasting glucose, fasting insulin, serum non-ester-

ified fatty acids and triglyceride levels in CNTFAx15 treated animals than pair-fed

(caloric restricted) control animals. Furthermore, CNTFAx15 administration reduced

hepatic lipid deposition and improved liver function. Analysis of hepatic gene

expression revealed that CNTFAx15 reduced transcript levels of stearoyl-CoA

desaturase (SCD-1), involved in lipid synthesis, and increased carnitine-palmitoyl

transferase (CPT-1), involved in fatty acid oxidation. These changes coincided with

increases in hepatic insulin sensitivity as visualised by improved IRS-1 phosphory-

lation, p85/IRS-1 association and AKT phosphorylation.

Bluher et al. (2004) conducted a similar study using diet-induced obese mice and

the brown adipose deficient UCP-1 DTA rodent model of obesity. Similar to

previous studies, they noted weight loss, primarily due to fat mass loss and

improved glucose tolerance and insulin sensitivity in diet-induced obese mice

treated with CNTFAx15 compared to pair-fed control animals. No changes were

seen in energy expenditure during the treatment period, but authors noted an

increase in energy expenditure in the formerly CNTFAx15 treated animals in the

days following cessation of treatment. The respiratory exchange ratio (RER) was

also reduced during and after treatment. In line with this apparent increase in

thermogenesis, UCP-1 expression was found to be elevated in the brown adipose

tissue of these mice. To ascertain the involvement of brown adipose tissue thermo-

genesis in the mechanism of CNTFAx15 action, UCP-1 DTA mice were treated with

CNTFAx15. These mice similarly lost weight with treatment but not beyond

that achieved in pair-fed animals. The authors concluded that while the central

effects of CNTFAx15 are maintained in UCP-1 DTA mice, the peripheral effects

are slightly abrogated, possibly through a loss of UCP-1/brown adipose tissue

mediated thermogenesis.

In another study of db/db mice, human recombinant CNTF was also found

to upregulate the expression of UCP-1 in brown adipose tissue (Liu et al. 2007b).
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This study further revealed that the transcript levels of nuclear respiratory factor-1

(NRF-1) and mitochondrial transcription factor A (TFam), thought to be involved

in mitochondrial biogenesis, were similarly upregulated. In keeping with this, there

were increased levels of cytochrome c and activity of mitochondrial complex IV in

the brown adipose tissue of treated animals.

In vitro analysis is also critical in dissecting the direct effects of CNTF without

interference of cross talk from other tissues and the effects of pair feeding. Ott et al.

(2002) established a direct role for CNTF in signalling in brown adipose tissue with

treatment leading to the phosphorylation of STAT3, p42/44 MAP kinase, AKT and

p70 S6 kinase as well as enhanced b adrenergic induction of UCP-1 expression. In an
additional study, Ott et al. (2004) also noted suppression in leptin secretion from

culturedbrownadipocytes after chronic treatmentwithCNTF, aneffect not attributed

to impaired adipocyte differentiation. They also found that acute treatment of CNTF

reduced leptin expression in both brown and white adipocytes. Further analysis

revealed this decrease in leptin expression was abolished with co-treatment with a

PI3K inhibitor, while JAK2, MAPK and PKA inhibitors had no effect. This supplies

evidence that CNTF can reduce leptin levels directly without the complication noted

in in vivo studies of reduced leptin levels as a result of marked fat mass loss.

An additional pitfall of attempting to discriminate the tissue effects of CNTF

in vivo is that studies do not always exclusively determine whether the effects are

purely peripheral or whether there is some degree of mediation through the central

nervous system. To establish that CNTF does have centrally independent peripheral

effects, Watt et al. (2006a) administered CNTFAx15 both ip and icv and ascertained

the activation of STAT3 and AMPK in muscles. Increases in pSTAT3, pAMPK and

the activity of AMPKa1 and a2 in red gastrocnemius muscle were only noted with

ip administration establishing that these effects were not mediated through CNTF

effects in the CNS. Further to this, expression of PGC-1a, CPT-1 and UCP-3 were

all increased after ip treatment, with icv treatment inducing no changes. This study

went on to show that CNTFAx15 mediated activation of AMPK and phosphorylation

of ACC in muscle led to significant increases in fatty acid oxidation. This increase

in muscle fatty acid oxidation is specifically mediated through AMPK since

transduction of L6 myotubes with a dominant negative AMPK virus was capable

of abolishing this CNTFAx15 mediated increase in fatty acid oxidation. In mice

treated for 7 days with CNTFAx15, muscle triacylglycerol, diacylglycerol and

ceramide were decreased compared to pair-fed controls. Insulin signalling was

similarly restored in muscle from CNTFAx15 treated high-fat fed mice compared

to high-fat fed controls, as displayed by an increase in pAKT and pIRS-1, in

addition to muscle glucose uptake.

Of immense interest in the study by Watt et al. (2006a) is the finding that the

CNTF-mediated AMPK activation in cultured muscle cells was not dependent on

the phosphorylation of STAT3 since a dominant negative STAT3 did not affect

AMPK activation. However, SIMM mice (signalling-module mutation), in which

the C terminal part of the gp130 receptor containing the STAT3 binding sites has

been deleted, are refractory to the effects of CNTF to activate AMPK in muscle.

This established that whilst STAT3 activation is not required for CNTFAx15
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mediated AMPK activation, a section of the C terminal component of the gp130

receptor is. Furthermore, it was noted that CNTF maintained its ability to phos-

phorylate AMPK and ACC in human primary muscle cells transduced with an

adenovirus over-expressing SOCS3, while leptin’s effects were abolished by

SOCS3.

Further expanding on the effects of CNTFAx15 in muscle, a study into the short-

term effects of CNTFAx15 treatment on insulin action in muscle and liver during

lipid oversupply was conducted (Watt et al. 2006b). Rats were subjected to a 2-h

lipid infusion with or without pre-treatment with CNTFAx15 followed by a hyper-

insulinemic–euglycemic clamp. Animals pre-treated with CNTF were protected

from the lipid-induced reductions in systemic insulin sensitivity (decreased glucose

disposal rate and suppression of hepatic glucose production). Furthermore,

CNTFAx15 reduced the accumulation of triacylglycerols and ceramides as well as

the activation of mixed lineage kinase 3 (MLK3) and c-jun N-terminal kinase 1

(JNK1) in both muscle and liver. Insulin signalling was also restored in both liver

and muscle. With obesity now considered a state of inflammation, this finding

establishes a role for CNTF in reducing the markers of inflammation in insulin

responsive peripheral tissues.

One of the most striking effects of CNTF treatment is the rapid and significant

loss of fat mass. While this is an obvious effect from a decrease in the food intake, it

cannot be dismissed that CNTF may also have direct effects on white adipose tissue

functioning. Crowe et al. (2008) established that diet-induced obese mice treated

with CNTFAx15 exhibited decreased triglyceride content but an increased number of

adipocytes compared to pair fed controls. This increase in adipocyte numbers was

accompanied with an increase in the expression of PPARg and C/EBPa. Lipogene-
sis and lipolysis were decreased while fatty acid oxidation increased in the epidid-

ymal fat pads of these animals. Cultured 3T3-L1 adipocytes treated with CNTFAx15
were also analysed and similarly found to have increased fatty acid oxidation. This

increase in oxidation coincided with an increase in the phosphorylation of AMPK

and ACC. Chronic CNTF treatment also increased mitochondrial number, protein

expression of cytochrome c, ATP synthase-a and OxPhos complex II as well as

NRF-1, PPARg coactivator-1a (PGC-1a) and CPT-1.

Further analysis of white adipose tissue in vitro noted that while 3T3-L1

preadipocytes were highly responsive to CNTF as measured by the phosphorylation

of STAT3, p42/44 MAPK and AKT, mature adipocytes lost their responsiveness to

CNTF with reduced pSTAT and no increase of pAKT. This was attributed to

decreased protein levels of CNTFRa and LIFR during adipocyte differentiation

(gp130 levels remained the same) (Zvonic et al. 2003). This begs the question of

how CNTF is having profound effects in white adipose tissue if the receptor

expression is low. There is always an issue with disparity between the expression

of genes in cultured cell lines versus tissue. Indeed it has been found that the

CNTFRa is expressed in adipose tissue (Zvonic et al. 2003). An alternative is also

that CNTF effects may be mediated through the IL-6Ra (Fig. 3). Schuster et al.

(2003) discovered that in BAF/3 cells only expressing gp130, LIFR and IL-6R,

CNTF was capable of eliciting a proliferative response, albeit not as robustly as
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IL-6. In BAF/3 cells expressing the identical compliment of receptors, Watt et al.

(2006a) demonstrated that CNTFAx15 also increased the pSTAT3 and pAMPK,

although not quite as dramatically as IL-6. This alternative usage of the IL-6R by

CNTF has also been suggested as the mechanism for increases in fibrinogen

expression in CNTF-treated primary rat heptocytes (Nesbitt et al. 1993).

In summary, the metabolic effects of CNTF appear twofold, first in the hypo-

thalamus to reduce appetite and secondly through effects on multiple insulin-

sensitive peripheral tissues. It can improve insulin sensitivity in muscle, liver and

fat with increased fat oxidation in muscle and fat. It increases energy expenditure

and thermogenesis partly through events in brown adipose tissue, in addition to

remodelling white adipose tissue. Lastly, it activates the expression of genes and

signalling pathways involved in insulin signalling, fat utilisation and mitochondrial

activity. Collectively, these changes are accountable for the robust anti-obesogenic

and anti-diabetic actions of CNTF.

8 Future Directions for gp130 Ligands

Despite the promising effects CNTF has on obesity and insulin resistance, phase II

studies discovered between 45% and 87% of patients treated with CNTFAx15
developed antibodies (Ettinger et al. 2003). Furthermore, in phase III clinical trials,

half of the CNTFAx15 treated patients developed neutralising antibodies after 12

weeks that limited further weight loss (Duff and Baile 2003). CNTF, unlike other

cytokines, is not found in circulation, or found at very low levels; thus it can be

expected that high levels of exogenous protein could initiate an immune response.

Another contributing factor could be that whilst the CNTFR is highly expressed in

the CNS, much lower levels are found in peripheral tissues leading to the require-

ment of higher doses to elicit a robust response.

The question remains as to whether the gp130 family of cytokines still offers

hope of anti-obesity therapeutics. The finding that this family of cytokines pos-

sesses the same three-dimensional helical structures and contains discrete motifs

that are responsible for specific receptor component binding has led to the genera-

tion of novel chimeric cytokines (Kallen et al. 1999). In theory, this method could

potentially create cytokines that have specific signalling abilities by utilising a

unique combination of receptors. Such a cytokine would ideally have low immu-

nogenicity, utilise highly expressed receptors and initiate favourable metabolic

effects. Further work in this area will determine whether such an approach will

supply the novel candidate therapeutics that are urgently sought for the treatment of

obesity and type 2 diabetes.
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Abstract Exercise, together with a low-energy diet, is the first-line treatment for

type 2 diabetes. Exercise improves insulin sensitivity by increasing the number or

function of muscle mitochondria and the capacity for aerobic metabolism, all of

which are low in many insulin-resistant subjects. Cannabinoid 1-receptor antago-

nists and b-adrenoceptor agonists improve insulin sensitivity in humans and promote

fat oxidation in rodents independently of reduced food intake. Current drugs for the

treatment of diabetes are not, however, noted for their ability to increase fat oxida-

tion, although the thiazolidinediones increase the capacity for fat oxidation in

skeletal muscle, whilst paradoxically increasing weight gain.

There are a number of targets for anti-diabetic drugs that may improve insulin

sensitivity by increasing the capacity for fat oxidation. Their mechanisms of action

are linked, notably through AMP-activated protein kinase, adiponectin, and the

sympathetic nervous system. If ligands for these targets have obvious acute ther-

mogenic activity, it is often because they increase sympathetic activity. This

promotes fuel mobilisation, as well as fuel oxidation. When thermogenesis is

not obvious, researchers often argue that it has occurred by using the inappro-

priate device of treating animals for days or weeks until there is weight (mainly

fat) loss and then expressing energy expenditure relative to body weight. In

reality, thermogenesis may have occurred, but it is too small to detect, and this

device distracts us from really appreciating why insulin sensitivity has

improved. This is that by increasing fatty acid oxidation more than fatty acid

supply, drugs lower the concentrations of fatty acid metabolites that cause

insulin resistance. Insulin sensitivity improves long before any anti-obesity

effect can be detected.

Keywords Drug discovery � Exercise � Fatty acid oxidation � Insulin sensitivity �
Thermogenesis

1 Introduction

Why might we treat type 2 diabetes with a drug that increases energy expenditure

(thermogenesis)? Perhaps, because exercise is beneficial in type 2 diabetes. Perhaps

because compounds that increase energy expenditure – or at least aerobic capacity –

have been shown to be efficacious in models of type 2 diabetes, even though they

may not have become drugs. Perhaps, because this approach also addresses obesity
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and other features of the metabolic syndrome. And perhaps, being a novel

approach, a thermogenic drug would increase therapeutic options and synergise

with other drugs.

This chapter addresses these arguments and then goes on to review targets for

thermogenic drugs. Many of these targets are linked mechanistically, as illu-

strated in Fig. 1. Some of these targets are covered in a recent review focused

on obesity (Tseng et al. 2010) and others are the subject of entire chapters in this

book, but the focus of this chapter is on whether ligands for these targets might

increase insulin sensitivity by increasing thermogenesis or at least the capacity for

thermogenesis. A recurring theme is that targets associated with improved insulin

sensitivity are generally also associated with increased fatty acid oxidation. The

chapter concludes by considering some general issues for the discovery and

development of such drugs, in particular whether thermogenesis can easily be

detected in the absence of increased sympathetic activity or another stimulus to

fuel supply.

SNS

AMPK

Leptin
BDNF
CNTF

SCD1
FAS

Adiponectin

Gs in BAT
or muscle

ZAG
Thyroid hormones

TGR5

ACC2 SIRT1

Ghrelin

Thyroid hormone
receptors 

TZDs

CB-1R

11bHSD-1

Fig. 1 Mechanistic links between targets for insulin-sensitising anti-diabetic drugs. The multiple

linkages of the sympathetic nervous system, AMPK, and adiponectin are emphasised. The

linkages do not indicate that targets influence insulin sensitivity exclusively through the targets

to which they are linked. Targets that require inhibitors or antagonists are shown in italics. Leptin,
CNTF, BDNF, SCD1, and FAS are shown in one oval for ease of presentation. Abbreviations:

11bHSD 11b-hydroxysteroid dehydrogenase-1; ACC2 acetyl-CoA caboxylase-2; AICAR 5-

aminoimidazole-4-carboxamide-1-b-D-ribofuranoside (but in the literature on purine metabolism

synonymous with ZMP – see Sect. 6.1); AMPK AMP-activated protein kinase; BDNF brain-

derived neurotrophic factor; CB-1R cannabinoid 1-receptor; CNTF ciliary neurotrophic

factor; FAS fatty acid synthase; FBPase fructose-1,6-bisphosphatase; Gs Gs protein (activated

by many G-protein-coupled receptors); PGC-1a peroxisome proliferator-activated receptor

gamma coactivator 1-a; PPAR peroxisome proliferator-activated receptor; SCD1 stearoyl-

CoA desaturases-1; SIRT1 sirtuin1; TZD thiazolidinedione; ZAG Zn-a2-glycoprotein; ZMP
5-amino-4-imidazolecarboxamide ribonucleotide or 5-aminoimidazole-4-carboxamide-1-b-D-
ribofuranotide
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2 Rationale: Why Target Thermogenesis?

2.1 Obesity and Diabetes

The prevalence of type 2 diabetes is greatly increased in obese subjects (Chan et al.

1994). This is both because obesity is associated with insulin resistance and because

b-cells are damaged by exposure to elevated lipid and glucose levels (Rutter and

Parton 2008). Visceral obesity (intra-abdominal adipose tissue) is the major culprit.

Indeed, some studies suggest that subcutaneous fat may even be protective against

markers of cardiometabolic risk (Buemann et al. 2005; Livingston 2006; Hocking

et al. 2008), though others give a more complex picture (Janiszewski et al. 2008;

Frederiksen et al. 2009; Porter et al. 2009).

2.2 Exercise in the Treatment of Diabetes

Low-calorie diets and exercise are usually the first line of treatment not only for

obesity but also for type 2 diabetic patients (Hayes and Kriska 2008). Exercise

of sufficient intensity generally improves insulin sensitivity (Assah et al. 2008;

O’Gorman and Krook 2008; Qi et al. 2008; Slentz et al. 2009), though it is not

effective in all patients (Teran-Garcia et al. 2005; Burns et al. 2007), partly owing to

interactions with genetic variation (Qi et al. 2008). Exercise must be regular for its

benefits to be persistent (Hawley and Lessard 2008). Combined aerobic and resis-

tance training may be of great value (Zanuso et al. 2010). Some studies suggest that

exercise can improve insulin sensitivity without causing weight loss (Cox et al.

2004; Holloszy 2005; Bo et al. 2008). This might be expected if exercise increases

muscle mass or the oxidative capacity of skeletal muscle but, surprisingly, in one

study fat loss elicited by exercise resulted in no greater improvement in glucose

tolerance and insulin action than similar fat loss elicited by caloric restriction (Weiss

et al. 2006).

Improved insulin sensitivity appears to protect the b-cell. This reduces the risk of
developing diabetes, because b-cell failure is ultimately responsible for declining

blood glucose control in diabetes. Thus, lifestyle modifications that involve a large

exercise component and thiazolidinedione drugs, both of which improve insulin

sensitivity, have a continuing effect over 4 years on the incidence of diabetes in

subjects at risk of developing the disease. By contrast, clinical trials on the

prevention of diabetes by metformin and acarbose, which have less effect on insulin

sensitivity, show maximal effects after only 2 years (Buchanan 2007).

Drugs that mimic the effects of exercise should therefore be of benefit inmost type

2 diabetic patients. The efficacy of such a drug relative to one that reduces energy

intake may be debated, but since the mechanisms by which increased energy

expenditure and reduced intake improve glucose homeostasis are not identical, a

thermogenic drug would expand therapeutic options beyond those of anorectic drugs.
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2.3 Exercise in the Treatment of the Metabolic Syndrome

Stimulation of thermogenesis may provide a means of treating multiple components

of the metabolic syndrome. There is some scepticism as to whether the various

definitions of themetabolic syndrome identify patients who are at risk of cardiovascu-

lar disease any better than if risk markers are considered individually (Taslim and Tai

2009). Nevertheless, an anti-diabetic drug that also reduces other markers of cardio-

vascular disease risk should be more valuable than one that does not, and the need for

polypharmacy to treat multiple components of the syndrome would be reduced.

Many definitions of the metabolic syndrome include insulin resistance, abdomi-

nal obesity (abdominal subcutaneous as well as visceral adipose tissue, as assessed

by waist circumference), high plasma triglycerides, low high-density lipoprotein

cholesterol, and hypertension (Alberti et al. 2009). These features of the metabolic

syndrome are all altered favourably by exercise (Hagberg et al. 2000; Duncan 2006;

Orozco et al. 2008). Moreover, adipose tissue inflammation, which may be a key

link in the metabolic syndrome (Yudkin 2007), is reduced by exercise in mice

(Bradley et al. 2008).

Some individual studies have found that exercise preferentially reduces visceral

rather than subcutaneous fat or that it can cause loss of visceral fat without weight

loss (Thomas et al. 2000; Fujimoto et al. 2007; Ohkawara et al. 2007). This supports

the argument that exercise, or drugs that elicit themetabolic effects of exercise, offers

the best treatment for the metabolic syndrome. Systematic reviews of the literature

suggest, however, that all weight loss interventions preferentially reduce visceral fat

when weight loss is low, whilst greater weight loss increases the proportion of

subcutaneous fat lost (Chaston and Dixon 2008; Hall and Hallgreen 2008; Hallgreen

and Hall 2008). A systematic review of the literature also provided no evidence that

exercise was any better than other interventions at causing loss of fat rather than lean

tissue (Chaston and Dixon 2008). This is somewhat surprising: studies in which diet

and diet plus exercise have been compared directly do demonstrate that exercise

promotes loss of fat rather than lean tissue (Janssen et al. 2002).

2.4 Mitochondrial Function and Capacity for Fat Oxidation
in Diabetes

Exercise increases the number of mitochondria in skeletal muscle (Hawley and

Holloszy 2009); some studies have also found improved mitochondrial function

(Hood et al. 2006; Menshikova et al. 2007; Schrauwen and Hesselink 2008).

Mitochondrial function or number is low in the skeletal muscle of many insulin-

resistant or type 2 diabetic subjects (Abdul-Ghani and DeFronzo 2008; Schiff et al.

2009). Muscle mitochondrial content is also low in healthy subjects with a family

history of diabetes (Ukropcova et al. 2007) and such subjects have lower insulin

sensitivity and benefit more from exercise than controls (Barwell et al. 2008).
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Thus, thermogenic drugs that increase mitochondrial number or function in skeletal

muscle may correct an underlying defect in insulin-resistant type 2 diabetic subjects.

Reduced mitochondrial content in skeletal muscle has been linked to the feature

of type 2 diabetes known as metabolic inflexibility (Ukropcova et al. 2007). This is

an impaired ability to switch between fatty acid and glucose fuels in response to

insulin, fasting, feeding or the food quotient of the diet. The evidence for this link,

and that metabolic inflexibility is responsible for insulin resistance, has been

questioned (Galgani et al. 2008). Exercise training has, however, been found to

improve both mitochondrial function and metabolic flexibility, as well as insulin

resistance (Meex et al. 2010).

2.5 Lessons from b-Adrenoceptor Agonists

b-Adrenoceptor agonists of various selectivities for b1-, b2,- and b3-adrenoceptors
stimulate energy expenditure in both humans and rodents (Arch 2008). For the last

25 years, there has been a particular interest in the potential of b3-adrenoceptor
agonists in the treatment of obesity. These compounds cause the loss of fat (but not

lean tissue) in obese rodents, and they do not affect the cardiovascular system to the

same degree as b1- or b2-adrenoceptor agonists. Moreover, b3-adrenoceptor ago-
nists are exquisitely effective at improving insulin sensitivity in obese rodents,

including models of type 2 diabetes. Difficulties in finding orally bioavailable

agonists that are selective for the human, rather than the rodent, b3-adrenoceptor,
together with a lesser role for b3-adrenoceptors in the regulation of energy balance

in humans, have thwarted the development of b3-adrenoceptor agonists as drugs for
the treatment of either obesity or diabetes. Nevertheless, stimulation of b2- or b3-
adrenoceptors does enhance insulin action in humans. As in rodents, insulin sensitisa-

tion occurs with dosing regimens that are insufficient to elicit weight loss (Arch 2002;

Arch 2008). Interest in b3-adrenoceptor agonists or similar approaches has been

revived by new evidence that brown adipose tissue is present in adult humans

(van Marken Lichtenbelt et al. 2009) and activated by exposure to cold. Moreover,

its amount and activity is reduced in obesity (Cypess et al. 2009). Thismight encourage

new approaches to be taken to the development of b3-adrenoceptor agonists.
The reason why b-adrenoceptor agonists are so effective at improving insulin

sensitivity may be that, like exercise training (O’Gorman and Krook 2008), they

promote fat oxidation.Most studies have found that b-adrenoceptor agonists stimulate

fat oxidation in preference to carbohydrate oxidation, and inhibition of fat oxidation

prevents thermogenesis in response to b3-adrenoceptor agonists in rodents (Wilson

et al. 1986; Arch 2008).Moreover, inhibition of fat mobilisation (lipolysis) using anti-

lipolytic drugs in rodents, dogs, or humans (Havel et al. 1964; Eaton et al. 1965;

Kennedy and Ellis 1969; Mjos 1971; Lafrance et al. 1979; Schiffelers et al. 1998) or

geneticmethods inmice (Grujic et al. 1997; Gavrilova et al. 2000) reduces, sometimes

markedly, acute increases in energy expenditure in response to b-adrenoceptor
agonists. b-Adrenoceptor agonists promote glycogenolysis as well as lipolysis, but
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fat is oxidised in preference to carbohydrate through mechanisms first described by

Randle and his co-workers (Bebernitz and Schuster 2002).

Stimulation of lipolysis is unlikely to be the whole explanation for why

b3-adrenoceptor agonists promote fat oxidation, however. Prevention of lipid

mobilisation reduces the acute thermogenic response to b3-adrenoceptor agonists,
but this does not mean that they have no effect on fat oxidation or fail to improve

insulin sensitivity. When b3-adrenoceptor agonists stimulate lipolysis, they exacer-

bate insulin resistance acutely because fatty acids inhibit glucose utilisation, but in

the longer term it seems that b3-adrenoceptor agonists improve insulin sensitivity by

promoting fatty acid oxidation more than fatty acid supply. Thus, b3-adrenoceptor
agonists acutely raise plasma non-esterified fatty acid levels, but after repeated admin-

istration any small rise in levels after each dose is rapidly followed by a lowering of

fatty acid levels below those in control animals, until the next dose is administered

(Virtanen et al. 1997; Liu et al. 1998; Sugimoto et al. 2005). Desensitisation of the

acute lipolytic affect may be partly responsible for the diminishing rise in fatty acid

levels after each dose. In this author’s unpublished work, however, there was no

diminution in the rise in glycerol levels, suggesting that lipolysis was not diminished

and the diminishing rise in fatty acid levels must have been because their utilisation

was increased. In any event, reduced lipolysis does not explain why repeated adminis-

tration of b3-adrenoceptor agonists lowers fatty acid levels after any small elevation in

levels after each dose has subsided: there must be a stimulation of fatty acid oxidation

that outweighs any effect on fatty acid supply.b3-Adrenoceptor agonists have not been
shown to affect mitochondria in skeletal muscle, but they increase mitochondrial

function and number in brown and white adipose tissue, which may go some way to

explaining their effect on fatty acid oxidation (Granneman et al. 2005).

Fat oxidation driven by unrestrained lipolysis will raise the concentrations of

lipid metabolites, whereas fat oxidation driven by mitochondrial mechanisms

downstream of these metabolites is likely to lower their concentrations. Diacylgly-

cerol and possibly ceramide and fatty acyl-CoA (Kraegen and Cooney 2008) inhibit

insulin signalling at the level of insulin receptor substrates (Morino et al. 2006;

Yu et al. 2002) or protein kinase B/Akt (Schmitz-Peiffer et al. 1999), through

activation of protein kinase Cy or e, inhibitor kB kinase (IKKb), or c-Jun N-

terminal kinase (JNK) (Montecucco et al. 2008). Lowering the concentration of

these metabolites by stimulating their oxidation might explain why b3-adrenoceptor
agonists increase insulin sensitivity, at least in situations in which there is insulin

resistance. Stimulation of fatty acid oxidation should lower the concentrations of fatty

acid metabolites rapidly because their pool sizes are small. It will take much longer to

drain the large store of triglyceride from white adipose tissue for oxidation elsewhere.

Hence, this hypothesis may explain why b3-adrenoceptor agonists reduce insulin

resistance in rodents, monkeys, and humans long before weight loss is detected.

There appears, however, to be only one paper that has addressed the effect of b3-
adrenoceptor agonists on lipid metabolite levels. This showed that a b3-adrenoceptor
agonist reduced the concentration of diacylglycerol in skeletal muscle of obese rats

(Darimont et al. 2004).
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Anorectic drugs must also promote fat oxidation once glycogen stores have been

depleted. This may be why restriction of energy intake sensitises the body to insulin

more than if the individual was “naturally” leaner (Wing and Phelan 2005). As

discussed above (Sect. 2.2), it remains to be seen whether thermogenic drugs will be

more effective than anorectic drugs as insulin sensitisers.

3 Current and Recent Drugs

3.1 Diabetes Drugs

Current therapies for type 2 diabetes do not in general stimulate thermogenesis.

Insulin, sulphonylureas and thiazolidinediones in fact promote weight gain. In

rodents, thiazolidinediones increase the capacity for thermogenesis in response to

sympathetic activity, but they decrease the activity of the sympathetic nervous

system (Festuccia et al. 2008). The glucagon-like peptide-1 receptor agonists

exenetide and liraglutide and the modified amylin peptide pramlintide cause weight

loss, but this is because they reduce energy intake rather than because they increase

energy expenditure (Edwards et al. 2001; Harder et al. 2004; Pratley 2008; Smith

et al. 2008). This seems somewhat surprising in the case of pramlintide because a

number of studies have shown that amylin increases energy expenditure in rodents,

apparently by increasing sympathetic activity (Osaka et al. 2008). At its clinical

dose in humans, however, pramlintide does not appear to increase sympathetic

activity (Hoogwerf et al. 2008), energy expenditure, or indeed insulin sensitivity.

The a-glucosidase inhibitor acarbose (probably also miglitol and voglibose) causes

a little weight loss, but it does this by reducing energy absorption rather than

increasing energy expenditure (Van de Laar et al. 2006). The dipeptidylpeptidase

IV inhibitors sitagliptin, vildagliptin, and others in development do not affect body

weight (see Gallwitz 2011; Mikhail 2008). However, treatment of type 2 diabetic

patients for 7 days with vildagliptin enhanced lipid mobilisation and oxidation,

possibly due to sympathetic activation (Boschmann et al. 2009).

Metformin may cause a slight reduction in body weight (Golay 2008). Its

mechanism of action in diabetes seems to involve activation of AMP-activated

protein kinase (AMPK) (Hardie 2008), which is also believed to play a role in the

effect of exercise on insulin sensitivity (Hawley and Lessard 2008; O’Gorman and

Krook 2008) and is a target for thermogenic drugs (see Sect. 6.1). One might

therefore expect metformin to increase energy expenditure, but the effect of

metformin on body weight seems to be due to reduced food intake rather than

increased energy expenditure (Keates and Bailey 1993; Perriello et al. 1994; Chong

et al. 1995; Paolisso et al. 1998). However, there is evidence that metformin

increases fat oxidation or decreases lipogenesis, at least transiently (Avignon

et al. 2000; Cool et al. 2006; Braun et al. 2008). Metformin (like other AMPK

activators – Sect. 6.1) may have a thermogenic effect that is too small to detect

(see Sect. 7).
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3.2 Obesity Drugs

In contrast with drugs for diabetes, two drugs that have been used recently in the

treatment of obesity increase energy expenditure.

3.2.1 Sibutramine

The noradrenaline and serotonin reuptake inhibitor sibutramine has been with-

drawn in Europe, the USA and other countries. In addition to reducing food

intake, some, though not all, studies (Addy et al. 2008) show that it increases

energy expenditure by increasing sympathetic activity. This has the adverse

consequence of raising blood pressure and it increases the risk of nonfatal

myocardial infarction and nonfatal stroke in patients who have a history of

cardiovascular disease (James et al. 2010). It should not be prescribed for such

patients. In patients with good weight loss, which tends to reduce blood pressure,

this tendency may be countered. Whether increased energy expenditure contri-

butes significantly to the effect of sibutramine on body weight is unclear (Hansen

et al. 1998; Finer 2002). Sibutramine improves insulin sensitivity (Hung et al.

2005), but it does not appear to have significant metabolic benefits beyond those

expected from weight loss, in contrast to what might be expected for a sympatho-

mimetic thermogenic drug (Arch 2008).

3.2.2 Rimonabant

The cannabinoid 1-receptor antagonist rimonabant was withdrawn from the Euro-

pean market in 2008, never having been approved in the USA. In contrast with

sibutramine, rimonabant improved lipid profiles and glucose homeostasis in

humans (as in rodents) beyond what might be expected from the weight loss that

it caused (Hollander 2007; Scheen 2008). About half of these metabolic benefits

appeared to be independent of weight loss.

The improvement in lipid profile in humans in response to rimonabant was

suggested to be due to an elevation in plasma adiponectin concentration that was

independent of weight loss (Despres et al. 2005). Rimonabant directly stimulates

adiponectin secretion from cultured adipocytes (Bensaid et al. 2003), and adipo-

nectin stimulates fat oxidation and improves insulin sensitivity in skeletal muscle.

Rimonabant may also stimulate fat oxidation in skeletal muscle and other tissues

independently of its effect on adiponectin secretion (Lafontan et al. 2007). In

support of an adiponectin-independent effect, rimonabant ameliorated insulin resis-

tance in Lepob/Lepob mice that also lacked the adiponectin gene, though its effect

was less than when the adiponectin gene was present (Watanabe et al. 2009).

In diet-induced obese mice, absence of the adiponectin gene did not prevent

rimonabant from causing weight loss, but it did prevent rimonabant from causing
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a statistically significant improvement in insulin sensitivity (Migrenne et al. 2009).

Rimonabant increased mitochondrial biogenesis in murine white adipocytes by

inducing endothelial nitric oxide synthase (Tedesco et al. 2008) and it activated

AMPK in human myotubes (Cavuoto et al. 2007), suggesting molecular links for

adiponectin-independent effects.

The beneficial effects of rimonabant on lipid metabolism and insulin sensitivity

in rats required it to be administered peripherally, whereas both central and

peripheral administration reduced food intake (Nogueiras et al. 2008). However,

peripheral administration of the non-CNS-penetrant cannabinoid 1-receptor anta-

gonist LH-21 to obese Zucker (fa/fa) rats reduced food intake, but surprisingly did

not improve hypertriglyceridaemia or hypercholesterolaemia (Pavon et al. 2008).

The anorectic effect of LH-21 is consistent with evidence that rimonabant can

reduce food intake by acting at peripheral receptors (Gomez et al. 2002), though

this is disputed by authors of a report that shows that the anorectic effect of

rimonabant does not require intact gut vagal or sympathetic afferents (Madsen

et al. 2009). An alternative, but speculative, explanation of the failure of LH-21

to affect metabolism may be that it is a neutral antagonist of the cannabinoid

1-receptor, whereas rimonabant is an inverse agonist (Pavon et al. 2008). Another

poorly brain-penetrant cannabinoid 1-receptor antagonist, AM6545, improved the

metabolic profile of obese mice, but it did not block various behavioural effects

elicited by a cannabinoid agonist. The improvement in metabolic profile depended

on the presence of cannabinoid 1-receptors in the liver (Tam et al. 2010). Consistent

with this, mice that lack cannabinoid 1-receptors in liver but not in other organs are

resistant to diet-induced steatosis, dyslipidaemia, and insulin resistance, but not to

obesity (Osei-Hyiaman et al. 2005). However, AM6545 reduced food intake in

mice that lack the cannabinoid 1-receptor (Cluny et al. 2010), so its value as a tool

compound is dubious. A recent report on a derivative of rimonabant that penetrates

the brain poorly suggests that brain penetration is required for anti-obesity activity,

but this does not exclude the possibility that such a compound would be useful for

diabetes (Son et al. 2010). Thus, considerable interest remains in the possibility that

peripherally acting cannabinoid 1-receptor antagonists might be useful in the

treatment of diabetes, even though the data on different antagonists are not entirely

consistent (Bermudez-Silva et al. 2010).

It is unclear whether the beneficial metabolic effects of rimonabant in humans

are due to stimulation of energy expenditure. There is no published evidence that

rimonabant affects energy expenditure in humans, but a pharmacologically similar

compound, taranabant, increased energy expenditure in one study (Addy et al.

2008). Rimonabant has been shown to increase energy expenditure in rats (Herling

et al. 2008; Kunz et al. 2008). In obese rats, the thermogenic effect of rimonabant

was due to increased fat oxidation; carbohydrate oxidation decreased. Moreover,

increased energy expenditure made a greater contribution than decreased energy

intake to the anti-obesity effect of rimonabant in rats (Herling et al. 2008).

A cannabinoid 1-receptor antagonist that had been in clinical development,

AVE1625, also rapidly raised energy expenditure and fat oxidation and suppressed

carbohydrate oxidation in rats (Herling et al. 2007).

210 J.R.S. Arch



The effects of rimonabant and AVE1625 on energy expenditure and fuel utilisa-

tion in rats appear within minutes of their administration. Since the method of

calculation of energy expenditure and fat oxidation used in these studies probably

took no account of the time needed for oxygen and carbon dioxide in a respiratory

chamber to respond to changes in their rates of utilisation and production by the rat

(Arch et al. 2006), the effects of the drugs may be even more rapid than they appear.

One mechanism that might cause such rapid effects on energy expenditure and

fat oxidation is sympathetic activation. Cannabinoid 1-receptor antagonism has

been shown both to disinhibit transmitter release at peripheral sympathetic nerves

(Marsicano and Lutz 2006; Mnich et al. 2010) and to activate sympathetic activity

centrally causing brown adipose tissue activation (Verty et al. 2009). Agonism

inhibits sympathetic activity by a central mechanism (Niederhoffer et al. 2003).

Consistent with a general activation of sympathetic activity, whether peripherally

or centrally mediated, rimonabant increased cardiac contractility and blood pres-

sure in hypertensive rats (Batkai et al. 2004).

Stimulation of adiponectin secretion might explain why rimonabant causes a

rapid increase in energy expenditure and fat oxidation. Rimonabant raises the

expression of adiponectin mRNA within 30 min in cultured adipocytes (Bensaid

et al. 2003). Adiponectin cannot then act through changes in protein expression: this

would take too long. A more likely link is, once again, sympathetic activation,

because adiponectin rapidly activates sympathetic activity in brown adipose tissue

(Masaki et al. 2003). But whether adiponectin secretion and activation of sympa-

thetic nerves by adiponectin are in combination rapid enough to explain the rapid

effect of adiponectin on energy expenditure and fat oxidation is questionable. On

balance, it seems most likely that sympathetic activation is responsible for the rapid

effects of rimonabant on energy expenditure and fat oxidation in rodents, but

adiponectin secretion may be partly responsible for the weight loss-independent

effects of rimonabant on metabolism, especially in humans.

Indeed, whether the rapid, possibly sympathetically mediated, effects of rimo-

nabant and other cannabinoid 1-receptor antagonists on energy expenditure in

rodents are of any relevance to the metabolic effects of rimonabant in humans is

doubtful. Rimonabant decreased hypertension in obese patients (Ruilope et al. 2008),

whereas it increased blood pressure in hypertensive rats (Batkai et al. 2004), possibly

reflecting a species difference in the activation of sympathetic activity. Blockade by

rimonabant of liver, muscle, and adipocyte cannabinoid 1-receptors may be sufficient

to account for its weight-independent metabolic benefits in humans (Kunos et al.

2009). Through such mechanisms, rimonabant may increase the capacity for fat

oxidation without having an easily detectable effect on energy expenditure (see

Sect. 7).

In conclusion, rimonabant elicits metabolic benefits in humans and rodents that

are beyond what would be expected from the weight loss that it causes. It has been

shown in rodents but not humans that it increases energy expenditure through a

sympathetically mediated mechanism (or mechanisms) and elicits weight loss

beyond what would be expected from reduced food intake.
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4 Targets in Hormonal Systems

4.1 Sympathetic Nervous System

Sympathomimetic drugs can increase resting metabolic rate in humans by about

30% (Schiffelers et al. 2000). This is far less than in rodents where an increase of

the order of two- to threefold for a mouse at thermoneutrality is possible (Wilson

et al. 1984; Wernstedt et al. 2006; Feldmann et al. 2009). Nevertheless, sympatho-

mimetic drugs, such as b-adrenoceptor agonists, have been shown to improve

insulin sensitivity markedly in humans (Mitchell et al. 1989; Smith et al. 1990).

There is some evidence that components of the sympathetic nervous system,

including the component that regulates metabolism and thermogenesis, are subject

to differential central regulation (Terao et al. 1994; Morrison 2001; van den Hoek

et al. 2008). However, most centrally acting sympathomimetic agents, like sibu-

tramine (Sect. 3.2.1), have cardiovascular side effects. Even leptin (see below)

has limited selectivity, despite its primary role being to ensure that adipose tissue

fat stores are adequate (Haynes et al. 1997; Rahmouni and Morgan 2007). Periph-

eral pre- or post-synaptic receptors of the sympathetic nervous system (possibly

illustrated by the cannabinoid 1-receptor or the b3-adrenoceptor) may offer more

potential for selective thermogenic drugs.

4.2 Zn-a2-Glycoprotein

Lipid-mobilising factor (LMF)/Zn-a2-glycoprotein (ZAG), which is secreted by

tumours and adipocytes (Hale et al. 2001; Bao et al. 2005), may act at Gas-coupled
receptors. It has been argued that it stimulates the b3-adrenoceptor because it raised
cyclic AMP levels in cells transfected with the human b3-adrenoceptor and this

effect was attenuated by as little as 1 nM SR59230A (Russell et al. 2002), a

b3-adrenoceptor antagonist. It is surprising, however, that its efficacy relative to

isoprenaline should be higher in human than in murine white adipocytes (Hirai et al.

1998), since b3-adrenoceptors have much lower lipolytic efficacy in human than

in murine adipocytes (Sennitt et al. 1998). It is also surprising that SR59230A

was quite so potent in the light of reported affinities for the human cloned b3-
adrenoceptor (Arch 2000). Other effects of ZAG have been attenuated by 10 mM
SR59230A (Sanders and Tisdale 2004a, b). Moreover, the binding of [125I]-LMF to

CHO cells that expressed b3-adrenoceptors was reduced by 10 mM SR59230A

(Russell et al. 2002). As little as 0.1 mM SR59230A should antagonise rodent

b1-as well as b3-adrenoceptors (Manara et al. 1996). Crucially, obesity and

decreased lipolysis in ZAG-deficient mice could not be corrected using b3-adreno-
ceptor agonists (Rolli et al. 2007). ZAG increases the expression of Gsa (Islam-Ali

et al. 2001). This property explains its biological activities better than direct
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stimulation of b3-adrenoceptors. It is important to know whether ZAG raises the

concentration of cyclic AMP in cells transfected with Gs-coupled receptors other

than the b3-adrenoceptor.
Nevertheless, whatever the receptor for ZAG is, it stimulates fatty acid oxidation

and exhibits anti-diabetic activity in mice (Russell and Tisdale 2002, 2010). It

increased gastrocnemius weight almost threefold in ob/ob mice within 5 days

(Russell and Tisdale 2010), resembling the b2-adrenoceptor agonist clenbuterol.
Its absence caused obesity (Rolli et al. 2007). Moreover, ZAG (also known as

AZGP1) mRNA expression is lower in tissue from obese compared to lean humans

(Dahlman et al. 2005; Marrades et al. 2008). Its thermogenic activity and its

potential as an anti-diabetic agent merits further investigation.

4.3 Thyroid Hormones

Thyroid hormones were used in the treatment of obesity as long ago as the 1890s.

Despite increasing energy expenditure, the complex metabolic effects of thyroid

hormones cause insulin resistance and impaired glucose tolerance. Thyroid hor-

mones also cause cardiac stimulation, loss of skeletal muscle, bone wasting,

fatigue, and CNS effects (Crunkhorn and Patti 2008).

Recent interest has focused on selective stimulants of thyroid hormone receptor-b.
Thyroid hormone receptor-b is poorly expressed in heart and skeletal muscle

compared to thyroid hormone receptor-a. Consequently, selective stimulants of

thyroid hormone receptor-b cause less cardiac stimulation, muscle wasting, and

bone loss than non-selective stimulants of both receptors (Grover et al. 2007; Villicev

et al. 2007; Ribeiro 2008). There is a particular interest in thyroid hormone receptor-b
agonists that are selectively taken up by the liver (GC-1, KB2115) or are extracted by

and activated in the liver (MB07811). Compared to triiodothyronine, GC-1 may also

differentially activate thyroid response elements and thereby activate a different set of

genes (Baxter and Webb 2009).

Thyroid hormone receptor-b agonists were originally seen as potential treat-

ments for obesity. Currently, the main interest is in the treatment of dyslipidaemia,

reflecting the focus on liver-selective compounds (Baxter and Webb 2009), but

thyroid hormone receptor-b agonists have also been shown to improve insulin

sensitivity in rodent models of obesity and diabetes (Bryzgalova et al. 2008). This

would be expected from the ability of these compounds to increase energy expen-

diture and mitochondrial function and reduce body fat and hepatic steatosis.

However, interest in diabetes and obesity indications may have dimmed with

reports that GC-1 was less thermogenic than triiodothyronine in hypothyroid rats

(Venditti et al. 2010) and that another compound, GC-24, had less effect on weight

gain in dietary obese compared to normal mice (Castillo et al. 2010). Moreover,

stimulation of gluconeogenesis would not be beneficial (Baxter and Webb 2009).
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4.4 TGR5: A Bile Acid Receptor

Activation of the Gs-protein-coupled bile acid receptor TGR5 may be a way of

activating the thyroid hormone system in tissues, such as adipose tissue, where it is

expressed. I will argue that whilst this is true, it may not be essential for the

thermogenic effects of TGR5 agonists.

The potential of TGR5 as a target for drugs for the treatment of obesity and

diabetes was highlighted by the finding that diet-induced obesity in mice was

ameliorated by supplementing their diet with cholic acid. Glucose tolerance also

improved. Cholic acid also activates the FXRa receptor, but this did not appear to

mediate the anti-obesity effect because it was not reproduced by the synthetic

FXRa agonist GW4064 (Watanabe et al. 2006). The reduction in body weight

gain elicited by cholic acid was achieved without a reduction in food intake,

pointing to it having a thermogenic effect. However, thermogenesis was only

demonstrated after 4 months and only by expressing oxygen consumption relative

to body weight: demonstration of an acute effect or an increase in energy expendi-

ture per animal would have been more convincing (see Sect. 7). Nevertheless, the

effects of cholic acid on a mitochondrial structure and gene expression in brown

adipose tissue support the view that it increased the capacity for thermogenesis

(Watanabe et al. 2006).

One of the genes whose expression was increased in brown adipose was type

2 iodothyronine deiodinase (D2), which activates thyroxine by converting it into

triiodothyronine. Cholic acid failed to affect diet-induced thermogenesis in

mice that lacked D2, leading the authors to conclude that its mechanism of

action depends primarily on activation of D2 (Watanabe et al. 2006). It might,

however, be that D2 plays a permissive and amplifying role in the response to

TGR5 agonists. Thus, TGR5 is coupled to Gs and elevation of cyclic AMP.

b3-Adrenoceptor receptors are also coupled to Gs and agonists activate brown

adipose tissue thermogenesis acutely. In the absence of a functional thyroid

hormone system, b3-adrenoceptor agonists have a greatly reduced effect (Rubio

et al. 1995; Golozoubova et al. 2004), but it is not believed that b3-adrenoceptor
agonists stimulate thermogenesis by activating D2. Nevertheless, b3- and other

b-adrenoceptor agonists increase the activity of D2 (Hofer et al. 2000) and this

amplifies their effects.

