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Chapter 1
Introduction

The study of stochastic differential equations (SDEs) driven by Lévy processes in R
originated in the book by Skorokhod [97]. In view of the Lévy–Itô decomposition,
he reduced the problem of studying such SDEs to the analysis of SDEs driven by
compensated Poisson randommeasures (cPrms) and Brownian motion, under a mild
restriction [97].Hewas aware of the fact that the restriction can be removed.Recently,
following initial work of Eberlein and Özkan [27], these SDEs have been found to
arise in finance as term structure models for interest rates, volatility in market indices
[9] and in the study of flows with applications to pseudo-differential equations [16].
The more general SDEs studied in [36] arise in polymer models [24].

Here, we consider SDEs driven by non-Gaussian Lévy processes, and hence,
following Skorokhod, we examine SDEs driven by compensated Poisson random
measures. For this, Skorokhod starts by defining an Itô stochastic integralwith respect
to compensated Poisson random measures with associated variance measure λ ⊗ β,
where λ denotes the Lebesgue measure and β is a Lévy measure. He defines the
stochastic integral of non-anticipating functions with respect to filtering associated
with compensated Poisson random measures.

Later, Ikeda and Watanabe in their fundamental book [45] generalized the def-
inition of the Itô integral to compensated Poisson point processes. Here, the asso-
ciated variance measure is a general measure on R allowing jumps (as opposed
to Lebesgue measure). This means the integral has to be defined with respect to
predictable processes [96] which remove Skorokhod’s restriction and introduce the
interlacing of solutions with respect to compensated Poisson random measures at
jump times.

So, in order to generalize Skorokhod’s work to infinite-dimensional spaces, one
needs to define the Itô stochastic integral of non-anticipating functions taking values
in a Banach space with respect to compensated Poisson randommeasure. In the case
where the Banach space is Hilbertian, the definition can be given using the same
techniques as in the one-dimensional case and one obtains an Itô isometry for the Itô
integral. This was done in the work of Rüdiger [91].

In [53] Kallianpur and Xiong studied SDEs driven by cPrms in multi-Hilbertian
spaces with interesting applications to pollution in rivers. Since in multi-Hilbertian

© Springer International Publishing Switzerland 2015
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2 1 Introduction

spaces the boundedness of a set implies its compactness, this theory is, although
interesting, rather restrictive.

In view of the fact that a Hilbert space has an inner product and by the validity of
the Itô isometry, one can easily extend Skorokhod’s technique for SDEs to Hilbert
space SDEs. A restricted program in this direction with a predictability assumption
and using Ikeda–Watanabe interlacing was carried out in the first book on Hilbert
space valued SDEs [5]. Due to its clarity, this book has generated a lot of interest in
applying SDEs in specific applied problems.

We have written this monograph with an eye towards applications. Here, we study
SDEs in Banach spaces and stochastic partial differential equations (SPDEs), both
driven by compensated Poisson random measures. In Chap.6, we show how SPDEs
occur naturally in filtering problems and in applications to finance. If we set the
partial differential operator identically equal to zero, then these results reduce to
generalized versions of results from [5].

S(P)DEs in Banach spaces arise naturally in different problems as seen, for exam-
ple, in [12] for applications in finance or, for fluid dynamics, in [29] (see also [14, 30]).
In order to describe the theory in this generality we follow Skorokhod’s program,
first defining stochastic integrals in Banach spaces.

In Chap.3, we begin by considering theWiener integral of deterministic functions
with values in a separable Banach space. This first appeared inAlbeverio andRüdiger
[3], establishing theLévy–Itô decomposition.The assumption requiredon theBanach
space is that it is of (Rademacher) type 2 (see [42]). This is a condition on the geometry
of the Banach space. TheWiener integral of Bochner square-integrable functions can
then be defined with respect to any compensated Poisson randommeasure. However,
to study this integral for this class of functions for a particular Poisson random
measure with compensator λ ⊗ β, we only need inequality (3.1.4), connecting the
Wiener integral of a simple function f with respect to the compensated Poisson
random measure to the Bochner integral of ‖ f ‖2 with respect to the compensator
λ ⊗ β. In fact, we prove that the constant Kβ in (3.1.4) is independent of β if and
only if the space is of type 2 (see [67]).

Motivated by this, we study the Itô integral for non-anticipative processes with
respect to compensatedPoisson randommeasures satisfying inequality (3.5.7),which
is the analogue of inequality (3.1.4). In fact, using ideas of Rosinski [90], we prove
that (3.5.7) is necessary for defining the Itô integral for all processes which are
square-integrable with respect to λ⊗β ⊗P (see [67]). Then we show that in M-type
2 spaces, which are defined in [85], our condition (3.5.7) is satisfied. We remark,
however, that inequality (3.5.7) is independent of the geometry of the Banach space,
i.e. the condition that a Banach space is of M-type 2 is only a sufficient condition
for the validity of inequality (3.5.7). For the definition of the Itô integral, we also
prove that the space of simple processes is dense in the space of non-anticipative
square-integrable functions with respect to λ ⊗ β ⊗ P.

In addition, we establish Itô’s formula, based on [68], improving the earlier work
of [93].

Once these preliminaries are established, we carry out Skorokhod’s plan for SDEs
inBanach spaces ofM-type 2, establishing existence and uniqueness results for SDEs

http://dx.doi.org/10.1007/978-3-319-12853-5_6
http://dx.doi.org/10.1007/978-3-319-12853-5_3
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1 Introduction 3

driven by compensated Poisson random measures. The method here goes through
for general Banach spaces, provided condition (3.5.7) is satisfied for each Poisson
random measure with compensator λ ⊗ β. This work first appeared in [67] and was
done independently for M-type 2 spaces in [38].

The study of SPDEs driven by Brownian motion was initiated by Pardoux [80]
and Krylov and Rozovskii [56], who were motivated by attempts to solve the Zakai
equation, which occurs in filtering problems. They studied the strong solutions to
the so-called variational problem. The corresponding equation for SPDEs driven
by jump Lévy processes are studied in [89]. Their presentation is very clear and
is easily accessible to an advanced researcher. The mild solution to SPDEs driven
by Brownian motion was originally studied by Da Prato and Zabczyk [18]. For
the Brownian motion case, the Pardoux, Krylov–Rozovskii and Da Prato–Zabczyk
approach is presented for the interested reader in the book [34]. In [75], the analogue
of the Zakai equation with jump processes is studied. However, their approach to the
solution is through Malliavin calculus and uses the work of Di Nunno et al. [22]. In
Chap. 6, in order to make the presentation self-contained, we show how the Zakai
equation with jump processes arises in filtering problems, based on the work in [64].
Even in the Brownian motion case, the approaches to solving filtering problems
depend on the structure, as one can see in [101]. Independently of filtering problems,
the study of SPDEs driven by cPrms was initiated in [4], in the case where the partial
differential operator is the Laplacian, motivated by applications in physics.

The material in Chap.5 on SPDEs is based on [2], generalizing the work in [4].
We also study the non-Markovian case, due to its applications, see [24]. The solution
concept we study is that of a mild solution [83], which is the analogue of that studied
in [18, 34, 35] in the case of Brownian motion. In the Markovian case, we study
smoothness with respect to initial value in terms of Gateaux differentiability. An
improvement of this part was subsequently given in [72] in terms of Fréchét differ-
entiability. We do not include here the fundamental work of [89] on the variational
method for Lévy driven SPDEs as including it would mean rewriting their work.
We present in Chap.6 an application of these ideas for the HJM model in finance
given in [32]. As one can see, it requires effort to formulate the HJM-equation and to
find a proper Hilbert space based on the work in [13, 31]. In order to keep the book
self-contained, we present this formulation following the basic work of Filipovic and
Tappe [32].

Finally, we study asymptotic properties of the solutions of SPDEs driven by
compensated Poisson random measures using the method of Lyapunov functions.
This extends the work initiated in [54, 59, 60, 63] for the Brownian motion case.
This work is based on Li Wang’s thesis [99] and is taken from [69]. Here we use
Yosida approximations of mild solutions by strong solutions. One of these was given
in [2] and the other is in [65]. It should be noted that the Lyapunov function method
studied here is new, even for SDEs driven by compensated Poisson randommeasures
in one dimension. It can be used, for example, to study the exponential stability
needed for almost sure stability using the techniques of [70] as in [6] by constructing
a Lyapunov function in specific examples. This is also done to study exponential
ultimate boundedness for spot rate models driven by Lévy processes [11]. As a
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consequence, one can prove the positive recurrence property of spot rate models to
an interval and use it to make investment decisions. In particular we can easily prove
the asymptotic properties of the HJM model given in [71].

In their recent book [84] Peszat and Zabczyk study stochastic partial differen-
tial equations driven by a square-integrable martingale taking values in a Hilbert
space. Solutions in their case have cádlàg modification as opposed to our case (for
cPrm), where the solution is cádlàg. We give general conditions where the semi-
group generated by a partial differential operator (PDO) is a pseudo contraction.
We also present general theorems on the asymptotic behaviour of solutions using the
Lyapunovmethod. From these results one canobtainmore detailed asymptotic behav-
iour (recurrence) than the existence of invariant measures derived from the behaviour
of solutions for deterministic equations. As the latter behaviour is dependent on the
semigroups generated by a PDO, we do not have to treat each PDO case separately,
which is done in [84]. We also present a Zakai equation to motivate our study.

The organization of this monograph is as follows: In Chap. 3, we study Wiener
and Itô integrals with respect to compensated Poisson random measures and Itô’s
formula after presentingpreliminary concepts inChap.2. InChap.4wegive existence
and uniqueness results for SDEs in Banach spaces. SPDEs driven by compensated
Poisson randommeasures are studied inChap. 5. InChap.7, the asymptotic behaviour
of the solutions of SPDEs is examined using Lyapunov’smethod.We show inChap.6
how the SPDEs driven by compensated Poisson random measures arise in filtering
problems and how our general results can be applied to get the existence of solutions
for the HJM model from finance on appropriate function spaces.

We do not give other examples of SPDEs involving partial differential operators
such as Navier–Stokes, Reaction–Diffusion etc. becausemost of these can beworked
out as in the book [34] given for Brownian motion as noise. As the results for Lévy
driven SPDEs are similar to those given in [34], these examples can be worked out
as exercises.
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Chapter 2
Preliminaries

In this chapter, we prepare the required preliminaries.

2.1 The Bochner and the Pettis Integral

Let F be a separable Banach space with dual space F∗. We denote by B(F) the Borel
σ-algebra of F, which is defined as B(F) = σ(O), where O denotes the system of
all open sets in F, and σ(·) as usual denotes the generated σ-algebra.

For x ∈ F and ε > 0 we denote by Uε(x) the open ball around x with radius ε,
that is

Uε(x) = {y ∈ F : ‖y − x‖ < ε}.
We denote by U the system of all open balls in F. Furthermore, we denote by C the
system of all cylinder sets

{x�
1 ∈ B1, . . . , x�

n ∈ Bn}
with n ∈ N, linear functionals x�

1, . . . , x�
n ∈ F� and Borel sets B1, . . . , Bn ∈ B(R).

Proposition 2.1.1 Suppose the Banach space F is separable. Then we have

B(F) = σ(U) = σ(C).

Proof For any open set O ∈ O, by Lindelöf’s Lemma [1, Lemma 1.1.6] there exist
sequences (xn)n∈N ⊂ F and (εn)n∈N⊂ (0,∞) such that O = ∪n∈NUεn(xn) ∈ σ(U).
Hence O ⊂ σ(U), proving B(F) ⊂ σ(U).

LetU ∈ U be an open ball. Then there exist x ∈ F and ε > 0 such thatU = Uε(x).
By [41, Theorem 2.8.5] there exists a sequence (x�

n)n∈N ⊂ F� such that

‖x‖ = sup
n∈N

|〈x�
n, x〉| for all x ∈ F.

© Springer International Publishing Switzerland 2015
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Therefore, we obtain

U = {y ∈ F : ‖y − x‖ < ε} = {y ∈ F : sup
n∈N

|〈x�
n, y − x〉| < ε}

= ∩n∈N{y ∈ F : |〈x�
n, y〉 − 〈x�

n, x〉| < ε} = ∩n∈N{x�
n ∈ Uε(〈x�

n, x〉)} ∈ σ(C).

This shows U ⊂ σ(C), and hence σ(U) ⊂ σ(C).
For any n ∈ N and linear functionals x�

1, . . . , x�
n∈ F� the mapping

(x�
1, . . . , x�

n) : E → R
n

is continuous. Therefore, we have C ⊂ B(F), and hence σ(C) ⊂ B(F). �

Let (�,F ,μ) be a σ-finite measure space. Then we call a function f : � → F
measurable if it isF/B(F)-measurable, and we call f weakly measurable if for each
x∗ ∈ F∗ the scalar valued function 〈x∗, f 〉 is measurable. If (�,F ,μ) is a probability
space, that isμ(�) = 1, wewill also call ameasurable function f : � → F a random
variable.

A measurable function f : � → F is called simple (or elementary) if there exist
a positive integer n ∈ N, elements x1, . . . , xn ∈ F and sets A1, . . . , An ∈ F with
μ(Ai) < ∞ for i = 1, . . . , n such that

f =
n∑

i=1

xi1Ai . (2.1.1)

We denote by E(F) = E(�,F ,μ; F) the linear space of all elementary functions.
A function f : � → F is called strongly measurable if there exists a sequence

( fn)n∈N ⊂ E(F) of simple functions such that fn(ω) → f (ω) for all ω ∈ �.
As the Banach space F is separable, a function f : � → E is weakly measurable

if and only if it is measurable if and only if it is strongly measurable.
For p ≥ 1 we denote by Lp(�,F ,μ; F) the linear space consisting of all mea-

surable functions f : � → F such that

(∫

�

‖ f ‖pdμ

)1/p

< ∞.

Identifying all measurable functions which coincide μ-almost everywhere, the linear
space Lp(�,F ,μ; F) is a Banach space. We shall also use the abbreviation Lp(F),
or Lp(F; F), when there is no chance of ambiguity.

Let us now provide the definition of the Bochner integral. For a simple function
f ∈ E(F) of the form (2.1.1) we define the Bochner integral as

∫

�

f dμ :=
n∑

i=1

xiμ(Ai).
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Then we have
∥∥∥∥

∫

�

f dμ

∥∥∥∥ =
∥∥∥∥

n∑

i=1

xiμ(Ai)

∥∥∥∥ ≤
n∑

i=1

‖xi‖μ(Ai) =
∫

�

‖ f ‖dμ.

Therefore, the Bochner integral defines a continuous linear operator

E(F) → F, f �→
∫

�

f dμ. (2.1.2)

Lemma 2.1.2 For each p ≥ 1 the linear space E(F) is dense in Lp(F).

Consequently, the integral operator (2.1.2) has a unique extension

L1(F) → F, f �→
∫

�

f dμ, (2.1.3)

which we also call the Bochner integral, and we have the estimate
∥∥∥∥

∫

�

f dμ

∥∥∥∥ ≤
∫

�

‖ f ‖dμ for all f ∈ L1(F). (2.1.4)

If the measure space (�,F ,μ) is finite, that is, μ(�) < ∞, then, by the Cauchy–
Schwarz inequality, for each p ≥ 1 the integral operator (2.1.2) has a unique contin-
uous extension

Lp(F) → F, f �→
∫

�

f dμ.

For a function f ∈ L1(F) and a subset A ∈ F we set
∫

A
f dμ :=

∫

�

f 1Adμ.

If (�,F ,μ) is a probability space, that is, μ(�) = 1, for f ∈ L1(F) we set

E[ f ] :=
∫

�

f dμ.

If the measure space is given by (�,F ,μ) = (R+,B(R+),λ) where λ denotes
the Lebesgue measure, then for each measurable function f : R+ → F with

∫ t

0
‖ f (s)‖ds < ∞ for all t ≥ 0

we define the function

∫ t

0
f (s)ds :=

∫

(0,t]
f dλ, t ≥ 0.
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Proposition 2.1.3 The function R+ → F, t �→ ∫ t
0 f (s)ds, is continuous.

Now let (�i,Fi), i = 1, 2, be twomeasure spaces and let μ2 be a σ-finite measure
on �2. We set

(�,F) = (�1 × �2,F1 ⊗ F2).

Proposition 2.1.4 Let f : � → F be measurable such that ω2 �→ f (ω1,ω2) ∈
L1(�2; F) for all ω1 ∈ �1. Then the mapping

�1 → F, ω1 �→
∫

�2

f (ω1,ω2)μ2(dω2) (2.1.5)

is measurable.

Now let G be another separable Banach space. Recall that for a closed linear
operator A : D(A) ⊂ F → G the domain D(A) equipped with the graph norm
�x�D(A) = ‖x‖+‖Ax‖ is also a Banach space. Using the closed graph theorem, we
can prove the following result:

Proposition 2.1.5 Let A : D(A) ⊂ F → G be a closed operator and let
f ∈ L1(D(A)) be a function. Then we have f ∈ L1(F), A f ∈ L1(G) and

A
∫

�

f dμ =
∫

�

A f dμ. (2.1.6)

Recall that a system S ⊂ F is called a semiring if:

1. ∅ ∈ S;
2. For all A, B ∈ S we have A ∩ B ∈ S;
3. For all A, B ∈ S there exist n ∈ N and disjoint sets C1, . . . , Cn ∈ S such that

A \ B = ⋃n
i=1 Ci.

We denote by �(F) = �(S; F) the linear space of all simple functions
f : � → F of the form (2.1.1) with disjoint sets A1, . . . , An ∈ S.
Proposition 2.1.6 Let S be a semiring such that F = σ(S). Then, for all p ≥ 1 the
linear space �(S; F) is dense in Lp(F).

Proof Let p ≥ 1 and f ∈ Lp(F) be arbitrary. By Lemma 2.1.2 wemay assume that f
is of the form (2.1.1) with n ∈ N, elements x1, . . . , xn ∈ F and sets A1, . . . , An ∈ F
such that μ(Ai) < ∞ for i = 1, . . . , n. Let us first assume that the measure μ is
finite. Note that the σ-algebra F is generated by the algebra

A = {B1 ∪ . . . ∪ Bp : p ∈ N and B1, . . . , Bp ∈ S are disjoint}.
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Since the measure μ is finite [10,Theorem 5.7] applies and yields for each m ∈ N

and each i = 1, . . . , n the existence of a set Bm
i ∈ A such that

μ(Ai�Bm
i ) <

1

npm‖xi‖p
. (2.1.7)

We define the sequence ( fm)m∈N ⊂ E(F) of simple functions as

fm :=
n∑

i=1

xi1Bm
i
, m ∈ N.

Note that, due to the third property of the semiring S, we have ( fm)m∈N ⊂ �(S; F).
It remains to prove that fm → f in Lp(F). By (2.1.7), for each m ∈ N we obtain

∫

�

‖ f − fm‖pdμ =
∫

�

∥∥∥∥
n∑

i=1

xi(1Ai − 1Bm
i
)

∥∥∥∥
p

dμ ≤
∫

�

( n∑

i=1

‖xi‖1Ai�Bm
i

)p

dμ

≤ np−1
∫

�

n∑

i=1

‖xi‖p1Ai�Bm
i

dμ = np−1
n∑

i=1

‖xi‖pμ(Ai�Bm
i )

< np−1
n∑

i=1

‖xi‖p 1

npm‖xi‖p
= np−1 n

npm
= 1

m
,

which completes the proof for the case when the measure μ is finite or when f has
finite support.

Suppose f does not have finite support. Then for all ε > 0 there is an fε with
finite support such that

∫
�

‖ f − fε‖pdμ < ∞. For all ε > 0 and all N ∈ N there is
an mε> N such that fmε∈ �(F) and

∫

�

‖ f − fmε‖pdμ ≤ 2p
∫

�

‖ f − fε‖pdμ + 2p
∫

�

‖ fε − fmε‖pdμ ≤ 2pε + 2p

mε
,

which completes the proof. �

Let us now recall the definition of the Pettis integral. The following result is known
as Dunford’s lemma.

Lemma 2.1.7 Let f : � → F be a weakly measurable function such that 〈x∗, f 〉 ∈
L1(R) for all x∗ ∈ F∗. Then the linear operator

x∗∗
f : F∗ → R, 〈x∗∗

f , x∗〉 :=
∫

�

〈x∗, f 〉dμ

is continuous.
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Let f : � → F be a weakly measurable function such that 〈x∗, f 〉 ∈ L1(R) for
all x∗ ∈ F∗. By Dunford’s lemma we have x∗∗

f ∈ F∗∗ and

(D-)
∫

�

f dμ := x∗∗
f

is the so-called Dunford integral of f . If we have x∗∗
f ∈ F (which is in particular true

if the Banach space F is reflexive), then we say the function f is Pettis integrable,
and the Pettis integral of f is given by

(P-)
∫

�

f dμ := x∗∗
f . (2.1.8)

Proposition 2.1.8 Suppose the separable Banach space F is reflexive. Then each
function f ∈ L1(F) is Pettis integrable and we have

∫

�

f dμ = (P-)
∫

�

f dμ f or all f ∈ L1(F). (2.1.9)

Moreover, for each x∗ ∈ F∗ we have

〈
x∗,

∫

�

f dμ
〉
=

∫

�

〈x∗, f 〉dμ f or all f ∈ L1(F). (2.1.10)

Proof The identity (2.1.10) follows from Proposition2.1.5 and (2.1.9) is a conse-
quence of (2.1.10). �

2.2 Stochastic Processes in Banach Spaces

Let (�,F , (Ft)t≥0,P) be a filtered probability space. The filtration (Ft)t≥0 satisfies
the usual conditions if:

1. It is right-continuous, i.e., we have Ft = ⋂
s>t Fs for all t ≥ 0;

2. It is complete, i.e., we have N ⊂ Ft , ∀t ∈ R+, where N denotes the collection
of P-null sets of F .

In the sequel, we shall always assume that the usual conditions are satisfied.
Let F be a Banach space and let X = (Xt)t∈I be an F-valued process with index

set I ⊂ R+. In the sequel, we will always have I = R+ or I = [0, T ] for some T > 0.
The process X is called (Ft)-adapted (in short, adapted) if for each t ∈ I the

random variable Xt is Ft-measurable.
The process X is continuous if all its paths t � Xt(ω) are continuous. The process

X is càdlàg if all its paths are right-continuous with left-hand limits. If X is càdlàg,
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we define the left-continuous process Xt− as

Xt− :=
{

X0, t = 0

lims↑tXs, t > 0

and the jumps �X as

�Xt := Xt − Xt−, t ≥ 0.

For T > 0 we define the system of sets

GT = {A × {0} : A ∈ F0} ∪ {A × (s, t] : 0 ≤ s < t ≤ T : A ∈ Fs}

and the predictable σ-algebra PT = σ(GT ). An F-valued process X = (Xt)t∈[0,T ] is
called predictable if it is PT -measurable.

We call the sigma algebra generated by all càdlàg processes the “optional sigma
algebra” and denote it by P̃T .

Lemma 2.2.1 Every left-continuous, adapted process X = (Xt)t∈[0,T ] is predictable.

Proof For each n ∈ N we define the process Xn = (Xn
t )t∈[0,T ] as

Xn := X01{0} +
2n∑

k=1

X T(k−1)
2n

1
(

T(k−1)
2n , Tk

2n ].

Then each Xn is GT -measurable and, by the left-continuity of X, we have Xn → X
everywhere. Therefore, the process X is predictable. �

Let HT be the system of sets

HT = {X−1(B) : X = (Xt)t∈[0,T ] is left-continuous, adapted and B ∈ B(F)}.

Proposition 2.2.2 We have PT = σ(HT ), that is, the predictable σ-algebra PT is
the smallest σ-algebra generated by all left-continuous adapted processes.

Proof By Lemma2.2.1 every left-continuous adapted process is predictable, that
is, we have HT ⊂ PT , and hence σ(HT ) ⊂ PT . Conversely, every process X =
(Xt)t∈[0,T ] of the form X = x1A with x ∈ F and A ∈ GT is left-continuous and
adapted. Therefore, we have GT ⊂ HT , and hence PT ⊂ σ(HT ). �

A process X = (Xt)t≥0 is called predictable if for each T ≥ 0 the restriction
X|�×[0,T ] is predictable.

A process X = (Xt)t∈I is called progressively measurable if for each t ∈ I the
restriction X|�×[0,t] is Ft ⊗B([0, t])-measurable. Note that a progressively measur-
able process X is also adapted.
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Proposition 2.2.3 Let T > 0 be arbitrary. The following statements are valid:

1. Every predictable process X = (Xt)t∈I is progressively measurable.
2. Every right-continuous adapted process X = (Xt)t∈I is progressively measurable.

Proof Let T ∈ I be arbitrary. We have GT ⊂ FT ⊗ B([0, T ]), and hence PT ⊂
FT ⊗ B([0, T ]). Therefore, every predictable process is progressively measurable.

Suppose X = (Xt)t∈[0,T ] is right-continuous and adapted. For each n ∈ N we
define the process Xn = (Xn

t )t∈[0,T ] as

Xn := X01{0} +
2n∑

k=1

X Tk
2n
1

(
T(k−1)

2n , Tk
2n ].

Then each Xn is FT ⊗ B([0, T ])-measurable and, by the right-continuity of X, we
have Xn → X everywhere. Therefore, the process X is FT ⊗ B([0, T ])-measurable,
and consequently, every right-continuous adapted process is progressively mea-
surable. �

For T > 0 we denote by K1
T (F) the linear space of all progressively measurable

processes X = (Xt)t∈[0,T ] such that

P

( ∫ T

0
‖Xs‖ds < ∞

)
= 1.

For each X ∈ K1
T (F) we define the pathwise Bochner integral

∫ t

0
Xsds, t ∈ [0, T ]. (2.2.1)

Lemma 2.2.4 For each X ∈ K1
T (F) the integral process (2.2.1) is continuous and

adapted.

Proof This is a consequence of Propositions2.1.3 and 2.1.4. �

We denote by K1∞(F) the linear space of all progressively measurable processes
X = (Xt)t≥0 such that for all T > 0 the restriction X|�×[0,T ] belongs to K1

T (F). For
each X ∈ K1

T (F) we define the pathwise Bochner integral

∫ t

0
Xsds, t ≥ 0

which, according to Lemma2.2.4, is a continuous adapted process.
Let X = (Xt)t∈I and Y = (Yt)t∈I be two processes. Then Y is called a version (or

a modification) of X if

P(Xt = Yt) = 1 for all t ∈ I.
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The processes X and Y are called indistinguishable if

P

( ⋂

t∈I

{Xt = Yt}
)

= 1.

The processesX andY are called independent if for all n, m ∈ N and all t1 ≤ . . . ≤ tn,
s1, . . . , sm with t1, . . . , tn, s1, . . . , sm ∈ I the random vectors (Xt1, . . . , Xtn) and
(Ys1 , . . . , Ysm) are independent.

2.3 Martingales in Banach Spaces

Let (�,F ,P) be a complete probability space and let F be a separable Banach space.

Proposition 2.3.1 Let X ∈ L1(F; F) be a random variable and let C ⊂ F be a sub
σ-algebra. Then, there exists a unique random variable Z ∈ L1(C; F) such that

E[X1C] = E[Z1C] for all C ∈ C.

Proof See [18,Proposition 1.10]. �

The random variable Z is denoted by E[X | C] and is called the conditional expec-
tation of X given C. Furthermore, [18,Proposition 1.10] yields that

‖E[X | C]‖ ≤ E[‖X‖ | C] for allX ∈ L1(F; F). (2.3.1)

Taking into account theCauchy–Schwarz inequality, for everyp ≥ 1wemayconsider
the conditional expectation as a continuous linear operator

Lp(F; F) → Lp(C; F), X �→ E[X | C].

Now let the probability space (�,F ,P) be equipped with a filtration (Ft)t≥0 satisfy-
ing the usual conditions. Let I ⊂ R+ be an index set such that I = R+ or I = [0, T ]
for some T > 0.

Definition 2.3.2 An F-valued adapted process (Mt)t∈I is called a martingale if:

1. We have E[‖Mt‖] < ∞ for all t ∈ I;
2. For all s, t ∈ I with s ≤ t we have E[Mt |Fs] = Ms almost surely.

Recall that a mapping τ : � → R+ = [0,∞] is called a stopping time if we
have {τ ≤ t} ∈ Ft for all t ≥ 0. For a stopping time τ and an F-valued process
X = (Xt)t∈I the stopped process Xτ is defined as Xτ

t := Xt∧τ for t ∈ I . Note that for
a progressively measurable process X and a stopping time τ the stopped process Xτ

is progressively measurable, too.
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An F-valued process M = (Mt)t∈I is called a local martingale if there exists a
sequence (τn)n∈N of stopping times with τn ↑ ∞ almost surely such that for each
n ∈ N the stopped process Mτn is a martingale.

Lemma 2.3.3 An F-valued, adapted process M = (Mt)t∈I with E[‖Mt‖] < ∞ for
all t ∈ I is a martingale if and only if for each x∗ ∈ F∗ the real-valued process
〈x∗, M〉 is a martingale.

Proof If M is a martingale, then clearly for each x∗ ∈ F∗ the process 〈x∗, M〉 is
a martingale, too. Now suppose that for each x∗ ∈ F∗ the process 〈x∗, M〉 is a
martingale. By [41,Theorem 2.8.5] there exists a sequence (x∗

n)n∈N ⊂ F∗ such that

‖x‖ = sup
n∈N

|〈x∗
n , x〉| for all x ∈ F.

Let s, t ∈ I with s ≤ t be arbitrary. There exists a set �0 ∈ F with P(�0) = 1 such
that

E[〈x∗
n, Xt〉 |Fs](ω) = 〈x∗

n , Xs(ω)〉 for allω ∈ �0 and n ∈ N.

Therefore, for all ω ∈ �0 we obtain

‖E[Xt |Fs](ω) − Xs(ω)‖ = sup
n∈N

|〈x∗
n ,E[Xt |Fs](ω) − Xs(ω)〉|

= sup
n∈N

|E[〈x∗
n, Xt〉 |Fs](ω) − 〈x∗

n, Xs(ω)〉| = 0,

finishing the proof. �

Theorem 2.3.4 Every F-valued martingale M = (Mt)t∈I has a càdlàg version.

Proof Since F is separable, we look at 〈x�, Mt〉 for x� in a countable determining
set. Then by the one-dimensional result the theorem follows. �

The following two estimates are known as Doob’s Lp-inequalities.

Theorem 2.3.5 Let M = (Mt)t∈I be an F-valued martingale. Then, the following
statements are valid:

1. For all p ≥ 1 and λ > 0 we have

P

(
sup

t∈[0,T ]
‖Mt‖ ≥ λ

)
≤ 1

λp
E[‖MT‖p]. (2.3.2)

For every p > 1 we have

E

[
sup

t∈[0,T ]
‖Mt‖p

]
≤

(
p

p − 1

)p

E[‖MT‖p]. (2.3.3)
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Proof The real-valued process ‖M‖ is a non-negative submartingale. Indeed, for all
s, t ∈ I with s ≤ t we have, by using (2.3.1),

‖Ms‖ = ‖E[Mt |Fs]‖ ≤ E[‖Mt‖ |Fs].

Thus, the inequalities (2.3.2) and (2.3.3) follow from [88,Theorem II.1.7]. �

Fix a finite time horizon T > 0. For p ≥ 1 we denote byMp
T (E) the linear space

of all E-valued martingales M = (Mt)t∈[0,T ] with E[‖MT‖p] < ∞. Identifying
indistinguishable processes, a norm onMp

T (E) is given by

�M�Mp
T

= E[‖MT‖p]1/p.

Lemma 2.3.6 For each p ≥ 1 the normed space Mp
T (E) is a Banach space.

Proof Let p ≥ 1 be arbitrary. The linear mapping

φ : (Mp
T (E),� · �) → Lp(FT ; E), φ(M) = MT

is in particular an isometry. It is also surjective, because for any X ∈ Lp(FT ; E) we
have φ−1(X) = M with Mt = E[XT |Ft] for t ∈ [0, T ]. Therefore, φ is an isometric
isomorphism, proving the completeness ofMp

T (E). �

2.4 Poisson Random Measures

Let (�,F , (Ft)t≥0,P) be a filtered probability space and let (E, E) be a Blackwell
space. We set X = R+ × E.

We recall here the definition of a Blackwell space (Definition 24, Chap. 3) [20].

Definition 2.4.1 A measurable space (E, E) is a Blackwell space if the associated
Hausdorff space (E, E) is Souslin.

Remark 2.4.2 For simplicity, as a particular case, we might take (E, E) to be a
complete separable metric space, since in all applications considered in this mono-
graph (E, E) is the space which marks the jumps of a Lévy process. However, we
shall state the results of this section in full generality. We remark that a Blackwell
space is in particular countably generated and that the σ-algebra B(X ) is generated
by the semiring

S = {{0} × B : B ∈ E} ∪ {(s, t] × B : 0 ≤ s < t and B ∈ E}.

Definition 2.4.3 A random measure on X is a family N = {N(ω; dt, dx) : ω ∈ �}
of measures on (X ,B(X )) satisfying N(ω; {0} × E) = 0 for all ω ∈ �.
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Definition 2.4.4 An integer-valued random measure is a random measure N that
satisfies:

• N(ω; {t} × E) ≤ 1 for all ω ∈ �;
• N(ω; A) ∈ N0 for all ω ∈ � and all A ∈ B(X );
• N is optional and P̃-σ-finite, where P̃ is the σ-field of optional sets.

The third condition is purely technical and ensures that for each progressively
measurable process f : � × E × R+ → F with

P

( ∫ t

0

∫

E
‖ f (s, x)‖N(ds, dx) < ∞

)
= 1 for all t > 0

the integral process is adapted.

Definition 2.4.5 A Poisson random measure onX , relative to (Ft)t≥0, is an integer-
valued random measure N such that:

1. There exists a σ-finite measure β on E such that

E[N(A)] = (λ ⊗ β)(A), A ∈ B(X ).

2. For every s ∈ R+ and every A ∈ B(X ) such that A ⊂ (s,∞)× E and E[N(A)] <

∞, the random variable N(A) is independent of Fs.

For a Poisson randommeasureN themeasureν(dt, dx) := dt ⊗ β(dx) is called the
compensator (or the intensity measure) ofN . The next result explains the terminology
“Poisson random measure”.

Theorem 2.4.6 Let N be a Poisson random measure with compensator ν, and let
A1, . . . , An ∈ B(X ) be disjoint subsets for some n ∈ N with ν(Ai) < ∞ for all
i = 1, . . . , n. Then the random variables N(Ai), i = 1, . . . , n are independent and
have a Poisson distribution with mean ν(Ai).

Proof The statement follows from [48,Theorem II.4.8]. �

Let N be a Poisson random measure. We call q(dt, dx) = N(dt, dx) − ν(dt, dx)
the compensated Poisson random measure associated to N , and ν is also called the
compensator (or the intensity measure) of q. Note that for each set A ∈ B(X ) with
ν(A) < ∞ we have, since N(A) ∼ Pois(ν(A)) according to Theorem2.4.6,

E[q(A)] = 0 and E[q(A)2] = ν(A).

Lemma 2.4.7 For each A ∈ B(R+) and each B ∈ E with β(B) < ∞, the process
M = (Mt)t≥0 given by

Mt = q((0, t] ∩ A × B), t ≥ 0

is an (Ft)-martingale.
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Proof Let 0 ≤ s ≤ t < ∞ be arbitrary. Since N((s, t] ∩ A × B) is independent of Fs

(see Definition2.4.5) and has distribution Pois(λ((s, t] ∩ A)β(B)) by Theorem2.4.6,
we obtain

E[Mt − Ms |Fs] = E[q((s, t] ∩ A × B) |Fs]
= E[N((s, t] ∩ A × B) |Fs] − λ((s, t] ∩ A)β(B)

= E[N((s, t] ∩ A × B)] − λ((s, t] ∩ A)β(B) = 0,

establishing the proof. �

Lemma 2.4.8 For each s ≥ 0, each A ∈ B(R+) with A ⊂ (s,∞), each F ∈ Fs and
each B ∈ E with β(B) < ∞ the process M = (Mt)t≥0 given by

Mt = 1Fq((0, t] ∩ A × B), t ≥ 0

is an (Ft)-martingale.

Proof By Lemma2.4.7, the process

Nt = q((0, t] ∩ A × B), t ∈ [0, T ]
is a martingale. We shall now prove that 1FN is also a martingale, which will finish
the proof. Let 0 ≤ u ≤ t be arbitrary. If u ≤ s, then we have

E[1FNt |Fu] = E[1FE[Nt |Fs]] |Fu] = E[1FNs |Fu] = 0 = 1FNu,

and for u > s we obtain

E[1FNt |Fu] = 1FE[Nt |Fu] = 1FNu,

showing that 1FN is a martingale. �

We set L1
β(F) := L1(X ,B(X ),λ ⊗ β; F).

Theorem 2.4.9 The linear space �(F) = �(S; F) is dense in L1
β(F).

Proof This follows from Remark2.4.2 and by Proposition2.1.6. �

Remark 2.4.10 Any function f ∈ �(F) is of the form

f (t, x) =
n∑

k=1

m∑

l=1

ak,l1Ak,l (x)1(tk−1,tk](t) (2.4.1)

for n, m ∈ N with:

• elements ak,l ∈ F for k = 1, . . . , n and l = 1, . . . , m;
• time points 0 ≤ t0 ≤ . . . tn < ∞;
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• sets Ak,l ∈ E with β(Ak,l) < ∞ for k = 1, . . . , n and l = 1, . . . , m such that the
product sets Ak,l × (tk−1, tk] are mutually disjoint.

Definition 2.4.11 For every f ∈ �(F) of the form (2.4.1) we define the Wiener
integral of f with respect to q as

∫∫

X
f (t, x)q(dt, dx) :=

n∑

k=1

m∑

l=1

ak,lq((tk−1, tk] × Ak,l).

Note that the integral

�(F) → L1(F), f �→
∫∫

X
f (t, x)q(dt, dx) (2.4.2)

is a linear operator.

Lemma 2.4.12 For each f ∈ L1
β(F) we have (2.4.3)

E

[ ∫∫

X
‖ f (t, x)‖N(dt, dx)

]
=

∫∫

X
‖ f (t, x)‖β(dx)dt (2.4.3)

and the integral operator

L1
β(F) → L1(F), f �→

∫∫

X
f (t, x)q(dt, dx) (2.4.4)

is continuous.

Proof We show that for any g ∈ L1
β(R) with g ≥ 0 we have

E

[ ∫∫

X
g(t, x)N(dt, dx)

]
=

∫∫

X
g(t, x)β(dx)dt, (2.4.5)

which yields (2.4.3). By inspection, (2.4.5) holds true for every simple function
g ∈ �(R)with g ≥ 0. For an arbitrary g ∈ L1

β(R)with g ≥ 0 there exists a sequence
(gn)n∈N ⊂ �(R) of simple functions such that gn ≥ 0 for all n ∈ N and gn ↑ g
everywhere. By the monotone convergence theorem we obtain

E

[ ∫∫

X
g(t, x)N(dt, dx)

]
= lim

n→∞E

[ ∫∫

X
gn(t, x)N(dt, dx)

]

= lim
n→∞

∫∫

X
gn(t, x)β(dx)dt

=
∫∫

X
g(t, x)β(dx)dt,

proving (2.4.5). We deduce that for every f ∈ L1
β(F) relation (2.4.3) is valid and
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E

[∥∥∥∥
∫∫

X
f (t, x)N(dt, dx)

∥∥∥∥

]
≤ E

[ ∫∫

X
‖ f (t, x)‖N(dt, dx)

]

=
∫∫

X
‖ f (t, x)‖β(dx)dt,

proving the continuity of the linear operator (2.4.4). �

For f ∈ L1
β(F) and B ∈ E we define

∫ t

0

∫

B
f (s, x)q(ds, dx) :=

∫∫

(0,t]×B
f (s, x)q(ds, dx), t ≥ 0.

Lemma 2.4.13 For each f ∈ L1
β(F) and each T ≥ 0 the process M = (Mt)t∈[0,T ]

given by

Mt =
∫ t

0

∫

E
f (t, x)q(dt, dx), t ∈ [0, T ]

belongs to M1
T (F).

Proof There exists a sequence ( fn)n∈N ⊂ �(F) of simple functions such that
fn → f in L1

β(F). For n ∈ N we define Mn = (Mn
t )t∈[0,T ] by

Mn
t =

∫ t

0

∫

E
fn(s, x)q(ds, dx), t ∈ [0, T ].

By Lemma 2.4.7 we have Mn ∈ M1
T (F) for all n ∈ N. By the continuity of the

integral operator (2.4.4) we have E[‖Mn
T − MT‖] → 0. Since M1

T (F) is a Banach
space according to Lemma2.3.6, we deduce that M ∈ M1

T (F). �

Now we fix T > 0 and set

L1
β(PT ; F) := L1(� × [0, T ] × E,PT ⊗ E,P ⊗ λ ⊗ β; F).

An analogous argument as in the proof of Lemma2.4.12 provides the following
result:

Lemma 2.4.14 For each f ∈ L1
β(PT ; F) we have

E

∥∥∥∥
∫∫

X
f (t, x)N(dt, dx)

∥∥∥∥ = E

[ ∫∫

X
‖ f (t, x)‖β(dx)dt

]
(2.4.6)

and the integral operator

L1
β(PT ; F) → L1(F), f �→

∫∫

X
f (t, x)q(dt, dx) (2.4.7)
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is continuous.

For f ∈ L1
β(PT ; F) and B ∈ E we define

∫ t

0

∫

B
f (s, x)q(ds, dx) :=

∫∫

(0,t]×B
f (s, x)q(ds, dx), t ∈ [0, T ].

Lemma 2.4.15 For each f ∈ L1
β(PT ; F) the process M = (Mt)t∈[0,T ] given by

Mt =
∫ t

0

∫

E
f (t, x)q(dt, dx), t ∈ [0, T ]

belongs to M1
T (F), and the integral operator

L1
β(PT ; F) → M1

T (F), f �→
(∫ t

0

∫

E
f (s, x)q(ds, dx)

)

t∈[0,T ]
(2.4.8)

is continuous.

Proof Arguing as in the proof of Lemma 2.4.13, we obtain, by using Lemma2.4.8
instead of Lemma 2.4.7, that M ∈ M1

T (F). The continuity of the integral operator
(2.4.8) follows from Lemma 2.4.14. �

2.5 Characteristic Functions

Let (�,F ,P) be a probability space and let E be a separable Banach space. For a
random variable X : � → E we define the characteristic function

ϕX : E∗ → C, ϕX(x∗) = E[ei〈x∗,X〉].

Theorem 2.5.1 Let X, Y : � → E be two random variables with ϕX = ϕY . Then
we have P

X = P
Y .

Proof We will show that PX |C = P
Y |C , where C denotes the system of cylinder

sets. Since C is stable under intersection and generates B(E) by Proposition 2.1.1,
the uniqueness theorem for measures, see, e.g., [10,Theorem 5.4], then yields that
P

X = P
Y .

Let n ∈ N, the linear functionals x∗
1, . . . , x∗

n ∈ E∗ and u ∈ R
n be arbitrary. Then

we have
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ϕ〈x∗
k , X〉k=1,...,n(u) = E

[
exp

(
i

n∑

k=1

uk〈x∗
k , X〉

)]
= E

[
exp

(
i
〈 n∑

k=1

ukx∗
k , X

〉)]

= ϕX

( n∑

k=1

ukx∗
k

)
= ϕY

( n∑

k=1

ukx∗
k

)
= E

[
exp

(
i
〈 n∑

k=1

ukx∗
k , Y

〉)]

= E

[
exp

(
i

n∑

k=1

uk〈x∗
k , Y〉

)]
= ϕ〈x∗

k ,Y〉k=1,...,n(u).

Using the uniqueness theorem for characteristic functions in finite dimensions, see,
e.g., [47, Theorem 14.1], for all B1, . . . , Bn ∈ B(R) we obtain

P
X(x∗

1 ∈ B1, . . . , x∗
n ∈ Bn) = P(〈x∗

1 , X〉 ∈ B1, . . . , 〈x∗
n , X〉 ∈ Bn)

= P
〈x∗

k , X〉k=1,...,n(B1 × . . . × Bn) = P
〈x∗

k , Y〉k=1,...,n(B1 × . . . × Bn)

= P(〈x∗
1 , Y〉 ∈ B1, . . . , 〈x∗

n, Y〉 ∈ Bn) = P
Y (x∗

1 ∈ B1, . . . , x∗
n ∈ Bn),

showing that PX = P
Y . �

Hence, all well-known theorems for finite dimensional random variables transfer
to Banach space valued random variables. In particular, we obtain the following
result:

Theorem 2.5.2 Let X1, . . . , Xn : � → F be random variables. Then X1, . . . , Xn

are independent if and only if for all x∗
1, . . . , x∗

n ∈ F∗ we have

ϕ(X1,..., Xn)(x
∗
1 , . . . , x∗

n) =
n∏

j=1

ϕXj (x
∗
j ).

Now let N be a Poisson random measure.

Proposition 2.5.3 Let F be a separable Banach space. For each f ∈ L1
β(F) the

characteristic function of the integral

N f =
∫∫

X
f (s, x)N(ds, dx)

is given by

E[ei〈y∗,N f 〉] = exp

( ∫∫

X

(
ei〈y∗, f (s,x)〉 − 1

)
β(dx)ds

)
, y∗ ∈ E∗. (2.5.1)

Proof Let f ∈ �(F) be an arbitrary simple function of the form (2.4.1). By
Theorem2.4.6 the random variables N((tk−1, tk] × Ak,l) are independent and have
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a Poisson distribution with mean λ((tk−1, tk])β(Ak,l). Thus, for every y∗ ∈ F∗ we
obtain

E[ei〈y∗,N f 〉] = E

[
exp

(〈
iy∗,

n∑

k=1

m∑

l=1

ak,lN((tk−1, tk] × Ak,l)
〉)]

=
n∏

k=1

m∏

l=1

E

[
exp

(
i〈y∗, ak,l〉N((tk−1, tk] × Ak,l)

)]

=
n∏

k=1

m∏

l=1

exp
(
λ((tk−1, tk])β(Ak,l)

(
ei〈y∗,ak,l〉 − 1

))

= exp

( n∑

k=1

m∑

l=1

(
ei〈y∗,ak,l〉 − 1

)
λ((tk−1, tk])β(Ak,l)

)

= exp

( ∫∫

X

(
ei〈y∗, f (s,x)〉 − 1

)
β(dx)ds

)
.

This proves (2.5.1) for every f ∈ �(F). Now, let f ∈ L1
β(F) be arbitrary. There

exists a sequence ( fn)n∈N ⊂ �(F) of simple functions such that fn → f in
L1

β(F). By the continuity of the integral operator (2.4.4) we have N fn → N f in

L1(�,F ,P; F). Let y∗ ∈ F∗ be arbitrary. There exists a subsequence (nk)k∈N such
that 〈y∗, fnk 〉 → 〈y∗, f 〉 almost surely and 〈y∗, N fnk

〉 → 〈y∗, N f 〉 almost surely. By
Lebesgue’s dominated convergence theorem we have

E[ei〈y∗,N fnk
〉] → E[ei〈y∗,N f 〉].

Note that for all x ∈ R we have

|eix − 1| = | cos x − 1 + i sin x| =
√

(cos x − 1)2 + sin2 x

≤
√

x2 + x2 = √
2|x|.

Therefore, for every g ∈ L1
β(E) we have

|ei〈y∗,g(s,x)〉 − 1| ≤ √
2‖y∗‖ ‖g(s, x)‖, (s, x) ∈ X .

Using the generalized Lebesgue dominated convergence theorem (Lemma 7.1.8) we
deduce

∫∫

X

(
ei〈y∗, fnk (s,x)〉 − 1

)
β(dx)ds →

∫∫

X

(
ei〈y∗, f (s,x)〉 − 1

)
β(dx)ds.

Consequently, the identity (2.5.1) is valid for all f ∈ L1
β(F). �

http://dx.doi.org/10.1007/978-3-319-12853-5_7
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Lemma 2.5.4 Let F, G be two separable Banach spaces. Let f ∈ L1
β(F), g ∈

L1
β(G) and A, B ∈ B(X ) with A ∩ B = ∅ be arbitrary. Then, the random variables

X =
∫∫

A
f (t, x)N(dt, dx) and Y =

∫∫

B
g(t, x)N(dt, dx)

are independent.

Proof First we assume that f ∈ �(F) and g ∈ �(G) are simple functions of the
form

f (t, x) =
n∑

k=1

m∑

l=1

ak,l1Ak,l (x)1(tk−1,tk ](t), (2.5.2)

g(t, x) =
p∑

k=1

q∑

l=1

Bk,l1Bk,l (x)1(sk−1,sk](t) (2.5.3)

with disjoint sets Ak,l ⊂ A and Bk,l ⊂ B. Then we have

X =
n∑

k=1

m∑

l=1

ak,lN((tk−1, tk] × Ak,l) and Y =
p∑

k=1

q∑

l=1

bk,lN((sk−1, sk] × Bk,l).

Using Theorem2.4.6, the random variables X and Y are independent. In the general
case where f ∈ L1

β(F) and g ∈ L1
β(G) there exist sequences ( fn)n∈N ⊂ �(F)

and (gn)n∈N ⊂ �(G) of simple functions of the type (2.5.2) and (2.5.3) such that
fn → f inL2

β(F) and gn → g inL2
β(G). Then, for each n ∈ N the random variables

Xn =
∫∫

A
fn(t, x)N(dt, dx) and Yn =

∫∫

B
gn(t, x)N(dt, dx)

are independent. By the continuity of the integral operator (2.4.4) we have Xn → X
in L1

β(F) and Yn → Y in L1
β(G). Consequently, the random variables X and Y are

also independent. �

2.6 Remarks and Related Literature

Thematerial of Sect. 2.1 is from [23]. In Sect. 2.4,we have taken the general definition
of a Poisson randommeasure,which can be found in [48]. The inequalities in Sect. 2.3
are due to Doob and follow from the fact that ‖Mt‖ is a submartingale.



Chapter 3
Stochastic Integrals with Respect
to Compensated Poisson Random Measures

In this chapter, we define the stochastic integral. Throughout this section, (�,F ,

(Ft)t≥0,P) is a filtered probability space.

3.1 The Wiener Integral with Respect to Compensated
Poisson Random Measures

Let (E, E) be a Blackwell space and let q(dt, dx) be a compensated Poisson random
measure on X = R+ × E with compensator ν(dt, dx) = dt ⊗ β(dx). Let F be a
separable Banach space.

Let L2
β(F) = L2(X ,B(X ), λ ⊗ β; F). As discussed in Sect. 2.4 the σ -algebra

B(X ) is generated by the semiring

S = {{0} × B : B ∈ E} ∪ {(s, t] × B : 0 ≤ s < t and B ∈ E}

and by Proposition2.1.6 the linear space�(F) = �(S; F) is dense inL2
β(F). More-

over, any function f ∈ �(F) is of the form (2.4.1).
For every f ∈ �(F) of the form (2.4.1) we defined in Definition2.4.11 the Wiener

integral of f with respect to q as

∫∫

X
f (t, x)q(dt, dx) :=

n∑

k=1

m∑

l=1

ak,lq((tk−1, tk] × Ak,l).

