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Preface

Mechanical reliability analysis is no longer limited to a small collection of
classical statistical analyses. The speed of the present generation of micro-
computers makes it possible to program and evaluate alternative computer-
intensive analyses for each mechanical reliability application of specific
interest. Thus computer-intensive analyses are now an indispensable part
of improving mechanical reliability.

This is a self-contained mechanical reliability reference/text book. It
covers the probability and statistics background required to plan, conduct,
and analyze mechanical reliability experiment test programs. Unfortunately
this background is not adequately conveyed by a traditional probability and
statistics course for engineers because it (1) does not provide adequate
information regarding test planning and the associated details of test con-
duct, (2) does not employ vector and matrix concepts in stating conceptual
statistical models, (3) does not exploit direct analogies between engineering
mechanics concepts and probability and statistics concepts, (4) does not
exploit the use of microcomputers to perform computer-intensive simula-
tion-based, randomization-based, and enumeration-based statistical ana-
lyses, and (5) is woefully inept relative to practical mechanical reliability
models. This book attempts to overcome each of these fundamental defi-
ciencies.

v
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Typesetting costs have traditionally forced authors to use overly suc-
cinct nomenclature and notation when presenting probability and statistics
concepts. But 30 years of teaching experience clearly indicates that overly
succinct notation exacts an extremely heavy price in terms of perspective
and understanding. Accordingly, acronyms are employed throughout this
book to convey explicitly the technical presumptions that the traditional
notations are intended to convey implicitly. Although it may take some
time to become comfortable with these acronyms, their use highlights the
technical presumptions that underlie each reliability analysis, thereby pro-
viding valuable perspective regarding its applicability and practicality.

Test planning details and orthogonal conceptual statistical models are
presented in Chapters 1 and 2 for completely randomized design test pro-
grams with equal replication, and for unreplicated randomized complete
block design and split-plot design experiment test programs. The respective
conceptual statistical models are stated in volume vector notation to demon-
strate relevant orthogonality relationships. This presentation provides intui-
tion regarding the construction of the associated orthogonal augmented
contrast arrays. Use of orthogonal augmented contrast arrays in statistical
analysis markedly enhances understanding the mechanics of partitioning
statistically relevant sums of squares and the enumeration of the associated
degrees of freedom.

The enumeration-based and simulation-based microcomputer pro-
grams presented in Chapters 3–6 establish and illustrate the probability
and statistics concepts of fundamental interest in mechanical reliability.
Several elementary statistical tests of hypotheses are presented and illu-
strated. The relationship of these tests of hypotheses to their associated
statistical confidence intervals is explained. Computer-intensive statistical
tests of hypotheses that serve as viable alternatives to classical statistical
tests of hypotheses are also presented. In turn, linear regression analysis is
presented in Chapter 7 using both column vector and matrix notation.
Emphasis is placed on testing the adequacy of the presumed conceptual
regression model and on allocation of test specimens to the particular inde-
pendent variable values that have statistical advantage.

Chapters 1–7 establish the test planning and probability and statistics
background to understand the mechanical reliability analyses that are pre-
sented, discussed, and then illustrated using example microcomputer pro-
grams in Chapter 8. Mechanical reliability cannot rationally be separated
from mechanical metallurgy. The appropriate reliability improvement
experiment test program depends on the relevant mode(s) of failure, the
available test equipment, the test method and its engineering objective, as
well as on various practical and economic considerations. Thus, to excel, a
reliability engineer must have the ability to program and evaluate mechan-

vi Preface
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ical reliability analyses that are consistent with the actual details of the
experiment test program conduct. In particular, it is important that (1)
statistically effective test specimen allocation strategies be employed in con-
ducting each individual test, (2) the statistical adequacy of the presumed
failure model be critically examined, and (3) the accuracy and precision of
the resulting statistical estimates be evaluated and properly interpreted.

R. E. Little

Preface vii
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Introduction

The first step in mechanical design for a new product is to synthesize (con-
figure) the product and its components such that it performs the desired
function. Design synthesis is enhanced by first recognizing functional ana-
logies among existing designs that are known to perform well in service and
then suggesting several alternative designs based on these functional analo-
gies. In turn, when well-defined objective criteria have been employed to
compare these alternative designs to establish the design that has the great-
est overall advantage, the proposed design can reasonably be viewed as
being both feasible and practical. The next step in mechanical design for a
new product is to attempt to assure that the proposed design will exhibit
adequate reliability in service operation. Tentative assurance of adequate
reliability for the new product requires a combination of (1) pseudo-quan-
titative design analyses that involve analytical bogies such as design allow-
ables and/or factors of safety and (2) laboratory tests involving experimental
bogies based on (reasonably) extreme load and environment histories.
However, it is imperative to understand that adequate reliability for the
new product can be demonstrated only by its actual (future) performance
in service. Nevertheless, a combination of pseudo-quantitative design ana-
lysis and laboratory testing can generally be employed either to maintain or
to improve the reliability of an existing product.

ix
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1
Experiment Test Program Planning
and Statistical Analysis
Fundamentals

1.1. INTRODUCTION

The ideal test procedure is the classical scientific method in which each
successive step in the experiment test program is logical and effective as a
direct result of prior planning. We should always emulate this classical
scientific method as much as possible. To accomplish this goal, we must
first establish a hypothesis–experiment–analysis sequence for our experiment
test program, and then focus on improving the effectiveness of each respec-
tive sequence segment.

The effectiveness of each hypothesis–experiment–analysis sequence seg-
ment can be enhanced by improving and increasing its input (Figure 1.1).
Hypotheses are improved using information obtained from experience, pre-
liminary testing, and the technical literature. Statistical planning of the
conduct and details of experiment test programs markedly increases the
efficiency of testing the hypotheses of specific interest. In turn, competent
statistical analysis generates less subjective and more dependable conclu-
sions regarding these hypotheses.

1.2. TEST OBJECTIVE

Every well-planned experiment test program has a well-defined objective.
This test objective must subsequently be restated in terms of the correspond-

1
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ing null and alternative hypotheses to permit statistical analysis. There must
always be a clear understanding of (a) how the test objective and the asso-
ciated null and alternative test hypotheses are related, and (b) how the
organizational structure of the experiment test program and its correspond-
ing statistical model are related. The test objective must be evident in every
aspect of the hypothesis–experiment–analysis methodology. Moreover, it
should be the basis for deciding exactly what will be done in the experiment
test program and specifically when and how it will be done, before beginning
the experiment test program.

Suppose a product, denoted A, is unreliable in service. Then, the rele-
vant test objective is to ‘‘assure’’ that the proposed redesign, denoted B, will
be more reliable than A. The null hypothesis is B ¼ A statistically for this
experiment test program, whereas the alternative hypothesis is that B > A
statistically. (The technical meaning of B ¼ A statistically and B > A statis-
tically is explained in Section 3.5) The null hypothesis is not intended to be
physically realistic. Rather, its purpose is to provide a rational basis for
computing all hypothetical probabilities of potential interest in the subse-
quent statistical analysis. In contrast, the alternative hypothesis must be
physically realistic, because it must be consistent with the test objective.
The alternative hypothesis determines which of the computed hypothetical
probabilities are actually used in the subsequent statistical analysis.

When the test objective is to measure some material behavior para-
meter, say a tensile yield strength, the null and alternative hypotheses are
generally submerged into a statistical confidence interval statement. A sta-

2 Chapter 1

Figure 1.1 Technical inputs to each experiment test program segment.
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tistical confidence interval is a probability interval that contains all of those
hypothetical values that could have been assigned to a null hypothesis with-
out leading to its rejection in the associated statistical analyses.

1.3. EXPERIMENT TEST PROGRAM PLANNING
FUNDAMENTALS

All well-planned experiment test programs incorporate the following funda-
mentals:

1. Randomization
2. Replication
3. Planned grouping

Several other important concepts and procedures that improve the effective-
ness and efficiency of well-planned experiment test programs are discussed in
Section 1.4.

1.3.1. Randomization and Random Samples

It is seldom practical to make measurements on every nominally identical
experimental unit (e.g., laboratory test specimen, component, or device) of
specific interest. Rather, we generally must select a subset of these experi-
mental units, called a statistical sample, and then make measurements on
this sample. The sampling process is rational only if the sample is statisti-
cally representative of the population of experimental units from which it
was selected. It will be demonstrated later in this text that when the sample is
randomly selected from a population, the sample will exhibit a statistical
behavior that is related to the statistical behavior of that population—and
therefore the statistical behavior of the population can be inferred from the
statistical behavior of this random sample.

Acceptable procedures for obtaining a random sample are such that
each nominally identical member of the population of specific inter-
est is equally likely to be selected at each stage of the selection
procedure.

1.3.1.1. Random Selection Example

Suppose we have two nominally identical 8 ft long, 3/4 in. diameter AISI
1020 cold-drawn steel rods and we wish to machine eight tension test speci-
mens, each 6 in. long. To obtain the desired random sample, we first cut
these two rods into 32 nominally identical test specimen blanks numbered

Experiment Test Program Planning Fundamentals 3

TLFeBOOK



consecutively from 1 to 32 (starting at either end of either rod), and then we
randomly select eight of these 32 specimen blanks (as outlined below).

The required random selection is conveniently accomplished in this
example by running microcomputer program RANDOM1, which selects
nelpri equally-likely pseudorandom integers from the integers 1 through ni,
such that each of these ni integers is equally likely to occur at each location
in a time-order sequence (arrangement) of the nelpri integers. Microcomputer
program RANDOM1 requires a new set of three, three-digit odd seed num-
bers as input data each time that it is run. These seed numbers initiate its
pseudorandom number generator (Wichmann and Hill, 1981). To run
microcomputer program RANDOM1, merely type RANDOM1 and follow
the prompts.

4 Chapter 1

C> RANDOM1

Input the number of equally-likely pseudorandom integers nelpri of
specific interest

8

Input the number of integers, 1 through ni, from which to select these
nelpri equally likely pseudorandom integers

32

Input a new set of three, three-digit odd seed numbers (obtained by
running microcomputer program SEED)

587 367 887

Time Order Pseudorandom Numbers
1 12
2 22
3 26
4 19
5 24
6 17
7 11
8 18
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However, microcomputer program SEED must first be run to generate
each new set of three, three-digit odd seed numbers that are subsequently
used as input to microcomputer program RANDOM1. Each successive set
of three, three-digit seed numbers generated by microcomputer program
SEED is such that the numbers 1 through 9 are equally likely to occur at
each of the first two digits and the numbers 1, 3, 5, 7, and 9 are equally likely
to occur at the third digit. To run microcomputer program SEED, use a
convenient editor to enter the last nine digits of your driver’s license number
into microcomputer file START using the format, three digits, space, three
digits, space, three digits. If any of these three-digit integers is even, make
them odd by flipping a coin and adding 1 for a head and subtracting 1 for a
tail. Then, type SEED as many times as desired to generate successive sets of
50 three, three-digit odd seed numbers as desired. When these seed numbers
are nearly exhausted, merely type SEED again, as many times as desired.
(Microcomputer program SEED continually updates microcomputer file
START with a new set of three, three-digit odd seed numbers.)

Microcomputer program RANDOM1 pertains to random sampling
from the population of integers, 1 through ni, such that no integer is
repeated. This random sampling is without replacement, viz., the size of
this population decreases by one after each successive random selection.
In contrast, microcomputer program RANDOM2 pertains to random sam-
pling with replacement of the randomly selected integer back into the invar-
iant population of integers. Note, however, for microcomputer program
RANDOM2, the invariant population of integers is either 0 through 9 for

Experiment Test Program Planning Fundamentals 5

c> TYPE START

745 237 391

C> SEED

Your 50 new sets of three, three-digit odd seed numbers are

587 367 887
225 949 431
757 171 333
823 199 245
131 449 153

et cetera
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one-digit integers, or 00 through 99 for two-digit integers, or 000 through
999 for three-digit integers, etc.

Microcomputer program RANDOM2 is used in this text to generate
pseudorandom numbers in microcomputer simulation examples that
demonstrate the probability behaviors of specific interest in statistical ana-
lysis. (This program generates pseudorandom numbers that, in theory, are
such that the integers 0 through 9 are equally likely to occur at each digit of

6 Chapter 1

C> RANDOM2

Input the number of equally-likely pseudorandom integers nelpri of
specific interest

12

Input the number of digits, ndigits, of specific interest for each of these
nelpri equally likely pseudorandom integers

2

Input a new set of three, three-digit odd seed numbers (obtained by
running microcomputer program SEED)

225 949 431

Time Order Pseudorandom Numbers
1 7
2 49
3 94
4 20
5 90
6 7
7 18
8 0
9 38

10 60
11 95
12 5
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the pseudorandom number, regardless of its number of digits and which
integers are selected at its other digits.)

1.3.2. Replication

Replicate measurements (observations), by definition, are independent mea-
surements (observations) made on nominally identical experimental units
under nominally identical conditions. The greater the number of replicate
measurements (observations) made, the more precise the resulting statistical
estimates, viz., the smaller their intrinsic estimation components. In turn,
the smaller these intrinsic estimation components, the greater the probabil-
ity of correctly rejecting the null hypothesis in favor of the relevant alter-
native hypothesis when this alternative hypothesis is correct.

Consider the four respective measurement values for treatments A and
B depicted by time-order-of-testing in Figure 1.2. (Treatment is the technical
term for the variable being studied.) If we know by experience that these
measurement values always exhibit negligible variability (differences), e.g.,
as illustrated in (a), then we can rationally conclude that B > A statistically
without conducting a statistical analysis. On the other hand, if we observe
that the respective replicate measurement values for A and B exhibit marked

Experiment Test Program Planning Fundamentals 7

Figure1.2 Schematic illustrating three extreme situations: (a) the respective repli-

cate measurement values for treatments A and B exhibit negligible variability; (b) the

variability (differences) between the arithmetic averages of the respective replicate

measurement values for treatments A and B is relatively large compared to the

variability (differences) within (among) these replicate measurement values; (c) the

variability (differences) between the arithmetic averages of the respective replicate

measurement values for treatments A and B is relatively small compared to the

variability (differences) within (among) these replicate measurement values. (Only

four replicate measurement values for treatments A and B are depicted by time-

order-of-testing for simplicity of presentation. The minimum amount of replication

that is statistically adequate is discussed in Chapter 6.)
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variability (differences), e.g., as illustrated in (b) and (c), then a statistical
analysis is required to conclude that B > A statistically.

In the classical statistical analysis called analysis of variance (Chapter
6) the variability among the respective replicate measurement values for
treatments A and B is partitioned into two statistically independent com-
ponents: the between variability and the within variability. In turn, the
magnitude of the ratio of these two variability components can be used
to test the null hypothesis that B ¼ A statistically versus the alternative
hypothesis that B > A statistically. Note that in (b) the variability (differ-
ences) between the arithmetic averages of the treatments A and B replicate
measurement values is relatively large compared to the variability (differ-
ences) within (among) these replicate measurement values, whereas in (c)
the variability (differences) between the arithmetic averages of the treat-
ments A and B replicate measurement values is relatively small compared
to the variability (differences) within (among) these replicate measurement
values. Because the ratio of the between variability to the within variability
is much larger for (b) than for (c), the null hypothesis that B ¼ A statis-
tically is much more likely to be rejected in favor of the alternative
hypothesis that B > A statistically for (b) than for (c). Or, from another
perspective, the primary distinction between (b) and (c) is that, when the
alternative hypothesis that B > A statistically is correct, many more repli-
cate measurement values are required for (c) than for (b) to have the same
probability of correctly rejecting the null hypothesis that A ¼ B statisti-
cally in favor of this alternative hypothesis.

Exercise Set 1

These exercises are intended to provide insight regarding within and
between variabilities, technically termed mean squares, by using analogous
mechanics concepts, viz., the mass moment of inertia concept and the
associated parallel-axis theorem, to compute their underlying sums of
squares.

Consider the four replicate measurement values for treatment A and
treatment B depicted in Figures 1.2(b) and (c). Presume that each of these
measurement values has a unit (dimensionless) mass. Then the within mean
square, within(MS); can be computed as the sum of the mass moments of
inertia of the treatments A and B measurement values about their respective
centroids (arithmetic averages), divided by nt � ðnrmv � 1Þ, where nt is the
number of treatments, and nrmv is the number of replicate measurement
values. The between mean square, between(MS); can be computed as the
mass moment of inertia of the treatments A and B measurement values,
coalesced at their respective centroids (arithmetic averages), about the

8 Chapter 1
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centroid (arithmetic average) of all measurement values, divided by ðnt � 1Þ.
The respective divisors are the associated number of statistical degrees of
freedom (defined later). We rationally reject the null hypothesis that B ¼ A
statistically in favor of the alternative hypothesis that B > A statistically
when the ratio of the between mean square to the within mean square is
so large that it casts serious doubt on the statistical credibility of the null
hypothesis.

1. Run microcomputer program RANDOM2 twice with nelpri ¼ 4
and ndigit ¼ 1 to generate two sets of four pseudorandom integers.
Then add 185.5 to the four pseudorandom integers in the first set
to construct the treatment A measurement values. In turn, add
195.5 to the four pseudorandom integers in the second set to
construct the treatment B measurement values. Next, compute
the arithmetic average of the treatment A measurement values, of
the treatment B measurement values, and of both treatments A
and B measurement values.

2. Plot these measurement values and the three arithmetic averages
as illustrated in Figures 1.2(b) and (c). Then use this plot and
the parallel-axis theorem to compute the within and between
sums of squares. In turn, compute the within and between
mean squares and the ratio of the between(MS) to the
within(MS). If this ratio is sufficienctly large in a statistical
sense, viz., greater than 10 for this exercise set, reject the null
hypothesis that B ¼ A statistically in favor of the alternative
hypothesis that B > A statistically.

3. Repeat 1 and 2 with the same pseudorandom integers, but add
190.0 to the four pseudorandom integers in the first data set to
generate the treatment A measurement values and add 191.0 to
the four pseudorandom integers in the second data set to generate
the treatment B measurement values.

1.3.3. Planned Grouping (Constrained Randomization,
Blocking)

Planned grouping has two basic applications: (a) to help assure that the
sample experimental units are more representative of the actual population
of experimental units of specific interest, and (b) to help mitigate spurious
effects caused by nuisance variables, viz., unavoidable differences among
experimental units and among test conditions. Planned grouping in applica-
tion (a) involves constrained randomization, whereas planned grouping in
application (b) involves blocking.

Experiment Test Program Planning Fundamentals 9
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1.3.3.1. Constrained Randomization Example

Consider Figures 1.3(a)–(d). Recall that complete randomization is appro-
priate only for a population of nominally identical experimental units, e.g.,
the 32 test specimen blanks in our randomization example. This population
of nominally identical experimental units is depicted in Figure 1.3(a). A
representative sample from this population is depicted in Figure 1.3(c). It
is obtained by running microcomputer program RANDOM1 with nelpri ¼ 8
and ni ¼ 32. However, it is seldom prudent to presume that any two 8 ft.
long 3/4 in. diameter AISI 1020 cold-drawn steel rods are nominally iden-
tical. The population of experimental units from two rods that are not
presumed to be nominally identical is depicted in Figure 1.3(b).
Constrained randomization is required to generate a representative sample
from this population. For example, we obtain a proportionate random sam-
ple by running microcomputer program RANDOM1 twice, once for rod 1
and once for rod 2, each time with nelpri ¼ 4 and ni ¼ 16. This constrained
randomization is such that the same proportion, 1/4, of the experimental
units in each rod must be randomly selected.

Note that the proportionate random sample in (d) is equally represen-
tative of the population in (a). Thus, proportionate random sampling is
appropriate whenever there are potential (possible) differences either
between or within the sources of the alleged nominally identical experimen-
tal units that comprise the population of specific interest. For example, a
random sample from the population in (a) can be obtained by first parti-
tioning each rod into four groups (blocks) of four adjacent experimental
units, and then randomly selecting one experimental unit from each of the
eight resulting groups (blocks).

1.3.3.2. Blocking Example

Suppose our test objective is to compare two plastics, A and B, with regard
to their respective estimated median axial-load fatigue strengths at 10 mil-
lion cycles. Typical test specifications call for conditioning the fatigue test
specimens in a 50% relative humidity, 238C environment for at least 48 hr
and then maintaining this standard laboratory environment throughout the
duration of the experiment test program. (Note that a standard laboratory
environment is mandatory in quantitative experiment test programs when
the respective test outcomes are sensitive to a change in the test environ-
ment.) Suppose, however, that our laboratory has no humidity control so
that the relative humidity changes from season to season. We will now
demonstrate that blocking (planned grouping) can be used in a comparative
experiment test program to help make our comparison of A and B as fair as

10 Chapter 1
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possible, despite our inability to maintain the required laboratory relative
humidity at 50%.

To illustrate the concept of blocking, consider the effect of a small
steady change in laboratory relative humidity on the outcome of a compara-

Experiment Test Program Planning Fundamentals 11

Figure 1.3 Random samples for our randomization example with two 8 ft long,

3/4 in. diameter AISI 1020 cold-drawn steel rods, each cut into 16 test specimen

blanks that are presumed to be nominally identical. (a) The population of specific

interest consists of two rods that are presumed to be nominally identical. (b) the

population of specific interest consists of two rods are not presumed to be nominally

identical. (c) A random sample of size 8 from (a) obtained by running microcompu-

ter program RANDOM1 with seed numbers 587 367 887, as in the text randomiza-

tion example. (d) A proportionate random sample of size 8 from (b) is such that the

same proportion of test specimen blanks in each rod must be randomly selected for

inclusion in the random sample. Accordingly, for a sample size equal to 8, micro-

computer program RANDOM1 is run twice, once to establish the four test specimen

blanks randomly selected from rod 1 and once to establish the four test specimen

blanks randomly selected from rod 2.
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tive experiment test program with 16 axial-load fatigue tests that are con-
ducted sequentially using a single fatigue test machine. Each fatigue speci-
men is tested to failure or until it has endured 10 million stress cycles
without failing (92 hr, 35min, and 33 sec at 30 Hz), at which time the test
is suspended (termed Type I censoring). Our goal is to make the experiment
test program comparison of A and B as unbiased (fair) as possible. The null
hypothesis in this example is that B ¼ A statistically. The alternative
hypothesis is that B > A statistically, but the proper alternative hypothesis
is not an issue now. Rather, we wish to plan (structure) our blocking such
that, presuming that the null hypothesis is correct, both A and B have an
equal chance of excelling in each comparison.

Now consider four alternative experiment test programs, each with
eight A’s and eight B’s. Figure 1.4(a) depicts an experiment test program
in which all eight A’s are tested before testing all eight B’s. Presuming that a
small increase in relative humidity slightly decreases the fatigue strength of
both A and B by the same incremental amount, then the comparison of A
and B generated by this experiment test program is clearly biased in favor of
A. In contrast, Figure 1.4(b) depicts an experiment test program in which A
and B are tested in time blocks of size two. However, because A precedes B
in each time block, the comparison of A and B generated by this experiment
test program is still slightly biased in favor of A. Next, suppose that we use
pseudorandom numbers to determine whether A or B is tested first in each
time block, Figure 1.4(c). Note that, depending on the specific randomiza-
tion outcome, it is possible that Figure 1.4(c) is identical to Figure 1.4(b).
Thus, we must employ constrained randomization to assure an unbiased
(fair) comparison of A and B, viz., we must require that A is tested first
in exactly four time blocks and in turn that these four time blocks be
determined using pseudorandom numbers, Figure 1.4(d.1). Then, the time
order of testing for all eight time blocks should be determined by using
pseudorandom numbers, Figure 1.4(d.2).

This elementary example is intended to illustrate that the comparison
of A and B is unbiased (fair) even if the individual tests do not conform
exactly to certain test specifications. Moreover, the combination of blocking
and subsequent randomizations can provide unbiased (fair) comparisons
even when working with populations consisting of different batches of mate-
rial, slowly changing test conditions, markedly different test conditions, etc.
Blocking is intended to balance (counteract) the major sources of compar-
ison bias, either actual or potential. Subsequent randomization is intended
to balance (mitigate) more subtle sources of comparison bias. Several exam-
ples of combined blocking and subsequent randomization are presented in
Chapter 2.

12 Chapter 1
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Experiment Test Program Planning Fundamentals 13

Figure 1.4 Alternative time orders of testing in the presence of a small steady

change in the test environment. (a) Test all eight A specimens, then test all eight B

specimens. Although this is the most common experiment test program it results in a

comparison of A and B that is clearly biased in favor of A when a small increase in

relative humidity causes a slight decrease in the fatigue strength. (b) Employ time

blocks of size two with A preceding B in each time block. The comparison of A and

B is nowonly slightly biased in favor ofA. (c)Use pseudorandomnumbers todetermine

whether A precedes B or B precedes A in each time block. The comparison of A and B

generated by this experiment test program is slightly biased in favor of A only when

more time blocks begin withA than with B, or vice versa. Accordingly, we require that

the samenumber of time blocks beginwithA aswithB. Then,we randomly selectwhich

four time blocks beginwithA (orB) as in (d.1). In turn, we (should) randomly select the

time order of testing for these time blocks as in (d.2). Note that the resulting compar-

isonofA andB is unbiased (fair) evenwhen change in the test environment is negligible.

Thus the use of time blocks in experiment test program planning is always good practice.
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Caveat: Suppose that the fatigue strength of a plastic, say nylon, is
much more sensitive to a change in humidity than another plastic,
say polypropylene. In this situation, blocks are said to interact with
the materials being studied and the comparison generated by the
experiment test program in Figure 1.4(d) is not unbiased (fair)
because the respective block-effect incremental change amounts
are not the same for both materials.

Exercise Set 2

These exercises are intended to enhance your understanding of the time
blocking example summarized in Figures 1.4(d.1) and (d.2).

1. Assume a slowly changing test environment as shown in Figure
1.4. Suppose we have two fatigue machines, one old and one new.
Devise an experiment test program with eight time blocks of size
two that provides an unbiased comparison of A and B.
Completely specify the associated time order of testing on each
machine. Would it make a difference if both machines were nom-
inally identical?

2. (a) Rework the text blocking example summarized in Figures
1.4(d.1) and (d.2) twice using structured time blocks of size
four, first, ABBA and BAAB (or vice versa), and then ABAB
and BABA(or vice versa). (b) Is one of these two experiment
test programs objectively (or subjectively) preferable to the
other or to the text example summarized in Figures 1.4(d.1)
and (d.2)?

3. Suppose that we have a single fatigue machine and each indivi-
dual fatigue test takes (up to) 4 days. In turn, suppose that the
test environment can rationally be considered to change slowly
for successive segments of (a) 32 days, (b) 16 days, and (c) 8 days.
Devise experiment test programs with time blocks of size two, if
practical, that provide unbiased comparisons of A and B.
Completely specify the associated time orders of testing for
each practical experiment test program.

4. Presume that the effect of the nuisance variable in the ith block,
whatever its nature, changes the response of both A and B by
(exactly) the same incremental amount. Use the algebraic expres-
sion [B þ (block effect incremental amount)i] � [A þ (block
effect incremental amount)i] ¼ (B � A) to demonstrate that the
actual magnitude of the ith block effect incremental amount is
irrelevant to an unbiased (fair) comparison of A and B. (Note
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that the actual magnitude of the ith block-effect incremental
amount can differ from block to block.)

1.4. EXPERIMENT TEST PROGRAM PLANNING TIPS

1.4.1. Preliminary Testing

The most important requisite in statistical planning of an experiment test
program is preliminary information regarding the physical nature of the
variables (treatments) to be studied. This information is most trustworthy
when it is based on preliminary tests employing the same equipment, tech-
nicians, and test methods that will be used in the statistically planned experi-
ment test program. Moreover, planning decisions made relative to the size
and cost of the proposed experiment test program are more objective when
based on preliminary testing. Thus, in new and unique mechanical reliability
applications, it may be reasonable to expend as much as one-half of the test
resources on preliminary testing.

1.4.2. Orthogonality

Unless there is a specific reason for doing otherwise, the experiment test
program should be structured such that when its conceptual statistical
model is expressed in column vector format, its respective column vectors
are mutually orthogonal (Chapter 2). Statistical analyses for orthogonal con-
ceptual statistical models have simple geometric interpretations and intuitive
mechanics analogies (Section 1.5).

1.4.3. Equal Replication

Unless there is a specific reason for doing otherwise, all comparative experi-
ment test programs should include equal replication, viz., the same number
of replicates for each treatment (treatment level, treatment combination)
being compared. Chapter 2 introduces the concept of statistical degrees of
freedom for the mutually orthogonal column vectors comprising the esti-
mated conceptual statistical model. Statistical degrees of freedom provide an
intuitive index to the amount of replication. (The greater the amount of
replication, the greater the precision of the resulting statistical estimates.)

1.4.4. Time Blocks

Time blocks should always be used in conducting an experiment test pro-
gram, either to mitigate the (actual or potential) spurious effects of time
trends, or as a precautionary measure against an inadvertent interruption of

Experiment Test Program Planning Fundamentals 15

TLFeBOOK



the experiment test program (e.g., by equipment breakdown). However,
unless a statistical analysis indicates that a time-trend effect has occurred
or unless some inadvertent experiment test program interruption has
occurred, it is seldom necessary to include these time blocks in the concep-
tual statistical model ultimately presumed in statistical analysis.

1.4.5. Batch-to-Batch E¡ects

Never presume that batch-to-batch effects (differences) are negligible when
conducting an experiment test program whose objective is to make a quan-
titative assessment, e.g., the yield strength in a conventional laboratory
tension test for a given material and its processing. Unless batch-to-batch
effects have been clearly demonstrated to be negligible, always include at
least two relatively diverse batches of experimental units in the experiment
test program and then statistically estimate the batch-to-batch effect. The
physical interpretation of the associated quantitative assessment is clearly
dubious whenever the magnitude of the estimated batch-to-batch effect is
not negligible. (See Supplemental Topic 6.C.)

1.5. STATISTICAL ANALYSIS FUNDAMENTALS

Two fundamental abstractions establish the foundation of classical statisti-
cal analyses. First, the experiment test program of specific interest, and each
of the sets of nominally identical experimental units and/or test conditions
that comprise this experiment test program, can be continually replicated
indefinitely to generate the conceptual collection of all possible experiment
test program outcomes. Moreover, the outcome for the experiment test
program that is (was) actually conducted is (was) randomly selected from
this collection of all possible equally-likely experiment test program out-
comes (see Table 1.1). Second, its conceptual random datum values
(CRDVi’s) are (were) randomly selected from their corresponding concep-
tual statistical distributions that respectively consist of all possible replicate
conceptual random datum values (APRCRDVi’s).

Although in concept the experiment test program that is (was) actually
conducted can be continually replicated indefinitely, the number of its
equally likely outcomes can be either finite or infinite. The measurement
metric is discrete for a conceptual statistical distribution that consists of a
finite number of equally likely CRDVi’s. It is continuous for a conceptual
statistical distribution that consists of an infinite number of equally-likely
CRDVi’s. Figure 1.5 depicts all possible equally-likely outcomes for (a) the
digits 0 through 9 when each digit is equally likely to be selected in a random
selection process, and for (b) the sum of the number of dots that actually
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appear on a pair of dice when the numbers of dots that actually appear on
each die, 1 through 6, are independent and equally likely to appear after
each random toss.

1.5.1. Depicting Finite Conceptual Statistical
Distributions by Point Masses

It is intuitively convenient to depict a conceptual statistical distribution that
consists of a finite number of equally likely CRDVi’s by a corresponding
finite number of identical point masses, as in Figure 1.5. The centroid of
these identical point masses is termed the mean of the conceptual statistical
distribution. It is also termed the expected value of a randomly selected
CRDVi. The units of a mean or an expected value are the units for the
measurement metric. The mass moment of inertia of these identical point
masses about their centroid (mean, expected value), divided by the sum of
these masses, is termed the variance of this finite conceptual statistical dis-
tribution. Its units are the square of the units for the measurement metric. In
turn, because mass in statistical jargon is termed weight, each equally likely
CRDVi has the same value for its statistical weight (sw), viz.,

sw (by definition) ¼ 1=½varðAPRCRDVi’s�
Moreover, because the variance of a finite conceptual statistical distribution
is, by definition, the mass moment of inertia about the centroid, divided by
the sum of the masses, its value is independent of the value for the centroid.
Accordingly, each of the finite conceptual statistical distributions depicted in
Figure 1.5 can be translated either to the right or to the left along their
measurement metrics, and the respective variances of these conceptual sta-
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Table 1.1 Illustration of the Infinite Conceptual Collection of Replicate

Experiment Test Programs and Associated Infinite Collection of Equally-likely

Experiment Test Program Outcomes

Conceptual experiment test program(a) Associated equally-likely outcome

1 [CRDV1;CRDV2;CRDV3; � � �CRDVndv
�1

2 [CRDV1;CRDV2;CRDV3; � � �CRDVndv �2
3 [CRDV1;CRDV2;CRDV3; � � �CRDVndv

�3
..
. ..

.

m ½CRDV1;CRDV2;CRDV3; � � �CRDVndv
�m

..

. ..
.

1 ½CRDV1;CRDV2;CRDV3; � � �CRDVndv �1
(a)The first fundamental statistical concept is the experiment test program that is (was)

actually conducted is (was) randomly selected from this conceptual collection.
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tistical distributions do not change. Thus, given CRDVi’s randomly selected
from two (or more) different conceptual distributions that differ only by the
respective values for their means, the associated statistical weights all have
identical values.

1.5.2. Statistically Identical and Homoscedastic
Conceptual Random Datum Values

When an experiment test program consists only of CRDVi’s pertaining to a
single set of nominally identical test conditions and experimental units, these
CRDVi’s have identical values for their statistical weights (by definition) and
thus are statistically identical (by definition). We explicitly denote statisti-
cally identical CRDVi’s as CRSIDVi’s. The intuitive least-squares estimator
of the actual value for the mean of the conceptual statistical distribution
that consists of APRCRSIDVi’s is the arithmetic average of the experiment
test program CRSIDVi’s. On the other hand, when the experiment test
program datum values pertain to two or more sets of nominally identical
test conditions and/or experimental units, an arithmetic average is statisti-
cally credible only if all of the experiment test program CRDVi’s are pre-
sumed to have identical values for their statistical weights (Supplemental
Topic 6.B). The presumption that two or more sets of CRDVi’s have iden-
tical values for their statistical weights so markedly simplifies classical sta-
tistical analyses that this presumption is almost universally employed. When
all of the respective sets of experiment test program CRDVi’s have identical
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Figure1.5 Two example conceptual statistical distributions that consist of a finite

number of equally-likely CRDVi’s. (The graphical depiction of a conceptual statis-

tical distribution that consists of an infinite number of equally-likely CRDVi’s is

presented and discussed in Chapter 3.)
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values for their respective statistical weights, these CRDVi’s are termed
homoscedastic. We explicitly denote homoscedastic CRDVi’s as
CRHDVi’s. Accordingly, the intuitive least-squares estimator of the actual
value for the mean of the conceptual statistical model that consists of two or
more homoscedastic conceptual statistical distributions is the arithmetic
average of all of the respective CRHDVi’s. Clearly, CRHDVi’s are obtained
by randomly selecting CRDVi’s from two or more conceptual statistical
distributions that differ only by the values for their means, as shown in
Figure 1.6.

1.5.3. Arithmetic Averages and Orthogonal Estimated
Conceptual Statistical Models

The orthogonality relationships of specific interest in classical statistical
analyses pertain to the estimated conceptual statistical model. These ortho-
gonality relationships are the direct consequence of the use of arithmetic
averages in least-squares estimation. Suppose that the experiment test pro-
gram of specific interest consists only of replicate datum values pertaining to
a given set of nominally identical experimental units and test conditions.
Then, the experiment test program CRSIDVi’s can be completely explained
by a conceptual statistical model with only two terms: (a) the mean of the
conceptual statistical distribution that consists of APRCRSIDVi’s, and (b)
the associated conceptual statistically identical experimental errors
(CRSIEEi’s). The least-squares estimated statistical model also has two
terms: (a) the least-squares estimate of the actual value for the mean of
the conceptual statistical distribution that consists of APRCRSIDVi’s,
viz., the arithmetic average of the experiment test program datum values,
and (b) the associated est(CRSIEEi’s). The orthogonality of the least-
squares estimated statistical model is obvious when it is numerically
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Figure 1.6 Two finite conceptual statistical distributions whose CRSIDVi’s have

identical statistical weights and are therefore homoscedastic. The conceptual distri-

bution that consists of APRCSIDVi’s for B is identical to conceptual distribution

that consists of APRCSIDVi’s for A, except that the former is translated a positive

distance along its discrete measurement metric. (See also Figure 3.29.)
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depicted in a column vector format. Suppose that our hypothetical datum
values are 0.50, 0.49, and 0.51. Then the least-squares estimated statistical
model, stated in column vector notation, is

hypothetical datum valuei’s
0:50
0:49
0:51

������
������ ¼

est[meanðAPRCRSIDVi’sÞ�
0:50
0:50
0:50

������
������ þ

estðCRSIEEi’sÞ
þ0:00
�0:01
þ0:01

������
������

Note that the dot product of the |est[mean(APRCRSIDVi ’s)| column vector
and the |est(CRSIEEi ’s)| column vector is equal to zero. Accordingly, these
two column vectors are orthogonal. Note also that ð0:50Þ2þ ð0:49Þ2 þ ð0:51Þ2
¼ 0:7502 ¼ ð0:50Þ2 þ ð0:50Þ2 þ ð0:50Þ2 þ ð0:00Þ2 þ ð�0:01Þ2 þð0:01Þ2.

1.5.4. Intrinsic Statistical Estimation Errors

Statistical estimates are computed by substituting the realization values for
the experiment test program CRDVi’s into the corresponding statistical
estimators (estimation expressions). However, since these realization values
(datum values) differ from replicate experiment test program to replicate
program, statistical estimates also differ from replicate program to replicate
experiment test program. On the other hand, the actual value for the quan-
tity being estimated is invariant. Thus, under continual replication of the
experiment test program, each statistical estimator, whatever its nature,
generates replicate realizations of an intrinsic statistical estimation error
that is confounded with the actual value for the quantity being estimated.

The following numerical example is intended to enhance your intuition
regarding intrinsic statistical estimation errors. Suppose that the experiment
test program of specific interest consists of four replicate datum values
pertaining to a single set of nominally identical experimental units and
test conditions. Suppose also that these replicate datum values are randomly
selected from the conceptual statistical distribution that consists of the
equally-likely integers 00 through 99. Then, the conceptual statistical
model, written in our hybrid column vector notation, is

jCRSIDVi’sj ¼ jcsdmj þ jCRSIEEi’sj ¼ j49:5j þ jCRSIEEi’sj

in which the csdm is the conceptual statistical distribution mean, viz., 49.5.
The corresponding least-squares estimated statistical model is

jreplicate datum valuei’sj ¼ jestðcsdmÞj þ jestðCRSIEEi’sÞj

in which est(csdm) is equal to the arithmetic average of the four replicate
datum values. Next, suppose we run microcomputer program RANDOM2
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with nelpri ¼ 4, ndigit ¼ 2, and seed numbers 115 283 967 to generate the four
replicate datum values 68, 96, 42, and 9. Accordingly, for the conceptual
statistical model:

CRSIDVi ’s
68
96
42
9

��������

��������
¼

csdm
49:5
49:5
49:5
49:5

��������

��������
þ

CRSIEEi’s
þ18:5
þ46:5
�7:5

�40:5

��������

��������
sum 6¼ 0:0

whereas for the estimated conceptual statistical model:

replicate datum valuei’s
68
96
42
9

��������

��������
¼

estðcsdmÞ
53:75
53:75
53:75
53:75

��������

��������
þ

estðCRSIEEi’sÞ
þ14:25
þ42:25
�11:75
�44:75

��������

��������
sum ¼ 0:0

Obviously, est(csdm) is not exact. Rather, est(csdm) is equal to the sum of
the actual value of the csdm, 49.5, plus the realization of its intrinsic statis-
tical estimation error component, which, in this numerical example, is
53:75� 49:5 ¼ 4:25. However, each time that our example experiment test
program is replicated (as required in Exercise Set 3) a different realization
value for this statistical estimation error component will (very likely) be
computed. Note that we do not know a priori either its magnitude or
sign. Note also that the associated est(CRSIEEi’s) are not exact. Rather
each est(CRSIEEi) is equal to the actual value for its corresponding
CRSIEEi plus the realization of its intrinsic statistical estimation error com-
ponent, which, in this numerical example, is equal to �4:25.

This elementary example is intended to support two fundamental sta-
tistical concepts. First, every statistical estimate, whatever its associated
statistical estimator (estimation expression), is the sum of the actual value
for the quantity being estimated plus an intrinsic statistical estimation error
component. Second, the collection of all possible intrinsic statistical estima-
tion error components that would occur under continual replication of the
experiment test program establishes the conceptual statistical distribution
(technically termed a conceptual sampling distribution) for this intrinsic
statistical estimation error component. Clearly, the more we understand
about the analytical and numerical nature of this conceptual statistical dis-
tribution (conceptual sampling distribution), the more dependable the infer-
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ences (conclusions) that we can draw from the appropriate statistical ana-
lysis for a randomly selected outcome of a continually replicated experiment
test program.

Exercise Set 3

These exercises are intended to support the notions that (a) every statistical
estimate includes an intrinsic statistical estimation error component, and (b)
the collection of all possible intrinsic statistical estimation error components
that would occur under continual replication of the experiment test program
establishes the conceptual sampling distribution for this intrinsic statistical
estimation error component.

1. Replicate the text example experiment test program (at least) five
times by running microcomputer program RANDOM2 with
nelpri ¼ 4, ndigit ¼ 2, each time using a different set of three,
three-digit odd seed numbers. Write the associated conceptual
and estimated statistical models. Then, numerically explain the
respective [est(csdm)]’s and their associated [est(CRSIEEi’s)]’s as
the sum of their actual values plus realizations of the correspond-
ing intrinsic statistical estimation error components. Do these
realizations differ from replicate experiment test program out-
come to replicate experiment test program outcome? Discuss.

2. Suppose that microcomputer program RANDOM2 is repeatedly
run with nelpri ¼ 4, ndigit ¼ 2 until all equally-likely experiment
test program outcomes (distinct sets of pseudorandom datum
values) have been enumerated. (a) Is the conceptual sampling
distribution that consists of the collection of all possible realiza-
tions of the intrinsic statistical estimation error component more
akin to Figure 1.5(a) or (b)? (b) Is the mean of its conceptual
sampling distribution equal to zero? If so, then (i) the expected
value of a randomly selected realization of the intrinsic statistical
estimation error component is equal to zero, and (ii) the least-
squares statistical estimator is unbiased. (c) Is this conceptual
sampling distribution symmetrical about its mean? Discuss.

3. Is it practical to suppose that microcomputer program
RANDOM2 is repeatedly run with nelpri ¼ 4, ndigit ¼ 2 until all
equally-likely experiment test program outcomes have been
enumerated? (Hint: How many equally-likely experiment test
program outcomes can be enumerated?) Suppose instead that a
microcomputer program is written to generate nrep equally-likely
experiment test program outcomes, where nrep is very large, say,
10,000 or 100,000. (a) Could the resulting empirical sampling
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distribution that consists of these nrep realizations of the intrinsic
statistical estimation error component be used to approximate
the conceptual sampling distribution that consists of all possible
realizations of the intrinsic statistical estimation error compo-
nent? If so, (b) would the mass centroid of this empirical sam-
pling distribution be exactly equal to the actual value for the
csdm, or would it also have an intrinsic statistical estimation
error component?

Exercise Set 4

These exercises are intended to review the mechanics concept of mass
moment of inertia and the associated parallel-axis theorem.

1. Recall that the respective statistical weights (sw’s) pertaining to a
collection of ndv CRSIDVi’s have identical values. Next, suppose
that the mass moment of inertia of this collection of ndv
CRSIDVi’s about the point c is expressed as

mass moment of inertia about point c

¼
Xndv
i¼1

sw � ðCRSIDVi � cÞ2

Then, set the derivative of the mass moment of inertia with
respect to c equal to zero to demonstrate that the mass moment
of inertia takes on its minimum values when

c ¼
Xndv
i¼1

CRSIDVi

ndv

viz., when c is equal to the arithmetic average of the respective
CRSIDVi’s.

2. Suppose that the mass moment of inertia of a collection of ndv
CRSIDVi’s about point c is re-expressed as

mass moment of inertia about point c

¼
Xndv
i¼1

sw � f½CRSIDVi � aveðCRSIDVi’sÞ�

þ ½aveðCRSIDVi’s� c�g2

in which ave(CRSIDVi’s) is the arithmetic average of the respec-
tive ndv CRSIDVi’s. (a) Derive the parallel-axis theorem by (i)
expanding the squared term in this revised expression, (ii) stating
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the physical (mechanics) interpretations for the first and last
terms, and (iii) explaining why the middle (the cross-product)
term is equal to zero. In turn, (b) rewrite this parallel-axis theo-
rem expression to pertain to the special situation where the sw for
(mass of) each of the respective CRSIDVi’s is dimensionless and
is equal to one.

3. Given the respective CRSIDVi’s re-expressed in our hybrid
column vector notation as

jCRSIDVi’s� cj ¼ jCRSIDVi’s� aveðCRSIDVi’sÞj
þ javeðCRSIDVi’sÞ � cj

in which ave(CRSIDVi’s) is the arithmetic average of the
respective ndv CRSIDVi’s, (a) demonstrate that the
|CRSIDVi’s � ave(CRSIDVi’s)| column vector and the
|ave(CRSIDVi’s) � c| column vector are orthogonal by explain-
ing why their dot product is equal to zero. Next, (b) express the
sum of squares of the elements in the |CRSIDVi’s � c| column
vector as the sum of the respective sum of squares of the
elements in the |CRSIDVi’s � ave(CRSIDVi’s)| and the
|ave(CRSIDVi’s) � c| column vector. Then, (c) demonstrate
that this expression is identical to the expression in Exercise 2(b).

Remark: The identity in (c) is exploited in Chapter 7 by
using the mass moment of inertia expression pertaining
to specific collections of CRSIDVi’s with unit (dimen-
sionless) masses to establish expressions for the between
and within sums of squares in simple linear regression.

1.6. CLOSURE

Treatments with different random assignments to experimental units (or vice
versa) will have different numbers of replicates and different statistical ana-
lyses. There is a monumental difference between a single measurement con-
ducted on each of 10 different experimental units and 10 repeated
measurements conducted on a specific experimental unit, even though
there are 10 measurement datum values to be statistically analyzed in
each case. This difference leads to the following axiom:

There is no valid statistical analysis without understanding exactly
how the experiment test program was actually conducted.
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Accordingly, Chapter 2 is concerned with the organizational structure of,
and the test conduct details for, statistically planned experiment test pro-
grams with orthogonal conceptual statistical models. In turn, Chapter 3 is
concerned with the statistical analysis of these experiment test programs.
The sequentially arranged terminology presented in Supplemental Topic 1.A
is intended to provide the background that is fundamental to the presenta-
tions and discussions in Chapters 2 and 3.

1.A. SUPPLEMENTAL TOPIC: PLANNED EXPERIMENT
TEST PROGRAM STATISTICAL TERMINOLOGY

The following statistical terminology is intended to enhance understanding
of the discussions found in Chapters 2–5.

Conceptual Statistical . . . . . .
Distribution

Given any specific set of test conditions
within a given experiment test program,
the associated conceptual statistical distri-
bution consists of all possible replicate con-
ceptual random datum values that
conceptually would be obtained if this
experiment test program were continually
replicated indefinitely.

Conceptual Sampling . . . . . . .
Distribution

Given any specific experiment test pro-
gram, a conceptual sampling distribution
consists of all possible replicate realization
values for a statistical estimator (or for a
statistic) that conceptually would be
obtained if this experiment test program
were continually replicated indefinitely.

Conceptual Statistical . . . . . .
Model

The analytical expression that consists of
the presumed deterministic physical model
for the experiment test program datum
values plus a conceptual experimental
error term.

Conceptual Experimental . . .
Error

The term that must be added to the pre-
sumed deterministic physical model to
explain the variability of experiment test
program datum values. The mean of the
conceptual statistical distribution that con-
sists of all possible replicate realization
values for the conceptual experimental
errors is equal to zero (because the deter-
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ministic portion of the conceptual statisti-
cal model is presumed to be correct).

Mean . . . . . . . . . . . . . . . . . For conceptual statistical (sampling) distri-
butions with a discrete measurement
metric, the statistical analog to the mass
centroid in mechanics. However, for con-
ceptual statistical (sampling) distributions
with a continuous measurement metric, it
is the statistical analog to an area centroid
in mechanics. The units for the mean are
the units for the measurement metric that is
employed in the experiment test program.
Although the mean is an intuitive location
parameter for all conceptual statistical
(sampling) distribution, its statistical use
as a location parameter is typically limited
to symmetrical conceptual statistical (sam-
pling) distributions.

Variance . . . . . . . . . . . . . . . For conceptual statistical (sampling) distri-
butions with a discrete measurement
metric, the statistical analog to the mass
moment of inertia about the mass centroid,
divided by the sum of the masses. However,
for conceptual statistical (sampling) distri-
butions with a continuous measurement
metric, it is the statistical analog to an
area moment of inertia about the area cen-
troid, divided by the (total) area. The units
for the variance are the square of the units
for the measurement metric that is
employed in the experiment test program.

Standard Deviation . . . . . . . . The square root of the variance. Its units
are same as the units for the mean, viz., the
units for the measurement metric that is
employed in the experiment test program.
Although the standard deviation is an
intuitive scale parameter for all conceptual
statistical (sampling) distributions, its sta-
tistical use as a scale parameter is typically
limited to conceptual (two-parameter) nor-
mal (statistical and sampling) distributions
(Chapter 5).
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Conceptual Parameter . . . . . . A parameter in a conceptual statistical dis-
tribution or in a conceptual statistical
model. In our hybrid column vector nota-
tion, its magnitude is established by its
scalar coefficient.

Statistical Estimator . . . . . . . The estimation expression (algorithm) that
is used to compute the statistical estimate
of the actual value for a conceptual para-
meter (or its scalar coefficient). Least-
squares and maximum likelihood statistical
estimators are employed in this text.

Statistical Estimate . . . . . . . . The realization value obtained by appropri-
ately substituting the experiment test pro-
gram datum values into the corresponding
statistical estimator (estimation expression,
estimation algorithm). Statistical estimates
always include the realization of an intrin-
sic statistical estimation error component
confounded with the actual value for the
quantity being estimated.

Unbiased Statistical . . . . . . .
Estimator

A statistical estimator whose statistical bias
is equal to zero, viz., whose difference
between actual value being estimated and
the mean of its conceptual sampling distri-
bution is equal to zero. The expected value
for the intrinsic statistical estimation error
component is equal to zero for unbiased
statistical estimators, viz., the mean (cen-
troid) of the conceptual sampling distribu-
tion that consists of all possible replicate
values for the intrinsic statistical estimation
error is equal to zero.

Statistical Bias . . . . . . . . . . . The difference between the actual value for
the quantity being estimated and the mean
of the conceptual sampling distribution
that consists of all possible replicate values
for the associated statistical estimate. The
expected value for the intrinsic statistical
estimation error component is equal to
the statistical bias for biased statistical esti-
mators, viz., the mean (centroid) of the
conceptual sampling distribution that con-
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sists of all possible replicate values for the
intrinsic statistical estimation error compo-
nent is equal to the statistical bias.

Statistic . . . . . . . . . . . . . . . . The expression (algorithm) that, given the
respective experiment test program datum
values, is used to establish the realization
value of specific interest. This realization
value (also termed a statistic) is presumed
to have been randomly selected from its
associated conceptual sampling distribu-
tion. (Statistical estimators and statistical
estimates are statistics.)

Test Statistic . . . . . . . . . . . . A statistic that is used in statistical analysis
to test a given null hypothesis versus its
physically relevant alternative hypothesis.

Treatments. . . . . . . . . . . . . . Treatments are the test variables (test con-
ditions) being studied in an experiment test
program. Treatments are distinct, e.g.,
either zinc-plated or shot-peened, whereas
treatment levels are quantitative, e.g., zinc-
plated, either 1, 2, or 3 mils thick.
Treatments (treatment levels, treatment
combinations) are randomly assigned to
nominally identical experimental units.

Blocks . . . . . . . . . . . . . . . . . Blocks are groups of experimental units
and/or test conditions that are deliberately
selected in an experiment test program to
be as nominally identical as practical.
Blocks are employed in the experiment
test program to mitigate the spurious
effects of batch-to-batch effects and differ-
ences among test conditions on the respec-
tive estimated values for the treatment
effects of specific interest.
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2
Planned Experiment Test Programs
with Orthogonal Conceptual
Statistical Models

2.1. INTRODUCTION

The basic feature of a planned experiment test program is the overt relation-
ship between its conceptual statistical model and its organizational struc-
ture. Column vector notation is used in the planned experiment test
program examples that follow to highlight the orthogonality relationships
underlying their conceptual statistical models.

2.2. COMPLETELY RANDOMIZED DESIGN
EXPERIMENT TEST PROGRAMS

2.2.1. Quantitative (Single Treatment) Experiment Test
Programs

The simplest statistically planned experiment is a completely randomized
design (CRD) experiment test program with a single treatment. It is called a
quantitative experiment test program. The usual test objective is to estimate
a mechanical behavior value. If replicate measurements of this mechanical
behavior exhibit obvious statistical variability, then a statistical model is
appropriate. This statistical model essentially asserts that the mechanical
behavior value is actually the mean of the conceptual statistical distribution
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that consists of all possible replicate mechanical behavior measurement
values.

Recall that replicate measurements made under nominally identical
conditions on nominally identical test specimens (experimental units) are
presumed to generate (mutually independent) conceptual random statistically
identical datum values, denoted CRSIDVi’s. Thus, the conceptual statistical
model for a quantitative CRD experiment test program with nr replicate
measurement values is stated in our hybrid column vector notation as

jCRSIDVi’sj ¼ jcsdmj þ jCRSIEEi’sj ¼ csdm � j þ 1’sj þ jCRSIEEi’sj

in which the csdm denotes the conceptual statistical distribution mean, viz.,
the centroid of the conceptual statistical distribution that consists of all
possible realization values for the CRSIDVi’s under continual replication
of the experiment test program, and the CRSIEEi’s are deviations of the
associated CRSIDVi’s from the csdm. Note that the expected value of each
of the respective CRSIEEi’s is equal to zero (by definition). Note also that if
the conceptual statistical distribution consisting of APRCRSIDV ’s is sym-
metrical about its mean, then both negative and positive CRSIEEi’s are
equally likely.

Remark: Our notation employs capital letters to connote concep-
tual random datum values and conceptual random errors and lower
case letters to connote the actual (numerical) values for conceptual
model parameters and experiment test program datum values. This
notational distinction, however, is not critical in this chapter.

The associated estimated conceptual statistical column vector model
for this quantitative CRD experiment test program is written as

jexperiment test program datum valuei’sj
¼ jestðcsdmÞj þ jestðCRSIEEi’sj
¼ estðcsdmÞ � j þ 1’sj þ jestðCRSIEEi’sÞj

in which, under continual replication of the experiment test program, the
|experiment test program datum values| column vector has nr statistical
degrees of freedom (defined later), the |est(csdm)| column vector has one
statistical degree of freedom, and the |est(CRSIEEi’s)| column vector has
(nr � 1Þ statistical degrees of freedom.

The conceptual statistical model also involves the explicit presumption
that the respective CRSIEEi’s are random and the implicit presumption that
these CRSIEEi’s are mutually independent. Thus, a critical step in statistical
analysis for a quantitative CRD experiment test program is to examine the
respective est(CRSIEEi’s) relative to a lack of randomness, e.g., the presence
of an obvious time-order-of-testing trend.
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2.2.1.1. Numerical Example of a Quantitative CRD Experiment
Test Program

Suppose we have 16 nominally identical fatigue test specimens that (we
allege) are representative of the population of all possible nominally identical
test specimens of specific interest. However, we choose to conduct only eight
fatigue tests in our quantitative CRD experiment test program. Depicting
each of the eight required fatigue test specimens by a rectangle in Figure 2.1,
we randomly select eight of the 16 nominally identical test specimens by
running microcomputer program RANDOM1; with nelpri ¼ 8 and ni ¼ 16.
The resulting randomization outcome is indicated by the test specimen num-
ber printed inside each of the rectangles that are intended to depict a fatigue
test specimen. In turn, the experiment test program fatigue tests are con-
ducted back-to-back in random time order by the same test technician
using the same fatigue test machine. The random time order of testing is
indicated by the subscript number in parentheses located at the lower
right-hand corner of each fatigue test specimen rectangle. It is established
by running microcomputer program RANDOM1 with nelpri ¼ 8 and ni = 8.

We now construct hypothetical data for this example CRD quantita-
tive experiment test program such that an obvious time-order-of-testing
effect exists. The conventional algebraic least-squares estimate of the actual
value for the csdm is the arithmetic average of the respective experiment test
program datum values. The resulting est(CRSIEEi’s) are computed as ‘‘resi-
duals,’’ viz., as the numerical deviations of the respective experiment test
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Figure 2.1 Schematic of the organizational structure of a quantitative completely

randomized design (CRD) experiment test program. Each rectangle is intended to

depict a fatigue test specimen. The respective randomization details of this CRD

experiment test program are discussed in the text.
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program datum values from their arithmetic average. These deviations sum
to zero (by definition). Accordingly, the |+1’s| column vector and the
|est(CRSIEEi’s)| column vector are orthogonal (because the dot product
of the |+1’s| column vector and the |est(CRSIEEi’s)| column vector is
equal to zero).

hypothetical datum valuei’s;
arranged in time order

of testing

1
2
3
4
5
6
7
8

����������������

����������������

¼

estðcsdmÞ
4:5
4:5
4:5
4:5
4:5
4:5
4:5
4:5

����������������

����������������

þ

estðCRSIEEi’sÞ
�3:5
�2:5
�1:5
�0:5
þ0:5
þ1:5
þ2:5
þ3:5

����������������

����������������
sum ¼ 0:0

These est(CRSIEEi’s) are plotted in Figure 4.4(a). Visual inspection of this
plot indicates an obvious time-order-of-testing trend. Consequently we have
a rational basis to doubt the credibility of the presumed conceptual statis-
tical model. (Time-order-of-testing trends are generally caused by improper
test conduct and/or the absence of proper randomization.)

Suppose, however, that the hypothetical datum values for this quanti-
tative CRD experiment test program example actually pertain to the ran-
domly selected time order of testing (from smallest to largest) for the fatigue
test specimens depicted schematically in Figure 2.1, viz.,

hypothetical datum valuei’s;
re-arranged in the random

time order of testing
in Figure 2.1

6
5
1
8
2
7
4
3

����������������

����������������

¼

estðcsdmÞ
4:5
4:5
4:5
4:5
4:5
4:5
4:5
4:5

����������������

����������������

þ

estðCRSIEEi’sÞ
þ1:5
þ0:5
�3:5
þ3:5
�2:5
þ2:5
�0:5
�1:5

����������������

����������������
sum ¼ 0:0

These est(CRSIEEi’s) are plotted in Figure 4.4(b). Supplemental Topic 4.A.
As expected, visual inspection of this plot indicates no obvious time-order-
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of-testing trend. Accordingly, we do not have a rational basis to doubt the
credibility of the presumed conceptual statistical model.

In turn, suppose that these randomly rearranged hypothetical datum
values are again rearranged to conform with the location order (from smal-
lest to largest) of the randomly selected test specimen blanks within the rod
that was cut to form the 16 blanks that comprise the population of specific
interest. Then,

hypothetical datum valuei’s;
re-rearranged to conform to
the random specimen blank

order in Figure 2.1

1
4
2
7
5
3
6
8

����������������

����������������

¼

estðcsdmÞ
4:5
4:5
4:5
4:5
4:5
4:5
4:5
4:5

����������������

����������������

þ

estðCRSIEEi’sÞ
�3:5
�0:5
�2:5
þ2:5
þ0:5
�1:5
þ1:5
þ3:5

����������������

����������������
sum ¼ 0:0

These est(CRSIEEi’s) are plotted in Figure 4.4(c). Again, as expected, visual
inspection of this plot indicates no obvious time-order-of-testing trend.
However, the suggestion of a possible test specimen blank location effect
is sufficiently strong to require that a formal statistical test be conducted.
For the present, the fundamental issue is that we are obliged to examine the
respective est(CRSIEEi’s) relative to each presumption underlying the con-
ceptual statistical model (whenever possible).

2.2.1.2. Discussion

Test specimens and their materials are always produced and processed in
batches. Thus, when conducting a quantitative experiment test program, it is
always prudent to employ test specimens (experimental units) that are
selected from two or more diverse sources and thus potentially exhibit
marked batch-to-batch effects. Then it is statistically rational to estimate
the actual value for the csdm if and only if the null hypothesis that there are
no batch-to-batch effects is not rejected in subsequent statistical analysis.

It is never prudent to presume that the experimental unit batch-to-
batch effect is negligible without competent experimental verification.
Similarly, it is never prudent to presume that test machine and test techni-
cian effects are negligible without competent experimental verification.
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Exercise Set 1

These exercises are intended to introduce an array of mutually orthogonal
column vectors that establish the estimated conceptual statistical model
when certain of these column vectors are appropriately aggregated.

Consider the following estimated complete analytical model that con-
sists of eight mutually orthogonal column vectors. This estimated complete
analytical model completely explains the first text example |hypothetical
datum valuei’s| column vector, viz., the algebraic sum of the ith element in
each of the j column vectors is equal to the ith hypothetical datum value. The
|est(CRSIEEi’s)| column vector in the estimated statistical model is con-
structed by aggregating the respective elements of the last seven column
vectors. (The criteria for selecting the column vectors to be aggregated are
discussed later.)

hypothetical

datum valuei’s

1

2

3

4

5

6

7

8

�������������������

�������������������

¼

estðcsdmÞ
4:5

4:5

4:5

4:5

4:5

4:5

4:5

4:5

�������������������

�������������������

seven mutually orthogonal column vectors that establish

the estðCRSIEEi ’sÞ column vector when aggregated

þ

�0:5

þ0:5

0:0

0:0

0:0

0:0

0:0

0:0

�������������������

�������������������

þ

�0:5

�0:5

þ1:0

0:0

0:0

0:0

0:0

0:0

�������������������

�������������������

þ

�0:5

�0:5

�0:5

þ1:5

0:0

0:0

0:0

0:0

�������������������

�������������������

þ

�0:5

�0:5

�0:5

�0:5

þ2:0

0:0

0:0

0:0

�������������������

�������������������

þ

�0:5

�0:5

�0:5

�0:5

�0:5

þ2:5

0:0

0:0

�������������������

�������������������

þ

�0:5

�0:5

�0:5

�0:5

�0:5

�0:5

þ3:0

0:0

�������������������

�������������������

þ

�0:5

�0:5

�0:5

�0:5

�0:5

�0:5

�0:5

þ3:5

�������������������

�������������������
sum ¼ 0:0 0:0 0:0 0:0 0:0 0:0 0:0

1. (a) Verify that the eight column vectors that comprise the esti-
mated complete analytical model are mutually orthogonal. Next,
(b) aggregate the last seven of these column vectors to obtain the
first text example |est(CRSIEEi’s)| column vector. Then, (c)
demonstrate that the sum of the respective sums of squares of
the elements of these seven mutually orthogonal column vectors
equals the sum of squares of the elements of this |est(CRSIEEi’s)|
column vector. Finally, (d) demonstrate that the sum of squares
of the elements of this |est(CRSIEEi’s)| column vector plus the
sum of squares of the elements of the associated |est(csdm)| col-
umn vector is equal to the sum of squares of the elements of the
|hypothetical datum valuei’s| column vector.

2. We will demonstrate later that (i) the direction of each of the
column vectors that comprise the estimated complete analytical
model is fixed, and (ii) the length of each of these column vectors
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is established by the observed experiment test program datum
values. If so, (a) how many statistical degrees of freedom does
each of these column vectors have under continual replication of
the experiment test program? In turn, (b) how many statistical
degrees of freedom does a column vector have that is established
by aggregating seven mutually orthogonal column vectors in the
estimated complete analytical model?

3. Consider again the estimated conceptual statistical model for each
of the text numerical examples. (a) How many statistical degrees
of freedom does the |hypothetical datum valuei’s)| column vector
have? (b) How many statistical degrees of freedom does the
|est(csdm)| column vector have? (c) How many statistical degrees
of freedom does the |est(CRSIEEi’s)| column vector have? Is the
sum of (b) and (c) equal to (a)? Comment appropriately.

2.2.2. Comparative (Multiple Treatment) Experiment
Test Programs

The simplest comparative CRD experiment test program involves either (a)
two treatments, or (b) one treatment with two levels. In turn, the simplest
conceptual statistical model asserts that the two conceptual statistical dis-
tributions that respectively consist of APRCRSIDVi ’s for these two treat-
ments (treatment levels) are identical except that the actual values for their
respective means (may) differ. Then, as discussed in Section 1.4, all of the
respective experiment test program datum values have identical values for
their statistical weights and thus are homoscedastic. Accordingly, the actual
value for the mean of each conceptual statistical distribution of specific
interest can be rationally estimated by the arithmetic average of the appro-
priate experiment test program datum values.

It is convenient in stating the conceptual statistical model to define a
conceptual treatment effect (cte) as the actual value for the mean of the
conceptual statistical distribution that consists of APRCRHDVi ’s for that
treatment (treatment level) minus the actual value for the mean of the con-
ceptual statistical distribution that consists of APRCRHDVi ’s for all treat-
ments (viz., for the entire experiment test program). The latter mean is
termed the conceptual statistical model mean and is denoted csmm. In
more general perspective, a conceptual statistical effect is defined as the
deviation of the actual value for its associated conceptual mean from the
actual value for the csmm. Then, when the corresponding estimates are
computed using arithmetic averages, (a) these estimates always sum to
zero, (b) the associated estimated statistical model consists of mutually
orthogonal column vectors, and (c) the associated estimated scalar coeffi-

Experiment Test Programs with Statistical Models 35

TLFeBOOK



cients are independent under continual replication of the experiment test
program.

It is good statistical practice to keep the number of treatments (treat-
ment levels) of specific interest as small as practical and to increase the
replication of these treatments (treatment levels) as much as possible. On
the other hand, suppose that (a) nt treatments (treatment levels) are to be
compared, (b) each treatment (treatment level) has nr replicates, and
(c) each individual replicate test is conducted on a nominally identical
experimental unit. The resulting equally replicated CRD experiment test
program requires (nr)�(nt) nominally identical experimental units and
nominally invariant test conditions throughout the entire experiment test
program. Accordingly, unless our experimental units are routinely pro-
cessed in homogeneous batches at least as large as (nr)�(nt), and unless
the test conditions can be viewed as being invariant for practical purposes
throughout the entire experiment test program, an equally replicated CRD
experiment test program is inappropriate. Even then we must presume that
the spurious effects of all experiment test program nuisance variables
effects are negligible.

The conceptual statistical model for a comparative CRD experiment
test program with two or more (equally replicated) treatments (treatment
levels) is written in our hybrid column vector notation as

jCRHDVi’sj ¼ jcsmmj þ jctei’sj þ jCRHEEi’sj
in which the csmm is the conceptual statistical model mean and the cte’s are
the respective conceptual treatment effects. The associated estimated statis-
tical model for this CRD experiment test program is

jexperiment test program datum valuei’sj
¼ jestðcsmmÞj þ jestðctei’sj þ jestðCRHEEi’sÞj

in which the |experiment test program datum valuei’s| column vector has
(nr)�(nt) statistical degrees of freedom, the |est(csmm)| column vector has one
statistical degree of freedom, the |est(ctei’s)| column vector has (nt � 1) sta-
tistical degrees of freedom, and the |est(CRHEEi’s)| column vector has
(nt � 1)�(nt) statistical degrees of freedom.

The conventional algebraic least-squares estimate of the actual value
for the csmm is the arithmetic average of all experiment test program datum
values. (It is of little interest in a comparative experiment test program.) In
turn, the conventional algebraic least-squares estimates of the actual values
for respective ctei’s are the arithmetic averages of the experiment test pro-
gram datum values pertaining to each respective treatment (treatment level)
minus the arithmetic average of all experiment test program datum values.
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Least-squares estimation assures that (a) the respective est(ctei’s) sum to
zero, and (b) the |est(ctei’s)| column vector is orthogonal to the |est(csmm)|
column vector. Finally, the resulting est(CRHEEi’s) are computed numeri-
cally as ‘‘residuals,’’ viz., as values that satisfy the scalar equations asso-
ciated with the respective experiment test program datum valuei’s. These
est(CRHEEi’s) sum to zero collectively, and for each respective conceptual
treatment (treatment level), thereby assuring that the |est(CRHEEi’s)| col-
umn vector is orthogonal to both the |est(csmm)| column vector and the
|est(ctei’s)| column vector. The orthogonality relationships generated by
least-squares estimators assure that the within and between sums of squares
that underlie the classical statistical analysis of variance (Chapter 6) are
statistically independent.

2.2.2.1. Numerical Example for a Comparative CRD Experiment
Test Program with (Only) Two Treatments (Treatment
Levels)

Suppose we wish to compare the fatigue lives of laboratory specimens with
circumferentially and longitudinally polished surfaces. Let circumferentially
polished be denoted treatment A and longitudinally polished be denoted
treatment B. Then, the null hypothesis is that the two conceptual statistical
distributions that respectively consist of APRCRHDVi’s for treatments A
and B are identical, whereas the alternative hypothesis is that these two
conceptual statistical distributions differ only in the actual values for their
respective means.

Suppose also, that to test this null hypothesis versus its given alter-
native hypothesis, (a) we prepare 16 nominally identical fatigue test speci-
men blanks, each depicted by a rectangle in Figure 2.2, and (b) we randomly
assign treatments A and B to these test specimen blanks by running micro-
computer program RANDOM1 with nelpri ¼ 16 and ni ¼ 16. The outcome
of this randomization procedure is indicated by the test specimen blank
number printed inside each of the respective rectangles. In turn, the respec-
tive laboratory fatigue tests must be conducted in random time order using
the same test machine, test technician, and test procedure. Otherwise, the
spurious effects of different test machines, different test technicians, or dif-
ferent test procedures will be confounded with the est(cte’s)—unless these
spurious effects are appropriately balanced (as in a randomized complete
block experiment test program, Section 2.3). The random time order of
fatigue testing is established by running microcomputer program
RANDOM1 with nelpri ¼ 16 and ni ¼ 16, but using a different set of three
three-digit odd seed numbers. This random time order is indicated by the

Experiment Test Programs with Statistical Models 37

TLFeBOOK



subscript number in parentheses located at the lower right-hand corner of
each test specimen rectangle.

However, we recommend that all mechanical reliability experiment
test programs be conducted with time blocks for the time order of testing
(even though these time blocks are ignored in the statistical analysis for a
CRD experiment test program). Consider Figure 2.3, where the time order
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Figure 2.2 Schematic of the organizational structure of a comparative CRD

experiment test program involving two treatments, viz., treatments A and B, each

with eight replicates.

Figure 2.3 Recommended time order of testing for the comparative CRD experi-

ment test program whose organizational structure is depicted in Figure 2.2. See the

text discussion for further details.
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of testing is now randomized for each treatment. Accordingly, we recom-
mend that treatment A specimen 2 and treatment B specimen 12 are tested
back-to-back in random time order, before treatment A specimen 11 and
treatment B specimen 7 are tested back-to-back in random time order, and
so forth, until treatment A specimen 15 and treatment B specimen 16 are
tested back-to-back in random time order. Recall, moreover, that one-half
of these random time orders should start with a treatment A specimen and
the other one-half should start with a treatment B specimen.

We now construct hypothetical datum values for this CRD experiment
test program such that a direction of polishing effect (as well as a time-
order-of-testing trend) clearly exists, viz.,

hypothetical datum valuei’s;
arranged in time order

of testing

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

����������������������������������

����������������������������������

estðcsmmÞ

¼

8:5
8:5
8:5
8:5
8:5
8:5
8:5
8:5

8:5
8:5
8:5
8:5
8:5
8:5
8:5
8:5

����������������������������������

����������������������������������

estðctei’sÞ

þ

�4:0
�4:0
�0:4
�4:0
�4:0
�4:0
�4:0
�4:0

þ4:0
þ4:0
þ4:0
þ4:0
þ4:0
þ4:0
þ4:0
þ4:0

����������������������������������

����������������������������������

estðCRHEEi’sÞ

þ

�3:5
�2:5
�1:5
�0:5
þ0:5
þ1:5
þ2:5
þ3:5
��
�3:5
�2:5
�1:5
�0:5
þ0:5
þ1:5
þ2:5
þ3:5

����������������������������������

����������������������������������

sum ¼ 0:0

sum ¼ 0:0 sum ¼ 0:0

sum ¼ 0:0

First, recall that est(csmm) is the arithmetic average of all experiment
test program datum values, viz., 8.5 in this numerical example. Then, since
the arithmetic average of the treatment A datum values is equal to 4.5, the
est(ctei’s) for treatment A are equal to ð4:5� 8:5Þ ¼ �4:0. In turn, since the
arithmetic average of the treatment B datum values is equal to 12.5, the
est(ctei’s) for treatment B are equal to ð12:5� 8:5Þ ¼ þ4:0. Next, note that
these est(ctei’s) sum to zero. Accordingly, the |est(ctei’s)| column vector is
orthogonal to the |est(csmm)| column vector. Finally, the resulting
est(CRHEEi’s) are computed numerically as ‘‘residuals,’’ viz., as values
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that satisfy the scalar equations associated with each respective experiment
test program datum valuei. These est(CRHEEi’s) also sum to zero collec-
tively and for each treatment. Thus, the respective column vectors in this
estimated conceptual statistical model are mutually orthogonal.

Remark: Although it may appear that the magnitudes of the
est(ctei’s) are much too large in this (hypothetical) example to be
explained as the sole consequence of the random variability of the
CRHEEi’s, proper statistical inference is burdened by the lack of
credibility regarding the conceptual statistical model presumption
that the respective CRHEEi’s are random.

Next, we rearrange our hypothetical datum values 1 through 16 to conform
to the random order of test specimen blank assignment to treatments A and
B in Figure 2.2. Then, we compute the conventional algebraic least-squares
estimates of the actual values for the csmm, the ctei’s, and the CRHEEi’s in
our conceptual statistical model, viz.,

hypothetical datum valuei’s;
rearranged in random test
specimen blank assignment

order in Figure 2.2

11
9
2
15
6
8
3
10

1
14
7
4
5
16
13
12

����������������������������������

����������������������������������

estðcsmmÞ

¼

8:5
8:5
8:5
8:5
8:5
8:5
8:5
8:5

8:5
8:5
8:5
8:5
8:5
8:5
8:5
8:5

����������������������������������

����������������������������������

estðctei’sÞ

þ

�0:5
�0:5
�0:5
�0:5
�0:5
�0:5
�0:5
�0:5

þ0:5
þ0:5
þ0:5
þ0:5
þ0:5
þ0:5
þ0:5
þ0:5

����������������������������������

����������������������������������

estðCRHEEi’sÞ

þ

�3:0
�1:0
�6:0
þ7:0
�2:0
þ0:0
�5:0
þ2:0
��
�8:0
þ5:0
�2:0
�5:0
�4:0
þ7:0
þ4:0
þ3:0

����������������������������������

����������������������������������

sum ¼ 0:0

sum ¼ 0:0 sum ¼ 0:0

sum ¼ 0:0

Next, recall that every statistical estimate is equal to the actual value
for the quantity being estimated plus an intrinsic statistical estimation error.
However, the actual values of the ctei’s is equal to zero for our second
numerical example, because the expected values for the arithmetic averages

40 Chapter 2

¼ þ þ

TLFeBOOK



of the eight datum values 1 through 16 randomly assigned to treatments A
and B are both equal to the actual value for the csmm, viz., 8.5. Accordingly,
the realization values for the respective intrinsic statistical estimation error
components of the est(ctei’s) are exactly equal to the respective numerical
values for the est(ctei’s).

We now demonstrate that the realization values for the intrinsic sta-
tistical estimation error components of the est(ctei’s) depend on the specific
details of the random reassignment of our hypothetical experiment test
program datum values to treatments A and B. Accordingly, we now reassign
the hypothetical experiment test program datum values to treatments A and
B, this time to conform to the respective random time orders of testing given
in Figure 2.2. Then, we recompute the conventional algebraic least-squares
estimates of the actual values for the csmm, the ctei’s, and the CRHEEi’s in
our conceptual statistical model, viz.,

hypothetical datum valuei’s;
rearranged in random
stime order of testing

in Figure 2.2

16
13
11
14
9
5
2
12

8
7
1
10
6
4
3
15

����������������������������������

����������������������������������

estðcsmmÞ

¼

8:5
8:5
8:5
8:5
8:5
8:5
8:5
8:5

8:5
8:5
8:5
8:5
8:5
8:5
8:5
8:5

����������������������������������

����������������������������������

estðctei’sÞ

þ

þ1:75
þ1:75
þ1:75
þ1:75
þ1:75
þ1:75
þ1:75
þ1:75

�1:75
�1:75
�1:75
�1:75
�1:75
�1:75
�1:75
�1:75

����������������������������������

����������������������������������

estðCRHEEi’sÞ

þ

þ5:75
þ2:75
þ0:75
þ3:75
�1:25
þ5:25
�8:25
þ1:75
��

þ1:25
þ0:25
�5:75
þ3:75
�0:75
�2:75
�3:75
þ8:25

����������������������������������

����������������������������������

sum ¼ 0:0

sum ¼ 0:0 sum ¼ 0:0

sum ¼ 0:0

Clearly, the intrinsic statistical estimation error components of the
respective est(ctei’s) differ from our second to our third numerical examples.
In fact, if the random reassignment of hypothetical experiment test program
datum values were continually repeated, we would generate the conceptual
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statistical (sampling) distribution that consists of all possible realizations of
the intrinsic statistical estimation error.

Remark: This example comparative CRD experiment test program
has a broader practical application when it is expanded to test the
null hypothesis that no batch-to-batch effects exist for the fatigue
specimen material of specific interest. Suppose that eight fatigue
specimen blanks are selected from each of two different batches
of the material of specific interest and that, in each batch, four
are circumferentially polished and four are longitudinally polished.
Then, the null hypothesis that no batch-to-batch effect exists can be
tested statistically (Chapter 6). (The null hypothesis that this batch-
to-batch effect does not interact with the direction of polishing
effect can also be tested statistically.)

2.2.2.2. Discussion

A comparative CRD experiment test program can be extended to as many
treatments (treatment levels) as desired, but its practicality in mechanical
reliability diminishes markedly as the number of required nominally iden-
tical experimental units increases. These treatments (treatment levels) can be
either qualitative, e.g., surface preparations such as shot-peening, zinc plat-
ing, or induction hardening, or quantitative levels, e.g., surface preparations,
such as shot-peening, to several different Almen intensities, zinc plating to
attain several different thicknesses, or induction hardening to several differ-
ent case depths.

When the treatments (treatment levels) involve experimental unit
(test specimen) processing procedures such as shot-peening, zinc plating,
or induction hardening, the processing equipment controls must be reset
to zero and then reset for each successive experimental unit (test speci-
men) in an independent attempt to meet the required treatment (treat-
ment level) specification target value. Otherwise, the implicit presumption
that the respective replicate CRHDVi’s are mutually independent is not
credible.

Remember: However convenient and expedient it may seem, it is not
statistically proper to have identical settings of the processing
equipment controls for each replicate experimental unit receiving
the same treatment (treatment level). Rather, it is the statistically
proper experimental unit preparation and test conduct randomiza-
tion details that make the respective replicate CRHDVi’s as
mutually independent as practical.
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2.2.3. Treatment Combinations in Factorial
Arrangements

It is often necessary in comparative experiment test programs to assign two
or more treatments in combination to an experimental unit, applied either
simultaneously or sequentially without specific regard to order of applica-
tion (completely randomized design and randomized complete block design
experiment test programs) or sequentially with specific regard to order of
application (split-plot design experiment test programs). To begin, we pre-
sume that our treatments can be applied simultaneously or sequentially
without regard to order of application. We also presume that each of the
nt treatments, at each of its ntl treatment levels, are applied in combination
with all other treatments, at each of their ntl treatment levels. This treatment
combination configuration is called a factorial arrangement. When the fac-
torial arrangement is employed in a CRD experiment test program, the
latter is called a factorial design experiment test program.

An unreplicated (2)2 factorial design experiment test program appears
in Figure 2.4. Its ðntlÞnt ¼ ð2Þ2 ¼ 4 treatment combinations are randomly
assigned to four nominally identical experimental units (test specimens).
The associated conceptual statistical column vector model has four mutually
orthogonal column vectors, viz.,

jCRHDVi’sj ¼ jcsmmj þ jct1ei’sj þ jct2ei’sj þ jct1t2iei’sj
in which ct1e and ct2e denote conceptual treatment effect one and concep-
tual treatment effect two, also called main effects, and ct1t2ie denotes their
interaction, viz., the conceptual t1, t2 (two-factor) interaction effect. The
physical basis for this two-factor interaction (synergistic) effect is almost
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Figure 2.4 Organizational structure for an unreplicated CRD (2)2 factorial

design experiment test program.
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always much more difficult to understand than the physical basis for the
associated conceptual treatment (main) effects. In fact, from a pragmatic
perspective, the interaction effect term represents the failure of a simple
additive (main effects) conceptual statistical model to explain the observed
experiment test program datum values in a statistically adequate manner.

The treatment levels in a factorial arrangement may be either quanti-
tative, e.g., temperatures equal to 258C and 1008C, or qualitative, e.g., shot-
peened and not shot-peened. The respective treatments (main effects) must
be such that their time order of application is irrelevant.

2.2.4. Orthogonality and Yate’s Enumeration Algorithm

We now use Yate’s enumeration algorithm to state the main effect contrasts
for (2)2 and (2)4 factorial arrays, Figure 2.5, where the low level of each
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Figure 2.5 Main effects contrast array for an unreplicated (2)nt factorial design

experiment test program, where nt ¼ 2 for (a) and nt ¼ 4 for (b). The elements of the

main effects contrast array for a factorial design are established using Yate’s enumera-

tion algorithm in which the two levels for treatment one are denoted (coded) �1;þ1;
�1;þ1; . . . ; the two levels for treatment two are denoted (coded)�1;�1;þ1;þ1; . . . ;
etc. Note that (i) the elements of each contrast column vector sum to zero (by defini-

tion), and (ii) the respective contrast column vectors are mutually orthogonal.
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treatment corresponds to a minus one and the high level corresponds to a
plus one. Note that (a) the elements of the respective contrast column vec-
tors sum to zero (by definition), and (b) the respective contrast column
vectors are mutually orthogonal.

The associated complete analytical model consists of (2)nt terms that
completely explain the experiment test program datum values without
employing an experimental error term. For example, the complete analytical
model for an unreplicated (2)2 factorial design experiment test program is
written in our hybrid column vector notation as

jCRHDVi’sj ¼ ðcsmmscÞ � j þ 1’sj þ ðct1escÞ � jct1eci’sj þ ðct2escÞ � jct2eci’sj
þ ðct1t2iescÞ � jct1t2ieci’sj

in which csmmsc denotes the conceptual statistical model mean scalar coef-
ficient, ct1esc the conceptual treatment-one effect scalar coefficient, ct2esc
the conceptual treatment-two effect scalar coefficient, and ct1t2iesc the con-
ceptual treatment-one, treatment-two interaction effect scalar coefficient.

Similarly, the complete analytical vector model for an unreplicated (2)4

factorial design experiment test program can be written in expanded column
vector format as

jCRHDVi’sj ¼ ðcsmmscÞ � j þ 1’sj þ ðct1escÞ � jct1eci’sj þ ðct2escÞ � jct2eci’sj
þ ðct3escÞ � jct3eci’sj þ ðct4escÞ � jct4eci’sj
þ ðct1t2iescÞ � jct1t2ieci’sj þ ðct1t3iescÞ � jct1t3ieci’sj
þ ðct1t4iescÞ � jct1t4ieci’sj þ ðct2t3iescÞ � jct2t3ieci’sj
þ ðct2t4iescÞ � jct2t4ieci’sj þ ðct3t4iescÞ � jct3t4ieci’sj
þ ðct1t2t3iescÞ � jct1t2t3ieci’sj þ ðct1t2t4iescÞ � jct1t2t4ieci’sj
þ ðct1t3t4iescÞ � jct1t3t4ieci’sj þ ðct2t3t4iescÞ � jct2t3t4ieci’sj
þ ðct1t2t3t4iescÞ � jct1t2t3t4ieci’sj

The correspondence between the complete analytical model and its asso-
ciated orthogonal augmented contrast array is evident only when the main
effects contrast array (Figure 2.5) is augmented. As illustrated in Figure 2.6,
the first column vector in the orthogonal augmented contrast array is the
|+1’s| identity column vector. It is orthogonal to each of the contrast col-
umn vectors because the elements of each respective contrast column vector
sum to zero (by definition). The respective elements of each of the interac-
tion effect contrast column vectors are computed by multiplying the corre-
sponding elements of the associated main effect contrast column vectors.
For example, the respective elements of the two-factor ct1t3ie contrast
column vector in Figure 2.6 are
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� 1 � �1 ¼ þ1

þ 1 � �1 ¼ �1

� 1 � �1 ¼ þ1

þ 1 � �1 ¼ �1

� 1 � þ1 ¼ �1

þ 1 � þ1 ¼ þ1

� 1 � þ1 ¼ �1

þ 1 � þ1 ¼ þ1

Exercise Set 2

These exercises are intended to demonstrate (a) the mutual orthogonality of
all of the column vectors in the orthogonal augmented contrast array per-
taining to an unreplicated (2)nt factorial design experiment test program,
and (b) the correspondence between the individual terms of the complete
analytical model and the associated column vectors in the respective ortho-
gonal augmented contrast arrays.

1. Verify that the column vectors in each of the orthogonal augmen-
ted contrast arrays in Figure 2.6 are respectively mutually ortho-
gonal by evaluating the appropriate respective dot products.

2. (a) Construct the orthogonal augmented contrast array for an
unreplicated (2)4 factorial design experiment test program. (b)
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Figure 2.6 Orthogonal augmented contrast arrays for unreplicated (2)2 and (2)3

factorial design experiment test programs. The respective elements of each interac-

tion contrast column vector is computed by multiplying the corresponding elements

of the associated main effect contrast column vectors.

ct1t3iec ¼
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How many dot products must be equal to zero to assure that all
of the column vectors in this orthogonal augmented contrast
array are in fact mutually orthogonal?

3. (a) Construct the orthogonal augmented contrast array for an
unreplicated (2)5 factorial design experiment test program.
Then, (b) demonstrate that there are various alternative ways
to compute the elements of a three-factor and higher-order inter-
action effect contrast column vector.

2.2.5. Column-Vector-Based Least-Squares Estimation

In the column-vector-based least-squares estimation procedure (as opposed
to the conventional algebraic least-squares estimation procedure based on
arithmetic averages), each scalar coefficient in the complete analytical model
is estimated as follows: (a) evaluate the dot product of the experiment test
program datum values column vector and the corresponding column vector
in the orthogonal augmented contrast array and then (b) divide this dot
product value by the sum of squares of the integer value elements of the
corresponding column vector. Accordingly, the column-vector-based least-
squares estimate of the jth scalar coefficient in the complete analytical model
is

estðscjÞ ¼

Xndv
i¼1

cj;iðexperiment test program datum valueÞi
Xndv
i¼1

c2j;i

in which cj,i is the integer value of the i
th element in the jth column vector of

the orthogonal augmented contrast array. For example, suppose the test
specimen numbers in Figure 2.6(b) are hypothetical experiment test program
datum values. Then, est(ct1t2iesc) is computed as follows:

estðct1t2iescÞ ¼ ðþ1 � 1Þ þ ð�1 � 2Þ þ ð�1 � 3Þ þ ðþ1 � 4Þ þ ðþ1 � 5Þ þ ð�1 � 6Þ þ ð�1 � 7Þ þ ðþ1 � 8Þ
ðþ12Þ þ ð�12Þ þ ð�12Þ þ ðþ12Þ þ ðþ12Þ þ ð�12Þ þ ð�12Þ þ ðþ12Þ ¼ 0

8
¼ 0:0

In turn, each of the elements in the |ct1t2ieci’s| column vector is multiplied
by est(ct1t2iesc) to obtain the corresponding elements in the |est(ct1t2iei’s)|
column vector. The following array is obtained when this three-step proce-
dure is used to compute the respective elements of each of the column
vectors in the estimated complete analytical model:
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hypothetical

datum valuei ’s

1

2

3

4

5

6

7

8

�������������������

�������������������

¼

est

ðcsmmÞ
4:5

4:5

4:5

4:5

4:5

4:5

4:5

4:5

�������������������

�������������������

þ

est

ðct1ei ’sÞ
�0:5

þ0:5

�0:5

þ0:5

�0:5

þ0:5

�0:5

þ0:5

�������������������

�������������������

þ

est

ðct2ei ’sÞ
�1:0

�1:0

þ1:0

þ1:0

�1:0

�1:0

þ1:0

þ1:0

�������������������

�������������������

þ

est

ðct3ei ’sÞ
�2:0

�2:0

�2:0

�2:0

þ2:0

þ2:0

þ2:0

þ2:0

�������������������

�������������������

þ

est

ðct1t2iei ’sÞ
0:0

0:0

0:0

0:0

0:0

0:0

0:0

0:0

�������������������

�������������������

þ

est

ðct1t3iei ’sÞ
0:0

0:0

0:0

0:0

0:0

0:0

0:0

0:0

�������������������

�������������������

þ

est

ðct2t3iei ’sÞ
0:0

0:0

0:0

0:0

0:0

0:0

0:0

0:0

�������������������

�������������������

þ

est

ðct1t2t3iei ’sÞ
0:0

0:0

0:0

0:0

0:0

0:0

0:0

0:0

�������������������

�������������������

Exercise Set 3

These exercises are intended to generate an understanding of the column-
vector-based least-squares estimation procedure by requiring hand calcula-
tions for the respective estimated scalar coefficients and the respective ele-
ments of each of the column vectors in the estimated complete analytical
model.

1. Given the hypothetical datum values in Exercise Set 1, use the
following orthogonal augmented array to compute the respective
elements of the |est(csdm)| column vector and the aggregated
|est(CRSIEEi’s)| column vector.

2. Use the orthogonal array whose transpose appears below to com-
pute the aggregated |est(CRHEEi’s)| column vectors for any one
of the three examples pertaining to Figure 2.2. First compute the
scalar coefficients associated with the 14 |crheec(j)i’s| column vec-
tors, then compute the respective elements of the 14 correspond-
ing column vectors in the estimated complete analytical model,
and in turn aggregate the respective elements of these fourteen
column vectors into the elements of the |est(CRHEEi’s)| column
vector.
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j þ 1’sj |crsieec(1)i ’s| |crsieec(2)i’s| |crsieec(3)i ’s| |crsieec(4)i ’s| |crsieec(5)i ’s| |crsieec(6)i’s| |crsieec(7)i ’s|
þ1 �1 �1 �1 �1 �1 �1 �1

þ1 þ1 �1 �1 �1 �1 �1 �1

þ1 0 þ2 �1 �1 �1 �1 �1

þ1 0 0 þ3 �1 �1 �1 �1

þ1 0 0 0 þ4 �1 �1 �1

þ1 0 0 0 0 þ5 �1 �1

þ1 0 0 0 0 0 þ6 �1

þ1 0 0 0 0 0 0 þ7

¼
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3. Run microcomputer program RANDOM1 with ndv ¼ nelpri ¼ 8
to generate hypothetical datum values for an unreplicated (2)3

factorial design experiment test program (Figure 2.6). First, (a)
compute the respective elements of each of the eight column
vectors in the estimated complete analytical model. Then, (b)
check whether the sum of the ith element in each of these eight
column vectors is equal to the ith hypothetical datum value. In
turn, (c) check whether the sum of the sum of squares pertain-
ing to the respective elements of these eight column vectors is
equal to the sum of squares for the eight hypothetical datum
values.

2.2.6. Microcomputer Programs

Microcomputer program CALESTCV calculates the respective ndv ele-
ments in each of the ndv orthogonal column vectors in the estimated com-
plete analytical model. It requires input information from two
microcomputer files: DATA, which contains the respective ndv elements
of the |experiment test program datum valuei’s| column vector, and
ARRAY, which contains the transpose of the associated ndv by ndv ortho-
gonal augmented contrast array for the given experiment test program.
Microcomputer program CALESTCV is supplemented by microcomputer
programs CKSUMSQS and AGESTCV, both of which require input
information from microcomputer files DATA and ARRAY.
Microcomputer program CKSUMSQS sums the sums of squares of the
elements of the respective ndv orthogonal column vectors in the estimated
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þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 j þ 1’sj
�1 �1 �1 �1 �1 �1 �1 �1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 |cteci ’s|

�1 þ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |crheec(1)i ’s|

�1 �1 þ2 0 0 0 0 0 0 0 0 0 0 0 0 0 |crheec(2)i ’s|

�1 �1 �1 þ3 0 0 0 0 0 0 0 0 0 0 0 0 |crheec(3)i ’s|

�1 �1 �1 �1 þ4 0 0 0 0 0 0 0 0 0 0 0 |crheec(4)i ’s|

�1 �1 �1 �1 �1 þ5 0 0 0 0 0 0 0 0 0 0 |crheec(5)i ’s|

�1 �1 �1 �1 �1 �1 þ6 0 0 0 0 0 0 0 0 0 |crheec(6)i ’s|

�1 �1 �1 �1 �1 �1 �1 þ7 0 0 0 0 0 0 0 0 |crheec(7)i ’s|

0 0 0 0 0 0 0 0 �1 þ1 0 0 0 0 0 0 |crheec(8)i ’s|

0 0 0 0 0 0 0 0 �1 �1 þ2 0 0 0 0 0 |crheec(9)i ’s|

0 0 0 0 0 0 0 0 �1 �1 �1 þ3 0 0 0 0 |crheec(10)i ’s|

0 0 0 0 0 0 0 0 �1 �1 �1 �1 þ4 0 0 0 |crheec(11)i ’s|

0 0 0 0 0 0 0 0 �1 �1 �1 �1 �1 þ5 0 0 |crheec(12)i ’s|

0 0 0 0 0 0 0 0 �1 �1 �1 �1 �1 �1 þ6 0 |crheec(13)i ’s|

0 0 0 0 0 0 0 0 �1 �1 �1 �1 �1 �1 �1 þ7 |crheec(14)i ’s|
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complete analytical model and compares this sum to the sum of squares of
the ndv experiment test program datum values. These two sums are equal
for all orthogonal arrays. (Thus, microcomputer program CKSUMSQS
should be run before running either microcomputer program
CALESTCV or AGESTCV.)

50 Chapter 2

COPY C2EXDATA DATA

1 file(s) copied

C>TYPE DATA

16 Number of datum values, ndv, followed by the experiment test
program datum values that are properly ordered relative to the
corresponding ndv by ndv experiment test program orthogonal
augmented contrast array

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

(These 16 hypothetical datum values pertain to the comparative CRD
experiment test program example whose organizational structure
appears in Figure 2.2.)
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COPY C2EXARRY ARRAY

1 file(s) copied

C>TYPE ARRAY

þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 1 j þ 1’sj
�1 �1 �1 �1 �1 �1 �1 �1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 2 |cteci ’s|

�1 þ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 |crheec(1)i ’s|

�1 �1 þ2 0 0 0 0 0 0 0 0 0 0 0 0 0 4 |crheec(2)i ’s|

�1 �1 �1 þ3 0 0 0 0 0 0 0 0 0 0 0 0 5 |crheec(3)i ’s|

�1 �1 �1 �1 þ4 0 0 0 0 0 0 0 0 0 0 0 6 |crheec(4)i ’s|

�1 �1 �1 �1 �1 þ5 0 0 0 0 0 0 0 0 0 0 7 |crheec(5)i ’s|

�1 �1 �1 �1 �1 �1 þ6 0 0 0 0 0 0 0 0 0 8 |crheec(6)i ’s|

�1 �1 �1 �1 �1 �1 �1 þ7 0 0 0 0 0 0 0 0 9 |crheec(7)i ’s|

0 0 0 0 0 0 0 0 �1 þ1 0 0 0 0 0 0 10 |crheec(8)i ’s|

0 0 0 0 0 0 0 0 �1 �1 þ2 0 0 0 0 0 11 |crheec(9)i ’s|

0 0 0 0 0 0 0 0 �1 �1 �1 þ3 0 0 0 0 12 |crheec(10)i ’s|

0 0 0 0 0 0 0 0 �1 �1 �1 �1 þ4 0 0 0 13 |crheec(11)i ’s|

0 0 0 0 0 0 0 0 �1 �1 �1 �1 �1 þ5 0 0 14 |crheec(12)i ’s|

0 0 0 0 0 0 0 0 �1 �1 �1 �1 �1 �1 þ6 0 15 |crheec(13)i ’s|

0 0 0 0 0 0 0 0 �1 �1 �1 �1 �1 �1 �1 þ7 16 |crheec(14)i ’s|

(This array is the transpose of the 16 by 16 orthogonal augmented
contrast array that pertains to the comparative CRD experiment test
program example whose organizational structure appears in Figure 2.2.)

C> CKSUMSQS

This program presumes that the transpose of the appropriate experi-
ment test program orthogonal augmented contrast array appears in
microcomputer file ARRAY and that the corresponding properly
ordered experiment test program datum values appear in microcom-
puter file DATA.

This program computes (i) the sum of squares of the experiment test
program datum values, and (ii) the sum of the sums of squares of the
respective elements of the ndv column vectors in the estimated complete
analytical model. The proposed experiment test program augmented
contrast array is not orthogonal if these two sums of squares are not
exactly equal

(i) .149600000000000D+04 (ii) .149600000000000D+04
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C> CALESTCV

This program presumes that the transpose of the appropriate experi-
ment test program orthogonal augmented contrast array appears in
microcomputer file ARRAY and that the corresponding properly
ordered experiment test program datum values appear in microcom-
puter file DATA.

This program computes each of the ndv elements in each of the ndv
column vectors in the estimated complete analytical model

Column Vector (j=) Element (i=) Element Value

1 1 .8500000000D+01
1 2 .8500000000D+01
1 3 .8500000000D+01
1 4 .8500000000D+01
1 5 .8500000000D+01
1 6 .8500000000D+01
1 7 .8500000000D+01
1 8 .8500000000D+01
1 9 .8500000000D+01
1 10 .8500000000D+01
1 11 .8500000000D+01
1 12 .8500000000D+01
1 13 .8500000000D+01
1 14 .8500000000D+01
1 15 .8500000000D+01
1 16 .8500000000D+01

Column Vector (j=) Element (i=) Element Value

2 1 �.4000000000D+01
2 2 �.4000000000D+01
2 3 �.4000000000D+01
2 4 �.4000000000D+01
2 5 �.4000000000D+01
2 6 �.4000000000D+01
2 7 �.4000000000D+01
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2 8 �.4000000000D+01
2 9 .4000000000D+01
2 10 .4000000000D+01
2 11 .4000000000D+01
2 12 .4000000000D+01
2 13 .4000000000D+01
2 14 .4000000000D+01
2 15 .4000000000D+01
2 16 .4000000000D+01

Column Vector (j=) Element (i=) Element Value

3 1 �.5000000000D+00
3 2 .5000000000D+00
3 3 .0000000000D+00
3 4 .0000000000D+00
3 5 .0000000000D+00
3 6 .0000000000D+00
3 7 .0000000000D+00
3 8 .0000000000D+00
3 9 .0000000000D+00
3 10 .0000000000D+00
3 11 .0000000000D+00
3 12 .0000000000D+00
3 13 .0000000000D+00
3 14 .0000000000D+00
3 15 .0000000000D+00
3 16 .0000000000D+00

Column Vector (j=) Element (i=) Element Value

4 1 �.5000000000D+00
4 2 �.5000000000D+00
4 3 .1000000000D+01
4 4 .0000000000D+00
4 5 .0000000000D+00
4 6 .0000000000D+00
4 7 .0000000000D+00

et cetera
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Microcomputer program AGESTCV aggregates only adjacent esti-
mated column vectors (that are of specific interest in subsequent statistical
analysis). This restriction must be considered, for example, in the analysis of
variance (Chapter 6) when constructing the associated orthogonal augmen-
ted contrast array.

C> AGESTCV

This program presumes that the transpose of the appropriate experi-
ment test program orthogonal augmented contrast ARRAY appears
in microcomputer file ARRAY and that the corresponding properly
ordered experiment test program datum values appear in microcom-
puter file DATA.

This program aggregates adjacent estimated column vectors, e.g., to
aggregate estimated column vectors j ¼ 3 through j ¼ 16, type 3 space
16. (Note that aggregating estimated column vectors 1 through ndv will
verify the input experiment test program datum values.)

3 16

Element (i=) Element Value

1 �:3500000000Dþ 01
2 �:2500000000Dþ 01
3 �:1500000000Dþ 01
4 �:5000000000Dþ 01
5 þ:5000000000Dþ 01
6 þ:1500000000Dþ 01
7 þ:2500000000Dþ 01
8 þ:3500000000Dþ 01
9 �:3500000000Dþ 01
10 �:2500000000Dþ 01
11 �:1500000000Dþ 01
12 �:5000000000Dþ 01
13 þ:5000000000Dþ 01
14 þ:1500000000Dþ 01
15 þ:2500000000Dþ 01
16 þ:3500000000Dþ 01
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Exercise Set 4

These exercises are intended to (a) acquaint you with the microcomputer
programs CALESTCV, CKSUMSQS, and AGESTCV, and (b) broaden
your perspective regarding the measurement metric versus the measurement
metric of relevance in the conceptual statistical model. It is expected that you
will conclude that the magnitudes of all terms in the estimated complete
analytical model depend on the measurement metric employed in statistical
analysis and that, in particular, it may be possible to find a physically
relevant metric that makes the estimated values of the interaction effects
negligible for practical purposes. It should be obvious that the hypothetical
datum values for the unreplicated (2)3 factorial design experiment test pro-
gram in Figure 2.6(b) were deliberately selected so that each of the four
estimated interaction effects are equal to zero. Accordingly, the associated
conceptual statistical model is easy to understand physically, viz., it is geo-
metrically interpreted as a plane in t1, t2, t3 space. The fundamental issue is
that we should always employ a measurement metric that establishes a
comprehensible conceptual statistical model. Accordingly, although linear
measurement metrics for distance and time are straightforward and intui-
tive, the physics of the given phenomenon (whether we understand it or nor)
may dictate employing nonlinear measurement metrics, say distance squared
and logarithmic time. Thus, it is always appropriate in statistical analysis to
explore alternative measurement metrics.

1. (a) Given the transpose of the array in Figure 2.6(b) and the
hypothetical datum values for the text unreplicated (2)3 factorial
design experiment test program numerical example, run micro-
computer programs CKSUMSQS and CALESTCV to compute
the respective eight elements for each of the eight column vectors
in the estimated complete analytical model. Then, (b), repeat (a)
using the natural logarithms of the hypothetical example datum
values in (a) as your hypothetical datum values. Do you recom-
mend adopting this new measurement metric?

2. Given the array in Example 2 of Exercise Set 3 and the hypothe-
tical datum values pertaining to any of the three text numerical
examples associated with Figure 2.2, run microcomputer pro-
grams CKSUMSQS and AGESTCV to verify the respective ele-
ments of the est(CRHEEi’s).

2.2.7. Pseudoreplication in Unreplicated Factorial
Design Experiment Test Programs

Recall that every statistical estimate consists of the actual value of the
quantity being estimated plus an intrinsic statistical estimation error.
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However, when the actual value for the quantity being estimated is equal to
zero, its associated intrinsic statistical estimation error must rationally be
regarded as an experimental error. Accordingly, when it is presumed that
there is no physical basis for certain terms in the estimated complete analy-
tical model, the elements of the associated column vectors are reinterpreted
as estimated experimental errors and are then aggregated to form the ele-
ments of the resulting |est(CRHEEi’s)| column vector. This |est(CRHEEi’s)|
column vector is statistically equivalent to an analogous |est(CRHEEi’s)|
column vector that pertains to actual replication—provided that the result-
ing conceptual statistical model is correct. Moreover, since each of the
column vectors in the estimated complete analytical model has one statis-
tical degree of freedom, when k of these column vectors are aggregated to
form a column vector in the estimated conceptual statistical model, e.g., the
|est(CRHEEi’s)| column vector, this aggregated column vector has k statis-
tical degrees of freedom.

Consider, for example, the unreplicated (2)4 factorial design experi-
ment test program whose estimated complete analytical column vector
model is

jexperiment test program datum valuei’sj ¼ estðcsmmscÞ � j þ 1’sj
þ estðct1escÞ � jct1eci’sj þ estðct2escÞ � jct2eci’sj
þ estðct3escÞ � jct3eci’sj þ estðct4escÞ � jct4eci’sj
þ estðct1t2iescÞ � jct1t2ieci’sj þ estðct1t3iescÞ � jct1t3ieci’sj
þ estðct1t4iescÞ � jct1t4ieci’sj þ estðct2t3iescÞ � jct2t3ieci’sj
þ estðct2t4iescÞ � jct2t4ieci’sj þ estðct3t4iescÞ � jct3t4ieci’sj
þ estðct1t2t3iescÞ � jct1t2t3ieci’sj þ estðct1t2t4iescÞ � jct1t2t4iec’sj
þ estðct1t3t4iescÞ � jct1t3t4iec’sj þ estðct2t3t4iescÞ � jct2t3t4iec’sj
þ estðct1t2t3t4iescÞ � jct1t2t3t4iec’sj

Because even two-factor interaction effects are often difficult to understand
physically, it is generally rationalized that there is seldom a rational physical
basis for a three-factor interaction effect and almost never a rational physi-
cal basis for a higher-order interaction effect. Accordingly, all estimated
three-factor and higher-order interaction column vectors are typically aggre-
gated to form a preliminary |est(CRHEEi’s)| column vector. In turn, this
preliminary |est(CRHEEi’s)| column vector forms a basis for deciding
whether it statistically rational to aggregate one or more of the estimated
main-effect and two-factor interaction effect column vectors into the
|est(CRHEEi’s)| column vector that is subsequently used in statistical ana-
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lysis. This aggregation methodology is statistically effective because the lar-
ger the number of statistical degrees of freedom for the aggregated
|est(CRHEEi’s)| column vector, the greater the precision of the remaining
est(ctesc’s) and the greater the statistical power of the experiment test pro-
gram (Chapter 6). It is important to understand, however, that the aggre-
gated |est(CRHEEi’s)| column vector is statistically proper only when the
resulting conceptual statistical model is indeed correct. Box, et al. (1978)
present a procedure for deciding which column vectors in the estimated
complete analytical model can rationally be aggregated to form a statisti-
cally credible est(CRHEEi’s) column vector.

Suppose that, after appropriate analysis, our example estimated com-
plete analytical model is reinterpreted in terms of the following estimated
conceptual statistical model:

jexperiment test program datum valuei’sj ¼ estðcsmmscÞ � j þ 1’sj
þ estðct1escÞ � jct1eci’sj þ estðct2escÞ � jct2eci’sj
þ estðct3escÞ � jct3eci’s� þ estðct1t3iescÞ � jct1t3ieci’sj
þ estðct2t3iescÞ � jct2t3ieci’sj þ jestðCRHEEi’sÞj

in which the elements of 10 estimated column vectors have been aggregated
to form the elements of the aggregated |est(CRHEEi’s)| column vector
(which thus has 10 statistical degrees of freedom, all resulting from pseu-
doreplication). The column vectors remaining in the estimated conceptual
statistical model have presumably been retained only because it is quite
unlikely that the magnitudes of their respective estimated scalar coefficients
could be the sole consequence of substituting (random) experiment test
program datum values into the least-squares estimation expressions. If so,
then it is statistically rational to assert that these estimated column vectors
physically explain the respective magnitudes of the experiment test program
datum values.

2.3. UNREPLICATED RANDOMIZED COMPLETE BLOCK
DESIGN EXPERIMENT TEST PROGRAMS

Comparative experiment test programs that have practical mechanical relia-
bility application generally involve blocking to mitigate the spurious effects
of nuisance experiment test program variables. Figure 2.7 depicts an unre-
plicated randomized complete block design (RCBD) experiment test pro-
gram where, by definition, there is a single experiment test program datum
value for each of the nt treatments (treatment levels, treatment combina-
tions) within each block. The experimental units and the test conditions
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comprising each respective block must be as nominally identical as practical,
but the respective blocks may differ markedly. The random assignment of
treatments (treatment levels, treatment combinations) to the nominally iden-
tical experimental units in each block is indicated by the first number in the
treatment subscript parentheses. The random time order of testing for
blocks is indicated by the number in the block subscript parentheses. (All
testing of experimental units in a block must be completed before beginning
testing in another block.) The random time order of testing in each respec-
tive block is indicated by the second number in the treatment subscript
parentheses.

The complete analytical model for an unreplicated RCBD experiment
test program includes conceptual block effects, cbe’s, and conceptual block,
treatment interaction effect terms, cbtie’s. It is succinctly stated in hybrid
column vector notation as

jCRHDVi’sj ¼ jcsmmj þ jcbei’sj þ jctei’sj þ jcbtiei’sj
The associated conceptual statistical model has no replication or pseudo-
replication unless it is explicitly presumed that all blocking variables
are deliberately selected so that no cbtie has a physical basis. Then,
based on this explicit presumption, the cbtiei’s column vector can be rein-
terpreted as a CRHEEi’s column vector and the conceptual statistical
model is rewritten as

jCRHDVi’sj ¼ jcsmmj þ jcbei’sj þ jctei’sj þ jCRHEEi’sj
in which the physical interpretation of the csmm is even more nebulous than
in a CRD experiment test program.

The corresponding estimated column vector statistical model for an
unreplicated RCBD experiment test program is
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Figure 2.7 Example of the organizational structure of an unreplicated rando-

mized complete block design (RCBD) experiment test program. The randomization

details for this unreplicated RCBD experiment test program with four treatments in

each of its three blocks are discussed in the text.
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jexperiment test program datum valuei’sj
¼ jestðcsmmÞj þ jestðcbei’sj þ jestðctei’sÞj þ jestðCRHEEi’sÞj

where the |experiment test program datum valuei’s| column vector has (nb)(nt)
statistical degrees of freedom, the |est(csmm)| column vector has one
statistical degree of freedom, the |est(cbei’s)| column vector has (nb � 1)
statistical degrees of freedom, the |est(ctei’s)| column vector has (nt � 1)
statistical degrees of freedom, and the |est(CRHEEi’s)| column vector has
ðnb � 1Þ � ðnt � 1Þstatistical degrees of freedom.

Remember that the test conduct details for an unreplicated RCBD
experiment test program must be properly randomized. First, the respective
treatments (treatment levels, treatment combinations) must be randomly
assigned to the nominally identical experimental units in each block.
Then, the respective treatments (treatment levels, treatment combinations)
in a randomly selected block are tested back-to-back in random time order
(by the same test technician using the same test procedure) before beginning
the tests in another (randomly selected) block. Microcomputer program
RANDOM1 should be run to establish the pseudorandom numbers under-
lying each of these randomization details.

2.3.1. Paired-Comparison Experiment Test Programs

An unreplicated RCBD experiment test program with only two treatments
(treatment levels) is called a paired-comparison experiment test program.
Suppose we wish to compare two different fatigue test machines in our
laboratory relative to the null hypothesis that the difference in calibration
between these two machines is indeed equal to zero. However, we only
have a few short segments of left-over 3/4 in. diameter rods of various
materials available in our stock room. This left-over material is quite
adequate to form the individual blocks in our paired-comparison experi-
ment test program (and may even be preferable). We merely require that
the two fatigue test specimens that form each block be cut from adjacent
blanks with each rod segment, regardless of its material. We further
require that both fatigue test specimens within each block be machined
back-to-back in random time order by the same lathe hand on the same
lathe and tested back-to-back in random time order by the same test
technician using the same test machine and test procedure, etc. In short,
our goal is to make all details of the fatigue test specimen preparation and
testing as uniform as practical within each block, even though the respec-
tive blocks may differ markedly.
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2.3.1.1. Numerical Example for a Paired-Comparison
Experiment Test Program with Four Blocks
(Paired-Comparisons)

Figure 2.8 depicts a paired-comparison experiment test program with four
blocks (paired-comparisons). The hypothetical datum values pertaining to
the respective block/treatment combinations are given in the corresponding
respective block/treatment locations.

The corresponding estimated statistical column vector model appears
below. Recall that the elements of each of the column vectors in the esti-
mated statistical model are conventionally computed using algebraic least-
squares estimators that are based on arithmetic averages. Accordingly,
est(csmm) is conventionally computed as the arithmetic average of all
experiment test program datum values. In turn, the elements of the
|est(ctei’s)| column vector are conventionally computed as the arithmetic
average of the experiment test program datum values pertaining to each
respective treatment (treatment level, treatment combination) minus the
arithmetic average of all experiment test program datum values.
Similarly, the elements of the |est(cbei’s)| column vector are conventionally
computed as the experiment test program datum values pertaining to the
respective blocks minus the arithmetic average of all experiment test pro-
gram datum values. Finally, the resulting est(cbtiei’s) are conventionally
computed as ‘‘residuals,’’ values that satisfy the scalar equations associated
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Figure 2.8 Hypothetical datum values for an example paired-comparison experi-

ment test program with four blocks (paired comparisons). Randomization details for

this paired-comparison experiment test program are indicated by the numbers in the

subscript parentheses.
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with the respective experiment test program datum valuei’s. These
est(cbtiei’s) must rationally be re-interpreted as est(CRHEE’s) in the
estimated statistical model when it is presumed that no cbtie has a credible
physical basis.

hypothetical
datum valuei’s

1:0
3:0
5:0
7:0
2:0
4:0
6:0
8:0

����������������

����������������

¼

estðcsmmÞ
4:5
4:5
4:5
4:5
4:5
4:5
4:5
4:5

����������������

����������������

þ

estðcbei’sÞ
�3:0
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þ1:0
þ3:0
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����������������

þ

estðctei’sÞ
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�0:5
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þ0:5
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����������������
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þ

estðCRHEEi’sÞ
0:0
0:0
0:0
0:0
0:0
0:0
0:0
0:0

����������������

����������������

Note that the hypothetical datum values in this unreplicated RCBD
experiment test program example were deliberately constructed such that
the resulting est(CRHEEi’s), viz., the resulting est(cbtiescj’s), were all equal
to zero.

The estimated statistical model in this paired-comparison example can
also be computed by constructing the associated orthogonal augmented
contrast array and then running microcomputer program AGESTCV, as
required in Exercise Set 5 below.

Exercise Set 5

These exercises pertain to the text paired-comparison numerical example
and are intended to demonstrate that the contrasts in the respective ortho-
gonal augmented contrast arrays that will be used to compute the column
vectors of the estimated statistical model are not unique, but nevertheless
generate the same aggregated results. Note that the elements of the three
|cbtieci’s| column vectors are established by multiplication of the respective
elements of the three |cbeci’s| column vectors and the |cteci’s| column
vector.

1. Consider the following orthogonal augmented contrast array.
Run microcomputer program AGESTCV in conjunction with
this orthogonal augmented contrast array and the text hypothe-
tical datum values column vector to verify the text paired-com-
parison numerical example.
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j þ 1’sj |cbeci’s| |cteci’s| |cbtieci’s|

þ1 �1 �1 þ1 �1 þ1 þ1 �1

þ1 þ1 �1 �1 �1 �1 þ1 þ1

þ1 �1 þ1 �1 �1 þ1 �1 þ1

þ1 þ1 þ1 þ1 �1 �1 �1 �1

þ1 �1 �1 þ1 þ1 �1 �1 þ1

þ1 þ1 �1 �1 þ1 þ1 �1 �1

þ1 �1 þ1 �1 þ1 �1 þ1 �1

þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1

2. Repeat Example 1 for the following orthogonal augmented
contrast array.

j þ 1’sj |cbeci’s| |cteci’s| |cbtieci’s|

þ1 �1 �1 �1 �1 þ1 þ1 þ1

þ1 þ1 �1 �1 �1 �1 þ1 þ1

þ1 0 þ2 �1 �1 0 �2 þ1

þ1 0 0 þ3 �1 0 0 �3

þ1 �1 �1 �1 þ1 �1 �1 �1

þ1 þ1 �1 �1 þ1 þ1 �1 �1

þ1 0 þ2 �1 þ1 0 þ2 �1

þ1 0 0 þ3 þ1 0 0 þ3

3. Repeat Example 1 for the following orthogonal augmented
contrast array.

j þ 1’sj |cbeci’s| |cteci’s| |cbtieci’s|

þ1 �3 þ1 �1 �1 þ3 �1 þ1

þ1 �1 �1 þ3 �1 þ1 þ1 �3

þ1 þ1 �1 �3 �1 �1 þ1 þ3

þ1 þ3 þ1 þ1 �1 �3 �1 �1

þ1 �3 þ1 �1 þ1 �3 þ1 �1

þ1 �1 �1 þ3 þ1 �1 �1 þ3

þ1 þ1 �1 �3 þ1 þ1 �1 �3

þ1 þ3 þ1 þ1 þ1 þ3 þ1 þ1

4. Consider the orthogonal augmented contrast array in Example 1.
Rearrange the rows of this orthogonal augmented contrast array
and the associated elements of the text hypothetical datum values
column vector so that the elements of the cteci’s column vector
alternate from �1 to þ1 (as would occur if Yate’s enumeration
algorithm had been used to establish these cteci’s). Then, run
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microcomputer program AGESTCV to verify the text paired-
comparison numerical example.

5. (a) Repeat Example 4 for the orthogonal augmented contrast
array in Example 2. (b) Repeat Example 4 for the orthogonal
augmented contrast array in Example 3.

6. Rework Example 1, this time using the natural logarithms of the
hypothetical experiment test program datum values. Are the esti-
mated interaction effect scalar coefficients still equal to zero?

2.3.2. Other Experiment Test Programs with Blocking

In certain applications it may be impractical or impossible to obtain (create)
blocks of sufficient size to assign each treatment of specific interest to a test
specimen (experimental unit) within each block. Randomized incomplete
block design (RIBD) experiment test programs (Natrella, 1963) can be
used in these applications. In other applications, two or more blocking
variables must simultaneously be employed in a structured arrangement
to assure a fair (unbiased) comparison of the respective treatments. For
example, Latin-square experiment test programs (Natrella, 1963) have two
independent blocking variables in a structured arrangement that balances
(mitigates) the spurious effects of the respective combinations of these nui-
sance variables in the same manner that a RCBD experiment test program
balances (mitigates) the spurious effects of a single collection (aggregation)
of independent nuisance variables.