A taurine conjugate of cholic acid activated D2 in human skeletal muscle

myoblasts (Watanabe et al. 2006), suggesting that TGR5 agonists may increase

thermogenesis in skeletal muscle as well as in brown adipose tissue. Moreover, bile

acids, acting via TGR5, and the TGR5 agonist INT-777 stimulate glucagon-like

peptide-1 secretion by enteroendocrine cells (Thomas et al. 2009). This effect is

unrelated to thermogenesis, but adds to the therapeutic potential of TGR5 agonists

for the treatment of diabetes. High expression of TGR5 in monocytes and macro-

phages may also be useful by resulting in suppression of inflammation (Kawamata

et al. 2003).
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4.5 Glucocorticoids and 11b-Hydroxysteroid Dehydrogenase-1

In contrast with thyroid hormones, the glucocorticoid system has usually been seen

as offering targets for anti-diabetic rather than anti-obesity drugs. In the context of

this chapter, it is appropriate to ask whether this approach is in part due to an effect

on thermogenesis. The glucocorticoid system clearly has a profound effect on

energy balance, as evidenced by visceral obesity in Cushing’s syndrome and by

the ability of adrenalectomy to prevent all forms of rodent obesity (Bray 2000).

Simply inhibiting cortisol production or blocking the glucocorticoid receptor

does not offer a viable approach to the treatment of metabolic disease because

removal of feedback inhibition to the brain results in increased corticotropin

releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) secretion.

One approach to this problem has been to make compounds that are localised to

the liver. The anti-diabetic activity of such compounds is not associated with

marked anti-obesity activity (Zinker et al. 2007).

A more popular approach has been to inhibit the activity of the enzyme 11b-
hydroxysteroid dehydrogenase-1 (11bHSD-1). This is the subject of a chapter by

Wang (2011). In tissues, 11bHSD-1 catalyses the conversion of cortisone, which is

inactive, to cortisol, which is active. (In rodents it catalyses the conversion of

11-dehydrocorticosterone to corticosterone.) Provided the effects of inhibitors of

11bHSD-1 on cortisol concentration are limited to the tissues in which they act, they

should not increase CRH and ACTH secretion. One tissue that must be excluded

from this statement is the hypothalamus because inhibition of 11bHSD-1 will reduce
exposure of the hypothalamic glucocorticoid receptor to cortisol, thereby increasing

CRH production. In addition, inhibition of the liver enzyme does not have a tissue-

limited effect: it increases the plasma cortisol concentration. Moreover, inhibition of

the liver enzyme provides limited metabolic benefit (Livingstone andWalker 2003).

On the other hand, inhibition of the adipose tissue, especially intra-abdominal

adipose tissue 11bHSD-1 seems to be of great value (Berthiaume et al. 2007).

Inhibitors of 11bHSD-1 improve insulin sensitivity in mice partly because they

reduce obesity. The anti-obesity effect is due to not only reduced food intake

(Alberts et al. 2003; Hermanowski-Vosatka et al. 2005), but also prevention of

the decrease in energy expenditure that would normally be associated with reduced

energy intake (Wang 2006). It is clear that 11bHSD-1 influences energy expendi-

ture in mice because mice that lack this enzyme are protected from diet-induced

obesity despite consuming more calories (Morton et al. 2004). Direct evidence of

raised energy expenditure is limited, however, to data for oxygen consumption

expressed relative to body weight (Kershaw et al. 2005).

How inhibition or lack of 11bHSD-1 increases energy expenditure is unclear.

The inhibitor BVT116429 raised the plasma concentration of adiponectin in KKAy

(Sundbom et al. 2008) and this would be expected to promote fat oxidation (see

Sect. 4.10). However, BVT2733 from the same company (Biovitrum), which

maintains energy expenditure in mice despite reducing food intake (Wang 2006),

did not raise adiponectin levels (Sundbom et al. 2008). BVT116429 has been shown
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to inhibit 11bHSD-1 activity in adipose tissue taken from inhibitor-treated mice

(Johansson et al. 2008). One might predict that BVT116429 would have more

effect than BVT2733 in adipose tissue, perhaps explaining their differential effects

on adiponectin levels, but such a difference has not been reported. It is noticeable

that acute effects of 11bHSD-1 inhibitors on energy expenditure have not been

reported.

The most advanced 11bHSD-1 inhibitor in clinical trials appears to be

INCB13739. After 12 weeks of treatment, it reduced A1C by 0.6% in patients

with inadequately controlled diabetes (Rosenstock et al. 2010).

4.6 Leptin

Leptin is a 146 amino acid peptide that is released mainly from adipocytes. It

signals to the brain whether fat stores are adequate. In normal rodents, leptin not

only decreases food intake, but it also prevents energy expenditure falling in

animals that are below thermoneutrality and have a restricted energy intake (Doring

et al. 1998). The latter effect is partly due to increased sympathetic outflow (Arch

2008; Asensio et al. 2008). Other mechanisms are activation of AMPK, mediated

by leptin receptors in skeletal muscle (Minokoshi et al. 2002) and increased

locomotor activity (Choi et al. 2008), possibly mediated by STAT3 activation

(Mesaros et al. 2008). Leptin- or leptin receptor-deficient rodents are insulin resis-

tant as well as obese, and administration of leptin to leptin-deficient mice restores

insulin sensitivity. Leptin also improves insulin sensitivity in normal rodents and in

mouse models of type 2 diabetes that have normal or slightly elevated leptin levels,

but it has little or no effect when leptin levels are already greatly increased

(Toyoshima et al. 2005; Kusakabe et al. 2009).

There is no evidence that leptin increases energy expenditure in most humans;

neither does it reduce food intake in most humans (Heymsfield et al. 1999; Proietto

and Thorburn 2003). However, it does reduce food intake in rare leptin-deficient

subjects, and in contrast to what happens in subjects on a reduced energy diet, basal

metabolic rate does not fall as the weight is lost (Farooqi and O’Rahilly 2004).

Leptin is effective in the treatment of insulin resistance and dyslipidaemia in

lipodystrophic patients (including HIV-infected patients), who have low plasma

leptin concentrations (Chong et al. 2010). Obese humans, however, generally have

raised plasma leptin levels and are considered to be resistant to leptin. Endogenous

leptin cannot be totally ineffective, or else we would all be as food-obsessed and

grossly obese as untreated leptin-deficient individuals (Farooqi et al. 2007), and in

fact mean weight loss over 24 weeks was 5.8 kg more in obese subjects treated with

0.3 mg/kg body weight per day leptin than in placebo-treated subjects (Heymsfield

et al. 1999). However, the blood levels of leptin achieved at this dose were more than

20-fold above baseline (Heymsfield et al. 1999) or what others have reported for

subjects of similar BMI (Kennedy et al. 1997). Immune responses at the injection site

and the cost of leptin may have precluded it being used as a treatment for obesity.
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Various approaches are being taken to improve sensitivity to leptin. One is to

develop small molecular weight leptin mimetics (Vaillancourt et al. 2001; Maneuf

et al. 2004; Mirshamsi et al. 2007). This may bypass the mechanism that transports

leptin into the brain, which is one possible cause of leptin resistance (Banks 2008).

Another approach, being progressed by Amylin Pharmaceuticals, is to treat subjects

with a combination of metreleptin (a modified leptin) and pramlintide (a modified

form of amylin), which is already marketed for the treatment of diabetes. This

combination caused more weight loss in obese humans than either peptide alone

(Roth et al. 2008). It is intriguing, however, that weight loss with pramlintide alone

was similar to weight loss with metreleptin alone, because many believe that

pramlintide but not leptin causes weight loss. There was no placebo group (who

would have been given a 40% energy-deficient diet), so it is not possible to say

whether both compounds were effective when used alone (and so their effects were

additive rather than synergistic) or both were ineffective when used alone. A third

approach may be to combine leptin with chemical chaperones, such as 4-phenyl

butyric acid and tauroursodeoxycholic acid, which are used clinically in other

diseases. When mice were pre-treated with these compounds, they became as

much as tenfold more sensitive to leptin and lost weight, even when fed on a high

fat diet (Ozcan et al. 2009).

If such approaches can overcome leptin resistance, there remains the question of

whether leptin has a thermogenic or metabolic, rather than just an anorectic, effect in

humans. Whatever the mechanism, there is some evidence that leptin increases

insulin sensitivity in humans, even when endogenous leptin levels are normal, as it

clearly does in rodents (Toyoshima et al. 2005; Arch 2008). In humans, a high plasma

leptin concentration usually correlates with an adverse metabolic profile (as they do

in diet-induced obese rodents) and an increased risk of type 2 diabetes. However,

when the influence of obesity as a confounder is taken into account, high leptin levels

are associated with a decreased risk of diabetes (Schmidt et al. 2006; Arch 2007).

4.7 Fibroblast Growth Factor 21

Fibroblast growth factor 21 (FGF21) and its receptors are recent additions to

pharmaceutical company targets for anti-diabetic and anti-obesity drugs. FGF21

is a member of the FGF19 subfamily of fibroblast growth factors. It is secreted

primarily from the liver and promotes hepatic lipid oxidation. Both stimulation and

inhibition of lipolysis in adipocytes have been described. Administration of FGF21

to diet-induced obese mice, mice with a dysfunctional leptin system, or diabetic

rhesus monkeys reduces body weight and improves insulin sensitivity (Beenken

and Mohammadi 2009; Xu et al. 2009). FGF21 clearly increases energy expendi-

ture: its thermogenic effect has a fairly rapid onset, it is apparent when energy

expenditure is expressed per mouse, rather than relative to body weight, and, in

some studies, it has stimulated food intake as well as energy expenditure without

affecting body weight or body composition (Xu et al. 2009; Sarruf et al. 2010).
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Like leptin, the plasma concentration of FGF21 is elevated in obese rodents and

humans, and FGF21 signalling was reduced in liver and fat of diet-induced obese

mice (Fisher et al. 2010). Whether FGF21, like leptin, proves to be ineffective in

obese humans, or whether, like insulin, it retains useful efficacy, remains to be

determined.

4.8 Ghrelin

Ghrelin is a 28 amino acid peptide produced mainly in the stomach, but also in other

gastrointestinal tissues, the hypothalamus (Nakazato et al. 2001), pancreatic islet a
and b cells (Sun et al. 2007), and other tissues (Soares and Leite-Moreira 2008). Its

active form is generally believed to be acylated with a medium chain fatty acid,

especially octanoic acid, but des-acyl ghrelin may also have a physiological role

(Gauna et al. 2007; Inhoff et al. 2009; Rodriguez et al. 2009). By stimulating the

growth hormone secretagogue type 1a receptor in the hypothalamus, acyl ghrelin

stimulates energy intake (Wren et al. 2001). It seems, however, that ghrelin is not a

meal initiation signal, but rather a signal that prepares skeletal muscle and possibly

liver to store instead of oxidising fat. Thus, plasma levels of acyl ghrelin are not

elevated following prolonged fasting, but only when dietary lipids provide medium

chain fatty acids for acylation of des-acyl ghrelin (Kirchner et al. 2009).

Some, but not all, studies also find that ghrelin decreases energy expenditure

(Theander-Carrillo et al. 2006; Strassburg et al. 2008; Kirchner et al. 2009; Salome

et al. 2009). A single dose of a catalytic antibody that hydrolysed the octanoyl

moiety of ghrelin increased energy expenditure within 1 h of its administration

(Mayorov et al. 2008). Ghrelin-induced weight gain was undetectable in mice that

lacked all three b-adrenoceptors (Theander-Carrillo et al. 2006) and ghrelin sup-

pressed noradrenaline release in brown adipose tissue (Mano-Otagiri et al. 2010),

suggesting that decreased energy expenditure was a consequence of decreased

sympathetic activity. Both stimulatory and inhibitory effects of ghrelin on insulin

secretion have been reported, with the majority demonstrating inhibition of secre-

tion in rodents and humans (Sun et al. 2007).

These effects of ghrelin suggest that antagonists of its receptor, or inhibition of

ghrelin O-acyltransferase, which activates ghrelin by octanoylation (Gualillo et al.

2008), should have potential for the treatment of diabetes. In the context of this

chapter, however, the question is whether any benefit is due to thermogenesis.

There are conflicting reports concerning whether ghrelin-deficient mice are

protected from diet-induced obesity and insulin resistance (Sun et al. 2003; Wortley

et al. 2005). In a study in which absence of ghrelin did not reduce obesity in Lepob/
Lepob mice, blood glucose was reduced and glucose tolerance improved, but this

was associated with increased insulin levels and so provided no evidence of

increased insulin sensitivity (Sun et al. 2006). Studies on mice that lack the ghrelin

receptor (Zigman et al. 2005; Longo et al. 2008), especially mice that also lack

ghrelin (Pfluger et al. 2008), have provided better evidence of improved insulin
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sensitivity associatedwith increased energy expenditure.Motor activity was increased

in some of these studies.

Small molecular weight ghrelin receptor antagonists that ameliorate diet-

induced obesity and improve glucose tolerance have been described (Rudolph

et al. 2007). Improved glucose tolerance following a single dose of one such

compound appeared, however, to be due to stimulation of insulin secretion, whilst

the effect on body weight with repeated dosing was primarily due to reduced food

intake (Esler et al. 2007). It has been suggested that an inverse agonist might be

used to reduce constitutive ghrelin receptor activity between meals, but a recent

report that links lack of constitutive activity in a mutant receptor with obesity in

humans suggests that a neutral antagonist would be more beneficial or at least that

the inverse antagonist must (as inverse agonists usually do) have antagonist activity

as well (Holst and Schwartz 2006).

Thus, ghrelin antagonists have potential for the treatment of diabetes, but it is not

clear whether any benefit is due to stimulation of energy expenditure.

4.9 Ciliary and Brain-Derived Neurotrophic Factors

Ciliary neurotrophic factor (CNTF) is a member of the interleukin-6 family of

cytokines, which is produced by astrocytes following brain injury. It is the subject

of a chapter by Allen et al. (2011). It caused weight loss in a clinical trial in

amyotrophic lateral sclerosis (motor neurone disease) (ALS 1996). The variant

CNTFAx15 developed under the name Axokine® reduced body weight in a phase II

clinical trial (Ettinger et al. 2003), but it performed poorly in a phase III trial, partly

due to the formation of neutralising antibodies (Matthews and Febbraio 2008). In

rodents, CNTF and Axokine increased energy expenditure and caused weight loss

that was not all due to reduced food intake (Lambert et al. 2001; Bluher et al. 2004).

Moreover, they improve insulin sensitivity and diabetes in insulin-resistant and

diabetic mice (Sleeman et al. 2003; Watt et al. 2006b). One study, however, showed

no greater effects on obesity or insulin sensitivity than those elicited by pair feeding

(Cui et al. 2010).

CNTF binds both to the CNTF receptor and to the IL-6 receptor. Both receptors

then heterodimerise with the leukaemia inhibitory factor receptor and the glyco-

protein 130 receptor. This results in activation of the Janus Kinase/signal transducer

and activator of transcription (JAK/STAT) pathway (Matthews and Febbraio 2008).

This is a key pathway activated by leptin. However, CNTF corrects obesity and

diabetes in animal models, such as diet-induced obesity, in which leptin is ineffec-

tive (Gloaguen et al. 1997; Lambert et al. 2001). The reason for this may be that

CNTF can overcome inhibition of JAK/STAT signalling by suppressor of cytokine

signalling-3 (SOCS-3) because the gp130 receptor has four STAT3 binding sites

that must be nullified, whereas the long form of the leptin receptor (Rb) has only

one such site (Matthews and Febbraio 2008). It may also be relevant that plasma
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leptin levels are raised in obesity leading to leptin resistance, but hypothalamic

CNTF levels are reduced (Vacher et al. 2008).

The CNTF receptor and the leptin Rb receptor are co-localised in the hypothala-

mus, suggesting that the thermogenic effect of CNTF, like that of leptin, may be

partly due to activation of the sympathetic nervous system. CNTF also acts directly

on skeletal muscle and brown adipocytes to increase fatty acid oxidation, the

capacity for thermogenesis, energy expenditure, and insulin action (Ott et al.

2002; Watt et al. 2006a, b). It increases fatty acid oxidation in skeletal muscle by

a mechanism that requires activation of AMPK (Watt et al. 2006a). This is similar

to the direct effect of leptin in skeletal muscle.

Because CNTF activates the IL-6 as well as the CNTF receptor, Matthews and

Febbraio (2008) have suggested that a suitable approach to the treatment of obesity-

related metabolic disease would be to design a CNTF-like molecule that has greater

affinity for the IL-6 than the CNTF receptor and specifically targets peripheral

tissues, such as skeletal muscle and adipose tissue, in which IL-6 receptor is more

abundant than the CNTF receptors.

Brain-derived neurotrophic factor (BDNF) is small dimeric protein that is

expressed in a number of organs in addition to brain. It is similar to CNTF in that

it stimulates energy expenditure (Tsuchida et al. 2001) and has anti-obesity activity

in animal models that are resistant to leptin (Nakagawa et al. 2003). Plasma levels

are, like those of CNTF but unlike those of leptin, low in obese or type 2 diabetic

subjects (Krabbe et al. 2007; Araya et al. 2008). BDNF mRNA and protein increase

in skeletal muscle after exercise. Muscle BDNF seems to act mostly in an autocrine

or paracrine fashion because it is elevated for at least 24 h after exercise, whereas

serum levels increase for only 2 h. Serum BDNF may also be derived from platelets

(Matthews et al. 2009). The thermogenic effect of BDNF has been attributed to a

centrally mediated stimulation of sympathetic activity (Nonomura et al. 2001) but,

like CNTF, it also acts directly on skeletal muscle to stimulate fatty acid oxidation via

an AMPK-dependent mechanism (Matthews et al. 2009). This raises the possibility

that a peripherally acting mimetic might be of value in the treatment of diabetes.

4.10 Adiponectin

Adiponectin is a 30 kDa protein secreted by adipocytes, which circulates at high

concentrations (0.5–30 mg/ml) in plasma. Large adipocytes secrete less adiponectin

than small adipocytes, and plasma adiponectin concentrations are generally lower

in obese and insulin-resistant subjects than in lean and insulin-sensitive subjects

(Kadowaki and Yamauchi 2005; Shetty et al. 2009). Adiponectin circulates as a

variety of multimeric complexes. Until recently, it was believed that the 12- to

36-mer high molecular weight form correlates best with insulin sensitivity, but this

is now disputed (Almeda-Valdes et al. 2010; Elisha et al. 2010). Various poly-

morphisms of the adiponectin gene are associated with the metabolic syndrome

(Shetty et al. 2009).
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Administration of full-length adiponectin improves insulin sensitivity in mouse

models of type 2 diabetes (Kadowaki and Yamauchi 2005). A globular form of

adiponectin, produced by its proteolytic cleavage, reduced weight gain in diet-

induced obese mice without decreasing energy intake. Fatty acid oxidation

increased in skeletal muscle (Fruebis et al. 2001). However, others have reported

that high fat feeding leads to resistance to the stimulation by adiponectin of fatty

acid oxidation in skeletal muscle (Mullen et al. 2009). Overexpression of adipo-

nectin in Lepob/Lepob mice improved glucose homeostasis. Subcutaneous adipose

tissue was greatly increased, suggesting that, like the thiazolidinedione drugs (see

below), adiponectin promotes the storage of fat where it can do little harm (Shetty

et al. 2009). Both central and (in Lepob/Lepob mice) systemic administration of

adiponectin increased oxygen consumption relative to body weight, but not per

animal, after 3 days. More significantly, adiponectin increased oxygen consumption

in Lepob/Lepob mice after only 3 h, at which time body weight had presumably

changed little. Moreover, body temperature increased (Qi et al. 2004).

The thiazolidinedione drugs increase plasma adiponectin concentrations (Coletta

et al. 2009), even though they promote, rather than reduce, adiposity. This may be

partly explained by the fact that these drugs increase adiponectin secretion from

omental but not subcutaneous adipocytes (Motoshima et al. 2002), whereas it is

subcutaneous fat stores that increase (Yang and Smith 2007). Indeed, as indicated

above, the increased secretion of adiponectin may play a role in the hyperplasia of

subcutaneous adipocytes (Shetty et al. 2009). A further paradox is that the insulin-

sensitising effect of the thiazolidinedione drugs is partly due to increased secretion

of adiponectin (Kubota et al. 2006; Banga et al. 2009; Shetty et al. 2009), but these

drugs do not increase whole-body energy expenditure. They do, however, increase

the expression of genes involved in mitochondrial function and fat oxidation in

skeletal muscle (Coletta et al. 2009). This would be expected to result in improved

insulin sensitivity in muscle – the dominant influence on whole-body insulin

sensitivity. In other words, fat balance in skeletal muscle is more important than

whole-body energy balance in determining whole-body insulin sensitivity.

Adiponectin signals via at least three receptors, AdipoR1 (PAQR1; progestin-

adipoQ receptor1) and AdipoR2 (PAQR2), which are most highly expressed in

muscle and liver, respectively (Yamauchi et al. 2003), and the more recently

described receptor PAQR3 (Gonez et al. 2008). In liver, AdipoR1 is more tightly

linked to activation of AMPK, whereas AdipoR2 is more tightly linked to activation

of peroxisome proliferator-activated receptor a (PPARa). Knockout of either

receptor appeared to cause insulin resistance (Yamauchi et al. 2007). However, in

another study, AdipoR1 knockout mice had increased adiposity associated with

decreased glucose tolerance, physical activity, and energy expenditure, whereas the

opposite phenotype was found in AdipoR2 knockout mice (Bjursell et al. 2007).

Although adiponectin receptors, especially AdipoR1, are potential targets for

anti-diabetic drugs, no directly acting, non-peptide agonists have been identified. It

is unlikely that adiponectin itself could be used as a drug because of the quantities

required, the need to control the proportions of its various forms and its short half-

life (Shetty et al. 2009). It might perhaps be possible to use a modified form
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of adiponectin. Osmotin, a PR-5 family of plant defence protein, seems to activate

AMPK via adiponectin receptors (Narasimhan et al. 2005; Yamauchi and Kadowaki

2008). The patent literature suggests that there is interest in osmotin and in drugs that

increase adiponectin secretion or receptor expression, rather than in small molecular

weight agonists.

5 Targets in Lipid Metabolism

Inhibitors of fatty acid and triglyceride synthesis often alter energy balance by

promoting fat oxidation, though some also inhibit food intake. The molecular

mechanism that links inhibition of lipid synthesis with stimulation of fat oxidation

is best established for inhibitors of acetyl-CoA carboxylase (ACC).

5.1 Acetyl-CoA Carboxylase

ACC produces malonyl-CoA from acetyl-CoA. ACC1 is a cytosolic enzyme and is

the predominant ACC in tissues that have a high capacity for fatty acid synthesis.

ACC2 is associated with mitochondria and is the predominant ACC in tissues that

have a high capacity for fatty acid oxidation. It therefore appears that the malonyl-

CoA produced by ACC1 is used by fatty acid synthase to initiate the building of

fatty acid chains, whereas malonyl-CoA produced by ACC2 acts primarily to

prevent the transfer of fatty acids into mitochondria by carnitine palmitoyl transfer-

ase-1 (Wakil and Abu-Elheiga 2009). Some workers disagree with this strict

distinction, however (Harada et al. 2007).

ACC2 knockout mice are lean despite consuming more food than wild-

type mice. They are protected from diet-induced obesity and insulin resistance

(Abu-Elheiga et al. 2003; Choi et al. 2007). Knocking out ACC1 in all tissues of the

mouse was lethal to the embryo (Abu-Elheiga et al. 2005). Knocking out ACC1 in

liver only, which was not lethal, did not prevent lipogenesis in liver in one study

because ACC2 was upregulated and took over the role of ACC1 in lipogenesis

(Harada et al. 2007). In another study, lipogenesis did decrease in mice fed on a

fat-free diet despite upregulation of ACC2 and lipogenic enzymes (Mao et al.

2006). Chronic suppression of ACC1 in a b-cell line impaired insulin secretion

(Ronnebaum et al. 2008). ACC2 therefore appears to be a better drug target than

ACC1.

Selective inhibitors of ACC2 have been claimed in patents (Corbett and Harwood

2007; Corbett 2009), but only non-selective inhibitors, including the anti-fungal

compound soraphen, have been described in the scientific literature. These non-

selective inhibitors inhibit fatty acid synthesis and promote fatty acid oxidation, but

increased energy expenditure has not been detected (Harwood et al. 2003; Schreurs

et al. 2009).
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AMPK phosphorylates and thereby inactivates ACC2, and so drugs that activate

AMPK (see below) may have similar thermogenic and anti-diabetic effects to

ACC2 inhibitors. With either approach, however, it may be important that a drug

does not penetrate the hypothalamus because elevation of AMPK activity or the

concentration of malonyl-CoA in the hypothalamus is associated with increased

energy intake and, in the case of elevated malonyl-CoA, decreased fatty acid

oxidation (Kola 2008; Lane et al. 2008).

5.2 Fatty Acid Synthase

The fatty acid synthase inhibitors cerulenin and C75 were originally claimed to inhibit

feeding by inhibiting the hypothalamic enzyme and increasing the concentration of

malonyl-CoA (Loftus et al. 2000). Subsequent studies showed that C75 also promotes

fat oxidation, partly by directly activating carnitineO-palmitoyl transferase-1 (CPT-1)

in the periphery (Thupari et al. 2002; Rohrbach et al. 2005; Tu et al. 2005). Cerulenin

does not activate CPT-1 directly, but it increased sympathetic activity 3–5 h after

intraperitoneal injection and this led to increased CPT-1 activity (Aja et al. 2008).

There is surprisingly little information to support the potential of fatty acid synthase

inhibitors as anti-diabetic agents, however.

5.3 Stearoyl-CoA Desaturase-1

Stearoyl-CoA desaturases (SCDs) introduce a double bond into palmitoyl- and

stearoyl-CoA at the D9 position to form palmitoyl- and oleoyl-CoA, respectively.

There are at least four SCD isoenzymes in mice and two (SCD1 and SCD5) in

humans. Of these, SCD1 has generated by far the most interest as a target for

inhibitors that might be used in the treatment of diabetes and obesity (Flowers and

Ntambi 2008; Popeijus et al. 2008).

The interest in SCD1 inhibitors arose from the discovery that SCD1 knockout

mice have reduced adiposity, increased insulin sensitivity, and are resistant to diet-

induced obesity. This resistance is due to increased energy expenditure (Cohen

et al. 2002; Ntambi et al. 2002). Recently, the SCD1 inhibitor has been reported to

improve insulin sensitivity in rat models of insulin resistance (Issandou et al. 2009).

Various molecular mechanisms have been proposed to link inhibition of SCD1

with thermogenesis and fatty acid oxidation. These include inhibition of ACC2

by saturated fatty acyl-CoAs, which are more potent inhibitors than unsaturated

fatty acyl-CoAs (Cohen et al. 2002), and activation of AMPK, which also inhibits

ACC2. It was suggested that activation of AMPK might be due to the mice being

more active (Dobrzyn et al. 2004). The possibility that SCD1 knockout mice are

more active and have increased energy expenditure due to increased sympathetic

activity should be explored, because Lou/C rats, which have low SCD1 activity,
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are hyperactive and have raised sympathetic activity (Perrin et al. 2003; Soulage

et al. 2008).

There is evidence that SCD1 is associated with acetyl-CoA:diacylglycerol

acyltransferase (DGAT) 2, which together with DGAT1 (see Sect. 5.4 below)

catalyses the final step of triglyceride synthesis. Local desaturation of fatty

acids at their site of esterification may promote triglyceride synthesis (Man

et al. 2006). Prevention of triglyceride synthesis might promote fatty acid

oxidation. The concentration of ceramide is reduced in skeletal muscle of

SCD1 knockout mice (Dobrzyn et al. 2005), providing a possible link between

increased fatty acid oxidation and improved insulin sensitivity. Intriguingly,

deficiency of SCD1 did not improve insulin sensitivity in Lepob/Lepob despite

causing these mice to have a lower body weight than “normal” Lepob/Lepob mice

(Miyazaki et al. 2009).

There may be a more prosaic explanation for increased energy expenditure in

SCD1 knockout mice. The validity of SCD1 as a drug target has been questioned

by a report that SCD1 knockout mice are driven to increase their energy expen-

diture because disruption of their epidermal lipid barrier causes them to lose

heat rapidly (Binczek et al. 2007). They are able to maintain their body tempera-

ture by increasing their sympathetic activity when they are maintained at normal

animal house temperatures, but at 4�C they become hypothermic (Lee et al.

2004). Skin-specific deletion of SCD1 is enough to increase energy expenditure,

cause intolerance to cold, and protect mice from diet-induced obesity (Sampath

et al. 2009).

There are other issues as well. SCD1 protects pancreatic b-cells from lipoapop-

tosis (Busch et al. 2005) and b-cell loss is hastened in BTBR Lepob/Lepob mice if

they lack SCD1 (Flowers et al. 2007). SCD1 protected the rat L6 muscle cell line

from fatty acid-induced insulin resistance (Pinnamaneni et al. 2006), so inhibiting

the enzyme does not seem logical. In humans, in contrast with mice, metabolic

disease tends to be associated with decreased SCD1 mRNA (Popeijus et al. 2008).

Inhibition of SCD1 can promote atherosclerosis (Brown and Rudel 2010). Lastly,

there have been descriptions at meetings of skin and eye lesions in animals treated

with SCD1 inhibitors, though this may not be a problem with all SCD1 inhibitors

(Uto et al. 2010).

There may be potential for SCD1 inhibitors that are directed towards the liver.

Liver-specific deficiency of SCD1 protected mice from high carbohydrate (but not

high fat) diet-induced obesity and hepatic steatosis. Decreased monounsaturated

fatty acid production prevented the upregulation of lipogenic genes in these mice

(Flowers and Ntambi 2009). Treatment of rodents with SCD1 antisense oligonu-

cleotides, which reach the liver but not other organs, including the skin or b-cells,
lowered plasma glucose and insulin and reversed hepatic insulin resistance (Jiang

et al. 2005; Gutierrez-Juarez et al. 2006). Moreover, SCD1 antisense oligonucleo-

tides increased fatty acid oxidation in mouse hepatocytes (Jiang et al. 2005). Liver-

selective small molecular weight SCD1 inhibitors have been described (Koltun

et al. 2009), but it remains to be seen whether they have potential in the treatment of

diabetes.
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5.4 Acetyl-CoA:Diacylglycerol Acyltransferase (DGAT)

The final step of triglyceride synthesis is catalysed in rodents by the enzymes

DGAT1 and DGAT2. In higher mammals, including humans, monoacylglycerol

acyltransferase 3 (MGAT3) is also able to perform this role. MGAT3 and DGAT2

belong to the same protein family, but MGAT3 is not found in rodents (Zammit

et al. 2008).

Interest in DGAT1 as a target for drugs arose from the finding that DGAT1

knockout mice are resistant to diet-induced obesity and insulin resistance (Smith

et al. 2000; Chen et al. 2002a). The male mice had increased energy expenditure

(Wang et al. 2007), although in the early papers this was only demonstrated when

energy expenditure was expressed relative to body weight (Smith et al. 2000; Chen

et al. 2003). The DGAT1 knockout mice displayed increased physical activity and

capacity for fatty acid oxidation (increased uncoupling protein-1 expression) in

brown adipose and other tissues. If the capacity for fatty oxidation is increased in

other tissues, this might explain why the concentration of diacylglycerol – the

substrate of DGAT – paradoxically tended to be low in white adipose tissue,

skeletal muscle, and especially liver of DGAT1 knockout mice (Yu and Ginsberg

2004; Chen and Farese 2005).

Surprisingly, overexpression of DGAT1 in white adipose tissue of C57Bl/6 mice

resulted in a greater susceptibility to diet-induced obesity but not to impaired

glucose tolerance (Chen et al. 2002b). However, a similar modification to FVB

mice did not cause obesity but did cause insulin resistance (Chen et al. 2005). This

may be because FVB mice are resistant to adipose tissue expansion. It could be that

increased triglyceride synthesis in fat reduced uptake of VLDL and the triglyceride

was redistributed to liver.

Even more surprisingly, overexpression of DGAT1 specifically in muscle

protected mice from high fat diet-induced insulin resistance. This was consistent,

however, with the unexpected finding that muscle diacylglycerol and ceramide

contents were decreased (Liu et al. 2007). The most likely explanation for these

findings is that fatty acids that enter the muscle are rapidly converted to triglycer-

ides, lowering levels of fatty acid metabolites, such as diacylglycerol and cer-

amide, that cause insulin resistance. This is analogous to what happens in the

muscles of athletes (Liu et al. 2007). It is interesting that when DGAT1 knockout

mice were fed on a chow diet, their glucose tolerance was no better than that of

wild-type mice (Wang et al. 2007). This might be because there was a limited

capacity to store fatty acids as triglycerides, a condition analogous to, but less

extreme than, lipodystrophy. These findings show that genetic manipulation of

DGAT1 does not make the case for DGAT1 inhibitors as treatments for diabetes

as clearly as at first thought.

It has been suggested that DGAT1 plays a greater role than DGAT2 in triacyl-

gycerol synthesis in the lumen of the endoplasmic reticulum. Thus, selective

inhibition of DGAT1 might inhibit VLDL secretion and cause hepatic steatosis.

On the other hand, a similar mechanism operating in enterocytes might delay the
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rate at which chylomicrons appear in the plasma following a meal (Zammit et al.

2008). This might lead to a reduction in liver triglycerides.

Reports have begun to appear on DGAT1 inhibitors, but their emphasis has been

on reduced weight gain and serum and liver triglyceride concentrations, rather than

insulin sensitivity (Zhao et al. 2008; Birch et al. 2010; King et al. 2010). One

inhibitor reduced body weight in diet-induced obese mice without reducing food

intake, but it was not demonstrated that it increased locomotor activity or energy

expenditure (Zhao et al. 2008). This raises the possibility that raised energy

expenditure and locomotor activity in the DGAT1 knockout mouse are due to the

absence of DGAT1 in the brain. Thus, the value of DGAT1 inhibitors in the

treatment of diabetes has yet to be established in rodents.

6 Other Intracellular Targets

6.1 AMP-Activated Protein Kinase

AMPK is a heterotrimeric enzyme, potentially formed by 12 different combinations

of monomers, which generally promotes metabolic pathways involved in energy

provision, such as glucose uptake and fatty acid oxidation, whilst inhibiting those

involved in energy storage, such as fatty acid, triglyceride, and cholesterol synthe-

sis. It does this both by acutely phosphorylating key enzymes, such as ACC2

(whose activity it inhibits), and by altering gene expression. Chronic AMPK

activation promotes mitochondrial biogenesis, and AMPK plays a role in mito-

chondrial biogenesis in response to exercise. Downstream mechanisms that pro-

mote mitochondrial biogenesis include both acute activation, as a consequence of

enhanced SIRT1 activation (Canto et al. 2009), and increased expression of the

transcription factor peroxisome proliferator-activated receptor gamma coactivator

1-alpha (PGC-1a; see Sect. 6.3). The large and rapidly expanding literature on the

role that AMPK plays in energy balance and glucose homeostasis is summarised in

many excellent recent reviews (Hegarty et al. 2009; Viollet et al. 2009a, b; Zhang

et al. 2009; Zhou et al. 2009; Fogarty and Hardie 2010). AMPK is the subject of a

chapter by Violett and Andreelli (2011).

The role of AMPK in promoting energy providing pathways is mostly consistent

with it being a suitable target for anti-obesity and anti-diabetic targets. This,

however, depends upon the fuels mobilised also being used. Generalised activation

of AMPK in the hypothalamus promotes energy supply in that it promotes feeding

(Zhang et al. 2009), but this is the opposite of what is needed for obesity and

diabetes. It is especially important for diabetic patients that when glucose is

mobilised it is used. Activation of AMPK in skeletal muscle inhibits glycogen

synthase (Hegarty et al. 2009) and in dogs the AMPK activator 5-aminoimidazole-

4-carboxamide-1-b-D-ribofuranoside (AICAR) stimulates hepatic glucose output

(Camacho et al. 2005; Pencek et al. 2005). Whilst its effects on glycogen synthesis
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and degradation tend to promote hepatic glucose output, AMPK suppresses gluco-

neogenesis (Viollet et al. 2009b). A caution is that many of these statements are

based on studies using AICAR, which may act by mechanisms other than activation

of AMPK (see below).

One effect of AMPK activation that does not promote energy provision is that it

inhibits lipolysis in adipose tissue (Daval et al. 2006), but this is beneficial for an

anti-diabetic drug. On the other hand, activation of AMPK in b-cells inhibits

glucose-stimulated insulin secretion. It has been suggested that this might help to

protect the b-cell in the long term (Viollet et al. 2009b), but there is evidence that

activation of AMPK might actually be toxic to b-cells in some situations (Riboulet-

Chavey et al. 2008; Ryu et al. 2009).

A number of the other targets linked to AMPK have already been described in

this chapter. Activation of AMPK not only inhibits ACC2 acutely, but also reduces

the expression of both ACC2 and fatty acid synthase. AMPK also activates SIRT1

(see Sect. 6.3). Metformin acts primarily by activating AMPK, probably by raising

the concentration of AMP. Leptin, sympathetic activation, and adiponectin increase

AMPK activity in skeletal muscle and liver (Minokoshi et al. 2002; Yamauchi et al.

2002, 2007). In addition, the thiazolidinedione PPARg agonists increase AMPK

activity in skeletal muscle, partly by promoting adiponectin secretion and partly

acting directly (LeBrasseur et al. 2006). The mechanisms by which these

agents increase AMPK activity are not established. It is possible that perturbation

of mitochondrial function with consequent elevation of the concentration of

AMP, rather than PPARg agonism, mediates the effect of the thiazolidinediones

(Brunmair et al. 2004). The effects of adiponectin and leptin on glucose homeosta-

sis are partly dependent on activation of AMPK (Hegarty et al. 2003). The benefi-

cial effects of metformin appear to be primarily dependent on AMPK (Hardie 2008)

and its upstream kinase LKB1 (Shaw et al. 2005), though part of its action may be

independent of AMPK (Saeedi et al. 2008). Elevation of the concentration of AMP

may be a consequence of inhibition of complex I of the mitochondrial respiratory

chain (Owen et al. 2000).

A number of strains of genetically modified mice have been created in which the

a1- or a2-catalytic or g-AMP binding subunits of AMPK have been inactivated or

constitutively activated (Viollet et al. 2009a). Of note are mice that express an

inactive a2-subunit in muscle. These mice developed impaired whole-body glucose

tolerance and skeletal muscle insulin resistance (Fujii et al. 2008). Liver-specific

deletion of the a2-subunit resulted in mild hyperglycaemia and glucose intolerance

(Andreelli et al. 2006), whilst adenovirus-mediated expression of a constitutively

active form of the a2-subunit protected mice from diabetes (Foretz et al. 2005).

Various compounds have been described that activate AMPK directly or are

metabolised to compounds that activate AMPK directly. The best known is AICAR,

which improves glucose homeostasis in various rodent models of diabetes (Hegarty

et al. 2009). The abbreviation AICAR is confusing because it is used in the

literature on purine synthesis to describe the ribotide, but in the literature on

metabolism to describe the riboside. The ribotide (5-amino-4-imidazolecarboxa-

mide ribonucleotide or 5-aminoimidazole-4-carboxamide-1-b-D-ribofuranotide) is
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called ZMP in the literature on metabolism. The riboside is taken up by cells and

phosphorylated to the ribotide. One problem with ZMP is that it mimics actions

of AMP other than activation of AMPK. In particular, it stimulates glycogen

phosphorylase, which exacerbates blood glucose control, and inhibits fructose-

1,6-bisphosphatase (FBPase), which inhibits gluconeogenesis and improves blood

glucose control (Zhou et al. 2009). There may also be protein kinases other than

AMPK that are activated by AICAR because it increased ACC2 phosphorylation

and fatty acid oxidation in mice that expressed inactive AMPK in skeletal muscle

(Dzamko et al. 2008). Another problem, apparently ignored by other authors, is that

by increasing the cellular ZMP concentration, AICAR (the riboside) may increase

the extracellular concentration of adenosine. This is how methotrexate is believed

to reduce inflammation in rheumatoid arthritis (Cronstein 2005). Adenosine can

both increase and decrease insulin sensitivity, probably depending upon whether it

acts via A1 or A2 receptors (Budohoski et al. 1984; Derave and Hespel 1999; Thong

et al. 2007).

The thienopyridone A769662 activates AMPK directly but does not activate

glycogen phosphorylase or inhibit FBPase. However, its utility may be compro-

mised by it activating glucose uptake in skeletal muscle through a phosphatidyli-

nositol 3-kinase-dependent pathway, independent of AMPK activation (Treebak

et al. 2009). It also inhibits Na+/K+-ATPase (Benziane et al. 2009). Like AICAR, it

reduced the blood glucose concentration in Lepob/Lepob mice, but it is not clear

whether any of this effect was independent of its effect on body weight (Cool et al.

2006). Other activators of AMPK have been described, but most of these are not

direct activators and many may activate AMPK by raising the tissue AMP concen-

tration (Zhou et al. 2009). The polyphenol resveratrol, which is found in the skin of

grapes, causes weight loss and improves glucose homeostasis in wild-type but not

in AMPKa knockout mice, but how it activates AMPK is unclear. It was claimed

that it increases energy expenditure, but energy expenditure was expressed rela-

tive to body weight, possibly after many weeks of treatment, and it does not

appear to have affected energy expenditure per animal (Um et al. 2010). Resver-

atrol has a number of possible mechanisms of action (Pirola and Frojdo 2008).

Nootkatone, a constituent of grapefruit, may activate AMPK by activating

upstream AMPK kinases (Murase et al. 2010). A single dose of nootkatone caused

a rapid increase in energy expenditure in mice (reminiscent of activators of the

sympathetic nervous system). It is noticeable, by contrast, that acute thermogenic

effects of directly acting AMPK activators have not been reported, but both

A769662 and metformin reduced the respiratory exchange ratio (RER) of rats

for about 3 h, after which the ratio increased slightly for about 3 h (Cool et al.

2006). The reduction in RER implies depletion of fat due to increased fat oxida-

tion or decreased lipogenesis.

Ultimately, the main problem with direct activators of AMPK is that AMPK has

many roles, extending beyond major metabolic pathways. It may be that drugs that

act at specific isoforms of the a-subunit or other sophisticated strategies might

reduce unwanted side effects. Drugs targeted to skeletal muscle, or more realisti-

cally, the liver are most likely to succeed (Zhang et al. 2009; Zhou et al. 2009).
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6.2 Peroxisome Proliferator-Activated Receptor b/d

A number of transcription factors have been identified whose activation or over-

expression promotes mitochondrial biogenesis. Skeletal muscle develops more type

1 (oxidative) fibres, and adipose tissue develops more adipocytes that have the

features of brown adipocytes, such as expression of uncoupling protein-1. The best

known of these transcription factors is PGC-1a. Most of them do not have natural

small molecule regulators, however, and they have not been shown to be good

targets for drug.

PPARb/d, on the other hand, is a transcription factor that is also a hormone

receptor and it can be activated by small molecules. Overexpression of PPARb/d in
skeletal muscle or adipose tissue increases the capacity of these tissues for fatty acid

oxidation and protects mice from diet-induced obesity and glucose intolerance

(Wang et al. 2003, 2004). Conversely, PPARb/d knockout mice are more suscepti-

ble than wild-type mice to diet-induced glucose intolerance (Lee et al. 2006) and in

one study (Wang et al. 2003), though not others (Peters et al. 2000; Lee et al. 2006),

obesity.

The best described selective PPARd agonists are GW501516 and its close struc-

tural analogue GW042 (also known as GW610742 or GW610742X). GW501516 has

been taken as far as phase II clinical studies but is no longer being developed (Billin

2008). Some caution must be taken when interpreting rodent data on these com-

pounds because, although they are of the order of 1,000-fold selective as agonists of

human PPARb/d compared to PPARa or PPARg, they are less selective (about 50-

fold in the case of GW501516) for murine PPARb/d (Oliver et al. 2001; Sznaidman

et al. 2003). This may explain why oral administration of both compounds causes

hepatomegaly in mice, a known effect of PPARa agonists (Tanaka et al. 2003;

Harrington et al. 2007; Faiola et al. 2008). Moreover, GW501516 activated AMPK

and glucose uptake in human primary skeletal muscle cells by a PPARb/d- and
PPARa-independent mechanism (Kramer et al. 2007). Interestingly, the only evi-

dence that GW501516 increases energy expenditure is that oxygen consumption

relative to body weight was decreased after 35–39 days treatment, but body weight

was reduced at this time. There was a trend to reduced food intake, but this was not

statistically significant (Tanaka et al. 2003), so it is likely that weight loss was partly

due to increased energy expenditure, even though this was not marked. In my

colleagues’ unpublished work (D Hislop and M A Cawthorne), GW501516

(10mg/kg, po for 2 weeks) did not increase energy expenditure per animal detectably

in Lepob/Lepob mice, but it improved oral glucose tolerance. Similar results were

obtained with a compound that is more selective for murine PPARb/d, but it was also
found that the mice were sensitised to the thermogenic effect of a b3-adrenoceptor
agonist (R A Ngala et al, unpublished). Published work also shows that GW501516

improves glucose tolerance or lowers blood glucose and plasma insulin in various

animal models of diabetes and insulin resistance (Tanaka et al. 2003; Lee et al. 2006).