Note that the Wiener integral

�(F) → L2(F), f �→
∫∫

X
f (t, x)q(dt, dx) (3.1.1)

is a linear operator.
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Remark 3.1.1 If F = H is a separable Hilbert space, then for simple functions we
have the so-called Itô isometry

E

[∥∥∥∥
∫∫

X
f (t, x)q(dt, dx)

∥∥∥∥
2]

=
∫∫

X
‖f (t, x)‖2β(dx)dt for all f ∈ �(H). (3.1.2)

Indeed, for a simple f ∈ �(H) of the form (2.4.1) we have

E

[∥∥∥∥
∫∫

X
f (t, x)q(dt, dx)

∥∥∥∥
2]

= E

[∥∥∥∥
n∑

k=1

m∑

l=1

ak,lq((tk−1, tk] × Ak,l)

∥∥∥∥
2]

= E

[〈 n∑

k=1

m∑

l=1

ak,lq((tk−1, tk] × Ak,l),

n∑

k=1

m∑

l=1

ak,lq((tk−1, tk] × Ak,l)
〉]

=
n∑

k=1

m∑

l=1

‖ak,l‖2E[q((tk−1, tk] × Ak,l)]

+
n∑

k=1

m∑

l=1

n∑

i=1

m∑

j=1

ak,lai,jE[〈q((tk−1, tk] × Ak,l), q((ti−1, ti] × Ai,j)〉].

Using Theorem2.4.6 we obtain

n∑

k=1

m∑

l=1

‖ak,l‖2E[q((tk−1, tk] × Ak,l)] =
n∑

k=1

m∑

l=1

‖ak,l‖2β(Ak,l)λ((tk−1, tk])

=
∫∫

X
‖f (t, x)‖2β(dx)dt.

For k < i the random variable q((ti−1, ti] × Ai,j) is independent of Fti−1 and
q((tk−1, tk] × Ak,l) is Fti−1 -measurable. Therefore, we get

E[〈q((tk−1, tk] × Ak,l), q((ti−1, ti] × Ai,j)〉]
= E[E[〈q((tk−1, tk] × Ak,l), q((ti−1, ti] × Ai,j)〉] | Fti−1]
= E[〈q((tk−1, tk] × Ak,l),E[q((ti−1, ti] × Ai,j)]〉] = 0,

and hence, the Itô isometry (3.1.2) is valid.

http://dx.doi.org/10.1007/978-3-319-12853-5_2
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Consequently, if F = H is a separable Hilbert space, then the integral operator
(3.1.1) is an isometry, and therefore in particular continuous. Thus, and because
�(H) is dense in L2

β(H), it has a unique extension

L2
β(H) → L2(H), f �→

∫∫

X
f (t, x)q(dt, dx),

which we also call the Wiener integral, and we have the Itô isometry

E

[∥∥∥∥
∫∫

X
f (t, x)q(dt, dx)

∥∥∥∥
2]

=
∫∫

X
‖f (t, x)‖2β(dx)dt for all f ∈ L2

β(H). (3.1.3)

If F is a general Banach space, then the definition of the Wiener integral becomes
more involved, because relation (3.1.2) may not be satisfied for all f ∈ �(F). The
article [102] gives a counterexample for stochastic integrals with respect to a one-
dimensional Brownian motion.

However, if there exists a constant Kβ > 0 (which may depend on β) such that

E

[∥∥∥∥
∫∫

X
f (t, x)q(dt, dx)

∥∥∥∥
2]

≤ Kβ

∫∫

X
‖f (t, x)‖2β(dx)dt for all f ∈ �(F),

(3.1.4)

then we can analogously define the Wiener integral for all f ∈ L2
β(F) as the contin-

uous linear operator

L2
β(F) → L2(�,F ,P; F), f �→

∫∫

X
f (t, x)q(dt, dx), (3.1.5)

which is the unique extension of (3.1.1). In particular, we obtain the estimate

E

[∥∥∥∥
∫∫

X
f (t, x)q(dt, dx)

∥∥∥∥
2]

≤ Kβ

∫∫

X
‖f (t, x)‖2β(dx)dt for all f ∈ L2

β(F).

Remark 3.1.2 The Wiener Integral in (3.1.5) is cádlág.

We proceed with the definition of the Pettis integral. Let f : X → F be a measurable
function such that 〈y∗, f 〉 ∈ L2

β(R) for all y∗ ∈ F∗. We define the linear operator

Tf : F∗ → L2(�,F ,P), Tf y∗ :=
∫∫

X
〈y∗, f (s, x)〉q(ds, dx).



28 3 Stochastic Integrals with Respect to Compensated Poisson Random Measures

Arguing as in the proof of Dunford’s lemma (see Lemma2.1.7), we show that Tf

is continuous. The function f is said to be Pettis integrable if there exists a random
variable Zf ∈ L2(�,F ,P; F) such that almost surely

Tf y∗ = 〈y∗, Zf 〉. (3.1.6)

Note that such a random variable Zf is P-almost surely unique, provided it exists,
and that the set of Pettis integrable functions forms a linear space. Following the
ideas of [90], we call Zf the Pettis integral of f and set

(P−)

∫∫

X
f (s, x)q(ds, dx) := Zf .

We observe that for each simple function f ∈ �(F) the Pettis integral exists and
coincides with the Wiener integral, that is

∫∫

X
f (s, x)q(ds, dx) = (P−)

∫∫

X
f (s, x)q(ds, dx) for all f ∈ �(F). (3.1.7)

Lemma 3.1.3 Suppose there exists a constant Kβ > 0 such that (3.1.4) is satisfied.
Then each function f ∈ L2

β(F) is Pettis integrable and we have

∫∫

X
f (s, x)q(ds, dx) = (P−)

∫∫

X
f (s, x)q(ds, dx) for all f ∈ L2

β(F). (3.1.8)

Moreover, for each x∗ ∈ F∗ we have

〈
x∗,

∫∫

X
f (s, x)q(ds, dx)

〉
=

∫∫

X
〈x∗, f (s, x)〉q(ds, dx) for all f ∈ L2

β(F). (3.1.9)

Proof The identity (3.1.9) is immediately verified for simple functions f ∈ �(F),
and thus follows for general functions f ∈ L2

β(F) by choosing an approximating
sequence (fn)n∈N ⊂ �(F) and passing to the limit. Because of (3.1.9), for an arbitrary
function f ∈ L2

β(F) the random variable

Zf :=
∫∫

X
f (s, x)q(ds, dx) (3.1.10)

satisfies (3.1.6), proving the identity (3.1.8). �

Now the question arises which properties of the continuous linear operator Tf

ensure that the function f : X → F is Pettis integrable. If F is a Hilbert space, we
get a straight answer. Recall that for two separable Hilbert spaces H1 and H2 a linear

http://dx.doi.org/10.1007/978-3-319-12853-5_2
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operator T : H1 → H2 is called a Hilbert–Schmidt operator if for one (and thus for
any) orthonormal basis (ej)j∈N of H1 we have

∑

j∈N
‖Tej‖2 < ∞.

Theorem 3.1.4 Suppose that F = H is a separable Hilbert space, and let f : X →
H be a measurable function with 〈y, f 〉 ∈ L2

β(R) for all y ∈ H. Then the following
statements are equivalent:

1. T f : H → L2(�,F ,P) is a Hilbert–Schmidt operator.
2. f ∈ L2

β(H).
3. The function f is Pettis integrable with

E

[∥∥∥∥(P−)

∫∫

X
f (s, x)q(ds, dx)

∥∥∥∥
2]

< ∞. (3.1.11)

Proof Let (ej)j∈N be an orthonormal basis of H. By the Itô isometry, the monotone
convergence theorem and Parseval’s identity we have

∑

j∈N
‖Tf ej‖2L2 =

∑

j∈N
E[|Tf ej|2] =

∑

j∈N
E

[∣∣∣∣
∫∫

X
〈ej, f (s, x)〉q(ds, dx)

∣∣∣∣
2]

=
∑

j∈N

∫∫

X
|〈ej, f (s, x)〉|2β(dx)ds =

∫∫

X

∑

j∈N
|〈ej, f (s, x)〉|2β(dx)ds

=
∫∫

X
‖f (s, x)‖2β(dx)ds,

proving (1) ⇔ (2). The implication (2) ⇒ (3) follows from Lemma3.1.3. Suppose
that f is Pettis integrable with relation (3.1.11) being satisfied. By the monotone
convergence theorem and Parseval’s identity we obtain

∑

j∈N
‖Tf ej‖2L2 =

∑

j∈N
E[|Tf ej|2] = E

[ ∑

j∈N
|T f ej|2

]

= E

[ ∑

j∈N
|〈ej, Zf 〉|2

]

= E[‖Zf ‖2] = E

[∥∥∥∥(P−)

∫∫

X
f (s, x)q(ds, dx)

∥∥∥∥
2]

< ∞,

providing (3) ⇒ (1). �



30 3 Stochastic Integrals with Respect to Compensated Poisson Random Measures

Theorem 3.1.5 Let F be a separable Banach space. The following statements are
equivalent:

1. Each f ∈ L2
β(F) is Pettis integrable and we have (3.1.11).

2. Each f ∈ L2
β(F) is Pettis integrable, we have (3.1.11) and the linear operator

L2
β(F) → L2(�,F ,P; F), f �→ (P−)

∫∫

X
f (s, x)q(ds, dx) (3.1.12)

is continuous.
3. There exists a constant Kβ > 0 such that (3.1.4) is satisfied.

If the previous conditions are fulfilled, then we have identities (3.1.8) and (3.1.9).

Proof The implication (2) ⇒ (1) is obvious and the implication (3) ⇒ (1) as well
as the additional statement follow from Lemma3.1.3. The implication (2) ⇒ (3) is
valid, because theWiener integral and the Pettis integral coincide for simple functions
f ∈ �(F), see (3.1.7).

Consequently, it only remains to prove (1) ⇒ (2). We shall prove that the linear
operator

S : L2
β(F) → L2(�,F ,P; F), f �→ Zf ,

is a closed operator. Then the assertion follows from the closed graph theorem. Let
(fn)n∈N ⊂ L2

β(F) and f ∈ L2
β(F) be such that fn → f and Sfn → g for some

g ∈ L2(�,F ,P; F). Then, for each y∗ ∈ F∗ we have

lim
n→∞〈y∗, Sfn〉 = 〈y∗, g〉

and by (3.1.6) and the continuity of the linear operator

L2
β(R) → L2(�,F ,P;R), h �→

∫∫

X
h(t, x)q(dt, dx),

we obtain almost surely

lim
n→∞〈y∗, Sfn〉 = lim

n→∞〈y∗, Zfn〉 = lim
n→∞ Tfn y∗

= lim
n→∞

∫∫

X
〈y∗, fn(t, x)〉q(dt, dx) =

∫∫

X
〈y∗, f (t, x)〉q(dt, dx)

= Tf y∗ = 〈y∗, Zf 〉 = 〈y∗, Sf 〉.

We deduce that Sf = g, proving that S is a closed operator. �
Let us now introduceBanach spaces of type 2,which aremore general thanHilbert

spaces.
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Definition 3.1.6 A separable Banach space F is called a Banach space of type 2 if
there exists a constant K > 0 such that for every probability space (�,F ,P), for
each n ∈ N and for any collection X1, . . . , Xn : � → F of independent, symmetric,
Bochner-integrable random variables with E[Xi] = 0, i = 1, . . . , n, we have

E

[∥∥∥∥
n∑

i=1

Xi

∥∥∥∥
2]

≤ K
n∑

i=1

E
[‖Xi‖2

]
. (3.1.13)

Remark 3.1.7 Note that every separable Hilbert spaceH is a Banach space of type 2.
Indeed, for any independent random variables X1, . . . , Xn : � → F with E[Xi] = 0,
i = 1, . . . , n, we have

E

[∥∥∥∥
n∑

i=1

Xi

∥∥∥∥
2]

= E

[〈 n∑

i=1

Xi,

n∑

i=1

Xi

〉]
=

n∑

i=1

n∑

j=1

E[〈Xi, Xj〉]

=
n∑

i=1

E[‖Xi‖2] + 2
∑

i<j

E[〈Xi, Xj〉].

Since for i < j we have, by the independence of Xi and Xj,

E[〈Xi, Xj〉] = E[E[〈Xi, Xj〉 | Xi]] = E[E[〈x, Xj〉]|x=Xi ]
= E[〈x,E[Xj]〉|x=Xi ] = 0,

we arrive at

E

[∥∥∥∥
n∑

i=1

Xi

∥∥∥∥
2]

=
n∑

i=1

E[‖Xi‖2],

showing that (3.1.13) is fulfilled.
It is easy to show that the Lebesgue space Lp on R for 2 ≤ p < ∞ is of type 2

using Kahane inequality.
From now on, let F be a Banach space of type 2. Let f ∈ �(F) be an arbitrary

simple function of the form (2.4.1). Since the product setsAk,l×(tk−1, tk] are disjoint,
using Theorem2.4.6 we obtain

E

[∥∥∥∥
∫∫

X
f (t, x)q(dt, dx)

∥∥∥∥
2]

= E

[∥∥∥∥
n∑

k=1

m∑

l=1

ak,lq((tk−1, tk] × Ak,l)

∥∥∥∥
2]

≤ K
n∑

k=1

m∑

l=1

‖ak,l‖2E[q((tk−1, tk] × Ak,l)
2]

= K
n∑

k=1

m∑

l=1

‖ak,l‖2β(Ak,l)λ((tk−1, tk])

http://dx.doi.org/10.1007/978-3-319-12853-5_2
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= K
∫∫

X
‖f (t, x)‖2β(dx)dt.

This shows that estimate (3.1.4) is satisfied with a constant not depending on β.
Hence, we can define the Wiener integral as the continuous linear operator

L2
β(F) → L2(�,F ,P; F), f �→

∫∫

X
f (t, x)q(dt, dx), (3.1.14)

which is the unique extension of (3.1.1). In particular, we get

E

[∥∥∥∥
∫∫

X
f (t, x)q(dt, dx)

∥∥∥∥
2]

≤ K
∫∫

X
‖f (t, x)‖2dtβ(dx) for all f ∈ L2

β(F).

(3.1.15)

For f ∈ L2
β(F) and A ∈ B(X ) we define

∫∫

A

f (t, x)q(dt, dx) :=
∫∫

X
f (t, x)1A(t, x)q(dt, dx),

and for B ∈ E and t ≥ 0 we define

t∫

0

∫

B

f (s, x)q(ds, dx) :=
∫∫

(0,t]×B

f (s, x)q(ds, dx).

Similar to the proof of Lemma2.5.4, we obtain the following result:

Lemma 3.1.8 Let F, G be two Banach spaces of type 2. Let f ∈ L2
β(F), g ∈ L2

β(G)

and A, B ∈ B(X) with A ∩ B = ∅ be arbitrary. Then the random variables

X =
∫∫

A

f (dt, dx)q(dt, dx) and Y =
∫∫

B

g(dt, dx)q(dt, dx)

are independent.

Proposition 3.1.9 Let E be a Banach space of type 2. For each f ∈ L2
β(F) the

characteristic function of the Wiener integral

Wf =
∫∫

X
f (s, x)q(ds, dx)

http://dx.doi.org/10.1007/978-3-319-12853-5_2
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is given by

E[ei〈y∗,Wf 〉] = exp

(∫∫

X

(
ei〈y∗,f (s,x)〉 − 1 − i〈y∗, f (s, x)〉

)
β(dx)ds

)
, y∗ ∈ E∗.

(3.1.16)

Proof Let f ∈ �(F) be an arbitrary simple function of the form (2.4.1). By
Theorem2.4.6 the random variables N((tk−1, tk] × Ak,l) are independent and have
a Poisson distribution with mean λ((tk−1, tk])β(Ak,l). Thus, for every y∗ ∈ F∗ we
obtain

E[ei〈y∗,Wf 〉] = E

[
exp

(〈
i,

n∑

k=1

m∑

l=1

ak,lq((tk−1, tk] × Ak,l)
〉)]

=
n∏

k=1

m∏

l=1

E

[
exp

(
i〈y∗, ak,l〉q((tk−1, tk] × Ak,l)

)]

=
n∏

k=1

m∏

l=1

exp
(
λ((tk−1, tk])β(Ak,l)

(
ei〈y∗,ak,l〉 − 1

))

× exp
(

− i〈y∗, ak,l〉λ((tk−1, tk])β(Ak,l)
)

= exp

( n∑

k=1

m∑

l=1

(
ei〈y∗,ak,l〉 − 1 − i〈y∗, ak,l〉

)
λ((tk−1, tk])β(Ak,l)

)

= exp

( ∫∫

X

(
ei〈y∗,f (s,x)〉 − 1 − i〈y∗, f (s, x)〉

)
β(dx)ds

)
.

This proves (3.1.16) for every f ∈ �(F). Now, let f ∈ L2
β(F) be arbitrary. There

exists a sequence (fn)n∈N ⊂ �(F) of simple functions such that fn → f inL2
β(F). By

the continuity of the Itô integral (3.1.14) we have Wfn → Wf in L2(�,F ,P; F). Let
y∗ ∈ F∗ be arbitrary. There exists a subsequence (nk)k∈N such that 〈y∗, fnk 〉 → 〈y∗, f 〉
almost surely and 〈y∗, Wfnk

〉 → 〈y∗, Wf 〉 almost surely. By Lebesgue’s dominated
convergence theorem we have

E[ei〈y∗,Wfnk
〉] → E[ei〈y∗,Wf 〉].

Note that for all x ∈ R we have

|eix − 1 − ix| = |cos x − 1 + i(sin x − x)| =
√

(cos x − 1)2 + (sin x − x)2

≤
√(

x2

2

)2

+
(

x2

2

)2

≤ 1√
2

x2.

http://dx.doi.org/10.1007/978-3-319-12853-5_2
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Therefore, for every g ∈ L2
β(E) we have

|ei〈y∗,g(s,x)〉 − 1 − i〈y∗, g(s, x)〉| ≤ 1√
2
‖y∗‖2‖g(s, x)‖2, (s, x) ∈ X .

Using the generalized Lebesgue dominated convergence theorem (Lemma7.1.8) we
deduce

∫∫

X

(
ei〈y∗,fnk (s,x)〉 − 1 − i〈y∗, fnk (s, x)〉

)
β(dx)ds

→
∫∫

X

(
ei〈y∗,f (s,x)〉 − 1 − i〈y∗, f (s, x)〉

)
β(dx)ds.

Consequently, the identity (3.1.16) is valid for all f ∈ L2
β(F). �

Lemma 3.1.10 For each f ∈ L2
β(F) and each T > 0 the process M = (Mt)t∈[0,T ]

given by

Mt =
t∫

0

∫

E

f (s, x)q(ds, dx), t ∈ [0, T ]

belongs to M2
T (F).

Proof There exists a sequence (fn)n∈N ⊂ �(F) of simple functions such that fn → f
in L2

β(F). For n ∈ N we define Mn = (Mn
t )t∈[0,T ] by

Mn
t =

t∫

0

∫

E

fn(s, x)q(ds, dx), t ∈ [0, T ].

By Lemma2.4.7 we have Mn ∈ M2
T (F) for all n ∈ N. By the continuity of the

integral operator (3.1.14) we have E[‖Mn
T − MT‖2] → 0. Since M2

T (F) is a Banach
space according to Lemma2.3.6, we deduce that M ∈ M2

T (F). �

For the rest of this section, let F be separable Banach space. The integrals in the
upcoming lemma are Bochner integrals.

Lemma 3.1.11 Suppose there is a constant Kβ > 0 such that (3.1.4) is satisfied.
Then for each f ∈ L1

β(F) ∩ L2
β(F) we have

∫∫

X
f (t, x)q(dt, dx) =

∫∫

X
f (t, x)N(dt, dx) −

∫∫

X
f (t, x)β(dx)dt. (3.1.17)

http://dx.doi.org/10.1007/978-3-319-12853-5_7
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Proof For every simple function f ∈ �(F) identity (3.1.17) holds true by inspec-
tion. By Proposition2.1.6, the linear space �(F) is dense in L1

β(F) and in L2
β(F).

The continuity of the integral operators (3.1.14) and (2.4.4) yields that (3.1.17) is
valid for all f ∈ L1

β(F) ∩ L2
β(F). �

Lemma 3.1.12 For all f ∈ L1
β(F) ∩ L2

β(F) we have

E

[∥∥∥∥
∫∫

X
f (s, x)q(ds, dx)

∥∥∥∥
2]

≤ 4
∫∫

X
‖f (s, x)‖2β(dx)ds + 6

( ∫∫

X
‖f (s, x)‖β(dx)ds

)2

.

Proof Using Lemma3.1.11 we obtain

E

[∥∥∥∥
∫∫

X
f (s, x)q(ds, dx)

∥∥∥∥
2]

≤ 2E

[(∫∫

X
‖f (s, x)‖N(ds, dx)

)2]
+ 2

( ∫∫

X
‖f (s, x)‖β(dx)ds

)2

≤ 2E

[(∫∫

X
‖f (s, x)‖q(ds, dx) +

∫∫

X
‖f (s, x)‖β(dx)ds

)2]

+ 2

(∫∫

X
‖f (s, x)‖β(dx)ds

)2

≤ 4E

[( ∫∫

X
‖f (s, x)‖q(ds, dx)

)2]
+ 6

( ∫∫

X
‖f (s, x)‖β(dx)ds

)2

.

Applying the Itô isometry (3.1.3) yields the desired estimate. �

The following result complements Theorem3.1.5.

Theorem 3.1.13 Let F be a separable Banach space. The following statements are
equivalent:

(a) The Banach space F is of type 2.
(b) There exists a constant K > 0 such that for an arbitrary compensated Pois-

son random measure q(dt, dx) with compensator ν(dt, dx) = dt ⊗ β(dx) for
some σ -finite measure β, every function f ∈ L2

β(F) is Pettis integrable and we
have

http://dx.doi.org/10.1007/978-3-319-12853-5_2
http://dx.doi.org/10.1007/978-3-319-12853-5_2
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E

[∥∥∥∥(P−)

∫∫

X
f (t, x)q(dt, dx)

∥∥∥∥
2]

(3.1.18)

≤ K
∫∫

X
‖f (t, x)‖2dtβ(dx) for all f ∈ L2

β(F).

Proof The implication (a) ⇒ (b) follows from estimate (3.1.15) and Theorem3.1.5.
In order to prove (b) ⇒ (a), we shall establish that �2F ⊂ BF , where �2F denotes

the linear space consisting of all sequences (xj)j∈N ⊂ F with
∑∞

j=1 ‖xj‖2 < ∞,
and where BF denotes the linear space of all sequences (xj)j∈N ⊂ F such that for
any i.i.d. sequence (εj)j∈N of independent symmetric Bernoulli random variables
(i.e. P(εj = ±1) = 1

2 ) the sequence (
∑n

j=1 εjxj)n∈N is bounded in L2(�,F ,P; F).
Then the Banach space F is of type 2 in the sense of [43, p. 113], and according to
[43, Theorem II.6.6] the Banach space F is of type 2 in the sense of our Defini-
tion3.1.6.

Let (xj)j∈N ∈ �2F be arbitrary. For each j ∈ N let Nj be a Poisson random measure
on X with intensity measure νj(dt, dx) = dt ⊗βj(dx), where the measure βj is given
by

βj = 1

2
(δxj + δ−xj ),

and denote by qj(dt, dx) = Nj(dt, dx) − νj(dt, dx) the associated Poisson random
measure. Note that

1∫

0

∫

E

xβj(dx)dt = 0, for all j ∈ N. (3.1.19)

Let (�j)j∈N be an i.i.d. sequence of bilateral Poisson distributed random variables
with parameter 12 , that is, each�j has the distributionofX−Y ,whereX andY are inde-
pendent with X, Y ∼ Pois( 12 ). We define the sequence (Sn)n∈N0 ⊂ L2(�,F ,P; F)

by S0 := 0 and

Sn :=
n∑

j=1

�jxj, n ∈ N.

Then, for all n, m ∈ N0 with m < n and all y∗ ∈ F∗ we have

E[ei〈y∗,Sn−Sm〉] = E

[
exp

(
i
〈
y∗,

n∑

j=m+1

�jxj

〉)]
=

n∏

j=m+1

E
[
ei〈y∗,xj〉�j

]

=
n∏

j=m+1

exp

(
1

2

(
ei〈y∗,xj〉 − 1

))
exp

(
1

2

(
e−i〈y∗,xj〉 − 1

))
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= exp

(
1

2

n∑

j=m+1

((
ei〈y∗,xj〉 − 1

) + (
e−i〈y∗,xj〉 − 1

)))

= exp

( 1∫

0

∫

E

(ei〈y∗,x〉 − 1)

( n∑

j=m+1

βj

)
(dx)dt

)

= E

[
exp

(
i
〈
y∗,

1∫

0

∫

E

x

( n∑

j=m+1

Nj

)
(dt, dx)

〉)]
,

where we have used Proposition2.5.3 in the last step. By virtue of the uniqueness
theorem for characteristic functions (see Theorem2.5.1), for all n, m ∈ N0 with
m < n we obtain

Sn − Sm
d=

1∫

0

∫

E

x

( n∑

j=m+1

Nj

)
(dt, dx). (3.1.20)

We shall now prove that (Sn)n∈N is a Cauchy sequence in L2(�,F ,P; F). Let ε > 0
be arbitrary. Since

∑∞
j=1 ‖xj‖2 < ∞, there exists an n0 ∈ N such that for n, m ≥ n0

with m < n we have

n∑

j=m+1

‖xj‖2 <
ε

K
.

By Theorem3.1.5, for every function f ∈ L2
β(F) the Wiener integral exists and we

have the identity (3.1.8). Using (3.1.8), (3.1.19), (3.1.20) and identity (3.1.17) from
Lemma3.1.11 and estimate (3.1.18), for all n, m ≥ n0 with m < n we obtain

E[‖Sn − Sm‖2] = E

[∥∥∥∥

1∫

0

∫

E

x

( n∑

j=m+1

Nj

)
(dt, dx)

∥∥∥∥
2]

= E

[∥∥∥∥

1∫

0

∫

E

x

( n∑

j=m+1

qj

)
(dt, dx)

∥∥∥∥
2]

= E

[∥∥∥∥(P−)

1∫

0

∫

E

x

( n∑

j=m+1

qj

)
(dt, dx)

∥∥∥∥
2]

≤ K

1∫

0

∫

E

‖x‖2
( n∑

j+m+1

βj(dx)

)
dt = K

n∑

j=m+1

‖xj‖2 < ε.

http://dx.doi.org/10.1007/978-3-319-12853-5_2
http://dx.doi.org/10.1007/978-3-319-12853-5_2
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Consequently, the sequence (Sn)n∈N converges in L2(�,F ,P; F). By the Itô–Nisio
Theorem, see [46, Theorem 3.1], the sequence (Sn)n∈N converges almost surely.

We shall now apply the contraction principle from [50]. Note that the sequence
(�j)j∈N is uniformly nondegenerate, that is, there exist constants a, b > 0 such that

P[|�j| ≥ a] ≥ b for all j ∈ N.

Now let (εj)j∈N be an arbitrary i.i.d. sequence of independent symmetric Bernoulli
random variables. According to [50, Theorem 5.6], the series

∑∞
j=1 εjxj converges

almost surely. Applying the Itô–Nisio Theorem again, the series
∑∞

j=1 εjxj converges

in L2(�,F ,P; F), and hence (xj)j∈N ∈ BF , which settles the proof. �

3.2 Lévy Processes

Let F be a separable Banach space.

Definition 3.2.1 An F-valued adapted process X = (Xt)t≥0 with P(X0 = 0) = 1 is
called a Lévy process if the following conditions are satisfied:

1. X has independent increments, i.e., Xt −Xs is independent ofFs for all 0 ≤ s ≤ t.

2. X has stationary increments, i.e., Xt − Xs
d= Xt−s for all 0 ≤ s ≤ t.

3. X is continuous in probability, i.e., for all t ≥ 0 we have Xt = lims→t Xs in
probability.

4. With probability 1 the paths X·(ω) : R+ → F are cádlág.

If 1–3 holds then X = (Xt)t≥0 is a Lévy process in law.

Remark 3.2.2 Let G be another separable Banach space, let � : F → G be a
continuous linear operator and b ∈ G. Then the process Yt = �(Xt) + bt is a G-
valued Lévy process.

Let us recall that ϕX denotes the characteristic function of the random variable X.

Lemma 3.2.3 Let X be a Lévy process in law. Then, there exists a function ψ :
F∗ → C such that

ϕXt (x
∗) = etψ(x∗), (t, x∗) ∈ R+ × F∗. (3.2.1)

Proof Let x∗ ∈ F∗ be arbitrary. Then, we have ϕX0(x
∗) = 1 and, since X is continu-

ous in probability, the function t �→ ϕXt (x
∗) is continuous. By the independence and

the stationarity of the increments of X, for all t, s ≥ 0 we obtain
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ϕXt+s(x
∗) = E[ei〈x∗,Xt+s〉] = E[e〈x∗,Xt+s−Xs+Xs〉]

= E[ei〈x∗,Xt+s−Xs〉]E[ei〈x∗,Xs〉]
= E[ei〈x∗,Xt〉]E[ei〈y∗,Xs〉] = ϕXt (y

∗)ϕXs(y
∗).

It follows that (ϕXt (x
∗))t≥0 is a uniform continuous semigroup in C. Therefore, the

limit

ψ(x∗) := lim
t→0

ϕXt (x
∗) − 1

t

exists and we have (3.2.1). �

Definition 3.2.4 A function ψ : F∗ → C is called a characteristic exponent of X if
we have (3.2.1).

Lemma 3.2.5 For all n ∈ N, all 0 = t0 < . . . < tn and all x∗
1, . . . , x∗

n ∈ F∗ we have

ϕ(Xt1 ,...,Xtn )(x
∗
1 , . . . , x∗

n) =
n∏

k=1

ϕXtk−tk−1

( n∑

l=k

x∗
l

)
.

Proof Using the stationarity and the independence of the increments, we obtain

ϕ(Xt1 ,...,Xtn )(x
∗
1 , . . . , x∗

n) = E

[
exp

(
i

n∑

k=1

〈x∗
k , Xtk 〉

)]

= E

[
exp

(
i

(〈 n∑

k=1

x∗
k , Xt1

〉
+

n∑

k=2

〈x∗
k , Xtk − Xt1〉

))]

= E

[
exp

(
i
〈 n∑

k=1

x∗
k , Xt1

〉)]
E

[
exp

(
i

n∑

k=2

〈x∗
k , Xtk − Xt1〉

)]

= ϕXt1
(x∗

1 + · · · + x∗
n)ϕ(Xt2−t1 ,...,Xtn−t1 )(x

∗
2 , . . . , x∗

n).

By induction, the claim follows. �

Lemma 3.2.6 Let F, G be Banach spaces and let (X, Y) be an F × G-valued Lévy
process in law such that for all t ≥ 0 the random variables Xt and Yt are independent.
Then the two Lévy processes in law X and Y are independent.

Proof Let n ∈ N and 0 ≤ t1 < . . . < tn be arbitrary. Using Lemma3.2.5, for all
x∗
1, . . . , x∗

n ∈ F∗ and y∗
1, . . . , y∗

n ∈ G∗ we obtain

ϕ(Xt1 ,...,Xtn ,Yt1 ,...,Ytn )(x
∗
1, . . . , x∗

n , y∗
1, . . . , y∗

n)

= ϕ(Xt1 ,Yt1 ,...,Xtn ,Ytn )(x
∗
1, y∗

1, . . . , x∗
n , y∗

n)
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=
n∏

k=1

ϕ(Xtk−tk−1 ,Ytk−tk−1 )

( n∑

l=k

(x∗
l , y∗

l )

)

=
n∏

k=1

ϕ(Xtk−tk−1 )

( n∑

l=k

x∗
l

)
ϕ(Ytk−tk−1 )

( n∑

l=k

y∗
l

)

= ϕ(Xt1 ,...,Xtn )(x
∗
1 , . . . , x∗

n)ϕ(Yt1 ,...,Ytn )(y
∗
1, . . . , y∗

n),

proving the independence of the random vectors (Xt1 , . . . , Xtn) and (Yt1 , . . . , Ytn). �

Definition 3.2.7 A measure β on (F,B(F)) is called a Lévy measure if it satisfies
β({0}) = 0 and

∫

F

(‖x‖2 ∧ 1)β(dx) < ∞. (3.2.2)

Definition 3.2.8 Let X be a Lévy process in law and let β be Lévy measure. We say
that β is a Lévy measure of X if the function ψ : F∗ → C given by

ψ(x∗) =
∫

F

(
ei〈x∗,x〉 − 1 − i〈x∗, x〉1{‖x‖≤1}

)
β(dx), x∗ ∈ F∗

is a characteristic exponent of X.

Our goal is to construct a Lévy processX with a givenLévymeasureβ. For this, we
prepare some auxiliary results. Let (E, E) be a Blackwell space and let N(dt, dx) be a
Poisson randommeasure onX = R+ ×E with compensator ν(dt, dx) = dt ⊗β(dx).
We denote by q(dt, dx) the associated compensated Poisson random measure.

Lemma 3.2.9 Let f ∈ L1(E, E, β; F). Then the process

Xt =
t∫

0

∫

E

f (x)N(ds, dx), t ≥ 0 (3.2.3)

is a Lévy process.

Proof The process X is adapted and we have P(X0 = 0) = 1. For t ≥ 0 with s < t
we have f1(0,t]�(0,s] → 0 inL1

β(F) for s → t by Lebesgue’s dominated convergence
theorem. By the continuity of the integral operator (2.4.4) we obtain

Xt − Xs =
∫∫

X
f (x)1(s,t](x)N(ds, dx) → 0

in L1(F) as s → t, and hence X is continuous in probability.

http://dx.doi.org/10.1007/978-3-319-12853-5_2
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In order to prove independence and stationarity of the increments of X, we first
assume that f ∈ �(F) is a simple function of the form

f (x) =
n∑

k=1

ak1Ak (x).

Then the integral process (3.2.3) is given by

Xt =
n∑

k=1

akN((0, t] × Ak), t ≥ 0

and is cádlág.
For arbitrary 0 ≤ s ≤ t we obtain

Xt − Xs =
n∑

k=1

akN((s, t] × Ak) and Xt−s =
n∑

k=1

akN((0, t − s] × Ak).

By Definition2.4.5 and Theorem2.4.6 we have

L(Xt − Xs) = Poisa1((t − s)β(A1)) ∗ . . . ∗ Poisan((t − s)β(An)) = L(Xt−s),

where Poisa(λ) denotes a Poisson distribution on the linear space 〈a〉 with mean λ,
and Xt − Xs is independent of Fs. For a general function f ∈ L1(E; F) there exists a
sequence (fn)n∈N of simple functions such that fn → f in L1(E; F). Set

Xn
t =

t∫

0

∫

E

fn(x)N(ds, dx), t ≥ 0.

By the continuity of the integral operator (2.4.4) we have Xn
t → Xt in L1(E; F) for

each t ≥ 0, and hence X has independent and stationary increments and is cádlág. �

Similarly, the following result can be proven:

Lemma 3.2.10 Suppose the separable Banach space F is of type 2. Let f ∈
L2(E, E, β; F) be arbitrary. Then the process

Xt =
t∫

0

∫

E

f (x)q(ds, dx), t ≥ 0

is a Lévy process.

http://dx.doi.org/10.1007/978-3-319-12853-5_2
http://dx.doi.org/10.1007/978-3-319-12853-5_2
http://dx.doi.org/10.1007/978-3-319-12853-5_2
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Now, let β be a Lévymeasure on (F,B(F)) and letN(dt, dx) be a Poisson random
measure on X = R+ × F with compensator ν(dt, dx) = dt ⊗ β(dx). We denote by
q(dt, dx) the associated compensated Poisson random measure.

Theorem 3.2.11 Suppose that the Banach space F is of type 2 or that

∫

F

(‖x‖ ∧ 1)β(dx) < ∞.

Then the two processes

Yt :=
t∫

0

∫

{‖x‖≥1}
xN(ds, dx), t ≥ 0

Zt :=
t∫

0

∫

{‖x‖<1}
xq(ds, dx), t ≥ 0

are independent Lévy processes, and the process X = Y + Z is a Lévy process with
Lévy measure β.

Proof For n ∈ N we define the process

Yn
t :=

t∫

0

∫

{1≤‖x‖≤n}
xN(ds, dx), t ≥ 0.

We can write the process (Yn, Z) as

(Yn
t , Zt) =

( t∫

0

∫

E

x1{1≤‖x‖≤n}q(ds, dx)

+
t∫

0

∫

{1≤‖x‖≤n}
xβ(dx)dt,

t∫

0

∫

E

x1{‖x‖<1}q(ds, dx)

)
.

By Lemmas2.5.4, 3.1.8, 3.2.6, 3.2.9 and3.2.10, the process (Y n, Z) is a Lévy process
with independent components. Using Lebesgue’s dominated convergence theorem,
we have Yn

t → Yt almost surely for every t ≥ 0. Hence (Y , Z) is a Lévy process with
independent components. By Remark3.2.2, the processX = Y +Z is a Lévy process.
Using Propositions2.5.3 and3.1.9, for each x∗ ∈ F∗ the characteristic function is
given by

http://dx.doi.org/10.1007/978-3-319-12853-5_2
http://dx.doi.org/10.1007/978-3-319-12853-5_2
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ϕX(x∗) = lim
n→∞ ϕYn

1+Z1(x
∗) = ϕZ1(x

∗) lim
n→∞ ϕYn

1
(x∗)

= exp

( t∫

0

∫

{‖x‖<1}

(
ei〈x∗,x〉 − 1 − i〈x∗, x〉

)
β(dx)ds

)

× lim
n→∞ exp

( t∫

0

∫

{1≤‖x‖≤n}

(
ei〈x∗,x〉 − 1

)
β(dx)ds

)

= exp

( t∫

0

∫

E

(
ei〈x∗,x〉 − 1 − i〈x∗, x〉1{‖x‖≤1}

)
β(dx)ds

)
.

Consequently, the Lévy process X has the Lévy measure β. �

3.3 The Lévy–Itô Decomposition in Banach Spaces

In this section, we prove the Lévy–Itô decomposition in separable Banach spaces,
showing that every Lévy process with values in a Banach space can be decomposed
into three independent components, which are a drift, a Brownian motion and a jump
part, represented by a Wiener integral.

In the sequel, let F be a separable Banach space and let X be an F-valued Lévy
process. Set X = R+ × F. We define the random measure N on (X ,B(X )) by

N(A) :=
∑

t>0

1{�Xt �=0}δ(t,�Xt)(A), A ∈ B(X ). (3.3.1)

Furthermore, for any B ∈ B(F) with 0 /∈ B we define the process

NB
t = N((0, t] × B), t ≥ 0. (3.3.2)

For t ≥ 0 let Ct be the σ -algebra generated by the system of all cylinder sets

{Xt1 − Xt0 ∈ B1, . . . , Xtn − Xtn−1 ∈ Bn}

with n ∈ N, time points t ≤ t0 < t1 < . . . < tn and Borel sets B1, . . . , Bn ∈ B(F).
Note that the σ -algebra Ct is independent of Ft .

We say that the jumps of a Lévy process X are bounded by a constant C > 0 if

P

(
sup

t∈R+
‖�Xt‖ ≤ C

)
= 1.
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Lemma 3.3.1 Let (Xt)t≥0 be an F-valued Lévy process with bounded jumps. Then
we have

E[‖Xt‖n] < ∞ for all n ∈ N and t ≥ 0.

Proof This is established by literally following the proof of [87, Theorem I.34]. �

Lemma 3.3.2 For all 0 ≤ s < t we have that �Xt is Cs-measurable.

Proof We have

�Xt = Xt − Xt− = lim
n→∞(Xt − Xt− 1

n
),

which is Cs-measurable. �

Lemma 3.3.3 For each B ∈ B(F) with 0 /∈ B the process NB is a Lévy process, and
the measure β on (F,B(F)) given by

β(B) = E[NB
1 ], B ∈ B(F) (3.3.3)

is σ -finite.

Proof We can write the process NB as

NB
t =

∑

0<s≤t

1B(�Xs), t ≥ 0.

Let 0 ≤ s < t be arbitrary. By Lemma3.3.2 we have

NB
t − NB

s =
∑

s<u≤t

1B(�Xu)

is Cs-measurable, and hence independent of Fs. Define (X̃u)u≥0 by

X̃u := Xs+u − Xs, u ≥ 0.

Then we have

NB
t − NB

s =
∑

s<u≤t

1B(�Xu) =
∑

0<u≤t−s

1B(�X̃u) and

NB
t−s =

∑

0<u≤t−s

1B(�Xu).

Consequently, the process NB has independent and stationary increments, and thus it
is a Lévy process. Note that the jumps of NB are bounded by 1. Lemma3.3.1 yields
that β(B) < ∞ for all B ∈ B(F) with 0 /∈ B. Therefore, the measure β is σ -finite. �
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Proposition 3.3.4 The random measure N(dt, dx) is a Poisson random measure
with compensator ν(dt, dx) = dt ⊗ β(dx), where the measure β is given by (3.3.3).

Proof Arguing as in the proof of [48, Proposition II.1.16], the random measure N is
an integer-valued random measure on X .

Let s ∈ R+ and A ∈ B(X ) with A ⊂ (s,∞) × E and E[N(A)] < ∞ be arbitrary.
Then N(A) is Ct-measurable, and hence independent of Fs.

Let 0 ≤ s < t and B ∈ B(F) with 0 /∈ B be arbitrary. Since NB is a Lévy process
by Lemma3.3.3, we obtain

E[N((s, t] × B)] = E[NB
t − NB

s ] = (t − s)E[NB
1 ] = (t − s)β(B).

Therefore, N is a Poisson random measure with compensator given by (3.3.3). �

We call a real-valued Lévy process X a Poisson process with parameter λ > 0 if
X1 has a Poisson distribution with mean λ.

Corollary 3.3.5 For each B ∈ B(E) with 0 /∈ B the process NB is a Poisson process
with mean β(B).

Proof This is an immediate consequence of Proposition3.3.4 and Theorem2.4.6. �

In the sequel, for a given Lévy process X, the randommeasureN denotes the Pois-
son random measure defined in (3.3.1), whose compensator is given by ν(dt, dx) =
dt ⊗ β(dx) with β defined in (3.3.3), and q(dt, dx) = N(dt, dx) − ν(dt, dx) denotes
the associated compensated Poisson random measure.

Lemma 3.3.6 Let X be a Lévy process and B ∈ B(E) with 0 /∈ B. Then the process

Wt = Xt −
t∫

0

∫

B

xN(ds, dx)

is a Lévy process with

P(�Wt /∈ B) = 1 for all t ≥ 0. (3.3.4)

Proof Let 0 ≤ s < t be arbitrary. Then we have

Wt − Ws = Xt − Xs −
∑

s<u≤t

�Xu1B(�Xu) (3.3.5)

is Cs-measurable, and hence independent of Fs. Define (X̃u)u≥0 by

X̃u := Xs+u − Xs, u ≥ 0.

http://dx.doi.org/10.1007/978-3-319-12853-5_2
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Then we have

Wt − Ws = Xt − Xs −
∑

s<u≤t

�Xu1B(�Xu) = X̃t−s −
∑

0<u≤t−s

�X̃u1B(�X̃u),

Wt−s = Xt−s −
∑

0<u≤t−s

�Xu1B(Xu),

hence independent and stationary increments. The representation (3.3.5) also shows
that (3.3.4) is valid. �

Definition 3.3.7 An F-valued process (Wt)t≥0 is called aWiener process if for each
n ∈ N and each � ∈ L(E,Rn) the process �(W) is an R

n-valued Lévy process with
�(Wt) ∼ N(0, (t −s)Q�)with a symmetric, non-negative definite matrix Q� ∈ R

n×n.

Proposition 3.3.8 Let (Xt)t≥0 be a Lévy process with jumps bounded by 1. Suppose
that the Banach space E is of type 2 or that

∫

F

(‖x‖ ∧ 1)β(dx) < ∞. (3.3.6)

Then we have E[‖X1‖] < ∞ and the process (Wt)t≥0 given by

Wt = Xt − tE[X1] −
t∫

0

∫

{‖x‖≤1}
xq(ds, dx), t ≥ 0

is an F-valued Wiener process.

Proof According to Lemma3.3.1 we have E[‖Xt‖] < ∞ for all t ≥ 0. For each
n ∈ N we define the process

Wn
t := Xt − tE[X1] −

t∫

0

∫

{1/n<‖x‖≤1}
xq(ds, dx), t ≥ 0.

We can write this process as

Wn
t = Xt +

( ∫

{1/n<‖x‖≤1}
xβ(dx) − E[X1]

)
t −

t∫

0

∫

{1/n<‖x‖≤1}
xN(ds, dx).

If the Banach space F is of type 2, this follows from Lemma3.1.11. Hence, by
Lemma3.3.6, each Wn is a Lévy process with jumps bounded by 1

n .
We fix an arbitrary T > 0. If condition (3.3.6) is satisfied, then Doob’s inequality

(Theorem2.3.5), Lemma3.1.12 and Lebesgue’s theorem yield

http://dx.doi.org/10.1007/978-3-319-12853-5_2
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E

[
sup

s∈[0,T ]
‖Ws − Wn

s ‖2
]

= E

[
sup

s∈[0,T ]

∥∥∥∥

s∫

0

∫

{‖x‖< 1
n }

xq(du, dx)

∥∥∥∥
2]

≤ 4 sup
s∈[0,T ]

E

[∥∥∥∥

s∫

0

∫

{‖x‖< 1
n }

xq(du, dx)

∥∥∥∥
2]

≤ 16

T∫

0

∫

{‖x‖< 1
n }

‖x‖2β(dx)ds + 24

( T∫

0

∫

{‖x‖< 1
n }

‖x‖β(dx)ds

)2

≤ 16T
∫

{‖x‖< 1
n }

‖x‖β(dx) + 24T2
( ∫

{‖x‖< 1
n }

‖x‖β(dx)

)2

→ 0.

In the other case, where the separable Banach space E is of type 2, Doob’s inequality
(Theorem2.3.5), estimate (3.1.15) and Lebesgue’s theorem give us

E

[
sup

s∈[0,T ]
‖Ws − Wn

s ‖2
]

= E

[
sup

s∈[0,T ]

∥∥∥∥

s∫

0

∫

{‖x‖< 1
n }

xq(du, dx)

∥∥∥∥
2]

≤ 4 sup
s∈[0,T ]

E

[∥∥∥∥

s∫

0

∫

{‖x‖< 1
n }

xq(du, dx)

∥∥∥∥
2]

≤ 4K

T∫

0

∫

{‖x‖< 1
n }

‖x‖2β(dx)ds

= 4TK
∫

{‖x‖< 1
n }

‖x‖2β(dx) → 0.

Consequently, there exists a subsequence (nk)k∈N such that

sup
s∈[0,T ]

‖Ws − Wnk
s ‖2 → 0 P-almost surely.

Since T > 0 was arbitrary, it follows that the sample paths of W are continuous. It
follows that W is a Wiener process. �

http://dx.doi.org/10.1007/978-3-319-12853-5_2
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Lemma 3.3.9 Let J be a pure jump Lévy process with some Lévy measure β and let
W be a Wiener process. Then the two processes W and J are independent.

Proof By Proposition2.1.1 it suffices to show that for all n ∈ N and x∗ ∈ L(F,Rn)

the processes 〈x∗, W〉 and 〈x∗, J〉 are independent.
Let n ∈ N and x∗ ∈ L(F,Rn) be arbitrary. The process (〈x∗, W〉, 〈x∗, J〉) is

an R
2n-valued Lévy process. Indeed, the semimartingale characteristics (see [48,

Definition II.2.7]) of 〈x∗, W〉 and 〈x∗, J〉 with respect to the truncation function
h : Rn → R

n, h(x) = x1{‖x‖≤1} are given by

B〈x∗,W〉 ≡ 0, C〈x∗,W〉
t = ct, ν〈x∗,W〉 ≡ 0,

B〈x∗,J〉 ≡ 0, C〈x∗,J〉 ≡ 0, ν〈x∗,J〉(A × B) = λ(A)F(B)

for some symmetric, non-negative-definite matrix c ∈ R
n×n and a measure F on

(Rn,B(Rn)) satisfying
∫
Rn(‖x‖2 ∧ 1)F(dx) < ∞. Hence, we compute the semi-

martingale characteristics of (〈x∗, W〉, 〈x∗, J〉) as

B ≡ 0, Ct =
(

c 0
0 0

)
t, ν(A × B × C) = λ(A)F(C),

showing that (〈x∗, W〉, 〈x∗, J〉) is a Lévy process. Computing the characteristic func-
tions yields

ϕ(〈x∗,W1〉,〈x∗,J1〉)(u, v) = exp

(
c

2
|u|2 +

∫

Rn

(
ei〈v,x〉−1−i〈v,x〉 {‖x‖≤1}

)
F(dx)

)

= exp

(
c

2
|u|2

)
exp

(∫

Rn

(
ei〈v,x〉−1−i〈v,x〉 {‖x‖≤1}

)
F(dx)

)
= ϕ〈x∗,W1〉(u)ϕ〈x∗,J1〉(v)

for all (u, v) ∈ R
2n. This proves the independence of 〈x∗, W〉 and 〈x∗, J〉. �

Theorem 3.3.10 Let (Xt)t≥0 be a Lévy process. Suppose that the Banach space F
is of type 2 or that

∫

F

(‖x‖ ∧ 1)β(dx) < ∞.

Then, the process (Jt)t≥0 defined as

Jt :=
t∫

0

∫

{‖x‖≥1}
xN(ds, dx) +

t∫

0

∫

{‖x‖<1}
xq(ds, dx), t ≥ 0

http://dx.doi.org/10.1007/978-3-319-12853-5_2
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is a Lévy process with Lévy measure β, where β is defined in Definition3.2.8, and
there exist α ∈ F and a Wiener process W such that we have the decomposition

Xt = αt + Wt + Jt, t ≥ 0. (3.3.7)

Moreover, the two processes W and J are independent.

Proof Applying Theorem3.2.11 yields that J is a Lévy process with Lévy measure
β. We define the process L as

Lt =
t∫

0

∫

{‖x‖≥1}
xN(dt, dx), t ≥ 0.

By Lemmas3.2.9 and3.3.6 the processes L and X − L are Lévy processes, and the
jumps ofX−L are boundedby1.Hence, byProposition3.3.8wehaveE[‖X1−L1‖] <

∞, and the process

Wt := Xt − Lt − αt −
t∫

0

∫

{‖x‖<1}
xq(ds, dx), t ≥ 0

is aWiener process, whereα = E[X1−L1], which provides the Lévy–Itô decomposi-
tion (3.3.7). According to Lemma3.3.9, the two processes W and J are
independent. �

3.4 Isomorphisms for Spaces of Predictable Processes

In order to establish our subsequent results concerning stochastic integration of
adapted, measurable resp. progressively measurable processes, we provide the fol-
lowing Theorem3.4.2 in this section.

Let (�̃, P̃, F̃) be a measure space. In view of our applications in Sect. 3.5, we do
not demand that (�̃, P̃, F̃) is a probability space. Moreover, let (F̃t)t≥0 be a filtration
satisfying the usual conditions.

Fix T > 0 and letμ be a measure on (�̃×[0, T ], F̃T ⊗B([0, T ]))with marginals

μ(A × [0, T ]) = P̃(A), A ∈ F̃T .

We assume that there exists a sequence (An)n∈N ⊂ F̃0 such that An ↑ �̃ and
P̃(An) < ∞ for all n ∈ N. In particular, the measures P̃ and μ are σ -finite.

There exists a transition kernel K : �̃ × B([0, T ]) → R+ from (�̃, F̃T ) to
([0, T ],B([0, T ])) such that
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μ(B) =
∫

�̃

T∫

0

1B(ω̃, t)K(ω̃, dt)P̃(dω̃), B ∈ F̃T ⊗ B([0, T ]),

see [48, Sect. II.1a].