Suppose we wish to conduct fatigue tests on longitudinal test speci-
mens cut from a 1/8 in. thick sheet of cold-rolled AISI 1018 steel. Although
it is seldom considered, cold-rolled steel sheet stock can exhibit a noticeable
widthwise crowning and a concomitant variation in cold-work, hardness,
static strength, and fatigue strength. In addition, lengthwise variations in
hardness, static strength, and fatigue strength sometimes occur.
Accordingly, Figure 2.9 depicts the worst-case variation in fatigue strength
for longitudinal test specimen blanks. When the associated structured width
location and length location blocking variables are presumed to be indepen-
dent (viz., do not interact), a Latin-square experiment test program is appro-
priate for balancing the (potentially) spurious effects of these two blocking
variables (Figure 2.10).

2.4. UNREPLICATED SPLIT-PLOT DESIGN
EXPERIMENT TEST PROGRAMS

When practicalities require that the individual treatments be applied sequen-
tially in a specific order to obtain the desired treatment combinations, then
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split-plot (nested) design experiment test programs are appropriate. For
example, consider a (2)2 factorial arrangement with the following 4 treat-
ment combinations:

1. no treatment
2. zinc plated (only)
3. induction hardened (only)
4. first induction hardened and then zinc plated
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Figure 2.10 Organizational structure of a 4-by-4 Latin-square experiment test

program with two independent structured blocking variables (width location and

length location) and four treatments (A, B, C, and D). See Natrella (1963) for the

appropriate randomization details. (Note that if the actual fatigue test specimen

blanks are sufficiently small, each of these 16 longitudinal blanks can be partitioned

further into 4-by-4 Latin-square arrangements.)

Figure 2.9 Worst-case variation in hardness, static strength, and fatigue strength

for longitudinal test specimen blanks cut from a cold-rolled AISI 1018 steel sheet.
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We now illustrate an unreplicated split-plot design (SPD) experiment test
program that includes a (2)2 factorial arrangement of these four treatment
combinations in each of four blocks. Suppose we select an 8 ft long 5/8 in.
diameter AISI 1045 hot-rolled rod to make the 16 corrosion-fatigue speci-
men blanks that are required for our example unreplicated SPD experiment
test program. By partitioning this rod into four blocks of four adjacent
specimen blanks, Figure 2.11(a), we can statistically insure, at least in
part, against the problem of a test equipment failure during this lengthy
test program with its severe test environment. Next, we subdivide each block
into two nominally identical main-plots that subsequently receive the main-
plot treatment, viz., induction hardening (because it must be done before
zinc plating). In turn, we subdivide each of the main-plots into two nomin-
ally identical split-plots which subsequently receive the zinc-plating split-
plot treatment. As indicated in Figure 2.11(d), this procedure generates
eight experimental units for main-plots and 16 experimental units for
split-plots.

Next, consider the process of randomly assigning treatments to experi-
mental units for our example unreplicated SPD experiment test program in
Figure 2.11(d). This randomization process has three stages: (a) we ran-
domly select a block (and complete that block before beginning another
randomly selected block), (b) we randomly assign the main-plot treatments
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Figure 2.11 Development of an unreplicated split-plot design (SPD) experiment

test program with a (2)2 factorial arrangement of hierarchical treatment combina-

tions in each of four blocks.
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to the main-plot experimental units within the given block, and (c) we
randomly assign the split-plot treatments to the split-plot experimental
units within each respective main-plot within the given block. The essential
feature of a SPD experiment test program is that the assignment of the split-
plot treatments to split-plot experimental units is not randomized through-
out each block, as are main-plot treatments, but only throughout each main-
plot. As a direct consequence of this hierarchical constraint on their random
assignment of split-plot treatments to split-plot experimental units, the con-
ceptual main-plot experimental errors are different from the conceptual
split-plot experimental errors. Accordingly, the conceptual statistical
model for an unreplicated RCBD experiment test program is not valid for
an unreplicated SPD experiment test program.

The random assignment of the main-plot treatments to the main-plot
experimental units within blocks is illustrated in Figure 2.12. The two adja-
cent split-plot experimental units that comprise each induction-hardened
main-plot experimental unit must be induction hardened as uniformly as
possible. Accordingly, within each block, these two split-plot experimental
units must be induction-hardened back-to-back in random time order with-
out changing the control settings of the induction-hardening equipment. In
contrast, the control settings must be zeroed and reset between each main-
plot, in an independent attempt to meet the induction-hardening specification
target value for each respective main-plot experimental unit. (This main-plot
treatment application procedure is required to make the conceptual main-
plot treatment effect experimental errors as independent as practical.)

In turn, as illustrated in Figure 2.13, split-plot treatments are ran-
domly assigned to the split-plot experimental units within main-plots within
blocks. The eight split-plot experimental units (corrosion-fatigue test speci-
mens) that require zinc plating must be plated such that there is an inde-
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Figure 2.12 Randomization details for the main-plot treatment assignment to

main-plot experimental units (ih ¼ induction-hardening; nt ¼ no treatment).
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pendent attempt to meet the zinc-plating specification target value for each
respective split-plot experimental unit. However, if these eight experimental
units (corrosion-fatigue test specimens) are sent to a zinc-plating vendor,
these test specimens would almost surely be plated in a single batch—and
the statistical credibility of the conceptual split-plot treatment effect experi-
mental errors would be jeopardized. We can avoid improper processing of
split-plot (and main-plot) experimental units by understanding when certain
processing problems exist and how to avoid these processing problems (if
possible).

Finally, we illustrate the random time order of testing for the 16
corrosion-fatigue test specimens in our example unreplicated SPD experi-
ment test program. First, all tests on the experimental units comprising a
block must be completed before starting tests on the experimental units
comprising another block. The random time order of selecting blocks is
indicated by the numbers in parentheses located below the block number
in Figure 2.14. Next, all tests on experimental units comprising each main-
plot must be completed before starting tests on the experimental units com-
prising another main-plot. The random time order of selecting main-plot
experimental units for testing is indicated by numbers in parentheses located
directly above the main-plot experimental units depicted in Figure 2.14.

Finally, the random time order of selecting split-plot experimental
units for testing is indicated by the numbers in parentheses inside the respec-
tive split-plot experimental units depicted in Figure 2.14. The resulting time
order of testing, presuming a single test machine and a single test technician,
is indicated by the numbers 1 through 16 located below the respective split-
plot experimental units depicted in Figure 2.14.
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Figure 2.13 Randomization details for the split-plot treatment assignment to

split-plot experimental units (zp ¼ zinc plated;nt ¼ no treatment).
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2.4.1. Unreplicated Split-Plot Design Conceptual
Statistical Model

The complete analytical model for this example unreplicated SPD experi-
ment test program is written in our hybrid column vector notation as

jCRHDVi’sj ¼ jcsmmj þ jcbei’sj þ jcmptei’sj þ jcbmptiei’sj
þ jcsptei’sj þ jcbsptiei’sj
þ jcmptsptiei’sj þ jcbmptsptiei’sj

When the nb blocks are deliberately selected so that no block, treatment
interaction has a physical basis, then the respective aggregated block, treat-
ment interaction effect column vectors can be reinterpreted as the associated
conceptual random homoscedastic experimental error column vectors, viz.,

jCRHDVi’sj ¼ jcsmmj þ jcbei’sj þ jcmptei’sj þ jCRHMPTEEEi’sj
þ jcsptei’sj þ jCRHSPTEEEi’sj
þ jcmptsptiei’sj þ jCRHMPTSPTIEEEi’sj

in which CRHMPTEEEi’s denotes the conceptual random homoscedastic
main-plot treatment effect experimental errors, CRHSPTEEEi’s denotes the
conceptual random homoscedastic split-plot treatment effect experimental
errors, and CRHMPTSPTIEEEi’s denotes the conceptual random homo-
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Figure 2.14 Randomization details for time order of testing of the 16 experi-

mental units (test specimens) comprising our example unreplicated split-plot experi-

ment test program.
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scedastic main-plot treatment, split-plot treatment interaction effect experi-
mental errors. In turn, the corresponding estimated statistical column vector
model is

jexperiment test program datum valuei’sj ¼ jestðcsmmÞj þ jestðcbei’sÞj
þ jestðcmptei’sÞj þ jestðCRHMPTEEEi’sÞj
þ jestðcsptei’sÞj þ jestðCRHSPTEEEi’sÞj
þ jestðcmptsptiei’sÞj þ jestðCRHMPTSPTIEEEi’sÞj

in which the |experiment test program datum valuei’s| column has
(nbÞ � ðnmptÞ � ðnsptÞ statistical degrees of freedom, the est(csmm) column vec-
tor has one statistical degree of freedom, the est(cbei’s) column vector has
(nb � 1) statistical degrees of freedom, the est(cmptei’s) column vector has
ðnmpt � 1Þ, the est(CRHMPTEEEi’s) column vector has ðnb � 1Þ � ðnmpt � 1Þ,
the estðcsptei’s) column vector has ðnspt � 1Þ, the estðCRHSPTEEEi’s) vector
column has ðnb � 1Þ � ðnspt � 1Þ, the estðmptsptiei’s) column vector has
ðnmpt � 1Þ � ðnspt � 1Þ, and the est(CRHMPTSPTIEEEi’s) column vector
has ðnb � 1Þ � ðnmpt � 1Þ � ðnspt � 1Þ, where the number of main-plot treat-
ments is denoted nmpt and the number of split-plot treatments is denoted nspt.

Remark: The respective csptescj’s are generally estimated more pre-
cisely than the respective cmptescj’s in split-plot experiment test
programs. Accordingly, split-plot designs are usually regarded as
being more effective when the test objective places more emphasis
on precise estimation of the actual values for the respective
csptescj’s than on precise estimation of the actual values for the
respective cmptescj’s. In contrast, all ctescj’s are estimated with
equal precision in an unreplicated RCBD experiment test program.

The conventional algebraic least-squares estimates based on arithmetic
averages are tedious to compute for an unreplicated SPD. Accordingly, we
employ the column-vector-based least-squares estimation procedure in
microcomputer program AGESTCV to compute the scalar coefficients in
the estimated complete analytical model. The orthogonal augmented con-
trast array that was used in conjunction with microcomputer program
AGESTCV to compute the estimated values of the scalar coefficients in
the complete analytical model for our example unreplicated SPD experiment
test program appears in Figure 2.15. Two alternative orthogonal augmented
contrast arrays that can be used in conjunction with microcomputer pro-
gram AGESTCV to verify these estimated values appear in Exercises 1 and 2
of Exercise Set 6. Obviously, these orthogonal augmented contrast arrays
array are not unique.
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Each of these three orthogonal arrays can also be used to estimate
the column vectors for an unreplicated RCBD design experiment test
program with four blocks and four treatment combinations in a (2)2

factorial arrangement, except that the column vectors must be rearranged
to place all nine of the estimated interaction effect column vectors in-
volving blocks in adjacent columns before running microcomputer pro-
gram AGESTCV. These nine adjacent column vectors, when aggregated,
form the |est(CRHEEi’s)| column vector for this unreplicated RCBD
experiment test program with nine statistical degrees of freedom.
Moreover, each of these three arrays can also be used to estimate the
column vectors for an equally replicated CRD experiment test program
with four replicates of the four treatment combinations in a (2)2 factorial
arrangement. Then, all nine of the estimated interaction effect column
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vectors involving (nonexistent) blocks are aggregated with the three
estimated block column vectors to form the |est(CRHEEi’s)| column vector
for this equally replicated CRD experiment test program with 12 statistical
degrees of freedom.

Remark: Because the same orthogonal augmented contrast array
can be used for an equally replicated CRD, an unreplicated
RCBD, or an unreplicated split-plot design experiment test pro-
gram, each of its column vectors must be explicitly identified
using the appropriate acronym.

2.4.1.1. Numerical Example for an Unreplicated Split-Plot
Design Experiment Test Program with a (2)2 Factorial
Arrangement for the Main-Plot and Split-Plot
Treatments

Suppose that the following hypothetical datum values pertain to our exam-
ple unreplicated SPD experiment test program with its main-plot and split-
plot treatments structured in a (2)2 factorial arrangement:

mpt low level mpt high level

spt low level spt high level spt low level spt high level

Block 1 1 2 3 4

Block 2 5 6 7 8

Block 3 9 10 11 12

Block 4 13 14 15 16

Running microcomputer program AGESTCV generates the following esti-
mated column vectors pertaining to the associated estimated unreplicated
SPD conceptual statistical model:
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hypothetical
datum valuei ’s ¼ estðcsmmÞ þ estðcbei’sÞ þ estðcmpti’sÞ þ estðcsptei’sÞ

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

���������������������������������

���������������������������������

¼

8:5
8:5
8:5
8:5
8:5
8:5
8:5
8:5
8:5
8:5
8:5
8:5
8:5
8:5
8:5
8:5

���������������������������������

���������������������������������

þ

�6:0
�6:0
�6:0
�6:0
�2:0
�2:0
�2:0
�2:0
þ2:0
þ2:0
þ2:0
þ2:0
þ6:0
þ6:0
þ6:0
þ6:0

���������������������������������

���������������������������������

þ

�1:0
�1:0
þ1:0
þ1:0
�1:0
�1:0
þ1:0
þ1:0
�1:0
�1:0
þ1:0
þ1:0
�1:0
�1:0
þ1:0
þ1:0

���������������������������������

���������������������������������

þ

�5:0
þ0:5
�0:5
þ0:5
�0:5
þ0:5
�0:5
þ0:5
�0:5
þ0:5
�0:5
þ0:5
�0:5
þ0:5
�0:5
þ0:5

���������������������������������

���������������������������������

These hypothetical datum values were deliberately constructed so that all
estimated interaction effect scalar coefficients were equal to zero.

Exercise Set 6

These exercises pertain to our unreplicated SPD experiment test program
numerical example and are intended to enhance your understanding of
alternative orthogonal augmented contrast arrays that can be used to com-
pute the respective column vectors in the estimated complete analytical
model.

j þ 1’sj |cbeci ’s| |cmpteci ’s| |cbmptieci ’s| |cspteci ’s| |cbsptieci ’s| |cmptsptieci’s| |cbmptsptieci ’s|

þ1 �1 �1 �1 �1 þ1 þ1 þ1 �1 þ1 þ1 þ1 þ1 �1 �1 �1

þ1 þ1 �1 �1 �1 �1 þ1 þ1 �1 �1 þ1 þ1 þ1 þ1 �1 �1

þ1 0 þ2 �1 �1 0 �2 þ1 �1 0 �2 þ1 þ1 0 þ2 �1

þ1 0 0 þ3 �1 0 0 �3 �1 0 0 �3 þ1 0 0 þ3

þ1 �1 �1 �1 �1 þ1 þ1 þ1 þ1 �1 �1 �1 �1 þ1 þ1 þ1

þ1 þ1 �1 �1 �1 �1 þ1 þ1 þ1 þ1 �1 �1 �1 �1 þ1 þ1

þ1 0 þ2 �1 �1 0 �2 þ1 þ1 0 þ2 �1 �1 0 �2 þ1

þ1 0 0 þ3 �1 0 0 �3 þ1 0 0 þ3 �1 0 0 �3

þ1 �1 �1 �1 þ1 �1 �1 �1 �1 þ1 þ1 þ1 �1 þ1 þ1 þ1

þ1 þ1 �1 �1 þ1 þ1 �1 �1 �1 �1 þ1 þ1 �1 �1 þ1 þ1

þ1 0 þ2 �1 þ1 0 þ2 �1 �1 0 �2 þ1 �1 0 �2 þ1

þ1 0 0 þ3 þ1 0 0 þ3 �1 0 0 �3 �1 0 0 �3

þ1 �1 �1 �1 þ1 �1 �1 �1 þ1 �1 �1 �1 þ1 �1 �1 �1

þ1 þ1 �1 �1 þ1 þ1 �1 �1 þ1 þ1 �1 �1 þ1 þ1 �1 �1

þ1 0 þ2 �1 þ1 0 þ2 �1 þ1 0 þ2 �1 þ1 0 þ2 �1

þ1 0 0 þ3 þ1 0 0 þ3 þ1 0 0 þ3 þ1 0 0 þ3
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1. Use the array in Figure 2.15 to verify the results of our unrepli-
cated SPD experiment test program numerical example by run-
ning microcomputer program AGESTCV appropriately.

2. Consider the previous orthogonal augmented contrast array on
page 72 and reorder the corresponding hypothetical datum values
column vector appropriately to verify the results of our unrepli-
cated SPD experiment test program numerical example by run-
ning microcomputer program AGESTCV.

3. Use the following orthogonal augmented contrast array to verify
the results of our unreplicated SPD experiment test program
numerical example by running microcomputer program
AGESTCV.

j þ 1’sj |cbeci’s| cmpteci ’s| |cbmptieci ’s| |cspteci ’s| |cbsptieci ’s| |cmptsptieci ’s| |cbmptsptieci ’s|

þ1 �1 �1 þ1 �1 þ1 þ1 �1 �1 þ1 þ1 �1 þ1 �1 �1 þ1

þ1 �1 �1 þ1 �1 þ1 þ1 �1 þ1 �1 �1 þ1 �1 þ1 þ1 �1

þ1 �1 �1 þ1 þ1 �1 �1 þ1 �1 þ1 þ1 �1 �1 þ1 þ1 �1

þ1 �1 �1 þ1 þ1 �1 �1 þ1 þ1 �1 �1 þ1 þ1 �1 �1 þ1

þ1 þ1 �1 �1 �1 �1 þ1 þ1 �1 �1 þ1 þ1 þ1 þ1 �1 �1

þ1 þ1 �1 �1 �1 �1 þ1 þ1 þ1 þ1 �1 �1 �1 �1 þ1 þ1

þ1 þ1 �1 �1 þ1 þ1 �1 �1 �1 �1 þ1 þ1 �1 �1 þ1 þ1

þ1 þ1 �1 �1 þ1 þ1 �1 �1 þ1 þ1 �1 �1 þ1 þ1 �1 �1

þ1 �1 þ1 �1 �1 þ1 �1 þ1 �1 þ1 �1 þ1 þ1 �1 þ1 �1

þ1 �1 þ1 �1 �1 þ1 �1 þ1 þ1 �1 þ1 �1 �1 þ1 �1 þ1

þ1 �1 þ1 �1 þ1 �1 þ1 �1 �1 þ1 �1 þ1 �1 þ1 �1 þ1

þ1 �1 þ1 �1 þ1 �1 þ1 �1 þ1 �1 þ1 �1 þ1 �1 þ1 �1

þ1 þ1 þ1 þ1 �1 �1 �1 �1 �1 �1 �1 �1 þ1 þ1 þ1 þ1

þ1 þ1 þ1 þ1 �1 �1 �1 �1 þ1 þ1 þ1 þ1 �1 �1 �1 �1

þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 �1 �1 �1 �1 �1 �1 �1 �1

þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1

2.5. MECHANICAL RELIABILITY APPLICATIONS OF
STATISTICALLY PLANNED EXPERIMENT TEST
PROGRAMS

The purpose of this section is to provide perspective regarding the funda-
mental role of statistically planned experiment test programs in mechanical
reliability applications. The probability and statistics concepts presented in
subsequent chapters should be critically examined relative to their mechan-
ical reliability interpretation and implementation.

Adequate reliability can only be established (demonstrated) by the
actual service performance of the given product. (Recall that the proof of
the pudding is in the eating.) Accordingly, all design methodologies attempt
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in some manner or form to extrapolate service-proven experience for past
designs to the proposed design.

2.5.1. Quantitative Reliability Experiment Test Programs

The most common mechanical reliability experiment test program is the so-
called quality assurance test in which the proposed design is required to pass
some arbitrary quantitative performance bogey. The presumption is that if
all similar and analogous past designs that passed this bogey test have
subsequently performed reliably in service, then if the proposed design
passes this bogey test, it will perform reliably in service. However, for this
methodology to be trustworthy, it must also be such that the mechanical
mode of failure in its bogey test is not only identical to the mechanical mode
of failure in service operation, but the characteristics of the respective failure
surfaces are very similar if not almost identical.

A quality assurance bogey is ideally established using service-proven
performance data from several years of prior service experience with similar
or analogous designs. In this context, it is clear that a quality assurance
bogey experiment test program indirectly compares sequential mechanical
designs. Obviously, the more direct the comparison between service condi-
tions and the test bogey, the more trustworthy the quality assurance test
pass/fail conclusion.

Remark: A quality assurance test bogey effectively performs the
same function that a factor of safety performs in design analysis.
Both use service-proven performance as a rational basis for predict-
ing adequate mechanical reliability for the proposed design.

Now suppose we continually replicate a quality assurance experiment
test program for a particular design that is known to perform reliably in
service. Clearly, unless the given test bogey is overly extreme, eventually one
or more of these replicate quality assurance experiment test programs will
generate datum values that fail to pass the test bogey and thus establish a
quality assurance dilemma. The use of an overly extreme test bogey elim-
inates the need for statistical analysis in making the pass/fail decision—
because a design that passes this test bogey will surely perform reliably in
service. However, the use of an overly extreme test bogey can generate a
substantial possibility that a design that fails to pass the test bogey would
perform reliably in service if it is actually given the opportunity. On the
other hand, the use of only a moderately extreme test bogey generates the
possibility that a design that passes the test bogey will not perform reliably
in service. This possibility is so undesirable that mechanical designers have
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almost universally opted in favor of the use of overly extreme test bogies,
viz., in favor of overdesign.

The issue is whether we opt to overdesign, or whether we establish a
test bogey with a statistics-based pass/fail criteria. The choice is not as
simple as it may seem. Overdesign is inherently relatively immune to the
batch-to-batch variability of the test experimental units. This is particularly
important because it is seldom reasonable to assert that the test experimen-
tal units for the proposed design can be viewed as having been randomly
selected from the conceptual collection (population) that consists of all
possible future production test experimental units. It is even more unreason-
able to ignore the batch-to-batch variability of these future production test
experimental units in a statistics-based pass/fail criteria. Unfortunately, the
batch-to-batch variability of future production test experimental units is the
most important and least studied factor in establishing adequate service
reliability (see Supplemental Topic 6.C). Accordingly, so-called quality
assurance tests seldom involve a trustworthy statistics-based pass/fail
criteria.

2.5.2. Comparative Experiment Test Programs

Comparative experiment test programs have the obvious advantage of side-
by-side comparisons of the past and proposed designs (or past, present, and
proposed designs). Their primary disadvantage is that more testing is
required. However, the additional test time and cost is almost always worth-
while when the reliability of a design must be improved.

Consider again the paired-comparison experiment test program of
Section 2.3. Let treatment A be a past or present design that has demon-
strated an inadequate reliability in service. This reliability problem can be
alleviated by requiring proposed design B to excel the past or present design
A statistically by at least a certain increment or ratio. Paired-comparison
experiment test programs are particularly effective in this mechanical relia-
bility improvement application (Chapter 3). In contrast, suppose that the
past or present design exhibits adequate reliability in service. Paired-com-
parison experiment test programs are not statistically appropriate in this
situation (for reasons that will be apparent later).

2.6. CLOSURE

In Chapter 3 we introduce elementary probability and statistics concepts
and illustrate their application in paired-comparison experiment test pro-
grams conducted to improve mechanical reliability. Then, in Chapters 4 and
5 we develop the additional statistics background required to conduct more
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sophisticated statistical analyses for equally replicated CRD and unrepli-
cated RCBD and SPD experiment test programs.

2.A. SUPPLEMENTAL TOPIC: CHOOSING PHYSICALLY
RELEVANT CONCEPTUAL TREATMENT EFFECT
CONTRASTS

Typically, the test objective, the associated null and alternative hypotheses,
and the experiment test program organizational structure dictate the choice
of the cteci’s that are used to construct the orthogonal augmented contrast
array of specific interest. However, when two or more sets of cteci’s suffice,
the actual experiment test program outcome determines the physically rele-
vant choice for the cteci’s.

Remark: Any set of cteci’s suffices when the omnibus null hypoth-
esis is that all of the actual values of the associated ctescj’s are equal
to zero and the alternative hypothesis is that not all of the actual
values of these ctesci’s are equal to zero.

Consider the following two example alternative orthogonal augmented
contrast arrays (that include only two blocks for simplicity of presentation).
Although the respective cteci’s may appear to be similar, each is properly
employed to explain a markedly different experiment test program outcome.

Example 1 Orthogonal Augmented Contrast Array

jexperiment test program datum valuei’sj j þ 1’sj jcteci’sj jcbeci’sj jctbieci’sj
Block 1, Treatment A datum value þ1 �1 �1 �1 þ1 þ1

Block 1, Treatment B datum value þ1 þ1 �1 �1 �1 þ1

Block 1, Treatment C datum value þ1 0 þ2 �1 0 �2

Block 2, Treatment A datum value þ1 �1 �1 þ1 �1 �1

Block 2, Treatment B datum value þ1 þ1 �1 þ1 þ1 �1

Block 2, Treatment C datum value þ1 0 þ2 þ1 0 þ2

Example 2 Orthogonal Augmented Contrast Array

jexperiment test program datum valuei’sj j þ 1’sj jcteci’sj jcbeci’sj jctbieci’sj
Block 1, Treatment A datum value þ1 �1 þ1 �1 þ1 �1

Block 1, Treatment B datum value þ1 0 �2 �1 0 þ2

Block 1, Treatment C datum value þ1 þ1 þ1 �1 �1 �1

Block 2, Treatment A datum value þ1 �1 þ1 þ1 �1 þ1

Block 2, Treatment B datum value þ1 0 �2 þ1 0 �2

Block 2, Treatment C datum value þ1 þ1 þ1 þ1 þ1 þ1
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Example 1

Little (1997) examined the effect of three different thicknesses on the
long-life fatigue performance of an automotive composite for both axial
loading and four-point bending by conducting unreplicated RCBD
experiment test programs, each with six time blocks. Cursory examina-
tion of the experiment test program datum values indicated that the 3/16
and 1/4 in. thick axial-load and four-point-bending fatigue specimens
exhibited similar lives and that the 1/8 in. thick axial-load and four-
point-bending specimens exhibited longer lives than either the 3/16 or
1/4 in. thick specimens. Given these datum values, the cteci’s in the
Example 1 Orthogonal Augmented Contrast Array were chosen for
use in a statistical analysis in which treatment A was the 1/4 in. thick
specimens, treatment B was the 3/16 in. thick specimens, and treatment
C was the 1/8 in. thick specimens. Observe that contrast ctec(1) com-
pares the fatigue lives of the 3/16 in. thick specimens (þ1’s) to the
fatigue lives of the 1/4 in. thick specimens (�1’s). Stated more techni-
cally, contrast ctec(1) compares the actual value for the ctBm (+1) to
the actual value for the ctAm (�1), where the null hypothesis is that the
actual values for the ctAm and the ctBm are equal and the alternative
hypothesis is that the actual values for the ctAm and the ctBm are not
equal. As expected, the null hypothesis could not be rejected for the
given experiment test program datum values. Next, observe that contrast
ctec(2) compares the fatigue lives of the 1/8 in. thick specimens (þ2’s)
to the arithmetic average of the fatigue lives of the 3/16 and 1/4 in.
thick specimens (both �1’s). Stated more technically, contrast ctec(2)
compares the actual value for the ctCm (þ2) to the actual value for the
sum (ctAm+ctBm) (both �1), where the null hypothesis is that the
actual value for the ctCm is equal to the actual value for the sum
(ctAm+ctBm) and the alternative hypothesis is that the actual value
for the ctCm is greater than the actual value for the sum
(ctAm+ctBm). (This comparison might be more intuitive if contrast
ctec(2) were scaled down to [�1/2, �1/2, +1]. However, contrasts are
traditionally expressed as the smallest set of integers that have the
desired ratios.) As expected, the null hypothesis was rejected in favor
of the alternative hypothesis.

Remark 1: The actual value for the sum (ctAm+ctBm) is more
intuitively expressed as the actual value for the mean of the con-
ceptual statistical distribution that is comprised of all possible repli-
cate datum values for both treatment A and treatment B.
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Remark 2: If the experiment test program datum values are appro-
priately rearranged, contrast ctec(1) can also be used to compare
either the actual value for the ctCm to the actual value for the ctAm,
or to compare the actual value for the ctCm to the actual value for
the ctBm. However, the associated three statistical analyses will not
be independent because each analysis will involve two of the same
three sets of treatment datum values. (See Section 6.3.)

Example 2

Little and Thomas (1993) examined the effect of grade on the endurance
limit of grades 2, 5, and 8 machines screws by conducting an unreplicated
SPD experiment test program with its individual fatigue tests conducted
using a modified up-and-down strategy (Chapter 8). The respective endur-
ance limits were estimated by maximum likelihood analyses (Chapter 8)
prior to conducting a statistical analysis of variance (Chapter 6). A plot of
these three endurance limit estimates versus machine screw grade clearly
indicated that the endurance limit increases with grade, but the statistical
issue is whether a quadratic term is required in addition to a linear term to
explain this increase. Accordingly, the cteci’s in the Example 2 Orthogonal
Augmented Contrast Array were chosen for use in a statistical analysis in
which main-plot treatment A was the grade 2 machine screws, main-plot
treatment B was the grade 5 machine screws, and main-plot treatment C
was the grade 8 machine screws. Given equally spaced main-plot treatment
levels, these two cteci’s, technically termed orthogonal polynomial contrasts,
can be used to compute a second-order polynomial (parabolic) expression
that passes through the three estimated endurance limit points plotted
versus machine screw grade. Contrast ctec(1) is used to estimate the actual
value of the linear effect scalar coefficient in this second-order polynomial
expression. The null hypothesis associated with ctec(1) is that the actual
value for the linear effect scalar coefficient is equal to zero, whereas the
alternative hypothesis is that the actual value for the linear effect scalar
coefficient is greater than zero. As expected this null hypothesis was
emphatically rejected. In turn, contrast ctec(2) is used to estimate the
actual value of its quadratic effect scalar coefficient in this second-order
polynomial expression. The null hypothesis associated with ctec(2) is that
the actual value for the quadratic effect scalar coefficient is equal to zero,
whereas the alternative hypothesis is that the actual value for the quadratic
effect scalar coefficient is less than zero, viz., is negative. This null hypoth-
esis was also rejected, but not as emphatically as the null hypothesis
pertaining to contrast ctec(1).
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Remark: A very brief table of contrasts pertaining to orthogonal
polynomial contrasts for a single quantitative treatment, equally
replicated at each of k equally spaced treatment levels, k ¼ 3 to 6,
can be found in Table 8.1 of Little and Jebe (1975).

2.B. SUPPLEMENTAL TOPIC: FRACTIONAL FACTORIAL
ARRANGEMENTS AND STATISTICAL
CONFOUNDING

Sometimes only a fraction of a (2)nt factorial array is employed in an experi-
ment test program, say a one-half, a one-quarter, or even a one-eighth
fraction. Fractional factorial design experiment test programs are particu-
larly appropriate when test specimens (experimental units) are very expen-
sive or are available in very limited quantities. For example, suppose that we
wish to examine the effect of three treatments, but only four specimens
(experiment units) are available for testing. If so, our estimated conceptual
statistical model can have only four estimated scalar coefficients (at most).
On the other hand, recall that the estimated complete analytical model for a
(2)3 factorial design experiment test program has eight estimated scalar
coefficients. Thus, these eight estimated scalar coefficients must be parsed
into four groups of the sum of two statistically confounded (inseparable)
estimated scalar coefficients to establish the estimated conceptual statistical
model.

Consider the standard orthogonal augmented (2)3 factorial arrange-
ment contrast array [originally presented in Figure 2.6(b)]:

Specimen

Number j þ 1’sj |ct1eci ’s| |ct2eci ’s| |ct3eci ’s| |ct1t2ieci ’s| |ct1t3ieci ’s| |ct2t3ieci ’s| |ct1t2t3ieci ’s|
Orthogonal 1 þ1 �1 �1 �1 þ1 þ1 þ1 �1

Augmented 2 þ1 þ1 �1 �1 �1 �1 þ1 þ1

(2)3 3 þ1 �1 þ1 �1 �1 þ1 �1 þ1

Factorial 4 þ1 þ1 þ1 �1 þ1 �1 �1 �1

Arrangement 5 þ1 �1 �1 þ1 þ1 �1 �1 þ1

Contrast 6 þ1 þ1 �1 þ1 �1 þ1 �1 �1

Array 7 þ1 �1 þ1 þ1 �1 �1 þ1 �1

8 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1

Note that we cannot arbitrarily select specimen numbers (rows) 1, 2, 3, and
4 for our one-half fraction (2)3 factorial design experiment test program
because the first four elements of the |ct3eci’s| column vector do not sum
to zero. Thus, we must select the specific specimen numbers (rows) that are
consistent with our test objective. Since our conceptual statistical model will
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have four terms (at most), the most intuitive one-half fraction orthogonal
augmented (2)3 factorial design contrast array has its first four column
vectors identical to the four column vectors that comprise the standard
orthogonal augmented contrast array for a (2)2 factorial design experiment
test program, viz.,

Specimen

Number |þ1’s| |ct1eci ’s| |ct2eci ’s| |ct1t2ieci ’s|

Orthogonal Augmented 1 þ1 �1 �1 þ1

(2)2 2 þ1 þ1 �1 �1

Factorial Arrangement 3 þ1 �1 þ1 �1

Contrast Array 4 þ1 þ1 þ1 þ1

Now consider the one-half fraction orthogonal augmented (2)3 fac-
torial design contrast array that is comprised of specimen numbers (rows)
5, 2, 3, and 8 (in that order) taken from the original orthogonal augmen-
ted (2)3 factorial arrangement contrast array. Note that the first four
column vectors in this proposed one-half fraction array are indeed iden-
tical to the four column vectors that comprise the standard orthogonal
augmented (2)2 factorial design contrast array. The issue now is to estab-
lish the nature of the statistical confounding that is intrinsic in this pro-
posed one-half fraction orthogonal augmented (2)3 factorial arrangement
contrast array.

Specimen

Number j þ 1’sj |ct1eci ’s| |ct2eci ’s| |ct3eci ’s| |ct1t2ieci ’s| |ct1t3ieci ’s| |ct2t3ieci ’s| |ct1t2t3ieci ’s|

5 þ1 �1 �1 þ1 þ1 �1 �1 þ1

2 þ1 þ1 �1 �1 �1 �1 þ1 þ1

3 þ1 �1 þ1 �1 �1 þ1 �1 þ1

8 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1

The last four column vectors in this proposed one-half fraction orthogonal
augmented contrast array establish its intrinsic statistical confounding. Note
that the |ct1eci’s| column vector is identical to the |ct2ct3ieci’s| column
vector. Thus the associated estimated scalar coefficient will actually be the
statistically confounded sum [est(ct1esc) + est(ct2t3iesc)]. Next, note that
the |ct2eci’s| column vector is identical to the |ct1ct3ieci’s| column vector.
Thus, the associated estimated scalar coefficient will actually be the statisti-
cally confounded sum [est(ct2esc) + est(ct1t3iesc)]. Then, note that the
|ct3eci’s| column vector is identical to the |ct1ct2ieci’s| column vector.
Thus, the associated estimated scalar coefficient will actually be the statisti-
cally confounded sum [est(ct3esc) + est(ct1t2iesc)]. Finally, note that the
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|+1’s| identity column vector is identical to the |ct1t2t3ieci’s| column vector.
Thus, the associated estimated scalar coefficient will actually be the con-
founded sum [est(csmmsc) + est(ct1t2t3iesc)]. These four estimated scalar
coefficients have practical physical interpretation only when it is arbitrarily
presumed that the actual values for the respective interaction effects are
equal to zero. If so, then the four estimated scalar coefficients will be,
respectively, the est(csmmsc), the est(ct1esc), the est(ct2esc), and the
est(ct3esc).

Remark: The economy of this one-half fraction experiment test
program is so great that there can be a strong tendency to rationa-
lize the presumption that the actual value for the interaction effects
are equal to zero when, in fact, this presumption is false.

This very brief presentation is intended to provide the perspective
that fractional factorial experiment test programs can be advantageous
when (a) the number of treatments (main effects) of specific interest is
large, (b) the available test resources are very limited, and (c) the actual
values for all (or certain) interaction effects can objectively be presumed
to be negligible. These three constraints usually limit the use of fractional
factorial experiment test programs to either screening studies (in which the
test objective is to discern which main effects dominate the test outcome)
and to ruggedness studies [in which several dominant test variables are
slightly changed from their nominal specification (target) values to
ascertain their relative effects on the resulting test outcomes]. Box, et al.
(1978) is an authoritative reference for the planning, conduct, and
statistical analysis of factorial and fractional factorial design experiment
test programs.

Exercise Set 7

These exercises are intended to provide additional perspective regarding the
statistical confounding intrinsic in our elementary example.

1. Verify that the statistical confoundings intrinsic in the ordered
specimen numbers (rows), 1, 4, 7, and 6, of the standard ortho-
gonal augmented (2)3 factorial design contrast array are, respec-
tively, the differences: [est(ct1esc) � est(ct2t3iesc)], [est(ct2esc) �
est(ct1t3iesc)], [est(ct3esc) � est(ct1t2iesc)], and [est(csmmsc) �
est(ct1t2t3iesc)].

2. Verify that the four statistical confoundings in Example 1 can
be added to and subtracted from the four corresponding statis-
tical confoundings elaborated above to obtain exactly the same
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numerical estimates for the actual values of the eight scalar
coefficients that are obtained by computing the eight scalar
coefficients in the estimated complete analytical model asso-
ciated with the standard (2)3 factorial design experiment test
program.

2.B.1. Extension

Suppose that a standard (2)3 factorial design experiment test program is
appropriate, but nominally identical test specimens (experimental units)
are available only in two batches of size four. Then, a batch effect contrast
column vector must be added to the eight column vectors that comprise the
standard orthogonal augmented (2)3 factorial design contrast array.
However, its estimated (batch effect) scalar coefficient will be statistically
confounded with one of the other estimated scalar coefficients. Accordingly,
the basic issue is which of the possible statistical confoundings is most
consistent with the test objective. Consider the following proposed ortho-
gonal augmented contrast array:

Proposed Orthogonal Augmented Contrast Array for a ð2Þ3 Factorial Design

Experiment Test Program

Specimen

Number |beci’s| |þ1’s| |ct1eci ’s| |ct2eci ’s| |ct3eci ’s| |ct1t2ieci ’s| |ct1t3ieci ’s| |ct2t3ieci ’s| |ct1t2t3ieci ’s|

5 þ1 þ1 �1 �1 þ1 þ1 �1 �1 þ1

2 þ1 þ1 þ1 þ1 �1 �1 �1 þ1 þ1

3 þ1 þ1 �1 �1 �1 �1 þ1 �1 þ1

8 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1

1 �1 þ1 �1 �1 �1 þ1 þ1 þ1 �1

4 �1 þ1 þ1 þ1 �1 þ1 �1 �1 �1

7 �1 þ1 �1 þ1 þ1 �1 �1 þ1 �1

6 �1 þ1 þ1 �1 þ1 �1 þ1 �1 �1

This proposed array consists of the proposed one-half fraction orthogonal
augmented (2)3 factorial design contrast array in our elementary statistical
confounding example above plus the remaining specimen numbers (rows)
in the standard orthogonal augmented (2)3 factorial design contrast array
rearranged in the order 1, 4, 7, and 6. The estimated batch effect for this
proposed array is statistically confounded with the estimated three-factor
interaction effect. Accordingly, the estimated three-factor interaction effect
cannot subsequently be reinterpreted as the est(CRHEEi’s) in the estimated
conceptual statistical model (even if its actual value is equal to zero).
Nevertheless, it is rational to assert that a statistically credible estimate
of the actual value for the ct1t2t3iesc, if it were attainable, would likely be
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quite small compared to the actual value for batch effect scalar coefficient.
If so, the effect of statistical confounding on the estimated value of the
actual batch effect would also be quite small. One way or the other, given
the proposed statistical confounding, the actual values for all three main
effect and all three of the two-factor interaction scalar coefficients can be
estimated, as well as the actual value for the conceptual statistical model
mean scalar coefficient. Then, if it is presumed that the actual value for
one or more of the three two-factor interaction effects is equal to zero, the
associated estimated interaction effect(s) can be reinterpreted as
est(CRHEEi’s) in the estimated conceptual statistical model.

Remark: The estimate of the actual value for the batch effect (and
its associated statistical confidence interval) can well be the most
important information obtained from an experiment test program.
Never pass up a practical opportunity to estimate the actual value
for a batch effect.
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3
Basic Probability and Statistics
Concepts and Their Mechanical
Reliability Applications

3.1. INTRODUCTION

The successive outcomes of continually replicated experiment test programs
exhibit random variability. The value of specific interest that we associate
with each respective outcome is usually termed a statistic (test statistic), but
it is more broadly termed a random variable. We subsequently use a capital
letter to denote a random variable and a lower-case letter to denote its
realization value.

3.2. EXACT ENUMERATION-BASED PROBABILITY

Recall that the first fundamental abstraction in statistical analysis is that the
experiment test program that is (was) actually conducted can be continually
replicated indefinitely to generate the conceptual collection of all possible
equally likely experiment test program outcomes. Moreover, the outcome
for the experiment test program that is (was) actually conducted is (was)
randomly selected from this collection of all possible equally likely experi-
ment test program outcomes. Given this fundamental statistical abstraction,
suppose that the experiment test program that is (was) actually conducted
has only nelo equally likely outcomes. The enumeration-based probability of
obtaining an outcome of specific interest (poosi) when this experiment test
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program is actually conducted is defined as the ratio of the number of
experiment test program outcomes of specific interest (noosi) to the number
of equally likely experiment test program outcomes (nelo), viz.,

exact enumeration-based probability poosi ¼
noosi
nelo

We now present the classical fair-coin experiment for which the respec-
tive enumerations of nelo and noosi are easily accomplished and intuitively
understood.

3.2.1. Enumeration of All Equally Likely Outcomes for
the Classical Fair-Coin Experiment Test Program

The classical fair-coin experiment test program consists of nf independent
coin flips, where (a) heads and tails are the only possible outcomes for each
successive flip, and (b) heads and tails are equally likely to occur. Let noosi
pertain to the observed number of heads, nh, during nf flips. We use Yate’s
enumeration algorithm in Table 3.1 to enumerate all of the respective
equally likely outcomes of the classical fair-coin experiment test program
by associating tails with �1 and heads with þ1.

Two fundamental probability concepts are illustrated in this classical
fair-coin experiment test program example. First, the probabilities of occur-
rence for independent outcomes can be multiplied to establish the probabil-
ity that the corresponding collection of outcomes will occur (together), e.g.,
the probability of observing HH as the outcome of two independent flips is
ð1=2Þ � ð1=2Þ ¼ 1=4. Second, the probabilities pertaining to a collection of
mutually exclusive experiment test program outcomes can be summed to
establish the probability that one of these outcomes will occur. (Note that
the sum of probabilities for mutually exclusive and exhaustive outcomes is
always equal to one.)

Exercise Set 1

These exercises are intended to introduce a factorial expression for establish-
ing the number of equally likely classical fair-coin experiment test program
outcomes of specific interest.

1. Suppose a fair-coin is (independently) flipped five times. (a)
Enumerate the respective nelo equally likely outcomes (sequences
of heads and tails) by using Yate’s enumeration algorithm and
associating tails with �1 and heads with þ1. Then, (b) plot your
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results in the format illustrated in Figure 1.5(b), using the number
of heads nh as the abscissa metric.

2. The respective numbers of equally likely classical fair-coin experi-
ment test program outcomes with nh heads occurring in nf flips
can be computed using the following factorial expression for nh
given nf, where nh ranges from zero to nf (and zero factorial is
equal to one by definition):

number of distinct replicate fair-coin
experiment test programs with nh heads
in nf flips

¼ nf !

ðnhÞ! � ðnf � nhÞ!

(a) Use this factorial expression to verify your results in Example
1, viz., let nf = 5 and let nh successively take on the values 0, 1, 2,
3, 4, and 5. Then, (b) verify that the total number of equally likely
classical fair-coin experiment test program outcomes sum to 25.
In turn, (c) verify the enumeration-based probabilities computed
in Example 1.

3.2.1.1. Discussion

The null hypothesis for the classical fair-coin experiment test program is H
¼ T statistically. This null hypothesis is statistically equivalent to the null
hypothesis that B ¼ A statistically for a paired-comparison experiment test
program. Note that, given the null hypothesis that H ¼ T statistically, the
probability that a head will occur as the outcome of any given flip is exactly
equal to 1/2. Correspondingly, given the null hypothesis that B ¼ A statis-
tically, the probability that the (b� a) difference for any given paired-com-
parison will be positive is exactly equal to 1/2. Thus, the fair-coin
experiment test program outcome that a head will occur for any given flip
is statistically equivalent to the paired-comparison experiment test program
outcome that a positive ðb� aÞ difference will occur for any given paired-
comparison. Accordingly, the outcome of any given flip of a fair-coin, heads
or tails, is statistically equivalent to the sign of the observed ðb� aÞ differ-
ence, positive or negative, for any given paired comparison. This statistical
equivalence underlies the three example statistical tests of hypothesis for a
paired-comparison experiment test program that appear below. The first
two of these three examples are primarily intended to illustrate the calcula-
tion of enumeration-based null hypothesis rejection probabilities.
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3.2.2. Three Statistical Tests of the Null Hypothesis that
B ¼ A Statistically Versus the Simple (One-Sided)
Alternative Hypothesis that B > A Statistically,
Given the Outcome of a Paired-Comparison
Experiment Test Program

The minimal probability background just presented is sufficient to perform
three alternative statistical tests of hypotheses that have direct application in
improving the mechanical reliability of a product. First, recall that a paired-
comparison experiment test program with npc paired comparisons is actually
an unreplicated randomized complete block design (RCBD) experiment test
program with two treatments and nb blocks. Let its two treatments of spe-
cific interest be denoted A and B, where A pertains to the present design and
B pertains to the proposed design. Suppose, to alleviate a mechanical relia-
bility problem with A, we require that B excels A statistically. Accordingly,
the null hypothesis is that B ¼ A statistically, whereas the simple (one-sided)
alternative hypothesis is that B > A statistically. Next, presume that we have
conducted a paired-comparison experiment test program with npc = 8
paired comparisons (with nb ¼ 8 blocks) and that we obtained the following
outcomes:

a b

sign of the

ðb� aÞ difference
Block 1 112 125 þ
Block 2 156 173 þ
Block 3 113 141 þ
Block 4 197 219 þ
Block 5 234 255 þ
Block 6 166 177 þ
Block 7 121 131 þ
Block 8 143 159 þ

3.2.3. The Classical Sign Test

The test statistic that is used in the classical sign test is the sum of positive
signs for the collection of ðb� aÞ differences that constitute the outcome of a
paired-comparison experiment test program. Accordingly, microcomputer
program EBST (enumeration-based sign test) first calculates the data-based
reference value of this test statistic for the collection of ðb� aÞ differences
that constitute the outcome of the paired-comparison experiment test pro-
gram that was actually conducted. Then, given the null hypothesis that B ¼
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A statistically, it constructs all equally likely outcomes for this paired-com-
parison experiment test program by using Yate’s enumeration algorithm to
reassign positive and negative signs to its (b � a) differences. In turn, it
counts the number of these constructed outcomes that have its test statistic
value equal to or greater than the data-based reference value. Finally, it
calculates the enumeration-based probability that the randomly selected
outcome of this paired-comparison experiment test program when continu-
ally replicated will have its test statistic value equal to or greater than the
data-based reference value. If this probability is sufficiently small, the cred-
ibility of the null hypothesis underlying this enumeration-based probability
calculation is dubious. If, in addition, the actual experiment test program
outcome is consistent with the simple (one-sided) alternative hypothesis that
B > A statistically, then the null hypothesis must rationally be rejected. The
value of the null hypothesis rejection probability should (must) be selected
before the actual paired-comparison experiment test program outcome is
known. The size of the null hypothesis rejection probability is subjective—
but it is traditionally selected to be either 0.10, 0.05, or 0.01.

Two issues involved in testing the null hypothesis warrant further dis-
cussion. First, we can incorrectly reject the null hypothesis when it is correct.
Returning to the classical fair-coin experiment test program to illustrate this
notion, we assert that one possible, but unlikely, equally likely classical fair-
coin experiment test program outcome is eight heads in eight flips. In fact, the
probability of this classical fair-coin experiment test program outcome is
exactly the same as for our example paired-comparison experiment test pro-
gram outcome, viz., p ¼ 0.0039 (1/256). Thus, given a classical fair-coin
experiment test program outcome with eight heads in eight flips, we would
rationally (and incorrectly) reject the null hypothesis that the actual values
for the probabilities of heads and tails are each exactly equal to 1/2. On the
other hand, given our example paired-comparison experiment test program
outcome, it is impossible to know whether our rational test of hypothesis
decision is correct or not. Accordingly, we must always be aware of the
possibility of committing a Type I error, viz., of incorrectly rejecting a null
hypothesis when it is correct. In addition, there is a second type of error that
occurs in a statistical test of the null hypothesis, viz., the failure to reject the
null hypothesis when the alternative hypothesis is correct. This second error,
termed a Type II error, can be more detrimental in some mechanical relia-
bility applications than a Type I error.

Remark: Remember that the null hypothesis does not have to be
physically credible. Its purpose is to provide a rational basis for
calculating the probability that is used to test the null hypothesis
versus the physically relevant alternative hypothesis.
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The second issue of concern in testing the null hypothesis that B ¼ A
statistically pertains to the reason for tabulating cumulative probabilities in
the format given in the last column of Table 3.1. We always tabulate the
probabilities pertaining to experiment test program outcomes equal to or
greater than the experiment test program outcome of specific interest
because the probability of any given outcome, even the most probable
one, approaches zero as nelo increases without bound.

Table 3.2 presents the enumeration-based probabilities of specific
interest for a classical sign test of the null hypothesis that B ¼ A statisti-
cally, given a paired-comparison experiment test program with npc ¼ 8.
Note that the last column in this tabulation is deliberately stated in a
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C> COPY EXPCDTA1 DATA

1 file(s) copied

C>EBST

The data-based sum of positive signs for the collection of (b� a)
differences that constitute the outcome of the paired-comparison
experiment test program that was actually conducted is equal to 8.0.

Given the null hypothesis that B ¼ A statistically, this microcomputer
program constructed exactly 256 equally-likely outcomes for
this paired-comparison experiment test program by using Yate’s
enumeration algorithm to reassign positive and negative signs to its
b� a) differences. The number of these outcomes that had its sum of
positive signs for its (b� a) differences equal to or greater than
8.0 is equal to 1. Thus, given the null hypothesis that B = A
statistically, the enumeration-based probability that a randomly
selected outcome of this paired comparison experiment test program
when continually replicated will have its sum of positive signs for
its (b � a) differences equal to or greater than 8.0 is equal to
0.0039. When this probability is sufficiently small, reject the null
hypothesis in favor of the simple (one-sided) alternative hypothesis
that B > A statistically.
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format that agrees with our simple (one-sided) alternative hypothesis.
Thus, we reject the null hypothesis in favor of this alternative hypothesis
only when the experiment test program generates a sufficiently large
number of positive signs.

3.2.4. Wilcoxon’s Signed-Rank Test

Obviously the sign test sacrifices important information regarding the mag-
nitude of the data-based (b � a) differences for the paired-comparison
experiment test program that was actually conducted. The test statistic
that is used in Wilcoxon’s signed-rank test is the sum of the positive
signed-ranks for the collection of ðb� aÞ differences that constitute the out-
come of a paired-comparison experiment test program.

Basic Probability and Statistics Concepts 91

Table 3.2 Enumeration-Based Probabilities of Specific Interest (Column 4) for

a Classical Sign Test of the Null Hypothesis that B ¼ A Statistically, Given the

Respective ðb� aÞ Differences for a Paired-Comparison Experiment Test Program

with npc ¼ 8

number of

outcomes of

specific

interest ¼
noosi ¼ number

of positive

signs ¼ nps

number of equally-

likely paired-

comparison

experiment test

program outcomes

with nps positive

signs for respective

ðb� aÞ
differences ¼ nelo

enumeration-based

probability that

NPS ¼ nps

enumeration-based

probability that

NPS � nps

0 1 1/256 1.0000

1 8 8/256 0.9961

2 28 28/256 0.9648

3 56 56/256 0.8555

4 70 70/256 0.6367

5 56 56/256 0.3633

6 28 28/256 0.1445

7 8 8/256 0.0352

8 1 1/256 0.0039
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Before presenting microcomputer program EBSRT (enumeration-
based signed-rank test), we first illustrate how the signed-rank is established
for each of the (b � a) differences that collectively constitute the outcome of
a paired-comparison experiment test program. Consider the following tabu-
lation based on the example paired-comparison datum values that were used
to illustrate the classical sign test:

a b

respective

ðb� aÞ differences

rank of the

[absolute value of each

ðb� aÞ difference]
respective

signed-ranks

Block 1 112 125 þ13 3 þ3

Block 2 156 173 þ17 5 þ5

Block 3 113 141 þ28 8 þ8

Block 4 197 219 þ22 7 þ7

Block 5 234 255 þ21 6 þ6

Block 6 166 177 þ11 2 þ2

Block 7 121 131 þ10 1 þ1

Block 8 143 159 þ16 4 þ4

sum of the positive signed-ranks ¼ 36

Although it is not an issue now, we note that both (unsigned) rank ties and
zero ðb� aÞ differences can occur in certain paired-comparison experiment
test programs. Accordingly, when (unsigned) rank ties occur, microcompu-
ter program EBSRT assigns the average rank to each (unsigned) tied rank,
and when one or more zero ðb� aÞ differences occur, microcomputer pro-
gram EBSRT assigns 1/2 of the associated unsigned ranks to the sum of the
positive signed-ranks.

We now illustrate the computation of the enumeration-based prob-
ability that the sum of positive signed-ranks given all equally likely out-
comes for a paired-comparison experiment test program, ignoring ties and
zero ðb� aÞ differences in this illustrative example. Consider, for simplicity,
a paired comparison experiment test program with only four paired com-
parisons (blocks). Given the null hypothesis that B ¼ A statistically, we
require that (a) each rank is equally likely to appear in each block, and
(b) positive and negative signs are equally likely for each rank.
Accordingly, if we arbitrarily pick any order for the four ranks that is
convenient, say, 1, 2, 3, and 4, 24 ¼ 16 equally likely sign sequences for
the signed-ranks can be constructed using Yate’s enumeration algorithm.
In turn, the sums of positive signed-ranks, spsr, can be computed and
summarized.
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C> COPY EXPCDTA1 DATA

1 file(s) copied

C> EBSRT

The data-based sum of positive signed-ranks for the collection of
(b � a) differences that constitute the outcome of the paired-compar-
ison experiment test program that was actually conducted is equal to
36.0.

Given the null hypothesis that B ¼ A statistically, this microcomputer
program constructed exactly 256 equally-likely outcomes for this
paired-comparison experiment test program by using Yate’s enumera-
tion algorithm to reassign positive and negative signs to its (b � a)
differences. The number of these outcomes that had its sum of positive
signed-ranks for its (b � a) differences equal to or greater than 36.0 is
equal to 1. Thus, given the null hypothesis that B = A statistically, the
enumeration-based probability that a randomly selected outcome of
this paired comparison experiment test program when continually
replicated will have its sum of positive signed-ranks for its (b � a)
differences equal to or greater than 36.0 is equal to 0.0039. When this
probability is sufficiently small, reject the null hypothesis in favor of the
simple (one-sided) alternative hypothesis that B > A statistically.

ranks 1, 2, 3, 4 with positive and

negative signs assigned using Yates’s

enumeration algorithm

respective equally-

likely outcomes and

their sum of

positive signed-

ranks, spsr

enumeration-based

probability that

SPSR ¼ spsr

enumeration-based

probability that

SPSR � spsr

�1 �2 �3 �4 0 1/16 16/16

þ1 �2 �3 �4 1 1/16 15/16

�1 þ2 �3 �4 2 1/16 14/16

þ1 þ2 �3 �4 (3)

�1 �2 þ3 �4 3 2/16 13/16

þ1 �2 þ3 �4 (4)

�1 þ2 þ3 �4 (5)

þ1 þ2 þ3 �4 (6)

�1 �2 �3 þ4 4 2/16 11/16

þ1 �2 �3 þ4 5 2/16 9/16

�1 þ2 �3 þ4 6 2/16 7/16

þ1 þ2 �3 þ4 (7)

�1 �2 þ3 þ4 7 2/16 5/16

þ1 �2 þ3 þ4 8 1/16 3/16

�1 þ2 þ3 þ4 9 1/16 2/16

þ1 þ2 þ3 þ4 10 1/16 1/16
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Remark: The relationship between the sign test and the signed-rank
test is clear when it is understood that microcomputer program
EBST is the same as microcomputer program EBSRT, except
that the ‘‘ranks’’ in the former are all equal to one.

3.2.5. Fisher’s Enumeration-Based Test

Even Wilcoxon’s signed-rank test sacrifices information regarding the actual
magnitudes of the individual ðb� aÞ differences in a paired-comparison
experiment test program. The test statistic that is used in Fisher’s enumera-
tion-based test is the sum of the actual values for the ðb� aÞ differences that
constitute the outcome of a paired-comparison experiment test program.
Microcomputer program FEBT (Fisher’s enumeration-based test) is analo-
gous to microcomputer programs EBST and EBSRT.
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C> COPY EXPCDTA1 DATA

1 file(s) copied

C> FEBT

The data-based sum of the actual values for the collection of (b � a)
differences that constitute the outcome of the paired-comparison
experiment test program that was actually conducted is equal to 138.

Given the null hypothesis that B ¼ A statistically, this microcomputer
program constructed exactly 256 equally-likely outcomes for this
paired-comparison experiment test program by using Yate’s enumera-
tion algorithm to reassign positive and negative signs to its (b � a)
differences. The number of these outcomes that had its sum of the
actual values for its (b � a) differences equal to or greater than 138
is equal to 1. Thus, given the null hypothesis that B ¼ A statistically,
the enumeration-based probability that a randomly selected outcome
of this paired comparison experiment test program when continually
replicated will have its sum of the actual values for its (b � a) differ-
ences equal to or greater than 138 is equal to 0.0039. When this prob-
ability is sufficiently small, reject the null hypothesis in favor of the
simple (one-sided) alternative hypothesis that B > A statistically.
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Remark: Because Fisher’s enumeration-based test is based on the
actual values for the individual paired-comparison ðb� aÞ differ-
ences, it requires an appropriate microcomputer program to com-
pute the null hypothesis rejection probability. In contrast, because
the classical sign test and Wilcoxon’s signed-rank test do not
depend on the actual values for the individual paired-comparison
ðb� aÞ differences, these tests have traditionally been performed
using hand calculations and tables.

3.2.5.1. Discussion

Microcomputer programs EBST, EBSRT, and FEBT are arbitrarily
limited to paired-comparison experiment test programs with 16 or fewer
blocks. (It is unlikely that a paired-comparison experiment test program of
specific interest in mechanical test or mechanical reliability applications
will have more than 16 blocks.) Despite this arbitrary size limitation,
we can still use this enumeration-based methodology to test the null
hypothesis that B ¼ A statistically for larger paired-comparison experi-
ment test programs. Clearly, regardless of the size of a paired-comparison
experiment test program, each of its paired comparisons provides a
positive or a negative sign for its ðb� aÞ difference that is equally credible
for purposes of testing the null hypothesis that B ¼ A statistically. Thus,
we can construct a surrogate paired-comparison experiment test program
by running microcomputer program RANDOM1 to select 16 ðb� aÞ
differences from the paired-comparison experiment test program that
was actually conducted. Then, these 16 ðb� aÞ differences are input data
to microcomputer programs EBST, EBSRT, and/or FEBT. This
random selection process can be repeated several times to demonstrate
that the respective outcomes of the resulting surrogate experiment
test programs generate null hypothesis rejection probabilities that are
numerically consistent.

Remark: The only statistical drawback to using a randomly selected
subset of paired-comparison experiment test program ðb� aÞ differ-
ences is that, given an acceptable probability of committing a Type I
error, the associated probability of committing a Type II error is
increased.

Exercise Set 2

The purpose of these exercises is to familiarize you with the use of the
microcomputer programs EBST, EBSRT, and FEBT.
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1. Verify that microcomputer programs EBST, EBSRT, and FEBT
compute the same value for the null hypothesis rejection prob-
ability when microcomputer file EXPCDTA1 is employed as
input data. Then, examine the respective ðb� aÞ differences in
EXPCDTA1 to explain this unusual result.

2. Run programs EBST, EBSRT, and FEBT with microcomputer
file EXPCDTA2 as input data and compare the respective com-
puted null hypothesis rejection probabilities. Examine the respec-
tive ðb� aÞ differences in EXPCDTA2 and explain why the three
respective results differ.

3. Suppose that the b and a datum values were transformed before
the respective ðb� aÞ differences are computed, e.g., by taking the
logarithms of the a and b datum values. (a) Can a strictly mono-
tonic transformation affect the sum of positive signs for the
respective ðb� aÞ differences? (b) Can a strictly monotonic trans-
formation affect the sum of the positive signed-ranks for the
respective ðb� aÞ differences? (c) Can a strictly monotonic trans-
formation affect the sum of the respective ðb� aÞ differences?

4. In defining reliability, the test stimulus severity and required test
duration are specified. The only issue is whether or not an indi-
vidual specimen survives the imposed test stimulus for the
required test duration. Which of the three microcomputer pro-
grams, EBST, EBSRT, or FEBT, if any, is relevant to reliability
estimation?

Exercise Set 3

The purpose of these exercises is to examine the effect of zero ðb� aÞ differ-
ences on the resulting values for the null hypothesis rejection probability.

1. Modify the datum values in microcomputer file EXPCDTA1
by setting a equal to b in a randomly selected paired com-
parison. Then, run microcomputer programs EBST, EBSRT,
and FEBT and compare the respective results with and without
this zero ðb� aÞ difference. Repeat this process, each time
generating another zero ðb� aÞ difference, until all ðb� aÞ differ-
ences in the modified data set are equal to zero. Discuss your
results.

2. Given the datum values in the EXPCDTA1 file, successively add
more and more additional zero ðb� aÞ differences to the existing
datum values to observe the effect of a substantial proportion of
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zero ðb� aÞ differences on the resulting null hypothesis rejection
probability. Discuss your results.

3.3. EMPIRICAL SIMULATION-BASED PROBABILITY

We can simulate flipping a fair coin using a computer-intensive methodology
that employs pseudorandom numbers. Suppose that we continually generate
(mutually independent) pseudorandom numbers. Suppose in addition, one-
half of these pseudorandom numbers correspond to a head and the other half
correspond to a tail. Then, when we generate a pseudorandom number, its
realization is equivalent to the outcome of flipping a fair coin. Now suppose
that we generate nf pseudorandom numbers and count the number of the
associated simulated coin flips that actually correspond to a head. It is
demonstrated in Section 3.5 that the observed simulation-based proportion
of heads asymptotically approaches the exact enumeration-based probability
of a head as nf increases without bound. Stated in more generic terms, the
empirical simulation-based probability poosi asymptotically approaches the
corresponding exact enumeration-based probability poosi as the number nsbelo
of simulation-based equally likely experiment test program outcomes
increases without bound. This asymptotic behavior provides an intuitive
justification for defining the empirical simulation-based probability poosi as
follows:

empirical simulation-based probability poosi ¼
noosi
nsbelo

One of the primary goals of this chapter is to demonstrate that this empirical
simulation-based probability value provides a reasonably accurate approx-
imation to the exact enumeration-based probability value even when nsbelo is
limited to a size that is practical in microcomputer programs.

Simulation-based microcomputer programs have two primary appli-
cations: (a) to provide perspective regarding the accuracy of the empirical
simulation-based probability value in situations where the exact enumera-
tion-based probability value is known, and (b) to generate reasonably accu-
rate empirical simulation-based probability values in situations where the
exact enumeration-based probability value is unknown. Both of these appli-
cations will be illustrated later in this text.

In Supplemental Topic 8.D we explain how to generate pseudorandom
numbers (simulated datum values) from any known (two-parameter) con-
ceptual statistical distribution of specific interest. However, in applications
where the conceptual statistical distribution is unknown, we cannot generate
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simulated datum values. Thus, simulation-based methodologies are impo-
tent in these applications and must be replaced by randomization-based
methodologies.

3.4. EMPIRICAL RANDOMIZATION-BASED
PROBABILITY

Recall that under the null hypothesis that B ¼ A statistically, the ðb� aÞ
differences generated by a paired-comparison experiment test program are
equally likely to be either positive or negative. Accordingly, when a ran-
domization-based methodology is employed to compute an empirical null
hypothesis rejection probability value, the positive and negative signs that
are reassigned to the ðb� aÞ differences under the null hypothesis are
selected using uniform pseudorandom numbers such that positive and
negative signs are equally likely. Thus, this randomization-based probabil-
ity value calculation requires that we (a) generate nrbelo randomization-
based equally likely experiment test program outcomes, each with a ran-
domly reassigned sequence of equally likely positive and negative signs for
its collection of ðb� aÞ differences, (b) count the number noosi of these
randomization-based equally likely experiment test program outcomes
that have the outcome of specific interest, and then (c) compute the
empirical randomization-based probability poosi as the ratio of noosi to
nrbelo, viz.,

empirical randomization-based probability poosi ¼
noosi
nrbelo

However, the following empirical randomization-based probability expres-
sion given by Noreen (1989) is recommended on the basis of its (slightly)
improved statistical behavior:

Noreen’s empirical randomization-based probability poosi ¼
noosi þ 1

nrbelo þ 1

In theory, each of these empirical randomization-based probability values
asymptotically approach the exact enumeration-based probability value as
nrbelo increases without bound. However, when nrbelo is sufficiently large that
the empirical randomization-based probability value is reasonably accurate,
then this value is interchangeable for practical purposes with the exact
enumeration-based probability value.
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Randomization-based statistical methodologies are almost univer-
sally applicable in mechanical reliability applications. These computer-
intensive analyses are becoming much more diverse relative to their prac-
tical application.

3.4.1. Example of Randomization-Based Test of
Hypothesis

We now present an example of a randomization-based test of hypothesis
for a paired-comparison experiment test program. Recall that the test
statistic outcome for Fisher’s enumeration-based test is the sum of the
actual values for the individual paired-comparison ðb� aÞ differences.
Recall also that given the null hypothesis that B ¼ A statistically, positive
and negative signs are equally likely for each of these ðb� aÞ differences.
Thus, for Fisher’s enumeration-based test, we construct all equally likely
outcomes for the paired-comparison experiment test program that was
actually conducted by using Yate’s enumeration algorithm to reassign
positive and negative signs to its ðb� aÞ differences. Analogously, for
Fisher’s randomization-based test, we construct nrbelo equally likely out-
comes for the paired-comparison experiment test program that was actu-
ally conducted by using pseudorandom numbers to reassign equally-likely
positive and negative signs to these ðb� aÞ differences. This pseudorandom
sign reassignment is akin to flipping a fair coin to establish whether the
sign for each individual ðb� aÞ difference is positive or negative. It is
accomplished in microcomputer program FRBT (Fisher’s randomization-
based test) using uniform pseudorandom numbers (Section 3.5). This ran-
dom sign reassignment is repeated until nrbelo randomization-based equally
likely outcomes for the paired-comparison experiment test program of
specific interest have been constructed. Then, noosi is the number of these
outcomes that has its sum of the actual values for the ðb� aÞ differences
equal to or greater than the sum for the paired-comparison experiment test
program that was actually conducted. In turn, the empirical randomiza-
tion-based null hypothesis rejection probability value is computed using
Noreen’s expression.

Remark: An example randomization-based test of the null hypoth-
esis that A ¼ B statistically versus the composite (two-sided) alter-
native hypothesis that A 6¼ B statistical is presented in
Supplemental Topic 3.D for a CRD experiment test program
with two treatments denoted A and B.
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Exercise Set 4

These exercises are intended to generate confidence in the accuracy of ran-
domization-based probability values. The basic notion is that the empirical
randomization-based probability value asymptotically approaches the exact
enumeration-based probability value as nrbelo increases without bound.
Accordingly, the empirical randomization-based probability value is a rea-
sonably accurate estimate of the exact enumeration-based probability value
when nrbelo is sufficiently large.

1. (a) Run microcomputer program FRBT with microcomputer file
EXRBPCD1 as input data and with the number of replicate ran-
domization-based paired-comparison experiment test programs
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COPY EXRBPCD1 DATA

1 file(s) copied

C> FRBT

The data-based sum of the actual values for the collection of (b � a)
differences that constitute the outcome of the paired-comparison
experiment test program that was actually conducted is equal to 138.

Given the null hypothesis that B ¼ A statistically, this microcomputer
program constructed 9999 equally-likely outcomes for this paired-
comparison experiment test program by using uniform pseudorandom
numbers to reassign equally-likely positive and negative signs to its
(b � a) differences. The number of these outcomes that had its sum
of its actual values for its (b� a) differences equal to or greater than
138 is equal to 43. Thus, given the null hypothesis that B ¼ A statis-
tically, the randomization-based probability that a randomly selected
outcome of this paired-comparison experiment test program when
continually replicated will have its sum of the actual values for its
(b � a) differences equal to or greater than 138 is equal to 0.0044.
When this probability is sufficiently small, reject the null hypothesis
in favor of the simple (one-sided) alternative hypothesis that B > A
statistically.
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to 99, 999, 9999, and 99999. Then, (b) compare the respective
empirical randomization-based null hypothesis rejection prob-
ability values to the corresponding exact enumeration-based
null hypothesis rejection probability values obtained by running
microcomputer program FEBT with the same input data, and
comment on the apparent relationship between the accuracy of
the empirical randomization-based probability value and the cor-
responding value for nrbelo.

2. Repeat Example 1, but use microcomputer file EXRBPCD2 as
input data.

3.4.1.1. Discussion

The only difference between Fisher’s enumeration-based test and Fisher’s
randomization-based test for a paired-comparison experiment test
program lies in the way that the sign sequences for the respective unsigned
ðb� aÞ differences are generated. The enumeration-based methodology
requires that no sign sequence is repeated and that all possible sign
sequences must be generated. In contrast, sign sequences can be repeated
in the randomization-based methodology before all sign sequences are
generated (as in random selection with replacement), and not all sign
sequences need necessarily be generated. However, it should be
intuitively clear by analogy with the empirical simulation-based estimate
of poosi that, as nrbelo increases without bound, the empirical randomiza-
tion-based estimate of poosi statistically becomes more and more accurate.
This fundamental simulation-based (randomization-based) probability
behavior is demonstrated in the next section using pseudorandom
numbers.

3.5. SIMULATION-BASED DEMONSTRATIONS OF
FUNDAMENTAL PROBABILITY BEHAVIORS

We now present several simulation-based demonstrations of fundamental
probability behaviors that form the foundation for a broad range of statis-
tical analyses of specific interest in mechanical reliability.

3.5.1. The Uniform Pseudorandom Number Generator

For the simulation-based demonstrations of specific interest in this section,
we wish to generate a series of conceptual numbers, each with ndigit digits,
such that each of the 10ndigit numbers in the interval 0.000 . . . 0 to
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0.999 . . . 9 is equally likely to be randomly selected at each stage of the
simulation process. These equally likely conceptual random numbers are
said to be uniform. Fortunately, recursive algorithms can be employed in
microcomputer programs to generate a sequence of pseudorandom
numbers that (more or less) emulate the desired conceptual random
numbers. These recursive algorithms have deficiencies that range from
terrible to tolerable. Thus, each candidate pseudorandom number
generator should have its credibility established by a wide variety of
appropriate simulation-based demonstrations, viz., by having its output
favorably compared to the behavior of a conceptual uniform random
number generator.

Remark: We restrict our uniform pseudorandom numbers to the
interval zero to one so that their realization values have an intuitive
probability interpretation.

Pseudorandom number generators require seed numbers to initiate their
generation process. Subsequent seed numbers are computed as an
integral part of the pseudorandom number generation process. All
sequences of pseudorandom numbers initiated by the same seed numbers
are identical.

3.5.1.1. Simulation Example One: Eight-Digit Uniform
Pseudorandom Numbers

Suppose we seek (mutually independent) eight-digit numbers that are
equally likely to occur anywhere in the interval, 0.00000000 to
0.99999999. These numbers are conceptually generated by allowing each
number (0,1,2,3,4,5,6,7,8,9) to have an equal opportunity of appearing at
each digit location, independently of the numbers that appear at the other
digit locations. The Wichmann and Hill (1981) pseudorandom number
generator appears to generate numbers that, for practical purposes, are
random, mutually independent, and equally likely.

Microcomputer program UNIFORM is intended to demonstrate that
local peculiarities will surely appear in any long sequence of pseudorandom
numbers (or conceptual random numbers). Note that the first four digits are
1’s for Realization Value 17, whereas there are four 5’s consecutively for
Realization Value 20. However, Realization Values 17 and 20 are just as
random as any of the 48 other realization values. Obviously, random does
not connote thoroughly mixed.
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C> UNIFORM

Input a new set of three, three-digit odd seed numbers

315 527 841

50 Uniform 8-Digit Pseudorandom Numbers

Realization Value 1 ¼ 0.48530650
Realization Value 2 ¼ 0.26336943
Realization Value 3 ¼ 0.93063729
Realization Value 4 ¼ 0.05385052
Realization Value 5 ¼ 0.95320082
Realization Value 6 ¼ 0.78554568
Realization Value 7 ¼ 0.04344359
Realization Value 8 ¼ 0.86942954
Realization Value 9 ¼ 0.89197557

Realization Value 10 ¼ 0.17496878
Realization Value 11 ¼ 0.36369488
Realization Value 12 ¼ 0.47844548
Realization Value 13 ¼ 0.31804622
Realization Value 14 ¼ 0.89448952
Realization Value 15 ¼ 0.77663169
Realization Value 16 ¼ 0.80202186
Realization Value 17 ¼ 0.11116467
Realization Value 18 ¼ 0.58226093
Realization Value 19 ¼ 0.51807672
Realization Value 20 ¼ 0.46755559
Realization Value 21 ¼ 0.09092041
Realization Value 22 ¼ 0.07729161
Realization Value 23 ¼ 0.57270917
Realization Value 24 ¼ 0.33268900
Realization Value 25 ¼ 0.62262042
Realization Value 26 ¼ 0.00963998
Realization Value 27 ¼ 0.75832743
Realization Value 28 ¼ 0.38012507
Realization Value 29 ¼ 0.31219037
Realization Value 30 ¼ 0.28146538
Realization Value 31 ¼ 0.99146934
Realization Value 32 ¼ 0.23620845
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Exercise Set 5

These exercises are intended to enhance your understanding of pseudoran-
dom numbers and the enumeration-based definition of probability.

1. Run microcomputer program UNIFORM using a new set of
three, three-digit odd seed numbers. Examine the output care-
fully, looking for repeated digits, simple patterns (e.g., 12345 or
12321), and repeated patterns (e.g., 123123) when both rows and
columns are scrutinized. If you do not find something in your
output that you consider to be ‘‘peculiar,’’ repeat this exercise
until you do.

2. Run program UNIFORM using a new set of three, three-digit
odd seed numbers. Inspect the output relative to the number of
times any of the digits 0 through 9 appears in the first column. (a)
What is the maximum number of times that one of these digits
actually appears? (b) What is the expected number of times that
each of the digits 0 through 9 will appear? (c) If the actual max-
imum is less than eight, repeat this exercise until it is equal to or
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Realization Value 33 ¼ 0.65813461
Realization Value 34 ¼ 0.31369959
Realization Value 35 ¼ 0.75173686
Realization Value 36 ¼ 0.64987329
Realization Value 37 ¼ 0.03442018
Realization Value 38 ¼ 0.83189163
Realization Value 39 ¼ 0.80251659
Realization Value 40 ¼ 0.78838620
Realization Value 41 ¼ 0.52509928
Realization Value 42 ¼ 0.60097733
Realization Value 43 ¼ 0.08983323
Realization Value 44 ¼ 0.53603702
Realization Value 45 ¼ 0.34250420
Realization Value 46 ¼ 0.18520123
Realization Value 47 ¼ 0.40569386
Realization Value 48 ¼ 0.58325702
Realization Value 49 ¼ 0.48702976
Realization Value 50 ¼ 0.88043365
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greater than eight. State the number of times that this exercise
was repeated and the associated sets of seed numbers.

3. Run program UNIFORM using a new set of three, three-digit odd
seed numbers. Inspect the entire output carefully with regard to
the number of times the digit 5 appears in any row. (a) What is the
maximum number of times that the digit 5 actually appears? (b)
What is the expected number of times that the digit 5 will appear?
Is this expected value necessarily an integer? (c) If the observed
maximum number of times that the digit 5 actually appeared is
less than four, repeat this exercise until it is at least equal to four.
Then state the number of times that this exercise was repeated and
the associated sets of seed numbers.

4. Run microcomputer program RANDOM2 using the same new
set of three, three-digit odd seed numbers as was used originally
in Example 1. Let nelpri ¼ 50 and ndigits ¼ 8. Compare the respec-
tive outputs and comment appropriately.

3.5.1.2. Simulation Example Two: Flipping A Fair Coin Using
Realization Values for Uniform Pseudorandom Numbers

Suppose we simulate nf flips of a fair-coin by (a) generating realization
values for nf uniform pseudorandom numbers, and then (b) associating a
head with each realization value that is less than 0.5. Microcomputer pro-
grams FCOIN1 and FCOIN2 employ this elementary algorithm to simulate
flipping a fair coin nf times. Microcomputer program AVE1 extensively
outputs the simulation-based proportion of heads for nf up to 1000 flips,
whereas microcomputer program AVE2 extends nf to 100,000, but only
outputs the simulation-based proportion of heads for multiples of 10 flips.
These two programs must employ the same three, three-digit odd seed
numbers to be directly comparable.

Figure 3.1 is a plot of a typical outcome obtained by running pro-
gram FCOIN1. The deviations of the simulation-based proportion of
heads from its expected value (1/2) decrease statistically as nf increases.
Although plots such as Figure 3.1 may appear to differ markedly from
simulation-based outcome to simulation-based outcome, especially for
relatively small values of nf, this trend is always evident when several
replicate plots are compared.

Figure 3.2 is a plot of the maximum and minimum simulation-based
proportions of heads obtained by a class of 20 students, each running
microcomputer program FCOIN1 (with a different set of seed numbers).
The range between the maximum and minimum simulation-based propor-
tions of heads plotted in Figure 3.2 is loosely akin to the width of a
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Figure 3.1 Simulation Example Two: a typical outcome obtained by running

microcomputer program FCOIN1.

Figure 3.2 Respective maximum and minimum values of the simulation-based

proportion of heads in 20 independent outcomes obtained by running microcompu-

ter program FCOIN1. The respective faired maximum and minimum curves demon-

strate the obvious decrease in statistical variability as nf increases.
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100(scp)% (two-sided) statistical confidence interval that allegedly includes
the actual value of the probability that any future flip will produce a head.
The width of this statistical confidence interval is inversely proportional to
the square root of nf. It decreases by a factor of 10 as nf increases from 10 to
1000 and by another factor of 10 as nf increases from 1000 to 100,000, etc.
Note that this theoretical behavior is apparent in Figure 3.2.
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C> FCOIN1

Input a new set of three, three-digit odd seed numbers

751 249 863

Simulation-Based Proportion of Heads Given nf Flips of a Fair Coin

1 Flip – Proportion of Heads ¼ 1.000
2 Flips – Proportion of Heads ¼ 1.000
3 Flips – Proportion of Heads ¼ 1.000
4 Flips – Proportion of Heads ¼ 1.000
5 Flips – Proportion of Heads ¼ 0.800
6 Flips – Proportion of Heads ¼ 0.667
7 Flips – Proportion of Heads ¼ 0.714
8 Flips – Proportion of Heads ¼ 0.625
9 Flips – Proportion of Heads ¼ 0.556

10 Flips – Proportion of Heads ¼ 0.600
11 Flips – Proportion of Heads ¼ 0.636
12 Flips – Proportion of Heads ¼ 0.583
13 Flips – Proportion of Heads ¼ 0.615
14 Flips – Proportion of Heads ¼ 0.571
15 Flips – Proportion of Heads ¼ 0.533
16 Flips – Proportion of Heads ¼ 0.500
17 Flips – Proportion of Heads ¼ 0.471
18 Flips – Proportion of Heads ¼ 0.500
19 Flips – Proportion of Heads ¼ 0.526
20 Flips – Proportion of Heads ¼ 0.500
21 Flips – Proportion of Heads ¼ 0.476
22 Flips – Proportion of Heads ¼ 0.500
23 Flips – Proportion of Heads ¼ 0.478
24 Flips – Proportion of Heads ¼ 0.500
25 Flips – Proportion of Heads ¼ 0.480
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30 Flips – Proportion of Heads ¼ 0.467
35 Flips – Proportion of Heads ¼ 0.457
40 Flips – Proportion of Heads ¼ 0.400
45 Flips – Proportion of Heads ¼ 0.400
50 Flips – Proportion of Heads ¼ 0.460
55 Flips – Proportion of Heads ¼ 0.455
60 Flips – Proportion of Heads ¼ 0.433
65 Flips – Proportion of Heads ¼ 0.415
70 Flips – Proportion of Heads ¼ 0.400
75 Flips – Proportion of Heads ¼ 0.400
80 Flips – Proportion of Heads ¼ 0.400
85 Flips – Proportion of Heads ¼ 0.424
90 Flips – Proportion of Heads ¼ 0.444
95 Flips – Proportion of Heads ¼ 0.463

100 Flips – Proportion of Heads ¼ 0.450
200 Flips – Proportion of Heads ¼ 0.480
300 Flips – Proportion of Heads ¼ 0.510
400 Flips – Proportion of Heads ¼ 0.498
500 Flips – Proportion of Heads ¼ 0.496
600 Flips – Proportion of Heads ¼ 0.505
700 Flips – Proportion of Heads ¼ 0.504
800 Flips – Proportion of Heads ¼ 0.499
900 Flips – Proportion of Heads ¼ 0.497

1000 Flips – Proportion of Heads ¼ 0.502

C> FCOIN2

Input the same set of three, three-digit odd seed numbers that was used
as input to microcomputer program FCOIN1

751 249 863

Simulation-Based Proportion of Heads Given nf Flips of a Fair Coin

10 Flips – Proportion of Heads = 0.6
100 Flips – Proportion of Heads = 0.45

1000 Flips – Proportion of Heads = 0.502
10000 Flips – Proportion of Heads = 0.4927

100000 Flips – Proportion of Heads = 0.49798
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3.5.1.3. Discussion

It is demonstrated in Chapter 8 that the maximum likelihood (ML) statistical
estimator for the actual probability that a head will occur as the outcome of
any given flip is the observed proportion (relative frequency) of heads that
occurred in nf flips, viz., ML est[p(head)] ¼ nh/nf, where nh is the number of
heads that occurred in nf independent flips. In turn, recall that every statis-
tical estimate is equal to the actual value for the quantity being estimated plus
an intrinsic statistical estimation error component. For example, the intrinsic
statistical estimation error component for the maximum likelihood statistical
estimate that is equal to 0.6 for 10 flips in our example output for micro-
computer program FCOIN2 is equal to +0.1, i.e., 0.500 plus the intrinsic
statistical estimation error component is equal to 0.6. Figures 3.1 and 3.2 are
intended to demonstrate that the magnitude of this intrinsic statistical esti-
mation error component decreases (statistically) as nf increases and thus
asymptotically approaches zero as nf increases without bound.

Exercise Set 6

(These exercises are intended to enhance your understanding of the fair-coin
simulation example.)

1. (a) Run microcomputer programs FCOIN1 and FCOIN2 using
your own set of three, three-digit odd seed numbers. (b) Plot the
output of microcomputer program FCOIN1. (c) Plot the asso-
ciated magnitude of the intrinsic statistical estimation error com-
ponent.

2. (Class exercise) Compile the maximum and minimum values for
the simulation-based proportion of heads obtained by running
microcomputer programs FCOIN1 and FCOIN2 in Example 1
for the entire class when nf ¼ 10, 20, 50, 100, 200, 500, 1000,
10,000, and 100,000. Plot these maximum and minimum values to
demonstrate the obvious decrease in the intrinsic statistical esti-
mation error component as nf increases.

3.5.1.4. Simulation Example Three: Arithmetic Average of
Realization Values for na Uniform Pseudorandom
Numbers

We now simulate the arithmetic average of the respective realization values
for na uniform pseudorandom numbers. Microcomputer programs AVE1
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and AVE2 are intended to demonstrate that, as na increases, the intrinsic
statistical estimation error for the arithmetic average estimator asymptoti-
cally approaches zero as na increase without bound.

Figure 3.3 is a plot of a typical outcome obtained by running
program AVE1. In turn, Figure 3.4 is a plot of the maximum and mini-
mum simulation-based arithmetic averages in a class of size 20. The range
between the maximum and minimum simulation-based simulation-
based arithmetic averages plotted in Figure 3.4 is loosely akin to the
width of a statistical confidence interval that allegedly includes the
expected value for the arithmetic average estimator (0.5). The theoretical
width of this statistical confidence interval is inversely proportional to the
square root of na. Thus, this theoretical width decreases by a factor of 10
as na increases from 10 to 1000 and by another factor of 10 as na increases
from 1000 to 100,000, etc. Note that this theoretical behavior is apparent
in Figure 3.4.
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Figure 3.3 Simulation Example Three: a typical outcome obtained by running

microcomputer program AVE1.
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C> AVE1

Input a new set of three, three-digit odd seed numbers

451 231 785

Arithmetic Average of Realization Values
for na Uniform Pseudorandom Numbers

1 Realization Value – Arithmetic Average ¼ 0.2598
2 Realization Values – Arithmetic Average ¼ 0.2968
3 Realization Values – Arithmetic Average ¼ 0.3354
4 Realization Values – Arithmetic Average ¼ 0.3216
5 Realization Values – Arithmetic Average ¼ 0.4398
6 Realization Values – Arithmetic Average ¼ 0.4813
7 Realization Values – Arithmetic Average ¼ 0.4297
8 Realization Values – Arithmetic Average ¼ 0.3913
9 Realization Values – Arithmetic Average ¼ 0.4032

Figure 3.4 Respective maximum and minimum values of the simulation-based

arithmetic averages in 20 independent outcomes obtained by running microcomputer

program AVE1. The respective faired maximum and minimum curves demonstrate

the obvious decrease in statistical variability as na increases.
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10 Realization Values – Arithmetic Average ¼ 0.4393
11 Realization Values – Arithmetic Average ¼ 0.4029
12 Realization Values – Arithmetic Average ¼ 0.4364
13 Realization Values – Arithmetic Average ¼ 0.4797
14 Realization Values – Arithmetic Average ¼ 0.4878
15 Realization Values – Arithmetic Average ¼ 0.5213
16 Realization Values – Arithmetic Average ¼ 0.5144
17 Realization Values – Arithmetic Average ¼ 0.5380
18 Realization Values – Arithmetic Average ¼ 0.5514
19 Realization Values – Arithmetic Average ¼ 0.5478
20 Realization Values – Arithmetic Average ¼ 0.5334
21 Realization Values – Arithmetic Average ¼ 0.5093
22 Realization Values – Arithmetic Average ¼ 0.5056
23 Realization Values – Arithmetic Average ¼ 0.4951
24 Realization Values – Arithmetic Average ¼ 0.5039
25 Realization Values – Arithmetic Average ¼ 0.5019
30 Realization Values – Arithmetic Average ¼ 0.4911
35 Realization Values – Arithmetic Average ¼ 0.4737
40 Realization Values – Arithmetic Average ¼ 0.4688
45 Realization Values – Arithmetic Average ¼ 0.4774
50 Realization Values – Arithmetic Average ¼ 0.4967
55 Realization Values – Arithmetic Average ¼ 0.4986
60 Realization Values – Arithmetic Average ¼ 0.4969
65 Realization Values – Arithmetic Average ¼ 0.4886
70 Realization Values – Arithmetic Average ¼ 0.4763
75 Realization Values – Arithmetic Average ¼ 0.4718
80 Realization Values – Arithmetic Average ¼ 0.4857
85 Realization Values – Arithmetic Average ¼ 0.4849
90 Realization Values – Arithmetic Average ¼ 0.4818
95 Realization Values – Arithmetic Average ¼ 0.4920
100 Realization Values – Arithmetic Average ¼ 0.4928
200 Realization Values – Arithmetic Average ¼ 0.5060
300 Realization Values – Arithmetic Average ¼ 0.4876
400 Realization Values – Arithmetic Average ¼ 0.4909
500 Realization Values – Arithmetic Average ¼ 0.5038
600 Realization Values – Arithmetic Average ¼ 0.5065
700 Realization Values – Arithmetic Average ¼ 0.5070
800 Realization Values – Arithmetic Average ¼ 0.5063
900 Realization Values – Arithmetic Average ¼ 0.5026

1000 Realization Values – Arithmetic Average ¼ 0.4996
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Exercise Set 7

(These exercises are intended to enhance your understanding of the prob-
ability behavior of averages.)

1. (a) Run microcomputer programs AVE1 and AVE2 using your
own set of three, three-digit odd seed numbers. (b) Plot the out-
put of microcomputer program AVE1. (c) Given that the arith-
metic average is an unbiased estimator of the conceptual
statistical (sampling) distribution mean, plot the intrinsic statis-
tical estimation error for the arithmetic average estimator.

2. (Class exercise) Compile the maximum and minimum values gen-
erated by microcomputer programs AVE1 and AVE2 in Example
1 for your entire class for nf ¼ 10, 20, 50, 100, 200, 500, 1000,
10,000, and 100,000. Plot these maximum and minimum values to
demonstrate the obvious decrease in the intrinsic statistical esti-
mation error as nf increases.

3.5.1.5. Simulation Example Four: Histogram for Proportions of
Realization Values for Uniform Pseudorandom Numbers

We now extend Simulation Example One by constructing a histogram for
the respective realization values for uniform pseudorandom numbers. Our
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C> AVE2

Input the same set of three, three-digit odd seed numbers that was used
as input to microcomputer program AVE1

451 231 785

Arithmetic Average of Realization Values
for na Uniform Pseudorandom Numbers

10 Realization Values – Arithmetic Average ¼ 0.4393
100 Realization Values – Arithmetic Average ¼ 0.4928

1000 Realization Values – Arithmetic Average ¼ 0.4996
10000 Realization Values – Arithmetic Average ¼ 0.5005

100000 Realization Values – Arithmetic Average ¼ 0.5001
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objective is to simulate the statistical variability of the proportion
(relative frequency) of pseudorandom realization values that fall in each
of the 10 equal-width intervals, 0.00000000 to 0.09999999, 0.10000000 to
0.20000000, . . . , and 0.90000000 to 0.99999999. Microcomputer
program HISTPRO1 generates 1000 realization values for uniform pseu-
dorandom numbers and sorts these realization values into the 10 histo-
gram intervals. See Figure 3.5. For comparison, program HISTPRO2
generates and sorts 100,000 realization values for uniform pseudorandom
numbers. Note that the magnitudes of the intrinsic statistical estimation
errors generated by running program HISTPRO2 are much smaller than
the corresponding magnitudes of the intrinsic statistical estimation errors
generated by running program HISTPRO1. In fact, based on the
probability behavior demonstrated in Figures 3.2 and 3.4, it should be
persuasive that the magnitudes of the respective intrinsic statistical
estimation errors approach zero as the number of pseudorandom realiza-
tion values used to construct this histogram increases without bound.
Accordingly, in the limit as the number of pseudorandom realization
values generated approaches infinity, this histogram intuitively becomes
the conceptual histogram for proportions (relative frequencies) depicted
in Figure 3.6. Moreover, as the number of pseudorandom realization
values generated approaches infinity, the respective interval widths can
be made infinitesimal in width (length), thereby permitting the conceptual
histogram for proportions (relative frequencies) to be described by an
appropriate continuous analytical expression, e.g., as in Figure 3.7. The
analytical expression describing its geometric shape is called its probability
density function (PDF).
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Figure 3.5 Typical histogram for proportions (relative frequencies) obtained by

running microcomputer program HISTPRO1.
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Figure 3.6 Conceptual (theory-based) histogram for proportions (relative fre-

quencies) associated with Simulation Example Four. The conceptual proportion

(relative frequency) in each interval is equal to its expected value (0.1). This concep-

tual behavior is theoretically attained as the respective intrinsic statistical estimation

errors evident in Figure 3.5 asymptotically decrease to zero. (Recall that this asymp-

totic behavior was demonstrated in Figures 3.2 and 3.4 for unbiased estimators.)

Figure 3.7 Probability density function (PDF) pertaining to the conceptual uni-

form distribution, zero to one.

C> HISTPRO1

Input a new set of three, three-digit odd seed numbers

359 917 431

Interval 0.0 to 0.1 Simulation-Based Proportion 0.096
Interval 0.1 to 0.2 Simulation-Based Proportion 0.098
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Given a random variable X whose realization values are equally likely
to lie in each infinitesimal interval along the continuous xmetric from 0 to 1,
under continual replication the respective realization values generate the
conceptual uniform distribution, 0 to 1. The PDF that analytically defines
this conceptual statistical distribution is expressed as

f ðxÞ ¼ 1 0 < x < 1 and
f ðxÞ ¼ 0 x � 0
f ðxÞ ¼ 0 x � 1

� �
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Interval 0.2 to 0.3 Simulation-Based Proportion 0.112
Interval 0.3 to 0.4 Simulation-Based Proportion 0.095
Interval 0.4 to 0.5 Simulation-Based Proportion 0.100
Interval 0.5 to 0.6 Simulation-Based Proportion 0.098
Interval 0.6 to 0.7 Simulation-Based Proportion 0.100
Interval 0.7 to 0.8 Simulation-Based Proportion 0.098
Interval 0.8 to 0.9 Simulation-Based Proportion 0.106
Interval 0.9 to 1.0 Simulation-Based Proportion 0.097

C> HISTPRO2

Input the same set of three, three-digit odd seed numbers used as input
to program HISTPRO1

359 917 431

Interval 0.0 to 0.1 Simulation-Based Proportion 0.09857
Interval 0.1 to 0.2 Simulation-Based Proportion 0.10088
Interval 0.2 to 0.3 Simulation-Based Proportion 0.10158
Interval 0.3 to 0.4 Simulation-Based Proportion 0.09966
Interval 0.4 to 0.5 Simulation-Based Proportion 0.09971
Interval 0.5 to 0.6 Simulation-Based Proportion 0.10114
Interval 0.6 to 0.7 Simulation-Based Proportion 0.09920
Interval 0.7 to 0.8 Simulation-Based Proportion 0.10025
Interval 0.8 to 0.9 Simulation-Based Proportion 0.10039
Interval 0.9 to 1.0 Simulation-Based Proportion 0.09862
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3.6. CONCEPTUAL STATISTICAL DISTRIBUTION THAT
CONSISTS OF ALL POSSIBLE REPLICATE
REALIZATION VALUES FOR A GENERIC RANDOM
VARIABLE X WITH A CONTINUOUS METRIC

The conceptual statistical distribution that consists of all possible replicate
realization values for a generic random variable X with a continuous metric
can be analytically specified by stating its PDF. The enumeration-based
probability that a randomly selected realization value for random variable
X will fall in a given numerical interval, say from xlower to xupper, is estab-
lished by the following ratio of areas

probability xlower < X < xupper
� � ¼

ðxupper
xlower

f ðxÞ dxð
all x

f ðxÞ dx

in which the integral of f ðxÞ dx over all x is equal to one (by definition).
Accordingly, this enumeration-based probability can be re-expressed simply
as

probability xlower < X < xupper
� � ¼ ðxupper

xlower

f ðxÞ dx

This generic expression is valid whenever the PDF associated with the ran-
dom variable of specific interest can be expressed analytically in terms of a
continuous metric.

There are several conceptual statistical distributions of specific interest
in various mechanical reliability applications that employ a continuous
metric. Each of these conceptual statistical distributions has a unique ana-
lytical PDF expression that establishes the value for f(x) given a specific
value of metric x. These conceptual statistical distributions, their associated
PDF’s, and their mechanical reliability and statistical applications are pre-
sented in subsequent chapters. However, to provide perspective regarding
these presentations, it is important to understand that (a) all conceptual
statistical distributions are mathematical abstractions, and (b) no concep-
tual statistical distribution ever exactly models the physical phenomena or
the experiment test program CRHDVi’s of specific interest.

The conceptual statistical distribution that consists of all possible
replicate realization values for a generic random variable X with a contin-
uous metric can also be specified analytically by stating its cumulative dis-
tribution function (CDF). The CDF function is defined as the integral of the
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area under the associated PDF from minus infinity to the metric value of
specific interest, viz.,

CDF ¼ FðxÞ ¼
ðx
�1

f ðuÞdu ¼ probability X < xð Þ

in which u is the dummy variable of integration. The CDF is usually
expressed explicitly by an analytical expression in which F(x) is synon-
ymous, for practical purposes, with the respective percentiles (p-tiles) of
the associated conceptual statistical distribution.

Most CDF’s of specific interest in mechanical reliability are sigmoidal
when F(x) is plotted along a linear ordinate and the associated metric value
for x is plotted along a linear abscissa. For these CDF’s, F(x) asymptotically
approaches zero at the smallest possible realization value for random vari-
able X and asymptotically approaches unity at the largest possible realiza-
tion value for random variable X.

Remark: The probability function (PF) for a random variable with a
discrete metric is analogous to the PDF for a random variable with
a continuous metric. It is properly plotted as in Figure 1.5, but is
more commonly plotted as in Figure 3.9. The cumulative distribu-
tion (CD) for a random variable with a discrete metric is analogous
to the CDF for a random variable with a continuous metric. It plots
as a step function, with its value equal to zero for all x less than the
smallest possible realization value for random variable X and with
its value equal to one for all x greater than the largest possible
realization value for random variable X.

3.7. ACTUAL VALUES FOR THE MEAN AND VARIANCE
OF THE CONCEPTUAL STATISTICAL
DISTRIBUTION THAT CONSISTS OF ALL
POSSIBLE REPLICATE REALIZATION VALUES FOR
A GENERIC RANDOM VARIABLE X WITH A
CONTINUOUS METRIC

The first two mechanics moments are intuitive descriptors of the two-para-
meter conceptual statistical distribution that consists of all possible replicate
realization values for a generic random variable X with a continuous metric.
The first moment of the area under the PDF for a conceptual statistical
distribution establishes the centroid of this area. This centroid is technically
termed the actual value for the mean of the conceptual statistical distribu-
tion. The second moment of the area under the PDF for this conceptual
statistical distribution, evaluated about the area centroid (its mean), estab-
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lishes the moment of inertia for this area. This area moment of inertia,
divided by the (total) area under the PDF, is technically termed the actual
value for the variance of the conceptual statistical distribution. In turn, the
square root of a variance is termed the standard deviation. (Note that the
units of the metric for the mean and the standard deviation are identical.)

Given a conceptual statistical distribution whose PDF f(x) for the
generic random variable X is stated using a continuous linear x metric,
the actual values for its mean and variance are computed using the expres-
sions (definitions):

meanðXÞ ¼

ð
all x

xf ðxÞ dxð
all x

f ðxÞ dx
¼
ð
all x

xf ðxÞ dx

varðXÞ ¼

ð
all x

½x�meanðXÞ�2 f ðxÞ dxð
all x

f ðxÞ dx
¼
ð
all x

½x�meanðXÞ�2 f ðxÞ dx

Mean(X) is technically verbalized as the actual value for the mean of the
conceptual statistical distribution that consists of all possible replicate rea-
lization values for random variable X, but mean(X) is expeditiously verba-
lized as the mean of (random variable) X. Similarly, var(X) is technically
verbalized as the actual value for the variance of the conceptual statistical
distribution that consists of all possible replicate realization values for the
random variable X, but var(X) is expeditiously verbalized as the variance of
(random variable) X.

Mean(X) is also called the expected value of (random variable) X.
Given some function of a generic random variable X, say g(X), it is custom-
ary to refer to the expected value of g(X) rather than to the actual value for
the mean of g(X). For example, when the actual value for the mean of the
conceptual statistical distribution that consists of all possible replicate rea-
lization values for a generic random variable X is equal to zero, mean(X2) is
equal to var(X). Accordingly, we say that the expected value of X2 is equal
to var(X). Similarly, based on inspection of the analytical expressions (defi-
nitions) for mean(X) and var(X) given above, we say that the expected value
of [X � mean(X)]2 is equal to var(X).

When the metric for a random variable is linear, the actual value for
the mean of its conceptual statistical distribution can be viewed as an intui-
tive location parameter for its PDF, and analogously, the actual value for
the standard deviation of its conceptual statistical distribution can be viewed
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as an intuitive scale parameter for its PDF. However, the actual values for
the mean and variance (or standard deviation) of a conceptual statistical
distribution are not always the statistically recommended location and scale
parameters for its PDF. In turn, when the metric for a random variable is
logarithmic, the actual values for all PDF location and scale parameters
have awkward geometric (and physical) interpretations.

Exercise Set 8

These exercises are intended to enhance your understanding of the mean and
the variance of a conceptual distribution whose PDF is analytically
expressed using a continuous metric x. Example 1 through 6 pertain speci-
fically to the conceptual uniform distribution, but a generalization of the
relationships developed in Exercises 5 and 6 will be used repeatedly in
developing fundamental probability concepts in subsequent discussions.

1. Verify by integration that the actual value for the mean of the
conceptual uniform distribution, zero to one, is 1/2.

2. Verify by integration that the actual value for the variance of the
conceptual uniform distribution, zero to one, is 1/12.

3. Verify that the actual value for the mean of the conceptual sta-
tistical distribution that consists of all possible replicate realiza-
tion values for the random variable X that is uniformly
distributed over the interval from a to b is equal to [(a þ b)/2].
(Remember that the total area under its PDF must, by definition,
be equal to one.)

4. Verify that the actual value for the variance of the conceptual
statistical distribution that consists of all possible replicate reali-
zation values for the random variable X that is uniformly dis-
tributed over the interval from a to b is equal to {[ðb� aÞ2]/12}.

5. (a) Verify that the actual value for the mean of the conceptual
statistical distribution that consists of all possible replicate reali-
zation values for the random variable (X þ c) that is uniformly
distributed over the translated interval from ðaþ cÞ to ðbþ cÞ is
equal to fcþ ½ðaþ bÞ=2�g, where c is an arbitrary constant. This
result can be generalized as follows:

meanðX þ cÞ ¼ meanðXÞ þ c

In turn, (b) verify that the actual value for the variance of
this translated conceptual uniform distribution is equal to
{[ðb� aÞ2]/12}. This result can be generalized as follows:

varðX þ cÞ ¼ varðXÞ
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These two fundamental relationships are valid for all con-
ceptual statistical distributions, whether the associated metric x is
continuous or discrete.

Remark: An arbitrary constant c can be viewed as a
random variable whose conceptual statistical distribu-
tion consists of the single numerical realization value c,
viz., all possible outcomes of the associated experiment
test program are identically equal to c. Then, clearly,
mean(c) equals c and var(c) equals zero.

6. (a) Verify that the actual value for the mean of the conceptual
statistical distribution that consists of all possible replicate reali-
zation values for a random variable (c � X) that is uniformly dis-
tributed over the scaled interval from c � a to c � b is equal to
[c � ðbþ aÞ=2�. This result can be generalized as follows:

meanðc � XÞ ¼ c �meanðXÞ
Note that, when c ¼ �1, then

meanð�XÞ ¼ �meanðXÞ
In turn, (b) verify that the actual value for the variance of
this scaled conceptual uniform distribution is equal to
{c2 � ½ðb� aÞ2�=12}. This result can be generalized as follows:

varðc � XÞ ¼ c2 � varðXÞ
Note that, when c ¼ �1, then

varð�XÞ ¼ varðXÞ
These fundamental relationships are valid for all conceptual

statistical distributions, whether the associated metric x is con-
tinuous or discrete.

7. (a) Use the relationships (definitions) (i) that the actual value for
the variance of the conceptual statistical distribution that consists
of all possible replicate realization values for the generic random
variable X is equal to the expected value (EV) of the random
variable [X � mean(X)]2, and (ii) that the expected value of a
constant c is equal to c, to verify that

varðXÞ ¼ EVðX2Þ � ½meanðXÞ�2

(Hint: First expand the expression [X � mean(X)]2 and then state
the expected value of each of its terms.) Next, (b) rewrite this
expression to obtain the fundamental relationship:
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EVðX2Þ ¼ varðXÞ þ ½meanðxÞ�2

Then, (c) verify that EV(X2) is equal to var(X) when EV(X) is
equal to zero. In turn, (d) use the following expression for ran-
dom variable X:

X ¼ ½X �meanðXÞ� þmeanðXÞ
to verify that EV(X2) is given by the fundamental relationship
developed in (b), viz.,

EVðX2Þ ¼ varðXÞ þ ½meanðXÞ�2

In turn, (e) use the mechanics area moment of inertia concept and
the associated parallel-axis theorem to explain this fundamental
relationship in physical terms, viz., that the moment of inertia of
the area under the conceptual statistical distribution PDF about
the origin (zero) is equal to the moment of inertia of the area
under the conceptual statistical distribution PDF about its cen-
troid, [mean(X)], plus the area (equal to one) times the transfer
distance [mean(X)] squared.

This fundamental relationship is also valid for conceptual
statistical distributions whose metrics are discrete, but the mass
centroid and the mass moment of inertia replace the area centroid
and the area moment of inertia in the mechanics analogy.

Remark: The fact that the EV(X2) is equal to var(X)
when mean(X) is equal to zero, viz., when the EV(X) is
equal to zero, is fundamental to understanding why the
within(MS) is used to estimate var(APRCRHNDEE’s) in
classical ANOVA (Chapter 6).

3.8. SAMPLING DISTRIBUTIONS

3.8.1. Conceptual Sampling Distributions

Recall that the realization value for each statistic (test statistic) of specific
interest is established by the outcome of the associated experiment test
program. In turn, just as a conceptual statistical distribution consists of
the collection of all possible realization values for its associated random
variable, a conceptual sampling distribution consists of the collection of
all possible realization values for its associated statistic (test statistic). In
each case, the analytical expression for the PDF of the conceptual distribu-
tion is known. Thus, in each case, exact metric values pertaining to the
respective percentiles of the conceptual distribution can be calculated (and
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tabulated if so desired). With few exceptions, conceptual sampling distribu-
tions are associated solely with classical statistical analyses (Chapters 5–7).

In a probability context there is no practical difference between a
conceptual statistical distribution and a conceptual sampling distribution.
However, in a mechanical reliability context, a specific conceptual statistical
distribution is presumed to pertain to the physical phenomenon that gen-
erates the observed mode of failure. In turn, each experiment test program
datum value is alleged to have been randomly selected from this presumed
conceptual statistical distribution.

3.8.2. Empirical Sampling Distributions

There are numerous mechanical reliability applications where the analytical
expression for the PDF of the conceptual sampling distribution of specific
interest is not known and cannot be derived analytically. Accordingly, a
simulation-based (randomization-based) methodology must be adopted in
which pseudorandom numbers are used to construct nsbelo (nrbelo) equally
likely outcomes for the experiment test program that was actually con-
ducted. The associated empirical simulation-based (randomization-based)
sampling distribution consists of the corresponding nsbelo (nrbelo) realization
values for statistic (test statistic) of specific interest. In turn, as nsbelo (nrbelo)
becomes larger and larger, the estimated metric values pertaining to the
respective percentiles of simulation-based (randomization-based) empirical
sampling distributions will display less and less variability (see Figures 3.2
and 3.4). Thus, the accuracy of the estimated metric values pertaining to the
respective percentiles of the simulation-based (randomization-based) sam-
pling distribution of specific interest is limited only by the run-time of the
associated microcomputer program.

Table 3.3 is intended to illustrate the process of continually generating
equally likely experiment test program outcomes using pseudorandom num-
bers and then computing the corresponding realization values for the sta-
tistic (test statistic) of specific interest. In turn, given m ¼ nsbelo (nrbelo), the
number of simulation-based (randomization-based) experiment test pro-
gram outcomes of specific interest, noosi, is established by the corresponding
number of statistic (test statistic) realization values of specific interest. Table
3.3 is also intended to convey the notion that the limiting form of the
empirical simulation-based (randomization-based) sampling distribution
as m ¼ nsbelo (nrbelo) increases without bound is the conceptual sampling
distribution, regardless of whether the analytical expression for its PDF is
known or unknown. Thus, the same fundamental statistical abstractions
pertain to empirical simulation-based (randomization-based) sampling dis-
tributions as pertain to conceptual sampling distributions. We statistically
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view the outcome for the experiment test program that is (was) actually
conducted as being randomly selected from the collection of m ¼ nsbelo
(nrbelo) equally likely simulation-based (randomization-based) experimental
test program outcomes. Correspondingly, we statistically view its statistic
(test statistic) realization value as being randomly selected from the empiri-
cal sampling distribution that consists of the collection of m ¼ nsbelo (nrbelo)
statistic (test statistic) realization values.

3.8.3. Asymptotic Sampling Distributions

In certain situations, e.g., maximum likelihood analysis (Chapter 8), an
analytical expression for the PDF of the conceptual sampling distribution
of specific interest can be derived, but it is only exact asymptotically, viz., as
m increases without bound. Although asymptotic PDF’s have been widely
used in the statistical literature to calculate approximate probability values
(or approximate values of the metric pertaining to given probability values),
the accuracy of these calculations is always suspect for sample sizes that are
practical in mechanical reliability applications. Thus, it is good statistical
practice to avoid the use of asymptotic sampling distributions and to
generate appropriate simulation-based (randomization-based) empirical
sampling distributions instead.

124 Chapter 3

Table 3.3 Table Illustrating Process of Continual Replication of Experiment

Test Program, Either Conceptually or by Using a Simulation-Based

(Randomization-Based) Methodology, to Generate Equally–Likely Outcomes and

the Corresponding Realization Values for Statistic (Test Statistic) of Specific

Interest

replicate

experiment test

program

associated equally-likely

outcome

corresponding realization value

for the statistic (test statistic)

of specific interesta

1 ½x1;x2;x3; . . . ; xndv �1 s1ðts1Þ
2 ½x1;x2;x3; . . . ; xndv �2 s2ðts2Þ
3 ½x1;x2;x3; . . . ; xndv �3 s3ðts3Þ
..
. ..

. ..
.

m ½x1;x2;x3; . . . ; xndv �m smðtsnrep Þ

aA conceptual sampling distribution is the infinite collection of all possible statistic (test

statistic) realization values, whereas an empirical sampling distribution is the finite collection

of m ¼ nsbelo ðnrbeloÞ statistic (test statistic) realization values. However, probability values

computed using empirical sampling distributions accurately approximate exact probability

values computed using conceptual sampling distributions when m ¼ nsbelo ðnrbeloÞ is sufficiently
large.
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3.9. TECHNICAL DEFINITION FOR THE NULL
HYPOTHESIS THAT B ¼ A STATISTICALLY AND
FOR THE SIMPLE (ONE-SIDED) ALTERNATIVE
HYPOTHESIS THAT B > A STATISTICALLY

We now define exactly what was intended to be connoted in our presenta-
tion of the sign test, the signed-rank test, and Fisher’s enumeration-based
and randomization-based tests (Sections 3.2–3.4) when the null hypothesis
was stated as B ¼ A statistically and the associated simple (one-sided) alter-
native hypothesis was stated as B > A statistically.

First, however, consider a CRD experiment test program with two
treatments, A and B. Presume that the conceptual statistical distribution
that consists of all possible treatment B datum values is identical to the
conceptual statistical distribution that consists of all possible treatment A
datum values, Figure 3.8(a). Then, by definition, B ¼ A statistically. In
turn, presume that the conceptual statistical distribution that consists of all
possible replicate treatment B datum values is identical to the conceptual
statistical distribution that consists of all possible replicate treatment A
datum values, except that it is translated by a positive increment delta
along its (generic) x metric, Figure 3.8(b). Then, by definition, B > A
statistically. These definitions have two important consequences. First,
the presumption of homoscedasticity for the respective treatment A and
treatment B datum values is clearly valid. Second, given that the null
hypothesis B ¼ A statistically, the conceptual sampling distribution for
the statistic (B � A) is symmetrical about its mean (median), and the x
metric pertaining to its mean (median) is equal to zero. Accordingly, given
the null hypothesis that B ¼ A statistically, the probability is exactly equal
to 1/2 that a randomly selected realization of the statistic (B � A) will be
positive. On the other hand, given the simple (one-sided) alternative
hypothesis B > A statistically, the conceptual sampling distribution for
the statistic (B � A) is symmetrical about its mean (median), but the x
metric pertaining to its mean (median), is greater than zero. Accordingly,
given the simple (one-sided) alternative hypothesis that B > A statistically,
the probability is greater than 1/2 that a randomly selected realization of
the statistic (B � A) will be positive.

Remark: The symmetry of the conceptual sampling distribution for
the statistic (B � A) is intuitively obvious under the null hypothesis
when realizations ðb� aÞ, (a � b), (b1 � b2), and (a1 � a2) are all
regarded as interchangeable, where the subscripts for a and b
refer to time order of selecting the respective realization values
for A and B.
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Now consider an unreplicated RCBD experiment test program with
two treatments A and B. Presume that these two treatments do not interact
with any of the infinite collection of available experiment test program
blocks. If so, then the conceptual sampling distribution of specific interest
consists of all possible realizations for the statistic [(B � cbei) � (A � cbei)],
but note that [(B � cbei) � (A � cbei)] ¼ (B� A). Thus, as above, given the
null hypothesis that B ¼ A statistically, the conceptual sampling dis-
tribution that consists of all possible realizations for the statistic
[(B � cbei) � (A � cbei)] is symmetrical about its 50th percentile, and the
x metric pertaining to its 50th percentile is equal to zero. Accordingly, given
the null hypothesis that B ¼ A statistically, the probability is exactly
equal to 1/2 that a randomly selected realization for the statistic
[(B � cbei) � (A � cbei)] will be positive. On the other hand, given the
simple (one-sided) alternative hypothesis that B > A statistically, the con-
ceptual sampling distribution that consists of all possible realizations for
the statistic [(B � cbei) � (A � cbei)] is also symmetrical about its 50th
percentile, but the x metric pertaining to its 50th percentile is greater
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Figure 3.8 Technical definition of what is intended to be connoted when (a) the

null hypothesis is stated as B ¼ A statistically, and (b) the simple one-sided) alter-

native hypothesis is stated as B > A statistically. In (a), the null hypothesis, the

conceptual statistical distribution that consists of all possible replicate treatment B

datum values is identical to the conceptual statistical distribution that consists of all

possible replicate treatment A datum values. In (b), the simple (one-sided) alternative

hypothesis, the conceptual statistical distribution that consists of all possible repli-

cate treatment B datum values is identical to the conceptual statistical distribution

that consists of all possible replicate treatment A datum values, except that it is

translated a positive distance delta along the x metric.
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than zero. Accordingly, given the simple (one-sided) alternative hypo-
thesis that B ¼ A statistically, the probability is greater than 1/2 that a
randomly selected realization for the statistic [(B � cbei) � (A � cbei)]
will be positive.

3.9.1. Discussion

Note that if an explicit analytical expression for the PDF pertaining to the
conceptual sampling distribution for the statistic (B � A) were (alleged to
be) known, then the exact probability that the ith realization value for the
constructed random variable (B � A) will be positive could be calculated.
However, this PDF is never known in any mechanical metallurgy applica-
tion. Thus, do not be deceived by simplistic reliability analyses published in
engineering textbooks and statistical journals under the heading of ‘‘stress–
strength interference theory.’’ Such analyses only demonstrate an appalling
naiveté regarding the enormous disparity between the actual service stress–
time history and the allegedly corresponding material strength (resistance).
The latter are always established by conducting a laboratory test with either
an extremely elementary stress–time history or an amusingly fictitious
stress–time history.

3.10. MECHANICAL RELIABILITY PERSPECTIVE

To provide perspective regarding the practical mechanical reliability applica-
tion of a paired-comparison experiment test program, we now review the
notions associated with the distribution-free (nonparametric) statistical test
of the null hypothesis that B ¼ A statistically versus the simple (one-sided)
alternative hypothesis that B > A statistically. Perhaps surprisingly, these
null and alternative hypotheses pertain to markedly different test objectives.

First, suppose that our test objective is to ‘‘assure’’ that proposed
design B is at least as reliable as production design A statistically. Let the
experiment test program consist of npc paired comparisons. (The issue of an
adequate number of paired comparisons to limit the probability of commit-
ting a Type II error to an acceptable value will be considered later.) The
resulting experiment test program datum values generate a numerical value
for each of the respective npc ðb� aÞ differences. If B > A statistically we
expect a majority of these numerical values to be positive. However, if we do
not obtain a sufficient majority of positive numerical values for the respec-
tive npc ðb� aÞ differences, microcomputer programs EBST, EBSRT, FEBT,
and FRBT will compute enumeration-based probabilities that are not suffi-
ciently small to warrant rejection of the null hypothesis that A ¼ B statis-
tically. Then, we cannot rationally assert that proposed design B is at least
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as reliable as production design A statistically—even though we know that
under the presumption that the null hypothesis is correct only 1/2 of all
possible replicated experiment test program outcomes would actually exhi-
bit a majority of positive ðb� aÞ differences. It is therefore evident that a
paired-comparison experiment test program is not well suited to the test
objective of ‘‘assuring’’ that B is at least as reliable as A.

Now suppose that our test objective is to ‘‘assure’’ that proposed
design B is more reliable than production design A. Suppose also that the
experiment test program outcome is such that so many ðb� aÞ differences
are positive that we rationally opt to reject the null hypothesis that B ¼ A
statistically in favor of the simple (one-sided) alternative hypothesis that
B > A statistically. (Recall that we rationally reject the null hypothesis
only when the experiment test program outcome emphatically agrees with
the alternative hypothesis.) Accordingly, we rationally assert that B > A
statistically (but by an unspecified and unknown amount akin to delta in
Figure 3.8). Suppose, however, that we redefine the null and simple (one-
sided) alternative hypotheses as follows:

Hn: B�mpd ¼ A statistically

Ha: B�mpd > A statistically
ðmpd > 0Þ

or

Hn:
B

mpr
¼ A statistically

Ha:
B

mpr
> A statistically

ðmpr > 1Þ

in which mpd is the minimum practical difference of specific interest and mpr
is the minimum practical ratio of specific interest. Correspondingly, suppose
that we adjust the respective (b � a) differences such that (b 0 � a) ¼
[(b�mpdÞ-a] or such that (b 0� a) ¼ [(b/mpr) � a]. If so, then we can sta-
tistically quantify the amount (ratio) that B excels A statistically
(Supplemental Topic 3.C).