GW501516 reduced fasting glucose and insulin in a phase II clinical study slightly,

but these effects were not statistically significant (Billin 2008).
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At least two other PPARb/d agonists remain in clinical development according

to companyWeb sites. One of these is the Metabolex compound MBX-8025, which

improved insulin sensitivity in a phase II study. There was a trend to decreased

weight consumption and body fat. The other is the Kalypsys compound KD-3010,

which has completed a phase 1b study. Much of the focus with PPARb/d agonists

has been on dyslipidaemia (Billin 2008).

Finally, it should be noted that regulatory authorities regard PPARb/d agonists

as potential carcinogens and the hurdles to their development are considerable

(Billin 2008).

6.3 Sirtuin1

The sirtuins, of which there are at least seven mammalian homologues, are histone

deacetylases that are involved in gene silencing (Finkel et al. 2009). Sirtuin1

(SIRT1) is a possible target for drugs for the treatment of diabetes. SIRT1 deace-

tylates not only histones but also various transcription factors, including PGC-1a.
Deacetylation activates PGC-1a and promotes mitochondrial biogenesis (Liang

et al. 2009). Some of the effects of AMPK activation, in particular its effect on

mitochondrial biogenesis, may be mediated by SIRT1, because by promoting the

oxidation of NADH and increasing the NAD+ concentration, AMPK enhances

SIRT1 activity (Canto et al. 2009).

The current focus is on activators rather than inhibitors of SIRT1 (see below).

This is consistent with a report that moderate generalised overexpression of SIRT1

improved glucose tolerance in diet-induced obese and LepRdb/LepRdb mice. Adi-

ponectin levels increased and, possibly in consequence, hepatic glucose production

decreased (Banks et al. 2008). Body weight, body composition, food intake, and

oxygen consumption were largely unchanged. Body weight and body composition

were also unchanged by overexpression of SIT1 in normal, chow-fed mice, but both

food intake and oxygen consumption were decreased. This illustrates how energy

turnover can change without there being any alteration in body weight.

In contrast with this report on overexpression of SIRT1, two studies on the

knockdown of SIRT1 specifically in liver suggest that inhibitors of SIRT1 should

be of value in the treatment of diabetes. Both studies found that knockdown of

hepatic SIRT1 decreased fasting blood glucose and improved whole-body insulin

sensitivity (Rodgers and Puigserver 2007; Erion et al. 2009). In the first of these

studies, SIRT1 was also overexpressed in liver; this reduced glucose tolerance, but

the effect was prevented if PGC-1a was overexpressed. The key to understanding

these various findings may be that SIRT1 by activating PGC-1a promotes hepatic

gluconeogenesis (Rodgers and Puigserver 2007). Thus, the effects of SIRT1 in liver

(increased gluconeogenesis) and in skeletal muscle (increased capacity for fatty

acid oxidation) may have opposing effects on glucose homeostasis.

Further support for developing activators rather than inhibitors is that activation

of SIRT1 in b-cells enhances glucose-stimulated insulin secretion and b-cell
survival (Liang et al. 2009). In addition, low SIRT1 mRNA in adipose tissue was
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associated with impaired stimulation of energy expenditure by insulin, low expres-

sion of mitochondrial genes in adipose tissue, and low levels of mitochondrial DNA

in skeletal muscle (Rutanen et al. 2010).

Two reports have described three compounds, claimed to be SIRT1 activators

that, at high dose levels, improve insulin sensitivity in animal models of insulin

resistance. The authors of the first report were mostly from Sitris Pharmaceuticals

(Milne et al. 2007). The second report focuses on one of the compounds (SRT1720)

described in the first report; only two of the ten authors were from Sitris (Feige et al.

2008). The first report finds increased “mitochondrial capacity” in SIRT1 activator-

treated mice, but no effects on body weight. The second, by contrast, describes

prevention of diet-induced obesity by SRT1720 without reduced food intake.

Energy expenditure was increased relative to body weight, but since all the weight

lost appears to have been fat, this is not an appropriate way to express the data (see

Sect. 7). Other effects of the SIRT1 activator used in the second study were

increased numbers of type 1 fibres in gastrocnemius (but not soleus) muscle,

increased running endurance (as found with PPARd activation), and increased

capacity for fat oxidation in brown adipocytes. The expression of type 2 deiodinase

and other genes for proteins that control energy expenditure was increased in brown

adipose tissue, but surprisingly expression of uncoupling protein-1 mRNA was not

increased (Feige et al. 2008). The relevance of these reports to SIRT1 has, however,

been contested; the identification of these compounds as SIRT1 activators appears

to have been an artefact of the assay method. The compounds interact with multiple

receptors, enzymes, transporters, and ion channels, and in any event SRT1720

neither lowered plasma glucose, nor improved mitochondrial capacity in mice fed

on a high fat diet. Resveratrol (see Sect. 6.1), which has also been claimed to

activate SIRT1, was also shown not to act directly on the enzyme (Pacholec et al.

2010). Nevertheless, resveratrol-stimulated glucose uptake in L6 muscle cells was

prevented both by the sirtuin inhibitor nicotinamide and by the AMPK inhibitor

Compound C (Breen et al. 2008).

7 Perspectives and Implications for Drug Discovery

and Development

Figure 1 illustrates how most of the targets that have been described are linked,

especially to adiponectin, AMPK, and the sympathetic nervous system. Another

link, and a recurring theme of this chapter, is that metabolic targets for insulin-

sensitising drugs are generally associated with an increased capacity for fat oxida-

tion in skeletal muscle and liver. This is not fat oxidation driven (pushed) by an

increased supply of fatty acids, but rather an increased capacity to draw (pull) fat into

tissues for oxidation. One possible consequence is that the plasma non-esterified

fatty acid concentration may fall. A more likely consequence is that, in those

tissues in which the capacity for fatty acid oxidation is increased, the concentrations

of lipid metabolites that cause insulin resistance fall and glucose uptake becomes
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more sensitive to insulin. It is not essential that the rate of fatty acid oxidation

increases significantly; what does matter is that the “pull” for fatty acid oxidation

exceeds the “push” of fatty acid supply, so that the concentration of these key lipid

metabolites fall.

7.1 Detection of Thermogenesis

In fact, the target that has given us the drugs that are best known as “insulin

sensitisers”, PPARg, has not given us drugs that increase whole-body fat oxidation

and thermogenesis. Rosiglitazone and pioglitazone increase fat stores, but crucially,

this fat is safely stored away in subcutaneous adipocytes and does not satisfy the

demands of skeletal muscle and (especially in rodents) brown adipose tissue, in

which the capacity for fat oxidation is increased (Benton et al. 2008; Festuccia et al.

2008). These tissues respond by becoming more sensitive to insulin and using

glucose instead of fat. Metformin has a weaker insulin-sensitising effect than the

thiazolidinediones and its effects are transient (Pavo et al. 2003; Karlsson et al.

2005; Basu et al. 2008). It is not obviously thermogenic, but there is some evidence

that it increases whole-body fat oxidation, though only transiently (Avignon et al.

2000; Cool et al. 2006; Braun et al. 2008). Genetic modification of mice so that b3-
adrenoceptors were expressed in brown but not white adipocytes prevented obvious

thermogenesis in response to a b3-adrenoceptor agonist, but it was not stated

whether the b3-adrenoceptor agonist could still lower respiratory quotient or

(with repeated administration in diet-induced obesity) reduce insulin sensitivity

(Grujic et al. 1997). I suggest that these effects would still have occurred.

All this means that non-anorectic insulin-sensitising drugs need not be obviously

thermogenic, nor need genetically modified mice that model the potential of the

drug have markedly higher energy expenditure than their wild-type counterparts.

Mice that are treated with a prototype drug or genetically modified may be leaner,

but it may be very difficult to demonstrate that their energy expenditure is raised.

For example, the loss of 3 g of fat, which should be easily detectable, corresponds to

the loss of 27 kcal. This is about 5% of what a mouse eats in 5 weeks, and a 5%

increase in energy expenditure is not easy to detect. Speakman has made this point

more eloquently (Speakman 2010). Some genetically modified mice, such as ACC2

or 11bHSD knockout mice, are lean despite raised energy intake, leaving no doubt

that fat loss must be due to raised energy expenditure, even if this is not obvious

from direct measurement of energy expenditure.

In those cases in which tool compounds cause an acute and easily detectable

increase in energy expenditure, this is usually because sympathetic activity is

raised (or mimicked in the case of b-adrenoceptor agonists). The reason why

sympathomimetic drugs have such a clear thermogenic effect is probably that

they mobilise fuels as well as promote their combustion. Energy expenditure

subsides to or below the control level between doses of the compound, or energy

intake increases. If one of these things did not happen, the animal would soon lose
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all its fat. Thus, obese mice lose more lipid after 28 days of treatment with some

b3-adrenoceptor agonists than their lean littermates have in their entire bodies

(Arch and Ainsworth 1983). The lean animals respond less to b3-adrenoceptor
agonists and when the dose is high they increase their food intake (Arch et al. 1984;

Clapham et al. 2001).

7.2 Manipulation of Energy Expenditure Data

The problem of detecting small increases in energy expenditure sufficient to cause

weight loss does not stop researchers from claiming that they can detect raised

energy expenditure, even when sympathetic activity or energy intake is not raised.

The device that they use is to wait until the tool compound or the genetic modifica-

tion has caused weight loss and then express energy expenditure relative to body

weight or body weight0.75. If energy expenditure for humans were adjusted in the

same way, we would have to conclude that most obese humans have a low

metabolic rate, which nobody believes. Body weight0.75 is a term that was found

to normalise energy turnover between species but has never been validated as a

means of normalising energy turnover between lean and obese members of the

same species (Arch et al. 2006). Almost invariably the leaner animals have

increased energy expenditure relative to body weight or body weight0.75. This is

hardly surprising: fat contributes about a fifth or less of what lean tissue contributes

to energy expenditure. Amazingly, the same correction is not applied to energy

intake. If it was, one would find that in most cases energy intake relative to body

weight or body weight0.75 is also reduced in the leaner animals. Relative to body

weight0.75, it is not just energy expenditure that is similar in mice and elephants –

energy intake is as well.

Various workers have objected to the use of this device and have suggested

alternative approaches (Himms-Hagen 1997; Packard and Boardman 1999; Toth

2001; Arch et al. 2006; Butler and Kozak 2010). Authors, referees, and editors

appear, however, to prefer to “turn a blind eye” to this issue. This author recom-

mends that manipulated energy expenditure data are treated sceptically unless the

mean body weights of the groups being compared are very similar. It seems

reasonable to normalise energy expenditure relative to body weight within a

group in order to reduce within group variance, but before comparing between

groups the energy expenditure of each mouse within a group should then be

converted back to whole animal energy expenditure as if it had the body weight

of the average for the group. It does not seem reasonable, however, to normalise

relative to body weight for the purpose of comparing groups of different body

weights. Normalisation relative to lean body mass, if measured, is more acceptable

because basal metabolic rate is largely determined by lean body mass, but even this

is not ideal if the intercept of the relationship between energy expenditure and lean

body mass is not zero (Speakman 2010).
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7.3 Translation from Rodents to Humans

If it can be shown without manipulation of data that whole-body energy expenditure

is raised in rodents, what are the implications for humans? First, it is possible that if

thermogenesis in rodents is due to increased sympathetic activity, it will not be

apparent in humans (as in the case of rimonabant). Rodents have a far higher

capacity for thermogenesis than humans due to their greater amount of brown

adipose tissue. They are usually studied below thermoneutrality so that effects of

compounds or genetic modification on heat loss alter their requirements for ther-

mogenesis. This may be the main cause of thermogenesis in SCD1 knockout mice

(see Sect. 5.3). Humans, by contrast, usually live and are studied near thermoneu-

trality. Secondly, if, as in the case of sibutramine, sympathetic activity is raised in

humans, there is the risk that blood pressure will be raised.

And if the weight loss occurs in rodents, whether or not due to detectable

thermogenesis, what are the implications for humans? Should a drug that causes

weight loss in rodents be developed initially for the treatment of obesity – the

traditional view of thermogenic drugs? Probably not. Two arguments suggest that

type 2 diabetes should be the first indication. First, exercise and some thermogenic

agents (notably b3-adrenoceptor agonists) are capable of improving insulin sensi-

tivity without eliciting weight loss. Stimulation of fatty acid oxidation rapidly

lowers the concentrations of fatty acid metabolites that cause insulin resistance,

but it takes far longer to burn off large stores of lipid in white adipose tissue.

Efficacy is more likely to be achieved in diabetes than obesity and proof of concept

trials can be shorter. Secondly, the regulatory requirements for the development of

anti-diabetic drugs are less stringent than those for the development of anti-obesity

drugs. Phase III clinical studies are shorter and the benefits of efficacy easier to

justify. Moreover, the European Medicines Agency still requires that anti-obesity

drugs cannot subsequently be approved for the treatment of diabetes without first

ignoring any benefit that is a consequence of weight loss. This is a perverse

argument in view of the fact that the effects of some diabetes drugs (exenatide,

pramlintide and possibly metformin) on markers of blood glucose control are partly

due to weight loss. Fortunately, the US Food and Drug Authority no longer takes

the same position. Nevertheless, it may be a safer strategy to register a drug for the

treatment of diabetes and claim weight loss as a benefit than to register it for obesity

and then attempt to have it approved for diabetes.

So in conclusion, the message of this chapter is that drugs that increase the

capacity for fatty acid oxidation, especially in skeletal muscle, may improve whole-

body insulin sensitivity. Do not be surprised if it is impossible to detect an acute

increase in energy expenditure, or a chronic increase in energy expenditure per

animal or human, or relative to lean body mass. And if others report an acute

increase in energy expenditure, check whether this is due to an increase in sympa-

thetic activity and whether blood pressure is also raised.
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Abstract Interleukin-1b (IL-1b) is a key regulator of the body’s inflammatory

response and is produced after infection, injury, and an antigenic challenge. Cloned

in 1984, the single polypeptide IL-1b has been shown to exert numerous biological

effects. It plays a role in various diseases, including autoimmune diseases such as

rheumatoid arthritis, inflammatory bowel diseases, and Type 1 diabetes, as well as

in diseases associated with metabolic syndrome such as atherosclerosis, chronic

heart failure, and Type 2 diabetes. The macrophage is the primary source of IL-1b,
but epidermal, epithelial, lymphoid, and vascular tissues also synthesize IL-1.

Recently, IL-1b production and secretion have also been reported from pancreatic

islets. Insulin-producing b-cells within the pancreatic islets are specifically prone to
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IL-b-induced destruction and loss of function. Macrophage-derived IL-1b produc-

tion in insulin-sensitive organs leads to the progression of inflammation and

induction of insulin resistance in obesity. This chapter explains the mechanisms

involved in the inflammatory response during diabetes progression with specific

attention to the IL-1b signal effects influencing insulin action and insulin secretion.

We highlight recent clinical studies, rodent and in vitro experiments with isolated

islets using IL-1b as a potential target for the therapy of Type 2 diabetes.

Keywords b-Cell � IL-1b � Diabetes � Inflammation � Obesity � Interleukin-1

receptor antagonist

1 Introduction: The IL-1 Family

Twenty-five years ago, IL-1b was cloned in the lab of Charles Dinarello (Auron

et al. 1984). Meanwhile, 11 ligands and 10 receptors of the IL-1 family have been

discovered. The proinflammatory and agonistic ligands are IL-1a, IL-1b, IL-18,
FIL-1e, IL-1H2, IL-1e, and IL-33; and the anti-inflammatory and antagonistic

ligands are IL-1Ra, FIL-1d, IL-1H4, and IL-1Hy2 (Dinarello 2009). IL-1a, IL-1b,
and IL-1Ra bind to IL-1R1; IL-1b and the IL-1b precursors bind to IL-1R2; IL-33

binds to IL-1R4; IL-18 and IL-1H4 to IL-1R5; FIL-1e, IL-1H2, and IL-1e to

IL-1R6; and IL-1R8, IL-1R9 and TIR8 remain orphan receptors (Boraschi and

Tagliabue 2006). IL-1b is mainly produced by activated macrophages. Production

and secretion of IL-1b have been linked not only to various autoimmune and

autoinflammatory diseases, but also to metabolic dysregulation (Dinarello 2009).

Signaling pathways of IL-1b have been shown to result in impaired insulin secre-

tion and action (Maedler et al. 2009). Clearly, other cytokines and chemokines are

involved in the inflammatory responses; however, this chapter focuses on the

possibility of blocking only IL-1b as a target for improving glycemia in T2DM.

A recent paper showing that genetic variation in the IL-1 gene family is

associated with hyperglycemia and insulin resistance provides another proof for

the involvement of IL-1b in the pathogenesis of diabetes (Luotola et al. 2009).

2 IL-1b Links Obesity and Diabetes

Chronic subclinical inflammation is present in obesity, insulin resistance, and

T2DM. The diseases related to metabolic syndrome are characterized by abnormal

cytokine production, including elevated circulating IL-1b, increased acute-phase

proteins, e.g., CRP (Koenig et al. 2006), and activation of inflammatory signaling

pathways (Wellen and Hotamisligil 2005).

Proinflammatory cytokines can cause insulin resistance in adipose tissue, skele-

tal muscle, and liver by inhibiting insulin signal transduction. The sources of
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cytokines in insulin-resistant states are the insulin target tissues themselves, pri-

marily fat and liver, but to a larger extent the activated tissue resident macrophages

(de Luca and Olefsky 2008).

While macrophage infiltration in adipose and brain tissue has been shown in

many studies (Schenk et al. 2008), increased islet macrophage infiltration has only

recently been observed in pancreatic sections from patients with T2DM (Ehses

et al. 2007; Richardson et al. 2009) and in T2DM animal models, such as the GK rat

(Homo-Delarche et al. 2006), the HFD and db/dbmouse (Ehses et al. 2007), and the

hyperglycemic Cohen diabetic rat (Weksler-Zangen et al. 2008). While IL-1b
signals induce destruction and impaired insulin secretion in the b-cells, insulin
signaling is disturbed in the insulin target tissues (Fig. 1).

Insulin receptor signaling is complex. To summarize shortly, signaling down-

stream of the insulin receptor involves phosphorylation of IRS1/2 and the activation

of the PI3K–AKT pathway (responsible for insulin action on glucose uptake) and

the Ras-mitogen-activated protein kinase (MAPK) pathway (responsible for sup-

pression of gluconeogenesis, reviewed in (Taniguchi et al. 2006)). Due to inflam-

mation, IRS1 can be alternatively phosphorylated on serine 307, which leads to

downstream activation of the NF-kB pathway, phosphorylation of C-jun N-terminal

kinase 1 (JNK1), and activation of the JNK/AP-1 pathway and thus disturbed

insulin signaling. Furthermore, IL-1b induces suppressor of cytokine signaling

(SOCS), which leads to degradation of insulin receptor substrate (IRS) proteins

(Rui et al. 2002).

IL-1β

IL-1β

β-cells

liver

adipose

brain

macrophages

IL-1β

Cholesterol
Triglycerides
FFA
Leptin
Resistin
Adiponectin

c-Jun
NFκB

Fig. 1 The inflammatory axis in metabolic diseases and interplay between macrophage-derived

IL-1b and its action in adipose tissue, brain, pancreas, and liver. Macrophages migrate into insulin-

sensitive organs and produce proinflammatory signals, which change the cell fate. In adipose

tissue, this leads to increased production of cholesterol, triglycerides, cytokines, and the adipo-

kines lepin and resistin, while adiponectin is decreased. Insulin sensitivity is impaired and glucose

uptake disturbed. Mediated through intracellular signaling cascades, NF-kB and c-Jun are acti-

vated and insulin resistance in the liver and brain and impaired insulin secretion in the b-cells
develop [adapted from Maedler et al. (2009)]
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2.1 IL-1b in Adipocytes

Infiltration of macrophages in adipose tissue is tightly correlated with obesity in

mice and humans (Weisberg et al. 2003; Xu et al. 2003). Important modulators of

inflammation are the adipocytokines, i.e., leptin, resistin, and adiponectin, which

play a central role in the regulation of insulin resistance and b-cell function

(Koerner et al. 2005; Tilg and Moschen 2006).

In obesity, not only circulating free fatty acids (FFA) and lipids but also leptin

and resistin are increased; whereas adiponectin, which is known to prevent inflam-

mation (Tilg and Moschen 2006) and is negatively correlated with insulin resis-

tance, is decreased (Rasouli and Kern 2008). Leptin has been shown to exert pro- as

well as anti-inflammatory properties, probably dependent on its dose and exposure

time. While in vivo, leptin overexpression normalizes glycemia in the diabetic

NOD mice as well as in STZ- and alloxan-induced diabetes (Yu et al. 2008),

chronic leptin incubation in vitro leads to impaired b-cell function and survival

(Maedler et al. 2004; Roduit and Thorens 1997; Seufert et al. 1999). Leptin has

been shown to manipulate levels of IL-1b and IL-1Ra. While leptin acutely induces

IL-1Ra expression in islets and monocytes (Gabay et al. 2001; Maedler et al. 2004),

there is a chronic reduction of IL-1Ra and induction of IL-1b secretion.

IL-1Ra expression is increased in white adipose tissue in obese individuals

with increased circulating FFA and lipids (Juge-Aubry et al. 2003). In contrast,

daily IL-1Ra injections in HFD-fed mice normalize circulating FFA, lipids, as well

as adipokines. Although the percentage of macrophages in a given adipose tissue

depot is positively correlated with adiposity and adipocyte size (Weisberg et al.

2003), the normalization of lipids and adipokines by IL-1Ra seems to be indepen-

dent of fat mass, since IL-1Ra treatment neither influences fat mass nor adipocyte

size. In contrast, mRNA levels of the inflammatory cytokines IL-1b and TNF-a, the
macrophage marker F4/80, and the proinflammatory macrophage marker CD11c

are increased by the HFD in wild-type mice but reduced by IL-1Ra overexpression

(Sauter et al. 2008). Interestingly, specifically the marker of the “classically acti-

vated” macrophages M1 (Lumeng et al. 2007) is highly induced by the HFD and

normalized by IL-1Ra. Thus, the HFD-induced proinflammatory state of adipocytes

may be the reason for the increased adipokines (resistin and leptin) and lipid

production.

Undoubtedly, the effect of IL-1Ra on adipocyte-derived factors plays a protec-

tive role at the level of the b-cell.

2.2 IL-1b in the Liver

The bone marrow-derived macrophage cells in the liver are the Kupffer cells.

Kupffer cells secrete cytokines, among them IL-1b, NO, and free radicals, which

could, per se, induce b-cell failure (Barshes et al. 2005). This is specifically
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deleterious in the environment of transplanted islets in the liver. Cytokines (IL-1b,
IFN-g, and TNF-a) are particularly elevated after islet transplantation (Bottino et al.
1998), and liver tissue macrophages participate in cell injury and graft failure

(Kaufman et al. 1990, 1994). Strategies to inhibit IL-1b-induced b-cell failure,
e.g., by salicylate treatment of the islets (Tran et al. 2002; Zeender et al. 2004) may

therefore improve graft survival.

Similar to the role of macrophages in obese adipose tissue, secretion of IL-1b by

the Kupffer cells could be central to hepatic insulin resistance in obesity. Cytokine-

induced JNK phosphorylation and activation of the NF-kB pathway are indicative

of insulin resistance in the liver, e.g., depletion of JNK in myeloid cells (including

Kupffer cells) in mice leads to HFD-induced hepatic steatosis without an increase in

inflammatory markers in the liver and no development of insulin resistance (Solinas

et al. 2007). Furthermore, hepatocyte-specific inhibition of NF-kB (Cai et al. 2005)

or of IKK-b (Arkan et al. 2005) in myeloid cells improves hepatic insulin sensitiv-

ity. These studies show that independent of obesity, the inflammatory status in the

liver primarily regulates insulin sensitivity.

2.3 IL-1b in the Brain

In the healthy brain, members of the IL-1 family are expressed at low or undetect-

able levels (Allan et al. 2005). During neuro-inflammation, IL-1b is dramatically

upregulated by various local and systemic brain insults including ischemia, trauma,

hypoxia, and neurotoxic inflammatory stimuli (Allan et al. 2005).

IL-1b in the brain is produced primarily by microglia, which also express

caspase-1 (Touzani et al. 1999). To a lesser extent, astrocytes, oligodendroglia,

neurons, cerebrovascular cells, and circulating immune cells after infiltrating the

brain under inflammatory conditions produce IL-1b (Rothwell and Luheshi 2000).

IL-1b has a number of diverse actions in the CNS to modify feeding behavior,

fever (Dinarello and Wolff 1982), central pain modulation (Wolf et al. 2003), stress

responses (Goshen et al. 2003) memory (Schneider et al. 1998), and neuroendocrine

responses, mainly through actions in the hypothalamus (Sims and Dower 1994).

There is evidence of a hypothalamic control of insulin sensitivity, which

is disturbed when elevated levels of proinflammatory cytokines are circulating.

Studies in mice show that HFD promotes hypothalamic resistance to the main

anorexigenic hormones, leptin and insulin, leading to the progressive loss of the

balance between food intake and thermogenesis and, therefore, resulting in body

mass gain (De Souza et al. 2005; Milanski et al. 2009; Munzberg et al. 2004). HFD

feeding of rats resulted in hypothalamic induction of IL-1b, TNF-a, IL-6, and
IL-10. Activation of the toll-like receptor 4 signaling induces local cytokine

expression in the hypothalamus and promotes endoplasmic reticulum stress and

insulin resistance (Milanski et al. 2009).

The structural and metabolic damage found in Alzheimer’s disease is in part

due to sustained elevation of IL-1b (Holden and Mooney 1995; Vandenabeele and
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Fiers 1991; Zuliani et al. 2007). It upregulates expression of b-amyloid precursor

protein (b-APP) and stimulates the processing of b-APP, resulting in amyloido-

genic fragments in neurons (Goldgaber et al. 1989). Similarly, the b-APP deposits

found in the Alzheimer brain share the same molecular structure as the amylin

oligomer deposits found in the pancreatic b-cells in T2DM and are equally neuro-

toxic (Haataja et al. 2008). On the basis of the observations in the human islet

amyloid polypeptide transgenic rat (Butler et al. 2004), there is evidence that IL-1b
is expressed within the islets after the induction of severe hyperglycemia (unpub-

lished observation), indicating that IL-1b expression can only be observed at high

glucose levels. It remains to be elucidated if the toxicity of amylin oligomers on the

b-cell involves IL-1b signals.

Possibly, the activation of cytokine-induced proinflammatory pathways (e.g.,

JNK) plays a major role in the modulation of neurodegeneration (Borsello and

Forloni 2007). In line with this hypothesis, JNKs are negatively regulating insulin

sensitivity in the obese state.

Four different pathways are shown in the brain as a consequence of diet-induced

activation of inflammatory signaling: (1) induction of suppressor of cytokine

signaling-3 (SOCS-3) expression (Howard et al. 2004), (2) activation of c-Jun

N-terminal kinase (JNK) and I-kappa kinase (IKK) (De Souza et al. 2005), (3)

induction of protein tyrosine phosphatase 1B (PTP1B) (Bence et al. 2006), and

(4) activation of TLR4 signaling (Milanski et al. 2009). Thus, obesity and HFD

induce activation of proinflammatory pathways in the brain, which may directly

develop insulin resistance and lead to diminished glucose regulation by the insulin

target tissues.

3 IL-1b Signaling in the b-Cell

Only when the b-cell compensates for the higher insulin demand during insulin

resistance, normoglycemia can be maintained. A relative insulin deficiency leads to

diabetes. From numerous in vitro studies from isolated islets and b-cell lines, we
know that the b-cell is especially sensitive to cytokines. Consequently, circulating

cytokines are likely to rapidly affect b-cell function and survival.

Soon after the cloning of IL-1b, Mandrup-Poulsen and colleagues observed that

IL-1b impairs b-cell function (Mandrup-Poulsen et al. 1985, 1986). In addition to

impaired insulin secretion, IL-1b was found to induce b-cell death, which was

potentiated by the cytokines IFN-g and TNF-a (Eizirik 1988; Pukel et al. 1988). In

the pancreatic islet, IL-1R1 is present in the b-cells (Deyerle et al. 1992) and not in
the a-cells (Scarim et al. 1997), and thus the b-cells are a target for IL-1a, IL-1b,
and IL-1Ra.

Surprisingly, IL-1R1 is highly expressed in the b-cell; more than tenfold higher

expression of IL-1RI mRNA was observed in isolated islets than in total pancreas,

which is attributed to the expression in the b-cell. Furthermore, b-cell IL-1R1
expression levels are higher than in any other tissue. (Boni-Schnetzler et al.
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2009), which may explain the high sensitivity of the b-cell to IL-1. Blocking IL-1b
with specific IL-1b-neutralizing antibodies protected from the cytotoxic effects

induced by activated mononuclear cell conditioned medium (Bendtzen et al.

1986), indicating that IL-1b may play an important role in the molecular mechan-

isms underlying autoimmune b-cell destruction.
Since then, IL-1b signaling and the underlying mechanisms of IL-1b-induced b-

cell destruction have been investigated. Importantly, IL-1b induces its own and the

expression of other cytokines, e.g., IL-2, -3, -6, and interferons (Dinarello 1988). In

turn, cells that produce IL-1b also respond to IL-1b (Warner et al. 1987). IL-1b
initiates signal transduction by binding to IL-1R1 in the b-cell. This leads to

docking of the IL-1RAcP to the IL-1/IL-1R1 complex, which is followed by

recruitment of the adaptor protein MyD88. IRAK-4, Tollip, and IRAK-1 are then

recruited, allowing IRAK-1 to activate TRAF6, which in turn triggers activation of

TAK1. TAK1 is able to stimulate two main pathways: the IKK–NF-kB pathway

and the mitogen-activated/stress-activated protein kinase (MAPK/SAPK) pathway

(Frobose et al. 2006). In addition to TAK1, MEKK1 seems to participate in the

activation of both NF-kB and SAPK in b-cells (Mokhtari et al. 2008). Phosphory-

lation of I-kB, a cytosolic inhibitor of NF-kB, by IKK leads to I-kB degradation and

NF-kB translocation to the nucleus, thus regulating the transcription of many target

genes, such as iNOS expression and NO production, a toxic reactive radical.

Consistently, interfering with NF-kB activation decreases IL-1b-induced b-cell
death (Giannoukakis et al. 2000; Kim et al. 2007).

IL-1b can also activate protein kinase C delta, which leads to b-cell apoptosis
presumably through iNOS expression (Carpenter et al. 2001, 2002). Notably, IL-1b
induces Fas expression on b-cells (Augstein et al. 2003; Stassi et al. 1995),

increasing their sensitivity to FasL and accelerating apoptosis via cleavage of

downstream caspases [see Fig. 2 and reviewed in Donath et al. (2003)]. A distal

consequence of IL-1b signaling in b-cells is the induction of endoplasmic reticulum

(ER) stress. IL-1b depletes ER Ca2+, leading to ER stress and induction of several

ER stress markers including CHOP. The induction of ER stress by IL-1b can be

prevented by inhibition of iNOS, suggesting that NO mediates ER stress (Cardozo

et al. 2005). This is consistent with the notion that a chemical NO donor causes ER

Ca2+ depletion and ER stress (Oyadomari et al. 2002). What is currently unclear is

the importance of ER stress in IL-1b-induced b-cell impairment. Studies addressing

the role of ER stress-induced CHOP so far indicate that ER stress and CHOP do not

contribute to cytokine-induced b-cell death (Akerfeldt et al. 2008). Thus, while

there is little doubt that ER stress is induced in b-cells by IL-1b, it is uncertain

whether ER stress contributes to apoptosis or whether it may simply be a secondary

effect and thus only plays a minor role, if any, in IL-1b-mediated apoptosis.

The MAPK/SAPK pathways consist of ERK1/2, p38, and JNK1/2, all of which

are activated by IL-1b in b-cells (Larsen et al. 1998; Welsh 1996). Using both

pharmacological and molecular inhibitor approaches, NF-kB, ERK1/2, p38, and
JNK1/2 have been demonstrated to be involved in IL-1b-induced b-cell apoptosis
(Abdelli et al. 2007; Bonny et al. 2001; Larsen et al. 1998; Pavlovic et al. 2000;

Saldeen et al. 2001).
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Another target of IL-1b signaling in b-cells is the survival kinase pathway

PI3K–Akt. IL-1b reduces both PI3K (Emanuelli et al. 2004) and Akt (Storling

et al. 2005) activation. Since Akt is a negative regulator of JNK/SAPK in b-cells
(Aikin et al. 2004), reduced Akt signaling may allow increased and sustained

proapoptotic JNK activation.

In general, signal transduction initiated by a ligand binding to membrane

receptors leads to activation or induction of negative feedback mechanisms to

ensure only transient signaling. This is also true for signal transduction evoked by

proinflammatory cytokines such as IL-1b. IL-1b induces expression of SOCS-3 in

b-cells (Emanuelli et al. 2004; Karlsen et al. 2001). SOCS-3 is a member of a family

of proteins that function to terminate cytokine signaling, thereby constituting a

negative feedback loop (Ronn et al. 2007). Although IL-1b induces SOCS-3

expression in b-cells, this induction seems to be insufficient to completely terminate

IL-1b signal transduction, since prolonged NF-kB and MAPK/SAPK signaling is

observed in b-cells exposed to IL-1b (Aikin et al. 2004; Larsen et al. 1998; Ortis

et al. 2006). Putatively, either the amount of SOCS-3 induced by IL-1b in b-cells is
too low to effectively block signaling or the kinetics of SOCS-3 induction by IL-1b
may be abnormally slow in b-cells. In any case, forced SOCS-3 overexpression

effectively inhibits IL-1b signaling at the level of TRAF6, leading to dampening of

both the NF-kB and MAPK/SAPK pathways, thus protecting against apoptosis

(Frobose et al. 2006; Ronn et al. 2008). Interestingly, IL-1b-induced endogenous

SOCS-3 targets insulin signaling in the b-cell by associating with the insulin

Fig. 2 Mechanisms of IL-1b signaling in the b-cell. Details are described in the text [adapted

from Maedler et al. (2009)]
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receptor (IR), thereby preventing activation of IRS and PI3K (Emanuelli et al.

2004). By this mechanism, SOCS-3 induction is likely to contribute to IL-1b-
induced desensitization of insulin signaling, which is important for optimal b-cell
function. One may speculate whether IL-1b-induced SOCS-3 expression is prefer-

entially directed toward IR signals while leaving the IL-1b signaling cascade

unaffected. The IL-1b signaling pathways are shown in Fig. 2.

4 IL-1b Secretion

The primary sources of IL-1b are blood monocytes, tissue macrophages, and

dendritic cells. B lymphocytes and NK cells also produce IL-1b (Dinarello 2009).

The release of the leaderless cytokine, IL-1b, cannot be initiated through the Golgi

apparatus. Inactive pro-IL-1b precursor accumulates in the cytosol and is processed

by caspase-1 (also named Interleukin-converting enzyme, ICE) into the mature

secreted IL-1b. The maturation occurs in a large multiprotein complex. ATP activates

the P2X7 receptor, which forms a pore in response to ligand stimulation and regulates

cell permeability and cytokine release (Narcisse et al. 2005).

Resident islet macrophages are fundamental in the development of autoimmune

diabetes (Arnush et al. 1998; Lacy 1994) and it is postulated that IL-1b secreted

from such intra-islet macrophages results in b-cell destruction (Arnush et al. 1998).
Recent studies show that the b-cells themselves are able to secrete IL-1b, which is

induced by double-stranded RNA, a mechanism by which viral infection may

mediate b-cell damage (Heitmeier et al. 2001) by elevated glucose concentrations

(Boni-Schnetzler et al. 2008; Maedler et al. 2002) and by free fatty acids (Boni-

Schnetzler et al. 2009).

A recent study shows that glucose-induced IL-1b secretion involves Caspase-1

activation mediated by the NALP3 inflammasome. The inflammasone is activated

by bacterial toxins and endogenous stress signals (e.g., ATP and b-amyloid)

through the formation of reactive oxygen species (Schroder et al. 2010; Zhou

et al. 2009). Glucose-induced IL-1b secretion is prevented in NALP3�/� mice,

indicating that IL-1b is generated through glucose-induced ROS production and

oxidative stress (Zhou et al. 2009). The thioredoxin (TRX)-interacting protein

(TXNIP), which has been linked to insulin resistance (Parikh et al. 2007), functions

as an activator of NALP3. In line with this data, another recent study shows that

TXNIP is highly increased by elevated glucose in b-cells and that TXNIP-deficient
islets are protected against glucose toxicity (Chen et al. 2009).

Despite the high expression of IL-1R1 in b-cells, expression of the NALP3

inflammasone components NALP3, ASC, and Caspase-1 show relatively low

expression levels (Zhou et al. 2009), which may explain the modest release of

IL-1b from islets.

Upregulation of the Fas receptor plays a central role in the mediation of b-cell
death (Cnop et al. 2005; Donath et al. 2005). IL-1b rapidly induces Fas upregula-

tion, whereas glucose only induces Fas in chronic conditions (Elouil et al. 2005).
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The dual role of glucose on b-cell turnover is illustrated in Fig. 3. While glucose

promotes insulin secretion and b-cell survival in the short term, chronic

glucose induces Fas upregulation, IL-1b secretion, which leads downstream to

caspase cleavage, b-cell death, and loss of insulin secretion.

In two animal models, Psammomys obesus and Goto-Kakizaki (GK) rat, pancre-
atic b-cells express IL-1b under hyperglycemic conditions (Maedler et al. 2002;

Mine et al. 2004). In P. obesus, normalizing hyperglycemia with phlorizin, an

inhibitor of the renal tubular glucose reuptake, inhibited intra-islet IL-1b expression

(Maedler et al. 2002). In contrast, Jorns et al. found no IL-1b expression within the

islets (Jorns et al. 2006). IL-1b production by islet cells was confirmed in several

studies (Boni-Schnetzler et al. 2008; Venieratos et al. 2010; Welsh et al. 2005; Zhou

et al. 2009). While glucose-induced IL-1b mRNA production was not found in

human islets that had been preincubated in suspension for 3–5 days (Welsh et al.

2005), Boni-Schnetzler et al. show that glucose response in islets is negatively

correlated with basal IL-1b expression levels (Boni-Schnetzler et al. 2008). These

studies show that IL-b may also mediate b-cell destruction in Type 2 diabetes

[T2DM, reviewed in Donath et al. (2005)]. It is tempting to suggest IL-1b as a target

for the treatment of diabetes. However, whether changes in circulating cytokines

are physiologically relevant in the face of locally produced inflammatory mediators

remains unknown.

5 Blocking IL-1b Signals Protects the b-Cell

As described above, IL-1b has been shown to impair insulin release, to induce

Fas expression, thus enabling Fas-triggered apoptosis in rodent and human islets

(Corbett et al. 1993; Giannoukakis et al. 1999, 2000; Loweth et al. 1998, 2000;

Maedler et al. 2001; Mandrup-Poulsen et al. 1985, 1986, 1993; Rabinovitch et al.

Apoptosis

Impaired
function

Glucose Diabetes

b-Cells Fas
FasL Caspase8/3

activation

Glucose
IL-1b

IL-1Ra
NALP3

ROS Inflamma-
some

Caspase 1
pro-IL-1β

TXNIP

Fig. 3 Dual role of glucose on b-cell turnover. Stimulation of b-cells with glucose induces insulin
secretion and b-cell proliferation. In contrast, chronic glucose exposure leads to upregulation of

the Fas receptor and ligation with FasL to caspase activation, apoptosis, and impaired function,

which contributes to b-cell failure in diabetes. Under such conditions, IL-1b is produced and

secreted by the b-cell. This is mediated through ROS-induced induction of the NALP3 inflamma-

some, which activates Caspase-1 and maturation of active IL-1b from pro-IL-1b. Preincubation of
the islets with the naturally occurring IL-1 antagonist interleukin-1 receptor antagonist (IL-1Ra)

inhibits glucose-induced apoptosis and improves b-cell function and could therefore be a valuable
tool for diabetes therapy
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1990; Stassi et al. 1997), and to share similarities with glucose-induced apoptosis

(see Fig. 3). In parallel to the essential role of glucose in mediating insulin secretion

and proliferation, a low concentration of IL-1b also stimulates insulin release and

proliferation in rat and human islets (Maedler et al. 2006; Schumann et al. 2005;

Spinas et al. 1986, 1987, 1988). The beneficial IL-1b effects seem to be partly

mediated by the increased secretion of the naturally occurring anti-inflammatory

cytokine and antagonist of IL-1a and IL-1b, the interleukin-1 receptor antagonist

(IL-1Ra). Since it was discovered in 1987 (Dinarello 2000; Seckinger et al. 1987a, b),

four forms of IL-1Ra have been described, of which three are intracellular proteins

(icIL-1Ra I, II and III) and one is secreted (sIL-1Ra) (Arend and Guthridge 2000).

Similar to IL-1b, IL-1Ra binds to type 1 and 2 IL-1 receptors but lacks a second

binding domain. Therefore, IL-1Ra does not recruit the IL-1 receptor accessory

protein, the second component of the receptor complex.

Endogenous production and secretion of IL-1Ra limits inflammation and

tissue damage (Dinarello 2009). In vivo, exogenous IL-1Ra counteracts low-dose

streptozotocin-induced diabetes (Sandberg et al. 1994) and autoimmune diabetes

(Nicoletti et al. 1994) and promotes graft survival (Nicoletti et al. 1994; Sandberg

et al. 1997; Stoffels et al. 2002; Tellez et al. 2007) and islet survival after transplan-

tation (Satoh et al. 2007).

We have recently shown that IL-1Ra is secreted from the b-cell and expressed

in b-cell granules (Maedler et al. 2004). IL-1Ra protects cultured human islets

from the deleterious effects of glucose (Maedler et al. 2002) as well as IL-1b
(Mandrup-Poulsen et al. 1993; Sandberg et al. 1997, 1993; Stoffels et al. 2002;

Tellez et al. 2005). Inhibition of IL-1Ra with small interfering RNAs or long-term

treatment with leptin leads to b-cell apoptosis and impaired function, which may

provide a further link between obesity and diabetes.

The definite secretion and regulation mechanisms of IL-1Ra are unknown.

Like IL-1b, IL-1Ra may also be secreted by a leaderless pathway via activation

of the P2X7 receptor ( Glas et al. 2009; Wilson et al. 2004). In pancreatic islets

from obese individuals, P2X7 receptors are highly expressed and these receptors

were almost undetectable in T2DM (Glas et al. 2009). In accordance with the

P2X7 receptor expression levels, increased IL-1Ra serum levels correlate with

obesity and insulin resistance (Abbatecola et al. 2004; Meier et al. 2002;

Ruotsalainen et al. 2006; Salmenniemi et al. 2004), but IL-1Ra is decreased in

T2DM (Marculescu et al. 2002). Recent results from the Whitehall Study show

that IL-1Ra levels are increased before the onset of T2DM (Herder et al. 2008),

which are consistent with findings in mice fed with a high fat/high sucrose diet

(HFD). IL-1Ra levels were increased after 4 and 8 weeks of diet together with an

increase in b-cell mass and body weight. Serum concentrations of IL-1Ra are

influenced by adipose tissue, which is a major source of IL-1Ra (Juge-Aubry

et al. 2003). After 16 weeks, when the HFD-fed mice displayed glucose intoler-

ance and b-cell apoptosis, IL-1Ra levels were lower than in the normal diet-fed

mice. Mice deficient for the P2X7 receptor were unable to compensatorily

increase b-cell mass in response to the HFD feeding and had no adaptive

increase in IL-1Ra levels (Glas et al. 2009).
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The increased IL-1Ra could be an attempt of the body to counteract the deleteri-

ous effects of IL-1b and to preserve b-cell survival, insulin secretion, and insulin

sensitivity. It is hypothesized that IL-1Ra could have an additional metabolic effect

that leads to insulin resistance. However, when we treated mice daily for 12 weeks

with IL-1Ra, we did not observe changes in insulin sensitivity at any time point

(Sauter et al. 2008).

Whether serum IL-1Ra levels would explain the progression of diabetes in obese

individuals and whether serum IL-1Ra affects IL-1Ra expression in the b-cell is not
known. We hypothesize that a decreased b-cell IL-1Ra expression could trigger the
progression from obesity to diabetes and high IL-1Ra expression could possibly

protect the b-cell and enable it to adapt to conditions of higher insulin demand; this

is illustrated in the cartoon shown in Fig. 4.

5.1 Lessons from IL-1 Mouse Models

Having shown the deleterious effects of IL-1b on the b-cell, one would hypothesize
that the IL-1b-knockout mouse would be the ideal model for improved b-cell
survival and function. Conversely, IL-1b-KO mice show impaired glucose toler-

ance, decreased b-cell mass, and decreased expression of b-cell transcription

factors (e.g., PDX-1 and Pax-4) (Maedler et al. 2006), indicating that IL-1b has a

dual role in the b-cell and activated pathways, e.g., FLIP, Fas, and NF-kB might be

needed for insulin secretion and survival (Maedler et al. 2006; Liadis et al. 2007;

Schumann et al. 2007). In line with these data, Caspase-8-knockout (Liadis et al.

2007) and Fas-deficient mice (Schumann et al. 2007) show impaired glucose

Obesity Insulin Resistance

normoglycemia
1

2

Impaired fasting glucose

Insulin secretion
b-cell mass

β-cell-
compensation

Type 2
Diabetes 

anti-inflammatory therapy (IL-1Ra/ IL-1b Ab)3

hyperglycemia

pro-inflammatory (IL-1b)

anti-inflammatory (IL-1Ra)

pro-inflammatory (IL-1b)

anti-inflammatory (IL-1Ra) Insulin secretion
b-cell mass

Fig. 4 Our hypothetical model illustrating the consequence of obesity on the development of

Type 2 diabetes. (1) When IL-1Ra is highly expressed in the b-cell and the IL-1Ra/IL-1b balance

is toward the protective IL-1Ra, b-cell mass and insulin secretion increase. The b-cell is able to

adapt to a situation of higher insulin demand. (2) On the other hand, decreased b-cell expression of
IL-1Ra, together with hyperglycemia-induced b-cell production of IL-1b, shifts the balance

toward the proapoptotic IL-1b, leading to decreased b-cell mass, impaired b-cell function, and
increased b-cell apoptosis. Glucose levels can no longer be regulated. This results in a vicious

cycle and Type 2 diabetes develops. (3) But overexpression of IL-1Ra could reverse the process

and protect from hyperglycemia-induced b-cell apoptosis [adapted from Maedler et al. (2009)]
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tolerance. NF-kB is for a long time known to be responsible for IL-1b-induced b-
cell destruction (Flodstrom et al. 1996). In contrast, NF-kB also induces activation

of the antiapoptotic gene A20, which protects against cell death (Liuwantara et al.