Definition 3.4.1 We denote by P̃T the predictable σ -algebra on �̃ × [0, T ]. Fixing
an arbitrary p ≥ 1, we define the spaces

Lp
T ,pred(F) := Lp(�̃ × [0, T ], P̃T , μ; F),

Lp
T ,prog(F) := Lp(�̃ × [0, T ], F̃T ⊗ B([0, T ]), μ; F) ∩ ProgT (F),

Lp
T ,ad(F) := Lp(�̃ × [0, T ], F̃T ⊗ B([0, T ]), μ; F) ∩ AdT (F),

where ProgT (F) denotes the linear space of all F-valued progressively measurable
processes (�t)t∈[0,T ] and AdT (F) denotes the linear space of all F-valued adapted
processes (�t)t∈[0,T ].

We have the inclusions

Lp
T ,pred(F) ⊂ Lp

T ,prog(F) ⊂ Lp
T ,ad(F).

In the upcoming theorem, we will show that these three spaces are actually isomet-
rically isomorphic, provided the measures A �→ K(ω, A) are absolutely continuous.
In particular, the latter two spaces are Banach spaces, too.

Theorem 3.4.2 Suppose there is a nonnegative, measurable function f : �̃ ×
[0, T ] → R such that for each ω̃ ∈ �̃ we have K(ω̃, dt) = f (ω̃, t)dt. Then we
have

Lp
T ,pred(F) ∼= Lp

T ,prog(F) ∼= Lp
T ,ad(F).

Proof It suffices to prove that for each � ∈ Lp
T ,ad(F) there exists a process π(�) ∈

Lp
T ,pred(F) such that � = π(�) almost everywhere with respect to μ.

Let � ∈ Lp
T ,ad(F) be arbitrary. We will show that there is a sequence (�n)n∈N ⊂

Lp
T ,pred(F) such that �n → � in Lp

T ,ad(F). Then (�n)n∈N is a Cauchy sequence in

Lp
T ,pred(F) and thus has a limit π(�) ∈ Lp

T ,pred(F). But this limit has the property
� = π(�) almost everywhere with respect to μ, which will finish the proof.

The proof of the existence of a sequence (�n)n∈N ⊂ Lp
T ,pred(F) satisfying �n →

� in Lp
T ,ad(F) is divided into two steps:

1. First of all, we may assume that

P̃(�̃) = μ(�̃ × [0, T ]) < ∞ (3.4.1)
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and that there is a constant M > 0 such that

‖�‖ ≤ M everywhere. (3.4.2)

Indeed, by assumption, there exists a sequence (An)n∈N ⊂ F̃0 with An ↑ �̃

and P̃(An) < ∞ for all n ∈ N. Defining the sequence (�n)n∈N ⊂ Lp
T ,ad(F)

by �n := (� ∧ n)1An , Lebesgue’s dominated convergence theorem yields that
�n → � in Lp

T ,ad(F).
2. Now we proceed with a similar technique as in [58, pp. 97–99]. We extend � to

a process (�t)t∈R by setting

�t(ω̃) := 0 for(ω̃, t) ∈ �̃ × R \ [0, T ].

Defining for n ∈ N the function θn : R → R by

θn(t) :=
∑

j∈Z

j − 1

2n
1

(
j−1
2n ,

j
2n ](t),

we have θn(t) ↑ t for all t ∈ R. The shift semigroup (St)t≥0, Stf = f (t + ·) is
strongly continuous onLp(R; F). Thus, performing integration by the substitution
t � t + s, using Fubini’s theorem, Lebesgue’s dominated convergence theorem
and noting (3.4.1) and (3.4.2) we obtain

∫

�̃

T∫

0

T∫

0

‖�s+θn(t−s)(ω̃) − �t(ω̃)‖pdtdsP̃(dω̃)

=
∫

�̃

T∫

0

T−s∫

−s

‖�s+θn(t)(ω̃) − �s+t(ω̃)‖pdtdsP̃(dω̃)

=
∫

�̃

T∫

0

T−t∫

0

‖�s+θn(t)(ω̃) − �s+t(ω̃)‖pdsdtP̃(dω̃)

+
∫

�̃

0∫

−T

T∫

−t

‖�s+θn(t)(ω̃) − �s+t(ω̃)‖pdsdtP̃(dω̃) → 0.

After passing to a subsequence, if necessary, for P̃⊗ λ ⊗ λ-almost all (ω̃, s, t) ∈
�̃ × [0, T ] × [0, T ] we have

‖�s+θn(t−s)(ω̃) − �t(ω̃)‖p → 0,
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where λ denotes the Lebesgue measure. Thus, there exists an s ∈ [0, T ] such that
‖�s+θn(t−s)(ω̃) − �t(ω̃)‖p → 0 for P̃ ⊗ λ-almost all (ω̃, t) ∈ �̃ × [0, T ].

(3.4.3)

For n ∈ N we define the process �n = (�n
t )t∈[0,T ] by

�n
t := �s+θn(t−s) =

∑

j∈Z
�s+ j−1

2n
1

(s+ j−1
2n ,s+ j

2n ](t), t ∈ [0, T ].

Note that �n is predictable, because � is adapted. Hence, we have (�n)n∈N ⊂
Lp

T ,pred(F). By assumption, there is a nonnegative, measurable function f : �̃ ×
[0, T ] → R such that for each ω̃ ∈ �̃ we have K(ω̃, dt) = f (ω̃, t)dt. Using
(3.4.1) we have

∫

�̃

T∫

0

f (ω̃, t)dtP̃(dω̃) =
∫

�̃

T∫

0

K(ω̃, dt)P̃(dω̃) = μ(�̃ × [0, T ]) < ∞.

Noting (3.4.1) and (3.4.2), we obtain by (3.4.3) and Lebesgue’s dominated con-
vergence theorem

∫∫

�̃×[0,T ]
‖�n − �‖pdμ =

∫

�̃

T∫

0

‖�s+θn(t−s)(ω̃) − �t(ω̃)‖pK(ω̃, dt)P̃(dω̃)

=
∫

�̃

T∫

0

‖�s+θn(t−s)(ω̃) − �t(ω̃)‖pf (ω̃, t)dtP̃(dω̃) → 0,

showing that �n → � in Lp
T ,ad(F). �

3.5 The Itô Integral

Let (E, E) be a Blackwell space and let q(dt, dx) be a compensated Poisson random
measure on R+ × E with compensator ν(dt, dx) = dt ⊗ β(dx). Let F be a separable
Banach space.

Let I ⊂ R+ be an index set such that I = R+ or I = [0, T ] for some T > 0. A
function f : �× I × E → F is called adapted/measurable/progressively measurable
if it has the respective properties on the enlarged space

(�̃, F̃ , F̃t, P̃) = (� × E,F × E, (Ft × E)t≥0,P ⊗ β).
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Now we fix T > 0 and set μ = P̃ ⊗ λ. Let L2
T ,β (F) = L2

T ,ad(F) and �T (F) =
�(G̃T ; F). By Proposition2.1.6 and Theorem3.4.2 the linear space �T (F) is dense
in L2

T ,β(F). Note that any function f ∈ �T (F) is of the form

f (t, x) =
n∑

k=1

m∑

l=1

ak,l1Ak,l (x)1Fk,l1(tk−1,tk](t) (3.5.1)

for n, m ∈ N with:

• elements ak,l ∈ F for k = 1, . . . , n and l = 1, . . . , m;
• time points 0 ≤ t0 ≤ . . . ≤ tn ≤ T ;
• sets Ak,l ∈ E with β(Ak,l) < ∞ for k = 1, . . . , n and l = 1, . . . , m such that the
product sets Ak,l × (tk−1, tk] are mutually disjoint;

• sets Fk,l ∈ Ftk−1 for k = 1, . . . , n and l = 1, . . . , m.

For f ∈ �T (F) we define the Itô integral as the process

t∫

0

∫

E

f (s, x)q(ds, dx) :=
n∑

k=1

m∑

l=1

ak,l1Fk,l q((tk−1, tk] ∩ (0, t] × Ak,l), t ∈ [0, T ].

(3.5.2)

Remark 3.5.1 Assume that the compensated Poisson random measure q(dt, dx) is
the counting measure of a Lévy process (Xt)t≥0, then for f ∈ �T (F)

t∫

0

∫

E

f (s, x)q(ds, dx) =
∑

0<s≤t

f (s, (�Xs)(ω), ω)1E(�Xs(ω))

−
t∫

0

∫

E

f (s, x, ω)ν(ds, dx). (3.5.3)

Lemma 3.5.2 For each f ∈ �T (F) the process M = (Mt)t≥0 given by

Mt =
t∫

0

∫

E

f (s, x)q(ds, dx), t ∈ [0, T ]

belongs to M2
T (F).

Proof This is a direct consequence of Lemma2.4.8. �

http://dx.doi.org/10.1007/978-3-319-12853-5_2
http://dx.doi.org/10.1007/978-3-319-12853-5_2
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Due to Lemma3.5.2, we may regard the Itô integral defined in (3.5.2) as a linear
operator

�T (F) → M2
T (F), f �→

( t∫

0

∫

E

f (s, x)q(ds, dx)

)

t∈[0,T ]
. (3.5.4)

Remark 3.5.3 If F = H is a separable Hilbert space, then for simple functions we
have the so-called Itô isometry

E

[∥∥∥∥

T∫

0

∫

E

f (s, x)q(ds, dx)

∥∥∥∥
2]

= E

[ T∫

0

∫

E

‖f (s, x)‖2β(dx)ds

]
for all ∈ L2

T ,β(H). (3.5.5)

Indeed, for a simple f ∈ �T (H) of the form (3.5.1) we have

E

[∥∥∥∥

T∫

0

∫

E

f (t, x)q(dt, dx)

∥∥∥∥
2]

= E

[∥∥∥∥
n∑

k=1

m∑

l=1

ak,l1Fk,l q((tk−1, tk] × Ak,l)

∥∥∥∥
2]

= E

[〈 n∑

k=1

m∑

l=1

ak,l1Fk,l q((tk−1, tk] × Ak,l),

n∑

k=1

m∑

l=1

ak,l1Fk,l q((tk−1, tk] × Ak,l)
〉]

=
n∑

k=1

m∑

l=1

‖ak,l‖2E[1Fk,l q((tk−1, tk] × Ak,l)]

+
n∑

k=1

m∑

l=1

n∑

i=1

m∑

j=1

ak,lai,jE[〈1Fk,l q((tk−1, tk] × Ak,l),1Fi,j q((ti−1, ti] × Ai,j)〉].

Using Theorem2.4.6 we obtain

n∑

k=1

m∑

l=1

‖ak,l‖2E[1Fk,l q((tk−1, tk] × Ak,l)]

=
n∑

k=1

m∑

l=1

‖ak,l‖2P(Fk,l)β(Ak,l)λ((tk−1, tk])

= E

[ T∫

0

∫

E

‖f (t, x)‖2β(dx)dt

]
.

http://dx.doi.org/10.1007/978-3-319-12853-5_2
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For k < i the random variable q((ti−1, ti] × Ai,j) is independent of Fti−1 and
q((tk−1, tk] × Ak,l) is Fti−1 -measurable. Therefore, we get

E[〈1Fk,l q((tk−1, tk] × Ak,l),1Fi,j q((ti−1, ti] × Ai,j)〉]
= E[1Fk,l1Fi,jE[〈q((tk−1, tk] × Ak,l), q((ti−1, ti] × Ai,j)〉] | Fti−1]
= E[1Fk,l1Fi,j 〈q((tk−1, tk] × Ak,l),E[q((ti−1, ti] × Ai,j)]〉] = 0,

and hence, the Itô isometry (3.5.6) is valid.

Therefore, if F = H is a separable Hilbert space, then the integral operator (3.5.4)
is an isometry, and therefore in particular continuous. Thus, and because �T (H) is
dense in L2

T ,β(H), it has a unique extension

L2
T ,β(H) → M2

T (H), f �→
( t∫

0

∫

E

f (s, x)q(ds, dx)

)

t∈[0,T ]
,

which we call the Itô integral, and we have the Itô isometry

E

[∥∥∥∥

T∫

0

∫

E

f (s, x)q(ds, dx)

∥∥∥∥
2]

= E

[ T∫

0

∫

E

‖f (s, x)‖2β(dx)ds

]
for allf ∈ L2

T ,β(H). (3.5.6)

In order to define the Itô integral in the general setting, where the separable Banach
space F is not a Hilbert space, we assume there exists a constant Kβ > 0 (which may
depend on β), such that

E

[∥∥∥∥

T∫

0

∫

E

f (s, x)q(ds, dx)

∥∥∥∥
2]

≤ KβE

[ T∫

0

∫

E

‖f (s, x)‖2dsβ(dx)

]
for all f ∈ �(F). (3.5.7)

In this case, we can analogously define the Itô integral for all f ∈ L2
T ,β(F) as the

continuous linear operator

L2
T ,β(F) → M2

T (F), f �→
( t∫

0

∫

E

f (s, x)q(ds, dx)

)

t∈[0,T ]
, (3.5.8)
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which is the unique extension of (3.5.4). In particular, we obtain the estimate

E

[∥∥∥∥

T∫

0

∫

E

f (s, x)q(ds, dx)

∥∥∥∥
2]

≤ KβE

[ T∫

0

∫

E

‖f (s, x)‖2β(dx)ds

]
for all f ∈ L2

T ,β(F). (3.5.9)

Remark 3.5.4 The Itô integral in (3.5.8) is cádlág.

We proceed with the definition of the Pettis integral. Let f : � × [0, T ] × E → F be
a function such that 〈y∗, f 〉 ∈ L2

T ,β(R) for all y∗ ∈ F∗. We define the linear operator

Tf : F∗ → M2
T (R), Tf y∗ :=

( t∫

0

∫

E

〈y∗, f (s, x)〉q(ds, dx)

)

t∈[0,T ]
.

Arguing as in the proof of Dunford’s lemma (see Lemma2.1.7), we show that Tf

is continuous. The function f is called Pettis integrable if there exists a process
Zf ∈ M2

T (F) such that almost surely

Tf y∗ = 〈y∗, Zf 〉.

Note that such a process Zf is P-almost surely unique, provided it exists, and that the
set of Pettis integrable functions forms a linear space. Following the ideas of [90],
we call Zf the Pettis integral of f and set

(P−)

t∫

0

∫

E

f (s, x)q(ds, dx) := Zf
t , t ∈ [0, T ].

We observe that for each simple function f ∈ �T (F) the Pettis integral exists and
coincides with the Itô integral, that is, we have

( t∫

0

∫

E

f (s, x)q(ds, dx)

)

t∈[0,T ]

=
(

(P−)

t∫

0

∫

E

f (s, x)q(ds, dx)

)

t∈[0,T ]
for all f ∈ �T (F).

Arguing as in the proof of Lemma3.1.3, we obtain the following result:

http://dx.doi.org/10.1007/978-3-319-12853-5_2
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Lemma 3.5.5 Suppose there exists a constant Kβ > 0 such that (3.5.7) is satisfied.
Then, each function f ∈ L2

β(F) is Pettis integrable and we have

∫∫

X
f (s, x)q(ds, dx) = (P−)

∫∫

X
f (s, x)q(ds, dx) for all f ∈ L2

β(F). (3.5.10)

Moreover, for each x∗ ∈ F∗ we have

〈
x∗,

∫∫

X
f (s, x)q(ds, dx)

〉
=

∫∫

X
〈x∗, f (s, x)〉q(ds, dx) for all f ∈ L2

β(F).

(3.5.11)

Remark 3.5.6 Let us stress that Lemma3.5.5 states in particular that if there exists
a constant Kβ > 0 such that (3.5.7) is satisfied, then the Itô integral is defined on
L2

β(F) and inequality (3.5.9) holds.

Now the question arises which properties of the continuous linear operator Tf

ensure that the function f : � × [0, T ] × E → F is Pettis integrable. Arguing as in
the proof of Theorem3.1.4, we obtain the following result:

Theorem 3.5.7 Suppose that F = H is a separable Hilbert space, and let f :
� × [0, T ] × E → H be a function with 〈y, f 〉 ∈ L2

T ,β (R) for all y ∈ H. Then the
following statements are equivalent:

1. Tf : H → M2
T (R) is a Hilbert–Schmidt operator.

2. f ∈ L2
T ,β(H).

3. The function f is Pettis integrable with

E

[∥∥∥∥(P−)

T∫

0

∫

E

f (s, x)q(ds, dx)

∥∥∥∥
2]

< ∞. (3.5.12)

If F is a separable Banach space, we obtain the following result by arguing as in
the proof of Theorem3.1.5.

Theorem 3.5.8 Let E be a separable Banach space. The following statements are
equivalent:

1. Each f ∈ L2
T ,β (F) is Pettis integrable and we have (3.5.12).

2. Each f ∈ L2
T ,β (F) is Pettis integrable, we have (3.5.12) and the linear operator

L2
T ,β(F) → M2

T (F), f �→ (P−)

T∫

0

∫

E

f (s, x)q(ds, dx) (3.5.13)

is continuous.



58 3 Stochastic Integrals with Respect to Compensated Poisson Random Measures

3. There exists a constant Kβ > 0 such that (3.5.7) is satisfied.

If the previous conditions are fulfilled, then we have identities (3.5.10) and (3.5.11).

Now the natural question arises if for non-Hilbertian Banach spaces there exists a
constant Kβ > 0 such that inequality (3.5.7) is satisfied for all f ∈ �T (F). Following
[85], we introduce M-type 2 Banach spaces for this purpose.

Definition 3.5.9 A separable Banach spaceF is called aBanach space of M-type 2 if
there exists a constant K > 0 such that for each n ∈ N, for every filtered probability
space (�,F , (Fi)i=0,...,n,P) and for every F-valued (Fk)-martingale (Mi)i=0,...,n
with M0 = 0 we have

E[‖Mn‖2] ≤ K
n∑

i=1

E[‖Mi − Mi−1‖2]. (3.5.14)

Remark 3.5.10 Note that every Banach space of M-type 2 is also a Banach space
of type 2. Indeed, for any independent random variables X1, . . . , Xn : � → F with
E[Xi] = 0, i = 1, . . . , n we define the filtration (Fk)k=0,...,n by

F0 = {∅,�} and Fk = σ(X1, . . . , Xk), k = 1, . . . , n

and the (Fk)-martingale (Mk)k=0,...,n by

M0 = 0 and Mk =
k∑

i=1

Xi, k = 1, . . . , n.

Then, using (3.5.14) we obtain

E

[∥∥∥∥
n∑

i=1

Xi

∥∥∥∥
2]

= E[‖Mn‖2] ≤ K
n∑

i=1

E[‖Mi − Mi−1‖2] = K
n∑

i=1

E
[‖Xi‖2

]
,

showing (3.1.13).

Remark 3.5.11 Note that every separable Hilbert space H is a Banach space of M-
type 2. Indeed, for every H-valued (Fk)-martingale (Mi)i=0,...,n with M0 = 0 we
obtain

E[‖Mn‖2] = E

[∥∥∥∥
n∑

i=1

(Mi − Mi−1)

∥∥∥∥
2]

= E

[〈 n∑

i=1

(Mi − Mi−1),

n∑

i=1

(Mi − Mi−1)
〉]

=
n∑

i=1

E[‖Mi − Mi−1‖2] + 2
∑

i<j

E[〈Mi − Mi−1, Mj − Mj−1〉].



3.5 The Itô Integral 59

For i < j we get, by using thatMi−Mi−1 isFi-measurable and thatM is amartingale,

E[〈Mi − Mi−1, Mj − Mj−1〉] = E[E[〈Mi − Mi−1, Mj − Mj−1〉 | Fi]]
= E[〈Mi − Mi−1,E[Mj − Mj−1 | Fi]〉] = 0,

and hence we arrive at

E[‖Mn‖2] =
n∑

i=1

E[‖Mi − Mi−1‖2],

showing that (3.5.14) is fulfilled.

Proposition 3.5.12 Suppose that F is a Banach space of M-type 2. Then we have

E

[∥∥∥∥

T∫

0

∫

E

f (s, x)q(ds, dx)

∥∥∥∥
2]

≤ K2
E

[ T∫

0

∫

E

‖f (s, x)‖2β(dx)ds

]
for all f ∈ �(F), (3.5.15)

where the constant K > 0 stems from (3.5.14).

Proof Let f ∈ �(F) be a simple function of the form (A.1.1). Define the random
variables (Mi)i=0,...,n by

Mi =
i∑

k=1

m∑

l=1

ak,l1Fk,l q((tk−1, tk] × Ak,l)

=
ti∫

0

∫

E

f (s, x)q(ds, dx), i = 0, . . . , n.

ThenwehaveM0 = 0 and (Mi)i=0,...,n is a (Gi)-martingale,where (Gi)i=0,...,n denotes
the filtration

Gi = Fti , i = 0, . . . , n.

For fixed k = 1, . . . , n we define the random variables (Mk,j)j=0,...,m by

Mk,j =
j∑

l=1

akl1Fk,l q((tk−1, tk] × Akl), j = 0, . . . , m
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and the filtration (Gk,j)j=0,...,m by

Gk,j = σ(q((tk−1, tk] × Ak,j)), j = 0, . . . , m.

Then we have Mk,0 = 0 and (Mk,j)j=0,...,m is a (Gk,j)j=0,...,m-martingale. Indeed,
let j1 < j2 be arbitrary. Then for l = j1 + 1, . . . , j2 the set Fk,l ∈ Ftk−1 and Gk,j1
by Definition2.4.5. Since the product sets (tk−1, tk] × Ak,l and (tk−1, tk] × Ak,j1
are disjoint, the random variable q((tk−1, tk] × Ak,l) and Gk,j1 are independent by
Theorem2.4.6.Moreover, the setFk,l and q((tk−1, tk]×Ak,l) are independent. There-
fore, we obtain

E[Mk,j2 − Mk,j1 | Gk,j1 ] =
j2∑

l=j1+1

E[1Fk,l q((tk−1, tk] × Ak,l) | Gk,j1 ]

=
j2∑

l=j1+1

E[1Fk,l q((tk−1, tk] × Ak,l)]

=
j2∑

l=j1+1

P(Fk,l)E[q((tk−1, tk] × Ak,l)] = 0,

showing that (Mk,j)j=0,...,m is a (Gk,j)j=0,...,m-martingale. Therefore, using the esti-
mate (3.5.14), we obtain

E

[∥∥∥∥

T∫

0

∫

E

f (s, x)q(ds, dx)

∥∥∥∥
2]

= E

[∥∥∥∥
n∑

k=1

m∑

l=1

ak,l1Fk,l q((tk, tk+1] × Ak,l)

∥∥∥∥
2]

= E[‖Mn‖2] ≤ K
n∑

k=1

E[‖Mk − Mk−1‖2]

= K
n∑

k=1

E

[∥∥∥∥
m∑

l=1

ak,l1Fk,l q((tk−1, tk] × Ak,l)

∥∥∥∥
2]

= K
n∑

k=1

E[‖Mk,m‖2] ≤ K2
n∑

k=1

m∑

l=1

E[‖Mk,l − Mk,l−1‖2]

= K2
n∑

k=1

m∑

l=1

E

[∥∥∥∥ak,l1Fk,l q((tk, tk+1] × Ak,l)

∥∥∥∥
2]

= K2
n∑

k=1

m∑

l=1

‖ak,l‖2P(Fk,l)(tk+1 − tk)β(Ak,l)

http://dx.doi.org/10.1007/978-3-319-12853-5_2
http://dx.doi.org/10.1007/978-3-319-12853-5_2
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= K2

T∫

0

∫

E

E[‖f (t, x)‖2]β(dx)dt,

proving (3.5.15). �

Consequently, if the Banach space F is of M-type 2, then we can define the Itô
integral for all f ∈ L2

T ,β(F) as the continuous linear operator

L2
T ,β(F) → M2

T (F), f �→
( t∫

0

∫

E

f (s, x)q(ds, dx)

)

t∈[0,T ]
, (3.5.16)

which is the unique extension of (3.5.4), and we obtain the estimate

E

[∥∥∥∥

T∫

0

∫

E

f (s, x)q(ds, dx)

∥∥∥∥
2]

≤ K2
E

[ T∫

0

∫

E

‖f (s, x)‖2β(dx)ds

]
for all f ∈ L2

T ,β (F), (3.5.17)

where the constant K > 0 stems from (3.5.14).

Remark 3.5.13 Let (�,F , μ) be a measure space with σ -finite measure μ, and
2 ≤ p < ∞, then F= Lp(�,F , μ;R) is a Banach space of M-type 2 [85, 100]. For
an example of type 2 spaces which is not of M-type 2 we refer to the forthcoming
book on Martingales in Banach spaces by G.Pisier

There are separable Banach spaces which are not of M-type 2 (e.g., see
Example3.5.15), but where inequality (3.5.7) is satisfied for certain Poisson ran-
dom measures. In particular, the following proposition (from [68]) holds for any
separable Banach space F.

Proposition 3.5.14 Suppose that β(E) < ∞. Then inequality (3.5.9) is satisfied
with Kβ= 4 + 6Tβ(E).

Proof Let f ∈ �T (E/F) be arbitrary. Then we have

E

[∥∥∥∥

T∫

0

∫

E

f (s, x)q(ds, dx)

∥∥∥∥
2]

≤ 2E

[( T∫

0

∫

E

‖f (s, x)‖N(ds, dx)

)2]
+ 2E

[( T∫

0

∫

E

‖f (s, x)‖β(dx)ds

)2]
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≤ 2E

[( T∫

0

∫

E

‖f (s, x)‖q(ds, dx) +
T∫

0

∫

E

‖f (s, x)‖β(dx)ds

)2]

+ 2E

[( T∫

0

∫

E

‖f (s, x)‖β(dx)ds

)2]
.

Thus, by the Itô isometry for real-valued integrands and the Cauchy–Schwarz
inequality we obtain

E

[∥∥∥∥

T∫

0

∫

E

f (s, x)q(ds, dx)

∥∥∥∥
2]

≤ 4E

[( T∫

0

∫

E

‖f (s, x)‖q(ds, dx)

)2]
+ 6E

[( T∫

0

∫

E

‖f (s, x)‖β(dx)ds

)2]

(3.5.18)

≤ 4E

[ T∫

0

∫

E

‖f (s, x)‖2β(dx)ds

]
+ 6Tβ(E)E

[ T∫

0

∫

E

‖f (s, x)‖2β(dx)ds

]
.

(3.5.19)

Consequently, inequality (3.5.9) is satisfied with Kβ= 4 + 6Tβ(E). �

Here we provide an example of a separable Banach space which is not of M-type
2 [68].

Example 3.5.15 Let l1 be the space of all real-valued sequences (xj)j∈N⊂ R which
are absolutely convergent, that is

‖x‖l1 :=
∞∑

j=1

|xj| < ∞.

Then (l1, ‖ · ‖l1) is a separable Banach space which is not M-type 2. Indeed, let
(ej)j∈N be the standard unit sequences in l1, which are given by

e1 = (1, 0, . . .), e2 = (0, 1, 0 . . .), . . .

Let n ∈ N be arbitrary. We denote by (X(n)
j )j=1,...,n independent random variables

having a normal distribution N(0, 1/n), and we define the l1-valued process M(n)

= (M(n)
k )k=0,...,n as



3.5 The Itô Integral 63

M(n)
0 := 0 and M(n)

k :=
k∑

j=1

X(n)
j ej, k = 1, . . . , n.

Then M(n) is a martingale with respect to the filtration (F (n)
k )k=0,...,n given by

F (n)
0 = {0,�} F (n)

k = σ(X(n)
1 , . . . , X(n)

k ), k = 1, . . . , n.

Moreover, we have

n∑

k=1

E[‖M(n)
k − M(n)

k−1‖2l1 ] =
n∑

k=1

E[‖X(n)
k ek‖2l1 ] =

n∑

k=1

E[|X(n)
k |2] = 1

as well as

E[‖M(n)
n ‖2l1 ] = E[‖

∑n

j=1
X(n)

j ej‖2l1 ] = E

[(∑n

j=1
|X(n)

j |
)2]

=
∑n

i=1

∑n

j=1
E[|X(n)

i ||X(n)
j |]

=
∑n

j=1
E[|X(n)

i |2] +
∑n

i=1

∑n

j �=i
E[|X(n)

i ||X(n)
j |]

= 1 +
∑n

j �=i

2

πn
= 1 + 2n(n − 1)

πn

= 1 + 2(n − 1)

π
→ ∞ for n → ∞.

Similarly to Proposition2.1.5 we prove the following result:

Proposition 3.5.16 Let F, G be Banach spaces of M-type 2, let A : D(A) ⊂ F → G
be a closed operator and let f ∈ L2

T ,β(D(A)) be a function. Then we have f ∈
L2

T ,β(F), Af ∈ L2
T ,β(G) and

A

t∫

0

∫

E

f (s, x)q(ds, dx) =
t∫

0

∫

E

Af (s, x)q(ds, dx), t ∈ [0, T ].

It will be useful to extend the Itô integral (3.5.16) further. Let L2∞,β(F) be the
linear space of all progressively measurable functions f : � × R+ × E → F such
that f |�×[0,T ]×E ∈ L2

T ,β (F) for all T > 0. For all f ∈ L2∞,β (F) we can define the
Itô integral

( t∫

0

∫

E

f (s, x)q(ds, dx)

)

t≥0
,

which is again a martingale.

http://dx.doi.org/10.1007/978-3-319-12853-5_2
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For fixed T > 0 letK2
T ,β(F) = K2

T ,β(E/F) be the linear space of all progressively
measurable functions f : � × [0, T ] × E → F such that

P

( T∫

0

∫

E

‖f (s, x)‖2β(dx)ds < ∞
)

= 1.

For f ∈ K2
T ,β(F) we define the sequence of stopping times

τn := inf
{

t ∈ [0, T ] :
t∫

0

∫

E

‖f (s, x)‖2β(dx)ds ≥ n
}
, n ∈ N.

Note that f1[0,τn] ∈ L2
T ,β (F) for all n ∈ N. Hence, we can define the Itô integral

t∫

0

∫

E

f (s, x)q(ds, dx) := lim
n→∞

t∫

0

∫

E

f (s, x)1[0,τn]q(ds, dx), t ∈ [0, T ]

which is a local martingale.
Finally, let K2∞,β(F) = K2∞,β(E/F) be the linear space of all progressively mea-

surable functions f : � × R+ × E → F such that f |�×[0,T ]×E ∈ K2
T ,β(F) for all

T > 0. For all f ∈ K2∞,β(F) we can define the Itô integral

( t∫

0

∫

E

f (s, x)q(ds, dx)

)

t≥0
,

which is again a local martingale.
In the sequel we will use the following result from [93]:

Theorem 3.5.17 Let f ∈ K2
T ,β(E/F) be arbitrary and let (fn)n∈N be a sequence

such that fn ∈ K2
T ,β(E/F) for all n ∈ N. Suppose that fn converges ν ⊗ P-almost

surely to f on � × [0, T ] × E, when n → ∞, and P-almost surely

lim
n→∞

T∫

0

∫

E

‖fn − f ‖2dν = 0.

Assume there is a g ∈ K2
T ,β(E/F) such that

T∫

0

∫

E

‖fn‖2dν ≤
T∫

0

∫

E

‖g‖2dν.
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Then we have

t∫

0

∫

E

f (s, x)q(ds, dx) = lim
n→∞

t∫

0

∫

E

fn(s, x)q(ds, dx),

where the limit is in probability.

Proof The proof follows from Theorem7.7 and Remark7.8 in [93]. �

For the rest of this section, let F be a separable Banach space. We have a linear
operator

�T (F) → M1
T (F), f �→

( t∫

0

∫

E

f (s, x)q(ds, dx)

)

t∈[0,T ]

which is continuous according to Lemma2.4.15. Thus, and because �T (F) is dense
in L1

T ,β(F), we can define the Itô integral (on L1
T ,β(F)) as the unique extension

L1
T ,β(F) → M1

T (F), f �→
( t∫

0

∫

E

f (s, x)q(ds, dx)

)

t∈[0,T ]
. (3.5.20)

Remark 3.5.18 If the separable Banach space F is of M-type 2, then the two inte-
gral operators (3.5.16) and (3.5.20) coincide on L1

T ,β(F) ∩ L2
T ,β(F), due to their

continuity.

Lemma 3.5.19 For all f ∈ L1
β(PT ; F)= L1

T ,pred(F) we have

t∫

0

∫

E

f (s, x)q(ds, dx) =
t∫

0

∫

E

f (s, x)N(ds, dx)

−
t∫

0

∫

E

f (s, x)β(dx)ds, t ∈ [0, T ]. (3.5.21)

Proof For every simple function f ∈ �T (F) identity (3.5.21) holds true by inspec-
tion. By Proposition2.1.6 and Theorem3.4.2, the linear space �T (F) is dense in
L1

β(F). The continuity of the integral operator (2.4.8) yields that (3.5.21) is valid for

all f ∈ L1
β(PT ; F). �

http://dx.doi.org/10.1007/978-3-319-12853-5_7
http://dx.doi.org/10.1007/978-3-319-12853-5_7
http://dx.doi.org/10.1007/978-3-319-12853-5_2
http://dx.doi.org/10.1007/978-3-319-12853-5_2
http://dx.doi.org/10.1007/978-3-319-12853-5_2
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Lemma 3.5.20 For each f ∈ L1
T ,β (F)= L1

T ,ad(F) we have

E

[∥∥∥∥

t∫

0

∫

E

f (s, x)q(ds, dx)

∥∥∥∥

]
≤ 2E

[ t∫

0

∫

E

‖f (s, x)‖β(dx)ds

]
, t ∈ [0, T ].

Proof According to Theorem3.4.2 there exists a g ∈ L1
T ,pred(F) such that f = g

almost everywhere with respect to P⊗ β ⊗ λ. Using Lemmas3.5.19 and2.4.14, for
each t ∈ [0, T ] we obtain

E

[∥∥∥∥

t∫

0

∫

E

f (s, x)q(ds, dx)

∥∥∥∥

]
= E

[∥∥∥∥

t∫

0

∫

E

g(s, x)q(ds, dx)

∥∥∥∥

]

≤ E

[∥∥∥∥

t∫

0

∫

E

g(s, x)N(ds, dx)

∥∥∥∥

]

+ E

[∥∥∥∥

t∫

0

∫

E

g(s, x)β(ds, dx)

∥∥∥∥

]

≤ 2E

[ t∫

0

∫

E

‖g(s, x)‖β(dx)ds

]

= 2E

[ t∫

0

∫

E

‖f (s, x)‖β(dx)ds

]
,

completing the proof. �

3.6 Integration with Respect to Martingales

Let F be a Banach space of M-type 2. As shown in the previous Sect. 3.5, for T > 0
and f ∈ L2

T ,β(F) we can define the Itô integral

Mt =
t∫

0

∫

E

f (s, x)q(ds, dx), t ∈ [0, T ]

and M = (Mt)t∈[0,T ] is an F-valued martingale. In [86] the stochastic integral with
respect to a martingale has been defined. In this section, we shall examine the con-
nection of the integral in [86] to the Itô integral of the previous Sect. 3.5.

Let F be a separable Banach space and fix T > 0.

http://dx.doi.org/10.1007/978-3-319-12853-5_2
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Definition 3.6.1 Amartingale M ∈ M2
T (F) is controlled by a non-decreasing, real-

valued, absolutely continuous process A = (At)t∈[0,T ] if we have

E[‖Mt − Ms‖2 | Fs] ≤ E[At − As | Fs], 0 ≤ s ≤ t ≤ T .

Lemma 3.6.2 Suppose the Banach space F is of M-type 2. Then for each f ∈
L2

T ,β(F) the martingale

Mt =
t∫

0

∫

E

f (s, x)q(ds, dx), t ∈ [0, T ] (3.6.1)

is controlled by the process

At = K2

t∫

0

∫

E

‖f (s, x)‖2β(dx)ds, t ∈ [0, T ], (3.6.2)

where the constant K > 0 stems from (3.5.14).

Proof Let 0 ≤ s ≤ t ≤ T be arbitrary. It suffices to show that for all B ∈ Fs we have

E[‖Mt − Ms‖21B] ≤ E[(At − As)1B].

Note that the function g : � × [0, T ] × E → F given by

g(u, x) = f (u, x)1(s,t](v)1B

is again progressively measurable, and hence g ∈ L2
T ,β(F). Using the estimate

(3.5.17), we obtain

E[‖Mt − Ms‖21B] = E

[∥∥∥∥

T∫

0

∫

E

g(u, x)q(du, dx)

∥∥∥∥
2]

≤ K2
E

[ T∫

0

∫

E

‖g(u, x)‖2β(dx)du

]
= E[(At − As)1B],

finishing the proof. �

Now let G be another separable Banach space. We set �T (F, G) = �(G̃T ;
L(F, G)). Note that any process H ∈ �T (F, G) is of the form
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H =
n∑

k=1

�k1Fk1(tk−1,tk ] (3.6.3)

for n ∈ N with:

• continuous linear operators �k ∈ L(F, G) for k = 1, . . . , n;
• time points 0 ≤ t0 ≤ . . . ≤ tn ≤ T ;
• sets Fk,l ∈ Ftk−1 for k = 1, . . . , n.

For a simple process H ∈ �T (F, G) of the form (3.6.3) and a square-integrable
martingale M ∈ M2

T (F) we define the Itô integral

(H · M)t :=
t∫

0

HsdMs :=
n∑

k=1

1Fk �k(Mtk∧t − Mtk−1∧t), t ∈ [0, T ]. (3.6.4)

Lemma 3.6.3 For each H ∈ �T (F, G) and M ∈ M2
T (F) we have H ·M ∈ M2

T (G).

Proof Let H ∈ �T (F, G) be an arbitrary process of the form (3.6.3). Let k =
1, . . . , n be arbitrary. Then, the process

Nt = �k(Mtk∧t − Mtk−1∧t), t ∈ [0, T ]

is a martingale. We shall now prove that 1Fk N is also a martingale, which will finish
the proof, as the Itô integral is given by (3.6.4). Let 0 ≤ s ≤ t ≤ T be arbitrary. If
s ≤ tk−1, then we have

E[1Fk Nt | Fs] = E[E[1Fk Nt | Ftk−1 ] | Fs] = E[1FkE[Nt] | Fs] = 0 = 1Fk Ns,

and for s > tk we obtain

E[1Fk Nt | Fs] = 1FkE[Nt | Fs]1Fk Ns,

showing that 1Fk N is a martingale. �

Due to Lemma3.6.3, for any M ∈ M2
T (F) we may regard the Itô integral defined

in (3.6.4) as a linear operator

�T (F, G) → M2
T (G), H �→ H · M. (3.6.5)

Note that for any H ∈ �T (F, G) the mapping

MT (F) → MT (G), M �→ H · M

is also well-defined and linear.
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Proposition 3.6.4 Let M ∈ M2
T (F) be arbitrary. Suppose the Banach space G is

of M-type 2 and that there exists a process A = (At)t∈[0,T ] such that M is controlled
by A. Then we have

E

[∥∥∥∥

T∫

0

HsdMs

∥∥∥∥
2]

≤ KGE

[ T∫

0

‖Hs‖2dAs

]
for all f ∈ �T (F, G), (3.6.6)

where the constant KG > 0 stems from estimate (3.5.14) regarding the Banach
space G.

Proof Let f ∈ �T (F, G) be a simple function of the form (3.6.3). Define the random
variables (Ni)i=0,...,n by

Ni =
i∑

k=1

1Ak �k(Mtk − Mtk−1) = (H · M)ti , i = 0, . . . , n.

Thenwe haveN0 = 0 and (Ni)i=0,...,n is a (Gi)-martingale, where (Gi)i=0,...,n denotes
the filtration

Gi = Fti , i = 0, . . . , n.

Hence, using the estimate (3.5.14), we obtain

E

[∥∥∥∥

T∫

0

HsdMs

∥∥∥∥
2]

= E[‖Nn‖2] ≤ KG

n∑

k=1

E[‖Nk − Nk−1‖2]

= KG

n∑

k=1

E[‖1Fk �k(Mtk − Mtk−1)‖2]

≤ KG

n∑

k=1

E[1Fk ‖�k‖2‖Mtk − Mtk−1‖2]

= KG

n∑

k=1

E[1Fk ‖�k‖2E[‖Mtk − Mtk−1‖2 | Ftk−1 ]]

≤ KG

n∑

k=1

E[1Fk ‖�k‖2E[Atk − Atk−1 | Ftk−1]]

= KGE

[ n∑

k=1

1Fk ‖�k‖2(Atk − Atk−1)

]
= KGE

[ T∫

0

‖Hs‖2dAs

]
,

completing the proof. �



70 3 Stochastic Integrals with Respect to Compensated Poisson Random Measures

For a non-decreasing, real-valued, absolutely continuous process A = (At)t∈[0,T ]
we setμ = P⊗A andL2

T ,A(F, G) = L2
T ,ad(L(F, G)) in the sense of definition (3.4.1)

with �̃ = �. By Proposition2.1.6 and Theorem3.4.2, the linear space �T (F, G) is
dense in L2

T ,A(F, G).

Let M ∈ M2
T (F) be a square-integrable martingale. Suppose that the Banach

space G is of M-type 2 and that there exists a process A = (At)t∈[0,T ] such that M
is controlled by A. According to Lemma3.6.2, the latter condition is in particular
satisfied if the Banach spaceF is ofM-type 2 andmartingaleM is given by (3.6.1) for
some f ∈ L2

t,β(F). By Proposition3.6.4, the integral operator (3.6.5) is continuous.

Since �T (F, G) is dense in L2
T ,A(F, G), it has a unique extension

L2
T ,A(F, G) → M2

T (G), H �→ H · M, (3.6.7)

which we also call the Itô integral, and we have the estimate

E

[∥∥∥∥

T∫

0

HsdMs

∥∥∥∥
2]

≤ KGE

[ T∫

0

‖Hs‖2dAs

]
for all f ∈ L2

T ,A(F, G). (3.6.8)

Theorem 3.6.5 Let F, G be Banach spaces of M-type 2 and let f ∈ L2
T ,β (F) be

arbitrary. Let M ∈ M2
T (F) and A = (At)t∈[0,T ] be given by (3.6.1) and (3.6.2).

Then, for all H ∈ L2
T ,A(F, G), we have Hf ∈ L2

T ,β (G) and

( t∫

0

HsdMs

)

t∈[0,T ]
=

( t∫

0

∫

E

Hsf (s, x)q(ds, dx)

)

t∈[0,T ]
. (3.6.9)

Proof For all H ∈ L2
T ,A(F, G) we have

E

[ T∫

0

∫

E

‖Hsf (s, x)‖2β(dx)ds

]
≤ E

[ T∫

0

∫

E

‖Hs‖2‖f (s, x)‖2β(dx)ds

]

= E

[ T∫

0

‖Hs‖2dAs

]
< ∞,

showing that Hf ∈ L2
T ,β(G). The proof of identity (3.6.9) is divided into several

steps:

1. For elementary integrands f ∈ �T (F) and H ∈ �T (F, G) identity (3.6.9) holds
true by inspection.

http://dx.doi.org/10.1007/978-3-319-12853-5_2
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2. Now let f ∈ L2
T ,β (F) and H ∈ �T (F, G) be arbitrary. By Proposition2.1.6 and

Theorem3.4.2 there exists a sequence (fn)n∈N ⊂ �T (F) of simple functions such
that fn → f in L2

T ,β(F). For each n ∈ N let Mn ∈ M2
T (F) be defined by

Mn
t =

t∫

0

∫

E

fn(s, x)q(ds, dx), t ∈ [0, T ].

Moreover, we define Nn ∈ M2
T (F) by

Nn
t =

t∫

0

∫

E

(f (s, x) − fn(s, x))q(ds, dx), t ∈ [0, T ]

and the process Bn = (Bn
t )t∈[0,T ] by

Bn
t =

t∫

0

∫

E

‖f (s, x) − fn(s, x)‖2β(dx)ds, t ∈ [0, T ].

By Lemma3.6.2 the martingale Nn is controlled by Bn. Hence, by (3.6.8) we get

E

[∥∥∥∥

T∫

0

HsdMs −
T∫

0

HsM
n
s

∥∥∥∥
2]

= E

[∥∥∥∥

T∫

0

HsdNn
s

∥∥∥∥
2]

≤ KGE

[ T∫

0

‖Hs‖2dBn
s

]

= KGE

[ T∫

0

∫

E

‖f (s, x) − fn(s, x)‖2β(dx)ds

]
→ 0,

showing that

H · Mn → H · M inM2
T (G). (3.6.10)

Moreover, we have Hfn → Hf in L2
t,β(F), because

E

[ t∫

0

∫

E

‖Hsfn(s, x) − Hsf (s, x)‖2β(dx)ds

]

http://dx.doi.org/10.1007/978-3-319-12853-5_2
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≤ E

[ t∫

0

∫

E

‖Hs‖2‖fn(s, x) − f (s, x)‖2β(dx)ds

]

≤ max
k=1,...,n

‖�k‖2E
[ t∫

0

∫

E

‖fn(s, x) − f (s, x)‖2β(dx)ds

]
→ 0.

By Step 1, the convergence (3.6.10) and the continuity of the integral operator
(3.5.16) we obtain

( t∫

0

HsdMs

)

t∈[0,T ]
= lim

n→∞

( t∫

0

HsdMn
s

)

t∈[0,T ]

= lim
n→∞

( t∫

0

∫

E

Hsfn(s, x)q(ds, dx)

)

t∈[0,T ]

=
( t∫

0

∫

E

Hsf (s, x)q(ds, dx)

)

t∈[0,T ]
,

where the limits are taken in M2
T (G).

3. Finally, let f ∈ L2
T ,β(F) and H ∈ L2

T ,A(F, G) be arbitrary. By Proposition2.1.6
and Theorem3.4.2 there exists a sequence (Hn)n∈N ⊂ �T (F, G) of simple
processes such that Hn → H in L2

T ,A(F, G). We have Hnf → Hf in L2
T ,β (G),

because

E

[ T∫

0

∫

E

‖Hn
s f (s, x) − Hsf (s, x)‖2β(dx)ds

]

≤ E

[ T∫

0

∫

E

‖Hn
s − Hs‖2‖f (s, x)‖2β(dx)ds

]

= E

[ T∫

0

‖Hn
s − Hs‖2dAs

]
→ 0.

By Step 2 and the continuity of the integral operators (3.5.16) and (3.6.7) we
obtain

( t∫

0

HsdMs

)

t∈[0,T ]
= lim

n→∞

( t∫

0

Hn
s dMs

)

t∈[0,T ]

http://dx.doi.org/10.1007/978-3-319-12853-5_2


3.6 Integration with Respect to Martingales 73

= lim
n→∞

( t∫

0

∫

E

Hn
s f (s, x)q(ds, dx)

)

t∈[0,T ]

=
( t∫

0

∫

E

Hsf (s, x)q(ds, dx)

)

t∈[0,T ]
,

where the limits are taken in M2
T (G). �

3.7 Itô’s Formula

Weassume thatE is a Blackwell space andF is a separableBanach space, q(dt, dx) =
N(dt, dx)(ω) − ν(dt, dx), with ν(dt, dx) = dt ⊗ β(dx) is the compensated Poisson
random measure.

Let 0 < t ≤ T , A ∈ B(E\{0}) and

Zt :=
t∫

0

∫

A

f (s, x)q(ds, dx).

We assume that f ∈ K2
T ,β(F), and that for all g ∈ L2∞,β(F), g is Itô integrable with

respect to the compensated Poisson measure q(ds, dx).
In Theorem3.7.2 we shall prove the Itô formula for the F-valued random process

(Yt)t≥0, with

Yt := Zt +
t∫

0

∫

�

k(s, x)N(ds, dx).

Weassume that� is a set with β(�) < ∞, k : �×R+×E → F is a progressively
measurable process. Moreover k is cádlág or cáglád β(dx) ⊗ P-almost surely.

Improving the result in [93] we do not need to assume here that the Fréchét deriv-
atives of H are uniformly bounded. Hence important functions H for applications,
as proposed, for instance, in Example3.7.6 at the end of this section, can be consid-
ered for the Itô formula. Instead, we need to introduce the following definition and
properties:

Definition 3.7.1 We call a continuous, non-decreasing function h : R+ → R+
quasi-sublinear if there is a constant C > 0 such that

h(x + y) ≤ C
(
h(x) + h(y)

)
, x, y ∈ R+,

h(xy) ≤ Ch(x)h(y), x, y ∈ R+.
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Theorem 3.7.2 We suppose that:

• H ∈ C1,2(R+ × F; G) is a function such that

‖∂yH(s, y)‖ ≤ h1(‖y‖), (s, y) ∈ R+ × F (3.7.1)

‖∂yyH(s, y)‖ ≤ h2(‖y‖), (s, y) ∈ R+ × F (3.7.2)

for quasi-sublinear functions h1, h2 : R+ → R+.
• f : � × R+ × E → F is a progressively measurable process such that for all

t ∈ R+ we have P-almost surely

t∫

0

∫

A

‖f (s, x)‖2ν(ds, dx) +
t∫

0

∫

A

h1(‖f (s, x)‖)2‖f (s, x)‖2ν(ds, dx)

+
t∫

0

∫

A

h2(‖f (s, x)‖)‖f (s, x)‖2ν(ds, dx) < ∞. (3.7.3)

•
t∫

0

∫

�

‖k(s, x)‖ν(ds, dx) < ∞ P -a.s.

Then the following statements are true:

1. For all t ∈ R+ we have P-almost surely

t∫

0

‖∂sH(s, Ys)‖ds < ∞, (3.7.4)

t∫

0

∫

A

‖H(s, Ys + f (s, x)) − H(s, Ys)‖2ν(ds, dx) < ∞, (3.7.5)

t∫

0

∫

A

‖H(s, Ys + f (s, x)) − H(s, Ys) − ∂yH(s, Ys)f (s, x)‖ν(ds, dx) < ∞,

(3.7.6)
t∫

0

∫

�

‖H(s, Ys− + k(s, x)) − H(s, Ys−)‖N(ds, dx) < ∞. (3.7.7)
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2. We have P-almost surely

H(t, Yt) = H(0, Y0) +
t∫

0

∂sH(s, Ys)ds

+
t∫

0

∫

A

(H(s, Ys− + f (s, x)) − H(s, Ys−)
)
q(ds, dx)

+
t∫

0

∫

A

(H(s, Ys + f (s, x)) − H(s, Ys)

− ∂yH(s, Ys)f (s, x)
)
ν(ds, dx)

+
t∫

0

∫

�

(H(s, Ys− + k(s, x)) − H(s, Ys−)
)
N(ds, dx), t ≥ 0.

(3.7.8)

Remark 3.7.3 Assume f and k do not depend on ω ∈ �. Let L ∈ L(F/R) such that

LH(y) =
∫

A

{H(y + f (s, x)) − H(y) − ∂yH(y)f (s, x)}ν(ds, dx)

+
∫

�

{H(y + k(s, x)) − H(y)}ν(ds, dx). (3.7.9)

Then if H(s, ·) ∈ Dom(L) a.s. for s ∈ [0, T ]

H(t, Yt) − H(τ, Yτ ) =
t∫

τ

∂sH(s, Ys−)ds +
t∫

τ

LH(s, Ys−)

+
t∫

τ

∫

A

{H(s, Ys− + f (s, x)) − H(s, Ys−)}q(ds, dx)

+
t∫

τ

∫

�

{H(s, Ys− + k(s, x)) − H(s, Ys−)}q(ds, dx) P-a.s.

It follows that L is the generator of (Yt)t∈[0,T ].
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Remark 3.7.4 If k(s, x) = 0 then H(s, ·) ∈ Dom(L). If k does not depend on ω ∈ �

and

∫

�

‖k(s, x)‖2ν(ds, dx) < ∞

and ∂yH(s, y) is uniformly bounded, then H(s, ·) ∈ Dom(L).