Hopefully, it is now clear that a paired-comparison experiment test
program has practical application in improving reliability, but is not well
suited to ‘‘assuring’’ reliability. The latter objective is usually associated with
a so-called quality assurance experiment test program.

3.11. CLOSURE

The statistical abstraction of continually generating replicate experiment test
programs is the key to understanding probability concepts of specific inter-
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est, whatever the application. This statistical abstraction establishes an
explicit enumeration-based algorithm that, when coupled with a pseudoran-
dom number generator for the relevant conceptual statistical distribution
(Supplemental Topic 8.D), can be used to generate the empirical simulation-
based sampling distribution for each mechanical reliability statistic of spe-
cific interest, however unusual or unique.

The primary criticism of the enumeration-based definition for prob-
ability is that it does not account for prior information. If this criticism is
considered relevant, then we recommend the following procedure for com-
bining prior information with actual experiment test program test datum
values. First, using this prior information, state the PDF for the supposed
conceptual statistical (or sampling) distribution of specific interest, along
with the supposed conceptual parameter values. Next, estimate these con-
ceptual parameter values using the actual experiment test program datum
values. In turn, generate pseudorandom datum values from both the sup-
posed and the estimated conceptual sampling distributions. Then, combine
these two sets of pseudorandom datum values in that proportion which
appears to be appropriate (based on the credibility of the prior information
and the size of the experiment test program). Finally, establish the revised
supposed conceptual statistical (or sampling) distribution empirically and
estimate its conceptual sampling distribution parameters.

3.A. SUPPLEMENTAL TOPIC: STATISTICAL WEIGHTS
OF DATUM VALUES AND ACTUAL VALUES FOR
THE MEAN AND VARIANCE OF THE CONCEPTUAL
STATISTICAL DISTRIBUTION THAT CONSISTS OF
ALL POSSIBLE REPLICATE REALIZATION VALUES
FOR A RANDOM VARIABLE WITH A DISCRETE
METRIC

3.A.1. The Statistical Weights of Datum Values

Perhaps the most important statistical concept in data analysis is that each
datum point (datum value) has a mass (a statistical weight) that is inversely
proportional to the actual value for the variance of the conceptual statistical
distribution from which that datum value was presumed to have been ran-
domly selected. Accordingly, a datum value that exhibits a relatively large
variability under continual replication of the experiment test program is
assigned a relatively small statistical weight, whereas a datum value that
exhibits a relatively small variability under continual replication of the
experiment test program is assigned a relatively large statistical weight.
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On the other hand, datum values that exhibit equal variabilities under con-
tinual replication of the experiment test program are assigned equal statis-
tical weights (which are often conveniently presumed to be equal to one).

Remark: The presumption that all experiment test program datum
values have identical statistical weights (viz., are homoscedastic) is
statistically equivalent to the presumption that the actual values for
the variances (standard deviations) of their respective conceptual
statistical distributions are all equal. This presumption so markedly
simplifies data analysis that it is almost always tacitly accepted as
being statistically credible without critical examination. (See
Section 6.4.)

We now denote the ith weighted datum value as wdvi and its associated
statistical weight as swi. Then, for a specific collection of nwdv weighted
datum values, the mass centroid and mass moment of inertia about this
mass centroid are respectively established by the expressions:

mass centroid ¼

Xnwdv
i¼1

swi � wdvi
Xnwdv
i¼1

swi

and

mass moment of inertia ¼
Xnwdv
i¼1

swi � ðwdvi �mass centroidÞ2

When the statistical weight is substituted for mass, the mechanics-based
expression for the mass centroid is directly analogous to the statistics-
based expression for the actual value for the mean of a conceptual statistical
distribution whose metric is discrete. However, the mass moment of inertia
about the mass centroid must be divided by the sum of the masses to have
the mechanics-based expression be directly analogous to the statistics-based
expression for the actual value for the variance of a conceptual statistical
distribution whose metric is discrete. The respective statistics-based expres-
sions are restated below.

Remark: Just as conceptual statistical distributions and their asso-
ciated random variables are commonly referred to as being contin-
uous when the measurement metric is continuous, conceptual
statistical distributions and their associated random variables are
commonly referred to as being discrete when the measurement
metric is discrete.
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3.A.2. Actual Values for the Mean and Variance of the
Conceptual Statistical Distribution that Consists
of All Possible Replicate Realization Values for a
Random Variable with a Discrete Metric

The analog to the continuous conceptual probability density function (PDF)
is the discrete conceptual probability function (PF). The associated prob-
ability correspondence is

f ðxiÞdxi , pi

in which pi is directly analogous to the statistical weight swi for weighted
(heteroscedastic) datum values, viz.,

pi , swi

Accordingly, the actual value for the mean of the conceptual statistical
distribution that consists of all possible realization values for a discrete
random variable generically denoted Y is expressed as

meanðYÞ ¼

Xndyv
i¼1

pi � yi
Xndyv
i¼1

pi

¼
Xndyv
i¼1

pi � yi

in which (a) ndyv is the number of the different discrete yi metric values that
the respective realization values for the random variable Y can take on, and
(b) the sum of all pi’s is equal to one. Similarly, the actual value for the
variance of the conceptual statistical distribution that consists of all possible
realization values for a discrete random variable generically denoted Y is
expressed as

varðYÞ ¼

Xndyv
i¼1

pi � ½ yi �meanðYÞ�2

Xndyv
i¼1

pi

¼
Xndyv
i¼1

pi � ½ yi �meanðYÞ�2

3.A.2.1. Perspective

We use these two fundamental expressions in Supplemental Topic 3.B to
establish expressions for the actual values for the mean and variance of the
conceptual statistical distribution that consists of the two mutually exclusive
discrete outcomes of a binomial trial. These mean and variance expressions
are then intuitively extended to pertain to a series of nbt mutually indepen-
dent binomial trials, viz., to the conceptual (one-parameter) binomial dis-
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tribution. A series of nbt independent individual binomial trials is statisti-
cally synonymous with (a) a series of npc mutually independent paired com-
parisons in a RCBD experiment test program, or (b) a series of nrt mutually
independent individual reliability tests in a CRD experiment test program.
Thus, the conceptual (one-parameter) binomial distribution has direct appli-
cation in either improving the reliability of a product or in estimating the
reliability of a product. The statistical background for these applications is
discussed next.

3.B. SUPPLEMENTAL TOPIC: CONCEPTUAL (ONE-
PARAMETER) BINOMIAL DISTRIBUTION

The conceptual (one-parameter) binomial distribution describes the prob-
ability behavior of a random variable that takes on only discrete realization
values, e.g., the number of favorable outcomes, nfo, in npc mutually indepen-
dent paired-comparisons or in nrt mutually independent individual reliability
tests, where the probability of a favorable outcome, pfo, is invariant from
paired comparison to paired comparison or from individual reliability test
to individual reliability test. Each of the npc independent paired comparisons
or nrt individual reliability tests is generically termed a binomial trial.

Consider a hypothetical experiment test program with six (mutually
independent) binomial trials, each with the same invariant probability pfo of
a favorable outcome. The probability of a sequence of four favorable out-
comes followed by two unfavorable outcomes occurring is pfo � pfo � pfo �
pfo � (1 � pfo) � (1 � pfo). Similarly, a sequence with nfo favorable outcomes
followed by (nbt � nfo) unfavorable outcomes, where nbt is the number
of binomial trails that comprise the hypothetical experiment test pro-
gram of specific interest, has a probability of occurring equal to
pfonfo � (1 � pfo)nbt � nfo. Note, however, that this probability expression is
valid regardless of the specific order of the successes and failures in a
sequence of nfo favorable outcomes and (nbt � nfo) unfavorable outcomes.
Moreover, there are exactly (npc)!/[(nfo)! � (nbt � nfo)!] experiment test pro-
gram outcomes that have nfo favorable outcomes and (nbt � nfo) unfavor-
able outcomes. Hence, given nbt and pfo, the probability that a randomly
selected equally likely reliability-based experiment test program will have
exactly nfo favorable outcomes is:

(enumeration-based) probability ðNFO ¼ nfo; given pfo and nbtÞ
¼ ðnbtÞ!

ðnfoÞ! � ðnbt � nfoÞ!
� pfonfo � ð1� pfoÞnbt�nfo
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This probability expression is called the binomial probability function.
(Remember that, for this binomial probability function expression, binomial
trials are synonymous with mutually independent paired comparisons and
mutually independent individual reliability tests, viz., nbt ¼ npc ¼ nrt.)

We now present three microcomputer programs for the conceptual
binomial distribution, each pertaining to a different way to tabulate cumu-
lative binomial probability values. Microcomputer program BINOM1 com-
putes and tabulates the (exact) enumeration-based probability that
NFO � nfo, given input values of pfo and nbt. This tabulation is convenient
when the classical sign test (without ties) is employed in a test of the null
hypothesis that B ¼ A statistically versus the simple (one-sided) alternative
hypothesis that B > A statistically. In contrast, microcomputer program
BINOM2 computes and tabulates the (exact) enumeration-based probabil-
ity that NFO < nfo, given input values of pfo and nbt. This tabulation is
convenient when the classical sign test (without ties) is employed in a test
of the null hypothesis that B ¼ A statistically versus the simple (one-sided)
alternative hypothesis that B < A statistically. Finally, microcomputer pro-
gram BINOM3 computes the (exact) enumeration-based probability that
NFO < nfo, given input values of pfo and nbt. This tabulation is convenient
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C> BINOM1

Input the invariant probability of a favorable outcome pfo and the
number of binomial trials nbt, e.g., 0.5 space 10

0.5 10

nfo probability that NFO � nfo

0 1.0000
1 0.9990
2 0.9893
3 0.9453
4 0.8281
5 0.6230
6 0.3770
7 0.1719
8 0.0547
9 0.0107

10 0.0010
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when relating reliability to its associated statistical confidence probability
value (discussed later). Note that microcomputer programs BINOM1 and
BINOM3 have their corresponding probabilities sum to 1.0000; the respec-
tive probabilities are complementary.

The maximum value for nbt in programs BINOM1, BINOM2, and
BINOM3 is 32 (because it is very unlikely that nbt will ever exceed 32 in a
mechanical reliability experiment test program.)

The respective derivations of the analytical expressions for the actual
values for the mean and variance of a conceptual binomial distribution are
tedious without the following change of variable to a single binomial trial.
Consider the random variable Y such that y takes on the discrete realization
value of 1 when a favorable outcome is observed and y takes on the discrete
realization value zero when an unfavorable outcome is observed. Then, the
actual value for the mean of the conceptual statistical distribution that
consists of both discrete realization values for random variable Y
(Supplemental Topic 3.A) is (summing over y ¼ 1 and y ¼ 0)

meanðYÞ ¼ pfo � 1þ ð1� pfoÞ � 0 ¼ pfo
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C> BINOM2

Input the invariant probability of a favorable outcome pfo and the
number of binomial trials nbt, e.g., 0.5 space 10

0.5 10

nfo probability that NFO � nfo

0 0.0010
1 0.0107
2 0.0547
3 0.1719
4 0.3770
5 0.6230
6 0.8281
7 0.9453
8 0.9893
9 0.9990

10 1.0000
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In turn, the actual value for the variance of the conceptual statistical dis-
tribution that consists of both discrete realization values for random vari-
able Y is (again summing over y ¼ 1 and y ¼ 0)

varðYÞ ¼ pfo � ð1� pfoÞ2 þ ð1� pfoÞ � ð0� pfoÞ2 ¼ pfo � ð1� pfoÞ
We assert in Chapter 4 (Exercise Set 1) that (a) the actual value for the mean
of the conceptual sampling distribution that consists of all possible replicate
realization values for the statistic (the sum of ns realization values for the
random variable X) is equal to ns times mean(X), and in turn that (b) the
actual value for the variance of the conceptual sampling distribution that
consists of all possible replicate realization values for the statistic (the sum
of ns mutually independent realization values for the random variable X) is
equal to ns times var(X). Accordingly, given a sequence of nbt (mutually
independent) binomial trials, we assert that

meanðNFOÞ ¼ nbt � pfo
and

varðNFOÞ ¼ nbt � pfo � ð1� pfoÞ
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C> BINOM3

Input the invariant probability of a favorable outcome pfo and the
number of binomial trials nbt, e.g., 0.5 space 10

0.5 10

nfo probability that NFO < nfo

0 0.0000
1 0.0010
2 0.0107
3 0.0547
4 0.1719
5 0.3770
6 0.6230
7 0.8281
8 0.9453
9 0.9893

10 0.9990
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(Remember that binomial trials in a hypothetical experiment test program
are synonymous with mutually independent paired comparisons in a paired-
comparison experiment test program and with mutually independent indi-
vidual reliability tests in a reliability-based experiment test program.)

The conceptual binomial distribution is often depicted in Figure 3.9(a)
by plotting the numerical values of its probability function as ordinates, viz.,
the heights of vertical lines. This depiction is employed when the respective
numbers of equally likely experiment test program outcomes are so large
that it is inconvenient to construct a plot analogous to Figure 1.5(b). Note
that the respective numerical binomial probability function values plotted as
ordinates in Figure 3.9(a) can be redepicted in the histogram format as
illustrated in Figure 3.9(b). Then, the resulting histogram also has a clear
enumeration-based probability interpretation when it is restated in terms of
proportions (relative frequencies). Advanced theory demonstrates that this
histogram for proportions (relative frequencies) asymptotically takes on the
exact bell-shaped form (Figure 3.10) of the conceptual (two-parameter)
normal distribution (Chapter 5) as nbt increases without bound.

Remark: We introduce the statistic (the sum of ns uniform pseudor-
andon numbers) in Chapter 4 and demonstrate that its conceptual
sampling distribution also asymptotically (as ns increases without
bound) takes on the exact bell-shaped form of the conceptual (two-
parameter) normal distribution. That demonstration is intended to
support the presumption in classical statistical analysis that mea-
surement-based random errors are normally distributed.
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Figure 3.9 Depicting the conceptual binomial distribution by plotting the values

of its probability function as ordinates, viz., the heights of the vertical lines in (a), or

the heights of the vertical bars in (b).
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Exercise Set 9

These exercises are intended (a) to acquaint you with the conceptual bino-
mial distribution and its probability function, and with the respective out-
puts of microcomputer programs BINOM1, BINOM2, and BINOM3, and
(b) to provide insight regarding microcomputer simulation of a sequence of
binomial trials.

1. Given that nbt ¼ 10 and (a) pfo ¼ 0.1, (b) pfo ¼ 0.5, (c)
pfo ¼ 0.9, calculate the respective probabilities by hand that
Nfo equals nfo for nfo from 0 to 10. Then, run microcomputer
program BINOM1 with nbt ¼ 10 and (a) pfo ¼ 0.1, (b)
pfo ¼ 0.5, (c) pfo ¼ 0.9 and reinterpret the respective outputs
to verify your hand calculations. Following verification, plot
the numerical values of the respective binomial probability func-
tions in the formats of Figures 3.9(a) and (b).

2. Explain how you could use a uniform pseudorandom number
generator to simulate the outcomes of nbt mutually independent
binomial trials.

Exercise Set 10

These exercises are intended to enhance your understanding of Figures 3.2
and 3.4.
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Figure 3.10 Conceptual (one-parameter) binomial distribution, when depicted in

histogram format, becomes asymptotically identical to the bell-shaped conceptual

(two-parameter) normal distribution, viz., as the number of binomial trials increases

without bound.
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1. Given that the actual value for the variance of the conceptual
binomial distribution that consists of (2)nbt discrete realization
values for the random variableNFO is equal to nbt � pfo � (1 � pfo),
verify that the actual value for the variance of the conceptual
binomial distribution that consists of (2)nbt discrete realization
values for the random variable [(1/nbt) �NFO] is equal to
{[pfo � (1 � pfo)]/nbt}.

2. Consider the classical fair coin experiment. Verify that the actual
value for the variance of the conceptual binomial sampling dis-
tribution that consists of (2)nf discrete realization values for the
statistic (the proportion of heads observed in nf flips) is equal to
[1/(4 � nf)].

3. (a) Given that approximately 95% of all classical fair-coin experi-
ments will generate a realization value for the statistic (the pro-
portion of heads observed in nf flips) that deviates less than 1.96
standard deviations from 0.5, extend Exercise 2 by computing
approximate 95% (two-sided) statistical confidence intervals
that allegedly include the actual value (0.5) for the mean of the
conceptual binomial sampling distribution that consists of (2)nf

discrete equally likely realization values for the statistic (the pro-
portion of heads observed in nf flips)—when nf is consecutively
set equal to 10, 100, 1000, 10,000, and 100,000. Then, (b) com-
pare the respective widths for these intervals to the simulation-
based ranges for the curves faired in Figure 3.2.

4. (a) Given that the actual value for the variance of the conceptual
sampling distribution that consists of all possible realization
values for the statistic (the arithmetic average of n uniform pseu-
dorandom numbers) is equal to 1/(12 � n), what is the ratio of the
actual value for this variance to the actual value for the variance
of the conceptual binomial sampling distribution that consists of
(2)nf discrete realization values for the statistic (the proportion of
heads observed in nf flips) when nf ¼ n? Then, (b) is the corre-
sponding standard deviation ratio consistent with the ratios of
the widths of the simulation-based bands faired in Figures 3.2
and 3.4?

3.B.1. Reliability and Its Associated Statistical
Con¢dence Probability Value

When the conceptual binomial distribution is used to summarize the
equally likely outcomes of a hypothetical sequence of (mutually indepen-
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dent) binomial trials, there are two probabilities of specific interest: (a) the
invariant probability pfo of a favorable outcome in each independent
binomial trial, and (b) the computed value of the enumeration-based prob-
ability that NFO � nfo given the number of binomial trials nbt. Recall that
the computed value of the enumeration-based probability that NFO � nfo
can be employed in the classical sign test of the null hypothesis that B ¼ A
statistically versus the simple (one-sided) alternative hypothesis that
B > A. Recall also that the probability of incorrectly rejecting the null
hypothesis when it is presumed to be correct is the probability of commit-
ting a Type I error. We now assert that, in a reliability context, (a) pfo is
synonymous with reliability, viz., the invariant probability of survival in
each mutually independent reliability test, and (b) the complement of the
probability of committing a Type I error is synonymous with the statistical
confidence probability, subsequently denoted scp. Accordingly, if we had
conducted 10 individual independent reliability tests and observed eight
survivals, the example output of microcomputer program BINOM3 indi-
cates that the statistical confidence probability value is equal to 0.9453
when the reliability is equal to 0.5. However, this relationship is more
properly interpreted as indicating that we can assert with 100 � (0.9453)%
statistical confidence that the actual value for the reliability is at least
equal to 0.50.

Statistical confidence probability values such as 0.9453 are not tradi-
tionally used in statistical analysis. Rather traditional values of the statis-
tical confidence probability are 0.90, 0.95, and 0.99—because statistical
analyses have traditionally been based on tabulated values for the 90th,
95th, and 99th percentiles of the conceptual (or empirical) sampling distribu-
tion for the test statistic of specific interest. (Recall that traditional values
for the complementary probabilities of committing the associated Type I
errors are 0.10, 0.05, and 0.01.)

Note that the input probability pfo in microcomputer program
BINOM3 must be iteratively adjusted to obtain the traditional scp value
of specific interest. This iterative adjustment is accomplished in microcom-
puter program MINREL (minimum reliability), which computes the mini-
mum actual value for the reliability given any scp value of specific interest,
traditional or nontraditional. We limit 100(scp)% to integer values in micro-
computer program MINREL because values greater than 99% are not phy-
sically and statistically credible.
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Exercise Set 11

These exercises are intended to enhance your understanding of reliability
and its associated statistical confidence probability value.

1. Let a paired-comparison experiment test program involve 10
blocks, each block with a single datum value each for compo-
nents A and B. Then, (a) run microcomputer program BINOM1
iteratively to establish the value of conceptual binomial probabil-
ity pfo for which the probability of observing eight or more posi-
tive ðb� aÞ differences in 10 paired-comparisons is (almost
exactly) equal to 0.05. Next, (b) run microcomputer program
MINREL for 10 reliability tests with eight items surviving to
the estimate of the minimum actual value for the reliability per-
taining to 95% statistical confidence. Finally, (c) compare the
results of (a) and (b).

2. Suppose we wish to select both a traditional scp value and the
minimum value for reliability. How many reliability tests with no
failures must be conducted to have 95% statistical confidence
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C> MINREL

Input the number of reliability tests nrt that have been conducted

10

Input the number of items nis that survived these nrt reliability tests

10

Input the statistical confidence probability of specific interest, stated in
percent

95

Given that 10 items survived in 10 reliability tests, we can assert that
we have 95% statistical confidence that the actual value for the relia-
bility is equal to at least 0.741.
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that the reliability is at least equal to 0.90? Determine nrt by
iteratively running program MINREL.

3. (a) What is the fundamental difference (if any) between B is
greater than A statistically and B is at least as good as A statis-
tically? (b) Given 10 mutually independent reliability tests, how
many items must survive these tests to have at least 95% statis-
tical confidence that B is at least as good as A statistically? Is it
practical to use this minimum number of survivals as the pass/fail
criterion for a so-called quality assurance test? Discuss.

3.C. SUPPLEMENTAL TOPIC: LOWER 100(SCP)%
(ONE-SIDED) STATISTICAL CONFIDENCE LIMITS

Recall that microcomputer program MINREL (Supplemental Topic 3.B)
can be used to compute a lower 100(scp)% (one-sided) statistical confidence
limit that allegedly bounds the minimum actual value for the reliability,
given (a) any (traditional or nontraditional) value of the scp value of specific
interest, and (b) the number of items nis that survived in nrt independent
reliability tests. We now present an analogous lower 100(scp)% (one-sided)
statistical confidence limit that allegedly bounds the actual value of the
minimum practical difference (mpd) between the respective means (or med-
ians, or any other corresponding percentiles) of B and A in Figure 3.8(b).

Consider Fisher’s enumeration-based test and the paired-comparison
data used to compute our example output for microcomputer program
FEBT. Given the null hypothesis that B ¼ A statistically, the probability
that a randomly selected value of Fisher’s enumeration-based conceptual
sampling distribution will be equal to or greater than 138 is equal to 0.0039.
Thus, we could rationally assert that we have 100(1 � 0.0039)% ¼ 99.61%
statistical confidence that B > A statistically. However, there is a practical
difficulty associated with this reinterpretation of the null hypothesis rejec-
tion probability value in terms of its nontraditional complementary value
for the scp. When we conceptually replicate our paired-comparison experi-
ment test program, it is clear that the resulting null hypothesis rejection
probability and its nontraditional scp complement will change from repli-
cated experiment test program to replicated experiment test program. Thus,
our reinterpretation of the null hypothesis rejection probability in terms of
its nontraditional scp complement is generally considered awkward. The
statistical confidence value is traditionally preselected before the experiment
test program is conducted to be either 90, 95, or 99%, just as the acceptable
probability of committing a Type I error is traditionally preselected before
the experiment test program is conducted to be either 0.10, 0.05, or 0.01.
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Now suppose that (a) the null hypothesis is that (B � mpd) ¼ B 0 ¼ A
statistically, and (b) the simple (one-sided) alternative hypothesis is that
(B � mpd) ¼ B 0 > A statistically, where mpd connotes minimum practical
difference. Then, as illustrated below, microcomputer program FEBMPDT
(Fisher’s enumeration-based minimum practical difference test) can be run
iteratively to establish the mpd value that is subsequently reinterpreted as the
lower 100(scp)% (one-sided) statistical confidence limit for the actual value
for the difference between the respective means (medians) of the respective
conceptual statistical distributions for B and A.

Given this iteratively established mpd value we can subsequently assert
with 100(scp)% statistical confidence that the actual value for the difference
between the respective means (medians) of the conceptual statistical distri-
butions for B and A is at least equal to mpd (units). For example, we can
assert with more than 95% statistical confidence that the actual value of the
mean (median) of the conceptual statistical distribution for B excels the
actual value of the median of the conceptual statistical distribution for A
by at least 12 units. Clearly, this assertion is either correct, or it is not.
Accordingly, the arbitrarily selected scp value is the probability that the
associated lower 100(scp)% (one-sided) statistical confidence limit assertion
is actually correct.

Given any scp value of specific interest, say 0.95, we can conduct a
simulation study of the probability behavior of the proportion (percentage)
of lower 100(scp)% (one-sided) statistical confidence limit assertions that are
actually correct. Microcomputer program SSLOSSCL (simulation study of
a lower one-sided statistical confidence limit, pages 144 and 145) has the scp
of interest, stated in percentage, as input data. It clearly demonstrates that,
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mpd

enumeration-based probability that a randomly

selected experiment test program will have its sum of

ðb 0 � aÞ differences equal to or greater than the data-

based sum of ðb 0 � aÞ differences for the experiment

test program that was actually conducted, given the

null hypothesis that B 0 ¼ A statistically

corresponding

nontraditional scp,

stated in %

0 0.0039 99.61
..
. ..

. ..
.

9 0.0039 99.61

10 0.0078 99.22

11 0.0156 98.44

12 0.0273 97.27

13 0.0547 94.53

14 0.1016 89.84
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as illustrated in Figures 3.2 and 3.4, the variability in the actual proportion
(percentage) of lower 100(scp)% (one-sided) statistical confidence limit
assertions that are actually correct decreases as the number of simulated
experiment test program outcomes increases. Accordingly, it is intuitively
clear that, in the limit as the number of simulated experiment test program
outcomes increases without bound, the proportion (percentage) of statistical
confidence assertions that are actually correct asymptotically approaches
the preselected (input) scp value. Remember, however, that when we pre-
select the scp value of specific interest we simultaneously select the accep-
table probability (1 � scp) that the lower 100(scp)% (one-sided) statistical
confidence limit assertion will actually be incorrect.
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C> COPY FEMPDDTA DATA

1 file(s) copied

C> FEBMPDT

Given a minimum practical difference mpd equal to 14, the data-based
sum of the actual values for the [(b�mpdÞ � a] differences that con-
stitute the outcome of the paired-comparison experiment test program
that was actually conducted is equal to 26.

Given the null hypothesis that (B�mpdÞ ¼ A statistically, this micro-
computer program constructed exactly 256 equally-likely outcomes
for this paired-comparison experiment test program by using Yate’s
enumeration algorithm to reassign positive and negative signs to its
[(b�mpdÞ � a] differences. The number of these outcomes that had its
sum of the actual values for its [(b�mpdÞ � a] differences equal to or
greater than 26 is equal to 26. Thus, given the null hypothesis that
(B�mpdÞ ¼ A statistically, the enumeration-based probability that a
randomly selected outcome of this paired-comparison experiment test
program when continually replicated will have its sum of the actual
values for its [(b�mpdÞ � a] differences equal to or greater than 26 is
equal to 0.1016. When this probability is sufficiently small, reject the
null hypothesis in favor of the simple (one-sided) alternative hypoth-
esis that (B�mpdÞ > A statistically.
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Microcomputer program SSLOSSCL is also intended to demonstrate
that it is impossible to state a priori whether any specific lower 100(scp)%
(one-sided) statistical confidence limit assertion is or is not actually correct.
In particular, given any future simulation study pertaining to a new set of
three, three-digit seed numbers, it is impossible to state a priori whether the
assertion associated with any randomly selected experiment test program
outcome will be correct or not.

Finally, a traditional (exact) value for the scp can be obtained, if
required, by using the realization of a uniform pseudorandom number to
select between the two nontraditional lower 100(scp)% (one-sided) statisti-
cal confidence limits whose scp values immediately straddle the traditional
(exact) scp value of specific interest. This random selection process requires
that the respective nontraditional values have probabilities of being selected
as follows:

probability of selecting nontraditional scplow

¼ nontraditional scphigh � traditional scp

nontraditional scphigh � nontraditional scplow

and

probability of selecting nontraditional scphigh

¼ traditional scp� nontraditional scplow
nontraditional scphigh � nontraditional scplow

3.D. SUPPLEMENTAL TOPIC: RANDOMIZATION-
BASED TEST OF THE NULL HYPOTHESIS THAT
B ¼ A STATISTICALLY VERSUS THE SIMPLE
(ONE-SIDED) ALTERNATIVE HYPOTHESIS THAT
B > A STATISTICALLY PERTAINING TO A CRD
EXPERIMENT TEST PROGRAM

It may seem ironic that we present and discuss alternative computer-inten-
sive statistical tests of hypotheses before we have developed the probability
background theory (Chapters 4 and 5) underlying the classical statistical
tests of hypotheses (Chapter 6). However, the reason for this syllabus rever-
sal is simply that these alternative computer-intensive analyses involve mini-
mal statistical presumptions and therefore require minimal probability
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C> SSLOSSCL

Input a new set of three, three-digit odd seed numbers

227 191 359

Input the statistical confidence probability desired, stated in percent
(integer values only)

95

Percentage of Simulation-Based Lower 95% (One-Sided) Statistical
Confidence Limit Assertions that are Actually Correct

1 Assertion – 100.000 Percent Correct
2 Assertions – 100.000 Percent Correct
3 Assertions – 66.667 Percent Correct
4 Assertions – 75.000 Percent Correct
5 Assertions – 80.000 Percent Correct
6 Assertions – 83.333 Percent Correct
7 Assertions – 71.429 Percent Correct
8 Assertions – 75.000 Percent Correct
9 Assertions – 77.778 Percent Correct

10 Assertions – 70.000 Percent Correct
11 Assertions – 72.727 Percent Correct
12 Assertions – 75.000 Percent Correct
13 Assertions – 76.923 Percent Correct
14 Assertions – 71.429 Percent Correct
15 Assertions – 73.333 Percent Correct
16 Assertions – 75.000 Percent Correct
17 Assertions – 76.471 Percent Correct
18 Assertions – 77.778 Percent Correct
19 Assertions – 78.947 Percent Correct
20 Assertions – 80.000 Percent Correct
21 Assertions – 80.952 Percent Correct
22 Assertions – 81.818 Percent Correct
23 Assertions – 82.609 Percent Correct
24 Assertions – 83.333 Percent Correct
25 Assertions – 84.000 Percent Correct
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background theory to support their presentation and discussion. Clearly,
the fewer and the simpler the presumptions underlying a statistical test of
hypothesis, the more credible the statistical conclusions drawn (statistical
inferences made).

Consider the (comparative) CRD experiment test program in Figure
3.11 (a repeat of Figure 2.2) with two treatments, viz., treatments A and B,
where treatment A is final mechanical polishing in the circumferential direc-
tion and treatment B is final mechanical polishing in the longitudinal direc-
tion. Given that the null hypothesis is that no direction-of-final-mechanical-
polishing effect exists, each possible reassignment of the respective 16 datum
values to treatments A and B constitutes an equally likely outcome for this
comparative CRD experiment test program. Accordingly, given this null
hypothesis and an appropriate test statistic, we can employ a randomiza-
tion-based test of hypotheses methodology to calculate the associated null
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30 Assertions – 83.333 Percent Correct
35 Assertions – 82.857 Percent Correct
40 Assertions – 85.000 Percent Correct
45 Assertions – 84.444 Percent Correct
50 Assertions – 86.000 Percent Correct
55 Assertions – 87.273 Percent Correct
60 Assertions – 88.333 Percent Correct
65 Assertions – 89.231 Percent Correct
70 Assertions – 90.000 Percent Correct
75 Assertions – 90.667 Percent Correct
80 Assertions – 91.250 Percent Correct
85 Assertions – 91.765 Percent Correct
90 Assertions – 92.222 Percent Correct
95 Assertions – 92.632 Percent Correct

100 Assertions – 93.000 Percent Correct
200 Assertions – 95.000 Percent Correct
300 Assertions – 94.000 Percent Correct
400 Assertions – 94.250 Percent Correct
500 Assertions – 94.200 Percent Correct
600 Assertions – 94.500 Percent Correct
700 Assertions – 94.429 Percent Correct
800 Assertions – 94.500 Percent Correct
900 Assertions – 94.667 Percent Correct

1000 Assertions – 94.600 Percent Correct
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hypothesis rejection probability. (Recall that the empirical randomization-
based null hypothesis rejection probability value asymptotically approaches
the exact enumeration-based null hypothesis rejection probability value as
nrbelo becomes larger and larger.)

Randomization-based tests of hypotheses employ uniform pseudoran-
dom numbers to construct equally likely outcomes for the experiment test
program that was actually conducted. Then, the test statistic value for each
of these constructed equally likely outcomes is calculated and compared to
the data-based test statistic value for the outcome of the experiment test
program that was actually conducted. In turn, the number noosi of con-
structed equally likely outcomes that exceed the data-based test statistic
value is used to calculate the randomization-based null hypothesis rejection
probability.

The rearrangements of the datum values for the CRD experiment test
program that was actually conducted is conveniently accomplished in a two-
step procedure using uniform pseudorandom numbers (Section 3.5). First,
the integers 1 through ndv are generated in random order (as in microcom-
puter program RANDOM1). These integers are then reordered from small-
est to largest while maintaining their association with the datum values for
the CRD experiment test program that was actually conducted. This two-
step procedure, when repeated, generates equally likely outcomes for a CRD
experiment test program (regardless of the number of its treatments or
treatment levels).
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Figure 3.11 Schematic of the organizational structure of a comparative CRD

experiment test program involving two treatments, viz., treatments A and B, each

with eight replicates.
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Remark: The appropriate number of constructed equally likely
experiment test program outcomes, nrbelo, is subjective. It is best
established by demonstrating that the randomization-based null
hypothesis rejection probability value does not change for practical
purposes as nrbelo is increased beyond the value for nrbelo employed
in your randomization-based analysis. Typically nrbelo equal 9999
suffices.

Microcomputer program RBBVACRD (randomization-based B
versus A in a CRD experiment test program) pertains to a CRD experi-
ment test program with only two treatments, denoted A and B. The null
hypothesis is that B ¼ A statistically, whereas the simple (one-sided) alter-
native hypothesis is that B > A statistically. The test statistic employed in
this microcomputer program to test the null hypothesis is the arithmetic
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COPY RBBVADTA DATA

1 file(s) copied

C> RBBVACRD

The data-based value of the (arithmetic average of the b’s minus the
arithmetic average of the a’s) test statistic for the CRD experiment test
program that was actually conducted is equal to 15.60.

Given the null hypothesis that B ¼ A statistically, this microcomputer
program constructed 9999 equally-likely outcomes for this experiment
test program by using uniform pseudorandom numbers to reorder its
datum values. The number of these outcomes that had its (arithmetic
average of the b’s minus the arithmetic average of the a’s) test statistic
value equal to or greater than 15.60 is equal to 48. Thus, given the null
hypothesis that B ¼ A statistically, the randomization-based probabil-
ity that a randomly selected outcome of this experiment test program
when continually replicated will have its (arithmetic average of the b’s
minus the arithmetic average of the a’s) test statistic value equal to or
greater than 15.60 is equal to 0.0049. When this probability is suffi-
ciently small, reject the null hypothesis in favor of the simple (one-
sided) alternative hypothesis that B > A statistically.
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average of the b experiment test program datum values minus the arith-
metic average of the a experiment test program datum values. The
constructed experiment test program outcomes of specific interest are
those outcomes that have their test statistic value equal to or greater
than the data-based test statistic value for the experiment test program
that was actually conducted.

Remark: The test statistic employed in microcomputer program
RBBVACRD is used in the classical independent t test that is also
based on the presumption that the CRHDVi’s are normally distrib-
uted. If this additional presumption is valid, then the classical
alternative lower 100(scp)% (one-sided) statistical confidence limit
that allegedly bounds the actual value for the difference
[mean(B) � mean(A)] is also valid.

Basic Probability and Statistics Concepts 149

COPY RBMPDDTA DATA

1 file(s) copied

C> RBBVAMPD

The data-based value of the [(arithmetic average of the b’s minus the
mpd)� the arithmetic average of the a’s] test statistic for the CRD
experiment test program that was actually conducted is equal to 5.60.

Given the null hypothesis that (B�mpdÞ ¼ A statistically, this micro-
computer program constructed 9999 equally-likely outcomes for this
experiment test program by using uniform pseudorandom numbers to
reorder its datum values. The number of these outcomes that had its
[(arithmetic average of the b’s minus the mpd)—the arithmetic average
of the a’s] test statistic value equal to or greater than 5.60 is equal to
336. Thus, given the null hypothesis that (B�mpdÞ ¼ A statistically,
the randomization-based probability that a randomly selected out-
come of this experiment test program when continually replicated
will have its [(arithmetic average of the b’s minus the mpd)—the arith-
metic average of the a’s] test statistic value equal to or greater than
15.60 is equal to 0.0337. When this probability is sufficiently small,
reject the null hypothesis in favor of the simple (one-sided) alternative
hypothesis that (B�mpdÞ > A statistically.
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3.D.1. Discussion

Microcomputer RBBVACRD is much more practical when it is revised to
include a minimum practical difference (mpd) between the mean (median) of
the conceptual statistical distribution that consists of APRCRHDV’s for
treatment B and the mean (median) of the conceptual statistical distribution
that consists of APRCRHDV’s for treatment A. Then, a lower 100(scp)%
(one-sided) statistical confidence limit that allegedly bounds the actual value
for the difference [mean(B) � mean(A)] can be established as discussed in
Supplemental Topic 3.C. This lower 100(scp)% (one-sided) statistical con-
fidence limit is established by iteratively running microcomputer program
RBBVAMPD with different input values for the mpd to establish a nontra-
ditional scp value that is approximately equal to the scp value of specific
interest. Recall, however, that a traditional (exact) value for the scp of
specific interest can be obtained, if required, by using the realization of a
uniform pseudorandom number to select between the two nontraditional
lower 100(scp)% (one-sided) statistical confidence limits whose scp values
immediately straddle the traditional scp value of specific interest. (The asso-
ciated equations are also given in Supplemental Topic 3.C.)
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4
The Classical Statistical
Presumption of Normally
Distributed Experiment Test
Program Datum Values

4.1. INTRODUCTION

The fundamental presumption underlying classical statistical analyses is that
each experiment test program datum value is randomly selected from an
appropriately scaled conceptual (two-parameter) normal distribution. This
fundamental presumption is supported in this chapter by intuitively exam-
ining the statistical behavior of the numerous minor sources of unavoidable
variability that are included in each experiment test program datum value.
We use a combination of elementary analysis and simulation in this intuitive
examination.

4.2. CONCEPTUAL SAMPLING DISTRIBUTION THAT
CONSISTS OF ALL POSSIBLE REPLICATE
REALIZATION VALUES FOR THE STATISTIC (THE
SUM OF ns UNIFORM PSEUDORANDOM
NUMBERS)

Consider the conceptual sampling distribution that consists of all possible
replicate realization values for the statistic (the sum of ns uniform pseudo-
random numbers). We now demonstrate that this conceptual sampling
distribution can be accurately approximated by a conceptual (two-para-
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meter) normal distribution when ns is sufficiently large. However, to keep
this demonstration tractable, we initially limit ns to be equal to only 1, 2,
and 3.

4.2.1. Conceptual Sampling Distribution that Consists of
All Possible Replicate Realization Values for the
Statistic (the Sum of One Uniform Pseudorandom
Number)

Recall that uniform pseudorandom numbers are statistically synonymous
with (mutually independent) realization values randomly selected from
the conceptual uniform distribution, zero to one (Figure 3.7). Thus
the conceptual uniform distribution, zero to one, is identical to the
conceptual sampling distribution that consists of all possible replicate rea-
lization values for the statistic (the sum of one uniform pseudorandom
number).

4.2.2. Conceptual Sampling Distribution that Consists of
All Possible Replicate Realization Values for the
Statistic (the Sum of Two Uniform Pseudorandom
Numbers)

To develop the PDF expression for the conceptual sampling distribution
that consists of all possible replicate realization values for the statistic (the
sum of two pseudorandom numbers), we plot x1 along the abscissa and x2
along the ordinate in Figure 4.1.

The unit square in Figure 4.1(a) establishes all possible locations of
the respective realization values x1 and x2 for the two uniform pseudo-
random numbers, X1 and X2, when plotted as the point (x1, x2). This unit
square is generically termed a probability space. Note that (a) the prob-
ability that X1 will lie inside an interval of infinitesimal width dx1 is equal
to dx1 regardless of the value of x1, and (b) the probability that X2 will lie
inside an interval of infinitesimal width dx2 is equal to dx2 regardless of
the value of x2. Thus, because the respective realization values for x1 and
x2 are independent, the probability that the plotted realization value point
(x1, x2) will lie inside of an infinitesimal rectangular area with dimensions
dx1 by dx2 is equal to dx1 times dx2, regardless of the actual location of
this infinitesimal area in the unit square probability space. Accordingly, we
can use the enumeration-based definition for probability to establish the
exact value for the probability that the plotted realization value point (x1,
x2) will lie inside any area of specific interest. Note that when (x1+x2)
takes on a specific value, say x�, the equation x1 þ x2 ¼ x� defines a line as
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illustrated in Figure 4.1(b). This line intersects the unit square probability
space and establishes an area that is defined by the inequality
x1 þ x2 < x�. This area is numerically equal to the enumeration-based
probability that 0 < X1 þ X2 < x� (because the area of the unit square
probability space is equal to one). For example, as illustrated in Figure
4.1(c), the enumeration-based probability that 0 < X1 þ X2 < 1=2 is equal
to 1/8, and the enumeration-based probability that 1=2 < X1 þ X2 < 1 is
equal to 3/8. Next, consider the event ½0 < X1 þ X2 < x��. Note that, for
x� between 0 and 1 and for x� between 1 and 2, the area that is defined by
the inequality x1 þ x2 < x� changes linearly with a change in x�. These
changes can be visualized by successively adding an elemental area with
length l, Figure 4.1(d), to the area previously included in the inequality.
Note that length l starts at 0, increases linearly with x� up to x� ¼ 1, and
then decreases linearly with x� up to x� ¼ 2, where l = 0 again. Thus, the
PDF defining the conceptual sampling distribution that consists of all
possible replicate realization values for the statistic (the sum of two uni-
form pseudorandom numbers) must increase linearly for (x1 þ x2) between
0 and 1, and then decrease linearly for (x1 þ x2) between 1 and 2.
Accordingly f(x) has two linear (first-order) segments, viz.,
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Figure 4.1 Diagrams useful in developing the PDF defining the conceptual

sampling distribution that consists of all possible replicate realization values for the

statistic (the sum of two uniform pseudorandom numbers).
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f ðxÞ ¼ x

f ðxÞ ¼ 2� x

f ðxÞ ¼ 0

for 0 < x < 1

for 1 < x < 2

for all other values of x

This PDF is plotted in Figure 4.2 (along with the PDF’s that define the
analogous conceptual sampling distributions pertaining to ns equal to 1, 2,
3, and 4).
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Figure 4.2 Comparison of the respective conceptual sampling distributions for

the statistics (the sum of 1, 2, 3, and 4 uniform pseudorandom numbers). Note that

the ‘‘bell-shaped contour’’ of the PDF’s for the conceptual sampling distributions

pertaining to ns is equal to 3 and 4.
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4.2.3. Conceptual Sampling Distribution that Consists of
All Possible Replicate Realization Values for the
Statistic (the Sum of Three Uniform
Pseudorandom Numbers)

The conceptual sampling distribution that consists of all possible replicate
realization values for the statistic (the sum of three uniform pseudorandom
numbers) must be deduced because its probability space is three-dimen-
sional, viz., a unit cube with its inboard edges along mutually orthogonal
axes x1, x2, and x3. Nevertheless, it is clear that, because the respective
realization values x1, x2, and x3 for the associated uniform pseudorandom
numbers are mutually independent, all infinitesimal parallelepipeds with
dimensions dx1 by dx2 by dx3 are equally likely to contain the realization
value point (x1,x2,x3) regardless of their actual locations in the unit cube
probability space. Accordingly, the enumeration-based probability that
X1 þ X2 þ X3 < x� is exactly computed as the ratio of the volume of the
probability space defined by the inequality x1 þ x2 þ x3 < x� to the total
volume of the probability space (one). The intersection of the octahedral
plane x1 þ x2 þ x3 ¼ x� with the three inboard edges of the unit cube is
an equilateral triangle for x� between 0 and 1. The associated inequality
defines a tetrahedral volume with this equilateral triangle as its base. For
x� between 1 and 2, the basal area of the sample space volume defined by the
inequality x1 þ x2 þ x3 < x� is more complex geometrically because the
octahedral plane associated with the equality x1 þ x2 þ x3 ¼ x� intersects
the unit cube probability space along its three inboard edges and its three
intermediate edges. If the probability space cube were larger, the intersection
of this octahedral plane and the probability space would still be an equilat-
eral triangle. However, restricting the size of the probability space to a unit
cube has the geometric consequence of cutting off each apex of the equilateral
triangle defining the basal area for a larger probability space cube.
Accordingly, for the unit cube probability space, the basal area of the prob-
ability space volume defined by the inequality x1 þ x2 þ x3 < x� continues
to increase as x� exceeds 1, but at a slower and slower rate until x� reaches
3/2. This basal area then starts to decrease, slowly at first, and then at a faster
and faster rate until x� reaches 2. This change in the basal area of the prob-
ability space volume is symmetrical for x� between 1 and 3/2 and x� between
3/2 and 1. For x� greater than 2, the octahedral plane intersects the prob-
ability space unit cube only along its outboard edges. Accordingly, the
change in basal area for x� between 2 and 3 is symmetrical to the change
in basal area for x� between 0 and 1. The PDF defining the conceptual
sampling distribution that consists of all possible replicate realization values
for the statistic (the sum of three uniform pseudorandom numbers) can be
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deduced by examining the quadratic nature of the basal areas of the elemen-
tal volumes that are successively added to generate the resulting probability
space volumes as x� successively increases from 0 to 1, from 1 to 2, and from
2 to 3. This PDF has three quadratic (second-order) segments, viz.,

f ðxÞ ¼ 1
2
x2 0 < x < 1

f ðxÞ ¼ �x2 þ 3x� 3
2

1 < x < 2

f ðxÞ ¼ 1
2
ð3� xÞ2 2 < x < 3

f ðxÞ ¼ 0 for all other x

and recall that it is depicted in Figure 4.2 (along with the PDF’s that define
the respective conceptual sampling distributions pertaining to ns equal to 1,
2, 3, and 4).

4.2.4 Conceptual Sampling Distribution that Consists of
All Possible Replicate Realization Values for the
Statistic (the Sum of ns Pseudorandom Numbers)

When the statistic of specific interest is the sum of more than three
uniform pseudorandom numbers, the relevant probability space is a unit
hypercube and mathematical induction must be used to deduce the PDF’s
that define the associated conceptual sampling distributions (Parzen, 1960).
However, as evident in Table 4.1 for ns from 1 to 4, each successive PDF
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Table 4.1 Expressions for the PDFs that Define the Respective

Conceptual Sampling Distributions Depicted in Figure 4.2

ns f ðxÞ for x between

1 1 0 and 1

2 x 0 and 1

2� x 1 and 2

3 1
2
x2 0 and 1

�x2 þ 3x� 3
2 1 and 2

1
2
ð3� xÞ2 2 and 3

4 1
6
x3 0 and 1

� 1
2 x

3 þ 2x2 � 2xþ 2
3 1 and 2

1
2
x3 � 4x2 þ 10x� 44

6
2 and 3

1
6
ð4� xÞ3 3 and 4
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consists of ns segments of (ns � 1)th order polynomials and is symmetrical
relative to its midpoint. Thus, as ns increases, the ns segments of (ns � 1)th

order polynomials provide an increasingly more accurate approximation to
the PDF for a conceptual (two-parameter) normal distribution (Chapter
5). In fact, this normal approximation becomes so accurate that it has
been widely used with ns ¼ 12 to generate normally distributed pseudo-
random numbers.

We now need to demonstrate that the statistical behavior displayed in
Figure 4.2 is also valid for pseudorandom numbers generated from diverse
conceptual statistical distributions. However, we temporarily postpone this
demonstration to develop analytical expressions in Exercise Set 1 for estab-
lishing the actual values for the mean and variance of the conceptual sam-
pling distributions in Figure 4.3. (These expressions have important
statistical application when generalized appropriately.)

Exercise Set 1

These exercises are intended to use the PDF expressions given in Table 4.1
to provide insight regarding the fundamental statistical notion that (a) the
actual value for the mean of the conceptual sampling distribution that
consists of all possible replicate realization values for the statistic (the
sum of ns pseudorandom numbers) is equal to ns times the actual value
for the mean of the conceptual statistical distribution that consists of all
possible replicate realization values for these pseudorandom numbers, and
(b) the actual value of the variance of the conceptual sampling distribution
that consists of all possible replicate realization values for the statistic (the
sum of ns pseudorandom numbers) is equal to ns times the actual value for
the variance of the conceptual statistical distribution that consists of all
possible replicate realization values for these pseudorandom numbers.
However, (b) is valid only when the respective pseudorandom numbers
are mutually independent.

1. For ns ¼ 1 to 4, verify by integration that the respective areas
under the PDF’s in Table 4.1 are equal to 1.

2. For ns ¼ 1 to 4, compute the actual values for the means of the
respective conceptual sampling distributions defined by the PDF’s
in Table 4.1. (a) Then, use these results to demonstrate that

meanðX1 þ X2 þ X3 þ � � � þ Xns
Þ ¼ mean

Xns
i¼1

Xi

 !

¼ ns �meanðXÞ
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In turn, (b) use the result (Chapter 3, Exercise Set 4):

meanðc � XÞ ¼ c �meanðXÞ
to demonstrate that

mean[arithmetic average ðX1 þ X2 þ X3 þ � � � þ Xns
Þ�

¼ mean
1

ns

� �
�
Xns
i¼1

Xi

 !" #
¼ meanðXÞ

These relationships are valid regardless of the actual form
for the conceptual statistical distribution that consists of all pos-
sible replicate experiment test program realization values for the
generic random variable X, whether its metric is discrete or
continuous.

3. For ns ¼ 1 to 4, compute the actual values for the variances of
the respective conceptual sampling distributions defined by
PDFs given in Table 4.1. (a) Then, use these results to demon-
strate that

varðX1 þ X2 þ X3 þ � � � þ XnsÞ ¼ var
Xns
i¼1

Xi

 !
¼ ns � varðXÞ

In turn, (b) use the result (Chapter 3, Exercise Set 4):

varðc � XÞ ¼ c2 � varðXÞ
to demonstrate that

var[arithmetic averageðX1 þ X2 þ X3 þ � � � þ Xns
Þ�

¼ var
1

ns

� �
�
Xns
i¼1

Xi

 !" #
¼ varðXÞ

ns

These relationships are valid regardless of the form for the
conceptual statistical distribution that consists of all possible
replicate experiment test program realization values for the gen-
eric random variable X, whether its metric is discrete or contin-
uous—provided that these replicate experiment test program
realizations are mutually independent. (See Supplemental Topic
7.A for more information in this regard.)
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4. The variance relationship developed in Exercise 3 has direct
application in the classical statistical analysis of variance
(Chapter 6). Recall that, for the orthogonal conceptual statistical
models presented in Chapter 2, the column-vector-based least-
squares est(scj) is

estðscjÞ ¼

Xndv
i¼1

cj;i � (experiment test program datum valueÞi
Xndv
i¼1

c2j;i

¼
Xndv
i¼1

cj;iXndv
i¼1

c2j;i

0
BBBB@

1
CCCCA � (experiment test program datum value)i

in which cj,i is the integer value for the ith element in the jth

column vector in the ndv by ndv orthogonal augmented contrast
array associated with the experiment test program. Presume that
each experiment test program datum value is randomly selected
from its associated conceptual statistical distribution with (homo-
scedastic) variance var(APRCRHEE’s), then verify that

var[estðscjÞ� ¼
varðAPRCRHEE 0sÞXndv

i¼1

c2j;i

Remark: Since the least-squares est(scj) is a linear func-
tion of the respective experiment test program datum
values, the associated least-squares estimator is unbiased
when the presumed conceptual statistical model is cor-
rect.

5. Given that the EV[est(scj)] is equal to zero, demonstrate that the
expected value for the sum of squares of the respective elements
that comprise the column vector in the estimated complete ana-
lytical model is equal to var(APRCRHEE’s). Since each column
vector in the estimated complete analytical model has one statis-
tical degree of freedom, this result can be used to establish a
general rule for computing an unbiased estimate of
var(APRCRHEE’s). See Section 5.2.

Classical Statistical Analyses 159

TLFeBOOK



6. (a) Use the analytical expression for each PDF in Table 4.1 to
verify that the probability that the sum of ns uniform pseudo-
random numbers will lie in a central interval whose width is
one-half of the PDF range is equal to 1/2 (0.500) for ns ¼ 1,
3/4 (0.750) for ns ¼ 2, 55/64 (0.859) for ns ¼ 3, and 11/12
for (0.917) for ns ¼ 4. Is it intuitively obvious that this prob-
ability value asymptotically approaches one as ns increases
without bound? (b) Explain why exactly the same probability
values and asymptotic probability behavior as in (a) pertain
to the arithmetic average of na ¼ ns uniform pseudorandom
numbers.

(This asymptotic probability behavior pertains to every
central interval regardless of how small its width. It is the
direct consequence of the outcome developed in Exercise 3
that the variance of an arithmetic average is inversely propor-
tional to na. Thus the width of the associated statistical con-
fidence interval is proportional to the square root of na.
Accordingly, its width decreases by a factor of ten as na
increases by a factor of one hundred, which confirms the asser-
tions made in discussing the simulation outcome summarized
in Figures 3.2 and 3.4.)

7. (a) Use the probability space in Figure 4.1(a) to develop the
analytical expression for the PDF that defines the conceptual
sampling distribution that consists of all possible replicate rea-
lization values for the statistic (X1 � X2). Then, (b) use this
analytical expression verify that

meanðX1 � X2Þ ¼ 0 ¼ meanðX � XÞ ¼ meanðXÞ �meanðXÞ

and

varðX1 � X2Þ ¼ 2 � varðXÞ ¼ varðX � XÞ ¼ varðXÞ þ varðXÞ

In turn, (c) let X1 be denoted X and X2 be denoted Y, then verify
that

meanðX � YÞ ¼ meanðXÞ �meanðYÞ

and

varðX � YÞ ¼ varðXÞ þ varðYÞ
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4.3. ACCURACY OF THE CONCEPTUAL (TWO-
PARAMETER) NORMAL DISTRIBUTION
APPROXIMATION TO THE CONCEPTUAL
SAMPLING DISTRIBUTION THAT CONSISTS OF
ALL POSSIBLE REPLICATE REALIZATION VALUES
FOR THE STATISTIC (THE SUM OF ns
PSEUDORANDOM NUMBERS)

Advanced statistical theory indicates that (a) the conceptual sampling dis-
tribution that consists of all possible replicate realization values for the
statistic (the sum of ns normal pseudorandom numbers) is an appropriately
scaled conceptual (two-parameter) normal distribution regardless of the
value for ns, and (b) the conceptual sampling distribution that consists of
all possible replicate realization values for the statistic (the sum of ns pseu-
dorandom numbers) can be accurately approximated by the conceptual
(two-parameter) normal distribution regardless of the conceptual statistical
distribution used to generate these pseudorandom numbers, provided that ns
is sufficiently large. We now provide insight regarding the accuracy of this
normal approximation by conducting three simulation studies pertaining to
the statistic (the sum of ns pseudorandom numbers). The first simulation
study pertains to normal (normally distributed) pseudorandom numbers. It
provides perspective by establishing the magnitudes of inherent (unavoid-
able) simulation errors. The second simulation study pertains to uniform
pseudorandom numbers. It is intended to confirm and to extend the analy-
tical results developed (and deduced) in Section 4.2. The third simulation
study pertains to exponential pseudorandom numbers. It is intended to
establish the magnitudes of the ‘‘worst-case’’ normal approximation errors.
These three simulations studies are then augmented by a discussion of cog-
nate simulation studies.

4.3.1. Simulation Study One�Magnitudes of Typical
Simulation Errors

In this simulation study, we translate and scale the conceptual (two-para-
meter) normal distribution such that the resulting actual values for the
means and variances of the conceptual sampling distributions that consist
of all possible realization values for the statistic (the sum of ns normal
pseudorandom numbers) are zero and one, respectively. Thus, 90% of our
simulation-based sums will theoretically lie in the numerical interval from
�1.645 to þ1.645, 95% will theoretically lie in the numerical interval from
�1.960 to þ1.960, and 99% will theoretically lie in the numerical interval
from �2.576 to þ2.576. In turn, we (a) generate 10,000 replicate experiment

Classical Statistical Analyses 161

TLFeBOOK



test programs with ns normal pseudorandom numbers, for ns from 3 to 15,
and (b) compute the proportions of the respective statistics that actually lie
in the three probability intervals of specific interest. Then, by appropriately
subtracting p ¼ 0.90, 0.95, or 0.99 from these proportions, we generate a
typical set of simulation errors. As evidenced by the example output from
microcomputer program AVE3A, typical simulation errors are less than 1%
and do not appear to decrease noticeably as ns increases.

Remark One: Microcomputer programs AVE3A and AVE3A2
employ the theoretically exact polar method (Knuth, 1969) to gen-
erate normal pseudorandom numbers (whose actual behavior
depends on the behavior of the underlying uniform pseudorandom
number generator). Comparative microcomputer programs AVE3D
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C> AVE3A

Input a new set of three, three-digit odd seed numbers

371 583 915

Sum of ns
Normal

Pseudorandom
Numbers

Simulation
Error for the
0.90 Interval

Simulation
Error for the
0.95 Interval

Simulation
Error for the
0.99 Interval

3 �0:0019 0.0007 0.0000
4 0.0000 0.0000 0.0006
5 �0:0019 �0:0028 �0:0006
6 �0:0020 0.0003 0.0018
7 �0:0071 �0:0036 �0:0012
8 0.0049 0.0017 0.0020
9 0.0018 0.0012 0.0003

10 �0:0026 �0:0007 0.0003
11 �0:0003 �0:0002 �0:0018
12 0.0005 0.0003 0.0004
13 �0:0034 �0:0035 0.0002
14 0.0058 0.0003 0.0007
15 �0:0005 �0:0008 0.0005
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and AVE3D2 employ a normal pseudorandom number generator
that was used in the original IBM scientific subroutine package. It is
based on the approximate normality of the sum of twelve uniform
pseudorandom numbers.

Remark Two: Given 10,000 replicate experiment test programs,
approximately 95% of the microcomputer program AVE3A simu-
lation errors will lie in the statistical confidence interval �0:006 for
p ¼ 0:90, �0:004 for p ¼ 0:95, and �0:002 for p ¼ 0:99 (Exercise
Set 10). However, if one million replicate experiment test programs
were used in this simulation study, the width of these statistical
confidence intervals would be reduced by a factor of 10 (and the
microcomputer execution time would increase by a factor of 100).
Thus, we establish the size of the simulation errors (and the
associated microcomputer execution time) by the selection of the
number of replicate experiment test programs employed in our
simulation study.

Microcomputer program AVE3A2 pertains to one million
replicate experiment test programs for each value of ns. Its example
output appears in microcomputer file AVE3A2. It is prudent to run
program AVE3A before attempting to run program AVE3A2.

4.3.2. Simulation Study Two�Accuracy of the Normal
Approximation to the Conceptual Sampling
Distribution that Consists of All Possible
Replicate Realization Values for the Statistic (the
Sum of ns Uniform Pseudorandom Numbers)

In this simulation study, we translate and scale the conceptual uniform
distribution, 0 to 1, such that the for the actual values for the means and
variances of the conceptual sampling distributions that consist of all possi-
ble realization values for the statistics (the sum of ns uniform pseudorandom
numbers) are zero and one, respectively. Thus, if the normal approximations
to these conceptual sampling distributions are exact, 90% of our simulation-
based sums will theoretically lie in the numerical interval from �1.645 to
þ1.645, 95% will theoretically lie in the numerical interval from �1.960 to
þ1.960, and 99% will theoretically lie in the numerical interval from 2.576
to þ2.576. In turn, we (a) generate 10,000 replicate experiment test pro-
grams with ns uniform pseudorandom numbers, for ns from 3 to 15, and
(b) compute the proportions of the respective statistics that actually lie in the
three probability intervals of specific interest. Then, by appropriately sub-
tracting p ¼ 0.90, 0.95, or 0.99 from these proportions, we obtain a typical
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set of simulation-based estimates for the normal approximation errors. As
evidenced by the example output from microcomputer program AVE3B, the
magnitudes of the normal approximation errors are remarkably similar to
the magnitudes of the simulation errors in the example output from micro-
computer program AVE3A. Thus, for all three probability intervals of spe-
cific interest, the magnitudes of the systematic (bias) components of these
approximation errors are obscured by the magnitudes of their simulation
components—even for ns as small as 3. In fact, the number of replicate
experiment test programs must be at least one million to obtain reasonably
accurate estimates of the actual values for the systematic (bias) components
of the respective approximation errors. (Microcomputer program AVE3B2
pertains to one million replicate sets of ns uniform pseudorandom numbers.
Its example output appears in microcomputer file AVE3B2.)
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C> AVE3B

Input a new set of three, three-digit odd seed numbers

371 583 915

Sum of ns
Uniform

Pseudorandom
Numbers

Approximation
Error for the
0.90 Interval

Approximation
Error for the
0.95 Interval

Approximation
Error for the
0.99 Interval

3 �0:0019 0.0044 0.0069
4 0.0027 0.0040 0.0038
5 0.0001 0.0021 0.0028
6 0.0016 0.0037 0.0020
7 0.0022 0.0032 0.0016
8 �0:0028 �0:0020 �0:0008
9 �0:0043 0.0008 0.0026

10 �0:0017 �0:0016 �0:0004
11 0.0006 0.0001 0.0009
12 0.0046 0.0058 0.0025
13 0.0039 0.0001 �0:0002
14 �0:0041 0.0001 0.0019
15 �0:0030 �0:0029 0.0014
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4.3.3. Simulation Study Three�Accuracy of the
Normal Approximation for the Conceptual
Sampling Distribution that Consists of All
Possible Replicate Realization Values for the
Statistic (the Sum of ns Exponential
Pseudorandom Numbers)

The PDF for the conceptual exponential distribution is expressed as
f ðxÞ ¼ exp[(x þ 1)] for x > �1 and f ðxÞ ¼ 0 elsewhere. As in
Simulation Study Two, we translate and scale the conceptual exponen-
tial distribution such that the resulting actual values for the means and
variances of the conceptual sampling distributions for the statistic (the
sum of ns exponential pseudorandom numbers) are zero and one, respec-
tively. Thus, if the normal approximations to these conceptual statistical
distributions are exact, 90% of our simulation-based sums will theore-
tically lie in the numerical interval from �1.645 to þ1.645, 95% will
theoretically lie in the numerical interval from �1.960 to þ1.960, and
99% will theoretically lie in the numerical interval from �2:576 to
þ2.576. In turn, we (a) generate 10,000 replicate experiment test pro-
grams with ns uniform pseudorandom numbers, for ns from 3 to 15, and
(b) compute the proportions of the respective statistics that actually lie
in the three probability intervals of specific interest. Then, by appropri-
ately subtracting p ¼ 0.90, 0.95, or 0.99 from these proportions, we
obtain a typical set of simulation-based estimates for the normal
approximation errors. As evidenced by the example output from micro-
computer program AVE3C, the magnitudes of the normal approxima-
tion errors are too large to be obscured by the magnitudes of their
corresponding simulation components. Nevertheless it is clear that, for
p ¼ 0.95 and 0.99, the magnitudes of the normal approximation errors
are less than 1%, even for ns as small as 5. The actual values for the
systematic (bias) components of these approximation errors can be esti-
mated by examining several independent outputs from microcomputer
program AVE3C2 which pertains to one million replicate experiment
test programs. An example output from microcomputer program
AVE3C2 appears in microcomputer file AVE3C2.
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4.3.4. Cognate Simulation Studies

Given any of the alternative conceptual statistical distributions commonly
employed in mechanical reliability, the normal approximation errors per-
taining to the conceptual sampling distributions for the statistic (the sum of
ns replicate pseudorandom numbers) are intermediate in magnitude to those
generated by running microcomputer programs AVE3B and AVE3C.
Similarly, given the collection of alternative conceptual statistical distribu-
tions commonly employed in mechanical reliability, the normal approxi-
mation errors pertaining to the conceptual sampling distributions that
consist of all possible replicate realization values for the statistic (the sum
of ns assorted pseudorandom numbers) are also intermediate in magnitude
to the simulation errors generated by running microcomputer programs
AVE3B and AVE3C. Moreover, this collection of alternative conceptual
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C> AVE3C

Input a new set of three, three-digit odd seed numbers

371 583 915

Sum of ns
Exponential

Pseudorandom
Numbers

Approximation
Error for the
0.90 Interval

Approximation
Error for the
0.95 Interval

Approximation
Error for the
0.99 Interval

3 0.0315 0.0058 �0:0094
4 0.0315 0.0118 �0:0062
5 0.0224 0.0075 �0:0079
6 0.0187 0.0054 �0:0056
7 0.0172 0.0058 �0:0074
8 0.0133 0.0042 �0:0066
9 0.0118 0.0070 �0:0012

10 0.0158 0.0067 �0:0046
11 0.0129 0.0075 �0:0039
12 0.0139 0.0056 �0:0028
13 0.0091 0.0036 �0:0029
14 0.0074 0.0011 �0:0048
15 0.0022 0.0002 �0:0027

TLFeBOOK



statistical distributions can even have markedly different actual values for
their respective means and variances without noticeably affecting the mag-
nitudes of the normal approximation errors.

4.3.5. Perspective

Whatever the underlying conceptual statistical distribution or distributions
used to generate the pseudorandom numbers, our simulation studies demon-
strate that the conceptual sampling distribution that consists of all possible
replicate realization values for the statistic (the sum of ns pseudorandom
numbers) is accurately approximated by an appropriately scaled conceptual
(two-parameter) normal distribution—even when ns is as small as 6 to 8.
This statistical behavior supports the fundamental presumption of normally
distributed experiment test program datum values (experimental errors) that
underlies classical statistical analyses.

This normality presumption has an important consequence in the
classical statistical analysis of variance (Chapter 6). Recall that the respec-
tive [est(scj)]’s in the complete analytical model are computed using the
(linear) expression:

estðscjÞ ¼

Xndv
i¼1

cj;i � (experiment test program datum value)i

Xndv
i¼1

c2j;i

in which cj,i is the integer value for the i
th element of the jth column vector in

the ns by ns orthogonal augmented contrast array associated with the experi-
ment test program. Thus, based on the presumption that each of the respec-
tive experiment test program datum values is normally distributed, under
continual replication of the experiment test program the conceptual sam-
pling distribution for the statistic [est(scj)] is an appropriately scaled con-
ceptual (two-parameter) normal distribution. This assertion (presumption)
provides a rational basis for calculating the classical (shortest) 100(scp)%
(two-sided) statistical confidence interval that allegedly includes the actual
value for each scj of specific interest. The associated calculation is developed
in Chapter 5 and is illustrated in Chapter 6. It is based on the fundamental
variance expression:

var[estðscjÞ� ¼
varðAPRCRHNEE’sÞXndv

i¼1

c2j;i
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in which APRCRHNDEE’s connotes all possible replicate conceptual ran-
dom homoscedastic normally distributed (experiment test program) experi-
mental errors.

4.4. CLOSURE

The experiment test program CRHDVi’s are presumed to be normally dis-
tributed in the classical statistical analysis, termed analysis of variance, in
Chapter 6. Thus, we first consider the conceptual (two-parameter) normal
distribution and its associated conceptual sampling distributions inChapter 5.

4.A. SUPPLEMENTAL TOPIC: RANDOMIZATION-BASED
TEST OF THE NULL HYPOTHESIS OF
INDEPENDENCE FOR PAIRED DATUM VALUES
VERSUS THE ALTERNATIVE HYPOTHESIS OF A
MONOTONIC ASSOCIATION

We now present a test of the null hypothesis that the paired datum values of
specific interest are independent versus the composite alternative hypothesis
that these paired datum values actually exhibit either a concordant or a dis-
cordant monotonic association. This statistical test is particularly relevant for
a proper perspective regarding the respective simulation and approximation
errors in our Section 4.3 simulation studies. Since, for each value of ns, the
respective simulation errors associated with the p ¼ 0.90, 0.95, and 0.99 inter-
vals are based on pseudorandom numbers that were generated using the same
set of three, three-digit odd seed numbers, it is reasonable to suspect that these
errors are not independent, but rather are concordant pair-wise (the simple
alternative hypothesis). Note that a concordant association is strongly
suggested by a plot of the paired example microcomputer program AVE3D
simulation errors pertaining to the p ¼ 0.95 and 0.99 intervals, Figure 4.3.

This statistical test can also be used to examine the statistical cred-
ibility of the presumption that the respective est(CRHEEi’s) of specific inter-
est are random, as opposed to being monotonically associated with (or
systematically influenced by) some experiment test program variable or con-
dition.

Suppose that the two sets of npdv paired datum values are indeed
independent. Then, when the npdv datum values of data set one are reordered
from smallest to largest, all sequences of the correspondingly reordered npdv
datum values for data set two are equally likely to occur. Next, suppose that
data set one is reordered from smallest to largest and that data set two is
correspondingly reordered by maintaining the respective associations
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between the paired datum values. If so, then Kendall’s positive score test
statistic, kps, is defined as the number of reordered datum values in data set
two that exceed each respective reordered datum value. For example, con-
sider the following hypothetical paired datum values:

data set one data set two

1 2

4 3

3 4

2 1

5 5

As illustrated below, when the datum values of data set one are reordered
from smallest to largest and the respective associations between the paired
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Figure 4.3 Plot of the paired example microcomputer program AVE3D simula-

tion errors pertaining to the p ¼ 0:95 and 0.99 intervals. Visual examination suggests

a strong concordant association between the respective paired simulation errors.

Given the null hypothesis that the signs and magnitudes of the respective paired

simulation errors are independent versus the simple alternative hypothesis that

their signs and magnitudes are concordant, randomization-based microcomputer

program RBKTAU (Section 4.A.1) calculates the null hypothesis rejection probabil-

ity as being equal to 0.0076 (0.0152/2). Thus, we statistically conclude that the

respective simulation errors are not independent, but rather are indeed concordant.
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datum values in data sets one and two are maintained, the reordered datum
values in data set two form a sequence that is convenient for calculating the
data-based value of kps:

data set one data set two

1 2

2 1

3 4

4 3

5 5

Now consider only reordered data set two. Datum value 2 is exceeded by
subsequent ordered datum values 4, 3, and 5 (incremental kps ¼ 3); datum
value 1 is exceeded by subsequent ordered datum values 4, 3, and 5 (incre-
mental kps ¼ 3); datum value 4 is exceeded by subsequent ordered datum
value 5 (incremental kps ¼ 1); and datum value 3 is exceeded by subsequent
ordered datum value 5 (incremental kps ¼ 1). Accordingly, for this illustra-
tive example, the data-based value of kps is equal to 3 þ 3 þ 1 þ 1 ¼ 8. In
turn, we calculate the corresponding value of the more intuitive Kendall’s
tau test statistic using the expression:

ktau ¼ 4 � kps
npdv � ðnpdv� 1Þ � 1

where ktau, by definition, lies in the interval from �1 to þ1. When the
datum values (or ranks) of data set two ascend in strict concordance with
data set one, then ktau ¼ þ1. When the datum values (or ranks) of data set
two descend in strict discordance with data set one, then ktau ¼ �1.

Perspective: Kendall’s tau test statistic is defined such that its range,
�1 to þ 1, is identical to the range of the well-known conceptual
correlation coefficient (ccc) test statistic.

The absolute value of ktau, denoted abs(ktau), is equal to 0.6000 for our
illustrative example. The exact enumeration-based probability that a ran-
domly selected value of abs(ktau) for five paired datum values under con-
tinual replication will be greater than or equal to 0.6000 is equal to 0.2333
(28/120), whereas microcomputer program RBKTAU calculates the corre-
sponding randomization-based probability as being equal to 0.2420 (see
microcomputer computer file RBKTDTA1). Accordingly, we cannot ration-
ally reject the null hypothesis of independence for our five example paired
datum values.

Caveat: It was presumed for convenience in writing microcomputer
program RBKTAU that neither data set contains ties.
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4.A.1. Numerical Example

Suppose that the paired datum values of specific interest are the respective
example microcomputer program AVE3D simulation errors pertaining to
the p ¼ 0.95 and 0.99 intervals. These paired simulations errors (conveni-
ently rescaled) appear in microcomputer file RBKTDATA. Microcomputer
program RBKTAU calculates the randomization-based probability (0.0152)
that a randomly selected set of 13 paired datum values will have its value of
the abs(ktau) test statistic equal to or greater than the data-based value of
the abs(ktau) test statistic for these paired datum values (0.5128). However,
its null hypothesis rejection probability pertains to the composite alternative
hypothesis that includes both concordant and discordant monotonic asso-
ciations. In contrast, the simple alternative hypothesis relevant to these
simulation errors pertains only to a concordant association. Thus, the
appropriate randomization-based null hypothesis rejection probability is
equal to 0.0076 (0.0152/2). Accordingly, we rationally opt to reject the
null hypothesis that the respective simulation errors are independent and
assert instead that these errors exhibit a concordant association.
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C> TYPE RBKTDATA

13 Number of Paired Datum Values in Each Data Set

þ28 þ12 Corresponding Paired Datum Values
�08 �01
�15 þ17
�01 þ09
�16 �11
þ28 þ06
�19 �06
þ20 þ23
�17 �01
þ35 þ11
þ01 þ10
�15 �07
þ08 þ11
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9999 Number of Randomly Reordered Sequences of the
Data Set Two Datum Values

237 755 913A A New Set of Three, Three-Digit Odd Seed Numbers

(These paired datum values pertain to microcomputer program
AVE3D simulation errors for scp equal to 0.95 and 0.99.)

C> COPY RBKTDATA DATA

1 file(s) copied

C> RBKTAU

This microcomputer program reordered the datum values in data set
two by reordering the datum values in data set one from smallest to
largest and maintaining the pairings of the respective datum values in
data sets one and two. The data-based value of Kendall’s abs(tau) test
statistic for the 13 reordered datum values in data set two is equal to
0.5128.

Given the null hypothesis of independence for the paired datum values
of specific interest, this microcomputer program constructed 9999
equally-likely sets of 13 paired datum values by using uniform pseu-
dorandom numbers to re-order only the datum values in data set two.
The number of these sets that had its Kendall’s abs(tau) test statistic
value equal to or greater than 0.5128 is equal to 151. Thus, given the
null hypothesis of independence for the paired datum values of specific
interest, the randomization-based probability that a randomly selected
set of 13 paired datum values will have its Kendall’s abs(tau) test
statistic value equal to or greater than 0.5128 is equal to 0.0152.
When this probability is sufficiently small, reject the null hypothesis
in favor of the composite alternative hypothesis that the paired datum
values of specific interest exhibit either a monotonic concordant or
discordant association.
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Exercise Set 2

These exercises are intended to familiarize you with running program micro-
computer RBKTAU.

1. Run microcomputer program RBKTAU to test the independence
of the example simulation-based normal approximation errors
that were generated by running microcomputer program
AVE3A. Discuss your results.

2. Run microcomputer program RANDOM1 with ndigit ¼ 8 and
nelpri ¼ 8 with two different sets of three, three-digit odd seed
numbers to generate two independent data sets, each with eight
pseudorandom two-digit integer numbers. Then, (a) examine the
respective paired datum values relative to a monotonic associa-
tion, and (b) each pseudorandom data set relative to a time-
order-of-generation trend.

4.A.2. Additional Examples

The est(CRSIEEi’s) for the three respective numerical examples pertaining
to the quantitative CRD experiment test program depicted in Figure 2.1 are
plotted in Figure 4.4. Given the sequence of est(CRSIEEi’s) in Figure 4.4(a),
microcomputer program RBKTAU calculates the randomization-based
probability that a randomly selected equally-likely outcome of the example
experiment test program when continually replicated will have its abs(ktau)
equal to or greater than 1.0000 as being equal to 0.0001 (see microcomputer
file RBKTDTA2). The corresponding enumeration-based probability is
exactly equal to 0.00005 (2/40320). These probability values are so small
that we must reject the null hypothesis that there is no time-order-of-testing
effect for the est(CRSIEEi’s) in Figure 4.4(a). Rather, we assert that the
respective magnitudes of these est(CRSIEEi’s) depend on the time order
of testing. (This conclusion would be the subject of considerable test con-
duct concern if the example experiment test program datum values were not
hypothetical.) Next, given the sequence of est(CRSIEEi’s) in Figure 4.4(b),
microcomputer program RBKTAU calculates the randomization-based
probability that a randomly selected equally-likely outcome of the example
experiment test program when continually replicated will have its abs(ktau)
equal to or greater than 0.1429 as being equal to 0.7128 (see microcomputer
file RBKTDTA3). This probability value is so large that we have no objec-
tive reason to conclude that a time-order-of-testing association exists. Recall
that pseudorandom numbers were used to generate the datum values whose
est(CRSIEEi’s) are shown in Figure 4.4(b). Finally, given the sequence of
est(CRSIEEi’s) in Figure 4.4(c), microcomputer program RBKTAU calcu-
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Figure 4.4 Plots of the est(CRSIEEi’s) versus time-order-of-testing for the three

example (hypothetical) sets of datum values pertaining to the quantitative CRD

experiment test program depicted schematically in Figure 2.1.
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lates the randomization-based probability that a randomly selected equally-
likely outcome of this example experiment test program when continually
replicated will have its abs(ktau) equal to or greater than 0.5714 as being
equal to 0.0624 (see microcomputer computer file RBKTDTA4). This prob-
ability is small enough to warrant some concern that the test-specimen-
blank location in the rod actually affects the test outcome. If so, there
must also be concern regarding the physical interpretation of the data-
based values for est(csdm) and est[stddev(APRCRSIEE’s)]. However, for
this example experiment test program, recall that the test specimen blanks
were randomly selected from the 16 test specimen blank locations in the rod.
Accordingly, the experiment test program data-based value of Kendall’s
abs(ktau) test statistic actually corresponds to a situation where, if we
were to reject the null hypothesis of no test-specimen-blank-location effect
on the est(CRSIEEi’s) in Figure 4.4(c), we would do so incorrectly, viz., we
would commit a Type I error.
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5
The Conceptual (Two-Parameter)
Normal Distribution and the
Associated Conceptual Sampling
Distributions for Pearson’s Central
�2 (Chi Square), Snedecor’s Central
F, and Student’s Central t Test
Statistics
5.1. CONCEPTUAL (TWO-PARAMETER) NORMAL

DISTRIBUTION

The PDF for the conceptual (two-parameter) normal distribution that con-
sists of all possible replicate realization values for the random variable X is
generically expressed as

f ðxÞ ¼ 1ffiffiffiffiffiffi
2�

p � csp � exp � 1

2
� x� clp

csp

� �2
" #

in which clp and csp denote conceptual location and scale parameters, and x
is the continuous linear measurement metric. However, for a conceptual
(two-parameter) normal distribution, the clp and the csp are, respectively,
its mean and its standard deviation. Accordingly, the PDF for the concep-
tual (two-parameter) normal distribution that consists of all possible repli-
cate realization values for the random variable X is almost always expressed
as

f ðxÞ ¼ 1ffiffiffiffiffiffi
2�

p � ½stddevðXÞ� � exp � 1

2
� x�meanðXÞ

stddevðXÞ
� �2

" #
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This conceptual (two-parameter) normal distribution is depicted in Figure
5.1, where the magnitude stddev(X) establishes uniformly spaced tick-marks
along the linear x abscissa.

Tedious numerical computations would be required to calculate each
probability of specific interest for the conceptual (two-parameter) normal
distribution (Figure 5.1). Rather, for computational purposes, this distribu-
tion is shifted and scaled to obtain the standardized conceptual normal
distribution that consists of all possible replicate realization values for ran-
dom variable Y. This conceptual statistical distribution is displayed in
Figure 5.2. Then, when the linear X,Y relationship is used to establish
equivalent events, the exact probability computations that pertain to the
standardized conceptual normal distribution that consists of all possible
replicate realization values for random variable Y also pertain to the con-
ceptual (two-parameter) normal distribution that consists of all possible
replicate realization values for random variable X.

The derivation of the standardized conceptual normal distribution
that consists of all possible replicate realization values for random variable
Y is straightforward. First, we subtract mean(X) from random variable X to
generate a conceptual normal distribution that consists of all possible repli-
cate realization values for the random variable [X � mean(X)], whose mean
is (now) equal to zero and whose standard deviation is (still) equal to the
stddev(X). Then, this normally distributed random variable [X � mean(X)]
is divided by stddev(X) to generate the standardized conceptual normal
distribution that consists of all possible replicate realization values for
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Figure 5.1 PDf for the conceptual (two-parameter) normal distribution that con-

sists of all possible replicate realization values for random variable X.
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random variable Y ¼ ½X� mean(X)]/stddev(X)}, where mean(Y) is equal to
zero and stddev(Y) is equal to one. The associated X,Y relationship is clearly
linear, viz.,

X �meanðXÞ
stddev ðXÞ ¼ Y ¼ aþ bX

in which b ¼ {(1)/[stddev(X)]} and a ¼ {[mean(X)]/[stddev(X)]}. Micro-
computer program PY, given any numerical input value for standardized
conceptual normal distribution variate yp of specific interest, computes the
numerical value for the probability p that a randomly selected realization
value for the standardized conceptual normal distribution random variable
Y will be less than yp. Analogously, microcomputer program YP, given any
numerical input value for the probability p of specific interest, computes the
numerical value of the standardized conceptual normal distribution variate
yp such that the probability is exactly equal to p that a randomly selected
realization value for the standardized normal distribution random variable
Y will be less than yp.
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Figure5.2 PDF for the standardized conceptual normal distribution that consists

of all possible replicate realization values for random variable Y . The actual values

for the mean and the variance of the standardized conceptual normal distribution

are, respectively, zero and one.
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C> PY

Input the value of specific interest for the variate y(p) of the standar-
dized conceptual normal distribution that consists of all possible repli-
cate realization values for the random variable Y

0.0

The probability that a realization value randomly selected from the
standardized conceptual normal distribution that consists of all pos-
sible replicate realization values for the random variable Y will be less
than 0.0000 equals 0.5000

C> PY

Input the value of specific interest for the variate y(p) of the standar-
dized conceptual normal distribution that consists of all possible repli-
cate realization values for the random variable Y

1.0

The probability that a realization value randomly selected from the
standardized conceptual normal distribution that consists of all pos-
sible replicate realization values for the random variable Y will be less
than 1.0000 equals 0.8413

C> PY

Input the value of specific interest for the variate y(p) of the standar-
dized conceptual normal distribution that consists of all possible repli-
cate realization values for the random variable Y

2.0

The probability that a realization value randomly selected from the
standardized conceptual normal distribution that consists of all pos-
sible replicate realization values for the random variable Y will be less
than 2.0000 equals 0.9772
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C> PY

Input the value of specific interest for the variate y(p) of the standar-
dized conceptual normal distribution that consists of all possible repli-
cate realization values for the random variable Y

3.0

The probability that a realization value randomly selected from the
standardized conceptual normal distribution that consists of all pos-
sible replicate realization values for the random variable Y will be less
than 3.0000 equals 0.9987

C> YP

Input the probability p of specific interest that a realization value
randomly selected from the standardized conceptual normal distribu-
tion that consists of all possible replicate realization values for the
random variable Y will be less than y(p)

0.5

The value for y(0.5000) equals 0.0000

C> YP

Input the probability p of specific interest that a realization value
randomly selected from the standardized conceptual normal distribu-
tion that consists of all possible replicate realization values for the
random variable Y will be less than y(p)

0.9

The value for y(0.9000) equals 1.2816

C> YP

Input the probability p of specific interest that a realization value
randomly selected from the standardized conceptual normal distribu-
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5.1.1. Example Probability Calculation Pertaining to the
Conceptual Normal Distribution that Consists of
All Possible Replicate Realization Values for
Random Variable X

First, we assert that the conceptual normal distribution that consists of all
possible replicate realization values for random variable X and the asso-
ciated standardized conceptual normal distribution that consists of all pos-
sible replicate realization values for random variable Y pertain to equivalent
x,y events when

y ¼ x�meanðXÞ
stddevðXÞ ¼ aþ bx

where

a ¼ � meanðXÞ
stddevðXÞ and b ¼ 1

stddevðXÞ
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tion that consists of all possible replicate realization values for the
random variable Y will be less than y(p)

0.95

The value for y(0.9500) equals 1.6449

C> YP

Input the probability p of specific interest that a realization value
randomly selected from the standardized conceptual normal distribu-
tion that consists of all possible replicate realization values for the
random variable Y will be less than y(p)

0.99

The value for y(0.9900) equals 2.3263
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Accordingly, when

ylower < Y < yupper

then

xlower < X < xupper

The equivalence of these events is easily demonstrated geometrically by
plotting the straight line y ¼ a þ bx relationship and noting that xlower
determines ylower, and xupper determines yupper.

Now suppose that (a) mean(X) is equal to 11.15 and that stddev(X) is
equal to 6.51, and (b) the probability of specific interest is the probability
that a randomly selected realization value for random variable X will lie in
numerical interval [10.07,13.59]. Then, xlower ¼ 10.07 and xupper ¼ 13.59.
Accordingly,

ylower ¼
10:07� 11:15

6:51
¼ �0:1659

and

yupper ¼
13:59� 11:15

6:51
¼ þ0:3748

In turn, successively running microcomputer program PY generates the
results:

probability ½Y < �0:1659� ¼ 0:4341

and

probability ½Y < þ0:3748� ¼ 0:6461

Hence,

probability ½�0:1659 < Y < þ0:3748� ¼ 0:2120

Finally, because the respective probabilities pertaining to equivalent events
are identical, the probability that a randomly selected realization value
for the random variable Y will lie in the numerical interval
[�0.1659,+0.3748] exactly equals the probability that a randomly selected
realization value for random variable X will lie in the numerical interval
[10.07,13.59]. Accordingly,

probability ½10:07 < X < 13:59� ¼ 0:2120
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5.2. PLOTTING REPLICATE DATUM VALUES ON
PROBABILITY PAPER

Probability papers are widely used to plot replicate datum values that are
presumed (alleged) to have been randomly selected from a known concep-
tual statistical distribution. However, there is no actual need for commercial
probability paper. Any plot of the straight-line relationship y ¼ a þ bx
suffices. Accordingly, it is not the construction of probability paper that is
an issue, rather it is the method of plotting replicate datum values on prob-
ability paper that requires explanation.

Both the respective abscissa (x) and ordinate (y) metric values must be
known to plot replicate datum values on probability paper. The respective
abscissa metric values are the replicate datum values. The corresponding
ordered ordinate metric values are called plotting positions. Approximate
p(pp)i plotting positions were originally used because exact y(pp)i plotting
positions could not be computed (except in special situations). However,
experience now indicates that, for practical values of ndv, no plotting posi-
tion, exact or approximate, is adequate to assert on the basis of visual
inspection that the given replicate datum values can rationally be viewed
as having been randomly selected from some alleged conceptual statistical
distribution. Accordingly, the choice among alternative plotting positions is
not a major issue.

Because the p(pp)i plotting position metric is nonlinear for all prob-
ability papers other than for the uniform distribution, the direct use of p(pp)i
plotting positions introduces two problems. First and foremost, the quanti-
tative assessment of the estimated slope of the CDF is clouded. (This assess-
ment requires understanding how the given probability paper is actually
constructed.) Second, the use of p(pp)i plotting positions requires interpola-
tion along a nonlinear metric. Thus, we strongly recommend against the use
of commercial probability paper whatever the presumed conceptual statis-
tical distribution.

5.2.1. Normal Probability Paper

The construction (and proper documentation) of normal probability paper
is illustrated in Figure 5.4. (The construction of probability papers for other
distributions is discussed later.) For replicate datum values that are
presumed to be normally distributed, we recommend using Blom’s p(pp)i
plotting position expression:

pð ppÞi ¼
i � 3=8

ndv þ 1=4
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and successively converting the respective p( pp)i plotting positions to their
corresponding y( pp)i plotting positions by running microcomputer program
YP.

5.3. SIMULATION STUDY OF NORMALLY
DISTRIBUTED PSEUDORANDOM DATUM VALUES
PLOTTED ON NORMAL PROBABILITY PAPER

Microcomputer SIMNOR (presented later) was successively run with ndv
equal to 9, 19, 49, and 99 to generate the pseudorandom normally distrib-
uted datum values plotted on commercial normal distribution probability
paper in Figures 5.3(a)–(d), respectively. Clearly, these normally distributed
pseudorandom datum values do not plot exactly on the conceptual CDF.
However, in the limit as ndv increases without bound, the deviations of the
respective plotted datum values from the conceptual CDF will theoretically
diminish to zero. Note, however, that for ndv as large as 99, the plotted
pseudorandom datum values at the respective tails (extreme percentiles)
still deviate markedly from the conceptual CDF. This statistical behavior
prevails even for much larger values for ndv.

Next, consider the 12 sets of ndv ¼ 10 normally distributed pseudo-
random datum values plotted on properly documented normal probability
paper in Figure 5.4. Note that, given the respective approximate y( pp)i
plotting positions computed by microcomputer program SIMNOR, neither
the nonlinear p scale nor its directly associated y scale have intrinsic value
and thus need not be included when constructing normal probability paper.

The pseudorandom datum values plotted in Figure 5.4 illustrate
typical random variability that occurs when ndv ¼ 10 replicate datum values
are randomly selected from a conceptual (two-parameter) normal
distribution. Accordingly, given (a) the conceptual distribution, (b) its para-
meter values, and (c) the sample sizes of specific interest, simulation-based
plots of this type provide valuable perspective regarding how much the
estimated CDF can differ from the conceptual CDF and how much plotted
datum values can differ from either the conceptual or the estimated CDF.
No other statistical methodology generates as much information with so
little effort.

The estimated CDF’s plotted in Figure 5.4 are computed using
data-based estimates of the actual values for the mean and the standard
deviation of the conceptual (two-parameter) normal distribution that
consists of all possible realization values for the random variable X. These
data-based estimates were computed using the following expressions (page
189):
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Figure 5.3 Plots of 9, 19, 49, and 99 pseudorandom normally distributed datum

values generated by running microcomputer program SIMNOR with meanðXÞ equal
to zero and stddevðXÞ equal to one (using the same set of three, three-digit odd seed

numbers). The so-called mean plotting position pðppÞi ¼ 1=ðndv þ 1Þ was used in

plotting these datum values on commercial probability paper because of its conve-

nience. The sigmoidal CDF for the conceptual (two-parameter) normal distribution

plots as a straight line on normal probability paper, when abscissa x is the linear

metric for random variable X and p is the nonlinear ordinate, where p is the prob-

ability that a randomly selected realization value for the normally distributed ran-

dom variable X will be less than x.
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Figure 5.4 Twelve sets of 10 normally distributed pseudorandom datum values

plotted on properly documented normal probability paper. Each pseudorandom

data set was generated by running microcomputer program SIMNOR with

meanðXÞ equal to zero and stddevðXÞ equal to one, but using a different set of

three, three-digit odd seed numbers.
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Figure 5.4 (continued )
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Figure 5.4 (continued )
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Figure 5.4 (continued )
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est[meanðXÞ� ¼ arithmetic average ðx’sÞ ¼ aveðx’sÞ ¼

Xndv
i¼1

xi

ndv

and

est[stddev ðXÞ� ¼
Xndv
i¼1

½xi � aveðx’sÞ�2
ndv � 1

 !1=2

Section 5.4 presents a discussion of the probability behavior of the asso-
ciated statistical estimators for the parameters of a conceptual (two-
parameter) normal distribution.

Figure 5.5 summarizes the 12 estimated CDF’s plotted in Figure 5.4.
When numerous replicate estimated CDF’s are summarized in a plot similar
to that of Figure 5.5, their envelope resembles a hyperbolic-shaped region.
Clearly, the variability of these replicate estimated CDF’s is smallest at
mean(X) and is largest at their extreme percentiles. This variability charac-
terization is valid for all estimated CDF’s of specific interest in mechanical
reliability. It is the fundamental reason why we compare the respective
actual values for the means of conceptual statistical and sampling distribu-
tions rather than comparing their respective extreme percentiles, viz.,
the variability of their respective estimated CDF’s at extreme percen-
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Figure 5.5 Summary of the respective estimated CDF’s pertaining to 12 sets of

pseudorandom normally distributed datum values plotted in Figure 5.4. Observe

that the variability of the percentiles of the respective estimated CDF’s is smallest

near p ¼ 0:5 and is largest at very high and low values of pð yÞ.
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tile is too large to permit precise statistical comparisons for practical experi-
ment test program sizes.

5.3.1. Discussion

The typical variabilities displayed in Figures 5.3(a) through 5.5 for normally
distributed datum values are intended to convey another fundamental
notion. The variability among numerous small sets of replicate datum values
is much too large to allow us to use a plot of replicate datum values on
normal probability paper to discern visually whether these datum values can
rationally be presumed to be normally distributed. In fact, the relevant issue
is not whether experiment test program datum values are normally distrib-
uted. (Recall that conceptual statistical distributions are merely mathema-
tical abstractions.) Rather, the relevant issue is whether the apparent
departures from normality are sufficiently pronounced to affect the statisti-
cal credibility of a probability calculation that is based on the presumption of
normality. Accordingly, we should always test the null hypothesis of nor-
mality (Section 5.5). Then, when the null hypothesis of normality is ration-
ally rejected, we have a statistical basis for concern regarding the credibility
of a probability calculation that is based on the presumption of normality.
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C> SIMNOR

Input a new set of three, three-digit odd seed numbers

273 697 353

Input the sample size of specific interest (maximum size ¼ 1000)

10

Input the conceptual normal distribution mean of specific interest

0.0

Input the conceptual normal distribution standard deviation of speci-
fic interest
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Exercise Set 1

These exercises are intended to enhance your intuition regarding the obvious
discrepancies between plotted normally distributed pseudorandom datum
values and the associated conceptual (two-parameter) normal distribution.

In the exercises that follow, run microcomputer program SIMNOR to
generate normally distributed pseudorandom datum values. Then, plot these
datum values on ordinary graph paper using y(pp)i plotting positions corre-
sponding to Blom’s p(pp)i approximate plotting positions.

1. (a) Construct 12 plots similar to the 12 plots in Figure 5.4, by
successively running program SIMNOR 12 times to generate 12
sets of 10 pseudorandom normal datum values. For each set of
these pseudorandom normal datum values, let mean(X) be equal
to zero and stddev(X) be equal to one. Then, (b) construct a
summary plot for the respective estimated CDF’s as illustrated
in Figure 5.5.

2. (a) Randomly select one of the plots in Exercise 1. Then, (b) using
the same set of three, three-digit odd seed numbers that was used

192 Chapter 5

1.0

Ordered normal
datum values

Blom’s pðppÞi
plotting position

Corresponding yðppÞi
plotting position

�0:8748 0.0610 �1:5466
�0:6126 0.1585 �1:0005
�0:1048 0.2561 �0:6554
�0:0220 0.3537 �0:3755
0:0654 0.4512 �0:1226
0:0839 0.5488 0.1226
0:3268 0.6463 0.3755
0:4248 0.7439 0.6554
1:1445 0.8415 1.0005
1:2803 0.9390 1.5466

The estimated conceptual normal distribution mean is equal to 0.1712

The estimated conceptual normal distribution standard deviation is
equal to 0.6755
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to generate the datum values for this plot, select markedly differ-
ent values for mean(X) and stddev(X) and generate 10 pseudo-
random normal datum values. In turn, (c) plot these datum
values as in Exercise 1. Finally, (d) discuss the effect of the values
selected for mean(X) and stddev(X) on the deviations of these
datum values from their respective estimated CDFs.

5.4. ESTIMATING MEAN(X) AND STDDEV(X) GIVEN
REPLICATE DATUM VALUES RANDOMLY
SELECTED FROM A CONCEPTUAL (TWO-
PARAMETER) NORMAL DISTRIBUTION

Statistical theory indicates that given ndv datum values randomly selected
from a conceptual (two-parameter) normal distribution that consists of all
possible replicate realizations of random variable X, the best statistical esti-
mator for mean(X) is the arithmetic average of the respective experiment test
program realization values, viz.,

best statistical estimator for meanðXÞ ¼ est[meanðXÞ�
¼ arithmetic averageðX ’sÞ

¼ aveðX ’sÞ ¼

Xndv
i¼1

Xi

ndv

in which the term best explicitly connotes that est[mean(X)] is unbiased and
that the actual value for the variance of its conceptual sampling distribution
is less than the actual value for variance of the conceptual sampling distri-
bution for any alternative statistical estimator.

The selection of the appropriate statistical estimator for stddev(X)
depends on the application of specific interest. In mechanical reliability
applications, stddev(X) is estimated as the square root of the unbiased gen-
eric statistical estimator for var(X), where

unbiased generic statistical estimator for varðXÞ ¼ est[varðXÞ�

¼

Xndv
i¼1

½Xi�aveðX ’sÞ�2

ndv � 1

Unfortunately, because a square root is a nonlinear transformation, the
corresponding generic est[stddev(X)] is biased.
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We now try to provide intuition regarding the reason that its (ndv � 1)
divisor makes the generic statistical estimator for var(X) unbiased (regard-
less of the actual conceptual statistical distribution for X). Accordingly, we
first establish the actual value for the variance of the conceptual sampling
distribution that consists of all possible replicate realization values for the
statistic [Xi � ave(X’s)]. Consider the ith row in the following estimated
conceptual statistical model stated in hybrid column vector notation:

X1

X2

..

.

Xi

..

.

Xndv

��������������

��������������
¼

aveðX’sÞ
aveðX’sÞ

..

.

aveðX’sÞ
..
.

aveðX’sÞ

��������������

��������������
þ

½X1 � aveðX ’sÞ�
½X2 � aveðX ’sÞ�

..

.

½Xi � aveðX ’sÞ�
..
.

½Xndv
� aveðX ’sÞ�

��������������

��������������
Clearly, the actual value for the variance of the conceptual statistical
distribution that consists of all possible replicate realization values for the
random variable X is equal to var(X). In turn, the actual value for the
variance of the conceptual sampling distribution that consists of all possible
replicate realization values for the statistic [ave(X’s)] is equal to [var(X)]/ndv.
However, since the ave(X’s) column vector is orthogonal to the
[Xi � ave(X’s)] column vector, the associated statistics are independent
and the variances of their respective conceptual sampling distributions
sum algebraically. Thus, the actual value for the variance of the conceptual
sampling distribution that consists of all possible replicate realization values
for the statistic [Xi � ave(X’s)] must be equal to var(X) times the (statistical
bias) factor [(ndv � 1)/ndv].

Next, if mean(X) were known, we would estimate the actual value for
the variance of the conceptual statistical distribution that consists of all
possible replicate realization values for the random variable X as the sum
of squares of all [Xi � mean(X)]’s divided by ndv, where ndv is the number of
statistical degrees of freedom for the Xi column vector. However, because
mean(X) is unknown we have no rational alternative other than to estimate
the actual value for the variance of the conceptual statistical distribution
that consists of all possible replicate realization values for the random vari-
able X as the sum of squares of the realization values for the respective
{Xi � est[mean(X)]}’s divided by ndv, in which ave(X’s) is substituted for
est[mean(X)]. However, by definition of ave(X’s), the sum of squares of
the realization values for the respective [Xi � ave(X’s)]’s is always less
than the sum of squares of the realization values for the respective [Xi �
mean(X)]’s. Accordingly, var(X) is always statistically underestimated (sta-
tistically biased) unless we multiply it by the inverse of the (statistical bias)
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factor [(ndv�1)/ndv]. The algebraic consequence of employing this multipli-
cative statistical-bias-correction factor is that an unbiased statistical estima-
tor for var(X) is obtained by dividing the sums of squares of the realization
values for the respective [Xi � ave(X’s)]’s by (ndv � 1), the number of sta-
tistical degrees of freedom for the [Xi � ave(X’s)]’s column vector. This
result is a special case of the following general rule that pertains to each
of the orthogonal estimated statistical models considered herein:

General Rule: When the expected value for each element of a col-
umn vector is equal to zero, the sum of the squares of the respective
elements in this column vector, divided by its number of statistical
degrees of freedom, is a statistically unbiased estimator of
var(APRCRHNDEE’s).

5.5. TESTING NORMALITY FOR REPLICATE DATUM
VALUES

There are several statistical tests for which the null hypothesis is that the
replicate (presumed replicate) datum values of specific interest were ran-
domly drawn from a conceptual (two-parameter) normal distribution and
the omnibus alternative hypothesis is that these replicate (presumed repli-
cate) datum values pertain to some other (unspecified) conceptual statistical
distribution. Unfortunately, even the best of these tests (with greatest sta-
tistical power) cannot reliably detect non-normality for the (small) sample
sizes typically used in mechanical reliability tests. Nevertheless, whenever
normality is presumed in statistical analysis, we are obliged to examine the
credibility of this presumption. Accordingly, we now present a microcom-
puter program employing a test statistic that can be used to test the null
hypothesis that the given replicate (presumed replicate) datum values were
randomly selected from a conceptual (two-parameter) normal distribution.
This test statistic was chosen because it can also be employed to test the null
hypothesis of normality for the respective CRHNDEEi’s associated with
statistical models pertaining to equally replicated CRD and unreplicated
RCBD and SPD experiment test programs (Chapter 6).

Perhaps the most intuitive way to test normality is to plot the presumed
normally distributed datum values on normal probability paper as in Figure
5.4 and then use the magnitude of the maximum deviation (md) of a plotted
datum value from the estimated conceptual normal CDF as the test statistic.
The problem with this intuitive test statistic is that, as evident in Figure 5.4,
the largest deviation seldom occurs near the middle of the estimated distribu-
tion, but rather almost always occurs at or near the extremes of the estimated
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distribution. Michael (1983) used an empirical arc-sine transformation to
generate a stabilized probability plot (spp) that mitigates this problem.

Microcomputer program NORTEST pertains to a modified version of
Michael’s Dspp test statistic that employs Blom’s approximate plotting posi-
tion p(pp)i ¼ (i � 3/8)/(ndvþ 1=4) and the classical estimators for the mean
and variance of a conceptual (two-parameter) normal distribution (Section
5.4). This simulation-based microcomputer program first computes the
value for the modified MDSPP test statistic given the nrep replicate datum
values of specific interest. It then generates nsim sets of nrep replicate datum
values from a conceptual normal distribution and establishes the proportion
of these nsim data sets whose modified MDSPP test statistic realization value
exceeds the modified MDSPP test statistic value pertaining to the nrep repli-
cate datum values of specific interest. Presuming that this proportion is
reduced when the nrep replicate datum values of specific interest are not
normally distributed, we rationally opt to reject the presumption of normal-
ity when the simulation-based probability computed by running microcom-
puter program NORTEST is sufficiently small.

5.5.1. Normality Test Example

First, run microcomputer program NOR (page 196) to generate 10 pseudor-
andom normally distributed replicate datum values. Then, augment these
data as indicated in microcomputer file ANORDATA. In turn, run micro-
computer program NORTEST to compute the data-based value for the
modified MDSPP test statistic (0.0541) and the simulation-based probabil-
ity that this test statistic value will be equal to or larger than 0.0541 (0.9488)
given the null hypothesis of normality. Since this probability is not small,
viz., less than either 0.10, 0.05, or 0.01, we must rationally opt not to reject
the null hypothesis of normality. Clearly, our decision is correct—because
all of the pseudorandom datum values generated by program NOR are
normally distributed. However, we cannot know for certain whether our
test of hypothesis decision is correct when the replicate (presumed replicate)
datum values of specific interest are not known to be normally distributed.
Rather, we must view the correctness of our test of hypothesis decision in
the context of a continually replicated experiment test program, viz., in
terms of the probability that our decision is actually correct.

Recall that a Type I error is committed when we incorrectly opt to
reject a null hypothesis that is correct. Recall also that it is not practical to
select the probability of committing a Type I error to be extremely small
because this selection reduces the probability of correctly rejecting the null
hypothesis when the alternative hypothesis is correct. The latter probability
is called statistical power. It is important to estimate (and compare) the
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statistical power for each test statistic of potential interest. Fortunately, the
simulation-based empirical sampling distribution that consists of all possible
replicate realization values for the test statistic of specific interest can also be
generated for the alternative hypothesis of specific interest. Thus, the simu-
lation-based statistical power of the test of the null hypothesis can be estab-
lished relative to this alternative hypothesis. Typically, the statistical power
of a test of the null hypothesis is low for small values of ndv, sometimes
barely larger than the acceptable probability of committing a Type I error,
but it increases markedly as ndv increases.
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C> NOR

Input a new set of three, three-digit odd seed numbers

345 761 799

Input the sample size of specific interest (maximum size ¼ 1000)

10

Input the conceptual normal distribution mean of specific interest

10.0

Input the conceptual normal distribution standard deviation of speci-
fic interest

2.0

6.86091450498240
7.89512237885230
8.82680050201190
9.31976099687290
9.52103697451820

10.26841061562700
10.41102005946200
11.34970238520000
11.75034014152200
13.91231724763700
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C> TYPE ANORDATA

10 nrep, the Number of Replicate Datum Values of
Specific Interest

6.86091450498240
7.89512237885230
8.82680050201190
9.31976099687290
9.52103697451820

10.26841061562700
10.41102005946200
11.34970238520000
11.75034014152200
13.91231724763700

10000 nsim, the Number of Pseudorandom Replicate
Normally Distributed Data Sets, Each of Size
nrep

C>COPY ANORDATA DATA

1 file(s) copied

C>NORTEST

The data-based value of the modified MDSPP test statistic for the 10
replicate datum values of specific interest is equal to 0.0541.

This microcomputer program generated 10,000 sets of 10 normally
distributed replicate datum values. The number of these sets that
had its modified MDSPP test statistic value equal to or greater than
0.0541 is equal to 9488. Thus, given the null hypothesis of normality,
the simulation-based probability that a randomly selected set of 10
replicate datum values will have its modified MDSPP test statistic
value equal to or greater than 0.0541 is equal to 0.9488. When this
probability is sufficiently small, reject the null hypothesis in favor of
the alternative hypothesis of non-normality.
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Exercise Set 2

This exercise is intended to familiarize you with testing the null hypothesis
of normality for a set of nrep replicate (presumed replicate) normally
distributed datum values using the modified MDSPP test statistic. When
the normality of normally distributed datum values is tested, we commit a
Type I error each time that we (incorrectly) opt to reject normality.

Run microcomputer program NOR to generate 5, 10, 20, 50, and 100
pseudorandom replicate datum values from a conceptual normal dis-
tribution, using the same set of three, three-digit odd seed numbers.
Then, augment each respective set of normally distributed pseudoran-
dom replicate datum values as illustrated in microcomputer file
ANORDATA. In turn, run microcomputer program NORTEST to
test the normality of each respective set of normally distributed pseu-
dorandom replicate datum values using an acceptable probability of
committing a Type I error equal to 0.05. (a) Let mean(X) be equal to
10 and stddev(X) equal to 2. (b) Let mean(X) be equal to 0 and
stddev(X) equal to 1. Compare the respective sets of results. What
do you conclude regarding the effect of different values for mean(X)
and var(X) for this statistical test of normality?

Exercise Set 3

These exercises are intended to provide perspective regarding the statistical
power of the modified MDSPP test statistic. Statistical power is the com-
plement of the probability of committing a Type II error, where a Type II
error is defined as (incorrectly) failing to reject the null hypothesis when the
alternative hypothesis is correct. Accordingly, when the normality of repli-
cate non-normally distributed datum values is tested, we commit a Type II
error each time that we incorrectly fail to reject normality.
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879 247 751 A New Set of Three, Three-Digit Odd Seed
Numbers

These datum values are the datum values generated by microcomputer
program NOR, augmented as indicated
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Microcomputer programs UNI, LOG, SEV, and LEV respectively
generate nrep replicate pseudorandom datum values from the concept-
ual (two-parameter) uniform distribution (symmetrical PDF), the
conceptual (two-parameter) logistic distribution (symmetrical PDF),
the conceptual (two-parameter) smallest-extreme-value distribution
(asymmetrical PDF, skewed to the left), and the conceptual (two-parameter)
largest-extreme-value distribution (asymmetrical PDF, skewed to the right).
In addition, microcomputer programs LNOR and WBL respectively gener-
ate nrep replicate pseudorandom datum values from the conceptual two-
parameter loge-normal distribution and the conceptual two-parameter
Weibull distribution. (We explain how to generate pseudorandom datum
values from these conceptual two-parameter distributions in Supplemental
Topic 8.D.)

1. Run either (a) microcomputer program UNI or (b) microcompu-
ter program LOG with the same set of three, three-digit odd seed
numbers to generate 5, 10, 20, 50, and 100 replicate pseudoran-
dom datum values from (a) a conceptual (two-parameter) uni-
form distribution or (b) a conceptual (two-parameter) logistic
distribtion with its mean equal to 10 and its standard deviation
equal to 2. Run microcomputer program NORTEST to test the
null hypothesis of normality for each respective set of pseudo-
random datum values using an acceptable probability of commit-
ting a Type I error equal to 0.05. Is normality properly rejected in
each case? Discuss your results.

2. Run microcomputer program SEV with the same set of three,
three-digit odd seed numbers to generate 5, 10, 20, 50, and 100
replicate pseudorandom datum values from a conceptual (two-
parameter) smallest-extreme-value distribution with its mean
equal to 10 and its standard deviation equal to 2. Run micro-
computer program NORTEST to test the null hypothesis of nor-
mality for each respective set of pseudorandom datum values
using an acceptable probability of committing a Type I error
equal to 0.05. Is normality properly rejected in each case?
Discuss your results.

3. Run microcomputer program LEV with the same set of three,
three-digit odd seed numbers to generate 5, 10, 20, 50, and 100
replicate pseudorandom datum values from a conceptual (two-
parameter) largest-extreme-value distribution with its mean equal
to ten and its standard deviation equal to 2. Run microcomputer
program NORTEST to test the null hypothesis of normality for
each respective set of pseudorandom datum values using an
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acceptable probability of committing a Type I error equal to 0.05.
Is normality properly rejected in each case? Discuss your results.

4. Run microcomputer program LNOR with the same set of three,
three-digit odd seed numbers to generate the 5, 10, 20, 50, and
100 replicate pseudorandom datum values from a conceptual
(two-parameter) loge-normal distribution whose mean is equal
to 10 and whose standard deviation is equal to 2. Run micro-
computer program NORTEST to test the null hypothesis of nor-
mality for each respective set of pseudorandom datum values
using an acceptable probability of committing a Type I error
equal to 0.05. Is normality properly rejected in each case?
Discuss your results.

5. Run microcomputer program WBL with the same set of three,
three-digit odd seed numbers to generate 5, 10, 20, 50, and 100
replicate pseudorandom datum values from a conceptual (two-
parameter) Weibull distribution whose mean is equal to 10 and
whose standard deviation is equal to 2. Run microcomputer pro-
gram NORTEST to test the null hypothesis of normality for each
respective set of pseudorandom datum values using an acceptable
probability of committing a Type I error equal to 0.05. Is normal-
ity properly rejected in each case? Discuss your results.

5.5.2. Discussion

Hopefully, it is now clear that, given a test statistic whose simulation-based
empirical sampling distribution does not depend of the actual values for the
parameters of the conceptual distribution used to generate the nsim replicate
sets of nrep replicate pseudorandom datum values, we can test the null hypo-
thesis that any given (uncensored) set of replicate (presumed replicate) datum
values was randomly selected from some known conceptual statistical distri-
bution. Moreover, we can establish the statistical power of this test of the null
hypothesis relative to the specific alternative hypothesis that the given (uncen-
sored) set of nrep replicate (presumed replicate) datum values was actually
randomly selected from some other known conceptual statistical distribution.

5.6. CONCEPTUAL SAMPLING DISTRIBUTIONS FOR
STATISTICS BASED ON DATUM VALUES
RANDOMLY SELECTED FROM A CONCEPTUAL
(TWO-PARAMETER) NORMAL DISTRIBUTION

Exact analytical expressions are known for the conceptual sampling
distribution PDF’s presented in this section. Nevertheless, it is informative
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to adopt a simulation-based perspective regarding these sampling distri-
butions—because this simulation process intuitively underlies the proper
statistical interpretation of data-based realization values that are presumed
to have been randomly selected from these conceptual sampling distri-
butions.

5.6.1. Pearson’s Central �2 (Chi Square) Conceptual
Sampling Distribution

Consider a hypothetical quantitative CRD experiment test program that
consists of a single realization value randomly selected from a conceptual
(two-parameter) normal distribution whose mean and standard deviation
are known. Let the statistic of specific interest be Pearson’s central �2 sta-
tistic with one statistical degree of freedom, viz.,

Pearson’s central �2
nsdf¼1

statistic ¼ X �meanðXÞ
stddevðXÞ

	 
2
¼ Y2

Under continual replication of this hypothetical experiment test program,
the respective realization values of Pearson’s central �2 statistic with one
statistical degree of freedom generate a conceptual sampling distribution
that is referred to as Pearson’s central �2 conceptual sampling distribution
with one statistical degree of freedom.

Analogously, consider a hypothetical quantitative CRD experiment
test program that consists of ns independent replicate realization values
randomly selected from a conceptual (two-parameter) normal distribution
whose mean and standard deviation are known. Let the statistic of specific
interest be Pearson’s central �2 statistic with nsdf ¼ ns statistical degree of
freedom, viz.,

Pearson’s central �2
nsdf¼ns

statistic ¼
Xns
i¼1

Xi �meanðXÞ
stddevðXÞ

	 
2
¼
Xns
i¼1

Y2
i

Under continual replication of this hypothetical experiment test program,
the respective realization values of Pearson’s central �2 statistic with
nsdf ¼ ns statistical degrees of freedom generate a conceptual sampling dis-
tribution that is referred to as Pearson’s central �2 conceptual sampling
distribution with nsdf statistical degrees of freedom. Figure 5.6 depicts
Pearson’s central �2 conceptual sampling distribution given three illustrative
values for its number of statistical degrees of freedom nsdf.
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There is also an associated Pearson’s noncentral �2 statistic. It can be
succinctly expressed as

Pearson’s noncentral �2
nsdf¼ns

statistic ¼
Xns
i¼1

½Yi þmeanðXÞ�2

Pearson’s noncentral �2 conceptual sampling distribution is analytically
much more complex than Pearson’s central �2 conceptual sampling distri-
bution because its PDF includes a noncentrality parameter whose value
depends on mean(X).

5.6.2. Snedecor’s Central F Conceptual Sampling
Distribution

Consider a hypothetical quantitative CRD experiment test program that
consists of (nnsdf þ ndsdf ) independent replicate realization values randomly
selected from a conceptual (two-parameter) normal distribution whose
mean and standard deviation are known. Let the statistic of specific interest
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Figure 5.6 Plot of Pearson’s central �2, Snedecor’s central F, and Student’s

central t conceptual sampling distributions, each with three illustrative values for

its statistical degrees of freedom.
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be Snedecor’s central F statistic with nnsdf numerator statistical degrees of
freedom and ndsdf denominator statistical degrees of freedom, viz.,

Snedecor’s central Fnnssf ;ndsdf statistic

¼

Xnnsdf
i¼1

Xi �meanðXÞ=stddevðXÞ½ �2=nnsdf
Xnnsdfþndsdf

i¼1nnsdfþ1

Xi �meanðXÞ=stddevðXÞ½ �2=ndsdf

¼ �2
nnsdf

=nnsdf

�2
ndsdf

=ndsdf

Under continual replication of this hypothetical experiment test program,
the respective realization values of Snedecor’s central F statistic with nnsdf
numerator statistical degrees of freedom and ndsdf denominator statistical
degrees of freedom generate a conceptual sampling distribution that is
referred to as Snedecor’s central F conceptual sampling distribution with
nnsdf numerator statistical degrees of freedom and ndsdf denominator statis-
tical degrees of freedom. Figure 5.6 depicts Snedecor’s central F conceptual
sampling distribution given three sets of illustrative values for its numbers of
numerator and denominator statistical degrees of freedom.

There is also an associated Snedecor’s noncentral F statistic. It can be
succinctly expressed as

Snedecor’s noncentral Fnnsdf ;ndsdf statistic ¼

Xnnsdf
i¼1

½Yi þmeanðXÞ�2=nnsdf
�2
ndsdf =ndsdf

Snedecor’s noncentral F conceptual sampling distribution is analytically
much more complex than Snedecor’s central F conceptual sampling distri-
bution because its PDF includes a noncentrality parameter whose value
depends on mean(X). Probability values based on noncentral F conceptual
sampling distributions are used in microcomputer programs PCRD and
PRCBD to compute statistical power (Section 6.5).

5.6.2.1. Application

Data-based realization values of Snedecor’s central F statistic are tradition-
ally used to test the null hypotheses of specific interest in analysis of variance
(Chapter 6) and to test the statistical adequacy of the presumed conceptual

204 Chapter 5

TLFeBOOK



model in linear regression analysis (Chapter 7). It is convenient in these
applications to state the data-based value of Snedecor’s central F statistic as

data-based value of Snedecor’s central Fbetweennsdf ;withinnsdf
statistic

¼
½betweenðSSÞ�=betweennsdf
½withinðSSÞ=withinnsdf

¼ betweenðMSÞ
withinðMSÞ

in which the within and between sum of squares, respectively denoted
within(SS) and between(SS), are computed as the sum of squares of the
elements of appropriate orthogonal column vectors in the associated
estimated conceptual statistical model. Then, under continual replication
of the given experiment test program and subject to certain additional pre-
sumptions described later, the respective realization values for the statistic
[between(MS)/within(MS)] generate Snedecor’s central F conceptual sam-
pling distribution.

Remark: G. W. Snedecor named the central F conceptual sampling
distribution to honor R. A. Fisher. Thus, it is always written using a
capital F, regardless of whether F is viewed as being a random
variable or as being the realization value for this random variable.