2006) and promotes insulin secretion (Hammar et al. 2004). b-Cell-specific NF-kB
depletion accelerates diabetes in the NOD mouse (Kim et al. 2007).

Despite their basally impaired glucose tolerance, IL-1b-KO mice are protected

against the diabetogenic effects of the HFD as well as against glucotoxicity

(Maedler et al. 2006), which supports the concept that IL-b mediates nutrient-

induced b-cell dysfunction during the development of T2DM.

In NOD mice, IL-1R deficiency slows but does not prevent diabetes progression

(Thomas et al. 2004), and caspase-1 (interleukin-converting enzyme) deficiency

has no effect on diabetes progression (Schott et al. 2004), although both IL-1R

subtype 1 and caspase-1 are highly expressed in islets from wild-type NOD mice

(Jafarian-Tehrani et al. 1995). It is possible that pathways other than IL-1b signals

are involved in diabetes in NOD mice since it was shown that IL-10 promotes

diabetes in NOD mice independent of Fas, perforin, TNFR 1, and TNFR 2 (Balasa

et al. 2000).

5.2 Blocking IL-1b Signals In Vivo Inhibits Diabetes Progression

Recently, the hypothesis that blocking IL-1b as a successful strategy for the therapy

of T2DM has been proved by several studies. Daily injection of IL-1Ra in mice fed

an HFD improved glycemia, glucose-stimulated insulin secretion, and survival

(Sauter et al. 2008), reduced hyperglycaemia, and reversed the islet inflammatory

phenotype in the GK rat (Ehses et al. 2008). Treatment with an IL-1b antibody also

improved glycemic control in diet-induced obesity in mice (Owyang et al. 2010;

Osborn et al. 2008).

Importantly, results from a recent clinical study in patients with T2DM showed

that IL-1Ra improved glycemic control and b-cell function (Larsen et al. 2007).

After 13 weeks of treatment, C-peptide secretion was increased and inflammatory

markers, e.g., interleukin-6 and C-reactive protein were reduced in the IL-1Ra

group. HbA1c was significantly lower in the IL-1Ra compared to the placebo

group, which correlated with the body surface area in the IL-1Ra group. The dose

of 100 mg IL-1Ra was given daily to the patients without weight adjustment.

Currently, ongoing trials that include dose adjustment to the body weight may

result in better glycemic control in the higher body surface area group. The effect of

interleukin-1 antagonism on b-cell function is currently tested in patients with

recent onset of T1DM (Pickersgill and Mandrup-Poulsen 2009). Both IL-1Ra

and anti-IL-1b antibody Xoma 052 do not completely block IL-1b signaling.

While IL-1Ra is a competitive antagonist to IL-1b, XOMA 052 has a novel

mechanism of action that reduces IL-1b activity by 40- to 50-fold rather than

completely blocking it (Donath et al. 2008; Owyang et al. 2010). Given the dual
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role of IL-1b on b-cell survival and insulin secretion, this may be an important

characteristic of both drugs.

As shown by these recent studies, blocking IL-1b signaling may be a powerful

new treatment for T2DM, which does not rely on replacing insulin exogenously but

acts at the level of the b-cell to improve b-cell survival and to improve endogenous

insulin secretion and action. Moreover, blocking IL-1b may also improve insulin

sensitivity. Further studies will be necessary to clarify the contradiction of IL-1Ra’s

modulation of insulin sensitivity and the impact of IL-b on b-cell survival in

T2DM.
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Abstract Fructose-1,6-bisphosphatase (FBPase), a rate-controlling enzyme of

gluconeogenesis, has emerged as an important target for the treatment of type

2 diabetes due to the well-recognized role of excessive endogenous glucose pro-

duction (EGP) in the hyperglycemia characteristic of the disease. Inhibitors of
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FBPase are expected to fulfill an unmet medical need because the majority of

current antidiabetic medications act primarily on insulin resistance or insulin

insufficiency and do not reduce gluconeogenesis effectively or in a direct manner.

Despite significant challenges, potent and selective inhibitors of FBPase targeting

the allosteric site of the enzyme were identified by means of a structure-guided

design strategy that used the natural inhibitor, adenosine monophosphate (AMP), as

the starting point. Oral delivery of these anionic FBPase inhibitors was enabled by a

novel diamide prodrug class. Treatment of diabetic rodents with CS-917, the best

characterized of these prodrugs, resulted in a reduced rate of gluconeogenesis and

EGP. Of note, inhibition of gluconeogenesis by CS-917 led to the amelioration

of both fasting and postprandial hyperglycemia without weight gain, incidence of

hypoglycemia, or major perturbation of lactate or lipid homeostasis. Furthermore,

the combination of CS-917 with representatives of the insulin sensitizer or insulin

secretagogue drug classes provided enhanced glycemic control. Subsequent clinical

evaluations of CS-917 revealed a favorable safety profile as well as clinically

meaningful reductions in fasting glucose levels in patients with T2DM. Future

trials of MB07803, a second generation FBPase inhibitor with improved pharma-

cokinetics, will address whether this novel class of antidiabetic agents can provide

safe and long-term glycemic control.

Keywords AMP mimetic � Antihyperglycemic agent � Endogenous glucose

production � Fructose-1,6-bisphosphatase � Gluconeogenesis � Type 2 diabetes

1 Introduction

Type 2 diabetes (T2DM), a disease that afflicts over 180 million people worldwide, is

characterized by insulin insufficiency, insulin resistance, and increased endogenous

glucose production (EGP). These three abnormalities cause high plasma glucose

levels (hyperglycemia), which in turn cause diabetic complications such as loss

of vision, renal impairment, and heart disease, in patients. The majority of current

antidiabetic drugs (e.g., insulin sensitizers, sulfonylureas, DPP-IV inhibitors) reduce

glucose levels by improving peripheral insulin resistance and/or augmenting insulin

secretion. Metformin is the only prescribed drug whose primary mechanism of action

is the reduction, albeit indirect, of EGP (Hundal et al. 2000). Because most patients

with T2DM fail to achieve recommended treatment goals, there is a need for novel,

more effective drugs that act alone or in combination with other antidiabetic agents.

Direct inhibitors of EGP represent a drug class that could potentially provide glycemic

control across a broad patient population and combine effectively with approved

antidiabetic drugs. Hence, the discovery of inhibitors of glycogenolysis and gluco-

neogenesis has been pursued actively by the pharmaceutical industry.

In this chapter, the physiological rationale for developing inhibitors of the gluco-

neogenic enzyme fructose-1, 6-bisphosphatase (FBPase) for the treatment of T2DM

is described. In addition, the challenges associated with the discovery of inhibitors
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binding to the allosteric site of FBPase are discussed. Special attention is given to a

structure-based design strategy that ultimately led to the discovery of the first potent,

selective and orally active FBPase inhibitors. Finally, the preclinical proof-of-concept

studies that provided the impetus for the clinical development of the first FBPase

inhibitors are summarized as well as the initial clinical profile of these inhibitors.

2 Endogenous Glucose Production in Type 2 Diabetes

The liver is the primary organ responsible for EGP. Glucose is produced by the liver

by two pathways: gluconeogenesis (the de novo synthesis of glucose from lactate,

alanine and glycerol) and glycogenolysis (the breakdown of glycogen stored in

the liver). In healthy individuals, gluconeogenesis accounts for ~ 50% of EGP after

an overnight fast and increases progressively to account for over 90% of EGP

following 40 h of fasting (Landau et al. 1996; Rothman et al. 1991). The contri-

bution of glycogenolysis to EGP declines reciprocally during fasting periods,

reaching a negligible contribution by ~96 h. During the postprandial period, EGP

is suppressed by rapid and near complete inhibition of glycogenolysis and slower

and more modest inhibition (30–50% within 4 h) of gluconeogenesis (Gastaldelli

et al. 2001).

In lean and obese patients with T2DM, the rate of EGP in the fasted state is

increased relative to that of healthy individuals (Gastaldelli et al. 2000; Magnusson

et al. 1992). Increased EGP during fasting is due solely to increased gluco-

neogenesis; glycogenolytic rates are either unchanged or slightly reduced in

patients with T2DM (Magnusson et al. 1992; Wajngot et al. 2001). The significance

of increased gluconeogenesis in T2DM is apparent from the strong correlation

between the rate of EGP and fasting hyperglycemia: for each incremental increase

in EGP, there is a corresponding increase in the fasting glucose levels (Jeng et al.

1994; Maggs et al. 1998). Insulin resistance, in contrast, correlates poorly with the

degree of fasting hyperglycemia (Olefsky 1993). During the postprandial period,

glycogenolysis and gluconeogenesis are poorly suppressed in patients with T2DM

(Cherrington 1999; Gastaldelli et al. 2001). In contrast to fasting hyperglycemia,

factors other than increased glucose production (e.g., impaired glucose disposal)

play a quantitatively important role in the etiology of postprandial hyperglycemia.

The main cause of excessive EGP in T2DM is an imbalance in the actions of

glucoregulatory hormones at the level of both hepatic and extrahepatic tissues.

In healthy individuals, a balance between insulin and glucagon secretion by the

pancreas ensures an appropriate rate of glucose production by the liver (Cherrington

1999; Leroith et al. 1996). Insulin inhibits glycogenolysis, stimulates glycogen

synthesis, reduces gluconeogenesis, and increases glycolytic metabolism of glu-

cose. These actions, which promote glucose storage and utilization in liver, are

opposed by glucagon. In patients with T2DM, a combination of insulin deficiency,

relative glucagon excess, and hepatic insulin resistance switches the liver to

a sustained glucose output mode. Insulin deficiency and insulin resistance in
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extrahepatic tissues further promote hepatic glucose production by inducing

a catabolic state that increases the availability of substrates. In adipose tissue,

uncontrolled lipolysis leads to increased supply of glycerol, a gluconeogenic

substrate, and of free fatty acids, which can serve as a source of energy for

gluconeogenesis. In muscle tissue, increased protein catabolism results in increased

supply of gluconeogenic amino acids such as alanine. Elevated EGP accelerates a

self-perpetuating Cori cycle by which glucose produced by the liver is converted to

lactate in extrahepatic tissues, which in turn fuels EGP.

In light of the above, therapies that reduce EGP are expected to have consider-

able therapeutic potential for the treatment of T2DM. The strongest rationale exists

for inhibitors of gluconeogenesis rather than inhibitors of glycogenolysis, because

gluconeogenesis rates are increased in T2DM and contribute to hyperglycemia in

both the fasted and postprandial states. Inhibition of gluconeogenesis, or EGP

in general, would not be expected to directly improve other underlying causes of

T2DM such as insulin resistance and insulin deficiency. However, with long-term

control of EGP by inhibition of gluconeogenesis improved glycemic control could

reduce glucotoxicity and consequently increase insulin sensitivity and pancreatic

function. Furthermore, inhibitors of gluconeogenesis may complement the activity

of current antidiabetic agents acting on the pancreas (e.g., sulfonylureas, DPP-IV

inhibitors) or the periphery (insulin sensitizers). Combination therapy with these

agents could provide exceptional therapeutic benefits by targeting all three abnorm-

alities of the diabetic phenotype: insulin secretion, insulin resistance, and excessive

gluconeogenesis.

3 Enzyme targets in the Gluconeogenic Pathways

Glucose is produced from 3-carbon substrates such as lactate by a series of reactions

catalyzed by twelve different enzymes. The majority of the enzymes of gluconeo-

genesis also catalyze the reverse reactions involved in glycolysis, but there are four

unidirectional enzymes, which together with their glycolytic counterparts, form the

so-called substrate cycles of the pathway: pyruvate carboxylase (PC) and phospho-

enolpyruvate carboxykinase (PEPCK) (lower cycle), FBPase (middle cycle), and

glucose 6-phosphatase (G-6-Pase) (upper cycle). The latter three enzymes form the

major control points in gluconeogenesis (Fig. 1) and have all been targets of drug

discovery efforts.

There are significant mechanistic concerns with inhibitors of PEPCK and G-6-

Pase. Genetic knockout of PEPCK, the gluconeogenic enzyme proximal to the early

mitochondrial steps of the pathway, revealed multiple potential side effects includ-

ing increased mitochondrial redox state, inhibition of the tricarboxylic acid cycle,

and a reduction in b-oxidation of fats, leading to hepatic steatosis (Burgess et al.

2004). Another limitation of PEPCK as a drug target is that its inhibition does not

inhibit EGP from glycerol, a substrate with increased abundance that contributes

significantly to glucose production in T2DM. Inhibition of the G-6-Pase step in the
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uppermost substrate cycle is also problematic. G-6-Pase catalyzes the final step

common to glucose production by gluconeogenesis as well as glycogenolysis.

Simultaneous inhibition of the only two mechanisms of EGP represents a consider-

able risk for hypoglycemia. None of the PEPCK or G-6-Pase inhibitors identified

(Foley et al. 2003; Parker et al. 1998) has progressed beyond initial biological

characterization.

FBPase, the gluconeogenic enzyme in the middle substrate cycle (Fig. 1),

represents a logical target for pharmacological intervention. As the second-to-last

enzyme in gluconeogenesis, FBPase controls the incorporation of all 3-carbon

substrates into glucose. Furthermore, the FBPase step is not involved in the

breakdown of glycogen and is well removed from the mitochondrial steps of the

pathway, theoretically reducing the risk of hypoglycemia and other mechanistic

toxicities. An adequate safety margin with respect to hypoglycemia and other

theoretical safety concerns such as lacticemia (due to reduced clearance of lactate

by gluconeogenesis) and hyperlipidemia (due to shunting of gluconeogenic

precursors into lipids) is suggested by the clinical profile of adults with FBPase

deficiency (Gitzelmann et al. 1995). FBPase deficiency is a rare autosomal reces-

sive genetic disorder characterized by complete absence of detectable FBPase

activity. In adulthood, individuals with FBPase deficiency have near-normal bio-

chemical and clinical parameters, provided they maintain an appropriate diet and
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Fig. 1 Substrate cycles in the pathway of gluconeogenesis. Abbreviations: fructose-1,6-bispho-

sphatase, FBPase; fructose-1,6-bisphosphate, F-1,6-BP; fructose-6-phosphate, F-6-P; glucokinase,

GK; glucose-6-phosphatase, G-6-Pase; glucose-6-phosphate, G-6-P, oxaloacetate, OAA; 1-type

pyruvate kinase, PK; phosphoenolpyruvate carboxykinase, PEPCK; pyruvate, PYR; 6-phospho-

fructokinase, PFK. Note that the conversion of pyruvate to oxaloacetate is catalyzed by a

mitochondrial enzyme, pyruvate carboxylase. All other enzymes are cytosolic activities. The

regulation of PFK and FBPase by the natural effectors adenosine monophosphate (AMP) and

fructose-2,6-bisphosphate (F-2,6-BP) is indicated
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avoid prolonged fasting. An additional rationale for targeting FBPase is that its

expression and activity are increased in diabetic animal models such as db/db and

NZO mice (Kodama et al. 1994; Andrikopoulos et al. 1996). Furthermore, over-

expression of human FBPase alone, at least in normal mice, leads to increased

gluconeogenesis from glycerol (Lamont et al. 2006), a substrate that enters the

pathway just prior to the FBPase step (Fig. 1). These transgenic mice also develop

glucose intolerance when fed a high-fat diet (Visinoni et al. 2008), providing

additional evidence that increased FBPase activity can contribute to the diabetic

phenotype.

4 Structure and function of FBPase

FBPase catalyzes the magnesium-dependent hydrolysis of fructose 1,6-bispho-

sphate (F1, 6BP) to fructose 6-phosphate and inorganic phosphate. The enzyme is

cytosolic and exists as a tetramer consisting of four identical subunits (36.7 kD),

each containing a substrate-binding site, a magnesium-binding site (within the

substrate site), and an allosteric regulatory site within 28 Å
´
of the active site

(DZugaj and Kochman 1980; El-Maghrabi et al. 1993). Two genes encode FBPase

in mammals: a liver FBPase (FBPI), which is expressed primarily in liver and

kidney, and a muscle FBPase (FBP2), which is found exclusively in muscle tissue

(Skalecki et al. 1995; Tillmann et al. 2002). The two enzymes show ~77% identity at

the amino acid level and have almost complete identity in regions of the enzyme

involved in the binding of substrate, regulatory molecules, and magnesium. Because

muscle tissue lacks glucose-6-phosphatase activity and is consequently nongluco-

neogenic, the physiological role of muscle FBPase is unclear. It has been suggested

that muscle FBPase may be important for glycogenesis from substrates such as

lactate. The liver form of FBPase has a critical role in maintaining blood glucose

levels both in liver, the predominant source of de novo synthesized glucose, and the

kidney, a relatively minor source of de novo synthesized glucose except during

periods of extreme fasting and, reportedly, in the diabetic state (Gerich et al. 2001).

The regulation of liver FBPase has been investigated in detail. Enzyme activity

is regulated synergistically by fructose 2,6-bisphosphate (F-2, 6-BP), an inhibitor

that binds to the substrate site, and adenosine monophosphate (AMP), an inhibitor

that binds to the allosteric site (Gidh-Jain et al. 1994; van Schaftingen and Hers

1981). As deduced from crystallographic studies of the porcine and human liver

enzymes, AMP stabilizes an inactive conformation of the enzyme, the T state, while

the substrate of FBPase, F1, 6BP, is dephosphorylated only by the active or R state

(Ke et al. 1991). The binding of AMP at the allosteric site has been postulated to

inhibit the catalytic activity of FBPase by distorting the magnesium-binding site.

Since intracellular AMP levels are generally maintained within a narrow range, it is

believed that F-2, 6-BP is the major physiological regulator of FBPase. Binding of

F-2, 6-BP at the substrate site results in a leftward shift in the inhibition curve for

AMP. Intracellular levels of F-2, 6-BP are controlled by a bifunctional enzyme,
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6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase, in such a way that F-2,

6-BP levels are decreased and FBPase activity increased during times of glucose

demand (Pilkis 1991). The bifunctional enzyme is under hormonal control by gluca-

gon and insulin. Glucagon increases intracellular cAMP levels which in turn

stimulate protein kinase A. Phosphorylation of the bifunctional enzyme by protein

kinase A inhibits its kinase activity and stimulates its phosphatase activity, thereby

reducing the intracellular levels of F-2, 6-BP. Insulin modulates the effects of

glucagon on the activity of the bifunctional enzyme by suppressing the glucagon-

induced rise of cAMP. Additional regulation of FBPase is exerted at the genetic

level by insulin and glucagon: the expression of the FBPase gene is dependent upon

cAMP levels (El-Maghrabi et al. 1991) and, accordingly, the insulin-to-glucagon

ratio. The decreased insulin-to-glucagon ratio associated with T2DM likely accounts

for the increased expression of FBPase observed in various diabetic animal models.

5 Discovery of inhibitors of FBPase

5.1 Competitive and Uncompetitive Inhibitors

Three classes of inhibitors have been reported: those interacting with the substrate

site (competitive inhibitors), a site at the subunit interface (uncompetitive), and the

AMP site (noncompetitive). The lack of progress in the discovery of potent and

selective competitive inhibitors (Pilkis et al. 1986) is likely a reflection of the highly

charged nature of the substrate-binding site and the difficulty of designing suitable

carbohydrate phosphate mimetics that can bind with high affinity and compete with

the elevated fructose-1, 6-bisphosphate levels that result from the inhibition of

FBPase. The discovery of modestly potent uncompetitive inhibitors that bind to a

hydrophobic region on the subunit interface of FBPase have also been reported

(Choe et al. 2003; Rosini et al. 2006; Wright et al. 2001, 2002). These inhibitors

may lack favorable pharmacokinetic properties or have other shortcomings as no

data beyond in vitro enzyme inhibition have been described. Competitive and

uncompetitive inhibitors will not be discussed further in this chapter.

5.2 Noncompetitive Inhibitors; ZMP

One of the first noncompetitive inhibitors of FBPase identified was 5-Amino-

4-imidazolecarboxamide riboside (AICAr) monophosphate (ZMP; Fig. 2), a close

analog of AMP (Fig. 2), which has gained widespread use as a tool compound for

the study of another antidiabetic target, AMP-activated protein kinase (AMPK).

ZMP was discovered serendipitously following observations of glucose lowering in

animals and is a relatively weak inhibitor of the rat and human FBPase isoforms

with IC50 values of 370 and 12 mM, respectively (Erion et al. 2005; Vincent
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et al. 1991). The potent inhibition of gluconeogenesis by AICAr is attributed to its

rapid phosphorylation by adenosine kinase in hepatocytes to yield high levels of

ZMP. ZMP has poor selectivity for FBPase and, in addition to activating AMPK

(EC50 110 mM), modulates the activities of 6-phosphofructo-2-kinase and glycogen

phosphorylase (Vincent et al. 1991, 1992; Henin et al. 1996). Although glucose
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residues in the allosteric-binding pocket are indicated. ZMP is a close structural analog of AMP;

CS-917 is an orally bioavailable prodrug of the potent and selective AMP mimetic, MB05032;

MB07803 is a second generation compound of the FBPase inhibitor class
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lowering by AICAr in acute and chronic studies in rodents (Pold et al. 2005;

Vincent et al. 1996) can be attributed in part to inhibition of FBPase, the poor

selectivity of ZMP limits the extent to which the findings validate FBPase as an

antidiabetic target or accurately reflect the metabolic side effects associated with

FBPase inhibition.

5.3 Noncompetitive Inhibitors; Design of MB05032

High throughput screening of compound libraries as well as structure-based design

has been employed to identify noncompetitive inhibitors of FBPase. Although the

high-throughput screening efforts led to the identification of inhibitors with a

noncompetitive mode of action in vitro (von Geldern et al. 2006; Wright et al.

2003), none of these compounds have been reported to lower blood glucose in vivo.

A structure-based drug design strategy using AMP as the starting point, however,

yielded the first selective noncompetitive inhibitors of FBPase with potent in vivo

activity (Erion et al. 2005). One of the main design hurdles in this structure-based

strategy was the achievement of sufficient binding affinity within the largely

hydrophilic AMP site in which the majority of interactions are with the phosphate

group of AMP (Fig. 2; Reddy and Erion 2005). Use of a phosphate group in the

inhibitor scaffold was ruled out due to metabolic instability; phosphates are readily

cleaved by phosphatases in vivo. Replacement of the phosphate group of AMP with

mimetics such as a carboxylate or phosphonate group resulted in a>1,000-fold loss

in potency due to the inability of the mimetics to make the precise and full

complement of interactions required to achieve binding affinity within the phos-

phate-binding pocket (Reddy and Erion 2007). A critical breakthrough in inhibitor

design was the realization, based on analysis of the FBPase-AMP complex, that the

phosphate-binding site was directly accessible and within 4.24 Å
´
of the C8 position

of the purine base of AMP. This allowed the introduction of a phosphonate group

into the phosphate-binding site with optimal orientation using a spacer group

attached to the C8 position.

Other important aspects in the structure-based design of potent and selective

AMP mimetics included the replacement of the ribose ring of AMP with alkyl

groups to exploit interactions with a binding surface in a hydrophobic cavity (the

side chains of 177Met, 160Val, 30Leu, and 24Ala) and modification of the pyrimi-

dine portion of the purine ring of AMP (Erion et al. 2007). The latter change was

of particular significance since an analysis of binding site interactions of 25

nucleotide-binding enzymes indicated that hydrogen bonds between the proteins

and purine base nitrogens N7, 6NH2, N1, and N3 were common, whereas only the

N7 and the 6NH2 group of AMP formed interactions with FBPase (Erion et al.

2007). Accordingly, the removal of N1 and/or N3, in addition to increasing binding

affinity by reducing desolvation costs, was expected to improve selectivity for

FBPase. Optimization of the phosphonic acid spacer group, the alkyl substituent,

and/or the base moiety, aided by analysis of high resolution X-ray structures of
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human FBPase-inhibitor complexes and use of free energy perturbation methodo-

logy to predict binding interactions (Erion et al. 2007; Reddy and Erion 2005),

resulted in the identification of several lead series, including purine, benzimidazole,

and indole AMP mimetics with submicromolar IC50 values against human FBPase.

Amore extensive structural modification of the lead series identified 2-aminothiazole

as an attractive replacement of the base moiety and ultimately MB05032 (Fig. 2), an

AMP mimetic that forms multiple favorable interactions with the phosphate and

base-binding pockets of the AMP site of human FBPase (six and three hydrogen

bonds, respectively) as well as with a hydrophobic cavity within the AMP site

(Dang et al. 2007; Erion et al. 2005). MB05032 inhibited human liver FBPase with

an IC50 of 16 nM, which represents a ~60-fold enhancement in potency relative to

AMP. As expected, inhibition was noncompetitive and synergistic with F-2,6-BP

(Fig. 3). Importantly and in contrast to AMP, MB05032 did not affect the activity

of enzymes such as AMPK, glycogen phosphorylase, or phosphofructokinase at

concentrations >1,000-fold higher than the IC50 value for human FBPase.

5.4 Discovery of CS-917

The dianionic nature of the phosphonate group of MB05032 at physiological pH,

while critical for high affinity to the AMP site of FBPase, was an impediment

to cellular penetration and oral absorption (Dang et al 2007; Erion et al. 2005).

Oral delivery of MB05032 therefore required a prodrug form to mask the charged

phosphonic acid group. Because a variety of traditional prodrug approaches for the
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fructose-2,6-bisphosphate (F-2,6-BP). AMP, a natural inhibitor, and MB05032, a rationally

designed inhibitor, both bind to an allosteric pocket within the enzyme. F-2,6BP is a natural

regulator that binds to the substrate site of FBPase. Inhibition of FBPase by AMP and F-2,6-BP is

known to be synergistic. The synergism observed between MB05032 and F-2,6-BP confirms the

interaction of MB05032 with the allosteric-binding site in a manner analogous to AMP
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delivery of phosphonate- or phosphate-containingmolecules such as bis-phenyl esters

(De Lombaert et al. 1994) or bis-isopropylcarbonate esters (vanGelder et al. 2000) did

not improve satisfactorily upon the oral pharmacokinetics of MB05032, emphasis

shifted to the design of novel prodrugs. These efforts resulted in the discovery of a

new phosphonic diamide prodrug class (Erion et al. 2005; Dang et al. 2007, 2008a)

that was chemically stable and achieved the appropriate balance between biological

stability (to allow absorption) and susceptibility to enzymatic hydrolysis (to allow

in vivo conversion to MB05032). Optimization of the prodrug moiety by synthesis

and pharmacokinetic evaluation of prodrugs with various amino acid esters culmi-

nated in the identification of CS-917 (Fig. 2), a dialanyl amide of MB05032 (~20%

bioavailability) that enabled efficient distribution of MB05032 to the liver after oral

administration to rats. CS-917 is cleaved enzymatically to MB05032 by sequential

action of hepatic esterase and phosphoramidase activities with generation of the

nontoxic byproducts ethanol and alanine (Fig. 4). Of note, CS-917 was converted

intracellularly toMB05032 and inhibited glucose production from lactate/pyruvate in

human hepatocytes with an EC50 of 0.22 mM (Erion et al. 2005).

6 Mechanism of Action, Efficacy, and Safety of CS-917

6.1 Mechanism of Action

Tracer studies in postabsorptive male Zucker diabetic fatty (ZDF) rats confirmed the

inhibition of gluconeogenesis following treatment with CS-917. Two different tracer

methods were employed; one measured the incorporation of [14C]-bicarbonate, and

HN

N
H

O
P

ON

S

H2N

CO2Et

CO2Et CO2Et

OH

N
H

O
P

ON

S

H2N

HN

N
H

O
P

ON

S

H2N

CO2H

CO2H

O

OO P

O
N

S

H2N

CS-917

Phosphoramidase

Esterase

Non-enzymatic

MB05032

2 Ethanol + 2 Alanine

Fig. 4 Enzymatic conversion of prodrug CS-917 to the active FBPase inhibitor MB05032. Both

the esterase and phosphoramidase activities are highly expressed in liver, the main site of

endogenous glucose production via gluconeogenesis
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the second, the incorporation of deuterated water into glucose (Erion et al. 2005;

van Poelje et al. 2006a). Oral administration of CS-917 resulted in dose-dependent

inhibition of [14C]-bicarbonate incorporation into glucose (Fig. 5a), with a

30 mg/kg dose leading to a ~25% reduction in de novo glucose synthesis. In parallel

studies, a 30 mg/kg dose also resulted in significant lowering of blood glucose,
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Fig. 5 (a) Inhibition by CS-917 of the incorporation of [14C]-bicarbonate into glucose in post-

absorptive, male ZDF rats. Animals were dosed orally with CS-917 2 h prior to intravenous

administration of tracer (0.4 mCi/g body weight). Incorporation of label into plasma glucose was

assessed at 20 min following exposure to tracer by ion-exchange chromatography. *p <0.05 vs.

vehicle (Students t-test). (b) Effect of CS-917 treatment on gluconeogenic precursors, interme-

diates, and products in livers of postabsorptive, male ZDF rats. Livers were harvested and

extracted with perchloric acid 4 h after an oral dose of CS-917 (300 mg/kg). Liver metabolites

were measured by enzyme-coupled spectrophotometric assays. Abbreviations: pyruvate, Pyr;

lactate, Lac; glycerol, Gly; glycerol-3-phosphate, Gly-3-P; fructose 1,6-bisphosphate, fructose-

6-phosphate, F-6-P; FBP; glucose-6-phosphate, G-6-P; glucose, Glu
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indicating that partial inhibition of gluconeogenesis (~25%) is sufficient to elicit the

desired pharmacological effect. The deuterated water method, coupled with stan-

dard glucose tracer dilution methodology, allowed a quantitative assessment of the

relative contribution of gluconeogenesis and glycogenolysis to EGP in treated and

untreated animals. Using this methodology, a maximal oral dose of CS-917

(300 mg/kg) was found to result in a ~70% reduction of gluconeogenesis-derived

glucose, which was partially countered by a 58% increase in glycogenolysis. The

net effect of reduced gluconeogenesis and increased glycogenolysis was an

overall 46% reduction of EGP to a rate (~8 mmoles/min/kg) similar to that of

nondiabetic rats in a similar nutritional state. The observed reciprocal regulation

of gluconeogenesis and glycogenolysis has also been described in humans and is

termed “hepatic autoregulation” (Boden et al. 2001; Jenssen et al. 1990). It serves to

maintain glucose production in the event that one pathway of glucose production is

impaired and thereby prevents undue glucose lowering.

FBPase was demonstrated as the target enzyme of CS-917 in vivo by the

measurement of substrates, intermediates, and products of gluconeogenesis in

liver, following oral administration of CS-917 to fasted male ZDF rats (Erion

et al. 2005). As shown in Fig. 5b, substrates and intermediates prior to the FBPase

step were elevated 1.5- to 3.1-fold in CS-917-treated rats relative to vehicle-

treated rats, whereas glucose 6-phosphate and glucose were unchanged and 41%

decreased, respectively. This pattern of substrates and intermediates is consistent

with inhibition of FBPase. Interestingly, a similar pattern was observed in kidneys

in treated rats, suggesting that FBPase was inhibited by CS-917 in both gluconeo-

genic organs (liver and kidney). This conclusion is supported by the observation

that MB05032, the active metabolite of CS-917, potently inhibited gluconeogen-

esis from pyruvate in studies using isolated, perfused kidneys from ZDF rats

(van Poelje et al. 2006b).

6.2 Efficacy

6.2.1 Monotherapy

The acute glucose lowering profile of CS-917 in diabetic rats revealed an insulin-

independent mode of action with efficacy in both the postabsorptive and postpran-

dial states (Erion et al. 2005; van Poelje et al. 2006a). At a dose of CS-917

that inhibited gluconeogenesis by ~25% (30 mg/kg), rapid glucose lowering

(75–100 mg/dL) was achieved with a single administration in the postabsorptive

state in young (~9 week-old), hyperinsulinemic as well as aged (>13 week-old),

hypoinsulinemic male ZDF rats. The dose response for glucose lowering was

relatively steep, with minimal and maximal effects achieved within a ~three-fold

dose range (30 –100 mg/kg). Consistent with an important contribution of gluco-

neogenesis to postprandial hyperglycemia, a marked improvement in oral glucose

tolerance was observed following single doses of CS-917 (30 mg/kg) in both young
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and aged male ZDF rats, with the baseline-normalized AUC0-3h of blood glucose

reduced to 65% and 35%, respectively.

Evaluations of CS-917 for up to 6 weeks were performed in prediabetic and

diabetic, male ZDF rats as well as in female ZDF rats rendered diabetic by feeding a

high-fat diet. In studies with prediabetic, male ZDF rats (~6 weeks of age), CS-917

prevented the onset of hyperglycemia in the majority of animals throughout the

6-week treatment period. CS-917 treatment of male ZDF rats with advanced

diabetes (10 weeks of age) led to a lowering of blood glucose by ~33 and ~44%

relative to controls after 1 and 2 weeks of therapy, respectively. A rapid response to

drug treatment was evident in this study from a ~69% reduction in glycosuria

after 3 days of treatment. A profound glucose lowering response was also noted

during a 2-week evaluation of CS-917 in high-fat-fed female ZDF rats (Table 1).

Treatment, in fact, resulted in the normalization of blood glucose in this milder

model of T2DM.

6.2.2 Combination Therapy

Although robust and sustained efficacy was observed with CS-917 as a monotherapy,

the current practice of treating patients with combinations of antidiabetic drugs

prompted the evaluation of CS-917 in combination with glyburide (an insulin secre-

tagogue of the sulfonylurea class) and with pioglitazone (an insulin sensitizer of the

thiazolidinedione class). In acute studies inmale ZDF rats subjected to an oral glucose

tolerance test, improvement of glucose tolerance with CS-917 was additive to that

achievedwith the sulfonylurea glyburide (Erion et al. 2004). CS-917 treatment did not

result in increased insulin levels or, when combined with glyburide, affect the insulin

response resulting from glyburide treatment. Chronic studies of CS-917 in male ZDF

rats in combination with pioglitazone demonstrated significantly improved glycemic

control relative to either therapy alone (Fig. 6a) (van Poelje et al. 2006c). CS-917

monotherapy resulted in increased levels of blood lactate, a major substrate of gluco-

neogenesis, but there was no evidence of increased lactate levels in the combination

group (Fig. 6b). Attenuation of blood lactate levels by pioglitazone co-treatment is

likely due to enhanced activity of pyruvate dehydrogenase (PDH), an enzyme that

regulates the entry of lactate/pyruvate into the oxidative tricarboxylic acid cycle.

Insulin sensitizers are known to increase PDH activity in rats by reducing the

expression of a regulatory kinase, PDK (Sugden and Holness 2006). Consistent

with this finding, reduced expression of PDK4 was observed in skeletal muscle

samples in the pioglitazone and the combination groups in ZDF rats (Fig. 6c).

The combination studies suggest that CS-917 may provide additional therapeutic

benefits when co-administered with insulin secretagogues or with insulin sensitizers.

In addition, insulin sensitizers may have beneficial effects on potential FBPase

inhibitor-induced alterations of lactate homeostasis. In support of the latter benefit,

rosiglitazone co-treatment has been reported to normalize lactate metabolism in

metformin-treated patients (Fonseca et al. 2000).
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tively) for 3 weeks. *p < 0.05 vs. all groups (ANOVA, Tukey-Kramer)
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6.3 Safety

One of the main theoretical concerns with FBPase inhibitors is increased risk of

hypoglycemia. It is reassuring that chronic treatment with maximal doses of CS-917

did not elicit hypoglycemia in freely feeding nondiabetic rats or a variety of diabetic

rodent models (van Poelje et al. 2006a, c). Of note, inhibition of gluconeogenesis by

CS-917 was associated with minimal reduction of hepatic glycogen levels in

diabetic animal models (e.g., female ZDF rats; Table 1). This suggests that the

direct pathway of glycogen repletion (from glucose) can compensate for reduced

glycogen synthesis by the indirect pathway (gluconeogenesis) and can ensure

maintenance of adequate glycogen stores to counteract hypoglycemia. In contrast

to diabetic rats, significant hypoglycemia was observed with CS-917 treatment of

16-h fasted, Sprague Dawley rats. This fasting period almost fully depletes hepatic

glycogen stores in these animals. A greater safety margin for hypoglycemia may be

predicted in patients with T2DM since glycogen reserves, although lower than in

healthy individuals, are ~50% maintained following a 24-h fast (Magnusson et al.

1992). Relative to other drug classes such as insulin and the sulfonylureas, which

inhibit both glucose production and accelerate glucose disposal, one could also

speculate that the risk of hypoglycemia should be considerably less with the inhibi-

tion of gluconeogenesis alone by means of the FBPase inhibitor approach.

Another potential consequence of FBPase inhibition is lacticemia due to reduced

clearance of lactate by gluconeogenesis. Sustained lacticemia, in addition to poten-

tially altering acid-base balance, could result in diversion of lactate into lipogenesis

pathways and lead to fatty liver and hypertriglyceridemia. In high-fat-fed, female

ZDF rats (Table 1) and in db/db mice, CS-917 treatment did not lead to elevation of

lactate or lipids. In male ZDF rats, modest elevation of plasma lactate and lipids

was evident only at high doses in animals with advanced disease (van Poelje et al.

2006a). These metabolic ramifications are likely a reflection of the exaggerated

rates of gluconeogenesis and lipogenesis unique to this animal model (Lee et al.

2000). Taken together, the studies indicate that excess lactate and lactate-derived

substrates are efficiently cleared by alternative pathways (e.g., oxidation) when

gluconeogenesis is inhibited. Increased utilization of lactate and lactate-derived

substrates is expected following gluconeogenesis inhibition as this reduces the

supply of glucose that is normally used as a source of energy.

Lastly, it should be noted that long-term FBPase inhibition in overtly diabetic

rodents did not alter food intake or weight gain, or affect clinical chemistry para-

meters related to kidney or liver function (van Poelje et al. 2006a, c). Overall, long-

term FBPase inhibition was found to be safe and well-tolerated in animal models.

Insight into the potential safety of the gluconeogenesis inhibitor approach is also

provided by the extensive clinical experience with metformin. Although diverse

pharmacological mechanisms have been described for metformin, its primary

mechanism of action in humans is believed to be an indirect inhibition or reduction

of gluconeogenesis (~33% at the highest dose prescribed, 850 mg TID; Hundal et al.

2000). Metformin therapy effectively lowers glucose levels, generally improves
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lipid profiles, and does not cause hypoglycemia. However, asymptomatic lacticemia

(lactate levels 3-5 mM) is observed in 4% of metformin-treated patients (Cryer et al.

2005). Importantly, lacticemia in these patients is not thought to predispose to lactic

acidosis or be clinically significant. Thus, inhibition of gluconeogenesis appears an

effective and safe means of reducing glucose levels in patients with T2DM.

7 Clinical Development of FBPase Inhibitors

7.1 CS-917

Ascending single- and multiple-dose studies of CS-917 in overnight-fasted healthy

volunteers revealed encouraging tolerability and safety profiles with no incidence of

hypoglycemia (Walker et al. 2006a, b). In a subsequent 14-day Phase 2a trial in

patients with T2DM, CS-917 treatment was also safe and well tolerated. Further-

more, all doses (50–400 mg), except for the 100 mg dose, resulted in a statistically

significant reduction of the AUC0-6h of glucose versus placebo (Triscari et al. 2006;

Bruce et al. 2006). The change in fasting plasma glucose levels from baseline on

Day 14 in the treated groups ranged from 30–35 mg/dL relative to placebo. Mean

plasma lactate levels were slightly elevated at higher doses in the CS-917-treated

patients, but remained within normal limits at all doses. Pharmacokinetic analysis in

patients indicated rapid absorption of CS-917 and efficient conversion to MB05032,

which reached a Cmax at 2–3 h following drug administration. Exposure for CS-917

and MB05032 was approximately linear for the 50–200 mg dose range. These trials

provided a preliminary indication of the therapeutic utility of FBPase inhibitors in

patients with T2DM and validate the use of the novel diamide prodrug class for the

oral delivery of AMP mimetics to humans.

The clinical development of CS-917 was mired by the outcome of two key trials:

a Phase 1 interaction trial with metformin and a Phase 2b monotherapy trial. During

the course of the Phase 1 interaction trial, two patients on metformin therapy

developed lactic acidosis shortly after the addition of CS-917 therapy. Both cases

of lactic acidosis resolved following drug withdrawal but obviously raised concerns

of a potential pharmacokinetic and/or pharmacological interaction between metfor-

min and CS-917. CS-917 demonstrated an excellent safety profile in a subsequent

3-month monotherapy trial but did not achieve its clinical endpoint: neither of the

two doses evaluated (50 or 100 mg, BID) resulted in a statistically significant

reduction in hemoglobin A1c levels (HbAlc; a measure of long term glucose

exposure). The extent to which the selection of doses of CS-917 at the lower end

of the effective range or the enrollment of patients with significantly lower HbAlc

levels than the Phase 2a trials affected the outcome of the Phase 2b trial is unclear.

Nevertheless, the disappointing results of this trial, coupled with the unexpected

outcome of the metformin interaction trial, led to the discontinuation of the clinical

development of CS-917.
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7.2 MB07803

Following the completion of the Phase 2a studies of CS-917, a second FBPase

inhibitor, MB07803, was entered into clinical development. MB07803 is a second

generation compound of a related structural class (Fig. 2) but with improved

pharmacokinetic characteristics relative to CS-917. These improvements include

higher oral bioavailability, a longer half-life of the active metabolite, and a mark-

edly reduced rate of metabolic transformation to inactive N-acetylated products

(Dang et al. 2008b). MB07803 completed successfully a safety and tolerability

study in healthy volunteers (Phase 1) as well as an initial proof-of-concept study in

patients with T2DM (Phase 2a). In the Phase 2a study, patients received either placebo

or an oral dose of MB07803 (10, 50, 100, or 200 mg) once daily for 28 days. At

the highest dose of MB07803, statistically and clinically significant lowering of

fasting plasma glucose was achieved. Of note, lactate levels remained within normal

limits in all patients and no sustained lacticemia (defined as lactate >4.5 mM on two

consecutive visits) was observed.

8 Conclusions and Perspectives

Inhibition of excessive EGP is an important strategy for controlling hyperglycemia

in patients with T2DM. Because none of the currently marketed drugs directly

target the overproduction of glucose by the liver, the discovery of direct and

therefore potentially more efficacious inhibitors of glucose production has been

of considerable interest to the pharmaceutical industry for many years. FBPase has

emerged as a key target for pharmacological intervention due to its pivotal role in

controlling gluconeogenesis and the important contribution of gluconeogenesis to

fasting and postprandial hyperglycemia in patients with T2DM.

Overall, the efficacy profile in diabetic rodents of CS-917, the best characterized

drug in the FBPase inhibitor class, indicates that FBPase inhibitors may be useful

for controlling both fasting and postprandial hyperglycemia in the early as well

as more advanced stages of T2DM. The insulin-independent mode of action of

CS-917 suggests that FBPase inhibitors may provide a more durable treatment

than current drugs, the antidiabetic activity of which declines as pancreatic func-

tion deteriorates. Efficacy studies of CS-917 in diabetic rodents also indicate that

FBPase inhibitors may combine effectively with other agents such as insulin

sensitizers and insulin secretagogues. The latter is desirable because patients are

increasingly being treated with drug combinations to maintain strict glycemic

control.

Evaluation of CS-917 in animal models, healthy human volunteers, and patients

with T2DM has provided the initial safety profile of the FBPase inhibitor drug class,

particularly with regards to risk of hypoglycemia, lacticemia, and hyperlipidemia.

Chronic administration of high doses of CS-917 did not cause hypoglycemia or
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weight gain in diabetic rodents and was without metabolic ramifications other than

profound glucose lowering in the majority of diabetic models evaluated. CS-917

and the second generation FBPase inhibitor MB07803 demonstrated good tolera-

bility and safety profiles in healthy volunteers and in monotherapy trials in patients

with T2DM. Preliminary trials of CS-917 and MB07803 also suggest that clinically

relevant glucose lowering can be achieved in patients with T2DM. Larger scale and

longer-term clinical trials of MB07803 as a monotherapy and in combination with

approved agents will provide a definitive assessment of the safety as well as the

long-term therapeutic utility of the FBPase inhibitor drug class.
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Abstract AMP-activated protein kinase (AMPK), a phylogenetically conserved

serine/threonine protein kinase, is a major regulator of cellular and whole-body

energy homeostasis that coordinates metabolic pathways in order to balance nutrient
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supply with energy demand. It is now recognized that pharmacological activation of

AMPK improves blood glucose homeostasis, lipid profile, and blood pressure in

insulin-resistant rodents. Indeed, AMPK activation mimics the beneficial effects of

physical activity or those of calorie restriction by acting on multiple cellular targets.

In addition, it is now demonstrated that AMPK is one of the probable (albeit indirect)

targets of major antidiabetic drugs including the biguanides (metformin) and thia-

zolidinediones, as well as of insulin-sensitizing adipokines (e.g., adiponectin).

Taken together, such findings highlight the logic underlying the concept of targeting

the AMPK pathway for the treatment of metabolic syndrome and type 2 diabetes.