The second statement in Remark3.7.4 is easily checked by proving that the second
integral in (3.7.9) is well-defined. This is a consequence of the following inequality,
see, e.g., [55, Chap. X], which holds for Fréchét differentiable functionsH : E → G.

‖H(y) − H(y0)‖ ≤ ‖y − y0‖ sup
0<θ≤1

‖H′(y0 + θ(y − y0))‖, (3.7.10)

where H′ denotes the first Fréchet derivative of H.
We shall use besides (3.7.10) the following inequalities for twice Fréchét differ-

entiable functions H : E → G., which can be found, for example, in [55, Chap. X],

‖H(y) − H(y0) − H′(y0)(y − y0)‖
≤ ‖y − y0‖ sup

0<θ≤1
‖H′(y0 + θ(y − y0)) − H′(y0)‖, (3.7.11)

‖H′(y) − H′(y0)‖ ≤ ‖y − y0‖ sup
0<θ≤1

‖H′′(y0 + θ(y − y0))‖. (3.7.12)

Before proving Theorem3.7.2 we first prove a more restricted result given by the
following lemma.

Lemma 3.7.5 Suppose that:

• H ∈ C1,2
b (R+ × F; G);

• f : � × R+ × E → F, and k : � × R+ × E → F are simple functions.

Then the following statements are true:

1. For all t ∈ R+ we have P-almost surely

t∫

0

‖∂sH(s, Ys)‖ds < ∞, (3.7.13)

t∫

0

∫

A

‖H(s, Ys + f (s, x)) − H(s, Ys)‖N(ds, dx) < ∞, (3.7.14)

t∫

0

∫

A

‖∂yH(s, Ys)f (s, x)‖ν(ds, dx) < ∞, (3.7.15)
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t∫

0

∫

�

‖H(s, Ys− + k(s, x)) − H(s, Ys−)‖N(ds, dx) < ∞. (3.7.16)

2. (3.7.8) holds P-almost surely.

We will give two proofs of Lemma3.7.5. One for the case where we make the
additional assumption that E is a separable Banach space, and one for the general
case whereE is Blackwell. In fact assuming thatE is a separable Banach spacemakes
the proof very natural as paths are decomposed into pure jump cádlág functions and
continuous functions. Once this case is understood the proof for the more general
case where E is a Blackwell space appears natural.

Proof We first remark that (3.7.13) and (3.7.15) hold because of the continuity of
the partial derivatives ∂sH and ∂yH and because

∫ t
0

∫
A ‖f (s, x)‖ν(ds, dx) < ∞, since

f is a simple function.
Let us first assume that E is a separable Banach space. In this case, N(ds, dx) is the
counting measure of a Lévy process (Xt)t≥0, and due to Remark3.5.1

Zt(ω) =
∑

0<s≤t

f (s, (�Xs)(ω), ω)1A(�Xs(ω)) −
t∫

0

∫

A

f (s, x, ω)ν(ds, dx).

(3.7.17)

Moreover

t∫

τ

∫

A

{H(s, Ys− + f (s, x)) − H(s, Ys−)}q(ds, dx)

=
∑

τ<s≤t

H(s, Ys−(ω) + f (s,�Xs(ω), ω)) − H(s, Ys−(ω))1A(�Xs(ω))

−
t∫

τ

∫

A

{H(s, Ys−(ω) + f (s, x, ω)) − H(s, Ys−(ω))}ν(ds, dx) P-a.s.

As Lévy processes are continuous in probability, it follows that almost surely

1�(�Xs(ω))�k(s,�Xs(ω), ω) = 0,

1A(�Xs(ω))�f (s,�Xs(ω), ω) = 0,

∀s ∈ [0, T ] 1A(�Xs(ω))1�(�Xs(ω)) = 0.

Let

�n
ω(A) := {k ∈ 0, . . . , 2n − 1 : ∃s ∈ (τ n

k , τ n
k+1] : �Xs(ω) ∈ A}
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with τ n
k := τ + k(t−τ)

2n . Then

H(t, Yt(ω)) − H(τ, Yτ (ω)) (3.7.18)

=
2n−1∑

k=0

H(τ n
k+1, Yτ n

k+1
(ω)) − H(τ n

k , Yτ n
k
(ω))

=
∑

k∈�n
ω(A)∪�n

ω(�)

H(τ n
k+1, Yτ n

k+1
(ω)) − H(τ n

k , Yτ n
k
(ω))

+
∑

k /∈�n
ω(A)∪�n

ω(�)

H(τ n
k+1, Yτ n

k+1
(ω)) − H(τ n

k , Yτ n
k
(ω)).

It can easily be checked that almost surely

lim
n→∞

∑

k∈�n
ω(A)∪�n

ω(�)

H(τ n
k+1, Yτ n

k+1
(ω)) − H(τ n

k , Yτn
k
(ω)) (3.7.19)

=
t∫

τ

∫

A

{H(s, Ys− + f (s, x)) − H(s, Ys−)}q(ds, dx)

+
t∫

τ

∫

�

{H(s, Ys− + k(s, x)) − H(s, Ys−)}N(ds, dx)

+
t∫

τ

∫

A

{H(s, Ys− + f (s, x)) − H(s, Ys−)}ν(ds, dx).

Equation (3.7.8) follows once we show that for some subsequence of {n}n∈N, which
for simplicity we still denote by {n}, the following convergence holds for n → ∞
almost surely

lim
n→∞

∑

k /∈�n
ω(A)∪�n

ω(�)

{H(τ n
k+1, Yτ n

k+1
(ω)) − H(τ n

k , Yτ n
k
(ω))}

=
t∫

τ

∂sH(s, Ys(ω))ds −
t∫

τ

∫

A

∂yH(s, Ys−(ω))f (s, x, ω)ν(ds, dx). (3.7.20)

Proof of (3.7.20): We have the Taylor expansion of the function H(s, y):

∑

k /∈�n
ω(A)∪�n

ω(�)

(H(τ n
k+1, Yτ n

k+1
(ω)) − H(τ n

k , Yτ n
k
(ω)))

=
∑

k /∈�n
ω(A)∪�n

ω(�)

∂yH(τ n
k , Yτ n

k
(ω))(Yτn

k+1
(ω) − Yτ n

k
(ω))
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+
∑

k /∈�n
ω(A)∪�n

ω(�)

∂sH(τ n
k , Yτn

k
)(τ n

k+1 − τ n
k ) (3.7.21)

+
∑

k /∈�n
ω(A)∪�n

ω(�)

ernk(ω).

Then we have

lim
n→∞

∑

k /∈�n
ω(A)∪�n

ω(�)

∂sH(τ n
k , Yτ n

k
)(τ n

k+1 − τ n
k ) =

t∫

τ

∂sH(s, Ys−(ω))ds P-a.s.

and

lim
n→∞

∑

k /∈�n
ω(A)∪�n

ω(�)

∂yH(τ n
k , Yτ n

k
(ω))(Yτ n

k+1
(ω)) − Yτn

k
(ω))

= lim
n→∞

∑

k /∈�n
ω(A)∪�n

ω(�)

∂yH(τ n
k , Yτn

k
(ω))(Zτ n

k+1
(ω)) − Zτn

k
(ω))

= − lim
n→∞

∑

k /∈�n
ω(A)∪�n

ω(�)

τ n
k+1∫

τ n
k

∫

A

∂yH(s, Ys−(ω))f (s, x, ω)]

= −
t∫

τ

∫

A

∂yH(s, Ys−(ω))f (s, x, ω)ν(ds, dx) P-a.s.

where the last equality follows because Y·(ω) is P-a.s. uniformly bounded on [0, T ]
and from the following estimates:

lim sup
n→∞

∑

k /∈�n
ω(A)∪�n

ω(�)

∥∥∥∥

τ n
k+1∫

τ n
k

∫

A

(∂yH(τ n
k , Yτn

k
(ω)) − ∂yH(s, Ys)(ω))

× f (s, x, ω)ν(ds, dx)

∥∥∥∥

≤ C(ω)
∑

k /∈�n
ω(A)∪�n

ω(�)

τ n
k+1∫

τ n
k

∫

A

‖Yτn
k
(ω) − Ys−(ω)‖‖f (s, x, ω)‖ν(ds, dx)

≤ C(ω) sup
k /∈�n

ω(A)∪�n
ω(�)

τ n
k+1∫

τ n
k

∫

A

‖f (s, x, ω)‖ν(ds, dx).
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(3.7.20) is proven once we show that in the expansion (3.7.21) we have

lim
n→∞

∑

k /∈�n
ω

ernk(ω) = 0 P-a.s.

This is a consequence of

‖ernk(ω)‖ ≤ C(ω)(‖Yτ n
k+1

(ω) − Yτ n
k
(ω)‖2 + |τ n

k+1 − τ n
k |2, (3.7.22)

lim
n→∞

∑

k /∈�n
ω(A)∪�n

ω(�)

‖Yτ n
k+1

(ω) − Yτ n
k
(ω)‖2 = 0 P-a.s. (3.7.23)

2n−1∑

k=0

|τ n
k+1 − τ n

k |2 ≤ (t − τ)2

2n
. (3.7.24)

Proof of (3.7.22):

‖H(s, y) − H(s0, y0) − ∂sH(s0, y0)(s − s0) − ∂yH(s0, y0)(y − y0)‖
≤ ‖H(s, y) − H(s, y0) − ∂yH(s, y0)(y − y0)‖

+ ‖H(s, y0) − H(s0, y0) − ∂sH(s0, y0)(s − s0)‖
+ ‖(∂yH(s, y0) − ∂yH(s0, y0))(y − y0)‖

≤ sup
0<θ≤1

‖∂sH(s0 + θ(s − s0), y0) − ∂sH(s0, y0)‖|(s − s0)|

+ sup
0<θ≤1

‖∂yH(s, y0 + θ(y − y0)) − ∂yH(s, y0)‖‖(y − y0)‖

+ ‖∂yH(s, y0)(y − y0) − ∂yH(s0, y0)(y − y0)‖
≤ sup

0<θ≤1
‖∂s∂sH(s0 + θ(s − s0), y0)‖|s − s0|2

+ sup
0<θ≤1

‖∂y∂yH(s, y0 + θ(y − y0), y0)‖‖y − y0‖2

+ sup
s∈[τ,t]

‖∂s∂yH(s, y0)‖|s − s0|‖y − y0|.

Proof of (3.7.23):

∑

k /∈�n
ω(A)∪�n

ω(�)

C(ω)‖Yτ n
k+1

(ω) − Yτ n
k
(ω)‖2

≤ 2C(ω)
∑

k /∈�n
ω(A)∪�n

ω(�)

‖Zτn
k+1

(ω) − Zτ n
k
(ω)‖2
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≤ 2C(ω) sup
k /∈�n

ω(A)∪�n
ω(�)

∥∥∥∥

τ n
k+1∫

τ n
k

∫

A

f (s, x, ω)ν(ds, dx)

∥∥∥∥

×
2n−1∑

k=0

∥∥∥∥

τ n
k+1∫

τ n
k

∫

A

f (s, x, ω)ν(ds, dx)

∥∥∥∥,

and since f (s, x, ω) is Bochner integrable P-almost surely with respect to ν and
ν(ds, dx) = α(ds)β(dx), with α(ds) � ds, it follows that

lim sup
n→∞

sup
k /∈�n

ω(A)∪�n
ω(�)

∥∥∥∥

τ n
k+1∫

τ n
k

∫

A

f (s, x, ω)ν(ds, dx)

∥∥∥∥

≤ lim sup
n→∞

sup
k /∈�n

ω(A)∪�n
ω(�)

τ n
k+1∫

τ n
k

∫

A

‖f (s, x, ω)‖ν(ds, dx) = 0 P-a.s.

This completes the proof. Let us now assume that E is, in general, a Blackwell space.
In this case the representation (3.7.17) for Zt is no longer valid. However, also in this
case, according to [49, Proposition II.1.14], there exist a sequence (∫A

j )j∈N of finite

stopping times with [[∫A
j ]] ∩ [[∫A

l ]] = ∅ for j �= l and an E-valued optional process ξ

such that for every optional process f : � × R+ × E → H with

P

( t∫

0

∫

A

‖f (s, x)‖N(ds, dx) < ∞
)

= 1 for all t ≥ 0

we have the identity

t∫

0

∫

A

f (s, x)N(ds, dx) =
∑

k∈N
f (∫A

k , ξ∫A
k
)1{∫A

k ≤t}, t ≥ 0. (3.7.25)

Let

�n
ω(A) := {k ∈ 0, . . . , 2n − 1 : ∃∫A

j ∈ (τn
k , τn

k+1] :}

with τ n
k := τ + k(t−τ)

2n . Then equality (3.7.18) holds.
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It can be shown, similarly to (3.7.19), that almost surely

lim
n→∞

∑

k∈�n
ω(A)∪�n

ω(�)

H(τ n
k+1, Yτ n

k+1
(ω)) − H(τ n

k , Yτ n
k
(ω))

= lim
n→∞

∑

k∈�n
ω(A)

∑

j

[H(τn
k+1, Yτ n

k
(ω) + f (∫A

j , ξ∫A
j
))

− H(τ n
k , Yτ n

k
(ω))]1∫A

j ∈(τ n
k ,τ n

k+1]

+ lim
n→∞

∑

k∈�n
ω(�)

∑

j

[H(τ n
k+1, Yτ n

k
(ω) + k(∫�

j , ξ∫�
j

))

− H(τ n
k , Yτ n

k
(ω))]1∫�

j ∈(τ n
k ,τ n

k+1]

=
t∫

τ

∫

A

{H(s, Ys− + f (s, x)) − H(s, Ys−)}q(ds, dx)

+
t∫

τ

∫

�

{H(s, Ys− + k(s, x)) − H(s, Ys−)}N(ds, dx)

+
t∫

τ

∫

A

{H(s, Ys− + f (s, x)) − H(s, Ys−)}ν(ds, dx).

The proof of (3.7.20) is identical to the proof in the case where E is a separable
Banach space. As in the previous case, it follows that (3.7.8) holds. �

We now prove Theorem3.7.2.

Proof Estimate (3.7.4) holds true by the continuity of the partial derivative ∂sH,
and (3.7.7) is valid because β(�) < ∞. By Taylor’s theorem, the Cauchy–Schwarz
inequality and (3.7.1), we obtain P-almost surely

t∫

0

∫

A

‖H(s, Ys + f (s, x)) − H(s, Ys)‖2ν(ds, dx)

=
t∫

0

∫

A

∥∥∥∥

1∫

0

∂yH(s, Ys + θ f (s, x))f (s, x)dθ

∥∥∥∥
2

ν(ds, dx)

≤
t∫

0

∫

A

1∫

0

‖∂yH(s, Ys + θ f (s, x))‖2‖f (s, x)‖2dθν(ds, dx)

≤
t∫

0

∫

A

1∫

0

h1(‖Ys + θ f (s, x))‖)2‖f (s, x)‖2dθν(ds, dx).
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Since h1 is quasi-sublinear, for some constant C > 0 we get P-almost surely

t∫

0

∫

A

‖H(s, Ys + f (s, x)) − H(s, Ys)‖2ν(ds, dx)

≤ C2

t∫

0

∫

A

1∫

0

(
h1(‖Ys‖) + Ch1(θ)h1(‖f (s, x)‖))2‖f (s, x)‖2dθν(ds, dx)

≤ 2C2

t∫

0

∫

A

h1(‖Ys‖)2‖f (s, x)‖2ν(ds, dx)

+ 2C4h1(1)

t∫

0

∫

A

h1(‖f (s, x)‖)2‖f (s, x)‖2ν(ds, dx) < ∞,

showing (3.7.5). By Taylor’s theorem and (3.7.2), we obtain P-almost surely

t∫

0

∫

A

‖H(s, Ys + f (s, x)) − H(s, Ys) − ∂yH(s, Ys)f (s, x)‖ν(ds, dx)

=
t∫

0

∫

A

∥∥∥∥

1∫

0

∂yyH(s, Ys + θ f (s, x))(f (s, x), f (s, x))dθ

∥∥∥∥ν(ds, dx)

≤
t∫

0

∫

A

1∫

0

‖∂yyH(s, Ys + θ f (s, x))‖ ‖f (s, x)‖2dθν(ds, dx)

≤
t∫

0

∫

A

1∫

0

h2(‖Ys + θ f (s, x)‖)‖f (s, x)‖2dθν(ds, dx).

Since h2 is quasi-sublinear, for some constant C > 0 we get P-almost surely

t∫

0

∫

A

‖H(s, Ys + f (s, x)) − H(s, Ys) − ∂yH(s, Ys)f (s, x)‖ν(ds, dx)

≤ C

t∫

0

∫

A

1∫

0

(
h2(‖Ys‖) + Ch2(θ)h2(‖f (s, x)‖))‖f (s, x)‖2dθν(ds, dx)
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≤ C

t∫

0

∫

A

h2(‖Ys‖)‖f (s, x)‖2ν(ds, dx)

+ C2h2(1)

t∫

0

∫

A

h2(‖f (s, x)‖)‖f (s, x)‖2ν(ds, dx) < ∞,

providing (3.7.6).
Let us prove that (3.7.8) holds. It is sufficient to prove (3.7.8) for the case where

the Fréchét derivatives of H are uniformly bounded. In fact, if this is not the case,
we can use the same method as in the proof of [73, Theorem 25.7]. We consider HC

∈ C1,2
b (R×F/G) such that, for ‖x‖ ≤ C,HC(s, x) coincides, with all its derivatives,

withH(s, x). We prove the Itô formula for the process (Yt∧τC )t∈[0,T ], where τC is the
stopping time with

τC(ω) = inf
t∈[0,T ]{‖Yt‖ > C}.

Note that the probability that Yt has a jump at time t is zero, as Yt is continuous in
probability, so that HC(s, Ys∧τC ) = H(s, Ys∧τC ), and similarly for the derivatives.
It follows that (yt∧τC )t∈[0,T ] satisfies the Itô formula (3.7.8). As a consequence of
properties (3.7.4)–(3.7.7), taking the limit as C → ∞, all terms converge to the
terms in (3.7.8), where Theorem3.5.17 is used to prove that the stochastic integral
term also converges. It follows that (yt)t∈[0,T ] solves (3.7.8).

From properties (3.7.4)–(3.7.7), it follows that it is sufficient to prove the theo-
rem for the case where f (t, x, ω) is a simple function. By Lemma3.7.5, (3.7.8) is
proven. �

Example 3.7.6 Suppose that F is a separable Hilbert space. Then H(x) = ‖x‖2 is of
class C2(F;R) with

Hx(x)v = 2〈x, v〉 and Hxx(x)(v, w) = 2〈v, w〉.

Therefore, we have

‖Hx(x)‖ ≤ 2‖x‖ and ‖Hxx(x)‖ ≤ 2.

Consequently, if

t∫

0

∫

B

‖f (s, x)‖2ν(ds, dx) +
t∫

0

∫

B

‖f (s, x)‖4ν(ds, dx) < ∞ for all t ∈ R+,
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then Theorem3.7.2 applies and yields that P-almost surely

‖Yt‖2 = ‖Y0‖2 +
t∫

0

∫

B

(‖Ys− + f (s, x)‖2 − ‖Ys−‖2)q(ds, dx)

+
t∫

0

∫

B

(‖Ys + f (s, x)‖2 − ‖Ys‖2 − 2〈Ys, f (s, x)〉)ν(ds, dx)

+
t∫

0

∫

Bc

(‖Ys− + g(s, x)‖2 − ‖Ys−‖2)N(ds, dx), t ≥ 0.

3.8 Remarks and Related Literature

The Wiener integral derivation from condition (3.1.4) was given in [91], along with
Theorem3.1.13. The idea of this originated in [90]. (See also [97] for the real-valued
case.) The concepts connected with Lévy processes are taken from [94] and the
derivation of the Lévy–Itô decomposition in Banach spaces combines ideas of [94]
with the work of [3], where the infinite-dimensional version is proved under the type
2 condition. Earlier work of [21] defined the integral with respect to compensated
Poisson random measures differently, following the lines of [45] instead of [97], to
obtain the Lévy–Itô decomposition. That both definitions of integrals are equivalent
is discussed in [91].

The definition of the Itô integral for M-type 2 spaces appears in [39, 65] (and
previously, under restricted conditions, in [91]). We take the generalization under
(3.5.7) given here from [67], and the Pettis integral in M-type 2 spaces follows the
approach in [67] for integrating non-anticipating processes. Integration with respect
to martingales taking values in M-type 2 spaces in given by [86]. As our integral is a
martingale in an M-type 2 Banach space, we connect integrals with respect to these
martingales to integrals with respect to compensated Poisson randommeasures. This
material originally appeared in [66].

The results in Sect. 3.4 concerning isomorphism of Lp-spaces originated in [92]
and for particular cases appears in the classical literature, e.g., [20, 58].

Itô’s formula was originally given in this context in [93]. However, there it was
only proven for a smaller class of functions. Here, we have given an improvement
of [93], which will also appear in [68].

In [39], the Itô stochastic integral was given in M-type p Banach spaces instead
of M-type 2 Banach spaces. Our technique can be used to obtain similar results.
However our condition (3.5.9) allows us to define the Itô integral in any Banach
space without involving geometry. One involves geometry in connecting the Pettis
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integral to the Itô integral using Rosinski’s method. This method was exploited by
J.M.A.M. Van Neerven and his collaborators in the Gaussian case using an idea of
D. J.H. Garling in a series of papers. One can find them on MathSciNet. Because
they are too numerous and our work involves condition (3.5.9) and jump processes,
we do not refer to these results here.



Chapter 4
Stochastic Integral Equations in Banach
Spaces

In this chapter, we first study the solutions of stochastic differential equations with
non-Markovian Lipschitz condition and growth condition. In this case the drift and
noise coefficients a(t, Z) and f (t, x, Z), being non-anticipating, depend on the path
of the solution Z = (Zt)t∈[0,T ]. This is done by defining the equation on a probability
space with � := D(R+, E), the space of càdlàg functions on R+ → E, and with
the σ-algebra generated by the cylinder sets of D(R+, E), where E is a separable
Banach space.

After proving the existence and uniqueness in this case, we consider on a general
probability space a stochastic differential equation with coefficients defined onR+×
F × � and R+ × F × E × � with values in F. The coefficients in this case depend
on the value of the solution Z at time t, i.e. the coefficients appearing in the drift and
noise are of the form a(t, Zt,ω) and f (t, x, Zt,ω).

4.1 Existence and Uniqueness Results for Non-Markovian
Solutions

Let us denote by Ct the σ-field on D(R+, E) generated by cylinder sets with basis in
[0, t]. We consider the stochastic differential equation

dZt = a(t, Z)dt +
∫

E
f (t, x, Z)q(dt, dx) (4.1.1)

Z0 = �

with � : R+ → E.
We assume that a and f are non-linear functions with

a : R+ × D(R+, E) → E

f : R+ × E × D(R+, E) → E

© Springer International Publishing Switzerland 2015
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Probability Theory and Stochastic Modelling 73, DOI 10.1007/978-3-319-12853-5_4
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where

(A1) f (t, x, z) is jointly measurable and, for each t ∈ R+, x ∈ E, f (t, x, ·) is Ct
adapted.

(A2) a(t, x) is jointly measurable and, for each t ∈ R+, a(t, ·) is Ct adapted.

For each t ∈ R+ we consider the function

θt : D(R+, E) → D(R+, E)

z → θt(z)

with

θt(z)(s) = zs for 0 ≤ s < t

= zt for s ≥ t

and assume f (t, x, z) = f (t, x, θt(z)) and a(t, z) = a(t, θt(z)).
We further assume

(A3) Let T > 0 be fixed. Then there exists an l > 0 such that for t1, t2∈ [0, T ]
∫ t2

t1

∫

E
‖f (t, x, z)‖2Eβ(dx)dt +

∫ t2

t1
‖a(t, z)‖2Edt ≤ l

∫ t2

t1
(1 + ‖θt(z)‖2∞)dt

where ‖z‖∞ = sup0≤t≤T ‖z(s)‖E .
Moreover, we assume that there is a constant Kβ such that inequality (3.5.7) is

satisfied, so that, due to Lemma3.5.5, the Itô integral in (4.1.1) is well defined, and
inequality (3.5.9) holds.

Now we define

I(t, Z) :=
∫ t

0
a(s, Z)ds +

∫ t

0

∫

E
f (s, x, Z)q(ds, dx).

Then we get

Lemma 4.1.1 There exists a constant Cl,T such that for any Ct -stopping time τ and
t ∈ [0, T ]

E

[
sup

0≤s≤t∧τ
‖I(s, Z)‖2E

]
≤ Cl,T

(
t +

∫ t

0
E[ sup

0≤v≤s∧t
‖Zv‖2E]ds

)
.

http://dx.doi.org/10.1007/978-3-319-12853-5_3
http://dx.doi.org/10.1007/978-3-319-12853-5_3
http://dx.doi.org/10.1007/978-3-319-12853-5_3
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Proof Note that

sup
0≤s≤t∧τ

‖I(s, Z)‖2E ≤ 2 sup
0≤s≤t∧τ

‖
∫ s

0
a(v, Z)dv‖2E

+ 2 sup
0≤s≤t∧τ

‖
∫ s

0

∫

E
f (v, u, Z)q(dv, du)‖2E

E

[
sup

0≤s≤t∧τ
‖
∫ s

0
a(v, Z)dv‖2E

]
≤ tE

[
sup
0≤s≤t

(
l
∫ s

0
(1 + ‖θv(Z)‖2∞)dv

)2]
.

(4.1.2)

Using the martingale property of the second term and Doob’s inequality we get

E

[
sup

0≤s≤t∧τ
‖
∫ s

0

∫

E
f (v, u, Z)q(dv, du)‖2E

]
≤ Cl,T

(
t + E

[ ∫ t

0
‖θv(Z)‖2∞dv

])
.

(4.1.3)

In fact,

E

[
sup

0≤s≤t∧τ
‖
∫ s

0

∫

E
f (v, u, Z)q(dv, du)‖2E

]
≤ E

[
‖
∫ t∧τ

0

∫

E
f (v, u, Z)q(dv, du)‖2E

]

≤ KβE

[ ∫ t

0
‖f (v, u, Z)‖2Eβ(du)dv

]

≤ Kβ lE

[ ∫ t

0
(1 + ‖θv(Z)‖2∞)dv

]

≤ Kβ l

(
t + E

[ ∫ t

0
‖θv(Z)‖2∞dv

])
.

The result follows from inequalities (4.1.2) and (4.1.3). �

Let T > 0 and define

HT
2 = ξ := (ξs)s∈[0,T ] : ξs(ω) is jointly measurable, Ct-adapted,withE[ sup

0≤s≤t
‖ξs‖2]

<∞}.

We have just proved that

I :HT
2 → HT

2

ξ → I(·, ξ).
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Lemma 4.1.2 The linear space HT
2 , equipped with the norm

‖Z‖HT
2

= E

[
sup

t∈[0,T ]
‖Zt‖2

]1/2
,

is a Banach space.

The proof is given for themore general statement Lemma4.2.1 in the next section.
Let us now assume the Lipschitz condition

(A4) Let T > 0 be fixed. Then there exists a K > 0 such that for fixed t1, t2 ∈ R

and Z, Y ∈ D(R+, E)

∫ t2

t1

∫

E
‖f (t, x, Z) − f (t, x, Y)‖2Eβ(dx)dt +

∫ t2

t1
‖a(t, Z) − a(t, Y)‖2Edt

≤ l
∫ t2

t1
‖θt(Z) − θt(Y)‖2∞dt.

Lemma 4.1.3 The map I : HT
2 → HT

2 is continuous. There exists a CK,T depend-
ing on K, T such that

E[ sup
0≤s≤T

‖I(s, Z1) − I(s, Z2)‖2E] ≤ CK,T

∫ T

0
E[ sup

0≤s≤T
‖Z1

s − Z2
s ‖2Eds].

Exercise: Use condition (A4) and follow the proof of Lemma4.1.1 to get
Lemma4.1.3.

Theorem 4.1.4 Let T > 0, z ∈ E. There exists a unique solution Z= (Zs)s∈[0,T ] in
HT

2 which satisfies

Zt = z +
∫ t

0
a(s, Z)ds +

∫ t

0

∫

E
f (s, x, Z)q(ds, dx).

Proof Weshall prove that the solution canbe approximated inHT
2 byZn= (Zn

s )s∈[0,T ]
when n → ∞. Define for n ∈ N

Z0
s (ω) = z P − a.s.

Zn+1
s (ω) = I(s, Zn(ω)) .

Observe that (Zn
t )t ∈ [0, T ] is Ft -adapted. Define

vn
t = E[ sup

0≤s≤t
‖Zn+1

s − Zn
s ‖2E].
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By Lemma4.1.1 we get

v0t = E

[ ∫ t

0
sup
0≤s≤t

‖Z1
s − Z0

s ‖2Eds

]
≤ Vl,T (z)

with Vl,T (z) = Cl,T2T‖z‖2. Also by Lemma4.1.3

v1t ≤
∫ t

0
E[ sup

0≤s≤t
‖Z1

s − Z0
s ‖2E]ds ≤ T2C2

K,T

2
Vl,T (z). (4.1.4)

By induction

vn
t ≤ CK,T

∫ t

0
vn−1

s ds ≤ T n+1Cn+1
K,T

(n + 1)! Vl,T (z). (4.1.5)

Let εn =
(

T n+1Cn+1
K,T

(n+1)!

) 1
3

. Then by Chebychev’s inequality

P( sup
0≤s≤t

‖Zn+1
t − Zn

t ‖2E > εn) ≤ ε2nVl,T (z).

As
∑

n ε2n is convergent, we get by the Borel–Cantelli Lemma that
∑∞

n=1 sup0≤s≤t

‖Zn+1
t − Zn

t ‖2E converges P -a.s.
This gives that Zn converges to some process Z = (Zt)t∈[0,T ] in the supremum

norm, where Z∈ D([0, T ], E).
Moreover

E[ sup
0≤t≤T

‖Zt − Zn
t ‖2] = E[ lim

n→∞ sup
0≤t≤T

‖
n+m−1∑

k=n

(Zk+1
t − Zk

t )‖2E]

≤ E

[
lim

n→∞

( n+m−1∑

k=n

‖Zk+1
t − Zk

t ‖2E k
1

k

)2]

and by Schwarz’s inequality

E[ sup
0≤t≤T

‖Zt − Zn
t ‖2] ≤

∞∑

k=n

E[ sup
0≤t≤T

‖Zk+1
t − Zk

t ‖2E k2]
∞∑

k=n

1

k2

≤ Vl,T (z)

( ∞∑

k=n

Tk+1Ck+1
K,T

(k + 1)! k2
)( ∞∑

k=n

1

k2

)

which converges to zero as n → ∞. That is, Zn → Z inHT
2 .



92 4 Stochastic Integral Equations in Banach Spaces

By Lemma4.1.3 and

Zn+1
s = I(s, Zn(ω))

with Zn → Z a.e., we get that Z , obtained by contraction inHT
2 , satisfies (4.1.1).

Toproveuniqueness, suppose (Zt)t∈[0,T ] and (Yt)t∈[0,T ] are solutions to (4.1.1). Let

vt = E[ sup
0≤s≤t

‖Zs − Ys‖2E].

Then, as in (4.1.4), we have

vt ≤ CK,T

∫ t

0
vsds ,

and by induction vt ≤ Cn
K,T
n! E[sup0≤s≤t ‖Zs − Ys‖2E] which tends to zero as n → ∞.

Thus we have vt = 0 ∀t ∈ [0, T ], and hence uniqueness. �

4.2 Existence and Uniqueness of Markovian Solutions
in D([0,T],F)

We now consider equations defined on any filtered probability space (�,F ,Ft,P),
satisfying the usual conditions, with values on a separable Banach space F. As usual
the mark space (E, E) defining the cPrm is a Blackwell space. We consider the
stochastic differential equation (SDE)

Zt = �t +
∫ t

0
a(s, Zs)ds +

∫ t

0

∫

E
f (s, x, Zs)q(ds, dx) (4.2.1)

under conditions

(B1) f (t, x, z, ·) is a B([0, T ] × E × F) ⊗ Ft/B(F)-measurable function such that
for fixed t ∈ [0, T ], x ∈ E and z ∈ F, f (t, x, z, ·) is Ft adapted.

(B2) a(t, x, ·) is a B([0, T ])×E ⊗Ft/B(F)-measurable function such that for fixed
t ∈ [0, T ] and x ∈ E, a(t, x, ·) is Ft adapted.

(B3) There exists a constant L > 0 such that

T‖a(t, z) − a(t, y)‖2F +
∫

E
‖f (t, x, z) − f (t, x, y)‖2Fβ(dx)

≤ L‖z − y‖2 for all t ∈ [0, T ] , z, y ∈ F P − a.e.
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(B4) There exists a constant M > 0 such that

‖a(t, z)‖2F +
∫

E
‖f (t, x, z)‖2Fβ(dx)

≤ M(‖z‖2 + 1) for all t ∈ [0, T ] , z ∈ F P − a.e.

Moreover, we assume that there is a constant Kβ such that inequality (3.5.7) is
satisfied, so that, due to Lemma3.5.5, the Itô integral in (4.2.1) is well defined, and
inequality (3.5.9) holds.

Let S2T be the linear space of all càdlàg adapted processes Z such that

E

[
sup

t∈[0,T ]
‖Zt‖2F

]
< ∞,

where we identify processes whose paths coincide almost surely. Note that, by the
completeness of the filtration, adaptedness does not depend on the choice of the
representative.

Lemma 4.2.1 The linear space S2
T , equipped with the norm

‖Z‖S2T
= E

[
sup

t∈[0,T ]
‖Zt‖2

]1/2
,

is a Banach space.

Proof Let (Zn)n∈N be a Cauchy sequence in S2
T . Then there exists a subsequence

(nk)k∈N such that

E

[
sup

t∈[0,T ]
‖Znk

t − Z
nk+1
t ‖2

]
<

2−k

k2
, k ∈ N.

By the monotone convergence theorem, we deduce that

E

[ ∞∑

k=1

k2 sup
t∈[0,T ]

‖Znk
t − Z

nk+1
t ‖2

]
=

∞∑

k=1

k2E

[
sup

t∈[0,T ]
‖Znk

t − Z
nk+1
t ‖2

]
< 1, k ∈ N.

(4.2.2)

Therefore, there exists an �0 ∈ F with P(�0) = 1 such that

∞∑

k=1

k2 sup
t∈[0,T ]

‖Znk
t (ω) − Z

nk+1
t (ω)‖2 < ∞, ω ∈ �0.

Fix ω ∈ �0 and let ε > 0 be arbitrary. There exists an index k0 ∈ N such that

m−1∑

k=l

k2 sup
t∈[0,T ]

‖Znk
t (ω) − Z

nk+1
t (ω)‖2 <

6ε2

π2 for all l, m ≥ k0 with l ≤ m.

http://dx.doi.org/10.1007/978-3-319-12853-5_3
http://dx.doi.org/10.1007/978-3-319-12853-5_3
http://dx.doi.org/10.1007/978-3-319-12853-5_3
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Therefore, for all l, m ≥ k0 with l ≤ m we obtain, by using the Cauchy–Schwarz
inequality,

sup
t∈[0,T ]

‖Znl
t (ω) − Znm

t (ω)‖ ≤
m−1∑

k=l

sup
t∈[0,T ]

‖Znk
t (ω) − Z

nk+1
t (ω)‖

≤
( m−1∑

k=l

1

k2

)1/2( m−1∑

k=l

k2 sup
t∈[0,T ]

‖Znk
t (ω) − Z

nk+1
t (ω)‖2

)1/2

< ε.

Consequently, for almost all ω ∈ � the sequence (Znk (ω))k∈N is a Cauchy sequence
in the Banach space of all càdlàg functions from [0, T ] to F, equipped with the
supremum norm. Thus, there exists a càdlàg process Z such that almost surely

sup
t∈[0,T ]

‖Znk
t − Zt‖ → 0,

whence the process Z is also adapted. For each k ∈ N we have almost surely

‖Znk
t − Zt‖2 = lim

l→∞ ‖Znk
t − Znl

t ‖2 ≤
( ∞∑

l=1

‖Znl
t − Z

nl+1
t ‖

)2

≤
( ∞∑

l=1

1

l2

)( ∞∑

l=1

l2‖Znl
t − Z

nl+1
t ‖2

)
, t ∈ [0, T ]

and hence

sup
t∈[0,T ]

‖Znk
t − Zt‖2 ≤ π2

6

∞∑

l=1

l2 sup
t∈[0,T ]

‖Znl
t − Z

nl+1
t ‖2.

By (4.2.2), we obtain

‖Z‖S2T
≤ ‖Z1‖S2T

+ ‖Z1 − Z‖S2T
< ∞,

showing Z ∈ S2
T , and, by using Lebesgue’s theorem, we have Znk → Z in S2

T .
Let ε > 0 be arbitrary. There exists an index k0 ∈ N such that ‖Znk − Z‖S2T

< ε
2

for all k ≥ k0 and ‖Zn − Zm‖S2T
< ε

2 for all n, m ≥ k0. Therefore

‖Zn − Z‖S2T
≤ ‖Zn − Znk ‖S2T

+ ‖Znk − Z‖S2T
< ε.

Consequently, we have Zn → Z in S2T . �
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Theorem 4.2.2 Suppose Assumptions (B1), (B2), (B3) and (B4) are fulfilled,
�|[0,T ] ∈ S2

T for all T ≥ 0 and that the Banach space F is of M-type 2. Then, there
exists a unique solution Z for the integral equation (4.2.1) such that Z|[0,T ] ∈ S2

T for
all T ≥ 0.

Proof Due to Assumption (B1), it suffices to prove existence and uniqueness on S2
T

for each T ≥ 0. In the sequel let T ≥ 0 be arbitrary. We divide the proof into the
following steps:

1. For any Z ∈ S2T we define the process SZ by

(SZ)t := �t +
∫ t

0
a(s, Zs)ds +

∫ t

0

∫

E
f (s, x, Zs)q(ds, dx), t ∈ [0, T ].

We shall first prove that the process SZ is well defined. Indeed, by the linear
growth condition (B4) we have

E

[ ∫ T

0
‖a(s, Zs)‖2ds

]
≤ ME

[ ∫ T

0
(‖Zs‖2 + 1)ds

]
= M

(
T + E

[ ∫ T

0
‖Zs‖2ds

])

≤ MT

(
1 + E

[
sup

s∈[0,T ]
‖Zs‖2

])

< ∞,

showing that a(s, Z) ∈ L2
T (F), as well as

E

[ ∫ T

0

∫

E
‖f (s, x, Zs)‖2β(dx)ds

]
≤ ME

[ ∫ T

0
(‖Zs‖2 + 1)ds

]

≤ M

(
T + E

[ ∫ T

0
‖Zs‖2ds

])

≤ 2M2T

(
1 + E

[
sup

s∈[0,T ]
‖Zs‖2ds

])
< ∞,

showing that f (s, x, Z) ∈ L2
T ,β(E, F).

2. Next, we show that SZ ∈ S2
T for all Z ∈ S2

T . By Doob’s inequality
(Theorem2.3.5), estimate (3.5.17) and the linear growth condition (B4) we obtain

E

[
sup

t∈[0,T ]
‖(SZ)t‖2

]
≤ 3E

[
sup

t∈[0,T ]
‖�t‖2

]
+ 3E

[
sup

t∈[0,T ]

∥∥∥∥
∫ t

0
a(s, Zs)ds

∥∥∥∥
2]

+ 3E

[
sup

t∈[0,T ]

∥∥∥∥
∫ T

0

∫

E
f (s, x, Zs)q(ds, dx)

∥∥∥∥
2]

≤ 3E

[
sup

t∈[0,T ]
‖�t‖2

]
+ 3E

[(∫ T

0
‖a(s, Zs)‖ds

)2]

http://dx.doi.org/10.1007/978-3-319-12853-5_2
http://dx.doi.org/10.1007/978-3-319-12853-5_3
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+ 12E

[∥∥∥∥
∫ T

0

∫

E
f (s, x, Zs)q(ds, dx)

∥∥∥∥
2]

≤ 3E

[
sup

t∈[0,T ]
‖�t‖2

]
+ 3TE

[ ∫ T

0
‖a(s, Zs)‖2ds

]

+ 12K2
E

[ ∫ T

0

∫

E
‖f (s, x, Zs)‖2β(dx)ds

]

≤ 3E

[
sup

t∈[0,T ]
‖�t‖2

]
+ 3(T + 4K2)ME

[ ∫ T

0
(‖Zs‖2 + 1)dsdt

]

≤ 3E

[
sup

t∈[0,T ]
‖�t‖2

]
+ 3(T + 4K2)MT

(
T + E

[ ∫ T

0
‖Zs‖2ds

])

≤ 3E

[
sup

t∈[0,T ]
‖�t‖2

]
+ 3(T + 4K2)MT2

(
1 + E

[
sup

s∈[0,T ]
‖Zt‖2

])
< ∞.

Therefore, the operator S maps S2
T into itself.

3. Now, we shall prove that S has a unique fixed point. For two arbitrary processes
Y , Z ∈ S2

T , Doob’s inequality (Theorem2.3.5), estimate (3.5.17) and the Lipschitz
condition (B3) gives us for all t ∈ [0, T ] the estimate

E

[
sup

s∈[0,t]
‖(SY)s − (SZ)s‖2

]
≤ 2E

[
sup

s∈[0,t]

∥∥∥∥
∫ s

0
(a(v, Yv) − a(v, Zv))dv

∥∥∥∥
2]

+ 2E

[
sup

s∈[0,t]

∥∥∥∥
∫ s

0

∫

E
(f (v, x, Yv)

− f (v, x, Zv))q(dv, dx)

∥∥∥∥
2]

≤ 2E

[( ∫ t

0
‖a(s, Ys) − a(s, Zs)‖ds

)2]

+ 8E

[∥∥∥∥
∫ t

0

∫

E
(f (s, x, Ys) − f (s, x, Zs))q(ds, dx)

∥∥∥∥
2]

≤ 2TE

[ ∫ t

0
‖a(s, Ys) − a(s, Zs)‖2ds

]

+ 8K2
E

[ ∫ t

0

∫

E
‖f (s, x, Ys) − f (s, x, Zs)‖2β(dx)ds

]

≤ 2(T + 4K2)LE

[ ∫ t

0
‖Ys − Zs‖2ds

]

= 2(T + 4K2)L
∫ t

0
E[‖Ys − Zs‖2]ds

≤ 2(T + 4K2)L
∫ t

0
E

[
sup

v∈[0,s]
‖Yv − Zv‖2

]
ds.

http://dx.doi.org/10.1007/978-3-319-12853-5_2
http://dx.doi.org/10.1007/978-3-319-12853-5_3
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By induction, for each n ∈ N we deduce that

E

[
sup

t∈[0,T ]
‖SnYt − SnZt‖2

]

≤ (2(T + 4K2)L)n
∫ T

0

∫ t1

0
. . .

∫ tn−2

0

( ∫ tn−1

0
E

[
sup

v∈[0,s]
‖Ys − Zs‖2

]
ds

)
dtn−1 . . . dt2dt1

≤ (2(T + 4K2)L)n
( ∫ T

0

∫ t1

0
. . .

∫ tn−1

0
1dtn . . . dt2dt1

)
E

[
sup

t∈[0,T ]
‖Yt − Zt‖2

]

≤ (2(T + 4K2)L)n Tn

n! E

[
sup

t∈[0,T ]
‖Yt − Zt‖2

]
.

Hence, there exists an n ∈ N such that Sn : S2
T → S2

T is a contraction. Taking into
account Lemma4.2.1, this implies that the mapping S has a unique fixed point.

�

4.3 Existence and Uniqueness of Markovian Solutions
Under Local Lipschitz Conditions

This section deals again with existence and uniqueness of the solution of (4.2.1)
assuming conditions (B1), (B2) and (B4). Instead of the Lipschitz condition (B3) we
assume the more general local Lipschitz condition (B3′) below

(B3′) for each n ∈ N there exists a constant L(n) > 0 such that

T‖a(t, z) − a(t, y)‖2F +
∫

E
‖f (t, x, z) − f (t, x, y)‖2Fβ(dx)

≤ L(n)‖z − y‖2 for all t ∈ [0, T ] , z, y ∈ F , ‖z‖ < n , ‖y‖ < n P − a.e.

Theorem 4.3.1 Suppose Assumptions (B1), (B2), (B3′) and (B4) are fulfilled, �|[0,T ]
∈ S2T for all T ≥ 0 and that the Banach space F is of M-type 2. Then there exists a
solution Z of the integral equation (4.2.1) such that Z|[0,T ] ∈ S2

T for all T ≥ 0. The
solution is P ⊗λ-a.e. unique on � × R+.

Proof
Step 1. For n ∈ N let

an(s, z) = a

(
s,

z

1 + d(z, Bn)

)
(4.3.1)

fn(s, x, z) = f

(
s, x,

z

1 + d(z, Bn)

)
, (4.3.2)
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where we denote with Bn = B(0, n) the centered ball in F with radius n, and with
d(z, Bn) the distance of z ∈ F from Bn, then an, fn satisfy (B1), (B2), (B3), (B4).
Hence for each n ∈ N there exists a unique solution Zn of the integral equation

Zn
t = �t +

∫ t

0
an(s, Zn

s )ds +
∫ t

0

∫

E
fn(s, x, Zn

s )q(ds, dx). (4.3.3)

Step 2. For n ∈ N we define the stopping time

τn = inf{t ∈ [0, T ] : ‖Zn
t ‖ > n}.

By uniqueness of solutions for (4.3.1) we get a.s.

Zn
t = Zn

t+1 for t ∈ [0, τn)

giving P(τn ≤ τn+1) = 1.
Our goal is to prove

P(∪n∈N{τn = T}) = 1. (4.3.4)

Then Z = limn Zn is the desired solution of (4.3.1). Let n be arbitrary. By inequality
(3.5.17) and (B4) we get

E[‖Zn
t ‖2] ≤ 16E[‖�t‖2 + 16E

[ ∫ t

0
‖an(s, Zn

s )‖2ds

]

× 16K2
E

[ ∫ t

0

∫

E
‖fn(s, x, Zn

s )‖2β(dx)ds

]

≤ 16E[‖�t‖2 + 16M(1 + K2)

(
T +

∫ t

0
‖Zn

s ‖2ds

)
.

By Gronwall’s Lemma for t ∈ [0, T ]

E[‖Zn
t ‖2] ≤

(
16E[‖�t‖2] + 16M(1 + K2)T

)
e16M(1+K2)T . (4.3.5)

Therefore by Markov’s inequality and Doob’s inequality (Theorem2.3.5), estimate
(3.5.17) and the linear growth condition (B4).

P(τn < T) ≤ P( sup
t∈[0,T ]

‖Zn
t ‖ > n)

≤ P( sup
t∈[0,T ]

‖�n
t ‖ >

n

3
) + P( sup

t∈[0,T ]
‖
∫ t

0
an(s, Zn

s )ds‖ >
n

3
)

http://dx.doi.org/10.1007/978-3-319-12853-5_3
http://dx.doi.org/10.1007/978-3-319-12853-5_2
http://dx.doi.org/10.1007/978-3-319-12853-5_3
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+ P( sup
t∈[0,T ]

‖
∫ t

0

∫

E
fn(s, x, Zn

s )dsq(ds, dx)‖ >
n

3
)

≤
(
3

n

)2

E[ sup
t∈[0,T ]

‖�t‖2] +
(
3

n

)2

E

[
‖
∫ T

0
an(s, Zn

s )ds‖2
]

+
(
3

n

)2

E

[
‖
∫ T

0

∫

E
fn(s, x, Zn

s )q(ds, dx)‖2
]

≤
(
3

n

)2

E[ sup
t∈[0,T ]

‖�t‖2] +
(
3

n

)2

TE

[ ∫ T

0
‖an(s, Zn

s )ds‖2
]

×
(
3

n

)2

K2
E

[ ∫ T

0

∫

E
‖fn(s, x, Zn

s )‖2dsβ(dx)

]

≤
(
3

n

)2

E[ sup
t∈[0,T ]

‖�t‖2] +
(
3

n

)2

M(T + K2)

∫ T

0
(‖Zn

s ‖2 + 1)ds

≤
(
3

n

)2

E[ sup
t∈[0,T ]

‖�t‖2]

+
(
3

n

)2

M(T + K2)T +
(
3

n

)2

M(T + K2)

∫ T

0
‖Zn

s ‖2ds

≤
(
3

n

)2

E[ sup
t∈[0,T ]

‖�t‖2] +
(
3

n

)2

M(T + K2)T

+
(
16E[‖�t‖2] + 16M(1 + K2)T

)
Te16M(1+K2)T .

This gives

P(∩n{τn < T}) = lim
n

P({τn < T}) = 0.

Thus we get the solution which is in S2
T . �

4.4 Continuous Dependence on Initial Data, Coefficients
and the Markov Property

Theorem 4.4.1 Let F be a separable Banach space of M-type 2. Let T > 0. Assume
�|[0,T ] ∈ S2T for all T ≥ 0 and that, like a(t, x) and f (t, x, z), an(t, x) and f n(t, x, z)
are (Ft)-adapted functions satisfying conditions (B1) and (B2). Assume also that
a(t, x) and f (t, x, z) satisfy conditions (B3′) and (B4) and

(C1) for each c > 0 there exists a constant L(c) > 0 such that
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T‖an(t, z) − an(t, y)‖2F +
∫ T

0

∫

E
‖f n(t, x, z) − fn(t, x, y)‖2Fβ(dx)

≤ L(c)‖z − y‖2 for all t ∈ [0, T ] , z, y ∈ F , ‖z‖ < c , ‖y‖ < c, n ∈ N P − a.e.

(C2) There exists a constant M > 0 such that

‖an(t, z)‖2F +
∫

E
‖f n(t, x, z)‖2Fβ(dx) ≤ M(‖z‖2 + 1) for all t ∈ [0, T ] , z ∈ F, n ∈ N P − a.e.

(C3) supn E[supt∈[0,T ] ‖φn
t ‖2] < ∞

(C4) for all t ∈ [0, T ] , z ∈ F

‖φn
t − φt‖ + ‖an(t, z) − a(t, z)‖2F
+

∫ T

0

∫

E
‖f n(t, x, z) − f (t, x, z)‖2Fβ(dx)dt → 0 in probability as n → ∞.

Let (Zn
t )n∈� be the solutions of (4.2.1) with coefficients an(t, x), f n(t, x, z) and φn

t ,
respectively, then for each t ∈ [0, T ], Zn

t → Zt in probability as n → ∞.

Proof Under the given assumptions (Zn
t )t∈[0,T ] exists and is unique. By Doob’s

inequality (Theorem2.3.5), similarly to the proof of (4.3.5), it can be shown that
there is a constant C such that

E[ sup
t∈[0,T ]

‖Zn
t ‖2] ≤ eCT

E[ sup
t∈[0,T ]

‖φn
t ‖2]. (4.4.1)

Let us define

ψN
n (t) :=

{
1 if ‖�n

s ‖ + ‖φs‖ + ‖Zn
s ‖ + ‖Zs‖ ≤ N, ∀s ∈ [0, T ],

0 if ‖�n
s ‖ + ‖φs‖ + ‖Zn

s ‖ + ‖Zs‖ > N, for some s ∈ [0, T ],

(Zn
t − Zt)ψ

N
n (t) = (�n

t − �t)ψ
N
n (t) + ψN

n (t){
∫ t

0
(an(s, Zs) − a(s, Zs))ds

+
∫ t

0

∫

E\{0}
(fn(s, x, Zs) − f (s, x, Zs))q(dsdu)}.