5.6.3. Student’s Central t Conceptual Sampling
Distribution

Consider a hypothetical quantitative CRD experiment test program that
consists of (1 þ ndsdf) independent replicate realization values randomly
selected from a conceptual (two-parameter) normal distribution whose
mean and standard deviation are known. Let the statistic of specific interest
be Student’s central t statistic with one numerator statistical degree of free-
dom and ndsdf denominator statistical degrees of freedom, viz.,

Student’s central T1;ndsdf statistic

¼ X1 �meanðXÞ=stddevðXÞ½ �2=1
X1þndsdf

i¼2

Xi �meanðXÞ=stddevðXÞ½ �2=ndsdf

8>>>><
>>>>:

9>>>>=
>>>>;

1=2

¼ Y

ð�2
ndsdf

=ndsdf Þ1=2

Under continual replication of this hypothetical experiment test program,
the respective realization values for Student’s central T statistic with one
numerator statistical degrees of freedom and ndsdf denominator statistical
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degrees of freedom generate a conceptual sampling distribution that is
referred to herein as Student’s central t conceptual sampling distribution
with one numerator statistical degree of freedom and ndsdf denominator
statistical degrees of freedom. Figure 5.6 depicts Student’s central t concep-
tual sampling distribution given three sets of illustrative values for its num-
ber of denominator statistical degrees of freedom. Note that Student’s
central t conceptual sampling distribution is merely a special case of
Snedecor’s central F conceptual sampling distribution with one numerator
statistical degree of freedom. Nevertheless it is traditionally employed in
classical statistical analyses, e.g., the calculation of classical statistical con-
fidence intervals (Applications One and Two below).

There is also an associated Student’s noncentral T statistic. It can be
succinctly expressed as

Student’s noncentral T1;ndsdf statistic ¼
Y þmeanðXÞ
ð�2

ndsdf
=ndsdf Þ1=2

Student’s noncentral t conceptual sampling distribution is analytically more
complex than Student’s central t conceptual sampling distribution because its
PDF includes a noncentrality parameter whose value depends on mean(X).
(It is a special case of Snedecor’s noncentral F conceptual sampling distribu-
tion with one numerator statistical degree of freedom, just as Student’s cen-
tral t conceptual sampling distribution is a special case of Snedecor’s central
F conceptual sampling distribution with one numerator statistical degree of
freedom.) Probability values based on Student’s noncentral t conceptual
sampling distributions are used in microcomputer programs ABNSTL,
BBNSTL, ABLNSTL, and BBLBSTL to compute A-basis and B-basis
statistical tolerance limits (Supplemental Topic 8.A).

5.6.3.1. Application One

Given a quantitative CRD experiment test program that consists of ndv
independent replicate realization values randomly selected from a con-
ceptual (two-parameter) normal distribution, consider the following
traditional expression for Student’s central t statistic with one numerator
statistical degree of freedom and ndv � 1 denominator statistical degrees of
freedom:

traditional Student’s central T1;ndv�1 statistic ¼
aveðX’sÞ �meanðXÞ
est[stddevðXÞ�= ffiffiffiffiffiffiffi

ndv
p

in which 1 is the number of (numerator) statistical degrees of freedom
pertaining to ave(X’s) and (ndv�1) is the number of (denominator) statis-
tical degrees of freedom pertaining to est[stddev(X)]. This traditional
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Student’s central T1;ndv�1
statistical expression and a scp-based value estab-

lished by its associated Student’s central t1, ndv�1 conceptual sampling dis-
tribution is employed in Section 5.7 to establish the classical (shortest)
100(scp)% (two-sided) statistical confidence interval that allegedly includes
mean(X).

5.6.3.2. Application Two

First recall (a) that the linear least-squares estimation expression for the
actual value of each scalar coefficient in the complete analytical models
presented in Chapter 2 is statistically unbiased, and that (b) each resulting
scalar coefficient estimate is normally distributed (under continual replica-
tion of the experiment test program) when the respective experiment test
program datum values are normally distributed. Then, consider the follow-
ing generic expression for Student’s central t statistic with one numerator
statistical degree of freedom and (ndv�1) denominator statistical degrees of
freedom:

generic Student’s central T1;ndsdf
statistic

¼ statistically unbiased normally distributed estimator� its expected value

est[stddev (statistically unbiased normally distributed estimator)]

in which 1 is the number of (numerator) statistical degrees of freedom
pertaining to the statistically unbiased normally distributed estimator and
ndsdf is the number of (denominator) statistical degrees of freedom pertain-
ing to the estimated standard deviation of the statistically unbiased normally
distributed estimator. This generic Student’s central T1,ndsdf

statistic expres-
sion and a scp-based value established by its associated Student’s central
t1,ndsdf conceptual sampling distribution is used in Chapter 6 to compute
classical (shortest) 100(scp)% (two-sided) statistical confidence intervals
that allegedly include the actual values for the scalar coefficients of specific
interest. (See also Chapter 7, Exercise Set 2, Exercise 7.)

5.6.4. Probability Relationships Among Standardized
Conceptual Normal Distribution and Associated
Pearson’s Central �2, Snedecor’s Central F, and
Student’s Central t Conceptual Sampling
Distributions

Figure 5.7 attempts to illustrate the fundamental relationships among the
standardized conceptual normal distribution and its three associated cen-
tral conceptual sampling distributions. Note that Snedecor’s central F
conceptual sampling distribution contains all of the probability informa-

Conceptual (Two-Parameter) Normal Distribution 207

TLFeBOOK



tion found in the other three conceptual distributions. These relationships
can easily be verified numerically using the microcomputer programs
enumerated below.

It is important to recognize that both the standardized conceptual
normal distribution variate y and Student’s central t test statistic can take
on either positive or negative values, whereas Pearson’s central �2 test sta-
tistic and Snedecor’s central F test statistic can only take on positive values.
Accordingly, the probabilities associated with both the upper (positive) and
lower (negative) tails of the standardized conceptual normal distribution
and Student’s central t conceptual sampling distribution are aggregated to
establish the probabilities pertaining to the upper tail of Pearson’s central �2

conceptual sampling distribution and the upper tail of Snedecor’s central F
conceptual sampling distribution. These relationships are evident when the
associated PDF’s in Figure 5.7 are examined.

5.6.5 Computer Programs for Pearson’s Central �2,
Snedecor’s Central F, and Student’s Central t
Conceptual Sampling Distributions

We now present three sets of microcomputer programs that are analogous
to microcomputer programs PY and YP pertaining to the standardized
conceptual normal distribution:
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Figure5.7 Relationships among the standardized conceptual normal distribution

and Pearson’s central �2, Snedecor’s central F, and Student’s central t conceptual

sampling distributions.
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1. Microcomputer program PCS is used to compute probability
values pertaining to Pearson’s central �2 conceptual sampling
distribution, whereas microcomputer program CSP is used to
compute values of Pearson’s central �2 test statistic that corre-
spond to specific percentiles of Pearson’s central �2 conceptual
sampling distribution.

2. Microcomputer program PF is used to compute probability
values pertaining to Snedecor’s central F conceptual sampling
distribution, whereas microcomputer program FP is used to com-
pute values of Snedecor’s central F test statistic that correspond
to specific percentiles of Snedecor’s central F conceptual sam-
pling distribution.

3. Microcomputer programPT is used to compute probability values
for Student’s central t conceptual sampling distribution, whereas
microcomputer programTP is used to compute values of Student’s
central t test statistic that correspond to specific percentiles of
Student’s central t test statistic conceptual sampling distribution.

5.7. CLASSICAL (SHORTEST) 100(SCP)% (TWO-
SIDED) STATISTICAL CONFIDENCE INTERVAL
THAT ALLEGEDLY INCLUDES MEAN(X)�
COMPUTED USING STUDENT’S CENTRAL t
CONCEPTUAL SAMPLING DISTRIBUTION.

We now develop the classical (shortest) 100(scp)% (two-sided) statistical
interval that allegedly includes the actual value for the mean of the concep-
tual (two-parameter) normal distribution from which it is presumed that the
quantitative CRD experiment test program replicate datum values were
randomly selected.

Consider the outcome of a quantitative CRD experiment test program
that consists of ndv measurement values presumed to be replicate realizations
of a normally distributed random variable X. Suppose that we compute the
arithmetic average of these replicate realizations and then we compute
est[stddev(X)] using the square root of the unbiased generic variance esti-
mator given in Section 5.4. In turn, suppose that we state Student’s central
T1;ndv�1

statistic using its traditional expression, viz.,

traditional Student’s central T1;ndv�1 statistic ¼
aveðX’sÞ �meanðXÞ
est[stddevðXÞ�= ffiffiffiffiffiffiffi

ndv
p

Recall that the experiment test program that is (was) actually conducted is
statistically viewed as being randomly selected from the collection of all
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possible replicate experiment test programs. Accordingly, the probability
that a randomly selected experiment test program will have its data-based
realization value for T1;ndv�1 lie in the numerical interval from t1;ndv�1;plower to
t1;ndv�1;pupper is

probability t1;ndv�1;plower< T1;ndv�1¼
aveðX ’sÞ �meanðXÞ
est[stddevðXÞ�= ffiffiffiffiffiffiffi

ndv
p < t1;ndv�1;pupper

� �
¼ pupper � plower

in which pupper and plower are established by the selected values for
t1;ndv�1;plower

and t1;ndv�1;pupper
. This probability expression can be reinterpreted

as

probability aveðX ’sÞ � t1;ndv�1;pupper
� est[stddevðXÞ�ffiffiffiffiffiffiffi

ndv
p

� �
< mean (X)

	

< aveðX ’sÞ � t1;ndv�1;plower�
est[stddevðXÞ�ffiffiffiffiffiffiffi

ndv
p

� �

¼ scp

in which pupper � plower ¼ scp. When t1;ndv�1;plower
is deliberately selected

such that the probability that ðT1;ndv�1 < t1;ndv�1;plower ) equals ð1� scpÞ=2,
and t1;ndv�1;pupper is deliberately selected such that the probability that
ðT1;ndv�1

> t1;ndv�1;pupper
Þ equals ð1� scpÞ=2, the corresponding classical

100(scp)% (two-sided) statistical confidence interval takes on its minimum
width (because Student’s central t conceptual sampling distribution is
symmetrical about zero, its mean).

5.7.1. Numerical Example

Suppose the following five datum values are presumed to have been ran-
domly selected from a conceptual (two-parameter) normal distribution with
an unknown mean and variance: 10.1, 9.3, 9.9, 10.2, and 9.7.

Then the data-based realization value for the statistical estimator
est[mean(X)]¼ ave(X ’s) is

est[meanðXÞ� ¼ aveðx’sÞ ¼ ð10:1þ 9:3þ 9:9þ 10:2þ 9:7Þ=5 ¼ 9:84

Similarly, the data-based realization value for statistical estimator
est[var(X)] is

est[varðXÞ� ¼
Xndv
i¼1

½xi � aveðx’sÞ�2
ndv � 1

¼
ð10:1� 9:84Þ2 þ ð9:3� 9:84Þ2 þ ð9:9� 9:84Þ2þ

ð10:2� 9:84Þ2 þ ð9:7� 9:84Þ2
5� 1

¼ 0:128
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In turn,

est[stddevðXÞ�ffiffiffiffiffiffiffi
ndv

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
0:128

p ffiffiffi
5

p ¼ 0:16

To compute the associated classical (shortest) 95% (two-sided) statistical
confidence interval (scp ¼ 0.95) that allegedly includes mean(X), we next
run microcomputer program TP to obtain values for �t1,4;0.025 and for
t1,4;0.975, viz., þ2.7764. We then substitute into the reinterpreted probability
expression:

probability aveðX ’sÞ � t1;ndv�1;pupper �
est[stddevðXÞ�ffiffiffiffiffiffiffi

ndv
p

� �
< mean ðXÞ

	

< ave ðX ’sÞ � t1;ndv�1;pupper �
est[stddevðXÞ�ffiffiffiffiffiffiffi

ndv
p

� �
¼ scp

as follows to obtain the result:

probability½9:84� ð2:7764Þ � ð0:16Þ < meanðXÞ
<9:84þ ð2:7764Þ � ð0:16Þ� ¼ 0:95

Thus,

probability½9:40 < meanðXÞ < 10:28� ¼ 0:95

Accordingly, the corresponding classical (shortest) 95% (two-sided) statis-
tical confidence interval that allegedly includes mean(X) is [9.40, 10.28].

5.7.2. Proper Statistical Interpretation of the Classical
(Shortest) 100(scp)% (Two-Sided) Statistical
Con¢dence Interval that Allegedly Includes
Mean(X)

Recall that the first fundamental concept underlying statistical analysis is
that the outcome for an experiment test program that is (was) actually
conducted can be viewed as having been randomly selected from the infinite
collection of all possible replicate experiment test program outcomes.
Analogously, the corresponding classical (shortest) 100(scp)% (two-sided)
statistical confidence interval that allegedly includes mean(X) can be viewed
as having been randomly selected from the infinite collection of correspond-
ing classical (shortest) 100(scp)% (two-sided) statistical confidence intervals
that allegedly include mean(X). Clearly, the data-based numerical limits of
the associated classical (shortest) 100(scp)% (two-sided) statistical confi-
dence interval depends on which experiment test program outcome was
randomly selected from this infinite collection of all possible replicate
experiment test program outcomes. Now suppose that mean(X) is known
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(as in a simulation-based study). Then, we can state positively whether or
not the data-based numerical limits of any given classical (shortest)
100(scp)% (two-sided) statistical confidence interval actually include
mean(X). However, if mean(X) is unknown, we can never state positively
whether or not these numerical limits actually include mean(X). Rather, we
can only say that, under the conceptual process of continually replicating
the experiment test program, each successive test experiment program out-
come will generate a (different) data-based associated classical (shortest)
100(scp)% (two-sided) statistical confidence interval which, a priori, has
the same probability, viz., the specified scp, that it actually includes
mean(X). This statistical behavior can be simulated by repeatedly running
microcomputer program SIMNOR to generate nsim sets of ndv normally dis-
tributed pseudorandom datum values with any mean(X) and stddev(X) of
specific interest. Then, when these associated classical (shortest) 100(scp)%
(two-sided) statistical confidence intervals are successively computed and
subsequently summarized relative to the proportion that actually include
mean(X), the outcome will resemble the simulation-based result obtained
by running microcomputer program SSTSSCI1 (simulation study for a
two-sided statistical confidence interval—version 1). See page 212.

5.7.3. Proper Quantitative Interpretation (Precision) of
the Classical (Shortest) 100(scp)% (Two-Sided)
Statistical Con¢dence Interval that Allegedly
Includes Mean(X)

The proper quantitative interpretation (precision) of a classical (shortest)
100(scp)% (two-sided) statistical confidence interval can be deduced by
appropriate simulation. If mean(X) and stddev(X) are presumed known,
then nrep replicate normally distributed pseudorandom data sets of size
ndv can be generated, e.g., by running microcomputer program SIMNOR.
In turn, classical (shortest) 100(scp)% (two-sided) statistical confidence
intervals can be computed and compared for each of these replicate data
sets. This comparison is always remarkably informative, even for nrep as
small as 12. However, because mean(X) and stddev(X) are unknown in
mechanical test and mechanical reliability applications, est[mean(X)] must
be substituted for mean(X) and est[stddev(X)] must be substituted for
stddev(X) in the generation of the desired nrep ‘‘replicate’’ normally distrib-
uted pseudorandom data sets. Then, the sampling distributions that are
comprised of the nrep ‘‘replicate’’ realizations of the statistics of specific
interest are termed pragmatic rather than empirical.

Microcomputer program SSTSSCI2 (page 214) computes 12 replicate
classical (shortest) 100(scp)% (two-sided) statistical confidence intervals and
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displays their variability. Microcomputer program SSTSSCI3 (page 216)
generates the empirical sampling distribution for the ratio of the half-
width of the classical (shortest) 100(scp)% (two-sided) statistical confidence
interval to its associated midpoint based on 30,000 replicate data sets, each
with ndv normally distributed pseudorandom datum values, and then
computes its mean, median, and selected percentiles. Analogously, micro-
computer program SSTSSCI4 computes 12 ‘‘replicate’’ classical (shortest)
100(scp)% (two-sided) statistical confidence intervals and displays their
variability. In turn, microcomputer program SSTSSCI5 generates the prag-
matic sampling distribution for the ratio of the half-width of the classical
(shortest) 100(scp)% (two-sided) statistical confidence interval to its asso-
ciated midpoint based on 30,000 ‘‘replicate’’ data sets, each with ndv nor-
mally distributed pseudorandom datum values, and then computes its mean,
median, and selected percentiles. Microcomputer programs SSTSSCI4 and
SSTSSCI5 employ an exact statistical basis correction for est[stddev(X)].
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C> SSTSSCI1

Input a new set of three, three-digit odd seed numbers

933 449 175

Input the statistical confidence probability of specific interest, stated in
per cent (integer value)

95

Percentage of Simulation-Based 95% (Two-Sided) Statistical
Confidence Intervals that Correctly Include Mean(X)

Interval 1 – Percent Correct 100.000
Interval 2 – Percent Correct 100.000
Interval 3 – Percent Correct 100.000
Interval 4 – Percent Correct 100.000
Interval 5 – Percent Correct 100.000
Interval 6 – Percent Correct 100.000
Interval 7 – Percent Correct 100.000
Interval 8 – Percent Correct 100.000
Interval 9 – Percent Correct 100.000
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Interval 10 – Percent Correct 100.000
Interval 11 – Percent Correct 100.000
Interval 12 – Percent Correct 100.000
Interval 13 – Percent Correct 100.000
Interval 14 – Percent Correct 100.000
Interval 15 – Percent Correct 100.000
Interval 16 – Percent Correct 100.000
Interval 17 – Percent Correct 100.000
Interval 18 – Percent Correct 100.000
Interval 19 – Percent Correct 100.000
Interval 20 – Percent Correct 100.000
Interval 21 – Percent Correct 100.000
Interval 22 – Percent Correct 100.000
Interval 23 – Percent Correct 100.000
Interval 24 – Percent Correct 100.000
Interval 25 – Percent Correct 100.000
Interval 30 – Percent Correct 100.000
Interval 35 – Percent Correct 100.000
Interval 40 – Percent Correct 100.000
Interval 45 – Percent Correct 100.000
Interval 50 – Percent Correct 100.000
Interval 55 – Percent Correct 100.000
Interval 60 – Percent Correct 100.000
Interval 65 – Percent Correct 98.462
Interval 70 – Percent Correct 97.143
Interval 75 – Percent Correct 96.000
Interval 80 – Percent Correct 96.250
Interval 85 – Percent Correct 95.294
Interval 90 – Percent Correct 95.556
Interval 95 – Percent Correct 95.789
Interval 100 – Percent Correct 96.000
Interval 200 – Percent Correct 94.000
Interval 300 – Percent Correct 94.000
Interval 400 – Percent Correct 94.000
Interval 500 – Percent Correct 94.000
Interval 600 – Percent Correct 94.333
Interval 700 – Percent Correct 94.429
Interval 800 – Percent Correct 94.875
Interval 900 – Percent Correct 95.222
Interval 1000 – Percent Correct 95.400
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C> SSTSSCI2

Input the number of replicate (presumed) normally distributed datum
values of specific interest, where 3 < ndv < 33

5

Input the conceptual (two-parameter) normal distribution mean of
specific interest

10.0

Input the conceptual (two-parameter) normal distribution standard
deviation mean of specific interest

1.0

Input the statistical confidence probability of specific interest (integer
value)

95

Input a new set of three, three-digit odd seed numbers

489 739 913

Replicate Classical (Shortest) 95%
(Two-Sided) Statistical Confidence Intervals

Interval 1: from 8.55 to 11.03
Interval 2: from 8.02 to 10.62
Interval 3: from 9.21 to 10.75
Interval 4: from 8.73 to 10.55
Interval 5: from 10.03 to 10.47
Interval 6: from 9.19 to 11.15
Interval 7: from 9.61 to 12.01
Interval 8: from 9.12 to 11.44
Interval 9: from 8.58 to 11.78
Interval 10: from 9.23 to 11.22
Interval 11: from 9.60 to 10.76
Interval 12: from 9.65 to 12.14
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5.7.4. Relationship Between Classical Shortest (Two-
Sided) Statistical Con¢dence Interval that
Allegedly Includes Mean(X) and Corresponding
Classical Statistical Test of Hypothesis

The experiment test program datum values in our numerical example
can also be analyzed using the classical test of hypothesis methodology.
Suppose that the null hypothesis of specific interest is that
mean(X) ¼ 10.0 and that the associated composite (two-sided)
alternative hypothesis is that mean(X) 6¼ 10.0. Then, given an accepta-
ble probability of committing a Type I error equal to 0.05, viz., equal
to (1 � scp) ¼ (1� 0:95), the classical test of hypothesis methodology
will indicate that the null hypothesis cannot rationally be rejected. (The
null hypothesis cannot rationally be rejected in a classical statistical test
of hypothesis unless the experiment test program data-based value for
Snedecor’s central F test statistic exceeds the value of Snedecor’s cen-
tral F conceptual sampling distribution pertaining to the acceptable
probability of committing a Type I error.) Recall that the classical
(shortest) 95% (two-sided) statistical confidence interval for mean(X)
is [9.40, 10.28]. Since mean(X) ¼ 10.0 lies in this interval, the outcome
of the classical test of hypothesis methodology is clearly consistent with
the corresponding classical (shortest) 95% (two-sided) statistical con-
fidence interval for mean(X). Next, suppose that the null hypothesis
of specific interest is that mean(X) ¼ 9.0 and that the associated
composite (two-sided) alternative hypothesis is that mean(X) 6¼ 9.0.
Then, given the same acceptable probability of committing a Type I
error equal to 0.05, the classical test of hypothesis methodology will
indicate that the null hypothesis can rationally be rejected. This out-
come is also clearly consistent with the corresponding classical shortest
95% (two-sided) statistical confidence interval that allegedly includes
mean(X). Note that the interval [9.40, 10.28] does not include
mean(X) ¼ 9.0.

These two examples can be summarized as follows: the classical (short-
est) 100(scp)% (two-sided) statistical confidence interval that allegedly
includes mean(X) is the collection of all possible candidate values for
mean(X) such that the null hypothesis that mean(X) is equal to this candi-
date value cannot rationally be rejected in a classical statistical test of
hypothesis, given that the associated composite (two-sided) alternative
hypothesis that mean(X) is not equal to this candidate value. However,
remember that for this relationship to pertain, the acceptable probability
of committing a Type I error must be set equal to the complement of the
corresponding value for the scp.
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C> SSTSSCI3

Input the number of replicate (presumed) normally distributed datum
values of specific interest, where 3 < ndv < 33

5

Input the conceptual (two-parameter) normal distribution mean of
specific interest

10.0

Input the conceptual (two-parameter) normal distribution standard
deviation mean of specific interest

1.0

Input the statistical confidence probability of specific interest (integer
value)

95

Input a new set of three, three-digit odd seed numbers

843 511 745

This microcomputer program generated 30,000 replicate normally dis-
tributed data sets, each of size 5, and computed the associated classical
(shortest) 95% (two-sided) statistical confidence intervals. The mean
of the empirical sampling distribution that consists of 30,000 replicate
realizations for the statistic [the ratio of the half-width of the classical
(shortest) 95% (two-sided) statistical confidence interval to its mid-
point] is equal to 0.1172. The median of this empirical sampling dis-
tribution is equal to 0.1137. Thus, approximately 50% of all possible
replicate classical (shortest) 95% (two-sided) statistical confidence
intervals will bound its midpoint within 11.37%. The corresponding
median empirical classical (shortest) 95% (two-sided) statistical con-
fidence interval is [8.86, 11.14].
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The relationship between the classical (shortest) 100(scp)% (two-sided)
statistical confidence interval that allegedly includes mean(X) and the cor-
responding classical statistical test of hypothesis, given a composite (two-
sided) alternative hypothesis, is based on the relationship between
Snedecor’s central F test statistic and Student’s central T test statistic. To
emphasize this relationship we use Snedecor’s central F test statistic to
compute the classical (shortest) 100(scp)% (two-sided) statistical confidence
interval that allegedly includes mean(X) in Section 5.8.

5.7.4.1. Discussion

Statistical confidence intervals are typically more informative than classical
statistical tests of hypotheses. The latter usually serve primarily to ascer-
tain which experiment test program variables (treatments) are actually
important and which are apparently benign. The former displays intuitive
information about both the magnitude and precision of the estimate of
specific interest. A classical statistical test of hypothesis for which the null
hypothesis is rationally rejected in favor of the composite (two-sided)
alternative hypothesis should always be followed by a computation of
the relevant classical (shortest) 100(scp)% (two-sided) statistical confidence
interval. In turn, the variability (precision) of ‘‘replicate’’ classical (short-
est) 100(scp)% (two-sided) statistical confidence intervals should be
assessed by running either microcomputer program SSTSSCI4 or
SSTSSCI5 (or both).

When the proportion of statistical assertions that are actually
correct asymptotically approaches the scp value of specific interest
under continual replication of the experiment test program the associated
statistical confidence interval or limit is said to be exact (unbiased). Exact
(unbiased) statistical confidence intervals and limits are based either on
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Approximately p% of all possible replicate classical (shortest) 95%
(two-sided) statistical confidence intervals will bound its mid-point
within p* %:

p% p*%

75 14.45
90 17.50
95 19.38
99 23.17
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C> SSTSSCI4

For the given set of ndv (presumed) normally distributed datum values
of specific interest:

Input ndv, where 3 < ndv < 33

5

Input est[mean(X)]

9.84

Input est[stddev(X)]

0.35771

Input the statistical confidence probability of specific interest (integer
value)

95

Input a new set of three, three-digit odd seed numbers

727 349 173

‘‘Replicate’’ Classical (Shortest) 95%
(Two-Sided) Statistical Confidence Intervals

Interval 1: from 9.40 to 10.20
Interval 2: from 9.55 to 10.23
Interval 3: from 9.61 to 9.92
Interval 4: from 9.06 to 9.90
Interval 5: from 9.80 to 10.17
Interval 6: from 9.12 to 10.19
Interval 7: from 9.43 to 10.27
Interval 8: from 9.61 to 10.30
Interval 9: from 9.15 to 9.96
Interval 10: from 8.68 to 10.53
Interval 11: from 9.35 to 10.25
Interval 12: from 9.72 to 10.17
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known conceptual sampling distributions or on accurate empirical sam-
pling distributions. In contrast, approximate (biased) statistical confidence
intervals and limits are typically based on asymptotic sampling distribu-
tions. This distinction is important in maximum likelihood analysis
(Chapter 8) where empirical (pragmatic) statistical bias corrections must
be established and appropriately employed to reduce the difference
between the actual value for the scp and its desired (specification)
value. If the empirical (pragmatic) bias correction make this difference
negligible for practical purposes, then the resulting 100(scp)% (two-sided)
statistical confidence interval can be viewed as being exact (unbiased) for
practical purposes.

Exercise Set 4

These exercises are intended to provide experience in computing classical
(shortest) 100(scp)% (two-sided) confidence intervals for mean(X), given
datum values that are (or are alleged to be) normally distributed. Run
microcomputer program SIMNOR to generate your datum values.

1. Generate 10 pseudorandom datum values from a conceptual
normal distribution whose mean(X) ¼ 10.0 and whose
stddev(X) ¼ 1.0 and compute the associated classical (shortest)
95% (two-sided) statistical confidence interval that allegedly
includes mean(X). Then, run microcomputer program
SSTSSCI2 and comment appropriately.

2. Using the same set of three, three-digit odd seed numbers as in
Exercise 1, generate 10 pseudorandom datum values from a con-
ceptual normal distribution whose mean(X) ¼ 10.0 and whose
stddev(X) ¼ 2.0. Then, compute the classical (shortest) 95%
(two-sided) statistical confidence interval that allegedly includes
mean(X) and comment appropriately.

3. Using the same set of three, three-digit odd seed numbers as in
Exercise 1, generate 10 pseudorandom datum values from a con-
ceptual normal distribution whose mean(X) ¼ 10.0 and whose
stddev(X) ¼ 0.5. Then, compute the classical (shortest) 95%
(two-sided) statistical confidence interval that allegedly includes
mean(X) and comment appropriately.

4. Repeat Exercise 1 for classical (shortest) 50, 75, 90, 99, and
99.9% (two-sided) statistical confidence intervals that allegedly
include mean(X). Plot the respective half-widths versus the cor-
responding scp value and comment appropriately.
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C> SSTSSCI5

For the given set of ndv (presumed) normally distributed datum values
of specific interest:

Input ndv, where 3 < ndv < 33

5

Input est[mean(X)]

9.84

Input est[stddev(X)]

0.35771

Input the statistical confidence probability of specific interest (integer
value)

95

Input a new set of three, three-digit odd seed numbers

913 283 779

This microcomputer program generated 30,000 ‘‘replicate’’ normally
distributed data sets, each of size 5, and computed the associated
classical (shortest) 95% (two-sided) statistical confidence intervals.
The mean of the pragmatic sampling distribution that consists of
30,000 ‘‘replicate’’ realizations for the statistic (the ratio of the half-
width of the classical (shortest) 95% (two-sided) statistical confidence
interval to its midpoint is equal to 0.0453. The median of this prag-
matic sampling distribution is equal to 0.0443. Thus, approximately
50% of all possible‘‘replicate’’ classical (shortest) 95% (two-sided)
statistical confidence intervals will bound its midpoint within 4.13%.
The corresponding median pragmatic classical (shortest) 95% (two-
sided) statistical confidence interval is [9.40, 10.28].
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5.8. SAME CLASSICAL (SHORTEST) 100(SCP)% (TWO-
SIDED) STATISTICAL CONFIDENCE INTERVAL
THAT ALLEGEDLY INCLUDES MEAN(X)�
COMPUTED USING SNEDECOR’S CENTRAL F
CONCEPTUAL SAMPLING DISTRIBUTION

We now use Snedecor’s central F conceptual sampling distribution to com-
pute the same classical (shortest) 100(scp)% (two-sided) statistical confi-
dence interval that allegedly includes mean(X) that was computed for our
numerical example in Section 5.7.1. First, we express our estimated statis-
tical model in hybrid column vector format as

jXij ¼ jmeanðXÞj þ javeðX ’sÞ �meanðXÞj þ jXi � aveðX ’sÞj
and, in turn, more explicitly as

X1

X2

X3

..

.

Xndv

�����������

�����������
¼

meanðXÞ
meanðXÞ
meanðXÞ

..

.

meanðXÞ

�����������

�����������
þ

aveðX ’sÞ �meanðXÞ
aveðX ’sÞ �meanðXÞ
aveðX ’sÞ �meanðXÞ

aveðX ’sÞ �meanðXÞ

�����������

�����������
þ

X1 � aveðX ’sÞ
X2 � aveðX ’sÞ
X3 � aveðX ’sÞ

Xndv
� aveðX ’sÞ

�����������

�����������
It is then clear that the sum of squares for the data-based realizations of the
elements in the |Xi � ave(X’s)| column vector is the within(SS). Recall that
the within(MS) is equal to the within(SS) divided by its number of statistical
degrees of freedom and that the within(MS) is an unbiased statistical estima-
tor for var(X) under continual replication of the experiment test program.
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Approximately p% of all possible ‘‘replicate’’ classical (shortest) 95%
(two-sided) statistical confidence intervals will bound its midpoint
within p*%:

p% p*%

75 5.60
90 6.69
95 7.40
99 8.78
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Recall also that est[var(X)] for our numerical example is equal to 0.128
with ndv � 1 (5� 1 ¼ 4) statistical degrees of freedom. Hence, the
within(MS) is equal to 0.128 with four statistical degrees of freedom.

Next, consider the sum of squares for the elements of the
|ave(X’s) � mean(X)| column vector. The sum of squares of these elements
(differences) is clearly the between(SS), viz.,

betweenðSSÞ ¼ Ndv � ½aveðX ’sÞ �meanðXÞ�2

Substituting 5 for ndv and ave(x’s) ¼ 9.84 for ave(Xs) gives

betweenðSSÞ ¼ 5 � ½9:84�meanðXÞ�2

In turn, the between(MS) is equal to the between(SS) divided by its number
of statistical degrees of freedom, viz., 1. Thus, the between(MS) is equal to
the between(SS) for our numerical example.

Finally, under continual replication of the quantitative CRD experi-
ment test program underlying our numerical example, we assert that the
respective realization values for the test statistic [between(MS)/within(MS)]
generate Snedecor’s central F conceptual sampling distribution with
nnsdf ¼ 1 numerator statistical degrees of freedom and ndsdf ¼ 4 denomina-
tor statistical degrees of freedom. In turn, running microcomputer program
FP indicates that F1,4;0.95 = 7.7086. Accordingly, we assert that

probabilityðF1;4 � 7:7086Þ ¼ probability

(
ð5Þ � ½9:84�meanðXÞ�2

0:128

� 7:7086

)
¼ 0:95

Thus,

probability ½9:84�meanðXÞ�2 � 0:1973
� � ¼ 0:95

Taking the square root of both sides of the inequality gives

probability½9:84� 0:4442 � meanðXÞ � 9:84þ 0:4442� ¼ 0:95

The corresponding classical (shortest) 95% (two-sided) statistical confidence
interval that allegedly includes mean(X) is [9.40,10.28]—which is exactly the
same as the classical (shortest) 95% (two-sided) statistical confidence inter-
val that allegedly includes mean(X) that was computed using Student’s
central t conceptual sampling distribution.
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5.9. CLASSICAL 100(SCP)% (TWO-SIDED)
STATISTICAL CONFIDENCE INTERVAL THAT
ALLEGEDLY INCLUDES VAR(X)�COMPUTED
USING PEARSON’S CENTRAL �2 CONCEPTUAL
SAMPLING DISTRIBUTION

The development of the classical 100(scp)% (two-sided) statistical confi-
dence interval that allegedly includes var(X) is straightforward. It is based
on the notion that est[var(X)] would be exactly equal to var(X) if its number
of statistical degrees of freedom were infinite. Accordingly, under continual
replication of a quantitative CRD experiment test program, the respective
realization values for the statistic {est[var(X)]}/[var(X)] generate Snedecor’s
central F conceptual sampling distribution with nnsdf = ndv � 1 numerator
statistical degrees of freedom and an infinite number of denominator statis-
tical degrees of freedom, viz.,

Fndv�1;1 ¼ est½varðXÞ�
varðXÞ ¼ �2

ndv�1

ndv � 1

In turn, after solving algebraically for var(X), we can write the following the
probability interval expression:

Probability
ðndv � 1Þ � est½varðXÞ�

�2
ndv�1;pupper

( )
< varðXÞ

<
ðndv � 1Þ � est½varðXÞ�

�2
ndv�1;plower

( )
¼ pupper � plower

This probability interval expression is subsequently reinterpreted as the
classical 100(scp)% (two-sided) statistical confidence interval that allegedly
includes var(X) when (pupper � plower) ¼ scp. The values for pupper and plower
are almost always selected as (1+scp)/2 and (1 � scp)/2 because the asso-
ciated �2

ndv�1;pupper
and �2

ndv�1;plower
values are almost always obtained from

standard statistical tables for Pearson’s central �2 conceptual sampling dis-
tribution.

Remark One: The classical 100(scp)% (two-sided) statistical confi-
dence interval that allegedly includes var(X) pertains only to nor-
mally distributed replicate datum values generated in a quantitative
CRD experiment test program. Unfortunately, the actual probabil-
ity content of this statistical confidence interval is relatively sensitive
to non-normality.
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Remark Two: The number of replicate datum values required to
estimate var(X) precisely is typically too large to be practical
(Tukey, 1986). Moreover, since test specimens (test items, experi-
mental units) are processed in batches, the presumption that the
appropriate conceptual statistical model pertains to a quantitative
CRD experiment test program is dubious. In addition, when
the batch-to-batch effects are improperly ignored in the presumed
conceptual statistical model, these batch-to-batch effects are
statistically confounded with the actual values for the respective
CRHNDEEi’s. If so, then the resulting data-based value for
est[var(APRCRHNDEE’s)] is inflated.

Remark Three: The traditional selections of pupper ¼ ð1þ scpÞ=2 and
plower ¼ ð1� scpÞ=2 do not generate the shortest classical statistical
confidence interval that allegedly includes var(X). (Recall that
Pearson’s central �2 conceptual sampling distribution is not sym-
metrical about its mean.) However, it is seldom deemed worth the
additional effort to compute the values for pupper and plower that
establish the shortest classical 100(scp)% (two-sided) statistical con-
fidence interval that allegedly includes var(X).

5.9.1. Numerical Example

Consider the same hypothetical datum values (allegedly generated in
a quantitative CRD experiment test program) that were used in the
two previous statistical confidence interval examples. Recall that
est[var(X)] ¼ 0.128 and that ndv ¼ 5. Hence, after running micro-
computer program CSP with inputs plower ¼ 0.025 and pupper ¼ 0.975 to
obtain the respective values for �2

ndv�1;plower
and �2

ndv�1;pupper
pertaining to

ndv ¼ 5, the classical probability interval expression for var(X) can be stated
as

probability
ð4Þð0:128Þ
ð11:1433Þ < varðXÞ < ð4Þð0:128Þ

ð0:4844Þ
	 


¼ 0:975� 0:025 ¼ 0:95

Thus

probability½0:046 < varðXÞ < 1:057� ¼ 0:95

Accordingly, the corresponding classical 95% (two-sided) statistical confi-
dence interval that allegedly includes var(X) is [0.046, 1.057].

If the corresponding classical 95% (two-sided) statistical confidence
interval that allegedly includes stddev(X) is desired, it is computed by
respectively taking the square root of the upper and lower limits of the
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classical 95% (two-sided) statistical confidence interval that allegedly
includes var(X). Accordingly, the classical 95% (two-sided) statistical con-
fidence interval that allegedly includes stddev(X) is [0.214, 1.028].

5.10. CLOSURE

The conceptual (two-parameter) normal distribution is so widely known
and used in classical statistical analyses that it has attained a mystical
status. However, it is important to understand that all conceptual sta-
tistical distributions are merely mathematical abstractions that are used
to model (approximate) actual physical behaviors. Accordingly, given
the conceptual statistical model of specific interest (Chapter 2) and the
associated experiment test program datum values, our analytical concern
in classical statistical analyses is whether the est(CRHNDEEi’s) undermine
the fundamental presumptions of randomness, homoscedasticity, and
normality.

5.A. SUPPLEMENTAL TOPIC: STATISTICAL
ESTIMATORS

The purpose of this section is to demonstrate that the arithmetic average is a
poor statistical estimator of the actual value for the mean of a conceptual
uniform distribution. Thus, it follows that the appropriate statistical esti-
mator of the actual value for the mean of each different conceptual statis-
tical distribution (or for any other conceptual parameter of a conceptual
statistical distribution) must be established by an appropriate comparison of
alternative statistical estimators.

5.A.1. Estimating Actual Value for the Mean of the
Conceptual Uniform Distribution, Zero to One

Suppose we consider three alternative statistical estimators for the actual
value of the mean of a conceptual uniform distribution, zero to one: (a) the
arithmetic average, denoted ave(X’s), (b) the median, denoted Xmedian, and
(c) the midpoint of the maximum range, denoted (Xsmallest þ Xlargest)/2.
What criteria should be used to compare these three alternative statistical
estimators? The results of the following simulation study is intended to
provide both insight regarding appropriate criteria and perspective regard-
ing the choice among alternatives of statistical estimators.
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5.A.1.1. Simulation Study

Figure 5.8 summarizes a simulation study of the three proposed alternative
statistical estimators, given 999 replicate sets of ndv ¼ 5 uniform pseudo-
random numbers, zero to one.
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Figure 5.8 Results of a simulation study of the arithmetic average, median, and

midpoints of the maximum range as statistical estimators of the actual value for the

mean of the conceptual uniform distribution, zero to one. The respective empirical

sampling distributions for these three proposed alternative statistical estimators are

based on 999 simulation-based realization values for each statistical estimator. These

realization values were then plotted on commercial normal probability paper using

the so-called mean plotting position pðppÞi ¼ i=ðndv þ 1Þ and the associated empirical

CDF’s were faired.
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Visual examination of the respective simulation-based empirical
sampling distributions plotted on normal probability paper suffices for com-
parison purposes. Each of the faired CDFs passes through the point,
p ¼ 0.50 and x ¼ 0.50. Thus, it appears (correctly) that each of these
three alternative statistical estimators is unbiased. However, among
unbiased alternative statistical estimators, we opt for the statistical estima-
tor whose conceptual sampling distribution has the smallest variance.
Accordingly, reconsider the three respective faired CDFs in Figure 5.8.
The steeper the CDF of a conceptual sampling distribution when plotted
on probability paper, the smaller the actual value for the standard deviation
(and variance) of its conceptual sampling distribution. Thus, the midpoint
of the maximum range statistical estimator is preferred over the alternative
statistical estimators because the actual value for the variance of its con-
ceptual sampling distribution is smaller than the actual values for variances
of the conceptual sampling distributions pertaining to the two alternative
statistical estimators.

One way of rationalizing our preference for an unbiased minimum
variance statistical estimator over alternative unbiased statistical estima-
tors is to compare the respective probabilities that a realization value
randomly selected from the conceptual sampling distribution that consists
of all possible replicate realization values for each alternative statistical
estimator will lie in a narrow central interval around the actual value for
the mean of the underlying conceptual statistical distribution. For
example, draw vertical lines through x ¼ 0.45 and 0.55 in Figure 5.8
and observe that the empirical simulation-based probability that a ran-
domly selected realization value for the midpoint of the maximum range
statistical estimator will lie in this interval is larger than the corresponding
probability for either alternative statistical estimator. Accordingly, given
alternative unbiased statistical estimators whose conceptual sampling
distribution CDF’s have different standard deviations (slopes), the mini-
mum variance statistical estimator generates the largest probability that a
randomly selected realization value will lie in a narrow central interval
around the actual value for the mean of the underlying conceptual
statistical distribution.

Remark: The statistical objective is (almost) always to have the
estimated value lie as close, in a statistical sense, as possible to the
actual value for the conceptual parameter. It is possible that a
biased statistical estimator excels an unbiased statistical estimator
in this regard. If so, then the biased statistical estimator is gen-
erally preferred (especially when a statistical bias correction is
available).

228 Chapter 5

TLFeBOOK



5.A.2. Relative E⁄ciency of Statistical Estimators

The relative efficiency of statistical estimators is defined in terms of the
ratio of the actual values of the variances of the respective conceptual
sampling distributions for the statistical estimators of specific interest. If
we take the actual value for the variance of the conceptual sampling
distribution pertaining to the midpoint of the maximum range as our
reference (numerator) value, the respective theoretical variance ratios
(derivations omitted) generate the relative efficiency curves shown in
Figure 5.9. Clearly, neither the arithmetic average nor the median is a
statistically efficient estimator of the actual value for the mean of the
conceptual uniform distribution, zero to one, especially when ndv is fairly
large.
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Figure 5.9 Relative efficiency of the arithmetic average and the median as statis-

tical estimators of the actual value for the mean of the conceptual uniform distribu-

tion, zero to one—using the actual value for the variance of the conceptual sampling

distribution that consists of all possible replicate realization values for the midpoint

of the maximum range estimator as the reference (numerator) value. (A similar plot

can be developed either analytically or empirically for alternative estimators of the

actual value for each parameter of the conceptual statistical distribution of specific

interest.
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Conclusion: The arithmetic average (or the median) is not neces-
sarily a statistically efficient (effective) estimator of the actual value
for the mean of any conceptual statistical distribution of specific
interest in mechanical reliability.

Corollary: The statistical literature should be consulted regarding
the appropriate statistical estimator (and its conceptual or simula-
tion-based empirical sampling distribution) for each parameter of
the conceptual statistical distribution of specific interest.
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6
Statistical Analysis of Variance
(ANOVA)

6.1 CLASSICAL STATISTICAL ANALYSIS OF VARIANCE
(FIXED EFFECTS MODEL)

We now present the statistical test of hypothesis called classical (fixed
effects) analysis of variance (ANOVA) for the comparative experiment
test programs presented in Chapter 2. The omnibus null hypothesis that
the actual values for the respective ctescj’s are all equal to zero is tradition-
ally tested versus its associated omnibus composite alternative hypothesis
that the actual values for the respective ctescj’s are not all equal to zero. The
test statistic of specific interest is Snedecor’s central F test statistic, viz., the
ratio of the between(MS) to the within(MS). The within(MS) is equal to the
sum of squares of the elements of the |est(CRHNDEEi’s)| column vector,
divided by its number of statistical degrees of freedom; whereas the
between(MS) is equal to the sum of squares of the elements of the aggregated
|est(ctei’s)| column vector, divided by its number of statistical degrees of
freedom. Under continual replication of the experiment test program, the
respective realizations values for Snedecor’s central F test statistic generate
Snedecor’s central F conceptual sampling distribution provided that the
omnibus null hypothesis is correct. However, if the actual values for the
respective ctescj’s are not all equal to zero as asserted by the omnibus alter-
native hypothesis, then the expected value of the between(MS) is inflated to

231

TLFeBOOK



account for the magnitudes of the actual values for the ctescj’s that are not
equal to zero. Small actual values for these ctescj’s will inflate the expected
value of the between(MS) only a small amount, but large actual values for
these ctescj’s will markedly inflate the expected value of the between(MS).
Thus, if the experiment test program data-based value for Snedecor’s central
F test statistic is sufficiently large, we can (must) rationally reject the omni-
bus null hypothesis and assert instead that the actual values for the ctescj’s
are not all equal to zero.

This classical ANOVA methodology can also be used to test a specific
null hypothesis, e.g., the specific null hypothesis that the actual value for a
given ctescj is equal to zero versus the specific composite (two-sided) alter-
native hypothesis that the actual value for this ctescj is not equal to zero.
The associated ctecj can pertain either to a simple comparison of ctKm’s or a
compound comparison of ctKm’s, e.g., an interaction effect.

Remark: The terminology fixed effects model in ANOVA connotes
that treatments (treatment levels) are specifically selected (as
opposed to being randomly selected to be statistically representative
of a population of treatments of specific interest).

6.2 A DEMONSTRATION OF VALIDITY OF
SNEDECOR’S CENTRAL F TEST STATISTIC IN
ANOVA USING FOUR CONSTRUCTED DATA SETS

We demonstrate in this section that the data-based value for Snedecor’s
central F test statistic is independent of (a) the actual values for the scalar
coefficients in the conceptual statistical model, and (b) the actual value for
the variance of the conceptual statistical distribution that is comprised of
APRCRHNDEE ’s. These demonstrations are intended to validate the use of
Snedecor’s central F test statistic in ANOVA. We start, however, by provid-
ing background information regarding the computation of the classical
(shortest) 100(scp)% (two-sided) statistical confidence intervals that are of
specific interest when the null hypothesis employed in ANOVA is rejected.

Consider the least-square estimator of the actual value for the ctescj of
specific interest. Presume that the conceptual statistical model is correct.
When the null hypothesis that the actual value for this ctescj is equal to
zero is also presumed to be correct, then the est(ctescj) is equal to its intrinsic
statistical estimation error component. Accordingly, we assert that the con-
ceptual sampling distribution that consists of all possible replicate realiza-
tion values for est(ctescj) under continual replication of the experiment test
program is normally distributed, has its mean equal to zero, and has an
estimated standard deviation given by the expression:
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est stddev est ctescj
� � �� � ¼ est var APRCRHNDEE’sð Þ½ �Xndv

i¼1

c2j;i

8>>>><
>>>>:

9>>>>=
>>>>;

1=2

On the other hand, given the composite (two-sided) alternative hypothesis
that the actual value for this ctescj is not equal to zero, the mean of the
conceptual sampling distribution that consists of all possible replicate reali-
zation values for est(ctescj) is equal to the actual value for the ctescj. (Recall
that the least-squares estimator for the actual value of each ctescj is
unbiased.)

If we reject the null hypothesis that the actual value for the ctescj is
equal to zero in ANOVA, then it is good statistical practice to compute the
classical (shortest) 100(scp)% (two-sided) statistical confidence interval that
allegedly includes the actual value for the ctescj. The relevant generic expres-
sion for Student’s central T1;ndsdf test statistic is {[est(ctescj) � ctescj]/
(est{stddev[est(ctescj)]})}, where ndsdf is the number of statistical degrees
of freedom pertaining to est{stddev[est(ctescj)]}, viz., pertaining to
est[var(APRCRHNDEE ’s). This test statistic can be used in conjunction
with Student’s t1;ndsdf conceptual sampling distribution to establish the
following classical (shortest) 100(scp)% (two-sided) statistical confidence
interval:

estðctecsjÞ � t1;ndsdf ;ð1þscpÞ=2 � est stddev½estðctecsjÞ�
� �

;
h

estðctescjÞ � t1;ndsdf ;ð1�scpÞ=2 � est stddev½estðctecsjÞ�
� �i

that allegedly includes the actual value for the ctescj, where ndsdf is the
number of denominator statistical degrees of freedom.

Next, suppose that the omnibus null hypothesis that all of the ctescj’s
are equal to zero is of specific interest. If we reject this omnibus null hypoth-
esis in ANOVA, then we may be tempted to compute the analogous classical
(shortest) 100(scp)% (two-sided) statistical confidence intervals that alleg-
edly include the actual values for the respective ctKm’s, viz.,

est ctKmð Þ � t1;ndsdf ;ð1þscpÞ=2 � est stddev est ctKmð Þ½ �� �h
;

est ctKmð Þ � t1;ndsdf ;ð1�scpÞ=2 � est stddev est ctKmð Þ½ �� �i

in which the arithmetic average of the na treatment K datum values is sub-
stituted for est(ctKm) and
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est stddev est ctKmð Þ½ �� � ¼ est var APRCRHNDEE’sð Þ½ �
na

� �1=2

However, as discussed later, the associated classical (shortest) 100(scp)%
(two-sided) statistical confidence intervals are valid individually (separately),
but not collectively (simultaneously).

6.2.1. Constructed Data Sets

We now construct four experiment test program data sets to demonstrate
that the experiment test program value of Snedecor’s central F test statistic
does not depend on the actual values of the parameters of the conceptual
statistical model. We arbitrarily employ an unreplicated RCBD experiment
test program with nt ¼ 4 treatments in each of nb ¼ 5 blocks in these four
demonstration examples. However, an equally replicated CRD or an unre-
plicated SPD experiment test program could just as well have been used in
this demonstration.

Table 6.1 presents the 20 by 20 orthogonal array for the unreplicated
RCBD experiment test program employed in each of our four demonstra-
tion examples. The actual values of the conceptual parameters, generically
denoted cpi ’s, for the first two demonstration examples were arbitrarily
selected as follows: csmm ¼ 20, cb1e ¼ 1, cb2e ¼ 2, cb3e ¼ 3, cb4e ¼ 4,
cb5e ¼ �10, ctAe ¼ �4, ctBe ¼ 3, ctCe ¼ 2, and ctDe ¼ �1, where the
actual values of the cbei’s and the cte’s have been deliberately constrained
to sum to zero. These constraints are selected so that estimates generated by
microcomputer program AGESTCV are exact when var(APRCRHNDEE’s)
is deliberately set equal to zero in our first demonstration example. Our first
demonstration example can then be interpreted as verifying that the intrinsic
statistical estimation error component of each est(scj) is equal to zero when
var(APRCRHNDEE’s) is equal to zero.

6.2.1.1. Constructed Data Set One

All CRHNDEEi ’s were deliberately set equal to zero for Constructed Data
Set One. The resulting constructed experiment test program datum values
are thus computed simply as the sums of the respective selected values for
the csmm, the cbei ’s, and the ctei ’s. In turn, given these constructed datum
values and the array in Table 6.1, appropriately running microcomputer
program AGESTCV demonstrates that the least-squares algorithm acting
on these datum values exactly estimates the actual values for respective
conceptual parameters. Thus, Constructed Data Set One serves to establish
reference experiment test program datum values that are subsequently
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aggregated with pseudorandom CRHNDEEi’s to establish the experiment
test program datum values for Constructed Data Sets Two, Three, and
Four. The respective pseudorandom CRHNDEEi’s for these constructed
data sets are generated by running microcomputer program ANOVADTA
and thus can be viewed as having been randomly selected from a conceptual
(two-parameter) normal distribution whose mean is zero and whose stan-
dard deviation is known (is input information to microcomputer program
ANOVADTA). Thus, the realization of the intrinsic statistical estimation
error component of each least-squares estimate can be computed because
the actual values for the conceptual parameters are known.

Constructed Data Set One is stored in microcomputer file C6DATA1.
Microcomputer program AGESTCV (with microcomputer file C6DATA1
copied into microcomputer file DATA and with microcomputer file
C6ARRAY1 copied into microcomputer file ARRAY) computes the follow-
ing column vectors in the estimated statistical model:

236 Chapter 6

*****Constructed Data Set One*****

|datum valuei’s| ¼ |csmm| þ jcbei’s| þ jctei’s| þ |CRHNDEEi’s|

17 ¼ 20 þ ðþ1Þ þ ð�4Þ þ 0

24 ¼ 20 þ ðþ1Þ þ ðþ3Þ þ 0

23 ¼ 20 þ ðþ1Þ þ ðþ2Þ þ 0

20 ¼ 20 þ ðþ1Þ þ ð�1Þ þ 0

18 ¼ 20 þ ðþ2Þ þ ð�4Þ þ 0

25 ¼ 20 þ ðþ2Þ þ ðþ3Þ þ 0

24 ¼ 20 þ ðþ2Þ þ ðþ2Þ þ 0

21 ¼ 20 þ ðþ2Þ þ ð�1Þ þ 0

19 ¼ 20 þ ðþ3Þ þ ð�4Þ þ 0

26 ¼ 20 þ ðþ3Þ þ ðþ3Þ þ 0

25 ¼ 20 þ ðþ3Þ þ ðþ2Þ þ 0

22 ¼ 20 þ ðþ3Þ þ ð�1Þ þ 0

20 ¼ 20 þ ðþ4Þ þ ð�4Þ þ 0

27 ¼ 20 þ ðþ4Þ þ ðþ3Þ þ 0

26 ¼ 20 þ ðþ4Þ þ ðþ2Þ þ 0

23 ¼ 20 þ ðþ4Þ þ ð�1Þ þ 0

6 ¼ 20 þ ð�10Þ þ ð�4Þ þ 0

13 ¼ 20 þ ð�10Þ þ ðþ3Þ þ 0

12 ¼ 20 þ ð�10Þ þ ðþ2Þ þ 0

9 ¼ 20 þ ð�10Þ þ ð�1Þ þ 0
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Clearly, microcomputer program AGESTCV exactly computes the elements
in each column vector in the conceptual statistical model when all
CRHNDEEi’s are arbitrarily set equal to zero.

6.2.1.2. Constructed Data Set Two

Microcomputer program ANOVADTA was run with an input standard
deviation equal to 2 to generate the pseudorandom CRHNDEEi’s for
Constructed Data Set Two. (The reason for selecting this value for the
standard deviation is discussed later.)

*****Constructed Data Set Two*****

|datum valuei’s| ¼ |csmm| þ jcbei’s| þ jctei’s| þ |CRHNDEEi’s|

20.912 ¼ 20 þ ðþ1Þ þ ð�4Þ þ ðþ3:912Þ
24.411 ¼ 20 þ ðþ1Þ þ ðþ3Þ þ ðþ0:411Þ
19.861 ¼ 20 þ ðþ1Þ þ ðþ2Þ þ ð�3:139Þ
21.350 ¼ 20 þ ðþ1Þ þ ð�1Þ þ ðþ1:350Þ
18.268 ¼ 20 þ ðþ2Þ þ ð�4Þ þ ðþ0:268Þ
23.827 ¼ 20 þ ðþ2Þ þ ðþ3Þ þ ð�1:173Þ
23.521 ¼ 20 þ ðþ2Þ þ ðþ2Þ þ ð�0:479Þ
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|datum valuei’s| ¼ |est(csmm)| þ |est(cbei’s)| þ |est(ctei’s)| þ |est(CRHNDEEi’s|

17 ¼ 20 þ ðþ1Þ þ ð�4Þ þ 0

24 ¼ 20 þ ðþ1Þ þ ðþ3Þ þ 0

23 ¼ 20 þ ðþ1Þ þ ðþ2Þ þ 0

20 ¼ 20 þ ðþ1Þ þ ð�1Þ þ 0

18 ¼ 20 þ ðþ2Þ þ ð�4Þ þ 0

25 ¼ 20 þ ðþ2Þ þ ðþ3Þ þ 0

24 ¼ 20 þ ðþ2Þ þ ðþ2Þ þ 0

21 ¼ 20 þ ðþ2Þ þ ð�1Þ þ 0

19 ¼ 20 þ ðþ3Þ þ ð�4Þ þ 0

26 ¼ 20 þ ðþ3Þ þ ðþ3Þ þ 0

25 ¼ 20 þ ðþ3Þ þ ðþ2Þ þ 0

22 ¼ 20 þ ðþ3Þ þ ð�1Þ þ 0

20 ¼ 20 þ ðþ4Þ þ ð�4Þ þ 0

27 ¼ 20 þ ðþ4Þ þ ðþ3Þ þ 0

26 ¼ 20 þ ðþ4Þ þ ðþ2Þ þ 0

23 ¼ 20 þ ðþ4Þ þ ð�1Þ þ 0

6 ¼ 20 þ ð�10Þ þ ð�4Þ þ 0

13 ¼ 20 þ ð�10Þ þ ðþ3Þ þ 0

12 ¼ 20 þ ð�10Þ þ ðþ2Þ þ 0

9 ¼ 20 þ ð�10Þ þ ð�1Þ þ 0
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22.750 ¼ 20 þ ðþ2Þ þ ð�1Þ þ ðþ1:750Þ
16.895 ¼ 20 þ ðþ3Þ þ ð�4Þ þ ð�2:105Þ
25.320 ¼ 20 þ ðþ3Þ þ ðþ3Þ þ ð�0:680Þ
24.283 ¼ 20 þ ðþ3Þ þ ðþ2Þ þ ð�0:717Þ
24.828 ¼ 20 þ ðþ3Þ þ ð�1Þ þ ðþ2:828Þ
16.730 ¼ 20 þ ðþ4Þ þ ð�4Þ þ ð�3:270Þ
26.648 ¼ 20 þ ðþ4Þ þ ðþ3Þ þ ð�0:352Þ
27.013 ¼ 20 þ ðþ4Þ þ ðþ2Þ þ ðþ1:013Þ
24.135 ¼ 20 þ ðþ4Þ þ ð�1Þ þ ðþ1:135Þ
5.997 ¼ 20 þ ð�10Þ þ ð�4Þ þ ð�0:003Þ

12.229 ¼ 20 þ ð�10Þ þ ðþ3Þ þ ð�0:771Þ
9.263 ¼ 20 þ ð�10Þ þ ðþ2Þ þ ð�2:737Þ
8.312 ¼ 20 þ ð�10Þ þ ð�1Þ þ ð�0:688Þ

Constructed Data Set Two is stored in microcomputer file C6DATA2.
Microcomputer program AGESTCV (with microcomputer C6DATA2
copied into microcomputer file DATA and with microcomputer file
C6ARRAY1 copied into microcomputer file ARRAY) computes the follow-
ing column vectors for the estimated statistical model:

|datum valuei ’s| ¼ |est(csmm)| þ |est(cbei ’s)| þ |est(ctei’s)| þ |est(CRHNDEEi’s)|

20.912 ¼ 19.82765 þ ðþ1:80585Þ þ ð�4:06725Þ þ ðþ3:34575Þ
24.411 ¼ 19.82765 þ ðþ1:80585Þ þ ðþ2:65935Þ þ ðþ0:11815Þ
19.861 ¼ 19.82765 þ ðþ1:80585Þ þ ðþ0:96055Þ þ ð�2:73305Þ
21.350 ¼ 19.82765 þ ðþ1:80585Þ þ ðþ0:44735Þ þ ð�0:73085Þ
18.268 ¼ 19.82765 þ ðþ2:26385Þ þ ð�4:06725Þ þ ðþ0:24375Þ
23.827 ¼ 19.82765 þ ðþ2:26385Þ þ ðþ2:65935Þ þ ð�0:92385Þ
23.521 ¼ 19.82765 þ ðþ2:26385Þ þ ðþ0:96055Þ þ ðþ0:46895Þ
22.750 ¼ 19.82765 þ ðþ2:26385Þ þ ðþ0:44735Þ þ ðþ0:21115Þ
16.895 ¼ 19.82765 þ ðþ3:00385Þ þ ð�4:06725Þ þ ð�1:86925Þ
25.320 ¼ 19.82765 þ ðþ3:00385Þ þ ðþ2:65935Þ þ ð�0:17085Þ
24.283 ¼ 19.82765 þ ðþ3:00385Þ þ ðþ0:96055Þ þ ðþ0:49095Þ
24.828 ¼ 19.82765 þ ðþ3:00385Þ þ ðþ0:44735Þ þ ðþ1:54915Þ
16.730 ¼ 19.82765 þ ðþ3:80385Þ þ ð�4:06725Þ þ ð�2:83425Þ
26.648 ¼ 19.82765 þ ðþ3:80385Þ þ ðþ2:65935Þ þ ðþ0:35715Þ
27.013 ¼ 19.82765 þ ðþ3:80385Þ þ ðþ0:96055Þ þ ðþ2:42095Þ
24.135 ¼ 19.82765 þ ðþ3:80385Þ þ ðþ0:44735Þ þ ðþ0:05615Þ
5.997 ¼ 19.82765 þ ð�10:87740Þ þ ð�4:06725Þ þ ðþ1:11400Þ
12.229 ¼ 19.82765 þ ð�10:87740Þ þ ðþ2:65935Þ þ ðþ0:61940Þ
9.263 ¼ 19.82765 þ ð�10:87740Þ þ ðþ0:96055Þ þ ð�0:64780Þ
8.312 ¼ 19.82765 þ ð�10:87740Þ þ ðþ0:44735Þ þ ð�1:08560Þ

Clearly, each conceptual parameter estimate has its realization value for the
intrinsic statistical estimation error confounded with its actual value. We
next change the values of these conceptual parameters to examine how (if)
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the respective realization values for this intrinsic statistical estimation error
change.

6.2.1.3. Constructed Data Set Three

We now arbitrarily change all parameters in the conceptual statistical model
to be equal to zero, but we do not change the CRHNDEEi ’s. Our objective
is to compare the realizations of the intrinsic statistical estimation error
components for Constructed Data Set Three to the corresponding realiza-
tion components for Constructed Data Set Two to determine how (if) these
intrinsic statistical estimation error components change with changes in the
parameters of the conceptual statistical model.

*****Constructed Data Set Three*****

|datum valuei’s| ¼ |csmm| þ |cbei’s| þ |ctei’s| þ |CRHNDEEi’s|

þ3:912 ¼ 0 þ 0 þ 0 þ ðþ3:912Þ
þ0:411 ¼ 0 þ 0 þ 0 þ ðþ0:411Þ
�3:139 ¼ 0 þ 0 þ 0 þ ð�3:139Þ
þ1:350 ¼ 0 þ 0 þ 0 þ ðþ1:350Þ
þ0:268 ¼ 0 þ 0 þ 0 þ ðþ0:268Þ
�1:173 ¼ 0 þ 0 þ 0 þ ð�1:173Þ
�0:479 ¼ 0 þ 0 þ 0 þ ð�0:479Þ
þ1:750 ¼ 0 þ 0 þ 0 þ ðþ1:750Þ
�2:105 ¼ 0 þ 0 þ 0 þ ð�2:105Þ
�0:680 ¼ 0 þ 0 þ 0 þ ð�0:680Þ
�0:717 ¼ 0 þ 0 þ 0 þ ð�0:717Þ
þ2:828 ¼ 0 þ 0 þ 0 þ ðþ2:828Þ
�3:270 ¼ 0 þ 0 þ 0 þ ð�3:270Þ
�0:352 ¼ 0 þ 0 þ 0 þ ð�0:352Þ
þ1:013 ¼ 0 þ 0 þ 0 þ ðþ1:013Þ
þ1:135 ¼ 0 þ 0 þ 0 þ ðþ1:135Þ
�0:003 ¼ 0 þ 0 þ 0 þ ð�0:003Þ
�0:771 ¼ 0 þ 0 þ 0 þ ð�0:771Þ
�2:737 ¼ 0 þ 0 þ 0 þ ð�2:737Þ
�0:688 ¼ 0 þ 0 þ 0 þ ð�0:688Þ

Constructed Data Set Three is stored in microcomputer file
C6DATA3. Microcomputer program AGESTCV (with microcomputer file
C6DATA3 copied into microcomputer file DATA and with microcomputer
file C6ARRAY1 copied into microcomputer file ARRAY) computes the
following column vectors for the estimated statistical model:
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|datum valuei ’s| ¼ |est(csmm)| þ |est(cbei ’s)| þ |est(ctei’s)| þ |est(CRHNDEEi’s)j
þ3:912 ¼ �0:17235 þ ðþ0:80585Þ þ ð�0:06725Þ þ ðþ3:34575Þ
þ0:411 ¼ �0:17235 þ ðþ0:80585Þ þ ð�0:34065Þ þ ðþ0:11815Þ
�3:139 ¼ �0:17235 þ ðþ0:80585Þ þ ð�1:03945Þ þ ð�2:73305Þ
þ1:350 ¼ �0:17235 þ ðþ0:80585Þ þ ðþ1:44735Þ þ ð�0:73085Þ
þ0:268 ¼ �0:17235 þ ðþ0:26385Þ þ ð�0:06725Þ þ ðþ0:24375Þ
�1:173 ¼ �0:17235 þ ðþ0:26385Þ þ ð�0:34065Þ þ ð�0:92385Þ
�0:479 ¼ �0:17235 þ ðþ0:26385Þ þ ð�1:03945Þ þ ðþ0:46895Þ
þ1:750 ¼ �0:17235 þ ðþ0:26385Þ þ ðþ1:44735Þ þ ðþ0:21115Þ
�2:105 ¼ �0:17235 þ ðþ0:00385Þ þ ð�0:06725Þ þ ð�1:86925Þ
�0:680 ¼ �0:17235 þ ðþ0:00385Þ þ ð�0:34065Þ þ ð�0:17085Þ
�0:717 ¼ �0:17235 þ ðþ0:00385Þ þ ð�1:03945Þ þ ðþ0:49095Þ
þ2:828 ¼ �0:17235 þ ðþ0:00385Þ þ ðþ1:44735Þ þ ðþ1:54915Þ
�3:270 ¼ �0:17235 þ ð�0:19615Þ þ ð�0:06725Þ þ ð�2:83425Þ
�0:352 ¼ �0:17235 þ ð�0:19615Þ þ ð�0:34065Þ þ ðþ0:35715Þ
þ1:013 ¼ �0:17235 þ ð�0:19615Þ þ ð�1:03945Þ þ ðþ2:42095Þ
þ1:135 ¼ �0:17235 þ ð�0:19615Þ þ ðþ1:44735Þ þ ðþ0:05615Þ
�0:003 ¼ �0:17235 þ ð�0:87740Þ þ ð�0:06725Þ þ ðþ1:11400Þ
�0:771 ¼ �0:17235 þ ð�0:87740Þ þ ð�0:34065Þ þ ðþ0:61940Þ
�2:737 ¼ �0:17235 þ ð�0:87740Þ þ ð�1:03935Þ þ ð�0:64780Þ
�0:688 ¼ �0:17235 þ ð�0:87740Þ þ ðþ1:44735Þ þ ð�1:08560Þ

Given the least-squares estimates for Constructed Data Sets Two and
Three, we now compare the corresponding values for the respective
[est(cpi)]’s and est(CRHNDEEi’s) in these data sets to deduce the effect (if
any) of changes in the selected values for the conceptual parameters on the
associated intrinsic statistical estimation error components. These compar-
isons establish and highlight the fundamental statistical behavior that
underlies classical ANOVA. First, observe that both sets of constructed
datum values have exactly the same numerical values for the
est(CRHNDEEi’s). Thus, the est(CRHNDEEi’s) do not depend on the
actual values for the cpi’s in the conceptual statistical model. Second,
observe that the respective values for corresponding [est(cpi)]’s are directly
related, viz., each pair of corresponding [est(cpi)]’s have values that differ by
exactly the differences between their actual (selected) values. For example,

ð19:82765Þ � ð�0:17235Þ ¼ ð20Þ � ð0Þ;
ð1:80585Þ � ð0:80585Þ ¼ ð1Þ � ð0Þ;

ð�4:06725Þ � ð�0:06725Þ ¼ ð4Þ � ð0Þ;
etc.

These relationships can also be stated as
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ð19:82765Þ � ð20Þ ¼ ð�0:17235Þ � ð0Þ;
ð1:80585Þ � ð1:0Þ ¼ ðþ0:80585Þ � ð0Þ;

etc.

Thus, the intrinsic statistical estimation error component of an est(cpi) does
not depend on the actual value for that cpi, or on the actual values for any of
the other cpi’s in the conceptual statistical model. The results of these two
comparisons lead to the following conclusions and perspective.

Conclusion One: Since the least-squares est(CRHNDEEi’s) do not
depend on the actual values for any of the cpi’s in the conceptual
statistical model, the experiment test program data-based value of
the within(MS) does not depend on the actual values for these cpi’s.

Conclusion Two: When the actual value for a ctescj in the conceptual
statistical model is equal to zero, the intrinsic statistical estimation
error component of this ctescj is exactly equal to est(ctescj). Thus,
given the null hypothesis that the actual value for this ctescj is equal
to zero, the experiment test program data-based value for its asso-
ciated between(MS) does not depend on the actual value for either
this ctescj or for any other cpscj in the conceptual statistical model.

Perspective: The fundamental problem in ANOVA is that, even if
the actual value for any given ctescj in the conceptual statistical
model is alleged to be known, it is still statistically confounded
with its intrinsic statistical estimation error component. However,
the null hypothesis assertion that the actual value for a ctescj is
equal to zero circumvents this fundamental problem—thereby pro-
viding a rational basis for computing the associated null hypothesis
rejection probability.

6.2.1.4. Constructed Data Set Four

We now demonstrate that the intrinsic statistical estimation error com-
ponents of the respective [est(cpi)]’s and the respective est(CRHNDEEi’s)
are proportional to the value of the standard deviation used in running
microcomputer program ANOVADTA to generate the pseudorandom
CRHNDEEi’s. Accordingly, we next run program ANOVADTA with its
input standard deviation equal to 1 (instead of 2) to generate
CRHNDEEi’s in Constructed Data Set Four that are only one-half as
large as the CRHNDEEi’s in Constructed Data Set Three. (To avoid differ-
ences arising from round-off errors, we state the Constructed Data Set Four
pseudorandom CRHNDEEi’s to four decimal places.)
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Constructed Data Set Four is stored in microcomputer file C6DATA4.
Microcomputer program AGESTCV (with microcomputer C6DATA4
copied into microcomputer file DATA and with microcomputer file
C6ARRAY1 copied into microcomputer file ARRAY) computes the follow-
ing column vectors for the estimated statistical model:

|datum valuei ’s| ¼ |est(csmm)| þ |est(cbei ’s)| þ |est(ctei’s)| þ |est(CRHNDEEi’sÞj
+1.9560 ¼ �0:086175 þ ðþ0:402925Þ þ ð�0:033625Þ þ ðþ1:672875Þ
þ0:2055 ¼ �0:086175 þ ðþ0:402925Þ þ ð�0:170325Þ þ ðþ0:059075Þ
�1:5695 ¼ �0:086175 þ ðþ0:402925Þ þ ð�0:519725Þ þ ð�1:366525Þ
þ0:6750 ¼ �0:086175 þ ðþ0:402925Þ þ ðþ0:723675Þ þ ð�0:365425Þ
þ0:1340 ¼ �0:086175 þ ðþ0:131925Þ þ ð�0:033625Þ þ ðþ0:121875Þ
�0:5865 ¼ �0:086175 þ ðþ0:131925Þ þ ð�0:170325Þ þ ð�0:461925Þ
�0:2395 ¼ �0:086175 þ ðþ0:131925Þ þ ð�0:519725Þ þ ðþ0:234475Þ
þ0:8750 ¼ �0:086175 þ ðþ0:131925Þ þ ðþ0:723675Þ þ ðþ0:105575Þ
�1:0525 ¼ �0:086175 þ ðþ0:001950Þ þ ð�0:033625Þ þ ð�0:934625Þ
�0:3400 ¼ �0:086175 þ ðþ0:001950Þ þ ð�0:170325Þ þ ð�0:085425Þ
�0:3585 ¼ �0:086175 þ ðþ0:001950Þ þ ð�0:519725Þ þ ðþ0:245475Þ
þ1:4140 ¼ �0:086175 þ ðþ0:001950Þ þ ðþ0:723675Þ þ ðþ0:774575Þ
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*****Constructed Data Set Four*****

|datum valuei’s| ¼ |csmm| þ |cbei’s| þ |ctei’s| þ |CRHNDEEi’s|

þ1:9560 ¼ 0 þ 0 þ 0 þ ðþ1:9560Þ
þ0:2055 ¼ 0 þ 0 þ 0 þ ðþ0:2055Þ
�1:5695 ¼ 0 þ 0 þ 0 þ ð�1:5695Þ
þ0:6750 ¼ 0 þ 0 þ 0 þ ðþ0:6750Þ
þ0:1340 ¼ 0 þ 0 þ 0 þ ðþ0:1340Þ
�0:5865 ¼ 0 þ 0 þ 0 þ ð�0:5865Þ
�0:2395 ¼ 0 þ 0 þ 0 þ ð�0:2395Þ
þ0:8750 ¼ 0 þ 0 þ 0 þ ðþ0:8750Þ
�1:0525 ¼ 0 þ 0 þ 0 þ ð�1:0525Þ
�0:3400 ¼ 0 þ 0 þ 0 þ ð�0:3400Þ
�0:3585 ¼ 0 þ 0 þ 0 þ ð�0:3585Þ
þ1:4140 ¼ 0 þ 0 þ 0 þ ðþ1:4140Þ
�1:6350 ¼ 0 þ 0 þ 0 þ ð�1:6350Þ
�0:1760 ¼ 0 þ 0 þ 0 þ ð�0:1760Þ
þ0:5065 ¼ 0 þ 0 þ 0 þ ðþ0:5065Þ
þ0:5675 ¼ 0 þ 0 þ 0 þ ðþ0:5675Þ
�0:0015 ¼ 0 þ 0 þ 0 þ ð�0:0015Þ
�0:3855 ¼ 0 þ 0 þ 0 þ ð�0:3855Þ
�1:3685 ¼ 0 þ 0 þ 0 þ ð�1:3685Þ
�0:3440 ¼ 0 þ 0 þ 0 þ ð�0:3440Þ
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�1:6350 ¼ �0:086175 þ ð�0:098075Þ þ ð�0:033625Þ þ ð�1:417125Þ
�0:1760 ¼ �0:086175 þ ð�0:098075Þ þ ð�0:170325Þ þ ðþ0:178575Þ
þ0:5065 ¼ �0:086175 þ ð�0:098075Þ þ ð�0:519725Þ þ ðþ1:210475Þ
þ0:5675 ¼ �0:086175 þ ð�0:098075Þ þ ðþ0:723675Þ þ ðþ0:028075Þ
�0:0015 ¼ �0:086175 þ ð�0:438700Þ þ ð�0:033625Þ þ ðþ0:557000Þ
�0:3855 ¼ �0:086175 þ ð�0:438700Þ þ ð�0:170325Þ þ ðþ0:309700Þ
�1:3685 ¼ �0:086175 þ ð�0:438700Þ þ ð�0:519725Þ þ ð�0:323900Þ
�0:3440 ¼ �0:086175 þ ð�0:438700Þ þ ðþ0:723675Þ þ ð�0:542800Þ

First note that the est(CRHNDEEi’s) pertaining to Constructed Data Set
Four are exactly equal to one-half of the corresponding est(CRHNDEEi’s)
pertaining to Constructed Data Set Three. Then note that the intrinsic
statistical estimation error component of each est(cpi) in Constructed
Data Set Four is also exactly equal to one-half of the intrinsic statistical
estimation error component of its corresponding est(cpi) in Constructed
Data Set Three. On the other hand, if the CRHNDEEi’s in Constructed
Data Set Four had been generated by running microcomputer program
ANOVADTA with an input standard deviation equal to 4, then its
est(CRHNDEEi’s) would have been exactly twice as large as the correspond-
ing est(CRHNDEEi’s) in Constructed Data Set Three. Moreover, the intrin-
sic statistical estimation error component of each est(cpi) in Constructed
Data Set Four would have been twice as large as the intrinsic statistical
estimation error component of its corresponding est(cpi) in Constructed
Data Set Three. (The latter two assertions can be verified by modifying
Constructed Data Set Four to pertain to the pseudorandom
CRHNDEEi’s that appear in microcomputer computer file C6DATA5.)

Conclusion Three: Given either (a) the omnibus null hypothesis that
the actual values for all of the respective ctescj’s are equal to zero or
(b) the specific null hypothesis that the actual value for a given ctescj
is equal to zero, the ratio of the experiment test program data-based
value for the between(MS) to the experiment test program data-
based value for the within(MS) does not depend on the magnitude
of var(APRCRHNDEE’s). Accordingly, the experiment test pro-
gram data-based value for Snedecor’s central F test statistic does
not depend on the magnitude of var(APRCRHNDEE’s).

6.2.1.5. Summary and Perspective

The respective comparisons of the [est(cpi)]’s in Constructed Data Sets One
through Four demonstrate that, given the relevant null hypothesis, the
experiment test program data-based value for Snedecor’s central F test
statistic does not depend either on the actual values for the cpi’s or on the
magnitude of var(APRCRHNDEE ’s). Thus, subject to its underlying
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presumptions being valid (statistically credible), these comparisons demon-
strate the validity of using Snedecor’s central F test statistic in classical
ANOVA for the experiment test programs presented in Chapter 2.

Exercise Set 1

These exercises are intended to confirm the text Conclusions One, Two, and
Three and to examine the necessity of the fundamental presumption of
normality in classical ANOVA.

1. Run microcomputer program ANOVADTA with the same set of
three, three-digit odd seed numbers to construct data sets similar
to Constructed Data Sets Two and Three. Use the same arbitra-
rily selected magnitude for var(APRCRHNDEE ’s), but use dif-
ferent arbitrarily selected values for the csmm, the cbei ’s, and the
ctei’s. Then, given these two constructed data sets, demonstrate
that the respective intrinsic statistical estimation error com-
ponents do not depend on your arbitrarily selected values. In
turn, construct a data set similar to Constructed Data Set Four
using the same arbitrarily selected values for the csmm, the cbe’s,
the cte’s, and the same set of three, three-digit odd seed numbers
as used for Constructed Data Set Three, but use a different arbi-
trarily selected magnitude for var(APRCRHNDEE ’s). Then,
given these two constructed data sets, demonstrate that the
respective experiment test program data-based values for
Snedecor’s central F test statistic are identical.

2. Rework Exercise 1 using microcomputer program (a) UNI, (b)
SEV, or (c) LEV to generate pseudorandom CRHEEi’s for three
similar sets of constructed datum values. Do the conclusions
confirmed in Exercise 1 depend on the presumption that the
CRHDVi’s are normally distributed?

3. If the experiment test program data-based value for Snedecor’s
central F test statistic does not depend on the presumption of
normality, explain (a) why normality must be presumed in clas-
sical ANOVA, then (b) why a randomization-based ANOVA is
feasible. What presumptions must be made to validate a rando-
mization-based ANOVA?
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6.3. CLASSICAL ANOVA USING SNEDECOR’S
CENTRAL F TEST STATISTIC

The classical analysis of variance methodology is typically summarized in a
tabular format, e.g., Table 6.2 pertains to an equally replicated CRD experi-
ment test program, and Table 6.3 pertains to an unreplicated RCBD experi-
ment test program.

The expected value of the within[est(CRHNDEEi’s)]MS in Table 6.2
is equal to var(APRCRHNDEE ’s). In turn, given the omnibus null
hypothesis that the actual values for the respective ctescj’s are all equal to
zero, the expected value of the between[est(ctei’s)]MS is also equal to
var(APRCRHNDEE’s). However, given the omnibus composite alternative
hypothesis that the actual values for the respective ctescj’s are not all equal
to zero, the expected value of the between[est(ctei’s)]MS is inflated to
account for the differences among the actual values for the respective
ctescj ’s. Thus, when a sufficiently large data-based value of Snedecor’s cen-
tral F test statistic is computed for the ANOVA experiment test program
that is actually conducted, viz., such that the corresponding probability
value that pertains to the upper tail of Snedecor’s central F conceptual
sampling distribution is sufficiently small, then we can (must) rationally
reject the omnibus null hypothesis and assert instead that the actual values
for the respective ctescj’s are not all equal to zero.

The omnibus null hypothesis and its associated omnibus composite
alternative hypothesis can also be stated in terms of the respective ctKm’s.
However, when the ANOVA experiment test program involves several treat-
ments, the omnibus composite alternative hypothesis that the actual values
of the respective ctKm’s are all equal to one another is often too inclusive to
be practical. If so, then it is generally preferable to avoid this omnibus null
hypothesis and its associated composite alternative hypothesis and work
instead with set of cteci’s that correspond directly to the objectives of the
ANOVA experiment test program (Supplemental Topic 2.A).

Given the specific null hypothesis that the actual value for a particular
ctescj is equal to zero, the associated alternative hypothesis can be: (a) the
specific composite (two-sided) alternative hypothesis that the actual value
for this particular ctescj is not equal to zero, (b) the specific simple (one-
sided) alternative hypothesis that the actual value for this particular ctescj is
greater than zero, or (c) the specific simple (one-sided) alternative hypothesis
that the actual value for this particular ctescj is less than zero. For (b) and (c)
use only one-half of the upper tail probability of Snedecor’s central F con-
ceptual sampling distribution as the null hypothesis rejection probability.

The classical (shortest) 100(scp)% (two-sided) confidence interval that
allegedly includes the actual value for the given ctescj is computed when the
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specific null hypothesis that the actual value for the given ctescj is equal to
zero is rejected in favor of the specific composite (two-sided) alternative
hypothesis that the actual value for the given ctescj is not equal to zero.
Similarly, a lower (upper) 100(scp)% (one-sided) statistical confidence limit
that allegedly bounds the actual value of the given ctescj is computed when
the specific null hypothesis that the actual value for the given ctescj is equal
to zero is rejected in favor of the specific simple (one-sided) alternative
hypothesis that the actual value for the given ctescj is greater (less) than zero.

Now consider Table 6.3. The discussion of Table 6.2 is also relevant
here. In addition, we note that the between[est(cbei ’s)]MS is not explicitly
stated herein because (a) blocks must be specifically selected so that no
block,treatment interaction effect is physically credible in an unreplicated
RCBD experiment test program, and (b) blocks pertain to nuisance variables
and, therefore, the respective est(cbescj ’s) are not of specific interest. (Recall
that batch-to-batch effects are viewed as treatment effects.) On the other
hand, suppose that the blocks in an unreplicated RCBD experiment test
program are merely time blocks used as a precautionary measure against
possible equipment breakdown. Then, if no equipment breakdown occurs,
the between[est(cbei’s)]SS is aggregated with the within[est(CRHNDEEi’s)]SS
and the number of est(cbei ’s) statistical degrees of freedom is aggregated with
the number of est(CRHNDEEi’s) statistical degrees of freedom, viz., the un-
replicated RCBD experiment test program statistically reduces to a CRD
experiment test program with nb ¼ nr replicates of each of its nt treatments.

6.3.1. Classical ANOVA for an Unreplicated RCBD
Experiment Test Program

We now run microcomputer program ANOVA with the orthogonal aug-
mented contrast array transpose in Table 6.1 copied in microcomputer file
ARRAY and Constructed Data Set Two copied in microcomputer file
DATA. This program first computes the experiment test program data-
based value for Snedecor’s central F test statistic and then it computes the
probability that a value of Snedecor’s central F test statistic that is randomly
selected from Snedecor’s central F conceptual sampling distribution will be
greater than or equal to the experiment test program data-based value of
Snedecor’s central F test statistic.

6.3.1.1. Example One

Consider the omnibus null hypothesis that the actual values for all of the
respective ctescj’s are equal to zero (or that the actual values for all of the
respective ctKm’s are identical) versus the omnibus composite alternative
hypothesis that the actual values for the respective ctescj’s are not all equal

248 Chapter 6
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to zero (or that the actual values for the respective ctKm’s are not all
identical). The between [est(ctei’s)]SS thus pertains to columns (rows) 6–8
in Table 6.1, whereas the corresponding within[est(CRHNDEEi’s)]SS per-
tains to columns (rows) 9–20.
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C> COPY C6ARRAY1 ARRAY

1 file(s) copied

C> COPY C6DATA2 DATA

1 file(s) copied

C> ANOVA

This program presumes that the transpose of the relevant orthogonal
augmented contrast array appears in microcomputer file ARRAY and
the corresponding appropriately ordered experiment test program
datum values appear in microcomputer file DATA.

Input the adjacent column vectors in the estimated complete analytical
model that are aggregated to compute the desired
between[est(ctei’s)]SS (e.g., for columns 6 through 8, type 6 space 8)

6 8

Input the adjacent column vectors in the estimated complete analytical
model that are aggregated to compute the desired
within[est(CRHNDEEi’s)]SS (e.g., for columns 9 through 20, type 9
space 20)

9 20

between[est(ctei’s)]SS = 0.1236872166D+03
[est(ctei’s)]nsdf = 3
between[est(ctei’s)]MS = 0.4122907218D+02
within[est(CRHNDEEi’s)]SS = 0.4380080620D+02
[est(CRHNDEEi’s)]nsdf = 12
within[est(CRHNDEEi’s)]MS = 0.3650067183D+01
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Given the omnibus null hypothesis that the actual values for the
respective ctescj ’s are all equal to zero, the probability that a randomly
selected replicate ANOVA experiment test program will have its data-
based value for Snedecor’s central F3,12 test statistic equal to or greater
than 11.2954 equals 0.0008. This probability is sufficiently small to warrant
rejection of the null hypothesis. Thus, we (correctly) reject the omnibus null
hypothesis that the actual values for the respective ctesc’s are all equal to
zero in favor of the omnibus alternative hypothesis that the actual values for
the respective ctescj’s are not all equal to zero. (The actual values for the
respective ctescj’s are 1, 0.5, and �2.5.)

When the omnibus null hypothesis is rejected, the classical (shortest)
100(scp)% (two-sided) statistical confidence intervals that allegedly include
the actual values for the respective ctKm’s should be computed. First, we
assert that est[var(APRCRHNDEE ’s)] ¼ within[est(CRHNDEEi’s)], where
the value for within[est(CRHNDEEi ’s)] is obtained from the output of
microcomputer program ANOVA. Thus, est[var(APRCRHNDEE ’s)] ¼
3.6501. We then estimate the actual values for the variances of the concep-
tual sampling distributions for the respective [est(ctKm)]’s using the expres-
sion est{var[est(ctKm)]} ¼ {est[var(APRCRHNDEE’s)]}/na, in which na =
nb, where nb (=5) is the number of datum values whose arithmetic average
was used to estimate the actual value for each respective ctKm. Accordingly,

250 Chapter 6

The data-based value of Snedecor’s central F3,12 test statistic for the
outcome of the experiment test program that was actually conducted is
equal to 0.112954D+02.

Given the null hypothesis that the actual value(s) for the ctescj(s) of
specific interest is (are) equal to zero and given that the experiment test
program datum values are random, homoscedastic, and normally dis-
tributed, this data-based value of Snedecor’s central F3;12 test statistic
can statistically be viewed as having been randomly selected from
Snedecor’s central F3;12 conceptual sampling distribution. Thus, the
probability that a randomly selected outcome of this experiment test
program when continually replicated will have its data-based value of
Snedecor’s central F3;12 test statistic equal to or greater than
0.112954D+02 is equal to 0.0008. When this probability is sufficiently
small, reject the null hypothesis in favor of the alternative hypothesis
that the actual value(s) for the ctescj(s) of specific interest is (are) not
equal to zero.
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est{var[est(ctKm)]} ¼ (3.6501/5) ¼ 0.7300 and est{stddev[est(ctkm)]} ¼
(3.6501/5)1/2 ¼ 0.8544. Next, we select the desired value for the scp, say
0.95; then, (1+0.95)/2 ¼ 0.975 and (1� 0.95)/2 ¼ 0.025. In turn, we run
microcomputer program TP to establish that �t1,12;0.025 ¼ t1,12;0.975 ¼
2.1788. Note that the denominator number of statistical degrees of freedom
for Student’s central t conceptual sampling distribution is the number of
statistical degrees of freedom pertaining to the est[var(APRCRHNDEE ’s)].
In turn, we compute the half-widths for the respective classical (shortest)
100(scp)% (two-sided) statistical confidence intervals that allegedly include
the actual values for the respective ctKm’s as ð2:1788Þ � ð0:8544Þ ¼ 1:8616.
Accordingly, the classical (shortest) 95% (two-sided) statistical confidence
intervals that allegedly include the actual values for the respective ctKm’s are
equal to their associated estimated values, 15.7604 (A), 22.4870 (B), 20.7882
(C), and 20.2750 (D), �1.8616. These four intervals, [13.8988, 17.6220],
[20.6254, 24.3486], [18.9262, 22.6504], and [18.4134, 22.1366], are valid indi-
vidually (separately), but not collectively (simultaneously). See Section 6.4.

6.3.1.2. Example Two

Suppose that the four treatments in the unreplicated RCBD experiment test
program actually pertain to the four treatment combinations associated
with two treatments, each at two levels, in a (2)2 factorial arrangement.
Then, the three respective cteci’s in Table 6.1 must be reinterpreted and
reidentified as ct1eci ’s, ct2eci ’s, and ct1t2ieci ’s, as in Table 6.4.
Accordingly, there are now three specific null hypotheses of interest in
ANOVA: Hn(1): ct1esc ¼ 0, Hn(2): ct2esc ¼ 0, and Hn(3): ct1t2iesc ¼ 0.

1. Consider the specific null hypothesis that the actual value for the
ct1esc is equal to zero versus the specific composite (two-sided) alternative
hypothesis that the actual value for the ct1esc is not equal to zero. Running
microcomputer program ANOVA in which the respective appropriate adja-
cent estimated column vectors are aggregated, generates the following
results:
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C> COPY C6ARRAY2 ARRAY

1 file(s) copied

C> ANOVA
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This program presumes that the transpose of the relevant orthogonal
augmented contrast array appears in microcomputer file ARRAY and
the corresponding appropriately ordered experiment test program
datum values appear in microcomputer file DATA.

Input the adjacent column vectors in the estimated complete analytical
model that are aggregated to compute the desired between-
[est(ctei’s)]SS (e.g., for columns 6 through 8, type 6 space 8)

6 6

Input the adjacent column vectors in the estimated complete analytical
model that are aggregated to compute the desired within-
[est(CRHNDEEi’s)]SS (e.g., for columns 9 through 20, type 9 space 20)

9 20

between[est(ctei’s)]SS = 0.4825792445D+02
[est(ctei’s)]nsdf = 1
between[est(ctei’s)]MS = 0.4825792445D+02
within[est(CRHNDEEi’s)]SS = 0.4380080620D+02
[est(CRHNDEEi’s)]nsdf = 12
within[est(CRHNDEEi’s)]MS = 0.3650067183D+01

The data-based value of Snedecor’s central F1,12 test statistic for the
outcome of the experiment test program that was actually conducted is
equal to 0.132211D+02.

Given the null hypothesis that the actual value(s) for the ctescj(s) of
specific interest is (are) equal to zero and given that the experiment test
program datum values are random, homoscedastic, and normally dis-
tributed, this data-based value of Snedecor’s central F1,12 test statistic
can statistically be viewed as having been randomly selected from
Snedecor’s central F1,12 conceptual sampling distribution. Thus, the
probability that a randomly selected outcome of this experiment test
program when continually replicated will have its data-based value of
Snedecor’s central F1,12 test statistic equal to or greater than
0.132211D+02 is equal to 0.0034. When this probability is sufficiently
small, reject the null hypothesis in favor of the alternative hypothesis
that the actual value(s) for the ctescj(s) of specific interest is (are) not
equal to zero.
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Given the specific null hypothesis that the actual value for the ct1esc is
equal to zero, the probability that a randomly selected replicate ANOVA
experiment test program will have its data-based value for Snedecor’s cen-
tral F1,12 test statistic equal to or greater than 13.2211 equals 0.0034. This
probability is sufficiently small to warrant rejection of the null hypothesis.
Thus, we (correctly) reject the specific null hypothesis that the actual value
for the ct1esc is equal to zero in favor of the specific alternative (two-sided)
hypothesis that the actual value for the ct1esc is not equal to zero. (The
actual value for the ct1esc is equal to 1 and its least-squares estimate is equal
to 1.55335.) The issue of concern now is whether to compute 100(scp)%
(two-sided) statistical confidence intervals that allegedly include the actual
values for (ct1m)low and (ct1m)high, or to compute a 100(scp)% (two-sided)
statistical confidence interval that allegedly includes the actual value for the
associated ct1esc.

First, consider the classical (shortest) 95% (two-sided) statistical con-
fidence interval that allegedly includes the actual value for the ct1esc. The
half-width of this interval is equal to ð2:1788Þ � ð3:6501=20Þ1=2 ¼ 0:9308
in which �t1,12;0.025 ¼ t1,12;0.975 ¼ 2.1788 and the divisor (¼ 20) of
est[var(APRCRHNDEE ’s)] is the sum of the squares of the 20 elements
of the |ct1eci ’s| column vector (Table 6.4). Thus, the classical (shortest)
95% (two-sided) statistical confidence interval that allegedly includes the
actual value for the ct1esc is equal to 1:55335� 0:9308, viz., [0.6226,
2.4841]. Note that this interval does not include the value zero and is there-
fore consistent with our (correct) decision to reject the associated specific
null hypothesis. The classical (shortest) 100(scp)% (two-sided) statistical
confidence interval that just barely includes the value zero has its required
half-width when (1.55335)/[(3.6501/20)1/2] ¼ t1,12;p ¼ 3.6361, viz., when
p ¼ 0.9983 and scp ¼ 1� 2 � ð1� pÞ ¼ 0.9966. Accordingly, scp can be
increased to 0.9966 (99.66%) before this classical (shortest) 100(scp)%
(two-sided) statistical confidence interval just barely includes the value
zero at its lower limit. Note that the value 2 � ð1� pÞ ¼ 0:0034 exactly agrees
with the corresponding ANOVA null hypothesis rejection probability.
Obviously, this ANOVA outcome could also have been stated in terms of
a 100(scp)% (two-sided) statistical confidence interval from zero to twice
est(ct1esc), where this scp value is equal to 0.9966.

Now consider the classical (shortest) 95% (two-sided) statistical con-
fidence intervals that allegedly include the actual values for ct1mlow and
ct1mhigh, where est(ct1mlow) ¼ 18.2743 and est(ct1mhigh) ¼ 21.3810. The
half-widths of each of these intervals is equal to 2:1788 � ½ð3:6501=10Þ1=2�
¼ 1:3163, in which the divisor (¼ 10) of est[var(APRCRHNDEE’s)] is the
number of datum values whose arithmetic average was used to compute
est(ct1mlow) and est(ct1mhigh). Thus, the classical (shortest) 95% (two-
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sided) statistical confidence interval that allegedly includes the actual value
for ct1mlow is [16.9580, 19.5906], whereas the classical (shortest) 95%
(two-sided) statistical confidence interval that allegedly includes the actual
value for ct1mhigh is [20.0647, 22.6973]. The respective upper and lower
limits of these two statistical confidence intervals just barely meet when
their half-widths are equal to 1.55335, viz., when t1,12;p ¼ ð1:55335Þ=
½ð3:6501=10Þ1=2� ¼ 2.5711 and p ¼ 0.9877. Then, 2 � ð1� pÞ ¼ 0:0246 instead
of the correct value, viz., 0.0034 as established by ANOVA and the asso-
ciated classical (shortest) 99.66% (two-sided) statistical confidence interval
that allegedly includes the actual value for the ct1esc. This discrepancy
highlights the problem of computing separate 100(scp)% (two-sided) statis-
tical confidence intervals that allegedly include the actual values for ct1mlow

and ct1mhigh. These two intervals are valid individually (separately), but not
collectively (simultaneously).

Caveat: Be careful when comparing two or more ctKm’s because
these ctKm’s can differ statistically even when their respective clas-
sical (shortest) 100(scp)% (two-sided) statistical confidence inter-
vals slightly overlap. The appropriate expression to use for
Student’s central T1;ndsdf test statistic in developing the classical
(shortest) 100(scp)% (two-sided) statistical confidence interval
that allegedly includes the actual value for the difference
(ct1mhigh � ct1mlow) is

Student’s central T1;ndsdf test statistic

¼ ½estðct1mhighÞ � estðct1mlowÞ� � ½ct1mhigh � ct1mlow�
estfstddev½estðct1mhighÞ � estðct1mlowÞ�g

in which the number of denominator statistical degrees of freedom
is equal to the number of statistical degrees of freedom pertaining to
est[var(APRCRHNDEE ’s). Accordingly, the half-width of the
classical (shortest) 100(scp)% (two-sided) statistical confidence
interval that allegedly includes the actual value for the difference
(ct1mhigh � ct1mlow) is numerically equal to ½ð1:55335Þ � ð�1:55335Þ�
=fð3:6501Þ � ½ð1=10Þ þ ð1=10Þ�g1=2 ¼ 3:6361 when this interval just
barely includes the value zero. Then, p ¼ 0.9983 and
2 � ð1� pÞ ¼ 0:0034, which exactly checks with our example
ANOVA pertaining to the ct1esc and the associated classical (short-
est) 100(scp)% (two-sided) statistical confidence interval that just
barely includes the value zero. Note that 3:6361 ¼ ð2:5711Þ � ð2Þ1=2.
See Section 6.4 when statistically comparing the actual values for
more than two ctKm’s.
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2. Consider the specific null hypothesis that the actual value for the
ct2esc is equal to zero versus the specific composite (two-sided) alternative
hypothesis that the actual value for the ct2esc is not equal to zero. Running
microcomputer program ANOVA in which the respective appropriate adja-
cent estimated column vectors are aggregated, generates the following
results:
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C> ANOVA

This program presumes that the transpose of the relevant orthogonal
augmented contrast array appears in microcomputer file ARRAY and
the corresponding appropriately ordered experiment test program
datum values appear in microcomputer file DATA.

Input the adjacent column vectors in the estimated complete analytical
model that are aggregated to compute the desired between-
[est(ctei’s)]SS (e.g., for columns 6 through 8, type 6 space 8)

7 7

Input the adjacent column vectors in the estimated complete analytical
model that are aggregated to compute the desired within-
[est(CRHNDEEi’s)]SS (e.g., for columns 9 through 20, type 9 space 20)

9 20

between[est(ctei’s)]SS = 0.9910912050D+01
[est(ctei’s)]nsdf = 1
between[est(ctei’s)]MS = 0.9910912050D+01
within[est(CRHNDEEi’s)]SS = 0.4380080620D+02
[est(CRHNDEEi’s)]nsdf = 12
within[est(CRHNDEEi’s)]MS = 0.3650067183D+01

The data-based value of Snedecor’s central F1,12 test statistic for the
outcome of the experiment test program that was actually conducted is
equal to 0.271527D+01.

Given the null hypothesis that the actual value(s) for the ctescj(s) of
specific interest is (are) equal to zero and given that the experiment test
program datum values are random, homoscedastic, and normally dis-
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Given the specific null hypothesis that the actual value for the ct2esc is
equal to zero, the probability that a randomly selected ANOVA experiment
test program will have its data-based value for Snedecor’s central F1,12 test
statistic equal to or greater than 2.71527 equals 0.1253. This probability is
not sufficiently small to warrant rejection of the null hypothesis.
Accordingly, we (incorrectly) do not reject the specific null hypothesis that
the actual value for the ct2esc is equal to zero in favor of the specific
composite (two-sided) alternative hypothesis that the actual value for the
ct2esc is not equal to zero. (The actual value for the ct2esc is equal to 0.5 and
its estimated value is equal to 0.70395.) The classical (shortest) 95% (two-
sided) statistical confidence interval that allegedly includes the actual value
for the ct2esc is [�0.2268, þ1.6347]. Note that this interval does include the
value zero and is therefore consistent with our (incorrect) decision not to
reject the specific null hypothesis that the actual value for the ct2esc is equal
to zero in favor of the specific composite (two-sided) alternative that the
actual value for the ct2esc is not equal to zero.

3. Consider the specific null hypothesis that the actual value for the
ct1t2iesc is equal to zero versus the specific composite (two-sided) alterna-
tive hypothesis that the actual value for the ct1t2iesc is not equal to zero.
Running microcomputer program ANOVA in which the respective appro-
priate adjacent estimated column vectors are aggregated, generates the
following results:

Statistical Analysis of Variance 257

tributed, this data-based value of Snedecor’s central F1,12 test statistic
can statistically be viewed as having been randomly selected from
Snedecor’s central F1,12 conceptual sampling distribution. Thus, the
probability that a randomly selected outcome of this experiment test
program when continually replicated will have its data-based value of
Snedecor’s central F1,12 test statistic equal to or greater than
0.271527D+01 is equal to 0.1253. When this probability is sufficiently
small, reject the null hypothesis in favor of the alternative hypothesis
that the actual value(s) for the ctescj(s) of specific interest is (are) not
equal to zero.
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C> ANOVA

This program presumes that the transpose of the relevant orthogonal
augmented contrast array appears in microcomputer file ARRAY and
the corresponding appropriately ordered experiment test program
datum values appear in microcomputer file DATA.

Input the adjacent column vectors in the estimated complete analytical
model that are aggregated to compute the desired between-
[est(ctei’s)]SS (e.g., for columns 6 through 8, type 6 space 8)

8 8

Input the adjacent column vectors in the estimated complete analytical
model that are aggregated to compute the desired within-
[est(CRHNDEEi’s)]SS (e.g., for columns 9 through 20, type 9 space 20)

9 20

between[est(ctei’s)]SS = 0.6551838005D+02
[est(ctei’s)]nsdf = 1
between[est(ctei’s)]MS = 0.6551838005D+02
within[est(CRHNDEEi’s)]SS = 0.4380080620D+02
[est(CRHNDEEi’s)]nsdf = 12
within[est(CRHNDEEi’s)]MS = 0.3650067183D+01

The data-based value of Snedecor’s central F1,12 test statistic for the
outcome of the experiment test program that was actually conducted is
equal to 0.179499D+02.

Given the null hypothesis that the actual value(s) for the ctescj(s) of
specific interest is (are) equal to zero and given that the experiment test
program datum values are random, homoscedastic, and normally dis-
tributed, this data-based value of Snedecor’s central F1,12 test statistic
can statistically be viewed as having been randomly selected from
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Given the specific null hypothesis that the actual value for the ct1t2iesc
is equal to zero, the probability that a randomly selected ANOVA experi-
ment test program will have its data-based value for Snedecor’s central F1,12

test statistic equal to or greater than 17.9499 equals 0.0012. This probability
is sufficiently small to warrant rejection of the null hypothesis. Thus, we
(correctly) reject the specific null hypothesis that the actual value for the
ct1t2esc is equal to zero in favor of the specific composite (two-sided) alter-
native hypothesis that the actual value for the ct2esc is not equal to zero.
(The actual value for the ct1t2iesc is equal to �2:5 and its estimated value is
equal to �1.80995). The classical (shortest) 95% (two-sided) statistical con-
fidence interval that allegedly includes the actual value for the ct1t2iesc is
[�2.7407, �0.8792]. This interval does not include the value zero and is
therefore consistent with our (correct) decision to reject the specific null
hypothesis that the actual value for the ct1t2iesc is equal to zero in favor
of the specific composite (two-sided) alternative that the actual value for the
ct1t2iesc is not equal to zero.

Remark: Recall that Constructed Data Sets One and Two were
based on the arbitrary cpi selections: ct1e ¼ �4, ct2e ¼ 3,
ct3e ¼ 2, and ct4e ¼ �1. These selections, when restated to pertain
to a (2)2 factorial arrangement of four treatment combinations, are
such that ct1esc ¼ 1, ct2esc ¼ 0.5, and ct1t2iesc ¼ �2:5.
Accordingly, for our hypothetical example, the two-factor interac-
tion term dominates its associated main effects. Although such a
dominance is rare, it occurs occasionally (e.g., in high strain rate,
high-temperature tension testing of median-carbon steels).
Sometimes a strictly monotonic transformation of the experiment
test program datum values (e.g., a logarithmic transformation) will

Statistical Analysis of Variance 259

Snedecor’s central F1,12 conceptual sampling distribution. Thus, the
probability that a randomly selected outcome of this experiment test
program when continually replicated will have its data-based value of
Snedecor’s central F1,12 test statistic equal to or greater than
0.179499D+02 is equal to 0.0012. When this probability is sufficiently
small, reject the null hypothesis in favor of the alternative hypothesis
that the actual value(s) for the ctescj(s) of specific interest is (are) not
equal to zero.
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cause the estimated main effects to dominate the estimated interac-
tion term.

6.3.1.3. Example Three

Suppose that our unreplicated RCBD experiment test program had included
time blocks that were used only to avoid analytical problems if the test
equipment failed during the experiment test program. Suppose further
that it was subsequently decided to ignore time blocks and to reinterpret
this experiment test program as a CRD so that the resulting
|est(CRHNDEEi’s)| column vector thus had 16 statistical degrees of free-
dom. The resulting orthogonal augmented contrast array appears in Table
6.5.

Exercise Set 2

These exercises are intended to acquaint you with the use of microcomputer
program ANOVA.

1. Verify Example Two by running microcomputer program
ANOVA appropriately to generate the same data-based values
for Snedecor’s central F test statistic with the experiment test
program datum values found in Constructed Data Sets Three
and Four, respectively, copied into microcomputer file DATA.

2. Given the CRD experiment test program datum values found in
Constructed Data Set Two and the transpose of the orthogonal
augmented contrast array found in Table 6.5, run program
ANOVA appropriately to test (a) the specific null hypotheses
that the actual value for the ct1esc is equal to zero versus the
specific composite (two-sided) alternative hypothesis that the
actual value for the ct1esc is not equal to zero, (b) the specific
null hypotheses that the actual value for the ct1esc is equal to
zero versus the specific composite (two-sided) alternative hypoth-
esis that the actual value for the ct2esc is not equal to zero, and
(c) the specific null hypotheses that the actual value for the
ct1t2iesc is equal to zero versus the specific composite (two-
sided) alternative hypothesis that the actual value for the
ct1t2iesc is not equal to zero.

3. Compare the respective ANOVA’s in Exercise 1 and 2 and dis-
cuss what happens when the actual values for the cbei’s are not
negligible, but nevertheless are ignored in ANOVA.
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6.3.2. Classical ANOVA for an Unreplicated SPD
Experiment Test Program with a (2)2 Factorial
Arrangement

Analysis of variance for an unreplicated SPD experiment test program dif-
fers from that for CRD and RCBD experiment test programs in that no
omnibus null hypothesis that pertains to all treatment combinations is rele-
vant. This distinction is due to the hierarchical nature of SPD experiment
test programs, viz., split-plots always pertain to nominally identical experi-
mental units within (relative to) each of the respective main-plot treatment
experimental units.

As for unreplicated RCBD experiment test programs, unreplicated
SPD experiment test programs require the presumption that no block,treat-
ment interaction has a physical basis. The respective |cbtiei’s| column vectors
in the complete analytical model can then be selectively aggregated and
reinterpreted as relevant |CRHNDEEi’s| column vectors in the conceptual
statistical model: (a) the aggregated |est(cbmptiei’s)| column vector is rein-
terpreted as the |est(CRHNDMPTEEEi’s)| column vector in Table 6.6; (b)
the aggregated |est(cbsptiei’s)| column vector is reinterpreted as the
|est(CRHNDSPTEEEi’s)| column vector in Table 6.7; and (c) the aggre-
gated |est(cbmptsptiei’s)| column vector is reinterpreted as the
|est(CRHNDMPTSPTIEEEi’s)| column vector in Table 6.8. However, the
traditional conceptual statistical model for an unreplicated SPD experiment
test program (Snedecor and Cochran, 1967) does not include a |CRHNDM-
PTSPTIEEEi’s| column vector. Rather, the est(CRHNDSPTEEEi’s) in
Table 6.7 are aggregated with the est(CRHNDMPTSPTIEEEi’s) in Table
6.8 and interpreted as est(CRHNDSubPlotEE ’s) in Table 6.9. The
within[est(CRHNDSubPlotEEi’s)]MS is then used in classical ANOVA for
this traditional conceptual statistical model (as numerically illustrated
below).

We do not recommend using Snedecor and Cochran’s traditional
model unless the null hypothesis that var(APRCRHNDSPTEEE ’s) ¼
var(APRCRHNDMPTSPTIEEE ’s) is not rejected in favor of the
(one-sided) alternative hypothesis that var(APRCRHNDSPTEEE ’s)>
var(APRCRHNDMPTSPTIEEE ’s). Accordingly, we recommend perform-
ing the ANOVA’s in Tables 6.7 and 6.8 and then testing the null hypothesis
that var(APRCRHNDSPTEEEi’s) ¼ var(APRCRHNDMPTSPTIEEEi’s)
using

262 Chapter 6

Snedecor’s central Fðnb�1Þ�ðnspt�1Þ;ðnb�1Þ�ðnmpt�1Þ�ðnspt�1Þ test statistic

�within est CRHNDSPTEEEi’sð Þ½ �MS

within est CRHNDMPTSPTIEEEi’sð Þ½ �MS

within est CRHNDSPTEEEi’sð Þ½ �MS

within est CRHNDMPTSPTIEEEi’sð Þ½ �MS

continued on page 267
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This test can be performed by running microcomputer program ANOVA
with the within[est(CRHNDSPTEEEi’s)MS serving as the surrogate
between[est(ctei’s)]MS and the within[est (CRHNDMPTSPTIEEEi’s)MS
serving as the surrogate within[est(CRHNDEEi’s)]MS.

Note that the null hypothesis that var(APRCRHNDSPTEEE ’s) ¼
var(APRCRHNDMPTSPTIEEE ’s) is essentially a null hypothesis of homo-
scedasticity, except that only the (one-sided) alternative hypothesis that
var(APRCRHNDSPTEEE ’s)>var(APRCRHNDMPTSPTIEEE ’s) is rele-
vant in this application. Recall that the est(CRHNDSPTEEEi’s) are based on
a two-factor interaction, whereas the est(CRHNDMPTSPTIEEEi’s) are
based on a three-factor interaction. Thus, it is rational to expect
var(APRCRHNDSPTEEE ’s) to exceed var(APRCRHNDMPTSPTIEE ’s).
Accordingly, if the associated null hypothesis rejection probability is suffi-
ciently small, we rationally reject this null hypothesis (and decline to adopt
Snedecor and Cochran’s traditional statistical model for an unreplicated
SPD experiment test program).

The within[est(CRHNDSubPlotEEi’s)]MS is used in the following
unreplicated SPD experiment test program example. Note that microcom-
puter program ANOVA requires that the orthogonal augmented contrast
array be deliberately rearranged as illustrated in Table 6.9 so that the
estimated column vectors that must be aggregated to obtain the
|est(CRHNDSubPlotEEi’s)| column vector are adjacent to one another.

6.3.2.1. Example Four

Consider an unreplicated split-plot experiment test program with five
blocks, two main plots (within each block), and two split-plots (within
each main-plot). The main-plot treatments (treatment levels) could be the
longitudinal and transverse directions in a sheet or plate. If so, the paired
longitudinally oriented and transversely oriented split-plot test specimens
must be machined from blanks cut from adjacent locations in the sheet or
plate. Then, whatever the split-plot treatments (treatment levels), the respec-
tive main-plot treatments (treatment levels) will be as uniform as possible
relative to the split-plot treatments (treatment levels). Alternatively, the
main-plot treatment (treatment levels) could be two grades of machine
screws, where all machine screws of each grade were selected from the
same box and thus presumably are as nominally identical as possible (prac-
tical) relative to the two split-plot treatments (treatment levels), whatever
their nature. The transpose of a nonunique orthogonal augmented contrast
array for this unreplicated split-plot experiment test program appears in
Table 6.10. This array is subsequently used in three numerical example
ANOVA’s that are analogous the three numerical example ANOVA’s in
Example Two.

Statistical Analysis of Variance 267
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1. Consider the specific null hypothesis that the actual value for the
cmptesc is equal to zero versus the specific composite (two-sided) alternative
hypothesis that the actual value for the cmptesc is not equal to zero.
Running microcomputer program ANOVA in which the respective appro-
priate adjacent estimated column vectors are aggregated, gives the following
results:
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C> COPY C6ARRAY4 ARRAY

1 file(s) copied

C> ANOVA

This program presumes that the transpose of the relevant orthogonal
augmented contrast array appears in microcomputer file ARRAY and
the corresponding appropriately ordered experiment test program
datum values appear in microcomputer file DATA.

Input the adjacent column vectors in the estimated complete analytical
model that are aggregated to compute the desired between-
[est(ctei’s)]SS (e.g., for columns 6 through 8, type 6 space 8)

6 6

Input the adjacent column vectors in the estimated complete analytical
model that are aggregated to compute the desired within-
[est(CRHNDEEi’s)]SS (e.g., for columns 9 through 20, type 9 space 20)

7 10

between[est(ctei’s)]SS = 0.9910912050D+01
[est(ctei’s)]nsdf = 1
between[est(ctei’s)]MS = 0.9910912050D+01
within[est(CRHNDEEi’s)]SS = 0.2576384720D+02
[est(CRHNDEEi’s)]nsdf = 4
within[est(CRHNDEEi’s)]MS = 0.6440961800D+01
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Given the specific null hypothesis that the actual value for the cmptesc
is equal to zero, the probability that a randomly selected replicate ANOVA
experiment test program will have its data-based value for Snedecor’s cen-
tral F1,4 test statistic equal to or greater than 1.53873 equals 0.2826. This
probability is not sufficiently small to warrant rejection of the null hypoth-
esis. Accordingly, we (incorrectly) do not reject the specific null hypothesis
that the actual value for the cmptesc is equal to zero in favor of the specific
composite (two-sided) alternative hypothesis that the actual value for the
cmptesc is not equal to zero. (The actual value for the cmptesc is equal to 0.5
and its least-squares estimate is equal to 0.70395.) Nevertheless, we now
compute the classical (shortest) 95% (two-sided) statistical confidence
interval that allegedly includes the actual value for the cmptesc. Its half-
width is equal to [6.4410/20)1/2]�ð�t1,4;0.025 ¼ t1,4;0.975 ¼ 2.7764) ¼ 1.5756.
Accordingly, the classical (shortest) 95% (two-sided) statistical confidence
interval that allegedly includes the actual value for the cmptesc is [�0.8716,
2.2795]. Note that this interval includes the value zero and is thus consistent
with our (incorrect) decision not to reject the specific null hypothesis in
favor of the composite (two-sided) alternative hypothesis that the actual
value for the cmptesc is not equal to zero.

2. Consider the specific null hypothesis that the actual value for the
csptesc is equal to zero versus the specific composite (two-sided) alternative
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The data-based value of Snedecor’s central F1,4 test statistic for the
outcome of the experiment test program that was actually conducted is
equal to 0.153873D+01.

Given the null hypothesis that the actual value(s) for the ctescj (s) of
specific interest is (are) equal to zero and given that the experiment test
program datum values are random, homoscedastic, and normally dis-
tributed, this data-based value of Snedecor’s central F1,4 test statistic
can statistically be viewed as having been randomly selected from
Snedecor’s central F1,4 conceptual sampling distribution. Thus, the
probability that a randomly selected outcome of this experiment test
program when continually replicated will have its data-based value of
Snedecor’s central F1,4 test statistic equal to or greater than
0.153873+01 is equal to 0.2826. When this probability is sufficiently
small, reject the null hypothesis in favor of the alternative hypothesis
that the actual value(s) for the ctescj (s) of specific interest is (are) not
equal to zero.
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hypothesis that the actual value for the csptesc is not equal to zero. We
‘‘validate’’ the use of the within[est(CRHNDSubPlotEEi’s)]MS in this
numerical example in Section 6.5 by running microcomputer program
RBBHT to demonstrate that the null hypothesis that
var(APRCRHNDSPTEEE ’s) ¼ var(APRCRHNDMPTSPTIEEE ’s) can-
not rationally be rejected. Accordingly, the following numerical results are
obtained by running microcomputer program ANOVA:
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C> ANOVA

This program presumes that the transpose of the relevant orthogonal
augmented contrast array appears in microcomputer file ARRAY and
the corresponding appropriately ordered experiment test program
datum values appear in microcomputer file DATA.

Input the adjacent column vectors in the estimated complete analytical
model that are aggregated to compute the desired between-
[est(ctei’s)]SS (e.g., for columns 6 through 8, type 6 space 8)

11 11

Input the adjacent column vectors in the estimated complete analytical
model that are aggregated to compute the desired within-
[est(CRHNDEEi’s)]SS (e.g., for columns 9 through 20, type 9 space 20)

13 20

between[est(ctei’s)]SS = 0.4825792445D+02
[est(ctei’s)]nsdf = 1
between[est(ctei’s)]MS = 0.4825792445D+02
within[est(CRHNDEEi’s)]SS = 0.1803695900D+02
[est(CRHNDEEi’s)]nsdf = 8
within[est(CRHNDEEi’s)]MS = 0.2254619875D+01

The data-based value of Snedecor’s central F1,8 test statistic for the
outcome of the experiment test program that was actually conducted is
equal to 0.214040D+02.
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Given the specific null hypothesis that the actual value for the csptesc
is equal to zero is correct, the probability that a randomly selected replicate
ANOVA experiment test program will have its data-based value for
Snedecor’s central F1,8 test statistic equal to or greater than 21.4040 equals
0.0017. This probability is sufficiently small to warrant rejection of the null
hypothesis. Thus, we (correctly) reject the specific null hypothesis that the
actual value for the csptesc is equal to zero in favor of the specific composite
(two-sided) alternative hypothesis that the actual value for the csptesc is not
equal to zero. (The actual value for the csptesc is equal to 1 and its least-
squares estimate is equal to 1.55335.) The classical (shortest) 95% (two-
sided) statistical confidence interval that allegedly includes the actual
value for the csptesc is [0.7791, 2.3276]. The half-width of the interval is
equal to [(2.2546/20)1/2]�ð> �t1,8;0.025 ¼ t1,8;0.975 ¼ 2.3060) ¼ 0.7742.