Keywords AMP-activated protein kinase � Diabetes � Energy balance � Obesity �
Therapeutic strategy

1 Introduction

Obesity (defined as a body mass index (BMI) of >30 kg m�2) and the metabolic

syndrome are related conditions that can be considered as precursors of type

2 diabetes (T2D) and increase the risk of developing this disease by >20-fold

(Willett et al. 1999). Although these conditions clearly have a genetic component,

as indicated by the high prevalence in certain ethnic group, the rapid increase in the

prevalence of these conditions in populations throughout the world suggests

the contribution of environmental factors. A widely accepted explanation for the

increasing prevalence of these conditions lays on the frequent consumption of

processed foods with high energy and low fiber content and the reduction in

physical exercise due to sedentary lifestyle in modern urban environment. Thus,

obesity arises due to an imbalance between energy intake and energy expenditure

where caloric excess accumulates preferentially as lipids not only in adipose tissue

but also in muscle and liver. Disruption of energy balance has led to an increased

prevalence of T2D and related comorbidities such as coronary heart disease, heart

failure, hypertension, and renal failure (Wing et al. 2001).

T2D has a high prevalence worldwide and its treatment produces considerable

costs for the health budgets. Prevention and management of T2D has become a

major public health challenge around the world. Diabetes is defined by a fasting

plasma glucose higher than 7 mM (Alberti et al. 1998). T2D is characterized by

altered lipid and glucose metabolism (fasting or postprandial hyperglycemia and

dyslipidemia) as a consequence of combined insulin resistance in skeletal muscle,

liver, and adipose tissue and relative defects of insulin secretion by b-cells that may

arise due to an imbalance between energy intake and expenditure (Saltiel and Kahn

2001). Insulin is the primary anabolic hormone that stimulates uptake and storage

of fuel substrates while inhibiting substrate production in peripheral tissues (Kahn

et al. 2006). It lowers blood glucose levels by facilitating glucose uptake, mainly

into skeletal muscle and fat tissue, and by inhibiting endogenous glucose produc-

tion in the liver. Insulin resistance occurs when a normal dose of insulin is unable to

elicit its metabolic responses. Peripheral insulin resistance is associated with lipid
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partitioning in specific compartments, i.e., muscle and liver, more than with obesity

per se (DeFronzo and Tripathy 2009; Unger 1995). In the natural history of T2D,

pancreatic b-cells initially compensate for insulin resistance by increasing insulin

secretion, but, with time, progressive b-cell failure leads to insulin deficiency, and

hyperglycemia ensues (Fonseca 2009).

Lifestyle intervention is now recognized as the first-line strategy for the man-

agement of T2D and remains important for optimization of metabolic control. This

is supported by observational studies and clinical trials comparing the respective

effects of diet, drugs, or exercise in persons at high risk for T2D (Knowler et al.

2002; Pan et al. 1997; Tuomilehto et al. 2001). The Diabetes Prevention Program

(DPP) Research Group conducted a large, randomized clinical trial involving adults

in the United States who were at high risk for the development of this disease

(Knowler et al. 2002). In this study, the lifestyle intervention was particularly

effective (and more than an oral hypoglycemic drug) to prevent the onset of

diabetes. In clinical practice, when lifestyle modification fails to achieve or sustain

adequate glycemic control, insulin or oral antidiabetic agents are typically used to

manage the disease (Nathan et al. 2009). Treatment options with oral agents are quite

diverse, including metformin, thiazolidinediones (TZDs), a-glucosidase inhibitors, sul-

fonylureas, DPP-4 inhibitors, and GLP-1 analogs. The currently available classes of oral

agents differ in mechanism and duration of action, and the degree to which they lower

blood glucose and their side-effect profile (including hypoglycemia, weight gain, edema,

fractures, lactic acidosis, and gastrointestinal intolerance). Because it is recognized that

T2D is a progressive disease worsening with time, all available drugs can be used alone

or in varied associations.

There is a pressing need to develop new therapeutic strategies to prevent and

treat T2D. Exciting recent developments have shown that AMP-activated protein

kinase (AMPK), a phylogenetically conserved serine/threonine protein kinase,

acts as an integrator of regulatory signals monitoring systemic and cellular

energy balance, thus providing the emerging concept, as first suggested by

Winder and Hardie (1999), that AMPK is an attractive therapeutic target for

intervention in many conditions of disordered energy balance including T2D and

insulin resistance.

2 Rational for a Pharmacological Management of T2D

by Targeting AMPK

Physical activity is an important determinant to prevent and control T2D. Current

guidelines recommend practical, regular, and moderate regimens of physical activ-

ity. The multiple metabolic adaptations that occur in response to physical activity

can improve glycemic control for individuals with T2D or delay the onset of the

disease. Indeed, it is now recognized that beneficial effects of physical activity are

still maintained in insulin-resistant populations. This suggests that some metabolic
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actions of exercise (as increase in muscular glucose uptake) are dependent on

specific intracellular pathways that bypass signaling altered by insulin resistance.

In consequence, any drug inducing favorable changes similar to those of physical

exercise on whole-body metabolism are attractive candidates for treatment and

prevention of obesity, metabolic syndrome, and T2D. Interestingly, it is now well

established that muscle contraction is a prototypical AMPK activator (Hayashi et al.

1998). Thus, it is expected that part of the effect of physical activity in preventing

the development of metabolic disorders related to a sedentary lifestyle is due to the

activation of AMPK. Indeed, it has been documented that pharmacological AMPK

activation may recapitulate some of the exercise-induced short-term adaptations

and is likely to mediate beneficial effects of exercise on insulin sensitivity and

glucose transport in skeletal muscle (Bergeron et al. 1999; Fisher et al. 2002). In

addition, pharmacological AMPK activation resulted in long-term adaptation simi-

lar to those induced by endurance exercise training with the induction of genes

linked to oxidative metabolism and enhanced running endurance (Narkar et al.

2008).

In the DPP, the incidence of diabetes was reduced by 58% with a low-calorie,

low-fat diet, as compared with placebo after 3 years of follow-up (Knowler et al.

2002). The beneficial effect of calorie restriction in reducing T2D incidence was

confirmed by other clinical studies (Pan et al. 1997; Tuomilehto et al. 2001). In

overweight and obese humans, calorie restriction improves glucose tolerance, lipid

profile, and insulin action and reduces mortality associated with T2D (Hammer

et al. 2008; Jazet et al. 2008; Larson-Meyer et al. 2006; Weiss et al. 2006). In order

to produce a metabolic profile similar to those of calorie restriction in diabetic

patients, there is an increased interest in developing pharmacological agents acting

as “calorie-restriction” mimetics. Such agents could provide the beneficial meta-

bolic, hormonal, and physiological effects of calorie restriction without altering

dietary intake or experiencing any potential adverse consequences of excessive

restriction. To this purpose, phytochemicals mimicking the effects of calorie

restriction (polyphenols) were recently identified as potent activators for AMPK

in vitro and in vivo (Baur et al. 2006; Collins et al. 2007; Zang et al. 2006).

Additionally, it is now recognized that a dysfunction in AMPK signaling path-

way might have sustained deleterious effects at the systemic levels and might

contribute to the events that lead to the metabolic syndrome. It is interesting to

note that there is a strong correlation between low activation state of AMPK with

metabolic disorders associated with insulin resistance, obesity, and sedentary

activities (Lee et al. 2005a, b; Luo et al. 2005; Martin et al. 2006). Recent studies

showed that AMPK is likely to be under both endocrine and autocrine control in

rodents. Thus, in addition to exercise and starvation, AMPK is activated by the fat-

cell-derived hormones adiponectin and leptin (Minokoshi et al. 2002; Tomas et al.

2002; Yamauchi et al. 2002) and interleukin-6 (IL-6) (Kelly et al. 2004). Con-

versely, AMPK activity is suppressed in muscle and liver by sustained hyperglyce-

mia, in liver by refeeding after starvation (Assifi et al. 2005), and by increases in

the plasma concentration of other adipocyte-derived hormones such as resistin

(Banerjee et al. 2004) and tumor necrosis factor-a (TNF-a) (Steinberg et al.
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2006). In addition to its role in the periphery, AMPK also regulates energy intake

and body weight by mediating opposing effects of anorexigenic and orexigenic

signals in the hypothalamus (Andersson et al. 2004; Kim et al. 2004; Kola et al.

2005; Minokoshi et al. 2004). In addition, many therapies that are useful in treating

the metabolic syndrome and associated disorders in humans, including TZDs (Fryer

et al. 2002; Saha et al. 2004), metformin (Zhou et al. 2001), calorie deprivation, and

exercise, have been shown to activate AMPK system. Lastly, the development of

transgenic and knockout (KO) mouse models (see below) have made possible to

better understand the physiological role of AMPK and confirm that disruption of

AMPK pathway in various tissues induces various phenotypes mimicking the

metabolic syndrome observed in humans.

By taking together the physiological functions of AMPK and the suspected role

of AMPK in metabolic disorders, activation of AMPK pathway appears as a

promising tool to prevent and/or to treat metabolic disorders.

3 Structure and Regulation of AMPK

AMPK is a major regulator of cellular and whole-body energy homeostasis that

coordinates metabolic pathways in order to balance nutrient supply with energy

demand. Activation of AMPK switches off ATP-consuming anabolic pathways

and switches on ATP-producing catabolic pathways (Viollet et al. 2003). This

would typically occur when AMPK is activated as a result of energy deprivation

linked to alterations of the intracellular AMP/ATP ratio (e.g., hypoxia, glucose

deprivation and muscle contraction), changes in calcium concentration, as well as

the action of various adipocytokines. AMPK is composed of three different sub-

units a, b, and g appearing in several isoforms with different action properties

(Fig. 1). The a-subunit contains the catalytic site, whereas regulatory b- and g-
subunits are important to maintain the stability of the heterotrimeric complex. The

b-subunit contains a central region that allows AMPK complex to bind glycogen.

The g-subunit contains four tandem repeats known as cystathionine b-synthase
(CBS) motifs that bind together two molecules of AMP or ATP in a mutually

exclusive manner. Binding of AMP (on g-subunit) activates AMPK via a complex

mechanism involving direct allosteric activation and phosphorylation of a-subunit
on Thr-172 by upstream kinases as the protein kinase LKB1 (a tumor suppressor

whose germline mutations in humans are the cause of Peutz–Jeghers syndrome),

the CaMKKb (calmodulin-dependent protein kinase b), and TAK1 (mammalian

transforming growth factor b-activated kinase) (Fig. 2). Although it was originally

proposed that AMP binding promoted AMPK phosphorylation by upstream

kinases, recent work suggested entire inhibition of dephosphorylation of Thr-172

to be critical (Sanders et al. 2007; Suter et al. 2006) (Fig. 2).
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4 Beneficial Metabolic Effects of Targeting AMPK Pathway

4.1 Mimicking the Beneficial Effects of Physical Exercise

It has been confirmed in large-scale epidemiological and interventional studies that

regular physical activity is of great benefit for the metabolic control of subjects

with metabolic syndrome or impaired glucose tolerance or T2D (Knowler et al.

2002; Pan et al. 1997; Tuomilehto et al. 2001). Although appropriate diet and

exercise regimes should therefore be the first choice of treatment and prevention

of T2D, in some patients such management is not appropriate for other medical

reasons, or when compliance is difficult because of social factors or poor motiva-

tion. In these cases, drugs that act on the signaling pathways involved in physical

activity are attractive candidates for treatment and prevention. It is now clearly

demonstrated that AMPK is activated by physical training in an intensity-dependent

Fig. 1 Domain organization of the catalytic a- and regulatory b- and g- subunits of AMPK. Each
AMPK molecule comprises a a-catalytic (a1 and a2) and regulatory b- (b1 and b2) and g- (g1, g2,
and g3) subunits. The catalytic a-subunit is phosphorylated at Thr-172 by upstream kinases (LKB1,

CaMKKb, and TAK1), leading to enzyme activation. The b-subunit contains a glycogen-binding
domain. The g-subunit contains four nucleotide-binding modules (CBS domains) capable of

cooperative binding to two molecules of either ATP or AMP. Mutations in the human g2-subunit
gene (PRKAG2) causing cardiac hypertrophy associated with abnormal glycogen accumulation and

conduction system disease are shown
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manner both in humans and in rodents (Steinberg and Kemp 2009). AMPK activa-

tion during muscle contraction is a physiological adaptation in front of increased

energy demand and ATP turnover. It has been demonstrated that AMPK activation

may recapitulate some of the exercise-induced adaptations and is likely to mediate

not only beneficial effects of exercise on insulin sensitivity and glucose transport in

skeletal muscle (Fisher et al. 2002) but also additional metabolic benefits coming

from AMPK activation by exercise in liver and in adipose tissue (Park et al. 2002).

Conversely, it has also been demonstrated that disruption of muscular AMPK

signaling can be a key factor in the pathophysiology of metabolic disorders. Indeed,

reduction of muscular AMPK activity exacerbates the development of insulin

resistance and glucose intolerance during high-fat feeding, disturbs muscle energy

balance during exercise (as indicated by a reduced muscular ATP content during

muscle contraction), and abolishes mitochondrial biogenesis (Fujii et al. 2008;

Jorgensen et al. 2005; Zong et al. 2002).

As a proof of concept, studies with AMPK activators in animal models of T2D

have provided promising results. The first evidence came from in vivo treatment

with the pharmacological compound AICAR (5-amino-imidazole-4-carboxamide-

1-b-D-ribofuranoside, metabolized to ZMP, which is an analog of AMP) of various

animal models of insulin resistance, causing improvement in most, if not all, of

the metabolic disturbances of these animals (Bergeron et al. 2001a; Buhl et al.

2002; Iglesias et al. 2002; Pold et al. 2005; Song et al. 2002). In addition, long-

term AICAR administration prevents the development of hyperglycemia in Zucker

diabetic fatty (ZDF) rats, improves peripheral insulin sensitivity in skeletal muscle,

Fig. 2 Regulation of AMPK by upstream kinases and phosphatases. The major upstream kinase is

a complex between the tumor suppressor kinase LKB1 and two accessory subunits, STRAD and

MO25, which appears to be constitutively active. The CaMKKb could also phosphorylate Thr-172

and activate AMPK following a rise in cytosolic Ca2+. A third potential upstream kinase is TAK1,

but its physiological significance is uncertain. Thr-172 phosphorylation is removed by PP2C

phosphatase. Physiological, hormonal, and pharmacological stimulatory effectors of AMPK

complex are listed
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and delays b-cell dysfunction associated with T2D (Pold et al. 2005). AICAR

increases muscle glucose uptake concomitantly with glucose transporter 4

(GLUT4) translocation to the plasma membrane in insulin-resistant animal models

and in humans (Merrill et al. 1997; Koistinen et al. 2003; Kurth-Kraczek et al. 1999).

Interestingly, AMPK-induced glucose transport occurs through a mechanism dis-

tinct from that utilized by the classical insulin signaling pathway because it is not

blocked by inhibitors of phosphatidylinositol 3-kinase, and also because the effects

of insulin and AMPK activators are additive (Hayashi et al. 1998). This metabolic

improvement can be also explained partly by increased expression of specific

muscle proteins mimicking some of the effects of exercise training following

chronic pharmacological activation of AMPK in vivo. Thus, AICAR or chronic

intake of the creatine analogb-guanadinopropionic acid (b-GPA,which competitively

inhibits creatine uptake and lowers ATP content) in rodent increases muscle expres-

sion of glucose transporterGLUT4 and hexokinase II, an effect partly mediated by the

transcriptional coactivator peroxisome proliferator-activated receptor-g coactiva-

tor-1a (PGC-1a) (Holmes et al. 1999; Michael et al. 2001). It has been proposed that

the development of skeletal muscle insulin resistance may be partly linked to

decreased mitochondrial density (Petersen et al. 2003). Interestingly, chronic acti-

vation of AMPK with AICAR or b-GPA increases mitochondrial content and exp-

ression of mitochondrial proteins, leading to a mitochondrial biogenesis (Bergeron

et al. 2001b;Winder et al. 2000; Zong et al. 2002). All of these data argue for AMPK

as a key factor for the metabolic adaptation of skeletal muscle to physical exercise.

Supporting this, the effects of chronic activation of AMPK mimicking physical

activity on gene expression and mitochondrial biogenesis are abolished in AMPKa2
knockout (KO) and mAMPK-KD (transgenic mice overexpressing a kinase-dead

AMPKa2 mutant [K45R mutation] in skeletal muscle) mice (Zong et al. 2002;

Holmes et al. 2004; Jorgensen et al. 2005). Increased mitochondrial biogenesis

after chronic activation of AMPK is partly explained by increased expression of

nuclear respiratory factor-1 and -2 (which are critical regulators of genes encoding

electron chain complexes) (Bergeron et al. 2001b). Another critical factor for

mitochondrial biogenesis is the inducible coactivator of nuclear receptors, PGC-1a.
Regulation of PGC-1a by AMPK is complex. First, it has been demonstrated that

AMPK directly phosphorylates and activates PGC-1a (Jager et al. 2007). In addi-

tion, activated PGC-1a in turn increased the expression of PGC-1a and of mito-

chondrial oxidative genes (cytochrome c and uncoupling protein 1). Interestingly,

PGC-1a activity and expression are reduced in T2D in humans (Mootha et al. 2003).

Thus, AMPK activators could be used in order to reverse this defect. Additionally,

activation of AMPK in response to physical exercise has also been observed in

extramuscular tissues such as liver and adipose tissue (Park et al. 2002) and might

account for additional metabolic benefits. Physical training increases circulating

adiponectin and mRNA expression of its receptors in muscle, which may mediate

the improvement of insulin resistance and the metabolic syndrome in response to

exercise by activation of AMPK.

Lastly, increase in blood supply is critical for physiological adaptation during

physical activity. Vasodilatation is a vital mechanism of systemic blood flow
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regulation that occurs during periods of increased energy demand. Thus, because

AMPK plays a central role in the adaptation to metabolic stress, it is tempting to

speculate that AMPK could be involved in the regulation of metabolic vasomotion.

It is well known that moderate-intensity exercise increases nitric oxide synthase

(NOS) activity (Roberts et al. 1999). Interestingly, it has been recently reported

that mAMPK-KD mice are unable to increase total NOS activity during moderate-

intensity exercise and may cause an impairment in muscle blood flow (Lee-Young

et al. 2009). This finding is supported by the close association between AMPK and

nNOSm phosphorylation following moderate-intensity exercise (Chen et al. 2000;

Stephens et al. 2002) and reduced expression of nNOSm in mAMPK-KDmice (Lee-

Young et al. 2009). This indicates how changes in tissue metabolism can direct

blood flow according to demand. In addition, the lower skeletal muscle capillariza-

tion in mAMPK-KD mice might also contribute to the reduced blood flow during

exercise (Zwetsloot et al. 2008). Nitric oxide (NO) plays a fundamental role in

vascular homeostasis and it has been suggested that impaired NO efflux from

contracting mAMPK-KD mice suppressed exercise-induced vascular relaxation

(Lee-Young et al. 2009). Furthermore, it has suggested that AMPK activation is

in part regulated by endogenous NO in a positive feedback mechanism, such that

increased NO activates AMPK, which further augments NOS activity and NO

production (Lira et al. 2007; Zhang et al. 2008). Accordingly, the exercise-induced

increase in AMPK signaling was ablated in skeletal muscle of eNOS KOmice (Lee-

Young et al. 2010). Therefore, AMPK–eNOS interaction might play an important

role in the adaptation processes during exercise in order to maintain cellular energy

levels by amending vascular function.

4.2 Mimicking the Beneficial Effects of Calorie/Dietary
Restriction

Excessive calorie intake increases the risk of developing chronic disease such as

obesity, metabolic syndrome, T2D, systemic low-grade inflammation, cardiovas-

cular event, and premature mortality. Conversely, calorie restriction improves

glucose tolerance and insulin action and reduces mortality linked to T2D and

cardiovascular diseases (Hammer et al. 2008; Jazet et al. 2008; Larson-Meyer

et al. 2006; Weiss et al. 2006). Because it is difficult to maintain long-term calorie

restriction in modern society, there has been an increased interest in developing

pharmacological agents that act as “calorie-restriction” mimetics. Among them,

plant-derived polyphenolic compounds, such as resveratrol (which is present in

grapes, peanuts, and several other plants) were first recognized as mimicking the

effects of calorie restriction in lower eukaryote (Howitz et al. 2003). Additionally,

resveratrol administration prevents the deleterious effects of high-calorie intake

on insulin resistance and metabolic syndrome components in rodents (Baur et al.

2006; Lagouge et al. 2006; Milne et al. 2007; Sun et al. 2007; Zang et al. 2006).
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Resveratrol has been described as a potent activator of the NAD(+)-dependent

deacetylases sirtuins including SIRT1, one of the seven mammalian sirtuin genes

(Howitz et al. 2003). However, recent findings indicate that resveratrol is not direct

SIRT1 activator (Pacholec et al. 2010). Resveratrol, like other polyphenols, also

activates AMPK (Baur et al. 2006; Collins et al. 2007; Zang et al. 2006). Acute

activation of AMPK by resveratrol appears to be independent of SIRT1 (Dasgupta

and Milbrandt 2007), probably through changes in AMP/ATP ratio as resveratrol

inhibits the mitochondrial F1 ATPase (Gledhill et al. 2007). Furthermore, resvera-

trol increased the NAD(+)/NADH ratio in an AMPK-dependent manner, which

may explain how it may activate SIRT1 indirectly (Canto et al. 2009; Um et al.

2010). SIRT1 has been suggested to prime the organism in order to reduce the

deleterious effects of insulin resistance on energy balance and metabolic homeo-

stasis. Thus, SIRT1 activation increases hepatic insulin sensitivity, decreases

whole-body energy requirements (Banks et al. 2008; Sun et al. 2007), promotes

adaptation of insulin secretion during insulin resistance development (Bordone

et al. 2006; Moynihan et al. 2005), and coordinates lipid mobilization and utiliza-

tion (Picard et al. 2004). The knowledge of SIRT1 action at the molecular level has

been more delineated by using chronic treatments with resveratrol and it has been

suggested that SIRT1 promotes LKB1-dependent AMPK stimulation through the

direct deacetylation and activation of LKB1 (Hou et al. 2008; Lan et al. 2008). Thus,

polyphenols such as resveratrol are now recognized as compounds with great poten-

tial to improve and/or delay or preventmetabolic disorders linked toWestern lifestyle

by activating the complementary metabolic stress sensors SIRT1 and AMPK (Canto

et al. 2009). Accordingly, it has been recently established that AMPK acts as the

prime initial sensor for fasting-induced adaptations in skeletal muscle and that SIRT1

downstream signaling was blunted in the absence of AMPK (Canto et al. 2010). In

addition, recent studies demonstrated that resveratrol failed to increase the metabolic

rate, insulin sensitivity, glucose tolerance, mitochondrial biogenesis, and physical

endurance in the absence of either AMPKa1 or AMPKa2 (Um et al. 2010).

4.3 Mimicking the Beneficial Effects of Hypoglycemic Agents

4.3.1 AMPK Action in Liver

T2D is the result of an imbalance between glucose production and glucose uptake by

peripheral tissues. Elevated hepatic glucose production is a major cause of fasting

hyperglycemia in diabetic subjects (Saltiel and Kahn 2001). From various effectors,

AMPK signaling is a key factor that controls hepatic glucose production. Indeed,

systemic infusion of AICAR in normal and insulin-resistant obese rats leads to

the inhibition of hepatic glucose production (Bergeron et al. 2001a). Additionally,

short-term hepatic expression of a constitutively active form of the a2-catalytic
subunit (AMPKa2-CA) leads to mild hypoglycemia in normal mice (Foretz

et al. 2005; Viana et al. 2006) and abolishes hyperglycemia in diabetic ob/ob and
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streptozotocin-induced diabetic mice (Foretz et al. 2005; Viana et al. 2006) by

inhibition of gluconeogenesis (Foretz et al. 2005; Lochhead et al. 2000; Viana

et al. 2006). This effect is achieved at least to a large extent via the regulation of a

transcriptional coactivator, transducer of regulated CREB activity 2 (TORC2) (Koo

et al. 2005), which is known to mediate CREB-dependent transcription of PGC1a
and its subsequent gluconeogenic targets PEPCK and G6Pase genes. AMPK activa-

tion causes TORC2 phosphorylation and sequesters the coactivator in the cytoplasm,

thus blunting the expression of the gluconeogenic program (Koo et al. 2005).

Control of hepatic glucose production by activated AMPK is also demonstrated in

resistin KO mice and in adiponectin-treated rodents (Banerjee et al. 2004; Yamauchi

et al. 2002), suggesting that hepatic AMPK is specifically a target of both adipocy-

tokines, the former acting as anAMPK inhibitor and the latter as an activator. This was

also demonstrated by lack of systemic adiponectin infusion effect on hepatic glucose

production in liver-specific AMPKa2 KO mice (Andreelli et al. 2006).

4.3.2 AMPK Action in Skeletal Muscle

After a meal or during the euglycemic hyperinsulinemic clamp, both situations with

high circulating levels of insulin, skeletal muscle is the main site for glucose

disposal in the body. This is sustained by the insulin-dependent translocation of

glucose transporter GLUT4 from intracellular vesicles to the cell surface, which is

impaired in T2D patients. As described above, it has been clearly demonstrated that

muscular AMPK activation, either by exercise or by AICAR, stimulates muscle

glucose uptake. Interestingly, even if AMPK and insulin act through phosphoryla-

tion of downstream target of Akt (Akt substrate of 160 kDa, AS160) (Dreyes et al.

2008), AMPK-dependent and insulin-dependent GLUT4 translocation are distinct

pathways (Treebak et al. 2007). Additionally, both exercise-induced muscular

AMPK activation and AS160 phosphorylation are reduced in obese nondiabetic

and obese T2D subjects (Musi et al. 2001) but maintained in lean T2D patients

(Bruce et al. 2005), suggesting that dysregulation of muscular AMPK is more

dependent on obesity than on hyperglycemia. Discovery of muscular AMPK

activators in order to mimic regular physical activity metabolic effects is an

important challenge. It was first demonstrated that some adipokines stimulate

glucose transport in skeletal muscle in an AMPK-dependent manner. Indeed, leptin

is known to stimulate glucose uptake in peripheral tissue (Kamohara et al. 1997;

Minokoshi et al. 1999) by stimulating AMPKa2 phosphorylation and activation in

skeletal muscle (Minokoshi et al. 2002). Adiponectin, another adipokine, has also

been shown to increase glucose transport in both lean and obese skeletal muscle,

although the effect was less significant in obese skeletal muscle (Bruce et al. 2005).

It has also recently been recognized that IL-6 [also called “myokine” (Febbraio and

Pedersen 2005)] is released acutely from the skeletal muscle during prolonged

exercise, activates AMPK, and improves peripheral glucose uptake and insulin

sensitivity at the whole-body level (Glund et al. 2007). In contrast, chronic expo-

sure of IL-6 (as observed in obesity) promotes insulin resistance both in vitro and
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in vivo (Nieto-Vazquez et al. 2008). The dual effect of IL-6 on insulin sensitivity

probably explains some conflicting results recently discussed in detail elsewhere

(Nieto-Vazquez et al. 2008). Importantly, it has also been suggested that AICAR, in

addition to activating AMPK, suppresses chronic IL-6 release by an AMPK-

independent mechanism in insulin-resistant models (Glund et al. 2009). This

strongly suggests that AMPK activators can act at a multitissular level in order to

restore metabolic interorgan cooperation.

Interestingly, available hypoglycemic drugs as metformin and TZDs have been

reported to activate AMPK (Fryer et al. 2002; Zhou et al. 2001). Even if it was

postulated that blood glucose-lowering effects of metformin are mediated by

AMPK activation from studies of mice that are deficient in the upstream AMPK

kinase, LKB1, (Shaw et al. 2005) recent studies have shown that LKB1 phosphory-

lates and activates at least 12 AMPK-related kinases in the liver. These data raised

the question whether the glucose-lowering function of LKB1 is mediated by

AMPK-related kinases rather than AMPK itself.

Because circulating levels of adiponectin are decreased in individuals with

obesity and insulin resistance, adiponectin replacement in humans may be a

promising approach. It has been demonstrated that full-length adiponectin activates

AMPK in the liver, while globular adiponectin did so in both muscle and the liver

(Yamauchi et al. 2002). Blocking AMPK activation by the use of a dominant-

negative mutant inhibited the action of full-length adiponectin on glucose hepatic

production (Yamauchi et al. 2002). In addition, lack of action of adiponectin on

hepatic glucose production when AMPKa2 catalytic subunit is missing strongly

supports the concept that adiponectin effect is strictly dependent on AMPK

(Andreelli et al. 2006). While awaiting adiponectin analog development, alternative

ways to restore adiponectin effects have been suggested recently. Improved

metabolic disorders following TZD administration are in part mediated through

adiponectin-dependent activation of AMPK since activation of AMPK by rosigli-

tazone treatment is diminished in adiponectin KO mice (Nawrocki et al. 2006).

TZDs can markedly enhance the expression and secretion of adiponectin in vitro

and in vivo through the activation of its promoter and also antagonize the suppres-

sive effect of TNF-a on the production of adiponectin (Maeda et al. 2001).

Interestingly, in human adipose tissue, AICAR has been shown to increase

the expression of adiponectin (Lihn et al. 2004; Sell et al. 2006), while no change

in serum adiponectin concentration or adipocyte adiponectin content was found in

T2D patients treated with metformin (Phillips et al. 2003).

4.3.3 AMPK Action in b-Cells

b-Cell failure is a strong determinant in the pathogenesis of T2D. This defect

inexorably aggravates with time as demonstrated in prospective clinical studies

(U.K. Prospective Diabetes Study Group 1995). According to the glucolipotoxicity

hypothesis, (Prentki et al. 2002) chronic high glucose dramatically influences b-cell
metabolism. Indeed, it has been observed in high glucose condition that an increase
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of cytosolic fatty acyl-CoA partitioning toward potentially toxic cellular products

(e.g., diacylglycerol, ceramide, and lipid peroxides), lead to impaired insulin secretory

response to glucose and ultimately apoptosis (Donath et al. 2005). Indeed, decrease

in b-cell mass is likely to play a role in the pathogenesis of human T2D (Butler et al.

2003) as it does in rodent models of the disease (Kaiser et al. 2003; Rhodes 2005).

Pathways regulating b-cell turnover are also implicated in b-cell insulin secretory

function. In consequence, decrease in b-cell mass is not dissociable from an intrinsic

secretory defect. Because AMPK is important for the balance of intracellular energy

homeostasis, it was interesting to analyze to what extent AMPK regulates b-cell
function/survival. AICAR, dose dependently, improves b-cell function probably by

reducing apoptosis induced by prolonged hyperglycemia (Nyblom et al. 2008).

In addition to AICAR, b-cell AMPK activation (by metformin, TZDs or adenovirus-

mediated overexpression of AMPKa1-CA) favors fatty acid b-oxidation and prevents
glucolipotoxicity-induced insulin secretory dysfunction in b-cells (Eto et al. 2002;

El-Assaad et al. 2003; Higa et al. 1999; Lupi et al. 2002). In contrast, the role ofAMPK

in the control of b-cell death survival remains controversial (Kefas et al. 2003a, b;

Kim et al. 2007; Riboulet-Chavey et al. 2008; Richards et al. 2005).

Beyond a potential role of AMPK for long-term regulation of b-cell function and
survival, AMPK may also acutely regulate insulin secretion. Thus, AMPK activity

is rapidly decreased when glucose levels are increased over the physiological range,

suggesting that AMPK could be one of the regulator of insulin secretion through its

capacity to sense intracellular energy (da Silva Xavier et al. 2003; Leclerc et al.

2004). Interestingly, activation of AMPK by AICAR, berberine, metformin, and

TZDs or by overexpression of AMPKa1-CA markedly reduced glucose-stimulated

insulin secretion in b-cell lines and in rodent and human islets (Eto et al. 2002;

Leclerc et al. 2004; Wang et al. 2007; Zhou et al. 2008). Similarly, activation of

AMPK selectively in b-cells in AMPKa1-CA transgenic mice decreased glucose-

stimulated insulin secretion (Sun et al. 2010). This could be considered as a

deleterious effect of AMPK activation. But it is hypothesized that pharmacological

activation of AMPK and its subsequent decrease in insulin secretion could be

appropriate in insulin-resistant conditions characterized by high insulin levels.

Indeed, it has been suggested that reduction of the pathological hyperinsulinemia

is potentially a mechanism to protect b-cell mass. Consistent with this assumption,

systemic AICAR infusion in prediabetic Zucker fatty rats prevented the develop-

ment of hyperglycemia and preserved b-cell mass (Pold et al. 2005).

Taken together, these data suggest that AMPK is an emergent factor that could

protect by different ways b-cell function and b-cell mass from the deleterious

effects of glucolipotoxicity.

4.4 Mimicking the Beneficial Effects of Hypolipidemic Agents

Dyslipidemia of both insulin resistance and T2D is a recognized risk factor for

cardiovascular disease. Diabetic dyslipidemia is a cluster of potentially atherogenic
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lipid and lipoprotein abnormalities that are metabolically interrelated. Activated

AMPK inhibits cholesterol and fatty acid synthesis. Thus, AMPK suppresses expres-

sion of lipogenesis-associated genes such as fatty acid synthase, pyruvate kinase and

acetyl-CoA carboxylase (ACC) (Foretz et al. 1998, 2005; Leclerc et al. 1998, 2001;

Woods et al. 2000), and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-

CoA reductase). HMG-CoA reductase activity is inhibited by phosphorylation of Ser-

872 by AMPK (Clarke and Hardie 1990). Adiponectin activates AMPK and inhibits

cholesterol synthesis in vivo, suggesting that AMPK is a key regulator of cholesterol

pathways (Ouchi et al. 2001). Inhibition of ACC by AMPK leads to a drop in

malonyl-CoA content and a subsequent decrease in fatty acid synthesis and increase

in fatty acid oxidation, thus reducing excessive storage of triglycerides. Consistently,

overexpression of AMPKa2-CA in the liver or treatment with AICAR,metformin, or

A769662 (a small-molecule AMPK activator) in lean and obese rodents decreases

plasma triglyceride levels, concomitantly with an increase in plasma b-hydroxybutyrate
levels, suggesting elevated hepatic lipid oxidation (Bergeron et al. 2001a; Cool et al.

2006; Foretz et al. 2005; Zhou et al. 2001). Conversely, liver-specific AMPKa2
deletion leads to increased plasma triglyceride levels and enhanced hepatic lipogen-

esis (Andreelli et al. 2006). These data emphasize the critical role for AMPK in the

control of hepatic lipid deposition via decreased lipogenesis and increased lipid

oxidation, thus improving lipid profile in T2D.

It is well documented that changes in adipose tissue mass are frequently

associated with alterations in insulin sensitivity (Eckel et al. 2005; Katsuki et al.

2003). AMPK evidenced recently as a regulator of fat mass. Indeed, activation of

AMPK in white adipocytes is concomitant with a decreased expression of genes

coding lipogenic enzyme (Orci et al. 2004) and leads to a decreased lipogenic flux

and a decreased triglyceride synthesis (Daval et al. 2005; Sullivan et al. 1994). In

white adipocytes, AMPK activation using AICAR or overexpression of AMPK-CA

has been shown to inhibit b-adrenergic-induced lipolysis (Corton et al. 1995;

Sullivan et al. 1994). Hormone-sensitive lipase (HSL), one of the key proteins

responsible for the lipolytic activity, is activated by PKA phosphorylation at

serines 563, 659, and 660 (Anthonsen et al. 1998). AMPK reduces this activation

through phosphorylation at Ser-565 (Garton et al. 1989; Garton and Yeaman 1990).

This effect has been demonstrated both in white adipocytes and in skeletal muscle

in both resting and contracting conditions (Muoio et al. 1999; Smith et al. 2005;

Watt et al. 2006). Thus, inhibition of HSL by AMPK represents a mechanism to

limit this recycling and ensure that the rate at which fatty acids are released by

lipolysis does not exceed the rate at which they could be disposed of by export or

by internal oxidation.

Beyond its hypolipidemic properties, AMPK system can also be a regulator of

ectopic lipid metabolism. Depot of lipids in tissue is a hallmark defect in metabolic

syndrome in humans. According to this lipotoxicity hypothesis, insulin resistance

develops when excess lipids are deposited in insulin-sensitive cell types. The

balance between lipid oxidation and lipid storage in cells is mainly regulated by

malonyl-CoA, generated by ACC.Malonyl-CoA is known to inhibit transport of fatty
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acids into mitochondria via allosteric regulation of carnitine palmitoyltransferase-1,

thereby preventing them from being metabolized. Activated AMPK inhibits mal-

onyl-CoA synthesis and shifts the balance toward mitochondrial fatty acid oxida-

tion and away from fat storage. Several studies have shown that activation of

AMPK with AICAR, a-lipoic acid, leptin, adiponectin, and IL-6 enhances muscle

fatty acid b-oxidation (Carey et al. 2006; Lee et al. 2005b; Merrill et al. 1997;

Minokoshi et al. 2002; Yamauchi et al. 2002). Chronic leptin treatment increases

skeletal muscle fatty acid oxidation in an AMPK-dependent manner by increasing

AMP/ATP ratio in oxidative muscle fibers and by increasing AMPKa2 nuclear

translocation and PPARa transcription (Suzuki et al. 2007). Studies in transgenic

animals support these observations since expression of the activating AMPKg3
R225Q mutation in muscle increased fatty acid oxidation and protected against

excessive triglyceride accumulation and insulin resistance in skeletal muscle

(Barnes et al. 2004). Interestingly, recent data have shown that resistin lowers

AMPK signaling in muscle cells and that this reduction is associated with sup-

pressed fatty acid oxidation (Palanivel and Sweeney 2005).

Nonalcoholic fatty liver disease is a serious consequence of obesity, increasing

the risk of liver cancer or cirrhosis. The origin of this disease is unknown and

probably multifactorial. Nevertheless, because insulin resistance is recognized as

an associate and/or promoting mediator of the disease, management of insulin

resistance becomes an important challenge. For this specific point and because

AMPK is a key factor in lipid partitioning (balance between synthesis and oxida-

tion), management of nonalcoholic fatty liver disease by activators of AMPK

represents a new therapeutic strategy. Adiponectin treatment restores insulin sensi-

tivity and decreases hepatic steatosis of obese mice (Xu et al. 2003). This effect is

linked to an activation of AMPK in the liver that decreases fatty acid biosynthesis

and increases mitochondrial fatty acid oxidation (Yamauchi et al. 2001). Reduction

of liver steatosis when AMPK is activated has also been confirmed by a decrease

in liver triglyceride content in lean and obese rodents during AICAR infusion

(Bergeron et al. 2001a; Cool et al. 2006) and after treatment with small-molecule

AMPK activators (Cool et al. 2006). The synthesis of triglycerides is regulated by

the supply of both glycerol-3-phosphate (from carbohydrate metabolism) and fatty

acyl-coenzyme A. The first step of triglyceride synthesis is catalyzed by glycerol-3-

phosphate acyl-transferase (GPAT). AICAR or exercise-induced AMPK activation

reduces hepatic GPAT activity and triglyceride esterification (Muoio et al. 1999;

Park et al. 2002). Fasting that increases hepatic AMPK inhibits GPAT activity

(Witters et al. 1994). In the same way, AMPK activation by resveratrol protects

against lipid accumulation in the liver of diabetic mice (Zang et al. 2006) in

association with increased mitochondrial number (Baur et al. 2006) and SIRT1-

dependent deacetylation of peroxisome proliferator-activated receptor coactivator

(PGC)-1a, a master regulator of mitochondrial biogenesis (Baur et al. 2006;

Rodgers and Puigserver 2007). The efficacy of metformin as a treatment for fatty

liver disease has been confirmed in obese (ob/ob) mice, which develop hyperinsu-

linemia, insulin resistance, and fatty livers (Lin et al. 2000).
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The discovery of new strategies of management of hepatic steatosis in humans is

of considerable interest. AMPK activation could be one of them as suggested by

recent clinical studies in T2D patients. Indeed, it has been demonstrated that

AICAR infusion results in significant decline in circulating plasma nonesterified

fatty acid (NEFA) levels, suggesting stimulation of hepatic fatty acid oxidation and/

or a reduction in whole-body lipolytic rate (Boon et al. 2008). Management of

hepatic steatosis by targeting AMPK is also suggested by recent successes in

treating this disorder with diet, exercise, and TZDs all known as AMPK activators

(Carey et al. 2002; Neuschwander-Tetri and Caldwell 2003). Other studies are

needed to analyze the beneficial effect of AMPK activation for the management

of fatty liver diseases in humans.

4.5 Mimicking the Beneficial Effects of an Antiobesity Drug

Weight reduction is best achieved by behavioral change to reduce energy intake

and by increasing physical activity to enhance energy expenditure. Therefore, the

AMPK system may be an important pharmacological target to reduce fatty acid

storage in adipocytes and to treat obesity. By inducing fatty acid oxidation within

the adipocyte, activation of AMPK would reduce fat cell size and also prevent

fatty acids from being exported to peripheral tissues and cause deleterious effects.

Direct evidence linking AMPK activation to diminished adiposity was first

obtained by chronic administration of AICAR to lean and obese rats, an effect

attributable, at least in part, to an increase in energy expenditure (Buhl et al. 2002;

Winder et al. 2000). Furthermore, the antiobesity hormone leptin increases fatty

acid oxidation in skeletal muscle by activating AMPK (this process involves an

increase in the AMP/ATP ratio) (Minokoshi et al. 2002) and depletes body fat

stores by activating AMPK activity and by increasing uncoupling mitochondrial

protein (UCP)-1 and UCP-2 expression (Orci et al. 2004). b3-Adrenoceptor (b3-
AR) agonists were also found to have remarkable antiobesity and antidiabetic

effects in rodents and these compounds were found to stimulate AMPK in fat cells

(Moule and Denton 1998). In addition, overexpression of UCP-1 in adipocytes

leads to an increase in the AMP/ATP ratio and activation of AMPK, inactivation

of ACC, and a decreased lipogenesis (Matejkova et al. 2004). Additionally, a

strong mitochondrial biogenesis in response to increased UCP-1 expression in

adipocytes has been demonstrated (Orci et al. 2004; Rossmeisl et al. 2002),

features that could enhance the fatty acid oxidation capacity of adipocytes in

response to AMPK activation. During chronic AICAR treatment, activated

AMPK increases UCP-3 expression in muscle independently of changes in mito-

chondrial biogenesis (Stoppani et al. 2002; Zhou et al. 2000). This effect can also

explain changes in energy expenditure during AMPK activation.
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5 Benefits of Targeting AMPK Pathway for Metabolic

Complications

5.1 AMPK and Ischemic Heart

T2D is recognized as an important risk factor for cardiovascular diseases and

mortality. In ischemic heart, balance between glucose and lipids is altered. In this

situation, activation of AMPK is considered as a metabolic adaptation to rescue

energy supply. Indeed, AMPK stimulates glycolysis and sustains energy supply

during ischemic stress. Convincing evidence suggests that the more the AMPK is

activated in ischemic myocardial tissue, the more the size of infarcted tissue is

reduced. Because the size of myocardial infarcted tissue is one of the variables that

determine the risk of sudden death and the risk of cardiac insufficiency in humans,

reduction of the volume of ischemic tissue is an important therapeutic challenge.

Thus, promotion of glucose oxidation or inhibition of fatty acid oxidation in

ischemic/reperfused hearts could be a promising novel therapeutic approach during

myocardial ischemia. Such a mechanism has been demonstrated during the phe-

nomenon called ischemic preconditioning. This phenomenon (consisting in

repeated brief episodes of myocardial ischemia) (Murry et al. 1986) induces

endogenous protective mechanisms in the heart that becomes more resistant to

subsequent ischemic episodes. The molecular mechanism of this protective effect

is based on AMPK activation in a PKC-dependent manner and promotion of

glucose utilization in myocardial cells (Nishino et al. 2004). Attractively, adipo-

nectin protects the heart from ischemia by activating AMPK and increasing the

energy supply to heart cells (Shibata et al. 2005). For example, high blood levels of

adiponectin are associated with a lower risk of heart attack, and vice versa (Pischon

et al. 2004). Additionally, adiponectin levels rapidly decline after the onset of acute

myocardial infarction. Similarly, in mice, deletion of adiponectin induces

increased heart damage after reperfusion that was associated with diminished

AMPK signaling in the myocardium (Shibata et al. 2005). In addition, it has also

been reported that adiponectin attenuated cardiac hypertrophy through activation

of AMPK signaling pathway (Liao et al. 2005; Shibata et al. 2004a). These findings

clearly show that adiponectin has a cardioprotective role in vivo during ischemia

through AMPK-dependent mechanisms.

Since AMPK regulates the balance between glucose and fatty acid metabolism at

the cellular level, the metabolic response of the heart to global ischemia was studied

in AMPKa2�/� mice. These hearts displayed a more rapid onset of ischemic

contracture, which was associated with a decrease in ATP content, in lactate

production, in glycogen content, and in the phosphorylation state of ACC (Zarrin-

pashneh et al. 2006). Importance of metabolic adaptation via AMPK activation

during ischemia was also documented in another transgenic mouse model over-

expressing a dominant-negative form of AMPKa2 in the heart (Russell et al. 2004).
These studies indicate that the a2-isoform of AMPK is required for the metabolic
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response of the heart to ischemia, suggesting that AMPK is cardioprotective. Thus,

AMPK activators could be of particular interest for the management of myocardial

ischemia. Nevertheless, inappropriate activation of AMPK can have deleterious

consequences in the heart. Indeed, in humans, a variety of mutations in the g2-
subunit (Fig. 1) have been shown to produce a glycogen storage cardiomyopathy

characterized by ventricular preexcitation, conduction defects, and cardiac hyper-

trophy (Dyck and Lopaschuk 2006). This argues for a restrictive use of AMPK

activators during the acute phase of heart ischemia and not for a chronic activation

of cardiac AMPK. Thus, the balance between benefits and deleterious cardiac

effects of AMPK activation has to be studied in detail.