For s ≤ t, ψN
n (t) ≤ ψN

n (s), s, t ∈ [0, T ]. It follows from (C2) that

E[‖Zn
t − Zt‖2ψN

n (t)] ≤ E[αN
n (t)] + C

∫ t

0
E[‖Zn

s − Zs‖2ψN
n (s)],

where αN
n (t) = (�n

t − �t)ψ
N
n (t).

αN
n (t) → 0 in probability uniformly for t ∈ [0, T ]. From αN

n (t) ≤ 4Np and the
dominated convergence theorem it follows that

http://dx.doi.org/10.1007/978-3-319-12853-5_2
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E[αN
n (t)] → 0 uniformly in t ∈ [0, T ].

By Gronwall’s Lemma

E[‖Zn
t − Zt‖2ψN

n (t)] → 0 as n → ∞.

Let ε > 0, then

P(‖Zn
t − Zt‖ > ε) ≤ 1

ε
E[‖Zn

t − Zt‖ψN
n (t)] + P(ψN

n (t) = 0).

Using (C3) it is easy to check

P(ψN
n (t) = 0) → 0 as N → ∞. (4.4.2)

Hence

lim
N→∞ lim sup

n
P(‖Zn

t − Zt‖ > ε) ≤ 1

ε2
lim

N→∞ lim sup
n

E[‖Zn
t − Zt‖2ψN

n (t)]
+ lim

N→∞ lim sup
n

P(ψN
n (t) = 0),

completing the proof. �

Exercise Prove (4.4.2).

Now let us consider a(t, z)= a(z), �(t,ω) = �(t) and f (t, x, z)= f (x, z) for all
t ≥ 0. Then, as in the classical one-dimensional case, the solution is homogenous
[79].

Theorem 4.4.2 Let a(t, z) = a(z), f (t, x, z)= f (x, z) and �(t) = z ∈ F for all
t ≥ 0, let F be a Banach space of M-type 2 and assume (B1)–(B4) are satisfied. Then
the solution of (4.2.1) is Markov.

Proof We follow the classical method. We denote by Zt(s; u) the solution of (4.2.1)
starting with Zs = u at time s, i.e.

Zt(s; u) = u +
∫ t

s
a(r, Zr(s; u))dr +

∫ t

s

∫

E
f (r, x, Zr(s; u))q(dr, dx)

and define for a bounded measurable function � on F and for u ∈ F

Ps,t(�)(u) = E[�(Zt(s; u))].

We have to prove the Markov property, i.e. for any v ≤ s ≤ t ≤ T

E[�(Zt(v; ξ))/FZ
s ] = (Ps,t)(�)(Zs(v; ξ)) for any � ∈ Bb(F). (4.4.3)
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Here Bb(F) is the space of bounded measurable function on F.
As FZ

s ⊂ Fs it is sufficient to prove

E[�(Zt(v; ξ))/Fs] = Ps,t(�)(Zs(v; ξ) (4.4.4)

for any Fv-adapted random variable ξ, any v ≤ s ≤ t ≤ T and any � bounded
measurable function on F.

From uniqueness of the solution of (4.2.1) it follows that

Zt(v; ξ)(ω) = Zt(s; Zs(v; ξ)(ω))(ω) P − a.s. (4.4.5)

Let

η(ω) := Zs(v; ξ)(ω). (4.4.6)

Then from (4.4.5) it follows that (4.4.4) can be written as

E[�(Zt(s; η))/Fs] = Ps,t(�)(η). (4.4.7)

We will prove (4.4.7) for all σ(Zs(v; x))-measurable random variables η with
E[‖η‖2 < ∞. Note that, due to Theorem4.2.2, E‖Zs(v; ξ)‖2 < ∞.

If η = x then Zt(s; x) is independent of Fs by definition of the Lévy process,
associated cPrm and Itô integral. It follows that

E[�(Zt(s; x)/Fs] = E[�(Zt(s; x))] = Ps,t(�(x)), (4.4.8)

so that (4.4.7) holds for this particular case.
Now we prove (4.4.7) for the case where

η(ω) :=
n∑

1

aj1Aj (Zs(v; ξ)) (4.4.9)

with {Aj, j = 1, . . . , n} a partition of F and a1, . . . , an ∈ F. In this case

Zt(s; η(ω))(ω) =
n∑

1

Zt(s; aj)1Aj (Zs(v; ξ)) P − a.s. ,

�(Zt(s; η(ω))(ω)) =
n∑

1

�(Zt(s; aj))1Aj (Zs(v; ξ)) P − a.s. ,
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and

E[�(Zt(s; η)/Fs] = E[
n∑

1

�(Zt(s; aj))1Aj (Zs(v; ξ))/Fs] (4.4.10)

=
n∑

1

Ps,t(�)(aj)1Aj Zs(v, ξ) = Ps,t(�)(η) , (4.4.11)

where we used that �(Zt(s; aj)) are independent of Fs and 1Aj (Zs(v; ξ)) are Fs-
measurable.

If E[‖η‖2] < ∞ then there exists a sequence of ηn of the form (5.4.7) such that
E[‖ηn − η‖2 → 0] and by Theorem4.4.1, using a subsequence and the fact that
ψ(Zt(s; η)) is bounded, we get the result. �

Exercise Take a general η and prove the result, by approximating with ηk= η ∧ k.

4.5 Remarks and Related Literature

The material of Sects. 4.2–4.4 is taken from [65] and Sect. 4.1 gives generalizations
of results in [36] to the Banach space case (see also [35]).

Note that in this chapter the geometry of Banach spaces is only used in the
definition of the Itô integral. In view of condition (3.1.4), the results are valid in
any Banach space for which the driving jump process satisfies (3.1.4).

http://dx.doi.org/10.1007/978-3-319-12853-5_5
http://dx.doi.org/10.1007/978-3-319-12853-5_3
http://dx.doi.org/10.1007/978-3-319-12853-5_3


Chapter 5
Stochastic Partial Differential Equations
in Hilbert Spaces

In this chapter we study partial differential equations. It is well known [83] that
finite dimensional partial differential equations lead to infinite-dimensional ordinary
differential equations in the deterministic case involving unbounded operators. The
solutions of these can be studied by semigroup methods. However, one has to dis-
tinguish between classical solutions and so-called mild solutions. In the stochastic
case involving Gaussian noise they are studied in the book [34]. In order to keep
our presentation self-contained, we describe in the next section the basic theory of
semigroups and how it is used in solving deterministic partial differential equations.
This material is taken from [83], where the complete proofs can be found.

5.1 Elements of Semigroup Theory

Let (E, ‖ · ‖E ) , (F, ‖ · ‖F ) be Banach spaces and L(E/F) be the space of bounded
linear operators from E to F . It is known that L(E/F) is a Banach space, when
equipped with the norm

‖T ‖L(E/F) = sup
‖x‖E=1

‖T x‖F , T ∈ L(E/F). (5.1.1)

We denote by L(F)= L(F/F) and by I d ∈ L(F) the identity operator.
For T ∈ L(E/F), we recall T � ∈ L(F�, E�) defined by 〈x, T �y�〉 = 〈T x, y�〉,

x ∈ E , y� ∈ F�, is the adjoint operator of T. If E = F = H is a Hilbert space,
the operator T is said to be symmetric if T = T �, and is non-negative if ∀h ∈ H ,
〈T h, h〉 ≥ 0.

Definition 5.1.1 A family {(St ), t ≥ 0} ⊂ L(E) is called a strongly continuous
semigroup (C0-semigroup for short) if the following properties hold:

• S0 = Id;
• (semigroup property) Ss+t = Ss St for all s, t ≥ 0;
• (strong continuity property) limt→0 St x = x for all x ∈ E .

© Springer International Publishing Switzerland 2015
V. Mandrekar and B. Rüdiger, Stochastic Integration in Banach Spaces,
Probability Theory and Stochastic Modelling 73, DOI 10.1007/978-3-319-12853-5_5
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Let {St } be aC0-semigroup in a Banach space E . Then there exist constantsα ≥ 0
and M ≥ 1 such that

‖St‖L(E) ≤ Meαt t ≥ 0. (5.1.2)

If M = 1, then {St } is called a “pseudo-contraction semigroup”. If α = 0 then {St}
is said to be “uniformly bounded” and if α = 0 and M = 1, then {St } is called a
“contraction semigroup”. If for every x ∈ E , t → St x is differentiable for t > 0,
then {St } is called a “differentiable semigroup”.

Note that for a C0-semigroup, t → St x is continuous for x ∈ E .

Definition 5.1.2 Let {St } be a C0-semigroup on E . The linear operator A with
domain

D(A) := {x ∈ E, lim
t→0+

St x − x

t
exists}

defined by

Ax = lim
t→0+

St x − x

t

is called the infinitesimal generator of {St }.
We call {St} “uniformly continuous” if limt→0+ ‖St − I‖L(E)= 0. In this case

{St } is uniformly continuous iff A is bounded and

St = et A =
∞∑

n=0

(t A)n

n!

with the convergence in norm for every t ≥ 0.

Theorem 5.1.3 Let A be the infinitesimal generator of a C0-semigroup {St } on E,
then

(1) For x ∈ E

lim
h→0

1

h

∫ t+h

t
Ss xds = St x .

(2) For x ∈ D(A), St x ∈ D(A) and

d

dt
St x = ASt x = St Ax .
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(3) For x ∈ E,
∫ t
0 Ss xds ∈ D(A) and

A
∫ t

0
Ss xds = St x − x .

(4) If {St } is differentiable then for n = 1, 2, . . . , St : E → D(An) and Sn
t :=

An St ∈ L(E).
(5) For x ∈ D(A)

Su x − St x =
∫ u

t
Ss Axds =

∫ u

t
ASt xds.

(6) D(A) is dense in E and A is a closed operator.

Furthermore ∩nD(An) is dense in E , and if E is reflexive, then the adjoint semi-
group {S∗

t } of {St } is a C0-semigroup with infinitesimal generator A∗, the adjoint
of A.

We shall be dealing with E = H , a real separable Hilbert space. In this case, for
h ∈ H , we define the graph norm

�h�D(A) := (‖h‖2H + ‖Ah‖2H )1/2.

Then (D(A),� · �D(A)) is a real separable Hilbert space.

Exercise Let A be a closed linear operator on a real separable Hilbert space. Prove
that (D(A),� · �D(A)) is a real separable Hilbert space.

Let B(H) be the Borel σ-field on H . Then D(A) ∈ B(H) and

A : (D(A),B(H)|D(A)) → (H,B(H)).

Consequently, B(H)|D(A) coincides with the Borel σ-field on the Hilbert space
(D(A),� · �D(A)).

Measurability ofD(A)-valued functions can be understood with respect to either
of the two σ-fields.

Theorem 5.1.4 Let f : [0, T ] → D(A) be measurable and let
∫ t
0 � f (s) �D(A)

ds < ∞. Then

∫ t

0
f (s)ds ∈ D(A) and

∫ t

0
A f (s)ds = A

∫ t

0
f (s)ds.

Now we introduce the concept of the resolvent of A, which is needed for Yosida
approximation.

Definition 5.1.5 The resolvent set ρ(A) of a closed linear operator A on a Banach
space E is the set of all complex numbers λ for which λI − A has a bounded inverse
R(λ, A) := (λI − A)−1∈ L(E). The family of linear operators R(λ, A), λ ∈ ρ(A),
is called the resolvent of A.
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We note that R(λ, A) : E → D(A) is one-to-one, i.e.

(λI − A)R(λ, A)x = x, x ∈ E

and R(λ, A)(λI − A)x = x, x ∈ D(A),

giving AR(λ, A)x = R(λ, A)Ax, x ∈ D(A).

Exercise Show that R(λ1, A)R(λ2, A)= R(λ2, A)R(λ1, A) for λ1, λ2 ∈ D(A).

Lemma 5.1.6 Let {St} be a C0-semigroup with infinitesimal generator A. Let

α0 := lim
t→∞ t−1ln(‖St‖L(E)),

then any real number λ > α0 belongs to the resolvent set ρ(A) and

R(λ, A)x =
∫ ∞

0
e−λt St xdt x ∈ E .

In addition, for x ∈ E

lim
λ→∞ ‖λR(λ, A)x − x‖E = 0.

Theorem 5.1.7 (Hille–Yosida Theorem) Let A : D(A) ⊂ E → E be a linear
operator on a Banach space E. Necessary and sufficient conditions for A to generate
a C0-semigroup are

(1) A is closed and D(A) = E.
(2) There exist α, M ∈ R such that for λ > α, λ ∈ ρ(A)

‖R(λ, A)r‖L(E) ≤ M(λ − α)−r , r = 1, 2, . . .

In this case ‖St‖L(E) ≤ Meαt , t ≥ 0.

For λ ∈ ρ(A), consider the family of operators

Rλ := λR(λ, A).

Since the rangeR(R(λ, A)) of R(λ, A) is such thatR(R(λ, A)) ⊂ D(A), we define
the “Yosida approximation” of A by

Aλx = ARλx, x ∈ E .

Exercise Use λ(λI − A)R(λ, A) = λI to prove

Aλx = λ2R(λ, A) − λI.
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From the exercise, Aλ ∈ L(E). Denote by Sλ
t the uniformly continuous semigroup

Sλ
t x = et Aλ x, x ∈ E .

Using the commutativity of the resolvent, we get Aλ1 Aλ2 = Aλ2 Aλ1 , and clearly

AλSλ
t = Sλ

t Aλ.

Theorem 5.1.8 (Yosida approximation) Let A be an infinitesimal generator of a
C0-semigroup {St } on a Banach space E. Then

(a) limλ→∞ Rλx = x, x ∈ E.
(b) Aλx = Ax, for x ∈ D(A).
(c) limλ→∞ Sλ

t x = St x, x ∈ E.

The convergence in (c) is uniform on compact subsets of R+ and

‖Sλ
t ‖L(E) ≤ M exp

(
t ∧ α

(λ − α)

)

with constants M and α as in the Hille–Yosida Theorem.

We conclude this section by introducing the concept of a “mild” solution. Let us
look at the deterministic problem

du(t)

dt
= Au(t), u(0) = x, x ∈ H.

Here H is a real separable Hilbert space and A is an unbounded operator generating
a C0-semigroup.

A classical solution u : [0, T ] → H of the above equation will require a solution
to be continuously differentiable and u(t)∈ D(A). However,

ux (t) = St x, t ≥ 0

is considered as a solution to the equation [83, Capt. 4]. For x /∈ D(A), it is not a
classical solution. Such a solution is called a “mild solution”.

In fact, one can consider the non-homogeneous equation

du(t)

dt
= Au(t) + f (t, u(t)), u(0) = x, x ∈ H.

Then for Bochner integrable f ∈ L1([0, T ], H), one can consider the integral
equation

ux (t) = St x +
∫ t

0
St−s f (s, u(s))ds.
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A solution of this equation is called a “mild solution” if u ∈ C([0, T ], H).
Wewill considermild solutions of stochastic partial differential equations (SPDEs)

with Poisson noise. Note that the stochastic integral
∫ t
0 St−s f (s, x)q(ds, dx), which

appears in such SPDEs, is in general not a martingale. However, as for Doob’s
inequality, the following lemma holds.

Lemma 5.1.9 Assume (St )t≥0 is pseudo-contractive. Let q(ds, dx) be a compen-
sated Poisson random measure on R+ × E associated to a Poisson random measure
N with compensator dt ⊗β(dx). For each T ≥ 0 the following statements are valid:

1. There exists a constant C > 0 such that for each f ∈ L2
T,β(E, H) we have

E

[
sup

t∈[0,T ]

∥∥∥∥
∫ t

0
St−s f (s, x)q(ds, dx)

∥∥∥∥
2]

≤ Ce2αT
E

[ ∫ T

0

∫

E
‖ f (s, x)‖2β(dx)ds

]
.

(5.1.3)

2. For all f ∈ L2
T,β(E, H0) and all ε > 0 we have

P

[
sup

t∈[0,T ]

∥∥∥∥
∫ t

0
St−s f (s, x)q(ds, dx)

∥∥∥∥ > ε

]

≤ 4e2αT

ε2
E

[ ∫ T

0

∫

E
‖ f (s, x)‖2β(dx)ds

]
, (5.1.4)

where
∫ t
0 St−s f (s, x)q(ds, dx) is well defined, if the r.h.s. is finite.

∫ t
0 St−s f (s, x)

q(ds, dx) is càdlàg.

Proof Let M be the martingale

Mt =
∫ t

0

∫

E
f (s, x)q(ds, dx), t ∈ [0, T ].

By Theorem 3.6.5 we have

∫ t

0
St−s f (s, x)q(ds, dx) =

∫ t

0
St−sd Ms, t ∈ [0, T ].

Using [44, Theorem 3′.22′] we obtain

E

[
sup

t∈[0,T ]

∥∥∥∥
∫ t

0
St−s f (s, x)q(ds, dx)

∥∥∥∥
2]

≤ e2αT (3 + √
10)2E[〈M, M〉T ]

= e2αT (3 + √
10)2E

[ ∫ T

0

∫

E
‖ f (s, x)‖2β(dx)ds

]
,

http://dx.doi.org/10.1007/978-3-319-12853-5_3
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proving (5.1.3) with C = (3 + √
10)2, and using [44, Theorem. 5′.16′] we obtain

P

[
sup

t∈[0,T ]

∥∥∥∥
∫ t

0
St−s f (s, x)q(ds, dx)

∥∥∥∥ > ε

]
≤ 4e2αT

ε2
E[〈M, M〉T ]

= 4e2αT

ε2
E

[ ∫ T

0

∫

E
‖ f (s, x)‖2β(dx)ds

]
,

proving (5.1.4).
Let us show that

∫ t
0 St−s f (s, x)q(ds, dx) is càdlàg. There is a sequence of simple

functions { fn}n∈N such that fn → f in Lβ
2 (H), i.e.

lim
n→∞

∫ T

0

∫

H
E[‖ fn(t, u) − f (t, u)‖2] dtβ(du) = 0.

Let

Y n
t :=

∫ t

0

∫

H
St−s fnq(ds, du) =

∫ t

0
St−sd Mn

s ,

Mn
s :=

∫ t

0

∫

H
fnq(ds, du). (5.1.5)

As St−s fn(s, u,ω) belongs to the set�(H) of simple functions,Y n
t is amartingale

and is càdlàg.
It follows that

P
(
sup0≤t≤T ‖Y n

t − Y m
t ‖ > ε

) ≤ 4
e2αT

ε2
E[〈Mn − Mm〉T ]

≤ 4
e2αT

ε2

∫ T

0

∫

H
E[‖ fn(t, u)

− fm(t, u)‖2] dtβ(du).

By the Borel–Cantelli Lemma and fn → f in Lβ
2 (H) there is a subsequence

{Y nk
t (ω)}k∈N such that

lim
k→∞ sup

0≤t≤T
‖Y nk

t (ω) − Y nk+1
t (ω)‖ = 0 P − a.s.

It follows that

Yt (ω) = lim
k→∞ Y nk

t (ω) uniformly in [0, T ] , P − a.s.

We see that Yt is càdlàg, since Y nk
t is càdlàg. �
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5.2 Existence and Uniqueness of Solutions of SPDEs Under
Adapted Lipschitz Conditions

We shall study in this section càdlàg solutions to stochastic partial differential
equations with non-Gaussian noise. As stated in Sect. 5.1, we shall treat these equa-
tions as ordinary stochastic differential equations in an infinite-dimensional space
involving unbounded operators. Let us now assume that H is a separable Hilbert
space and let A be a (generally unbounded) linear operator on the domain D(A)

⊂ H . Assume that A is an infinitesimal generator of a pseudo-contraction semi-
group {St }t≥0 on H to H .

We want to study the existence and uniqueness of mild solutions of the stochastic
differential equation on the interval [0, T ]

{
d Zt = (AZt + a(t, Z))dt + ∫

H f (t, u, Z)q(dt, du)

Z0 = Z0(ω),
(5.2.1)

where a(·, z), f (·, u, z) are, for fixed z ∈ H , u ∈ H , functions on D(R+, H) and Zt

is Z evaluated in t . In other words, we look at the solution of the integral equation

Zt = St Z0 +
∫ t

0
St−sa(s, Z)ds +

∫ t

0

∫

H
St−s f (s, u, Z)q(ds, du), (5.2.2)

where the integrals on the r.h.s. are well defined.
As in Chap.4, we assume that with � = D(R+, H), Ft is a σ-algebra generated

by cylinder sets of � with base on [0, t]. Let us assume throughout that A is an
infinitesimal generator of a pseudo-contraction C0-semigroup. Let

a : R+ × D(R+, H) → H, f : R+ × H × D(R+, H) → H

be functions and ‖z‖∞ := sup0≤t≤T ‖z(t)‖H , for T < ∞.

(a) f (t, u, z) is jointly measurable and, for each t ∈ R+, u ∈ H , f (t, u, ·) is
Ft -adapted.

(b) a(t, z) is jointly measurable and, for each t ∈ R+, a(t, ·) is Ft -adapted.

If we consider the map θt : D(R+, H) → D(R+, H) defined by

θt (z)(s) = zs if 0 ≤ s ≤ t

= zt if t ≤ s

then f (t, u, z) = f (t, u, θt (z)) and a(t, z)= a(t, θt (z)).

http://dx.doi.org/10.1007/978-3-319-12853-5_4


5.2 Existence and Uniqueness of Solutions of SPDEs . . . 113

(c) There exists a constant l > 0 such that, for fixed t1, t2 ∈ [0, T ],
∫ t2

t1

∫
H ‖ f (t, u, z)‖2dtβ(du) + ∫ t2

t1
‖a(t, z)‖2H dt

≤ l
∫ t2

t1
(1 + ‖θt (z)‖2∞)dt P − a.s.

(d) There exists a constant K > 0 such that, for fixed t1, t2 ∈ [0, T ] and z, y∈
D(R+, H),

∫ t2

t1

∫

H
‖ f (t, u, z) − f (t, u, y)‖2dtβ(du) +

∫ t2

t1
‖a(t, z) − a(t, y)‖2H dt

≤ K
∫ t2

t1
‖θt (z) − θt (y)‖2∞dt P − a.s.

Let, for Z ∈ D(R+; H),

I (t, Z) :=
∫ t

0
St−sa(s, Z)ds +

∫ t

0

∫

H\{0}
St−s f (s, u, Z)q(ds, du), t ∈ [0, T ].

(5.2.3)

Theorem 5.2.1 Assume (a), (b) and (c). There exists a constant Cl,T,α such that for
any Ft -stopping time τ

E[ sup
0≤s≤t∧τ

‖I (s, Z)‖2H ] ≤ Cl,T,α(t +
∫ t

0
E[ sup

0≤v≤s∧τ
‖Zv‖2]ds), t ∈ [0, T ].

(5.2.4)

Proof

sup0≤s≤t∧τ ‖I (s, Z)‖2H ≤ 2 sup0≤s≤t∧τ ‖
∫ s

0
Ss−va(v, Z)dv‖2H

+ 2 sup0≤s≤t∧τ ‖
∫ s

0

∫

H
St−v f (v, u, Z)q(dv, du)‖2H

(5.2.5)

(where we used the inequality ‖x + y‖2 ≤ 2‖x‖2 + 2‖y‖2, valid for any x, y ∈ H ).
Using the bound on St and condition (c) we obtain

E[sup0≤s≤t∧τ ‖
∫ s

0
Ss−va(v, Z)dv‖2H ]

≤ E[sup0≤s≤t (le
αt

∫ s

0
(1 + ‖θv(Z)‖∞)dv)2]

≤ 2e2αT l2{t2 + tE[
∫ s∧τ

0
‖θv(Z)‖2∞dv]}.
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Moreover, using Theorem 3 of [44] and (c) we get

E[sup0≤s≤t∧τ‖
∫ s

0

∫

H
St−v f (v, u, Z)q(dv, du)‖2H ]

≤ 2e2αT l2(3 + √
10)2{t2 + tE[

∫ s∧τ

0
‖θv(Z)‖2∞dv]},

E[sup0≤s≤t∧τ ‖I (s, Z)‖2H ] ≤ 4e2αT l2(1 + (3 + √
10)2)

{t2 + tE[
∫ s∧τ

0
‖θv(Z)‖2∞dv]}

≤ Cl,T,α(t +
∫ t

0
E[sup0≤v≤s∧τ ‖Zv‖2]ds),

with Cl,T,α := 4T e2αT l2(1 + (3 + √
10)2). �

Let T > 0 and

HT
2 := {ξ := (ξs)s∈[0,T ] : ξs(ω) is jointly measurable,

Ft -adapted ;E[ sup
0≤s≤T

‖ξs‖2H ] < ∞}.

Let us observe that it follows from Theorem 5.2.1 that the map

I : HT
2 → HT

2

ξ → I (·, ξ)

is well defined.

Lemma 5.2.2 Assume (a), (b), (c) and (d). The map I : HT
2 → HT

2 is continuous.
There is a constant Cα,K ,T , depending on α, K and T , such that

E[ sup
0≤s≤T

‖I (s, Z1) − I (s, Z2)‖2H ] ≤ Cα,K ,T

∫ T

0
E[ sup

0≤s≤T
‖Z2

s − Z1
s ‖2H ]ds .

(5.2.6)

Exercise Use (d) and the arguments as in Theorem 5.2.1 to prove Lemma 5.2.2.

Theorem 5.2.3 Let T > 0, x ∈ H. There is a unique solution Z := (Zs)s∈[0,T ] in
HT

2 which satisfies

Zt = St x +
∫ t

0
St−sa(s, Z)ds +

∫ t

0

∫

H
St−s f (s, u, Z)q(ds, du). (5.2.7)
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Proof We shall prove that the solution can be approximated in HT
2 by Zn :=

(Zn
s )s∈[0,T ], for n → ∞ , n ∈ N , where

Z0
s (ω) := Ss x P − a.s.

Zn+1
s (ω) := I (s, Zn(ω)) .

Note that (Zn
t )t∈[0,T ] is Ft -adapted. Let

vn
t := E[ sup

0≤s≤t
‖Zn+1

s − Zn
s ‖2H ] .

Then from Theorem 5.2.1 it follows that there is a constant Vα,l,T (x), depending
on α, l and T and the initial data x , such that

v0t ≤ E[ sup
0≤s≤T

‖Z1
s − Z0

s ‖2H ] ≤ Vα,l,T (x).

Similarly as in the proof of Theorem 5.2.1, it can be proven that there is a constant
Cα,K ,T depending on α, K and T , such that

v1t ≤ Cα,K ,T

∫ t

0
E[ sup

0≤s≤t
‖Z1

s − Z0
s ‖2H ]ds ≤ T 2(Cα,K ,T )2

2
Vα,l,T (x).

In a similar way we get by induction that

vn
t ≤ Cα,K ,T

∫ t

0
vn−1

s ds ≤ (T Cα,K ,T )n+1

(n + 1)! Vα,l,T (x).

Let εn :=
(

(T Cα,K ,T )n+1

(n+1)!
) 1

3
. Then:

P( sup
0≤t≤T

‖Zn+1
t − Zn

t ‖2 ≥ εn) ≤
(T Cα,K ,T )n+1

(n+1)! Vα,l,T (x)

(
(T Cα,K ,T )n+1

(n+1)! )
1
3

= ε2n Vα,l,T (x).

As
∑

n ε2n is convergent, we get that
∑∞

n=1 sup0≤t≤T ‖Zn+1
t − Zn

t ‖2 converges
P -a.s. It follows that there is a process Z := (Zt )t∈[0,T ], Z ∈ D([0, T ]; H), such
that Zn converges to Z , as n goes to infinity, in the space D([0, T ]; H) (with the
supremum norm), P-a.s. Moreover

E[sup0≤t≤T ‖Zt − Zn
t ‖2] = E[limm→∞ sup0≤t≤T ‖

n+m−1∑

k=n

(Zk+1
t − Zk

t )‖2]
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≤ E[ lim
m→∞(

n+m−1∑

k=n

sup0≤t≤T ‖Zk+1
t − Zk

t ‖k
1

k
)2]

≤
∞∑

k=n

E[sup0≤t≤T ‖Zk+1
t − Zk

t ‖2k2)]
∞∑

k=n

1

k2

≤ Vα,l,T (x)(

∞∑

k=n

(T Cα,K ,T )k+1k2

(k + 1)! )

(

∞∑

k=n

1

k2
) → 0 as n → ∞ ,

where we used Schwarz’s inequality. It follows that, as n goes to infinity, Zn also
converges to Z in the spaceHT

2 . From Lemma 5.2.2 it follows that (Zt )0≤t≤T solves
(5.2.7). We shall prove that the solution is unique. Suppose that (Zt )0≤t≤T and
(Yt )0≤t≤T are two solutions of (5.2.7). Let

Vt := E[ sup
0≤s≤t

‖Zs − Ys‖2H ] .

Then similarly as before we get

Vt ≤ Cα,K ,T

∫ t

0
Vs

and by induction

Vt ≤ (Cα,K ,T t)n

n! E[ sup
0≤s≤T

‖Zs − Ys‖2H ] → 0 as n → ∞

i.e. Vt = 0 ∀t ∈ [0, T ]. �

5.3 Existence and Uniqueness of Solutions of SPDEs Under
Markovian Lipschitz Conditions

Let us assume that we are given

a : R+ × H → H,

f : R+ × H × H → H.
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Assume

(A) f (t, u, z) is jointly measurable,
(B) a(t, z) is jointly measurable,

and for fixed T > 0
(C) there is a constant L > 0 such that

T ‖a(t, z) − a(t, z′)‖2 +
∫

H
‖ f (t, u, z) − f (t, u, z′)‖2β(du) ≤ L‖z − z′‖2

for all t ∈ [0, T ] , z, z′ ∈ F,

(D) there is a constant K > 0 such that

T ‖a(t, z)‖2 +
∫

H
‖ f (t, u, z)‖2β(du) ≤ K (‖z‖2 + 1)

for all t ∈ [0, T ] , z ∈ F .

We assume again that A is the infinitesimal generator of a pseudo-contraction
semigroup (St )t∈[0,T ] . If we consider functions a(t, z) = a(t, zt ) and f (t, u, z)=
f (t, u, zt ) on D(R+, H) then our previous theorem tells us that the equation

Zt = St Z0 +
∫ t

0
St−sa(s, Zs)ds

+
∫ t

0

∫

H
St−s f (s, u, Zs)q(ds, du) P − a.s. ∀t ∈ [0, T ] (5.3.1)

has a unique solution on HT
2 .

However, we shall now consider the SPDE on any filtered probability space
(�,F , (Ft )t≥0,P) (satisfying the usual conditions) and show that it has a unique
càdlàg solution in S2T as defined in Chap.4.

Theorem 5.3.1 Suppose assumptions (A)–(D) are satisfied. Then for Z0∈ L2

(�,F0,P; H), there exists a unique mild solution in S2
T to (5.3.1), with initial con-

dition Z0, such that Zt is Ft -measurable.

Proof Define the process

(SZ)t := St Z0 +
∫ t

0
St−sa(s, Zs)ds

+
∫ t

0

∫

H
St−s f (s, u, Zs)q(ds, du) t ∈ [0, T ]. (5.3.2)

http://dx.doi.org/10.1007/978-3-319-12853-5_4


118 5 Stochastic Partial Differential Equations in Hilbert Spaces

Consider

E[sup0≤t≤T ‖(SZ)t‖2] ≤ 3E[sup0≤t≤T ‖St Z0‖2]
+ 3E[sup0≤t≤T ‖

∫ t

0

∫

H
St−sa(s, Zs)ds‖2]

+ 3E[sup0≤t≤T ‖
∫ t

0
St−s f (s, u, Zs)q(ds, du)‖2].

Using the fact that ‖St‖ ≤ eαt for t ≥ 0, inequality (5.1.3) and (D) we get

E[sup0≤t≤T ‖(SZ)t‖2] ≤ 3e2αT
E[‖Z0‖2]

+ 3e2αT
E[‖

∫ T

0
a(s, Zs)ds‖2]

+ 3e2αT
E[‖

∫ T

0

∫

H
f (s, u, Zs)q(ds, du)‖2]

≤ 3e2αT
E[‖Z0‖2] + 3T e2αT

E[
∫ T

0
‖a(s, Zs)‖2ds]

+ 3e2αT CE[
∫ T

0

∫

H
‖ f (s, u, Zs)‖2dsβ(du)]

≤ 3e2αT
E[‖Z0‖2] + 3e2αT C(KE[

∫ T

0
‖Zs‖2ds] + K )

where C is any fixed constant such that (5.1.3) holds and such that C > 1.
This shows that S maps S2

T into itself.
For Y , Z ∈ S2

T using again (5.1.3)

E[sup0≤s≤t ‖(SY )s − (SZ)s‖2] ≤ 2E[sup0≤s≤t ‖
∫ s

0

∫

H
Ss−v(a(v, Yv)

− a(v, Zv))dv‖2]
+ 2E[sup0≤s≤t ‖

∫ s

0
Ss−v( f (v, u, Yv)

− f (v, u, Zv))q(dv, du)‖2]
≤ 2T e2αT

E[
∫ t

0
‖a(s, Ys) − a(s, Zs)‖2ds]

+ 2e2αT CE[
∫ T

0

∫

H
‖ f (s, u, Ys)

− f (s, u, Zs)‖2dsβ(du)].
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Using (C) we get

E[sup0≤s≤t ‖(SY )s − (SZ)s‖2] ≤ 2Le2αT CE[
∫ t

0
‖Ys − Zs‖2ds]

≤ 2Le2αT CE[
∫ t

0
sup0≤v<s ‖Yv − Zv‖2ds].

By induction we get

E[ sup
0≤s≤t

‖(SY )s − (SZ)s‖2] ≤ 2n(C L)ne2αnT

n! E[ sup
0≤t<T

‖Yt − Zt‖2ds].

Hence for some n ∈ N, S is a contraction, yielding the conclusion by the fixed
point theorem. �

Corollary 5.3.2 Let 0 < T < ∞, and assume (A), (B), (C) and (D). Let (Z ξ
t )t∈[0,T ]

(resp. (Zη
t )t∈[0,T ]) be the solution to (5.3.1) with initial condition ξ (resp. η), then

E[‖Zξ
t − Zη

t ‖2] ≤ Ct,α‖ξ − η‖2,

with constant Ct,α depending on t and α.

Exercise Prove the corollary by computing E[‖Z ξ
t − Zη

t ‖2].
We assume again that A is the infinitesimal generator of a pseudo-contraction

semigroup (St )t∈[0,T ] and conditions (A), (B), (C), (D) hold.
Let

Z0(ω) = ξ P − a.s.

and let (Zt )t∈[0,T ] be the unique càdlàg process solving P -a.s. (5.3.1) for every
t ∈ [0, T ] .

Let {An}n∈N be the Yosida approximation to A (see Sect. 5.1). For every fixed
T > 0, there exists a unique càdlàg process (Zn

t )t∈[0,T ] such that
∫ T
0 E[‖Zn

s ‖2]ds
< ∞ and such that (Z n

t )t∈[0,T ] is a strong solution of

d Zn
t = An Zn

t dt + a(t, Zn
t )dt +

∫

H
f (s, u, Zn

s )q(ds, du)

with initial condition ξ (see Chap. 4 or [65]). Moreover, (Zn
t )t∈[0,T ] is also a mild

solution, i.e. P-a.s.

Zn
t = Sn

t ξ +
∫ t

0
Sn

t−sa(s, Zn
s )ds +

∫ t

0

∫

H
Sn

t−s f (s, u, Zn
s )q(ds, du) (5.3.3)

http://dx.doi.org/10.1007/978-3-319-12853-5_4
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for every t ∈ [0, T ] and such that conclusions the conditions in Theorem 5.3.1 are
satisfied. We shall prove the following result:

Theorem 5.3.3
lim

n→∞E[‖Zt − Zn
t ‖2] = 0

uniformly in [0, T ].
Proof We have

E[‖Zt − Zn
t ‖2] ≤ 23‖Sn

t ξ − Stξ‖2 (5.3.4)

+ 23E[‖
∫ t

0
(St−sa(s, Zs) − Sn

t−sa(s, Zn
s )ds‖2]

+ 23E[‖
∫ t

0

∫

H
(St−s f (s, u, Zs) − Sn

t−s f (s, u, Zn
s )q(ds, du)‖2].

We shall analyze separately the three terms on the right-hand side of inequality
(5.3.4). As for the first term, we remark that

lim
n→∞ ‖Sn

t ξ − Stξ‖ = 0.

By Sect. 5.1 (Yosida approximation) we get that the convergence is uniform in
[0, T ].

Let us consider the second term on the right-hand side of (5.3.4). We have:

E[‖
∫ t

0
(St−sa(s, Zs) − Sn

t−sa(s, Zn
s )ds‖2]

≤ 2T
∫ t

0
E[‖St−sa(s, Zs) − Sn

t−sa(s, Zs)‖2]ds

+ 2T
∫ t

0
E[‖Sn

t−sa(s, Zs) − Sn
t−sa(s, Zn

s )‖2]ds (5.3.5)

lim
n→∞ ‖St−sa(s, Zs(ω)) − Sn

t−sa(s, Zs(ω))‖ = 0 P − a.s. (5.3.6)

and

‖St−sa(s, Zs(ω)) − Sn
t−sa(s, Zs(ω))‖2 ≤ CT ‖a(s, Zs(ω))‖2

≤ CT K (‖Zs(ω)‖2 + 1) . (5.3.7)

This is a consequence of uniform convergence and condition (D). By the Lebesgue
dominated convergence theorem it follows that the first term on the r.h.s. of (5.3.5)
converges to zero.
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Let us consider the second term on the r.h.s. of (5.3.5). We observe that from
uniform convergence and the Lipschitz condition (C) it follows that

T ‖Sn
t−sa(s, Zs(ω)) − Sn

t−sa(s, Zn
s (ω))‖2 ≤ CT L‖Zs(ω) − Zn

s (ω)‖2

so that

2T
∫ t

0
E[‖Sn

t−sa(s, Zs) − Sn
t−sa(s, Zn

s )‖2 ds ≤ 2CT L
∫ t

0
E[‖Zs − Zn

s ‖2] ds.

It follows that for all ε > 0 there is an n0 ∈ N such that for all n ≥ n0

E[‖
∫ t

0
(St−sa(s, Zs) − Sn

t−sa(s, Z n
s )ds‖2] ≤ ε + 2CT L

∫ t

0
E[‖Zs − Zn

s ‖2] ds.

Let us consider the third term in (5.3.4). By similar arguments as above, it can be
proved that

E[‖
∫ t

0

∫

H
(St−s f (s, u, Zs) − Sn

t−s f (s, u, Zn
s )q(ds, du)‖2]

≤ ε + 2CT L
∫ t

0
E[‖Zs − Zn

s ‖2] ds.

It follows that

E[‖Zt − Zn
t ‖2] ≤ 23‖Sn

t ξ − Stξ‖2 + 24ε24CT L
∫ t

0
E[‖Zs − Zn

s ‖2] ds.

Using Gronwall’s Lemma we get

E[‖Zt − Zn
t ‖2] ≤ (23‖Sn

t ξ − Stξ‖2 + 24ε) exp (24T LCT )

so that (5.3.4) gives the result. �

5.4 The Markov Property of the Solution of SPDEs

Let Bb(H) denote the set of bounded real valued functions on H . We first prove
that the Markov property holds for the semigroup associated to the mild solutions of
(5.3.1):

Let 0 < v < T and ξ ∈ H. Let (Z(t, v, ξ))t∈[v,T ] denote the solution of the
following integral equation
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Zt = St−vξ +
∫ t

v

St−sa(s, Zs)ds +
∫ t

v

∫

H
St−s f (s, u, Zs)q(ds, du) (5.4.1)

(in the sense ofTheorem5.3.1). Let F Z
t denote theσ-algebra generated by Z(τ , v, ξ),

with τ ≤ t , τ ≥ v. Let v ≤ s ≤ t ≤ T and Ps,t be the linear operator on Bb(H),
defined by

(Ps,t )(φ)(x) = E[φ(Z(t, s; x))] for φ ∈ Bb(H) x ∈ H . (5.4.2)

Then the Markov property holds, i.e.

Theorem 5.4.1 Let 0 ≤ v ≤ s ≤ t ≤ T . Then

E[φ(Z(t, v; ξ))/F Z
s ] = (Ps,t )(φ)(Z(s, v; ξ)) for anyφ ∈ Bb(H).

Proof As F Z
s ⊂ Fs , it is sufficient to prove that

E[φ(Z(t, v; ξ))/Fs] = (Ps,t )(φ)(Z(s, v; ξ)) . (5.4.3)

From the uniqueness of the solution we get

Z(t, v; ξ)(ω) = Z(t, s; Z(s, v; ξ)(ω))(ω) P − a.s. (5.4.4)

Let
η(ω) := Z(s, v; ξ)(ω). (5.4.5)

Then from (5.4.4) it follows that (5.4.3) can be written as

E[φ(Z(t, s; η))/Fs] = (Ps,t )(φ)(Z(s, v; η)) . (5.4.6)

It is enough to show that (5.4.6) holds for everyφ ∈ Cb(H), with Cb(H) denoting
the set of continuous real-valued bounded functions on H. We first assume that φ is
linear and bounded.

Moreover, let us first consider the case where

η(ω) = x ∈ H P − a.s.

As x is constant and because of the independent increment property of the cPrm,
Z(t, s; η(ω)) is independent of Fs . In fact Fs is the σ-algebra generated by the
pure jump Lévy process with compensator dsβ(dx). See Sect. 2.4 and Sect. 3.3, or
[3, Sect. 2].

E[φ(Z(t, s; η))/Fs] = E[φ(Z(t, s, x))] = Ps,t (φ(x))

so that (5.4.6) holds for this particular case.

http://dx.doi.org/10.1007/978-3-319-12853-5_2
http://dx.doi.org/10.1007/978-3-319-12853-5_3
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Now we prove (5.4.6) for the case where

η(ω) :=
n∑

1

a j 1A j (Z(s, v; ξ)) (5.4.7)

with {A j , j = 1, . . . , n} a partition of H and a1, . . . , an ∈ H . In this case

Z(t, s; η(ω))(ω) =
n∑

1

Z(t, s; a j )1A j (Z(s, v; ξ)) P − a.s. ,

φ(Z(t, s; η(ω))(ω)) =
n∑

1

φ(Z(t, s; a j ))1A j (Z(s, v; ξ)) P − a.s. ,

and

E[φ(Z(t, s; η)/Fs] = E[
n∑

1

φ(Z(t, s; a j ))1A j (Z(s, v; ξ))/Fs]

=
n∑

1

Ps,t (φ)(a j )1A j (Z(s, v, ξ) = Ps,t (φ)(η) , (5.4.8)

where in (5.4.8) we used that φ(Z(t, s; a j )) are independent of Fs and 1A j (Z(s,
v; ξ)) are Fs-measurable.

Nowwe prove (5.4.6) for the case where η(ω) is given according to (5.4.5). (From
the proof it follows in particular that the r.h.s. of (5.4.3) is F Z

s -measurable.) There
is a sequence of simple functions ηn(ω) of the form (5.4.7) such that, if for a given
natural number M we denote ηM

n := ηn ∧ M , then

lim
M→∞ lim

n→∞E[‖ηM
n − η‖2] = 0. (5.4.9)

Similar to the proof of Corollary 5.3.2 it follows that

lim
M→∞ lim

n→∞E[‖Z(t, s; ηM
n ) − Z(t, s; η)‖2] = 0 .

There is a subsequence (by abuse of notation we denote it in the same way as the
original sequence), for which

lim
M→∞ lim

n→∞ Z(t, s; ηM
n )(ω) = Z(t, s; η)(ω) P − a.s.

As φ is continuous and bounded, it follows from (5.4.8) that

E[φ(Z(t, s; η)/Fs)] = limM→∞ limn→∞ E[φ(Z(t, s, ηM
n )/Fs)]

= limM→∞ limn→∞ Ps,t (φ)(ηM
n ) = Ps,t (φ)(η).
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Given φ ∈ Cb(H) there exists a sequence of linear bounded functions φn converg-
ing, up to a set of Borel measure zero, to φ (see e.g. [103], Chap. V.5). It follows
that φn(Z(t, s; η) → φ(Z(t, s; η) P -a.s., when n → ∞. φn can be chosen to be
uniformly bounded, so that

lim
n→∞E[φn(Z(t, s; η)/Fs)] = E[φ(Z(t, s; η)/Fs)]. �

Theorem 5.4.2 Let T > 0, f (s, u, z)) = f (u, z) , a(s, z) = a(z) and x ∈ H, then
(Z(t, 0; x)(ω))t∈[0,T ] is a homogenous Markov process.

Proof It is sufficient to prove that

Ps,t = P0,t−s for all 0 ≤ s ≤ t ≤ T (5.4.10)

together with the Markov property in Theorem 5.4.1 implies that the Chapman–
Kolmogorov equation holds for the transition probabilities associated to Ps,t , 0 ≤
s ≤ t ≤ T and (Z(t, 0; x)(ω))t∈[0,T ] is a Markov process.

Let us remark that the compensatedLévy randommeasureq(ds, du)(ω) is transla-
tion invariant in time, i.e. if t > 0 and q̃(ds, du)(ω) denotes the unique σ-finite mea-
sure onB(R+× H)which extends the pre -measure q̃(ds, du)(ω) on S(R+)×B(H),
such that q̃((s, τ ],�) := q((s + t, τ + t],�), for (s, τ ] × � ∈ S(R+)×B(H), then
q̃(B) and q(B) are equally distributed for all B ∈ B(R+ × H).

It follows that

Z(t + h, t; x)

= Sh x +
∫ t+h

t
St+h−sa(Z(s, t; x))ds +

∫ t+h

t

∫

H
St+h−s f (Z(s, t; x))q(ds, du)

= Sh x +
∫ h

0
Sh−sa(Z(t + s, t; x))ds +

∫ h

0

∫

H
Sh−s f (u, Z(t + s, t; x))q̃(ds, du)

= Sh x +
∫ h

0
Sh−sa(Z(t + s, t; x))ds +

∫ h

0

∫

H
Sh−s f (u, Z(t + s, t; x))q(ds, du).

By uniqueness (Theorem 5.3.1) it follows that Z(t + h, t; x)(ω) and Z(h, 0; x)(ω)

have the same distribution, completing the proof. �

5.5 Existence of Solutions for Random Coefficients

Let LT
2 := LT

2 ([0, T ] × �, (Ft )t∈[0,T ]) be the space of processes (Zt (ω))t∈[0,T ]
which are jointly measurable and

(i) Zt is Ft -measurable,
(ii)

∫ T
0 E[‖Zs‖2]ds < ∞.
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Definition 5.5.1 We say that two processes Zi
t (ω)∈ LT

2 , i = 1, 2 , are dt ⊗ P-
equivalent if they coincide for all (t,ω) ∈ �, with � ∈ B([0, T ]) ⊗ FT , and dt ⊗
P(�c) = 0. We denote by LT

2 the set of dt ⊗ P-equivalence classes.

Remark 5.5.2 LT
2 , with norm

‖Zt‖LT
2

:= (

∫ T

0
E[‖Zs‖2]ds)1/2 ,

is a Hilbert space.

In this section we assume that the coefficients are random and adapted to the
filtration and prove the existence of a solution in LT

2 . We assume here the growth
and Lipschitz conditions of the coefficients independent of ω, but depending on the
points in H. We assume in fact that we are given

a : R+ × H × � → H ,

f : R+ × H × H × � → H ,

such that
(A′) f (t, u, z,ω) is jointly measurable such that for all t ∈ [0, T ], u ∈ E and fixed
z ∈ H , f (t, u, z, ·) is Ft -adapted,
(B′) a(t, z,ω) is jointly measurable such that for all t ∈ [0, T ], and fixed z ∈ H ,
a(t, z, ·) is Ft -adapted, and for fixed T > 0
(C′) there is a constant L > 0 such that

T ‖a(t, z,ω) − a(t, z′,ω)‖2 +
∫

H
‖ f (t, u, z,ω) − f (t, u, z′,ω)‖2β(du) ≤ L‖z − z′‖2

for all t ∈ [0, T ] , z, z′ ∈ H , and P − a.e. ω ∈ �,

(D′) there is a constant K > 0 such that

T ‖a(t, z,ω)‖2 + ∫
H ‖ f (t, u, z,ω)‖2β(du) ≤ K (‖z‖2 + 1)

for all t ∈ ([0, T ], z ∈ H, and P − a.e. ω ∈ �.

Theorem 5.5.3 Let 0 < T < ∞ and suppose that (A′), (B′), (C′), (D′) are satisfied.
Let x ∈ H. Then there is a unique process (Zt )0≤t≤T ∈ LT

2 which satisfies

Zt (ω) = St x +
∫ t

0
St−sa(s, Zs(ω),ω)ds

+
∫ t

0

∫

H
St−s f (s, u, Zs(ω),ω)q(dsdu) ∀t ∈ [0, T ] . (5.5.1)
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As a consequence of Theorem 5.5.3 we have:

Corollary 5.5.4 Let 0 < T < ∞ and suppose that (A′), (B′), (C′), (D′) are satisfied.
Then there is up to stochastic equivalence a unique process (Zt )0≤t≤T ∈ LT

2 which
satisfies (5.5.1).

Remark 5.5.5 As a consequence of Lemma 5.1.9 we have that (Zt )0≤t≤T is càdlàg.

Before proving Theorem 5.5.3 we prove some properties of the following function

Kt (x, ξ)(ω) := St x +
∫ t

0
St−sa(s, ξs(ω),ω)ds

+
∫ t

0

∫

H
St−s f (s, u, ξs(ω),ω)q(ds, du)

with x ∈ H and ξ := (ξs)s∈[0,T ]∈ LT
2 .

Lemma 5.5.6 For any T > 0 there is a constant C1
T such that

∫ T

0
E[‖Kt (x, ξ) − Kt (x, η)‖2]dt ≤ C1

T

∫ T

0
E[‖ξt − ηt‖2]dt.

Proof

∫ T

0
E[‖Kt (x, ξ) − Kt (x, ξ)‖2]dt

≤ 2e2αT T
∫ T

0
E

[
‖
∫ t

0
(a(s, ξs) − a(s, ηs)ds‖2

]
dt

+ 2e2αT
∫ T

0

∫ t

0

∫

H
E[‖( f (s, u, ξs) − f (s, u, ηs)‖2dsβ(du)]dt

≤ 2LT e2αT
∫ T

0
E[‖ξs − ηs‖2]dt < ∞ ,

where we applied the bounds on St . This proves the lemma. �

Let

K (x, ξ) : H × LT
2 → LT

2 (5.5.2)

be such that its projection at time t ∈ [0, T ] is given by Kt (x, ξ).

Lemma 5.5.7 There exists a constant αT , depending on T, such that αT ∈ (0, 1)
and

‖K (x, ξ)(ω) − K (x, η)(ω)‖LT
2

≤ αT ‖ξ − η‖LT
2
. (5.5.3)
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Proof Let Sξ := Kt(x, ξ). We shall prove that Sn is a contraction operator on LT
2 ,

for sufficiently large values of n ∈ N. By Lemma 5.5.6 it follows by induction that

∫ T

0
E[ ‖Snξt − Snηt‖2 ]dt ≤ C1

T
n
∫ T

0
dt

∫ T

0
ds1

∫ T

0
ds2, . . . ,

∫ T

0
E[‖ξsn − ηsn ‖2]dsn

≤ C1
T

n T n

n!
∫ T

0
E[‖ξs − ηs‖2]ds.

From this we get that, for sufficiently large values of n ∈ N, the operator Sn is a
contraction operator on LT

2 and therefore has a unique fixed point. Suppose that Sn0

is a contraction operator on LT
2 . We get

∫ T

0
dtE[‖Sξt − Sηt‖2] =

∫ T

0
dtE[‖Skn0+1ξt − Skn0+1ηt‖2]

≤ C1
T

kn0T kn0

kn0!
∫ T

0
dtE[‖Sξt − Sηt‖2]

≤ C1
T

kn0+1
T kn0

kn0 + 1!
∫ T

0
dtE[‖ξt − ηt‖2] → 0 as k → ∞.