Suppose, in contrast, that the specific simple (one-sided) alternative
hypothesis that the actual value for csptesc is greater than zero is physically
relevant. If so, the probability of randomly selecting a replicate ANOVA
experiment test program that has it data-based value for Snedecor’s central
F1,8 test statistic equal to 21.4040 or larger equals 0.00085 (viz., 0.0017/2).
Thus, we (correctly) reject the specific null hypothesis that the actual value
for the csptesc is equal to zero in favor of the specific simple (one-sided)
alternative hypothesis that the actual value for the csptesc is greater than
zero. Then, since the null hypothesis is rejected, we compute the associated
lower 100(scp)% (one-sided) statistical confidence limit that allegedly bounds
the actual value for the csptesc. For scp ¼ 0.95, this lower limit is equal to
0.9290, viz., 1.55335 � t1,8;0.95 � (2.2546/20)1/2, where t1,8;0.95 ¼ 1.8595. Note
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Given the null hypothesis that the actual value(s) for the ctescj (s) of
specific interest is (are) equal to zero and given that the experiment test
program datum values are random, homoscedastic, and normally dis-
tributed, this data-based value of Snedecor’s central F1,8 test statistic
can statistically be viewed as having been randomly selected from
Snedecor’s central F1,8 conceptual sampling distribution. Thus, the
probability that a randomly selected outcome of this experiment test
program when continually replicated will have its data-based value of
Snedecor’s central F1,8 test statistic equal to or greater than
0.214040D+02 is equal to 0.0017. When this probability is sufficiently
small, reject the null hypothesis in favor of the alternative hypothesis
that the actual value(s) for the ctescj (s) of specific interest is (are) not
equal to zero.
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that this lower limit exceeds zero and is therefore consistent with our (cor-
rect) decision to reject the specific null hypothesis that the actual value for the
csptesc is equal to zero in favor of the specific simple (one-sided) alternative
hypothesis that the actual value for the csptesc is greater than zero.

3. Consider the specific null hypothesis that the actual value for the
cmptsptiesc is equal to zero versus the specific composite (two-sided) alter-
native hypothesis that the actual value for the cmptsptiesc is not equal to
zero. The following results are obtained by running microcomputer program
ANOVA:
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C> ANOVA

This program presumes that the transpose of the relevant orthogonal
augmented contrast array appears in microcomputer file ARRAY and
the corresponding appropriately ordered experiment test program
datum values appear in microcomputer file DATA.

Input the adjacent column vectors in the estimated complete analytical
model that are aggregated to compute the desired between-
[est(ctei’s)]SS (e.g., for columns 6 through 8, type 6 space 8)

12 12

Input the adjacent column vectors in the estimated complete analytical
model that are aggregated to compute the desired within-
[est(CRHNDEEi’s)]SS (e.g., for columns 9 through 20, type 9 space 20)

13 20

between[est(ctei’s)]SS = 0.6551838005D+02
[est(ctei’s)]nsdf = 1
between[est(ctei’s)]MS = 0.6551838005D+02
within[est(CRHNDEEi’s)]SS = 0.1803695900D+02
[est(CRHNDEEi’s)]nsdf = 8
within[est(CRHNDEEi’s)]MS = 0.2254619875D+01

The data-based value of Snedecor’s central F1,8 test statistic for the
outcome of the experiment test program that was actually conducted is
equal to 0.290596D+02.
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Given the specific null hypothesis that the actual value for the
cmptsptiesc is equal to zero, the probability that a randomly selected repli-
cate ANOVA experiment test program will have its data-based value for
Snedecor’s central F1,8 test statistic equal to or greater than 29.0596 equals
0.0007. This probability is sufficiently small to warrant rejection of the null
hypothesis. Thus, we (correctly) reject the specific null hypothesis the actual
value for the cmptsptiesc is equal to zero in favor of the specific composite
(two-sided) alternative hypothesis that the actual value for the cmptsptiesc is
not equal to zero. (The actual value for the cmptsptiesc is equal to �2:5 and
its least-squares estimate is equal to �1.80995.)

Exercise Set 3

These exercises are intended to provide perspective regarding classical
(shortest) 100(scp)% (two-sided) statistical confidence intervals pertaining
to the respective treatment and interaction effect scalar coefficients in a (2)2

factorial arrangement.

1. Rationalize the magnitude of the divisor (=20) for
est[var(APRCRHNDEE ’s)] in computing est{var[est(ct1esc)]} in
Example Two by recalling that est(ct1e’s) can be algebraically
computed as one-half the difference between the corresponding
respective treatment arithmetic averages. (a) How many datum
values are used to compute each of the two respective treatment
arithmetic averages? (b) What is the actual value for the variance
of the conceptual sampling distributions for each of these arith-
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Given the null hypothesis that the actual value(s) for the ctescj (s) of
specific interest is (are) equal to zero and given that the experiment test
program datum values are random, homoscedastic, and normally dis-
tributed, this data-based value of Snedecor’s central F1,8 test statistic
can statistically be viewed as having been randomly selected from
Snedecor’s central F1,8 conceptual sampling distribution. Thus, the
probability that a randomly selected outcome of this experiment test
program when continually replicated will have its data-based value of
Snedecor’s central F1,8 test statistic equal to or greater than
0.290596D+02 is equal to 0.0007. When this probability is sufficiently
small, reject the null hypothesis in favor of the alternative hypothesis
that the actual value(s) for the ctescj (s) of specific interest is (are) not
equal to zero.
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metic averages? (c) What is the actual value for the variance of
the conceptual sampling distribution that consists of all possible
replicate realizations values for the algebraic difference of two of
these arithmetic averages? (d) What is the actual value for the
variance of the conceptual sampling distribution that consists of
all possible replicate realization values for one-half of the alge-
braic difference for two of these arithmetic averages? (e) What
divisor is relevant for the actual value for the variance of the
conceptual sampling distribution that consists of all possible
replicate realizations values for the statistic est(ct1esc)?

2. (a) Reconsider the three classical (shortest) 100(scp)% (two sided)
statistical confidence intervals presented in Example Four that
allegedly include the actual value for the cmptesc, the csptesc,
and the cmptsptiesc. Compute the respective scp’s for those sta-
tistical confidence intervals whose half-widths are just large
enough to include the value zero. Then, (b) compare these scp
values to the null hypothesis rejection probability values pertain-
ing to the corresponding ANOVA’s.

6.3.3. Classical ANOVA Summary and Perspective

It is easy to construct experiment test program datum values that will war-
rant rejection of the null hypothesis of specific interest. When the magni-
tudes of typical elements of the |est(CRHNDEEi’s)| column vector are much
smaller than the elements of the |est(ctei’s)| column vector of specific inter-
est, the experiment test program data-based value for the associated
Snedecor’s central F test statistic will likely be sufficiently large to warrant
rejection of the null hypothesis. However, even if the actual values for the
ctescj’s are all exactly equal to zero, as in Constructed Data Sets Three and
Four, the respective est(ctescj’s) will not be equal to zero and thus there is a
possibility (however small) that this null hypothesis will be incorrectly
rejected. Thus, the probability of correctly or incorrectly rejecting a null
hypothesis of specific interest is akin to the probability that a classical
(shortest) 100(scp)% (two-sided) statistical confidence interval does or
does not include the actual value for the quantity of specific interest. It is
never known in any practical situation whether we have correctly rejected or
failed to reject the null hypothesis. We can only assert that, under continual
replication of the given experiment test program, we will correctly reject the
null hypothesis in 100 � ð1�p)% of the respective ANOVA’s, where p is the
null hypothesis rejection probability. Accordingly, when we reject a null
hypothesis, we can assert with 100 � ð1�p)% statistical confidence that we
have correctly rejected this null hypothesis.
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Remark: A simulation study of a continually replicated statistical
test of hypothesis will generate an outcome that is akin to that
generated by running microcomputer program SSTSSCI1.

When the objective of the experiment test program is to detect ctei’s whose
actual values are at least equal to some minimum practical value it is
imperative to have a high probability of rejecting the null hypothesis
when the alternative hypothesis is correct. This probability is called statis-
tical power (Section 6.6).

6.4. COMPARING ALL PAIRS OF CONCEPTUAL
TREATMENT MEANS

We do not recommend the traditional statistical practice of comparing all
pairs of conceptual treatment means. Rather, we recommend selecting sets
of cetci ’s that are consistent with the experiment test program objectives.
Nevertheless, if it is desired to make all ðntÞ � ½ðnt � 1Þ=2� comparisons of
paired ctKmi ’s, then a plot of corrected experiment test program datum
values similar to Figure 6.1 should be prepared for all experiment test
program with blocks. Visual examination of this plot should support sub-
sequent statistical conclusions.

Several statistical procedures are available for simultaneously compar-
ing the actual values for all ðntÞ � ½ðnt � 1Þ=2� combinations of paired ctKm ’s.
However, Fisher’s protected t test, which is conducted only after the omni-
bus null hypothesis has been rejected in classical ANOVA, is adequate for
most reliability applications. Consider, for example, the ANOVA for the
unreplicated RCBD experiment test program in Example One where the
omnibus null hypothesis that the actual values for all four ctKm’s are
equal was rejected in favor of the omnibus composite alternative hypothesis
that not all of the actual values for these four ctKm’s are equal. Recall that
est[var(APRCRHNDEE ’s)] had 12 statistical degrees of freedom and was
equal to 3.6501. Suppose that our null hypothesis rejection decision was
based on an acceptable probability of committing a Type I error equal to
0.05. Then, the appropriate value of Student’s central t test statistic for
Fisher’s protected t test is t1,12;(1+scp)/2 ¼ t1,12;0.975 ¼ 2.1788. The resulting
value for the least significant difference, lsd, is ð2:1788Þ � f½ð3:6501=5Þ þ
ð3:6501=5Þ�1=2g ¼ 2:6327 (units). Accordingly, we assert that we have
approximately 95% statistical confidence that the actual values for
any given pair of ctKm’s differ if their associated est(ctKm’s) differ
by more than 2.6327 (units). Since the respective est(ctKm’s) in
Example One are 15.7604 (A), 22.4870 (B), 20.7882 (C), and
20.2750 (D), we (correctly) assert with approximately 95% statistical
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confidence that ctAm differs from ctBm, that ctAm differs from ctCm,
and that ctAm differs from ctDm. However, we (incorrectly) fail to
detect three additional differences that actually occur, viz., that ctBm
differs from ctCm, that ctBm differs from ctDm, and that ctCm differs
from ctDm.

Remark: Recall that good statistical practice requires keeping the
number of treatments of specific interest to as few as practical while
increasing the amount of (equal) replication for these treatments as
much as practical.
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Figure 6.1 Plot of hypothetical unreplicated RCBD experiment test program

datum values, corrected by subtracting the corresponding estðcbe’s). This plot

often suffices to draw obvious conclusions regarding which ctKm’s differ.
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6.5. CHECKING THE PRESUMPTIONS UNDERLYING
CLASSICAL ANOVA

The respective ANOVA-based est(CRHNDEEi’s) should always be exam-
ined relative to normality, homoscedasticity, and randomness (indepen-
dence, viz., lack of associations).

6.5.1. Normality

The null hypothesis of normality for the CRHNDEEi’s of specific interest in
ANOVA can be tested by running simulation-based microcomputer pro-
gram ANOVANT. This program first computes the ANOVA-based value
of the generalized modified Michael’s MDSPP test statistic for the experi-
ment test program that was actually conducted. It then (a) generates nsim
additional ANOVA’s for this experiment test program, each pertaining to
datum values constructed using pseudorandom normally distributed
CRHNDEEi ’s, and (b) computes the associated nsim ANOVA-based gener-
alized modified Michael’s MDSPP test statistic values. In turn, it counts the
number of these nsim values that are equal to or greater than the ANOVA-
based value for the experiment that was actually conducted and computes
the corresponding simulation-based null hypothesis rejection probability.

Note that, to run microcomputer program ANOVANT, the experi-
ment test program datum values must be augmented to have the format
illustrated in microcomputer file AANOVDTA.
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C>COPY C6ARRAY1 ARRAY

1 file(s) copied

C>COPY AANOVDTA DATA

1 file(s) copied

C>ANOVANT

The ANOVA-based value of the generalized modified Michael’s
MDSPP test statistic for the experiment test program that was actu-
ally conducted is equal to 0.1010.
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This microcomputer program constructed 10,000 sets of normally dis-
tributed datum values for this experiment test program and then cal-
culated the associated ANOVA-based values of the generalized
modified Michael’s MDSPP test statistic. The number of these values
that were equal to or greater than 0.1010 was equal to 5287. Thus,
given the null hypothesis of normality, the simulation-based probabil-
ity that a randomly selected outcome of this experiment test program
when continually replicated will have its generalized modified
Michael’s MDSPP test statistic value equal to or greater than
0.1010 is equal to 0.5287. When this probability is sufficiently small,
reject the null hypothesis in favor of the alternative hypothesis of non-
normality.

C>TYPE AANOVDTA

20 Number of Experiment Test Program Datum Values
20.912
24.411
19.861
21.350

..

.

9 Adjacent Estimated Column Vectors that Are
Aggregated to Form the |est(CRHNDEEi’s)| Column

20 Vector of Specific Interest, First to Last (Inclusive)
10000 nsim, the Number of Simulation-Based Replicate

Experiment Test Programs
277 911 819 A New Set of Three, Three-Digit Odd Seed Numbers

These datum values are the datum values that appear in microcom-
puter file C6DATA2, augmented as indicated.
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6.5.2. Homoscedasticity (and Testing the Null
Hypothesis of the Equality of Variances When
Appropriate)

The presumption of homoscedasticity for the respective CRHNDEEi’s can-
not be examined statistically for a paired-comparison experiment test pro-
gram. However, with this exception, the presumption of homoscedasticity
should always be statistically examined in classical ANOVA.Microcomputer
program BARTLETT employs Bartlett’s likelihood-ratio-based test statistic
to test the null hypothesis of homoscedasticity. This test statistic has two
shortcomings: (a) it pertains only to CRD experiment test programs, and (b)
its conceptual sampling distribution is asymptotic. However, shortcoming (a)
can be circumvented by examining the respective ANOVA-based
est(CRHNDEEi’s) for the experiment test program design of specific interest.
In turn, shortcoming (b) can be circumvented by running randomization-
based microcomputer program RBBHT to calculate the associated null
hypothesis rejection probability. However, when the ANOVA-based
est(CRHNDEEi’s) contain groups of repeated values (ignoring signs), the
respective ANOVA-based est(CRHNDEEi’s) must be appropriately edited
to be statistically equivalent to the (nonrepeated) [est(CRHNDEEi’s)] that
pertain to a CRD experiment test program with nb replicates for each of its nt
treatments (treatment levels, treatment combinations). For example, micro-
computer file RBBHTDTA contains the appropriately edited Example Four
unreplicated SPD experiment test program ANOVA-based est(CRH-
NDSPTEEEi’s) and est(CRHNDMPTSPTIEEEi’s) that are subsequently
employed in microcomputer programs BARTLETT and RBBHT to test
the null hypothesis that var(APRCRHNDSPTEEE ’s) ¼ var(APRCRH-
NDMPTSPTIEEE ’s). Recall, however, that the appropriate alternative
hypothesis for combining the est(CRHNDSPTEEEi’s) with the
est(CRHNDMPTSPTIEEEi’s) to form the est(CRHNDSub-PlotEEi’s) is
simple (one-sided), viz., is var(APRCRHNDSPTEEE ’s) > var(APR
CRHNDMPTSPTIEEE ’s), whereas programs BARTLETT and RBBHT
pertain to the composite (two-sided) alternative hypothesis that
var(APRCRHNDSPTEEE’s) 6¼ var(APRCRHND-MPTSPTIEEE ’s).
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C> RBBHTDTA

10 Total Number of Nonrepeated est(CRHNDEEi’s)
2 Number of Treatments, nt, Each With an Equal Number

of Nonrepeated est(CRHNDEEi’s)
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C> COPY RBBHTDTA DATA

1 file(s) copied

C> RBBHT

The data-based value of Bartlett’s homoscedasticity test statistic for
the 2 sets of 5 nonrepeated ANOVA-based est(CRHNDEEi’s) of
specific interest is equal to 1.9391.

Given the null hypothesis of homoscedasticity, this microcomputer
program constructed 9999 equally-likely sequences for these 10
est(CRHNDEEi’s) by using uniform pseudorandom numbers to rear-
range their order. The number of these sequences that, when reparti-
tioned into 2 sets of 5 est(CRHNDEEi’s), had its Bartlett’s
homoscedasticity test statistic value equal to or greater than 1.9391
is equal to 4328. Thus, given the null hypothesis of homoscedasticity,
the randomization-based probability that a randomly selected
sequence, when repartitioned into 2 sets of 5 est(CRHNDEEi’s), will
have its Bartlett’s homoscedasticity test statistic value equal to or
greater than 1.9391 is equal to 0.4329. When this probability is suffi-
ciently small, reject the null hypothesis in favor of the alternative
hypothesis of heteroscedasticity.

þ0.30635
þ0.35635
�0.68915
�0.20665
þ0.23310 End of Treatment One Nonrepeated est(CRHNDEEi’s)
þ1.30745
þ0.22745
�0.16005
�1.38905
þ0.01420 End of Treatment Two Nonrepeated est(CRHNDEEi’s),

etc.
9999 Number of Randomly Reordered Sequences of Non-

repeated Experiment Test Program est(CRHNDEEi’s)
615 993 179 A New Set of Three, Three-Digit Odd Seed Numbers
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6.5.2.1. Discussion

Microcomputer program ANOVA calculates the null hypothesis rejection
probability value for homoscedasticity as being equal to 0.9181. This value
can be confirmed by running microcomputer program BARTLETT and
properly reinterpreting its null hypothesis rejection probability value.
When the data-based value for the test statistic of specific interest is not
consistent with its associated simple (one-sided) alternative hypothesis, the
correct null hypothesis rejection probability value is equal to [1 � (p/2)],
which in this example is [1 � (0.1638/2)] or 0.9181. On the other hand,
when the data-based value for the test statistic of specific interest is consis-
tent with its associated simple (one-sided) alternative hypothesis, then the
correct null hypothesis rejection probability value is equal to (p/2).

Remark: When this procedure is used to reinterpret the null hypoth-
esis rejection probability value calculated by running microcom-
puter program ANOVA for the example paired-comparison
experiment test program datum values in Chapter 3, it will be evi-
dent that the correct null hypothesis rejection probability value is
consistent with the respective null hypothesis rejection probability
values pertaining to the sign test, the signed-rank test, and Fisher’s
enumeration test.

Microcomputer program RBBHT can also be run to calculate this
null hypothesis rejection probability. When properly reinterpreted, the
correct null hypothesis rejection probability value is equal to 0.7835,
viz., [1 � (0.4329/2)]. A discrepancy of this magnitude is unusual for
datum values that are indeed normally distributed. It occurs for our unre-
plicated SPD numerical example because two of the aggregated nonre-
peated est(CRHNDSPTEEEi’s) and est(CRHNDMPTSPTIEEEi’s) are
much larger than the other eight. Thus, their locations in each randomly
rearranged sequence generated in microcomputer program RBBHT effec-
tively dictates the magnitude of the associated data-based value for
Bartlett’s homoscedasticity test statistic. Accordingly, approximately one-
half of these randomly rearranged sequences generates a large calculated
value for this test statistic.

Remark: Figure 6.1 should also be examined relative to time-order-
of-testing effects and the variabilities of datum values pertaining to
the respective treatments (treatment levels, treatment combina-
tions). Hopefully, your intuition indicates that these hypothetical
datum values exhibit unusually uniform variabilities.
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6.5.3. Randomness (Independence, viz., Lack of
Associations)

The respective ANOVA-based est(CRHNDEEi’s) are presumed to be inde-
pendent of the time-order-of-testing and all experiment test program con-
ditions. Accordingly, run microcomputer program RBKTAU to examine
the respective ANOVA-based est(CRHNDEEi’s) relative to all possible
monotonic associations. Consider, for example, our Example Four un-
replicated SPD experiment test program. The nonrepeated
est(CRHNDMPTEEEi’s) are plotted in Figure 6.2 versus the correspond-
ing nonrepeated est(CRHNDSPTEEEi’s). If RBKTAO microcomputer
program indicates that the null hypothesis that the CRHNDMPTEEEi’s
and the CRHNDSPTEEEi’s are independent must rationally be rejected,
then the credibility of the conceptual statistical model underlying ANOVA
is undermined.

It is particularly important to test the null hypothesis that the respec-
tive CRHNDSPTEEEi’s and CRHNDMPTSPTIEEEi’s do not exhibit a
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Figure 6.2 Plot of the non-repeated est(CRHNDMPTEEEi’s) versus the non-

repeated est(CRHNDSPTEEEi’s) for the split-plot experiment test program in

ANOVA Example Four. (These datum values appear in microcomputer file

RBKTDTA6.)
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monotonic association before the est(CRHNDSPTEEEi’s) and the
est(CRHNDMPTSPTIEEEi’s) are aggregated to form the est(CRHND-
SubPlotEEi’s). If this null hypothesis is rejected in favor of the alternative
hypothesis that either a concordant or discordant association exists between
these two conceptual experimental errors, then the respective estimated
errors should not be combined regardless of the outcome of the test for
homoscedasticity.

Exercise Set 4

These exercises are intended to enhance your understanding of the tests
relevant to checking the presumptions underlying classical ANOVA.

1. (a) Test the null hypothesis of normality for the CRHNDEEi’s in
ANOVA Example One. Then, (b) test the null hypothesis of
homoscedasticity. In turn, (c) construct a plot analogous to
Figure 6.1 for the respective est(CRHNDEEi’s). Is this plot intui-
tively consistent with the outcome of your homoscedasticity test?

2. (a) Test the null hypotheses of normality for the
CRHNDSPTEEEi’s and the CRHNDMPTSPTIEEEi’s in
ANOVA Example Four. Then, (b) construct plots of the cor-
rected datum values (analogous to Figure 6.1) for the high and
low levels of the mpt ’s and the spt ’s. Are these plots informative
relative to the respective presumptions of homoscedasticity? (If
not, why not?)

3. Examine the possibility of a monotonic association among the
respective est(CRHNDMPTEEEi’s), est(CRHNDSPTEEEi’s),
and est(CRHNDMPTSPTIEEEi’s) in ANOVA Example Four.
(a) Do the respective est(CRHNDMPTEEEi’s) appear to be
statistically independent of their corresponding est(CRHNDSP-
TEEEi’s)? (b) Do the respective est(CRHNDMPTEEEi’s) appear
to be statistically independent of their corresponding est(CRH-
NDMPTSPTIEEEi’s)? (c) Do the respective est(CRHNDS-
PTEEEi’s) appear to be statistically independent of their corre-
sponding est(CRHNDMPTSPTIEEEi’s)?

6.6. STATISTICAL POWER

Recall that statistical power is the probability of (correctly) rejecting the null
hypothesis when the alternative hypothesis is correct. For a comparative
experiment test program this probability is directly related to its organiza-
tional structure and size, and to the magnitude of the minimum practical
value of specific interest for the maximum difference among the respective
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ctKm’s. Recall also that our mechanical reliability objective in conducting a
comparative experiment test program is to detect, with a high probability,
differences among the respective ctKm’s that are sufficiently large to be of
practical interest. Therefore, a vital consideration in planning a comparative
experiment test program is to assure (as well as possible) that it will have
satisfactory statistical power. Accordingly, before the experiment test pro-
gram is formalized, a decision must be made regarding the minimum prac-
tical value of the maximum difference (mpvmd) among the ctKm’s pertaining
to the respective nt treatments, ntc treatment combinations, or ntl treatment
levels. In addition, we must guestimate stddev(APRCRHNDEE ’s) with rea-
sonable accuracy. Accordingly, experiment test program planning involves
engineering judgment and prior information (that hopefully is based on
either extensive experience or preliminary testing).

Microcomputer programs PCRD and PRCBD should be used in
experiment test program planning to guestimate the statistical power of a
proposed experiment test program and thereby decide whether it appears to
be practical. These programs have the guestimated value of the standardized
minimum practical value of the maximum difference (smpvmd) among the
respective ctKm’s as input information, where

guestimatedðsmpvmdÞ
¼ minimum practical value of [max(ctKmÞ �minðctKmÞ�

guestimated[stddev ðAPRCRHNDEE ’sÞ�

Suppose an unreplicated RCBD experiment test program is proposed with
four treatments and five blocks. Suppose further that (a) the mpvmd of
engineering interest is equal to 20 (units) and (b) the
guestimated[stddev(APRCRHNDDV ’s)] is equal to 10 (units); then, guesti-
mated smpvmd is equal to 2.0 (unitless). In turn, given an acceptable prob-
ability of committing a Type I error equal to 0.05, microcomputer program
PRCBD computes the statistical power as being equal to at least 0.606. This
statistical power is definitely not adequate. However, given an an unrepli-
cated RCBD experiment test program with four treatments and 10 blocks,
microcomputer program PRCBD computes the statistical power to be at
least equal to 0.951. Thus, it is not advisable to undertake this unreplicated
RCBD experiment test program with less than approximately 10 blocks. On
the other hand, even more than 10 blocks should be employed in this unre-
plicated RCBD experiment test program when it is convenient to do so.

Suppose that the experiment test program of specific interest has
already been conducted and the null hypothesis of specific interest has
been rejected. Then, the post hoc statistical power for this experiment test
program should be computed using the ANOVA-generated values for the
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maximum est(ctKm’s) and minimum est(ctKm’s) values and the associated
est[stddev(APRCRHNDEE ’s)] value. In turn, if the acceptable guestimated
smpvmd is smaller than the post hoc smpvmd, we can be reasonably confident
that the statistical power for this experiment test program is quite adequate.

post hoc smpvmd ¼ max estðctKmÞ½ � �min estðctKmÞ½ �
est stddev APRCRHNDEE ’sð Þ½ �

Remark: Microcomputer programs PCRD and PRCBD respec-
tively compute the exact statistical power for equally replicated
CRD and unreplicated RCBD experiment test programs with
only two treatments (Kastenbaum, et al., 1970). However, for
experiment test programs with more than two treatments, all
ctKm’s except the maximum ctKm and the minimum ctKm must
be equal to the arithmetic average of the maximum ctKm and the
minimum ctKm. Otherwise, the actual statistical power exceeds its
computed value by an unknown amount.

The statistical power for an unreplicated SPD experiment test program
is much more complex because of its organizational structure. Recall that
split-plots are always nested within main-plots and main-plots are always
nested within blocks. Thus, SPD experiment test programs always involve
treatment combinations applied in a specific order. Nevertheless, microcom-
puter programs PCRD and PRCBD can be employed in an ad hoc manner
to guestimate the statistical power for a test of the omnibus null hypothesis
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C> PCRD

Input the acceptable probability of committing a Type I error in per
cent (integer value)

5

Input the number of equally replicated treatments for the CRD experi-
ment test program of specific interest

4

Input the number of replicate treatment datum values for the CRD
experiment test program of specific interest
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5

Input the smpvmd of specific interest

2.0

The statistical power for this CRD experiment test program is equal to
at least 0.644.

C> PRCBD

Input the acceptable probability of committing Type I error in per cent
(integer value)

5

Input the number of treatments for the RCBD experiment test pro-
gram of specific interest

4

Input the number of blocks for the RCBD experiment test program of
specific interest

5

Input the smpvmd of specific interest

2.0

The statistical power for this RCBD experiment test program is equal
to at least 0.606.
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that the actual values for the cmptescj’s or for the csptescj ’s are all equal to
zero. Accordingly, stddev(APRCRHNDMPTEEE ’s) is guestimated and
divided into the mpvmd of specific interest for the respective cmptKm’s to
obtain the guestimated value for the smpvmd that pertains only to the main-
plot treatment, whereas stddev(APRCRHNDSPTEEE ’s) or stddev(APR-
CRHNDSubPlotEE ’s) is guestimated and divided into the mpvmd of specific
interest for the respective csptKm’s to obtain a guestimated value for the
smpvmd that pertains only to the split-plot treatment.

Remark: Typically the power of the test of the omnibus null hypoth-
esis that the actual value for the csptesci ’s are all equal to zero
exceeds the power of the test of the omnibus null hypothesis that
the actual value for the cmptesci’s are all equal to zero because the
split-plot treatment has greater replication than the main-plot treat-
ment.

6.7. ENUMERATION-BASED AND RANDOMIZATION-
BASED ANOVA’s

Given the speed of the present generation of personal microcomputers,
enumeration-based and randomization-based ANOVA’s are clearly compe-
titive with classical ANOVA’s, and computer-intensive ANOVA’s do not
require the presumption of normality. Exact enumeration-based (empirical
randomization-based) ANOVA null hypothesis rejection probability values
can be calculated by constructing all (nrbelo) equally-likely outcomes for the
experiment test program of specific interest. We now illustrate enumeration-
based and randomization-based ANOVA’s based on the distribution-free
(non-parametric) F test statistic.

distribution-free Fbetweennsdf ;withinnsdf
test statistic ¼ betweenðMSÞ

withinðMSÞ
Given a randomly rearranged sequence of experiment test program datum
values, the data-based value of the distribution-free F test statistic is
computed using the same algorithm as is used to compute the data-based
value of Snedecor’s central F test statistic in classical ANOVA. Recall that
this algorithm does not involve the presumption of normality. Rather,
the presumption of normality is required only to establish the conceptual
sampling distribution for the data-based values of Snedecor’s central F test
statistic under continual replication of the experiment test program
of specific interest.

Now reconsider our Example One unreplicated RCBD experiment test
program. Given the omnibus null hypothesis that the actual values for all of
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the ctescj ’s are equal to zero (and presuming that no treatment-block inter-
action has a physical basis), each of the four treatment datum values within
each of its five blocks is equally likely to pertain to that treatment or to a
different treatment. However, if the four treatment datum values within
each of its five blocks were randomly reassigned, there would be (4!)5

equally-likely outcomes for this Example One unreplicated RCBD experi-
ment test program. Clearly, it is impractical to construct all of these equally-
likely outcomes. Thus, we must adopt a randomization-based methodology
to calculate the omnibus null hypothesis rejection probability.
Microcomputer program RRCBDONH (randomization-based RCBD
experiment test program given the omnibus null hypothesis) constructs nrbelo
equally-likely outcomes for our Example One unreplicated RCBD experi-
ment test program by using uniform pseudorandom numbers to reorder its
four treatment datum values within each of its five blocks. It then calculates
the nrbelo associated values of the distribution-free F test statistic and counts
the number of these values that are equal to or greater than the data-based
value for the experiment test program that was actually conducted. In turn,
it calculates the randomization-based null hypothesis probability value. If
this probability is sufficiently small, we must rationally reject the null
hypothesis in favor of the composite alternative hypothesis that not all of
the actual values for the ctescj ’s are equal to zero.

Enumeration-based and randomization-based ANOVA’s need not be
restricted to omnibus null hypotheses. Rather, these ANOVA’s can be pro-
grammed for each specific null hypothesis of particular interest (although
certain constraints may apply). Consider our Example Two unreplicated
RCBD experiment test program with its four treatment combinations in a
(2)2 factorial arrangement. Suppose we wish to test the specific null hypoth-
esis that the actual value for the ct1esc is equal to zero. If so, then we must
construct all equally-likely outcomes of this experiment test program when
only the treatment one datum values are rearranged within each block.
Accordingly, we now discuss the rearrangement of only the treatment one
datum values in a typical block. Recall that the orthogonal augment con-
trast array for a typical block of this experiment test program is

|data| |þ1’s| |ct1eci’s| |ct2eci’s| |ct1t2ieci’s|

d1 þ1 �1 �1 þ1

d2 þ1 þ1 �1 �1

d3 þ1 �1 þ1 �1

d4 þ1 þ1 þ1 þ1
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If the null hypothesis that the actual value of the ct1esc is equal to zero is
indeed correct, then d1 is interchangeable with d2, and d3 is interchangeable
with d4 in each block. Moreover, when these datum values are interchanged
in our typical block, the order of the respective datum values changes to
2143, viz.,
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C> COPY C6RARRY1 ARRAY

1 file(s) copied

C> COPY C6RDATA1 DATA

1 file(s) copied

C> RRCBDONH

The data-based value of the distribution-free F test statistic for the
outcome of the unreplicated RCBD experiment test program that was
actually conducted is equal to 0.112954D+02.

Given the omnibus null hypothesis that all of the actual values for the
ctescj’s are equal to zero, this microcomputer program constructed
9999 equally-likely outcomes for this experiment test program by
using uniform pseudorandom numbers to reorder its treatment
datum values in each block. The number of these outcomes that had
its distribution-free F test statistic value equal to or greater than
0.112954D+02 is equal to 23. Thus, given the omnibus null hypothesis
that all of the actual values for the ctescj ’s are equal to zero, the
randomization-based probability that a randomly selected outcome
of this experiment test program when continually replicated will
have its distribution-free F test statistic value equal to or greater
than 0.112954D+02 is equal to 0.0024. When this probability is suffi-
ciently small, reject the null hypothesis in favor of the omnibus alter-
native hypothesis that not all of the actual values for the ctescj ’s are
equal to zero.
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|data| |þ1’s| |ct1eci ’s| |ct2eci ’s| |ct1t2ieci ’s|

d2 þ1 �1 �1 þ1

d1 þ1 þ1 �1 �1

d4 þ1 �1 þ1 �1

d3 þ1 þ1 þ1 þ1

The calculation of est(ct1esc) then includes a term that is equal to
[(d1 þ d3) � (d2 þ d4)]/4 rather than [(d2 þ d4) � (d1 þ d3)]/4.
Accordingly, the sign of this term changes when the treatment one datum
values are interchanged in a block. In turn note that the calculation of
est(ct1t2iesc) now includes a term that is equal to [(d2 þ d3) � (d1 þ d4)]/4
rather than [(d1 þ d4) � (d2 þ d3)]/4. Thus, the sign of this term also
changes when the treatment one datum values are interchanged in a block.
Accordingly, each change in the calculated value of est(ct1esc) is coupled
with a corresponding change in the calculated value of est(ct1t2iesc). The
result of this coupling is that our enumeration-based ANOVA is not statis-
tically credible unless it is reasonable to assert that the actual value of the
ct1t2iesc is equal to zero.

Next, consider the specific null hypothesis that the actual value of the
ct2esc is equal to zero. If this null hypothesis is indeed correct, then d3 and
d4 are interchangeable with d1 and d2. Moreover, when these datum values
are interchanged in our typical block, the order of the respective datum
values changes to 3412, viz.,

|data| |þ1’s| |ct1eci ’s| |ct2eci ’s| |ct1t2ieci ’s|

d3 þ1 �1 �1 þ1

d4 þ1 þ1 �1 �1

d1 þ1 �1 þ1 �1

d2 þ1 þ1 þ1 þ1

The calculation of est(ct2esc) then includes a term that is equal to
[(d1 þ d2) � (d3 þ d4)]/4 rather than [(d3 þ d4) � (d1 þ d2)]/4. Accor-
dingly, the sign of this term changes when the treatment two datum values
are interchanged in a block. In turn, note that the calculation of est(ct1-
t2iesc) now includes a term that is equal to [(d2 þ d3) � (d1 þ d4)]/4 rather
than [(d1 þ d4) � (d2 þ d3)]/4. Thus, the sign of this term also changes
when the treatment two datum values are interchanged in a block.
Accordingly, each change in the calculated value of est(ct2esc) is coupled
with a corresponding change in the calculated value of est(ct1t2iesc). The
result of this coupling is that our enumeration-based ANOVA is not statis-
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tically credible unless it is reasonable to assert that the actual value for the
ct1t2iesc is equal to zero.

Microcomputer programs ERCBD2143 and RRCBD2143 respectively
generate enumeration-based and randomization-based ANOVA’s that can
be used to test the specific null hypothesis that the actual value for the ct1esc
is equal to zero. Analogously, microcomputer programs ERCBD3412 and
RRCBD3412 respectively generate enumeration-based and randomization-
based ANOVA’s that can be used to test the specific null hypothesis that the
actual value for the ct2esc is equal to zero.

The respective enumeration-based microcomputer programs are actu-
ally randomization-based programs in which the respective nrbelo equally-
likely outcomes for this Example Two unreplicated RCBD experiment test
program are first constructed and then grouped into nsbelo equally-likely
outcomes. It turns out that there are only (2)nb�1 equally-likely enumera-
tion-based values of the distribution-free F test statistic for this experiment
test program. Thus, unless it is expanded to include at least 11 blocks, there
is no enumeration-based ANOVA (or randomization-based ANOVA) avail-
able to test a specific null hypothesis if the selected value of null hypothesis
rejection probability is as small as 0.001.
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C> COPY C6RARRY2 ARRAY

1 file(s) copied

C> COPY C6RDATA2 DATA

1 file(s) copied

C> RRCB2143

The data-based value of the distribution-free F test statistic for the
outcome of the unreplicated RCBD experiment test program with a 22

factorial arrangement for its four treatment combinations within
blocks that was actually conducted is equal to 0.132211D+02.

Given the specific null hypothesis that the actual value for the ct1esc is
equal to zero and presuming that the actual value for the ct1t2iesc is
equal to zero, this microcomputer program constructed 9999 equally-
likely outcomes for this experiment test program by using uniform
pseudorandom numbers to reorder its treatment one datum values
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in each block. The number of these outcomes that had its distribution-
free F test statistic value equal to or greater than 0.132211D+02 is
equal to 644. Thus, given the specific null hypothesis that the actual
value for the ct1esc is equal to zero and presuming that the actual
value for the ct1t2iesc is equal to zero, the randomization-based prob-
ability that a randomly selected outcome of this experiment test pro-
gram when continually replicated will have its distribution-free F test
statistic value equal to or greater than 0.132211D+02 is equal to
0.0645. When this probability is sufficiently small, reject the null
hypothesis in favor of the specific composite (two-sided) alternative
hypothesis that the actual value for the ct1esc is not equal to zero.

(Microcomputer program ERBC2143 computes the corresponding
enumeration-based probability as 0.0625)

C> COPY C6RARRY3 ARRAY

1 file(s) copied

C> COPY C6RDATA3 DATA

1 file(s) copied

C> RRCB3412

The data-based value of the distribution-free F test statistic for the
outcome of the unreplicated RCBD experiment test program with a 22

factorial arrangement for its four treatment combinations within
blocks that was actually conducted is equal to 0.271527D+01.

Given the specific null hypothesis that the actual value for the ct2esc is
equal to zero and presuming that the actual value for the ct1t2iesc is
equal to zero, this microcomputer program constructed 9999 equally-
likely outcomes for this experiment test program by using uniform
pseudorandom numbers to reorder its treatment two datum values
in each block. The number of these outcomes that had its distribu-
tion-free F test statistic value equal to or greater than 0.271527D+01
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Reminder: The specific null hypothesis that the actual value for the
ct1t2iesc must be tested in a classical ANOVA before running
microcomputer programs RRCB2143, ERCB2143, RRCB3412, or
ERCB3412.

Next, consider our Example Four unreplicated SPD experiment test
program with its two main-plots within each of its five blocks and its two
split-plots within each of its main-plots. Presuming that the actual value for
the cmptsptie is equal to zero, the respective specific null hypotheses that the
actual values for the cmptsptie and csptesc are equal to zero can be statis-
tically tested by running microcomputer programs RSPD2143 or
ESPD2143, or, alternatively, microcomputer programs RSPD3412 or
ESPD3412.

Reminder: The specific null hypothesis that the actual value for the
cmptsptiesc must be statistically tested in a classical ANOVA before
running microcomputer programs RSPD2143, ESPD2143,
RSPD3412, or ESPD2143.

6.7.1. Discussion

If the actual value for the cmptsptiesc is equal to zero for our Example Four
unreplicated SPD experiment test program, then the two split-plot treat-
ments within each of its 10 main-plots can legitimately be viewed as being
paired comparisons. Accordingly, the specific null hypothesis that the actual
value for the csptesc is equal to zero can also be statistically tested in this
situation by performing the distribution-free analyses based on the test

294 Chapter 6

is equal to 1896. Thus, given the specific null hypothesis that the actual
value for the ct2esc is equal to zero and presuming that the actual
value for the ct1t2iesc is equal to zero, the randomization-based prob-
ability that a randomly selected outcome of this experiment test pro-
gram when continually replicated will have its distribution-free F test
statistic value equal to or greater than 0.271527D+01 is equal to
0.1897. When this probability is sufficiently small, reject the null
hypothesis in favor of the specific composite (two-sided) alternative
hypothesis that the actual value for the ct2esc is not equal to zero.

(Microcomputer program ERBC3412 computes the corresponding
enumeration-based probability as 0.1875.)
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C> COPY C6RARRY4 ARRAY

1 file(s) copied

C> COPY C6RDATA4 DATA

1 file(s) copied

C> RSPD2143

The data-based value of the distribution-free F test statistic for the
outcome of the unreplicated split-plot experiment test program with
two main-plots in each of its five blocks and two split-plots in each of
its main-plots that was actually conducted is equal to 0.214040D+02.

Given the specific null hypothesis that the actual value for the csptesc
is equal to zero and presuming that the actual value for the cmptsptiesc
is equal to zero, this microcomputer program constructed 9999
equally-likely outcomes for this experiment test program by using uni-
form pseudorandom numbers to reorder its split-plot treatment datum
values in each main-plot. The number of these outcomes that had its
distribution-free F test statistic value equal to or greater than
0.214040D+02 is equal to 583. Thus, given the specific null hypothesis
that the actual value for the csptesc is equal to zero and presuming that
the actual value for the cmptsptiesc is equal to zero, the randomiza-
tion-based probability that a randomly selected outcome of this
experiment test program when continually replicated will have its dis-
tribution-free F test statistic value equal to or greater than
0.214040D+02 is equal to 0.0584. When this probability is sufficiently
small, reject the null hypothesis in favor of the specific composite (two-
sided) alternative hypothesis that the actual value for the csptesc is not
equal to zero.

(Microcomputer program ESPD2143 computes the corresponding
enumeration-based probability as 0.0625.)
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C> COPY C6RARRY5 ARRAY

1 file(s) copied

C> COPY C6RDATA5 DATA

1 file(s) copied

C> RSPD3412

The data-based value of the distribution-free F test statistic for the
outcome of the unreplicated split-plot experiment test program with
two main-plots in each of its five blocks and two split-plots in each of
its main-plots that was actually conducted is equal to 0.153873D+01.

Given the specific null hypothesis that the actual value for the cmptesc
is equal to zero and presuming that the actual value for the cmptsptiesc
is equal to zero, this microcomputer program constructed 9999
equally-likely outcomes for this experiment test program by using uni-
form pseudorandom numbers to reorder its main-plot treatment
datum values in each block. The number of these outcomes that had
its distribution-free F test statistic value equal to or greater than
0.153873D+01 is equal to 3094. Thus, given the specific null hypoth-
esis that the actual value for the cmptesc is equal to zero and presum-
ing that the actual value for the cmptsptiesc is equal to zero, the
randomization-based probability that a randomly selected outcome
of this experiment test program when continually replicated will
have its distribution-free F test statistic value equal to or greater
than 0.153873D+01 is equal to 0.3095. When this probability is suffi-
ciently small, reject the null hypothesis in favor of the specific compo-
site (two-sided) alternative hypothesis that the actual value for the
cmptesc is not equal to zero.

(Microcomputer program ESPD3412 computes the corresponding
enumeration-based probability as 0.3125.)
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statistics employed in microcomputer programs EBST, EBSRT, FEBT,
FEBMPDT, and FRBT.

6.8. CLOSURE

Fixed effects ANOVA is typically employed in mechanical reliability appli-
cations to analyze the outcome of comparative experiment test programs
whose treatments are qualitative, e.g., cadmium plated or zinc plated, shot-
peened or not shot-peened. However, fixed effects ANOVA is also conve-
niently employed to analyze the outcome of experiment test programs with
only a few equally spaced quantitative levels of a single treatment, e.g., zinc
plated 5, 10, and 15 mils thick. When the number of these quantitative levels
is large or when these quantitative levels are not all equally spaced, then
linear regression analysis (Chapter 7) can be viewed as being a natural
extension of (adjunct to) classical fixed effects ANOVA. Both analyses are
based on the fundamental presumptions that the respective experiment test
program datum values are random, homoscedastic, and normally distribu-
ted. However, classical linear regression analyses pertain only to CRD
experiment test programs, viz., to a single batch of experimental units.
(This problem can be mitigated somewhat by structuring replicate linear
regression experiment test programs within batches. See Supplemental
Topic 6.C and Section 7.3.)

6.A. SUPPLEMENTAL TOPIC: EXACT STATISTICAL
POWER CALCULATION EXAMPLE

Recall that the statistical power of the test of normality based on our mod-
ified Michael’s MDSPP test statistic was examined empirically in Exercise
Set 2(b), Chapter 5. Statistical power can also be calculated exactly when the
respective conceptual sampling distributions pertaining to the null and alter-
native hypotheses are known. We now present an exact statistical power
calculation example that is intended to reinforce the notion that the statis-
tical power of a test of hypothesis depends on (a) the test statistic of specific
interest, (b) the acceptable probability of committing a Type I error, (c) the
magnitude of the difference between the specification values that respectively
establish the null and alternative hypotheses, and (d) the size of the experi-
ment test program.

6.A.1. Exact Statistical Power Calculation Example

Consider a quantitative CRD experiment test program. Let the respective
CRSIDVi’s each be denoted Xi. Presume that the respective Xi’s are ran-
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domly selected from a conceptual (two-parameter) normal distribution
whose variance is equal to 25. Next, consider the null hypothesis that
mean(X) ¼ 25 versus the alternative hypothesis that mean(X) ¼ x*, where
(a) the test statistic of specific interest is the arithmetic average of four
randomly selected realizations of X, subsequently denoted ave(4X ’s), and
(b) x* is greater than 25. Then, given an acceptable probability p of com-
mitting a Type I error equal to 0.05, we rationally reject the null hypothesis
that mean(X) ¼ 25 in favor of the alternative hypothesis that mean(X) ¼ x*
whenever the data-based realization value for ave(4X ’s) exceeds xcritical,
where xcritical is such that

Probability ave 4X ’sð Þ > xcritical; given Hn: mean Xð Þ ¼ 25
 � ¼ 0:05

Thus,

xcritical ¼ 25þ 1:6449ð Þ � 25=4ð Þ1=2¼ 29:11225

in which the standardized conceptual normal distribution variate
yð1� pÞ ¼ y > ð0:95Þ ¼ 1:6449.

Figure 6.3 displays the conceptual sampling distribution PDF for the
test statistic ave(48%) given the null hypothesis that mean(X) ¼ 25 [and the
stipulation that X is normally distributed with var(X) ¼ 25]. The corre-
sponding conceptual sampling distribution PDF given the alternative
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Figure 6.3 Plot of the conceptual sampling distribution PDF for the test statistic

ave(4X’s), given the null hypothesis that meanðXÞ ¼ 25 [and the stipulation that X is

normally distributed with varðXÞ ¼ 25].
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hypothesis that mean(X) ¼ x* is identical to this conceptual sampling dis-
tribution, except that it is translated to the right (because x* > 25).

Now consider the alternative hypothesis that mean(X) ¼ x* ¼ 26.
When x* ¼ 26, the statistical power of this test of hypothesis is the prob-
ability of (correctly) rejecting the null hypothesis that mean(X) ¼ 25 when
the alternative hypothesis that mean(X) ¼ 26 is correct. This statistical
power is computed using the probability expression:

Probability[aveð4X ’sÞ > xcritical; given Ha: meanðXÞ ¼ 26�
¼ statistical power

The value of the standardized conceptual normal distribution variate y(p)
when mean(X) ¼ 26 is equal to (29.11225 � 26)/(25/4)1/2 ¼ 1.2449. Thus,
running microcomputer program PY with input y(p) ¼ 1.2449, the statisti-
cal power is equal to 0.1066 given the alternative hypothesis that
mean(X) ¼ 26.

We now demonstrate that the statistical power for the test statistic
ave(4X ’s) increases markedly as the alternative hypothesis specification
value for mean(X) increases. Consider the following computed values of
the statistical power (sp) given the alternative hypothesis that
mean(X) ¼ x*, where x* is successively set equal to 27 [y(p) ¼ 0.8449,
sp ¼ 0.1991], 28 [y(p) ¼ 0.4449, sp ¼ 0.3282], 29 [y(p) ¼ 0.0449, sp ¼
0.4821], 30 [y(p) ¼ �0.3551, sp ¼ 0.6387], 31 [y(p) ¼ 0.7551, sp ¼ 0.7749],
32 [y(p) ¼ �1.1551, sp ¼ 0.8760], 33 [y(p) ¼ 1.5551, sp ¼ 0.9400], 34
[y(p) ¼ �1.9551, sp ¼ 0.9747], and 35 [y(p) ¼ �2.3551, sp ¼ 0.9907].
These computed statistical power values are plotted in Figure 6.4.

Now suppose we extend this example by successively computing the
exact statistical powers for the test statistics ave(16X’s) and ave(64X’s).
Figure 6.5 displays the resulting family of statistical power curves. Figure
6.5 is intended to demonstrate that, for each candidate mean(X) given by the
alternative hypothesis, the larger the experiment test program the greater the
statistical power of the associated test of hypothesis, viz., the greater the
probability of (correctly) rejecting the null hypothesis when the alternative
hypothesis is correct.

The respective statistical power curves plotted in Figure 6.5 have two
practicality problems because (a) the alternative hypothesis (parametric)
value for [mean(X) given Ha] is stated in terms of an equality rather than
an inequality, and (b) these statistical power calculations pertain only to
var(X) ¼ 25. Practicality problem (a) is easily solved by modifying the alter-
native hypothesis so that [mean(X) given Ha] is equal to or greater than
(parametric) x*. The actual statistical power is then equal to or greater than
the statistical power pertaining to x*. Practicality problem (b) is overcome

Statistical Analysis of Variance 299

TLFeBOOK



300 Chapter 6

Figure 6.4 Plot of the statistical power of the statistical test of hypothesis, given

the null hypothesis that meanðXÞ ¼ 25 versus the alternative hypothesis that

meanðXÞ is equal to the parametric value now denoted [meanðXÞ given Ha].

Figure 6.5 Plot of the family of statistical power curves pertaining to our exact

statistical power calculation example. Note that the greater the size of the experiment

test program, the greater the statistical power of the given test of hypothesis.
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by working with a standardized minimum practical difference parameter,
denoted smpd, where

smpd ¼ minimum practical difference [meanðXÞ given Ha �meanðXÞ given Hn�
common Hn and Ha values for stddevðXÞ

and then replotting the statistical power curves in Figure 6.5 with a new
abscissa stated in convenient values of smpd (Exercise Set 5, Exercise 3).

Exercise Set 5

These exercises are intended to verify the numerical results of our exact
statistical power calculation example and to enhance your understanding
of the concept of statistical power. Recall that statistical power is defined as
the probability of (correctly) rejecting the null hypothesis when the alter-
native hypothesis is correct. It is the complement of the probability of
committing a Type II error, where a Type II error is committed when the
alternative hypothesis is correct and we (incorrectly) fail to reject the null
hypothesis.

1. Compute the statistical power of our quantitative CRD experi-
ment test program example with (a) ndv ¼ 16 or (b) ndv ¼ 64,
when the alternative hypotheses that mean(X) ¼ x*, where x*
is successively set equal to 26, 27, 28, 29, and 30. Let the asso-
ciated acceptable probability of committing a Type I error be
equal to (c) 0.10, or (d) 0.05, or (e) 0.01.

2. Accurately sketch the respective conceptual sampling distribution
PDF’s for ave(4X ’s) given Hn: mean(X) ¼ 25 and (a) Ha:
mean(X) ¼ 29 and (b) Ha: mean(X) ¼ 33, when X is normally
distributed with var(X) ¼ 25. Then, using shading or cross-
hatching, identify the respective areas under the appropriate
PDF’s that correspond to the probability of committing a Type
I error and of committing a Type II error. In turn, identify the
respective areas under the appropriate PDF’s that correspond to
the statistical power for the test of the null hypothesis that
mean(X) ¼ 25. Finally, compute the respective statistical powers
pertaining to the alternative hypotheses in (a) and (b). Do your
values agree with the text values?

3. Replot Figure 6.5 using smpd as the abscissa and minimum
statistical power as the ordinate.
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6.B. SUPPLEMENTAL TOPIC: THE CONCEPT OF A
WEIGHTED AVERAGE

Recall that one of the most intuitive perspectives in data analysis is that each
datum point (datum value) has a mass (statistical weight). Homoscedastic
datum values have equal statistical weights, whereas heteroscedastic datum
values have different statistical weights. Accordingly, we now establish an
expression for a weighted average pertaining to heteroscedastic datum values
(as opposed to an arithmetic average pertaining to homoscedastic datum
values).

We begin by constructing heteroscedastic datum values such that the
actual values for the variances of their respective conceptual sampling dis-
tributions are known. Consider na mutually independent arithmetic averages
respectively computed using ndvi realization values randomly selected from
the conceptual statistical distribution that consists of all possible replicate
realization values for the generic random variable X, where i ¼ 1; 2; . . . ; na.
Then, although each of these na arithmetic averages have mean(X) as its
expected value, the actual values for the variances of their conceptual sam-
pling distributions are respectively equal to varðXÞ�=ndvi :

Now suppose we wish to estimate mean(X) using the weighted average
of our na constructed conceptual random heteroscedastic datum values. Let
these constructed conceptual random heteroscedastic datum values be
generically denoted CRHeteroscedasticDVi’s, where for this example these
are set equal to their corresponding [avei(X ’s)]’s. Then, consider the intuitive
linear estimator for mean(X):

est½mean Xð Þ� ¼ weighted average CRHeteroscedasticDV ’sð Þ
¼ weighted average avei X ’sð Þ½ �’s� �
¼
Xna
i¼1

ci avei X ’sð Þ

in which the ci’s are coefficients that will be chosen to generate a minimum
variance unbiased statistical estimator for mean(X). Recall that, by defini-
tion, this weighted average statistical estimator is unbiased when its
expected value is equal to mean(X). Since the expected value of each of
the respective arithmetic averages (weighted datum values) is equal to
mean(X), the sum of the ci’s must clearly be set equal to one to create an
unbiased statistical estimator for mean(X).

In turn, since the respective CRHeteroscedasticDVi’s ¼ [avei(X ’s)]’s
are mutually independent, the actual value for the variance of the concep-
tual sampling distribution that consists of all possible replicate estimated
weighted averages is
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var[weighted averageðCRHeteroscedasticDV’sÞ�

¼ var weighted average ½aveiðX ’sÞ�’s� �� � ¼Xna
i¼1

c2i var½aveiðX ’sÞ�� �
This variance takes on its minimum value, subject to the constraint that the
sum of the ci’s is equal to one, when the ci’s are such that
cjvar[avej(X ’s)] ¼ ckvar[avek(X ’s)], where dummy indices j and k are differ-
ent.

Now let swi, the statistical weight pertaining to CRHeteroscedasticDVi,
be defined as the inverse of the actual value for the variance of the con-
ceptual sampling distribution that consists of all possible replicate realiza-
tion values for CRHeteroscedasticDVi. Accordingly, swi ¼ ndvi=varðXÞ. In
turn,

ci ¼
swiXna

i¼1

swi

Then,

weighted averageðCRHeteroscedasticDV ’sÞ

weighted average ½aveiðX ’sÞ�’s� � ¼
Xna
i¼1

swi aveiðX’sÞ
Xna
i¼1

swi

and

var[weighted averageðCRHeteroscedasticDV ’sÞ�
¼ var weighted averagef½aveiðX ’sÞ�’sgð Þ ¼ 1Xna

i¼1

swi

6.B.1. Summary and Perspective

Given conceptual random heteroscedastic datum values randomly selected
from conceptual statistical (sampling) distributions with the same actual
values for their respective means, but difference actual values for the respec-
tive variances, the weighted average statistical estimator is not only
unbiased, but the actual value for the variance of its conceptual sampling
distribution is also smaller than the actual value for the variance of the
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conceptual sampling distribution pertaining to any alternative statistical
estimator. Thus, a weighted average estimator is used to pool two or
more statistical estimates of the same quantity that are based on different
sample sizes (different numbers of statistical degrees of freedom). For exam-
ple, it is used to pool the respective [within(SS)]’s associated with two or
more unequally replicated treatments in a CRD experiment test program.
(Note that the only reason that we have been able to avoid overt use of a
weighted average estimator until now is that the experiment test programs
presented in Chapter 2 each involved equal replication.)

Exercise Set 6

These exercises are intended to confirm that, given equal replication for the
respective na arithmetic averages, the weighted average estimator is synon-
ymous with an arithmetic average estimator.

1. Verify that, given equal replication for the respective na arith-
metic averages in our weighted average example, the weighted
average estimator for mean (X) can be re-expressed as

Weighted average(all X ’sÞ ¼ ave(all X ’sÞ ¼

Xndvtotal
i¼1

Xi

ndvtotal

2. Verify that, given equal replication for the respective na arith-
metic averages in our weighted average example, the variance
expression for the weighted average estimator can be re-expressed
as

var[weighted average(all X ’sÞ� ¼ var[ave(all X ’sÞ� ¼ varðXÞ
ndvtotal

Exercise Set 7

These exercises are intended to extend our weighted average example by
generating additional insight regarding the statistical behaviors of weighted
averages and arithmetic averages.

1. (a) Run microcomputer program RANDOM2 with nelpri = 8 and
ndigit ¼ 3. Compute the arithmetic average of these eight pseu-
dorandom numbers. Then, (b) compute the arithmetic average of
the first five of these eight numbers. Next, (c) compute the arith-
metic average of the last three of the eight numbers. In turn, (d)
compute the arithmetic average of the arithmetic averages in (b)
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and (c). Does this arithmetic average agree with the (correct)
arithmetic average in (a)? Next, (e) compute the arithmetic aver-
age of the first four of the eight pseudorandom numbers. In turn,
(f) compute the arithmetic average of the last four of the eight
numbers. Then, (g) compute the arithmetic average of the arith-
metic averages in (e) and (f). Does this arithmetic average agree
with the (correct) arithmetic average in (a)? What is the principle
that can be inferred by the outcome of this numerical example?
Finally, (h) compute and compare the weighted averages of the
respective arithmetic averages in (b) and (c) and in (e) and (f).

2. Given that the respective avei(X ’s) have unequal variances and
that their arithmetic average is used to estimate mean(X), is the
arithmetic average an unbiased estimator of mean(X)? Discuss.

3. Given that the respective avei(X ’s) have unequal variances and
that their arithmetic average is used to estimate mean(X), is the
arithmetic average a minimum variance estimator of mean(X)?
Discuss.

6.C. SUPPLEMENTAL TOPIC: TESTING FOR BATCH-
TO-BATCH EFFECTS

By far the most effective means to improve reliability is to decrease the
batch-to-batch effects (b-t-be’s) associated with materials and materials pro-
cessing in the manufacture of components. For example, in fatigue testing of
components, b-t-be’s as large as 30 to 40% occur in terms of strength (resis-
tance) and as large as 10,000% occur in terms of life (endurance). Yet b-t-
be’s are seldom ever included in a reliability-based experiment test program
(or appropriately considered in establishing so-called design allowables).

We now present two illustrative example orthogonal augmented con-
trast arrays that can be used in ANOVA to test the null hypothesis that no
b-t-be’s exist versus the composite alternative hypothesis that b-t-be’s exist.
This statistical test is most effective when (a) the number of batches is small
and the number of replicates is large, and (b) the respective batches are
deliberately selected from diverse sources (or to represent processing
extremes). These example arrays are also intended to provide insight regard-
ing the inclusion of b-t-be’s and/or replicate experimental units in the ortho-
gonal augmented contrast array pertaining to the experiment test program
of specific interest.
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6.C.1. Example One

Suppose we have three batches, each of size two, viz., each batch has two
replicate experiment units (test specimens). The associated orthogonal aug-
mented contrast array appears below. The between batch-to-batch mean
square is the sum of squares of the respective elements of the aggregated
|est(b-t-bei’s)| column vector divided by two, the number of statistical
degrees of freedom of the aggregated |est(b-t-bei’s)| column vector. In
turn, the within batch replicates mean square is the sum of squares of the
respective elements of the aggregated |est(CRHNDEE ’s)| column vector
divided by three, the number of statistical degrees of freedom of the aggre-
gated |est(CRHNDEE’s)| column vector. Thus, microcomputer program
ANOVA can be run to determine whether the null hypothesis that no
b-t-be’s exist can rationally be rejected. If the null hypothesis is not rejected,
then (a) the between b-t-be’s sums of squares can be aggregated with the
within batch replicates sum of squares, (b) the between b-t-be’s number of
statistical degrees of freedom can be aggregated with the within batch repli-
cates number of statistical degrees of freedom, and (c) the mean square
pertaining to the column vector formed by aggregating the |est(b-t-bei’s)|
and |est(CRHNDEE ’s)| column vectors can be used to estimate
var(APRCRHNDEE ’s), which in turn is used to compute the classical
(shortest) 100(scp)% (two-sided) confidence interval that allegedly includes
the actual value for the csdm. However, if the null hypothesis is rejected,
then clearly something must be done to reduce the b-t-be’s. Note that the
classical (shortest) 100(scp)% (two-sided) statistical confidence interval, if
computed, would pertain only the specific batches employed in the experi-
ment test program.

|experiment test program datum values| |þ1’s| |b-t-be’s| |batch replicate contrasts|

Batch 1, replicate 1 datum value þ1 þ1 �1 �1 0 0

Batch 1, replicate 2 datum value þ1 þ1 �1 þ1 0 0

Batch 2, replicate 1 datum value þ1 �1 �1 0 �1 0

Batch 2, replicate 2 datum value þ1 �1 �1 0 þ1 0

Batch 3, replicate 1 datum value þ1 0 þ2 0 0 �1

Batch 3, replicate 2 datum value þ1 0 þ2 0 0 þ1

6.C.2. Example Two

Suppose we have three batches, each of size three, viz., each batch has three
replicate experiment units (test specimens). The associated orthogonal aug-
mented contrast array appears below. The between b-t-be’s mean square is
the sum of squares of the respective elements of the aggregated |est(b-t-bei’s)|
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column vector divided by two, the number of statistical degrees of freedom
for the aggregated |est(b-t-be’s)| column vector. In turn, the within batch
replicates mean square is the sum of squares of the respective elements of the
aggregated |est(CRHNDEEi’s)| column vector divided by six, the number of
statistical degrees of freedom for the aggregated |est(CRHNDEEi’s)| column
vector. Thus, as in Example One, microcomputer program ANOVA can be
run to determine whether the null hypothesis that no batch-to-batch effects
exist must be rationally rejected.

|experiment test program datum values| |þ1’s| |b-t-be’s| |batch replicate contrasts|

Batch 1, replicate 1 datum value þ1 �1 �1 �1 �1 0 0 0 0

Batch 1, replicate 2 datum value þ1 �1 �1 þ1 �1 0 0 0 0

Batch 1, replicate 3 datum value þ1 �1 �1 0 þ2 0 0 0 0

Batch 2, replicate 1 datum value þ1 þ1 �1 0 0 �1 �1 0 0

Batch 2, replicate 2 datum value þ1 þ1 �1 0 0 þ1 �1 0 0

Batch 2, replicate 3 datum value þ1 þ1 �1 0 0 0 þ2 0 0

Batch 3, replicate 1 datum value þ1 0 þ2 0 0 0 0 �1 �1

Batch 3, replicate 2 datum value þ1 0 þ2 0 0 0 0 þ1 �1

Batch 3, replicate 3 datum value þ1 0 þ2 0 0 0 0 0 þ2

6.C.3. Discussion

These two arrays are also intended to indicate how the orthogonal augmen-
ted contrast arrays for unreplicated RCBD and SPD experiment test pro-
grams can be extended to include either equal replication or possible
b-t-be’s. Then, although this extension will double or triple the size of the
experiment test program, we could either test the null hypothesis that no
block, treatment interaction effects exist or (preferably) that no b-t-be’s
exist.
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7
Linear Regression Analysis

7.1. INTRODUCTION

Classical fixed effects ANOVA can broadly be viewed as being concerned
with statistically deciding whether differences among specifically selected
independent variables (treatments, treatment levels, treatment combina-
tions) affect the test response (outcome), whereas linear regression analysis
can broadly be viewed as being concerned with establishing a statistically
adequate analytical model for describing how specifically selected values for
one or more independent variables affect the test response (outcome).
Although this distinction is superficial, it is pedagogically convenient to
present linear regression as a separate topic from classical fixed effects
ANOVA, while at the same time emphasizing their common underlying
statistical presumptions.

Linear regression analysis is based on a presumed conceptual statisti-
cal model that is constructed by replacing the conceptual location parameter
(clp) of a conceptual (two-parameter) normal distribution (Chapter 5) by the
analytical expression clp0 þ clp1 � iv1vi þ clp2 � iv2vi þ . . . clpj � ivjvi,
where ivjvi is the ith specifically selected value for the jth independent vari-
able. The distinction between the actual physical relationship and the pre-
sumed conceptual statistical model is illustrated schematically in Figure 7.1.
The former is generally complex, whereas the latter is elementary.
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Accordingly, the fundamental issue in linear regression analysis is whether
the presumed conceptual statistical model is adequate to explain the
observed experiment test program datum values (as judged by the outcome
of an appropriate statistical test). If so, then the presumed conceptual sta-
tistical model can rationally be used to compute conceptual parameter esti-
mates, statistical confidence intervals, etc.

The conceptual simple linear regression statistical model has a single
independent variable. This model can be stated as

f CRHNDRDVið Þ �

¼ 1ffiffiffiffiffiffi
2�

p
csp

¼ exp � 1

2
� CRHNDRDVi � clp0� clp1 � ivvi

csp

� �2
" #

in which CRHNDRDVi is verbalized as CRHNDRDV given the ivv (a para-
meter) is equal to the ivvi (a specifically selected numerical value for the iv).
Note that the homoscedasticity as well as the normality of this model is
overt, viz., the actual value for the csp is not a function of the ivv. Note also
that, by definition,

CRHNDRDVi � clp0� clp1 � ivvi ¼ CRHNDREEi
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Figure 7.1 Schematic of the distinction between the actual physical relationship

and the conceptual statistical model that is presumed in linear regression analysis.

Unless the variability of replicate regression datum values is extremely small for all

values of the independent variable(s) or unless the regression experiment test pro-

gram has massive replication, it is unlikely that the actual physical model will ever be

established experimentally.
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Thus, the conceptual simple linear regression model can also be expressed
using our hybrid column vector notation as

CRHNDRDVi’s
�� �� ¼ clp0 � þ1’sj j þ clp1 � ivvi’s

�� ��þ CRHNDREEi’s
�� ��

Note, however, that the homosecdasticity of this simple linear regression
model is evident only in the verbalization of the H in the CRHNDRDVi’s
and the CRHNDREEi’s. Nevertheless, since this model is more succinct and
tractable than the former, it is subsequently employed in simple linear
regression analysis.

The analogous conceptual multiple linear regression statistical model
has nclp conceptual location parameters. It can be stated using our hybrid
column vector notation as

CRHNDRDVi’s
�� �� ¼ clp0 � þ 1’sj j þ clp1 � iv1vi’s

�� ��þ clp2 � iv2vi’s
�� ��

þ clp3 iv3vi’s
�� ��þ . . .þ CRHNDREEi’s

�� ��
This model can be reinterpreted as a polynomial model in a single indepen-
dent variable, e.g.,

CRHNDRDVi’s
�� �� ¼ clp0 � ivvi’sð Þ0�� ��þ clp1 � ivvi’sð Þ1��� ��þ clp2 � ivvi’sð Þ2�� ��

þ . . .þ CRHNDREEi’s
�� ��

or as a polynomial in two or more independent variables, e.g.,

CRHNDRDVi’s
�� �� ¼ clp00 � iv1við Þ0� iv2við Þ0 �

’s
�� ��

þ clp10 � iv1við Þ1� iv2við Þ0 �
’s

�� ��þ clp20 � iv1við Þ2� iv2við Þ0 �
’s

�� ��þ . . .þ
þ clp01 � iv1við Þ0� iv2við Þ1 �

’s
�� ��þ clp02 � iv1við Þ0� iv2við Þ2 �

’s
�� ��þ . . .þ

þ clp11 � iv1við Þ1� iv2við Þ1 �
’s

�� ��þ . . .þ CRHNDREEi’s
�� ��

Thus, it should be clear that the terminology linear in linear regression refers
to the conceptual location parameters rather than to the geometry of the
conceptual statistical model. (Note that the power for each of the respective
conceptual location parameters is equal to one.)

The conceptual linear regression model that employs the least number
of terms to explain the observed experiment test program datum values in a
statistically adequate manner is traditionally adopted in mechanical relia-
bility (and other engineering) analyses.

Remember: The credibility of the geometry of the presumed con-
ceptual linear regression model, and in particular the credibility of
the associated homoscedasticity presumption, can severely limit the
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credibility of a linear regression analysis. Thus, the respective
ranges of the regression experiment test program ivjv’s should be
kept as short as practical and extrapolation should always be
avoided.

7.2. SIMPLE LINEAR REGRESSION ANALYSIS

We now present simple linear regression analysis using a column vector
perspective. However, since the conceptual simple linear regression statisti-
cal model only approximates the actual physical relationship, this model
must be regarded as tentative until its credibility (adequacy) is subsequently
established by appropriate statistical analysis. Given this caveat, we express
the conventional simple linear regression statistical model in our hybrid
column vector notation as

CRHNDRDVi’s
�� �� ¼ clp0 � þ 1’sj j þ clp1 � ivvi’s

�� �� þ CRHNDREEi’s
�� ��

¼ mean iðAPRCRHNDRDV ’sÞ½ �’s�� �� þ CRHNDREEi’s
�� ��

in which meani(APRCRHNDRDV ’s) is technically verbalized as the actual
value for the mean of the conceptual statistical distribution that consists of
all possible replicate conceptual random homoscedastic normally distribu-
ted regression datum values given that ivv ¼ ivvi, where ivvi is the ith ivv
employed in the simple linear regression experiment test program. This
conceptual simple linear regression statistical model is stated explicitly for
nrdv ¼ 3 as

CRHNDRDV1

CRHNDRDV2

CRHNDRDV3

�������
������� ¼ clp0 �

þ1

þ1

þ1

�������
�������þ clp1 �

ivv1

ivv2

ivv3

�������
�������þ

CRHNDREE 1

CRHNDREE 2

CRHNDREE 3

�������
�������

¼
mean1 APRCRHNDRDV ’sð Þ
mean2 APRCRHNDRDV ’sð Þ
mean3 APRCRHNDRDV ’sð Þ

�������
�������þ

CRHNDREE 1

CRHNDREE 2

CRHNDREE 3

�������
�������

It is schematically plotted in three-dimensional perspective in Figure 7.2
where the three mutually orthogonal co-ordinate axes are respectively
denoted (1), (2), and (3). The |CRHNDRDVi’s| column vector is schemati-
cally plotted as the vector sum of its three components, with each compo-
nent plotted along its associated co-ordinate axis. In turn, the |+1’s| identity
column vector and the |ivv’s| design column vector are schematically plotted
as the vector sums of their three components, where the respective compo-
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nents of each column vector are plotted along its associated co-ordinate
axis. The latter two column vectors form a second set of co-ordinate axes
that define the clp0,clp1 parameter plane. In turn, integer values for the clp0
and clp1 respectively generate tick-marks along these co-ordinate axes. A
series of lines drawn through these tick-marks, each oriented parallel to the
opposite co-ordinate axis, generate a grid in this clp0,clp1 parameter plane.
In turn, given numerical values for the clp0 and the clp1, this grid is used to
quantify the |meani(APRCRHNDRDV’s)| column vector, whose compo-
nents must respectively satisfy the scalar relationships:
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Figure7.2 Three-dimensional schematic plot of the conventional conceptual sim-

ple linear regression statistical column vector model. The j þ 1’s| identity column

vector and the jivvi’s| design column vector define the clp0, clp1 parameter plane in

nrdv space. Numerical values for the clp0, say 1.5, and for the clp1, say 1.75, as well as

for the three components of the |ivvi’s| design column vector must be known to

quantify the corresponding three components of the |[meaniðAPRCRHNDRDV ’s)]’s|

column vector.
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mean i APRCRHNDRDV ’sð Þ ¼ clp0þ clp1 � ivvi
for i ¼ 1 to 3. Finally, the sum of three respective components of the
|CRHNDREEi’s| column vector and the |meani(APRCRHNDRDV ’s)|
column vector must equal the corresponding three components of the
|CRHNDRDVi’s| column vector.

The corresponding conventional estimated conceptual simple linear
regression statistical model is written in our hybrid column vector notation
as

rdvi’s
�� �� ¼ clp0ð Þ � þ 1’sj j þ est clp1ð Þ � ivvi’s

�� �� þ est CRHNDREEið Þ½ �’s�� ��
¼ est mean iðAPRCRHNDRDV ’sÞ½ �� �

’s
�� þ est CRHNDREEið Þ½ �’s�� ��

in which i ¼ 1 to nrdv. Given that nrdv ¼ 3, this estimated conceptual simple
linear regression model is explicitly stated as

rdv1

rdv2

rdv3

�������
������� ¼ est clp0ð Þ �

þ1

þ1

þ1

�������
�������þ est clp1ð Þ �

ivv1

ivv2

ivv3

�������
�������þ

est CRHNDREE 1ð Þ
est CRHNDREE 2ð Þ
est CRHNDREE 3ð Þ

�������
�������

¼
est mean1 APRCRHNDRDV ’sð Þ½ �
est mean2 ARPCRHNDRDV ’sð Þ½ �
est mean3 APRCRHNDRDV ’sð Þ½ �

�������
������� þ

est CRHNDREE 1ð Þ
est CRHNDREE 2ð Þ
est CRHNDREE 3ð Þ

�������
�������

The associated three-dimensional schematic plot appears in Figure 7.3. The
sum of squares of the est(CRHNDREEi’s) takes on its minimum value when
the |[est(CRHNDREEi)]’s| column vector is perpendicular to the plane
formed by the |+1’s| and |ivvi’s| column vectors. Thus, the
|[est(CRHNDREEi)]’s| column vector is also perpendicular (normal) to
both the |+1’s| and |ivvi’s| column vectors. The resulting two normal equa-
tions, stated as dot products using our hybrid column vector notation, are

est CRHNDREEið Þ½ �’s�� �� 	 þ 1’sj j ¼ 0

and

est CRHNDREEið Þ½ �’s�� �� 	 ivvi’s
�� �� ¼ 0

Note that the orthogonality of the |+1’s| and the |[est(CRHNDREEi)]’s|
column vectors requires the respective est(CRHNDREEi’s) to sum to zero.

Simultaneous solution of these two normal equations generates the
conventional least-square plural squares expressions for est(clp0) and
est(clp1). First, we evaluate the respective dot products to obtain two scalar
equations in two unknowns, est(clp0) and est(clp1):
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jrdvi’sj � estðclp0Þ � j þ 1’sj � estðclp1Þjivvi’sj½ � 	 j þ 1’sj ¼ 0

¼
Xnrdv
i¼1

ðrdviÞ � ðþ1Þ � estðclp0Þ �
Xnrdv
i¼1

ðþ1Þ � ðþ1Þ � estðclp1Þ �
Xnrdv
i¼1

ðivviÞ � ðþ1Þ

and

rdvi’s
�� ��� est clp0ð Þ � þ 1’sj j � est clp1ð Þ � ivvi’s

�� �� � 	 ivvi
�� �� ¼ 0

¼
Xnrdv
i¼1

ðrdviÞ � ðivviÞ � est clp0ð Þ �
Xnrdv
i¼1

ðþ1Þ � ðivviÞ � est clp1ð Þ �
Xnrdv
i¼1

ðivviÞ � ðivviÞ
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Figure 7.3 Three-dimensional schematic plot of the conventional estimated

simple linear regression statistical vector model with est(clp0) ¼ 1:91 and

est(clp1) ¼ 1:48. The sum of the squares of the components of the

|[est(CRHNDREEi’s)]’s| column vector takes on its minimum value when this vector

is perpendicular (normal) to the parameter plane formed by the |þ1’s| and the jivvi’s|
column vectors.
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Then we solve these equations for est(clp0) and est(clp1), viz.,

est clp0ð Þ ¼

Xnrdv
i¼1

ivv2i �
Xnrdv
i¼1

rdvi �
Xnrdv
i¼1

ivvi �
Xnrdv
i¼1

ivvirdvi

nrdv �
Xnrdv
i¼1

ivv2i �
Xnrdv
i¼1

ivvi

 !2

and

est clp1ð Þ ¼
nrdv �

Xnrdv
i¼1

ivvi � rdvi �
Xnrdv
i¼1

ivvi �
Xnrdv
i¼1

rdvi

nrdv �
Xnrdv
i¼1

ivv2i �
Xnrdv
i¼1

ivvi

 !2

Note that under continual replication of this simple linear regression experi-
ment test program the conceptual sampling distributions for est(clp0) and
est(clp1) are appropriately scaled conceptual (two-parameter) normal dis-
tributions (because the respective rdvi’s are presumed to be normally dis-
tributed). Note also that the respective ivvi’s must sum to zero for the |+1’s|
column vector and the |ivvi’s| column vector to be orthogonal. Since this
orthogonality is unlikely in a simple linear regression experiment test pro-
gram, it is unlikely that est(clp0) and est(clp1) will be statistically indepen-
dent. Rather, est(clp0) and est(clp1) are almost always statistically
correlated. Accordingly, we must now adopt an indirect procedure to estab-
lish the expressions for var[est(clp0)] and var[est(clp1)] that are required to
compute the respective classical (shortest) 100(scp)% (two-sided) statistical
confidence intervals that allegedly include the actual values for the clp0 and
the clp1 (based on the presumption that the conceptual simple linear regres-
sion model is correct).

Subsequent discussion of the conceptual simple regression model can
be markedly simplified by appropriately re-expressing the estimated simple
linear regression model to avoid the statistical problem that est(clp0) and
est(clp1) are not independent. Accordingly, we now subtract the arithmetic
average of all rdvi’s from each rdvi and correspondingly subtract the
arithmetic average of all ivvi values from each ivvi value. This trans-
formation translates the co-ordinate origin so that the linear relationship
between est[mean(APRCRHNDRDV ’s) given a parametric ivv] and this
parametric ivv plots as a straight line that passes through the point
[ave(rdvi’s),ave(ivvi’s)] and has a slope equal to est(clp1). The associated
regression variable values are subsequently denoted trdvi and tivvi , where
trdvi ¼ rdvi � ave(rdvi’s) and tivvi ¼ ivvi � ave(ivvi’s) Then, by definition,
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both the trdvi’s and tivvi’s sum to zero. Since the |[ave(rdvi’s)]’s| col-
umn vector can be expressed as ave(rdvi’s)�|+1’s|, the estimated simple
linear regression model can be re-stated in our hybrid column vector notation
as

rdvi’s
�� �� ¼ ave rdvi’sð Þ � þ1’sj j þ est clp1ð Þ � tivvi’s

�� ��þ est CRHNDREEið Þ½ �’s�� ��
¼ est mean i APRCRHNDRDV ’sð Þ½ �� �

’s
�� �� þ est CRHNDREEið Þ½ �’s�� ��

in which the |+1’s| column vector and the |trdvi’s| column vector are ortho-
gonal (because the tivvi’s sum to zero). In turn, this estimated simple linear
regression model can be schematically plotted in three-dimensional space as
in Figure 7.4 when stated explicitly for nrdv ¼ 3 as

rdv1

rdv2

rdv3

�������
������� ¼ ave rdvi’sð Þ �

þ1

þ1

þ1

�������
�������þ est clp1ð Þ �

tivv1

tivv2

tivv3

�������
�������þ

est CRHNDREE 1ð Þ
est CRHNDREE 2ð Þ
est CRHNDREE 3ð Þ

�������
�������

¼
est mean1 APRCRHNDRDV ’sð Þ½ �
est mean2 APRCRHNDRDV ’sð Þ½ �
est mean3 APRCRHNDRDV ’sð Þ½ �

�������
������� þ

est CRHNDREE 1ð Þ
est CRHNDREE 2ð Þ
est CRHNDREE 3ð Þ

�������
�������

The orthogonality of the |+1’s| and |tivvi’s| column vectors is illustrated
schematically in Figure 7.4 where it is evident that ave(rdvi’s) � |+1’s|�
est(clp1) � ave(ivvi’s) � |+1’s| ¼ est(clp0) � |+1’s|.

The generic least-squares plural expression for est(clp1) is obtained by
solving the (single) normal equation:

est CRHNDREEið Þ½ �’s�� �� 	 tivvi’s
�� �� ¼ 0

¼ trdvi’s
�� ��� est clp1ð Þ½ � � tivvi’s

�� ��� � 	 tivvi’s
�� ��

viz.,

est clp1ð Þ ¼

Xndv
i¼1

tivvi � trdvi
Xndv
i¼1

tivv2i

Clearly, this generic least-squares expression for est(clp1) is algebraically
much simpler than the conventional least-squares expression for est(clp1)
given previously.
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Remark: Note that this generic least-squares expression for est(clp1)
is identical, except for notation, to the least-squares expression used
to compute the respective est(scj’s) pertaining to the complete ana-
lytical models associated with the experiment test programs pre-
sented in Chapter 2 and statistically analyzed in Chapter 6.

Reminder: The orthogonality of the |[est(CRHNDREEi)]’s| and the
|+1’s| column vectors dictates that the [est(CRHNDREEi)]’s sum
to zero.

Figure 7.4 is also intended to support the notion that, because the
|ave(rdvi’s)| and the |tivvi’s| column vectors are orthogonal, ave(rdvi’s) and
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Figure 7.4 Three-dimensional schematic plot of the translated estimated

conceptual simple linear regression statistical model, with the |{est[meani
ðAPRCRHNDRDVs)]’s}| column vector re-expressed in terms of the orthogonal

|ave(rdvi’s)| and jtivvi’s| column vectors. (Note that the |rdvi’s| and the

|[est(CRHNDREEi)]’s| column vectors are the same for both the conventional and

translated regression co-ordinate axes.)
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est(clp1) are statistically independent under continual replication of the sim-
ple linear regression experiment test program. The statistical independence of
ave(rdvi’s) and est(clp1) markedly simplifies the development of an expres-
sion for var{est[mean(APRCRHNDRDV’s) given the parametric tivv of
specific interest, tivv*}. First, we rewrite the estimated conceptual simple
linear regression statistical model in scalar notation as

est mean APRCRHNDRDV ’sð Þ given ivv ¼ ivv�½ �
¼ est mean APRCRHNDRDV ’sð Þ given tivv ¼ tivv�½ �
¼ ave rdvi’sð Þ þ ðtivv�Þ � est clp1ð Þ

in which ivv* and tivv* are the corresponding regression metric values of
specific interest. We then assert that

var est[meanðAPRCRHNDRDV ’sÞ given tivv ¼ tivv��� �
¼ var aveðrdvi’sÞ½ � þ ðtivv�Þ2 � var½estðclp1Þ�

in which

var ave rdvi’sð Þ½ � ¼ var APRCRHNDREE ’sð Þ
nrdv

where var(APRCRHNDREE ’s) is unknown and must subsequently be
estimated.

The expression for var[est(clp1)] can be deduced by noting that the
generic least-squares expression for est(clp1) is merely the summation of a
constant term, say c, times trdvi. In turn, since each of the mutually inde-
pendent trdvi’s are presumed to be randomly selected from a conceptual
(two-parameter) normal distribution with a (homoscedastic) variance
equal to var(APRCRHNDREE ’s), the variance of the conceptual sampling
distribution that consists of all possible replicate realization values for
est(clp1) is simply the summation of c2� var(APRCRHNDREE ’s), where

c2 ¼

Xnrdv
i¼1

tivv2i

Xnrdv
i¼1

tivv2i

( )2
¼ 1Xnrdv

i¼1

tivv2i
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Accordingly,

var est clp1ð Þ½ � ¼ var APRCRHNDREE ’sð ÞXnrdv
i¼1

tivv2i

Note that this expression is identical, except for notation, to the expression
for var[est(scj)] developed in Chapter 4 and used in the classical ANOVA
examples in Chapter 6. In turn,

var tivv�ð Þ � est clp1ð Þ½ �� � ¼ ðtivv�Þ2 � var APRCRHNDREE ’sð ÞXnrdv
i¼1

tivv2i

Thus,

var est mean APRCRHNDRDV ’sð Þ given tivv ¼ tivv�½ �� �
¼ var est mean APRCRHNDRDV ’sð Þ given ivv ¼ ivv�½ �� �

¼ 1

nrdv
þ tivv�ð Þ2Xnrdv

i¼1

tivv2i

8>>>><
>>>>:

9>>>>=
>>>>;

� var APRCRHNDREE ’sð Þ

¼ 1

nrdv
þ ivv� � ave ivvi’sð Þ½ �2Xnrdv

i¼1

tivv2i

8>>>><
>>>>:

9>>>>=
>>>>;

� var APRCRHNDREE ’sð Þ

To estimate the actual value for the variance of the conceptual sam-
pling distribution that consists of all possible replicate realization values for
[est(mean(APRCRHNDRDV ’s) given the tivv* (or ivv*) of specific interest],
we must first compute est[var(APRCRHNDREE ’s)]. However, this calcula-
tion is not technically proper until we have first established the adequacy of
the presumed conceptual simple linear regression model by conducting the
appropriate statistical test (discussed later). Ignoring this problem for the
present, we now proceed as if the null hypothesis that the presumed con-
ceptual simple linear regression model is correct was not rejected. Then,
est[var(APRCRHNDREE ’s)] is simply equal to the sum of the squares of
the elements of the |[est(CRHNDREEi)]’s| column vector divided by the
number of its statistical degrees of freedom, viz., by (nrdv � 2).
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Remark One: The square root of est[var(APRCRHNDREE ’s)] is
numerically equal to est(csp) where the csp is the conceptual scale
parameter (standard deviation) of the conceptual (two-parameter)
normal distribution that consists of APRCRHNDREE ’s.

Remark Two: To understand why the number of statistical degrees
of freedom for the |[est(CRHNDREEi)]’s| column vector is equal
to (nrdv � 2), recall that the trdvi’s sum to zero by definition and
therefore the |trdvi’s| column vector has only (nrdv � 1) statistical
degrees of freedom. The corresponding |{est[meani(APRCRH
NDTRDV ’s)]’s}| column vector has only a single statistical degree
of freedom because its direction is established by the |tivvi’s| column
vector and only its scalar magnitude, viz., est(clp1), requires speci-
fication. Accordingly, the |[est(CRHNDEEi)]’s| column vector has
(nrdv�1) � 1 ¼ (nrdv � 2) statistical degrees of freedom. Another
way to establish the number of statistical degrees of freedom for
the |[est(CRHNDEEi)]’s| column vector is to assert that the |rdvi’s|
column vector has nrdv statistical degrees of freedom and that the
numerical solution of the two normal equations used to compute
est(clp0) and est(clp1) imposes two constraints on allowable values
for the components of the |[est(CRHNDREEi)]’s| column vector,
thereby reducing its number of statistical degrees of freedom to
(nrdv � 2).

Exercise Set 1

These exercises are intended to familiarize you with the least-squares simple
linear regression estimation expressions.

1. Verify that the two text least-squares expressions for est(clp1) are
algebraically equivalent.

2. (a) Write an expression for the sum of the squares of the
[est(CRHNDREEi)]’s using the translated regression co-ordinate
axes. Then, (b) take the derivative of this sum of squares with
respect to est(clp1). In turn, (c) equate this derivative expression
to zero and solve for est(clp1). Does the resulting estimation
expression agree with the generic least-squares expression?

3. (a) Write an expression for the sum of the squares of the
[est(CRHNDREEi)]’s using the conventional regression co-ordi-
nate axes. Then, (b) take the derivatives of this sum with respect
to est(clp0) and est(clp1). In turn, (c) equate these two derivative
expressions to zero and solve for est(clp0) and est(clp1). Do the
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resulting estimation expressions agree with the conventional
least-squares estimation expressions?

Exercise Set 2

These exercises are intended to provide insight regarding (a) the classical
(shortest) 100(scp)% (two-sided) statistical confidence intervals that alleg-
edly include the actual values for the clp0 and the clp1, and, in turn, (b) the
associated classical (shortest) 100(scp)% (two-sided) statistical confidence
interval that allegedly includes [mean(APRCRHNDRDV ’s) given
ivv ¼ ivv*], where the ivv* of specific interest lies in the (shortest practical)
ivv interval that was used in conducting the simple linear regression experi-
ment test program.

1. Given the generic least-squares estimator est(clp1)¼P
tivvi � CRHNDTRDVi ’s=

P
tivv2i and presuming that the con-

ceptual simple linear regression model is correct, substitute the
expected value of each CRHNDTRDVi, viz., clp1 � tivvi, into this
expression to demonstrate that the expected value of est(clp1) is
equal to clp1. Thus, est(clp1) is statistically unbiased when the
conceptual simple linear regression model is correct, viz., the
actual value for the mean of the conceptual sampling distribution
that consists of all possible replicate realization values for
est(clp1) is equal to clp1.

2. Given the least-squares estimator for est(clp0) ¼
ave(CRHNDTRDVi’s) � est(clp1) � ave(ivvi’s) and presuming
that the conceptual simple linear regression model is correct,
extend Exercise 1 by substituting clp0 þ clp1 � ave(ivvi’s) for the
expected value of ave(CRHNDTRDVi’s) and clp1 for the
expected value of est(clp1) to demonstrate that the expected
value of est(clp0) is equal to clp0. Thus, est(clp0) is also statisti-
cally unbiased when the conceptual simple linear regression
model is correct, viz., the actual value for the mean of the con-
ceptual sampling distribution that consists of all possible repli-
cate realization values for est(clp0) is equal to clp0.

3. Use the results of Exercises 1 and 2 to demonstrate that
est[mean(APRCRHNDRDV ’s) given ivv ¼ ivv*] is statistically
unbiased when the conceptual simple linear regression model is
correct.

4. (a) Using the text expression for the var{est[mean(APR
CRHNDRDV ’s) given ivv = ivv*]}, let ivv* = 0 and deduce
the associated expression for var[est(clp0)]. Then, (b) given the
conventional simple linear regression expression:

Linear Regression Analysis 321

TLFeBOOK



est mean APRCRHNDRDV ’sð Þ given ivv ¼ ivv�½ �
¼ est clp0ð Þ þ est clp1ð Þivv�

demonstrate that the expression for var{est[mean (APRCRHND-
RDV ’s) given ivv ¼ ivv*]} cannot be derived by simply adding the
expression for var[est(clp0)] to (ivv*)2 times the expression for
var[est(clp1)]. In turn, (c) explain what presumption underlying
simple arithmetic addition of variances must be violated here.

5. The expression for the actual value for the variance of conceptual
sampling distribution that consists of all possible replicate reali-
zation values for est[mean(APRCRHNDRDV ’s) given ivv ¼
ivv*] under continual replication of the experiment test program,
when based on the conventional conceptual simple linear regres-
sion model, always includes a covariance term, viz.,

var est mean APRCRHNDRDV ’sð Þ given ivv ¼ ivv�½ �� �
¼ var est clp0ð Þ½ � þ ivv�ð Þ2� var est clp1ð Þ½ �
þ 2 � ivv� � covar est clp0ð Þ; est clp1ð Þ½ �

(a) Accordingly, demonstrate that covar[est(clp0),est(clp1)] must
be given by the expression:

covar est clp0ð Þ; est clp1ð Þ½ � ¼ � ave ivvi’sð ÞXnrdv
i¼1

tivv2i

� var APRCRHNDREE ’sð Þ

Then, (b) verify that covar[est(clp0),est(clp1)] is numerically equal
to zero only when the sum of the ivvi’s is numerically equal to
zero. (Recall that the sum of the tivvi’s is always numerically
equal to zero by the definition of the respective tivvi’s.)

Discussion: Covariance is discussed in Supplemental Topic 7.A.
For the present we merely note that when est[mean(APR
CRHNDRDV ’s) given ivv ¼ ivv*] is expressed in terms of
est(clp0) and est(clp1), a covariance term is almost always
required in the associated expression for var{est[mean (APR
CRHNDRDV ’s) given ivv ¼ ivv*]} because est(clp0) and est(clp1)
are seldom statistically independent.

Recall that the |ivvi’s| column vector is not orthogonal to the
|+1’s| column vector unless the respective ivvi’s sum to zero.
Thus, est(clp0) and est(clp1) are seldom statistically independent.
On the other hand, because the respective tivvi’s always sum to
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zero, the |tivvi’s| column vector is always orthogonal to the |+1’s|
column vector. Thus, ave(rdv’s) and est(clp1) are always statisti-
cally independent. Accordingly, covar[ave(rdv’s), est(clp1)] is
always equal to zero. Recall also that var{est[mean(APRCRH
NDRDV ’s) given tivv ¼ tivv*]} is equal to var{est[mean (APR
CRHNDRDV ’s) given ivv ¼ ivv*]}, where ivv* ¼ tivv*
þ ave(ivv’s).

6. (a) Can the respective least-squares expressions for est(clp0),
est(clp1), and est[mean(APRCRHNDRDV ’s) given ivv ¼ ivv*]
be rewritten as a sum of appropriate scalar constants times the
associated mutually independent normally distributed datum
values? If so, then the conceptual sampling distributions for
est(clp1), est(clp0), and est[mean(APRCRHNDRDV ’s) given
ivv ¼ ivv*] are appropriately scaled conceptual (two-parameter)
normal distributions under continual replication of the regression
experiment test program. (b) Write the analytical expression for
the PDF pertaining to each these three conceptual sampling dis-
tributions.

7. Use the generic form of Student’s central T test statistic, viz.,

generic Student’s central T1;ndsdf
statistic

¼
statistically unbiased normally distributed

estimator� its expected value
est[stddev (statistically unbiased normally

distributed estimator)]

¼ est clp1ð Þ½ � � clp1

est stddev est clp1ð Þ½ �� � ðfor exampleÞ

and the results of Exercises 1, 2, 3, and 6 to state probability
expressions that can be reinterpreted to establish the classical
(shortest) 100(scp)% (two-sided) statistical confidence intervals
that (a) allegedly include the actual values for the clp0 and the
clp1, and (b) the classical (shortest) 100(scp)% (two-sided) statis-
tical confidence interval that allegedly includes [mean(APRCRH-
NDRDV ’s) given ivv ¼ ivv*].

8. (a) Extend Exercise 7(b) by stating a probability expression that
can be reinterpreted to establish the classical (shortest) 100(scp)%
(two-sided) statistical confidence interval that allegedly includes
the actual value for the mean of nf future CRHNDRDV ’s given
the ivv* of specific interest that lies in the (shortest practical) ivv
interval that was used in conducting the simple linear regression
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experiment test program. Then, (b) explain what presumption
underlying the addition of variances must be made to develop
this statistical confidence interval expression. In turn, (c) state
the caveat that is appropriate for this statistical prediction inter-
val. (d) Explain how this interval could have practical applica-
tion.

9. (a) Do the numerical values of the respective values of the ivvi’s,
or the associated value of the ave(ivvi’s), change under continual
replication of the simple linear regression experiment test pro-
gram? If not, (b) do the respective expressions for var[est(clp0)],
var[est(clp1), and var{est[mean(APRCRHNDRDV ’s) given ivv
= ivv*]} numerically change under continual replication of the
simple linear regression experiment test program? These answers
underlie the use of the minimum variance strategy in selecting
statistically effective ivv’s when conducting simple linear regres-
sion experiment test programs.

10. (a) Plot hypothetical datum values generated by a regression
experiment test program for which four different values (levels)
of the independent variable are selected for replicate tests each
involving five specimens. (b) Compare your plot to Figure 6.1
and demonstrate that the only thing to distinguish a CRD experi-
ment test program (Chapter 6) from a regression experiment test
program (Chapter 7) is the measurement metric for the indepen-
dent variable and its associated terminology and notation. In
turn, (c) based on the mass moment of inertia concept and
using your own notation, state an analytical expression for the
within(SS).

11. (a) Extend Exercise 10 by fairing (by eye) a straight line through
your hypothetical regression experiment test program datum
values and identify the resulting est(CRHNDREEi ’s). Then, (b)
based on the parallel axis theorem and using your own notation,
state an analytical expressions for the between(SS). In turn, (c)
explain how the between(MS) is related to the within(MS) in
Exercise 10.

7.2.1. Testing the Statistical Adequacy of a Conceptual
Simple (or Multiple) Linear Regression Model

Engineering texts typically present simple linear regression examples in
which there is no replication and the ivvi’s are uniformly spaced. These
examples are rational only in preliminary testing when the response versus
independent variable relationship is unknown and the ivvi’s are selected in a
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‘‘systematic’’ manner. Otherwise, replication is mandatory and the ivvi’s
should be purposely selected to accomplish some statistical objective.

When some or all of the ivvi’s used in a (simple or multiple) linear
regression experiment test program are replicated, the |[est(CRHND-
REEi)]’s| column vector can be partitioned into two orthogonal compo-
nents, viz., one component associated with the within(SS) and the other
associated with the between(SS). Expressions for these two independent
components of the sums of squares of the [est(CRHNDREEi)]’s are easily
established using the mass moment of inertia analogy and its associated
parallel axis theorem. The resulting within(MS) and between(MS) expres-
sions are then used to compute the data-based realization value of
Snedecor’s central F test statistic which in turn is employed to test the
statistical adequacy of the proposed conceptual simple (or multiple) linear
regression model.

First consider the component of the |[est(CRHNDREEi)]’s| column
vector associated with the within(SS). Hypothetical linear regression experi-
ment test program datum values are plotted schematically in Figure 7.5
where the different ivv’s are denoted divv’s and the number of these divv’s
is denoted ndivv. The within(SS) is conveniently computed as the mass
moments of inertia of the replicated regression datum values rdvk,kr about
their respective averages, ave(rdvk’s), summed over each of the respective
divv’s, viz.,

withinðSSÞ ¼
Xndivv
k¼1

Xnrkdivv
kr¼1

rdvk;kr � ave rdvk’sð Þ �2

in which all regression datum values have a unit (dimensionless) mass and
the number of replicates at the kth divv is denoted nrkdivv. In turn, the
within(SS) divided by its associated number of statistical degrees of freedom
is the within(MS). The number of statistical degrees of freedom for the
within(SS) is the sum over all ndivv’s of the respective (nrkdivv�1) statistical
degrees of freedom. The expected value of the within(MS) is equal to
var(APRCRHNDREE ’s). Note that this expected value does not depend
on the assertion that the conceptual linear regression model is correct.

Remark: This within(MS) in linear regression analysis is directly
analogous to the within[est(CRHNDEE ’s)]MS for CRD experiment
test programs in classical ANOVA. The credibility of its homosce-
dasticity presumption can be statistically tested by running either
microcomputer program RBBHT or microcomputer program
BARTLETT when the regression experiment test program has
equal replication for all (or several) of its ivvi’s.
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Now consider the component of the |[est(CRHNDREEi)]’s| column vector
associated with the between(SS). Refer again to Figure 7.5. The respective
ave(rdvk’s) are normally distributed and their expected values under contin-
ual replication of the linear regression experiment test program are the
corresponding meank(APRCRHNDRDV ’s)’s. However a similar statement
can be made about the respective {est[meank(APRCRHNDRDV’s)]}’s only
when the conceptual linear regression model is correct. Nevertheless, the
between(SS) component is conveniently computed using the parallel-axis
theorem, where the coalesced unit masses at each divv are equal to nrkdivv
and the associated transfer distances are the {[ave(rdvk’s) �
est[meank(APRCRHNDRDV ’s)]}’s, viz.,

betweenðSSÞ ¼
Xndivv
k¼1

nrkdivv aveðrdvk’sÞ
� � est mean k APRCRHNDRDV ’sð Þ½ ��2

¼
Xndivv
k¼1

Xnrkdivv
kr¼1

aveðrdvk’sÞ
� � est mean k APRCRHNDRDV ’sð Þ½ ��2
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Figure 7.5 Plot of hypothetical linear regression experiment test program datum

values and the associated estimated conceptual simple linear regression statistical

model. Recall that nonuniform replication is not recommended (unless it accom-

plishes a well-defined statistical objective). It is depicted here only to illustrate how to

establish (count) the proper number of statistical degrees of freedom for the

within(MS). The within number of statistical degrees of freedom is equal to

3 ð4� 1Þ for k ¼ 1, plus 0 ð1� 1Þ for k ¼ 2; . . . ; plus 1 ð2� 1Þ for k ¼ ndivv.
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The between(SS) divided by its associated number of statistical degrees of
freedom, viz., (ndivv � nclp), is the between(MS). The expected value of the
between(MS) is equal to var(APRCRHNDREE ’s) only when the presumed
(simple or multiple) linear regression model is correct.

Given the null hypothesis that the conceptual (simple or multiple)
linear regression model is correct, the conceptual sampling distribution for
the ratio of the between(MS) to the within(MS) under continual replication
of the regression experiment test program is identical to Snedecor’s central F
conceptual sampling distribution with the corresponding numbers of statis-
tical degrees of freedom. However, if the presumed conceptual linear regres-
sion model is not correct, then the between(SS) will be inflated by an amount
proportional to the sum of squares associated with the discrepancies
between the actual physical relationship and the presumed conceptual
(simple or multiple) linear regression model. Recall Figure 7.1.
Accordingly, when the observed linear regression experiment test program
datum values generate a sufficiently large data-based value for Snedecor’s
central F test statistic, the null hypothesis that the presumed conceptual
linear regression model is correct must rationally be rejected. In this event
we should reanalyze the experiment test program datum values using a
higher-order conceptual linear regression model. Then, in turn, we should
test the statistical adequacy of the new higher-order conceptual linear
regression model using the revised data-based value of Snedecor’s central
F test statistic.

A critical concept in establishing the range of the divv’s used in a
regression experiment test program is to recognize that few if any physical
relationships are actually linear over a relatively wide range of the ivv’s.
Rather, the relevant issue is whether a linear approximation provides a
statistically adequate explanation of the observed datum values for the
range of the ivv’s employed in the given regression experiment test program.
When the analytical objective is to examine whether or not a conceptual
simple linear regression model is statistically adequate for some range of the
ivv’s of specific interest, we recommend that one-third of the regression tests
should be conducted at each of the two extreme ivv’s that establish this
range, and the remaining one-third of the regression tests should be con-
ducted at the midpoint of this ivv range. Recall that good test planning
practice always favors (a) greater replication at fewer ivv’s (or treatments)
and (b) testing at the practical extremes of the ivv’s (treatments) of specific
interest. However, if there is not sufficient experience or information avail-
able to feel comfortable in planning any given regression experiment test
program, then preliminary testing is clearly appropriate.
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7.2.1.1. Simple Linear Regression Numerical Example

We now present a simple linear regression example to illustrate the numer-
ical details of computing est(clp0), est(clp1), est{var[est(clp0)]}, and est{var[-
est(clp1)]}, and in turn computing (a) the classical (shortest) 100(scp)%
(two-sided) statistical confidence intervals that allegedly include the actual
values of the clp0 and the clp1, and (b) the associated classical (shortest)
100(scp)% (two-sided) statistical confidence interval that allegedly includes
[mean(APRCRHNDRDV ’s) given ivv = ivv*]. Particular attention also is
given to partitioning the within(SS) and the between(SS) components of the
sum of squares for the respective [est(CRHNDREEi)]’s.

Consider the following hypothetical regression datum values:

ivvi ¼ ivvk;kr rdvi ¼ rdvk;kr

10 2

10 5

10 5

20 13

20 9

40 20

40 22

50 23

50 26

50 23

7.2.1.2. Preliminary Calculations

First, we use a column vector format to organize and tabulate the regression
datum values. We then compute the sum of the ivvi’s (300) and the sum of
the rdvi’s (148). Accordingly, aveðivvi’s) ¼ 300=10 ¼ 30 and ave(rdvi’s) ¼
148=10 ¼ 14:8. Also,

P½aveðivvi’sÞ�2 ¼ 10½ð30Þ2� ¼ 9000 and
P½aveðrdvi’sÞ�2

¼ 10½ð14:8Þ2� ¼ 2190:4. (These sums of squares will be of interest later.) In
turn, we construct the following table to estimate the actual values for the
clp0 and the clp1.

ivvi rdvi tivvi trdvi ivv2i rdv2i tivv2i trdv2i tivvi � trdvi
10 2 �20 �12:8 100 4 400 163.84 256

10 5 �20 �9:8 100 25 400 96.04 196

10 5 �20 �9:8 100 25 400 96.04 196

20 13 �10 �1:8 400 169 100 3.24 18

20 9 �10 �5:8 400 81 100 33.64 58

40 20 þ10 þ5:2 1600 400 100 27.04 52
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ivvi rdvi tivvi trdvi ivv2i rdv2i tivv2i trdv2i tivvi � trdvi
40 22 þ10 þ7:2 1600 484 100 51.84 72

50 23 þ20 þ8:2 2500 529 400 67.24 164

50 26 þ20 þ11:2 2500 676 400 125.44 224

50 23 þ20 þ8:2 2500 529 400 67:24 164

sum ¼ 0 0 11,800 2922 2800 731.60 1400

checks checks

Thus,

est clp1ð Þ ¼

Xnrdv
i¼1

tivvi � trdvi
Xnrdv
i¼1

tivv2i

¼ 1400

2800
¼ 0:5

Next, using the expression ave(rdvi’s) ¼ est(clp0) þ est(clp1) � ave(ivvi’s):
est clp0ð Þ ¼ 14:8� 0:5ð Þ 30ð Þ ¼ �0:2

We then compute the respective {est[meank(APRCRHNDRDV ’s)]}’s and
[ave(rdvk’s)]’s and extend these calculations by constructing the table on
page 330.

We now use these tabular results to highlight certain orthogonality
relationships of interest by demonstrating numerically that the correspond-
ing partitioned sum-of-squares components add algebraically.

1. Our first example pertains to re-expressing the |rdvi’s| column
vector in terms of two orthogonal components using our hybrid notation,
viz.,

rdvi’s
�� �� ¼ ave rdvi’sð Þ½ �’s�� ��þ ½rdvi � ave rdvi’sð Þ�’s�� ��

The associated partitioned sum of squares relationship is thusXnrdv
i¼1

rdv2i ¼
Xnrdv
i¼1

ave rdvi’sð Þ½ �2 þ
Xnrdv
i¼1

rdvi � ave rdvi’sð Þ½ �2

2922 ¼ 2190:4 þ 731:6

Similarly, for the |ivvi’s| column vector we write:

ivvi’s
�� �� ¼ ave ivvi’sð Þ½ �’s�� ��þ ivvi � ave ivvi’sð Þ½ �’s�� ��

Its associated partitioned sums of squares relationship is

Xnrdv
i¼1

ivv2i ¼
Xnrdv
i¼1

ave ivvi’sð Þ½ �2 þ
Xnrdv
i¼1

ivvi � ave ivvi’sð Þ½ �2

11,800 ¼ 9000 þ 2800
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2. Next, we partition the sums of squares pertaining to the |trdvi’s|
column vector by first writing

trdvi’s
�� �� ¼ rdvi � ave rdvi’sð Þ½ �’s�� ��

¼ rdvi � est mean i APRCRHNDRDV ’sð Þ½ �� �
’s

�� ��
þ est mean i APRCRHNDRDV ’sð Þ½ � � ave rdvi’sð Þ� �

’s
�� ��

and then substitute

est mean i APRCRHNDRDV ’sð Þ½ � � ave rdvi’sð Þ� �
’s

�� �� ¼ est clp1ð Þ � tivvi’s
�� ��

to generate a partitioned sums of squares expression:

Xnrdv
i¼1

trdv2i ¼
Xnrdv
i¼1

rdvi � est mean i APRCRHNDRDV ’sð Þ½ �� �2

þ est clp1ð Þ½ �2�
Xnrdv
i¼1

tivv2i

731:6 ¼ 31:6 þ 0:5ð Þ2
2800 ¼ 700

that can be used to test the null hypothesis that the actual value for the clp1
is equal to zero versus the alternative hypothesis that the actual value for the
clp1 is not equal to zero. (See Exercise Set 4, Exercise 2.)

3. Finally, we partition the |[est(CRHNDREEi)]’s| column vector
into two orthogonal components respectively associated with the
within(SS) and the between(SS) in Snedecor’s central F test for the statistical
adequacy of the presumed conceptual linear regression model. First, we note
that

rdvi � est mean i APRCRHNDRDV ’sð Þ½ �� �
’s

�� ��
¼ rdvk;kr � est mean k APRCRHNDRDV ’sð Þ½ �� �

’s
�� ��

and then we restate the |{rdvk,kr � est[meank(APRCRHNDRDV ’s)]}’s|
column vector as

rdvk;kr � est mean k APRCRHNDRDV ’sð Þ½ �� �
’s

�� ��
¼ rdvk;kr � ave rdvk’sð Þ �

’s
�� ��

þ ave rdvk’sð Þ � est mean k APRCRHNDRDV ’sð Þ½ �� �
’s

�� ��
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The associated partitioned sum of squares expression is

Xndivv
k¼1

Xnrkdivv
kr¼1

rdvk;kr � est mean k APRCRHNDRDV ’sð Þ½ �� �2
ð31:6Þ

¼
Xndivv
k¼1

Xnrkdivv
kr¼1

rdvk;kr � ave rdvk’sð Þ �2
22ð Þ

þ
Xndivv
k¼1

Xnrkdivv
kr¼1

ave rdvk’sð Þ � est mean k APRCRHNDRDV ’sð Þ½ �� �2
ð9:6Þ

Exercise Set 3

These exercises are intended to verify various orthogonality relationships
associated with simple linear regression by verifying that the corresponding
dot product are equal to zero when the example simple linear repression
experiment test program datum values and associated calculated values are
substituted appropriately.

1. Verify numerically that the dot product of the
|{est[meani (APRCRHNDRDV ’s)]}’s| and the |[est(CRHNDR-
EEi)]’s| column vectors is equal to zero.

2. (a) Verify numerically that the |{est[meank(APRCRHNDRDV ’s)]
� ave(rdvi’s)}’s| column vector is identical to the est(clp1) � |tivvk’s|
column vector. Explain this result using the appropriate sketch
that includes both the conventional ivv and rdv co-ordinate axes
and the translated tivv and trdv co-ordinate axes. Then, (b) verify
numerically that the dot product of each of these two column
vectors with the |{rdvk,kr � est[meank(APRCRHNDRDV ’s)]}’s|
column vector is equal to zero.

3. State a relationship that involves both the |{ave(rdvk’s) �
est[meank(APRCRHNDRDV ’s)]}’s| and |[rdvk,kr � ave(rdvk’s)]’s|
column vectors, then restate these vectors in explicit numerical
form and demonstrate that the dot product of the two vectors is
equal to zero.
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4. (a) Demonstrate numerically that the sum of the number of sta-
tistical degrees of freedom pertaining to the within(SS) and the
between(SS) is equal to the number of statistical degrees of free-
dom pertaining to the [est(CRHNDREEi)]’s, viz., is equal to
(nrdv � 2). Then, (b) account for the two remaining statistical
degrees of freedom in this simple linear regression numerical
example.

7.2.1.3. Simple Linear Regression Numerical Example
(Continued)

We now have the numerical information needed to test the statistical ade-
quacy of the presumed conceptual simple linear regression model. Using the
same notation associated with our prior expressions for the within(MS) and
between(MS), we write:

data-based value for Snedecor’s central F within nsdf, between nsdf test
statistic

¼

Xndivv
k¼1

Xnrkdivv
kr¼1

aveðrdvk’sÞ � est½meankðAPRCRHNDRDV ’sÞ�� �2
between nsdfXndivv

k¼1

Xnrkdivv
kr¼1

rdvk;kr � aveðrdvk’sÞ
 �2
within nsdf

¼ 9:6=2

22:0=6
¼ 1:3091

Microcomputer program PF indicates that the probability that a randomly
selected value of Snedecor’s central F test statistic is equal to or greater
than 1.3091 equals 0.3374. Thus we opt not to reject the null hypothesis
that the presumed conceptual linear regression model is correct.
Accordingly, this decision provides a rational basis for computing the
classical (shortest) 100(scp)% (two-sided) statistical confidence intervals
that allegedly include the actual values for the clp0 and the clp1, and
the associated classical (shortest) 100(scp)% (two-sided) statistical confi-
dence interval that allegedly includes [mean(APRCRHNDRDV ’s) given
ivv ¼ ivv*].

Caveat: Numerous low-cycle (controlled-strain) fatigue tests have
been conducted with replicated tests at two or more ivvi’s. The
majority of these tests generated datum values that fail Snedecor’s
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central F test for the statistical adequacy of a bi-linear loge(strain
component)–loge(number of strain reversals to failure) model that
is almost universally used in low-cycle (controlled-strain) fatigue
testing. Thus, the widespread use of a mechanical behavior model
does not assure that it is either statistically adequate or physically
credible.

Remark: When a conceptual simple linear regression mechanical
behavior model fails Snedecor’s central F test for its statistical ade-
quacy, it is rational to propose a conceptual mechanical behavior
model whose parametric mean(APRCRHNDRDV ’s) versus ivv
relationship is parabolic (second-order) in terms of ivv. However,
the sign of the resulting est(clp2) must be physically credible.

We now extend our simple linear regression numerical example by
computing the respective classical (shortest) 100(scp)% (two-sided) statisti-
cal confidence intervals that allegedly include the actual values of the clp0
and the clp1, and in turn the associated classical (shortest) 100(scp)% (two-
sided) statistical confidence interval that allegedly includes
[mean(APRCRHNDRDV ’s) given ivv ¼ ivv*]. Recall that this extension
is valid because when we performed Snedecor’s central F test for the statis-
tical adequacy of the conceptual simple linear regression model, we did not
reject the null hypothesis that the presumed model is correct. Accordingly,
we assert that it is statistically rational to estimate var(APRCRHNDREE ’s)
using the sum of the between(SS) and the within(SS), divided by the sum of
the number of between(SS) and within(SS) statistical degrees of freedom.
However, the following equivalent estimation expression is much more com-
monly used to estimate var(APRCRHNDREE ’s):

est varðAPRCRHNDREE ’sÞ½ �

¼
Xnrdv
i¼1

estðCRHNDREEi’sÞ2
�

ðnrdv � 2Þ

¼
Xnrdv
i¼1

rdvi � est½meanðAPRCRHNDRDVi’sÞ�
� �2�ð10� 2Þ

¼ 31:6=8 ¼ 3:95 (with 8 statistical degrees of freedom)

The associated est[stddev(APRCRHNDREE ’s)] is 1.9875 (with eight statis-
tical degrees of freedom). Accordingly, est(csp) ¼ 1.9875.

Remark: The details of computing a 100(scp)% (two-sided) statis-
tical confidence interval that allegedly includes the actual value for
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the csp are found in Section 5.9.1. However, make sure to use the
proper number of statistical degrees of freedom for
est[var(APRCRHNDREE ’s), viz., replace (ndv � 1) by (nrdv � 2)
for simple linear regression, or by (nrdv � nclp) for multiple linear
regression. (Recall that this statistical confidence interval does not
have its minimum possible width.)

Now consider the classical (shortest) 100(scp)% (two-sided) statistical con-
fidence interval that allegedly includes the actual value for the clp1. Recall
that

var est clp1ð Þ½ � ¼ 1Xnrdv
i¼1

tivv2i

� var APRCRHNDREE ’sð Þ

Thus,

var est clp1ð Þ½ � ¼ 1

2800
� var APRCRHNDREE ’sð Þ

In turn, est{var[est(clp1)]} is computed using the expression:

est var est clp1ð Þ½ �� � ¼ 1

2800
� est var APRCRHNDREE ’sð Þ½ �

¼ 1

2800
� 3:95 ¼ 0:0014

Recall also that the classical (shortest) 95% (two-sided) statistical confi-
dence interval that allegedly includes the actual value for the clp1 is com-
puted using complementary percentiles of Student’s central t conceptual
sampling distribution. Accordingly, we assert that

Probability est clp1ð Þ � t1;8;0:975est stddev est clp1ð Þ½ �� �
< clp1

< est clp1ð Þ � t1;8;0:025est stddev est clp1ð Þ½ �� �� ¼ 0:95

in which � t1,8;0.025 ¼ t1,8;0.975 ¼ 2.3060. Accordingly, the corresponding
classical (shortest) 95% (two-sided) statistical confidence interval that alleg-
edly includes the actual value for the clp1 is

0:5� 2:3060ð Þ 0:0014ð Þ1=2; 0:5þ 2:3060ð Þ 0:0014ð Þ1=2 � ¼ 0:4134; 0:5866½ �

Next, consider the classical (shortest) 100(scp)% (two-sided) statistical
confidence interval that allegedly includes the actual value for the clp0.
Recall that the clp0 is the alias of the [mean(APRCRHNDRDV ’s) given
ivv ¼ ivv* ¼ 0] and that
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var est mean APRCRHNDRDV ’sð Þ given ivv ¼ ivv�½ �� �

¼ 1

nrdv
þ ivv� � ave ivvi’sð Þ½ �2Xnrdv

i¼1

tivv2i

8>>>><
>>>>:

9>>>>=
>>>>;

� var APRCRHNDREE ’sð Þ½ �

Accordingly,

var est clp0ð Þ½ � ¼ 1

nrdv
þ 0� ave ivvi’sð Þ½ �2Xnrdv

i¼1

tivv2i

8>>>><
>>>>:

9>>>>=
>>>>;

� var APRCRHNDREE ’sð Þ½ �

Thus,

var est clp0ð Þ½ � ¼ 1

10
þ ½�30�2

2800

( )
� var APRCRHNDREE ’sð Þ½ �

¼ 0:1þ 0:3214f g � var APRCRHNDREE ’sð Þ½ �
¼ 0:4214 � var APRCRHNDREE ’sð Þ½ �

Substituting est[var(APRCRHNDREE ’s)] for var(APRCRHNDREE ’s)
gives est{var[est(clp0)]} ¼ (0.4214)(3.95) ¼ 1.6646. In turn, the classical
(shortest) 95% (two-sided) statistical confidence interval that allegedly
includes the actual value for the clp0 is based on the probability expression:

Probability est clp0ð Þ � t1;8;0:975 � est stddev est clp0ð Þ½ �� �
< clp0

< est clp0ð Þ � t1;8;0:025 � est stddev est clp0ð Þ½ �� �� ¼ 0:95

Accordingly, the corresponding classical (shortest) 95% (two-sided) statis-
tical confidence interval that allegedly includes the actual value for the clp0
is

�0:2� 2:3060ð Þ � 1:6646ð Þ1=2;�0:2þ 2:3060ð Þ � 1:6646ð Þ1=2 �
¼ �3:1752;þ2:7752½ �

Finally, we compute the associated 95% (two-sided) statistical confidence
interval that allegedly includes [mean(APRCRHNDRDV ’s) given
ivv ¼ ivv*], where the ivv* of specific interest lies in the (shortest practical)
ivv interval that was used in conducting the regression experiment test
program. Suppose ivv* ¼ 15, then
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est mean APRCRHNDRDV ’sð Þ given ivv ¼ ivv� ¼ 15½ �
¼ est clp0ð Þ þ est clp1ð Þ � ivv� ¼ �0:2þ 0:5ð Þ 15ð Þ ¼ 7:3

and

var est mean APRCRHNDRDV ’sð Þ given ivv ¼ ivv� ¼ 15½ �� �

¼ 1

nrdv
þ ivv� � ave ivvi’sð Þ½ �2Xnrdv

i¼1

tivv2i

8>>>><
>>>>:

9>>>>=
>>>>;

� var APRCRHNDREE ’sð Þ½ �

¼ 1

10
þ 15� 30½ �2

2800

( )
� var APRCRHNDREE ’sð Þ½ �

¼ 0:1þ 0:0804f g � var APRCRHNDREE ’sð Þ½ �
¼ 0:1804 � var APRCRHNDREE ’sð Þ½ �

In turn, since est[var(APRCRHNDREE ’s)] = 3.95:

est var est mean APRCRHNDRDV ’sð Þ given ivv ¼ ivv� ¼ 15½ �� �� �
¼ 0:1804 � 3:95 ¼ 0:7124

Thus,

est stddev est mean APRCRHNDRDV ’sð Þ given ivv ¼ ivv� ¼ 15½ �� �� �
¼ ð0:1124Þ1=2 ¼ 0:8440

Accordingly, the classical (shortest) 95% (two-sided) statistical confidence
interval that allegedly includes [mean(APRCRHNDRDV ’s) given
ivv ¼ ivv* ¼ 15] is

7:3� 2:3060ð Þ 0:8440ð Þ; 7:3þ 2:3060ð Þ 0:8440ð Þ½ � ¼ 5:3536; 9:2464½ �
Microcomputer program ATCSLRM (adequacy test conceptual sim-

ple linear regression model) tests the null hypotheses that (a) the conceptual
simple linear regression model is correct and (b) the actual value for the clp1
is equal to zero. Then, if the first null hypothesis is not rejected and the
second, null hypothesis is rejected, it computes est[mean(APRCRHN-
DRDV ’s) given a parametric ivv] and the classical (shortest) 100(scp)%
(two-sided) statistical confidence interval that allegedly includes
[mean(APRCRHNDRDV ’s) given ivv ¼ ivv*)]. It also computes the analo-
gous Wald–Wolfowitz approximate (two-sided) statistical tolerance interval
that allegedly includes (p)% of [APRCRHNDDV ’s given ivv = ivv*].
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7.2.1.4. Discussion

Common sense and engineering judgment is required in the selection of
appropriate values for the scp and the proportion p of the conceptual sta-
tistical distribution that consists of [APRCRHNDRDV ’s given ivv ¼ ivv*].
The selection of very large values for the scp and/or the proportion p
requires an unwarranted reliance on the accuracy of the presumed analytical
expression for the linear regression model and on the presumptions of ran-
dom, homoscedastic, normally distributed datum values and no batch-to-
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Given an acceptable probability of committing a Type I error equal to
0.050, the null hypothesis that the conceptual simple linear regression
model is correct is not rejected in favor of the omnibus alternative
hypothesis that the conceptual simple linear regression model is not
correct.