5.2 AMPK and Endothelial Dysfunction

Endothelial cell dysfunction, as manifested by impaired vascular relaxation or an

increase in circulating vascular cell adhesion molecules, is present in patients with

T2D, and it is thought to be one component of the inflammatory process that

initiates atherogenesis (Van Gaal et al. 2006). Based on studies using genetically

modified mice, the production of NO via eNOS is crucial in the regulation of

vascular tone (Lau et al. 2000; Maxwell et al. 1998). The activity of eNOS is

largely determined by posttranslational modifications such as multisite phosphory-

lation and protein interactions. Interestingly, AMPK enhances eNOS activity

by direct phosphorylation of Ser-1177 (Chen et al. 1999, 2000) and Ser-633

(Chen et al. 2009) and by promoting its association with heat shock protein 90

(Davis et al. 2006), leading to endothelial NO production. In this respect, metformin

has been proposed to improve endothelium function in diabetes by favoring phos-

phorylation of eNOS by AMPK activation (Davis et al. 2006). Metformin was

also shown to relax endothelium-denuded rat aortic rings precontracted with

phenylephrine, showing that AMPK can induce vasorelaxation in an endothelium-

and NOS-independent manner (Majithiya and Balaraman 2006). Accordingly,

AMPK activation in response to hypoxia or metabolic challenge can induce vasor-

elaxation of big vessels (Evans et al. 2005; Rubin et al. 2005), thereby favoring

blood flow. Interestingly, AMPK-dependent adiponectin vascular effects have

been demonstrated for angiogenic repair in an ischemic hind limb model (Shibata

et al. 2004b). Similarly, a-lipoic acid improves vascular dysfunction by normal-

izing triglyceride and lipid peroxide levels and NO synthesis in endothelial

cells from obese rat by activating AMPK (Lee et al. 2005a). Attractively, adipo-

nectin exhibits potent anti-atherosclerotic effects and suppresses endothelial cell

proliferation via AMPK activation (Kubota et al. 2002; Yamauchi et al. 2003).

Beyond the vascular effects of AMPK activation, it has been recently demon-

strated that AMPK can regulate blood pressure. Thus, long-term administration

of AICAR reduces systolic blood pressure in an insulin-resistant animal model

(Buhl et al. 2002). In this process, a potential role for AMPK could be the regulation
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of ion channels or sodium cotransporters including ENaC and the Na–K–2Cl

cotransporter (Carattino et al. 2005; Fraser et al. 2003). These data provide addi-

tional support to the hypothesis that AMPK activation might be a potential future

pharmacological strategy for treating the cardiovascular risk factors linked to the

metabolic syndrome.

6 Conclusion

Lifestyle modifications are recognized as an important preventive and therapeutic

intervention for impaired glucose tolerance, insulin resistance, and T2D patients.

AMPK activators are potential new therapeutic agents for the treatment of T2D by

mimicking the beneficial effects of physical activity and of calorie restriction.

Accordingly, AMPK-activating agents could also be used as regulators of hyper-

glycemia, obesity, lipid disorders, lipotoxicity, and cardiovascular risk by targeting

specific cellular pathways (Fig. 3). Resveratrol, metformin, TZDs, adiponectin,

and leptin are now considered as AMPK activators. However, many other effects

of AMPK activation should be carefully evaluated and many questions are not

resolved: Are new AMPK activators tissue specific? What are the consequences of

a long-term pharmacological AMPK activation? Additional studies are required to

address these critical points.

Hormonal
adiponectin
lepin

Pharmacological

Fatty acid uptake and oxidation,
glucose uptake and glycolysis

Fatty acid uptake and
cholesterol synthesis,
gluconeogenesis weight reduction

improve lipid profile
improve exercise capacity
reduction in blood glucose
reduce insulin resistance

Fatty acid 
synthesis, lipolysis

Fatty acid uptake and
oxidation, glucose uptake,
mitochondrial biogenesis

AICAR
metformin
thiazolidinediones

AMPK
activation

Physiological
fasting
exercise

Fig. 3 AMPK, a potential therapeutic target in metabolic disease. AMPK pathway has become

the focus of a great deal of attention as a novel therapeutic target in metabolic disease because it

has been demonstrated that physiological and pharmacological activation of AMPK results in

remodeling different metabolic pathways. AMPK has several important metabolic effects, mim-

icking the beneficial effects of exercise, including modulation of lipid metabolism, enhanced

muscle glucose uptake, increased mitochondrial biogenesis, improvement in insulin sensitivity,

and reduction in blood glucose. Activation of AMPK by pharmacological agents presents a unique

challenge to prevent and treat the metabolic abnormalities associated with the metabolic syndrome
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Abstract A growing body of evidence suggests that mitochondrial abnormalities

are involved in diabetes and associated complications. This chapter gives an

overview about the effects of diabetes in mitochondrial function of several tissues

including the pancreas, skeletal and cardiac muscle, liver, and brain. The realization

that mitochondria are at the intersection of cells’ life and death has made them a

promising target for drug discovery and therapeutic interventions. Here, we also

discuss literature that examined the potential protective effect of insulin, insulin-

sensitizing drugs, and mitochondrial-targeted antioxidants.
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1 Introduction

Diabetes mellitus is a complex metabolic disorder characterized by hyperglycemia

and is a major cause of morbidity and mortality affecting nearly 8% of the popula-

tion in the world. Type 1 diabetes mellitus (T1DM) affects 5–10% of diabetic

patients and results from the specific destruction of pancreatic b cells by the

immune system culminating in hypoinsulinemic and hyperglycemic states. Type

2 diabetes mellitus (T2DM) is the most common form of diabetes and affects

80–95% of diabetic patients. Worldwide, approximately 200 million people cur-

rently have T2DM, a prevalence that has been predicted to increase to 366 million

by 2030 (Kalofoutis et al. 2007). T2DM is complex in etiology and is characterized

by a relative insulin deficiency, reduced insulin action and insulin resistance of

glucose transport, especially in skeletal muscle and adipose tissue. T2DM is a

polygenic disease that results from a complex interplay between genetic predispo-

sition and environmental factors such as diet, degree of physical activity and age

(Ross et al. 2004). Diabetic metabolic changes result in macrovascular complica-

tions leading to accelerated atherosclerosis and coronary heart or peripheral arterial

disease, or both, and in microvascular complications leading to retinopathy,

nephropathy, and neuropathy (Hudson et al. 2005).

Several clinical prospective trials designed for investigating whether diabetes

complications are related to glycemia regulation clearly established that hypergly-

cemia causes vascular and tissue damage in patients with diabetes (The Diabetes

Control and Complications Trial Research Group 1993; UK Prospective Diabetes

Study (UKPDS) Group 1998), which can be worsened by genetic factors of indivi-

dual susceptibility and by associated pathologic factors, such as hypertension or

hyperhomocysteinemia. It is generally admitted that repeated acute changes in

blood glucose and cellular glucidic metabolism, as well as cumulative long-term

alterations of cellular and extracellular constituents, represent the mechanisms that

mediate the damaging effects of hyperglycemia. A strict glycemic control may

reduce in part the incidence of microvascular complications but is less effective in

preventing the progression of macrovascular diseases that are largely associated

with hypertension (Fowler et al. 2008). The damaging effects of hyperglycemia

affect mainly certain cell types that are unable to maintain their intracellular glucose

concentration in hyperglycemic conditions (endothelial cells in the vascular system,

mesangial cells in the kidney, neurons and neuroglia in the nervous system, and

pancreatic b-cells) interfering with cell constituents namely mitochondria.

Both T1DM and T2DM, as well as other types of diabetes, are associated with

similar long-term complications that, at least in part, appear to result from patho-

genic processes at the mitochondrial level. However, mitochondrial abnormalities

associated with diabetes are tissue-specific. Bugger et al. (2009) compared the

effect of diabetes in several tissues obtained from the type 1 diabetic akita mice.

The authors observed that the fatty acid oxidation (FAO) proteins were less

abundant in liver mitochondria, whereas FAO protein content was induced in

mitochondria from all other tissues. Kidney mitochondria showed coordinate
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induction of tricarboxylic acid (TCA) cycle enzymes, whereas TCA cycle proteins

were repressed in cardiac mitochondria. In addition, the levels of oxidative phos-

phorylation system (OXPHOS) subunits were coordinately increased in liver mito-

chondria, whereas mitochondria of other tissues were unaffected. Mitochondrial

respiration, ATP synthesis, and morphology were unaffected in liver and kidney

mitochondria. In contrast, state 3 respiration, ATP synthesis, and mitochondrial

cristae density were decreased in cardiac mitochondria and accompanied by coor-

dinate repression of OXPHOS and peroxisome proliferator-activated receptor

(PPAR)-g coactivator (PGC)-1a transcripts (Bugger et al. 2009). We also observed

that diabetes promoted a significant decrease in kidney and brain mitochondrial

coenzyme Q9 (CoQ9) content, while an increase of CoQ9 was observed in heart

mitochondria (Moreira et al. 2006). Furthermore, diabetes induced a significant

increase in hydrogen peroxide (H2O2) production in kidney mitochondria, this

effect being accompanied by a significant increase in glutathione peroxidase

(GPx) and reductase (GR) activities. In addition, brain mitochondria presented a

lower ATP content and ability to accumulate Ca2+. In contrast, heart and kidney

mitochondria presented a slight higher capacity to accumulate this cation (Moreira

et al. 2006). These studies clearly show that diabetes impacts mitochondria differ-

ently from different tissues.

Here we address the close association between mitochondrial alterations and

diabetes, putting emphasis on T2DM, in different tissues. The potential protective

role of insulin, insulin-sensitizing drugs, and mitochondrial target antioxidants will

be also debated.

2 Mitochondrial Abnormalities in Diabetes

Mitochondria are increasingly recognized as subcellular organelles that are essential

for generating the energy that fuels normal cellular function while, at the same time,

they monitor cellular health in order to make a rapid decision (if necessary) to

initiate programmed cell death (Fig. 1). As such, the mitochondria sit at a strategic

position in the hierarchy of cellular organelles to continue the healthy life of the cell

or to terminate it. Mitochondria are involved in the generation of cellular ATP via

OXPHOS. However, OXPHOS is a major source of endogenous toxic free radicals,

including H2O2, hydroxyl (HOl), and superoxide (O2
�

l) radicals that are products of

normal cellular respiration. With inhibition of electron transport chain (ETC),

electrons accumulate in complex I and coenzyme Q, where they can be donated

directly to molecular oxygen (O2) to give O2
�

l that can be detoxified by the

mitochondrial manganese superoxide dismutase (MnSOD) to give H2O2 that, in

turn, can be converted to H2O by glutathione peroxidase (GPx). However, O2
�

l in

the presence of nitric oxide (NOl), formed during the conversion of arginine to

citrulline by nitric oxide synthase (NOS), can lead to peroxynitrite (ONOO�). H2O2

in the presence of reduced transition metals can be converted to toxic HOl via

Fenton and/or Haber Weiss reactions. Several efficient enzymatic processes are
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continuously operational to quench the reactive species including SOD, GPx,

superoxide reductase, catalase, peroxiredoxin, and thioredoxin/thioredoxin reduc-

tase. Inevitably, if the amount of free radical species produced overwhelms the cell

capacity to neutralize them, oxidative stress occurs, followed by mitochondrial

dysfunction and cell damage. Reactive species generated by mitochondria have

several cellular targets including mitochondrial components themselves. The lack of

histones in mitochondrial DNA (mtDNA) and diminished capacity for DNA repair

render mitochondria an easy target to oxidative stress events (Moreira et al. 2010).

Mitochondria also serve as high capacity Ca2+ sinks, which allows them to stay

in tune with changes in cytosolic Ca2+ loads and aid in maintaining cellular Ca2+

Fig. 1 Mitochondrial (dys)function. Besides the fundamental role of mitochondria in the genera-

tion of energy (ATP), these organelles are also the main producers of oxygen free radicals. If the

defense mechanisms are debilitated, these reactive species initiate a cascade of deleterious events

within the cell. Mitochondrial abnormalities associated with enhanced oxidative stress have long

been recognized to play a major role in degenerative disorders like diabetes. Indeed, under adverse

conditions, mitochondria suffer profound alterations that lead to a reduced generation of ATP and

an enhanced production of reactive oxygen species. Mitochondria also lose the Ca2+ buffering

capacity, which can initiate a cascade of deleterious events within the cell. Impaired mitochondria

also release several proapoptotic factors upon induction of apoptosis. These factors are either

directly triggering apoptosis by associating with cytosolic factors to form the apoptosome. Finally,

some mitochondrial, proapoptotic proteins translocate into the nucleus to induce DNA fragmenta-

tion. Altogether these mitochondrial alterations contribute to cell degeneration and death. AIF
apoptosis inducing factor; APAF-1 protease-activating factor 1; dATP 20-deoxyadenosine 50-
triphosphate; ROS reactive oxygen species
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homeostasis that is required for normal cellular function. Conversely, excessive

Ca2+ uptake into mitochondria has been shown to increase ROS production, inhibit

ATP synthesis, induce mitochondrial permeability transition pore (PTP), and

release small proteins that trigger the initiation of apoptosis, such as cytochrome

c and apoptosis-inducing factor (AIF), from the mitochondrial intermembrane

space into the cytoplasm. Released cytochrome c binds apoptotic protease activat-
ing factor 1 (Apaf-1) and activates the caspase cascade (Fig. 1) (Moreira et al.

2010). Such alterations in mitochondrial function have been proposed to be

involved in the pathogenesis of several disorders including diabetes.

The next subsections are devoted to discuss diabetes-associated mitochondrial

abnormalities in pancreas, skeletal and cardiac muscle, liver and nervous tissue.

2.1 Pancreas

The role of deficient b-cell mass in T2DM has been debated for decades (Ahrén

2005). At the moment, the strongest data available suggest that there is, indeed, a

loss of b-cell mass in T2DM due to increased apoptosis. While this is most likely a

fact, it cannot by itself account for the perturbation of insulin secretion in the

disease. b-Cell loss in diabetic obese and lean individuals at most reaches �60%

and 40%, respectively, compared with obese and lean nondiabetic individuals

(Butler et al. 2003). Reasonably, if the observed loss of b-cell mass plays a role

in the pathogenesis of T2DM, it does so in combination with a functional defect.

It is widely agreed that insulin secretion is largely controlled by metabolism of

fuels, foremost glucose, in the pancreatic b-cell (Muoio and Newgard 2008). Other

factors, such as circulating hormones, paracrine and autocrine mechanisms and

neuronal control, all combine to modulate insulin secretion elicited by b-cell
metabolism (Ahrén 2000). In this context, mitochondria play a key role. Both

rapid (first phase) and more prolonged (second phase) insulin secretion (O’Connor

et al. 1980) are dependent on glucose metabolism and mitochondrial oxidative

capacity; glucose oxidation increases the ATP/ADP ratio, inhibiting plasma mem-

brane ATP-sensitive K+ channels and allowing voltage-gated Ca2+ channels to

open. Increased cytoplasmic Ca2+ then triggers exocytosis of plasma-membrane

docked insulin granules (first phase). Subsequent recruitment of granules to the

plasma membrane (second phase) appears to depend on mitochondrial metabolites

produced by anaplerosis (Hasan et al. 2008). Mitochondrial metabolism is also

required for the transient, controlled production of ROS, which is required for the

mitochondrial signaling pathways that trigger granule exocytosis (Evans et al.

2003; Leloup et al. 2009).

Mitochondria also play a critical role in the control ofb-cellmass. Data suggest that

increased apoptosis underlies the loss of b cells observed in islets from patients with

T2DM (Butler et al. 2003; Trifunovic and Larsson 2008). Indeed, the apoptotic

pathways converge in mitochondria, where caspase 3 activation and cytochrome c
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release seem to precipitate these events. Furthermore, aging potentiates mitochondrial

abnormalities that occur in T2DM (Lee et al. 2007; Trifunovic and Larsson 2008).

A study performed on islets obtained from 14 cadaveric donors with T2DM

showed that the isolated islets are smaller and contain a reduced proportion of b-
cells (Deng et al. 2004). Insulin secretion in response to glucose is impaired with

respect to threshold, rate, and total amount released. In contrast, the maximal

response, as elicited by KCl, is unchanged. These results suggest that diabetic islets

exhibit a specific metabolic impairment, since the secretory dysfunction is

restricted to glucose. Anello et al. (2005) examined insulin secretion and mitochon-

drial function in islets from seven T2DM donors. The authors confirmed that

glucose-stimulated, but not arginine-stimulated, insulin secretion is impaired in

those individuals supporting the idea that in T2DM the b-cells are characterized by
metabolic impairments. While ATP levels in the basal state are elevated in diabetic

islets, they fail to trigger insulin secretion. Moreover, glucose is less effective to

hyperpolarize the mitochondrial membrane in the diabetic islets. The authors

explain this finding with an increase in the mitochondrial uncoupling protein

(UCP) 2 levels. This protein is thought to uncouple the respiratory chain from

ATP production by allowing protons to flow back into the mitochondrial matrix

without giving rise to ATP. Interestingly, these functional alterations are paralleled

by changes in mitochondrial structure. Also expression of complexes I and IV is

increased in the islets from patients with T2DM (Anello et al. 2005).

There are also several studies performed with diabetic animals showing that

mitochondrial alterations are intimately associated with b-cells dysfunction. Using
an antibody specific for toxic oligomers and cryo-immunogold labeling in human

islet amyloid polypeptide (IAPP) transgenic mice, human insulinoma and pan-

creas from humans with and without T2DM, Gurlo et al. (2010) tried to establish

the abundance and sites of formation of IAPP toxic oligomers. The authors

concluded that IAPP toxic oligomers are formed intracellularly within the secre-

tory pathway in T2DM. Most striking, IAPP toxic oligomers appeared to disrupt

membranes of the secretory pathway and then, when adjacent to mitochondria,

disrupted mitochondrial membranes (Gurlo et al. 2010). Toxic oligomer-induced

secretory pathway and mitochondrial membrane disruption is a novel mechanism

to account for cellular dysfunction and apoptosis in T2DM. Lu et al. (2010)

investigated the changes in islet mitochondrial function and morphology during

progression from insulin resistance (3 weeks old), immediately before hypergly-

cemia (5 weeks old), and after diabetes onset (10 weeks old) in transgenic MKR

mice, a model of T2DM, compared with controls. At 3 weeks, MKR mice were

hyperinsulinemic but normoglycemic and b-cells showed negligible mitochondrial

or morphological changes. At 5 weeks, MKR islets displayed abrogated hyperpo-

larization of mitochondrial membrane potential (DCm), reduced mitochondrial

Ca2+ uptake, slightly enlarged mitochondria, and reduced glucose-stimulated

insulin secretion. By 10 weeks, MKR mice were hyperglycemic and hyperinsuli-

nemic and b-cells contained swollen mitochondria with disordered cristae. b-Cells
displayed impaired stimulus–secretion coupling including reduced hyperpolariza-

tion of DCm, impaired Ca2+-signaling, and reduced glucose-stimulated ATP/ADP
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and insulin release. Furthermore, decreased complex IV-dependent O2 consump-

tion and signs of oxidative stress were observed in diabetic islets. Protein profiling

of diabetic islets revealed that 36 mitochondrial proteins were differentially

expressed, including inner membrane proteins of the ETC (Lu et al. 2010). This

study provides novel evidence for a critical role of defective mitochondrial oxida-

tive phosphorylation and morphology in the pathology of insulin resistance-induced

b-cell failure.

2.2 Skeletal Muscle

Mitochondria are particularly important for skeletal muscle function, given the high

oxidative demands imposed on this tissue by intermittent contraction. Mitochondria

play a critical role in ensuring adequate levels of ATP needed for contraction by the

muscle sarcomere. Skeletal muscle is the largest insulin-sensitive organ in humans,

accounting for more than 80% of insulin-stimulated glucose disposal. Thus, insulin

resistance in this tissue has a major impact on whole-body glucose homeostasis. In

skeletal muscle, disruption of mitochondrial biology is evident in some insulin-

resistant subjects, years before they develop diabetes (Befroy et al. 2007; Patti et al.

2003; Petersen et al. 2004). Furthermore, the impairment of skeletal muscle mito-

chondria is recognized as a hallmark of established T2DM (Lowell and Shulman

2005). However, whether perturbations in these organelles are central to the

pathophysiology of insulin resistance in the skeletal muscle is robustly debated

(Boushel et al. 2007; Holloszy 2009; Kraegen et al. 2008). Moreover, in light of the

lack of macrovascular benefit of exclusively targeting glucose control in T2DM

(Gerstein et al. 2008; Patel et al. 2008), and the strong association of elevated

insulin levels with T2DM complications, it is crucial to better understand the

pathophysiology of insulin resistance.

A panoply of animal and human studies show the occurrence of skeletal mito-

chondrial abnormalities related to diabetes and its complications. Due to space

limitations and abundance of studies performed in human skeletal muscle, here we

only discuss human data. To study whether perturbations in skeletal muscle mito-

chondrial biology are evident in subjects at risk for diabetes, investigators have

studied offspring of subjects with T2DM. Lean offspring of diabetic patients have

been shown to have a significant reduction in skeletal muscle ATP synthesis in

response to insulin stimulation as measured by magnetic resonance spectroscopy

saturation transfer. These measurements reflected impaired baseline activity of

mitochondrial OXPHOS (Petersen et al. 2004, 2005). Insulin-resistant offspring

of diabetic parents also showed a reduction in skeletal muscle density and content

(Morino et al. 2005). The lean offspring of diabetic parents in these studies may

represent a narrowly selected cohort of individuals that do not necessarily reflect the

early pathophysiology of T2DM in this heterozygous disease process. In addition,

the measurement of basal oxidative phosphorylation flux did not reflect maximal
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oxidative capacity of skeletal muscle, and whether baseline perturbations are

sufficient to initiate the development of skeletal muscle insulin resistance has

been questioned (Holloszy 2009; Kemp 2008).

Interestingly, overweight subjects with maintained insulin sensitivity exhibit

increased lipid oxidation and the maintenance of normal myocellular lipid content

(Perseghin et al. 2002). Conversely, nondiabetic extremely obese subjects often do

exhibit insulin resistance (Thyfault et al. 2004) that is linked, in part, to the

accumulation of fatty acid esters in the skeletal muscle (Cooney et al. 2002) and

the capacity of the skeletal muscle to oxidize fatty acid substrates is significantly

blunted (Kim et al. 2000; Thyfault et al. 2004).

The study of skeletal muscle from diabetic individuals shows the coordinate

down-regulation of genes encoding OXPHOS enzymes (Mootha et al. 2003), lower

levels of the b-subunit of ATP synthase protein (Højlund et al. 2003), decreased

mitochondrial respiration (Mogensen et al. 2007), and evidence of reduced bioe-

nergetic capacity, as illustrated by slower postexercise recovery of skeletal muscle

high-energy phosphate stores compared with nondiabetic controls (Scheuermann-

Freestone and Clarke 2003). These later data have been confirmed, comparing

overweight diabetic with nondiabetic subjects where in vivo skeletal muscle phos-

phocreatine recovery half-life after exercise is blunted in the diabetic subjects

(Phielix et al. 2008; Schrauwen-Hinderling et al. 2007). Other studies show that

subjects with insulin resistance or T2DM have diminished type I oxidative muscle

fiber content (Lillioja et al. 1987) and an increased skeletal muscle glycolytic to

oxidative phosphorylation enzyme ratio (Simoneau and Kelley 1997). It was also

shown that the total activity of NADH-oxidase in biopsy obtained from lean

individuals is significantly higher than corresponding activity for obese or T2DM

individuals. The specific activity of NADH-oxidase and NADH-oxidase/citrate

synthase and NADH-oxidase/b-hydroxyacyl-CoA dehydrogenase ratios are reduced

by two- to threefolds in both T2DM and obesity (Ritov et al. 2009). The analysis of

direct respirometry to measure mitochondrial O2 consumption in the skeletal muscle

aligns with this concept in that diabetic individuals have diminished complexes I and

II substrate-driven oxidative capacity in gastrocnemius muscle compared with con-

trols when normalized to muscle mass; however, when normalized to mitochondrial

genomic content, these respirometry differences were abolished (Boushel et al.

2007). These results suggest that the function of mitochondria does not differ in

diabetes but that the overall muscle content of mitochondria is diminished. Recently,

Rabøl et al. (2010) compared mitochondrial respiration and markers of mitochondrial

content in the skeletal muscle of arm and leg in patients with T2DM and obese

control subjects. The authors observed that in the arm, mitochondrial respiration and

citrate synthase activity did not differ between groups, but mitochondrial respiration

per milligram of muscle was significantly higher in the leg muscle of the control

subjects compared to T2DM. Fiber type compositions in arm and leg muscles were

not different between the T2DM and control group, and maximum rate of O2

consumption did not differ between the groups (Rabøl et al. 2010). These results

demonstrate that reduced mitochondrial function in T2DM is only present in the leg

musculature suggesting that mitochondrial dysfunction is not a primary defect
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affecting all skeletal muscle but could be related to a decreased response to locomotor

muscle use in T2DM. Despite some disparate results, the majority of the studies

demonstrate that diabetes, as well as other insulin-resistant conditions, are intimately

associated with skeletal muscle mitochondria impairment.

2.3 Cardiac Muscle

The heart is voracious in its appetite for energy, to such extent that it generates and

consumes a mass of ATP daily that surpasses cardiac mass itself by approximately

5- to 10-fold (Opie 2004). This demand for energy reflects the continuous contrac-

tile functioning of the heart to sustain systemic circulation and nutrient supply. This

high energy flux translates into the cardiomyocyte having a mitochondrial volume

between 23% and 32% of myocellular volume (Sack 2009).

The literature shows that diabetes directly affects the function of cardiac mito-

chondria. Boudina et al. (2007) examined the function of heart mitochondria in

saponin-permeabilized heart muscle fibers isolated from insulin-resistant, diabetic,

leptin receptor-deficient db/db mice compared with lean controls. These investiga-

tors reported decreased respiration on complex I substrates and palmitoyl-carnitine,

associated with proportionately reduced ATP production and therefore no change in

ADP/O index. These investigators also reported a decreased content of the F1 a-subunit
of ATP synthase and an increase in fatty acid-induced proton conductance based on

proton-leak kinetics (Boudina et al. 2007). These results indicate a reduced cardiac

muscle function in db/db mice. However, other studies also performed in db/db
mice show that these rodents exhibited a diminished cardiac glucose oxidation and

increased mitochondrial FAO and myocardial O2 consumption (Tabbi-Anneni et al.

2008). These perturbations resulted in decreased mitochondrial efficiency (uncou-

pling) and a reduced capacity to respond to increased cardiac workload (Boudina

et al. 2005). It was recently shown that the transcription factor, nuclear factor

kappa-B (NF-kB)-induced oxidative stress contributes to mitochondrial and cardiac

dysfunction in db/db mice (Mariappan et al. 2010).

Oliveira et al. (2003) reported that streptozotocin (STZ)-induced diabetes, a

model of T1DM, facilitates the PTP in cardiac mitochondria, resulting in decreased

mitochondrial Ca2+ accumulation. The authors also observed that cardiac mito-

chondria from diabetic rats had depressed O2 consumption during the phosphoryla-

tive state. The authors suggested that the reduced mitochondrial Ca2+ uptake

observed in heart mitochondria from diabetic rats is related to an enhanced suscep-

tibility to PTP rather than to damage to the Ca2+ uptake machinery. It was also

shown that type 1 diabetic cardiomyopathy in the Akita mouse model is character-

ized by lipotoxicity and diastolic dysfunction with preserved systolic function

(Basu et al. 2009).

Clinical data are being accumulated that diabetes does impair cardiac function,

independent of other risk factors (Fox et al. 2007; Galderisi et al. 1991; Ishihara
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et al. 2001). It has been shown using proton magnetic resonance spectroscopy

(1H-MRS) that subjects with diabetes or glucose intolerance have increased cardiac

steatosis (McGavock et al. 2007), which may indirectly reflect diminished mito-

chondrial metabolic capacity. The measurement of high-energy phosphates in

diabetic and nondiabetic subjects without clinical coronary artery disease and

normal echocardiographic studies indirectly suggest that diabetic subjects have

diminished cardiac energetics (Scheuermann-Freestone and Clarke 2003). Hope-

fully, future studies in human cardiac tissue will clarify the interaction between

diabetes and mitochondrial function.

2.4 Liver

The liver plays a central, unique role in carbohydrate, protein, and fat metabolism.

It is critical for maintaining glucose homeostasis (1) during fuel availability, via

storage of glucose as glycogen or conversion to lipid export and storage in adipose

tissue and (2) in the fasting state, via catabolism of glycogen, synthesis of glucose

from noncarbohydrate sources such as amino acids (gluconeogenesis) and keto-

genesis. In turn, these responses are regulated by the key hormones insulin and

glucagon, which modulate signaling pathways and gene expression, leading to

inhibition or stimulation of glucose production, respectively.

Abnormalities of liver mitochondria could potentially affect multiple cellular

functions within hepatocytes, both directly such as reduced ATP generation, altera-

tions in oxidative stress, reduced capacity for FAO, and indirectly via effects on

energy-requiring processes, including gluconeogenesis, synthesis of urea, bile

acids, cholesterol and proteins, and detoxification (Patti and Corvera 2010).

Recently, Gnoni et al. (2010) reported that liver mitochondria from STZ-induced

diabetic rats presented reduced expression and activity of citrate carrier. It was also

shown that ZDF rats, an obese model of T2DM, have a defect in the mitochondrial

metabolism (Satapati et al. 2008).

Although human liver studies have been limited due to lack of tissue biopsy

samples from otherwise healthy individuals, two groups have examined hepatic

gene expression related to mitochondrial function in both obesity and T2DM (Misu

et al. 2007; Pihlajam€aki et al. 2009; Takamura et al. 2008). In the first study (Misu

et al. 2007), severe obesity (mean BMI 52 kg/m2) was associated with reduced

expression of 7 of the 25 genes encoding proteins of OXPHOS and the expression

of these genes was inversely correlated with hepatic lipid accumulation and paral-

leled by reduced expression of PGC-1a and genes known to be regulated by thyroid

hormone. Similar patterns were observed in obese subjects with established T2DM.

Interestingly, reduced expression of OXPHOS genes was also observed in mice fed

a high-fat diet and normalized by acute therapy with thyroid hormone T3 suggest-

ing that functional hepatic thyroid hormone resistance could contribute to reduced

expression of mitochondrial oxidative genes in this context (Pihlajam€aki et al.
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2009). In contrast, studies in Japanese individuals with established diabetes and

modest obesity (BMI 27 kg/m2) reported a modest increase in the expression of

multiple genes of OXPHOS complexes, in parallel with BMI and insulin resistance

(Takamura et al. 2008). The up-regulation of these OXPHOS genes was also

positively associated with expression of several genes associated with mitochon-

drial biogenesis, ROS generation, and antioxidant defenses. Thus, increased ROS

related to increased FAO and/or hyperglycemia might contribute to the up-regula-

tion of OXPHOS gene expression in coexisting obesity and T2DM. Studies of

individuals with nonalcoholic steatohepatitis (NASH) provide additional opportu-

nities to identify potential interactions between hepatic lipid accumulation, insulin

resistance, and mitochondrial function in humans. Indeed, enzymatic activities of

complexes I–IV were reduced in liver extracts from patients with NASH and were

inversely correlated with BMI and insulin resistance (Greenfield et al. 2008; Pérez-

Carreras et al. 2003). Moreover, NASH is characterized by prominent abnormalities

in mitochondrial ultrastructure, with increased size, loss of cristae, and paracrystal-

line inclusion bodies similar to those observed in some mitochondrial myopathies

(Sanyal et al. 2001). Although these data cannot address whether such changes are

indeed pathogenic, it is interesting that reduced OXPHOS activity in this setting is

accompanied by increased tissue long-chain acylcarnitines and reduced short-chain

acylcarnitines, despite normal carnitine palmitoyltransferase-1 (CPT-1) activity

and b-oxidation genes (Kohjima et al. 2007; Misu et al. 2007). Similarly, circulat-

ing b-hydroxybutyrate levels are increased in NASH (Sanyal et al. 2001). Together,

these data suggest excessive, but incomplete, FAO is potentially limited by reduced

availability to NAD+ and FAD. In summary, available data indicate that hepatic

lipid accumulation and insulin resistance are intimately linked with mitochondrial

dysfunction.

2.5 Nervous Tissue

Neuronal cells have a high demand for energy to maintain ion gradients across the

plasma membrane that is critical for the generation of action potentials. This intense

energy requirement is continuous; even brief periods of oxygen or glucose depri-

vation result in neuronal death. Mitochondria are essential for neuronal function

because the limited glycolytic capacity of these cells makes them highly dependent

on OXPHOS for their energetic needs.

Previous studies from our laboratory show that brain mitochondria isolated from

STZ diabetic rats possess a lower content of CoQ9 indicating a deficit in antioxidant

defenses in diabetic animals and, consequently, an increased probability for the

occurrence of oxidative stress (Moreira et al. 2005b). Schmeichel et al. (2003)

suggested that oxidative stress leads to oxidative injury of dorsal root ganglion

(DRG) neurons, mitochondria being a specific target. Leinninger et al. (2006)

reported that mitochondria in DRG neurons undergo hyperglycemia-mediated
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injury through the proapoptotic proteins Bim and Bax and the fission protein

dynamin-regulated protein 1 (DRP1). It was also shown that the fission-mediated

fragmentation of mitochondria is associated with enhanced production of mito-

chondrial ROS and cell injury in hyperglycemic conditions (Yu et al. 2008). The

role of mitochondrial fission in the pathogenesis of diabetic neuropathy was

recently addressed (Edwards et al. 2010). The authors observed a greater mitochon-

drial biogenesis in DRG neurons from diabetic compared with nondiabetic mice.

An essential step in mitochondrial biogenesis is mitochondrial fission, regulated by

the mitochondrial fission protein DRP1. Evaluation of diabetic neurons in vivo

indicated small, fragmented mitochondria suggesting an increased fission. In vitro

studies revealed that short-term hyperglycemic exposure increased levels of DRP1

protein. The knockdown of the DRP1 gene decreased the susceptibility to hyper-

glycemic damage (Edwards et al. 2010).

Increasing data support the idea that mitochondrial function declines with aging

and in age-related diseases. We have previously reported an age-related impairment

of the respiratory chain and an uncoupling of OXPHOS in brain mitochondria

isolated from GK rats, a model of T2DM (Moreira et al. 2003). Furthermore, we

also showed that aging exacerbates the decrease in the energetic levels promoted by

diabetes (Moreira et al. 2003). The maintenance of OXPHOS capacity is extremely

important in the brain since about 90% of the ATP required for the normal

functioning of neurons is provided by mitochondria. Because CNS depends so

heavily on ATP production, the inhibition of OXPHOS will affect this system

before any other system. For example, CNS requires a large amount of ATP for

the transmission of impulses along the neural pathway, thus mitochondrial function

impairment may contribute to the loss of neuronal metabolic control and, conse-

quently, to neurodegeneration.

Brain mitochondria of GK rats also presented an age-related susceptibility to

Ca2+, indicating that aging predisposes the diabetic rats’ mitochondria to the

opening of PTP. The PTP opening might be also associated with osmotic swelling

of mitochondria leading to structural changes of these organelles. Indeed, in

peripheral nerves of diabetic humans, the existence of mitochondrial ballooning

and disruption of internal cristae is observed, although this is localized to Schwann

cells and is rarely observed in axons (Kalichman et al. 1998). Similar structural

abnormalities in mitochondria have been described in Schwann cells of galactose-

fed rats (Kalichman et al. 1998) and DRG neurons of long-term STZ diabetic rats

(Sasaki et al. 1997). One hypothesis is that high glucose concentrations potentiate

OXPHOS that may result in damaging amounts of ROS that lead to changes in

mitochondrial structure and function (Nishikawa et al. 2000).

We also observed that diabetes-related mitochondrial dysfunction is exacerbated

by the presence of Ab, a neurotoxic peptide that is intimately involved with

Alzheimer’s disease (AD) pathophysiology (Moreira et al. 2003, 2005a, b). In

recent years, it has been demonstrated that diabetes is a risk factor for several

neurodegenerative disorders including AD, Parkinson’s (PD) and Huntington’s

(HD) diseases, and amyotrophic lateral sclerosis (ALS) (Cardoso et al. 2009a;

Moreira et al. 2007a, 2009).
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3 Mitochondria as Potential Targets

Although mitochondria are one major source of ROS, they are also specific targets

of oxidative damage. The accumulation of oxidative damage could contribute to

mitochondrial dysfunction and cell death in a range of degenerative diseases,

including diabetes. The knowledge that mitochondrial dysfunction has a prepon-

derant role in several diseases opened a window for new therapeutic strategies

aimed to preserve/ameliorate mitochondrial function.

3.1 Insulin and Insulin-Sensitizing Drugs

Insulin/insulin growth factor 1 (IGF-1) signaling pathway is involved in the balance

of the physiological processes that control aging, development, growth, reproduc-

tion, metabolism, and resistance to oxidative stress (Cardoso et al. 2009a, b). In

contrast, the inhibition of this signaling pathway reduces cell survival by promoting

oxidative stress, mitochondrial dysfunction, and prodeath signaling cascade activa-

tion (Cardoso et al. 2009b).

It was previously shown that aged rats present a decrease in the mitochondrial

DCm and ATPase activity and an increase in mitochondrial oxidative damage

(Puche et al. 2008). However, aged rats treated with IGF-1 presented an improved

mitochondrial function associated with an increased ATP production and reduced

free radical generation, oxidative damage, and apoptosis (Puche et al. 2008). It was

also shown that IGF-1 protects from hyperglycemia-induced oxidative stress and

neuronal injury by regulating DCm, possibly by the involvement of UCP3

(Gustafsson et al. 2004). Exposure to high glucose dose- and time-dependently

induced apoptotic changes (DNA fragmentation, altered DCm, and cytochrome

c release) in human umbilical vein endothelial cells (HUVECs) (Li et al. 2009b).

Addition of IGF-1 blocked the high glucose effects in a manner dependent on the

expression of IGF-1 receptor (IGF-1R) since silencing of this receptor with small

interference RNA could diminish the antiapoptosis effects of IGF-1 (Li et al.

2009b). Other studies demonstrated that stimulation of different cell types with

IGF-1 or insulin leads to Akt translocation to mitochondria and GSK-3b phosphor-

ylation (Bijur and Jope 2003), supporting a direct action of IGF-1 and/or insulin in

mitochondria. Boirie et al. (2001) reported that insulin selectively stimulates

mitochondrial protein synthesis in skeletal muscle and activates mitochondrial

enzyme activity. Kuo et al. (2009) reported that insulin replacement not only

prevents activation of the cardiac mitochondrial-dependent apoptotic and calci-

neurin-nuclear factor activation transcription 3 (NFAT3) hypertrophic pathways,

promoted by STZ-induced diabetes, but it also enhances the cardiac insulin/IGF-

1R-phosphatidylinositol 30-kinase (PI3K)-Akt survival pathway. Previous studies

from our laboratory show that insulin treatment attenuates diabetes-induced mito-

chondrial alterations by improving the oxidative phosphorylation efficiency and
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protecting against the increase in oxidative stress (Moreira et al. 2005a, 2006). In

the reperfused brain, insulin regulates cytochrome c release through PI3K/Akt

activation, promoting the binding between Bax and Bcl-xl, and preventing Bax

translocation to the mitochondria (Sanderson et al. 2008). A recent study reported

that mitochondrial respiratory chain dysfunction in DRG of STZ-induced diabetic

rats is improved by insulin (Roy Chowdhury et al. 2010).

Insulin-sensitizing thiazolidinediones (TZDs) are generally considered to work as

agonists for PPARg. However, Bolten et al. (2007) reported that diabetic mice treated

for 1 week with TZDs presented an increased expression of an array of mitochondrial

proteins and PGC1a, the master regulator of mitochondrial biogenesis. Thus, the

pharmacology of the insulin-sensitizing TZDs may involve acute actions on the

mitochondria that are independent of direct activation of the nuclear receptor

PPARg. These findings suggest a potential alternative route to the discovery of

novel insulin-sensitizing drugs. A previous study demonstrated that pioglitazone

and ciglitazone, two TZDs, attenuated hyperglycemia-induced ROS production and

increased the expression of nuclear respiratory factor 1 (NRF-1), mitochondrial

transcription factor A (TFAM), and MnSOD mRNA in HUVECs (Fujisawa et al.

2009). Moreover, pioglitazone also increased mtDNA and mitochondrial density

(Fujisawa et al. 2009). These results suggest that TZDs normalize hyperglycemia-

induced mitochondrial ROS production by induction of MnSOD and promotion of

mitochondrial biogenesis by activating PGC-1a. It was also shown that pioglitazone

induced mitochondrial biogenesis in subcutaneous adipose tissue (Bogacka et al.

2005) as well as in a neuron-like cell line associated with a reduced mitochondrial

oxidative stress (Ghosh et al. 2007). A recent randomized, double-blind, parallel

study shows that pioglitazone increased plasma adiponectin levels, stimulated muscle

AMPK signaling and increased the expression of genes involved in adiponectin

signaling, mitochondrial function, and FAO in skeletal muscle (Coletta et al. 2009).

Fuenzalida et al. (2007) reported that neuronal cells treated with rosiglitazone up-

regulated Bcl-2, thereby stabilizing mitochondrial potential and protecting against

apoptosis. Similar results were obtained by Wu et al. (2009) who demonstrated that

rosiglitazone protected cells against oxygen–glucose deprivation (OGD)-induced

cytotoxicity and apoptosis by suppressing H2O2 production, maintaining DCm,
attenuating cytochrome c release and inhibiting activation of caspases 3 and 9.

Moreover, OGD caused a significant suppression of Bcl-2 and Bcl-xl proteins levels

that were restored by pretreatment with rosiglitazone (Wu et al. 2009).

It has also been shown that PPARg activation protected rat hippocampal neurons

against Ab toxicity (Combs et al. 2000; Inestrosa et al. 2005), induced up-regula-

tion of Bcl-2 pathway, protected mitochondrial function, and prevented neuronal

degeneration induced by Ab exposure and oxidative stress (Fuenzalida et al. 2007).

Indeed, rosiglitazone beneficial effects in memory and cognition seem to be

mediated by the improvement of mitochondrial function, since it leads to an

increase in mitochondria number and metabolic efficiency (Kummer and Heneka

2008). Furthermore, brain mitochondrial biogenesis induced by rosiglitazone

(Strum et al. 2007) could be possibly due to PGC-1a since this PPARg coactivator

regulates mitochondrial function and metabolism (Handschin and Spiegelman
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2006). Furthermore, it was reported that rosiglitazone protects human neuroblas-

toma cells against acetaldehyde, an inhibitor of mitochondrial function (Jung et al.

2006). This protection was mediated by the induction of antioxidant enzymes and

increased expression of Bcl-2 and Bax (Jung et al. 2006). Recently, the same

authors demonstrated that rosiglitazone protects SH-SY5Y cells against 1-methyl-

4-phenylpyridinium (MPP+)-induced cytotoxicity, an experimental model of PD,

by preventing mitochondrial dysfunction and oxidative stress (Jung et al. 2007).

These results suggest that PPARg agonists provide neuroprotection by regulating

mitochondrial antioxidant enzymes expression and maintaining the balance between

pro- and antiapoptotic gene expression. Furthermore, PPARg agonists are known to

regulate the expression of UCP2 (Hunter et al. 2008), mitochondrial proteins that

attenuate mitochondrial ROS production and limit ROS-induced cellular damage.

Recently, Quintanilla et al. (2008) reported that cells expressing mutant huntingtin

(htt), an experimental model of HD, presented significant defects in the PPARg
signaling pathway in comparison with cells expressing wild-type htt protein. In

addition, the authors observed that the pretreatment with rosiglitazone prevented

the loss of DC, mitochondrial Ca2+ deregulation and oxidative stress (Quintanilla

et al. 2008). Evidence shows that PGC-1a is a strong suppressor of ROS production

and induces the expression of ROS scavenging enzymes (St-Pierre et al. 2006).

Moreover, it has been reported that mutant htt can affect mitochondrial function

through the inhibition of PGC-1a expression (Cui et al. 2006; Weydt et al. 2006).

In summary, evidence shows that insulin and insulin-sensitizing agents can be

useful in the treatment of diabetes and other degenerative diseases, mitochondria

being an important target in these pathological conditions.

3.2 Metabolic Antioxidants

Metabolic antioxidants are involved in cellular energy production and act as

cofactors of several metabolic enzymes (Fig. 2).

Lipoic acid (LA) is a coenzyme for mitochondrial pyruvate and a-ketoglutarate
dehydrogenase. Furthermore, it is a powerful antioxidant and can recycle other

antioxidants, such as vitamins C and E and glutathione. Recently, Balkis Budin

et al. (2009) reported that LA prevents the alteration of vascular morphology in

diabetic rats probably through the improvement of glycemic status, dyslipidemia,

and antioxidant enzymatic activities. It was also shown that LA effectively attenu-

ates mitochondria-dependent cardiac apoptosis and exerts a protective role against

the development of diabetic cardiomyopathy (Li et al. 2009a). The ability of LA to

suppress mitochondrial oxidative damage is concomitant with an enhancement of

MnSOD activity and an increase in the glutathione (GSH) content of myocardial

mitochondria (Li et al. 2009a). It was also shown that LA and acetyl-L-carnitine

(ALCAR; a compound that acts as an intracellular carrier of acetyl groups across

the inner mitochondrial membrane) complementarily promote mitochondrial bio-

genesis in murine 3T3-L1 adipocytes (Shen et al. 2008b). Furthermore, we have
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recently shown that LA and/or N-acetyl cysteine (NAC; an antioxidant and gluta-

thione precursor) decrease mitochondrial-related oxidative stress in AD patient

fibroblasts (Moreira et al. 2007b). Suh and collaborators (2004) reported that old

rats injected with LA presented an improvement in glutathione redox status of both

cerebral and myocardial tissues when compared with control rats. In turn, Aliev

et al. (2009) reported that LA and ALCAR supplementation significantly reduced

the number of severely damaged mitochondria and increased the number of intact

mitochondria in the hippocampus of aged rats.

The treatment of diabetic GK rats with a combination of LA, ALCAR, nicotin-

amide, and biotin effectively improved glucose tolerance, decreased the basal

insulin secretion and the levels of circulating free fatty acids (FFA), and prevented

the reduction of mitochondrial biogenesis in skeletal muscle (Shen et al. 2008a).