�

Proof of Theorem 5.5.3 From (5.5.3) it follows that K (x, ξ) is a contraction on
LT
2 for every fixed x ∈ H . We get by the contraction principle that there exists a

φ ∈ C(H,LT
2 ) such that

K (x,φ(x)) = φ(x)

for every fixed x ∈ H . φ(x) := (Z x
t (ω))t∈[0,T ] is the solution of (5.5.1). �

5.6 Continuous Dependence on Initial Data,
Drift and Noise Coefficients

Let T > 0. Let us assume that (A), (B), (C), (D) or (A′), (B′), (C′), (D′) are satisfied
for f0(t, u, z,ω) := f (t, u, z,ω) and a0(t, z,ω) := a(t, z,ω). Moreover, we assume
that this also holds for fn(t, u, z,ω) and an(t, z,ω), for any n ∈ N. Let (Zt )t∈[0,T ]
be a solution of (5.5.1) (in the sense of the previous theorems, depending on the
hypothesis). We denote by (Zn

t (ω))[0,T ] the unique solution of

Zn
t (ω) = St Zn

0 (ω) +
∫ t

0
St−san(s, Zn

s (ω),ω)ds

+
∫ t

0

∫

H
St−s fn(s, u, Zn

s (ω),ω)q(ds, du)
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(in the sense of the previous theorems). We prove the following result:

Theorem 5.6.1 Assume that there is a constant K > 0 such that for all n ∈ N0,
t ∈ [0, T ] and z ∈ H

‖an(t, z,ω)‖2 +
∫

H
‖ fn(t, u, z,ω)‖2β(du) ≤ K (‖z‖2 + 1) P − a.s. (5.6.1)

Assume that there is a constant L such that for all n ∈ N0, t ∈ [0, T ] and z , z′ ∈ H:

T ‖an(t, z,ω) − an(t, z′,ω)‖2 +
∫

H
‖ fn(t, u, z,ω) − fn(t, u, z′,ω)‖2β(du)

≤ L‖z − z′‖2 P − a.s. (5.6.2)

Moreover, assume that

sup
n∈N0

E[‖Zn
0 )‖2] < ∞, (5.6.3)

lim
n→∞E[‖Z n

0 − Z0‖2] = 0 (5.6.4)

(where Z0
0(ω) := Z0(ω)) and assume that for every t ∈ [0, T ] and fixed z ∈ H

lim
n→∞ {T ‖an(t, z,ω) − a(t, z,ω)‖2 +

∫

H
‖ fn(t, u, z,ω) − f (t, u, z,ω)‖2β(du)}

= 0 P − a.s. (5.6.5)

Then

lim
n→∞ sup

t∈[0,T ]
E[‖Zn

t − Zt‖2] = 0.

Proof Let t ≤ T, then:

E[‖Zn
t − Zt‖2] ≤ 25e2αT {E[‖Z n

0 − Z0‖2] + 2L
∫ t

0
E[‖Zn

t − Zt‖2]ds

+ 2T
∫ t

0
E[‖an(s, Zs) − a(s, Zs)‖2]ds}

+ 25e2αT {2
∫ t

0

∫

H
E[‖ fn(s, u, Zs) − f (s, u, Zs)‖2]β(du)ds} ,

where the latter inequality is proved by using a bound on ‖St‖ and inequality (5.6.2).
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Let

γn
t := T

∫ t

0
E[‖an(s, Zs) − a(s, Zs)‖2]ds,

δn
t :=

∫ t

0

∫

H
E[‖ fn(s, u, Zs) − f (s, u, Zs)‖2]β(du)ds.

As

limn→∞ ‖an(s, Zs,ω) − a(s, Zs,ω)‖2

+
∫

H
‖ fn(s, u, Zs,ω) − f (s, u, Zs,ω)‖2β(du) = 0 , P − a.s.

and (5.6.1) implies

‖an(t, Zs(ω),ω)‖2 + ∫
H ‖ fn(t, u, Zs(ω),ω)‖2β(du)

≤ K (‖Zs(ω)‖2 + 1) P − a.s. ,

it follows that

lim
n→∞ sup

t∈[0,T ]
δn

t + lim
n→∞ sup

t∈[0,T ]
γn

t = 0 .

The conclusion then follows by using Gronwall’s inequality. �

5.7 Differential Dependence of the Solutions
on the Initial Data

In this section we continue to assume, as before, that the coefficients a and f satisfy
the conditions (A), (B), (C) and (D) and we shall prove the differential dependence
of the solution of (5.3.1) with respect to the initial data. Let

Kt (x, ξ) := St x +
∫ t

0
St−sa(s, ξs)ds +

∫ t

0

∫

H
St−s f (s, u, ξs)q(ds, du)

with x ∈ H and ξ := (ξs)s∈[0,T ]∈ LT
2 .

Lemma 5.7.1 For any T > 0 there is a constant C1
T , resp. C2

T , such that

∫ T

0
E[‖Kt (x, ξ) − Kt (x, η)‖2]dt ≤ C1

T

∫ T

0
E[‖ξt − ηt‖2]dt, (5.7.1)
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∫ T

0
E[‖Kt (x, ξ) − Kt (y, ξ)‖2]dt ≤ C2

T ‖x − y‖2. (5.7.2)

Proof Note that (5.7.1) is a special case of Lemma 5.5.6. The proof of (5.7.2) is
similar to that of Lemma 5.2.2. �

Let

K (x, ξ) : H × LT
2 → LT

2

be such that its projection at time t ∈ [0, T ] is given by Kt (x, ξ).

Remark 5.7.2 From Theorem 5.3.1 we know that there is a unique solution (Z x
t

(ω))t∈[0,T ] of (5.3.1). Hence, from Theorem 5.3.1 we know that for every fixed
x ∈ H

K (x, Z x
t (ω)) = Z x

t (ω) P − a.s. (5.7.3)

We shall now prove some facts about the map K .

Theorem 5.7.3 Let ξ ∈ LT
2 be fixed. The map

K (·, ξ) : H → LT
2

is Fréchét differentiable and its derivative ∂K
∂x along the direction h ∈ H is such that

∂Kt (x, ξ)

∂x
(h) = St h.

The proof of Theorem 5.7.3 is easy and follows from the Frechét differentiability
of St .

Remark 5.7.4 It follows in particular that ∂K
∂x is in L(H ;LT

2 ) .

Let us denote by ∂
∂z the Fréchét derivative in H . Starting from here we assume

that the coefficients a and f in the SPDE also satisfy the following conditions
(E) ∂

∂z f (t, u, z) exists for all t ∈ (0, T ] and fixed u ∈ H ,

(F) ∂
∂z a(t, z) exists for all t ∈ (0, T ].

Moreover we assume that

‖| ∂

∂z
a(s, z)|‖2 +

∫

H
‖| ∂

∂z
f (s, z, u)|‖2β(du) < ∞ uniformly in z ∈ H,

and s ∈ [0, T ], (5.7.4)

where ‖| · |‖ denotes the operator norm of the Fréchét derivative in H .
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Theorem 5.7.5 Let x ∈ H be fixed.

K (x, ·) : LT
2 → LT

2 (5.7.5)

is Gateaux differentiable and its derivative ∂K
∂ξ along the direction ξ ∈ LT

2 satisfies

∂Kt(x, ξ)

∂ξ
(ηt ) =

∫ t

0
St−s

∂

∂z
a(s, ξs)(ηs)ds

+
∫ t

0

∫

H
St−s

∂

∂z
f (s, u, ξs)(ηs)q(ds, du)

(with the notation ∂
∂z a(s, ξs(ω)) (resp. ∂

∂z f (s, u, ξs(ω))) for ∂
∂z a(s, z) (resp. ∂

∂z
f (s, u, z)), at z = ξs(ω)).

Proof For any fixed x ∈ H , and ξ, η ∈ LT
2 we consider the map r → K (x, ξ+rη)

from R to LT
2 . We have

Kt(x, ξ + rη) = St x +
∫ t

0
St−sa(s, ξs + rηs)ds

+
∫ t

0

∫

H
St−s f (s, u, ξs + rηs)q(ds, du).

It follows that

1

r
(Kt (x, ξ + rη) − K (x, ξ) =

∫ t

0
St−s

(a(s, ξs + rηs) − a(s, ξs))

r
ds

+
∫ t

0

∫

H
St−s

( f (s, u, ξs + rηs) − f (s, u, ξs))

r
q(ds, du).

Let us fix z ∈ H and define for any r �= 0:

ar (t, z, y) := a(t, z + ry) − a(t, z)

r

fr (t, u, z, y) := f (t, u, z + ry) − f (t, u, z)

r

where t ∈ [0, T ], y ∈ H . ar (t, y, ξs(ω)) and fr (t, u, y, ξs(ω)) satisfy the conditions
(5.6.1) and (5.6.2)with r instead of n (and y instead of z).Moreover, ∂

∂z a(s, ξs(ω))y

and ∂
∂z f (s, u, ξs(ω))y satisfy the same conditions, by condition (5.7.4).
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Analogous to (5.6.5), we have (also using the Lipschitz conditions) that

limr→0 {T ‖ar (t, y, ξt (ω)) − ∂

∂z
a(t, ξt (ω))y‖2 +

∫

E\{0}
‖ fr (t, u, y, ξt (ω))

− ∂

∂z
f (t, u, ξt (ω))y‖2β(du)} = 0 P − a.s.

Defining similarly as before

γr
t := T

∫ t

0
E[‖ar (s, ηs, ξs, ) − ∂

∂z
a(s, ξs)ηs‖2]ds

δr
t :=

∫ t

0

∫

H
E[‖ fr (s, u, ηs, ξs) − ∂

∂z
f (s, u, ξs)ηs‖2]β(du)ds,

and operating in a similar way as in the proof of Theorem 5.6.1, we obtain the desired
result. �

We also assume
(G) ∂

∂z a(s, z) is continuous in z ds-a.s.

(H) ∂
∂z f (s, u, z) is continuous ds-a.s. in the norm ‖ · ‖L2(dβ) of L2(dβ).

Theorem 5.7.6 For any fixed η ∈ LT
2 the function

δ

δξ
K (x, ξ)η : H × LT

2 → LT
2 (5.7.6)

is continuous.

Proof of Theorem 5.7.6 Let (xn, ξn) converge to (x, ξ) in H × LT
2 . For any n ∈ N

we have that

∂

∂ξ
K (xn, ξn)ηt − ∂

∂ξ
K (x, ξ)ηt =

∫ t

0
St−s(

∂

∂z
a(s, ξn

s )ηs − ∂

∂z
a(s, ξs)ηs)

+
∫ t

0

∫

H
St−s(

∂

∂z
f (s, u, ξn

s )ηs

− ∂

∂z
f (s, u, ξs)ηs)q(ds, dx).

From ‖St‖ ≤ eαt it follows that

∫ T

0
E[‖ ∂

∂ξ
K (xn, ξn)ηt − ∂

∂ξ
K (x, ξ)ηt‖2]dt

≤ 2T e2αT
∫ T

0
E[‖ ∂

∂z
a(s, ξn

s )ηs − ∂

∂z
a(s, ξs)ηs‖2ds
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+ 2T e2αT
∫ T

0

∫

H
E[‖ ∂

∂z
f (s, u, ξn

s )ηs − ∂

∂z
f (s, u, ξs)ηs‖2]dsβ(du).

(5.7.7)

ξn → ξ in LT
2 as n → ∞ implies that there is a subsequence {nk}k∈N such that

ξnk
s → ξs ds ⊗ dP -a.s. in [0, T ] × �, as k → ∞. Hence we have

‖| ∂

∂z
a(s, ξnk

s (ω))ηs − ∂

∂z
a(s, ξs(ω))ηs |‖ → 0 ds ⊗ dP − a.e.

in [0, T ] × � as k → ∞

and
∫

H
‖| ∂

∂z
f (s, u, ξn

s (ω))ηs − ∂

∂z
f (s, u, ξs(ω))ηs|‖2β(du) → 0

a.e. ds ⊗ dP in [0, T ] × �. (5.7.8)

We get by the Lebesgue dominated convergence theorem that ∂
∂ξ K (x, ξ)η is con-

tinuous. �

Corollary 5.7.7 Let us assume that all the hypotheses of Theorem 5.7.6 hold. Let
(Z x

t )t∈[0,T ] denote the solution of (5.3.1) with initial condition

Z0(ω) = x P − a.s.

Then ( ∂
∂x Z x

t )t∈[0,T ] is a solution of

∂

∂x
Z x

t =
∫ t

0
(St−s

∂

∂z
a(s, Z x

s )
∂

∂x
Z x

s ) ds

+
∫ t

0

∫

H
(St−s

∂

∂z
f (s, u, Z x

s )
∂

∂x
Z x

s ) q(ds, dx). (5.7.9)

Proof The statement of Corollary 5.7.7 is a consequence of Theorems 5.7.3–5.7.6,
Remark 5.7.4 and Proposition C.0.3 in Appendix C of [15] (see also Appendix C of
[19], where the Gaussian case is considered). �

5.8 Remarks and Related Literature

In this chapter, we have studied Hilbert space valued SPDEs. A special case of
SPDEs in Banach spaces with certain restrictions on the partial differential operator
was considered in [38].
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Our presentation is based on [2]. The technique is a generalization of that used in
[35] (see also [34]) and is generalized from [36].

The material on Gateaux differentiability with respect to the initial value was
generalized in [72].

This work has found applications to financial models in [32].
For our work in Chap.7 on stability theory we provide the Yosida approximations

for mild solutions. As the approximating solutions are strong solutions, we can apply
Itô’s formula for these. The general case of non-anticipating coefficients is of interest
in view of the applications presented in [24].

We refer the reader to [33] where Sz.-Nagy’s dilation theorem is used to study
uniqueness by relating mild solutions to strong solutions. However, in this form, one
does not know how to study the asymptotic behaviour of the equation in Sect. 6.1 to
obtain the result on invariant measure in [71], which is done in Chap.7.

http://dx.doi.org/10.1007/978-3-319-12853-5_7
http://dx.doi.org/10.1007/978-3-319-12853-5_6
http://dx.doi.org/10.1007/978-3-319-12853-5_7


Chapter 6
Applications

In this chapterwe showhow the results of Chap. 5 can be used to solve some problems
arising in finance. In addition, we provide motivation for the study of Chap.5 since
the Zakai equation in filtering problems has the form of the SPDEs studied there.

6.1 The HJMM Equation from Interest Rate Theory

In this section we describe the HJMM model for term structure interest rates. We
follow [32] in our presentation in the next section. We start by explaining some
fundamental ideas from finance mathematics. After deriving the HJMM equation,
we consider the existence and uniqueness of this equation using our results in Chap. 5
on mild solutions of SPDEs. Under additional assumptions on the space of forward
curves and drift, we obtain the strong solution result of [17]. In order to demonstrate
the strength of our result, we present an example for which the assumptions in [17]
are not satisfied. In the next section we introduce the basic financial problem. We do
not give full details of the work as it is already described in [32]. However, we give
sufficient details to motivate our model.

6.1.1 Introduction to the HJMM Equation

A zero coupon bond with maturity T is a financial asset which pays the holder one
unit of cash at time T . Its price for t ≤ T can be written as

p(t, T ) = exp

(
−
∫ T

t
f (t, u)du

)

where f (t, T ) is the forward rate at time T (≥ t).

© Springer International Publishing Switzerland 2015
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The classical continuous framework for the evolution of forward rates goes back
to Heath et al. [40]. They assume that under a risk-neutral measure for every time T
the forward rates f (t, T ) follow an Itô process of the form

d f (t, T ) =
n∑

i=1

σi (t, T )

∫ T

t
σ(t, s)ds (6.1.1)

+
n∑

i=1

σi (t, T )dW i
t , t ∈ [0, T ] (6.1.2)

where W = (W 1, . . . , W n) is a standard Brownian motion inRn . This gives that the
discounted zero coupon bond price processes

exp

(
−
∫ t

0
f (s, s)ds

)
p(t, T ) t ∈ [0, T ]

are local martingales for all maturities T . This guarantees absence of arbitrage in the
bond market model.

Empirical studies have revealed that models based on a Brownian motion (noise)
only provide a poor fit to observed market data [31, Chap.5]. Some authors [12, 26],
and others have proposed to replace Brownian motion W in (6.1.1) by a more general
process (with jumps). If X is a Lévy process, this leads to

d f (t, T ) = αHJM(t, T )dt +
n∑

i=1

σi (t, T )d Xi
t , t ∈ [0, T ] . (6.1.3)

Here the drift term is replaced in (6.1.1) by an appropriate term determined by
σ(t, T ) and a generating function of X (as explained later).

Fromafinancialmodeling point of view, one considersσ andαHJM to be a function
of the prevailing forward curve T → f (t−, T,ω) = lims↑t f (s, T,ω). This leads
to f (t, T ) being a solution of the stochastic equation for t ∈ [0, T ]

d f (t, T ) = αHJM(t, T, f (t, ·))dt +
n∑

i=1

σi (t, T, f (t, ·))d Xi
t , t ∈ [0, T ] (6.1.4)

where f (0, T ) = h0(T ) is some initial forward curve.
Let us switch to an alternative parametrization to show that Eq. (6.1.4) is an

infinitesimal stochastic PDE. Let us introduce the Musiela parametrization [78]

rt(x) = f (t, t + x), x ≥ 0.
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Then the above equation in integrated form becomes

rt = St h0(x) +
∫ t

0
St−sαHJM(s, s + x, rs)dt +

n∑

i=1

∫ t

0
St−sσi (s, s + x, rs)d Xi

s

(6.1.5)

where St h = h(t + ·) for t ∈ R+, that is (see Chap.5), rt is a mild solution of the
equation

drt = d

dx
rt (x) + αHJM(t, rt )dt +

n∑

i=1

σi (t, rt )d Xi
t (6.1.6)

in an appropriate Hilbert space H of forward curves, where d
dx is the generator of

the strongly continuous semigroup St (shift).
Here we use (with a slight abuse of notation):
αHJM(t, r·) for αHJM(t, t + ·, r·) and σ(t, r·) for σHJM(t, t + ·, r·).
The advantage of using the representation (6.1.6) instead of (6.1.4) is that instead

of dealing with infinitely many SDEs, one for every maturity time T , we can deal
with only one (infinite-dimensional) SPDE.

Before we specify H in various cases, we end this section by motivating the HJM
drift condition.

Throughout H denotes a separable Hilbert space of forward curves and σi :
R+ × H → H (i = 1, 2, . . . , n) are volatilities. In order that the term structure
model (6.1.6) is free of arbitrage, we have to show that all discounted bond prices
are local martingales. In order to achieve this, we assume that these are compact
intervals [a1, b1], [a2, b2],…, [an, bn] having zero as inner point, such that the Lévy
measures ν1, ν2,…,νn of X1, X2, …, X n respectively, satisfy for i = 1, 2, . . . , n

∫

|x |>1
ezxνi (dx) < ∞ for z ∈ [ai , bi ]. (6.1.7)

From (6.1.7) we see that

ψi (z) = ln E[ez Xi ] i = 1, . . . , n

exists on [ai , bi ] and is in C∞ [95]. Moreover, the Lévy processes Xi possess
moments of arbitrary order. Let [ci , di ] ⊂ (ai , bi ) be compact intervals having zero
as an inner point. For any continuous function h : R+ → R define T h : R+ → R

by

T h(x) =
∫ x

0
h(η)dη.

http://dx.doi.org/10.1007/978-3-319-12853-5_5
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For i = 1, 2, . . . , n, let

Aψi
H = {h ∈ H ;−T h(R+) ⊂ [ci , di ]}.

If σi (R+ × H) ⊂ Aψi
H , i = 1, 2, . . . , n, the HJM drift is

αHJM(t, r)(x) =
n∑

i=1

d

dx
ψi

(
−
∫ x

0
σi (t, r)(η)dη

)
(6.1.8)

= −σi (t, r)(x)ψ
′
i

(
−
∫ x

0
σi (t, r)(η)dη

)
(6.1.9)

which is well defined for all x . The HJM drift condition above implies that P is a
local martingale measure [31, Sect. 2.1].

Remark 6.1.1 We need to ensure that αHJM(t, r) ∈ H for all (t, r) ∈ R × H and
that the Lipschitz property of σi (i = 1, 2, . . . , n) implies the Lipschitz property of
αHJM. This requires us to choose the space of forward curves carefully. In order that
(6.1.5) implies (6.1.6) we also need themap h 
→ h(x) from H toR to be continuous.

6.1.2 The Space of Forward Curves and Mild Solution
to the HJJM Equation

In this section we introduce the space of forward curves following [31]. We shall
present the existence and uniqueness result for the case n = 1. In view of our
condition on the existence of all moments of the Lévy measure, we can incorporate
the Poisson part of the Lévy decomposition of the Lévy process occurring in Eq.
(6.1.6) into the drift part, observing that the Lipschitz condition on σ implies the
Lipschitz condition needed in Theorem5.2.3.

Now we consider the existence of mild and weak solutions to (6.1.6). We first
define the spaces Hw of forward curves, which were introduced in [31, Chap.5].

Letw : R+ → [1,∞)be anon-decreasingC1-function such thatw− 1
3 ∈ L1(R+).

Example 6.1.2 w(x) = eαx , for α > 0.

Example 6.1.3 w(x) = (1 + x)α, for α > 3.

Let Hw be the linear space of all absolutely continuous functions h : R+ → R

satisfying

∫

R+
|h′(x)|2w(x)dx < ∞,

http://dx.doi.org/10.1007/978-3-319-12853-5_5


6.1 The HJMM Equation from Interest Rate Theory 139

where h′ denotes the weak derivative of h. We define the inner product

(g, h)w := g(0)h(0) +
∫

R+
g′(x)h′(x)w(x)dx

and denote the corresponding norm by � · �w. Since, for large time, forward curves
flatten to the maturity x , the choice of Hw is reasonable from an economic point of
view.

Proposition 6.1.4 The space (Hw, (·, ·)w) is a separable Hilbert space. Each h ∈
Hw is continuous, bounded and the limit h(∞) := limx→∞ h(x) exists. Moreover,
for each x ∈ R+, the point evaluation h 
→ h(x) : Hw → R is a continuous linear
functional.

Proof All of these statements can be found in the proof of [31, Theorem5.1.1]. �

The fact that each point evaluation is a continuous linear functional ensures that
forward curves (rt ) solving (6.1.6) satisfy the variation of constants formula (6.1.5).

Defining the constants C1, . . . , C4 > 0 as

C1 := ‖w−1‖
1
2
L1(R+)

, C2 := 1 + C1, C3 := ‖w− 1
3 ‖2L1(R+)

,

C4 := ‖w− 1
3 ‖

7
2
L1(R+)

,

we have for all h ∈ Hw the estimates

‖h′‖L1(R+) ≤ C1 � h�w, (6.1.10)

‖h‖L∞(R+) ≤ C2 � h�w, (6.1.11)

‖h − h(∞)‖L1(R+) ≤ C3 � h�w, (6.1.12)

‖(h − h(∞))4w‖L1(R+) ≤ C4 � h�4
w, (6.1.13)

which also follows by inspecting the proof of [31, Theorem5.1.1].
Since in order to apply Theorem5.2.3 we require that the shift semigroup (St )t≥0

defined by St h = h(t + ·) for t ∈ R+ is pseudo-contractive in a closed subspace of
Hw, we use a technique which is due to Tehranchi [98], namely we change to the
inner product

〈g, h〉w := g(∞)h(∞) +
∫

R+
g′(x)h′(x)w(x)dx

and denote the corresponding norm by ‖ · ‖w. The estimates (6.1.10)–(6.1.13) are
also valid with the norm ‖ · ‖w for all h ∈ Hw (the proof is exactly as for the original
norm � · �w). Therefore we conclude, by using (6.1.11),

http://dx.doi.org/10.1007/978-3-319-12853-5_5
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1

(1 + C2
2)

1
2

‖h‖w ≤ �h�w ≤ (1 + C2
2)

1
2 ‖h‖w, h ∈ Hw

showing that ‖ · ‖w and � · �w are equivalent norms on Hw. From now on, we shall
work with the norm ‖ · ‖w.

Proposition 6.1.5 (St ) is a C0-semigroup in Hw with generator d
dx : D( d

dx ) ⊂
Hw → Hw, d

dx h = h′, and domain

D( d
dx ) = {h ∈ Hw | h′ ∈ Hw}.

The subspace H 0
w := {h ∈ Hw | h(∞) = 0} is a closed subspace of Hw and (St ) is

contractive in H0
w with respect to the norm ‖ · ‖w.

Proof Except for the last statement, we refer to the proof of [31, Theorem5.1.1]. By
the monotonicity of w we have

‖St h‖2w =
∫

R+
|h′(x + t)|2w(x)dx ≤ ‖h‖2w

for all t ∈ R+ and h ∈ H0
w, showing that (St ) is contractive in H0

w. �

We define for any h = (h1, . . . , hn) ∈ ×n
i=1A�i

H0
w

�h(x) := −
n∑

i=1

hi (x)� ′
i

(
−
∫ x

0
hi (η)dη

)
, x ∈ R+. (6.1.14)

Proposition 6.1.6 There is a constant C5 > 0 such that for all g, h ∈ ×n
i=1A�i

H0
w

we

have

‖�g − �h‖w ≤ C5

n∑

i=1

(
1 + ‖hi‖w + ‖gi‖w + ‖gi‖2w

)
‖gi − hi‖w. (6.1.15)

Furthermore, for each h ∈ ×n
i=1A�i

H0
w

we have �h ∈ H0
w, and the map � :

×n
i=1A�i

H0
w

→ H0
w is continuous.

Proof We define

Ki := sup
x∈[ci ,di ]

|�′
i (x)|, Li := sup

x∈[ci ,di ]
|� ′′

i (x)| and Mi := sup
x∈[ci ,di ]

|� ′′′
i (x)|

for i = 1, . . . , n. By the boundedness of the derivatives � ′
i on [ci , di ], the definition

(6.1.14) of� yields that for each h ∈ ×n
i=1A�i

H0
w
the limit�h(∞) := limx→∞ �h(x)

exists and



6.1 The HJMM Equation from Interest Rate Theory 141

�h(∞) = 0, h ∈ ×n
i=1A�i

H0
w
. (6.1.16)

By using (6.1.16) and the universal inequality

|x1 + · · · + xk |2 ≤ k
(
|x1|2 + · · · + |xk |2

)
, k ∈ N

we get for arbitrary g, h ∈ × n
i=1A�i

H0
w
the estimate

‖�g − �h‖2w =
∫

R+

∣∣∣
n∑

i=1

h′
i (x)� ′

i

(
−
∫ x

0
hi (η)dη

)

−
n∑

i=1

g′
i (x)� ′

i

(
−
∫ x

0
gi (η)dη

)
+

n∑

i=1

gi (x)2� ′′
i

(
−
∫ x

0
gi (η)dη

)

−
n∑

i=1

hi (x)2� ′′
i

(
−
∫ x

0
hi (η)dη

) ∣∣∣
2
w(x)dx ≤ 4n(I1 + I2 + I3 + I4),

where we have put

I1 :=
n∑

i=1

∫

R+
|h′

i (x)|2
∣∣∣� ′

i

(
−
∫ x

0
hi (η)dη

)
− � ′

i

(
−
∫ x

0
gi (η)dη

) ∣∣∣
2
w(x)dx,

I2 :=
n∑

i=1

∫

R+
� ′

i

(
−
∫ x

0
gi (η)dη

)2

|h′
i (x) − g′

i (x)|2w(x)dx,

I3 :=
n∑

i=1

∫

R+
gi (x)4

[
� ′′

i

(
−
∫ x

0
gi (η)dη

)
− � ′′

i

(
−
∫ x

0
hi (η)dη

)]2
w(x)dx,

I4 :=
n∑

i=1

∫

R+
� ′′

i

(
−
∫ x

0
hi (η)dη

)2

(gi (x)2 − hi (x)2)2w(x)dx .

Using (6.1.12) yields

I1 ≤
n∑

i=1

L2
i ‖hi‖2w‖gi − hi‖2L1(R+)

≤ C2
3

n∑

i=1

L2
i ‖hi‖2w‖gi − hi‖2w,

and I2 is estimated as

I2 ≤
n∑

i=1

K 2
i ‖gi − hi‖2w.
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Taking into account (6.1.12) and (6.1.13), we get

I3 ≤
n∑

i=1

M2
i ‖g4i w‖L1(R+)‖gi − hi‖2L1(R+)

≤ C2
3C4

n∑

i=1

M2
i ‖gi‖4w‖gi − hi‖2w,

and by using Hölder’s inequality and (6.1.13), we obtain

I4 ≤
n∑

i=1

L2
i

∫

R+
(gi (x) + hi (x))2w(x)

1
2 (gi (x) − hi (x))2w(x)

1
2 dx

≤
n∑

i=1

L2
i ‖(gi + hi )

4w‖
1
2
L1(R+)

‖(gi − hi )
4w‖

1
2
L1(R+)

≤ 2C4

n∑

i=1

L2
i (‖gi‖2w + ‖hi‖2w)‖gi − hi‖2w,

which gives us the desired estimate (6.1.15). For all h ∈ ×n
i=1A�i

H0
w
we have �h ∈

H0
w by (6.1.15), (6.1.16), and the map � : ×n

i=1A�i
H0

w
→ H0

w is locally Lipschitz

continuous by (6.1.15). �

By Proposition6.1.6 we can, for given volatilities σi : R+× Hw → H0
w satisfying

σi (R+ × Hw) ⊂ A�i
H0

w
for i = 1, . . . , n, define the drift term αHJM according to the

HJM drift condition (6.1.8) by

αHJM := � ◦ σ : R+ × Hw → H0
w, (6.1.17)

where σ = (σ1, . . . ,σn).
Now, we are ready to establish the existence of Lévy term structure models on

the space Hw of forward curves.

Theorem 6.1.7 Let σi : R+×Hw → H0
w be continuous and satisfy σi (R+×Hw) ⊂

A�i
H0

w
for i = 1, . . . , n. Assume there are M, L ≥ 0 such that for all i = 1, . . . , n

and t ∈ R+ we have

‖σi (t, h)‖w ≤ M, h ∈ Hw

‖σi (t, h1) − σi (t, h2)‖w ≤ L‖h1 − h2‖w, h1, h2 ∈ Hw.

Then, for each h0 ∈ Hw, there exists a unique mild and a unique weak adapted
càdlàg solution (rt )t≥0 to (6.1.6) with r0 = h0 satisfying

E

[
sup

t∈[0,T ]
‖rt‖2w

]
< ∞ for all T > 0. (6.1.18)
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Proof By Proposition6.1.6, αHJM maps into H0
w, see (6.1.17). Since σ = (σ1, . . . ,

σn) : R+×Hw → ×n
i=1A�i

H0
w
is continuous by assumption and� : ×n

i=1A�i
H0

w
→ H0

w

is continuous by Proposition6.1.6, it follows that αHJM = � ◦ σ is continuous.
Moreover, by estimate (6.1.15), we obtain for all t ∈ R+ and h1, h2 ∈ Hw the
estimate

‖αHJM(t, h1) − αHJM(t, h2)‖w ≤ C5(1 + M)2
n∑

i=1

‖σi (t, h1) − σi (t, h2)‖w

≤ C5(1 + M)2nL‖h1 − h2‖w.

Taking into account Proposition6.1.5, applying Theorem5.2.3 completes the
proof. �

As an immediate consequence, we get the existence of Lévy term structuremodels
with constant direction volatilities.

Corollary 6.1.8 Let σi : R+×Hw → H0
w be defined by σi (t, r) = σi (r) = ϕi (r)λi ,

where λi ∈ A�i
H0

w
and ϕi : Hw → [0, 1] for i = 1, . . . , n. Assume there is an L ≥ 0

such that for all i = 1, . . . , n we have

|ϕi (h1) − ϕi (h2)| ≤ L‖h1 − h2‖w, h1, h2 ∈ Hw.

Then, for each h0 ∈ Hw, there exists a unique mild and a unique weak adapted
càdlàg solution (rt )t≥0 to (6.1.6) with r0 = h0 satisfying (6.1.18).

Proof For all h1, h2 ∈ Hw and all i = 1, . . . , n we have

‖σi (h1) − σi (h2)‖w ≤ L‖λi‖w‖h1 − h2‖w.

Observing that ‖σi (h)‖w ≤ ‖λi‖w for all h ∈ Hw and i = 1, . . . , n, the proof is a
straightforward consequence of Theorem6.1.7. �

The only assumption on the driving Lévy processes X1, . . . , Xn , needed to apply
the previous results, is the exponential moments condition (6.1.7). It is clearly satis-
fied for Brownian motions and Poisson processes.

There are also several purely discontinuous Lévy processes fulfilling (6.1.7), for
instance generalized hyperbolic processes,which have been introduced byBarndorff-
Nielsen [8], and their subclasses, namely the normal inverse Gaussian and hyperbolic
processes. These processes have been applied to finance by Eberlein and co-authors
in a series of papers, e.g. in [25].

Other purely discontinuous Lévy processes satisfying (6.1.7) are the general-
ized tempered stable processes, see [17, Sect. 4.5], which include Variance Gamma
processes [61], and bilateral Gamma processes [57].

Consequently, Theorem6.1.7 applies to term structure models driven by any of
the above types of Lévy processes.

http://dx.doi.org/10.1007/978-3-319-12853-5_5
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6.1.3 Forward Curve Evolutions as Strong Solutions
of Infinite-Dimensional Stochastic Differential Equations

In this section we choose the forward curves as in [13] and show that in this case
d

dx is a bounded operator on the space. This allows us to obtain strong solutions to
Eq. (6.1.6) using Theorem4.2.2, as the space of forward curves is a Hilbert space
(clearly of M-type 2). We remark that under assumption (6.1.7) the Poisson integral
part of Eq. (6.1.6) (using Lévy decomposition) can be replaced by compensated
Poisson, adding the compensating term to the drift.

We fix real numbers β > 1 and γ > 0. Let Hβ,γ be the linear space of all
h ∈C∞(R+,R) satisfying

∞∑

n=0

(
1

β

)n ∫ ∞

0

(
dnh(x)

dxn

)
e−γx dx < ∞.

We define the inner product

〈g, h〉β,γ :=
∞∑

n=0

(
1

β

)n ∫ ∞

0

(
dng(x)

dxn

)(
dnh(x)

dxn

)
e−γx dx

and denote the corresponding norm by ‖ · ‖β,γ . From [13, Proposition4.2] we obtain
the following Propositions6.1.9 and6.1.10.

Proposition 6.1.9 The space (Hβ,γ, 〈·, ·〉β,γ) is a separable Hilbert space and for
each x ∈ R+, the point evaluation h 
→ h(x) : Hβ,γ → R is a continuous linear
functional.

The fact that each point evaluation is a continuous linear functional ensures that
forward curves (rt ) solving (6.1.6) satisfy the variation of constants formula (6.1.5).

Proposition 6.1.10 We have d
dx ∈ L(Hβ,γ), i.e. d

dx is a bounded linear operator on
Hβ,γ .

Theorem 6.1.11 Let σi : R+ × Hβ,γ → Hβ,γ be continuous and satisfy σi (R+ ×
Hβ,γ) ⊂ A�i

Hβ,γ
for i = 1, . . . , n. Assume that αHJM(t, r) ∈ Hβ,γ for all (t, r) ∈

R+×Hβ,γ . Furthermore, assume that αHJM(t, r) : R+×Hβ,γ → Hβ,γ is continuous
and that there is a constant L ≥ 0 such that for all t ∈ R+ and h1, h2 ∈ Hβ,γ we
have

‖αHJM(t, h1) − αHJM(t, h2)‖β,γ ≤ L‖h1 − h2‖β,γ,

‖σi (t, h1) − σi (t, h2)‖β,γ ≤ L‖h1 − h2‖β,γ, i = 1, . . . , n.

Then, for each h0 ∈ Hβ,γ , there exists a unique strong adapted càdlàg solution
(rt )t≥0 to (6.1.6) with r0 = h0 satisfying

http://dx.doi.org/10.1007/978-3-319-12853-5_4
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E

[
sup

t∈[0,T ]
‖rt‖2β,γ

]
< ∞ for all T > 0. (6.1.19)

Proof Taking into account Proposition6.1.10, the result is a consequence of
Corollary4.2.2. �

Unfortunately, Theorem6.1.11 has some shortcomings, namely it is demanded
that the drift term αHJM according to the HJM drift condition maps into the space
Hβ,γ . The following simple counterexample shows that this condition may be vio-
lated.

Example 6.1.12 Let σ = −1 and X be a compound Poisson process with intensity
λ = 1 and jump size distribution N (0, 1). Notice that the compound Poisson process
satisfies the exponential moments condition (6.1.7) for all z ∈ R, because its Lévy
measure is given by

F(dx) = 1√
2π

e− x2
2 dx .

But we have αHJM /∈ Hβ,γ , because

∫ ∞

0
αHJM(x)2e−γx dx =

∫ ∞

0

(
d

dx
�(x)

)2

e−γx dx

=
∫ ∞

0

(
d

dx

(
e

x2
2 − 1

))2
e−γx dx =

∫ ∞

0
x2ex2−γx dx = ∞.

The phenomena that the drift αHJM may be located outside the space of forward
curves Hβ,γ has to do with the fact that the space Hβ,γ is a very small space in a
sense, in particular, every function must necessarily be real-analytic (see [13, Propo-
sition4.2]).

The small size of this space arises from the requirement that d
dx should be a

bounded operator, because we are dealing with the existence of strong solutions.
When dealing with mild solutions, problems of this kind will not occur.

Nevertheless, for certain types of term structure models, we can apply
Theorem6.1.11. For this purpose, we proceedwith a lemma. For a given real-analytic
function h : R+ → R it is, in general, difficult to decide whether h belongs to Hβ,γ

or not. For the following functions this information can be provided.

Lemma 6.1.13 Every polynomial p belongs to Hβ,γ , and for δ ∈ R satisfying
δ2 < β and δ <

γ
2 , the function h(x) = eδx belongs to Hβ,γ .

Proof The first statement is clear. For h(x) = eδx we obtain

http://dx.doi.org/10.1007/978-3-319-12853-5_4
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∞∑

n=0

(
1

β

)n ∫ ∞

0

(
dnh(x)

dxn

)2
e−γx dx =

∞∑

n=0

(
1

β

)n ∫ ∞

0

(
δneδx

)2
e−γx dx

=
∞∑

n=0

(
δ2

β

)n ∫ ∞

0
e−(γ−2δ)x dx

= 1

1 − δ2

β

· 1

γ − 2δ

= β

(β − δ2)(γ − 2δ)
,

whence h ∈ Hβ,γ . �

Let n = 3, that is, we have three independent driving processes. We denote by X1

and X2 two standard Wiener processes, and X3 is a Poisson process with intensity
λ > 0. We specify the volatilities as

σ1(r)(x) = ϕ1(r)p(x), σ2(r)(x) = ϕ2(r)eδxandσ3(r)(x) = −η, (6.1.20)

where p is a polynomial, δ, η ∈ R satisfy 4δ2 < β, δ <
γ
4 and η2 < β, η <

γ
2 , and

where ϕi : Hγ,β → R for i = 1, 2. Note that σi (Hβ,γ) ⊂ Hβ,γ for i = 1, 2, 3 by
Lemma6.1.13. The drift according to the HJM drift condition (6.1.8) is given by

αHJM(r)(x) = d

dx

⎡

⎣1

2
ϕ1(r)2q(x)2 + 1

2
ϕ2(r)2

(
eδx − 1

δ

)2

+ λ
(
eηx − 1

)
⎤

⎦ ,

where q(x) = ∫ x
0 p(η)dη is again a polynomial. From Lemma6.1.13 and

Proposition6.1.10 we infer αHJM(Hβ,γ) ⊂ Hβ,γ .

Proposition 6.1.14 Assume there is a constant L ≥ 0 such that for all h1, h2 ∈ Hβ,γ

we have

|ϕi (h1) − ϕi (h2)| ≤ L‖h1 − h1‖β,γ, i = 1, 2,

|ϕi (h1)
2 − ϕi (h2)

2| ≤ L‖h1 − h1‖β,γ, i = 1, 2.

Then, for each h0 ∈ Hβ,γ , there exists a unique strong adapted càdlàg solution
(rt )t≥0 to (6.1.6) with r0 = h0 satisfying (6.1.19).

Proof We have for all h1, h2 ∈ Hβ,γ

‖σ1(h1) − σ1(h2)‖ ≤ L‖p‖β,γ‖h1 − h2‖β,γ,

‖σ2(h1) − σ2(h2)‖ ≤ L‖eδ•‖β,γ‖h1 − h2‖β,γ .

Using Proposition6.1.10, we obtain for all h1, h2 ∈ Hβ,γ
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‖αHJM(h1) − αHJM(h2)‖β,γ ≤ L

2
‖A‖L(Hβ,γ)

(
‖q2‖β,γ

+‖ 1
δ2

(eδ• − 1)2‖β,γ

)
‖h1 − h2‖β,γ .

Applying Theorem6.1.11 completes the proof. �

In order to generalizeProposition6.1.14, by allowing thatη in (6.1.20)maydepend
on the present state of the forward curve, instead of being constant, we prepare two
auxiliary results.

Lemma 6.1.15 Let γ > 0 and g, h ∈ C1(R+;R). Assume there are c > 0, ε ∈
(−∞, γ) and x0 ∈ R+ such that

|g(x)h(x)| ≤ ceεx for all x ≥ x0.

Then we have

∫ ∞

0
g(x)h(x)e−γx dx = 1

γ

[
g(0)h(0) +

∫ ∞

0
g′(x)h(x)e−γx dx

+
∫ ∞

0
g(x)h′(x)e−γx dx

]
.

Proof Performing partial integration with three factors, we obtain

[
g(x)h(x)e−γx

]∞
0

=
∫ ∞

0
g′(x)h(x)e−γx dx +

∫ ∞

0
g(x)h′(x)e−γx dx

− γ

∫ ∞

0
g(x)h(x)e−γx dx .

By hypothesis, we have limx→∞ g(x)h(x)e−γx = 0, and so the stated formula
follows. �

Lemma 6.1.16 Let γ > 0 and h ∈ C2(R+;R) be such that h, h′, h′′ ≥ 0. Assume
there are c > 0, ε ∈ (−∞,

γ
2 ) and x0 ∈ R+ such that

|h(x)| ≤ ceεx and |h′(x)| ≤ ceεx for all x ≥ x0.

Then we have

∫ ∞

0
h′(x)2e−γx dx ≤ γ2

2

∫ ∞

0
h(x)2e−γx dx .

Proof Using Lemma6.1.15 twice, we obtain



148 6 Applications

∫ ∞

0
h(x)2e−γx dx = 2

γ

∫ ∞

0
h(x)h′(x)e−γx dx + 1

γ
h(0)2

= 2

γ2

[∫ ∞

0
h′(x)2e−γx dx +

∫ ∞

0
h(x)h′′(x)e−γx dx

]

+ 1

γ

[
h(0)2 + 2

γ
h(0)h′(0)

]
.

Since h, h′, h′′ ≥ 0 by hypothesis, the stated inequality follows. �

Nowwe generalize Proposition6.1.14 by assuming that, instead of being constant,
η : Hβ,γ → R in (6.1.20) is allowed to depend on the current state of the forward
curve. The rest of our present framework is exactly as in Proposition6.1.14.

Proposition 6.1.17 Assume that, in addition to the hypothesis of Proposition6.1.14,
we have γ ≤ √

2, η(Hβ,γ) ⊂ [0, γ
2 ) ∩ [0,√β) and

|η(h1) − η(h2)| ≤ L‖h1 − h2‖β,γ

for all h1, h2 ∈ Hβ,γ . Then, for each h0 ∈ Hβ,γ , there exists a unique strong adapted
càdlàg solution (rt )t≥0 to (6.1.6) with r0 = h0 satisfying (6.1.19).

Proof It suffices to show that � : Hβ,γ → Hβ,γ defined as �(r)(x) := eη(r)x is
Lipschitz continuous. So let h1, h2 ∈ Hβ,γ be arbitrary. Without loss of generality
we assume that η(h2) ≤ η(h1). Observe that all derivatives of �(h1) − �(h2) are
non-negative. So we obtain by applying Lemma6.1.16 (notice that γ ≤ √

2 by
hypothesis), and the Lipschitz property |ex − ey | ≤ ex |x − y| for y ≤ x , that

‖�(h1) − �(h2)‖2β,γ =
∞∑

n=0

(
1

β

)n ∫ ∞

0

(
η(h1)

neη(h1)x − η(h2)
neη(h2)x

)2
e−γx dx

≤ β

β − 1

∫ ∞

0

(
eη(h1)x − eη(h2)x

)2
e−γx dx

≤ β

β − 1

∫ ∞

0

(
eη(h1)x (η(h1) − η(h2))x

)2
e−γx dx

≤ β

β − 1

(∫ ∞

0

(
xeη(h1)x

)2
e−γx dx

)
L2‖h1 − h2‖2β,γ .

The integral is finite, because we have η(h1) ∈ [0, γ
2 ) by assumption. Applying

Theorem6.1.11 completes the proof. �
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6.2 A Bayes Formula for Non-linear Filtering with Gaussian
and Cox Noise

It is known [104] that if the observation noise is Brownian, the Zakai equation
is a stochastic partial differential equation (SPDE) driven by a Brownian motion.
Motivated by attempts to solve this equation, [56, 80] initiated the study of SPDEs
driven by Brownian motion. Our purpose in this section is to show that if the noise
is a Lévy process we get an SPDE driven by a Lévy process for the unconditional
density. In order to include both the Gaussian and the non-Gaussian part, we shall
present here the recent work from [64].

6.2.1 Introduction to the Problem

The general filtering setting can be described as follows. Assume a partially observ-
able process (X, Y ) = (Xt , Yt )0≤t≤T ∈ R

2 defined on a probability space (�,F ,P).
The real valued process Xt denotes the unobservable component, referred to as the
signal process or system process, whereas Yt is the observable part, called the obser-
vation process. Thus information about Xt can only be obtained by extracting the
information about X that is contained in the observation Yt in the best possible way.
In filter theory this is done by determining the conditional distribution of Xt given
the information σ-field FY

t generated by Ys, 0 ≤ s ≤ t . Or stated in an equivalent
way, the objective is to compute the optimal filter as the conditional expectation

EP[ f (Xt ) |FY
t ]

for a rich enough class of functions f .
In the classical non-linear filter setting, the dynamics of the observation process

Yt is supposed to follow the following Itô process

dYt = h(t, Xt )dt + dWt ,

where Wt is a Brownian motion independent of X . Under certain conditions on the
drift h(t, Xt ) see [51, 52], Kallianpur and Striebel derived a Bayes type formula
for the conditional distribution expressed in terms of the so-called unnormalized
conditional distribution. In the special case when the dynamics of the signal follows
an Itô diffusion

dYt = b(t, Xt)dt + σ(t, Xt )d Bt ,

for a second Brownian motion Bt , Zakai [104] showed under certain conditions
that the unnormalized conditional density is the solution of an associated stochastic
partial differential equation, the so-called Zakai equation.
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Here we extend the classical filter model to the following more general setting.
For a general signal process X we suppose the observation model is given as

Yt = β(t, X) + Gt +
∫ t

0

∫

R0

ς Nλ(dt, dς), (6.2.1)

where

• Gt is a general Gaussian process with zero mean and continuous covariance func-
tion R(s, t), 0 ≤ s, t ≤ T , that is, independent of the signal process X .

• Let FY
t (respectively F X

t ) denote the σ-algebra generated by {Ys, 0 ≤ s ≤ t}
(respectively {Xs, 0 ≤ s ≤ t}) augmented by the null-sets. Define the filtration
(Ft )0≤t≤T through Ft := F X

T ∨ FY
t . Then we assume that the process

Lt :=
∫ t

0

∫

R0

ς Nλ(dt, dς)

is a pure jump Ft -semimartingale determined through the integer valued random
measure Nλ that has an Ft -predictable compensator of the form

μ(dt, dς,ω) = λ(t, X, ς)dtν(dς)

for a Lévy measure ν and a functional λ(t, X (ω), ς). In particular, Gt and Lt are
independent.

• The function β : [0, T ] × R
[0,T ] → R is such that β(t, ·) is F X

t -measurable and
β(·, X (ω)) is in H(R) for almost all ω, where H(R) denotes the Hilbert space
generated by R(s, t) (see Sect. 6.2.2).

The observation dynamics thus consists of an information drift of the signal dis-
turbed by some Gaussian noise plus a pure jump part whose jump intensity depends
on the signal. Note that a jump process of the form given above is also referred to as
a Cox process.

The objective here is a first step toward extending the Kallianpur–Striebel Bayes
type formula to the generalized filter setting described above. When there are no
jumps present in the observation dynamics (6.2.1), the corresponding formula has
been developed in [62].Wewill extend their approach to the present setting including
Cox noise.

In a second stepwe then derive a Zakai typemeasure-valued stochastic differential
equation for the unnormalized conditional distribution of the filter. For this purpose
we assume the signal process X to be aMarkov processwith generatorOt := Lt +Bt

given as

Lt f (x) := b(t, x) ∂x f (x) + 1

2
σ2(t, x) ∂xx f (x),

Bt f (x) :=
∫

R0

{ f (x + γ(t, x)ς) − f (x) − ∂x f (x)γ(t, x)ς} υ(dς)
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where the coefficients b(t, x),σ(t, x), γ(t, x) and f (x) are in C2
0 (R) for every t .

Here, C2
0 (R) is the space of continuous functions with compact support and bounded

derivatives up to order 2. Further, we develop a Zakai type stochastic parabolic
integro-partial differential equation for the unnormalized conditional density, given
it exists. In the case when the dynamics of X does not contain any jumps and the
Gaussian noise Gt in the observation is Brownian, the corresponding Zakai equa-
tion has also been studied in [75]. For further information on Zakai equations in a
semimartingale setting we also refer to [34, 37].

The remaining part of this chapter is organized as follows. In Sect. 6.2.2 we
briefly recall some theory of reproducing kernel Hilbert spaces. In Sect. 6.2.3 we
obtain the Kallianpur–Striebel formula, before we discuss the Zakai type equations
in Sect. 6.2.4.

6.2.2 Reproducing Kernel Hilbert Space and Stochastic Processes

A Hilbert space H consisting of real valued functions on some set T is said to be a
reproducing kernel Hilbert space (RKHS) if there exists a function K on T×Twith
the following two properties: for every t in T and g in H ,

(i) K (·, t) ∈ H ,
(ii) (g(·), K (·, t)) = g(t) (the reproducing property).

K is called the reproducing kernel of H . The following basic properties can be found
in [7].

(1) If a reproducing kernel exists, then it is unique.
(2) If K is the reproducing kernel of a Hilbert space H , then {K (·, t), t ∈ T} spans

H .
(3) If K is the reproducing kernel of a Hilbert space H , then it is nonnegative definite

in the sense that for all t1, . . . , tn in T and a1, . . . , an ∈ R

n∑

i, j=1

K (ti , t j )ai a j ≥ 0.

The converse of (3), stated in Theorem 6.2.1 below, is a fundamental step towards
understanding the RKHS representation of Gaussian processes. A proof of the the-
orem can be found in [7].

Theorem 6.2.1 (E.H. Moore) A symmetric nonnegative definite function K on T ×
T generates a unique Hilbert space, which we denote by H(K ) or sometimes by
H(K ,T), of which K is the reproducing kernel.