Given an acceptable probability of committing a Type I error equal to
0.050, the null hypothesis that the actual value for the clp1 is equal to
zero is rejected in favor of the composite (two-sided) alternative
hypothesis that the actual value for the clp1 is not equal to zero.

The estimated conceptual simple linear regression model is

est[mean(APRCRHNDRDV ’s) given ivv] ¼ 0.2000 þ 0.5000 * ivv

The classical (shortest) 95% (two-sided) statistical confidence interval
that allegedly includes [mean(APRCRHNDRDV ’s) given ivv ¼ ivv* ¼
15.00] is [5.3536, 9.2464].

The analogous Wald–Wolfowitz approximate 95% (two-sided) statis-
tical tolerance interval that allegedly includes 90% of
[APRCRHNDRDV ’s) given ivv ¼ ivv* ¼ 15.00] is [1.2224, 13.3776].
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batch effects. Accordingly, in mechanical reliability applications, the scp
value should not exceed 0.95 and proportion p should not exceed 0.90.

Exercise Set 3 (Extended)

5. Given the expression:

covar est clp0ð Þ; est clp1ð Þ½ � ¼

� ave ivvi’sð ÞXnrdv
i¼1

tivv2i

2
66664

3
77775 � var APRCRHNDREE ’sð Þ½ �

verify that

covar est clp0ð Þ; est clp1ð Þ½ � ¼ � 30

2800

	 

� var APRCRHNDRDV ’sð Þ½ �

¼ �0:0107 � var APRCRHNDRDV ’sð Þ½ �

6. Given the expression:

var est mean APRCRHNDRDV ’sð Þ given ivv ¼ ivv�½ �� �
¼ var est clp0ð Þ½ � þ ivv�ð Þ2�var est clp1ð Þ½ �

þ 2 � ivv� � covar est clp0ð Þ; est clp1ð Þ½ �

verify that when ivv ¼ ivv� ¼ 15:

var est mean APRCRHNDRDV ’sð Þ given ivv ¼ ivv� ¼ 15½ �� �
¼ 0:4214þ 0:0804� 0:3214ð Þ � var APRCRHNDRDV ’sð Þ½ �
¼ 0:1804ð Þ � var APRCRHNDRDV ’sð Þ½ �

Then verify that est(var{est[mean(APRCRHNDRDV ’s) given
ivv ¼ ivv� ¼ 15�gÞ ¼ 0:7124 and that est(stddev{est[mean (APR
CRHNDRDV ’s) given ivv ¼ ivv� ¼ 15�gÞ ¼ 0:8440.

7. Note that in Exercise 6 the difference (0.4214 � 0.3214) ¼ 0.1000
¼ 1/nrdv. Is this result general, or does it merely (fortuitously)
apply to ivv* = 15 in our numerical example? Support your
answer both numerically and algebraically.

8. We demonstrate in Supplemental Topic 8.A that given the
expression:

ave rdvi’sð Þ ¼ est clp0ð Þ þ est clp1ð Þ � ave ivvi’sð Þ
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the (exact) propagation of variability expression for
var[ave(rdvi’s)] is

var ave rdvi’sð Þ½ � ¼ var est clp0ð Þ½ � þ ave ivvi’sð Þ½ �2�var est clp1ð Þ½ �
þ 2 � ave ivvi’sð Þ � covar est clp0ð Þ; est clp1ð Þ½ �

Substitute the respective variance and covariance expressions into
this propagation of variability expression to confirm that

var ave rdvi’sð Þ½ � ¼ var APRCRHNDREE ’sð Þ
nrdv

7.2.2. Minimum Variance Strategy

Suppose that experience indicates that the simple linear regression model is
statistically adequate, or, as in low-cycle (strain-controlled) fatigue testing,
the bi-linear model continues to be used despite its shortcomings. Then, the
only issue is to select the ivvi’s such that the resulting estimates of interest are
most (or more) precise. For example, suppose that the test objective is to
obtain the most precise estimate of the actual value for the clp1 in the
conceptual simple linear regression model. Accordingly, we first write the
associated variance expression, viz.,

var est clp1ð Þ½ � ¼ varðAPRCRHNDREE ’sÞPnrdv
i¼1

ivvi � ave ivvi’sð Þ½ �2
�

and then we systematically examine all practical ivv’s relative to minimizing
the magnitude of this expression. Note that the ivvi’s in the denominator of
this variance expression are under our control and thus can be advanta-
geously selected. Moreover, only those ivvi’s that are displaced as far as
practical from their arithmetic average make a substantial contribution to
the denominator of this variance expression. Accordingly, it is intuitively
obvious that (a) only two ivv’s should be used in this simple linear regression
experiment test program, (b) these two ivv’s should be as widely spaced as
practical and reasonable, viz., such that one pertains to the largest ivv of
practical interest and the other to the smallest ivv of practical interest, and
(c) one-half of the experiment test program specimens should be tested at
each of these two extreme ivv’s. If the numerical value for the variance
resulting from this intuitively optimal allocation scheme is compared to
the numerical value for the variance associated with equal spacing of the
ivvi’s, this ratio approaches 1/3 as ndv increases—because only a minority
of the equally spaced ivvi’s make a substantial contribution to the
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denominator sum of squares. A similar result is obtained for
var{est[mean(APRCRHNDRDV ’s) given ivv = ivv*]} when ivv* is remote
to ave(ivvi’s). The analogous ratio approaches 1/4 for extreme cases of
extrapolation. (Remember, however, that extrapolation is not recom-
mended.)

The best way to make a simple linear regression experiment test pro-
gram statistically effective and efficient is to select all of its ivv’s before the
experiment test program is begun. However, the optimal allocation strategy
can be adopted at any point during the experiment test program. Suppose
that the unplanned simple linear regression experiment test program is either
about 90% completed and only a few specimens remain, or preferably that a
few specimens have been deliberately reserved to verify the predictions made
on the basis of a statistically planned simple linear regression experiment
test program. The analytical procedure is still the same: (a) state the estimate
or estimates of specific interest; (b) write the corresponding variance expres-
sions; (c) substitute alternative (candidate) ivvi’s into these expressions and
evaluate the respective variance expressions pertaining to these alternative
ivvi’s; and (d) select those ivvi’s that generate the most precise estimates of
specific interest.

Figure 7.6 is an example taken from Little and Jebe (1975) pertaining
to Wöhler’s sa–loge( fnc) fatigue tests on wrought iron axles subjected to
eight equally spaced alternating stress amplitudes (levels): 320, 300, 280,
260, 240, 220, 200, and 180 centners/zoll2. The respective sa’s are the
ivvi’s, whereas the natural logarithms of the number of alternating stress
cycles to fatigue failure, denoted [loge( fnc)]’s, are the rdv’s. Suppose that
Wöhler’s objective was to estimate the actual value for the median (mean) of
the presumed normally distributed conceptual fatigue life distribution that
consists of all possible replicate loge( fnc) datum values given sa ¼ sa*.
Suppose further that, after running these eight fatigue tests, Wöhler still
had one specimen remaining. The ivv (sa) at which this ninth specimen
should be tested is plotted in Figure 7.6 versus the normalized variance of
the conceptual sampling distribution pertaining to five example ivv’s (sa’s) of
potential interest. Clearly, when the ivvopi (saopi) differs markedly from the
arithmetic average of all ivv’s (sa’s), the selection of ivv9 (sa9) markedly
affects (a) the precision of the statistical estimate of the actual value for
the median (mean) of the presumed normally distributed conceptual fatigue
life distribution given the sa* value of specific interest, and (b) the associated
width of the classical (shortest) 100(scp)% (two-sided) statistical confidence
interval that allegedly includes the actual value for this median (mean),
given sa ¼ sa*. Accordingly, a poor choice for ivv9 (sa9) can effectively
waste this specimen and its associated test time and cost. On the other
hand, when the ivvopi (saopi) does not differ markedly from the arithmetic
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average of all ivv’s (sa’s), then the selection of ivv9 (sa9) does not markedly
affect either (a) or (b) above.

The importance of rational (purposeful) selection of the respective
ivv’s in linear regression experiment test program planning cannot be over
emphasized. Unfortunately, almost all simple linear regression experiment
test program datum values found in the mechanical metallurgy literature
pertain to unreplicated ivv’s that are more or less uniformly spaced. These
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Figure 7.6 Diagram depicting the normalized variance ratio var{est[mean(APR

CRHNDRDV ’s) given ivv ¼ ivvopi]}/var(APRCRHNDREE ’s), plotted versus ivv9,

where ivvopi pertains to five example ivv’s of potential interest at which the most

precise estimate of the actual value for the median of the conceptual normal dis-

tribution that consists of (APRCRHNDRDV ’s) given ivv ¼ ivvopi is desired. The

ivv’s pertain to Wöhler’s sa’s and the rdv’s pertain to Wöhler’s ½logeð fncÞ�’s for his

eight actual sa�logeð fncÞ fatigue tests and our hypothetical ninth test. (From Little

and Jebe, 1975.)

TLFeBOOK



experiment test programs are statistically inept because the majority of their
experimental units (and the associated test time and cost) are not effectively
allocated relative to improving the precision of the statistical estimates of
potential or of specific interest.

7.2.3. Inverse Simple Linear Regression (One-Sided)
Statistical Con¢dence Limits

Consider the case where the conceptual simple linear regression model is
presumed to be correct and that the actual value for the clp1 is presumed to
be markedly positive. Suppose that we compute the maximum (single-
valued) ivv* such that the upper 100(scp*)% (one-sided) statistical confi-
dence limit that allegedly bounds [mean(APRCRHNDRDV ’s) given
ivv ¼ ivv*] is less than the specification value of specific interest for the
regression data metric. This calculation is called inverse regression.
Microcomputer programs ISLRCLPS and ISLRCLNS cover the four
cases of specific interest.
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Given that the presumed conceptual simple linear regression model is
correct and that the actual value for the clp1 is markedly positive, the
upper 95% (one-sided) statistical confidence limit that allegedly
bounds the actual value for [mean(APRCRHNDRDV ’s) given
ivv ¼ ivv*] is less than 7.3000 when ivv* is less than 11.5173.

Given that the presumed conceptual simple linear regression model
is correct and that the actual value for the clp1 is markedly posi-
tive, the lower 95% (one-sided) statistical confidence limit that
allegedly bounds the actual value for [mean(APRCRHNDRDV ’s)
given ivv ¼ ivv*] is greater than 7.3000 when ivv* is greater than
17.8857.
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7.2.4. Inverse Simple Linear Regression (One-Sided)
Statistical Tolerance Limits

In most mechanical reliability applications it is more practical to compute
inverse simple linear regression statistical tolerance limits than to compute
inverse simple linear regression statistical confidence limits. Microcomputer
programs ISLRTLPS and ISLRTLNS are analogous to microcomputer
programs ISLRCLPS and ISLRCLNS, except that the respective lower
and upper statistical tolerance limits allegedly bound the actual value for
the (1� pÞth percentile of the conceptual statistical distribution that consists
of [APRCRHNDRDV ’s) given ivv = ivv*].

7.2.5. Classical Hyperbolic Lower 100(scp)% (One-
Sided) Statistical Con¢dence Band

We now present the classical hyperbolic lower 100(scp)% (one-sided) statis-
tical confidence band that allegedly bounds mean(APRCRHNDRDV ’s) for
all ivv’s (simultaneously) that lie in the (shortest practical) ivv interval that
was used in conducting the regression experiment test program.
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Given that the presumed conceptual simple linear regression model is
correct and that the actual value for the clp1 is markedly negative, the
upper 95% (one-sided) statistical confidence limit that allegedly
bounds the actual value for [mean(APRCRHNDRDV ’s) given
ivv ¼ ivv*] is less than 7.3000 when ivv* is greater than 48.4827.

Given that the presumed conceptual simple linear regression model is
correct and that the actual value for the clp1 is markedly negative, the
lower 95% (one-sided) statistical confidence limit that allegedly
bounds the actual value for [mean(APRCRHNDRDV ’s) given
ivv ¼ ivv*] is greater than 7.3000 when ivv* is at less than 42.1143.
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Given that the presumed conceptual simple linear regression model is
correct and that the actual value for the clp1 is markedly negative, the
upper 95% (one-sided) statistical tolerance limit that allegedly bounds
90% of [APRCRHNDRDV ’s given ivv ¼ ivv*] is less than 7.3000
when ivv* is greater than 56.2817.

Given that the presumed conceptual simple linear regression model is
correct and that the actual value for the clp1 is markedly negative, the
lower 95% (one-sided) statistical tolerance limit that allegedly bounds
90% of [APRCRHNDRDV ’s given ivv ¼ ivv*] is greater than 7.3000
when ivv* is less than 35.2564.

COPY IRPSDATA DATA

1 file(s) copied

C>ISLRTLPS

Given that the presumed conceptual simple linear regression model is
correct and that the actual value for the clp1 is markedly positive, the
upper 95% (one-sided) statistical tolerance limit that allegedly bounds
90% of [APRCRHNDRDV ’s given ivv ¼ ivv*] is less than 7.3000
when ivv* is less than 3.7183.

Given that the presumed conceptual simple linear regression model is
correct and that the actual value for the clp1 is markedly positive, the
lower 95% (one-sided) statistical tolerance limit that allegedly bounds
90% of [APRCRHNDRDV ’s given ivv ¼ ivv*] is greater than 7.3000
when ivv* is greater than 24.7436.
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classical lower hyperbolic 100ðscp)% (one-sided) statistical

confidence band

¼ est½meanðAPRCRHNDRDV ’sÞ given ivv� � kchlosseb � stddevterm

in which

kchlosseb ¼ ½2 � Snedecor’s central F2;nrdv�2;ð1þscpÞ=2�1=2

and

stddevterm ¼ estðstddevfest½meanðAPRCRHNDRDV ’sÞ given ivv�gÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nrdv
þ ½ivv� aveðivvi’sÞ�2Xndv

i¼1

tivv2i

vuuuut � fest½stddevðAPRCRHNDRDV ’sÞ�g

See Supplemental Topic 7.C for background regarding the development of
the associated classical hyperbolic 100(scp)% (two-sided) statistical confi-
dence band that allegedly bounds mean(APRCRHNDRDV ’s) for all ivv’s
(simultaneously) that lie in the (shortest practical) ivv interval that was used
in conducting the regression experiment test program.

7.2.6. Uniform Width Lower 100(scp)% (One-Sided)
Statistical Con¢dence Band

The shape of the classical lower hyperbolic 100(scp)% (one-sided) statistical
confidence band in Figure 7.7(a) does not agree with the intuitive engineering
notion of scatter bands that are faired (by eye) on a data plot to form an
envelope for the majority of datum points. Rather, intuition dictates either (a)
uniform width 100(scp)% (two-sided) statistical confidence bands or (b) a
uniform width lower (or upper) 100(scp)% (one-sided) statistical confidence
band. Given that the presumed conceptual simple linear regression model is
correct, microcomputer program UWLOSSCB (uniform width lower one-
sided statistical confidence band) computes the (parallel straight-line) uni-
form width lower 100(scp)% (one-sided) statistical confidence band in
Figure 7.7(b) that allegedly bounds [mean(APRCRHNDRDV ’s) given ivv]
for all ivv’s that lie in the interval from ivvlow to ivvhigh, provided that this ivv
interval is either equal to or lies completely within the (shortest practical) ivv
interval that was used in conducting the simple linear regression experiment
test program. (See Little and Jebe, 1975.)
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Figure 7.7 Schematic (a) depicts the classical hyperbolic lower 100(scp)% (one-

sided) statistical confidence band that allegedly bounds [mean(APRCRHNDRDV ’s)

given ivv] for all ivv’s that lie in the (shortest practical) ivv interval that was used in

conducting the simple linear regression experiment test program. Schematic (b)

depicts either (i) a uniform width lower 100(scp)% (one-sided) statistical confidence

band that allegedly bounds [mean(APRCRHNDRDV ’s) given ivv] for all ivv’s that

lie in the interval from ivvlow to ivvhigh, or (ii) a uniform width lower 100(scp)% (one-

sided) statistical tolerance band that allegedly bounds 100(p)% of [APR

CRHNDRDV ’s given ivv] for all ivv’s that lie in the interval from ivvlow to ivvhigh.
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7.2.7. Uniform Width Lower 100(scp)% (One-Sided)
Statistical Tolerance Band

Microcomputer program UWLOSSTB (uniform width lower one-sided sta-
tistical tolerance band) computes the analogous (parallel straight-line) uni-
form width lower 100(scp)% (one-sided) statistical tolerance band that
allegedly bounds 100(p)% of [APRCRHNDRDV ’s given ivv] for all ivv’s
that lie in the interval from ivvlow to ivvhigh, provided that this ivv interval is
either equal to or lies completely within the (shortest practical) ivv interval
that was used in conducting the simple linear regression experiment test
program. (See Little and Jebe, 1975.)
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Given that the presumed conceptual simple linear regression model is
correct, the uniform width of the lower 95% (one-sided) statistical
confidence band that allegedly bounds [mean(APRCRHNDRDV ’s)
given ivv] for all ivv’s that lie in the interval from 4.2000 to 4.5000 is
equal to 0.1797.
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correct, the uniform width of the lower 95% (one-sided) statistical
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7.2.8. Linearizing Transformations

Sometimes a simple transformation of either the independent variable or the
random variable, or both, is necessary to establish linearity for the statistical
model subsequently employed in simple linear regression analysis. For
example, Ludwig’s true-stress, true-strain model for plastic deformation in
a tension test is stated (except for notation) as

true-stressð Þ ¼ c1 � true-strainð Þc2

Taking the natural logarithms of the terms on both sides of Ludwig’s model
generates an equivalent simple linear regression model, viz.,

logeðtrue-stressÞ ¼ loge c1Þ þ c2 � logeðtrue-strainÞ

In turn, we must add a normally distributed homoscedastic experimental
error term to this linearized model to make it amenable to simple linear
regression analysis. Then, re-expressing the linearized model in text nota-
tion, we write:

CRHND loge true-stressð Þ �
DVi’s

¼ loge clp0ð Þ þ clp1 � f loge true-strainð Þ �
ivvi’sg

Following statistical analysis for the linearized simple linear regression
model, the exponentials (antilogs) of the conceptual location parameter
estimates and the respective upper and lower limits of any classical (shortest)
100(scp)% (two-sided) statistical confidence interval of specific interest are
taken to conform again to the original measurement metric.

Remark: Note that we have arbitrarily presumed that Ludwig’s
model is properly expressed in terms of its independent and depen-
dent variables. Recall, however, that the first step in simple linear
regression analysis is to decide which variable is properly viewed as
the independent variable and which is properly viewed as the depen-
dent variable.
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7.2.9. Checking the Presumptions Underlying Linear
Regression Analysis

Always statistically examine the est(CRHNDREEi’s) relative to normality,
homoscedasticity, and randomness (independence, viz., lack of association).

7.2.9.1. Normality

As in ANOVA, given that the presumed conceptual statistical model is
correct, the value of the generalized modified Michael’s MDSPP test statis-
tic does not depend on the actual values for any of the parameters in the
conceptual statistical model. Accordingly, the generalized modified
Michael’s MDSPP test statistic is employed in microcomputer programs
NTCSLRM and NTCMLRM to test the null hypotheses of normality for
the CRHNDREEi’s in the presumed conceptual simple and multiple linear
regression models.

7.2.9.2. Homoscedasticity

Given equal replication at two or more divvk’s, run either microcomputer
program RBBHT or BARTLETT to test the null hypothesis of homosce-
dasticity for the respective sets of CRHNDREEk,kr’s. If there is no replica-
tion, microcomputer program RBKTAU provides a very weak surrogate test
for the homoscedasticity of the CRHNDREEi’s when the respective
[est(CRHNDREEi)]’s are paired with the magnitudes of their associated
ivvi’s.)

7.2.9.3. Randomness (Independence, viz., Lack of Association)

Run microcomputer program RBKTAU to examine the respective
[est(CRHNDREEi)]’s relative to a lack of a monotonic time-order-of-testing
association and relative to all other monotonic associations that may be
plausible.

Exercise Set 4

These exercises are intended to provide perspective regarding certain details
of simple regression analysis.

1. Consider the following relative wear resistance data for normal-
ized plain carbon steels. What is the independent variable and
what is the test outcome? Can the ivv’s also have experimental
errors? Discuss the issues involved in selecting the ivv’s in this
example. In particular, indicate why it is important to make
independent attempts to attain the specification target value for
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each divv (or each different treatment, treatment level, or treat-
ment combination).

Carbon content Relative wear resistance

0.05 1.00

0.20 1.13

0.38 1.28

0.55 1.39

0.80 1.65

1.02 1.68

1.17 1.87

2. Given the following hybrid column vector expression for the
translated estimated conceptual simple linear regression model:

trdvi’s
�� �� ¼ est clp1ð Þ � tivvi’s

�� ��þ est CRHNDREE ið Þ½ �’s�� ��
and the associated expression for Snedecor’s central F1ndv�2 test
statistic.

Snedecor’s central F1;ndv�2 test statistic

¼
est clp1ð Þ½ �2 �

Xnrdv
i¼1

tivv2i =1

Xnrdv
i¼1

est CRHNDREEið Þ½ �2= nrdv � 2ð Þ

(a) explain why the data-based realization value for Snedecor’s
central F1,nrdv�2 test statistic can be used to test the specific null
hypothesis that the actual value for the clp1 is equal to zero
versus the specific composite (two-sided) alternative hypothesis
that the actual value for the clp1 is not equal to zero. Then, (b)
extend the text simple linear regression numerical example by
testing the specific null hypothesis that the actual value for the
clp1 is equal to zero versus the specific composite (two-sided)
alternative hypothesis that the actual value for the clp1 is not
equal to zero. Let the acceptable probability of committing a
Type I error be equal to 0.05. Is your null hypothesis rejection
decision consistent with the classical (shortest) 95% (two-sided)
statistical confidence interval that allegedly includes the actual
value for the clp1, viz., [0.4134, 0.5866]?
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7.3. MULTIPLE LINEAR REGRESSION ANALYSIS

Multiple linear regression analysis pertains to the situation where two or
more independent variables are employed in the regression experiment test
program. The conceptual multiple linear regression statistical model can be
written in hybrid matrix notation as

CRHNDRDVi’s
�� �� ¼ ivjvi’s

�� �� clpj’s�� ��þ CRHNDREEi’s
�� ��

¼ mean i APRCRHNDRDV ’sð Þ given ivjvið Þ’s�� �� �
’s

�� ��
þ CRHNDREEi’s
�� ��

in which |CRHNDRDVi’s| is a (nrdv 
 1) column vector, |ivjvi’s| is a
(nrdv 
 nclp) array with its first ( j ¼ 0) column consisting of plus ones and
its (nclp � 1) remaining j columns consisting of the specific ivjvi values
selected for the (nclp � 1) independent variables, |clpj’s| is a (nclp 
 1) col-
umn vector whose transpose is [clp0, clp1, . . . , clp(nclp � 1)], and
|CRHNDREEi’s| is a (nrdv 
 1) column vector.

The clpj ’s in this conceptual multiple linear regression matrix statis-
tical model can be estimated by first writing the normal equations (Draper
and Smith, 1966):

ivjvi’s
�� ��t ivjvi’s�� �� est clpj’sð Þ�� �� ¼ ivjvi’s

�� ��t rdvi’s�� ��
and then premultiplying both sides of these normal equations by [ |ivjvi’s|

t

|ivjvi’s|]
�1 to obtain

j½estðclpjÞ�’sj ¼ ½jivjvi’sjtjivjvi’sj��1½jivjvi’sjtjrdvi’sj�

In turn, the nclp by nclp covariance matrix for these [est(clpj)]’s is computed
using the expression:

jcovar½estðclpmÞ; estðclpnÞ�j ¼ varðAPRCRHNDREE ’sÞ½ivjvi’sjtjivjvi’sj��1

in which m and n are dummy indices, each 0 to (nclp � 1). The actual values
for the elements of this (symmetrical) covariance matrix are estimated by
substituting est[var(APRCRHNDREE ’s)] with (ndivjv’s � nclp) statistical
degrees of freedom for var(APRCRHNDREE ’s). In turn, given the elements
of the estimated covariance matrix, the propagation of variability metho-
dology (Supplemental Topic 7.A) could be used to compute
est(var{est[mean(APRCRHNDRDV ’s) given (ivjv)’s equal to any single
arbitrary but complete set of the (ivjv*)’s of specific interest]}). However,
it is much more convenient to use the matrix expression:
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est var est mean APRCRHNDRDV ’sð Þ given ivjvð Þ’s�� �� ¼ ivjv�ð Þ’s�� �� �� �� �
¼ est var APRCRHNDREE ’sð Þ½ � � ivjv�ð Þ’s�� ��t ivjvið Þ’s�� ��t ivjvið Þ’s�� ��� ��1

ivjv�ð Þ’s�� ��	 


in which |(ivjv*)’s|t = [1, iv1v*, iv2v*, . . . , iv(nclp�1)v*].
Microcomputer program ATCMLRM (adequacy test conceptual mul-

tiple linear regression model) tests the null hypotheses that the conceptual
multiple linear regression model is correct and if this null hypothesis is not
rejected, the conceptual parameters of this model are estimated and the
classical (shortest) 100(scp)% (two-sided) statistical confidence interval
that allegedly includes [mean(APRCRHNDRDV ’s) given |(ivjv)’s| =
|(ivjv*)’s|] is computed.

Linear Regression Analysis 353

COPY EXMLRDTA MLRDATA

1 file(s) copied

COPY EXDMX DESIGNMX

1 file(s) copied

COPY EXIVJVAS XIVJVAS

1 file(s) copied

C>ATCMLRM

Given an acceptable probability of committing a Type I error equal to
0.050, the null hypothesis that the conceptual multiple linear regres-
sion model is correct is not rejected in favor of the omnibus alternative
hypothesis that the conceptual multiple linear regression model is not
correct.

The elements of the est(clpj) column vector are, respectively,

clp0 ¼ 12.738095
clp1 ¼ 0.342857
clp2 ¼ 0.021905
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Exercise Set 5

These exercises are intended to verify that multiple linear regression matrix
expressions can be algebraically expanded to establish corresponding simple
linear regression expressions. Hopefully, this verification process will gen-
erate greater familiarity with the matrix expressions.

1. Symbolically state the elements in each of the following arrays
and then perform the relevant respective matrix operations.
Compare the result obtained in (d) to the corresponding algebraic
expressions in Section 7.2 and comment appropriately. State the
statistical interpretation for each element of the array obtained
in (b).

ðaÞ jivjvi’sjtjivjvi’sj ðbÞ ½jivjvi’sjtjivjvi’sj��1

ðcÞ jivjvi’sjtjtdvi’sj ðdÞ ½jivjvi’sjtjivjvi’sj��1½jivjvi’sjtjrdvi’sj�

2. Symbolically state the elements in each of the following arrays
and then perform the relevant respective matrix operations.

½jivjv�’sjt½jivjvi’sj��1jivjv�’sj�

In turn, manipulate your algebraic expression appropriately to
verify that
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Given the following ivjv* values of specific interest

iv0v* ¼ 1.000000
iv1v* ¼ 16.750000
iv2v* ¼ 280.562500

est[mean(APRCRHNDRDV ’s)] is equal to 24.626607

The corresponding classical (shortest) 90% (two-sided) statistical con-
fidence interval that allegedly includes mean(APRCRHNDRDV ’s) is
[22.5224, 26.7308].
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var est mean APRCRHNDRDV ’sð Þ given ivv¼ivv�½ �� �

¼ 1

nrdv
þ ivv� � ave ivvi’sð Þ½ �2Xnrdv

i¼1

tivv2i

8>>>><
>>>>:

9>>>>=
>>>>;
var APRCRHNDREE ’sð Þ

7.3.1. Indicator Variables

Indicator variables can be used in multiple linear regression analysis to
couple quantitative and qualitative effects. The following elementary exam-
ples introduce this concept.

7.3.1.1. Example One

Consider the conceptual multiple linear regression statistical model:

jCRHNDRDVi’sj ¼ clp0 � j þ 1’sj þ clp1 � jiv1vi’sj þ clp2 � jiv2vi’sj
þ jCRHNDREEi’sj

in which iv2vi takes on the value zero when treatment A pertains, but takes
on the value one when treatment B pertains. Then,

If treatment A:

jCRHNDRDVi’sj ¼ clp0 � j þ 1’sj þ clp1 � jiv1vi’sj þ jCRHNDREEi’sj

If treatment B:

jCRHNDRDVi’sj ¼ ðclp0þ clp2Þ � j þ 1’sj þ clp1 � jiv1vi’sj þ jCRHNDEEi’sj

This conceptual multiple linear regression model thus generates two parallel
conceptual simple linear regression models. One pertains strictly to treat-
ment A and the other pertains strictly to treatment B.
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7.3.1.2. Example Two

Consider the conceptual multiple linear regression statistical model:

jCRHNDRDVi’sj ¼ clp0 � j þ 1’sj þ clp1 � jiv1vi’sj þ clp2 � jiv2vi’sj
þ clp12 � j½ðiv1viÞ � ðiv2viÞ�’sj þ jCRHNDEEi’sj

in which iv2vi takes on the value zero when treatment A pertains, but takes
on the value plus one when treatment B pertains. Then,

If treatment A:

jCRHNDRDVi’sj ¼ clp0 � j þ 1’sj þ clp1 � jiv1vi’sj;þjCRHNDEEi’sj

If treatment B:

jCRHNDRDVi’sj ¼ ðclp0þ clp12Þ � j þ 1’sj þ ðclp1þ clp2Þ � jiv1vi’sj
þ jCRHNDEEi’sj

This conceptual multiple linear regression model generates two nonparallel
conceptual simple linear models. Again, one pertains strictly to treatment A
and the other pertains strictly to treatment B.

Remark: Note that the conceptual simple linear regression models
for treatments A and B share a common variance, viz.,
var(APRCHRHNDREE ’s) associated with the underlying concep-
tual multiple linear regression model.

7.4. BALANCING SPURIOUS EFFECTS OF NUISANCE
VARIABLES IN LINEAR REGRESSION EXPERIMENT
TEST PROGRAMS

Two statistical abstractions that were tacitly presumed in the preceding
discussion of linear regression analyses are (a) all experimental units are
randomly selected from an infinite population of nominally identical experi-
mental units and (b) all nuisance variable are negligible. Otherwise, the
concepts of statistical confidence and tolerance intervals have limited statis-
tical credibility. However, experimental units are typically produced in small
batches in mechanical reliability applications. Moreover, all experiment test
programs involve actual or potential nuisance variables. Thus, special plan-
ning is required to balance (mitigate) the spurious effects of batch-to-batch
variability and nuisance variables on the estimated parameters of the con-
ceptual regression model.
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First, suppose that a specific batch of experimental units is large
enough to conduct the entire CRD experiment test program. If there are
no batch,ivjv interaction effects, the specific batch of experimental units used
in the experiment test program will have the same incremental effect on each
of the observed regression datum values—but it will have no effect on the
corresponding trdvi’s. Thus, the est(clpj’s) for j> 0 will not be pragmatically
biased by the use of a specific batch of experimental units (provided that
there are no batch,ivjv interaction effects). Note that a similar conclusion
pertains to any collection of nuisance variables.

Next, suppose that the experimental units pertain to several batches
conveniently structured in replicates of size ndivv. Again, the respective
experimental unit batch-to-batch effects will have no effect on the trdvi’s.
Thus, by balancing these effects, we can still generate est(clpj’s) for j > 0 that
are statistically unbiased provided that the conceptual statistical model is
correct and that no batch,ivjv interaction effects exist. If the actual magni-
tudes of the estimated batch-to-batch effects are of specific interest, then a
combination of linear regression analysis and ANOVA, termed analysis of
covariance, is required (see Little and Jebe, 1975).

Finally, we note that it is unwise to undertake any CRD experiment
test program without proper regard for potential test equipment break-
down and other inadvertencies. Thus, a well-planned linear regression
experiment test program should always include time blocks (even when
all other nuisance variables can reasonably be ignored). Then, if no equip-
ment breakdown or other inadvertences occur, the time blocks can be
ignored after first examining the [est(CRHNDREEi)]’s relative to time
trends within blocks.

7.5. CLOSURE

We do not recommend the use of linear regression analysis for modes of
failure with long lives (endurances) because the presumption of homosce-
dasticity is seldom if ever statistically credible. Rather, we recommend the
use of maximum likelihood (ML) analysis because the experiment test pro-
gram datum values can be presumed to be either homoscedastic or hetero-
scedastic. Moreover, the respective datum values can be presumed to have
been randomly selected from any of several alternative conceptual statistical
distributions.

We discuss and illustrate ML analysis in Chapter 8. First, however, we
present the propagation of variability methodology in Supplemental Topic
7.A to provide the analytical tools needed to compute the statistical
confidence intervals, bands, and limits that are of specific interest in ML
analyses.
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7.A. SUPPLEMENTAL TOPIC: PROPAGATION OF
VARIABILITY

7.A.1. Introduction

Recall that, although the simple linear regression model is traditionally
written as

est½meanðAPRCRHNDRDV ’sÞ given ivv ¼ ivv�� ¼ estðclp0Þ þ estðclp1Þ � ivv�

est(clp0) and est(clp1) are seldom independent—because the j þ 1’s| column
vector and the |ivvi’s| column vector are seldom orthogonal. Next, suppose
that we continually replicate the associated simple linear regression experi-
ment test program and plot the resulting collection of paired data-based
values for est(clp0) and est(clp1) on orthogonal clp0,clp1 co-ordinates.
The limiting form of the resulting three-dimensional histogram for propor-
tions would be a bivariate conceptual four- or five-parameter normal dis-
tribution. The replicate realizations for both est(clp0) and est(clp1),
individually, generate conceptual (two-parameter) normal sampling distribu-
tions. In addition to these four parameters, a fifth parameter is required
when est(clp0) and est(clp1) are not independent. This fifth conceptual para-
meter is called the conceptual correlation coefficient (Section 7.A.5.2).
However, it is analytically more convenient to work with an associated
conceptual parameter called covariance in presenting and illustrating the
methodology called propagation of variability.

7.A.2. Basic Concept

Consider any collection of nrvos random variables (or statistics), H1, H2,
H3, . . . ,Hnrvos

, that are jointly normally distributed under continual replica-
tion of the experiment test program—where jointly normally distributed
connotes that given a specific realization value for each of these random
variables (or statistics) except one, the conceptual statistical (or sampling)
distribution for the remaining random variable (or statistic) is a conceptual
(two-parameter) normal distribution. In turn, consider a random variable (or
statistic) Z whose realization value zk depends only on the respective realiza-
tion values for the H1, H2, H3, . . . , Hnrvos

random variables (or statistics).
Let z = h(h1, h2, h3, . . . , hnrvos), where h is the (deterministic) functional
relationship of specific interest. When h is a smooth continuous function
along each of its h1, h2, h3, . . . , hnrvos metrics, the actual value for the variance
of the (presumed) conceptual normal sampling distribution that consists of
all possible replicate realization values for the random variable (or statistic)
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Z can be computed using the approximate expression (Hahn and Shapiro,
1967):

var Zð Þ �
Xnrvos
i¼1

Xnrvos
j¼1

@h

@hi

� �
� @h

@hj

� �
� covar Hi;Hj

� �	 


in which the respective partial derivatives are evaluated in theory at the
(unknown) point [mean(H1), mean(H2), mean(H3), . . . , mean(Hnrvos

)]—
because this approximate expression is based on a multivariate Taylor’s
series expansion of z about the point [mean(H1), mean(H2),
mean(H3), . . . , mean(Hnrvos

)], retaining only the first-order terms.
However, in practice, the respective partial derivatives must be evaluated
at the point {est[mean(H1)], est[mean(H2)], est[mean(H3)], . . . ,
est[mean(Hnrvos

)]}. In turn, by definition, covar(Hi,Hi) equals var(Hi) and
covar(Hi,Hj) equals covar(Hj,Hi). Thus, the propagation of variability
expression is conventionally rewritten as

var Zð Þ �
Xnrvos
i¼1

@h

@hi

� �2

�var Hið Þ
" #

þ 2 �
Xnrvos
i¼1

Xnrvos
j>i

@h

@hi

� �
� @h

@hj

� �
� covar Hi;Hj

� �	 


Note that a covariance term is required for each pair of Hi and Hj that are
not independent. However, when certain pairs of Hi’s and Hj’s are statisti-
cally independent, the associated covariance terms are equal to zero. In
particular, when all Hi’s and Hj’s are (mutually) statistically independent,
then all covariance terms are equal to zero. In a broader perspective, covar-
iances pertain to the off-diagonal elements of the symmetrical nclp 
 nclp
covariance matrix, whereas variances pertain to the associated diagonal
elements. Numerical calculation of all the elements of this covariance matrix
is required to compute the classical (shortest) 100(scp)% (two-sided) statis-
tical confidence interval that allegedly includes mean(Z). (These numerical
calculations are discussed in Chapter 8.)

7.A.3. Use of Propagation of Variability in Maximum
Likelihood Analyses

The primary application of the propagation of variability methodology in
maximum likelihood (ML) analysis (Chapter 8) pertains to the computation
of asymptotic statistical confidence intervals and limits. We now present two
examples to illustrate this primary application.

Linear Regression Analysis 359

TLFeBOOK



7.A.3.1. Example 1

Consider the conceptual two-parameter Weibull distribution, written as

F xð Þ ¼ 1� exp� x

cdp1

� �cdp2

in which cdp1 and cdp2 are (generic) conceptual distribution parameters.
The inverse CDF expression for this conceptual two-parameter Weibull
distribution is

y ¼ loge � loge 1� F xð Þ½ �� � ¼ cdp2 � loge xð Þ � loge cdp1ð Þ � ¼ aþ b � loge xð Þ

This inverse CDF expression is used to construct Weibull probability paper,
viz., when y is plotted along the (linear) ordinate and loge(x) is plotted along
the (linear) abscissa, the conceptual two-parameter Weibull CDF is repre-
sented by a straight line with intercept a ¼ �cdp2 � logeðcdp1Þ and slope
b ¼ cdp2.

Caveat: Do not plot x along an abscissa with a (nonlinear) loga-
rithmic scale (even though it is the traditional way to construct
Weibull probability paper). It is always more rational to plot
loge(x) along a linear metric than to plot x along a logarithmic
metric.

The est(CDF) for this parameterization of the conceptual two-parameter
Weibull distribution is more explicitly expressed as

est yð Þ given loge xð Þ � ¼ est cdp2ð Þ � logeðxÞ � loge est cdp1ð Þ½ �� �
Then, employing the conventional form of the propagation of variability
expression, est{var[est(y) given loge(x)]} can be computed using the approx-
imation:

est var est yð Þ given loge xð Þ �� �
� �est cdp2ð Þ

est cdp1ð Þ
	 
2

� est var est cdp1ð Þ½ �� �
þ loge xð Þ � loge est cdp1ð Þ½ �� �2�est var est cdp2ð Þ½ �� �
þ 2 � �est cdp2ð Þ

est cdp1ð Þ
	 


� loge xð Þ � loge est cdp1ð Þ½ �� � � est covar est cdp1ð Þ; est cdp2ð Þ½ �� �

We assert in Chapter 8 that asymptotic sampling distributions for ML
estimates of the actual values for cdp1 and cdp2 are conceptual (two-para-
meter) normal distributions and that ML est(cdp1) and ML est(cdp2) are
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asymptotically unbiased. Accordingly, given the outcome of an appropriate
ML analysis, a lower 95% (one-sided) asymptotic statistical confidence limit
that allegedly bounds the actual value for [y given loge(x)] is, for example,
approximately equal to [ML est(y) given loge(x)] � 1.6499 � (est{var[ML
est(y) given loge(x)]})

1/2.

Remark: We discuss empirical and pragmatic statistical bias correc-
tions for ML analyses of specific interest in mechanical reliability in
Supplemental Topic 8.D.

7.A.3.2. Example 2

Consider the conceptual (two-parameter) smallest-extreme-value distribu-
tion, written as

F logeðxÞ
 � ¼ 1� exp� exp

logeðxÞ�clp
csp

h i

in which, akin to the conceptual (two-parameter) normal distribution, clp
and csp are conceptual location and scale parameters. Note, however, that
loge(x) rather than x is chosen as the continuous measurement metric for
this conceptual (two-parameter) smallest-extreme-value distribution so that
it is directly analogous to the corresponding conceptual two-parameter
Weibull distribution in Example 1. Its inverse CDF expression, viz.,

y ¼ loge � loge 1� F logeðxÞ
 �� �� � ¼ logeðxÞ � clp

csp
¼ aþ b � logeðxÞ

is used to construct smallest-extreme-value probability paper by plotting y
along the (linear) ordinate and loge(x) along the (linear) abscissa, so that the
sigmoidal conceptual (two-parameter) smallest-extreme-value distribution
CDF is transformed into a straight-line plot.

Remark: Corresponding smallest-extreme-value and Weibull prob-
ability papers are identical when the latter is properly constructed.
These probability papers differ only when x is plotted along a loga-
rithmic abscissa for the conceptual two-parameter Weibull distribu-
tion and loge(x) is plotted along a linear abscissa for the
corresponding conceptual (two-parameter) smallest-extreme-value
distribution. A linear–linear plot is always geometrically preferable.

The est(CDF) for this parameterization of the conceptual (two-parameter)
smallest-extreme-value distribution is more explicitly expressed as

est yð Þ given loge xð Þ � ¼ logeðxÞ � est clpð Þ
est cspð Þ
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Then, employing the conventional form of the propagation of variability
expression, est{var[est(y) given loge(x)]} can be computed using the approx-
imation:

est var est yð Þ given loge xð Þ �� �
� �1

est cspð Þ
	 
2

� est var est clpð Þ½ �� �

þ logeðxÞ � est clpð Þ
� est cspð Þ½ �2

� �2

� est var est cspð Þ½ �� �
þ 2

�1

est cspð Þ
	 


� logeðxÞ � est clpð Þ
� est cspð Þ½ �2

� �
� est covar est clpð Þ; est cspð Þ½ �� �

which in turn can be re-written as

est var est yð Þ given loge xð Þ �� �
� 1

est cspð Þ
	 
2

� est var est clpð Þ½ �� �þ est yð Þ½ �2� est var est cspð Þ½ �� �
þ2 � est yð Þ � est covar est clpð Þ; est cspð Þ½ �� �

 !

Accordingly, as in Example 1, given the outcome of an appropriate
ML analysis, a lower 95% (one-sided) asymptotic statistical confidence limit
that allegedly bounds the actual value for [y given loge(x)] is, for example,
approximately equal to [ML est(y) given loge(x)] �1:6499 � (est{var[ML
est(y) given loge(x)]})

1/2. It is numerically demonstrated in Chapter 8 that
this lower 95% (one-sided) asymptotic statistical confidence limit is equal to
the lower 95% (one-sided) asymptotic statistical confidence limit in Example
1.

7.A.3.3. Discussion

The equivalence of the conceptual two-parameter Weibull distribution in
Example 1 and its corresponding conceptual (two-parameter) smallest-
extreme-value distribution in Example 2 is the direct consequence of the
invariance of ML estimates under transformation (reparameterization).
We now restate the fundamental propagation of variability expression in
a form more amenable to relating the asymptotic variances and covariances
for the respective ML estimates of the actual values for the parameters of
equivalent conceptual two-parameter distributions.

Given any two equivalent conceptual two-parameter statistical distri-
butions, generically denote their conceptual parameters cp1 and cp2 (distri-
bution one) and cp3 and cp4 (distribution two). Let these conceptual
parameters be related as follows: cp3 ¼ g(cp1, cp2) and cp4 ¼ h(cp1, cp2),
where g and h are continuous functions that are established by comparing
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the respective inverse CDF expressions for the two equivalent conceptual
two-parameter statistical distributions. Next, suppose that ML est(cp1), ML
est(cp2), ML est{var[est(cp1)]}, ML est{var[est(cp2)]}, and ML est{covar[-
est(cp1),est(cp2)]} have been established numerically by ML analysis
(Chapter 8). Then, ML est(cp3) ¼ g[ML est(cp1),ML est(cp2)] and ML
est(cp4) ¼ h[ML est(cp1),ML est(cp2)]. Moreover,

est var ML est cp3ð Þ½ �� �
¼ @g

@cp1

� �2

� est var ML est cp1ð Þ½ �� �

þ @g

@cp2

� �2

� est var ML est cp2ð Þ½ �� �
þ 2 � @g

@cp1

� �
� @g

@cp2

� �
� est covar ML est cp1ð Þ;ML est cp2ð Þ½ �� �

est var ML est cp4ð Þ½ �� �
¼ @h

@cp1

� �2

� est var ML est cp1ð Þ½ �� �

þ @h

@cp2

� �2

� est var ML est cp2ð Þ½ �� �
þ 2 � @h

@cp1

� �
� @h

@cp2

� �
� est covar ML est cp1ð Þ;ML est cp2ð Þ½ �� �

and

est covar ML est cp3ð Þ;ML est cp4ð Þ½ �� �
¼ @g

@cp1

� �
� @h

@cp1

� �
� est var ML est cp1ð Þ½ �� �

þ @g

@cp2

� �
� @h

@cp2

� �
� est var ML est cp2ð Þ½ �� �

þ @g

@cp1

� �
� @h

@cp2

� �
� est covar ML est cp1ð Þ;ML est cp2ð Þ½ �� �

þ @g

@cp2

� �
� @h

@cp1

� �
� est covar ML est cp2ð Þ;ML est cp1ð Þ½ �� �

in which the respective partial derivatives are evaluated at (and pertain
strictly to) the point [ML est(cp1), ML est(cp2)]. These expressions have
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direct application in establishing the algebraic equivalence of the respective
expressions for est{var[ML est(y) given loge(x)]}in Examples 1 and 2.

7.A.3.4. Example 3

Consider the respective inverse CDF expressions for the conceptual two-
parameter Weibull distribution considered in Example 1 and its equivalent
conceptual (two-parameter) loge smallest-extreme-value distribution consid-
ered in Example 2, viz.,

y ¼ aþ b � logeðxÞ ¼ cdp2 loge xð Þ � loge cdp1ð Þ � ¼ logeðxÞ � clp

csp

In turn, suppose that a ML analysis has been conducted for the conceptual
two-parameter Weibull distribution considered in Example 1. The equiva-
lent outcome for a ML analysis pertaining to the conceptual (two-para-
meter) smallest-extreme-value distribution considered in Example 2 is
established by substituting the following expressions for g and h into our
three restated propagation of variability expressions:

clp ¼ g cdp1; cdp2ð Þ ¼ loge cdp1ð Þ and csp ¼ h cdp1; cdp2ð Þ ¼ 1

cdp2

This substitution leads to ML est(clp) ¼ loge[ML est(cdp1)], ML
est(csp) ¼ 1/[ML est(cdp2)], and the following estimated asymptotic var-
iance and covariance expressions for ML est(clp) and ML est(csp):

est var ML est clpð Þ½ �� � ¼ 1

ML est cdp1ð Þ
	 
2

� est var ML est cdp1ð Þ½ �� �

est var ML est cspð Þ½ �� � ¼ �1

ML est cdp2ð Þ½ �2
� �2

� est var ML est cdp2ð Þ½ �� �

and

est covar ML est clpð Þ;ML est cspð Þ½ �� �
¼ 2 � 1

ML est cdp1ð Þ �
�1

ML est cdp2ð Þ½ �2 � est covar½ML est cdp1ð Þ;�
ML est cdp2ð Þ��

On the other hand, suppose that a ML analysis has been conducted for
the conceptual (two-parameter) smallest-extreme-value distribution consid-
ered in Example 2. Then, the equivalent outcome for a ML analysis pertain-
ing to the conceptual two-parameter Weibull distribution considered in
Example 1 is established by substituting the following expressions for g
and h into our three restated propagation of variability expressions:
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cdp1 ¼ g clp; cspð Þ ¼ expclp and cdp2 ¼ h clp; cspð Þ ¼ 1

csp

This substitution leads to ML est(cdp1) ¼ exp[ML est(clp)], ML est(cdp2) ¼
1/[ML est(csp)], and the following estimated asymptotic variance and cov-
ariance expressions for ML est(cdp1) and ML est(cdp2):

est var ML est cdp1ð Þ½ �� � ¼ exp
ML est(clp)

	 
2
� est var ML est clpð Þ½ �� �

est var ML est cdp2ð Þ½ �� � ¼ �1

ML est cspð Þ½ �2
� �2

� est var ML est cspð Þ½ �� �

and

est covar ML est cdp1ð Þ;ML est cdp2ð Þ½ �� �
¼ 2 � expML est(clpÞ � �1

ML est cspð Þ½ �2 � est covar½ML est clpð Þ;�
ML est cspð Þ��

The equivalence of the est{var[ML est(y) given loge(x)]} expressions in
Examples 1 and 2 can now be demonstrated by algebraically substituting
the respective est{var[ML est(clp)]}, est{var[ML est(csp)]}, and
est{covar[ML est(clp), ML est(csp)]} propagation of variability expressions
into the respective est{var[ML est(cdp1)]}, est{ML var[est(cdp2)]}, and
est{covar[ML est(cdp1), ML est(cdp2)]} propagation of variability expres-
sions, and vice versa.

7.A.4. Use of Propagation of Variability in Linear
Regression Analyses

The simple linear regression expression for var{{est[mean-(APRCRH
NDRDV ’s) given ivv ¼ ivv*]} was derived in Section 7.2 without introdu-
cing the concept of covariance. We now employ the propagation of varia-
bility methodology to generate an algebraically equivalent expression that
includes a covariance term (as in Exercise Set 2, Exercise 5).

The estimated parameters in simple and multiple linear regression
are jointly normally distributed when the conceptual regression datum
values are all presumed to be mutually independent and normally dis-
tributed. Recall that for simple linear regression, exact expressions for the
elements of the 2 by 2 covariance matrix for est(clp0) and est(clp1) are,
respectively,
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est var est clp0ð Þ½ �� � ¼ 1

nrdv
þ ave ivvi’sð Þ½ �2Xnrdv

i¼1

tivv2i

8>>>><
>>>>:

9>>>>=
>>>>;

� est var APRCRHNDREE ’sð Þ½ �

est covar est clp0ð Þ; est clp1ð Þ½ �� � ¼ est covar est clp1ð Þ; est clp0ð Þ½ �� �

¼ � ave ivvi’sð ÞXnrdv
i¼1

tivv2i

2
66664

3
77775 � est var APRCRHNDREE ’sð Þ½ �

est var est clp1ð Þ½ �� � ¼ 1Xnrdv
i¼1

tivv2i

� est var APRCRHNDREE ’sð Þ½ �

We now use the propagation of variability methodology in conjunction with
these variance and covariance expressions to state an exact expression for
var{est[mean(APRCRHNDRDV ’s) given ivv ¼ ivv*]}.

In ML analysis the partial derivatives must be evaluated at the esti-
mated conceptual parameter values because the expected values of the
respective conceptual location parameters are not known, but for linear
regression, two differences occur. First, the statistical estimators of the
actual values for the conceptual location parameters are unbiased; thus,
the associated change to expected values are known. Second, the partial
derivatives of specific interest do not involve these conceptual location para-
meters. Note that, given the simple linear regression expression
[mean(APRCRHNDRDV ’s) given ivv ¼ ivv*] ¼ clp0 + clp1 � ivv*, the
partial derivative of [mean(APRCRHNDRDV ’s) given ivv ¼ ivv*] with
respect to clp0 is equal to one and the partial derivative of
[mean(APRCRHNDRDV ’s) given ivv ¼ ivv*] with respect to clp1 is equal
to ivv*. Therefore, based on the propagation of variability methodology:

var est mean APRCRHNDRDV ’sð Þ given ivv ¼ ivv�½ �� �
� 12 � var est clp0ð Þ½ � þ ivv�ð Þ2� var est clp1ð Þ½ �

þ 2 � 1 � ivv� � covar est clp0ð Þ; est clp1ð Þ½ �

Note that this approximate expression is algebraically identical to the exact
expression that appears in Exercise Set 2, Exercise 5. In turn, appropriate
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substitution of the exact expressions for the elements of the 2 by 2 simple
linear regression covariance matrix gives

var est mean APRCRHNDRDV ’sð Þ given ivv ¼ ivv�½ �� �

� 1

nrdv
þ ivv� � ave ivvi’sð Þ½ �2Xnrdv

i¼1

tivv2i

8>>>><
>>>>:

9>>>>=
>>>>;

� var APRCRHNDREE ’sð Þ

Next, suppose that the Taylor’s series expansion underlying the conven-
tional propagation of variability methodology had included both first-
and second-order terms. The following approximation would then pertain
(Hahn and Shapiro, 1967):

mean Zð Þ � h mean H1ð Þ;mean H2ð Þ;mean H3ð Þ; . . .½ �

þ 1

2
�
Xnrvos
i¼1

@2h

@h2i
� var Hið Þ

" #
þ
Xnrv
i¼1

Xnrv
j>i

@2h

@hi@hj
� covar Hi;Hj

� �" #

However, all second and higher partial derivatives are equal to zero for
linear functions. Thus, for linear functions (such as our simple linear regres-
sion expressions), Z is exactly normally distributed. Moreover, est[mean(Z)]
is statistically unbiased, viz., the actual value for the mean of the conceptual
normal statistical distribution that consists of all possible replicate realiza-
tion values for est[mean(Z)] is equal to mean(Z). On the other hand, Z is not
normally distributed for nonlinear functions. Then, the critical issue is
whether the h function surface can reasonably be approximated as a hyper-
plane in the vicinity of the probable realization values for (H1, H2, H3, . . . ,
Hnrvos

). The greater the curvature(s) of the h function surface, the greater the
non-normality of the actual conceptual statistical distribution that consists
of all possible replicate realization values for the random variable Z and the
poorer the resulting propagation of variability approximations. When the
coefficient of variation for Hi, defined as

coefficient of variation Hið Þ ¼ stddev Hið Þ
mean Hið Þ

is very small for all Hi’s, then the approximations underlying the conven-
tional propagation of variability equations can cautiously be presumed to be
reasonable accurate. However, if there is concern regarding the accuracy of
the standard propagation of variability equations, additional terms in the
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multivariate Taylor’s series expansion are appropriate and Appendix 7B in
Hahn and Shapiro (1967) should be consulted.

7.A.5. Use of Propagation of Variability in Establishing
Cognate Conceptual Sampling Distributions

The propagation of methodology has extensive application in establishing
cognate conceptual sampling distributions pertaining to physical quantities
that cannot be measured directly, e.g., the elastic modulus (em) of a mate-
rial. However, before illustrating its use relative to this application, we first
discuss two background topics. The first topic is the propagation of varia-
bility expression pertaining to the simple relationship Z ¼ Xa � Yb. The
second topic pertains to how to estimate the covariance of X and Y.

7.A.5.1. Background Topic One

Suppose that X and Y are generic random variables that are jointly normally
distributed. We now develop the standard propagation of variability
approximate expressions for mean(Z) and var(Z) given the relationship
Z ¼ Xa � Yb. The approximate expression for mean(Z) is obtained by direct
substitution, viz.,

mean ðZÞ � ½mean ðXÞ�a � ½mean ðYÞ�b

The associated approximate expression for var(Z) is developed as follows.
First, we take the required partial derivatives to obtain the expression:

varðZÞ � a � xa�1 � yb
� �2

� varðXÞ þ b � xa � yb�1
� �2

� varðYÞ

þ 2 � a � xa�1 � yb
� �

� b � xa � yb�1
� �

� covarðX;YÞ

and then we evaluate these partial derivatives by substituting mean(X) for x
and mean(Y) for y. In turn, we divide both sides of the resulting expression
by [mean(Z)]2 ¼ {[mean(X)]a[mean(Y)]b}2 to obtain the desired result, viz.,

varðZÞ
½mean ðZÞ�2 � a2 � varðXÞ

½mean ðXÞ�2 þ b2 � varðYÞ
½mean ðYÞ�2

þ 2 � a � b � covar X;Yð Þ
½mean ðXÞ� � ½mean ðYÞ�

Note that each of the terms in this expression are dimensionless. Note also
that, when X and Y are independent, a and b can be either positive or
negative and still yield the same numerical value for var(Z). This apparently
anomalous result is due to the use of only linear terms in the multivariate
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Taylor’s series expansion underlying the development of the standard pro-
pagation of variability variance expression.

Remark: When paired measurement values are indeed independent,
their estimated covariance value will generally be small compared to
their associated estimated variance values. Accordingly, when the
associated covariance term is (incorrectly) included in a propaga-
tion of variability expression, it will seldom markedly affect the
numerical limits of the resulting approximate (shortest) 100(scp)%
(two-sided) statistical confidence interval that allegedly includes the
deterministic (actual) value of specific interest.

7.A.5.2. Background Topic Two

We now discuss how to estimate the covariance of generic random variables
X and Y that are jointly normally distributed. Consider replicate paired
measurement values (realization values) for these two generic random vari-
ables, where the number of replicate paired measurement values (realization
values) is denoted nrpmv. Under continual replication of the experiment test
program the respective replicate paired measurement values (realization
values) for generic random variables X and Y generate a conceptual bivari-
ate (five-parameter) normal distribution. The actual values for these five
parameters are estimated as follows:

ð1Þ est mean Xð Þ½ � ¼ ave Xi’sð Þ
ð2Þ est mean Yð Þ½ � ¼ ave Yi’sð Þ

ð3Þ est var Xð Þ½ � ¼ X1 � ave X’sð Þ½ �2þ X2 � ave X ’sð Þ½ �2þ X3 � ave X ’sð Þ½ �2þ . . .
� �

nrpmv � 1

ð4Þ est var Yð Þ½ � ¼ Y1 � ave Y ’sð Þ½ �2þ Y2 � ave Y ’sð Þ½ �2þ Y3 � ave Y ’sð Þ½ �2þ . . .
� �

nrpmv � 1

ð7:120Þ
and

ð5Þ covar X;Yð Þ½ � ¼
X1 � ave X ’sð Þ½ � Y1 � ave Y ’sð Þ½ � þ X2 � ave X ’sð Þ½ � Y2 � ave Y ’sð Þ½ � þ . . .

� �
nrpmv � 1

However, the conceptual correlation coefficient, ccc, is almost always
employed as an algebraic surrogate for covar(X,Y) in the analytical expres-
sion for the conceptual bivariate five-parameter normal distribution, viz.,
the ccc is its fifth parameter. It is defined as covar(X,Y)/[var(X) � var(Y)]1/2.
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(The actual value for the ccc is dimensionless and lies in the interval from �1
to þ1.)

It is particularly important to remember that we cannot compute
est[covar(X,Y)] unless the associated respective measurement values are
paired. Thus, we should always group experiment test program measure-
ment values into nrpmv time blocks whenever statistical correlation is plau-
sible.

7.A.5.3. Cognate Conceptual Sampling Distribution Example

Material behavior parameters are regarded as deterministic (invariant)
values in the mechanics and mechanical metallurgy literature.
Nevertheless, any value that must be measured can be modeled as having
a deterministic physically based component and a random statistically based
component. Then, the deterministic physically based component is statisti-
cally viewed as the mean of the conceptual sampling distribution that con-
sists of all possible measurement values that would occur if the experiment
test program were continually replicated—provided that the measurement
process and the associated statistical estimation process are both unbiased.

We now develop the cognate conceptual sampling distribution that
pertains to ‘‘measuring’’ the elastic modulus (em) of a material by conduct-
ing a three-point bending test. Suppose that, to begin this development,
replicate three-point bending tests are conducted in which the same speci-
men is repeatedly tested. Suppose also that (a) this test specimen has a
perfectly uniform rectangular cross-section with (specification) width w
and (specification) thickness t, (b) a dead load p is applied by a calibrated
5 lb weight and acts at the midspan of the test fixture, and (c) the test fixture
span s is invariant with a nominal dimension of 6 in. Then, the actual value
for the deflection d at the midspan of the three-point bending specimen is
theoretically computed using the expression:

d ¼ p � s3
4 � e �m � w � t3 ¼

270

e �m � w � t3

Solving for em gives

em ¼ 270

w � t3 � d
Then, denoting the respective replicate measurement values for w, t, and d as
wi, di, and ti gives

emi ¼
270

wi � t3i � di
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Next, under continual replication of this hypothetical experiment test
program, we assert that the respective three sets of paired measurement
values for wi, ti, and di respectively generate three jointly normally distrib-
uted conceptual sampling distributions. If so, then (a) the means, variances,
and covariances of these three conceptual sampling distributions can be
estimated using the expressions given in Section 7.A.5.2, and (b) the con-
ceptual sampling distribution that consists of the corresponding (computed)
emi values can be approximated by a conceptual (two-parameter) normal
distribution with

mean ðemi’sÞ �
270

mean ðwi’sÞ� � ½mean ðti’sÞ�3 � mean ðdi’sÞ�½
and

varðemi’sÞ
½mean ðemi’sÞ�2

� �1ð Þ2� varðwi’sÞ
½mean ðwi’sÞ�2

þ �3ð Þ2� varðti’sÞ�
½meanðti’sÞ�2

þ �1ð Þ2� varðdi’sÞ
½mean ðdi’sÞ�2

þ 2 � �1ð Þ � �3ð Þ � covar½ðwi’sÞ; ðti’sÞ�
½meanðwi’sÞ� � ½mean ðti’sÞ

þ 2 � �1ð Þ � �1ð Þ � covar½ðwi’sÞ; ðdi’sÞ�
½meanðwi’sÞ� � ½meanðdi’sÞ�

þ 2 � �1ð Þ � �1ð Þ � covar½ðti’sÞ; ðdi’sÞ�
½mean ðti’sÞ� � ½meanðdi’sÞ�

Thus, the (shortest) 95% (two-sided) statistical confidence interval that
allegedly includes the deterministic (actual) value for the elastic modulus
is approximately equal to mean(emi’s) �1.9600[var(emi’s)]

1/2.

7.A.5.4. Discussion

The experiment test program underlying this example application was delib-
erately contrived so that the variabilities in the wi’s, ti’s, and di’s pertained
only to their respective measurement errors. However, the variability that
must be properly assessed in this application is the ‘‘intrinsic’’ variability in
physical behavior (elastic modulus) from specimen to specimen.
Accordingly, suppose we now modify the contrived experiment test pro-
gram, viz., suppose that the respective wi, ti, and di measurement values
pertain to a single measurement of w, t, and d in replicate three-point bend-
ing tests performed on nominally identical specimens taken from different
sheets or plates. Then, (a) the variability of the respective wi’s and ti’s would
be the confounded sum of the measurement variability and the dimensional
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variability from specimen to specimen, and (b) the variability of the respec-
tive di’s would be the confounded sum of these two variabilities and the
‘‘intrinsic’’ variability in physical behavior (elastic modulus) from specimen
to specimen. However, in practice, because neither specimen width nor
thickness is perfectly uniform along the entire span, it is never prudent to
make only a single measurement of either w or t for any test specimen.
Rather, the ‘‘measured’’ values of w and t should be the arithmetic average
of at least three sets of nrep replicate measurements, one set taken at each end
of the span and one set taken at its center. The use of arithmetic averages
not only makes each resulting wi and ti value more credible relative to its
modeling of the actual geometry of the test specimen, but it also (almost
surely) reduces the magnitude of the resulting var(emi’s).

It is always good statistical practice to plan an experiment test pro-
gram to minimize nuisance variabilities, viz., measurement variability and
dimensional variability in this example application. Thus, it is always good
statistical practice to make the respective wi’s and ti’s the arithmetic average
of replicate measurements. In turn, thickness variability could be reduced by
taking all specimens from adjacent locations in the same sheet or plate.
However, this procedure cannot be recommended because it will not provide
a proper assessment of the ‘‘intrinsic’’ variability in physical behavior from
specimen to specimen. On the other hand, it is very effective statistically to
machine all (or large groups of) test specimens in a sandwich configuration
to reduce the resulting width variability.

7.A.6. Use of Propagation of Variability in Dimensioning
Components

Consider a component with a series of uniformly spaced holes. It used to be
standard practice to dimension only one of the spaces between adjacent
holes and to write ‘‘typical’’ following that dimension. This out-dated prac-
tice resulted in the variability between the first and the last hole being
excessively large (presuming independent manufacturing errors in establish-
ing each respective distance):

var first to lastð Þ ¼ var first to secondð Þ þ var second to thirdð Þ þ . . .

þ var next-to-last to lastð Þ

On the other hand, when each hole location is dimensioned relative to a
common reference line, the actual value for the variance of the conceptual
sampling distribution pertaining to the spacing between the first and the last
hole is the same as the actual value for the variance of the conceptual
sampling distribution pertaining to the spacing between any two holes of
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specific interest (presuming independent manufacturing errors in establish-
ing each respective distance). It is merely twice the actual value for the
variance of the conceptual sampling distribution pertaining to the location
of any given hole relative to the common reference line.

Another out-dated standard practice was the so-called limit-stack ana-
lysis in which a component was drawn 10 times its actual size with all of its
dimensions simultaneously taken at their highest tolerances to determine if
this (unreasonably) extreme geometry would interfere with the opposite
extreme geometry for a mating component in an assembled configuration.
Potential interference problems can now be investigated using pseudoran-
dom numbers to simulate manufacturing errors for the mating components
of specific interest. This simulation-based process is based on the creation of
a population of hypothetical manufactured components by coupling pseu-
dorandom manufacturing errors with the nominal component dimensions.
Then, by randomly selecting mating hypothetical manufactured components
from these populations, the proportion of assemblies that exhibit an inter-
ference problem can be simulated.

Unfortunately, this simulation process is not properly exploited.
Alternative designs (or alternative dimensioning) are seldom examined
unless a serious interference problem is likely to occur. However, in situa-
tions where a serious interference problem is unlikely to occur there is still
the strong possibility that various other manufacturing tolerances can be
increased. If so, the associated cost savings can either be used to increase
profits or in a trade-off with another component to increase its reliability.

Remark: The major advantage of the propagation of variability
methodology over simulation is that the former permits the exam-
ination of its expressions to identify the major sources (causes) of
the variability of specific interest. Unfortunately, the major advan-
tage of the propagation of variability methodology over simulation
is also its major disadvantage. We cannot always write an analytical
expression for the variability of specific interest.

Exercise Set 6

(These exercises are intended to familiarize you with the sources of and
certain terms used to describe variability components.)

1. (a) Respectively define measurement variability, dimensional
variability, and ‘‘intrinsic’’ variability. (b) Does the variability
of actual experiment test program datum values (almost surely)
involve all three variability components? (c) If so, are these varia-
bility components mutually independent?
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2. How small does one variability component have to be relative to
the other two variability components so that it is negligible for
practical purposes? State your answer in terms of the ratio of
their respective variances.

3. State the American Society for Testing and Materials (ASTM)
definitions for repeatability and reproducibility as used in their
standards.

4. (a) Which is typically the largest: (i) measurement variability, (ii)
dimensional variability, (iii) ‘‘intrinsic’’ variability, (iv) labora-
tory-to-laboratory variability, or (v) batch-to-batch variability?
(b) Is batch-to-batch variability considered in either of the ASTM
definitions for repeatability or reproducibility? (c) Is batch-to-
batch variability considered in propagation of variability? (d) Is
laboratory-to-laboratory variability considered in propagation of
variability?

7.B. SUPPLEMENTAL TOPIC: WEIGHTED SIMPLE
LINEAR REGRESSION ANALYSIS

When the variances of the conceptual statistical distributions for the respec-
tive simple linear regression experiment test program datum values are not
(presumed to be) homoscedastic (for all ivv’s of potential interest), then
weighted simple linear regression analysis is mandatory. The additional
complexity associated with weighted simple linear regression provides
important perspective regarding the effect of the presumption of homosce-
dasticity in simple linear regression. Moreover, weighted simple linear
regression analysis also provides useful background relative to understand-
ing ML analysis for strength test datum values (Supplemental Topic 8.D).
Accordingly, we now present a weighted simple linear regression example
that is directly analogous to our text simple linear regression example.

Suppose we take the arithmetic average of our simple linear regression
example datum values at each ivv as our weighted simple linear regression
example datum values. We then have the following constructed heterosce-
dastic datum values for our weighted simple linear regression example:

independent variable

ivvi

weighted regression

datum value

wrdvi ¼ aveðrdvi’s)

conceptual variance of these

weighted regression

datum value

10 4 varðAPRCRHNDREE ’s)/3

20 11 varðAPRCRHNDREE ’s)/2

40 21 varðAPRCRHNDREE ’s)/2

50 24 varðAPRCRHNDREE ’s)/3
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7.B.1. Weighted Simple Linear Regression Example

The conceptual weighted simple linear regression model is expressed in our
hybrid column vector notation as

CRHeteroscedasticNDRDVi’s
�� �� ¼ clp0 � þ1’sj j

þ clp1 � ivvi’s
�� ��þ CRHeteroscedasticNDREEi’s

�� ��
Clearly, the only difference between a conceptual simple linear regression
statistical model and a conceptual weighted simple linear regression statis-
tical model is the heteroscedasticity of the weighted regression datum values.
The following matrix estimation expression for the clpj’s ( j ¼ 1,2) pertains
when the respective weighted regression datum values, WRDVi, are all pre-
sumed to be mutually independent:

j½estðclpjÞ�’sj
2
1

¼ jivvi’sjtjcovarðWRDVi;WRDViÞj�1ðivvi’sj
� ��1

2
nwrdv nwrdv
nwrdv nwrdv
2

jivvi’sjtjcovarðWRDVi;WRDViÞj�1jwrdvi’sj
� �
2
nwrdv nwrdv
nwrdv nwrdv
1

in which |covar(WRDVi,WRDVi)| is a diagonal matrix whose elements are
the variances of the respective conceptual sampling distributions consisting
of all possible replicateWRDVi’s. (The off-diagonal elements are all equal to
zero because the respective WRDVi’s are presumed to be mutually indepen-
dent.) Thus,

jcovarðWRDVi;WRDViÞj

¼ varðAPRCRHNDREE’sÞ �

1=3 0 0 0

0 1=2 0 0

0 0 1=2 0

0 0 0 1=3

���������

���������
Next, recall that statistical weights are inversely related to variances.

Moreover, because the |covar(WRDVi,WRDVi)| matrix is diagonal, its
inverse, the statistical weight matrix |swi’s|, is also diagonal. Moreover, its
diagonal elements are the inverses of the diagonal elements of the
|covar(WRDVi,WRDVi)| matrix, viz.,

Linear Regression Analysis 375

TLFeBOOK



jswi’sj ¼ jcovarðWRDVi;WRDViÞj�1

¼ ½varðAPRCRHNDREE’sÞ��1 �

3 0 0 0

0 2 0 0

0 0 2 0

0 0 0 3

���������

���������
We now substitute |swi’s| for |covar(WRDVi,WRDVi)|

�1 in the prior matrix-
based expression for |[est(clpj)]’s| to obtain

est clpjð Þ½ �’s�� �� ¼ ivvi’s
�� ��t swi’s

�� �� ivvi’s
�� ��� ��1

ivvi’s
�� �� swi’s

�� �� wrdvi’s
�� ��� �

in which, for our constructed weighted simple linear regression example, the
relative statistical weights replace the actual statistical weights because the
scalar multiplier var(APRCRHNDREE ’s) cancels out. (Nevertheless, we
shall retain the notation sw, rather than use the notation rsw, because one
of our objectives in this constructed weighted simple linear regression exam-
ple is to develop estimation expressions that can be compared to the ML
estimation expressions that are subsequently developed in Supplemental
Topic 8.D.) We next expand the right-hand side of this revised matrix
estimation expression in incremental steps. First,

jivvi’sjtjswi’sjjivvi’sj
� �

¼ 1

varðAPRCRHNDREE ’sÞ
	 


�

Xnwrdv
i¼1

swi

Xnwrdv
i¼1

swi � ivvi

Xnwrdv
i¼1

swi � ivvi
Xnwrdv
i¼1

swi � ivv2i

�����������

�����������
Then,

jivvi’sjtjswi’sjjivvi’sj
� ��1

¼ varðAPRCRHNDREE ’sÞ
ðdeterminantÞ

	 

�

Xnwrdv
i¼1

swi � ivv2i �
Xnwrdv
i¼1

swi � ivvi

�
Xnwrdv
i¼1

swi � ivvi
Xnwrdv
i¼1

swi

�����������

�����������
in which
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determinant ¼
Xnwrdv
i¼1

swi

Xnwrdv
i¼1

swiivv
2
i �

Xnwrdv
i¼1

swiivvi

 !2

In turn,

jivvi’sjjswi’sjjwrdvi’sjð Þ

¼ 1=½varðAPRCRHNDREE ’sÞ�� � �
Xnwrdv
i¼1

swi � wrdvi
Xnwrdv
i¼1

swi � ivvi � wrdvi

����������

����������
Finally,

estðclp0Þ
estðclp1Þ

�����
�����

¼

Xnwrdv
i¼1

swi � ivv2i �
Xnwrdv
i¼1

swi � wrdvi
determinant

�

Xnwrdv
i¼1

swi � ivvi �
Xnwrdv
i¼1

swi � ivvi � wrdvi
determinantXnwrdv

i¼1

swi �
Xnwrdv
i¼1

swi � ivvi � wrdvi
determinant

�

Xnwrdv
i¼1

swi � ivvi �
Xnwrdv
i¼1

swi � wrdvi
determinant

��������������

��������������
However, before we can use these estimation expressions generate to

compute est(clp0) and est(clp1), we must first compute the weighted averages
(wt ave) of the ivvi’s and wrdvi’s. Accordingly, we now develop the following
table:

ivvi swi swiivvi wrdvi swi � wrdvi
10 3 30 4 12

20 2 40 11 22

40 2 80 21 42

50 3 150 24 72

(sum) 10 300 148

Observe that (a) wt ave(ivvi’s) ¼ 300/10 ¼ 30, which agrees (checks) with
the arithmetic average of the ivvi’s in the text simple linear regression exam-
ple, and (b) wt ave(wrdvi’s) ¼ 148/10 ¼ 14.8, which agrees (checks) with the
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arithmetic average of the rdvi’s in the text simple linear regression example.
Now we can augment our table to compute est(clp0) and est(clp1):

ivvi swi swi � ivvi swi � ivv2i wrdvi swi � ivvi � wrdvi
10 3 30 300 4 120

20 2 40 800 11 440

40 2 80 3200 21 1680

50 3 150 7500 24 3600

(sum) 300 11,800 5840

Thus,

est clp0ð Þ ¼ ½ð11,800Þ � ð148Þ � ð300Þ � ð5840Þ�=½ð10Þ � ð11,800Þ � ð300Þ � ð300Þ�
¼ ½1,746,400� 1,752,000�=½118,000� 90,000�
¼ ½�5600�=½28,000�
¼ �0:2 checksð Þ

and

est clp1ð Þ ¼ ½ð10Þ � ð5840Þ � ð300Þ � ð148Þ�=½28,000�
¼ ½58,400� 44,400�=½28,000�
¼ ½14,000�=½28,000�
¼ 0:5 checksð Þ

Next, the covariance matrix for est(clp0) and est(clp1) is expressed as

covar est clpmð Þ; est clpnð Þ½ ��� ��
¼ var APRCRHNDREE ’sð Þ � ivvi’s

�� ��t swi’s
�� �� ivvi’s�� ��� ��1

¼
var est clp0ð Þ½ � covar est clp0ð Þ; est clp1ð Þ½ �

covar est clp0ð Þ; est clp1ð Þ½ � var est clp1ð Þ½ �

�����
�����

in which m and n are dummy indices, m ¼ 0,1 and n ¼ 0,1. Thus,
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var est clp0ð Þ½ �
var APRCRHNDREE ’sð Þ ¼

Xnwrdv
i¼1

swi � ivv2i

Xnwrdv
i¼1

swi �
Xnwrdv
i¼1

swi � ivv2i �
Xnwrdv
i¼1

swi � ivvi
 !2

var est clp1ð Þ½ �
var APRCRHNDREE ’sð Þ ¼

Xnwrdv
i¼1

swi

Xnwrdv
i¼1

swi �
Xnwrdv
i¼1

swi � ivv2i �
Xnwrdv
i¼1

swi � ivvi
 !2

covar est clp0ð Þ; est clp1ð Þ½ �
var APRCRHNDREE ’sð Þ ¼

�
Xnwrdv
i¼1

swiivvi

Xnwrdv
i¼1

swi �
Xnwrdv
i¼1

swi � ivv2i �
Xnwrdv
i¼1

swi � ivvi
 !2

Solving numerically gives

var est clp0ð Þ½ � ¼ 11,800

28,000
� var APRCRHNDREE ’sð Þ

¼ 0:4214ð Þ � var APRCRHNDREE ’sð Þ checksð Þ

var est clp1ð Þ½ � ¼ 10

28,000
� var APRCRHNDREE ’sð Þ

¼ 0:000357ð Þ � var APRCRHNDREE ’sð Þ checksð Þ
and

covar est clp0ð Þ; est clp1ð Þ½ � ¼ � 300

28,000
� var APRCRHNDREE ’sð Þ

¼ 0:0107ð Þ � var APRCRHNDREE ’sð Þ checksð Þ

Finally, algebraic substitution of the respective expressions for
var[est(clp0)], var[est(clp1), and covar[est(clp0),est(clp1)] into the expression:

var est mean APRCRHeteroscedasticNDRDV ’sð Þ given ivv ¼ ivv�½ �� �
¼ var est clp0ð Þ½ � þ ðivv�Þ2 � var est clp1ð Þ½ �

þ 2 � ivv� � covar est clp0ð Þ; est clp1ð Þ½ �

yields
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var est mean APRCRHeteroscedasticNDRDV ’sð Þ given ivv ¼ ivv�½ �� �
var APRCRHNDREE ’sð Þ

¼

Xnwrdv
i¼1

swi � ivv2i

Xnwrdv
i¼1

swi �
Xnwrdv
i¼1

swi � ivv2i �
Xnwrdv
i¼1

swi � ivvi
 !2

þ
ivv�ð Þ2�

Xnwrdv
i¼1

swi

Xnwrdv
i¼1

swi �
Xnwrdv
i¼1

swi � ivv2i �
Xnwrdv
i¼1

swi � ivvi
 !2

þ
�2ivv� �

Xnwrdv
i¼1

swi � ivvi

Xnwrdv
i¼1

swi �
Xnwrdv
i¼1

swi � ivv2i �
Xnwrdv
i¼1

swi � ivvi
 !2

which, when evaluated numerically, gives

var est mean APRCRHeteroscedasticNDRDV ’sð Þ given ivv ¼ ivv� ¼ 15½ �� �
¼ 0:4214 þ 0:0804� 0:3214ð Þ � var APRCRHNDREE ’sð Þ
¼ 0:1808 � var APRCRHNDREE ’sð Þ

Clearly, this expression for var{est[mean(APRCRHeteroscedastic
NDRDV ’s) given ivv ¼ ivv* ¼ 15]} in our constructed weighted simple
linear regression example checks with the corresponding expression for
var{est[mean(APRCRHomoscedasticNDRDV ’s) given ivv ¼ ivv* ¼ 15]}
pertaining to the underlying text simple linear regression example.

Exercise Set 7

These exercises are intended to verify that the derived expressions for our
the constructed weighted simple linear regression example agree (check)
with the corresponding expressions for the text simple linear regression
example.

1. (a) Verify algebraically that, for our constructed weighted simple
linear regression example, var[est(clp1)] can be expressed as
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var est clp1ð Þ½ � ¼ var APRCRHNDREE ’sð ÞXnwrdv
i¼1

swi � ivvi � wt ave ivvi’sð Þ½ �� �2
in which

wt ave ivvi’sð Þ ¼

Xnwrdv
i¼1

swi � ivvi
Xnwrdv
i¼1

swi

Then, (b) verify that this expression reduces to the simple linear
regression expression for est(clp1) when all of the relative statis-
tical weights are set equal to one and nwrdv is set equal to nrdv.

2. (a) Verify algebraically that, for our constructed weighted simple
linear regression example, var[est(clp0)] can be expressed as

var est clp0ð Þ½ �

¼ 1Xnwrdv
i¼1

swi

þ wt ave ivvi’sð Þ½ �2Xnwrdv
i¼1

swi � ivvi � wt ave ivvi’sð Þ½ �� �2

0
BBBB@

1
CCCCA�

var APRCRHNDREE ’sð Þ

in which

wt ave ivvi’sð Þ ¼

Xnwrdv
i¼1

swi � ivvi
Xnwrdv
i¼1

swi

Then, (b) verify that this expression reduces to the simple linear
regression expression for est(clp0) when all of the relative statis-
tical weights are set equal to one and nwrdv is set equal to nrdv.

3. (a) Given our constructed weighed simple linear regression exam-
ple and the propagation of variability expression:

var est mean APRCRHeteroscedasticNDRDv ’sð Þ given ivv ¼ ivv�½ �� �
¼ var est clp0ð Þ½ � þ ðivv�Þ2 � var est clp1ð Þ½ �

þ 2 � ivv� � covar est clp0ð Þ; est clp1ð Þ½ �
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substitute expressions for the respective elements of the |covar[est
(clp0),est(clp1)]| covariance matrix to develop an expression for
var{mean[(APRCRHeteroscedasticNDRDV ’s) given ivv ¼ ivv*]}.
Then, (b) verify that this expression can be algebraically manipu-
lated to read

var est mean APRCRHeteroscedasticNDRDV ’sð Þ given ivv ¼ ivv�½ �� �
var APRCRHNDREE ’sð Þ

¼ 1Xnwrdv
i¼1

swi

þ wt ave ivvi’sð Þ½ �2Xnwrdv
i¼1

swi � ivvi � wt ave ivvi’sð Þ½ �� �2
In turn, (c) verify that this expression reduces to the simple linear
regression expression for var{est[mean(APRCRHomoscedastic
NDRDV ’s) given ivv ¼ ivv*]} when the relative statistical
weights swi’s are set equal to one and nwrdv is set equal to nrdv.

Exercise Set 8

These exercises are intended to demonstrate that, given our constructed
weighted simple linear regression example, the sum of the weighted
[est(CRHeteroscedasticNDREEi)]’s is equal to zero and that the weighted
sum of squares of the [est(CRHeteroscedasticNDREEi)]’s is identical to the
between(SS) for its underlying text simple linear regression example.

1. Given the following tabulation for our constructed weighted
simple linear regression example:

ivvi wrdvi ¼ est(clp0) þ est(clp1)ivvi þ
est(CHeteroscedastic

NDREEi)

relative statistical

weight swi

10 4 �0:2 5 �0:8 3

20 11 �0:2 10 þ1:2 2

30 21 �0:2 20 þ1:2 2

40 24 �0:2 25 �0:8 3

verify that the values given for the respective
[est(CRHeteroscedasticNDREEi)]’s are (a) algebraically correct,
but (b) do not sum to zero. Then, (c) demonstrate that the
weighted sum of the [est(CRHeteroscedasticNDREEi)]’s is equal
to zero. In turn, (d) plot the estimated weighted simple linear
regression model with its associated weighted regression datum
values, using datum points with different diameters to reflect their
respective magnitudes of the relative weights.
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2. (a) Verify that
P

swi � f[est(CRHeteroscedasticNDREEi)]’s}
2 =

9.6, viz., equals the between(SS) for the text simple linear regres-
sion example. Then, (b) explain why the relative statistical
weights can be used instead of the actual statistical weights to
compute this weighted sum of squares. [Hint: Were the actual or
the relative weights used in computing the between(SS) for the
simple linear regression example?]

7.B.2. Discussion

Replication is not required (nor used) in weighted linear regression—
because var(APRCRHeterocedasticNDRDV ’s) must be known (or can be
estimated) at each divvi used in the regression experiment test program so
that the associated statistical weights swi’s are known (or can be estimated)
at each divvi. Thus, instead of using the experiment test program value of
Snedecor’s central F test statistic in linear regression analysis to test the
adequacy of the presumed conceptual statistical model, we must use the
associated experiment test program value of Pearson’s central �2 test statis-
tic to judge the statistical adequacy for the presumed conceptual statistical
model in weighted linear regression analysis. In effect, this adequacy test
examines whether the estimated deviations of the weighed normally distrib-
uted datum values from their respective est{[meani (APRCRHeteroscedastic
NDRDV ’s)]}’s are statistically consistent with the presumed known (or esti-
mated) values of their associated {est[vari (APRCRHeteroscedastic
NDRDV ’s)]}’s.

7.B.3. Perspective

Because the actual values of the statistical weights are almost never known
in mechanical testing and mechanical reliability applications, our con-
structed weighted simple linear regression example is primarily intended
to provide perspective and background. Hopefully it accomplishes two
objectives: (a) to demonstrate how the presumption of homoscedasticity
simplifies linear regression analyses; and (b) to establish a background
that provides perspective regarding maximum likelihood analysis for
strength experiment test program datum values (Supplemental Topic 8.D).

The presumption of homoscedasticity so markedly simplifies linear
regression analysis that it is often rationalized as being physically credible.
Do not be deceived. The universal experience of humankind is that small
measurement values exhibit less variability than large measurement values.
Thus, the presumption of homoscedasticity should always be suspect when
the experiment test program range selected for the ivv’s is large. Then,
whatever the application, the homoscedasticity versus heteroscedasticity
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issue is of paramount importance in establishing a statistically adequate
(statistically credible) mechanical behavior model. We recommend the use
of maximum likelihood analysis for all mechanical behavior models
(Chapter 8)—because the associated likelihood ratio methodology provides
a simple intuitive way to examine the homoscedasticity versus heteroscedas-
ticity issue statistically (Supplemental Topic 8.E).

7.C. SUPPLEMENTAL TOPIC: CLASSICAL HYPERBOLIC
100(scp)% (TWO-SIDED) STATISTICAL
CONFIDENCE BANDS IN SIMPLE LINEAR
REGRESSION

Recall that the classical (shortest) 100(scp)% (two-sided) statistical confi-
dence interval in simple linear regression that allegedly includes
[mean(APRCRHNDRDV ’s) given ivv ¼ ivv*] was presented in the text,
where ivv* lies in the (shortest practical) ivv interval that was used in con-
ducting the experiment test program. We now present the corresponding
classical hyperbolic 100(scp)% (two-sided) statistical confidence bands that
allegedly include mean(APRCRHNDRDV ’s) for all ivv’s simultaneously
that lie in this ivv interval.

When the conceptual simple linear regression statistical model:

CRHNDRDVi’s
�� �� ¼ clp0 þ1’sj j þ clp1 ivvi’s

�� ��þ CRHNDREEi’s
�� ��

is correct, the joint 100(scp)% statistical confidence region for the actual
values of the clp0 and clp1 can be obtained by appropriate simplification
of an analogous multiple linear regression (matrix) expression found in
Draper and Smith (1966). This simplification generates an explicit equa-
tion for the elliptical boundary of this joint 100(scp)% statistical confi-
dence region, viz.,

2 � Snedecor’s central F2;nrdv�2;scp

¼

X1
m¼0

X1
n¼0

clpm� est clpmð Þ½ � � termm;n

 � � clpn� est clpnð Þ½ �� �
est var APRCRHNDRDV ’sð Þ½ �

in which (a) coupled values of clpm and clpn define points lying on this
elliptical boundary, and (b) termm,n, with dummy indices m and n, respec-
tively, refers to the four elements of the ½ jivvi ’sjtjivvi ’sj � array, where
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Figure 7.8 Given the conceptual simple linear regression model expressed as the

[mean(APRCRHNDRDV ’s) given ivv� ¼ clp0þ clp1 � ivv, the collection of all

coupled clp0 and clp1 values that lie inside the boundary of the elliptical joint

100(scp)% statistical confidence region for the actual values of the clp0 and the

clp1 that is plotted schematically in (a) correspond one-to-one to the collection of

conceptual simple linear regression models that lie inside of the classical hyperbolic

100(scp)% (two-sided) statistical confidence bands schematically plotted in (b). These

bands allegedly include [mean(APRCRHNDRDV ’s)] for all ivv’s that lie in the

(shortest practical) ivv interval that was used in conducting the simple linear regres-

sion experiment test program.
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ivvi’s
�� ��t ivvi’s�� �� ¼ nrdv

Xnrdv
i¼1

ivvi

Xnrdv
i¼1

ivvi
Xnrdv
i¼1

ivv2i

����������

����������
Figure 7.8(a) schematically displays this elliptical joint 100(scp)% sta-

tistical confidence region. Its center is located at the point [est(clp0),
est(clp1)], but its major and minor areas are parallel and perpendicular to
the clp0 and clp1 axes only when the |+1’s| column vector is orthogonal to
the |ivvi’s| column vector. Every clp0,clp1 point lying inside of the boundary
of this elliptical joint 100(scp)% statistical confidence region corresponds to
coupled clp0 and clp1 values that could be taken as the actual clp0 and clp1
values and the resulting data-based value for Snedecor’s central F test sta-
tistic would not lead to rejection of this null hypothesis—provided that the
associated acceptable probability of committing a Type I error is equal to
(1 � scp). Accordingly, each of these coupled clp0 and clp1 values estab-
lishes a hypothetical conceptual simple linear regression model. In turn,
given the collection of all of these hypothetical models, the respective max-
imum and minimum values for the {mean(APRCRHNDRDV ’s)] given
divvk¼1 < ivv < divvk¼ndivvg’s generate the classical hyperbolic 100(scp)%
(two-sided) statistical confidence bands illustrated in Figure 7.8(b). These
bands allegedly include [mean(APRCRHNDRDV ’s) given ivv] for all ivv’s
that lie in the (shortest practical) ivv interval that was used in conducting the
simple linear regression experiment test program, viz.,

classical hyperbolic 100(scpÞ% (two-sided) statistical confidence bands

¼ est½mean ðAPRCRHNDRDV ’sÞ given ivv� � kchscb � stddevterm
in which

kchscb ¼ ½2 � Snedecor]’s central F2;nrdv�2;scp�1=2
and

stddevterm=est(stddevfest[mean ðAPRCRHNDRDVsÞ given ivv�gÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nrdv
þ ivv� ave ivvi’sð Þ½ �2Xndv

i¼1

tivv2i

vuuuut � est stddev APRCRHNDREE ’sð Þ½ �� �
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8
Mechanical Reliability
Fundamentals and Example
Analyses

8.1. INTRODUCTION

The first step in mechanical design for a new product is to synthesize (con-
figure) the product such that it performs its desired function. Design synth-
esis is markedly enhanced by first recognizing functional analogies among
existing designs, then comparing alternative feasible designs, and in turn
proposing the design that appears to have the greatest overall advantage.
The second step in mechanical design for a new product is to try to assure
that the proposed design will reliably perform its function. Tentative assur-
ance of adequate reliability requires a new set of comparisons interwoven in
a combination of design analyses and laboratory tests whose goal is to
extrapolate service-based performance data for similar products to the pro-
posed product. However, it is imperative to understand that adequate relia-
bility is established only by actual service performance. It cannot be
established by a combination of design analyses based on analytical bogies
(design allowables, factors of safety) and laboratory tests based on experi-
mental bogies (extreme load and environment histories). Nevertheless, a
combination of design analysis and laboratory testing can be effectively
employed to maintain or to improve the reliability of a product.

When the mechanical design objective is to maintain the service-pro-
ven reliability of a product following its redesign, the redesign is required to
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meet the same set of analytical and laboratory test bogies that were met by
the original design. However, when the mechanical design objective is to
improve product reliability, the performance of the redesign must excel the
performance of the original design. This improved performance must be
evident in laboratory tests before it can be presumed that it will also be
evident in service operation. Accordingly, reliability improvement labora-
tory tests should always be conducted using load and environment histories
that are nominally identical to service load and environment histories. In
particular, all failures in these laboratory tests should be identical in loca-
tion, mode of failure, and appearance to corresponding service failures.

This chapter covers reliability concepts and reliability applications of
statistical analyses that can be used to improve the reliability of a product.
The more credible the performance comparison of the redesign to the ori-
ginal design, the more likely the predicted reliability improvement will actu-
ally be realized in service operation.

8.2. MECHANICAL RELIABILITY TERMINOLOGY

All solid materials resist failure. When the stimulus for failure is stated in
terms of stress, the corresponding resistance is technically termed strength.
However, the terms stress and strength are widely used in a generic sense to
connote stimulus and resistance, respectively.

Strengths and resistances are always established experimentally by
strictly following a standardized laboratory test method that has been
severely constrained and simplified so that the resulting datum values will
be repeatable within the given laboratory and reproducible between different
laboratories. However, from a mechanical reliability perspective, all such
standardized laboratory test methods are self-defeating—because there is no
dependable way to use the resulting datum values to predict service beha-
vior. There is no direct relationship between the environmental and loading
histories pertaining to standardized laboratory test methods and actual ser-
vice operation for any mechanical mode of failure.

The test duration in a reliability experiment test program is defined in
terms of the environmental and loading histories imposed prior to failure,
where failure connotes the discontinuation of satisfactory performance.
When these environmental and loading histories exhibit recognizable incre-
ments such as cycles or repeated sequences, then life (endurance) is stated in
terms of the number of these increments endured prior to failure. Similar
recognizable increments seldom, if ever, occur in service. Thus, there is
seldom, if ever, a direct relationship between a well-defined laboratory test
life (endurance) and the ill-defined service operation life (endurance).
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Mechanical reliability is technically defined as the probability that a
given device, randomly selected from the population of all such devices, will
perform satisfactorily under certain specified service operation environmen-
tal and loading histories for at least an arbitrarily specified life (duration).
However, this technical definition for reliability is seldom practical (for
reasons that will be evident later). Rather, it is customary to compute a
lower 100(scp)% (one-sided) statistical confidence limit that allegedly
bounds the actual value for the metric pertaining to the pth percentile of
the presumed conceptual two-parameter life (endurance) or strength (resis-
tance) statistical distribution—where p is usually selected to be either 0.01 or
0.10 and the associated scp is usually selected to be 0.95 (see Supplemental
Topic 8.A).

8.3. CONCEPTUAL STATISTICAL MODEL FOR
FATIGUE FAILURE AND ASSOCIATED LIFE
(ENDURANCE) AND STRENGTH (RESISTANCE)
EXPERIMENT TEST PROGRAMS

We now present a conceptual statistical model for fatigue failure that osten-
sibly pertains to conventional laboratory data, but also applies in concept to
all duration-dependent mechanical modes of failure when the appropriate
analogies are made. Figure 8.1 depicts the PDF of the conceptual statistical
distribution that consists of all possible replicate fatigue life datum values
that could be generated by continually replicating the conduct of a quanti-
tative CRD experiment test program (Chapter 2) with a fixed value sa* for
its alternating stress amplitude sa. Note that the metric for this PDF is
loge( fnc), where fnc connotes failure number of cycles. Note in addition
that the traditional sa–loge( fnc) curve pertains to the median fatigue life.
The corresponding CDF is depicted in Figure 8.2. It also establishes the
values for loge[ fnc(pf )] that pertain to other probabilities of failure (pf ) of
specific interest, e.g., 0.01 and 0.99. In turn, a conceptual sa–loge[ fnc(pf )]
fatigue failure model, Figure 8.3, is developed when the respective
loge[ fnc(pf )] values of specific interest are augmented with corresponding
loge[ fnc(pf )] values pertaining to other values for sa*. However, extensive
fatigue test experience clearly indicates that the actual value for the variance
of the conceptual statistical distribution that consists of all possible replicate
loge( fnc) datum values increases markedly as sa* decreases, especially at
long fatigue lives. Thus, the presumption of homoscedasticity for a concep-
tual sa–loge[ fnc(pf )] fatigue failure model is statistically invalid—as it is for
all other mechanical modes of failure that are time dependent (duration
dependent). In contrast, this experience indicates that empirical scatter
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Figure 8.1 Example life (endurance) experiment test program that involves test-

ing replicate fatigue specimens at a specific alternating stress amplitude s�a. Each
replicate test is ideally conducted until failure occurs (which may not be practical).

Note the improper reversal of independent and dependent (random) variables for the

traditional method of plotting the median S–N curve for which we use the uncon-

ventional notation, sa–loge[ fnc(50)] model, where fnc(50) connotes median failure

number of cycles.

Figure 8.2 Schematic of the conceptual fatigue life CDF associated with Figure

8.1. Note that the conceptual fatigue life CDF pertains to the probability of failure,

pf, whereas reliability is stated in terms of the probability of survival, ps.
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bands faired to datum values that pertain to various time-dependent (dura-
tion-dependent) modes of failure (including fatigue) are almost always
approximately parallel when their width is stated in terms of stimulus levels
(alternating stress amplitudes) as in Figure 8.4. Accordingly, the notion that
the associated conceptual fatigue strength statistical distribution, Figure 8.5,
has a homoscedastic variance is physically credible. Finally, the conceptual
sa–loge[ fnc(pf )] fatigue failure model can be visualized as a surface in sa
(stimulus level), loge( fnc) (duration to failure), and pf (probability of failure)
space. See Figure 8.6.

8.4. LIFE (ENDURANCE) EXPERIMENT TEST
PROGRAMS

Given a mechanical mode of failure whose stimulus, duration-to-failure
model is illustrated in Figure 8.1, the conceptual statistical distribution
that consists of all possible replicate realization values for the random vari-
able (duration to failure) will exhibit (a) a heteroscedastic variance that
markedly increases as the stimulus level decreases and approaches a failure
initiation threshold, and (b) a PDF that is markedly skewed to the right.
Moreover, run-outs (viz., suspended tests) will occur when the test stimulus
level is (deliberately or inadvertently) selected to lie below the associated
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Figure 8.3 Conceptual sa–loge[ fnc( pf)] model that is based on a series of life

(endurance) experiment test programs conducted at several values for the alternating

stress amplitude s�a (Figure 8.1). All of the associated laboratory fatigue tests must

pertain to the same set of nominally identical test specimens and test conditions

(mean stress, notch configuration, environmental history, etc.).
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failure initiation threshold. A logarithmic scale for the test duration tends to
mitigate the PDF skewness problem somewhat (and thus is almost always
employed). Nevertheless, a proper statistical analysis must account for het-
eroscedastic datum values and for run-outs.

392 Chapter 8

Figure8.4 Experience demonstrates that sa–loge( fnc) fatigue experiment test pro-

grams almost always generate datum values whose faired scatter bands are approxi-

mately parallel when stated in terms of sa. Accordingly, we subsequently employ a

homoscedastic conceptual strength distribution to model fatigue behavior for all

loge( fnc
*) values of practical interest (Figure 8.5).

Figure 8.5 Schematic of the CRD pertaining to the conceptual fatigue strength

distribution associated with Figure 8.4. The actual values for percentiles of this

conceptual fatigue strength distribution, given the value for loge( fnc
*) of specific

interest, can be estimated by conducting a strength (resistance) experiment test pro-

gram (Section 8.5).
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8.4.1. Types of Life (Endurance) Data

8.4.1.1. Complete Data

All test items fail (no test suspensions), and the respective life (endurance)
datum values are known (schematically depicted by an X below). Complete
data occur only when the experiment test program stimulus level for each
test item exceeds its corresponding failure initiation level (threshold level):
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Figure 8.6 Schematic of the conceptual sa–loge[ fnc(pf)] fatigue model in three-

dimensional perspective. Massive fatigue testing is required to generate the estimated

sa–loge[ fnc( pf)] model that pertains to each specific set of test conditions that might

conceivably be regarded as practical.
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8.4.1.2. Complete Grouped Data

All test items fail (no test suspensions), but the respective life (endurance)
datum values are grouped in a histogram format so that the individual life
(endurance) datum values are unknown at the time of analysis. Complete
grouped data are most likely to occur when a standardized report form is
scanned to compile service failure data:

8.4.1.3. Censored Data with Type I Suspended Tests

All test items with Type I censoring either fail prior to a predetermined test
duration d* ( fnc*), or the test is suspended at this predetermined duration
d* ( fnc*). Note that Type I suspended tests occur only in statistically
planned experiment test programs:

8.4.1.4. Censored Data with Arbitrarily Suspended Tests

One or more tests in the experiment test program are arbitrarily suspended
(perhaps due to a test equipment problem or the need to run a test with a
higher priority):

Remark: Test equipment breakdown during very long experiment
test programs is surely foreseeable. Equipment breakdown pro-
blems can be mitigated in comparative test programs by employing
time blocks (and subsequently ignoring these time blocks if no
equipment breakdown occurs).
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8.4.1.5. Censored Data: The Four General Cases

(a) It is only known that the life (endurance) of the test item is less than some
specific value; (b) it is only known that the life (endurance) of the test item is
bounded by two specific values; (c) it is only known that the life (endurance)
of the test item is greater than some specific value; (d) the life (endurance) of
the test item is known.

8.4.1.6. Discussion

Type II (so-called item) censoring has deliberately been excluded from this
listing of types of life (endurance) data because it is very seldom practical in
mechanical testing. It requires the simultaneous testing of a single item in
each of ni test machines that are alleged to be nominally identical, or using a
single test fixture that allegedly exposes each of ni items to nominally iden-
tical stimulus levels, whereas Type I censoring typically pertains to sequen-
tial testing of ni items using a single test machine (and presuming invariant
test conditions during the entire experiment test program).

8.5. STRENGTH (RESISTANCE) EXPERIMENT TEST
PROGRAMS

Strength (resistance) experiment test programs are generally more practical
than life (endurance) experiment test programs for long-life reliability appli-
cations, but strength (resistance) experiment test programs typically require
considerably more test time to conduct. Accordingly, more attention must
be given to the statistical planning of a strength (resistance) experiment test
program so that the specimen allocation strategies employed in testing gen-
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erate a more precise statistical estimate of the actual value for the median of
the conceptual strength (resistance) distribution.

Remark: The CDF’s for all conceptual statistical distributions used
in the analysis of life (endurance) and strength (resistance) data are
similar near their respective medians and differ markedly only at
their extreme percentiles. Moreover, there is no practical way to
distinguish one CDF statistically from another at these extreme
percentiles. Accordingly, strength (resistance) estimates have tradi-
tionally pertained to medians. On the other hand, life (endurance)
estimates have traditionally pertained to (relatively) extreme per-
centiles, thus requiring the presumption that the actual conceptual
statistical distribution is known. But this presumption, if believed, is
either naive or foolish.

8.5.1. Strength (Resistance) Experiment Test Program
Strategies

8.5.1.1. Conventional Up-and-Down Test Method

The first test in the conventional up-and-down test method is conducted at
the ‘‘guestimated’’ stimulus level (e.g., alternating stress amplitude) that
hopefully corresponds to the actual value for the median of the presumed
normally distributed conceptual strength (resistance) distribution. Then, if
failure occurs before some preselected test duration d*, the second test is
conducted at a decreased stimulus level. However, if the first test item sur-
vives to this preselected test duration d*, then the second test is conducted
using an increased stimulus level. This strategy continues until all available
items have been tested. For purposes of test conduct simplification and the
corresponding use of statistical formulas and tables, the increment used to
decrease or increase the stimulus level is fixed and ideally selected to be
equal to the actual value for the standard deviation of the presumed nor-
mally distributed conceptual strength (resistance) distribution (which can
only be guestimated on the basis of preliminary testing or prior experience.)

The conventional up-and-down test method is illustrated below for the
example data given in ASTM D-3029-90, ‘‘Standard Test Methods for
Impact Resistance of Flat, Rigid Plastic Specimens by Means of a Tup
(Falling Weight),’’ in which the weight of the tup (dart) is decreased or
increased depending on the prior test outcome. (Predetermined test duration
d* is not relevant in this example.) An analogous test method pertains to a
tup (dart) of fixed weight dropped from a height that is either increased or
decreased depending on the prior test outcome.
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tup (dart)

weight (kg) test outcome code: X = failure; O = nonfailure

9 X

8 O X X X X

7 X O O X O O X X O

6 O O O O O

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

8.5.1.2. The Two-Point Strategy

Maximum likelihood analysis of the ASTM D-3029-90 example data indi-
cates that the five tests conducted with a dart weight of 6 kg have a negli-
gible effect on the statistical estimate of the actual value for the median of
the conceptual impact resistance distribution and its precision. Accordingly,
the two-point strategy was proposed to alleviate this statistically ineffective
test item allocation problem. In the two-point strategy, the conventional up-
and-down test method strategy is terminated as soon as both O’s and X’s
have been observed at two distinct stimulus levels. The test program then
continues with all future tests being conducted at only these two levels.
Considering the ASTM D-3029-90 up-and-down test method example
data, the two-point strategy gives:

tup (dart)

weight (kg) test outcome code: X = failure; O = nonfailure

9 X

8 O X X X X

7 X O O X O O X X O

6 O O – – –

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

in which the three specimens not tested at 6 kg (indicated by dashes) are
much more effectively tested at either 7 or 8 kg. [In fact, as discussed later,
an even more statistically effective tup (dart) weight can be calculated using
the minimum variance strategy.]

8.5.1.3. Conventional Small Sample Up-and-Down Test Method

An experiment test program that is conducted following the conventional
up-and-down test method usually involves at least 20 to 40 specimens,
whereas an experiment test program that is conducted following the con-
ventional small sample up-and-down test method usually involves only five
to 10 specimens. However, the conceptual strength (resistance) distribution
and its standard deviation must be presumed to be known to accomplish this
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sample size reduction. Accordingly, only the actual value for the median of
the presumed conceptual strength (resistance) distribution is estimated in
statistical analysis. The spacing between successive stimulus levels is also
fixed for the conventional small sample up-and-down test method. This
spacing is set equal to the presumed known (guestimated) value for the
standard deviation of the presumed conceptual strength (resistance) statis-
tical distribution. The nominal sample size for a conventional small sample
up-and-down test method program is established by counting only the last
response of the beginning sequence of like responses, and all of the remain-
ing responses. For example, given a conventional small sample up-and-
down experiment test program outcome of O O O O X O X O, the nominal
sample size is 5. Although, when employed to conduct fatigue tests, the
conventional small sample up-and-down test method strictly pertains to
estimating the actual value for the median of the conceptual endurance
limit distribution, it can also be used to estimate the actual value for the
median of the conceptual fatigue strength distribution at very long fatigue
lives, e.g., at 107 to 108 alternating stress cycles.

8.5.1.4. Minimum Variance Strategy

The spacing (increment) between successive stimulus levels is fixed in the
conventional small sample up-and-down test method. However, the mini-
mum variance methodology indicates that the stimulus level that most effec-
tively increases the statistical precision of the resulting estimate of the actual
value for the median of the presumed conceptual strength (resistance) dis-
tribution changes from test to test. Thus, as soon as a reasonably precise
estimate of the actual value for the median of the presumed conceptual
strength (resistance) distribution has been established, all subsequent stimu-
lus levels should be selected to maximize the statistical precision of the
resulting estimate of the actual value for the median of the presumed con-
ceptual strength (resistance) distribution. This strategy is also effective when
a conventional small sample up-and-down test method program is augmen-
ted by testing a few additional items to improve the statistical precision of
the final estimate of the actual value for the median of the presumed con-
ceptual strength (resistance) distribution.

8.5.2. Preliminary Strength (Resistance) Experiment
Test Program Strategies (Little, 1990)

When the number of items available for testing is quite limited or costly, or
when the time available for testing is very limited, and when there is little if
any information available to guestimate the initial stimulus level to begin
up-and-down testing, the strategies used in preliminary testing should be
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particularly efficient and effective. These strategies should either markedly
reduce the number of test items or the amount of test time required to home
in on the actual value for the median of the presumed conceptual strength
(resistance) distribution, thereby permitting the remaining test items to be
allocated to stimulus levels that are statistically more effective in estimating
the actual value for the median of the presumed conceptual strength (resis-
tance) distribution. Two examples follow which pertain to an (unpublished)
unique bolt pull-through fatigue experiment test program on a composite
material that is markedly stronger in the longitudinal direction than in the
transverse direction. The respective stimulus levels are stated in terms of
force (load) rather than stress because one of the main objectives of the
experiment test program was to establish the mode of failure and the asso-
ciated governing stress expression(s) for each different composite material
tested. The third example strategy is intended to reduce the number of tests
required to obtain a change in response from X to O or vice versa.

8.5.2.1. Example One: Run-Up Preliminary Test Strategy
(Table 8.1)

When the number of test items is severely limited or are extremely costly, the
run-up preliminary test strategy is appropriate in which a single test item is
used to begin to home in on the actual value for the median of the presumed
conceptual strength (resistance) distribution. The first test is conducted with
its stimulus level guestimated to be well below the actual value for the
median of the presumed conceptual strength (resistance) distribution. If
the test item does not fail before predetermined test duration d*, it is thor-
oughly examined and then retested at an increased stimulus level. This
strategy continues until the test item eventually fails. (If sample size, test
time, and cost constraints permit, this failure stimulus level could be repli-
cated and the data for the run-up item relegated to ancillary information
status because of potential damage or potential coaxing effects.) The fixed
increment between the successive stimulus levels for these run-up tests
should be relatively large, so that relatively few run-up test increments are
required to cause the first failure. Accordingly, this run-up increment must
be markedly reduced before beginning to employ the up-and-down test
method strategy. The half-interval strategy is conveniently used to reduce
this increment while continuing to home in on the actual value for the
median of the presumed conceptual strength (resistance) distribution, viz.,
the increment between successive tests is reduced by one-half of the differ-
ence in adjacent stimulus levels with X and O outcomes. Once the stimulus
level increment has been reduced to its preselected minimum level using the
half-interval strategy, the up-and-down test method strategy is adopted and
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Table 8.1 Example One: Run-Up Preliminary Test Strategy

Preliminary test planning choices:

Initial alternating force: 50 lbs

Run-up increment: 25 lbs

Minimum practical interval value: 5% of est[ fað50Þ�

Test data:

X ¼ failure before 107 cycles; O ¼ run-out (did not fail, DNF)

Test no.

Alternating

force

ð faÞ, lbs Test outcome Test strategy

1a 50 O Test specimen did not fail. Thus, the

unfailed specimen is retested with

fa ¼ 50þ 25

1b 75 O Test specimen did not fail. Thus,

this unfailed specimen is retested

with fa ¼ 75þ 25

1c 100 O Test specimen did not fail. Thus,

this unfailed specimen is retested

with fa ¼ 100þ 25

1d 125 X Test specimen failed. Thus, the half-

interval strategy begins.

Accordingly, the next specimen is

tested with fa ¼ 125� ð25=2Þ
2 112.5 O Test specimen did not fail. Thus, the

next specimen is tested with

fa ¼ 112:5þ ð12:5=2Þ. Note that this

new increment was approximately

equal to its preselected minimum

practical value. Accordingly, the up-

and-down test method strategy

begins

3 118.75 X Test specimen failed. Thus, the next

specimen is tested with

fa ¼ 118:75� 6:25
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continued until a preselected nominal sample size is reached (or until some
other criterion is satisfied). The minimum variance strategy is then used to
allocate all subsequent specimens to their statistically most effective stimulus
levels.

8.5.2.2. Example Two: Run-Down Preliminary Test Strategy
(Table 8.2)

The run-down preliminary test strategy is recommended to begin to home in
on the actual value for the median of the presumed conceptual strength
(resistance) distribution when ample test items are available and it is desired
to limit the test time as much as practical. The failure time (endurance)
datum values can also be used to decide when the change to the half-interval
strategy is appropriate. For example, the fatigue test specimen tested at
fa ¼ 75 lbs in Table 8.2 failed just before the preselected test duration
d* ¼ fnc* ¼ 107 load cycles was reached. Hence, the third specimen could
have been tested with an alternating force fa equal to 62.5 lbs rather than
strictly following the run-down strategy.

This experiment test program followed the Example One test program
and employed the same composite material and test fixture, but the test
specimen was oriented in the transverse direction rather than in the long-
itudinal direction. Thus, the initial alternating force of 100 lbs was expected
to be much larger than the actual value for the median of its conceptual
failure load distribution.

8.5.2.3. Example Three: Wide-Spacing Preliminary Test Strategy
(Little and Thomas, 1993)

When sufficient prior testing has been conducted to assure a reasonably
precise estimate of the actual value for the standard deviation of the pre-
sumed conceptual strength (resistance) distribution, an effective preliminary
test strategy is to use a stimulus level spacing equal to twice the estimated
actual value for the standard deviation in the run-up or run-down tests used
to begin the experiment test program, and then to change to the conven-
tional small sample up-and-down test method strategy with a stimulus level
spacing equal to the estimated actual value for the standard deviation as
soon as the test outcome changes character from X to O, or vice versa.
Then, after a few up-and-down tests have been conducted, the statistical
precision of the final estimate of the actual value for the median of the
presumed conceptual strength (resistance) distribution can be improved by
subsequently employing the minimum variance strategy to allocate the
remaining specimens to their statistically most effective stimulus levels.
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Table 8.2 Example Two: Run-Down Preliminary Test Strategy

Preliminary test conduct choices:

Initial alternating force: 100 lbs

Run-down increment: 25 lbs

Minimum practical interval value: 5% of est[ fað50Þ�

Test data:

X ¼ failure before 107 cycles; O ¼ run-out (did not fail, DNF)

Test no.

Alternating

force

ð faÞ, lbs Test outcome Test strategy

1 100 X Test specimen failed. Thus, the next

specimen is tested with

fa ¼ 100� 25

2 75 X Test specimen failed. Thus, the next

specimen is tested with fa ¼ 75� 25

3 50 O Test specimen did not fail. Thus, the

half-interval strategy begins.

Accordingly, the next specimen is

tested with fa ¼ 50þ ð25=2Þ
4 62.5 X Test specimen failed. Thus, the next

specimen is tested with

fa ¼ 62:5� ð12:5=2Þ
5 56.25 O Test specimen did not fail. Thus, the

next specimen is tested with

fa ¼ 56:25þ ð6:25=2Þ. Note that this

new increment was approximately

equal to its preselected minimum

practical value. Accordingly, the up-

and-down test method strategy

begins

6 59.375 X Test specimen failed. Thus, the next

specimen is tested with

fa ¼ 59:375� 3:125
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8.6. CONCEPTUAL STATISTICAL DISTRIBUTIONS FOR
MODELING OUTCOMES OF LIFE (ENDURANCE)
AND STRENGTH (RESISTANCE) EXPERIMENT
TEST PROGRAMS

The outcomes of life (endurance) and strength (resistance) experiment test
programs are modeled by conceptual statistical distributions that are actu-
ally mathematical abstractions. The conceptual statistical distribution that is
properly employed in modeling, if any, is unknown for mechanical modes of
failure. Moreover, even when some conceptual statistical distribution is
widely alleged to model a given mechanical mode of failure, alternative
conceptual statistical distributions should always be employed in analysis
for comparative purposes. It is, therefore, important to understand the
similarities and the differences among alternative conceptual life and
strength statistical distributions.

8.7. CONCEPTUAL LIFE (ENDURANCE)
DISTRIBUTIONS

The two-parameter conceptual loge–normal and Weibull distributions are
most commonly used to model life (endurance) datum values, but loge–
normal datum values are seldom analyzed directly. Rather, the natural
logarithms of the respective life (endurance) datum values are first calcu-
lated and then these transformed datum values are presumed to have been
randomly selected from a (two-parameter) conceptual normal distribution.
In turn, following appropriate analysis, the exponentials (antilogarithms) of
the particular estimated values of specific interest are evaluated. Weibull
datum values should be analyzed similarly, viz., the natural logarithms of
the respective life (endurance) datum values should be calculated and then
these transformed datum values should be presumed to have been randomly
selected from a conceptual (two-parameter) smallest-extreme-value distribu-
tion. In turn, following appropriate analysis, the exponentials (antiloga-
rithms) of the particular estimated values of specific interest should be
evaluated.