This treatment also significantly increased mRNA levels of genes involved in lipid

metabolism, including PPARa, PPARd, and CPT-1 and the activity of mitochon-

drial complexes I and II in skeletal muscle. All of these effects of mitochondrial

nutrients were comparable to that of pioglitazone (Shen et al. 2008a).

CoQ (also known as ubiquinone) is a respiratory chain component that accepts

electrons from complexes I or II, to form the reduced product ubiquinol, which

donates electrons to mitochondrial complex III. The in vivo ubiquinone pool exists

largely in a reduced ubiquinol form, acting as an antioxidant and a mobile electron

transfer. Ubiquinol has been reported to function as an antioxidant by donating a

hydrogen atom from one of its hydroxyl groups to a lipid peroxyl radical, thereby

decreasing lipid peroxidation within the mitochondrial inner membrane (Ernster

et al. 1992). Recently, Sena et al. (2008) reported that CoQ10 and vitamin E

decrease glycated hemoglobin HbA1c and pancreatic lipid peroxidation. In

Fig. 2 Mitochondrial-directed therapies. Metabolic antioxidants are involved in cellular energy-

production and act as cofactors of several metabolic enzymes. In addition, they have also potent

antioxidant actions avoiding damage of lipids, proteins, and DNA. Mitochondria-targeted anti-

oxidants and SS peptides are selectively accumulated into mitochondria, a major source of reactive

oxygen species (ROS) protecting mitochondrial and cellular components against oxidative

damage
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addition, it has been reported that CoQ10 prevents high glucose-induced oxidative

stress in HUVECs (Tsuneki et al. 2007). It has also been shown that CoQ10

treatment significantly improved deranged carbohydrate and lipid metabolism of

experimental chemically induced diabetes in rats (Modi et al. 2006). Previous

studies from our laboratory also show that CoQ10 treatment attenuated the decrease

in oxidative phosphorylation efficiency and avoided the increase in H2O2 produc-

tion induced by the neurotoxic peptide Ab40 (Moreira et al. 2005b). Altogether

these results suggest that the delivery of antioxidants, that protect mitochondria and

avoid oxidative stress-related events, could be a promising therapeutic approach for

the treatment of diabetes and associated complications.

3.3 Mitochondria-Targeted Antioxidants and SS Peptides

A major limitation in using antioxidant therapies to treat diabetes and other

degenerative diseases has been the inability to enhance the antioxidant levels within

mitochondria. However, in the last years, considerable progress has been made in

developing mitochondria-targeted antioxidants (i.e., antioxidants that are selec-

tively accumulated into mitochondria) (Fig. 2). Several mitochondria-targeted

antioxidants have been developed by conjugating the lipophilic triphenylphospho-

nium (TPP+) cation to an antioxidant moiety, such as CoQ (MitoQ) and vitamin E

(MitoVitE) (Fig. 2) (Murphy and Smith 2000). This approach makes use of

the potential gradient across the mitochondrial inner membrane. As a result of the

proton gradient, a negative potential from 150 to 180 mV is generated across the

mitochondrial inner membrane. Lipophilic cations may therefore accumulate 100-

to 1,000-fold in mitochondria. However, to function as therapies, mitochondria-

targeted antioxidants must be delivered to mitochondria within cells in patients,

preferably following oral administration. As TPP+ cations pass easily through

phospholipid bilayers, they should be able to pass from the gut to the bloodstream

and from there to most tissues. Indeed, previous studies show that TPP+-derived

compounds are orally biovailable to mice; this was shown by feeding mice tritiated

methylTPP (MitoQ and MitoVitE) in their drinking water, which led to uptake into

the plasma and from there into the heart, brain, liver, kidney, and muscle (Smith

et al. 2003). The methylTPP was shown to be cleared from all organs at a similar

rate by a first-order process with a half-life of about 1.5 days (Smith et al. 2003).

These findings are consistent with the distribution of orally administered alkyl TPP

compounds to all organs because of their facile permeation through biological

membranes.

Data from the literature show that MitoVitE is taken up by mitochondria �80-

fold more than vitamin E (Smith et al. 1999). The authors observed that MitoVitE is

far more effective to protect mitochondria against oxidative stress than vitamin E

itself. Furthermore, it has been shown that MitoVitE is 800-fold more potent

than idebenone in protecting against GSH depletion in cultured fibroblasts from
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patients with Friedreich ataxia (a disease characterized by slowly progressive

neurodegeneration and cardiomyopathy) and is 350-fold more potent than trolox

(Jauslin et al. 2003). Recently, it has been shown that MitoVitE mitigates ethanol-

induced accumulation of intracellular oxidants and counteracts suppression of

glutathione peroxidase/glutathione reductase functions, protein expression of

g-glutamylcysteine synthetase, and total cellular glutathione levels in cerebellar

granule cells (Siler-Marsiglio et al. 2005).

MitoQ is a promising therapeutic antioxidant that has been successfully targeted

to mitochondria. MitoQ excessively accumulates in the mitochondria and reduces

toxic insults from free radicals in the mitochondria. This effect ultimately leads to

the protection of cells from age- and/or disease-related mitochondrial insults.

Recently, the effects of MitoQ on mitochondria in several in vitro cell models

were tested (Bedogni et al. 2003; Dhanasekaran et al. 2004; Hwang et al. 2001;

Jauslin et al. 2003). In cultured fibroblasts from Friedreich ataxia patients, MitoQ

prevented cell death known to be caused by endogenous oxidative stress (Jauslin

et al. 2003). Low concentrations of MitoQ selectively inhibited serum deprivation-

induced apoptosis in PC12 cells (Bedogni et al. 2003). MitoQ reduces ROS

formation and preserves mitochondrial function after glutathione depletion, even

in the cells lacking mtDNA (Lu et al. 2008). These studies suggest that MitoQ may

reduce free radicals, decrease oxidative damage, and maintain mitochondrial func-

tion. Since oxidative damage is intimately involved with the pathophysiology of

AD, there is strong interest in determining whether mitochondria-targeted antiox-

idants decrease oxidative damage in the neurons of AD patients (Reddy 2006). In

phase I trials, MitoQ showed good pharmacokinetic behavior with oral dosing

at 80 mg (1 mg/kg), resulting in a plasma Cmax¼33.15 ng/ml and Tmax¼1 h.

This formulation is now in phase II clinical trial for PD and Friedreich ataxia

(Antipodean Pharmaceuticals Inc., San Francisco, CA, USA).

There is a novel class of small peptide antioxidants that target mitochondria in a

membrane potential-independent manner; i.e., these peptides do not use the nega-

tive potential generated across the mitochondrial inner membrane to accumulate

into the mitochondria (Fig. 2). The structural motif of these SS peptides centers on

alternating aromatic residues and basic amino acids (Szeto 2006). These peptides

are easy to synthesize, readily soluble in water and resistant to peptidase degrada-

tion. Despite carrying 3+ net charge at physiological pH, these peptides have been

shown to readily penetrate cell membranes of a variety of cell types (Zhao et al.

2003). Their cellular uptake appears to be concentration-dependent, nonsaturable,

and not requiring energy (Zhao et al. 2003). SS-31 has a remarkable potency that

can be explained by its extensive cellular uptake and selective partitioning into

mitochondria. Intracellular concentrations of [3H]SS-31 were sixfold higher than

extracellular concentrations. Studies using isolated mitochondria revealed that [3H]

SS-31 was concentrated 5,000-fold in the mitochondrial pellet. By concentrating in

the inner mitochondrial membrane, SS-31 became localized to the site of ROS

production, and protected against mitochondrial oxidative damage and against

further ROS production (Zhao et al. 2004). The SS peptides that possess a tyrosine

residue, such as SS-31, can dose dependently scavenge H2O2, hydroxyl radical,
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and peroxynitrite (Szeto 2008; Zhao et al. 2004). By scavenging hydroxyl radical,

SS-31 also inhibits lipid peroxidation (Zhao et al. 2004). SS-20, which does not

contain a tyrosine residue, lacks scavenging activity but can still reduce H2O2

production (Szeto 2008) suggesting that SS-20 may reduce mitochondrial ROS

production via another mechanism.

SS-31 protects neuronal cells against tert-butyl-hydroperoxide-induced mito-

chondrial depolarization and apoptotic cell death by reducing intracellular ROS,

decreasing markers of apoptotic cell death, and caspase activity (Zhao et al. 2005).

It decreases mitochondrial ROS production and inhibits PTP induction and mito-

chondrial depolarization in isolated mitochondria (Zhao et al. 2004). It has been

shown that daily injections of SS-31 to G93A SOD1 mutants, an animal model of

ALS, before onset of symptoms lead to a significant increase in survival and

improvement of motor performance (Petri et al. 2006). Recently, Yang et al.

(2009) examined the ability of SS-31 and SS-20, to protect against 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyride (MPTP) neurotoxicity in mice, an animal model of

PD. SS-31 produced dose-dependent complete protection against loss of dopamine

and its metabolites in striatum, as well as loss of tyrosine hydroxylase immunore-

active neurons in substantia nigra. SS-20 also demonstrated significant neuropro-

tective effects on dopaminergic neurons of MPTP-treated mice. Both SS-31 and

SS-20 were very potent in preventing MPP+-induced cell death in cultured dopa-

mine cells (Yang et al. 2009). Studies with isolated mitochondria showed that both

SS-31 and SS-20 prevented MPP+-induced inhibition of O2 consumption and ATP

production and mitochondrial swelling (Yang et al. 2009). Recently, Thomas et al.

(2007) reported that SS-31 readily penetrates intact mouse islets, preserves mito-

chondrial polarization, reduces islet cell apoptosis, and increases islet cell yield.

These findings provide strong evidence that SS peptides, which target both mito-

chondrial dysfunction and oxidative damage, are a promising approach for the

treatment of degenerative disorders including diabetes.

4 Conclusions

Mitochondria play an important role in controlling the life and death of a cell.

Consequently, mitochondrial dysfunction leads to a range of degenerative disor-

ders. Therefore, the development of approaches to avoid or decrease mitochondrial

dysfunction may have therapeutic potential. Insulin, insulin-sensitizing drugs,

metabolic antioxidants and mitochondria-directed antioxidants, and SS peptides

proved to be effective in preclinical and small clinical studies. However, larger

clinical trials with larger numbers of participants will provide more definitive

information on the therapeutic efficacy of these compounds. In the future, mito-

chondria-directed antioxidants will be expected to open new avenues for the

manipulation of mitochondrial function allowing protection against degenerative

diseases including diabetes.
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Abstract Glucokinase (GK; EC 2.7.1.1.) phosphorylates and regulates glucose

metabolism in insulin-producing pancreatic beta-cells, hepatocytes, and certain

cells of the endocrine and nervous systems allowing it to play a central role in

glucose homeostasis. Most importantly, it serves as glucose sensor in pancreatic

beta-cells mediating glucose-stimulated insulin biosynthesis and release and it

governs the capacity of the liver to convert glucose to glycogen. Activating and

inactivating mutations of the glucokinase gene cause autosomal dominant hyper-

insulinemic hypoglycemia and hypoinsulinemic hyperglycemia in humans, respec-

tively, illustrating the preeminent role of glucokinase in the regulation of blood

glucose and also identifying the enzyme as a potential target for developing anti-

diabetic drugs. Small molecules called glucokinase activators (GKAs) which bind to

an allosteric activator site of the enzyme have indeed been discovered and hold great

promise as new antidiabetic agents. GKAs increase the enzyme’s affinity for glucose

and also its maximal catalytic rate. Consequently, they stimulate insulin biosynthe-

sis and secretion, enhance hepatic glucose uptake, and augment glucose metabolism

and related processes in other glucokinase-expressing cells. Manifestations of these

effects, most prominently a lowering of blood glucose, are observed in normal

laboratory animals and man but also in animal models of diabetes and patients

with type 2 diabetes mellitus (T2DM). These compelling concepts and results

sustain a strong R&D effort by many pharmaceutical companies to generate

GKAs with characteristics allowing for a novel drug treatment of T2DM.

Keywords GK Activators (GKAs) � Glucokinase (GK) � Glucose Homeostasis �
Hyperglycemia � Type 2 Diabetes Mellitus (T2DM)

1 Introduction to the problem

R&D of new pharmacological agents for the treatment of chronic diseases including

type 2 diabetes mellitus (T2DM), essential vascular hypertension, or obesity must be

based on at least four fundamental considerations: (1) the pathologies and epidemiology
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of the disease, (2) biochemical and physiological corollaries of the pathologies, (3)

biochemical genetics and pathophysiologies of the disease, (4) standard medical care

and pharmacotherapies. The present assessment of the potential of the newly discovered

glucokinase activators (GKAs) in the treatment of patients with T2DM is made on the

basis of such a general approach.

The current status of fundamental knowledge about T2DM can perhaps be

summarized by stating that the precise biochemical genetic basis of the disease

remains largely unknown even though many “diabetes genes” have been identified

and essential pathophysiological processes have been elucidated (Doria et al.

2008; LeRoith et al. 2004; Lyssenko et al. 2008, 2009; McCarthy and Froguel

2002; Meigs et al. 2008; Pearson 2009; Pilgaard et al. 2009; Ridderstråle and Groop

2009; Sparsø et al. 2009; Weedon et al. 2006). The relative contributions of

“diabetes genes” to the disease are uncertain and do probably explain only a mere

fraction of cases. It is also not clear whether the known diabetes genes lead to the

discovery of targets that are suitable for drug development and, if druggable, have a

medically significant impact factor. Furthermore, currently available drugs for the

treatment of the disease are insufficient to control the disease consistently and

persistently. This situation requires a strategy that follows the principle used

successfully in the treatment of vascular hypertension, i.e., to develop a very

broad spectrum of antidiabetic compounds with different mechanism of action

(MOA) affecting different signaling pathways involved in fuel homeostasis. Phy-

sicians treating hypertension have a wide choice of drugs with distinct MAO which

they can prescribe as monotherapy or in increasingly complex combination thera-

pies usually with success, even though there is rarely a clear understanding of the

primary cause or causes of this disease.

Currently available antidiabetic drugs fall into the following categories (Nolte

and Karam 2007): (1) insulin and insulino-mimetics, (2) insulin sensitizers includ-

ing metformin, (3) sulfonylurea and related compounds, (4) GLP1 and related

compounds including DPPIV inhibitors, and (5) agents that retard digestion and

absorption of carbohydrates from the intestine. The search for novel antidiabetic

agents is currently pursued with great intensity because these available drug

therapies are far from satisfactory (Desouza and Fonseca 2009).

2 Finding New Drug Targets from Exploring T2DM,

Hyperinsulinism, and Glucose Homeostasis Generally

T2DM is a genetic disease which afflicts the middle or older age population but in

recent years it is being diagnosed not infrequently in teens. Its incidence is dramati-

cally increased by overeating and physical inactivity usually associated with obe-

sity (LeRoith et al. 2004; Reaven 1988). Numerous diabetes genes have been

discovered but their relative contribution to the disease has not been fully deter-

mined (Doria et al. 2008; Lyssenko et al. 2008, 2009; McCarthy and Froguel 2002;
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Meigs et al. 2008; Pearson 2009; Pilgaard et al. 2009; Ridderstråle and Groop 2009;

Sparsø et al. 2009; Weedon et al. 2006). It is anticipated that many more diabetes

genes will be found. Thus, despite the impressive advances in this field, T2DM

remains the “Geneticists Nightmare.” Progression of the disease is usually slow,

sometimes measured in decades, from impaired fasting blood glucose (IFG) to

impaired glucose tolerance (IGT) to overt T2DM defined by a fasting blood glucose

higher than 7 mM and a 2-h glucose value larger than 11 mM in a glucose tolerance

test. Long-term complications include micro- and macro-vascular disease afflicting

primarily the eyes, the kidney, the heart, and the peripheral nervous system, may be

debilitating but are difficult to treat (Calcutt et al. 2009). T2DM could be largely

prevented by drastic restriction of caloric intake and regular physical activity. The

underlying pathophysiology is briefly sketched as follows: Overnutrition and lim-

ited physical activity interfere with the action of insulin in liver, muscle, and

adipose tissue (LeRoith et al. 2004; Reaven 1988). This increased peripheral

resistance to insulin places a greater burden on the genetically compromised

pancreatic beta-cells which not only fail to adapt sufficiently to the demand of

overcoming insulin resistance by mass expansion of the islet organ and functionally

manifest in enhanced insulin secretion but show, with time, impaired cell function

and decreased pancreatic islet mass (Kahn 2003; Kahn et al. 2009). A striking

illustration of the remarkable normal capacity of the endocrine pancreas for adap-

tation to increased demand is uncomplicated obesity in either sex or pregnancy in

the healthy women who may experience many cycles of expansion and involution

of her pancreatic beta-cell tissue without ever suffering negative effects. An equally

striking example of the beta-cell failure to adapt is “diabetes in pregnancy” which

indicates the presence of diabetes genes causing transient or even persistent disease.

Hyperglycemia persisting for years causes diabetic complications in the majority of

cases by little understood but hotly debated biochemical mechanisms. This descrip-

tion points to a genetically based failure of the endocrine pancreas to adapt to

increased peripheral resistance (whatever its cause) but provides no compelling

clue for prominent molecular defects of the disease that could suggest specific and

promising targets for correction by new pharmacological agents. One solution of

the problem is to develop a broad spectrum of antidiabetic drugs with distinctly

different MOA that might enhance beta-cell function and augment insulin action by

targeting physiological mechanisms (Desouza and Fonseca 2009; Nolte and Karam

2007). The development of GKAs is one striking example of this approach.

Since a failure of the beta-cell to adapt to insulin resistance seems to be a root

cause of T2DM it is reasonable to develop drugs that have a potential remedy for this

particular deficiency. Very specific clues about promising drug targets in beta-cells

can be found in “experiments of nature” resulting in monogenic hyperinsulinemic

hypoglycemia in children (PHHI or HI, a more widely used abbreviation) (Dunne

et al. 2004; González-Barroso et al. 2008; Kapoor et al. 2009; Palladino et al. 2008).

These syndromes have been thoroughly explored in the last two decades and

mutations of at least six genes have been discovered that are causing these hypogly-

cemia syndromes, including the SUR-1 receptor of the K-ATP channel (Dunne

et al. 2004; Palladino et al. 2008), the pancreatic beta-cell glucose sensor GK
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(Dunne et al. 2004; Palladino et al. 2008), the enzyme glutamate-dehydrogenase

(GDH) (Dunne et al. 2004; Palladino et al. 2008), the monocarboxylic transporter

(MCT) (Dunne et al. 2004; Palladino et al. 2008), the mitochondrial uncoupling

protein UCP-2 (González-Barroso et al. 2008), and short chain hydroxy-acyl-CoA

dehydrogenase (SCHAD) (Kapoor et al. 2009) as illustrated in Fig. 1. The blood

glucose lowering sulfonylurea compounds, discovered about 50 years ago and still

widely used, target SUR-1 as one of these genes. GK, another member of this group

of genes, is now considered an outstanding target for developing GKAs as antidia-

betic agents and is the topic of the present chapter. It is not unreasonable to explore

the possibility of targeting GDH, MCT, SCHAD, and UCP-2 or components of the

associated signaling chains. Hypersecretion of insulin in these forms of HI is

triggered by molecular processes that cause either direct activation, de-inhibition,

or inhibition of proteins in these signaling pathways which could provide opportu-

nities for targeting novel pharmaceuticals. It is noteworthy that there is currently

no evidence suggesting that these HI syndromes are associated with an increased

incidence of T2DM that might result from overstimulation of the pancreatic beta-cells

Fig. 1 Biochemical genetic studies of HI syndromes uncovered unique clues for drug targets in

beta-cell signaling pathways that are physiologically involved in stimulus secretion coupling.

Regulated fuel stimulation of insulin biosynthesis and secretion is central to glucose homeostasis.

The figure shows six proteins (or protein complexes) and the associated signaling pathways that

have high regulatory impact physiologically. These proteins can be the cause of enhanced insulin

secretion when altered by activating or inactivating mutations. Two of these, i.e., GK and KATP-

channel, have been successfully drug targeted by GKAs and sulfonyl urea compounds, respec-

tively. Note that the discovery of the latter agents preceded by decades the identification of the

corresponding receptor whereas in the case of GKAs the drug was tailor made as guided by known

physiological chemistry. Some of the others are potential targets
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nor is there evidence that the relative hyperinsulinism of HI leads to insulin resis-

tance. Similar to the monogenic HI syndromes described above, monogenic MODY

forms (maturity onset diabetes of the young) are caused by genetic defects of beta-

cell function and promise to provide useful guidance in the search of targets for

developing antidiabetic pharmaceuticals because of their relatively high control

strength in regulating blood glucose compared to the genes associated with T2DM

(http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id¼606391).

Other clues for potential beta-cell drug targets come from studies of the normal

physiological chemistry of insulin secretion (Fig. 2) (Ahrén 2009; Gromada 2006;

Henquin 2000; Matschinsky et al. 2006; Newgard and Matschinsky 2001; Wess

et al. 2007). Activation of the GLP-1 receptor is now considered a promising

approach and has resulted in the development of synthetic exendin-4 and DPP-IV

Fig. 2 Physiology and pharmacology of stimulus secretion coupling in pancreatic beta-cells. The

figure depicts the interconnections between fuel stimulation of insulin secretion and its modifica-

tion by the neuroendocrine system and illustrates the absolute glucose and GK requirement for

neuron-endocrine stimulation of beta-cell functions. Note: Fatty acids are considered here as

membrane receptor agonists while their potential fuel function is ignored because of the low

rate of oxidation compared to that of glucose and amino acids. The following abbreviations are

used: DAG diacylglycerol; Epi epinephrine; ER endoplasmic reticulum; G i, q and s G-proteins i,
q and s; GLP-1 glucagon like peptide 1; GIP gastric inhibitory peptide; IP3 inositol-triphosphate;

PKA proteinkinase A; PKC proteinkinase C; Somatost. somatostatin; VDCC voltage dependent

calcium channels
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inhibitors (Ahrén 2009; Desouza and Fonseca 2009). These drugs increase cAMP in

the beta-cell and sensitize it to glucose and perhaps amino acids. G-protein coupled

receptors that lead to activation of phospholipase C and coupling to the PKC

pathway include the fatty acid receptor GPR-40 and the muscarinic acetylcholine

receptor M3 (Desouza and Fonseca 2009; Gromada 2006; Wess et al. 2007). The

activation of either one of these results in glucose-dependent insulin release.

Pharmacological activators of GPR-40 have been discovered and have been

shown to stimulate insulin release (Desouza and Fonseca 2009; Gromada 2006).

Using M3 as an antidiabetic drug target is difficult because of the broad involve-

ment of this receptor in cardiovascular and gastrointestinal physiology. Steps

downstream of M3, for example, regulators of G-protein signaling (RGPS) might

be more useful in this regard (Wess et al. 2007). The absolute glucose dependency

of all these receptor-mediated stimulations of insulin release is remarkable and

stresses again the overarching role of the GK glucose sensor for beta-cell function

and thus the high potential of GKAs for diabetes therapy.

3 Slow Evolution of the Idea That Glucokinase Might Serve

as Glucose Sensor and as Drug Receptor

It took nearly three decades from the time GK was discovered in liver (1963) and

then in the pancreatic islets (1968) to the time the enzyme was recognized as a drug

target for developing oral antidiabetic medications (Table 1) (Cuesta-Munoz et al.

2001; Doliba et al. 2001; Grimsby et al. 2001, 2003; Matschinsky and Ellerman

1968; Sharma et al. 1964; Sols et al. 1964; Walker and Rao 1964). The evolution of

GK as a drug receptor occurred against great odds. A central role of GK in glucose

homeostasis was not universally accepted because it had vocal detractors (Malaisse

and Sener 1985) and it was even more difficult to envision how GK could be

activated equally well in pancreatic beta-cells and hepatocytes such that its phar-

macological actions could exert a maximal glucose lowering action without causing

serious side effects as, for example, hyperlipidemia (Desai et al. 2001; O’Doherty

et al. 1999). It was also uncertain at that time how GK expression and stability in

the pancreatic beta-cell might be influenced by the severity of T2DM raising the

specter of a target molecule that might fail or decline as the disease progresses. This

in mind and cognizant of the enormous risk in selecting any new drug target for

R&D the decision in the early 1990s to focus on GK was indeed courageous.

However, the kinetics and the physiological chemistry of GK were well understood

and it is fortunate that the knowledge about the genetics, biochemistry, and

biophysics of the enzyme advanced greatly while the drug development program

was underway reinforcing the undertaking (Matschinsky 2009; Matschinsky et al.

2006).

GK (ATP:D-glucose 6-phosphotransferase, also known as hexokinase IV or D) is

one of four hexokinase isoenzymes (HK I–IV or HK A–D) which catalyzes the
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phosphorylation of D-glucose by MgATP according to the following equation

(Cárdenas 1995; Cárdenas et al. 1998; Wilson 2004):

R� CH2OHþMgATP2� �! R� H2 � O� PO3
2� þMgADP� þ Hþ:

The biochemical and kinetic characteristics of the enzyme are well established

(Cárdenas 1995; Matschinsky 1996; Matschinsky et al. 2006;Wilson 2004; Xu et al.

1995). It has a molecular weight of about 50 kD and exists as a monomer. It is not

specific for D-glucose, reacting also with D-mannose and D-fructose. The enzyme has

cooperative kinetics with its substrates glucose and mannose as manifest by a Hill

coefficient (nH, a measure of cooperativity) of 1.7. The kinetic constants and the

tissue distribution clearly distinguish GK from the other hexokinases. The S0.5 (the

concentration supporting half maximal catalytic rate) for D-glucose is about 8.0 mM,

at least 100-fold lower than that of the other hexokinases. In contrast to hexokinases,

GK is not controlled by product inhibition. GK is, however, inhibited by the

hepatic GK regulatory protein (GKRP), a nuclear protein that binds the enzyme

Table 1 Milestones in glucokinase research

Year Discovery References

1963/1964 Glucokinase discovered in

liver

Sharma et al. (1964), Sols et al. (1964),

Walker and Rao (1964)

1968 Glucokinase identified in

mouse pancreatic islets

Matschinsky (1990)

1975/1976 Sigmoidal glucose dependency

of glucokinase discovered

Cárdenas (1995), Cornish-Bowden and

Cárdenas (2004), Neet and Ainslie (1980)

1977/1980 Mnemonic and slow transition

models of Gk kinetics

Cárdenas (1995), Cornish-Bowden and

Cárdenas (2004), Neet and Ainslie (1980)

1984/1986 The glucokinase glucose sensor

paradigm published

Meglasson and Matschinsky (1984, 1986)

1986 Differential expression control

of hepatic and islet GK

Bedoya et al. (1986b),

1986 Detection of GK in human islets Bedoya et al. (1986a)

1989 GKRP discovered Detheux et al. (1991), Vandercammen and

Van Schaftingen (1990, 1991)

1989/1991 Rat and human liver cDNA

cloned

Cárdenas 1995, Iynedjian (2004), Postic

et al. (2001)

1993 GK linkage of MODY

reported

Froguel et al. (1992), Hattersley et al. (1992)

1998 GK linked PHHI described Glaser et al. (1998)

2001 GK linked PNDM described Njølstad et al. (2001)

2001/2003 First reports on discovery of

GKAs

Cuesta-Munoz et al. (2001), Doliba et al.

(2001), Grimsby et al. (2001, 2003)

2003/2004 Crystal structures of GK

reported

Grimsby et al. (2003), Kamata et al. (2004)

2008/2010 First reports of GKA use in

human diabetics

Bonadonna et al. (2010), Zhi et al. (2008)

Historical milestones in GK research and evolution of the concept that GKmight be a drug receptor

candidate. The time line covers a period of 45 years from the discovery of hepatic GK in 1963/1964

to the first report about the successful use of GKAs in human diabetic subjects in 2008/2009
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and facilitates its translocation from the cytosol to the nucleus (Detheux et al.

1991; Vandercammen and Van Schaftingen 1990, 1991; Veiga-da-Cunha and

Van Schaftingen 2002). This process is enhanced by fructose-6-P and blocked or

reversed by glucose and fructose-1-P. GK has an allosteric activator site which

mediates an increased catalytic rate (kcat), decreases of the glucose S0.5 and the nH

but raises the ATP Km, the concentration of ATP supporting halfmaximal rate

(Dunten et al. 2004; Efanov et al. 2005; Grimsby et al. 2004; Grimsby et al. 2003;

Kamata et al. 2004; Matschinsky et al. 2006). This activator site is located about

20 Å away from the substrate binding site. An endogenous activator has been

postulated but has not been identified. GKAs activate GK by binding to this activator

site. The allosteric activator site is not accessible to most GKAs unless permissive

levels of glucose are present (Matschinsky 2009). Note, however, that some GKAs

bind to GK with low affinity in the absence of glucose (Antoine et al. 2009). The

enzyme forms complexes with other proteins and cellular organelles, for example, it

is bound and activated by 6PF2K/F2,6P2ase (6-phosphofructo-2-kinase/fructose-

2,6-biphosphatase) (Baltrusch et al. 2004) and also associates reversibly with BAD

(a proapoptotic protein factor (Danial et al. 2008)) in a multiprotein complex that

binds to mitochondria and enhances respiration. Crystal structures of the free and

ligand bound form of GK have been published (Dunten et al. 2004; Efanov et al.

2005; Grimsby et al. 2003, 2004; Kamata et al. 2004). In the absence of substrates or

GKAs, the enzyme exists in a so-called wide open or super open conformationwhich

changes to a closed conformation when glucose and GKA are bound in a 1:1:1

ternary complex (Fig. 3). Crystal structures in presence of glucose alone have not

been reported. The conformational change induced by glucose (and other sugars)

can be observed conveniently by monitoring tryptophan fluorescence (Molnes et al.

2008; Zelent et al. 2008). The quantum yield increases twofold upon saturation with

sugar (Fig. 4). GK contains three tryptophans (W99, W167, and W257) which are

located at strategic sites of the enzyme. Glucose binding greatly increases the

fluorescence of W99 and W167 but not that of W257. Based on enzyme kinetics,

crystal structures, molecular dynamics, and tryptophan measurements, a model of

GK which attempted to explain the unique cooperative or sigmoidal glucose depen-

dency curve of the enzyme slowly evolved (Cárdenas 1995; Cornish-Bowden and

Cárdenas 2004; Heredia et al. 2006; Kim et al. 2007; Lin and Neet 1990; Neet and

Ainslie 1980; Sarabu and Grimsby 2005). Depending on the absence or presence of

glucose, GK exists in one or two conformations with low and high affinity for

glucose, respectively, although recent biophysical studies suggest that in the absence

of glucose, GKmight already exist in an equilibrium of multiple conformations with

different ligand affinities and that glucose shifts the equilibrium from the more open

to the more closed forms (Antoine et al. 2009). Whatever the molecular details,

glucose induces a reversible, concentration dependent slow transition from the low

affinity to the high affinity forms of GK. The ensuing catalytic cycles, initiated by

binding of the second substrate MgATP, are much faster than the return of the

activated free enzyme to the inactivated low affinity form resulting in sigmoidal

kinetics. This process was termed by A. Cornish-Bowden the “mnemonic mecha-

nism” (Cornish-Bowden and Cárdenas 2004) and by K. Neet the “ligand induced
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slow transition mechanism” (1980) of cooperative kinetics, because the enzyme

does apparently remember its activated status between catalytic cycles or shows

very slow transitions between states of activation, respectively. Sigmoidicity of

glucose dependency (i.e., an nH of 1.7) is critical for GK function both in glucose

sensor cells and hepatocytes because the enzyme gains its highest response range for

catalytic activity between 3 and 7 mM glucose rather than 0 and 3 mM for a

hyperbolic enzyme with a comparably low glucose affinity, a physiologically highly

relevant fact (Matschinsky 1996, 2009; Matschinsky et al. 2006). GK is encoded by

Fig. 3 Essential structural features of the GK molecule explaining its glucose sensor and drug

receptor capabilities. (a, b) Wide open (a) and closed (b) conformations of GK. Note that in (a)

parts of the molecule are not definable in the crystal structure. Tryptophans W99, W167, and

W257 are presented because measurements of their fluorescence provide deep insights into the

structure and function of GK. The locations of glucose and GKA are noted in (b) because both

were required for successful crystallization of the closed structure. Panels (c) and (d) are cutouts to

illustrate details of the configurations of the allosteric activator binding site in the open (c) and in

the closed (d) conformations. Several missense mutations that activate the enzyme are used to

delineate the allosteric activator site. The loop connecting beta-1 with beta-2 and the alpha helices

5 and 13 which together with connecting loop I encapsulate the GKA binding site are highlighted.

Panels (e) and (f) give details about the glucose binding site and show how GK activation results in

a dramatic translocation of W99 explaining much of the fluorescence enhancement caused by

glucose binding
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one gene but transcription is regulated in a tissue-specific manner by two promoters,

the upstream or neuroendocrine promoter operating in glucose sensor cells as

defined below and the downstream or hepatic promoter operating exclusively in

Fig. 4 Structural impact of the activation caused by HI and MODY linked GK missense muta-

tions as monitored by tryptophan fluorescence. T65I and M197I cause HI and both are located

within the activator site in the open conformation, however, M197I undergoes a large lateral move

in the course of the glucose-induced conformational change. V62M, although activating, causes

MODY because it is thermally unstable. V62M and T65I have a high quantum yield in the basal

state without glucose and do not respond well to GKAs and GKRP suggesting a more compact

conformation in the basal state. They do, however, fully close when saturated with glucose. In the

case of V62M, glucose shifts the F-max from a relatively red position to the blue such that it

reaches the F-peak wavelength of the wild type enzyme as indicated by the normalized spectra in

the presence (red) and absence (blue) of glucose. This suggests that the structure of V62M is

locally loosened consistent with its moderate thermal instability. M197I activates GK slightly,

sufficiently though to cause HI. Spectrally, it is indistinguishable from the wild type and responds

normally to GKAs and GKRP. The M197I case illustrates how even minor activation of one allele

affects glucose homeostasis markedly
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the liver (Bedoya et al. 1986b; Iynedjian 1993, 2004, 2008; Jetton et al. 1994; Postic

et al. 2001). The neuroendocrine promoter regulates constitutive expression at a

relatively low basal level and the hepatic promoter regulates insulin-driven expres-

sion resulting in GK levels that might be an order of magnitude higher than in

glucose sensor cells.

These features of the GK molecule have the hallmarks of a classical drug

receptor and justify the description of GK as glucose sensor in neurons of the

hypothalamus, in endocrine cells of the pancreas and gut, or as metabolic regulator

of hepatic glucose metabolism, in all instances serving as GKA drug receptor. It is

of historical interest that in the late 1960s Dr. Philipp Randle was distinguishing

between two alternative models for glucose sensing in the pancreatic beta-cells

involving a substrate or a regulator site, exemplified by a glucose-metabolizing

enzyme or an unspecified allosteric site for glucose, respectively, that would

stimulate metabolism and insulin release (Randle et al. 1968). We are now able

to combine these two models into one concept, that of GK functioning intracellu-

larly as a glucose sensor and as a receptor for nonessential allosteric activator drugs

(and perhaps endogenous activators) which stimulate glucose metabolism in

GK-expressing cells thereby affecting glucose homeostasis profoundly.

4 Biological Systems Analysis of GK (GK in Pancreatic Islet

Beta-Cells, Liver, and Neuroendocrine Cells Is Central to

Understanding Glucose Homeostasis and GKA Action)

At this point, it is essential to digress and expand on the central role of GK in

glucose homeostasis in order to permit a comprehensive discussion of the

potential that GKAs might have in the treatment of patients with T2DM. It is

obvious that the process of glucose phosphorylation and its regulation by insulin

is essential to glucose homeostasis. Cellular glucose phosphorylation and glu-

cose transport are tightly coupled and show large and characteristic differences

from tissue to tissue as illustrated by three groupings (Cárdenas 1995; Joost et al.

2002; Mueckler 1994; Tal et al. 1992; Thorens et al. 1990; Wilson 2004): (1)

brain and red blood cells, (2) muscle (both heart and skeletal) and adipose tissue,

and (3) liver and insulin producing pancreatic beta-cells. In brain and red blood

cells, glucose transport (by Glut1 or 3) is insulin independent and not limiting

and phosphorylation is accomplished primarily by hexokinase 1. In heart, skele-

tal muscle, and adipocytes, glucose transport (by Glut4) is limiting and insulin

regulated, and phosphorylation is catalyzed primarily by hexokinase 2. In hepa-

tocytes and pancreatic beta-cells, glucose transport (primarily by Glut2) has a

capacity that is much higher than that of the rate-limiting GK, the predominant

hexokinase in these tissues. GKAs have thus the potential of stimulating glucose

phosphorylation in liver and pancreatic islets thereby influencing processes

downstream of GK but have in general no direct effect on most brain cells, red
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and white blood cells, heart, skeletal, and smooth muscle or fat cells. The roles

of GK in pancreatic beta-cells and in liver are fundamentally different but

complementary and thus the pharmacological effects of GKAs in these organs

are also different.

In the beta-cells, GK plays the role as glucose sensor and thus controls all their

glucose-dependent functions which includes (Matschinsky 1996; Matschinsky and

Ellerman 1968; Matschinsky et al. 2006; Newgard and Matschinsky 2001)

(Fig. 2) (1) glucose-stimulated insulin release and biosynthesis; (2) glucose-

dependent fuel stimulation of insulin release by fatty acids and amino acids; (3)

glucose-dependent receptor-mediated stimulation of insulin release by acetylcho-

line, GLP1, GIP, and by fatty acids via the GPR40 receptor; (4) beta-cell survival

and replication. It seems that in man and common laboratory rodents, glucose is

not replaceable by other fuels at physiological concentrations. This profound

impact of GK and glucose metabolism on beta-cell function is explained by

the unique enzymatic, biophysical, and molecular biological characteristics of

the beta-cell isoform of GK. GK expression in beta-cells is controlled by the

upstream (or neuroendocrine) promoter of the GK gene and is constitutive but

enhanced by glucose such that its basal activity as observed at about 4-mM

glucose can be increased about fivefold by saturation levels of the sugar (Bedoya

et al. 1986b; Liang et al. 1990, 1992; Matschinsky 1996; Zelent et al. 2005). This

effect is due in part to substrate stabilization of the protein. A possible role of

insulin in the process of glucose induction of islet GK remains controversial

because it is difficult or nearly impossible to study GK induction in beta-cells by

glucose without interference with extracellular insulin. Results with the beta-cell

insulin receptor knock-out (bIRKO) mice which are practically normal as young

animals and develop a diabetic phenotype only as they age suggest, however, that

insulin signaling is not absolutely required to maintain beta-cell expression of the

GK glucose sensor (Gleason et al. 2007; Kulkarni et al. 1999; Leibiger et al.

2001; Okada et al. 2007). In beta-cells, GK is found in the cytosol but also

associated with insulin granules (Arden et al. 2004; Miwa et al. 2004) and with

mitochondria (Arden et al. 2006; Danial et al. 2008) but not in association with

GKRP in the nucleus, in striking contrast to hepatocytes (see below). The associa-

tion with mitochondria depends on the presence of the proapoptotic factor BAD

(Danial et al. 2008). It appears that BAD, which also binds to the antiapoptotic

factors BCL2 and BCL-x which neutralize the proapoptotic mediators BAK and

BAX, serves two roles, one in metabolism thereby enhancing GSIR, and another in

cell survival enhancing apoptosis and cell turnover. It seems that the equilibrium

between these two roles is determined by GK and other partners of the complex

facilitating the association of BAD with mitochondria and it is also positively

regulated by glucose levels. GK is probably complexed by the bifunctional enzyme

fructose-6-P-2-kinase/fructose-2,6-Psub2-2-phosphatase which serves de facto as a

GK activator (Baltrusch et al. 2004). However, the glucose metabolism of the beta-

cells is primarily determined by the basic kinetic characteristics of GK as discussed

above. These constants and the glucose controlled level of the enzyme protein

determine the glucose dependency of beta-cell glycolysis and glucose oxidation.
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The ATP Km is about 0.15 mM at 5-mM glucose and is slightly increased as the

glucose rises and assures that the enzyme is always fully saturated with the second

substrate. The rate of glucose oxidation of isolated islets is about 1/3 of the

glycolytic rate indicating that other factors besides GK control the rate of ATP

production during stimulation with high glucose (Sweet et al. 1996). Still, GK has

a control strength in the regulation of glucose metabolism of pancreatic islet

tissue (both of glycolysis and oxidation) approaching unity implying that even

small changes of the effective enzyme activity (kcat/glucose S0.5), by as little

as 10–20%, have a marked effect on glucose metabolism (Matschinsky 1990;

Meglasson and Matschinsky 1984, 1986). The coupling between glucose metabo-

lism and stimulation of insulin secretion is absolute and is mediated by coupling

factors (Henquin 2000; Matschinsky 1996; Matschinsky et al. 2006; Newgard and

Matschinsky 2001; Prentki and Matschinsky 1987). It is still hotly debated which

metabolites and cofactors qualify as coupling factors in this process. Unanimity

exists about the critical roles of ATP4� andMgADP�, but there is argument whether

to include NAD(P)H, 50-AMP, acyl-CoA, and diacyl-glycerol in this category.

In any case, the ATP/ADP ratio determines the membrane potential by regulating

the KATP channel such that an increase of the ratio in the course of increased glu-

cose metabolism inhibits K-efflux and depolarizes the beta-cell, opening voltage-

sensitive Ca++ channels at a glucose threshold of about 5.0 mM and triggering

insulin release. The associated elevation of cytosolic Ca++ activates adenylate

cyclase and enhances the PKA signaling pathway whereas DAG (generated in the

course of glucose metabolism and by Ca++ induced P-lipase C activation) enhances

the PKC pathway. These protein kinases greatly increase the effectiveness of the

Ca++ trigger. Prolonged exposure to high physiological or abnormally high glucose

levels of 5–10 mM or up to 25 mM induces GK and augments GSIR (Liang et al.

1990, 1992; Zelent et al. 2005). This induction of GK enzymatic activity in beta-

cells can occur in the absence of changing mRNA levels for GK in evident contrast

to the situation in the liver. This difference is strikingly illustrated by the finding that

mannoheptulose, a competitive GK inhibitor that cannot be phosphorylated, induces

beta-cell GK many fold (see discussion below and Fig. 16).

The liver contains 99.9% of the body’s GK complement (Matschinsky et al.

2006). The enzyme sustains the high capacity process in the liver of clearing

glucose from the portal blood postprandially as the first step of glycogen biosyn-

thesis via the direct pathway and also enhancing glycolysis to sustain the indirect

pathway of glycogen synthesis (Fig. 5). Regulation of GK in the liver is long term

and short term (Agius 1998, 2008; Agius and Peak 1993; Agius et al. 1995; Detheux

et al. 1991; Iynedjian 1993, 2004; Vandercammen and Van Schaftingen 1990,

1991; Veiga-da-Cunha and Van Schaftingen 2002). Expression of GK is primarily

controlled by insulin such that GK falls markedly in diabetes and is induced in

hyperinsulinemic states in striking contrast to the situation in the beta-cells. Insulin

induction is driven by the downstream hepatic promoter of the GK gene such that

transcription and translation are increased manifold in less than 1 h and turnover of

mRNA and GK protein are very high. The underlying mechanisms of acute

regulation of GK are complex and depend on a subtle interplay of many factors.
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The effect of elevated glucose on the GK/GKRP complex in the nuclear compart-

ment of the hepatocytes is central to stimulation of glycolysis and glycogen

synthesis (Detheux et al. 1991; Vandercammen and Van Schaftingen 1990, 1991;

Veiga-da-Cunha and Van Schaftingen 2002). GKRP is a nuclear protein that binds

GK. This complex formation is enhanced by fructose-6-P and counteracted by

glucose and fructose-1-P, the two most important regulators of this process.

GKRP binds preferentially to GK and inhibits the enzyme when glucose is low

and the super open conformation of GK predominates, resulting in a sequestration

of GK in the nucleus under fasting conditions. Postprandially elevated glucose

causes a dissociation of the GK/GKRP complex and release of the active enzyme to

Fig. 5 Ramifications of altered GK activity for hepatic intermediary metabolism. The effects of

GK activation by insulin-induced expression or pharmacological stimulation by GKAs on energy,

glycogen and lipid metabolism are sketched. End products of main pathways are highlighted.

Essential hormonal (i.e., the elevated insulin/glucagon (I/G) ratio) and metabolite signal molecules

(i.e., G6P and F2,6P2) are indicated. Gluconeogenesis is ignored except for the reference to the

F1,6P2 phosphatase step
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the cytosol. Alimentary fructose potentiates the effect of glucose even at rather low

concentrations of less than 1.0 mM because its product fructose-1-P generated by

fructokinase dissociates the GK/GKRP complex very efficiently. Glucose-6-P, the

product of the GK reaction, is an allosteric activator of glycogen synthase and

glucose renders phosphorylase-a a better substrate for inactivation by protein

phosphatase (Agius 1998, 2008; Agius and Peak 1993; Agius et al. 1995). Not

surprisingly, glucose-6-P also enhances glycogen synthesis by providing substrate

in the form of UDP-glucose for the synthase. It needs to be postulated that the

glucose-6-phosphatase system is inhibited under these conditions to avoid futile

cycling by mechanisms not well understood. Gluconeogenesis is also curbed as a

result of the elevated insulin/glucagon ratio.

While GK containing cells of the endocrine pancreas and the liver clearly

constitute the central axis of the glucose homeostatic system in man and common

laboratory animals, the presence and possible role of GK in cells of several other

fuel sensing tissues needs careful attention in the present context (Matschinsky

et al. 2006). GK has been discovered in the glucagons-producing alpha-cells of the

pancreas (Bedoya et al. 1987; Reimann et al. 2008), nuclei of the hypothalamus

(Levin et al. 2004, 2008), the tractus solitarius and the raphe nuclei of the brain stem

(Matschinsky et al. 2006), and in the gonadotropes and thyrotropes of the pituitary

gland (Hille et al. 1995; Matschinsky 2008; Sorenson et al. 2007; Zelent et al.