Now suppose K (s, t), s, t ∈ T, is a nonnegative definite function. Then, by
Theorem 6.2.1, there is a RKHS, H(K ,T), with K as its reproducing kernel. If we
restrict K to T

′ × T
′ where T′ ⊂ T, then K is still a nonnegative definite function.
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Hence K restricted to T
′ × T

′ will also correspond to a reproducing kernel Hilbert
space H(K ,T′) of functions defined on T

′. The following result from [7; p. 351]
explains the relationship between these two.

Theorem 6.2.2 Suppose KT, defined on T × T, is the reproducing kernel of the
Hilbert space H(KT) with the norm ‖ · ‖. Let T′ ⊂ T and KT′ be the restriction of
KT on T

′ ×T
′. Then H(KT′) consists of all f in H(KT) restricted to T

′. Further, for
such a restriction f ′ ∈ H(KT′) the norm ‖ f ′‖H(KT′ ) is the minimum of ‖ f ‖H(KT)

for all f ∈ H(KT) whose restriction to T
′ is f ′.

If K (s, t) is the covariance function for some zero mean process Zt , t ∈ T,
then, by Theorem 6.2.1, there exists a unique RKHS, H(K ,T), for which K is the
reproducing kernel. It is also easy to see [e.g., see Theorem 3D, 81] that there exists
a congruence (linear, one-to-one, inner product preserving map) between H(K ) and
spL2{Zt , t ∈ T}which takes K (·, t) to Zt . Let us denote by 〈Z , h〉 ∈ spL2{Zt , t ∈ T}
the image of h ∈ H(K ,T) under the congruence.

We conclude this section with an important special case. Suppose the stochastic
process Zt is a Gaussian process given by

Zt =
∫ t

0
F(t, u)dWu, 0 ≤ t ≤ T

where
∫ t
0 F2(t, u)du < ∞ for all 0 ≤ t ≤ T and Wu is Brownian motion. Then the

covariance function

K (s, t) ≡ E(Zs Zt ) =
∫ t∧s

0
F(t, u)F(s, u)du (6.2.2)

and the corresponding RKHS is given by

H(K ) =
{
g : g(t) =

∫ t

0
F(t, u)g∗(u)du, 0 ≤ t ≤ T

}
(6.2.3)

for some (necessarily unique)

g∗ ∈ spL2{F(t, ·)1[0,t](·), 0 ≤ t ≤ T }

with the inner product

(g1, g2)H(K ) =
∫ T

0
g∗
1(u)g∗

2(u)du,

where

g1(s) =
∫ s

0
F(s, u)g∗

1(u)du and g2(s) =
∫ s

0
F(s, u)g∗

2(u)du.
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For 0 ≤ t ≤ T , by taking K (·, t)∗ to be F(t, ·)1[0,t](·), we see, from (6.2.2) and
(6.2.3), that K (·, t) ∈ H(K ). To check the reproducing property suppose h(t) =∫ t
0 F(t, u)h∗(u) du ∈ H(K ). Then

(h, K (·, t))H(K ) =
∫ T

0
h∗(u)K (·, t)∗du =

∫ t

0
h∗(u)F(t, u)du = h(t).

It is also very easy to check in this case [cf. 82, Theorem 4D] that the congruence
between H(K ) and spL2{Zt , t ∈ T} is given by

〈Z , g〉 =
∫ T

0
g∗(u)dWu . (6.2.4)

6.2.3 The Filter Setting and a Bayes Formula

Assume a partially observable process (X, Y ) = (Xt , Yt )0≤t≤T ∈ R
2 defined on a

probability space (�,F ,P). The real valued process Xt denotes the unobservable
component, referred to as the signal process, whereas Yt is the observable part, called
the observation process. In particular, we assume that the dynamics of the observation
process is given as follows:

Yt = β(t, X) + Gt +
∫ t

0

∫

R0

ς Nλ(dt, dς), (6.2.5)

where

• Gt is a Gaussian process with zero mean and continuous covariance function
R(s, t), 0 ≤ s, t ≤ T , that is, independent of the signal process X .

• The function β : [0, T ] × R
[0,T ] → R is such that β(t, ·) is F X

t -measurable and
β(·, X (ω)) is in H(R) for almost all ω, where H(R) denotes the Hilbert space
generated by R(s, t) (see Sect. 6.2.2).

• Let FY
t (respectively F X

t ) denote the σ-algebra generated by {Ys, 0 ≤ s ≤ t}
(respectively {Xs, 0 ≤ s ≤ t}) augmented by the null-sets. Define the filtration
(Ft )0≤t≤T through Ft := F X

T ∨ FY
t . Then we assume that the process

Lt :=
∫ t

0

∫

R0

ς Nλ(dt, dς)

is a pure jump Ft -semimartingale determined through the integer valued random
measure Nλ that has an Ft -predictable compensator of the form

μ(dt, dς,ω) = λ(t, X, ς)dtν(dς)

for a Lévy measure ν and a functional λ(t, X (ω), ς).
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• The functional λ(t, X, ς) is assumed to be strictly positive and such that

∫ T

0

∫

R0

log2 (λ(s, X, ς)) μ(ds, dς) < ∞ a.s. (6.2.6)

∫ T

0

∫

R0

log2 (λ(s, X, ς)) ds ν(dς) < ∞ a.s. (6.2.7)

and

�t := exp

{∫ t

0

∫

R0

log

(
1

λ(s, X, ς)

)
Ñλ(ds, dς)

+
∫ t

0

∫

R0

(
log

(
1

λ(s, X, ς)

)
− 1

λ(s, X, ς)
+ 1

)
μ(ds, dς)

}

is a well-defined Ft -martingale. Here Ñλ(ds, dς) is the compensated jump mea-
sure

Ñλ(ds, dς) := Nλ(ds, dς) − μ(dt, dς).

Remark 6.2.3 Note that the specific form of the predictable compensator μ(dt,
dς,ω) implies that Lt is a process with conditionally independent increments with
respect to the σ-algebra F X

T , i.e.

EP[ f (Lt − Ls)1A |F X
T ] = EP[ f (Lt − Ls) |F X

T ]EP[1A |F X
T ],

for all bounded measurable functions f , A ∈ Fs , and 0 ≤ s < t ≤ T (see, for
example, Theorem6.6 in [48]). It also follows that the process G is independent
from the random measure Nλ(ds, dς).

Given a Borel measurable function f , our non-linear filtering problem then comes
down to determining the least squares estimate of f (Xt ), given the observations up to
time t . In other words, the problem consists in evaluating the optimal filter

EP[ f (Xt ) |FY
t ]. (6.2.8)

In this section we want to derive a Bayes formula for the optimal filter (6.2.8) by an
extension of the reference measure method presented in [62] for the purely Gaussian
case. For this purpose, define for each 0 ≤ t ≤ T with β(·) = β(·, X)

�′
t := exp

{
−〈G,β〉t − 1

2
‖β‖2t

}
.

Then the main tool is the following extension of Theorem3.1 in [62].
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Lemma 6.2.4 Define

dQ := �t�
′
t dP.

Then Qt is a probability measure, and under Qt we have that

Yt = G̃t + Lt ,

where G̃s = β(s, X) + Gs, 0 ≤ s ≤ t , is a Gaussian process with zero mean and
covariance function R, Ls , 0 ≤ s ≤ t , is a pure jump Lévy process with Lévy measure
ν, and the process Xs, 0 ≤ s ≤ T has the same distribution as under P. Further, the
processes G̃, L and X are independent under Qt .

Proof Fix 0 ≤ t ≤ T . First note that since β(·) ∈ H(R) almost surely, we have by
Theorem6.2.2 that β|[0,t] ∈ H(R; t) almost surely. Further, by the independence of
the Gaussian process G from X and from the random measure Nλ(ds, dς) it follows
that

EP[�t�
′
t ] = EP[EP[�t |F X

T ]EP[�′
t |F X

T ]].

Since for f ∈ H(R; t) the random variable 〈G, f 〉t is Gaussian with zero mean and
variance ‖ f ‖2t , it follows again by the independence of G from X and the martingale
property of �t that EP[�t�

′
t ] = 1, and Qt is a probability measure.

Now take 0 ≤ s1, . . . , sm ≤ t , 0 ≤ r1, . . . , r p ≤ t , 0 ≤ t1, . . . , tn ≤ T and real
numbers λ1, . . . ,λm , γ1, . . . , γp , α1, . . . ,αn and consider the joint characteristic
function

EQt

[
ei
∑n

j=1 α j Xt j +i
∑m

i=1 λi G̃si +i
∑p

k=1 γk(Lrk −Lrk−1 )
]

= EP

[
ei
∑n

j=1 α j Xt j +i
∑m

i=1 λi G̃si +i
∑p

k=1 γk(Lrk −Lrk−1 )
�t�

′
t

]

= EP

[
ei
∑n

j=1 α j Xt j EP[ei
∑m

i=1 λi G̃si �′
t |F X

T ]EP[ei
∑p

k=1 γk(Lrk −Lrk−1 )
�t |F X

T ]
]
.

Here, for computational convenience, the part of the characteristic function that
concerns L is formulated in terms of increments of L (where we set r0 = 0). Now,
as in Theorem3.1 in [62], we get by the independence of G from X that

EP[ei
∑m

i=1 λi G̃si �′
t |F X

T ] = e−∑m
i,l=1 λi λl R(si ,sl ),

which is the characteristic function of a Gaussian process with mean zero and covari-
ance function R.

Further, by the conditional independent increments of L , as in the proof of
Theorem6.6 in [48], we get that
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EP

[
e
∫ u

r

∫
R0

δ(s,X,ς) Ñλ(ds,dς) |F X
T

]
= e

∫ u
r

∫
R0

(
eδ(s,X,ς)−1−δ(s,X,ς)

)
μ(dt,dς)

for 0 ≤ r ≤ u ≤ T . So that for one increment one obtains

EP

[
eiγ(Lu−Lr )�t |F X

T

]

= EP

[
exp

{∫ u

r

∫

R0

(
iγς + log

(
1

λ(s, X, ς)

))
Ñλ(ds, dς)

+
∫ u

r

∫

R0

(
iγς + log

(
1

λ(s, X, ς)

)
− 1

λ(s, X, ς)
+ 1

)
μ(dt, dς)

}
|F X

T

]

= EP

[
exp

{∫ u

r

∫

R0

(
e

iγς+log
(

1
λ(s,X,ς)

)

− 1 − iγς − log

(
1

λ(s, X, ς)

))
μ(dt, dς)

+
∫ u

r

∫

R0

(
iγς + log

(
1

λ(s, X, ς)

)
− 1

λ(s, X, ς)
+ 1

)
μ(dt, dς)

}
|F X

T

]

= EP

[
exp

{∫ u

r

∫

R0

(
e

iγς+log
(

1
λ(s,X,ς)

)

− 1

λ(s, X, ς)

)
λ(t, X, ς)dtν(dς)

}
|F X

T

]

= exp

{
(u − r)

∫

R0

(
eiγς − 1

)
ν(dς)

}
.

The generalization to the sum of increments is straightforward and one obtains the
characteristic function of the finite dimensional distribution of a Lévy process (of
finite variation):

EP[ei
∑p

k=1 γk(Lrk −Lrk−1 )
�t |F X

T ] = exp

{ p∑

k=1

(rk − rk−1)

∫

R0

(
eiγk ς − 1

)
ν(dς)

}
.

All together we end up with

EQt

[
ei
∑n

j=1 α j Xt j +i
∑m

i=1 λi G̃si +i
∑p

k=1 γk (Lrk −Lrk−1 )
]

= EP

[
ei
∑n

j=1 α j Xt j

]
· e−∑m

i,l=1 λi λl R(si ,sl ) · e
∑p

k=1(rk−rk−1)
∫
R0

(
eiγk ς−1

)
ν(dς)

,

which completes the proof. �
Remark 6.2.5 Note that in the case where G is Brownian motion Lemma6.2.4 is
just the usual Girsanov theorem for Brownian motion and random measures. In this
case, it follows from the Cameron–Martin theorem and the fact that X is independent
of G, that �t�

′
t is a martingale, and dQ is a probability measure.

Now, the inverse Radon–Nikodym derivative

dP

dQt
= (�t )

−1(�′
t )

−1
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is Qt–a.s. by condition (6.2.6) and an argument as in [62, p. 857] via

(�t )
−1 = exp

{∫ t

0

∫

R0

log (λ(s, X, ς)) Ñ (ds, dς)

+
∫ t

0

∫

R0

(log (λ(s, X, ς)) − λ(s, X, ς) + 1) ds ν(dς)

}
,

(�′
t )

−1 = exp

{
〈G̃,β〉t − 1

2
‖β‖2t

}
.

Here

Ñ (ds, dς) := Nλ(ds, dς) − dtν(dς)

is now a compensated Poisson random measure under Qt . Then we have by the
Bayes formula for conditional expectation for any F X

T -measurable integrable func-
tion g(T, X)

EP

[
g(T, X) |FY

t

]
= EQt

[
g(T, X)(�t )

−1(�′
t )

−1 |FY
t

]

EQt

[
(�t )−1(�′

t )
−1 |FY

t

] .

FromLemma6.2.4we know that the processes (G̃s)0≤s≤t , (Ls)0≤s≤t , and (Xs)0≤s≤T

are independent under Qt and that the distribution of X is the same under Qt as
under P. Hence conditional expectations of the form EQt [φ(X, G̃, L) |FY

t ] can be
computed as

EQt [φ(X, G̃, L) |FY
t ](ω) =

∫

�

φ(X (ω̂), G̃(ω), L(ω))Qt (dω̂)

=
∫

�

φ(X (ω̂), G̃(ω), L(ω))P(dω̂)

= E
P̂
[φ(X (ω̂), G̃(ω), L(ω))],

where (ω, ω̂) ∈ � × � and the index P̂ denotes integration with respect to ω̂.
Consequently, we get the following Bayes formula for the optimal filter.

Theorem 6.2.6 Under the above specified conditions, for any F X
T -measurable inte-

grable function g(T, X)

EP

[
g(T, X) |FY

t

]
=
∫
�

g(T, X (ω̂))αt(ω, ω̂)α′
t (ω, ω̂)P(dω̂)∫

�
αt (ω, ω̂)α′

t (ω, ω̂)P(dω̂)

= E
P̂

[
g(T, X (ω̂))αt (ω, ω̂)α′

t (ω, ω̂)
]

E
P̂

[
αt(ω, ω̂)α′

t (ω, ω̂)
] ,
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where

αt (ω, ω̂) = exp

{∫ t

0

∫

R0

log
(
λ(s, X (ω̂), ς)

)
Ñ (ω, ds, dς)

+
∫ t

0

∫

R0

(
log
(
λ(s, X (ω̂), ς)

)− λ(s, X (ω̂), ς) + 1
)

ds ν(dς)

}
,

α′
t (ω, ω̂) = exp

{
〈G̃(ω),β(·, ω̂)〉t − 1

2
‖β(·, ω̂)‖2t

}
.

6.2.4 Zakai Type Equations

Using the Bayes formula from above we now want to proceed further in deriving
a Zakai type equation for the unnormalized filter. This equation is basic in order to
obtain the filter recursively. To this end we have to impose certain restrictions on
both the signal process and the Gaussian part of the observation process.

Regarding the signal process X , we assume its dynamics to be Markov. More
precisely, we consider the parabolic integro-differential operator Ot := Lt + Bt ,
where

Lt f (x) := b(t, x) ∂x f (x) + 1

2
σ2(t, x) ∂xx f (x),

Bt f (x) :=
∫

R0

{ f (x + γ(t, x)ς) − f (x) − ∂x f (x)γ(t, x)ς} υ(dς)

for f ∈ C2
0 (R). Here, C2

0(R) is the space of continuous functions with compact
support and bounded derivatives up to order 2. Further, we suppose that b(t, ·),
σ(t, ·), and γ(t, ·) are in C2

0(R) for every t and that υ(dς) is a Lévy measure with
second moment. The signal process Xt , 0 ≤ t ≤ T , is then assumed to be a solution
of the martingale problem corresponding to Ot , i.e.

f (Xt ) −
∫ t

0
(Ou f )(Xu)du

is an F X
t -martingale with respect to P for every f ∈ C2

0(R).
Further, we restrict the Gaussian process G of the observation process in (6.2.5)

to belong to the special case presented in Sect. 2.1, i.e.

Gt =
∫ t

0
F(t, s)dWs,

where Wt is Brownian motion and F(t, s) is a deterministic function such that∫ t
0 F2(t, s) ds, 0 ≤ t ≤ T . Note that this type of process includes both Ornstein–

http://dx.doi.org/10.1007/978-3-319-12853-5_2
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Uhlenbeck processes as well as fractional Brownian motion. Then β(t, X) will be
of the form

β(t, X) =
∫ t

0
F(t, s)h(s, Xs)ds.

Further, with

W̃t :=
∫ t

0
h(s, Xs)ds + Wt

we get 〈G̃,β〉t = ∫ t
0 h(s, Xs) dW̃s and ‖β‖2t = ∫ t

0 h2(s, Xs) ds, and α′
t (ω, ω̂) in

Theorem6.2.6 becomes

α′
t (ω, ω̂) = exp

{∫ t

0
h(s, Xs(ω̂))dW̃s(ω) − 1

2

∫ t

0
h2(s, Xs(ω̂))ds

}
.

Note that in this case W̃s , 0 ≤ s ≤ t , is a Brownian motion under Qt .
For f ∈ C2

0(R) we now define the unnormalized filter Vt ( f ) = Vt ( f )(ω) by

Vt ( f )(ω) :=
∫

�
f (Xt (ω̂))αt (ω, ω̂)α′

t (ω, ω̂)P(dω̂) = E
P̂

[
f (Xt (ω̂))αt (ω, ω̂)α′

t (ω, ω̂)
]
.

Then this unnormalized filter obeys the following dynamics.

Theorem 6.2.7 (Zakai equation I) Under the above specified assumptions, the
unnormalized filter Vt( f ) satisfies the equation

dVt

(
f (·)
)
(ω) = Vt

(
Ot f (·)

)
(ω)dt + Vt

(
h(t, ·) f (·)

)
(ω)dW̃t (ω)

+
∫

R0

Vt

(
(λ(t, ·, ς) − 1) f (·)

)
(ω)Ñ (ω, dt, dς). (6.2.9)

Proof Set

gt (ω̂) := f (XT (ω̂)) −
∫ T

t
(Os f )(Xs(ω̂))ds.

Then, by our assumptions on the coefficients b, σ, γ and on the Lévy measure υ(dς),
we have |gt | < C for some constantC . Since f (Xt )−

∫ t
0 Ot f (Xs) ds is a martingale

we obtain

E
P̂
[gt |F X (ω̂)

t ] = f (Xt ), 0 ≤ t ≤ T . (6.2.10)
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If we define

�t (ω, ω̂) := αt (ω, ω̂)α′
t (ω, ω̂),

then, because �t (ω, ω̂) is F X (ω̂)
t -measurable for each ω, Eq. (6.2.10) implies that

Vt ( f ) = E
P̂
[ f (Xt (ω̂))�t (ω, ω̂)]

= E
P̂
[E

P̂
[gt(ω̂)�t (ω, ω̂) |F X (ω̂)

t ]] = E
P̂
[gt (ω̂)�t(ω, ω̂)].

By definition of gt ,

dgt (ω̂) = (Ot f )(Xt (ω̂))dt.

Furthermore, �t = �t (ω, ω̂) is the Doléans–Dade solution of the following linear
SDE

d�t = h(t, Xt (ω̂)�t dW̃t (ω) +
∫

R0

(
λ(t, Xt (ω̂), ς) − 1

)
�t Ñ (ω, dt, dς).

So we get

E
P̂

[
gt (ω̂)�t

] = E
P̂

[
g0(ω̂)�0

]+ E
P̂

[∫ t

0
(Os f )(Xs(ω̂))�sds

]

+ E
P̂

[∫ t

0
h(s, Xs(ω̂)gs(ω̂)�s dW̃s(ω)

]

+ E
P̂

[∫ t

0

∫

R0

(
λ(s, Xs(ω̂), ς) − 1

)
gs(ω̂)�s Ñ (ω, ds, dς)

]
.

The first term on the right-hand side equals f (X0), and for the second one we can
invoke Fubini’s theorem to get

E
P̂

[∫ t

0
(Os f )(Xs(ω̂))�sds

]
=
∫ t

0
E
P̂
[(Os f )(Xs(ω̂))�s]ds

=
∫ t

0
Vs

(
Os f (·)

)
(ω)ds.

For the third term we employ the stochastic Fubini theorem for Brownian motion
(see for Example5.14 in [58]) in order to get
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E
P̂

[∫ t

0
h(s, Xs(ω̂)gs(ω̂)�sdW̃s(ω)

]

=
∫ t

0
E
P̂

[
h(s, Xs(ω̂)gs(ω̂)�s

]
dW̃s(ω)

=
∫ t

0
E
P̂

[
h(s, Xs(ω̂)�sEP̂

[
gs(ω̂) |F X (ω̂)

s

]]
dW̃s(ω)

=
∫ t

0
E
P̂

[
h(s, Xs(ω̂)�s f (Xs(ω̂))

]
dW̃s(ω)

=
∫ t

0
Vs

(
h(s, ·) f (·)

)
(ω)dW̃s(ω).

Further, one easily sees that the analogue stochastic Fubini theorem for compensated
Poisson random measures holds, and we get analogously for the last term

E
P̂

[∫ t

0

∫

R0

(
λ(s, Xs(ω̂), ς) − 1

)
gs(ω̂)�s Ñ (ω, ds, dς)

]

=
∫ t

0

∫

R0

Vs

(
(λ(s, ·, ς) − 1) f (·)

)
(ω)Ñ (ω, ds, dς),

which completes the proof. �
If one further assumes that the filter has a so-called unnormalized conditional

density u(t, x) then we can derive a stochastic integro-PDE determining u(t, x)

which for the Brownian motion case was first established in [104] and is usually
referred to as the Zakai equation.

Definition 6.2.8 We say that a process u(t, x) = u(ω, t, x) is the unnormalized
conditional density of the filter if

Vt ( f )(ω) =
∫

R

f (x)u(ω, t, x)dx (6.2.11)

for all bounded continuous functions f : R → R.

From now on we restrict the integro part Bt of the operator Ot to be the one of
a pure jump Lévy process, i.e. γ = 1, and we assume the initial value X0(ω) of the
signal process to possess a density denoted by ξ(x). Then the following holds:

Theorem 6.2.9 (Zakai equation II) Suppose the unnormalized conditional density
u(t, x) of our filter exists. Then, provided a solution exists, u(t, x) solves the following
stochastic integro-PDE

⎧
⎪⎨

⎪⎩

du(t, x) = O∗
t u(t, x)dt + h(t, x)u(t, x)dW̃t (ω)

+ ∫
R0

(λ(t, x, ς) − 1)u(t, x)Ñ (ω, dt, dς)

u(0, x) = ξ(x).

(6.2.12)



162 6 Applications

Here O∗
t := L∗

t + B∗
t is the adjoint operator of Ot given by

L∗
t f (x) := −∂x (b(t, x) f (x)) + 1

2
∂xx

(
σ2(t, x) f (x)

)
,

B∗
t f (x) :=

∫

R0

{ f (x − ς) − f (x) + ∂x f (x)ς} υ(dς)

for f ∈ C2
0 (R).

For sufficient conditions on the coefficients under which there exists a classical
solution of (6.2.12) see for example [75]; in [74] the existence of solutions in a
generalized sense of stochastic distributions is treated.

Proof By (6.2.9) and (6.2.11) we have for all f ∈ C∞
0 (R)

∫

R

f (x)u(t, x)dx =
∫

R

f (x)ξ(x)dx +
∫ t

0

∫

R

u(s, x)O∗
s f (x)dxds

+
∫ t

0

∫

R

u(s, x)h(s, x) f (x)dxdW̃s(ω)

+
∫ t

0

∫

R0

∫

R

u(s, x) (λ(s, x, ς) − 1) f (x)dx Ñ (ω, ds, dς).

Now, using integration by parts, we get

∫

R

u(s, x)L∗
s f (x)dx =

∫

R

f (x)O∗
s u(s, x)dx . (6.2.13)

Further, using integration by parts again and by substitution, we have

∫

R

u(s, x)B∗
s f (x)dx =

∫

R

f (x)B∗
s u(s, x)dx . (6.2.14)

Fubini together with (6.2.13) and (6.2.14) then yields

∫

R

f (x)u(t, x)dx =
∫

R

f (x)ξ(x)dx +
∫

R

f (x)

(∫ t

0
O∗

s u(s, x)ds

)
dx

+
∫

R

f (x)

(∫ t

0
u(s, x)h(s, x)dW̃s(ω)

)
dx

+
∫

R

f (x)

(∫ t

0

∫

R0

u(s, x) (λ(s, x, ς) − 1) Ñ (ω, ds, dς)

)
dx .

Since this holds for all f ∈ C∞
0 (R) we get (6.2.12). �
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6.3 Remarks and Related Literature

Kallianpur and Striebel [52] established a Bayes formula for the filter. This can be
used in order to obtain the computation of the filter iteratively using SPDEs driven
by a Brownian motion (Zakai equation). This motivated the study of the pioneering
work of [56, 80] on SPDEs with respect to Brownian motion.

It was shown in [62] that the Brownian motion can be replaced by any Gaussian
process in establishing aBayes formula. For a subclass ofGaussian processes (includ-
ing fractional Brownian motion) one can use it to obtain an analogue of the Zakai
equation.

For Lévy processes such an equation was first established in [75]. The work
presented here is from [64], giving a simultaneous generalization of the work in
[62, 75]. The properties of reproducing kernel Hilbert spaces are taken from the
basic work of [7].

For sufficient conditions under which a classical solution to (6.2.12) exists is given
in [75]. The existence of a generalized solution is proven in [74].

The material in Sect. 6.1 is taken directly from the pioneering work of [32] which
constructs the SPDE as an equation in an appropriate Hilbert space, motivated by
[13, 31].



Chapter 7
Stability Theory for Stochastic Semilinear
Equations

In this chapter we study stability of time-homogeneous stochastic partial differential
equations

{
d Zt = (AZt + a(Zt ))dt + ∫

H f (x, Zt )q(dt, dx)

Z0 = x .
(7.0.1)

Throughout this chapter, (�,F , (Ft )t≥0,P) denotes a filtered probability space sat-
isfying the usual conditions. Let H be a separable Hilbert space. In (7.0.1), q denotes
the compensated Poisson randommeasure onR+×E associated to a Poisson random
measure N with compensator dt ⊗ β(dx).

7.1 Exponential Stability in the Mean Square Sense

Let a : H → H and f : H\{0} × H → H be functions.

Assumption 7.1.1 There exists a constant L > 0 such that

‖a(z1) − a(z2)‖ ≤ L‖z1 − z2‖, (7.1.1)
∫

E
‖ f (z1, u) − f (z2, u)‖2β(du) ≤ L‖z1 − z2‖2 (7.1.2)

for all z1, z2 ∈ H , and a constant C > 0, such that

∫

E
‖ f (z, u)‖2β(du) ≤ C(1 + ‖z‖2) for all z ∈ H. (7.1.3)
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Remark 7.1.2 Note that

‖a(z)‖ ≤ K (‖z‖ + 1), z ∈ H, (7.1.4)

for some constant K > 0.

Throughout this chapter, we assume that Assumption 7.1.1 is fulfilled.
As proved in Chap.5, under Assumption 7.1.1, for each x ∈ H the stochastic

partial differential equation (7.0.1) has a unique mild solution (Z x
t )t≥0, and it is a

homogeneous Markov process satisfying
∫ T
0 E[‖Z x

s ‖2]ds < ∞ for all T ∈ R+.
Definition 7.1.3 We say that the solution of SPDE (7.0.1) is exponentially stable in
the mean square sense if there exist positive real constants c, θ such that

E[‖Z x
t ‖2] ≤ ce−θt‖x‖2 for all x ∈ H and t ≥ 0. (7.1.5)

Our object in this chapter is to derive conditions for exponential stability in the
mean square sense.

By Theorem 5.4.2, for each x ∈ H the solution Z x for (7.0.1) is a time-
homogeneous Markov process.

Let D denote the Fréchét derivative.

Definition 7.1.4 The infinitesimal generator L of the solution of SPDE (7.0.1) is
defined as

Lψ(y) = Dψ(y)(Ay + a(y))

+
∫

H\{0}

(
ψ(y + f (x, y)) − ψ(y) − Dψ(y) f (x, y)

)
β(dx), y ∈ D(A)

for any ψ ∈ C2,loc
b (H ;R).

Lemma 7.1.5 Let φ ∈ C1,2,loc
b (R+ × H ; H) and x ∈ D(A) be arbitrary, and let Z

be a strong solution for (7.0.1) with Z0 = x. Then, we have

φ(t, Zt ) − φ(0, x) =
∫ t

0
(∂sφ(s, Zs) + Lφ(s, Zs))ds

+
∫ t

0

∫

E
(φ(s, Zs + f (x, Zs)) − φ(s, Zs))q(ds, dx), t ≥ 0.

Proof The statement follows from Itô’s formula (Theorem 3.7.2). �
Definition 7.1.6 A function ψ ∈ C2,loc

b (H ;R) is called a Lyapunov function for
(7.0.1) if there are constants ci > 0, i = 1, 2, 3 such that

c1‖x‖2 ≤ ψ(x) ≤ c3‖x‖2, x ∈ H (7.1.6)

Lψ(x) ≤ −c2ψ(x), x ∈ D(A). (7.1.7)

http://dx.doi.org/10.1007/978-3-319-12853-5_5
http://dx.doi.org/10.1007/978-3-319-12853-5_5
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For n ∈ N with n > α, where the constant α ∈ R stems from (5.1.2), we con-
sider the approximative system (A.3.2), and denote byLn its infinitesimal generator.
According to TheoremA.3.2, for each x ∈ D(A) there exists a unique strong solution
Zn,x for (A.3.2) with Zn

0 = x .

Lemma 7.1.7 Let ψ ∈ C2,loc
b (H ;R) be a function such that for some constants

c3, k3 > 0 we have

|ψ(x)| ≤ c3(‖x‖2 + 1), x ∈ H. (7.1.8)

Then, for all x ∈ D(A), all c2 ≥ 0 and all n ∈ N such that

E

[ ∫ t

0
|ec2s(c2 + Ln)ψ(Zn,x

s )|ds

]
< ∞, t ≥ 0 (7.1.9)

we have the identity

ec2t
E[ψ(Zn,x

t )] − ψ(x) = E

[ ∫ t

0
ec2s(c2 + Ln)ψ(Zn,x

s )ds

]
, t ≥ 0. (7.1.10)

Proof Note that the function φ : R+ × H → H , φ(t, x) = ec2tψ(x) belongs to
C1,2,loc

b (R+ × H ; H). Using Itô’s formula (Lemma 7.1.5) we obtain

ec2tψ(Zn,x
t ) − ψ(x) =

∫ t

0
ec2s(c2 + Ln)ψ(Zn,x

t )ds + Mt , t ≥ 0

where M denotes the local martingale

Mt =
∫ t

0

∫

E
ecs(ψ(Zn,x

s + f (x, Zn,x
s )) − ψ(Z n,x

s ))q(ds, dx), t ≥ 0.

There exists a non-decreasing sequence (τm)m∈N of stopping times such that τm →
∞ almost surely and Mτm is a martingale with Mτm

0 = 0 for each m ∈ N. Therefore,
we obtain

ect
E[ψ(Zn,x

t∧τm
)] − ψ(x) = E

[ ∫ t∧τm

0
ecs(c + Ln)ψ(Zn,x

s )ds

]
, t ≥ 0.

Let t ≥ 0 be arbitrary. By (7.1.8), we have P-almost surely

ψ(Zn,x
t∧τm

) ≤ c3(‖Zn,x
t∧τm

‖2 + 1) ≤ c3

(
sup

s∈[0,t]
‖Zn,x

s ‖2 + 1

)
, m ∈ N.

Since (Zs)s∈[0,t] ∈ S2
t (H) and (7.1.9) is valid, Lebesgue’s dominated convergence

theorem applies and yields (7.1.10). �

http://dx.doi.org/10.1007/978-3-319-12853-5_5
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At this point, we prepare a generalized version of Lebesgue’s dominated conver-
gence theorem, which we will require in the sequel.

Lemma 7.1.8 Let (X,X ,μ) be a measure space. Let fn : X → R, n ∈ N and
f : X → R be measurable such that fn → f almost surely. Furthermore, let
gn ∈ L1(X), n ∈ N and g ∈ L1(X) be such that g = lim infn→∞ gm almost surely,
| fn| ≤ gn for all n ∈ N and

∫
X gndμ → ∫

X gdμ. Then we have f ∈ L1(X) and

∫

X
fndμ →

∫

X
f dμ.

Proof The hypothesis | fn| ≤ gn implies that the functions gn + fn and gn − fn are
nonnegative and measurable for all n ∈ N. Fatou’s Lemma yields

∫

X
gdμ +

∫

X
f dμ =

∫

X
lim inf
n→∞ (gn + fn)dμ ≤ lim inf

n→∞

∫

X
(gn + fn)dμ

=
∫

X
gdμ + lim inf

n→∞

∫

X
fndμ

as well as
∫

X
gdμ −

∫

X
f dμ =

∫

X
lim inf
n→∞ (gn − fn)dμ ≤ lim inf

n→∞

∫

X
(gn − fn)dμ

=
∫

X
gdμ − lim sup

n→∞

∫

X
fndμ.

Since g ∈ L1(X), we deduce that

∫

X
f dμ ≤ lim inf

n→∞

∫

X
fndμ ≤ lim sup

n→∞

∫

X
fndμ ≤

∫

X
f dμ,

and hence the desired conclusion follows. �

Lemma 7.1.9 Let ψ ∈ C2,loc
b (H ;R) be arbitrary. Suppose there exist constants

c3, c4, c5 > 0 such that we have (7.1.8) and

‖Dψ(x)‖ ≤ c4(1 + ‖x‖), x ∈ H (7.1.11)

‖Dψ2(x)‖ ≤ c5, x ∈ H. (7.1.12)

Let x ∈ H, t ≥ 0 and c2 > 0 be arbitrary. Then there exists a subsequence (nk)k∈N
such that

E

[ ∫ t

0
|ec2s(Lnk − L)ψ(Znk ,x

s )|ds

]
< ∞, k ∈ N (7.1.13)

and we have the convergences
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E[ψ(Znk
t )] → E[ψ(Zt )], (7.1.14)

E

[ ∫ t

0
ec2s(Lnk − L)ψ(Znk ,x

s )ds

]
→ 0. (7.1.15)

Proof Let x ∈ H , t ≥ 0 and c2 > 0 be arbitrary. By Theorem A.3.2 we have

E

[
sup

s∈[0,t]
‖Zn,x

s − Z x
s ‖2

]
→ 0. (7.1.16)

Hence, there exists a subsequence (nk)k∈N such that almost surely

sup
s∈[0,t]

‖Znk ,x
s − Z x

s ‖2 → 0. (7.1.17)

By (7.1.8) and the generalized Lebesgue dominated convergence theorem (Lemma
7.1.8) we deduce (7.1.14). Note that for each k ∈ N we have

ec2s(Lnk − L)ψ(Znk ,x
s ) = Xk

s +
∫

E
Fk(s, u)β(du), s ∈ [0, t]

where we have defined Xk : � × [0, t] → R and Fk : � × [0, t] × E → R as

Xk
s = ec2s Dψ(Znk ,x

s )(nk Rnk (A) − Id)a(Znk ,x
s ),

Fk(s, u) = ec2s
(
ψ(Znk ,x

s + nk Rnk (A) f (u, Znk ,x
s )) − ψ(Znk ,x

s )

− Dψ(Znk ,x
s )nk Rnk (A) f (u, Znk ,x

s )
)

− ec2s
(
ψ(Znk ,x

s + f (u, Z nk ,x
s ))

− ψ(Znk ,x
s ) − Dψ(Znk ,x

s ) f (u, Znk ,x
s )

)
.

By (7.1.17) we get

Xk
s → 0, P ⊗ λ|[0,t]-almost everywhere,

Fk(s, u) → 0, P ⊗ λ|[0,t] ⊗ β-almost everywhere.

Furthermore, we define Y, Y k : �×[0, t] → R and G, Gk : �×[0, t]× E → R as

Ys = 2c4K (γ + 1)ect (1 + ‖Z x
s ‖2),

Y k
s = 2c4K (γ + 1)ect (1 + ‖Znk ,x

s ‖2),
G(s, u) = 2c5(γ + 1)ectC(1 + ‖Z x

s ‖2),
Gk(s, u) = 2c5(γ + 1)ectC(1 + ‖Znk ,x

s ‖2),



170 7 Stability Theory for Stochastic Semilinear Equations

where the constants K > 0 and C > 0 stem from the linear growth conditions
(7.1.3), (7.1.4), and the constant γ > 0 comes from Lemma A.3.1.

Using (7.1.11), Lemma A.3.1 and the linear growth condition (7.1.4) we obtain
for all k ∈ N the estimate

|Xk
s | ≤ 2c4K (γ + 1)ect (1 + ‖Znk ,x

s ‖2) = Y k
s

almost everywhere with respect to P⊗λ|[0,t]. By Taylor’s theorem, relation (7.1.12),
LemmaA.3.1 and the linear growth condition (7.1.3)we get for all k ∈ N the estimate

|Fk(s, u)| ≤ c5ec2t‖nk Rnk (A) f (u, Z nk ,x
s )‖2 + c5ec2t‖ f (u, Znk ,x

s )‖2
≤ 2c5(γ + 1)ec2tC(1 + ‖Znk ,x

s ‖2) = Gk(s, u)

almost everywhere with respect to P⊗ λ|[0,t] ⊗ β. This shows (7.1.13). By (7.1.17)
we have

Y k
s → Ys, P ⊗ λ|[0,t]-almost everywhere,

Gk(s, u) → G(s, u), P ⊗ λ|[0,t] ⊗ β-almost everywhere,

and, furthermore, by (7.1.16) we have

E

[ ∫ t

0
Y k

s ds

]
→ E

[ ∫ t

0
Ysds

]
,

E

[ ∫ t

0

∫

E
Gk(s, u)dsβ(du)

]
→ E

[ ∫ t

0

∫

E
G(s, u)dsβ(du)

]
.

The generalized Lebesgue dominated convergence theorem (Lemma 7.1.8) applies
and proves (7.1.15). �

Theorem 7.1.10 Suppose Assumption 7.1.1 is fulfilled, and there exists a Lyapunov
function ψ ∈ C2,loc

b (H ;R) for (7.0.1) such that (7.1.11) and (7.1.12) are satisfied
with appropriate constants c4, c5 > 0. Then, the SPDE (7.0.1) is exponentially stable
in the mean square sense.

Proof Let x ∈ D(A) and t ≥ 0 be arbitrary. By Lemma 7.1.9, there exists a subse-
quence (nk)k∈N such that (7.1.13)–(7.1.15) are satisfied. Using (7.1.7) and (7.1.13),
for each k ∈ N we have

E

[ ∫ t

0
|ec2s(c2 + Lnk )ψ(Znk ,x

s )|ds

]
≤ E

[ ∫ t

0
|ec2s(Lnk − L)ψ(Znk ,x

s )|ds

]
< ∞.
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By Lemma 7.1.7 and relation (7.1.7) we obtain

ec2t
E[ψ(Znk ,x

t )] − ψ(x) = E

[ ∫ t

0
ec2s(c2 + Lnk )ψ(Znk ,x

s )ds

]

≤ E

[ ∫ t

0
ec2s(Lnk − L)ψ(Znk ,x

s )ds

]
, k ∈ N

and hence, by virtue of (7.1.14) and (7.1.15), we get

ec2t
E[ψ(Z x

t )] ≤ ψ(x).

Incorporating (7.1.6) we obtain

c1E[‖Z x
t ‖2] ≤ E[ψ(Z x

t )] ≤ e−c2tψ(x) ≤ c3e−c2t‖x‖2.

Since D(A) is dense in H , applying Corollary 5.3.2 yields (7.1.5) with c = c3
c1

and
θ = c2. �

Now we want to show that in the linear case, if the SPDE has a zero solution (i.e.
x = 0) and it is exponentially stable in the mean square sense, then we can construct
a Lyapunov function. Let f0 : E → R be a function. We consider the linear SPDE

{
d Z0

t = AZ0
t dt + ∫

E f0(v)Z0
t q(dt, dv),

Z0
0 = x .

(7.1.18)

Assumption 7.1.11 We assume that d := ∫
E f0(y)2β(dy) < ∞.

By Theorem 5.3.1, for each x ∈ H there exists a unique mild solution Z0,x for
(7.1.18) with Z0

0 = x . For n ∈ N with n > α we consider the approximative system

{
d Zn

t = An Zn
t dt + ∫

E f0(v)Zn
t q(dt, dv),

Zn
0 = x,

(7.1.19)

where An ∈ L(H) denotes theYosida approximation defined inChap.5. ByTheorem
4.2.2, for each x ∈ H there exists a unique strong solution Zn,x for (7.1.19) with
Zn,x
0 = x .
We denote by L0 the infinitesimal generator for (7.1.18), and by Ln we denote

the infinitesimal generator for (7.1.19).

Lemma 7.1.12 Let T ∈ L(H) be a self-adjoint operator. Then the function

ψ : H → R, ψ(x) = 〈T x, x〉 (7.1.20)

belongs to C2,loc
b (H ;R), there are constants c3, c4, c5 > 0 such that (7.1.8), (7.1.11),

(7.1.12) are satisfied, and we have

http://dx.doi.org/10.1007/978-3-319-12853-5_5
http://dx.doi.org/10.1007/978-3-319-12853-5_5
http://dx.doi.org/10.1007/978-3-319-12853-5_5
http://dx.doi.org/10.1007/978-3-319-12853-5_4
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Lψ(x) = 2〈T x, Ax + a(x)〉 +
∫

E
〈T f (u, x), f (u, x)〉β(du), x ∈ D(A).

Proof This is a direct calculation. �
Corollary 7.1.13 Let T ∈ L(H) be a self-adjoint operator. Then the function
(7.1.20) belongs to C2,loc

b (H ;R), and we have

L0ψ(x) = 2〈T x, Ax〉 + d〈T x, x〉, x ∈ D(A)

Lnψ(x) = 2〈T x, An x〉 + d〈T x, x〉, x ∈ H

for all n ∈ N.

Proof This is a direct consequence of Lemma 7.1.12. �
Lemma 7.1.14 Let B : H × H → R be a symmetric, bilinear operator. Then we
have

B(x, y) = 1

4

(
B(x + y, x + y) − B(x − y, x − y)

)
, x, y ∈ H.

Proof This is a straightforward calculation by using the symmetry of the bilinear
operator B. �
Lemma 7.1.15 Let B : H × H → R be a symmetric, bilinear operator and let
Bn : H × H → R, n ∈ N be a sequence of symmetric, bilinear operators such that
Bn(x, x) → B(x, x) for all x ∈ H. Then we have

Bn(x, y) → B(x, y), x, y ∈ H.

Proof This is a direct consequence of Lemma 7.1.14. �
Lemma 7.1.16 Let B : H × H → R be a symmetric, bilinear operator. Assume
there exists a constant M > 0 such that

‖B(x, x)‖ ≤ M for all x ∈ H with ‖x‖ = 1.

Then the bilinear operator B is continuous.

Proof By assumption we have

‖B(x, x)‖ ≤ ‖x‖2B

(
x

‖x‖ ,
x

‖x‖
)

≤ M‖x‖2, x ∈ H.

By Lemma 7.1.14 and the parallelogram identity we obtain

4‖B(x, y)‖ ≤ M(‖x + y‖2 + ‖x − y‖2) = 2M(‖x‖2 + ‖y‖2), x, y ∈ H

proving the continuity of B. �
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Lemma 7.1.17 Let t ≥ 0 be arbitrary. There exist positive semidefinite, self-adjoint
operators (T n

t )n∈N0 ⊂ L(H) such that

〈T n
t x, y〉 =

∫ t

0
E[〈Zn,x

s , Zn,y
s 〉]ds, n ∈ N0 (7.1.21)

for all x, y ∈ H, and we have

lim
n→∞Lnψ

n
t (x) = L0ψ

0
t (x), x ∈ D(A) (7.1.22)

where we have defined the functions (ψn
t )n∈N0 ⊂ C2,loc

b (H ;R) by ψn
t (x) = 〈T n

t x, x〉
for n ∈ N0.

Proof Let n ∈ N0 be arbitrary. Let Bn : H × H → R be the symmetric, bilinear
operator

Bn(x, y) :=
∫ t

0
E[〈Zn,x

s , Zn,y
s 〉]ds.

Since Zn,0 ≡ 0, and the solution map H → S2
t (H), x �→ Zn,x is Lipschitz contin-

uous by Corollary 5.3.2, we obtain

Bn(x, x) =
∫ t

0
E[‖Zn,x

s ‖2] ≤ tE

[
sup

s∈[0,t]
‖Zn,x

s ‖2
]

≤ t M‖x‖2, x ∈ H

for a suitable constant M > 0. By Lemma 7.1.16, the bilinear operator Bn is continu-
ous. Thus, there exist positive semidefinite, self-adjoint operators (T n

t )n∈N0 ⊂ L(H)

such that (7.1.21) is satisfied for all x, y ∈ H . By Theorem 5.3.3 we have

lim
n→∞ Bn(x, x) = lim

n→∞

∫ t

0
E[‖Zn,x

s ‖2]ds =
∫ t

0
E[‖Z0,x

s ‖2]ds = B(x, x), x ∈ H.

Lemma 7.1.15 implies that 〈T n
t x, y〉 → 〈T 0

t x, y〉 for all x, y ∈ H. Therefore,
Corollary 7.1.13 and Theorem 5.3.3 yield the claimed convergence (7.1.22). �

Lemma 7.1.18 For all t ≥ 0 and x ∈ D(A) we have

E[‖Z0,x
t ‖2] = L0ψt (x) + ‖x‖2.

Proof Let t ≥ 0 and x ∈ D(A) be arbitrary. Furthermore, let (Pt )t≥0= (P0,t )t≥0 be
the Markov semigroup in (7.1.18) as defined earlier in Sect. 5.4.

Let s ∈ [0, t] and n ∈ N be arbitrary. Setting ϕ : H → R, ϕ(h) = ‖h‖2 we
obtain, by using the Markov property,

http://dx.doi.org/10.1007/978-3-319-12853-5_5
http://dx.doi.org/10.1007/978-3-319-12853-5_5
http://dx.doi.org/10.1007/978-3-319-12853-5_5
http://dx.doi.org/10.1007/978-3-319-12853-5_5
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E[ψn
t (Zn,x

s )] = E

[ ∫ t

0
E[ϕ(Z y

t )]|y=Zn,x
s

ds

]
= E

[ ∫ t

0
(Puϕ)(Zn,x

s )du

]

= E

[ ∫ t

0
E[ϕ(Zn,x

u+s) |F Zn,x

s ]du

]

=
∫ t

0
E[‖Zn,x

u+s‖2]du = ψn
t+s(x) − ψn

s (x), (7.1.23)

and Lemma 7.1.7 gives us

E[ψn
t (Z n,x

s )] = ψn
t (x) +

∫ s

0
E[(Lnψ

n
t )(Zn,x

u )]du. (7.1.24)

Combining (7.1.23) and (7.1.24) we get

ψn
t+s(x) − ψn

s (x) =
∫ s

0
E[(Lnψ

n
t )(Zn,x

u )]du + ψn
t (x). (7.1.25)

Note that, moreover, we have

lim
s→0

ψn
s (x)

s
= d

ds
ψn

s (x)|s=0 = E[‖Zn,x
0 ‖2] = ‖x‖2. (7.1.26)

Combining (7.1.25) and (7.1.26) we obtain

d

dt
ψn

t (x) = lim
s→0

ψn
t+s(x) − ψn

t (x)

s
= lim

s→0

ψn
s (x)

s
+ E[Lnψ

n
t (Zn,x

0 )]
= ‖x‖2 + Lnψ

n
t (x).

(7.1.27)

Now, Theorem5.3.3 and (7.1.27) yield

d

dt
ψt (x) = E[‖Z0,x

t ‖2] = lim
n→∞E[‖Zn,x

t ‖2] = lim
n→∞

d

dt
ψn

t (x) = L0ψt(x) + ‖x‖2,
(7.1.28)

completing the proof. �

Lemma 7.1.19 Suppose the SPDE (7.1.18) is exponentially stable in the mean
square sense. Then there exists a positive semidefinite, self-adjoint operator T ∈
L(H) such that

〈T x, y〉 =
∫ ∞

0
E[〈Z0,x

s , Z0,y
s 〉]ds, x, y ∈ H (7.1.29)

and we have ‖T ‖ ≤ c
θ , where the constants c, θ > 0 stem from (7.1.5).

Proof Let B : H × H → R be the symmetric, bilinear operator

http://dx.doi.org/10.1007/978-3-319-12853-5_5
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B(x, y) :=
∫ ∞

0
E[〈Z x

s , Z y
s 〉]ds.

Using the estimate (7.1.5), we obtain

‖B(x, x)‖ =
∫ ∞

0
E[‖Z0,x

s ‖2]ds ≤ c‖x‖2
∫ ∞

0
e−θsds = c

θ
‖x‖2. (7.1.30)

ByLemma7.1.16, the bilinear operator B is continuous.Hence, there exists a positive
semidefinite, self-adjoint operator T ∈ L(H) such that (7.1.29) is valid. Since ‖T ‖ =
sup‖x‖≤1 |〈T x, x〉|, estimate (7.1.30) shows that ‖T ‖ ≤ c

θ . �

Since (St )t≥0 is pseudo-contractive, there exists, by the Lumer–Phillips theorem,
a constant λ ≥ 0 such that

〈Ax, x〉 ≤ λ‖x‖2 for all x ∈ D(A). (7.1.31)

Theorem 7.1.20 Suppose Assumption 7.1.11 is fulfilled. If the linear SPDE (7.1.18)
is exponentially stable in the mean square sense, then for each ω ∈ (0, 1

2λ+d ) the
function

�0
ω : H → R, �0

ω(x) =
∫ ∞

0
E[‖Z0,x

s ‖2]ds + ω‖x‖2 (7.1.32)

is a Lyapunov function for (7.1.18), conditions (7.1.11) and (7.1.12) are satisfied
with ψ = �0

ω for suitable constants c4, c5 > 0, and we have the estimate

L0�
0
ω(x) ≤ −(1 − (2λ + d)ω)‖x‖2, x ∈ D(A). (7.1.33)

Proof Relation (7.1.5) with Z = Z0 shows that for all x ∈ H we obtain

E[‖Z0,x
t ‖2] ≤ ce−θt‖x‖2 → 0 as t → ∞. (7.1.34)

Moreover, we have

lim
t→∞〈Tt x, x〉 = lim

t→∞

∫ t

0
E[‖Z x

s ‖2]ds =
∫ ∞

0
E[‖Z x

s ‖2]ds = 〈T x, x〉, x ∈ H.

Lemma 7.1.15 implies that 〈Tt x, y〉 → 〈T x, y〉 for all x, y ∈ H . Therefore,
Corollary 7.1.13, Lemma 7.1.18 and (7.1.34) yield

L0ψ(x) = lim
t→∞L0ψt (x) = lim

t→∞(E[‖Z0,x
t ‖2] − ‖x‖2) = −‖x‖2, x ∈ D(A).

(7.1.35)
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Let ω ∈ (0, 1
2λ+d ) be arbitrary. The function �0

ω : H → R defined in (7.1.32) has
the representation

�0
ω(x) = 〈(T + ω)x, x〉 = 〈T x, x〉 + ω‖x‖2, x ∈ H.