8.7.1. Conceptual Two-Parameter Weibull Distribution

The CDF for the conceptual two-parameter Weibull can be written as

Fð fncÞ ¼ 1� exp
� fnc

cdp1

� �cdp2
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in which fnc, the failure number of cycles, is the life (endurance) metric. The
inverse CDF expression is

y ¼ loge � loge 1� F fncð Þ½ �� � ¼ cdp2 � loge fncð Þ � loge cdp1ð Þ �
¼ aþ b � loge fncð Þ

Accordingly, the conceptual two-parameter Weibull CDF plots as a straight
line on Weibull probability paper with ordinate y and abscissa loge( fnc),
where y is a function of pf ¼ F( fnc) given by the inverse CDF expression.

8.7.2. Corresponding Conceptual (Two-Parameter)
Smallest-Extreme-Value Distribution

The CDF for the corresponding conceptual (two-parameter) smallest-
extreme-value distribution is written as

F logeð fncÞ
 � ¼ 1� exp� exp

logeð fncÞ � clp

csp

	 


in which loge( fnc) is the life (endurance) metric rather than fnc. The corre-
sponding inverse CDF expression is

y ¼ loge � loge 1� F logeð fncÞ
 �� �� � ¼ logeð fncÞ � clp

csp

¼ aþ b � logeð fncÞ
Accordingly, when csp ¼ (1/cdp2) and clp ¼ loge(cdp1) the conceptual (two-
parameter) smallest-extreme-value distribution pertaining to the (trans-
formed) random variable loge(FNC) is identical to the conceptual two-
parameter Weibull distribution pertaining to the random variable FNC.
Observe, however, that the clp and the csp for the conceptual (two-para-
meter) smallest-extreme-value distribution have intuitive geometric interpre-
tation because its life (endurance) metric loge( fnc) is plotted along a linear
abscissa.

8.7.3. Conceptual Three-Parameter loge^Normal and
Weibull Distributions

The addition of a third conceptual parameter in the conceptual two-para-
meter loge–normal and Weibull distributions provides their respective
CDF’s more curve-fitting versatility relative to describing life (endurance)
datum values and thus has led to the unwarranted popularity of three-
parameter distributions. The third conceptual parameter, the so-called con-
ceptual minimum life parameter, cmlp, is absolutely fictitious relative to its
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physical interpretation. Accordingly, three-parameter distribution cannot be
recommended for use in mechanical reliability applications.

Perspective: It is important to understand that no conceptual sta-
tistical distribution, regardless of the number or the nature of its
parameters, ever exactly models life (endurance) or strength (resis-
tance) datum values for any mechanical mode of failure. All con-
ceptual statistical distributions are mathematical abstractions.

8.8. CONCEPTUAL LIFE (ENDURANCE)
DISTRIBUTIONS WITH A CONCOMITANT
INDEPENDENT VARIABLE

Any conceptual life (endurance) distribution that employs the concomitant
independent variable sa to augment its clp can be used to construct a con-
ceptual sa–loge[ fnc(pf )] model. For example, the conceptual (two-para-
meter) smallest-extreme-value distribution can be stated as

F ½logeð fncÞ� ¼ 1� exp� exp
loge fncð Þ � clp0� clp1 � sa � clp2 � s2a

csp

	 


in which its clp is replaced by the quadratic (modal) expression:

clp ¼ clp0þ clp1 � sa þ clp2 � s2a
However, this example conceptual sa–loge[ fnc(pf )] model is not physically
credible for long-life fatigue applications because it presumes a homosce-
dastic fatigue life distribution, viz., its csp does not increase appropriately as
loge[ fnc(50)] increases. Although modifications of analogous conceptual sa–
loge[ fnc(pf )] models have been proposed to account for the heteroscedasti-
city of long-life fatigue datum values, none can be recommended.

A conceptual sa–loge[ fnc(pf )] model that employs a homoscedastic
strength distribution, which is physically much more credible, is based on
the preponderance of sa–loge( fnc) data with extensive replication. For exam-
ple, the conceptual (two-parameter) smallest-extreme-value distribution can
be stated as

F sað Þ ¼ 1� exp� exp

sa � clp0� clp1 � loge fncð Þ � clp2 � loge fncð Þ �2
csp

( )

An analogous alternative sa–loge[ fnc(pf )] model can be constructed using
the conceptual (two-parameter) loge–normal distribution. Moreover, each
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of these alternative sa–loge[ fnc(pf )] models can (a) be either linear or quad-
ratic, and (b) employ either a linear or a logarithmic alternating stress
amplitude. Thus, eight different alternative sa–loge[ fnc(pf )] models should
be examined in mechanical reliability analyses.

8.9. CONCEPTUAL STRENGTH (RESISTANCE)
DISTRIBUTIONS

The conceptual (two-parameter) logistic distribution is sometimes used to
analyze strength (resistance) datum values. Its symmetrical PDF is very
similar to the conceptual (two-parameter) normal distribution PDF, but
its longer tails have greater probability content. The conceptual (two-para-
meter) logistic distribution CDF can be written as

F sð Þ ¼ 1þ exp
� s� clp

csp

� �2
64

3
75

�1

Because of its longer tails, it serves as an excellent adjunct to the conceptual
(two-parameter) normal distribution for purposes of comparing the respec-
tive lower 100(scp)% (one-sided) statistical confidence limits based on alter-
native statistical models, just as does the conceptual (two-parameter)
smallest-extreme-value distribution, which is skewed to the left and its mir-
ror image, the conceptual (two-parameter) largest-extreme-value distribu-
tion, which is skewed to the right. This latter distribution can be written as

F sð Þ ¼ exp� exp
� s� clp

csp

� �

These four CDF’s, with both linear and logarithmic abscissa scales, generate
eight alternative analyses for estimating the actual value for the median (or
other percentiles) of the presumed conceptual strength (resistance) distribu-
tion of specific interest.

Exercise Set 1

These exercises are intended to familiarize you with the PDF’s and the
corresponding CDFs for the alternative conceptual (two-parameter) life
(endurance) and strength (resistance) distributions presented in this section.

First, given the analytical expression for each of the CDF’s in
Exercises 1 through 6 below, develop analytical expressions for the PDF,
mean, median, mode, and variance. (See Supplemental Topic 8.D to check
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results.) Then tabulate x, f(x), and y(p) for F(x) ¼ p ¼ 0.001, 0.005, 0.01,
0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.975, 0.99, 0.995,
and 0.999. Finally, using your tabulation of p and y(p), construct a sheet of
probability paper for each of these conceptual (two-parameter) life (endur-
ance) and strength (resistance) distributions with both p and y(p) plotted
along its respective nonlinear and linear ordinates and with either x or
loge(x) (as appropriate) plotted along its linear abscissa.

1. Given the conceptual (two-parameter) normal distribution CDF,

F xð Þ ¼ 1ffiffiffiffiffiffi
2�

p � csp

ð x
�1

exp � 1

2

u� clp

csp

� �2
" #

du

in which u is the dummy variable of integration. Plot its PDF
when the actual values for its mean and variance are both equal
to 100. In turn, plot its corresponding CDF both on normal
probability paper and on rectilinear graph paper (with a linear
p scale along its ordinate and a linear x scale along its abscissa).

2. Given the conceptual (two-parameter) smallest-extreme-value
distribution CDF:

F xð Þ ¼ 1� exp� exp

x� clp

csp

� �

Plot its PDF when the actual values for its mean and variance are
both equal to 100. In turn, plot its corresponding CDF both on
smallest-extreme-value probability paper and on rectilinear graph
paper (with a linear p scale along its ordinate and a linear x scale
along its abscissa).

3. Given the conceptual (two-parameter) largest-extreme-value dis-
tribution CDF:

F xð Þ ¼ exp� exp
� x� clp

csp

� �

Plot its PDF when the actual values for its mean and variance are
both equal to 100. In turn, plot its corresponding CDF both on
largest-extreme-value probability paper and on rectilinear graph
paper (with a linear p scale along its ordinate and a linear x scale
along its abscissa).
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4. Given the conceptual (two-parameter) logistic distribution CDF:

F xð Þ ¼ 1þ exp
� x� clp

csp

� �2
64

3
75

�1

Plot its PDF when the actual values for its mean and variance are
both equal to 100. In turn, plot its corresponding CDF both on
logistic probability paper and on rectilinear graph paper (with a
linear p scale along its ordinate and a linear x scale along its
abscissa).

5. Given the conceptual two-parameter Weibull distribution CDF:

F xð Þ ¼ 1� exp
� x

cdp1

� �cdp2

Plot its PDF when the actual values for its mean and variance are
both equal to 100 (cdp1 ¼ 104.30376808 and cdp2 ¼
12.15343419). In turn, plot its corresponding CDF on smallest-
extreme-value probability paper (with a linear x scale along its
abscissa), on Weibull probability paper [with a linear loge(x) scale
along its abscissa], and on rectilinear graph paper (with a linear p
scale along its ordinate and a linear x scale along its abscissa).

6. Given the conceptual two-parameter log–normal distribution
CDF:

FðxÞ ¼ 1ffiffiffiffiffiffi
2�

p � cdp2

ðx
0

1

u
exp � 1

2

logeðuÞ � logeðcdp1Þ
cdp2

	 
2( )
du

in which u is the dummy variable of integration. Plot its PDF
when the actual values for its mean and variance are both equal
to 100 (cdp1 ¼ 99.50371902 and cdp2 ¼ 0.099751345). In turn,
plot its corresponding CDF both on normal probability paper
(with a linear x scale along its abscissa), on loge–normal prob-
ability paper [with a linear loge(x) scale along its abscissa], and on
rectilinear graph paper (with a linear p scale along its ordinate
and a linear x scale along its abscissa).

Exercise Set 2

These exercises supplement Exercise Set One and are intended to make spe-
cific comparisons between alternative conceptual life (endurance) and
strength (resistance) CDF’s to enhance your perspective. For each of the
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required plots, let p cover the range from 0.001 to 0.999 using the values
enumerated in Exercise Set One.

1. Given a conceptual (two-parameter) smallest-extreme-value dis-
tribution with the actual values for both its mean and variance
equal to 100, plot its CDF on normal probability paper. Then,
given a conceptual (two-parameter) normal distribution with the
actual values for both its mean and variance equal to 100, plot its
CDF on smallest-extreme-value probability paper.

2. Given a conceptual (two-parameter) largest-extreme-value distri-
bution with the actual values for both its mean and variance
equal to 100, plot its CDF on normal probability paper. Then,
given a conceptual (two-parameter) normal distribution with the
actual values for both its mean and variance equal to 100, plot its
CDF on largest-extreme-value probability paper.

3. Given a conceptual (two-parameter) logistic distribution with the
actual values for both its mean and variance equal to 100, plot its
CDF on normal probability paper. Then, given a conceptual
(two-parameter) normal distribution with the actual values for
both its mean and variance equal to 100, plot its CDF on logistic
probability paper.

4. Given a conceptual two-parameter Weibull distribution with the
actual values for both its mean and variance equal to 100, plot its
CDF on loge–normal probability paper [with a linear loge(x)
scale along its abscissa]. Then, given a conceptual two-parameter
loge–normal distribution with both its mean and variance equal
to 100, plot its CDF on Weibull probability paper [with a linear
loge(x) scale along its abscissa].

5. Given a conceptual two-parameter Weibull distribution with the
actual values for both its mean and variance equal to 100, plot its
CDF on normal probability paper (with a linear x scale along its
abscissa). Then, given a conceptual two-parameter loge–normal
distribution with both its mean and variance equal to 100, plot its
CDF on smallest-extreme-value probability paper (with a linear x
scale along its abscissa).

8.10. QUANTITATIVE ANALYSES FOR THE OUTCOMES
OF LIFE (ENDURANCE) AND STRENGTH
(RESISTANCE) EXPERIMENT TEST PROGRAMS

Only the maximum likelihood (ML) methodology is sufficiently versatile to
deal with the outcomes of both statistically planned and ad hoc experiment
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test programs. This methodology, coupled with the associated likelihood
ratio test, provides the backbone of mechanical reliability analysis. We pre-
sent several examples of quantitative ML analyses in this section. (Recall,
however, that the fundamental statistical abstraction of a continually repli-
cated experiment test program is obscure for ad hoc experiment test pro-
grams.)

8.11. QUANTITATIVE MAXIMUM LIKELIHOOD
ANALYSIS

Likelihood is analogous to probability. Consider a random variable X
whose PDF is properly stated as f(x given the respective cdp’s). Then, for
any collection of ndv values of specific interest for x, the joint PDF g for
these xi’s is stated as

gðx1; x2; . . . ; xndv given the respective cdp’sÞ

¼
Yndv
i¼1

f ðxi given the respective cdp’sÞ

Note that the xi’s are analytical parameters and the actual values for the
respective cdp’s must be known. In contrast, for the algebraically identical
likelihood expression, the xi’s are known (because the experiment test pro-
gram has been conducted and the xi’s are the resulting datum values),
whereas the actual values of the respective cdp’s are unknown and are,
therefore, regarded as analytical parameters. Accordingly, in ML analysis,
the actual values for the respective cdp’s are estimated by (analytically or
numerically) establishing the particular set of cdp’s that maximizes the like-
lihood (probability) of obtaining (observing) the experiment test program
datum values.

Given datum values randomly selected from a conceptual two-para-
meter statistical distribution whose metric range does not depend on the
actual values of its cdp’s, the ML estimator is asymptotically unexcelled, viz.,
ML estimators (a) are asymptotically unbiased, (b) have minimum variance,
and (c) are normally distributed. However, for experiment test programs
with practical sizes, these extraordinary statistical behaviors seldom prevail.
Accordingly, simulation-based empirical sampling distributions and simula-
tion-based statistical bias corrections must be generated for each experiment
test program of specific interest. (Simulation-based empirical sampling dis-
tributions and simulation-based statistical bias corrections for ML analyses
are discussed and illustrated in Supplemental Topic 8.D.)

Because it is analytically expedient to work with a sum rather than a
product, it is traditional in ML analysis to maximize loge(likelihood) rather
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than likelihood. Thus, ML estimation for statistical models with ncdp con-
ceptual distribution parameters traditionally involves a search over ncdp-
dimensional conceptual parameter space for the global maximum of the
loge(likelihood). Given the ML estimates of the actual values for the respec-
tive conceptual distribution parameters, the second partial derivatives of the
loge(likelihood) expression, evaluated at the respective est(cdp) values, can
be used to compute the associated ncdp by ncdp estimated asymptotic covar-
iance matrix. In turn, this matrix can be used to compute, for example, a
classical lower 100(scp)% (one-sided) asymptotic statistical confidence limit
that allegedly bounds the actual value for the metric that pertains to the pf th

percentile of the presumed conceptual life (endurance) distribution of spe-
cific interest. [However, it should be remembered that a statistical estimate
of the actual value for the metric pertaining to pf equal to 01 (or smaller) is
markedly dependent on the presumed CDF, whereas a statistical estimate of
the actual value for the metric pertaining to pf equal to 50 (the median) is
relatively insensitive to the presumed CDF.]

Convergence problems for numerical maximization procedures
increase markedly as ncdp increases. Moreover, the loge(likelihood) surface
in ncdp-dimensional conceptual parameter space is often so flat in the vicinity
of its apparent maximum that classical 100(scp)% (two-sided) asymptotic
statistical confidence intervals are too wide to be practical. Thus, while ML
analysis is technically unbounded relative to the number of parameters that
can be included in the conceptual statistical distribution (model), common
sense dictates that the number of est(cdp’s) be kept to a minimum.

Bartlett’s likelihood ratio (LR) test statistic should be used to examine
the statistical adequacy of each proposed conceptual statistical model, just
as Snedecor’s central F test statistic should be used to test the statistical
adequacy of a conceptual linear regression model. Suppose the adequacy of
a conceptual two-parameter statistical model is to be tested versus an alter-
native conceptual three-parameter statistical model. Then, the null hypoth-
esis is that the conceptual two-parameter statistical model is correct,
whereas the alternative hypothesis is that the conceptual three-parameter
statistical model is correct. When ML analyses are conducted for these
alternative models, the respective two estimated values for the maximized
[loge(likelihood)]’s establish the experiment test program data-based realiza-
tion value for Bartlett’s LR test statistic, viz.,

Bartlett’s LR test statistic ¼ �2 � loge
estðMLÞncp¼2

estðMLÞncp¼3

 !

¼ 2 � loge estðMLÞncp¼3

h in
�loge estðMLÞncp¼2

h io
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Then, under continual replication of the experiment test program the respec-
tive data-based realization values for Bartlett’s LR test statistic asymptoti-
cally generate Pearson’s central �2

nsdf¼3�2¼1 conceptual sampling distribution.
However, in general, Bartlett’s LR test statistic is expressed as

Bartlett’s LR test statistic ¼ �2 � loge
estðMLÞncpHn

estðMLÞncpHa

 !

¼ 2 � loge estðMLÞncpHa

h i
� loge estðMLÞncpHn

h in o

Then, under continual replication of the experiment test program the respec-
tive data-based realization values for Bartlett’s LR test statistic asymptoti-
cally generate Pearson’s central �2

nsdf¼ncpHa
�ncpHn

conceptual sampling
distribution. (A numerical example of testing the adequacy of a proposed
statistical model using Bartlett’s LR test is found in Supplemental Topic 8.F.)

Both the engineering and statistics literature is sadly deficient in terms
of proposing alternative conceptual reliability models and then comparing
the respective analyses. Nevertheless, all reasonable alternative models
should be employed in statistical analysis and an engineering decision
should be made only after comparing the respective analyses.

Bartlett’s LR test statistic can also be used to compute asymptotic
statistical confidence intervals that are viable alternatives to classical asymp-
totic statistical confidence intervals. Accordingly, Bartlett’s LR test is the
most versatile and useful statistical tool available in mechanical reliability
analysis.

8.12. QUANTITATIVE MAXIMUM LIKELIHOOD
EXAMPLES

We now present four examples of quantitative ML analyses. The first exam-
ple pertains to ML analysis of datum values generated by a series of inde-
pendent strength (resistance) tests that were conducted with the same stress
(stimulus). The second example pertains to ML analysis of datum values
generated in a series of independent life (endurance) tests with Type I cen-
soring and presumes that these datum values were randomly selected from a
conceptual two-parameter Weibull distribution. These first two examples
are intended to illustrate the fundamentals of ML analysis. In contrast,
the last two examples are intended to illustrate typical applications. The
third example pertains to the outcome of a sa–loge( fnc) experiment test
program with Type I censoring, whereas the fourth example pertains to
the outcome of a strength (resistance) experiment test program that was
conducted using the up-and-down test strategy.
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Comparative ML analyses are presented in Section 8.13. These ana-
lyses can be used either to establish statistically whether or not treatment
effects (or batch-to-batch effects) exist or whether or not the presumed
conceptual model is statistically adequate to explain the observed experi-
ment test program datum values. (Recall that in contrast to quantitative
analyses, statistical bias corrections are not of paramount importance in
comparative analyses.)

8.12.1. Example One: ML Analysis for Outcome of a
Strength (Resistance) Experiment Test Program

Consider the outcome of a strength (resistance) experiment test program
that consists of nst independent strength (resistance) tests conducted at the
same stress (stimulus) level. Since each test item has a priori the same
(unknown) probability ps of surviving a predetermined duration d*, each
of the respective strength (resistance) tests is statistically viewed as being a
binomial trial. Next, let y ¼ 1 connote that the test item survived some pre-
determined duration d* and let y ¼ 0 connote that the test item failed prior
to duration d*. Then, the conceptual joint PDF for the respective nst inde-
pendent strength (resistance) tests can be written as

conceptual joint PDF ¼ nst!

nisð Þ! nst � nisð Þ!
Ynst
i¼1

psyi ð1� psÞð1� yiÞ

¼ nst!

nisð Þ! nst � nisð Þ! ps
nisð1� psÞ nst � nisð Þ

where nis is the number of test items that survived the predetermined dura-
tion d*, viz., the number of yi’s that are equal to 1, and ps is the fixed
probability of surviving for at least the predetermined duration d* in each
respective reliability test. This conceptual joint PDF is subsequently reinter-
preted, without analytical change, as the likelihood expression, viz.,

likelihood ¼ nst!

nisð Þ! nst � nisð Þ! ps
nis ð1� psÞ nst � nisð Þ

Although this product expression for likelihood is directly amenable to
numerical maximization, analytical maximization procedures have tradi-
tionally dominated. Accordingly, the product expression for likelihood is
converted into a summation expression for loge(likelihood), viz.,

logeðlikelihoodÞ ¼ nis logeðpsÞ þ nst � nisð Þ loge 1� psð Þ �

Mechanical Reliability Fundamentals 413

TLFeBOOK



in which the nonessential factorial expression has been ignored. [Recall that
the natural logarithm is a monotonic transformation. Thus, the likelihood
and the loge(likelihood) reach their respective maximums simultaneously.]

The maximum value of the loge(likelihood) is obtained by equating the
derivative of the loge(likelihood) expression with respect to ps equal to zero,
viz.,

d loge likelihoodð Þ �
dðpsÞ ¼ 0 ¼ nis

ps
� nst � nis

1� ps

which, when solved analytically for ps, yields the ML estimate:

ML est psð Þ ¼ nis
nst

This ML estimate clearly agrees with our intuition. Nevertheless, it is criti-
cized for allowing estimates of the actual value for ps to be equal to either
zero or one.

We now establish an intuitive 100(scp)% (two-sided) statistical con-
fidence interval that allegedly includes the actual value for the fixed prob-
ability of survival, ps, in each respective reliability test. First, however, we
revise our notation to conform to a generic 100(scp)% (two-sided) statistical
confidence interval pertaining to a series of binomial trials. Accordingly, nst
now becomes nbt, the number of binomial trials; nis now becomes nfo, the
number of favorable outcomes; and ps now becomes pfo, the fixed prob-
ability of a favorable outcome in each independent binomial trial. The
intuitive way to compute a 100(scp)% (two-sided) statistical confidence
interval that allegedly includes the actual value for the pfo is to compute
two related probability values, one so low that the probability of observing
nfo or more favorable outcomes in nbt binomial trials is equal to [(1 � scp)/
2], and one so high that the probability of observing nfo or fewer favorable
outcomes in nbt binomial trials is also equal to [(1 � scp)/2]. Then, the
statistical confidence probability that the actual value of conceptual bino-
mial probability pfo lies in the interval from pfolow to pfohigh is equal to
{1 � [(1 � scp)/2] � [(1 � scp)/2]} ¼ scp. Microcomputer program
IBPSCI (intuitive binomial probability statistical confidence interval) calcu-
lates this intuitive 100(scp)% (two-sided) statistical confidence interval as
[0.4439, 0.9748] when the scp is selected to be equal to 0.95. For comparison,
the corresponding LR-based 95% (two-sided) statistical confidence interval
(Figure 8.7) is [0.5006, 0.9636].

Remark: See Natrella (1963) for an analogous 100(scp)% (two-
sided) statistical confidence interval that is shorter than our intui-
tive 100(scp)% (two-sided) statistical confidence interval.
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Classical 100(scp)% (two-sided) statistical confidence intervals are
computed using the estimated asymptotic covariance matrix. The individual
elements of the estimated asymptotic covariance matrix prior to its inversion
are negatives of the second and mixed partial derivatives of the loge(likeli-
hood) expression with respect to the conceptual distribution parameters.
For the discrete (one-parameter) conceptual binomial distribution, this esti-
mated asymptotic covariance matrix has a single element, viz., the variance
of the asymptotic conceptual sampling distribution that consists of all pos-
sible replicate realization values for the statistic [est( pfo)]. Thus, est{var[-
est( pfo)]} is the negative of the reciprocal of the second derivative of the
loge(likelihood) with respect to pfo. Accordingly, we first take the second
derivative of the generic logelikelihood expression with respect to pfo, viz.,

d2 loge likelihoodð Þ �
dð pfoÞ2 ¼ � nfo

pfo2
� nbt � nfo

ð1� pfoÞ2

and then we evaluate this second derivative expression in theory at pfo.
However, because pfo is unknown, this second derivative expression must
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C> IBPSCI

Input the number of binomial trials of specific interest

10

Input the number of favorable outcomes of specific interest

8

Input the statistical confidence probability of specific interest in per
cent (integer value)

95

The intuitive 95% (two-sided) statistical confidence interval that alleg-
edly includes the actual value for the pfo is [0.4439, 0.9748].
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be evaluated by substituting est( pfo) ¼ nfo/nbt for pfo. This substitution
gives

d2 loge likelihoodð Þ �
dð pfoÞ2 ¼ � nbt

estð pfoÞ½1� estð pfoÞ�

Finally, we take the inverse of the negative of this second derivative expres-
sion to generate the desired estimated variance expression, viz.,

ML estfvar½estð pfoÞ�g ¼ est pfoð Þ 1� est pfoð Þ½ �
nbt

Comparing this estimated asymptotic variance expression to the cor-
responding exact variance expression developed in Supplemental Topic 3.B,
we see that it becomes exact as nbt increases without bound, viz., when
est(pfo) ¼ pfo. In turn, using the conceptual (two-parameter) normal distri-
bution asymptotic approximation to the conceptual (one-parameter) bino-
mial distribution (Figure 3B.2), we compute the classical 95% (two-sided)
asymptotic statistical confidence interval that allegedly includes the actual
value for the pfo as
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C> LRBBPSCI

Input the number of binomial trials of specific interest

10

Input the number of favorable outcomes of specific interest

8

Input the statistical confidence probability of specific interest in per
cent (integer value)

95

The LR 95% (two-sided) asymptotic statistical confidence interval
that allegedly includes the actual value for the pfo is [0.5006, 0.9636].
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0:8� 1:96
ð0:8Þð0:2Þ

10

� �1=2

; 0:8þ 1:96
ð0:8Þð0:2Þ

10

� �1=2
" #

¼ ½0:5521; 1:0479�

Since the maximum actual value of the pfo is 1.0 by definition, the concep-
tual (two-parameter) normal distribution asymptotic approximation to the
(one-parameter) binomial distribution is clearly unacceptable for the small
number of replicate tests in our numerical example.

Remark: This elementary example clearly illustrates that alternative
100(scp)% (two-sided) statistical confidence intervals can differ
markedly. Accordingly, good statistical practice requires that alter-
native intervals be computed and compared.
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Figure 8.7 The loge(likelihood) for nst ¼ 10 independent strength (resistance)

tests with nis ¼ 8 test items surviving these nst strength (resistance) tests, plotted

versus all alternative possible values for the probability of surviving, ps.

Microcomputer program LRBBPSCI employs the numerical likelihood ratio (LR)

method to establish the respective limits of the 95% (two-sided) asymptotic statistical

confidence interval that allegedly includes the actual value for ps. Recall that under

continual replication of the experiment test program the respective realizations

values for the maximized loge(likelihood) statistic asymptotically generate

Pearson’s central �2
nsdf¼1 conceptual sampling distribution.
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8.12.2. Example Two: ML Analysis for Outcome of a Life
(Endurance) Experiment Test Program with
Type I Censoring, Presuming Weibull Datum
Values

Consider the outcome of a life (endurance) experiment test program such
that nf test items failed and ns test items were Type I censored (suspended) at
snc ¼ snc*. Suppose it is presumed that the respective datum values were
randomly selected from a conceptual two-parameter Weibull distribution
whose CDF is expressed as

F fncð Þ ¼ 1� exp
� fnc

cdp1

� �cdp2

The corresponding conceptual PDF is then expressed as

f ð fncÞ ¼ cdp2

cdp1cdp2
� fncðcdp2� 1Þ � exp

� fnc

cdp1

� �cdp2

The likelihood expression is the product of two likelihood expressions when
the respective life (endurance) tests are all mutually independent: (a) the
likelihood expression that pertains to the respective fnci’s, and (b) the like-
lihood expression that pertains to the ns Type I censored tests. Accordingly,

likelihood ¼ nf þ ns
� �

!

nf !ns!

Ynf
i¼1

f ðfnciÞ �
Yns
j¼1

½1� Fðsnc�Þ�

in which the nonessential factorial expression enumerates the equally-likely
time orders of generating nf failed test items failed and ns Type I test items.
This likelihood expression can be rewritten as

likelihood ¼ cdp2 nf

cdp1nf � cdp2
�
Ynf
i¼1

ð fnciÞcdp2� 1 �
Ynf
i¼1

exp
� fnci

cdp1

� �cdp2

�
Yns
j¼1

exp
� snc�

cdp1

� �cdp2

The corresponding loge(likelihood) expression is
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logeðlikelihoodÞ ¼ nf � logeðcdp2Þ � nf � cdp2 logeðcdp1Þ

þ ðcdp2� 1Þ �
Xnf
i¼1

logeðfnciÞ �
Xnf
i¼1

fnci
cdp1

� �cdp2
�
Xns
j¼1

snc�

cdp1

� �cdp2

The last two terms in this loge likelihood expression can be combined under a
summation that pertains to all experiment test program datum values.
Accordingly, we subsequently use the index k for all test items, where
nlt ¼ nf þ ns and k ¼ 1 to nlt, the number of individual life (endurance)
tests in the experiment test program. Correspondingly, we include both fnci
and snc* in anck.

The conceptual distribution parameters cdp1 and cdp2 can then be
estimated by simultaneously solving the partial derivative expressions:

@ loge likelihoodð Þ
@cdp1

¼ 0 ¼ �nf �
cdp2

cdp1
þ cdp2

cdp1
�
Xnrlt
k¼1

anck
cdp1

� �cdp2

and

@ loge likelihoodð Þ
@cdp2

¼ 0 ¼ nf

cdp2
� nf � loge cdp1ð Þ þ

Xnf
i¼1

loge fncið Þ

�
Xnrlt
k¼1

anck
cdp1

� �cdp2
� loge

anck
cdp1

� �" #

or, if so desired, the second and third terms in the latter partial derivative
expression can be combined under a single summation, viz.,

�nf loge cdp1ð Þ þ
Xnf
i¼1

loge fncið Þ ¼
Xnf
i¼1

loge
fnci
cdp1

� �

The two resulting nonlinear partial derivative equations, whatever their
algebraic form, are conveniently solved numerically by using the iterative
Newton–Raphson (N–R) methodology in which these two equations are
simultaneously expanded in a Taylor’s series and higher order terms are
ignored, viz.,

0 ¼ @ loge likelihoodð Þ
@cdp1

þ @2 loge likelihoodð Þ
@cdp12

��ðcdp1Þ

þ @2 loge likelihoodð Þ
@cdp1@cdp2

��ðcdp2Þ

and
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0 ¼ @ loge likelihoodð Þ
@cdp2

þ @2 loge likelihoodð Þ
@cdp2 @cdp1

��ðcdp1Þ

þ @2 loge likelihoodð Þ
@cdp22

��ðcdp2Þ

which are subsequently viewed simply as two equations in two unknowns,
�(cdp1) and �(cdp2). Given initial numerical estimates for the cdp1 and
cdp2, these analytical equations become two numerical equations that are
easily solved for �(cdp1) and �(cdp2). These two �’s are first-order correc-
tions to the initial estimates for the cdp1 and cdp2. In turn, these improved
(corrected) estimates of the actual values for the cdp1 and cdp2 can be further
improved (corrected) using the iterative N–R solution methodology, viz.,

cdp1 (first iterationÞ ¼ cdp1 (initial estimateÞ
þN�R�ðcdp1Þ numerical correction

and

cdp2 (first iterationÞ ¼ cdp2 (initial estimateÞ
þN�R�ðcdp2Þ numerical correction

In turn,

cdp1 (second iterationÞ ¼ cdp1 (first iteration)

þ new N�R�ðcdp1Þ numerical correction

and

cdp2 (second iterationÞ ¼ cdp2 (first iterationÞ
þ new N�R�ðcdp2Þ numerical correction

etc.

The iterative N–R estimation algorithm should continue until successive
iterations produce absolute values for both �(cdp’s) numerical corrections
less than about 1012, at which time, the numerical values for cdp1 and cdp2
are regarded as the respective maximum likelihood estimates, viz., as
est(cdp1) and est(cdp2)

The primary advantage of the iterative N–R methodology in ML
analysis is that numerical values for the second partial derivatives are
directly available for subsequent use in computing the estimated asymptotic
covariance matrix, viz., the negatives of the numerical values of the respec-
tive second partial derivatives form elements of a 2 by 2 symmetrical array
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whose inverse is the estimated asymptotic covariance matrix. In turn, given
the estimated asymptotic covariance matrix, the propagation of variability
methodology can be used to compute the classical lower 100(scp)% (one-
sided) asymptotic statistical confidence limit that allegedly bounds the actual
value for the Weibull CDF percentile of specific interest.

Microcomputer programWEIBULL presumes a conceptual two-para-
meter Weibull distribution. It computes two alternative ML-based classical
lower 100(scp)% (one-sided) asymptotic statistical confidence limits
(closascl’s) that allegedly bound the actual value for fnc(pf ). The first is
based on the propagation of the variability expression for est½varðestfloge
½fnc (pf )]})]. It computes the value for fnc such that the asymptotic probability
is equal to scp that the actual value for fnc(pf ) is greater than this value.
The second is based on the propagation of variability expression for
est{var[est(y given fnc ¼ closascl)]}. It is akin to inverse regression, viz., it
computes the value for y given fnc ¼ closascl such that the asymptotic prob-
ability is equal to scp that the actual value for y(pf ) is less than this value.
Although these two alternative statistical confidence limits are asymptotically
identical, the second is always smaller and more accurate for finite ndv.
However, even this smaller more accurate statistical confidence limit requires
a statistical bias correction for experiment test programs of practical sizes.
(See Supplemental Topic 8.D.)
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C> TYPE WBLDATA

5 Number of Items Failed, Followed by the Respective Failure
Number of Cycles (kilocycles)

277
310
374
402
456
1 Number of Type I Censored Tests, Followed by the Type I

Censored Number of Cycles (kilocycles)
500
95 Statistical Confidence Probability of Specific Interest in Per

Cent (Integer Value, 95 Maximum)
01 Conceptual CDF Percentile of Specific Interest in Per Cent

(Integer Value)
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Remark: If the life (endurance) experiment test program includes
arbitrarily suspended tests, then the respective (identical) snc*’s are
merely replaced by the respective (different) sncj’s in microcomputer
file WBLDATA. Recall, however, that the fundamental statistical
concept of a continually replicated experiment test program is
obscure when arbitrarily suspended tests occur.
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C> COPY WBLDATA DATA

1 files(s) copied

C> WEIBULL

Given Fð fncÞ ¼ 1� exp
� fnc

cdp1

� �cdp2

est(cdp1) ¼ 0.4289595976D+03
est(cdp2) ¼ 0.4731943406D+01
est{var[est(cdp1)]} ¼ 0.1666932095D+04
est{var[est(cdp2)]} ¼ 0.3013638227D+01
est{covar[est(cdp1),est(cdp2)]} ¼ 0.8393830857D+01
est(conceptual correlation coefficient) ¼ 0.1184283562D+00

fnc est(y) est(pf)

277.000 �2:0694929 0.1186053
310.000 �1:5368900 0.1934980
374.000 �0:6487823 0.4070717
402.000 �0:3071535 0.5207523
456.000 0:2892640 0.7369587

snc est(y) est(pf)

500.000 0:7251484 0.8731865

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for fnc(01)

86.868 – Computed Using the Propagation of Variability Expression
for est[var(est{loge[ fnc(01)]})]

34.584 – Computed Using the Propagation of Variability Expression
for est{var[est(y given fnc ¼ closascl)]}

TLFeBOOK



8.12.2.1. Discussion

The Weibull distribution CDF can be expressed in eight different parame-
terizations. We present the four most common parameterizations below:

ð1Þ F fncð Þ ¼ 1� exp
� fnc

cdp1

� �cdp2

ð2Þ F fncð Þ ¼ 1� exp�cdp1 � fncð Þcdp2

ð3Þ F fncð Þ ¼ 1� exp
� fnc

cdp1

� � 1

cdp2

ð4Þ F fncð Þ ¼ 1� exp
� 1

cdp1

� �
� fncð Þ

1

cdp2

The corresponding four parameterizations for the conceptual (two-para-
meter) loge smallest-extreme-distributions are employed in ML analyses
given by microcomputer programs LSEV1A, LSEV2A, LSEV3A, and
LSEV4A (pages 424–427). The respective outputs for these four programs
demonstrate that (a) ML estimates are the same regardless of the parame-
terization selected for the CDF, and (b) the associated classical lower
100(scp)% (one-sided) asymptotic statistical confidence limits that allegedly
bound the actual value for any fnc(pf ) of specific interest are the same when
these intervals are computed using propagation of variance methodology.

8.12.2.2. Perspective

Supplemental Topic 8.B presents the analytical details of the analogous ML
analysis that pertains to a conceptual two-parameter loge–normal distribu-
tion. Given the same set of life (endurance) datum values, the respective
{est[ fnc(pf )]}’s for small values of pf pertaining to the analogous conceptual
two-parameter loge–normal distribution are larger than for the conceptual
two-parameter Weibull distribution. Thus, quantitative life (endurance) esti-
mates based on the conceptual two-parameter Weibull distribution are safer
than corresponding quantitative reliability estimates based on the concep-
tual two-parameter loge–normal distribution—which is the only rational
reason for preferring the Weibull distribution over the loge–normal distri-
bution.

From a statistical point of view, the conceptual two-parameter
Weibull and loge–normal distributions are interchangeable for experiment
test program sizes that are practical in mechanical reliability applications.
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The ratio of the respective estimated ML’s was used as a test statistic by
Dumonceaux and Antle (1973) in an attempt to discern between these two
distributions statistically. Their simulation-based study demonstrated that,
even given an acceptable probability of committing a Type I error as large as
0.10, a sample size of almost 50 is required to have a probability equal to
0.90 of correctly rejecting the wrong conceptual statistical distribution when
it is incorrectly taken as the null hypothesis.
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C> COPY WBLDATA DATA

1 files(s) copied

C> LSEV1A

Given the Standardized Conceptual Smallest-Extreme-Value
Distribution Variate y = csp[loge( fnc) �clp]

est(clp) ¼ 0.6061362736D+01
est(csp) ¼ 0.4731943406D+01
est{var[est(clp)]} ¼ 0.9059101593D–02
est{var[est(csp)]} ¼ 0.3013638227D+01
est{covar[est(clp),est(csp)]} ¼ 0.1956788216D–01
est(conceptual correlation coefficient) ¼ 0.1184283562D+00

fnc est(y) est(pf)

277:000 �2:0694929 0:1186053
310:000 �1:5368900 0:1934980
374:000 �0:6487823 0:4070717
402:000 �0:3071535 0:5207523
456:000 0:2892640 0:7369587

snc est(y) est(pf)

500:000 0:7251484 0:8731865

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for fnc(01)

86.868 – Computed Using the Propagation of Variability Expression
for est[var(est{loge[ fnc(01)]})]

34.584 – Computed Using the Propagation of Variability Expression
for est{var[est(y given fnc = closascl)]}
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C> COPY WBLDATA DATA

1 files(s) copied

C> LSEV2A

Given the Standardized Conceptual Smallest-Extreme-Value
Distribution Variate y = clp + csploge( fnc)

est(clp) ¼ 0.2868202543D+02
est(csp) ¼ 0.4731943406D+01
est{var[est(clp)]} ¼ 0.1120467627D+03
est{var[est(csp)]} ¼ 0.3013638227D+01
est{covar[est(clp),est(csp)]} ¼ �0.1835934856D+02
est(conceptual correlation coefficient) ¼ 0.9991071169D+00

fnc est(y) est(pf)

277.000 �2:0694929 0.1186053
310.000 �1:5368900 0.1934980
374.000 �0:6487823 0.4070717
402.000 �0:3071535 0.5207523
456.000 0:2892640 0.7369587

snc est(y) est(pf)

500.000 0:7251484 0.8731865

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for fnc(01)

86.868 - Computed Using the Propagation of Variability Expression
for est[var(est{loge[ fnc(01)]})]

34.584 - Computed Using the Propagation of Variability Expression
for est{var[est(y given fnc = closascl)]}
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Exercise Set 3

These exercises are intended to use propagation of variability expressions
(Supplemental Topic 7.A) to verify numerically the analytical relationships
between (a) the respective est(cdp’s) for the conceptual two-parameter
Weibull distribution and the corresponding conceptual (two-parameter)
smallest-extreme-value distributions with a logarithmic metric, and (b) the
elements of their respective estimated asymptotic covariance matrices. Use
at least eight digits in your calculations to avoid so-called round-off errors.
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C> COPY WBLDATA DATA

1 files(s) copied

C> LSEV3A

Given Standardized Conceptual Smallest-Extreme-Value Distribution
Variate y ¼ [loge( fnc) � clp]/csp

est(clp) ¼ 0.6061362736D+01 est(csp) ¼ 0.2113296619D+00
est{var[est(clp)]} ¼ 0.9059101593D–02
est{var[est(csp)]} ¼ 0.6010809287D–02
est{covar[est(clp),est(csp)]} ¼ �0.8739060394D–03
est(conceptual correlation coefficient) ¼ �0.1184283562D+00

fnc est(y) est(pf)

277.000 �2:0694929 0.1186053
310.000 �1:5368900 0.1934980
374.000 �0:6487823 0.4070717
402.000 �0:3071535 0.5207523
456.000 0:2892640 0.7369587

snc est(y) est(pf)

500.000 0:7251484 0.8731865

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for fnc(01)

86.868 – Computed Using the Propagation of Variability Expression
for est[var(est{loge[ fnc(01)]})]

34.584 – Computed Using the Propagation of Variability Expression
for est{var[est(y given fnc ¼ closascl)]}
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1. Given the numerical values for the respective est(cdp)’s in the
example microcomputer program WEIBULL output, verify the
corresponding numerical values for the respective est(cdp)’s
given in the example output for microcomputer program (a)
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C> COPY WBLDATA DATA

1 files(s) copied

C> LSEV4A

Given the Standardized Conceptual Normal Distribution Variate
y ¼ {[loge( fnc)]/csp} � clp

est(clp) ¼ 0.2868202543D+02 est(csp) ¼ 0.2113296619D+00
est{var[est(clp)]} ¼ 0.1120467627D+03
est{var[est(csp)]} ¼ 0.6010809287D–02
est{covar[est(clp),est(csp)]} ¼ �0.8199326557D+00
est(conceptual correlation coefficient) ¼ �0.9991071169D+00

fnc est(y) est(pf)

277.000 �2:0694929 0.1186053
310.000 �1:5368900 0.1934980
374.000 �0:6487823 0.4070717
402.000 �0:3071535 0.5207523
456.000 0:2892640 0.7369587

snc est(y) est(pf)

500.000 0:7251484 0.8731865

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for fnc(01)

86.868 – Computed Using the Propagation of Variability Expression
for est[var(est{loge[ fnc(01)]})]

34.584 – Computed Using the Propagation of Variability Expression
for est{var[est(y given fnc = closascl)]}
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LSEV1A, (b) LSEV2A, (c) LSEV3A, or (d) LSEV4A. Then,
given the numerical values for the respective elements of the
estimated asymptotic covariance matrix in the WEIBULL out-
put, verify the corresponding numerical values for the respective
elements of the estimated asymptotic covariance matrix given in
the (a) LSEV1A, (b) LSEV2A, (c) LSEV3A, or (d) LSEV4A
output.

2. Given the numerical values for the respective est(cdp)’s in the
example microcomputer program LSEV1A output, verify the
corresponding numerical values for the est(cdp)’s given in the
example output for microcomputer program (a) WEIBULL, (b)
LSEV2A, (c) LSEV3A, or (d) LSEV4A. Then, given the numer-
ical values for the respective elements of the estimated asymptotic
covariance matrix in the LSEV1A output, verify the correspond-
ing numerical values for the respective elements of the estimated
asymptotic covariance matrix given in the (a) WEIBULL, (b)
LSEV2A, (c) LSEV3A, or (d) LSEV4A output.

3. Given the numerical values for the respective est(cdp)’s in the
example microcomputer program LSEV2A output, verify the
corresponding numerical values for the est(cdp)’s given in the
example output for microcomputer program (a) WEIBULL, (b)
LSEV1A, (c) LSEV3A, or (d) LSEV4A. Then, given the numer-
ical values for the respective elements of the estimated asymptotic
covariance matrix in the LSEV2A output, verify the correspond-
ing numerical values for the respective elements of the estimated
asymptotic covariance matrix given in the (a) WEIBULL, (b)
LSEV1A, (c) LSEV3A, or (d) LSEV4A output.

4. Given the numerical values for the respective est(cdp)’s in the
example microcomputer program LSEV3A output, verify the
corresponding numerical values for the est(cdp)’s given in the
example output for microcomputer program (a) WEIBULL, (b)
LSEV1A, (c) LSEV2A, or (d) LSEV4A. Then, given the numer-
ical values for the respective elements of the estimated asymptotic
covariance matrix in the LSEV3A output, verify the correspond-
ing numerical values for the respective elements of the estimated
asymptotic covariance matrix given in the (a) WEIBULL, (b)
LSEV1A, (c) LSEV2A, or (d) LSEV4A output.

5. Given the numerical values for the respective est(cdp)’s in the
example microcomputer program LSEV4A output, verify the
corresponding numerical values for the est(cdp)’s given in the
example output for microcomputer program (a) WEIBULL, (b)
LSEV1A, (c) LSEV2A, or (d) LSEV3A. Then, given the numer-

428 Chapter 8

TLFeBOOK



ical values for the respective elements of the estimated asymptotic
covariance matrix in the LSEV4A output, verify the correspond-
ing numerical values for the respective elements of the estimated
asymptotic covariance matrix given in the (a) WEIBULL, (b)
LSEV1A, (c) LSEV2A, or (d) LSEV3A output.

8.12.3. Example Two (Extended): ML Analysis for
Outcome of a Life (Endurance) Experiment Test
Program with Competing Modes of Failure

Mechanical devices (and sometimes even their components) can exhibit
competing modes of failure. Then, for each life (endurance) failure datum
value pertaining to a specific mode of failure, a suspended test datum value
is created at that failure life (endurance) value for each of its competing
modes of failure. In turn, if all competing modes of failure are presumed to
be mutually independent, the desired likelihood expression is simply the
product of the respective individual likelihood expressions. However, the
presumption that all competing modes of failure are mutually independent
is usually doubtful. Moreover, the notion of a continually replicated experi-
ment test program suffers markedly, because the respective suspension times
are not statistically planned. Thus, ML analysis for mutually independent
competing models of failure has both practical and statistical problems.
Nevertheless, it is statistically more credible than an analysis that lumps
all competing modes of failure into a single failure model.

Suppose that an alternator can fail to operate properly only by the
failure of its front bearing, or its near bearing, or its electrical diode.
Presuming that the respective service failures are all mutually independent,
the likelihood expression for alternator failure is the product of the respec-
tive individual likelihood expressions, viz.,

likelihood (alternator failure) ¼ ½likelihood(front bearing failures)]

� ½likelihood(rear bearing failures)]

� ½likelihood(electrical diode failures)]

� ½likelihood(front bearing suspensions)]

� ½likelihood(rear bearing suspensions)]

� ½likelihood(electrical diode suspensions)]

in which, for example,
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½likelihood(electrical diode failures)] � ½likelihood(electrical diode suspensions)]

¼
Ynedf
i¼1

f ½ fncðelectrical diodeiÞ� �
Yneds
j¼1

1� F ½sncðelectrical diodejÞ�
� �

where nedf is the number of alternators with electrical diode failures and neds
is the number of alternators whose electrical diode did not fail (because one
or the other of the two bearings failed first or because the alternator itself
did not fail during the experiment test program). Numerically neds is equal to
the sum of the number of alternators with front bearing failures, nfbf, plus
the number of alternators with rear bearing failures, nrbf, plus the number of
alternators still operating satisfactorily when the experiment test program
was suspended, nas. The associated electrical diode snc’s are the fnc’s for the
front and rear bearings and the snc’s for the alternators still operating
satisfactorily when the experiment test program was suspended.

Recall that all competing modes of failure for the mechanical device of
specific interest are presumed to be mutually independent. Accordingly, the
respective partial derivatives of the loge(likelihood) expression with respect
to the parameters of each conceptual failure mode distribution are nonzero
only for that failure mode. Thus, ML analysis for mutually independent
modes of failure is, for practical purposes, merely the amalgamation of
ML analyses similar to the ML Weibull analysis presented in Section
8.12.1. In fact, if the duration to failure, say fnc, for nm mutually indepen-
dent competing modes of failure were modeled using conceptual two-para-
meter Weibull distributions, then microcomputer program WEIBULL
could be run nm times consecutively, each time with the appropriate failure
and aggregate suspension durations, and the resulting estimated CDF would
be given by the expression:

est½Fð fncÞ� ¼1� ðf1� est½Fð fncÞmode 1�g � f1� est½Fð fncÞmode 2�g � � � �
� f1� est½Fð fncÞmode nm

�gÞ

Unfortunately, classical lower 100(scp)% (one-sided) asymptotic statistical
confidence limits analogous to those given in microcomputer program
WEIBULL cannot be computed using propagation of variability.
However, given the value for pf of specific interest, a lower 100(scp)%
(one-sided) asymptotic statistical confidence limit that allegedly bounds
the actual value for fnc(pf ) can be approximated numerically.

The failure duration for each mode of failure can, of course, be mod-
eled using a different conceptual statistical distribution. Then, ML analysis
for mutually independent competing modes of failure merely requires hav-
ing a library of alternative ML analyses available for each mode of failure of
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potential interest. (But care must be taken to assure that the respective
duration metrics are coherent.)

Remark One: Antifriction bearing failures are typically a compet-
ing modes of failure problem. Pitting fatigue failure usually initi-
ates at the surface of the rolling elements (balls and rollers), but it
can initiate at the corresponding contact surface of either the inner
or the outer race. Moreover, even the rolling elements experience
competing modes of failure, viz., their pitting fatigue life depends
on the specific type of nonmetallic inclusion that initiates the
fatigue crack.

Remark Two: Even low-cycle (strain-controlled) fatigue is typically
a competing modes of failure problem, especially at elevated
temperatures. Microscopic examination usually indicates the exis-
tence of (at least) two distinct types of fatigue crack initiation
processes.

8.12.4. Example Three: ML Analysis for Outcome of an
sa�fnc Experiment Test Program, Presuming
Homoscedastic Fatigue Strength Distribution

Consider a quadratic sa–loge[ fnc(pf )] model with a homoscedastic concep-
tual fatigue strength distribution. It can be expressed so that its standardized
homoscedastic strength variate y pertains to any conceptual (two-para-
meter) statistical distribution of specific interest. Its concomitant variate
can be either sa or loge(sa). The sa–loge[ fnc(pf )] model that is quadratic in
terms of loge( fnc) is physically more credible, both at long life and at shorter
lives, than the sa–loge[ fnc(pf )] model that is quadratic in sa: (a) its slope
approaches zero at a very long lives and its curvature increases as its slope
aproaches zero, and (b) its slope becomes very steep at short lives and its
curvature decreases as its slope increases.

Given a quadratic sa–loge[ fnc(pf )] model with a homoscedastic con-
ceptual (two-parameter) normal fatigue strength distribution, microcom-
puter programs SAFNCM3A and SAFNCM3B (sa–loge[ fnc(pf )] model –
versions 3A and 3B) compute (a) ML estimates for the actual values for
sfs(50), conditional on (given the) respective experiment test program fail-
ure and suspension number of cycles datum values, and (b) the respective
lower 100(scp)% (one-sided) asymptotic statistical confidence limits that
allegedly bound the actual values for sfs(50) and sfs(pf ), given the fnc value
of specific interest. Recall that ML estimates are typically biased and
therefore require appropriate statistical bias corrections, especially for
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C> COPY SAFNCDTA DATA (see page 436)

1 file(s) copied

C> SAFNCM3A

Presumed Quadratic sa–loge[ fnc(pf)] Model:

standardized normal distribution variate y ¼ (sa � clp)/csp, where
clp ¼ clp0 þ clp1[loge( fnc)] þ clp2[loge( fnc)]

2

fnc sa est[sfs(50)]

56430 320 317.6
99000 300 300.9

183140 280 283.5
479490 260 258.0
909810 240 242.3

3632590 220 211.6
4917990 200 205.5

19186790 180 180.7

snc sa est[sfs(50)]

32250000 160 172.4

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limits that
Allegedly Bound the Actual Value for sfs(50) at fnc ¼ 25000000 Cycles

169.4 – Computed Using the Propagation of Variability Expression
for est(var{est[sfs(50)]})

168.8 – Computed Using the Propagation of Variability Expression
for est{var[est(y given sfs ¼ closascl)]}

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limits that
Allegedly Bound the Actual Value for sfs(10) at fnc ¼ 25000000 Cycles

164.0 – Computed Using the Propagation of Variability Expression
for est(var{est[sfs(10)]})

162.3 – Computed Using the Propagation of Variability Expression
for est{var[est(y given sfs ¼ closascl)]}

TLFeBOOK



small quantitative CRD experiment test programs. However, until the
advent of the present generation of microcomputers, ML analyses either
included ad hoc statistical bias corrections (occasionally) or none at all
(typically). For example, microcomputer program SAFNCM3A includes
an ad hoc multiplicative statistical bias correction factor equal to [(nf)/
(nf�nclp)]

1/2 for est(csp) in the computation of the respective statistical
confidence limits. Microcomputer program SAFNCM3B additionally sub-
stitutes a scp-based value for Student’s central t1;ndsdf¼nf�nclp

variate for the
classical scp-based value of the standardized conceptual normal distribu-
tion variate y in the calculation of the respective lower 100(scp)% (one-
sided) asymptotic statistical confidence limits. This additional ad hoc sub-
stitution makes the resulting ML statistical confidence limits identical to
linear regression statistical confidence limits (Chapter 7) when there are no
Type I suspended fatigue tests. However, it should be clear that bias
corrections based on simulation-based empirical sampling distributions
are markedly preferable to ad hoc bias corrections.

We discuss simulation-based generation of pragmatic statistical bias
corrections for sa–loge[ fnc(pf )] models with a homoscedastic conceptual
fatigue strength distribution in Supplemental Topic 8.D. The resulting
ML analyses are without peer.
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Employing Ad Hoc Statistical Bias Corrections (Version A)

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limits that
Allegedly Bound the Actual Value for sfs(50) at fnc ¼ 25000000 Cycles

167.6 – Computed Using the Propagation of Variability Expression
for est(var{est[sfs(50)]})

166.2 – Computed Using the Propagation of Variability Expression
for est{var[est(y given sfs ¼ closascl)]}

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limits that
Allegedly Bound the Actual Value for sfs(10) at fnc ¼ 25000000 Cycles

160.7 – Computed Using the Propagation of Variability Expression
for est(var{est[sfs(10)]})

156.4 – Computed Using the Propagation of Variability Expression
for est{var[est(y given sfs ¼ closascl)]}
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C> COPY SAFNCDTA DATA (see page 436)

1 file(s) copied

C> SAFNCM3B

Presumed Quadratic sa–loge[ fnc(pf)] Model:

standardized normal distribution variate y ¼ (sa � clp)/csp, where
clp ¼ clp0 þ clp1[loge( fnc)] þ clp2[loge( fnc)]

2

fnc sa est[sfs(50)]

56430 320 317.6
99000 300 300.9

183140 280 283.5
479490 260 258.0
909810 240 242.3

3632590 220 211.6
4917990 200 205.5

19186790 180 180.7

snc sa est[sfs(50)]

32250000 160 172.4

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limits that
Allegedly Bound the Actual Value for sfs(50) at fnc ¼ 25000000 Cycles

169.4 – Computed Using the Propagation of Variability Expression
for est(var{est[sfs(50)]})

168.8 – Computed Using the Propagation of Variability Expression
for est{var[est(y given fnc ¼ closascl)]}

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limits that
Allegedly Bound the Actual Value for sfs(10) at fnc ¼ 25000000 Cycles

164.0 – Computed Using the Propagation of Variability Expression
for est(var{est[sfs(10)]})

162.3 – Computed Using the Propagation of Variability Expression
for est{var[est(y given fnc ¼ closascl)]}
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8.12.4.1. Discussion

Although linear and quadratic sa–loge[ fnc(pf )] models are theoretically valid
for all materials that do not exhibit a endurance limit (viz., a threshold
fatigue crack initiation alternating stress amplitude), problems can arise
when only the strength at a very long fatigue life is of specific interest.
When the estimated segment of the sa–loge[ fnc(pf )] model pertains only to
long-life tests and thus is relatively short, the resulting ML estimated median
sa–loge( fnc) curve may not be physically credible. Nevertheless, it is good
practice to allocate all test specimens to alternating stress amplitudes that
generate the range of fatigue lives of specific interest. Accordingly, the up-
and-down strategy is recommended for use in allocating specimens to alter-
nating stress amplitudes that pertain to very long fatigue lives. Then, if the
ML-estimated median sa–loge( fnc) curve is not physically credible, it can be
replaced by an experience-based median sa–loge( fnc) curve and the alternat-
ing stress amplitudes associated with the fatigue failure datum values can be
pragmatically translated to pertain to the Type I censored duration of spe-
cific interest. In turn, the actual value for the median fatigue strength at this
duration can be estimated and the associated lower 100(scp)% (one-sided)
asymptotic statistical confidence limit can be computed.
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Employing Ad Hoc Statistical Bias Corrections (Version B)

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limits that
Allegedly Bound the Actual Value for sfs(50) at fnc ¼ 25000000 Cycles

165.6 – Computed Using the Propagation of Variability Expression
for est(var{est[sfs(50)]})

162.6 – Computed Using the Propagation of Variability Expression
for est{var[est(y given fnc ¼ closascl)]}

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limits that
Allegedly Bound the Actual Value for sfs(10) at fnc ¼ 25000000 Cycles

158.6 – Computed Using the Propagation of Variability Expression
for est(var{est[sfs(10)]})

150.3 – Computed Using the Propagation of Variability Expression
for est{var[est(y given fnc ¼ closascl)]}
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C> COPY SAFNCDTA DATA

1 file(s) copied

C> TYPE DATA

8 Number of Alternating Stress Amplitudes With One
or More Fatigue Failures

1 Number of Replicate Tests at the Highest Alternating
Stress Amplitude with Fatigue Failures

320 56430 Highest Alternating Stress Amplitude (space)
Corresponding Failure Number of Cycles

1 Number of Replicate Tests at the Second Highest
Alternating Stress Amplitude

300 99000 etc.
1
280 183140
1
260 479490
1
240 909810
1
220 3632590
1
200 4917990
1
180 19186790
1 Number of Alternating Stress Amplitudes With One

or More Suspended Tests
1 Number of Suspended Tests at the Highest

Alternating Stress Amplitude with Suspended Tests
160 32250000 Highest Alternating Stress Amplitude (space)

Corresponding Suspension Number of Cycles, etc.
95 Statistical Confidence Probability of Specific Interest

in Per Cent (Integer Value, Maximum ¼ 95)
25000000 Fatigue Life of Specific Interest
10 Conceptual Strength CDF Percentile of Specific

Interest in Per Cent (Integer Value, Minimum ¼ 10)
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8.12.5 Example Four: ML Analysis for Outcome of a
Strength (Resistance) Experiment Test Program
Conducted Using the Up-and-Down Strategy

Although the up-and-down test method strategy is strictly valid only for
threshold phenomena, this strategy nevertheless can be used in a very effec-
tive manner to estimate the actual value for the median of the presumed
conceptual one-parameter strength (resistance) distribution at very long
durations for those modes of failure whose presumed stimulus-duration
models asymptotically reach a limiting (threshold) value, e.g., fatigue, stress
rupture, and stress-corrosion cracking. This sequential strategy is particu-
larly effective when only a few (nominally identical) test items are available
for testing because it efficiently allocates these items to stress (stimulus)
levels in the vicinity of the actual value for the median of the presumed
conceptual one-parameter strength (resistance) distribution. Little (1981)
presents tabulated quantities for use in estimating the actual value for the
median of the presumed conceptual one-parameter strength (resistance) dis-
tribution given the outcome of a conventional small-sample up-and-down
experiment test program with a fixed increment between successive alternat-
ing stress amplitudes. These tabulated quantities pertain to four alternative
conceptual one-parameter strength distributions: normal (symmetrical with
short tails), logistic (symmetrical with long tails), smallest-extreme-value
(nonsymmetrical, skewed toward low values), and the largest-extreme
value (nonsymmetrical, skewed toward high values), and include enumera-
tion-based (exact) statistical bias corrections. (In Supplemental Topic 8.C
we explain why up-and-down test programs with fixed increments do not
generate minimum variance estimates.)

The example data set in microcomputer file UADDATA pertains to a
fatigue experiment test program that employed the conventional small-sam-
ple up-and-down test method strategy for the first six test specimens, fol-
lowed by allocation of the next four test specimens to their respective
optimal alternating stress amplitudes successively computed by running
microcomputer program N1A (normal distribution, one-parameter–version
A). Because program N1A has the actual values for the respective alternat-
ing stress amplitudes as input (rather than a beginning value and a fixed
increment), it is conveniently used at any time during the experiment test
program to allocate the next fatigue specimen to its statistically most effec-
tive alternating stress amplitude regardless of the strategy (strategies)
employed for testing prior fatigue specimens.

Microcomputer program N1A has the presumed known (guestimated)
value for the standard deviation of the presumed conceptual one-parameter
normal strength (resistance) distribution as input. However, this presumed
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C> TYPE UADDATA

10 Number of Alternating Fatigue Life, Temperature

Stress Amplitudes cycles Increase (8F)
3000 1 1 Alternating Stress Amplitude (space) 3,133,000 18

2750 1 1 Number of Items Tested (space) 9,932,000 9

2500 1 0 Number of Items Failed 107 DNF 7

2750 1 1 4,900,000 10

2500 1 0 107 DNF 5

2750 1 0 107 DNF 16

2710 1 1 4,548,000 6

2655 1 0 107 DNF 11

2700 1 0 107 DNF 9

2740 1 0 107 DNF 6

250 Presumed Standard Deviation of the Presumed Conceptual One-

Parameter Strength (Resistance) Distribution

95 Statistical Confidence Probability of Specific Interest in Per Cent

(Integer Value, 95 Maximum)

Note: DNF Denotes a Run-Out (Did Not Fail) Under Type I Censoring

C> COPY UADDATA DATA

1 file(s) copied

C> N1A

Presuming a Conceptual One-Parameter Normal Distribution

est[s(50)] ¼ 2778.0

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limits that
Allegedly Bound the Actual Value for s(50)

2604.7 – Computed Using the Propagation of Variability Expression
for est{var[est(y given s ¼ closascl)]}

2602.9 – Computed Using the Likelihood Ratio Method
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C>L1A

Presuming a Conceptual One-Parameter Logistic Distribution

est[s(50)] ¼ 2769.8

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limits that
Allegedly Bound the Actual Value for s(50)

2610.6 – Computed Using the Propagation of Variability Expression
for est{var[est(y given s ¼ closascl)]}

2612.7 – Computed Using the Likelihood Ratio Method

C> SEV1A

Presuming a Conceptual One-Parameter Smallest-Extreme-Value
Distribution

est[s(50)] ¼ 2768.1

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limits that
Allegedly Bound the Actual Value for s(50)

2603.6 – Computed Using the Propagation of Variability Expression
for est{var[est(y given s ¼ closascl)]}

2615.9 – Computed Using the Likelihood Ratio Method

C> LEV1A

Presuming a Conceptual One-Parameter Largest-Extreme-Value
Distribution

est[s(50)] ¼ 2773.2

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limits that
Allegedly Bound the Actual Value for s(50)

2630.8 – Computed Using the Propagation of Variability Expression
for est{var[est(y given s ¼ closascl]}

2613.3 – Computed Using the Likelihood Ratio Method
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known (guestimated) value can be changed later (a) to obtain a revised
estimate of the actual value for the median (mean) of the presumed con-
ceptual one-parameter normal strength (resistance) distribution if a more
accurate known (guestimated) value for its standard deviation becomes
available, or (b) to study the sensitivity of the ML estimate for the actual
value for the median (mean) of the presumed conceptual one-parameter
normal strength (resistance) distribution to alternative presumed known
(guestimated) values for its standard deviation.

Microcomputer programs L1A (logistic distribution, one-parameter–
version A), SEV1A (smallest-extreme-value distribution, one-parameter–
version A), and LEV1A (largest-extreme-value distribution, one-para-
meter–version A) on page 439 demonstrates that the ML estimate of the
actual value for the metric pertaining to the median of the presumed
conceptual one-parameter strength (resistance) distribution is relatively
insensitive to the presumed CDF.

8.12.5.1. Discussion

The statistical literature does not exploit the versatility of ML analysis for
strength (resistance) experiment test programs. The individual test outcomes
do not have to be limited to realization values that are equal to zero or one.
Rather, we can establish a damage index that lies in the interval from zero
(no damage whatsoever) to one (complete failure). Each test item (specimen)
pertaining to each suspended test can then be examined for signs of physical
damage. For example, each of the automotive composite fatigue specimens
pertaining to a suspended test in microcomputer file UADDATA was
visually examined relative to the presence of small fatigue cracks and/or
noticeable local delamination. The damage index for two of these specimens
was subjectively assessed as 0.50 as indicated in microcomputer file
MUADDATA. Accordingly, based on the damage index assessment for
the re-interpreted experiment test program outcomes, microcomputer pro-
gram N1A computes a revised estimate of the actual value for the median
(mean) of the presumed conceptual one-parameter normal fatigue strength
(fatigue limit) distribution at 107 stress cycles.

Little and Kosikowski (unpublished) conducted a modified up-and-
down experiment test program to establish a nontraditional measure for
the fatigue notch sensitivity of an automotive composite material. The
size of a small central hole was decreased or increased depending on whether
the fatigue crack that led to failure did or did not originate at the central
hole. Predictably there were several failures where the origin could not be
stated with certainty. Accordingly, although the test strategy merely
required replicating the test with the same size hole, a subjective probability
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index was required in ML analysis to estimate the diameter of the hole for
which fatigue failure is equally likely or not to originate at the hole.

Finally, Little (unpublished) conducted several up-and-down long-life
fatigue experiment test programs with an automotive composite specimen
attached to a steel grip at each of its ends with nominally identical bolted lap
joints. Accordingly, fatigue failure was equally likely to occur at either the
top or the bottom lap joint. The conceptual strength distribution for this
example thus pertains to the smallest of two independent realizations ran-
domly selected from the conceptual strength distribution presumed for each
independent realization, viz.,

F1 sð Þ ¼ 1� 1� FðsÞ½ �2

in which

F sð Þ ¼ 1

2�ð Þ1=2 � stddevðSÞ

ðs
�1

exp � ðu�medianðSÞ½ �=stddevðSÞ� �2
du
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C> TYPE MUADDATA

10 Number of Alternating Fatigue Life Temperature

Stress Amplitudes Increase (8F)
3000 1 1 Alternating Stress Amplitude (space) 3,133,000 18

2750 1 1 Number of Item Tested (space) 9,932,000 9

2500 1 0 Number of Items Failed 107 DNF 7

2750 1 1 4,900,000 10

2500 1 0 107 DNF 5

2750 1 0.5 (Subjective Damage Index) 107 DNF 16

2710 1 1 4,548,000 6

2655 1 0 107 DNF 11

2700 1 0 107 DNF 9

2740 1 0.5 (Subjective Damage Index) 107 DNF 6

250 Presumed Standard Deviation of the Presumed Conceptual One-

Parameter Strength (Resistance) Distribution

95 Statistical Confidence Probability of Specific Interest, Stated in Per cent

(Integer Value)

Note: DNF Denotes a Run-Out (Did Not Fail) Under Type I Censoring
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for the normal distribution;

F sð Þ ¼ 1þ exp �� � s�medianðSÞ½ �= 31=2 � stddevðSÞ �� �� ��1

for the logistic distribution;

F sð Þ ¼ 1� exp � expfþ� � ½s�medianðSÞ � 0:28577 � stddevðSÞð �=
½61=2 � stddevðSÞ�g�

for the smallest-extreme-value distribution; and

FðsÞ ¼ expð� expf�� � fs�medianðSÞ þ 0:28577 � stddevðSÞ�=
½61=2 � stddevðSÞ�gÞ

for the largest-extreme-value distribution. Note that these four respective
conceptual strength (resistance) distributions are scaled to have the same
(presumed known) standard deviation (variance). This scaling is also done
in microcomputer programs N1A, L1A, SEV1A, and LEV1A so that the
standard deviation (rather than the associated csp) is the appropriate input
information to each respective microcomputer program. Otherwise, the pre-
sumed value for the csp depends on which conceptual strength (resistance)
distribution is presumed in analysis.

Little (1975) presents tabulated quantities pertaining to each of the
four alternative strength distributions for use in estimating (a) the actual
value for median(S) with two specimens ‘‘in series,’’ and (b) the associated
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C> COPY MUADDATA DATA

1 file(s) copied

C> N1A

Presuming a Conceptual One-Parameter Normal Distribution

est[s(50)] ¼ 2704.9

Lower 95.0% (One-Sided) Asymptotic Statistical Confidence Limits
that Allegedly Bound the Actual Value for s(50)

2534.0 – Computed Using the Propagation of Variability Expression
for est{var[est(y given s ¼ closascl)]}
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enumeration-based (exact) statistical bias corrections, given the outcome of
a conventional small-sample up-and-down experiment test program with a
nominal sample size from 2 to 6.

8.13. COMPARATIVE ANALYSES FOR OUTCOMES OF
LIFE (ENDURANCE) AND STRENGTH
(RESISTANCE) EXPERIMENT TEST PROGRAMS

The ML analyses presented in Sections 8.10–8.12 all pertain to quantitative
CRD experiment test programs. Recall that, for a quantitative estimate to
have credible statistical inference, it must be presumed that (a) all possible
batch-to-batch effects are negligible, (b) all nuisance test variables are neg-
ligible, and (c) all calculations are accurate. Fortunately, the likelihood ratio
(LR) method provides a statistical means to make comparative (rather than
quantitative) mechanical reliability analyses. This feature of the LR method
is illustrated in Section 8.14. A distribution-free comparative mechanical
reliability analysis is presented in Section 8.15. It may be useful in certain
mechanical reliability applications.

8.14. COMPARATIVE MAXIMUM LIKELIHOOD
ANALYSES

Suppose that two sa–fnc experiment test programs pertaining to different
batches of the same material have been conducted and the issue is whether
or not the respective data sets can legitimately be combined. Microcomputer
program C2SFNCM7 (compare 2sa–loge[ fnc(pf )] models – version 7) per-
forms a LR-based analysis, presuming that the respective sa–loge[ fnc(pf )]
models that are quadratic in loge( fnc), have linear sa metrics, and employ
homoscedastic conceptual (two-parameter) smallest-extreme-value strength
distributions. The example input sa–fnc data for this microcomputer pro-
gram are constructed using the sa–fnc values (data set one) that appear in
microcomputer file SAFNCDTA, plus additional sa–fnc values (data set
two) whose sa’s are computed by subtracting 20 from each of the corre-
sponding sa’s in data set one. (See microcomputer file C25NDATA.) A
linear metric for the alternating stress amplitude was deliberately used in
constructing these example input sa–fnc data to generate parallel sa–
loge[ fnc(pf )] models for the respective sa –fnc data sets. Accordingly, the
respective [est(clp1)]’s and [est(clp2)]’s pertaining to our two example
sa– fnc data sets will be identical and that the respective [est(clp0)]’s will
differ by exactly 20 units. However, regardless of the alternating stress
amplitude metric that is presumed for the conceptual sa–loge[ fnc(pf )]
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model, the fundamental issue is that the respective data-based values for the
asymptotic LR test statistic will establish null hypothesis rejection probabil-
ity values for the two statistical tests of hypothesis that are of specific
interest: (i) the null hypothesis that a single sa–loge[ fnc(pf )] model suffices
statistically to explain the two aggregated sa–loge( fnc) data sets versus the
alternative hypothesis that two distinct sa–loge[ fnc(pf )] models are statisti-
cally required to explain these two data sets; and (ii) the null hypothesis that
two parallel sa–loge[ fnc(pf )] models suffice statistically versus the alternative
hypothesis that two distinct sa–loge[ fnc(pf )] models are statistically required
to explain these two data sets. Given our two example sa–loge( fnc) data sets,
we must rationally opt to reject null hypothesis (i) in favor of alternative
hypothesis (i), but we cannot rationally reject null hypothesis (ii) in favor of
alternative hypothesis (ii). Accordingly, we must rationally conclude that a
batch-to-batch effect exists and that this effect is not affected by the actual
value of the concomitant variable sa.

444 Chapter 8

C> COPY C2SNDATA DATA

1 file(s) copied

C> C2SFNCM7

Presumed Quadratic sa–loge[ fnc(pf)] Model with a Homoscedastic
Smallest-Extreme-Value Fatigue Strength Distribution

Presuming a Distinct sa–loge[ fnc(pf)] Model for Data Set One
est(clp0) ¼ 0.751737D+03
est(clp1) ¼ �0.505715D+02
est(clp2) ¼ 0.995199D+00
est(csp) ¼ 0.404219D+01

Estimated Maximum loge(Likelihood) ¼ �0.23451179D+02

Presuming a Distinct sa–loge[ fnc(pf)] Model for Data Set Two
est(clp0) ¼ 0.731737D+03
est(clp1) ¼ �0.505715D+02
est(clp2) ¼ 0.995199D+00
est(csp) =0.404219D+01

Estimated Maximum loge(Likelihood) ¼ �0.23451179D+02
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Presuming Parallel sa–loge[ fnc(pf)] Models with a Common csp
est(clp01) ¼ 0.751737D+03
est(clp02) ¼ 0.731737D+03
est(clp1) ¼ �0.505715D+02
est(clp2) ¼ 0.995199D+00
est(csp) ¼ 0.404219D+01

Estimated Maximum loge(Likelihood) ¼ �0.46902359D+02

Presuming a Single sa–loge[ fnc(pf)] Model for the Aggregated Data
est(clp0) ¼ 0.800413D+03
est(clp1) ¼ �0.587405D+02
est(clp2) ¼ 0.129182D+01
est(csp) ¼ 0.942785D+01

Estimated Maximum loge(Likelihood): �0.61570256D+02

Likelihood Ratio Tests

(i) Ha: Two Distinct sa–loge[ fnc(pf)] Models versus Hn: A Single
sa–loge[ fnc(pf)] Model (8–4 nsdf)

Hn Rejection Probability ¼ 0.6681D-05

(ii) Ha: Two Distinct sa–loge[ fnc(pf)] Models versus Hn: Two Parallel
sa–loge[ fnc(pf)] Models (8–5 nsdf)

Hn Rejection Probability =0.1000D+01

Also (iii) Ha: Two Parallel sa–loge[ fnc(pf)] Models versus Hn: A Single
sa–loge[ fnc(pf)] Model (5–4 nsdf)

Hn Rejection Probability =0.6086D� 07

C> TYPE C2SNDATA

8 Data Set One (Same as given in Microcomputer File
SAFNCDTA)

1
320 56430
1
300 99000
1
280 183140

TLFeBOOK



446 Chapter 8

1
260 479490
1
240 909810
1
220 3632590
1
200 4917990
1
180 19186790
1
1
160 32250000
8 Data Set Two (Constructed by subtracting 20 from

each alternating stress
1 amplitude in Data Set One)
300 56430
1
280 99000
1
260 183140
1
240 479490
1
220 909810
1
200 3632590
1
180 4917990
1
160 19186790
1
1
140 32250000
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C> COPY C2SDDATA DATA

1 file(s) copied

C> C2NSDDS

Presuming a Strength Model with a Distinct Conceptual (Two-
Parameter) Normal Distribution for Data Set One

est[s(50)] ¼ 86.1 est(csp) ¼ 6.8
Estimated Maximum loge(Likelihood) ¼ �6.2841

Presuming a Strength Model with a Distinct Conceptual (Two-
Parameter) Normal Distribution for Data Set Two

est[s(50)] ¼ 80.2 est(csp) ¼ 14.5
Estimated Maximum loge(Likelihood) ¼ �10.5833

Presuming a Strength Model with Two Conceptual (Two-Parameter)
Normal Distributions that Have a Common csp

est[s(50)] for Data Set One ¼ 86.0
est[s(50)] for Data Set Two ¼ 81.0

est(Common csp) ¼ 11.1
Estimated Maximum loge(Likelihood) ¼ �17.7893

Presuming a Strength Model with a Single Conceptual (Two-
Parameter) Normal Distribution for the Aggregated Data

est[s(50)] ¼ 83.3
est(csp) ¼ 11.2

Estimated Maximum loge(Likelihood) ¼ �18.2358

Likelihood Ratio Tests

(i) Ha: Two Distinct Normal Distributions versus Hn: A Single Normal
Distribution (42 nsdf)

Hn Rejection Probability ¼ 0.2545

(ii) Ha: Two Distinct Normal Distributions versus Hn: Two Normal
Distributions with a Common csp (4–3 nsdf)

Hn Rejection Probability ¼ 0.1745

Also (iii) Ha: Two Normal Distributions with a Common csp versus
Hn: A Single Normal Distribution (3–2 nsdf)

Hn Rejection Probability ¼ 0.3447
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Analogously, suppose that two strength (endurance) experiment test
programs pertaining to different batches of the same material have been
conducted at two or more stress (resistance) levels and the issue is whether
the respective data sets can be legitimately combined. Microcomputer pro-
gram C2NSDDS (compare 2 normal strength distribution data sets) per-
forms a LR-based analysis, presuming that the four respective strength
(resistance) models of potential interest each employ an appropriate con-
ceptual (two-parameter) normal distribution. It first computes the [est(clp)]’s
and the [est(csp)]’s for each of these strength (resistance) models. It then
computes the data-based values for the two asymptotic LR test statistics of
specific interest and establishes the associated null rejection probabilities for
(i) the null hypothesis that a strength (resistance) model that employs a
single conceptual (two-parameter) normal distribution suffices statistically
to explain the aggregated experiment test program datum sets versus the
alternative hypothesis that a strength (resistance) model that employs two
distinct conceptual (two-parameter) normal distributions is statistically
required to explain these two data sets, and (ii) the null hypothesis that a
strength (resistance) model that employs two conceptual (two-parameter)
normal distributions with a common csp suffices statistically to explain these
two data sets versus the alternative hypothesis that a strength (resistance)
model that employs two distinct conceptual (two-parameter) normal distri-
butions are statistically required to explain these two data sets. Given the
two example data sets that appear in microcomputer file C2SNDATA, LR-
based analysis indicates that we cannot rationally opt to reject null hypoth-
esis (i) in favor of alternative hypothesis (i). Accordingly, a strength (resis-
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C> TYPE C2SDDATA

4 Number of Data Set One Program Alternating Stress
Amplitudes

100 4 4 Alternating Stress Amplitude (space) Number of Items Tested
(space) Number of Items Failed

90 6 4
80 4 1
70 5 0
3 Number of Data Set Two Alternating Stress Amplitudes
95 8 7 Alternating Stress Amplitude (space) Number of Items Tested

(space) Number of Items Failed
85 7 4
65 6 1
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tance) model that employs a single conceptual (two-parameter) normal dis-
tribution suffices statistically to explain the aggregated example data sets.
Thus, we conclude that the batch-to-batch effect, if it exists, is evidently
relatively small compared to the actual value for the standard deviation of
the presumed conceptual (two-parameter) normal strength (resistance) dis-
tribution.

Remark: Note that if the experiment test program objective is to
compare the respective (mode) sa–loge( fnc) curves pertaining to
treatments B and A, then data set one would pertain to treatment
B (instead of batch one) and data set two would pertain to treat-
ment A (instead of batch two).

8.15. COMPARATIVE ANALYSIS FOR OUTCOME OF A
LIFE (ENDURANCE) EXPERIMENT TEST
PROGRAM, BASED ON A GENERALIZED SAVAGE
DISTRIBUTION-FREE (NON-PARAMETRIC) TEST
STATISTIC

We now reconsider a CRD experiment test program that is conducted to test
the null hypothesis that B ¼ A statistically versus the alternative hypothesis
that B > A statistically. Suppose that certain of the tests in this experiment
test program are Type I censored. The log-rank algorithm (Mantel, 1981)
can be used to assign ranks to the aggregated A and B experiment test
program datum values with Type I censoring. Given a CRD experiment
test program with complete data and two treatments, Savage’s test statistic
is asymptotically unexcelled. Since this test statistic can be generalized by
using the log-rank algorithm to include suspended tests, it is employed in
microcomputer program C2DSWST (compare 2 data sets with suspended
tests) to test the null hypothesis that (B�mpdÞ ¼ A statistically versus the
alternative hypothesis that (B�mpdÞ > A statistically. In turn, a lower
100(scp)% (one-sided) confidence limit that allegedly bounds the actual
value for the mpd can be computed by iteratively running microcomputer
program C2DSWST with appropriate input values for the mpd of specific
interest.

Recall that Type I censoring occurs only in laboratory testing, whereas
arbitrarily suspended tests are statistically analogous to products that are
still operating satisfactorily in service. Thus, arbitrarily suspended tests tend
to be more practical than Type I censoring in a mechanical reliability per-
spective. Accordingly, microcomputer program C2DSWST was written to
accommodate arbitrarily suspended tests. (Observe that each individual
suspended duration appears in microcomputer file C2STDATA.)
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Remember, however, that the fundamental statistical concept of a continu-
ally replicated experiment test program is obscure when arbitrarily sus-
pended tests occur.

450 Chapter 8

C> TYPE C2STDATA

200 Minimum Practical Difference of Specific Interest
10 Total Number of A Datum Values Pertaining to Failures,

Followed by A Failure Lives (Endurances)
112
143
151
177
231
345
378
401
498
512
2 Total Number of A Suspended Tests, Followed by A

Suspended Lives (Durations)
1000.01
1000.01
2 Total Number of B Datum Values Pertaining to Failures,

Followed by B Failure Lives (Endurances)
592
712
5 Total Number of B Suspended Tests, Followed by B

Suspended Lives (Durations)
1000.01
1000.01
1000.01
1000.01
1000.01

Note: An increment equal to 0.01 is added to each datum value per-
taining to a test suspension to avoid the possibility of a tie between a
suspended test duration and a failure life (endurance).
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When a paired-comparison test program is clearly appropriate, arbi-
trarily suspended tests within blocks can pose problems in establishing the
relevant (b�a) difference, e.g., when the suspended test pertains to a shorter
duration than the corresponding failure life (endurance). However, given
Type I censoring, the durations of all suspended tests are greater than their
corresponding observed failure lives. Then, all paired-comparison (b � a)
differences are either known or can be treated as arbitrarily suspended
tests. When the paired-comparison (b�a) difference is positive, it is treated
as B data in a CRD test program. On the other hand, when the paired-
comparison (b�a) difference is negative, it is treated as A data in this CRD
test program. [If both specimens fail at the same time or if both tests are
suspended at the same time, the resulting paired-comparison (b � a) differ-
ence is equal to zero and this paired-comparison outcome can be treated as a
tie.] Accordingly, microcomputer programC2DSWST can be used to test the
null hypothesis (B�mpd) ¼ A statistically versus the alternative hypothesis
that (B�mpd) > A statistically for any mpd value of specific interest, even
when a paired-comparison experiment test program is conducted.

8.16. ESTIMATING SUB SYSTEM RELIABILITY

A system is comprised of subsystems. In turn, subsystems are comprised of
subsubsystems, and subsubsystems are comprised of subsubsubsystems, etc.
Because systems, subsystems, subsubsystems, and subsubsubsystems can be
parsed in various ways, their distinction is often a matter of semantics. We
choose to use the terminology subsystem in our presentation.

The proper method to estimate the reliability of a mechanical (electro-
mechanical) subsystem is to conduct a life (endurance) experiment test pro-
gram using the subsystem itself as the test specimen. However, if this
experiment-based methodology is not practical, then the reliability of a
mechanical (electromechanical) subsystem can be analytically guestimated
using estimates of the reliabilities of its components. In theory, the reliability
of a mechanical (electromechanical) subsystem can be analytically expressed
as a function of duration d when (a) all of its components are presumed to
operate independently and (b) the reliabilities of these components are
expressed as a function of, or in terms of, the same stimulus and duration
metrics. However, in practice, the respective component reliabilities must be
estimated by the appropriate life (endurance) experiment test programs
whose stimulus and duration metrics are unlikely to be identical and may
not even be coherent (compatible). Accordingly, it is extremely unlikely that
the necessary component reliability estimates exist—unless these estimates
were deliberately generated for use in estimating the subsystem reliability of
specific interest. Even then, the only way to test the credibility of the pre-
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C> COPY C2STDATA DATA

1 file(s) copied

C> C2DSWST

For a Minimum Practical Difference (mpd) ¼ 200.0
Aggregated A and B Datum Values with Suspended Tests,

Ranked Using the Log-Rank Algorithm

datum value code rank

0.1120000000D+03 1 0.1000000000D+01
0.1430000000D+03 1 0.2000000000D+01
0.1510000000D+03 1 0.3000000000D+01
0.1770000000D+03 1 0.4000000000D+01
0.2310000000D+03 1 0.5000000000D+01
0.3450000000D+03 1 0.6000000000D+01
0.3780000000D+03 1 0.7000000000D+01
0.3920000000D+03 3 0.8000000000D+01
0.4010000000D+03 1 0.9000000000D+01
0.4980000000D+03 1 0.1000000000D+02
0.5120000000D+03 1 0.1150000000D+02
0.5120000000D+03 3 0.1150000000D+02
0.1000010000D+04 0 0.1600000000D+02
0.1000010000D+04 0 0.1600000000D+02
0.8000100000D+03 2 0.1600000000D+02
0.8000100000D+03 2 0.1600000000D+02
0.8000100000D+03 2 0.1600000000D+02
0.8000100000D+03 2 0.1600000000D+02
0.8000100000D+03 2 0.1600000000D+02

The data-based value of the generalized Savage test statistic for the
CRD experiment test program that was actually conducted is equal to
11.195.

Given the null hypothesis that (B � mpd) ¼ A statistically, this micro-
computer program constructed exactly 50,388 equally-likely outcomes
for this experiment test program by using Ehrlich’s method to reassign
its a and (b�mpd) datum values to treatments A and B. The number of
these outcomes that had its generalized Savage test statistic value
equal to or greater than 11.195 is equal to 232. Thus, given the simple
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sumption that the respective components operate independently within this
subsystem is to test this subsystem itself. Despite these practical limitations,
subsystem reliability estimates based on questionable presumptions and
analyses can nevertheless have useful application in comparing alternative
designs and redesigns in an iterative reliability improvement process.

We now define a mechanical (electromechanical) subsystem as being
comprised of components in a specific configuration, where a component by
definition has no redundancy. Accordingly, at any given duration, each of
the components in a subsystem is either operating satisfactorily or it is not.
In contrast, depending on the configuration of its components, a subsystem
can (should) have redundancy, viz., certain components can fail and the
subsystem will continue to operate satisfactorily.

The physical understanding of a subsystem with redundancy is
enhanced by limiting the subsystem to having a maximum of six to eight
components. This can be accomplished by parsing larger subsystems into
smaller subsystems (that could be called subsubsystems or subsubsubsys-
tems if so desired.) Consider a subsystem that is comprised of nc compo-
nents. Its reliability can be established by examining the operational state
for each of these nc components. This examination requires that each of the
2nc distinct sets of component operational states be enumerated in terms of
whether each individual component is operating satisfactorily or not.
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null hypothesis that (B � mpd) ¼ A statistically, the enumeration-
based probability that a randomly selected outcome of this experiment
test program when continually replicated will have its generalized
Savage test statistic value equal to or greater than 11.195 is equal to
0.0046. When this probability is sufficiently small, reject the null
hypothesis in favor of the simple (one-sided) alternative hypothesis
that (B � mpd) > A statistically.

Given the null hypothesis that (B � mpd) ¼ A statistically, the asymp-
totic probability that a randomly selected outcome of this experiment
test program when continually replicated will have its generalized
Savage test statistic value equal to or greater than 11.195 is equal to
0.0054.

Note: Code 0 ¼ suspended A test duration,
Code 1 ¼ A datum value
Code 2 ¼ suspended B test duration � mpd
Code 3 ¼ B datum value � mpd
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Consider a component denoted A. Let (capital) A connote that it is
operating satisfactorily and let (lower case) a denote that it is not operating
satisfactorily. Next, consider a subsystem consisting of four components: A,
B, C, and D. The reliability of this subsystem can be estimated by enumer-
ating all 24 (=16) of its distinct sets of component operational states. The
required enumeration is conveniently accomplished using Yate’s enumera-
tion algorithm in which, e.g., a corresponds to �1 and A corresponds to þ1
in column one, b corresponds to �1 and B corresponds to þ1 in column
two, etc. The resulting 16 distinct sets of component operational states for
this subsystem example are:

a b c d

A b c d

a B c d

A B c d

a b C d

A b C d

a B C d

A B C d

a b c D

A b c D

a B c D

A B c D

a b C D

A b C D

a B C D

A B C D

To simplify subsequent notation, let A also denote the estimated probability
that component A is operating satisfactorily (A ¼ estimated reliability) and
let a also denote the complementary probability that component A is not
operating satisfactorily (a ¼ estimated unreliability).

8.16.1. Reliability of a New Subsystem

Now consider a new subsystem with all of its components operating satis-
factorily at duration d ¼ 0. For simplicity, let this subsystem have only two
components, say A and B. The four distinct sets of component operational
states for this subsystem are:

component operational states associated probability

a b a � b
A b A � b
a B a � B
A B A � B
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The estimated reliability of this subsystem can be established by summing
the respective estimated probabilities pertaining to each distinct set of com-
ponent operational states such that the subsystem continues to operate
satisfactorily. When the estimated reliabilities for components A and B
have been established by either appropriate life (endurance) or strength
(resistance) experiment test programs, the reliability of the subsystem can
be tabulated up to the duration used in Type I censoring for the life (endur-
ance) experiment test programs, or at the specific duration d* employed in
the strength experiment test programs to suspend each individual test.

8.16.1.1. Elementary Example One

Suppose that a subsystem is configured to have no redundancy, viz., all of its
components must operate satisfactorily for the subsystem to operate satis-
factorily. Then, only the distinct component operational state set A B per-
tains. Accordingly, the estimated reliability of this subsystem is the product
A � B. Note that if this Example One subsystem had been comprised of
numerous components, then its estimated reliability would have been the
product of each of the individual estimated component reliabilities. Clearly,
this estimated reliability becomes ever smaller as the number of components
increases. Therefore, this type of subsystem configuration should be avoided
whenever practical.

8.16.1.2. Elementary Example Two

Suppose that a subsystem is configured to have maximum redundancy, viz.,
only one of its components must operate satisfactorily for the subsystem to
operate satisfactorily. Then, only distinct component operational state set
a b fails the condition for satisfactory operation. Accordingly, the estimated
unreliability of this subsystem with maximum redundancy is the product
a � b. Note that if this Example Two subsystem had been comprised of
numerous components, then its estimated unreliability would have been
the product of the respective estimated component unreliabilities. Clearly,
this estimated unreliability becomes smaller and smaller as the number of its
redundant components increases.

Message: Redundant components increase subsystem reliability and
should, therefore, be used whenever practical.

Elementary Examples One and Two are intended to demonstrate that
the reliability of a subsystem decreases with an increase in the number of its
components, unless the subsystem is appropriately configured with redun-
dant components. Unfortunately, mechanical (electromechanical) subsys-
tems are never quite as simple as either of these two elementary examples.
Nevertheless, we now present three additional elementary examples that are

Mechanical Reliability Fundamentals 455

TLFeBOOK



intended to demonstrate the computational simplicity of estimating subsys-
tem reliability when (a) all distinct sets of component operational states have
been enumerated, (b) the component operational states that pertain to satis-
factory subsystem operation can be unambiguously defined (or the distinct
sets of component operational states that pertain to unsatisfactory subsys-
tem operation can be unambiguously defined), and (c) all components are
presumed to operate independently.

8.16.1.3. Elementary Example Three

Suppose satisfactory subsystem operation is defined such that at least two of
its four components must operate satisfactorily. Then, by inspection, the
estimated reliability of this subsystem is the sum of the products of the
respective estimated probabilities in the second main column of the follow-
ing example array:

component

operational

states

Elementary Example

Three

(sum these estimated

probability products)

Elementary Example

Four

(sum these estimated

probability products)

Elementary Example

Five

(sum these estimated

probability products)

a b c d — — —

A b c d — — —

a B c d — — —

A B c d A B c d — A B c d

a b C d — — —

A b C d A b C d — —

a B C d a B C d — —

A B C d A B C d A B C d A B C d

a b c D — — —

A b c D A b c D — —

a B c D a B c D — —

A B c D A B c D A B c D A B c D

a b C D a b C D — a b C D

A b C D A b C D A b C D A b C D

a B C D a B C D a B C D a B C D

A B C D A B C D A B C D A B C D

8.16.1.4. Elementary Example Four

Suppose that at least three components must operate satisfactorily for this
subsystem to operate satisfactorily. Then, by inspection, the estimated relia-
bility for this subsystem is the sum of the products of the respective esti-
mated probabilities given by the entries in the third main column of our
example array.
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8.16.1.5. Elementary Example Five

Suppose that this subsystem operates satisfactorily only when both A and B
or when both C and D operate satisfactorily. Accordingly, by inspection, the
estimated reliability of this subsystem is the sum of the products of the
respective estimated probabilities given by the entries in the fourth main
column of our example array.

8.16.1.6. Discussion

These five elementary examples are intended to demonstrate that the esti-
mated reliability of a subsystem can be established by enumerating all dis-
tinct sets of component operational states. This estimation methodology has
three basic steps: (a) enumerate all component operational states using
Yate’s enumeration algorithm; (b) identify those distinct sets of component
operational states that pertain either to satisfactory or unsatisfactory sub-
system operation; and (c) sum the products of the associated estimated
probabilities. Step (b) requires a special microcomputer program for each
different subsystem—because the specifications defining satisfactory or
unsatisfactory operation for each different subsystem involve a distinct set
of computer logic statements. This special microcomputer program is easily
obtained by inserting the logic statements appropriate to the subsystem into
the code for a generic enumeration microcomputer program.

When the generic enumeration microcomputer program pertains to
more than six to eight components, the number of component opera-
tional states may be so large that physical understanding is compro-
mised. Accordingly, each subsystem should be established (defined)
such that its completely enumerated operational states are all easily
comprehensible.

8.16.2. Reliability of a Repaired Subsystem

We now presume that when a component fails, the failed component is
eventually replaced (say at a routinely scheduled maintenance) even if the
subsystem continues to operate satisfactorily. Then, the respective durations
endured by different components in the repaired subsystem can (will) differ.
Satisfactory replacement of each failed component depends on (a) its avail-
ability and (b) the duration required for its satisfactory replacement, where
(a) must be stated in terms of an (estimated probability)–(duration to
obtain) expression and (b) must be expressed using a (estimated probabil-
ity)–(duration to its satisfactory replacement) expression. Accordingly, relia-
bility estimation for a repaired subsystem is best handled by simulation
(with a minimum of 1000 trials).
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To begin our discussion of a simulation-based estimate of subsystem
reliability, presume that all components operate satisfactorily at duration
d ¼ 0. Then, given estimated reliabilities for each of the respective compo-
nents generated by appropriate life (endurance) experiment test programs,
let duration d be successively incremented by an appropriately small dura-
tion interval di during each simulation trail. In turn, for each such appro-
priately small duration interval, let a uniform pseudorandom number
generator, zero to one, be used to establish whether each respective compo-
nent fails during that interval. However, a component cannot fail in the
interval of specific interest unless it has survived to the beginning of that
interval. Accordingly, for each component in the system, the enumeration-
based probability of failure in the interval of specific interest is given by the
expression

enumeration-based probability of failure in the interval of

specific interest

¼

ðdþdi

d

f uð Þdu

ð1
d

f uð Þdu
¼ f dð ÞðdiÞÐ1

d

f uð Þdu

in which d is the duration to the beginning of the appropriately small dura-
tion interval di of specific interest. This probability expression is typically
parsed into two terms: (a) the instantaneous failure rate function IFRF and
(b) the appropriately small duration increment di of specific interest, where,
by definition:

IFRF ¼ f dð Þ
1� F dð Þ

Clearly, the instantaneous failure rate function IFRF is analogous to a
probability density function PDF. The IFRF is also commonly called the
hazard rate function HRF, which is sometimes re-expressed as

HRF ¼ f dð Þ
Reliability dð Þ

The replacement strategy for redundant components that fail during a given
duration interval di must be explicitly defined so that the duration endured
by each replacement component is known. (Remember that the duration
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required for satisfactory replacement of a component can extend over many
appropriately short duration intervals.)

Each respective simulation trial is ended when the duration is reached
that pertains to the Type I censoring duration used in conducting the respec-
tive component life (endurance) experiment test programs. Once all of the
(mutually independent) simulation trials have been conducted, numerous
statistics will be available for analysis, e.g., (a) the simulation-based estimate
of the reliability at duration d for a new subsystem (which can be compared
to its analytically estimated value), (b) the average duration to failure for a
new subsystem, or (c) the simulation-based estimate of the reliability at
duration d for a repaired subsystem, (d) the average number of failures
for each component in the subsystem (which can be compared to its
expected value), or (e) the average number of components that had to be
repaired before any duration d of specific interest, etc. A comparison of the
relevant statistics for various alternative designs should aid in selecting a
more reliable configuration of components in the subsystem of specific inter-
est.

Exercise Set 4

These exercises are intended to provide further insight into the sum of
probabilities associated with enumerating all possible mutually exclusive
and exhaustive outcomes for two or more random variables whose realiza-
tions are dichotomous.

1. Given the array of all distinct sets of component operational
states for two components A and B, arbitrarily select estimated
reliability values for A and B and then demonstrate that the sum
of all four estimated probability products is one.

2. Given the array of all distinct sets of component operational
states for three components A, B, and C, arbitrarily select
estimated reliability values for A, B, and C and then demon-
strate that the sum of all eight estimated probability products
is one.

3. Given the array of all distinct sets of component operational
states for four components A, B, C, and D, arbitrarily select
estimated reliability values for A, B, C, and D and then demon-
strate that the sum of all 16 estimated probability products is one.

8.17. CLOSURE

The dominance of quantitative CRD experiment test programs presented in
this chapter should cause substantial concern regarding the applicability of
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these analyses in estimating the reliability of a subsystem (or even a com-
ponent) in service operation. All CRD experiment test programs presume
nominally identical test specimens and test conditions, whereas mechanical
components are always produced in batches. Accordingly, it is seldom if
ever reasonable to presume that a quantitative CRD test program will gen-
erate an unbiased estimate of any conceptual statistical model parameter of
specific interest. Moreover, it is likely that vendor-supplied prototype com-
ponents will markedly excel subsequent vendor-supplied production com-
ponents. In estimating mechanical reliability, skepticism and investigation
are always preferable to credulity and supinity.

All competent mechanical design methodologies attempt to establish
adequate subsystem (component) reliability by extrapolating well-docu-
mented service-proven reliability performance for similar subsystems
(components) to the subsystem (component) design of specific interest.
The statistical and test planning tools presented herein can be used to
enhance these mechanical design methodologies. However, regardless of
the amount and type of design analysis and prototype testing involved,
and regardless of the associated statistical methodology, the actual value
for the reliability of a product can only be demonstrated by its service
performance.

8.A. SUPPLEMENTAL TOPIC: EXACT (UNBIASED) A-
BASIS AND B-BASIS STATISTICAL TOLERANCE
LIMITS BASED ON UNCENSORED REPLICATE
DATUM VALUES

Quantitative materials behavior data and the associated design allowables
values are often stated in terms of A-basis and B-basis statistical tolerance
limits. An A-basis statistical tolerance limit is the metric value that is alleg-
edly exceeded by 99% of all possible replicate datum values with 0.95 prob-
ability, whereas a B-basis statistical tolerance limit is the metric value that is
allegedly exceeded by 90% of all possible replicate datum values with 0.95
probability.

This supplemental topic presents microcomputer programs to com-
pute A-basis and B-basis statistical tolerance limits based on uncensored
replicate datum values that are randomly selected from (a) a conceptual
(two-parameter) normal distribution, (b) a conceptual two-parameter
loge–normal distribution, or (c) a conceptual two-parameter Weibull distri-
bution. These A-basis and B-basis statistical tolerance limits are termed
exact (unbiased) because the proportion of their associated probability
statements (assertions) that are actually correct asymptotically approaches
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0.95 under continual replication of the experiment test program, where 0.95
is the scp value of specific interest. However, it is important to understand
that exact (unbiased) does not connote precise. When replicate experiment
test programs are conducted, e.g., as in a simulation study, A-basis and B-
basis statistical tolerance limit (realization) values typically exhibit marked
variability. Thus, it is not sufficient merely to compute A-basis and B-basis
statistical tolerance limits, we must also examine their precision.

Microcomputer programs and methodologies to compute A-basis and
B-basis statistical tolerance limits based on replicate life (endurance) datum
values with Type I censoring are presented in Supplemental Topic 8.D.

8.A.1. Exact (Unbiased) A-basis and B-basis Statistical
Tolerance Limits Based on Uncensored Replicate
Normally Distributed Datum Values

These statistical tolerance limits are computed using theoretical factors that
are based on Student’s noncentral t conceptual sampling distribution.
Microcomputer programs ABNSTL and BBNSTL first calculate this toler-
ance limit factor and then calculate the associated A-basis and B-basis sta-
tistical tolerance limits.

Programs ABNSTL and BBNSTL pertain to quantitative CRD
experiment test programs that generate six to 32 replicate datum values.
Even the smallest mechanical test (or mechanical reliability) experiment
test program should include at least six replicate datum values. On the
other hand, it is unlikely that a mechanical test (or mechanical reliability)
experiment test program will pertain to a batch of more than 32 nominally
identical test specimens.
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C> COPY STLDATA DATA

1 file(s) copied

C> ABNSTL

Based on the presumption that the replicate datum values of specific
interest were randomly selected from a conceptual (two-parameter)
normal distribution, the A-basis statistical tolerance limit is equal to
0.113809D+00.
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C> COPY STLDATA DATA

1 file(s) copied

C> BBNSTL

Based on the presumption that the replicate datum values of specific
interest were randomly selected from a conceptual (two-parameter)
normal distribution, the B-basis statistical tolerance limit is equal to
0.118762D+00.

C> TYPE STLDATA

21 Number of Replicate Datum Values
0.120 Replicate Datum Value One, etc.
0.132
0.123
0.128
0.123
0.124
0.126
0.129
0.120
0.132
0.123
0.126
0.129
0.128
0.123
0.124
0.126
0.129
0.120
0.126
0.129
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8.A.1.1. Discussion

Consider a reference set of replicate normally distributed pseudorandom
datum values and their associated A-basis and B-basis statistical tolerance
limits. If each of these datum values were multiplied by a positive constant c,
the resulting A-basis and B-basis statistical tolerance limits would be multi-
plied by c. However, to generate this new set of pseudorandom datum values
we would have to multiply both the mean and standard deviation of the
reference normal distribution by c, or, equivalently, we could specify the
value for the coefficient of variation (the ratio of the standard deviation to
the mean) and then multiply the normal distribution mean by c.
Accordingly, given any value for the coefficient of variation of specific inter-
est, A-basis and B-basis statistical tolerance limits can be stated in terms of a
(positive) proportion of the normal distribution mean. Thus, we can use this
value for the coefficient of variation to generate nrep replicate normally
distributed data sets and thereby construct the empirical sampling distribu-
tions for the A-basis and B-basis statistical tolerance limits stated in terms of
this unitless metric.

Given the actual value for the coefficient of variation of specific inter-
est, microcomputer programs SNABSTL and SNBBSTL generate 30,000
replicate normally distributed data sets, each of size ndv, and then delimit
certain percentiles of the empirical sampling distributions for the respective
A-basis and B-basis statistical tolerance limits in terms of their proportion of
the conceptual distribution mean. These programs were run to generate the
empirical sampling distribution data summarized in Tables 8.3 and 8.4.
Note that these exact normal statistical limits are not precise for small
numbers of replicate datum values when the coefficient of variation is rela-
tively large.

The conventional estimate of the actual value for the coefficient of
variation should be modified by an appropriate empirical or pragmatic
statistical bias correction before running either microcomputer program
SNABSTL or SNBBSTL. This methodology is presented in Supplemental
Topic 8.D.

Remark: When an estimated value is substituted for the actual value
in the generation of a sampling distribution, we term the resulting
sampling distribution pragmatic. We then assert (conjecture) that
the pragmatic sampling distribution is a reasonably accurate
approximation to its corresponding empirical sampling distribu-
tion.
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8.A.2. Exact (Unbiased) A-basis and B-basis Statistical
Tolerance Limits Based on Uncensored Replicate
loge^Normal Life (Endurance) Datum Values

Exact (unbiased) A-basis and B-basis statistical tolerance limits based on
uncensored replicate loge–normal life (endurance) datum values are com-
puted using the same theoretical factors that are used to compute exact
(unbiased) A-basis and B-basis statistical tolerance limits for replicate
uncensored normal datum values. Thus, microcomputer programs
ABLNSTL and BBLNSTL are analogous to microcomputer programs
ABNSTL and BBNSTL.

466 Chapter 8

C> COPY STLDATA DATA

1 file(s) copied

C> ABLNSTL

Based on the presumption that the replicate datum values of specific
interest were randomly selected from a conceptual two-parameter
loge–normal distribution, the A-basis statistical tolerance limit is
equal to 0.114304D+00.

C> COPY STLDATA DATA

1 file(s) copied

C> BBLNSTL

Based on the presumption that the replicate datum values of specific
interest were randomly selected from a conceptual two-parameter
loge–normal distribution, the B-basis statistical tolerance limit is
equal to 0.118900D+00.

TLFeBOOK



Microcomputer programs SLNABSTL and SLNBBSTL are analo-
gous to microcomputer programs SWABSTL and SWBBSTL, which fol-
low. These programs were run to generate the empirical sampling
distribution data summarized in Tables 8.5 and 8.6. Note that A-basis
and B-basis statistical tolerance limits exhibit such marked variability for
practical experiment test program sizes that very few of these statistical
tolerance limits can be regarded as being reasonably precise.

8.A.3. Exact (Unbiased) A-basis and B-basis Statistical
Tolerance Limits Based on Uncensored Replicate
Weibull Life (Endurance) Datum Values

Exact (unbiased) A-basis and B-basis statistical tolerance limits based on
uncensored replicate Weibull life (endurance) datum values can be com-
puted using simulation-based factors (based on best linear invariant esti-
mates) tabulated by Mann and Fertig (1973). Microcomputer program
BLISTL employs these factors to compute exact (unbiased) A-basis and
B-basis statistical tolerance limits given the uncensored replicate Weibull
life (endurance) datum values of specific interest. The variability of these
statistical tolerance limits can be examined by running microcomputer pro-
grams SWABSTL and SWBBSTL with any combination of the Weibull
distribution mean and standard deviation that is of specific interest, e.g.,
the estimated mean and standard deviation pertaining to the datum values
for the experiment test program that was actually conducted. These pro-
grams were run to generate the empirical sampling distribution data sum-
marized in Tables 8.7 and 8.8. Note that exact (unbiased) A-basis and B-
basis statistical tolerance limit values for Weibull life (endurance) datum
values are slightly less precise (exhibit slightly more variability) than the
corresponding statistical tolerance limit values for loge–normal life (endur-
ance) datum values.

8.A.3.1. Summary and Recommendations

Tables 8.3 through 8.8 demonstrate that, depending on the values for ndv
and the coefficient of variation, exact (unbiased) A-basis and B-basis statis-
tical tolerance limits computed by running microcomputer programs
ABNSTL, BBNSTL, ABLNSTL, BBLNSTL, and BLISTL can exhibit
marked variability under continual replication of the experiment test pro-
gram. Accordingly, we make the following recommendations:

Recommendation one: Instead of reporting the A-basis or B-basis
statistical tolerance limit computed by running microcomputer pro-
gram ABNSTL, BBNSTL, ABLNSTL, BBLNSTL, or BLISTL,

Mechanical Reliability Fundamentals 467
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report the value that is the mean of the pragmatic sampling distri-
bution computed by running microcomputer program SNABSTL,
SLNBBST, SNABSTL, SLNBBST, SWABSTL, or SWBBSTL
with its pragmatic bias-corrected coefficient of variation
(Supplemental Topic 8.D) as input data. This methodology
increases the precision of the reported A-basis and B-basis statisti-
cal tolerance limits, viz., it reduces the range of the sampling dis-
tribution percentiles reported in Tables 8.3 through 8.8.

Recommendation Two: Because the value for the coefficient of var-
iation is so useful in terms of perspective and test planning it is good
statistical practice to compute and compile (record) values for the
estimated mean, standard deviation, and coefficient of variation for
all experiment test programs that are commonly conducted.
Otherwise the actual value for the coefficient of variation will
most likely be markedly underestimated in the statistical planning
of life (endurance) experiment test programs.

8.A.4. Classical Distribution-Free (Nonparametric) A-
Basis and B-Basis Statistical Tolerance Limits

The following A-basis and B-basis statistical tolerance limits find only occa-
sional application in mechanical reliability, but are nevertheless included in
this supplemental topic for completeness.

Consider a conceptual statistical distribution with a continuous metric
whose analytical PDF expression is unspecified (unknown). Distribution-free
(nonparametric) A-basis and B-basis statistical tolerance limits are com-
puted using the classical distribution-free (nonparametric) lower (one-
sided) statistical tolerance limit expression:

probability X 1ð Þ < 1� pp�ð Þ½ � ¼ 1� pp�ð Þndv �
¼ actual value for the statistical confidence probability = scp�

in which X(1) is the smallest of the ndv replicate datum values, pp* is the
population proportion of specific interest, either 0.99 or 0.90, that lies above
X(1) with the actual value for the statistical confidence probability
scp ¼ scp*, and ndv is the number of replicate datum values generated in
a quantitative CRD experiment test program. Note that, because classical
distribution-free (nonparametric) statistical tolerance limits depend only on
the smallest of the ndv replicate datum values, the experiment test program
can involve Type I censored (or even arbitrarily suspended) tests.
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The problem with distribution-free (nonparametric) lower (one-sided)
statistical tolerance limits is that ndv must be at least equal to approximately
300 and 30, respectively, to attain A-basis and B-basis statistical tolerance
limits. Otherwise, the actual values for the statistical confidence probability
scp* are less than 0.95. Clearly, these minimum values for ndv are too large
to allow distribution-free (nonparametric) A-basis and B-basis statistical
tolerance limits to have wide practical application. In fact, the minimum
number of replicate datum values ndv is so large that a compilation of
material behavior datum values pertaining to several nominally identical
experiment test programs is typically required even to establish a B-basis
distribution-free (nonparametric) statistical tolerance limit. (Although a
strict quantitative interpretation of a statistical tolerance limit based on a
compilation of material behavior datum values pertaining to several nom-
inally identical experiment test programs may be obscure, such compilations
are preferable to replicate datum values generated in a single experiment test
program. Statistical tolerance limits based on compilations of datum values
virtually eliminate the chance that all such values pertain to atypical batches
of experimental units or atypical test conduct procedures.)

Exercise Set 5

These exercises are intended to verify the text assertion that extremely large
experiment test programs are required to establish A-basis and B-basis sta-
tistical tolerance limits using the classical distribution-free (nonparametric)
lower (one-sided) statistical tolerance limit expression.

1. Compute the respective minimum experiment test program size
to establish A-basis and B-basis statistical tolerance limits using
the classical distribution-free (nonparametric) lower (one-sided)
statistical tolerance limit expression.

2. Compute the minimum experiment test program size required to
establish the classical distribution-free (nonparametric) 99%
lower (one-sided) statistical tolerance limit that allegedly bounds
the 10th and 01th percentiles of the unspecified conceptual statis-
tical distribution of specific interest.

3. Based on the results of Exercises 1 and 2, do you see why the
loge–normal and Weibull life (endurance) distributions are so
widely presumed when computing A-basis and B-basis statistical
tolerance limits? Does this ‘‘necessity’’ improve the credibility of
either distribution?
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8.A.5. Modi¢ed Distribution-Free (Nonparametric) B-
Basis Lower (One-Sided) Statistical Tolerance
Limit

Suppose we assert that (a) the PDF for the unspecified continuous concep-
tual life (endurance) distribution of specific interest is equal to zero when the
life (endurance) metric is equal to zero and that (b) the slope (derivative) of
this PDF is strictly increasing in the interval from zero to the metric value
pertaining to p*. Then, given this PDF behavior, we can assert that

probability
X 1ð Þ
c

< 1�pp�ð Þ
	 


¼ 1� 1� 1�pp�ð Þc2 �ndvn o
¼ statistical confidence probability = scp

provided that c > 1 and that (1�pp*)(c2) < (p*). This modified expression is
useful in establishing B-basis statistical tolerance limits when ndv is slightly
less than the minimum value required to attain the required scp value for the
classical distribution-free (nonparametric) B-basis statistical tolerance limit.
Its credibility depends on the minimum value for p* that appears to be
reasonable to presume for the unspecified continuous life (endurance)
PDF. For purposes of perspective, the slope of the PDF is strictly increasing
for p* values up to approximately 0.16 for a conceptual (two-parameter)
normal distribution, up to approximately 0.21 for a conceptual (two-para-
meter) logistic distribution, up to approximately 0.32 for a conceptual (two-
parameter) smallest-extreme-value distribution (skewed to the left), and up
to approximately 0.07 for a conceptual (two-parameter) largest-extreme-
value distribution (skewed to the right). The p* value for the conceptual
two-parameter Weibull distribution depends on the actual value for cdp2: its
PDF is equal to zero when the life (endurance) metric is equal to zero for all
values of cdp2 greater than one, and its slope is strictly increasing for p*
between approximately 0.07 and 0.26 when the actual value for the cdp2 is
between 2.5 and 10.0.

Microcomputer program MDFBBSTL (modified distribution-free B-
basis statistical tolerance limit) computes the modified distribution-free
(nonparametric) B-basis tolerance limit for replicate life (endurance)
datum values that are presumed to have been randomly selected from an
unspecified conceptual statistical distribution with a continuous metric. As
mentioned above, this program has application (only) for estimating distri-
bution-free (nonparametric) B-basis tolerance limits in situations where the
experiment test program size is slightly smaller than the minimum size
required to establish the classical distribution-free (nonparametric) B-basis
statistical tolerance limit.
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8.A.6. Perspective and Closure

It is extremely unlikely that a sufficient number of ‘‘replicate’’ datum values
can ever be compiled to establish a credible distribution-free (nonpara-
metric) A-basis statistical tolerance limit. Moreover, although it is possible
that a sufficient number of ‘‘replicate’’ datum values can be generated in a
mechanical reliability test program to establish a credible distribution-free
(nonparametric) B-basis statistical tolerance limit, it will not be a common
occurrence. Accordingly, almost all statistical tolerance limits in mechanical
reliability analyses are based on the presumption that the experiment test
program datum values are (were) randomly selected from a conceptual (two-
parameter) normal, a conceptual two-parameter loge–normal, or a concep-
tual two-parameter Weibull distribution. It is, therefore, very important in
terms of perspective to understand that these conceptual statistical distribu-
tions are merely analytical models and do not (and never will) model any
mechanical mode of failure exactly. Thus, it is never rational to attempt to
‘‘improve’’ on A-basis or B-basis statistical tolerance limits by computing a
lower 100(scp)% (one-sided) statistical confidence limit that allegedly
bounds the (pf )th percentile of the presumed conceptual distribution by
selecting scp to be greater than 0.95 or selecting pf to be less than 0.01. In
fact, even selecting scp to be equal to 0.95 while simultaneously selecting pf
to be equal to 0.01 (as for an A-basis statistical tolerance limit) typically
stretches the bounds of common sense.

Reminder: Since all components (experimental units) are manufac-
tured (produced) in batches, the critical issue in rationally interpret-
ing any quantitative statistical estimate is whether the given batch
of components (experimental units) is actually representative of the
population of specific interest.
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1 file(s) copied

C> MDFBBSTL

The modified distribution-free (nonparametric) B-basis statistical tol-
erance limit is equal to 0.104074D+00.
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8.B. SUPPLEMENTAL TOPIC: MAXIMUM LIKELIHOOD
ANALYSIS FOR OUTCOME OF A LIFE
(ENDURANCE) EXPERIMENT TEST PROGRAM
WITH TYPE I CENSORING, PRESUMING loge-
NORMAL DATUM VALUES

Recall that given replicate life (endurance) datum values that are presumed
to have been randomly selected from a conceptual two-parameter Weibull
distribution, the natural logarithms of these datum values can be presumed
to have been randomly selected from the corresponding conceptual (two-
parameter) smallest-extreme-value distribution with a logarithmic metric.
Similarly, given life (endurance) datum values that are presumed to have
been randomly selected from a conceptual two-parameter loge–normal dis-
tribution, the natural logarithms of these datum values can be presumed to
have been randomly selected from the corresponding conceptual (two-para-
meter) normal distribution with a logarithmic metric. Accordingly, we now
perform a ML analysis for loge–normal life (endurance) datum values by
taking the natural logarithms of the respective datum values and presuming
that these transformed datum values are normally distributed. The resulting
point and interval estimates of specific interest are then restated in the
original metric by taking their exponentials (antilogarithms).