2006). There is convincing evidence that the enzyme may exist in the GLP1-

secreting L-cells of the intestine (Reimann et al. 2004, 2006, 2008) but its

biological significance has been disputed, even though not compellingly (Murphy

et al. 2008). Much indirect evidence indicates that glucose sensor cells of the

hepatoportal vasculature may contain GK participating in the generation of the

“portal signal” that influences glucose homeostasis (Cherrington 1999; Donovan

et al. 1994; Thorens 2004). The discussion of the role that GK may play in these

tissues requires a clear definition of the terms “glucose sensing”, “glucose sensor”,

or “glucoreceptor” (Matschinsky 2009). GK per se serves as the “glucose sensor” or

“glucoreceptor” molecule and GK-containing cells are considered “glucose sensor

cells” or “glucoreceptor cells” involved in “glucose sensing” if glucose stimulation

results in the metabolism-dependent generation of a clearly defined neural, endo-

crine, or paracrine signal usually associated with altered electrical activity of the

cell. Using this narrow definition, we include endocrine cells of the pancreas,

gonadotropes and thyrotropes, intestinal L-cells, portal glucose sensor cells, the

carotid body (perhaps), and neurons in the brainstem and hypothalamus. But we

exclude hepatic parenchymal cells which serve as fuel depot storing glucose in the

form of glycogen but seem to lack a GK-mediated signaling function as defined

here. Another distinction between these two types of GK-containing cells seems to

be the nature of GK expression control, constitutive and independent of elevated

insulin levels in all GK-containing glucose sensor cells to be contrasted with the

hepatocytes, where GK expression is entirely insulin controlled. It is important to

appreciate that at least 99.9% of the total GK content of the body is located in the

liver. This illustrates the involvement of the enzyme in the insulin dependent, high

capacity process of hepatic glucose clearance from the blood postprandially in
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contrast to its regulatory role in the largely insulin independent neuroendocrine

system, which regulates in an indirect manner glucose usage and storage in large

organs and systems, i.e., liver, skeletal muscle, heart, and adipose tissue. The

molecular details and physiological significance of glucose sensing in cells other

than the pancreatic beta-cells remain largely undetermined except perhaps the role

of GK containing hypothalamic neurons (Levin et al. 2004, 2008) which seem to

govern counterregulatory processes that curb hypoglycemia. However, in the con-

text of the present discussion assessing the therapeutic potential and the possible

dangers and side effects of GKAs these insufficiently explored GK cells cannot be

ignored.

5 Glucokinase Disease and the Status of GK in Type I and II

Diabetes

Genetic studies of GK-linked diabetes and hypoglycemia syndromes (often referred

to as “Glucokinase Disease”) and the results of studies exploring the status of

pancreatic and hepatic GK in T1DM and T2DM have demonstrated that GK has

the hallmarks of a promising antidiabetic drug target. The physiological chemical

exploration of glucokinase resulted in the prediction that even minor alterations in

its enzymatic activity would lead to diabetes mellitus or hypoglycemia owing to

its central role in fuel stimulation and its obligatory priming role in neuroendo-

crine control of insulin secretion. This prediction was verified by the discoveries of

GK gene linked PHHI, MODY2, and PNDM as defined above resulting in the wide

range of defects in glucose homeostasis, from hypoglycemia that might be severe

enough to cause seizures (PHHI) to lethal forms of diabetes mellitus due to

inhibitory mutations affecting both alleles of the gene (PNDM) (Christesen et al. 2002;

Cuesta-Muñoz et al. 2004; Danial et al. 2008; Edghill and Hattersley 2008; Froguel

et al. 1992; Glaser et al. 1998; Gloyn et al. 2003; Hattersley et al. 1992; Njølstad

et al. 2001, 2003). The biochemical genetics of activating mutants are particularly

relevant for this discussion of GKAs. Thirteen distinct activating GK mutants

have been discovered so far, all with autosomal dominant inheritance affecting

only one allele demonstrating again the high control strength of the enzyme on

glucose homeostasis and the potential that activating the enzyme pharmacologically

might have for diabetes therapy (Dunne et al. 2004; Matschinsky 2009; Palladino

et al. 2008). It is remarkable that homozygocity of activating mutants has not

been seen so far and that all known heterozygous cases are severe enough to

require treatment with diazoxide, partial pancreatectomy, or both. It is speculated

that subclinical forms of GK-linked hypoglycemia exist which have escaped detec-

tion for obvious reasons. The activating mutants are located in the allosteric activa-

tor site (with one exception, i.e., M197I (Sayed et al. 2009)) and many of them

were found to have reduced responsiveness or are totally refractory to GKAs and

to GKRP.
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It is obvious that the presence of functionally active GK in the pancreatic beta-

cells and the hepatocytes of diabetics is a prerequisite for GKA-based antidiabetic

therapy. Information on this critical point is, however, limited. Considering beta-

cells in human diabetics, it is reasonable to extrapolate from countless clinical

studies and from limited results of glucose-stimulated insulin release perifusion

studies in islets isolated from diabetic donors that GK is indeed functional, even

though activity might be partially reduced (Deng et al. 2004). This conclusion is

warranted because total lack of the enzyme would result in absolute glucose

refractoriness and insulin-dependent diabetes with ketosis. In two studies of islets

from T2DM donors, GK mRNA was found to be reduced (Del Guerra et al. 2005;

Li et al. 2009). Studies in several animal models of T2DM also suggest that beta-

cell GK remains functional and that there is no clear relationship between the

status of GK in beta-cells and the severity of the disease (Liang et al. 1994). In this

context it is of interest that islet tissue microdissected from pancreas of alloxan or

streptozotocin diabetic rats showed GK activity that is comparable to that of

control tissue suggesting the presence of the enzyme in alpha and delta cells

of the islets apparently expressed independently of insulin (Bedoya et al. 1987).

Considering the GK status in hepatic parenchymal cells, it is well documented that

the enzyme is lost in untreated animal models of T1DM and by extrapolation also

in humans with the disease when not treated with insulin but that the enzyme is

readily induced by insulin. The assessment of the hepatic GK status in T2DM in

man is based on two publications. The available data indicate that hepatic GK in

individuals with IFG, IGT, or mild diabetes mellitus is normal or actually

increased (Wilms et al. 1970) whereas it is drastically reduced in liver tissue of

morbidly obese with diabetes mellitus (Caro et al. 1995). These latter results

resemble the finding in diabetic fatty rats (Torres et al. 2009). Altogether this

information suggests that GK is operative in the beta-cells and the hepatocytes of

individuals with IFG, with glucose intolerance and mild forms of diabetes and that

GK-activating drugs could interact with the desired target and influence glucose

metabolism accordingly.

6 Discovery of GKAs by High-Throughput Screening

The plan to develop antidiabetic drugs that might increase GK activity and thereby

stimulate insulin release and/or enhance hepatic glucose usage was conceived in

1990 by a team of scientists associated with Hoffmann–La Roche Inc. At this time

the decision was based entirely on the results of fundamental research in enzymo-

logy, molecular biology, and physiological chemistry using laboratory animals but

the possibility that mutations of GK could cause diabetes mellitus had already been

recognized. While the R&D of this program was underway linkage of MODY

(maturity onset diabetes of the young) to the GK gene (Hattersley et al. 1992) and

cases of PHHI (persistent hyperinsulinemic hypoglycemia in infancy) also linked

to GK were discovered (Dunne et al. 2004; Palladino et al. 2008) greatly streng
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thening the case of GK as a drug target for antidiabetic therapy. The human

biochemical genetic findings were soon confirmed and extended by generating

the corresponding mouse knockout and transgenic models (Magnuson and Kim

2004). It was also recognized that activating GK mutants causing PHHI clustered

in the same area of the enzyme that bound GKAs and was remote from the glucose/

MgATP binding site suggesting the existence of a hitherto unrecognized allosteric

activator site of this enzyme (Christesen et al. 2002; Cuesta-Muñoz et al. 2004;

Glaser et al. 1998; Gloyn et al. 2003). These parallel developments reinforced each

other in the conclusion that GK activation had a unique potential as a means of

increasing insulin secretion from the beta-cell and stimulating hepatic glucose

phosphorylation.

Two tactics of screening had been used in the search for drugs that might activate

GK, both based on the same rationale that this activation might be best achieved by

blocking physiological or pathological inhibition of the enzyme. Acyl-CoA (Qian-

Cutrone et al. 1999) and GKRP (GK regulatory protein found in liver) (Grimsby

et al. 2003) were employed as inhibitors but their choice greatly influenced the

outcome. With the screening test employing acyl-CoA as inhibitors, investigators at

Bristol–Myers Squibb discovered lipid binding molecules in Streptomyces and

Nocardia strains which reactivated GK but this initial lead was not further pursued

apparently because acyl-CoA does not seem to play a physiological or pathological

role in the regulation of GK and perhaps also for practical reasons. With the GKRP-

based screening method, investigators at Hoffmann–La Roche discovered small

molecules that counteracted GKRP inhibition of the enzyme but also activated GK

directly. These compounds were termed GK activators or GKAs. Optimization of

the lead compound resulted in GKAs with the following characteristics: GKAs

usually increase the kcat of GK by 50–100%, but in some instances reduce kcat;

they increase the affinity for glucose as indicated by a decrease of the S0.5 in many

cases by factors of 5–10; they lower the affinity for the second substrate MgATP

(i.e., increase the ATPKm) when the measurement is performed at physiological

glucose levels of 5 mM but have no effect on this parameter when the measurement

is done with saturating levels of glucose; many of them do lower the nH of the

enzyme’s glucose dependency curve; and they counteract the inhibition of GK

by GKRP. One wonders why in the first screening paradigm using GK inhibited by

acyl-CoA, potential GKAs were overlooked because they should be detectable

independent of the chemical nature of a reversible inhibitor. In the following

section, the structures of various GKA classes and their actions will be discussed

in detail.

7 What Are GKAs Chemically?

In the mid-1990s, Roche embarked on a high-throughput screen (HTS) of 120,000

compounds that led to the identification of a single, direct activator of GK (Fig. 6).

The hit compound was considered “drug-like” based on its low molecular weight
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(303.19), balance of polar and hydrophobic moieties (clogP – 3.86), and potency.

Structure–activity relationships were established through the synthesis of analogs

with different substitution patterns on the aryl (R1), alkyl (R2), and acyl urea (R3)

regions of the molecule. These efforts culminated in the identification of

RO0281675 (Fig. 6) as a potent GKA lead molecule, with excellent pharmacoki-

netics and efficacy profiles in several preclinical animal models of type 2 diabetes

(Grimsby et al. 2003).

Extensive interest in GK activation as a potential mechanism to treat T2D was

triggered after the publishing of several patent applications from Roche beginning

in 2000. To date, over 100 patent applications (Fig. 7) have been published from

several leading pharmaceutical research organizations (Sarabu et al. 2008). In

general, most GKAs adhere to a common pharmacophore model with related

structural motifs as shown in Fig. 8a. The model consists of a center, which can

be a carbon or an aromatic ring, and three attachments (R1–R3) to it. Typically, two

of these attachments (R1 and R2) are hydrophobic groups, with at least one of them

being an aromatic ring. The third attachment (R3) is predominately a 2-amino-

heterocycle or a N-acyl urea moiety. This group provides a key recognition element

between activators and the protein through a hydrogen-bond donor (amide NH) and

acceptor (urea carbonyl or imine).

GKA patents can be organized into the following structural types: I. “carbon”

centered (saturated, olefin, and cyclopropyl subtypes), II. aromatic ring centered

(standard and atypical hydrogen bond donor/acceptor), III. amino acid based, and

IV. “nitrogen” centered as shown in Fig. 8b. To date, the majority of GKA patents

are related to the carbon centered and aromatic ring centered analogs (Fig. 9, red

and blue, respectively).

Despite this wide variety of structural types observed in the patent literature, the

R3 amide/heterocycle side chain is well conserved. More recently, deviations from

this motif have appeared in the aromatic centered compounds (Fig. 9, aromatic

atypical). In these molecules, the hydrogen bond donor acceptor pharmacophore,

usually satisfied by an 2-amino heterocycle, is replaced by a biheteroaryl moiety.

Banyu, for example, has disclosed a series of 2-pyridyl-benzimidazoles lacking the

amide sidechain (Fig. 10). In this case, the benzimidazole NH and the pyridiyl “N”

are the hydrogen-bond donor acceptor recognition element (Banyu Pharamceutical

Co. Ltd 2005).

Fig. 6 An acyl urea

derivative GKA hit molecule

of high-throughput screening

and the optimized lead

RO0281675
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Crystallographic studies on GKAs from different series have confirmed the

molecular recognition interactions required for binding to the allosteric activator

site of the protein. In addition to the R3 H-bond donor–acceptor interaction with the

Arg63 backbone carbonyl and amide NH, hydrophobic interactions of R1 and R2

are important. The R1 aryl group makes hydrophobic, and possibly pi–pi interac-

tions, with the Tyr214 and Tyr215 residues while the R2 hydrophobic group interacts

with the Met235 side chain, two important elements (Fig. 11). In aromatic centered

analogs that do not posses two distinct R1 and R2 hydrophobes, the core itself may

act as one of these elements.

8 How Do GKAs Activate GK at the Molecular Level?

Not surprisingly GKAs mimic all effects that have been discovered in the biochem-

ical genetic studies of recombinant human activating GK with mutations causing

PHHI (Fig. 12) (Banyu Pharamceutical Co. Ltd 2005; Brocklehurst et al. 2004;

Coghlan and Leighton 2008; Dunten et al. 2004; Efanov et al. 2005; Futamura et al.

2006; Fyfe et al. 2007; Grimsby et al. 2003, 2004; Guertin and Grimsby 2006; Kamata

et al. 2004; Leighton et al. 2007; Nakamura et al. 2007; Sagen et al. 2006; Sarabu

and Grimsby 2005; Sarabu et al. 2008; Sorhede Winzell et al. 2007). The predo-

minant effect is a lowering of the glucose S0.5 to as low as 10% of the control. Many

activators increase the kcat as much as twofold but in some instances the kcat may

be somewhat decreased by the drug. GKAs lower the Hill coefficient to varying

Fig. 9 Distribution of GKA patents by structural class

Fig. 10 Donor acceptor pair (gray highlight) in prototypical GKA RO0281675 (2) and Banyu

compound (3) (Banyu Pharamceutical Co. Ltd 2005)
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degrees in some cases to a value approaching unity. It should be realized that

small effects on the nH may be overlooked in the kinetic analysis. Alterations of the

Km for the second substrate MgATP are seen only when the analysis is performed

at physiological glucose levels such that the normal Km of about 0.15 mM might

be increased two to threefold to values that are observed with saturating concentra-

tions of glucose. GKAs enhance the dissociation of the GK/GKRP complex in

the presence of physiological levels of glucose (Futamura et al. 2006) and stabilize

the enzyme in thermolability tests performed at physiological glucose levels. It is

important to realize that most GKAs studied so far do not bind to the enzyme in the

absence of glucose. A striking exception is a strongly activating Merck–Banyu

compound which was found to bind effectively in the absence of glucose, a finding

greatly facilitated by the fluorescence characteristics of the molecule (Antoine et al.

2009). GKA actions have also been studied with a number of spontaneous acti-

vating and inactivating mutants of GK causing glucokinase disease. These explo-

rations resulted in the striking finding that decreased responsiveness to GKAs is

usually associated with refractoriness to GKRP inhibition. Two outstanding examples

are V62M (Gloyn et al. 2003) and G72R (Sagen et al. 2006), both mutants that are

kinetically activating but paradoxically, cause hyperglycemia (Fig. 4). Since these

two mutant molecules also show increased thermal instability in solution-based

assays as well as in biological assays it was speculated that decreased responsive-

ness to a putative endogenous activator and/or structural and catalytic instability

may be part of the explanation of the hyperglycemic phenotype. The lack of

response to GKRP and to GKAs in these two cases is explained by the hypothesis

that these mutations, both located in a critical connecting loop between the large

and the small lobe and part of the allosteric site, induce the more compact confor-

mation of the activated state precluding GKRP binding and obviating activation by

Fig. 11 Interactions

of composite GKA

pharmacophore with

allosteric activator binding

site. R3 donor acceptor

hydrogen bonds are depicted

in dashed lines, R1 and R2

hydrophobes highlighted in

gray.
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GKAs. The majority of known activating GKmutants show a reduction or total lack

of responsiveness to GKRP and GKAs.

The allosteric activator site and the contact amino acids for GKAs in this site are

defined in several published crystal structures (Dunten et al. 2004; Efanov et al. 2005;

Grimsby et al. 2003, 2004; Kamata et al. 2004). The site is formed by a loop

connecting beta 1 and beta 2 (including V62 to G72) and by the alpha helix 5 and

the C-terminal alpha helix 13 (Fig. 3). Depending on the chemical nature of the drug

it involves the following amino acids: V62, R63, E210, I211, Y214, Y215, M235,

V452, V455, and A456. Mutations of many of these and neighboring amino acids

Fig. 12 GKAs increase Vmax and decrease the glucose S0.5. Panel (a) shows the effect of rising

concentrations of a GKA (piragliatin) on the kinetics of recombinant pancreatic islet GK leading to

a twofold increase of the Vmax and a nearly tenfold decrease of the glucose S0.5. In Panel (b) (left)
the impact of a GKA on the threshold of glucose-stimulated insulin secretion (GSIR) is illustrated.

Decreasing the glucose S0.5 by 50% or increasing the Vmax by a factor of 2 lowers the threshold

from normally 5 mM to 3 mM glucose. Also in Panel (b) (right) the impact of three different GKAs

with different beta – but similar alpha values is shown on relative enzymatic activity (KG rate),

beta referring to changes of kcat and alpha to changes of S0.5
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cause activation of this enzyme and were identified in patients with PHHI. Connect-

ing loop I, approximately between V62 and G72, forms a hairpin loop and is occluded

in the super open form impeding or preventing GKA binding but opens and accepts

the drug when the substrate site is occupied by glucose. Helices alpha-5 containing

amino acids 210–215 and alpha-13 containing amino acids 445–465 contribute to the

drug binding site. In the wide open conformation, these two helices are positioned

parallel to each other but following glucose binding alpha-13 swings into a position

which is perpendicular to alpha-5 and is threaded behind connecting loop I.

Biophysical studies, including differential scanning calorimetry (DSC), scintilla-

tion proximity assays (SPA), and tryptophan fluorescence, have shown that GKA

binding to the enzyme is greatly enhanced by D-glucose (Fig. 4) (Dunten et al. 2004;

Heredia et al. 2006; Ralph et al. 2008; Zelent et al. 2008). In fact some GKAs do not

bind at all in the absence of a sugar ligand. This conclusion is also supported by the

finding that GKAs alone do not stabilize the GK protein in thermolability tests but

are able to enhance the stabilizing effect of glucose. These observations are

explained by crystallographic studies. Three teams have crystallized GK as a ternary

complex containing GKA and D-glucose (1:1:1) and have delineated the allosteric

activator site, identifying as many as nine contact amino acids depending on the

chemistry of the drug as detailed above (Dunten et al. 2004; Efanov et al. 2005;

Grimsby et al. 2003, 2004; Kamata et al. 2004). This drug binding site was not

accessible in GK crystals prepared without glucose, at least not with the compounds

then available. However, in the presence of near saturating levels of a particular

activator, which on its own does not alter fluorescence, D-mannoheptulose initiates a

slow and relatively large ligand induced tryptophan fluorescence increase (Fig. 13).

The transition process is temperature dependent and allows an assessment of the

activation energy of the slow ligand induced transition from a more open to a more

closed configuration. This ligand induced “slow transition” (measured in terms of

min) is also observedwith the physiological substrate D-glucose but the phenomenon

is optimally studied with the inhibitory sugar. These results are interpreted as

manifestation of the transition from a “super open” to the “closed” GK conformation,

suggesting that the sugar binding site and the allosteric drug binding site interact

cooperatively to bring about this slow transition from one structure to the other.

GKAs greatly potentiate the competitive inhibition of GKRP action on glucoki-

nase by glucose, thereby releasing the enzyme from the nuclear compartment of the

hepatocyte. This GKA interference with GKRP inhibition of glucokinase finds its

corollary in the large impact of activating mutations on the apparent Ki of GKRP

which may increase maximally more than 100-fold depending on the nature of the

mutation. Quantitative comparisons of published results of in vitro studies of

different compounds are complicated by the fact that their Kd and EC50 values

are inversely related to the glucose levels and may vary as much as 10–100 fold,

respectively, in comparing low and high glucose saturation (Ralph et al. 2008).

In order to overcome this difficulty, the relative GK activity index (%-AI) could

be used to compare the efficacy of different GKAs. The AI (which is defined as

(kcat/glucose S0.5
nH) � (2.5/2.5+ATPKm)) is an approximate expression of the

enzyme’s catalytic efficiency. Its use is suggested because the %-AI was instrumental
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in attempts to characterize the impact of activating and inhibiting GK mutants on

the glucose threshold for insulin secretion, allowing predictions to be made about

the severity of the respective phenotypes of the mutant carriers (Gloyn et al. 2004).

Mathematical modeling experiments illustrate the enormous range of GK stimula-

tion by GKAs which have different effects on kcat, glucose S0.5, and the Hill

coefficient (Matschinsky 2009).

9 Effects of GKAs at the Cellular and Organ Levels

All known biological effects of GKAs are entirely predictable from the central role

of GK in glucose homeostasis and from the effects of the drug at the molecular level

as discussed above (Bonadonna et al. 2008; Brocklehurst et al. 2004; Coghlan and

Fig. 13 Tryptophan fluorescence (TF) of normal GK in the presence of mannoheptulose and a

GKA. In all instances about 1 microM recombinant GK was used dissolved in 5 mM phosphate

buffer (pH 7.3) with 100 mM KCl and 1 mM dithiothreitol. In panel A the TF of GK in the basal

state and in the presence of 5 mM mannoheptulose and 20 microM of GKA is shown. TF is 1.92

times basal and the F-peak wavelength is not changed after addition of the sugar. Panel (b) shows

the slow transition kinetics of TF induced by 1 mM mannoheptulose plus 20 microM GKA Note

only the combination of the two ligands initiates the slow transition and also note that the Kd

for mannoheptulose in the absence of GKA is 20 mM but is 1.25 mM in the presence of the drug.

Panel C shows the temperature dependency of the slow transition and panel D presents an

Arrhenius plot of the results given in panel C, allowing the calculation of 65.5 kJ/mole of

activation energy for the ligand-induced conformational change
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Leighton 2008; Coope et al. 2006; Efanov et al. 2005; Futamura et al. 2006; Fyfe

et al. 2007; Grimsby et al. 2003, 2004; Guertin and Grimsby 2006; Johnson et al.

2007; Leighton et al. 2007; Migoya et al. 2009; Nakamura et al. 2007; Ohyama

et al. 2009; Sarabu and Grimsby 2005; Sarabu et al. 2008; Sorhede Winzell et al.

2007; Walker and Rao 1964; Zhi et al. 2008). This is demonstrated by the action of

GKAs on extracorporeal pancreatic beta-cell or liver preparations. GKAs shift the

concentration dependency curve of glucose-stimulated insulin release to the left

(see example in Fig. 14). Many of them also augment maximal secretory activity

moderately. They enhance glycolysis and glucose oxidation and concomitantly

increase glucose-induced stimulation of respiration, effects again characterized

by marked left shifts of the glucose concentration dependency curves and moder-

ately increased maximal rates. As a result, GKAs increase the phosphate potential
of pancreatic beta-cells as manifested by increased levels of ATP and P-creatine but

decreased levels of ADP and inorganic phosphate (Grimsby et al. 2004). The drugs

have no influence on the metabolism of nonglucose fuel stimulants of beta-cells

(e.g., amino acids). GKAs increase the concentration of free cytosolic calcium

concentrations but only when glucose is present (Fig. 14). GKAs enhance the

induction of GK expression by glucose in isolated cultured pancreatic rat islets of

Langerhans and thus cause a sustained sensitization of the beta-cells to glucose even

after the drug is cleared (Fig. 15). GKAs enhance the induction of GK by glucose and

the nonmetabolizable mannoheptulose, a heptose, most likely an expression of protein

compaction and stabilization by the ligand in the substrate site (Table 2, Fig. 16). It

is noteworthy, however, that induction of glucokinase by mannoheptulose in the

absence of glucose (with or without GKA present) is not sufficient to maintain the

beta-cell capacity for glucose-stimulated insulin secretion. It seems then that some

basal glucose metabolism is required to preserve normal stimulus secretion cou-

pling. GK activation by GKAs in the presence of glucose protects against hydrogen

peroxide-induced cell death in model pancreatic beta-cells thus showing a marked

antiapoptotic effect (Futamura et al. 2009). GKAs enhance glucose-induced insulin

release in isolated cultured human islets from normal organ donors and also from

those with type 2 diabetes (Johnson et al. 2007) and unpublished results by the

authors). The drugs augment glycogen synthesis in isolated hepatocyte preparations

explained by two distinct actions, i.e., the direct activation of cytosolic GK and the

enhanced release of inactive GK sequestered in the nuclear compartment (see

above) (Brocklehurst et al. 2004; Efanov et al. 2005). It is important to note here

that the predictable influence of GKAs on all other GK-expressing cells and tissues

that comprise the complex glucose sensing network described above remains to be

explored (Matschinsky et al. 2006).

10 Effects of GKAs on Glucose Homeostasis of Normal

and Diabetic Laboratory Animals and Humans

Whole body studies with various GKAs in normal laboratory animals and hum-

ans and, more importantly, in animal models of type 2 diabetes and humans

with this disease had positive outcomes as predicted (Bonadonna et al. 2008;
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Fig. 14 Effect of a GKA

(piragliatin) on glucose-

induced respiration, insulin

release, and intracellular

calcium of isolated cultured

mouse islets. Islets were

cultured in RPMI containing

10 mM glucose for 3–4 days

and were thereafter studied.

Panel A shows the insulin

release patterns with glucose

stimulation using stepwise

increasing levels, both in the

absence and presence of

piragliatin. Panel B shows the

effect of 3-microM piragliatin

on islet respiration following

a stepwise increase of glucose

from zero to 3, 6, 12 and

24 mM glucose followed by

treatment with 5 microM of

the uncoupler of OxPhos

FCCP and 1 mMNa-azide. O2

consumption was determined

with a method based on

phosphorescence quenching

of metalloporphyrins by

oxygen. Panel C shows

corresponding changes of

intracellular Ca++ due to

stepwise increases of glucose

from zero to 1, 3, and 9 mM.

The Fura-2 method was

employed
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Camacho et al. 2009; Coope et al. 2006; Fyfe et al. 2007; Grimsby et al. 2003,

2004; Johnson et al. 2007; Leighton et al. 2007; Migoya et al. 2009; Nakamura et al.

2007; Ohyama et al. 2009; Sorhede Winzell et al. 2007; Walker and Rao 1964; Zhi

et al. 2008). In acute studies, GKAs lowered blood sugar in a dose-dependent

manner under normal conditions. The drug effect was usually attributed to a dual

action, enhancement of insulin release, and facilitation of glucose clearance by the

liver. High dosages often resulted in hypoglycemia especially in normal animals

(Fig. 17) and human subjects. In the great majority of studies with type 2 diabetic
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Fig. 15 Enhanced glucose induction of GK by piragliatin in cultured rat islets augments glucose-

stimulated insulin release. The marked functional impact of piragliatin on GK induction by 6 mM

glucose is shown. Isolated islets were first cultured for 3–4 days with 6 mM glucose in the presence

and absence of 3 microM piragliatin and were then tested in a perifusion experiment stimulating

them with a glucose ramp in the absence of the activator from 50 to 100 min of the perifusion.

Open circles: Islets cultured with vehicle (0.1% DMSO) in 6 mM glucose; Solid circles: Islets
cultured with GK activator (piragliatin at 3 microM) in 6 mM glucose. Note the left shift of the

dose–response curve and the marked increase of maximal release

Table 2 Pancreatic islet glucokinase induction by the GK activator piragliatin

Culture conditions Control

(pmol/ug

protein/hour)

GKA, 3 mM Control

(glucose S0.5, mM)

GKA, 3 mM

1 mM Glucose 82.4 � 21.9 123 � 6.37 6.72 � 3.20 7.90 � 0.67

3 mM Glucose 120 � 11.2 340 � 65.8 8.32 � 0.62 6.90 � 0.66

6 mM Glucose 156 � 8.90 367 � 109 7.54 � 0.86 6.13 � 0.26

9 mM Glucose 214 � 12.6 452 � 113 7.04 � 0.62 6.28 � 0.54

12 mM Glucose 391 � 46.0 501 � 87.0 7.65 � 0.03 7.22 � 0.12

Piragliatin enhances glucose induction of rat pancreatic islets GK. Isolated islets were cultured for

3–4 days in RPMI at different glucose concentrations in the presence and absence of 3-microM

piragliatin. After removal of the culture medium islets were stored at �80�C. They were then

homogenized and the homogenate was briefly centrifuged to remove particulate material. GK was

then measured with a method previously described which provides Vmax, glucose S0.5, and nH

data while also testing the response to GKAs (Zelent et al. 2006). At the assay step the GKA

present in the culture medium is diluted at least 1,000 fold such that the drug does not interfere

with the analysis. Note that increases of the Vmax are not paralleled by an alteration of the glucose

S0.5 which cluster around the expected value of about 8 mM. The nH values were also unchanged

and the enzyme was activatable by GKAs to the same degree under all conditions (not shown).
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Fig. 16 GK induction in cultured rat pancreatic islets stimulated with glucose and mannoheptu-

lose, with and without the GKA piragliatin present. The basic DMEM culture medium contained

10% glucose free fetal calf serum and was supplemented with 7 mM each of glutamine and

leucine. Panel A shows results of GK activity measurements of islet homogenates and the insulin

levels as measured in the media after 3–4 days of islet culture. Panel B presents the results of

quantitative GK mRNA measurements and panel C provides data on quantitative glucagon

receptor mRNA measurements for comparison. The results represent means of five separate,

highly reproducible measurements of five cultured rat islet isolates. The glucagon receptor data

are given as example of protein induction that seems to parallel insulin release and perhaps glucose

metabolism in contrast to GK induction which is not. Note that the insulin levels of the culture
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animals and human subjects, GKAs lowered the elevated blood glucose dose

dependently, usually, such that normoglycemia was achieved at the highest dosages.

Treatment with GKAs was associated with an increased insulinogenic index inter-

preted as a manifestation of a dual action of the drug causing enhanced insulin

secretion which impinges on all insulin sensitive tissues and direct activation of

hepatic GK resulting in augmented hepatic glucose uptake and glycogen synthesis.

It is noteworthy that the absolute insulin concentrations did not always rise (but may

actually fall!) when compared to the untreated diabetic condition, an indication of

the dual pancreatic and hepatic action of the activators with reduced insulin resis-

tance. It should be remembered that in GK-linked HI, absolute insulin levels are not

necessarily elevated even though they are certainly high relative to the blood

glucose concentrations measured in these cases. GKAs may thus, paradoxically,

reduce hyperstimulation of the diabetic beta-cells by reestablishing a normal set

point of glucose homeostasis (Palladino et al. 2008). Only a small selection of

specific examples for in vivo experiments with GKAs is given here and should

suffice to provide sufficient proof for the high validity of the proposed MOA and

�

Fig. 16 (continued) medium are unphysiologically high because islets synthesize and release the

hormone very actively for a period of days apparently without feedback inhibition of secretion.

Abbreviations:G, glucose;GK-TPB, GK mRNA rel. to TATA binding protein mRNA;GK-HPRT,
GK mRNA rel. to hypoyxanthine-phosphoribosyl-transferase mRNA; Glucagon-R-TBP, glucagon
receptor mRNA rel. to TATA binding protein mRNA; Glucagon-R-HPRT, glucagon-receptor
mRNA rel to hypoxanthine-phosphopribosyl-transferase mRNA; MH mannoheptulose
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Fig. 17 Acute effects of orally administered GKA, RO0281675, on basal blood glucose levels and

glucose tolerance in normal and diabetic rats. (a) Glucose lowering effects in 7-week old normal

male Wistar rats (Charles River Laboratories) (circles) and diabetic Goto-Kakizaki (GK) rats

(Charles River Laboratories) (squares) orally administered vehicle (n ¼ 5–6/time point) (filled
symbols) or 50 mg/kg RO0281675 (n ¼ 5–6/time point) (open symbols). (b) Oral glucose toler-

ance test in fasted 8-week old male Wistar rats (circles) and GK rats (squares) orally administered

vehicle (n ¼ 4–5/time point) (filled symbols) or 50 mg/kg RO0281675 (n ¼ 4–5/time point) (open
symbols) 120 min prior to glucose administration (2 g/kg). Experimental details previously

described (Grimsby et al. 2003). All results are reported as the mean � SEM. A Student’s t-test
was used to test for statistical significance (*, P < 0.05; **, P < 0.01; and ***, P < 0.005)
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principle of concept of GKA-based diabetes therapy. The first peer reviewed report

in 2003 demonstrated the therapeutic potential of allosteric stimulation of GK by

GKAs on hand of extensive in vivo studies with normal and diabetic rodents

(Grimsby et al. 2003). In normal animals, GKAs lowered the blood sugar by their

dual action of stimulating insulin release and augmenting hepatic glucose uptake

while decreasing glucose production. In several models of T2DM, GKAs normal-

ized the elevated blood glucose. Numerous studies using GKAs of a wide variety of

chemical structures confirmed, complemented, and expanded on these preclinical

observations. Of special significance is the ameliorating effect of chronic GKA

treatment on the development of hyperglycemia in the course of diet-induced

obesity (DIO) in C57Bl/6J mice (Grimsby et al. 2004). A recent report in abstract

form showed that a GKA was able to lower blood glucose in rats desensitized

to sulfonylurea agents (Ohyama et al. 2009). And finally, it was disclosed at the

2008 meeting of the EASD in Rome that treatment with the experimental GKA

Piragliatin (RO4389620) lowers blood glucose dose dependently in normal volun-

teers and patients with T2DM (Bonadonna et al. 2008; Walker and Rao 1964; Zhi

et al. 2008). Piragliatin administered orally to healthy male subjects at a dose of 5, 10,

and 25 mg was well tolerated causing a dose-dependent reduction of fasting plasma

glucose. Furthermore, a single dose of piragliatin lowered both fasting and

post challenge glucose in a group of patients with T2DM by improving beta-cell

function, hepatic glucose production, and peripheral glucose utilization (Zhi et al.

2008). And finally, multiple doses of piragliatin resulted in a rapid dose-

dependent blood glucose reduction over a period of 24 h in individuals with T2DM

(Bonadonna et al. 2008). In all these studies, the drugwas safe andwell tolerated, even

though mild-moderate hypoglycemia was observed at the highest doses tested. At the

2009 ADA meeting in New Orleans, investigators from Merck reported that a novel

GKA lowered the blood glucose in normal volunteers (Migoya et al. 2009).

11 Critical Assessment of GKA’s Potential

for Diabetes Therapy

In July 2009, at the time this review was completed, R&D of GKAs as potential new

antidiabetic drugs had reached a critical milestone in its progress. New chemical

entities with GKA characteristics counting in the hundreds had been discovered and

patented. The MOA of GKAs at the molecular, cellular, and organismic level had

been explored in much detail and the results of these investigations had proven that

the biological and medical concepts on which the R&D of GKAs was based are

valid (Coghlan and Leighton 2008; Guertin and Grimsby 2006; Matschinsky 2009;

Sarabu and Grimsby 2005; Sarabu et al. 2008). In reports at international meetings

in 2008 and 2009 (Bonadonna et al. 2008; Migoya et al. 2009; Walker and Rao

1964; Zhi et al. 2008), strong evidence was presented that GKAs of different

chemical structures lower blood glucose markedly in healthy humans and do even

normalize hyperglycemia in patients with T2DM in week long trials without
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showing medically significant side effects except moderate hypoglycemia at

high drug dosages. The indications were that an impressive number of leading

pharmaceutical houses had embarked on the next phase of developing reliable oral

antidiabetic medicines based on the experience with GKAs known at the time.

The present environment remains highly challenging for launching antidiabetic

drugs with a novel MOA because of the pressure to develop medicines which not

only lower blood glucose markedly and persistently and show advantages over

existing therapies but also improve outcome of the cardiovascular diseases which

are associated with T2DM (Desouza and Fonseca 2009). GKAs are well positioned to

meet this challenge owing to their unique MOA. In view of the ideas and experimen-

tal data discussed in this article, it is very reasonable to expect that GKAs have great

potential for monotherapy but are also uniquely suited for combination regimens with

metformin, GLP-1 analogues, DPP-IV inhibitors, insulin and insulin sensitizers, and

perhaps even with sulfonylurea compounds when treatment with these agents is

failing. This positive assessment draws its strength from the central role of GK in

glucose homeostasis in health and disease and from the uniformly beneficial preclini-

cal studies and early clinical studies with GKAs of very different chemical structures.

Of particular importance are the observations which demonstrate that GKAs do not

elevate blood lipids, contrary to the predictions and fears that had been expressed in

the early stages of developing GK-based therapies. This outcome of lipid neutrality of

GKAs is consistent with their ability to prevent the development of diabetes in DIO

mice and in the absence of hepatic glycogen and triglyceride accumulation (unpub-

lished). Any lasting impact on cardiovascular health of diabetics will depend on the

quality of blood sugar control that can be achieved with GKAs alone or in combina-

tion regimens in comparison to other drug treatments.

It seems reasonable to predict that several GKAswill enter late-stage clinical trials in

the next 2–3 years. It is also safe to predict that proof of MOA and of medical concept

will be fully confirmed in these anticipated clinical studies in patients with T2DM and

also T1DM. However, it is obvious that the outcome of such trials has to be awaited

before final judgment can be made about a significant durable benefit that GKAs may

provide for diabetes management compared to established and other experimental

therapies. Attention will have to paid to the following questions: (1) Can the blood

sugar of diabetics be normalized with GKAs alone or in combinations with approved or

currently experimental drugs in a predictable and persistent manner while avoiding

medically significant hypoglycemic events? (2) Do GKAs predispose to weight gain?

(3) What is the long-term impact on blood lipids in patient with and without statin

medication? (4)DoGKAs change the frequency or severity of cardiovascular events? In

addition to addressing these major issues, investigators should consider the possibility

that GKAsmodify the function of other tissues expressing the enzyme besides pancreas

and liver including enteroendocrine cells that secrete GLP-1 andGIP, nuclei of the CNS

in the hypothalamus and other areas in all probability involved in counterregulation and

finally in the gonadotropes of the pituitary.

While answers to the clinically highly relevant questions will be sought in the

anticipated clinical trials it is very likely that GKAs will also prove to be of great

value in basic biophysical and biochemical studies of the recombinant enzyme and of
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the central role of GK in glucose homeostasis using normal and diabetic animals or

isolated pancreatic islets, enteroendocrine, pituitary, and liver tissue preparations.

It can be expected that crystal structures of binary GK complexes with GKAs that

bind without glucose and with glucose in the absence of GKAs will become avail-

able. Much progress can be expected from the application of DSC and isothermal

titration calorimetry (ITC) as well as the use of tryptophan fluorescence based on

rapid mixing and equilibrium binding studies. Of foremost importance will be

explorations of the incompletely understood cooperative kinetics of GK and of the

detailed molecular basis of GK/GKRP and GK/BAD interactions. GKAs promise to

serve as powerful tools to assess the biological significance of GK, if any, in neurons,

enteroendocrine cells, hepatoportal glucose sensor cells, and gonadotropes.

A burning question that deserves great attention is whether GKAs are beneficial in

the preservation of the genetically compromised pancreatic beta-cells in T2DM (Bell

and Polonsky 2001; Kahn 2003; Kahn et al. 2009) (Fig. 18). It has been demonstrated

in mouse islets that GK interacts with the proapoptotic mediator BAD forming

Fig. 18 Hypothetical involvement of GK and therefore GKAs in the preservation and growth

promotion of pancreatic beta-cells. The interaction between GK and protein factors governing

apoptosis (BCL-2, BCL-xL, BAD, BAK, BAX (the latter two proapoptotic factors situated most

downstream in the pathway but not shown)) is highlighted. The P-BAD/GK complex and its

association with mitochondria is shown. The glucose and thus GK dependency of GLP-1, insulin,

and acetylcholine initiated signaling processes is sketched in. It is hypothesized that activation of

these pathways and their enhancement by GKAs protects beta-cells from proapoptotic diabeto-

genic factors and enhances beta-cell replication or neogenesis. It is further speculated that

persistent deviations of free intracellular calcium from a basal set point may favor apoptosis but

that transient, perhaps oscillatory changes of calcium may be beneficial (Danial 2007; Orrenius

et al. 2003; Scorrano et al. 2003; Whyte et al. 1993). Selected abbreviations: Akt or PKB
proteinkinase B; Ach acetylcholine; BAD, P-BAD (phospo-BAD), BCL-2 and BCL-x mediators

of apoptosis and antiapoptosis; CAC citric acid cycle; DAG diacylglycerol; ER endoplasmic

reticulum; ET electrontransport and oxidative phosphorylation; FoxO mediator of insulin and

insulin like growth factor signaling;GLP-1 glucagon like peptide 1; IRS2 insulin receptor substrate
2; IP3 trisphosphoinositol; Pdx-1 or IPF-1 insulin promoter factor 1; PIP2 phosphotidyl inositol

biphosphate; PKA proteinkinase A; PKC proteinkinase C; Pyr pyruvate
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complexes that are attached to beta-cell mitochondria in effect neutralizing this

mediator of cell death (Danial et al. 2008). The GK/BAD complex seems to facilitate

the enhancement of glucose stimulation of beta-cell respiration and insulin secretion.

It needs to be assessed whether and if so how GKAs influence this apparent inter-

compartmental shuttle of GK and BAD. The reported protective effect of GKAs

against hydrogen peroxide-induced cell death could be interpreted as indicating that

proapoptotic mediators are neutralized by activated GK (Futamura et al. 2009). In this

context, it should be recalled that agents which are now being explored as to their

potential of preserving beta-cell mass and function in T2DM, for instance GLP-1 and

DPP-IV inhibitors (Desouza and Fonseca 2009), are totally dependent on glucose and

thus normal GK activity in beta-cells. GKAs may therefore be synergistic in this

regard. This is probably also true for the action of other beta-cell growth factors as for

instance insulin, IGF, and perhaps the activation of the muscarinic signaling pathway.

There is indeed experimental evidence that GK is a critical component together with

IRS2 and PKA of pathways that control the adaptive hyperplasia response of the beta-

cell to increased peripheral resistance, for example, induced by DIO (Takamoto et al.

2008; Terauchi et al. 2007).

The present status report and brief future perspective remarks concerning GK and

GKAs in glucose homeostasis illustrate in an extraordinary manner how significant

basic biological and medical progress can be achieved through the close and iterative

interaction of basic biochemistry, biochemical genetics, medicinal chemistry, and

pharmacology resulting in the discovery and characterization of a promising new

class of antidiabetic agents. The challenge is now to transform these chemicals of

great promise into useful medicines.

12 Addendum at the time of Revision (Fall 2010)

This postscript lists and briefly evaluates selected pertinent publications that have

appeared since this manuscript was first prepared (Bebernitz et al. 2009; Bonadonna

et al. 2010). We identified only one peer reviewed extensive report on a mechanistic

study of GKA action in patients with type 2 diabetes mellitus (T2DM) (Bonadonna

et al. 2010). The GKA piragliatin (RO4389620) had an acute glucose lowering

effect in patients with T2DM mediated by increased insulin secretion, decreased

endogenous glucose output, and raised glucose use. Furthermore, Array Biopharma

reported in considerable detail on a one day single dose ascending dose study in

patients with T2DM showing that blood glucose was lowered dose dependently

with normalization of blood glucose being achieved at the highest dose and that this

effect was associated with increased insulin release (News release of 8/10/09).

Among the human biochemical genetic reports three deserve listing here as partic-

ularly relevant. KK Osbak et al. have published an update on GK mutations in

which a total of 620 mutations in the gck gene in a total of 1,441 families are

described and the implications for the clinical course and management of GK

linked disorders are discussed. The report also lists 13 ethyl-nitroso-urea (ENU)
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GK mutants in the mouse. These diabetes models are potentially useful for explor-

ing in depth the role of GK in glucose homeostasis and as drug target (Osbak et al.

2009). In a remarkable letter to the editor of the N. Engl. J. Med. it was reported that
the presence of a GK activating mutation (V91L) causing hyperinsulinemic hypo-

glycemia was associated with large islets and beta-cell proliferation and the

hypothesis was advanced that chronically enhanced glucose metabolism is a critical

factor regulating pancreatic beta-cell replication (Kassem et al. 2010). In a study

designed to assess cardiovascular risk factors it was found that polymorphism of the

GK-activating GKRP (hepatic GK regulatory protein) was associated with elevated

serum levels of free fatty acids and triglycerides but not with an elevated cardio-

vascular risk leading to the conclusion that long-term activation of GK (e.g., by

GKAs) may not contribute to cardiovascular risk, a reasonable concern when using

this drug (Kozian et al. 2010). Among recently published preclinical studies,

several pharmaceutical chemistry reports deserve attention (Haynes et al. 2010;

Sidduri et al. 2010; Zhang et al. 2009). Of particular interest is a new trend to

develop liver-specific GKAs designed to reduce the danger of hypoglycemia

(Bebernitz et al. 2009). In a practically highly relevant pharmacological study,

investigators from Merck/Tsukuba have tested whether a GKA lowers blood

glucose in sulfonylurea-desensitized rats. By demonstrating that GKAs remain

fully effective after sulfonylurea failure, this detailed report illustrates clearly the

unique features and perhaps advantages of GKAs as compared to these widely used

oral antidiabetic agents (Ohyama et al. 2010). As final highlight, we reference two

publications which address the possibility that GKAs may stimulate beta-cell

proliferation strengthening our views graphically expressed in Fig. 18. (Nakamura

et al. 2009; Salpeter et al. 2010); also see Kassem et al. 2010). From this selection,

one can conclude with some confidence that the academic and pharmaceutical

communities maintain a keen interest in the central role of GK in glucose homeo-

stasis in large part based on the expectation that GKAs have a high potential for the

treatment of T2DM and perhaps also T1DM.
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