Thus, by Lemma 7.1.12, the function �0
ω belongs to C2,loc

b (H ;R), and there are
constants c4, c5 > 0 such that (7.1.11) and (7.1.12) are satisfied with ψ = �0

ω.
Taking into account Lemma 7.1.19, we have

ω‖x‖2 ≤ �0(x) ≤
(

c

θ
+ ω

)
‖x‖2, x ∈ H (7.1.36)

that is, condition (7.1.6) is satisfied with c1 = ω, c3 = c
θ + ω and ψ = �0

ω . By
Lemma 7.1.13, relations (7.1.35), (7.1.31) and (7.1.36) we obtain

L0�
0
ω(x) = 2〈(T + ω)x, Ax〉 + d〈(T + ω)x, x〉

= L0ψ(x) + (2〈Ax, x〉 + d‖x‖2)ω
≤ −‖x‖2 + ω(2λ + d)‖x‖2 = −(1 − (2λ + d)ω)‖x‖2

≤ −
(
1 − (2λ + d)ω

c
θ + ω

)
�0

ω(x), x ∈ D(A),

proving the estimate (7.1.33) and condition (7.1.7) is satisfied with c2 = 1−(2λ+d)ω
c
θ +ω

,

ψ = �0
ω and L = L0. �

The reason for looking at the linear case is that, in general, we do not know if

ψ(x) = E

[ ∫ ∞

0
‖Z x

t ‖2dt

]

is in C2,loc
b (H ;R). However, using the results of Sect. 5.7, we can give conditions

on the coefficient for ψ ∈ C2,loc
b (H ;R). In this case

�(x) = ψ(x) + ω‖x‖2

satisfies condition (7.1.6).

Lemma 7.1.21 Let T ∈ L(H) be a self-adjoint operator. Then we have

|〈T x, x〉 − 〈T y, y〉| ≤ ‖T ‖ ‖x − y‖ ‖x + y‖, x, y ∈ H.

http://dx.doi.org/10.1007/978-3-319-12853-5_5
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Proof Let x, y ∈ H be arbitrary. Then we have

〈T x, x〉 − 〈T y, y〉 = 〈T x, x〉 + 〈T x, y〉 − 〈T y, x〉 − 〈T y, y〉
= 〈T x, x + y〉 − 〈T y, x + y〉 = 〈T (x − y), x + y〉,

which yields the assertion. �

Theorem 7.1.22 Suppose Assumptions 7.1.1 and 7.1.11 are fulfilled, the solution of
the linear SPDE (7.1.18) is exponentially stable in the mean square sense, and there
is a constant ε > 0 such that for all x ∈ H we have

2‖x‖‖a(x)‖ +
∫

E
‖ f (v, x) − f0(v)x‖‖ f (v, x) + f0(v)x‖β(dv) ≤ (1 − ε)

θ

c
‖x‖2,

(7.1.37)

where the constants c, θ > 0 stem from (7.1.5). Then the solution of the SPDE (7.0.1)
is also exponentially stable in the mean square sense.

Proof There exists an ω ∈ (0, 1
2λ+d ) such that

Cω := ε −
(
2λ + d + (1 − ε)

θ

c

)
ω > 0. (7.1.38)

By Theorem 7.1.20, the function �0
ω : H → R defined in (7.1.32) is a Lyapunov

function for (7.1.18), conditions (7.1.11) and (7.1.12) are satisfied with ψ = �0
ω for

suitable constants c4, c5 > 0, and we have the estimate (7.1.33). Note that we have
the representation

�0
ω(x) = 〈T x, x〉 + ω‖x‖2 = 〈(T + ω)x, x〉, x ∈ H.

Let x ∈ D(A) be arbitrary. Using Lemma 7.1.12, estimate (7.1.37) and Lemma
7.1.21 we obtain

L�0
ω(x) − L0�

0
ω(x) = 2〈(T + ω)x, a(x)〉

+
∫

E

(
〈(T + ω) f (v, x), f (v, x)〉

− 〈(T + ω) f0(v)x, f0(v)x〉
)
ν(dv)

≤ (‖T ‖ + ω)

(
2‖x‖‖a(x)‖ +

∫

H\{0}
‖ f (v, x)

− f0(v)x‖‖ f (v, x) + f0(v)x‖ν(dv)

)

≤ (1 − ε)

(
c

θ
+ ω

)
θ

c
‖x‖2 = (1 − ε)

(
1 + ωθ

c

)
‖x‖2,
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and therefore, by taking into account (7.1.33),

L�0
ω(x) ≤ L0�

0
ω(x) + (1 − ε)

(
1 + ωθ

c

)
‖x‖2

≤ −(1 − (2λ + d)ω)‖x‖2 + (1 − ε)

(
1 + ωθ

c

)
‖x‖2 = −Cω‖x‖2.

By (7.1.38) and (7.1.6), condition (7.1.7) is satisfied with ψ = �0
ω and a suit-

able constant c2 > 0. Consequently, �0
ω is also a Lyapunov function for (7.0.1).

By Theorem 7.1.10, the SPDE (7.0.1) is exponentially stable in the mean square
sense. �

Definition 7.1.23 We say that the zero solution of (7.0.1) is stable in probability if
for each ε > 0 we have

lim‖x‖→0
P

(
sup
t≥0

‖Z x
t ‖ > ε

)
= 0. (7.1.39)

Theorem 7.1.24 Suppose Assumption 7.1.1 is fulfilled, and there exists a function
ψ ∈ C2,loc

b (H ;R) and constants c1, c3 > 0 such that (7.1.6) and (7.1.7) are satisfied
with c2 = 0, and (7.1.11) and (7.1.12) are satisfied with appropriate constants
c4, c5 > 0. Then the zero solution of (7.0.1) is stable in probability.

Proof Let x ∈ D(A) and t ≥ 0 be arbitrary. By Lemma 7.1.9, there exists a subse-
quence (nk)k∈N such that (7.1.13)–(7.1.15) are satisfied with c2 = 0. Using (7.1.7)
and (7.1.13), for each k ∈ N we have

E

[ ∫ t

0
|Lnk ψ(Znk ,x

s )|ds

]
≤ E

[ ∫ t

0
|(Lnk − L)ψ(Znk ,x

s )|ds

]
< ∞.

By Lemma 7.1.7 and relation (7.1.7) we obtain

E[ψ(Znk ,x
t )] − ψ(x) = E

[ ∫ t

0
Lnk ψ(Znk ,x

s )ds

]

≤ E

[ ∫ t

0
(Lnk − L)ψ(Znk ,x

s )ds

]
, k ∈ N

and hence, by virtue of (7.1.14) and (7.1.15), we get

E[ψ(Z x
t )] ≤ ψ(x).

Now, let x ∈ H be arbitrary. Since D(A) is dense in H , there exists a sequence
(xn)n∈N ⊂ D(A) with xn → x . By (7.1.8), Corollary 5.3.2 and the generalized
Lebesgue dominated convergence theorem (Lemma 7.1.8), there exists a subse-
quence (nk)k∈N such that

http://dx.doi.org/10.1007/978-3-319-12853-5_5
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E[ψ(Z
xnk
t )] → E[ψ(Z x

t )].

Hence, we deduce that

E[ψ(Z x
t )] ≤ ψ(x) for all x ∈ H and t ≥ 0. (7.1.40)

Now, let x ∈ H and ε > 0 be arbitrary. We define the stopping time

τ x
ε := inf{t ≥ 0 : ‖Z x

t ‖ > ε}.

By (7.1.6) and (7.1.40) we obtain

c1εP(τ x
ε ≤ t) ≤ E[ψ(Z x

t∧τ x
ε
)] ≤ ψ(x),

which implies

P

(
sup
t≥0

‖Z x
t ‖ > ε

)
≤ P(τ x

ε ≤ t) ≤ ψ(x)

c1ε
,

and hence, in view of (7.1.6), we arrive at (7.1.39). �

Corollary 7.1.25 Suppose Assumption 7.1.11 is fulfilled. If the linear SPDE (7.1.18)
is exponentially stable in the mean square sense, then the zero solution of (7.1.18) is
stable in probability.

Proof This is a direct consequence of Theorems 7.1.20, 7.1.10 and 7.1.24. �

Corollary 7.1.26 Suppose Assumption 7.1.1 and 7.1.11 are fulfilled. If the linear
SPDE (7.1.18) is exponentially stable in the mean square sense and we have (7.1.37),
then the zero solution of (7.0.1) is stable in probability.

Proof This is an immediate consequence of Theorems 7.1.22, 7.1.10 and 7.1.24. �

7.2 Exponential Ultimate Boundedness in the Mean
Square Sense

Definition 7.2.1 The solution of SPDE (7.0.1) is called exponentially ultimately
bounded in the mean square sense if there exist constants c, θ, M > 0 such that

E[‖Z x
t ‖2] ≤ ce−θt‖x‖2 + M for all x ∈ H and t ≥ 0. (7.2.1)

Theorem 7.2.2 Suppose Assumption 7.1.1 is fulfilled, and there exist a function
ψ ∈ C2,loc

b (H ;R) and constants ci > 0, i = 1, . . . , 5 and ki ≥ 0, i = 1, 2, 3 such
that (7.1.11) and (7.1.12) are satisfied and we have
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c1‖x‖2 − k1 ≤ ψ(x) ≤ c3‖x‖2 − k3, x ∈ H, (7.2.2)

Lψ(x) ≤ −c2ψ(x) + k2, x ∈ D(A). (7.2.3)

Then the solution of SPDE (7.0.1) is exponentially ultimately bounded.

Proof Let x ∈ D(A) and t ≥ 0 be arbitrary. By Lemma 7.1.9, there exists a subse-
quence (nk)k∈N such that (7.1.13)–(7.1.15) are satisfied. Using (7.1.7) and (7.1.13),
for each k ∈ N we have

E

[ ∫ t

0
|ec2s(c2 + Lnk )ψ(Znk ,x

s )|ds

]
≤ E

[ ∫ t

0
|ec2s((Lnk − L)ψ(Znk ,x

s ) + k2)|ds

]

≤ E

[ ∫ t

0
|ec2s(Lnk − L)ψ(Znk ,x

s )|ds

]

+ k2

∫ t

0
ec2sds < ∞.

By Lemma 7.1.7 and relation (7.1.7) we obtain

ec2t
E[ψ(Znk ,x

t )] − ψ(x) = E

[ ∫ t

0
ec2s(c2 + Lnk )ψ(Znk ,x

s )ds

]

≤ E

[ ∫ t

0
ec2s((Lnk − L)ψ(Znk ,x

s ) + c2)ds

]

= E

[ ∫ t

0
ec2s(Lnk − L)ψ(Znk ,x

s )ds

]
+ k2

∫ t

0
ec2sds,

and hence, by virtue of (7.1.14) and (7.1.15), we get

ec2t
E[ψ(Z x

t )] ≤ ψ(x) + k2
c2

(ec2t − 1).

Incorporating (7.2.2) we obtain

c1E[‖Z x
t ‖2] − k1 ≤ E[ψ(Z x

t )] ≤ e−c2t
(

ψ(x) + k2
c2

(ec2t − 1)

)

≤ e−c2t(c3‖x‖2 − k3) + k2
c2

(1 − e−c2t ) ≤ c3e−c2t‖x‖2 + k2
c2

.

Since D(A) is dense in H , applying Corollary 5.3.2 yields (7.2.1) with

c = c3
c1

, θ = c2 and M = 1

c1

(
k1 + k2

c2

)
.

This completes the proof. �

http://dx.doi.org/10.1007/978-3-319-12853-5_5


7.2 Exponential Ultimate Boundedness in the Mean Square Sense 181

Corollary 7.2.3 Suppose the assumptions of Theorem7.2.2 are fulfilled. Then, for
all x ∈ H, there exists a finite constant M > 0 such that

lim sup
t→∞

E[‖Z x
t ‖2] ≤ M.

Proof The assertion follows from Theorem 7.2.2 and the estimate (7.2.1). �

Remark 7.2.4 The above Corollary 7.2.3 generalizes a result of Skorokhod ([97],
p. 70).

Lemma 7.2.5 Suppose the SPDE (7.1.18) is exponentially ultimately bounded in
the mean square sense and let t ≥ 0 be arbitrary. Then we have ‖Tt‖ ≤ c

θ +
Mt, where Tt ∈ L(H) denotes the positive semidefinite, self-adjoint operator from
Lemma7.1.17, and where the constants c, θ, M > 0 stem from (7.2.1).

Proof Using the estimate (7.2.1), for all x ∈ H we obtain

‖〈Tt x, x〉‖ =
∫ t

0
E[‖Z0,x

s ‖2]ds ≤ c‖x‖2
∫ t

0
e−θsds + Mt = c

θ
‖x‖2 + Mt.

Since ‖Tt‖ = sup‖x‖≤1 |〈Tt x, x〉|, we deduce that ‖Tt‖ ≤ c
θ + Mt . �

Theorem 7.2.6 If the solution of the linear SPDE (7.1.18) is exponentially ultimately

bounded in the mean square sense, then for each t > ln c
θ and each ω ∈ (0, ceθt−1

2λ+d )

there are constants ci > 0, i = 1, . . . , 5 and ki ≥ 0, i = 1, 2, 3 such that the
function

�0
ω,t : H → R, �0

ω,t (x) =
∫ t

0
E[‖Z0,x

s ‖2]ds + ω‖x‖2 (7.2.4)

satisfies (7.1.11), (7.1.12) and (7.2.2), (7.2.3) with ψ = �0
ω,t and L = L0, and we

have the estimate

L0�
0
ω,t (x) ≤ −(1 − ce−θt − (2λ + d)ω)‖x‖2 + M, x ∈ D(A) (7.2.5)

where the constants c, θ, M > 0 stem from (7.2.1).

Proof By Lemma 7.1.18 and the estimate (7.2.1) we obtain

L0ψt(x) = −‖x‖2 + E[‖Z0,x
t ‖2] ≤ −‖x‖2 + ce−θt‖x‖2 + M

= (ce−θt − 1)‖x‖2 + M.

Let t > ln c
θ and each ω ∈ (0, ceθt −1

2λ+d ) be arbitrary. The function �0
ω,t : H → R

defined in (7.2.4) has the representation
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�0
ω,t (x) = 〈(Tt + ω)x, x〉 = 〈Tt x, x〉 + ω‖x‖2, x ∈ H.

Thus, by Lemma 7.1.12, the function �0
ω,t belongs to C2,loc

b (H ;R), and there are
constants c4, c5 > 0 such that (7.1.11) and (7.1.12) are satisfied with ψ = �0

ω,t .
Using Lemma 7.2.5 we have

ω‖x‖2 ≤ �0(x) ≤
(

c

θ
+ Mt + ω

)
‖x‖2, x ∈ H, (7.2.6)

that is, condition (7.2.2) is satisfied with c1 = ω, c3 = c
θ + Mt + ω and ψ = �0

ω.
By Lemma 7.1.13, relations (7.1.35), (7.1.31) and (7.2.6) we obtain

L0�
0
ω,t (x) = 2〈(Tt + ω)x, Ax〉 + d〈(Tt + ω)x, x〉

= L0ψt (x) + (2〈Ax, x〉 + d‖x‖2)ω
≤ (ce−θt − 1)‖x‖2 + M + (2λ + d)ω‖x‖2
= −(1 − ce−θt − (2λ + d)ω)‖x‖2 + M

≤ −
(
1 − ce−θt − (2λ + d)ω

c
θ + Mt + ω

)
�0

ω,t (x) + M, x ∈ D(A)

proving the estimate (7.2.5) and condition (7.1.7) with

c2 = 1 − ce−θt − (2λ + d)ω
c
θ + Mt + ω

and L = L0. �

Theorem 7.2.7 If the solution of equation (7.0.1) is exponentially ultimately bounded
in the mean square sense and

φ(x) =
∫ T

0
E[‖Z x

s ‖2]ds

belongs to C2,loc
b (H ;R) for some T > 0, then there exists an ω ≥ 0 such that

ψ(x) = φ(x) + ω‖x‖2

is a Lyapunov function.

Proof The proof is similar to that of Theorem 7.1.20. �

Theorem 7.2.8 Suppose Assumptions7.1.1,7.1.11are fulfilled, the SPDE (7.1.18) is
exponentially ultimately bounded in the mean square sense, and there exist constants
W, N > 0 such that
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W < max
t> ln c

θ

1 − ce−θt

c
θ + Mt

(7.2.7)

and for all x ∈ H we have

2‖x‖‖a(x)‖ +
∫

H\{0}
‖ f (v, x) − f0(v)x‖‖ f (v, x) + f0(v)x‖ν(dv) ≤ W‖x‖2 + N ,

(7.2.8)

where the constants c, θ, M > 0 stem from (7.2.1). Then the solution of the SPDE
(7.0.1) is also exponentially ultimately bounded in the mean square sense.

Proof By (7.2.7), there exist t > ln c
θ and ε > 0 such that

W = (1 − ε)
1 − ce−θt

c
θ + Mt

. (7.2.9)

Furthermore, there exists an ω ∈ (0, ceθt −1
2λ+d ) such that

Cω,t := (1 − ce−θt )ε − (2λ + d + W )ω > 0. (7.2.10)

By Theorem 7.1.20, there are constants ci > 0, i = 1, . . . , 5 and ki ≥ 0, i = 1, 2, 3
such that the function �0

ω : H → R defined in (7.1.32) satisfies (7.1.11), (7.1.12)
and (7.2.2), (7.2.3) with ψ = �0

ω,t and L = L0, and we have the estimate (7.2.5).
Note that we have the representation

�0
t,ω(x) = 〈Tt x, x〉 + ω‖x‖2 = 〈(Tt + ω)x, x〉, x ∈ H.

Let x ∈ D(A) be arbitrary. Using Lemmas 7.1.12, 7.1.21 and estimate (7.2.8) we
obtain

L�0
ω,t (x) − L0�

0
ω,t (x) = 2〈(Tt + ω)x, a(x)〉

+
∫

E

(
〈(Tt + ω) f (v, x), f (v, x)〉

− 〈(Tt + ω) f0(v)x, f0(v)x〉
)
β(dv)

≤ (‖Tt‖ + ω)

(
2‖x‖‖a(x)‖

+
∫

H\{0}
‖ f (v, x) − f0(v)x‖‖ f (v, x) + f0(v)x‖β(dv)

)

≤
(

c

θ
+ Mt + ω

)
(W‖x‖2 + N ),
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and therefore, by taking into account (7.2.5) and (7.2.9),

L�0
ω,t (x) ≤ −(1 − ce−θt − (2λ + d)ω)‖x‖2 + M

+
(

c

θ
+ Mt + ω

)
(W‖x‖2 + N )

= −Ct,ω‖x‖2 + M +
(

c

θ
+ Mt + ω

)
N .

By (7.2.10) and (7.2.2), condition (7.2.3) is satisfied with ψ = �0
ω,t and suitable

constants c2 > 0 and k2 ≥ 0. Consequently, �0
ω,t is also a Lyapunov function for

(7.0.1). By Theorem 7.2.6, the SPDE (7.0.1) is exponentially ultimately bounded in
the mean square sense. �

Let us recall some notation, which we will use in the sequel. For a function
f : H → R the notation

f (x) → 0 for ‖x‖ → ∞

means that for each ε > 0 there exists a constant C > 0 such that

‖ f (x)‖ ≤ ε for all x ∈ H with ‖x‖ ≥ C.

For two functions f, g : H → R the notation

f (x) = o(g(x)) for ‖x‖ → ∞

means that

f (x)

g(x)
→ 0 for ‖x‖ → ∞.

Corollary 7.2.9 Suppose the linear SPDE (7.1.18) is exponentially ultimately
bounded in the mean square sense and

‖a(x)‖ = o(‖x‖), (7.2.11)
∫

E
‖ f (v, x) − f0(v)x‖‖ f (v, x) + f0(v)x‖ν(dv) = o(‖x‖2) (7.2.12)

for ‖x‖ → ∞. Then the solution of SPDE (7.0.1) is also exponentially ultimately
bounded in the mean square sense.

Proof There exists a constant W > 0 such that (7.2.7) is satisfied. By (7.2.11) and
(7.2.12) there exists a C > 0 such that
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2‖x‖‖a(x)‖ +
∫

E
‖ f (v, x) − f0(v)x‖‖ f (v, x) + f0(v)x‖ν(dv) ≤ W‖x‖2

for all x ∈ H with ‖x‖ ≥ C . Set

M := C2 + 2K (C2 + 1) + 2C2,

where the constant K > 0 stems from the linear growth condition (7.1.4). For each
x ∈ H with ‖x‖ < C we obtain, by using (7.1.4),

2‖x‖‖a(x)‖ +
∫

E
‖ f (v, x) − f0(v)x‖‖ f (v, x) + f0(v)x‖β(dv)

≤ ‖x‖2 + ‖a(x)‖2 + 2
∫

E
(‖ f (v, x)‖2β(dv) + 2d‖x‖2

≤ ‖x‖2 + 2K (‖x‖2 + 1) + 2d‖x‖2 < M.

Consequently, condition (7.2.8) is satisfied, whence Theorem 7.2.8 completes the
proof. �

Corollary 7.2.10 Suppose Assumption7.1.1 is fulfilled, that the solution of the deter-
ministic PDE

{
d Zt = AZt dt,

Z0 = x

is exponentially ultimately bounded and we have

‖a(x)‖ = o(‖x‖),
∫

E
‖ f (v, x)‖2ν(dv) = o(‖x‖2)

for ‖x‖ → ∞. Then, the SPDE (7.0.1) is exponentially ultimately bounded in the
mean square sense.

Proof The assertion follows from Corollary 7.2.9 with f0 ≡ 0. �

7.3 Invariant Measures

Let (Pt )t≥0 be the Markov semigroup of (7.0.1) as defined in (5.4.2) for s = 0, i.e.
Pt is the linear operator on Bb(H) defined by

(Pt )(φ)(x) = E[φ(Z x
t )] for φ ∈ Bb(H) x ∈ H

http://dx.doi.org/10.1007/978-3-319-12853-5_5
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where Z x
t := Z(t, 0; x) is the solution of (7.0.1) with initial condition x ∈ H

evaluated at time t > 0.

Definition 7.3.1 (Pt )t≥0 is a Feller semigroup if Pt (Cb(H)) ⊂ Cb(H) for all
t ∈ R+, where Cb(H) denotes the space of all bounded, continuous functions
f : H → H .

By continuous dependence on the initial condition (see Lemma 5.7.1) the semi-
group (Pt )t≥0 defined in (5.4.10) is a Feller semigroup.

Definition 7.3.2 [28, p. 230] A σ-finite measure μ on (H,B(H)) is an invariant
measure for (Pt )t≥0 (resp. for the SPDE (7.0.1)) if we have

∫

H
Pt f dμ =

∫

H
f dμ for all f ∈ Cb(H) and t ≥ 0.

Definition 7.3.3 A sequence (μn)n∈N of probability measures on a separable metric
space X converges weakly to a probability measure μ if

∫

X
f dμn →

∫

X
f dμ

for every f ∈ Cb(X).

Let (ek)k∈N be an orthonormal basis of H , and define the isometric isomorphism

J : H → �2(N), J x := (〈x, ek〉)k∈N.

Note that �2(N) ⊂ R
N. The linear space RN, equipped with the metric

d(x, y) =
∞∑

k=1

2−k |xk − yk |
1 + |xk − yk | , x, y ∈ R

N

is a separable metric space, and we have xn → x in R
N if and only if xk

n → xk for
all k ∈ N.

For a finite subset I ⊂ N we denote by πI : R
N → R

I the corresponding
projection, and for finite subsets I ⊂ J ⊂ N we denote by π J

I : R
J → R

I the
corresponding projection. The family of �2(N)-valued processes

Y x
t := J ZJ −1(x)

t , x ∈ �2(N) and t ≥ 0

is a family of time-homogeneousMarkovprocesses.Wedenote itsMarkov semigroup
by (Qt )t≥0. For every finite subset I ⊂ N, the family of RI -valued processes

Y I,x
t := πI Y x

t , x ∈ R
I and t ≥ 0

http://dx.doi.org/10.1007/978-3-319-12853-5_5
http://dx.doi.org/10.1007/978-3-319-12853-5_5
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is a family of time-homogeneousMarkovprocesses.Wedenote itsMarkov semigroup
by (QI

t )t≥0.

Theorem 7.3.4 Suppose Assumption 7.1.1 is fulfilled. If the solution of the SPDE
(7.0.1) is exponentially ultimately bounded in the mean square sense, then it has an
invariant measure ν satisfying

∫

H
‖x‖2ν(dx) < ∞. (7.3.1)

Proof Let x ∈ H and a finite subset I ⊂ N be arbitrary. We show that the family of
probability measures

μn,x
I (B) := 1

n

∫ n

0
P(Y I,x

s ∈ B)ds, B ∈ B(RI ), n ∈ N

is tight. Indeed, for an arbitrary ε > 0 we define the compact subset

Kε :=
{

y ∈ R
I : ‖y‖RI ≤

√
c‖x‖2 + M

ε

}
,

where the constants c, M > 0 stem from (7.2.1). Then, by Chebyshev’s inequality
and (7.2.1),

μn,x
I (RI \Kε) = 1

n

∫ n

0
P

(
‖Y I,x

s ‖RI >

√
c‖x‖2 + M

ε

)
ds

≤ ε

n(c‖x‖2 + M)

∫ n

0
E[‖Y I,x

s ‖2
Rn ]ds

≤ ε

n(c‖x‖2 + M)

∫ n

0
E[‖Z x

s ‖2]ds ≤ ε,

proving the tightness.ByProkhorov’s theorem, there exist a subsequence (nk )k∈N and
a probability measure μI on (RI ,B(RI )) such that μnk ,x

I → μI weakly. According
to [28, Theorem9.3, p. 240], the probability measure μI is an invariant measure for
the Markov semigroup (Q I

t )t≥0, that is, we have
∫

RI
QI

t f I dμI =
∫

RI
f I dμI for all f I ∈ Cb(R

I ) and t ≥ 0. (7.3.2)

The family {μI : I ⊂ Nfinite} is consistent, that is, for finite subsets I ⊂ J ⊂ N we
have

μI = μJ ◦ π J
I . (7.3.3)
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Indeed, let I ⊂ J ⊂ N be arbitrary finite subsets. Then for each n ∈ N we have
μn,x

I = μn,x
J ◦ π J

I . There exists a joint subsequence (nk)k∈N such that μ
nk ,x
I → μI

and μ
nk ,x
J → μJ weakly. The latter convergence implies μ

nk ,x
J ◦ π J

I → μJ ◦ π J
I

weakly, and hence, we arrive at (7.3.3).
By Kolmogorov’s extension theorem, there exists a unique probability measure

μ on R
N such that for any finite subset I ⊂ N we have

μI = μ ◦ πI . (7.3.4)

Let f : RN → R be bounded, measurable and such that f I := f |RI : RI → R

belongs to Cb(R
I ) for all finite subsets I ⊂ N. Setting In := {1, . . . , n} for n ∈ N,

by Lebesgue’s theorem and relations (7.3.4) and (7.3.2) we obtain
∫

RN

f dμ = lim
n→∞

∫

RN

f In ◦ πIn dμ = lim
n→∞

∫

RIn
f In dμIn = lim

n→∞

∫

RIn
QIn

t f In dμIn

= lim
n→∞

∫

RN

Q In
t f In ◦ πIn dμ =

∫

RN

Qt f dμ, t ≥ 0. (7.3.5)

Hence, μ is an invariant measure for the Markov semigroup (Qt )t≥0 on the state
space RN. Now, we define the function I : RN → H as

I(x) :=
{
J −1(x), x ∈ �2

0, otherwise,

and the probability measure ν on (H,B(H)) as ν := μ ◦ I. Let f ∈ Cb(H) be
arbitrary. Then, f ◦I|I : RI → R is bounded and continuous, and for any x ∈ �2(N)

and t ≥ 0 we have

Qt ( f ◦ I)(x) = E[( f ◦ I)(Y x
t )] = E[( f ◦ I)(J ZIx

t )] = E[ f (ZIx
t )] = Pt f (Ix).

Thus, by using (7.3.5), we obtain

∫

H
f dν =

∫

RN

f ◦ Idμ =
∫

RN

Qt ( f ◦ I)dμ

=
∫

RN

(Pt f ) ◦ Idμ =
∫

H
Pt f dν, t ≥ 0

proving that ν is an invariant measure for the Markov semigroup (Pt )t≥0.
It remains to show that the invariant measure ν satisfies (7.3.1). We define

f : RN → R, f (x) := ‖Ix‖2

and for each n ∈ N we define
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fn : RN → R, fn(x) := f (x)1{ f (x)≤n}.

Let n ∈ N be arbitrary. Then we have fn ∈ L1(RN,μ). By the ergodic theorem
for Markov processes with invariant measure [103, TheoremXIII.2.6, p. 388], for
μ-almost all x ∈ R

N the limit

f ∗
n (x) := lim

k→∞
1

k

∫ k

0
Qs fn(x)ds

exists, and for the function f ∗
n : RN → R we have

∫

RN

f ∗
n dμ =

∫

RN

fndμ. (7.3.6)

Using (7.2.1), for each x ∈ H we obtain

f ∗
n (J x) = lim

k→∞
1

k

∫ k

0
Qs fn(J x)ds ≤ lim

k→∞
1

k

∫ k

0
Qs f (J x)ds

= lim
k→∞

1

k

∫ k

0
E[‖J −1YJ x

s ‖2]ds = lim
k→∞

1

k

∫ k

0
E[‖Z x

s ‖2]ds ≤ c + M.

(7.3.7)

By the monotone convergence theorem and relations (7.3.6) and (7.3.7), we arrive at

∫

H
‖x‖2ν(dx) =

∫

RN

‖I(x)‖2μ(dx) =
∫

RN

f (x)μ(dx)

= lim
n→∞

∫

RN

fn(x)μ(dx) = lim
n→∞

∫

RN

f ∗
n (x)μ(dx) ≤ c + M,

establishing (7.3.1). �

Remark 7.3.5 As the mild solution of an SPDE is a Feller Markov process, we can
use arguments as in Lemmas 5.1, 5.2 and Theorem 5.2 in [76, 77] to conclude that
ultimate 2-boundedness of the solution implies that it is weakly positive recurrent in
the bounded sets of H .

If μ is the invariant measure for the Markov semigroup (Pt )t≥0 of (7.0.1) then, in
view of Theorem 7.3.4, we get that for each ε > 0, there exists an R > 0 such that

μ(y ∈ H, ‖y‖ > R) < ε (7.3.8)

and if (7.0.1) is ultimately bounded then there exists a T1 such that for t ≥ T1

P(‖Z x
t ‖ ≤ R) ≥ 1 − ε

3
for any x ∈ {y : ‖y‖ ≤ R} := BR, (7.3.9)
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where (Z x
t )t≥0 is the solution of (7.0.1). Now let g be a function on H , weakly con-

tinuous and bounded. Note BR is compact in the weak topology on H , equivalently
given by the metric ρ on H such that

ρ(h, h′) =
∞∑

k=1

2−k |〈ek, h − h′〉|, h, h′ ∈ H

with {ek}k∈N an orthonormal basis in H . Hence g is uniformly continuous on BR

under ρ.
This implies that there is a δ > 0 such that for h, h′∈ BR , ρ(h, h′) < δ implies

|g(h) − g(h′)|< η.
Note that there exists an N such that

∞∑

k=N+1

2−k |〈ek, h − h′〉| <
δ

2
h, h′ ∈ BR .

Now assume for R > 0, δ > 0 and ε > 0 there exists a T0 := T0(R, δ, ε) > 0
such that

P(|Z x0
t − Z x1

t | > δ) < ε for x0, x1 ∈ BR and for t ≥ T0. (7.3.10)

Choose, using (7.3.10), t ≥ T2 such that

N∑

k=1

P(|〈ek , Z x0
t − Z x1

t 〉| < δ/2) ≥ 1 − ε

3
for x0, x1 ∈ BR .

Then for t ≥ T2, we get

P(|g(Z x0
t ) − g(Z x1

t )| ≤ η) ≥ P(Z x0
t , Z x1

t ∈ BR, ρ(Z x0
t , Z x1

t ) ≤ δ)

≥ P(Z x0
t , Z x1

t ∈ BR,

N∑

1

2−k |

< ek , Z x0
t − Z x1

t > | ≤ δ

2
)

≥ P(Z x0
t , Z x1

t ∈ BR, < ek, Z x0
t

− Z x1
t >≤ δ

2
, k = 1, 2, . . . N )

≥ 1 − ε

3
− ε

3
− ε

3
= 1 − ε.

For given ε we can choose T such that for t ≥ T
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P(|g(Z x0
t ) − g(Z x1

t )| ≤ ε

2
) > 1 − ε

4K0
, for x0, x1 ∈ BR,

where K0 = sup |g(y)|. Then

E[|g(Z x0
t ) − g(Z x1

t )|] ≥ ε

2
+ 2K0

ε

4K0
= ε, for x0, x1 ∈ BR . (7.3.11)

Now we state the uniqueness result for invariant measures, following [44].

Theorem 7.3.1 Suppose (7.0.1) is ultimately bounded and its solution (Z x
t )t≥0 sat-

isfies (7.3.10). Then there exists at most one invariant measure.

Proof Let μi (i = 0, 1) be invariant measures, then (7.3.11) holds by the argument
above. Note that for i = 0, 1

∫

H
g(u)μi (du) =

∫

H
E[g(Zu

t )]μi (du).

Consider

∣∣
∫

H
g(u)μ0(du) −

∫

H
g(v)μ1(dv)

∣∣ = ∣∣
∫

H

∫

H
(g(u) − g(v))μ0(du)μ1(dv)

∣∣

= ∣∣
∫

H

∫

H
E[g(Zu

t ) − g(Zv
t )]μ0(du)μ1(dv)

∣∣

≤
∫

H

∫

H
|E[g(Zu

t )] − E[g(Zv
t )]|μ0(du)μ1(dv)

≤ ( ∫

BR

|E[g(Zu
t )] − E[g(Zv

t )]|μ0(du)μ1(dv)

+
∫

H\BR

|E[g(Zu
t )] − E[g(Zv

t )]|μ0(du)μ1(dv)
)

× ( ∫

BR

|E[g(Zu
t )] − E[g(Zv

t )]|μ0(du)μ1(dv)

+
∫

H\BR

|E[g(Zu
t )] − E[g(Zv

t )]|μ0(du)μ1(dv)
)

≤ ε + 2(2K0ε) + 2K0ε
2 if t ≥ T,

where K0 is as before. Since ε is arbitrarywe get for all bounded continuous functions

∫

H
g(u)μ0(du) =

∫

H
g(v)μ1(dv). �

We now give a condition directly in terms of the partial differential operator A
and the Lipschitz condition so that the solution which is exponentially ultimately
bounded has a unique invariant measure. We note that, in view of [44], the condition
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|St | < eαt for α ∈ R (pseudocontraction semigroup), is equivalent to

〈Ay, y〉 ≤ α‖y‖2, y ∈ D(A).

Proposition 7.3.2 [69] Suppose that

〈Ay, y〉 < −c0‖y‖2, y ∈ D(A), (7.3.12)

suppose that c0 > 0 is the maximum value satisfying the above inequality (7.3.12)
and let k be the minimum value of L in (7.1.1) and (7.1.2). If γ = c0 − 3k > 0 we get
for t large enough

E[|Z x0
t − Z x1

t |2] ≤ e−2γt‖x0 − x1‖2. (7.3.13)

Exercise Prove that (7.3.13) implies (7.3.10).

For the proof of Proposition 7.3.2 we will use the following:

Lemma 7.3.3 [44] Let p > 1 and g be a nonnegative locally p-integrable function
on [0,∞). Then for each ε > 0 and real d

∫ t

0
ed(t−r)g(r)dr ≤ C(ε, p)

∫ t

0
ep(d+ε)(t−r)g p(r)dr

for t large enough with C(ε, p) = (1 − qε)
p
q and 1

p + 1
q = 1.

For the proof of Lemma 7.3.3 we refer to [44].

Proof Let Z x1
t and Z x0

t be two solutions. Then we have

Z x0
t − Z x1

t = St (x0) − St (x1) +
∫ t

0
St−s(a(Z x0

s ) − a(Z x1
s ))ds

+
∫ t

0

∫

H\{0}
St−s( f (v, Z x0

s ) − f (v, Z x1
s ))q(ds, dv).

So

‖Z x0
t − Z x1

t ‖2 ≤ 3‖St (x0) − St (x1)‖2 + 3‖
∫ t

0
St−s(a(Z x0

s ) − a(Z x1
s ))ds‖2

+ ‖
∫ t

0

∫

H\{0}
St−s( f (v, Z x0

s ) − f (v, Z x1
s ))q(ds, dv)‖2.
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So

E[‖Z x0
t − Z x1

t ‖2] ≤ 3e−2c0t‖x0 − x1‖2 + 3E

[∫ t

0
‖St−s(a(Z x0

s ) − a(Z x1
s ))‖2ds

]

+ 3E

[∫ t

0
‖ f (v, Z x0

s ) − f (v, Z x1
s )‖2q(ds, dv)

]

≤ 3e−2c0t‖x0 − x1‖2 + 3kE

(∫ t

0
e−2c0(t−s)‖Z x0

s − Z x1
s ‖ds

)2

+ 3
∫ t

0
kE[‖Z x0

t − Z x1
t ‖2]ds

≤ 3e−2c0t‖x0 − x1‖2 + 3k(1 + 2ε)

×
∫ t

0
e−2(c0+ε)(t−s)

E[‖Z x0
s − Z x1

s ‖2]ds

+ 3k
∫ t

0
E[‖Z x0

t − Z x1
t ‖2]ds.

Letting ε → 0 and e−2(c0+ε)(t−s) < 1, we have

E[‖Z x0
t − Z x1

t ‖2] ≤ 3e−2c0t‖x0 − x1‖2 + 6k
∫ t

0
E[‖Z x0

t − Z x1
t ‖2]ds.

So by Gronwall’s inequality, we have

E[‖Z x0
t − Z x1

t ‖2] ≤ 3e−2c0t‖x0 − x1‖2e6kt = 3e−2c0t+6kt‖x0 − x1‖2. �

7.4 Remarks and Related Literature

In this chapter, we have presented the Lyapunov function approach in order to study
exponential stability, stability in probability and exponential ultimate boundedness
of the solutions of SPDEs. The presentation is taken from [69], which is based on
the thesis of Wang [99]. This allows us to study the invariant measure and, following
[76, 77], the recurrence of the solutions to bounded sets in H. Applications of these
techniques to various interesting models can be given, as shown in the Brownian
motion case in the book [34].



Appendix A
Some Results on Compensated Poisson
Random Measures and Stochastic Integrals

In this appendix, we provide some auxiliary results.

A.1 Stochastic Fubini Theorem for Compensated Poisson
Random Measures

Let (E, E) be a Blackwell space and let q(dt, dx) be a compensated Poisson random
measure on X = R+ × E relative to the filtration (Ft)t≥0 and with compensator
ν(dt, dx) = dt ⊗ β(dx). Let H be a separable Hilbert space.

Lemma A.1.1 Let T ∈ R+ and B : [0, T ]×[0, T ]× E ×� → H be progressively
measurable with

E

[ ∫ T

0

∫ T

0

∫
E

‖B(s, t, v)‖2β(dv)dtds

]
< ∞.

Then we have

∫ T

0

∫ T

0

∫
E

B(s, t, v)q(dv, dt)ds =
∫ T

0

∫
E

∫ T

0
B(s, t, v)dsq(dv, dt).

Remark A.1.1 In LemmaA.1.1 we assume B ∈ L p
T,prog(F), in the sense of Defini-

tion 3.4.1, with �̃ := [0, T ]× E ×�,μ := ds ⊗dt ⊗β(dx)⊗P. Due to the isomor-
phism proved in Theorem 3.4.2 the statement still holds if we assume instead B ∈
L2

T,ad(H) with L2
T,ad(H) := L2(�̃ × [0, T ], F̃T ⊗ B([0, T ]), μ; F) ∩ AdT (H),

where AdT (H) is the linear space of all H -valued adapted processes w.r.t. the
filtration F̃t := B([0, T ]) ⊗ E ⊗ Ft .

Proof We give a sketch of the proof. Let B be a simple function, i.e. B ∈ �([0, T ]×
[0, T ] × E × �; H), then B is of the form
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B(s, t, v) =
p∑

j=1

n∑
k=1

m∑
l=1

ak,l1(s j−1,s j ](s)1Ak,l (v)1Fk,l1(tk−1,tk ](t) (A.1.1)

for n, m ∈ N with:

• elements ak,l ∈ H for k = 1, . . . , n and l = 1, . . . , m;
• time points 0 ≤ s0 ≤ . . . ≤ sn ≤ T and 0 ≤ t0 ≤ . . . ≤ tn ≤ T ;
• sets Ak,l ∈ E with β(Ak,l) < ∞ for k = 1, . . . , n and l = 1, . . . , m such that the
product sets Ak,l × (tk−1, tk ] are disjoint;

• sets Fk,l ∈ Ftk−1 for k = 1, . . . , n and l = 1, . . . , m,

and in this case the statement is easily checked. For B ∈ L2
T,Prog(H), there is a

sequence of simple functions Bn converging to B in L2
T,Prog(H), by Proposition

2.1.6. The theorem is proved by Lebesgue’s dominated convergence theorem using
the isometry

E

[∫ T

0

∫ T

0

∫
E

‖B(s, t, v)‖2β(dv)dtds

]
= E

[∫ T

0
‖
∫ T

0

∫
E

B(s, t, v)q(dv, dt)‖2ds

]

(A.1.2)

which is a consequence of Remark 3.1.1, and implies

E

[ ∫ T

0

∫ T

0

∫
E

‖B(s, t, v)‖2β(dv)dtds

]
≥ E

[
‖
∫ T

0

∫ T

0

∫
E
B(s, t, v)q(dv, dt)ds‖2

]
.

�

Remark A.1.2 Note that, due to the isomorphism stated in Theorem 3.4.2, the
Fubini theorem for the Brownian case, stated for example in [18] Chap. 4.6, can
also be generalized to adapted integrands in L2

T,ad(H) := L2(�̃ × [0, T ], F̃T ⊗
B([0, T ]), μ; F) ∩ AdT (H), where in this case AdT (H) is the linear space of
all H -valued adapted processes w.r.t. the filtration F̃t := B([0, T ]) ⊗ Ft , and
�̃ := [0, T ] × �, μ := ds ⊗ dt ⊗ P.

LemmaA.1.1 can be generalized to the case where the integrands have values in
a separable Banach space F under the additional assumption:

(A) There is a constant Kβ such that inequality (3.5.7) is satisfied.

Lemma A.1.2 Let T ∈ R+ and B : [0, T ] × [0, T ] × E × � → F, B ∈ L2
T,ad(F),

with

E

[ ∫ T

0

∫ T

0

∫
E

‖B(s, t, v)‖2β(dv)dtds

]
< ∞.

http://dx.doi.org/10.1007/978-3-319-12853-5_2
http://dx.doi.org/10.1007/978-3-319-12853-5_3
http://dx.doi.org/10.1007/978-3-319-12853-5_3
http://dx.doi.org/10.1007/978-3-319-12853-5_3
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Assume (A). Then we have

∫ T

0

∫ T

0

∫
E

B(s, t, v)q(dv, dt)ds =
∫ T

0

∫
E

∫ T

0
B(s, t, v)dsq(dv, dt).

Proof The proof is identical to the proof in LemmaA.1.1, but using inequality (3.5.9)
instead of isometry (A.1.2). In fact, using

E

[ ∫ T

0

∫ T

0

∫
E

‖B(s, t, v)‖2β(dv)dtds

]
≥ KβE

[
‖
∫ T

0

∫ T

0

∫
E

B(s, t, v)q(dv, dt)ds‖2
]
.

�

Remark A.1.3 If F is a separable Banach space of M-type 2, then assumption (A)
is guaranteed.

A.2 Existence of Strong Solutions for SPDEs

Let H be a separable Hilbert space. Let (St )t≥0 be a C0-semigroup on H with
generator A. Here we prove some auxiliary results on SPDEs of the type

{
d Zt = (AZt + a(Zt ))dt + ∫

E f (x, Zt )q(dt, dx)

Z0 = x .
(A.2.1)

Let functions a : H → H and f : H × E → H be given.

Assumption A.2.1 There exists a constant L > 0 such that

‖a(z1) − a(z2)‖ +
(∫

E
‖ f (x, z1) − f (x, z2)‖2β(dx)

)1/2
≤ L‖z1 − z2‖ (A.2.2)

for all z1, z2 ∈ H , and a constant K > 0 such that

‖a(z)‖ +
( ∫

E
‖ f (x, z)‖2β(dx)

)1/2

≤ K (‖z‖ + 1) (A.2.3)

for all z ∈ H .

Assumption A.2.2 We have

a(y) ∈ D(A), y ∈ H

f (v, y) ∈ D(A), y ∈ H and v ∈ E

http://dx.doi.org/10.1007/978-3-319-12853-5_3


198 Appendix A: Some Results on Compensated Poisson Random …

and there exist g1, g2 ∈ L1
loc(R+) such that

‖ASt−sa(y)‖ ≤ g1(t)(1 + ‖y‖), (A.2.4)

∫
E

‖ASt−s f (v, y)‖2β(dv) ≤ g2(t)(1 + ‖y‖2) (A.2.5)

for all 0 ≤ s ≤ t and all y ∈ H .

Theorem A.2.3 Suppose Assumptions A.2.1 and A.2.2 are fulfilled. Then for each
x ∈ D(A) there exists a unique strong solution for (A.2.1) with Z0 = x.

Proof According to Theorem 5.2.3 there exists a unique mild solution Z ∈ S2∞(H)

for (A.2.1) with Z0 = x . Let t ≥ 0 be arbitrary. By (A.2.4) we have almost surely

∫ t

0
‖Aa(Zs)‖ds ≤ g1(0)

∫ t

0
(1 + ‖Zs‖)ds < ∞,

and by (A.2.5) we obtain

E

[ ∫ t

0

∫
E

‖A f (v, Zs)‖2β(dv)ds

]
≤ g2(0)E

[ ∫ t

0
(1 + ‖Zs‖2)ds

]
< ∞.

Noting that x ∈ D(A), we deduce

Zt = St x +
∫ t

0
St−sa(Zs)ds +

∫ t

0

∫
E

St−s f (v, Zs)q(ds, dv) ∈ D(A)

as well as

AZt = St Ax +
∫ t

0
ASt−sa(Zs)ds +

∫ t

0

∫
E

ASt−s f (v, Zs)q(ds, dv). (A.2.6)

By (A.2.4) we have almost surely

∫ t

0

∫ s

0
‖ASs−r a(Zr )‖drds ≤

(∫ t

0
g1(s)ds

)(∫ t

0
(1 + ‖Zs‖)ds

)
< ∞.

Using Fubini’s theorem for Bochner integrals, we obtain almost surely

∫ t

0

∫ s

0
ASs−r a(Zr )drds =

∫ t

0

∫ t

r
ASs−r a(Zr )dsdr

=
∫ t

0
St−sa(Zs)ds −

∫ t

0
a(Zs)ds. (A.2.7)
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By (A.2.5) we have

E

[ ∫ t

0

∫ s

0

∫
E

‖ASs−r f (v, Zr )‖2β(dv)drds

]

≤
( ∫ t

0
g2(s)ds

)
E

[ ∫ t

0
(1 + ‖Zs‖2)ds

]
< ∞.

Using Fubini’s theorem for Itô integrals (Lemma A.1.1), we obtain almost surely

∫ t

0

∫ s

0

∫
E

ASs−r f (v, Zr )q(dv, dr)ds =
∫ t

0

∫
E

∫ t

r
ASs−r f (v, Zr )dsq(dv, dr)

=
∫ t

0

∫
E

St−s f (v, Zs)q(dv, ds) −
∫ t

0

∫
E

f (v, Zs)q(dv, ds). (A.2.8)

Combining identities (A.2.6)–(A.2.8) we arrive at

∫ t

0
AZsds =

∫ t

0
Ss Axds +

∫ t

0

∫ s

0
ASs−r a(Zr )drds

+
∫ t

0

∫ s

0

∫
E

ASs−r f (v, Zr )q(dv, dr)ds

= St x − x +
∫ t

0
St−sa(Zs)ds −

∫ t

0
a(Zs)ds

+
∫ t

0

∫
E

St−s f (v, Zs)q(dv, ds) −
∫ t

0

∫
E

f (v, Zs)q(dv, ds)

= Zt − x −
∫ t

0
a(Zs)ds −

∫ t

0

∫
E

f (v, Zs)q(dv, ds),

showing that Z is a strong solution for (A.2.1). �

A.3 Approximation of SPDEs with Strong Solutions

For n ∈ N with n > α we introduce the resolvent Rn(A) ∈ L(H) by

Rn(A) := (n − A)−1,

where α > 0 was introduced in (5.1.2).

Lemma A.3.1 There exists a constant γ > 0 such that

‖n Rn(A)‖ ≤ γ, n ∈ N with n > α. (A.3.1)

http://dx.doi.org/10.1007/978-3-319-12853-5_5
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Proof By [83, Thm. I.5.3] we have

‖Rn(A)‖ ≤ 1

n − α
, n ∈ N with n > α

and hence there exists a constant γ > 0 such that (A.3.1) is fulfilled. �

We will approximate the solutions of the SPDE (A.2.1) by the system of SPDEs

{
d Zn

t = (AZt + n Rn(A)a(Zt ))dt + ∫
E n Rn(A) f (v, Zt )q(dv, dt)

Zn
0 = x

(A.3.2)

for all n ∈ N with n > α.

Theorem A.3.2 Suppose Assumptions A.2.1 and A.2.2 are fulfilled, and let x ∈
D(A) be arbitrary. Then, for each n ∈ N with n > α there exists a unique strong
solution Zn,x ∈ S2∞(H) for (A.3.2) with Zn

0 = x, and for each T ≥ 0 we have

E

[
sup

t∈[0,T ]
‖Zn,x

t − Z x
t ‖2

]
→ 0,

where Z x denotes the mild solution for (A.2.1) with Z0 = x.

Proof Let n ∈ N with n > α be arbitrary. Then we have

n Rn(A)a(y) ∈ D(A), y ∈ H

n Rn(A) f (v, y) ∈ D(A), y ∈ H and v ∈ E .

Wedenote by An ∈ L(H) theYosida approximationdefined inChap.5. Let 0 ≤ s ≤ t
and y ∈ H be arbitrary. By the linear growth condition (A.2.3) we obtain

‖ASt−sn Rn(A)a(y)‖ = ‖St−s Ana(y)‖ ≤ eα(t−s)‖An‖ ‖a(y)‖ ≤ K eαt‖An‖(1 + ‖y‖)

as well as
∫

E
‖ASt−sn Rn(A) f (v, y)‖2β(dv) =

∫
E

‖St−s An f (v, y)‖2β(dv)

≤ e2α(t−s)‖An‖2K (1 + ‖y‖)2 ≤ 2K e2αt‖An‖2(1 + ‖y‖2).

Using LemmaA.3.1 and the Lipschitz condition (A.2.2), for all z1, z2 ∈ H we have

‖n Rn(A)a(z1) − n Rn(A)a(z2)‖

+
(∫

E
‖n Rn(A) f (x, z1) − n Rn(A) f (x, z2)‖2β(dx)

)1/2

≤ γ L‖z1 − z2‖,

http://dx.doi.org/10.1007/978-3-319-12853-5_5
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and, by the linear growth condition (A.2.3), for all z ∈ H we get

‖n Rn(A)a(z)‖ +
( ∫

E
‖n Rn(A) f (x, z)‖2β(dx)

)1/2

≤ γ M(‖z‖ + 1).

Applying Theorem A.2.3 completes the proof. �
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