When the life (endurance) CRD quantitative experiment test program
includes Type I censored tests, the likelihood can be expressed as

likelihood ¼ nf þ ns
� �

!

nf � !ns!
�
Ynf
i¼1

f loge fncið Þ � �Yns
j¼1

1� F loge snc
�ð Þ �� �

in which nf denotes the number of failed items and ns denotes the number of
Type I censored tests. The conventional parameterization for the conceptual
(two-parameter) normal distribution is

f loge fncið Þ � ¼ 1ffiffiffiffiffiffi
2�

p � csp � exp � 1

2
� loge fncið Þ � clp

csp

	 
2( )

in which, as mentioned above, the metric is loge( fnc), and

F logeðsncjÞ
 � ¼ 1ffiffiffiffiffiffi

2�
p � csp �

ðlogeðsncjÞ

�1
exp � 1

2
� u� clp

csp

� �2
" #

du

in which u is the dummy variable of integration. Recall, however, that there
are four alternative parameterizations that can be used to specify a concep-
tual (two-parameter) normal distribution.
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It is analytically convenient to re-express the likelihood in terms of the
standardized conceptual normal distribution variate y, which for this con-
ventional parameterization is

y ¼ logeð fncÞ � clp

csp

The likelihood expression can then be re-expressed as

likelihood ¼ nf þ ns
� �

!

nf � !ns!
�
Ynf
i¼1

1

csp
� f yið Þ �

Yns
j¼1

1� F y�ð Þ½ �

Thus, ignoring the nonessential terms, the loge(likelihood) expression
becomes

loge likelihoodð Þ ¼ �nf � loge cspð Þ � 1

2
�
Xnf
i¼1

y2iþ
Xns
j¼1

loge 1� F y�ð Þ½ �

In turn, the maximum likelihood estimates of the actual values for the clp
and the csp are obtained by simultaneously solving the two (nonlinear)
equations that are generated by setting the partial derivatives of this
loge(likelihood) expression with respect to clp and csp equal to zero, viz.,

@ loge likelihoodð Þ
@clp

¼ � 1

2
�
Xnf
i¼1

2 � yi �
@yi
@clp

þ
Xns
j¼1

1

1� Fðy�Þ �
@ 1� Fðy�Þ½ �

@clp

and

@ loge likelihoodð Þ
@csp

¼� nf

csp
� 1

2
�
Xnf
i¼1

2 � yi �
@yi
@csp

þ
Xns
j¼1

1

1� Fðy�Þ �
@ 1� Fðy�Þ½ �

@csp

Then, substituting

@y

@clp
¼ � 1

csp

@ 1� FðyÞ½ �
@clp

¼ @ 1� FðyÞ½ �
@y

� @y

@clp
¼ �f ðyÞ � � 1

csp

� �
¼ f ðyÞ

csp

@y

@csp
¼ logeðfnciÞ � clp
 � � � 1

csp2

� �
¼ �y

csp

@ 1� FðyÞ½ �
@csp

¼ @ 1� FðyÞ½ �
@y

� @y

@csp
¼ �f ðyÞ � � y

csp

� �
¼ y � f ðyÞ

csp
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into the respective partial derivative expressions generates the following
simultaneous (nonlinear) equations:

@ loge likelihoodð Þ
@clp

¼ 1

csp
�
Xnf
i¼1

yi þ
Xns
j¼1

f y�ð Þ
1� F y�ð Þ

" #
¼ 0

and

@ loge likelihoodð Þ
@csp

¼ 1

csp
� �nf þ

Xnf
i¼1

y2i þ
Xns
j¼1

y� � f y�ð Þ
1� F y�ð Þ

" #
¼ 0

in which the respective numerical values of y, f(y), and F(y) each depend on
the corresponding values of est(clp), est(csp), fnci, and snc*. The Newton–
Raphson (N–R) method of numerical solution for est(clp) and est(csp) is
very effective when reasonably accurate initial guestimates are used to begin
this iterative methodology. Recall that it requires analytical expressions for
the respective second partial derivatives, viz.,

@2 loge likelihoodð Þ
@clp2

¼ � 1

csp2
� nf �

Xns
j¼1

y� � f ðy�Þ
1� Fðy�Þ þ

Xns
j¼1

f ðy�Þ2
1� Fðy�Þ½ �2

( )

@2 loge likelihoodð Þ
@clp @csp

¼ � 1

csp2
� 2

Xnf
i¼1

yi �
Xns
j¼1

y�
2 � f ðy�Þ

1� Fðy�Þ½ �

(

þ
Xns
j¼1

y� � f ðy�Þ2
1� Fðy�Þ½ �2 þ

Xns
j¼1

f ðy�Þ
1� Fðy�Þ

)

@2 loge likelihoodð Þ
@csp2

¼ � 1

csp2
�nf þ 3 �

Xnf
i¼1

y2i �
Xns
j¼1

y�
3 � f ðy�Þ

1� Fðy�Þ½ �

(

þ
Xns
j¼1

y� � 2f ðy�Þ2
½1� Fðy�Þ�2 þ 2 �

Xns
j¼1

y� � f ðy�Þ
1� Fðy�Þ

)

that are evaluated numerically by substituting est(clp) for the clp and
est(csp) for the csp in the respective expressions for y, f(y), and F(y). The
negatives of the resulting values for these second partial derivatives form the
respective elements of a 2 by 2 array, whose inverse is the symmetrical
estimated asymptotic covariance matrix, viz.,
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jestfcovar½estðclpÞ; estðcspÞ�gj

¼
estfvar½estðclpÞ�g estfcovar½estðclpÞ; estðcspÞ�g

estfcovar½estðclpÞ; estðcspÞ�g estfvar½estðcspÞ�g

�����
�����

This estimated covariance matrix establishes the values needed to compute
classical lower 100(scp)% (one-sided) asymptotic statistical confidence limits
that allegedly bound the actual value for the fnc(pf ) of specific interest using
the propagation of variability methodology (Supplemental Topic 7.A.). The
associated pragmatic bias-corrected lower 100(scp)% (one-sided) statistical
confidence limits are computed by running microcomputer programs
LNPBCPV and LNPBCLR. (Supplemental Topics 8.D and 8.E).

Remark: If the life (endurance) experiment test program includes
arbitrarily suspended tests, then the ns (equal) snc*’s are merely
replaced by the respective (different) sncj’s in microcomputer file
WBLDATA. Recall, however, that the fundamental statistical con-
cept of a continually replicated experiment test program is obscure
when arbitrarily suspended tests occur.

8.B.1. Numerical Examples

The following numerical examples for the conceptual two-parameter loge–
normal distribution are obtained by running microcomputer programs
LN1A, LN2A, LN3A, and LN4A with the fatigue life datum values found
in microcomputer file WBLDATA. These numerical examples correspond
directly to the numerical examples that were obtained by running micro-
computer programs LSEV1A, LSEV2A, LSEV3A, and LSEV4A. The
LN(J)A series of microcomputer programs confirm that when the respec-
tive lower 100(scp)% (one-sided) asymptotic statistical confidence limits that
allegedly bound the actual fnc(pf ) value of specific interest are computed
using propagation of variance methodology, these confidence limits are
independent of the parameterization used to state the CDF.

8.C. SUPPLEMENTAL TOPIC: MAXIMUM LIKELIHOOD
ANALYSIS FOR OUTCOME OF A STRENGTH
(RESISTANCE) EXPERIMENT TEST PROGRAM
WITH TWO OR MORE STRESS (STIMULUS )
LEVELS

We begin this section by considering the ML analysis of the outcome of a
generic strength (resistance) test. We then simplify this ML analysis to
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C> COPY WBLDATA DATA

1 files(s) copied

C> LN1A

Given the Standardized Conceptual Normal Distribution Variate
y ¼ csp � [loge( fnc) � clp]

est(clp) ¼ 0.5956793964D+01
est(csp) ¼ 0.4171442213D+01
est{var[est(clp)]} ¼ 0.9987394347D� 02
est{var[est(csp)]} ¼ 0.1903271765D+01
est{covar[est(clp),est(csp)]} ¼ �0.1346739280D� 01
est(conceptual correlation coefficient) ¼ �0.9768030920D� 01

fnc est(y) est(pf)

277.000 �1:3881578 0.0825445
310.000 �0:9186420 0.1791414
374.000 �0:1357311 0.4460169
402.000 0:1654316 0.5656978
456.000 0:6912032 0.7552811

snc est(y) est(pf)

500.000 1:0754568 0.8589149

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for fnc(01)

158.933 – Computed Using the Propagation of Variability Expression
for est[var(est{loge[ fnc(01)]})]

112.714 – Computed Using the Propagation of Variability Expression
for est{var[est(y given fnc ¼ closascl)]}
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C> COPY WBLDATA DATA

1 files(s) copied

C> LN2A

Given the Standardized Conceptual Normal Distribution Variate
y ¼ �clpþ csp � loge fnc)

est(clp) ¼ 0.2484842180D+02
est(csp) ¼ 0.4171442213D+01
est{var[est(clp)]} ¼ 0.6703904559D+02
est{var[est(csp)]} ¼ 0.1903271765D+01
est{covar[est(clp),est(csp)]} ¼ �0.1128121931D+02
est(conceptual correlation coefficient) ¼ �0.9987153578D+00

fnc est(y) est(pf)

277.000 �1:3881578 0.0825445
310.000 �0:9186420 0.1791414
374.000 �0:1357311 0.4460169
402.000 0:1654316 0.5656978
456.000 0:6912032 0.7552811

snc est(y) est(pf)

500.000 1:0754568 0.8589149

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for fnc(01)

158.933 – Computed Using the Propagation of Variability Expression
for est[var(est{loge[ fnc(01)]})]

112.714 – Computed Using the Propagation of Variability Expression
for est{var[est(y given fnc ¼ closascl)]}

TLFeBOOK



482 Chapter 8

C> COPY WBLDATA DATA

1 files(s) copied

C> LN3A

Given the Standardized Conceptual Normal Distribution Variate
y ¼ [loge( fnc) � clp]/csp

est(clp) ¼ 0.5956793964D+01
est(csp) ¼ 0.2397252434D+00
est{var[est(clp)]} ¼ 0.99787394347D� 02
est{var[est(csp)]} ¼ 0.6285732256D� 02
est{covar[est(clp),est(csp)]} ¼ 0.7739467195D� 03
est(conceptual correlation coefficient) ¼ 0.9768030920D� 01

fnc est(y) est(pf)

277.000 �1:3881578 0.0825445
310.000 �0:9186420 0.1791414
374.000 �0:1357311 0.4460169
402.000 0:1654316 0.5656978
456.000 0:6912032 0.7552811

snc est(y) est(pf)

500.000 1:0754568 0.8589149

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for fnc(01)

158.933 – Computed Using the Propagation of Variability Expression
for est[var(est{loge[ fnc(01)]})]

112.714 – Computed Using the Propagation of Variability Expression
for est{var[est(y given fnc ¼ closascl)]}
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C> COPY WBLDATA DATA

1 files(s) copied

C> LN4A

Given the Standardized Conceptual Normal Distribution Variate
y ¼ {[loge( fnc)]/csp} � clp

est(clp) ¼ 0.2484842180D+02
est(csp) ¼ 0.2397252434D+00
est{var[est(clp)]} ¼ 0.6703904559D+02
est{var[est(csp)]} ¼ 0.6285732256D� 02
est{covar[est(clp),est(csp)]} ¼ �0.6483112811D+02
est(conceptual correlation coefficient) ¼ �0.9987153578D+00

fnc est(y) est(pf)

277.000 �1:3881578 0.0825445
310.000 �0:9186420 0.1791414
374.000 �0:1357311 0.4460169
402.000 0:1654316 0.5656978
456.000 0:6912032 0.7552811

snc est(y) est(pf)

500.000 1:0754568 0.8589149

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for fnc(01)

158.933 – Computed Using the Propagation of Variability Expression
for est[var(est{loge[ fnc(01)]})]

112.714 – Computed Using the Propagation of Variability Expression
for est{var[est(y given fnc ¼ closascl)]}
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pertain to the outcome of a strength (resistance) test conducted using the up-
and-down strategy. The former analysis presumes a conceptual two-para-
meter strength (resistance) distribution, whereas the latter presumes a con-
ceptual one-parameter strength (resistance) distribution, viz., presumes that
the two-parameter distribution csp is known.

8.C.1. Conceptual Two-Parameter Strength (Resistance)
Distributions

Consider a strength (resistance) experiment test program that is conducted
to estimate the actual values for the clp and the csp of a conceptual two-
parameter strength (resistance) distribution. First, presume that a series of
independent strength (resistance) tests has been conducted at a single stress
(stimulus) level and each test item was sequentially tested until failure
occurred or until a predetermined test duration d* was endured without
failure. If so, recall that each of the respective tests can be statistically
viewed as a binomial trial and that the probability of failure, pf, before
duration d* at this stress (stimulus) level can be estimated. Next, presume
that analogous strength (resistance) tests have been conducted at two or
more stress (stimulus) levels. Let the number of these stress (stimulus) levels
be denoted nsl and let the ith stress (stimulus) level be denoted si, where i = 1
to nsl. Then, presume that niti items were tested at si and that nifi of these test
items failed prior to enduring duration d*. Accordingly, ignoring nonessen-
tial (factorial) terms, the likelihood expression for the resulting strength
(resistance) experiment test program can be written as

likelihood ¼
Ynsl
i¼1

pf
nif i
i � 1� pfið Þ niti � nif i

� �

in which pfi is shorthand notation for pf given s ¼ si and pf ¼ F(y), where
y ¼ clpþ csp � s and F(y) is the conceptual (two-parameter) strength (resis-
tance) CDF. The corresponding loge(likelihood) expression is

loge likelihoodð Þ ¼
Xnsl
i¼1

nifi � loge pfið Þ þ
Xnsl
i¼1

niti � nifi
� � � loge 1� pfið Þ

In turn, est(clp) and est(csp) are computed by simultaneously solving the
partial derivative equations:

@ loge likelihoodð Þ
@clp

¼
Xnsl
i¼1

nifi
pfi

� @pfi
@clp

þ
Xnsl
i¼1

niti � nifi
1� pfi

� �
� @ 1� pfið Þ

@clp
¼ 0

and
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@ loge likelihoodð Þ
@csp

¼
Xnsl
i¼1

nifi
pfi

� @pfi
@csp

þ
Xnsl
i¼1

niti � nifi
1� pfi

� �
� @ 1� pfið Þ

@csp
¼ 0

However, these two nonlinear simultaneous partial derivative equations can
be written more concisely as

@ loge likelihoodð Þ
@clp

¼
Xnsl
i¼1

nsti � nifi=niti
� �� pfi
 �
pfi � 1� pfið Þ

� �
� @pfi
@clp

¼ 0

and

@ loge likelihoodð Þ
@csp

¼
Xnsl
i¼1

nsti � nifi=niti
� �� pfi
 �
pfi � 1� pfið Þ

� �
� @pfi
@csp

¼ 0

in which the respective (nif
i
/nit

i
)’s are the respective ML estimates of the

actual values for the corresponding conceptual pfi’s (Section 8.11).
Moreover, it is analytically convenient to restate these two nonlinear partial
derivative equations in terms of the standardized CDF metric y. Recall that
y ¼ clp þ csp � s. Thus,

@y

@clp
¼ 1

@y

@csp
¼ s

@pf

@clp
¼ @pf

@y
� @y

@clp

@pf

@csp
¼ @pf

@y
� @y

@csp

Substituting these expressions into the two nonlinear partial derivative
equations stated in terms of the clp and the csp gives the restated expres-
sions:

@ loge likelihoodð Þ
@clp

¼
Xnsl
i¼1

nsti � nif i=niti

� �
� pfi

h i
pfi � 1� pfið Þ

8<
:

9=
; � @pfi

@yi
¼ 0

and

@ loge likelihoodð Þ
@csp

¼
Xnsl
i¼1

nsti � nif i=niti

� �
� pfi

h i
pfi � 1� pfið Þ

8<
:

9=
; � si �

@pfi
@yi

¼ 0
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In turn, the corresponding second partial derivative expressions are

@2 loge likelihoodð Þ
@clp2

¼�
Xnsl
i¼1

niti
pfi � 1� pfið Þ
	 


� @pfi
@yi

� �2

þ
Xnsl
i¼1

niti � nif i=niti

� �
� pfi

h i
pfi � 1� pfið Þ

8<
:

9=
; � @

2pfi
@y2i

�
Xnsl
i¼1

niti � nif i=niti

� �
� pfi

h i
� 1� 2pfið Þ½ �

pfi � 1� pfið Þ½ �2

8<
:

9=
; � @pfi

@yi

� �2

and

@2 loge likelihoodð Þ
@csp2

¼�
Xnsl
i¼1

niti
pfi � 1� pfið Þ
	 


� s2i �
@pfi
@yi

� �2

þ
Xnsl
i¼1

niti � nif i=niti

� �
� pfi

h i
pfi � 1� pfið Þ

8<
:

9=
; � s2i �

@2pfi
@y2i

�
Xnsl
i¼1

niti � nif i=niti

� �
� pfi

h i
1� 2pfið Þ½ �

pfi � 1� pfið Þ½ �2

8<
:

9=
; � s2i �

@pfi
@yi

� �2

The associated mixed second partial derivative expression is

@2 loge likelihoodð Þ
@clp @csp

¼�
Xnsl
i¼1

niti
pfi � 1� pfið Þ
	 


� si �
@pfi
@yi

� �2

þ
Xnsl
i¼1

niti � nif i=niti

� �
� pfi

h i
pfi � 1� pfið Þ

8<
:

9=
; � si �

@2pfi
@y2i

�
Xnsl
i¼1

niti � nif i=niti

� �
� pfi

h i
� 1� 2pfið Þ½ �

pfi � 1� pfið Þ½ �2

8<
:

9=
; � si �

@pfi
@yi

� �2

These second derivative expressions can (should) be used in the iterative
Newton–Raphson (N–R) method for estimating the actual values for the
clp and the csp. However, these expressions are traditionally simplified by
ignoring summations with [(nif

i
/nit

i
) � pfi] terms. The resulting simplified

(approximate) second partial derivative expressions are sufficiently accurate
that the convergence of the N–R estimation method is not compromised
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(but one or two more iterations are generally required to obtain the same
accuracy as obtained when using the exact second partial derivative expres-
sions). This simplification (approximation) was introduced to expedite
hand-calculations, but it continues to be universally used—perhaps because
it still has a strong conceptual advantage when the simplified second partial
derivative expressions are re-expressed in terms of statistical weights, viz.,
when

@2 loge likelihoodð Þ
@clp2

¼ �
Xnsl
i¼1

niti
pfi � 1� pfið Þ

	 

� @pfi

@yi

� �2

@2 loge likelihoodð Þ
@csp2

¼ �
Xnsl
i¼1

niti
pfi � 1� pfið Þ

	 

� s2i �

@pfi
@yi

� �2

and

@2 loge likelihoodð Þ
@clp @csp

¼ �
Xnsl
i¼1

niti
pfi � 1� pfið Þ

	 

� si �

@pfi
@yi

� �2

are rewritten as

@2 loge likelihoodð Þ
@clp2

¼ �
Xnsl
i¼1

swi

@2 loge likelihoodð Þ
@csp2

¼ �
Xnsl
i¼1

swi � s2i

@2 loge likelihoodð Þ
@clp @csp

¼ �
Xnsl
i¼1

swi � si

in which, as explained below,

swi ¼
niti

pfi 1� pfið Þ
	 


� @pfi
@yi

� �2

Note that these statistical weights must be estimated in ML analysis.
Recall that the actual value for a statistical weight is equal to the

inverse of the actual value for the variance of the corresponding conceptual
sampling distribution. In this ML analysis, the relevant statistical weights
swi’s are the inverses of the actual values for the variances of the asymptotic
normally distributed sampling distributions for the respective [est(yi)]’s.
Accordingly, the generic expression for these statistical weights is developed
as follows. Presume that tentative values for est(clp) and est(csp) have been
guestimated. The corresponding values for the respective [est(yi)]’s can then
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be computed. In turn, when the [est(yi)]’s have been computed, then the
corresponding respective [est(pfi)]’s can be computed. Next, recall that the
variances of the conceptual binomial sampling distributions for each respec-
tive est(pfi) is equal to the [pfi � (1 � pfi)]/nit

i
. Recall also that the conceptual

binomial distribution can be asymptotically approximated by a conceptual
(two-parameter) normal distribution that has identical actual values for its
mean and variance. Thus, we now assert that the asymptotic conceptual
sampling distributions for the respective [est(pfi)]’s are appropriately scaled
conceptual (two-parameter) normal distributions. In turn, we assert that (a)
the asymptotic conceptual sampling distributions for the corresponding
[est(yi)]’s are also appropriately scaled conceptual (two-parameter) normal
distributions, and (b) the actual values for their variances are related by the
propagation of the variability expression:

var½estðyiÞ� ¼
@yi
@pfi

� �2

� var½estð pfiÞ�

in which the inverse of @yi/@pfi, the ordinate of the PDF of the underlying
(presently unspecified) conceptual (two-parameter) strength distribution, is
theoretically evaluated at pfi. However, since pfi is unknown, this partial
derivative expression must be evaluated at est(pfi).

The iterative N–R estimation method is conveniently employed to
solve numerically for est(clp) and est(csp). These estimates are in turn
used to compute the respective [est(yi)]’s, [est(pfi)]’s, {est[var(pfi)]}’s, {est[-
var(yi)]}’s, and [est(swi)]’s. This iterative analysis begins with guestimated
values for est(clp) and est(csp) and continues until successive N–R correc-
tions are less than some preselected very small numerical value, say 10–12.
The associated estimated asymptotic covariance matrix is the inverse of the
2 by 2 array comprised of the negatives of the second partial and mixed
derivatives of the loge(likelihood) expression with respect to clp and csp.
(These derivative expressions are given above.) The numerical values for
elements of this array are obtained by substituting est(clp) for clp and
est(csp) for csp in these partial derivative expressions. Accordingly, the
associated estimated asymptotic covariance matrix is stated in its inverse
form as

jestfcovar½estðclpÞ; estðcspÞ�gj ¼

Xnsl
i¼1

estðswiÞ
Xnsl
i¼1

½estðswiÞ� � si
Xnsl
i¼1

½estðswiÞ� � si
Xnsl
i¼1

½estðswiÞ� � s2i

����������

����������

�1

Evaluating this inverse gives
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jestfcovar½estðclpÞ; estðcspÞ�gj

¼ ð1=determinantÞ

Xnsl
i¼1

½estðswiÞ� � s2i �
Xnsl
i¼1

½estðswiÞ� � si

�
Xnsl
i¼1

½estðswiÞ� � si
Xnsl
i¼1

½estðswiÞ

�����������

�����������
in which

determinant ¼
Xnsl
i¼1

estðswiÞ
" #

�
Xnsl
i¼1

½estðswiÞ� � s2i
( )

�
Xnsl
i¼1

½estðswiÞ� � si
( )2

Note that this estimated asymptotic covariance matrix is identical to the
exact covariance matrix developed for simple linear weighted regression
(Supplemental Topic 7.B), except that exact statistical weights are replaced
by estimated statistical weights. In fact, this ML analysis generates the same
numerical estimates as an iterative linear weighted regression analysis in
which the unknown statistical weights are first guestimated and then succes-
sively corrected such that the corrected statistical weights used in the (j+1)th

iteration were computed during the jth iteration.
Pearson’s central �2

nsl�2 conceptual sampling distribution can be used
in a statistical test of the adequacy of the presumed conceptual (two-para-
meter) strength (resistance) distribution. The associated asymptotic test sta-
tistic is

‘‘residual’’ �2
nsl�2;p ¼

Xnsl
i¼1

niti
est pfið Þ � 1� est pfið Þ½ �
� �

� nifi=niti
� �� est pfið Þ �2

and (1� pÞ is the rejection probability for the null hypothesis that the pre-
sumed conceptual (two-parameter) distribution is correct. Unfortunately,
the statistical power of the this test is quite poor.

Remark: Little (unpublished) compared the respective values of the
‘‘residual’’ �2

nsl�2 values for approximately 30 sets of fatigue limit
(endurance limit) experiment test program data sets in which the
normal, logistic, smallest-extreme-value, and largest-extreme-value
conceptual (two-parameter) strength (resistance) distributions were
presumed in ML analysis, each with both a linear and logarithmic
alternating stress metric. This study indicated that the ‘‘residual’’
�2
nsl�2 value was almost always smallest for either the logistic or the

normal distribution with a linear alternating stress metric.
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Exercise Set 6

These exercises are intended to verify relevant expressions for the first and
second partial derivatives of pf with respect to y, given the standardized
form of the presumed conceptual strength (resistance) distribution.

1. Verify that, for the standardized conceptual normal distribution,
(@pf/@y) is equal to z, the ordinate of the normal PDF evaluated
at y. In turn, verify that the second partial derivative of pf with
respect to y is equal to (�y � z).

2. Verify that, for the standardized conceptual logistic distribution,
(@pf/@y) is equal to [pf � (1 � pf )]. In turn, verify that the second
partial derivative of pf with respect to y is equal to
{[pf � (1 � pf )] � (1 � 2pf )}.

3. Verify that, for the standardized conceptual smallest-extreme-
value distribution, (@pf/@y) is equal to {�(1 � pf ) � [loge(1 � pf)]}.
In turn, verify that the second partial derivative of pf with respect
to y is equal to {�(1 � pf ) � [loge(1 � pf )] � [1 + loge(1 � pf )]}.

4. Verify that, for the standardized conceptual largest-extreme-
value distribution, (@pf/@y) is equal to {�pf � [loge(pf )]}. In
turn, verify that the second partial derivative of pf with respect
to y is equal to {pf � [loge(pf )] � [1 + loge(pf )]}.

8.C.1.1. Example Microcomputer Programs

Although the standardized form of the presumed conceptual strength (resis-
tance) distribution can be expressed using the same four parameterizations
previously presented for life (endurance) data, viz.,

ð1Þ yðpf Þ ¼ csp � ½sðpf Þ � clp�
ð2Þ yðpf Þ¼clpþcsp � sðpf Þ

ð3Þ yðpf Þ ¼ sðpf Þ � clp

csp

ð4Þ yðpf Þ ¼ sðpf Þ
cps

� clp

only parameterization (2) is traditionally used in ML analysis.
Microcomputer programs N2AS50, L2AS50, SEV2AS50, LEV2AS50,
N2ALCL, L2ALCL, SEV2ALCL, and LEV2ALCL (pages 494–499) respec-
tively pertain to conceptual (two-parameter) normal, logistic, smallest-
extreme-value, and largest-extreme-value strength (resistance) distributions.
The first set of microcomputer programs have outputs that are analogous to
the outputs of microcomputer programs N1A, L1A, SEV1A, and LEV1A
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(pages 438–439). The second set of microcomputer programs have outputs
that are analogous to the outputs of microcomputer programs WEIBULL
(page 422) and LSEV1A, LSEV2A, LSEV31A, and LSEV4A (pages
424–427). Note that for the datum values that appear in microcomputer
file ASDATA the respective estimated median strengths (resistances) are
identical for practical purposes. On the other hand, the respective classical
lower 100(scp)% (one-sided) asymptotic statistical confidence limits can
differ markedly for small values of pf, depending on (a) which conceptual
strength (resistance) distribution is presumed in ML analysis, and (b)
whether the propagation of the variability expression used to compute
this asymptotic statistical confidence limit pertains to est(var{est[s(pf )]} or
to est{var[est(y given s ¼ closastl)]}.

Remark: A scp-based value for Student’s central t variate is tradi-
tionally used to compute the lower 100(scp)% (one-sided) statistical
confidence limit that allegedly bounds the actual value for s(50).

8.C.1.2. Statistical Weights

Figure 8.8 illustrates how the statistical weight per item depends on the
probability of failure pf. Note that, given a symmetrical strength (resistance)
distribution, tests that are conducted with the pf close to zero or one gen-
erate very small statistical weights per test item relative to tests conducted
with the pf near 0.5. Obviously, such tests should be avoided (except when
required by the optimal variance strategy discussed below). Note also that,
given a nonsymmetrical strength (resistance) distribution, the direction of
skewness must be known to state the pf value that generates the most
effective statistical weight per item. Although Figure 8.8 provides valuable
perspective and enhances intuition, the proper use of statistical weights lies
in adopting a minimum variance strategy that allocates test items to stimu-
lus levels such that a statistically more precise ML estimate of the actual
value for the quantity of specific interest is obtained. As previously men-
tioned, minimum variance strategies are easily programmed such that, at
any given stage of the experiment test program, the microcomputer program
will calculate the statistically most effective stimulus level for testing the next
test item. Suppose, for example, the objective is to maximize the numerical
value for the lower 100(scp)% (one-sided) asymptotic statistical confidence
limit that allegedly bounds the actual value for s(pf ). Suppose further that
this lower limit is computed by minimizing the estimated variance of the
asymptotic conceptual (normally distributed) sampling distribution that
consists of all possible replicate realization values for est(y) given the s
value of specific interest. Then, the most effective stimulus level for testing
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the next item is computed by running microcomputer program OTPNLCLY
(optimal two-parameter normal distribution lower confidence limit, version
Y). Analogous microcomputer program OTPNLCLS also establishes the
most effective stimulus level for testing the next item, but it minimizes the
estimated variance of the corresponding asymptotic conceptual (normally
distributed) sampling distribution that consists of all possible replicate rea-
lization values for est(s) given the y value of specific interest. The example
datum values for these two programs appear in microcomputer file
OSADATA.

Exercise Set 7

These exercises are intended to verify the numerical values of the statistical
weight per test item that are plotted in Figure 8.8 versus the actual prob-
ability of failure pf for that test item.

492 Chapter 8

Figure 8.8 Plot of the statistical weight sw per test item versus pf for the stan-

dardized conceptual (two-parameter) normal, logistic, smallest-extreme-value and

largest-extreme-value strength (resistance) distributions.
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1. Starting with the expression:

sw ¼ @pf
�
@y

� �2
pf 1� pfð Þ

state the appropriate analytical expression for the statistical
weight sw per test item when the partial derivative of pf with
respect to y pertains to the standardized conceptual (a) normal
distribution, (b) logistic distribution, (c) smallest-extreme-value
distribution, and (d) largest-extreme-value distribution.

2. Evaluate the statistical weight per test item expressions in
Exercise 1 for pf ¼ 0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95,
and 0.99 to verify the numerical values plotted in Figure 8.8.

8.C.2. Conceptual One-Parameter Strength (Resistance)
Distributions

When small sample up-and-down experiment test programs are used to esti-
mate the actual value for the median of a conceptual one-parameter strength
(resistance) distribution, the actual value for the csp of this conceptual
strength distribution must be presumed to be known. Then, ML estimation
merely requires solving the single nonlinear partial derivative equation:

@ loge likelihoodð Þ
@clp

¼
Xnsl
i¼1

nsti nif i=niti

� �
� pfi

h i
pfi 1� pfið Þ

8<
:

9=
; @pfi

@yi
¼ 0

for est(clp). In turn, the actual value of the median of the presumed con-
ceptual one-parameter strength (resistance) distribution, denoted s(50), is
estimated using the expression:

y 50ð Þ¼ est clpð Þþcsp � est s 50ð Þ½ �
Note that y(50) is equal to zero for the symmetrical conceptual normal and
logistic strength (resistance) distributions, then est[s(50)] ¼ {�[est(clp)]/csp}.
(Otherwise, see Exercise Set 8.)

The actual value for the variance of the normally distributed asymp-
totic sampling distribution that consists of all possible replicate realization
values for est(clp) is conventionally estimated using the expression:

est var est clpð Þ½ �� � ¼ 1Xnsl
i¼1

est swið Þ

Mechanical Reliability Fundamentals 493

TLFeBOOK



The corresponding actual value for the variance of the normally dis-
tributed asymptotic sampling distribution that consists of all possible repli-
cate realization values for est[s(50)] is conventionally estimated using the
expression:

est var est s 50ð Þ½ �� �� � ¼ 1

csp2
Xnsl
i¼1

est swið Þ

Since the csp is presumed to be known, the lower 100(scp)% (one-sided)
asymptotic statistical confidence band that allegedly bounds the actual CDF
is parallel to the estimated CDF and passes through the corresponding
lower 100(scp)% (one-sided) asymptotic statistical confidence limit that
allegedly bounds the actual value for s(50).

Recall that microcomputer program N1A pertains to a conceptual
one-parameter normal strength (resistance) distribution with its presumed
known csp (its standard deviation) as input in microcomputer file
UADDATA. It can be run at any time during the conduct of a small sample
up-and-down strength (resistance) experiment test program to establish the
most effective stimulus level amplitude for the next test specimen provided
that sufficient data have previously been accumulated in the experiment test
program to generate a ML estimate of the actual value for s(50). (Recall also
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C> COPY ASDATA DATA

1 files(s) copied

C> N2AS50

Presuming a Conceptual Two-Parameter Normal Distribution

est[s(50)] ¼ 83.3

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limit that
Allegedly Bounds the Actual Value for s(50)

76.1 – Computed using the Propagation of Variability Expression for
est{var[est(y given s ¼ closascl)]} and Student’s central

t(1,5;0.95) ¼ 2.0150
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C> COPY ASDATA DATA

1 files(s) copied

C> L2AS50

Presuming a Conceptual Two-Parameter Logistic Distribution

est[s(50)] ¼ 83.7

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limit that
Allegedly Bounds the Actual Value for s(50)

75.7 – Computed using the Propagation of Variability Expression for
est{var[est(y given s ¼ closascl)]} and Student’s central

t(1,5;0.95) ¼ 2.0150

C> COPY ASDATA DATA

1 files(s) copied

C> SEV2AS50

Presuming a Conceptual One-Parameter Smallest-Extreme-Value
Distribution

est[s(50)] ¼ 85.0

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limit that
Allegedly Bounds the Actual Value for s(50)

76.4 – Computed using the Propagation of Variability Expression for
est{var[est(y given s ¼ closascl)]} and Student’s central

t(1,5;0.95) ¼ 2.0150

TLFeBOOK



496 Chapter 8

C> COPY ASDATA DATA

1 files(s) copied

C> LEV2AS50

Presuming a Conceptual Two-Parameter Largest-Extreme-Value
Distribution

est[s(50)] ¼ 81.7

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limit that
Allegedly Bounds the Actual Value for s(50)

75.2 – Computed using the Propagation of Variability Expression for
est{var[est(y given s ¼ closascl)]} and Student’s central

t(1,5;0.95) ¼ 2.0150

C> COPY ASDATA DATA

1 files(s) copied

C> N2ALCL

Given Standardized Conceptual Normal Distribution Variate
y(pf ) ¼ clp þ csp � s(pf )

est(clp) ¼ 0.7438137674D+01
est(csp) ¼ 0.8926409259D� 01
est{var[est(clp)]} ¼ 0.4315338215D+01
est{var[est(csp)]} ¼ 0.5899274299D� 03
est{covar[est(clp),est(csp)]} ¼ �0.5012866877D� 01
est(conceptual correlation coefficient) ¼ �0.9935265033D+00

s est(y) est(pf )

100.000 1:4882716 0.9316604
95.000 1:0419511 0.8512828
90.000 0:5956307 0.7242890
85.000 0:1493102 0.5593456
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80.000 �0:2970103 0.3832293
70.000 �1:1896512 0.1170918
65.000 �1:6359717 0.0509228

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for s(01)

44.124 – Computed Using the Propagation of Variability Expression
for est(var{est[s(01)]})

34.074 – Computed Using the Propagation of Variability Expression
for est{var[est(y given s ¼ closascl)]}

C> COPY ASDATA DATA

1 files(s) copied

C> L2ALCL

Given Standardized Conceptual Logistic Distribution Variate
y(pf ) ¼ clp þ csp 
 s(pf )

est(clp) ¼ �0.1316853685D+02
est(csp) ¼ 0.1572425344D� 00
est{var[est(clp)]} ¼ 0.1719712841D+02
est{var[est(csp)]} ¼ 0.2331274510D� 02
est{covar[est(clp),est(csp)]} ¼ �0.19923002537D+00
est(conceptual correlation coefficient) ¼ �0.9950172579D+00

s est(y) est(pf )

100.000 2:5557166 0.9279566
95.000 1:7965039 0.8543960
90.000 0:9832912 0.7277608
85.000 0:1970786 0.5491108
80.000 �0:5891341 0.356336
70.000 �2:1615594 0.1032560
65.000 �2:9477721 0.0498419

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for s(01)
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38.311 – Computed Using the Propagation of Variability Expression
for est(var{est[s(01)]})

22.363 – Computed Using the Propagation of Variability Expression
for est{var[est(y given s ¼ closascl)]}

C> COPY ASDATA DATA

1 files(s) copied

C> SEV2ALCL

Given Standardized Conceptual Smallest-Extreme-Value Distribution
Variate y(pf ) ¼ clp þ csp 
 s(pf )

est(clp) ¼ �0.1003518158D+02
est(csp) ¼ 0.1137870314D+00
est{var[est(clp)]} ¼ 0.8451907194D+01
est{var[est(csp)]} ¼ 0.1057426055D� 02
est{covar[est(clp),est(csp)]} ¼ �0.9417710941D� 01
est(conceptual correlation coefficient) ¼ �0.9961918698D+00

s est(y) est(pf )

100.000 1:3435216 0.9783449
95.000 0:7745864 0.8857875
90.000 0:2056512 0.7072173
85.000 �0:3632839 0.5011196
80.000 �0:9322191 0.3254295
70.000 �2:0700894 0.1185390
65.000 �2:6390245 0.0689394

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for s(01)

28.010 – Computed Using the Propagation of Variability Expression
for est(var{est[s(01)]})

10.789 – Computed Using the Propagation of Variability Expression
for est{var[est(y given s ¼ closascl)]}
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C> COPY ASDATA DATA

1 files(s) copied

C> LEV2ALCL

Given Standardized Conceptual Largest-Extreme-Value Distribution
Variate y(pf ) ¼ clp þ csp 
 s(pf )

est(clp) ¼ �0.6761135294D+01
est(csp) ¼ 0.8725876010D� 01
est{var[est(clp)]} ¼ 0.3662399509D+01
est{var[est(csp)]} ¼ 0.5512958654D� 03
est{covar[est(clp),est(csp)]} ¼ �0.4531384182D� 01
est(conceptual correlation coefficient) ¼ �0.9906437076D+00

s est(y) est(pf )

100.000 1:9647407 0.8691911
95.000 1:5284469 0.8050328
90.000 1:0921531 0.7149853
85.000 0:6558593 0.5951178
80.000 0:2195655 0.4480423
70.000 �0:6530221 0.1464109
65.000 �1:0893159 0.0511885

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for s(01)

49.975 – Computed Using the Propagation of Variability Expression
for est(var{est[s(01)]})

42.814 – Computed Using the Propagation of Variability Expression
for est{var[est(y given s ¼ closascl)]}
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C> TYPE OSADATA

10
3000 1 1
2750 1 1
2500 1 0
2750 1 1
2500 1 0
2750 1 0
2710 1 1
2655 1 0
2700 1 0
2740 1 0
01 CDF Percentile of Specific Interest (Integer Value)

These datum values are identical to the datum values that appear in
microcomputer file UADDATA except as indicated.

C> COPY OSADATA DATA

1 file(s) copied

C> OTPNLCLY

Test the next item with its stimulus level s equal to 2639.7

C> COPY OSADATA DATA

1 file(s) copied

C> OTPNLCLS

Test the next item with its stimulus level s equal to 2647.1
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that for the conceptual one-parameter logistic, smallest-extreme-value, and
largest-extreme values distributions, the csp is not equal to the standard
deviation.)

8.D. SUPPLEMENTAL TOPIC: GENERATING
PSEUDORANDOM DATUM VALUES AND
COMPUTING PRAGMATIC STATISTICAL BIAS
CORRECTIONS FOR ML-BASED ESTIMATES

Recall that microcomputer simulations can be used to examine statistical
behaviors empirically, both from a qualitative (understanding) and quanti-
tative (estimation) perspective. These simulations require the generation of
appropriate pseudorandom datum values that are allegedly randomly
selected from the conceptual two-parameter statistical distribution of spe-
cific interest. Given such pseudorandom datum values, simulation-based
empirical and pragmatic (defined later) sampling distributions for any
ML-based estimate of specific interest can be developed. The statistical
bias and variability of this ML-based estimate can then be examined. In
turn, statistical bias corrections can be made and the precision of the result-
ing empirical (pragmatic) bias-corrected estimate can be assessed.

8.D.1. Generating Pseudorandom Datum Values

Suppose that we wish to generate pseudorandom datum values from the
conceptual two-parameter Weibull distribution that is expressed as

FðxÞ ¼ 1� exp
� x

cdp1

� �cdp2

First, presume that the actual values for cdp1 and cdp2 are known. Then,
when a series of ndv uniform pseudorandom numbers, zero to one, are
successively substituted for F(x), the resulting values for x can be viewed
as having been randomly selected from a conceptual two-parameter Weibull
distribution. Next, presume that the actual values for the mean and variance
are known. If so, the corresponding values for cdp1 and cdp2 can be com-
puted by numerically solving the mean and variance expressions given
below and then the pseudorandom datum values of specific interest can
be generated.

The following analytical expressions for the actual values of the mean
and variance for the conceptual two-parameter Weibull distribution involve
the gamma function (Abramowitz and Stegun, 1964), viz.,
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mean ðXÞ ¼ cdp1 � gamma 1þ 1

cdp2

� �	 


varðXÞ ¼ cdp12 � gamma 1þ 2

cdp2

� �	 

� gamma 1þ 1

cdp2

� �	 
� �2
 !

Also,

median ðXÞ ¼ cdp1 � loge 2:0ð Þ
1

cdp2

and

mode ðXÞ ¼ cdp1 � cdp2� 1

cdp2

� � 1

cdp2

The numerical complexity of the Weibull distribution is due to its logarith-
mic metric. Recall that the statistically equivalent conceptual (two-para-
meter) smallest-extreme-value distribution with its metric equal to loge(x)
rather than x is much more convenient both numerically and geometrically.

This pseudorandom number generation methodology pertains to all
continuous conceptual two-parameter statistical distributions with explicit
CDF expressions and known conceptual distribution parameter values. The
conceptual (two-parameter) normal distribution involves an integral in its
CDF expression and thus presents an exception. However, the polar method
(Knuth, 1969) provides a simple, exact procedure to generate replicate pseu-
dorandom datum values from a conceptual (two-parameter) normal distri-
bution when the actual values for its mean and variance are known.

Exercise Set 8

These exercises provide experience in generating pseudorandom datum
values from the various conceptual two-parameter statistical distributions
of specific interest in mechanical reliability analyses. It is also intended to
provide perspective regarding the difficulty of correctly identifying the actual
conceptual distribution when two or more alternative conceptual distribu-
tions must be considered.

1. Given the following information pertaining to the conceptual
(two-parameter) smallest-extreme-value distribution written as
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F xð Þ ¼ 1� exp� exp

x� clp

csp

� �

f ðxÞ ¼ 1

csp

� �
exp

x� clp

csp

� �
� exp

x� clp

csp

� �

meanðXÞ ¼ clp� Euler’s constant � csp
ðwhere Eurler’s constant

¼ 0:5 772 156 649 015 328Þ

varðXÞ ¼ �2

6
� csp2

medianðXÞ ¼ clpþ loge � loge 0:5ð Þ � � csp
modeðXÞ ¼ clp

run microcomputer program SEV to generate six sets of 10 repli-
cate pseudorandom datum values from this conceptual distribu-
tion when the actual values for both its mean and variance are
equal to 100. Then, plot these six sets of 10 replicate pseudoran-
dom datum values on both normal and smallest-extreme-value
probability papers using y(pp)i values that correspond to the
empirical plotting positions p(pp)i ¼ (i � 0.5)/ndv.

2. Given the following information pertaining to the conceptual
(two-parameter) largest-extreme-value distribution written as

F xð Þ ¼ exp� exp
�

x� clp

csp

� �

f ðxÞ ¼ 1

csp

� �
� exp

� x� clp

csp

� �
� exp

� x� clp

csp

� �

meanðXÞ ¼ clpþ Euler’s constant � csp
(where Euler’s constant ¼ 0:5 772 156 649 015 328Þ

varðXÞ ¼ �2

6
� csp2

medianðXÞ ¼ clp� loge � loge 0:5ð Þ � � csp
modeðXÞ ¼ clp
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run microcomputer program LEV to generate six sets of 10 repli-
cate pseudorandom datum values from this conceptual distribu-
tion, given that the actual values for both its mean and variance
are equal to 100. Then, plot these six sets of 10 replicate pseudor-
andom datum values on both normal and largest-extreme-value
probability paper using y(pp)i values that correspond to the
empirical plotting positions p(pp)i ¼ (i � 0.5)/ndv.

3. Given the following information pertaining to the conceptual
(two-parameter) logistic distribution written as

F xð Þ ¼ 1þ exp
� x� clp

csp

� �2
64

3
75

�1

f ðxÞ ¼ Exercise: derive this expressionð Þ
meanðXÞ ¼ clp

varðXÞ ¼ �2

3
� csp2

medianðXÞ ¼ clp

modeðXÞ ¼ clp

run microcomputer program LOG to generate six sets of 10 repli-
cate pseudorandom datum value from this conceptual distribu-
tion, given that the actual values for both its mean and variance
are equal to 100. Then, plot these six sets of 10 replicate pseudor-
andom datum values on both normal and logistic probability
paper using y(pp)i values that correspond to the empirical plot-
ting positions p(pp)i ¼ (i � 0.5)/ndv.

4. This exercise provides practical perspective regarding the results
of Exercises 1 through 3. First run microcomputer program NOR
to generate six sets of 10 replicate pseudorandom datum values
from a conceptual (two-parameter) normal distribution and plot
these six sets of 10 datum values on normal probability paper.
Identify the actual conceptual distribution only on the back side
of the resulting 48 sheets of normal probability paper. Then,
thoroughly mix these six plots with the 18 plots on normal prob-
ability paper for Exercises 1 through 3. In turn, sort through the
resulting 24 plots and attempt to identify by visual inspection the
six sets of normally distributed datum values. State the number of
plots correctly identified and compare this number to its expected
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value given the null hypothesis that it is impossible to discern
among the respective datum plots.

5. First verify the following information pertaining to the concep-
tual two-parameter loge–normal distribution written as

FðxÞ ¼ 1ffiffiffiffiffiffi
2�

p
cdp2

ðx
0

1

u
exp � 1

2

loge ðuÞ � logeðcdp1Þ
cdp2

	 
2( )
du

where x > 0.

f ðxÞ ¼ 1ffiffiffiffiffiffi
2�

p
cdp2

1

x
exp

� 1

2

loge xð Þ � loge cdp1ð Þ
cdp2

	 
2

meanðXÞ ¼ cdp1 exp

1

2
cdp22

� �

varðXÞ ¼ cdp12 exp cdp22
� �

� expcdp2
2

� 1

� �
medianðXÞ ¼ cdp1

modeðXÞ ¼ cdp1 exp �cdp22
� �

Then, generate six sets of 10 replicate pseudorandom datum
values from this conceptual distribution, given that the actual
values for both its mean and variance are equal to 100. In turn,
plot these six sets of datum values on both loge–normal and
Weibull probability papers using the y(pp)i values that corre-
sponds to the empirical plotting positions p(pp)i ¼ (i � 0.5)/ndv.

6. Given the conceptual two-parameter Weibull distribution CDF
written as

FðxÞ ¼ 1� exp
� x

cdp1

� �cdp2

Generate six sets of 10 pseudorandom datum values from this
conceptual distribution, given that the actual values for both its
mean and variance are equal to 100. Plot these six sets of datum
values on both Weibull and loge–normal probability papers using
the y(pp)i that corresponds to the empirical plotting positions
p(pp)i = ði � 0:5Þ=ndv.

7. This exercise provides practical perspective regarding the results of
Exercises 5 and 6. Identify the actual conceptual distribution only
on the back side of the 12 sheets of loge–normal probability paper
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and the 12 sheets of Weibull probability paper. Then, thoroughly
mix each set of 12 loge–normal and Weibull plots. In turn, sort
through each of these two sets of 12 plots and attempt to identify
by visual inspection the six sets of datum values that are actually
plotted on the correct probability paper. State the number of plots
correctly identified and compare this number to its expected value
given the null hypothesis that it is impossible to discern between
loge–normal and Weibull pseudorandom datum values.

8.D.2. Computing Empirical Statistical Bias Corrections
for ML Estimates of the Actual Values for the
Coe⁄cient of Variation

Recall that although the ML estimates of the actual values for the para-
meters of a given conceptual statistical distribution have known asymptotic
(normally distributed) conceptual sampling distributions, their conceptual
sampling distributions are unknown for experiment test programs of prac-
tical sizes. Accordingly, the associated conceptual sampling distribution for
the ML estimate of the actual value for the coefficient of variation is
unknown. Thus, the actual value for the statistical bias for the ML esti-
mated coefficient of variation is unknown. Nevertheless, this statistical bias
can be estimated as the metric distance that the simulation-based empirical
sampling distribution for the ML estimated coefficient of variation must be
translated to have its mean located at the actual value for the coefficient of
variation. Microcomputer programs EBCNCOV, EBCLNCOV, and
EBCWCOV compute simulation-based empirical statistical bias corrections
for the conceptual (two-parameter) normal distribution, the conceptual two-
parameter loge–normal distribution, and the conceptual two-parameter
Weibull distribution, respectively.

8.D.3. Computing Empirical Statistical Bias Corrections
for ML Analyses Pertaining to Life (Endurance)
Experiment Test Programs with No Censoring

Suppose that the life (endurance) datum values of specific interest are pre-
sumed to have been randomly selected from a given conceptual two-para-
meter statistical distribution with known parameters. If so, we could generate
nsim replicate pseudorandom data sets of size ndv from this conceptual statis-
tical distribution. In turn, we could compute the respective nsimML estimated
values for each conceptual distribution parameter, construct the associated
empirical sampling distribution, and compute the desired empirical statistical
bias correction as the difference between the mean of this empirical sampling
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distribution and the known conceptual distribution parameter value. (Recall
that the accuracy of this empirical bias correction improves statistically as
nsim increases.) Next, suppose that our objective is to compute A-basis sta-
tistical tolerance limits. If so, we could generate another nsim replicate pseu-
dorandom data sets of size ndv from this conceptual statistical distribution. In
turn, we could compute the respective nsim ML-based est[ fnc(01)] values,
construct the associated empirical sampling distribution, and translate this
empirical sampling distribution a metric distance such that its 95th percentile
coincides with the known (computed) value for the fnc(01). Then, given any
ML-based est[ fnc(01)] value that is randomly selected from this translated
empirical sampling distribution, the probability is 0.95 that it will be smaller
than the known (computed) value for the fnc(01). Microcomputer programs
ABNOR, BBNOR, ABLNOR, BBLNOR, ABW, and BBW compute the
respective metric translation distances and state the resulting A-basis and
B-basis statistical tolerance limits in terms of their proportion of the under-
lying known (computed) conceptual two-parameter statistical distribution
mean (see Tables 8.9–8.11). The associated proportions presented in these
tables in parentheses pertain to the means of the sampling distributions for
the exact A-basis and B-basis statistical tolerance limits that were computed
by running microcomputer programs SABNSTL, SBBNSTL, SABLNSTL,
SBBLBSTL, SWABSTL, and SWBBSTL. Note that the former propor-
tions, although consistently larger, are remarkably accurate for most of the
cases tabulated. Note, however, that the disparity increases as the coefficient
of variation increases and ndv decreases.

Clearly, when the disparity between the corresponding entries in
Tables 8.9–8.11 is negligible for practical purposes, ML-based A-basis and
B-basis statistical tolerance limits for uncensored replicate datum values are
equivalent for practical purposes to corresponding exact (unbiased) A-basis
and B-basis statistical tolerance limits. Thus, we assert that, for the asso-
ciated values of ndv and the coefficient of variation, the respective ML-based
A-basis and B-basis statistical tolerance limits are almost exact (unbiased)
for experiment test programs with no censoring.

8.D.4. Computing Empirical Statistical Bias Corrections
for ML Analyses of Life (Endurance) Experiment
Test Programs with Only a Limited Amount of
Type I Censoring

Suppose that the life (endurance) datum values of specific interest are
presumed to have been randomly selected from a given conceptual two-
parameter statistical distribution with known parameters. Suppose further
that the value of the life (endurance) metric pertaining to Type I censoring
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is known so that we can compute the exact value for pf at which Type I
censoring occurs. If so, we could generate nsim replicate sets of ndv pseu-
dorandom datum values from this conceptual two-parameter statistical
distribution, and censor the pseudorandom datum values that exceed the
life (endurance) metric pertaining to Type I censoring. Then, in theory,
empirical statistical bias corrections for life (endurance) experiment test
programs with Type I censoring would be computed exactly as empirical
statistical bias corrections are computed for experiment test programs with
uncensored data. However, in practice, especially for small experiment test
programs, a simulation-based replicate data set will eventually be gener-
ated that has an excessive number of suspended tests. Then, even a micro-
computer program that employs a very robust ML estimation algorithm
will fail to estimate the actual values for the conceptual distribution para-
meters.

8.D.5. Computing Pragmatic Bias-Corrected Coe⁄cients
of Variation

Microcomputer programs PBCNCOV, PBCLNCOV, and PBCWCOV are
analogous to microcomputer programs EBCNCOV EBCLNCOV, and
EBCWCOV except that the former pertain to the experiment test program
that was actually conducted. Accordingly, the ML estimate of the actual
value for the coefficient of variation replaces the actual value for the coeffi-
cient of variation in these microcomputer programs. As discussed later,
when the experiment test program that was actually conducted includes
Type I censored life (endurance) datum values, microcomputer programs
PBCLNCOV and PBCWCOV compute median pragmatic bias-corrected
coefficients of variation.

8.D.6. Computing Ad Hoc Pragmatic Bias-Corrected A-
Basis and B-Basis Statistical Tolerance Limits

Suppose that the disparity between the corresponding entries in Tables 8.9–
8.11 is not regarded as being negligible for practical purposes. If so, then we
cannot assert that ML estimates of A-basis or B-basis statistical tolerance
limits are almost exact (unbiased) for the associated values of ndv and the
coefficient of variation. Thus, various alternative statistics must be examined
to find one that generates almost unbiased ad hoc pragmatic bias-corrected
A-basis and B-basis statistical tolerance limits for these values of ndv and the
coefficient of variation—as judged by comparing the resulting ad hoc prag-
matic bias-corrected A-basis and B-basis statistical tolerance limits to cor-
responding exact (unbiased) A-basis and B-basis statistical tolerance limits.
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In turn, given a satisfactory alternative statistic, we assert that its ad hoc
pragmatic bias-corrected A-basis and B-basis statistical tolerance limits are
almost exact (unbiased) under continual replication for experiment test pro-
grams.

Recall that, for experiment test programs of practical sizes without
censoring, microcomputer programs ABLNSTL and BBLNSTL respec-
tively compute exact (unbiased) A-basis and B-basis statistical tolerance
limits for replicate loge–normal datum values. Similarly, microcomputer
program BLISTL respectively computes exact (unbiased) A-basis and B-
basis statistical tolerance limits for replicate Weibull datum values. These
exact (unbiased) A-basis and B-basis statistical tolerance limit values were
used in screening various alternative statistics relative to the agreement
between their resulting ad hoc pragmatic bias-corrected A-basis and B-
basis statistical tolerance limits and the corresponding exact (unbiased)
reference A-basis and B-basis statistical tolerance limits. The two ad hoc
pragmatic bias-corrected A-basis and B-basis statistical tolerance limits
that exhibited the closest overall agreement are presented in Sections
8.D.7, 8.D.8, and 8.E.

Fortunately, we do not have to compute each ML-based est[ fnc(pf )]
that is used to generate its pragmatic sampling distribution when only an ad
hoc pragmatic bias-corrected A-basis or B-basis statistical tolerance limit is
of specific interest. Classical ML-based lower 100(scp)% (one-sided) asymp-
totic statistical confidence limits that allegedly bound the actual value for
fnc(pf ) are always smaller for pseudorandom data sets with several Type I
censored tests than for pseudorandom data sets with few if any Type I
censored tests. Thus, pseudorandom data sets with several Type I censored
tests need only be counted. In turn, when the respective classical ML-based
lower 100(scp)% (one-sided) asymptotic statistical confidence limits for
pseudorandom data sets with few if any Type I censored tests are computed
and ordered from smallest to largest, the actual ranks for these ordered
values are easily computed.

8.D.7. Computing Ad Hoc Pragmatic Bias-Corrected A-
Basis and B-basis Statistical Tolerance Limits,
Given Replicate loge^Normal Life (Endurance)
Datum Values with Only a Limited Amount of
Type I Censoring

Microcomputer program LNPBCPV can be used to compute ad hoc prag-
matic bias-corrected A-basis and B-basis statistical tolerance limits, given
replicate loge–normal datum values with only a limited amount of Type I
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censoring. This microcomputer program generates a simulation-based prag-
matic sampling distribution that consists of nrep ‘‘replicate’’ realizations for
the classical lower 100(scp)% (one-sided) asymptotic statistical confidence
limit that allegedly bounds the actual value for fnc(pf ), given a conceptual
two-parameter loge–normal life (endurance) distribution. The respective nrep
realizations are computed using the propagation of variability expression
for est{var[est(y given fnc ¼ closascl)]}. The 100(scp)th percentile of this
pragmatic sampling distribution is then translated so that 100(scp)% of
the 30,000 ‘‘replicate’’ pseudorandom data sets generate est[ fnc(pf )] values
that fall below the ML-based est[ fnc(pf )] value pertaining to the experiment
test program that was actually conducted.

Ad hoc pragmatic bias-corrected A-basis and B-basis statistical toler-
ance limits (scp ¼ 0.95 and pf ¼ 0.01 and 0.10, respectively) are compared
to their corresponding exact (unbiased) reference A-basis and B-basis sta-
tistical tolerance limits in Tables 8.12–8.17. The respective entries in these
tables are the ratios of the ad hoc pragmatic bias-corrected A-basis and B-
basis statistical tolerance limits computed by running microcomputer pro-
grams LNPBCPV and LNPBCLR (presented in Supplemental Topic 8.E)
to corresponding exact (unbiased) reference A-basis and B-basis statistical
tolerance limits computed by running microcomputer programs
ABLNSTL and BBLNSTL. Tables 8.12–8.17 also include, for comparative
purposes, analogous ratios pertaining to corresponding A-basis and B-
basis statistical tolerance limits computed by running microcomputer
program LN1A.

8.D.7.1. Discussion

Ad hoc pragmatic bias-corrected A-basis and B-basis statistical tolerance
limits computed by running microcomputer program LNPBCPV or
LNPBCLR are remarkably accurate as judged by their agreement with
exact (unbiased) A-basis and B-basis statistical tolerance limits computed
by running microcomputer programs ABLNSTL and BBLBSTL.
Microcomputer program LNPBCLR is more accurate than microcomputer
program LNPBCPV for ndv less than 10–12. However, it takes several hours
to run on a microcomputer with a 450MHz microprocessor. Program
LNPBCPV is just as accurate as program LNPBCLR for ndv greater than
12–16 and its run-time is much shorter. Overall, the accuracy is so remark-
able that we assert (conjecture) that ad hoc pragmatic bias-corrected A-basis
and B-basis statistical tolerance limits are almost exact (unbiased) even for
small experiment test programs with only a limited amount of Type I cen-
soring (say 20–25% maximum).
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C> COPY AWBLDATA DATA

1 files(s) copied

C> LNPBCPV

Given the Standardized Conceptual Normal Distribution Variate
y ¼ csp [loge( fnc) � clp]

est(clp) ¼ 0.5956793964D+01
est(csp) ¼ 0.4171442213D+01
est{var[est(clp)]} ¼ 0.9987394347D� 02
est{var[est(csp)]} ¼ 0.1903271765D+01
est{covar[est(clp),est(csp)]} ¼ �0.1346739280D� 01
est(conceptual correlation coefficient) ¼ �0.9768030920D� 01

fnc est(y) est(pf )

277.000 �1:3881578 0.0825445
310.000 �0:9186420 0.1791414
374.000 �0:1357311 0.4460169
402.000 0:1654316 0.5656978
456.000 0:6912032 0.7552811

snc est(y) est(pf )

500.000 1:0754568 0.8589149

Ad Hoc Pragmatic Bias-Corrected Lower 95% (One-Sided) Statistical
Confidence (Tolerance) Limit that Allegedly Bounds the Actual Value

for fnc(01)

97.070

Based on the 95th Percentile of the Sampling Distribution Comprised
of 30,000 ‘‘Replicate’’ Realizations for the Classical

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limit that
Allegedly Bounds the Actual Value for fnc(01),

Each Realization Computed Using the Propagation of Variability
Expression for est{var[est(y given fnc ¼ closascl)]}
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8.D.8. Computing Ad Hoc Pragmatic Bias-Corrected A-
Basis and B-Basis Statistical Tolerance Limits,
Given Replicate Weibull Life (Endurance) Datum
Values with Only a Limited Amount of Type I
Censoring

Microcomputer programs WPBCPV and WPBCLR are analogous to
microcomputer programs LNPBCPV and LNPBCLR. Similarly, Tables
8.18–8.21 are analogous to Tables 8.12–8.17. Given uncensored replicate
Weibull datum values, these tables compare ad hoc pragmatic bias-corrected
A-basis and B-basis statistical tolerance limits computed by running micro-
computer programs WPBCPV and WPBCLR to corresponding exact
(unbiased) reference A-basis and B-basis statistical tolerance limits com-
puted by running microcomputer program BLISTL. Tables 8.18–8.23 also
include, for comparative purposes, analogous ratios pertaining to the cor-
responding A-basis and B-basis statistical tolerance limits computed by
running microcomputer program WEIBULL.

8.D.8.1. Discussion

Note that, in contrast to the A-basis and B-basis statistical tolerance limits
computed by running microcomputer program LN1A, the same limits com-
puted by running microcomputer program WEIBULL are sometimes smal-
ler than corresponding exact (unbiased) A-basis and B-basis statistical
tolerance limits computed by running microcomputer program BLISTL.
If so, then ad hoc pragmatic statistical bias corrections should not be
employed. Otherwise, considering the marked variability of exact (unbiased)
A-basis and B-basis statistical tolerance limits computed by running micro-
computer program BLISTL, microcomputer programs WPBCPV and
WPBCLR compute A-basis and (especially) B-basis statistical tolerance
limits that are also remarkably accurate when the coefficient of variation
is equal to 0.2 or less. Thus, we assert (conjecture) that, when the coefficient
of variation is equal to 0.2 or less, ad hoc pragmatic bias-corrected A-basis
and B-basis statistical tolerance limits computed by running microcomputer
programs WPBCPV and WPBCLR are almost exact (unbiased) even for
small experiment test programs with only a limited amount of Type I cen-
soring (say 20–25% maximum).

Microcomputer program WPBCLR is slightly more accurate than
microcomputer program WPBCPV for ndv less than 10–12. However, it
takes several hours to run on a microcomputer with a 450 MHz micro-
processor. Microcomputer program WPBCPV is just as accurate as micro-
computer program WPBCLR for ndv greater than 12–16 and its run-time is
considerably shorter.

Mechanical Reliability Fundamentals 521
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522 Chapter 8

C> COPY AWBLDATA DATA

1 files(s) copied

C> WPBCPV

Given Fð fncÞ ¼ 1� exp
� fnc

cdp1

� �cdp2

est(cdp1) ¼ 0.4289595976D+03
est(cdp2) ¼ 0.4731943406D+01
est{var[est(cdp1)]} ¼ 0.1666932095D+04
est{var[est(cdp2)]} ¼ 0.3013638227D+01
est{covar[est(cdp1),est(cdp2)]} ¼ 0.8393830857D+01
est(conceptual correlation coefficient) ¼ 0.1184283562D+00

fnc est(y) est(pf )

277.000 �2:0694929 0.1186053
310.000 �1:5368900 0.1934980
374.000 �0:6487823 0.4070717
402.000 �0:3071535 0.5207523
456.000 0:2892640 0.7369587

snc est(y) est(pf )

500.000 0:7251484 0.8731865

Ad Hoc Pragmatic Bias-Corrected Lower 95% (One-Sided) Statistical
Confidence (Tolerance) Limit that Allegedly Bounds the Actual Value

for fnc(01)

35.138

Based on the 95th Percentile of the Sampling Distribution Comprised
of 30,000 ‘‘Replicate’’ Realizations for the Classical

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limit that
Allegedly Bounds the Actual Value for fnc(01),

Each Realization Computed Using the Propagation of Variability
Expression for est{var[est(y given fnc ¼ closascl)]}
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Remark One: Given the same value for the coefficient of variation,
exact (unbiased) B-basis statistical tolerance limits are typically
smaller for the Weibull distribution than for the loge–normal dis-
tribution. Moreover, the ratio of exact (unbiased) A-basis statistical
tolerance limits to their corresponding exact (unbiased) B-basis sta-
tistical tolerance limits is typically smaller for the Weibull distribu-
tion than for the loge–normal distribution. Accordingly, the
denominators for the ratios in Tables 8.18 through 8.25 are typi-
cally smaller than the denominators for the ratios in Tables 8.12
through 8.17. Thus, even when the respective actual values for the
statistical biases are equal, the ratios in Tables 8.18 through 8.25
typically deviate further from 1.000 than the ratios in Tables 8.12
through 8.18. Unfortunately, these deviations increase markedly as
the coefficient of variation increases. Thus, the maximum value for
the coefficient of variation is more critical for the Weibull distribu-
tion than for the loge–normal distribution.

Remark Two: Microcomputer programs WPBCPV and WPBCLR
are much more likely to fail to compute an ad hoc pragmatic bias-
correctedA-basis orB-basis statistical tolerance limit than aremicro-
computer programsLNPBCPV and LNPBCLR. However, a change
in the input seed numbers will usually overcome this problem.

8.D.9. Computing Ad Hoc Pragmatic Statistical Bias
Corrections for ML Analyses Pertaining to
Conceptual sa^loge[fnc(pf)] Models with a
Homoscedastic Fatigue Strength Distribution

As mentioned in Section 8.11, ML analyses for conceptual sa–loge[ fnc(pf )]
models with a homoscedastic fatigue strength distribution are conditional
on the observed fatigue lives (endurances). Thus, to obtain a pragmatic set
of ‘‘replicate’’ experiment test program datum values, we must generate a
new pseudorandom alternating stress amplitude datum value at each respec-
tive observed fatigue life (instead of generating a new pseudorandom fatigue
life datum value at each respective alternating stress amplitude). The asso-
ciated pseudorandom alternating stress datum values for Type I censoring
pertain either to a fatigue failure or to a suspended test, depending on
whether the associated uniform pseudorandom number is less than or
greater than the estimated CDF at the Type I censoring number of fatigue
cycles. When a quadratic (parabolic) conceptual sa–loge[ fnc(pf )] model is
presumed in ML analysis, some of the ‘‘replicate’’ estimated sa–loge[ fnc(50)]
curves can exhibit a reversed curvature. If so, then there are three options:
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(a) assert that no statistically credible pragmatic sampling distribution can
be generated; or (b) include the associated ‘‘replicate’’ values for the statis-
tical estimate of specific interest in its pragmatic sampling distribution; or (c)
exclude the associated ‘‘replicate’’ values for the statistical estimate of spe-
cific interest from its pragmatic sampling distribution.

Microcomputer programs SAFNCM11, SAFNCM12, and
SAFNCM13 pertain to a linear (straight line) conceptual sa–loge[ fnc(pf )]
model that is based on the standardized normal distribution variate y ¼
[sa � clp0 � clp1 � loge( fnc)]/csp. These programs are illustrated using the
sa–loge( fnc) datum values that appear in microcomputer file SAFNCDTA.
Each program first computes the associated ML estimates for the para-
meters of the linear (straight line) conceptual sa–loge[ fnc(pf )] model. Each
program then constructs nrep ‘‘replicate’’ sets of Type I censored pseudoran-
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C> COPY SAFNCDBC DATA

1 file(s) copied

C> SAFNCM11

Presumed Linear sa–loge[ fnc(pf )] Model:

standardized normal distribution variate y ¼ (sa � clp)/csp, where
clp ¼ clp0 þ clp1 [loge( fnc)]

fnc sa est[sfs(50)]

56430 320 312.0
99000 300 298.9

183140 280 284.5
479490 260 262.0
909810 240 247.0

3632590 220 214.6
4917990 200 207.5

19186790 180 175.7

snc sa est[sfs(50)]

32250000 160 163.6

Ad Hoc Pragmatic Bias-Corrected Estimate of the Actual Value for
sfs(50) at 25000000 Cycles

168.3
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dom sa–loge( fnc) datum values and in turn computes the pragmatic bias-
corrected value of specific interest. Program SAFNCM11 computes the
pragmatic bias-corrected estimate of the actual value for sfs(50) at
fnc ¼ fnc*. Program SAFNCM12 computes the pragmatic bias-corrected
lower 100(scp)% (one-sided) statistical confidence limit that allegedly
bounds the actual value for sfs(50) at fnc ¼ fnc*, whereas program
SAFNCM13 computes the pragmatic bias-corrected lower 100(scp)%
(one-sided) statistical confidence limit that allegedly bounds the actual
value for sfs(p) at fnc ¼ fnc*. The latter two programs employ propagation
of variability expressions for est{var[est(y given sfs ¼ closascl)]} in their
respective calculations.

Mechanical Reliability Fundamentals 533

C> SAFNCM13

Presumed Linear sa–loge[ fnc(pf )] Model:

standardized normal distribution variate y ¼ (sa � clp)/csp, where
clp ¼ clp0 þ clp1 [loge( fnc)]

Ad Hoc Pragmatic Bias-Corrected Lower 95% (One-Sided) Statistical
Confidence Limit that Allegedly Bounds the Actual Value for sfs(10) at

25000000 Cycles

151.7

Computed Using the Propagation of Variability Expression for
est{var[est(y given sfs ¼ closascl)]}

C> SAFNCM12

Presumed Linear sa–loge[ fnc(pf )] Model:

standardized normal distribution variate y ¼ (sa � clp)/csp, where
clp ¼ clp0 þ clp1 [loge( fnc)]

Ad Hoc Pragmatic Bias-Corrected Lower 95% (One-Sided) Statistical
Confidence Limit that Allegedly Bounds

the Actual Value for sfs(50) at 25000000 Cycles

161.9

Computed Using the Propagation of Variability Expression for
est{var[est(y given sfs ¼ closascl)]}
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The analogous quadratic (parabolic) conceptual sa–loge[ fnc(pf )]
model is based on the standardized conceptual normal distribution variate
y ¼ {sa � clp0 � clp1 loge( fnc) � clp2 [loge( fnc)]

2}/csp. As mentioned
above, the pragmatic sampling distribution that consists of nsim ‘‘replicate’’
estimated quadratic (parabolic) conceptual sa–loge[ fnc(pf )] models can
include estimated models that exhibit a reversed curvature, viz., est(clp2)
is negative. These estimated models are included in the pragmatic sampling
distributions employed in microcomputer programs SAFNCM31,
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C> COPY SAFNCDBC DATA

1 file(s) copied

C> SAFNCM31

Presumed Quadratic sa–loge[ fnc(pf )] Model:

standardized normal distribution variate y ¼ (sa � clp)/csp, where
clp ¼ clp0 þ clp1 [loge( fnc)] þ clp2 [loge( fnc)]

2

fnc sa est[sfs(50)]

56430 320 317.6
99000 300 300.9

183140 280 283.5
479490 260 258.0
909810 240 242.3

3632590 220 211.6
4917990 200 205.5

19186790 180 180.7

snc sa est[sfs(50)]

32250000 160 172.4

Ad Hoc Pragmatic Bias-Corrected Estimate of the Actual Value for
sfs(50) at 25000000. Cycles

176.3

Note: 71 of the estimated ‘‘replicate’’ quadratic (parabolic) conceptual
sa–loge[ fnc(50)] models exhibited a reversed curvature. The associated
est[sfs(50)] values at fnc ¼ 25000000 cycles were included in computing
the pragmatic bias correction.
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SAFNCM32, and SAFNCM33 to compute their respective pragmatic bias-
corrected estimates and limits. In contrast, these estimated models are
excluded from the pragmatic sampling distributions employed in microcom-
puter programs SAFNCM34, SAFNCM35, and SAFNCM36 to compute
their respective pragmatic bias-corrected estimates and limits. These two
sets of programs compute pragmatic bias-corrected estimates and limits
that are identical for practical purposes when the proportion of estimated
models that exhibit a reversed curvature is relatively small.

8.D.9.1. Discussion

The likelihood ratio test should be used to decide whether a linear or a
quadratic sa–loge[ fnc(pf )] model is statistically appropriate. The null
hypothesis is that a linear (straight line) conceptual sa–loge[ fnc(pf )] model
is correct, whereas the alternative hypothesis is that the quadratic (para-
bolic) conceptual sa–loge[ fnc(pf )] model is correct. Then,

Bartlett’s LR test statistic ¼ �2 � loge
estðMLÞncp¼3

estðMLÞncp¼4

 !

¼ 2 � loge estðMLÞncp¼4

h i
� loge estðMLÞncp¼3

h in o
¼�2

nsdf¼4�3¼1

which, for the example datum values in microcomputer file SAFNCDBC
gives

2 � ð�22:4748Þ � 2 � ð�25:2905Þ ¼ 5:6314

Thus, the null hypothesis rejection probability is equal to 0.0176.
Accordingly, we reject the null hypothesis and adopt the quadratic (para-
bolic) conceptual sa–loge[ fnc(pf )] model.

The precision of the pragmatic bias-corrected values computed by
running microcomputer programs SAFNCM(XX) can be examined by
additionally outputting the (p*/2)th and[1 � (p*/2)]th percentiles of their
associated pragmatic sampling distributions. A decision can then be made
regarding the adequacy of this precision and thus the credibility of the
pragmatic bias-corrected value of specific interest.

8.D.10. Computing Ad Hoc Pragmatic Statistical Bias
Corrections for ML Analyses Pertaining to
Strength (Resistance) Experiment Test
Programs

Suppose that it is presumed that a certain conceptual (two-parameter) sta-
tistical distribution describes the probability of failure for the stress ampli-
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C> SAFNCM33

Presumed Quadratic sa–loge[ fnc(pf )] Model:

standardized normal distribution variate y ¼ (sa � clp)/csp, where
clp ¼ clp0 þ clp1 [loge( fnc)] þ clp2 [loge( fnc)]

2

Ad Hoc Pragmatic Bias-Corrected Lower 95% (One-Sided) Statistical
Confidence Limit that Allegedly Bounds the Actual Value for sfs(10) at

25000000 Cycles

159.0

Computed Using the Propagation of Variability Expression for
est{var[est(y given sfs ¼ closascl)]}

Note: 71 of the estimated ‘‘replicate’’ quadratic (parabolic) conceptual
sa–loge[ fnc(10)] models exhibited a reversed curvature. The associated
lower 95% (one-sided) asymptotic statistical confidence limits that
allegedly bound the actual value for sfs(10) at 25000000 cycles were
included in computing the pragmatic bias correction.

C> SAFNCM32

Presumed Quadratic sa–loge[ fnc(pf )] Model:

standardized normal distribution variate y ¼ (sa � clp)/csp, where
clp ¼ clp0 þ clp1 [loge( fnc)] þ clp2 [loge( fnc)]

2

Ad Hoc Pragmatic Bias-Corrected Lower 95% (One-Sided) Statistical
Confidence Limit that Allegedly Bounds

the Actual Value for sfs(50) at 25000000 Cycles

167.0

Computed Using the Propagation of Variability Expression for
est{var[est(y given sfs ¼ closascl)]}

Note: 71 of the estimated ‘‘replicate’’ quadratic (parabolic) conceptual
sa–loge[ fnc(50)] models exhibited a reversed curvature. The associated
lower 95% (one-sided) asymptotic statistical confidence limits that
allegedly bound the actual value for sfs(50) at 25000000 cycles were
included in computing the pragmatic bias correction.
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tudes (stimulus levels) employed in the experiment test program of specific
interest. If so, then we can use the ML-based estimates of the cdp’s and
uniform pseudorandom numbers to decide whether each respective speci-
men in each ‘‘replicate’’ experiment test program fails (or not). Accordingly,
for any set of stress amplitudes (stimulus levels) and their associated num-
bers of replicate tests of specific interest, we can generate nsim ‘‘replicate’’
pseudorandom strength (resistance) data sets, with each of these sets differ-
ing only by the (randomly selected) numbers of specimens failed at the
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C> SAFNCM34

Presumed Quadratic sa–loge[ fnc(pf )] Model:

standardized normal distribution variate y ¼ (sa � clp)/csp, where
clp ¼ clp0 þ clp1 [loge( fnc)] þ clp2 [loge( fnc)]

2

fnc sa est[sfs(50)]

56430 320 317.6
99000 300 300.9

183140 280 283.5
479490 260 258.0
909810 240 242.3

3632590 220 211.6
4917990 200 205.5

19186790 180 180.7

snc sa est[sfs(50)]

32250000 160 172.4

Ad Hoc Pragmatic Bias-Corrected Estimate of the Actual Value for
sfs(50) at 25000000 Cycles

176.3

Note: 71 of the estimated ‘‘replicate’’ quadratic (parabolic) conceptual
sa–loge[ fnc(50)] models exhibited a reversed curvature. The associated
est[sfs(50)] values at 25000000 cycles were not included in computing
the pragmatic bias correction.
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respective stress amplitudes (stimulus levels). Thus, in theory, we can gen-
erate the pragmatic sampling distribution for any ML-based estimate of
specific interest. Then, in turn, we can compute either its pragmatic statis-
tical bias correction or the associated pragmatic bias-corrected A-basis or B-
basis values. However, in practice, the probability of generating a ‘‘repli-
cate’’ data set that either has no rational explanation or no valid ML solu-
tion increases as nsim increases. Thus, the computation of a pragmatic
statistical bias correction for a small strength (resistance) experiment test
program may be impossible.

We demonstrated in Supplemental Topic 8.C that the ML estimates of
the actual values for the [sfs(50)]’s pertaining to the four alternative concep-
tual two-parameter strength (resistance) distributions considered herein are
identical for practical purposes. On the other hand, the respective estimated
classical lower 100(scp)% (one-sided) asymptotic confidence limits that
allegedly bound the actual value of the [sfs(p)]’s pertaining to these four
conceptual strength (resistance) distributions differ quite markedly, even
for extremely large strength (resistance) experiment test programs. In fact,
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C> SAFNCM35

Presumed Quadratic sa–loge[ fnc(pf )] Model:

standardized normal distribution variate y ¼ (sa � clp)/csp, where
clp ¼ clp0 þ clp1 [loge( fnc)] þ clp2 [loge( fnc)]

2

Ad Hoc Pragmatic Bias-Corrected Lower 95% (One-Sided) Statistical
Confidence Limit that Allegedly Bounds the Actual Value for sfs(50) at

25000000 Cycles

167.0

Computed Using the Propagation of Variability Expression for
est{var[est(y given sfs ¼ closascl)]}

Note: 71 of the estimated ‘‘replicate’’ quadratic (parabolic) conceptual
sa–loge[ fnc(50)] models exhibited a reversed curvature. The associated
lower 95% (one-sided) asymptotic statistical confidence limits that
allegedly bound the actual value for sfs(50) at 25000000 cycles were
not included in computing the pragmatic bias correction.
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these differences are so large that pragmatic statistical bias corrections are
almost always negligible in comparison. Thus, the computation of prag-
matic statistical bias corrections for strength (resistance) data is not illu-
strated herein.

8.D.11. Perspective and Closure

Simulation is by far the most intuitive way to examine the variability that is
intrinsic in the outcome of any quantitative statistical analysis. Ideally, the
empirical sampling distribution that consists of nnep replicate realization
values for its associated statistic can be readily generated. If so, the metric
values pertaining to certain of its percentiles can be established and in turn
related to the required (desired) precision for the quantitative estimate of
specific interest. If not, then a pragmatic sampling distribution is an accep-
table alternative to this empirical sampling distribution. At the very least,
the following methodology should be adopted:

Use the estimated values for the parameters of the presumed con-
ceptual statistical model to generate at least 12 sets of ‘‘replicate’’
experiment test program datum values. Then perform the 12 asso-
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C> SAFNCM36

Presumed Quadratic sa–loge[ fnc(pf )] Model:

standardized normal distribution variate y ¼ (sa � clp)/csp, where
clp ¼ clp0 þ clp1 [loge( fnc)] þ clp2 [loge( fnc)]

2

Ad Hoc Pragmatic Bias-Corrected Lower 95% (One-Sided) Statistical
Confidence Limit that Allegedly Bounds the Actual Value for sfs(10) at

25000000 Cycles

159.0

Computed Using the Propagation of Variability Expression for
est{var[est(y given sfs ¼ closascl)]}

Note: 71 of the estimated ‘‘replicate’’ quadratic (parabolic) conceptual
sa–loge[ fnc(10)] models exhibited a reversed curvature. The associated
lower 95% (one-sided) asymptotic statistical confidence limits that
allegedly bound the actual value for sfs(10) at 25000000 cycles were
not included in computing the pragmatic bias correction.
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ciated quantitative statistical analyses and tabulate and/or plot the
respective outcomes appropriately. In turn, compare the extreme
outcomes of these 12 statistical analyses relative to the precision
required (desired) for the quantitative outcome of the given statis-
tical analysis. Finally, reassess your quantitative outcome in the
light of this simulation-based information.

As a very crude rule of thumb, the range of the (extreme) outcomes for 12
‘‘replicate’’ statistical analyses includes (bounds) approximately 90% of all
possible replicate outcomes for a given quantitative statistical analysis.

Remember: An incorrect experimental result is worse than no result
because it can be very misleading, but even a correct experimental
result can be very misleading if it lacks a dependable index to its
precision.

8.E. SUPPLEMENTAL TOPIC: CLASSICAL AND
LIKELIHOOD RATIO LOWER 100(SCP)% (ONE-
SIDED) ASYMPTOTIC STATISTICAL CONFIDENCE
BANDS AND LIMITS

8.E.1. Classical and LR Lower 100(scp)% (One-Sided)
Asymptotic Statistical Con¢dence Bands for Both
Life (Endurance) and Strength (Resistance) Data

Recall that the 100(scp)% joint confidence region for the actual values of the
clp0 and the clp1 was used in simple linear regression to compute hyperbolic
100(scp)% (two-sided) statistical confidence bands that allegedly include
mean(APRCRHNDRDV ’s) for all values of the ivv employed in the regres-
sion experiment test program. Analogously, classical and LR 100(scp)%
(two-sided) asymptotic statistical confidence bands that allegedly bound
the actual values for all percentiles of the presumed conceptual two-para-
meter distribution can be computed using the 100(scp)% joint asymptotic
statistical confidence region for the clp and the csp. In turn, these classical
and LR 100(scp)% (two-sided) asymptotic statistical confidence bands can
be reinterpreted as classical and LR lower 100[(1þ scpÞ=2�Þ% (one-sided)
asymptotic statistical confidence (tolerance limits) that pertain to the pth

percentile of the presumed conceptual two-parameter distribution.
Recall that the elliptical boundary of the 100(scp)% joint statistical

confidence region in simple linear regression is established by the scp-based
selected value for Snedecor’s central F test statistic with 2 and nrdv�2
statistical degrees of freedom (Supplemental Topic 7.C). However, in ML
analysis, the elliptical 100(scp)% joint statistical confidence region that
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allegedly includes the actual values for the clp and the csp is asymptotic.
Accordingly, the number of denominator statistical degrees of freedom for
the analogous Snedecor’s central F test statistic is infinite. Thus, the analo-
gous ML-based test statistic is Pearson’s central �2 test statistic with 2
statistical degrees of freedom. (Recall Figure 5.7). Accordingly, the joint
100(scp)% asymptotic statistical confidence region that allegedly includes
the actual values for the clp and the csp is established by the quadratic
expression:

�2
2;scp ¼ � @2 loge likelihoodð Þ

@clp2
� est clpð Þ � clpcritical½ �2

� @2 loge likelihoodð Þ
@csp2

� est cspð Þ � cspcritical½ �2

� 2 � @
2 loge likelihoodð Þ

@clp @csp
� est clpð Þ � clpcritical½ � � est cspð Þ � cspcritical½ �

in which the partial derivatives must be evaluated at est(clp) and est(csp).
This joint 100(scp)% asymptotic statistical confidence region is elliptical
regardless of the parameterization of the presumed conceptual two-para-
meter distribution.

The joint 100(scp)% asymptotic statistical confidence region generated
by the LR method is not elliptical. Its boundary is defined by the trace on
the loge(likelihood) surface at which the magnitude of the corresponding
loge(likelihood) is less than loge(maximized likelihood) by 1

2
� �2

2;scp

� �
. The

shape of this trace depends on the parameterization selected for the pre-
sumed conceptual two-parameter distribution. Nevertheless, the associated
LR 100(scp)% (two-sided) asymptotic statistical confidence bands do not
depend on this parameterization.

All joint 100(scp)% asymptotic statistical confidence regions can be
depicted on clp,csp co-ordinates by plotting numerous points that lie on
their respective boundaries. These boundary points pertain to coupled
values of clpcritical and cspcritical for which the null hypothesis that these
hypothetical values for the clp and the csp are correct will just be rejected
when the acceptable probability of committing a Type I error is equal to
(1 � scp). In our microcomputer programs 3600 coupled boundary point
values for clpcritical and cspcritical are computed, one boundary point value for
each one-tenth of a degree of counterclockwise rotation around the (esti-
mated) center of the 100(scp)% joint asymptotic statistical confidence
region. These 3600 coupled values of clpcritical and cspcritical are used to
compute 3600 corresponding hypothetical CDF’s. Then, for each y value
or metric value of specific interest, the respective minimum and maximum
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[est(metric value given the y of specific interest)]’s or [est(y value given the
metric value of specific interest)]’s associated with these 3600 hypothetical
CDF’s establish reasonably accurate numerical values for the 100(scp)%
(two-sided) asymptotic statistical confidence bands that allegedly include
the actual CDF. When y pertains to the value of pf of specific interest,
the respective minimums of the 3600 [est(metric value given the y of specific
interest)’s are classical and LR lower 100[(1 þ scp)/2]% (one-sided) asymp-
totic statistical confidence (tolerance) limits.

The respective maximums and minimums of the 3600 computed
hypothetical [est(metric value given the y of specific interest)]’s do not cor-
respond one-to-one to the associated maximums and minimums of the 3600
[est(y value given the metric value of specific interest)]’s, or vice versa, for
any of the four parameterizations considered herein. Moreover, only the
two linear parameterizations, viz., (2) and (3) on this page, have their ellip-
tical joint 100(scp)% asymptotic statistical confidence region bisected by the
straight line that connects the hypothetical [clp,csp] points associated with
the respective maximums and minimums of the 3600 computed values of the
[est(metric value given the y of specific interest)’s and [est(y value given the
metric value of specific interest)]’s. Accordingly, only linear parameteriza-
tions (2) and (3) generate hyperbolic 100(scp)% (two-sided) asymptotic sta-
tistical confidence bands such that the probability that the actual CDF lies
(in part) above the upper band exactly equals the probability that the actual
CDF lies (in part) below the lower band, viz., (1 � scp)/2. This probability
behavior is only asymptotically approached for parameterizations (1) and
(4), and for LR-based bands.

8.E.2. Life (Endurance) Data

Recall that we presume that life (endurance) can be modeled using either a
conceptual (two-parameter) smallest-extreme-value distribution or a con-
ceptual (two-parameter) normal distribution with a logarithmic metric
and that one of the following parameterizations is of specific interest:

ð1Þ y ¼ csp � ½logeð fncÞ � clp�
ð2Þ y¼clpþcsp � ½logeð fncÞ�
ð3Þ y ¼ logeð fncÞ � clp

csp

ð4Þ y ¼ logeð fncÞ
cps

� clp

The LSEV(J)B and LN(J)B series of microcomputer programs compute
classical and LR lower 100(scp)% (one-sided) asymptotic statistical confi-

542 Chapter 8

TLFeBOOK



dence bands, where scp is the input value that appears in microcomputer file
WBLDATA. These programs also compute classical and LR lower
100(scp)% (one-sided) asymptotic statistical confidence (tolerance) limits
that allegedly bound 100(p)% of the presumed conceptual two-parameter
loge–normal and Weibull life (endurance) distributions, where p is the prob-
ability complement to the CDF percentile of specific interest. The eight
respective A-basis asymptotic statistical confidence (tolerance) limits are
presented in Table 8.26 for comparative purposes. Note that these asymp-
totic statistical confidence (tolerance) limits can differ markedly for small
experiment test programs, especially when suspended tests occur. However,
the differences among the respective asymptotic statistical tolerance limits
decrease as ndv increases. This behavior is evident in Table 8.27, where it is
also evident that these differences are markedly decreased by including ad
hoc pragmatic statistical bias corrections.

8.E.3. Strength (Resistance) Data

Recall that for strength (resistance) data the four analogous parameteriza-
tions are:

ð1Þ y ¼ csp � ½sðpf Þ � clp�
ð2Þ y ¼ clpþcsp � sðpf Þ

ð3Þ y ¼ sðpf Þ � clp

csp

ð4Þ y ¼ sðpf Þ
cps

� clp

These four parameterizations generate results akin to those presented in
Table 8.26 and 8.27. However, recall that ML strength (resistance) analyses
traditionally employ only parameterization (2). Accordingly, we employ
only parameterization (2) in microcomputer programs N2B, L2B, SEV2B,
and LEV2B that are respectively based on the presumption of a conceptual
(two-parameter) normal, logistic, smallest-extreme-value, and largest-
extreme-value distribution to compute classical and LR lower 100(scp)%
(one-sided) asymptotic statistical confidence bands that allegedly bound the
actual CDF. Note that, although our example strength experiment test
program is much larger than is practical in most mechanical reliability
applications, there are marked differences among the respective classical
and LR lower 100(scp)% (one-sided) asymptotic statistical confidence
bands. In particular, note that points on these bands can even take on
nonsensical negative values when pf is sufficiently small.
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546 Chapter 8

C> LSEV1B

Given the Standardized Conceptual Smallest-Extreme-Value
Distribution Variate y ¼ csp � [loge( fnc) � clp]

Points on the Lower 95% (One-Sided) Asymptotic Statistical
Confidence Bands that Allegedly Bound the Actual CDF

Computed Using 3600 Points on the Boundary of the Elliptical Joint
Asymptotic Statistical Confidence Region for the Actual Values of the

clp and the csp (with 2 Statistical Degrees of Freedom)

Lower Boundary Point ¼ at fnc =

53.438 277.000
90.623 310.000

217.892 374.000
302.833 402.000
371.903 456.000

at snc ¼
403.022 500.000

at fnc(01)

Lower Boundary Point ¼ est( fnc) ¼
4.331 162.262

Computed Using 3600 Points on the Boundary of the Corresponding
Region Established by the Likelihood Ratio Method

Lower Boundary Point ¼ at fnc =

126.062 277.000
165.957 310.000
255.244 374.000
296.154 402.000
369.401 456.000

at snc =

417.964 500.000

at fnc(01)

Lower Boundary Point ¼ est( fnc) ¼
32.254 162.262
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C> LSEV2B

Given the Standardized Conceptual Smallest-Extreme-Value
Distribution Variate y ¼ clp þ csp � loge( fnc)

Points on the Lower 95% (One-Sided) Asymptotic Statistical
Confidence Bands that Allegedly Bound the Actual CDF

Computed Using 3600 Points on the Boundary of the Elliptical Joint
Asymptotic Statistical Confidence Region for the Actual Values of the

clp and the csp (with 2 Statistical Degrees of Freedom)

Lower Boundary Point ¼ at fnc ¼
46.425 277.000
77.873 310.000

176.313 374.000
234.472 402.000
342.820 456.000

at snc ¼
403.004 500.000

at fnc(01)

Lower Boundary Point ¼ est( fnc) ¼
3.901 162.262

Computed Using 3600 Points on the Boundary of the Corresponding
Region Established by the Likelihood Ratio Method

Lower Boundary Point ¼ at fnc =

126.062 277.000
165.957 310.000
255.244 374.000
296.154 402.000
369.401 456.000

at snc ¼
417.964 500.000

at fnc(01)

Lower Boundary Point ¼ est( fnc) ¼
32.254 162.262
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548 Chapter 8

C> COPY WBLDATA DATA

1 files(s) copied

C> LSEV3B

Given Standardized Conceptual Smallest-Extreme-Value Distribution
Variate y ¼ [loge( fnc) � clp]/csp

Points on the Lower 95% (One-Sided) Asymptotic Statistical
Confidence Bands that Allegedly Bound the Actual CDF

Computed Using 3600 Points on the Boundary of the Elliptical Joint
Asymptotic Statistical Confidence Region for the Actual Values of the

clp and the csp (with 2 Statistical Degrees of Freedom)

Lower Boundary Point ¼ at fnc ¼
181.888 277.000
219.406 310.000
293.594 374.000
323.796 402.000
371.768 456.000

at snc ¼
399.424 500.000

at fnc(01)

Lower Boundary Point ¼ est( fnc) ¼
71.811 162.262

Computed Using 3600 Points on the Boundary of the Corresponding
Region Established by the Likelihood Ratio Method

Lower Boundary Point ¼ at fnc ¼
126.062 277.000
165.957 310.000
255.244 374.000
296.154 402.000
369.401 456.000

at snc =

417.964 500.000

at fnc(01)

Lower Boundary Point ¼ est( fnc) ¼
32.254 162.262
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C> COPY WBLDATA DATA

1 files(s) copied

C> LSEV4B

Given the Standardized Conceptual Normal Distribution Variate
y ¼ {[loge( fnc)]/csp} � clp

est(clp) ¼ 0.2868202543D+02
est(csp) ¼ 0.2113296619D+00
est{var[est(clp)]} ¼ 0.1120467627D+03
est{var[est(csp)]} ¼ 0.6010809287D� 02
est{covar[est(clp),est(csp)]} ¼ �0.8199326557D+00
est(conceptual correlation coefficient) ¼ �0.9991071169D+00

fnc est(y) est(pf )

277.000 �2:0694929 0.1186053
310.000 �1:5368900 0.1934980
374.000 �0:6487823 0.4070717
402.000 �0:3071535 0.5207523
456.000 0:2892640 0.7369587

snc est(y) est(pf )

500.000 0:7251484 0.8731865

Points on the Lower 95% (One-Sided) Asymptotic Statistical
Confidence Bands that Allegedly Bound the Actual CDF

Computed Using 3600 Points on the Boundary of the Elliptical Joint
Asymptotic Statistical Confidence Region for the Actual Values of the

clp and the csp (with 2 Statistical Degrees of Freedom)

Lower Boundary Point ¼ at fnc ¼
4.365 277.000
5.338 310.000
7.465 374.000
8.493 402.000

10.229 456.000

at snc =

10.432 500.000
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The example outputs for programs N2B, L2B, SEV2B, and LEV2B
are typical of most ML analyses in that LR statistical confidence intervals,
limits, and bands are intermediate to the extremes of the associated classical
statistical confidence intervals, limits, and bands. This relationship is exam-
ined further in the next section.

8.E.4. Classical and LR Lower 100(scp)% (One-Sided)
Asymptotic Statistical Con¢dence Limits for Both
Life (Endurance) and Strength (Resistance) Data

Classical and LR lower 100(scp)% (one-sided) asymptotic statistical con-
fidence limits that allegedly bound the presumed conceptual two-parameter
distribution metric value, given any y(pf ) value of specific interest, can also
be computed using the numerical computation procedure outlined above.
However, these limits are established by a pf based on Pearson’s central �2

conceptual sampling distribution with only one statistical degree of
freedom.

550 Chapter 8

at fnc(01)

Lower Boundary Point ¼ est( fnc) ¼
1.679 162.262

Computed Using 3600 Points on the Boundary of the Corresponding
Region Established by the Likelihood Ratio Method

Lower Boundary Point ¼ at fnc ¼
126.062 277.000
165.957 310.000
255.244 374.000
296.154 402.000
369.401 456.000

at snc =

417.964 500.000

at fnc(01)

Lower Boundary Point ¼ est( fnc) ¼
32.254 162.262
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C> COPY WBLDATA DATA

1 files(s) copied

C> LN1B

Given the Standardized Conceptual Normal Distribution Variate
y ¼ csp � [loge( fnc) � clp]

Points on the Lower 95% (One-Sided) Asymptotic Statistical
Confidence Bands that Allegedly Bound the Actual CDF

Computed Using 3600 Points on the Boundary of the Elliptical Joint
Asymptotic Statistical Confidence Region for the Actual Values of the

clp and the csp (with 2 Statistical Degrees of Freedom)

Lower Boundary Point ¼ at fnc ¼
124.351 277.000
182.454 310.000
302.115 374.000
323.179 402.000
358.474 456.000

at snc =

384.429 500.000

at fnc(01)

Lower Boundary Point ¼ est( fnc) ¼
57.493 221.209

Computed Using 3600 Points on the Boundary of the Corresponding
Region Established by the Likelihood Ratio Method

Lower Boundary Point ¼ at fnc ¼
155.627 277.000
198.266 310.000
282.348 374.000
315.504 402.000
368.378 456.000

at snc =

401.906 500.000

at fnc(01)

Lower Boundary Point ¼ est( fnc) ¼
92.828 221.209
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C> COPY WBLDATA DATA

1 files(s) copied

C> LN2B

Given the Standardized Conceptual Normal Distribution Variate
y ¼ clp þ csp � loge( fnc)
est(clp) ¼ 0.2484842180D+02
est(csp) ¼ 0.4171442213D+01
est{var[est(clp)]} ¼ 0.6703904559D+02
est{var[est(csp)]} ¼ 0.1903271765D+01
est{covar[est(clp),est(csp)]} ¼ �0.1128121931D+02
est(conceptual correlation coefficient) ¼ �0.9987153578D+00

fnc est(y) est(pf )

277.000 �1:3881578 0.0825445
310.000 �0:9186420 0.1791414
374.000 �0:1357311 0.4460169
402.000 0:1654316 0.5656978
456.000 0:6912032 0.7552811

snc est(y) est(pf )

500.000 1:0754568 0.8589149

Points on the Lower 95% (One-Sided) Asymptotic Statistical
Confidence Bands that Allegedly Bound the Actual CDF

Computed Using 3600 Points on the Boundary of the Elliptical Joint
Asymptotic Statistical Confidence Region for the Actual Values of the

clp and the csp (with 2 Statistical Degrees of Freedom)

Lower Boundary Point ¼ at fnc =

120.103 277.000
169.937 310.000
275.414 374.000
313.548 402.000
368.208 456.000

at snc =

401.704 500.000

at fnc(01)
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Lower Boundary Point ¼ est( fnc) =

57.357 221.209

Computed Using 3600 Points on the Boundary of the Corresponding
Region

Established by the Likelihood Ratio Method

Lower Boundary Point ¼ at fnc =

155.627 277.000
198.266 310.000
282.348 374.000
315.504 402.000
368.378 456.000

at snc =

401.906 500.000

at fnc(01)

Lower Boundary Point ¼ est( fnc) =

92.828 221.209

C> COPY WBLDATA DATA

1 files(s) copied

C> LN3B

Given the Standardized Conceptual Normal Distribution Variate
y ¼ [loge( fnc) � clp]/csp

est(clp) ¼ 0.5959062671D+01
est(csp) ¼ 0.2412998143D+00
est{var[est(clp)]} ¼ 0.9921960558D� 02
est{var[est(csp)]} ¼ 0.6305038312D� 02
est{covar[est(clp),est(csp)]} ¼ 0.6974504622D� 03
est(conceptual correlation coefficient) ¼ 0.8818013378D� 01

fnc est(y) est(pf )

277.000 �1:3881578 0.0825445
310.000 �0:9186420 0.1791414
374.000 �0:1357311 0.4460169
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402.000 0:1654316 0.5656978
456.000 0:6912032 0.7552811

snc est(y) est(pf )

500.000 1:0754568 0.8589149

Points on the Lower 95% (One-Sided) Asymptotic Statistical
Confidence Bands that Allegedly Bound the Actual CDF

Computed Using 3600 Points on the Boundary of the Elliptical Joint
Asymptotic Statistical Confidence Region for the Actual Values of the

clp and the csp (with 2 Statistical Degrees of Freedom)

Lower Boundary Point ¼ at fnc ¼
204.569 277.000
240.769 310.000
302.115 374.000
322.932 402.000
353.552 456.000

at snc ¼
372.193 500.000

at fnc(01)

Lower Boundary Point ¼ est( fnc) ¼
143.704 221.209

Computed Using 3600 Points on the Boundary of the Corresponding
Region

Established by the Likelihood Ratio Method

Lower Boundary Point ¼ at fnc ¼
155.627 277.000
198.266 310.000
282.348 374.000
315.504 402.000
368.378 456.000

at snc ¼
401.906 500.000

at fnc(01)

Lower Boundary Point ¼ est( fnc) ¼
92.828 221.209
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C> COPY WBLDATA DATA

1 files(s) copied

C> LN4B

Given the Standardized Conceptual Normal Distribution Variate
y ¼ {[loge( fnc)]/csp} � clp

est(clp) ¼ 0.2484842180D+02
est(csp) ¼ 0.2397252434D+00
est{var[est(clp)]} ¼ 0.6703904559D+02
est{var[est(csp)]} ¼ 0.6285732256D� 02
est{covar[est(clp),est(csp)]} ¼ �0.6483112811D+02
est(conceptual correlation coefficient) ¼ �0.9987153578D+00

fnc est(y) est(pf )

277.000 �1:3881578 0.0825445
310.000 �0:9186420 0.1791414
374.000 �0:1357311 0.4460169
402.000 0:1654316 0.5656978
456.000 0:6912032 0.7552811

snc est(y) est(pf )

500.000 1:0754568 0.8589149

Points on the Lower 95% (One-Sided) Asymptotic Statistical
Confidence Bands that Allegedly Bound the Actual CDF

Computed Using 3600 Points on the Boundary of the Elliptical Joint
Asymptotic Statistical Confidence Region for the Actual Values of the

clp and the csp (with 2 Statistical Degrees of Freedom)

Lower Boundary Point ¼ at fnc ¼
11.200 277.000
13.577 310.000
18.703 374.000
19.390 402.000
20.114 456.000

at fnc(01)

at snc ¼
20.660 500.000
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8.E.5. Life (Endurance) Data

Microcomputer programs LSEV1C, LSEV2C, LSEV3C, LSEV4C, LN1C,
LN2C, LN3C, and LN4C respectively involve only a minor modification of
microcomputer programs LSEV1B LSEV2B, LSEV3B, LSEV4B, LN1B,
LN2B, LN3B, and LN4B. These modified programs compute classical and
LR lower 100(scp)% (one-sided) asymptotic statistical confidence limits,
where scp is the input value that appears in microcomputer file
WBLDATA. The eight respective A-base asymptotic statistical confidence
(tolerance) limits are presented in Table 8.28 for comparative purposes.
Note again that the LR lower 100(scp)% (one-sided) asymptotic statistical
confidence limit does not depend on the parameterization of the CDF.

The respective classical lower 100(scp)% (one-sided) asymptotic sta-
tistical confidence limits for linear parameterizations (2) and (3) are theore-
tically identical to those computed using propagation of variability
expressions. The numerical discrepancy in Table 8.28 for parameterization
(2) is due to the very large value of the estimated conceptual correlation
coefficient for est(clp) and est(csp).

556 Chapter 8

Lower Boundary Point ¼ est( fnc) ¼
7.625 221.209

Computed Using 3600 Points on the Boundary of the Corresponding
Region

Established by the Likelihood Ratio Method

Lower Boundary Point ¼ at fnc ¼
155.627 277.000
198.266 310.000
282.348 374.000
315.504 402.000
368.378 456.000

at snc =

401.906 500.000

at fnc(01)

Lower Boundary Point ¼ est( fnc) ¼
92.828 221.209
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C> COPY AWBLDATA DATA

1 files(s) copied

C> WPBCLR

Given Fð fncÞ ¼ 1� exp
�

fnc

cdp1

� �cdp2

est(cdp1) ¼ 0.4289595976D+03
est(cdp2) ¼ 0.4731943406D+01
est{var[est(cdp1)]} ¼ 0.1666932095D+04
est{var[est(cdp2)]} ¼ 0.3013638227D+01
est{covar[est(cdp1),est(cdp2)]} ¼ 0.8393830857D+01
est(conceptual correlation coefficient) ¼ 0.1184283562D+00

fnc est(y) est(pf )

277.000 �2:0694929 0.1186053
310.000 �1:5368900 0.1934980
374.000 �0:6487823 0.4070717
402.000 �0:3071535 0.5207523
456.000 0:2892640 0.7369587

snc est(y) est(pf )

500.000 0:7251484 0.8731865

Ad Hoc Pragmatic Bias-Corrected Lower 95% (One-Sided)
Asymptotic Statistical Confidence (Tolerance)

Limit that Allegedly Bounds the Actual Value for fnc(01)

38.579

Based on the 95th Percentile of the Sampling Distribution Comprised
of 30,000 ‘‘Replicate’’ Realizations for the Classical

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limit that
Allegedly Bounds the Actual Value for fnc(01),

Each Realization Computed Using 360 Points on the Boundary of the
Likelihood Ratio Asymptotic Statistical

Confidence Region that Allegedly Includes the Actual Values for the
clp and the csp (with 2 Statistical Degrees of Freedom).
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C> COPY AWBLDATA DATA

1 files(s) copied

C> LNPBCLR

Given Standardized Conceptual Normal Distribution Variate
y ¼ csp � [loge( fnc) � clp]

est(clp) ¼ 0.5956793964D+01
est(csp) ¼ 0.4171442213D+01
est{var[est(clp)]} ¼ 0.9987394347D� 02
est{var[est(csp)]} ¼ 0.1903271765D+01
est{covar[est(clp),est(csp)]} ¼ �0.1346739280D� 01
est(conceptual correlation coefficient) ¼ �0.9768030920D� 01

fnc est(y) est(pf )

277.000 �1:3881578 0.0825445
310.000 �0:9186420 0.1791414
374.000 �0:1357311 0.4460169
402.000 0:1654316 0.5656978
456.000 0:6912032 0.7552811

snc est(y) est(pf )

500.000 1:0754568 0.8589149

Ad Hoc Pragmatic Bias-Corrected Lower 95% (One-Sided)
Asymptotic Statistical Confidence (Tolerance)

Limit that Allegedly Bounds the Actual Value for fnc(01)

95.817

Based on the 95th Percentile of the Sampling Distribution Comprised
of 30,000 ‘‘Replicate’’ Realizations for the Classical

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limit that
Allegedly Bounds the Actual Value for fnc(01).

Each Realization Computed Using 360 Points on the Boundary of the
Likelihood Ratio Asymptotic Statistical

Confidence Region that Allegedly Includes the Actual Values for the
clp and the csp (with 2 Statistical Degrees of Freedom).
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8.E.6. Strength (Resistance) Data

Microcomputer programs N2C, L2C, SEV2C, and LEV2C involve only a
minor modification of microcomputer programs N2B, L2B, SEV2B, and
LEV2B, viz., employing Pearson’s central �2 conceptual sampling distribu-
tion with only one statistical degree of freedom rather than two. These
modified programs compute classical and LR lower 100(scp)% (one-sided)
asymptotic statistical confidence limits that allegedly bound the metric per-
taining to the pth percentile of the presumed conceptual (two-parameter)
strength (resistance) distribution, where scp and p are input values that
are specified in microcomputer file ASDATA. Note that the respective clas-
sical lower (one-sided) asymptotic statistical confidence limits are identical
to those computed using the propagation of variability expression for est{-
var[est(y given s ¼ closascl)]} in microcomputer programs N2ALCL,
L2ALCL, SEV2ALCL, and LEV2ALCL. [Recall that linear parameteriza-
tion (2) is employed in these microcomputer programs.]

8.E.7. Summary

Ad hoc pragmatic bias-corrected LR-based lower 100(scp)% (one-sided)
statistical confidence and tolerance limits (a) are statistically equivalent,
for practical purposes, to corresponding exact limits for uncensored life
(endurance) experiment test programs, when the coefficients of valuation
is less than about 0.2, and (b) have no peer for life (endurance) experiment
test programs with only a limited amount of Type I censoring. However, it is
not practical to compute ad hoc pragmatic bias-corrected lower 100(scp)%
(one-sided) statistical confidence and tolerance limits for strength (endur-
ance) experiment test programs. Nevertheless, asymptotic LR-based limits
are clearly preferable to classical ML-based limits.

8.F. SUPPLEMENTAL TOPIC: TESTING STATISTICAL
ADEQUACY OF PRESUMED CONCEPTUAL MODEL
USING THE LR METHOD

Recall that it is always good statistical practice to test the statistical adequacy
of the presumed conceptual model. Most often the focus is on the statistical
adequacy of the deterministic (so-called physical) component of the concep-
tual model. However, the presumption of homoscedasticity typically requires
examination because experimental datum values typically exhibit variabil-
ities that depend on the magnitude of the respective experiment test program
outcomes, viz., small datum values typically exhibit small variabilities
whereas large datum values typically exhibit large variabilities. The LR
test is remarkably suited to testing the statistical adequacy of the presumed
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C> N2B

Given Standardized Conceptual Normal Distribution Variate
yðpf Þ=clp+csp � sðpf Þ

Points on the Lower 95% (One-Sided) Asymptotic Statistical
Confidence Bands that Allegedly Bound the Actual CDF

Computed Using 3600 Points on the Boundary of the Elliptical Joint
Asymptotic Statistical Confidence Region for the Actual Values of the

clp and the csp (with 2 Statistical Degrees of Freedom)

Lower Boundary Point ¼ at s ¼
92.738 100.000
88.885 95.000
84.314 90.000
78.025 85.000
69.165 80.000
47.258 75.000
35.640 65.000

at s(01)

Lower Boundary Point ¼ est(s) ¼
17.407 57.226

Computed Using 3600 Points on the Boundary of the Corresponding
Region Established by the Likelihood Ratio Method

Lower Boundary Point ¼ at s ¼
92.302 100.000
88.560 95.000
84.262 90.000
78.768 85.000
71.308 80.000
52.421 75.000
42.275 65.000

at s(01)

Lower Boundary Point ¼ est(s) ¼
26.305 57.226
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C> L2B

Given Standardized Conceptual Logistic Distribution Variate
y(pf ) ¼ clp þ csp � s(pf )

Points on the Lower 95% (One-Sided) Asymptotic Statistical
Confidence Bands that Allegedly Bound the Actual CDF

Computed Using 3600 Points on the Boundary of the Elliptical Joint
Asymptotic Statistical Confidence Region for the Actual Values of the

clp and the csp (with 2 Statistical Degrees of Freedom)

Lower Boundary Point ¼ at s ¼
92.637 100.000
88.915 95.000
84.306 90.000
77.126 85.000
65.976 80.000
38.630 75.000
24.317 65.000

at s(01)

Lower Boundary Point ¼ est(s) ¼
�6.021 54.524

Computed Using 3600 Points on the Boundary of the Corresponding
Region Established by the Likelihood Ratio Method

Lower Boundary Point ¼ at s ¼
91.941 100.000
88.420 95.000
84.208 90.000
78.558 85.000
70.519 80.000
50.101 75.000
39.234 65.000

at s(01)

Lower Boundary Point ¼ est(s) ¼
16.101 54.524
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C> SEV2B

Given Standardized Conceptual Smallest-Extreme-Value Distribution
Variate y(pf ) ¼ clp þ csp � s(pf )

Points on the Lower 95% (One-Sided) Asymptotic Statistical
Confidence Bands that Allegedly Bound the Actual CDF

Computed Using 3600 Points on the Boundary of the Elliptical Joint
Asymptotic Statistical Confidence Region for the Actual Values of the

clp and the csp (with 2 Statistical Degrees of Freedom)

Lower Boundary Point ¼ at s ¼
94.256 100.000
90.171 95.000
84.443 90.000
75.300 85.000
63.767 80.000
38.817 75.000
26.079 65.000

at s(01)

Lower Boundary Point ¼ est(s) ¼
�18:174 47.765

Computed Using 3600 Points on the Boundary of the Corresponding
Region Established by the Likelihood Ratio Method

Lower Boundary Point ¼ at s ¼
94.122 100.000
90.254 95.000
85.168 90.000
77.969 85.000
68.828 80.000
48.310 75.000
37.705 65.000

at s(01)

Lower Boundary Point ¼ est(s) ¼
0.707 47.765
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C> LEV2B

Given Standardized Conceptual Largest-Extreme-Value Distribution
Variate y(pf ) ¼ clp þ csp � s(pf )

Points on the Lower 95% (One-Sided) Asymptotic Statistical
Confidence Bands that Allegedly Bound the Actual CDF

Computed Using 3600 Points on the Boundary of the Elliptical Joint
Asymptotic Statistical Confidence Region for the Actual Values of the

clp and the csp (with 2 Statistical Degrees of Freedom)

Lower Boundary Point ¼ at s ¼
90.718 100.000
87.111 95.000
83.186 90.000
78.562 85.000
72.397 80.000
53.545 75.000
42.328 65.000

at s(01)

Lower Boundary Point ¼ est(s) ¼
30.678 59.982

Computed Using 3600 Points on the Boundary of the Corresponding
Region Established by the Likelihood Ratio Method

Lower Boundary Point ¼ at s ¼
89.751 100.000
86.229 95.000
82.488 90.000
78.227 85.000
72.612 80.000
55.836 75.000
46.098 65.000

at s(01)

Lower Boundary Point ¼ est(s) ¼
36.025 59.982
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C> LSEV1C

Given the Standardized Conceptual Smallest-Extreme-Value
Distribution Variate y ¼ csp � [loge( fnc) � clp]

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for fnc(01)

36.167 – Computed Using 3600 Points on the Boundary of the
Elliptical Joint Asymptotic Statistical Confidence

Region for the Actual Values of the clp and the csp (with 1 Statistical
Degree of Freedom)

58.511 – Computed Using 3600 Points on the Boundary of the
Corresponding Region Established by the Likelihood Ratio Method

C> LSEV2C

Given the Standardized Conceptual Smallest-Extreme-Value
Distribution Variate y ¼ clp þ csp � loge( fnc)

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for fnc(01)

34.585 – Computed Using 3600 Points on the Boundary of the
Elliptical Joint Asymptotic Statistical Confidence

Region for the Actual Values of the clp and the csp (with 1 Statistical
Degree of Freedom)

58.511 – Computed Using 3600 Points on the Boundary of the
Corresponding Region Established by the Likelihood Ratio Method
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C> LSEV3C

Given Standardized Conceptual Smallest-Extreme-Value Distribution
Variate y ¼ [loge( fnc) � clp]/csp

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for fnc(01)

86.868 – Computed Using 3600 Points on the Boundary of the
Elliptical Joint Asymptotic Statistical Confidence

Region for the Actual Values of the clp and the csp (with 1 Statistical
Degree of Freedom)

58.511 – Computed Using 3600 Points on the Boundary of the
Corresponding Region Established by the Likelihood Ratio Method

C> LSEV4C

Given the Standardized Conceptual Normal Distribution Variate
y ¼ {[loge( fnc)]/csp} � clp

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for fnc(01)

9.598 – Computed Using 3600 Points on the Boundary of the
Elliptical Joint Asymptotic Statistical Confidence

Region for the Actual Values of the clp and the csp (with 1 Statistical
Degree of Freedom)

58.511 – Computed Using 3600 Points on the Boundary of the
Corresponding Region Established by the Likelihood Ratio Method
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C> LN1C

Given the Standardized Conceptual Normal Distribution Variate
y ¼ csp � [loge( fnc) � clp]

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for fnc(01)

114.499 – Computed Using 3600 Points on the Boundary of the
Elliptical Joint Asymptotic Statistical Confidence

Region for the Actual Values of the clp and the csp (with 1 Statistical
Degree of Freedom)

128.175 – Computed Using 3600 Points on the Boundary of the
Corresponding Region Established by the Likelihood Ratio Method

C> LN2C

Given the Standardized Conceptual Normal Distribution Variate
y ¼ clp þ csp loge( fnc)

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for fnc(01)

112.735 – Computed Using 3600 Points on the Boundary of the
Elliptical Joint Asymptotic Statistical Confidence

Region for the Actual Values of the clp and the csp (with 1 Statistical
Degree of Freedom)

128.175 – Computed Using 3600 Points on the Boundary of the
Corresponding Region Established by the Likelihood Ratio Method

TLFeBOOK



568 Chapter 8

C> LN3C

Given the Standardized Conceptual Normal Distribution Variate
y ¼ [loge( fnc) � clp]/csp

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for fnc(01)

158.933 – Computed Using 3600 Points on the Boundary of the
Elliptical Joint Asymptotic Statistical Confidence

Region for the Actual Values of the clp and the csp (with 1 Statistical
Degree of Freedom)

128.175 – Computed Using 3600 Points on the Boundary of the
Corresponding Region Established by the Likelihood Ratio Method

C> LN4C

Given the Standardized Conceptual Normal Distribution Variate
y ¼ [loge( fnc)]/csp � clp

Classical Lower 95% (One-Sided) Asymptotic Statistical Confidence
Limits that Allegedly Bound the Actual Value for fnc(01)

28.526 – Computed Using 3600 Points on the Boundary of the
Elliptical Joint Asymptotic Statistical Confidence

Region for the Actual Values of the clp and the csp (with 1 Statistical
Degree of Freedom)

128.175 – Computed Using 3600 Points on the Boundary of the
Corresponding Region Established by the Likelihood Ratio Method
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C> N2C

Given the Standardized Conceptual Normal Distribution Variate
y(pf ) ¼ clp þ csp � s(pf )

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limits that
Allegedly Bound the Actual Value for s(01)

34.074 – Computed Using 3600 Points on the Boundary of the
Elliptical Joint Asymptotic Statistical Confidence

Region for the Actual Values of the clp and the csp (with 1 Statistical
Degree of Freedom)

37.678 – Computed Using 3600 Points on the Boundary of the
Corresponding Region Established by the Likelihood Ratio Method

C> L2C

Given Standardized Conceptual Logistic Distribution Variate
y(pf ) ¼ clp þ csp � s(pf )

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limits that
Allegedly Bound the Actual Value for s(01)

22.363 – Computed Using 3600 Points on the Boundary of the
Elliptical Joint Asymptotic Statistical Confidence

Region for the Actual Values of the clp and the csp (with 1 Statistical
Degree of Freedom)

30.027 – Computed Using 3600 Points on the Boundary of the
Corresponding Region Established by the Likelihood Ratio Method
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C> SEV2C

Given Standardized Conceptual Smallest-Extreme-Value Distribution
Variate y(pf ) ¼ clp þ csp � s(pf )

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limits that
Allegedly Bound the Actual Value for s(01)

10.789 – Computed Using 3600 Points on the Boundary of the
Elliptical Joint Asymptotic Statistical Confidence

Region for the Actual Values of the clp and the csp (with 1 Statistical
Degree of Freedom)

17.593 – Computed Using 3600 Points on the Boundary of the
Corresponding Region Established by the Likelihood Ratio Method

C> LEV2C

Given Standardized Conceptual Largest-Extreme-Value Distribution
Variate y(pf ) ¼ clp þ csp � s(pf )

Lower 95% (One-Sided) Asymptotic Statistical Confidence Limits that
Allegedly Bound the Actual Value for s(01)

42.814 – Computed Using 3600 Points on the Boundary of the
Elliptical Joint Asymptotic Statistical Confidence

Region for the Actual Values of the clp and the csp (with 1 Statistical
Degree of Freedom)

45.238 – Computed Using 3600 Points on the Boundary of the
Corresponding Region Established by the Likelihood Ratio Method
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conceptual model. We illustrate this LR methodology using a presumed
conceptual quadratic normal regression model for stopping distance datum
values given by Ezekiel and Fox (1963).

Consider the stopping distance datum values, (sddv’s), listed in Table
8.29, for an unspecified automobile given its initial speed value isv at the
instant that the brakes are applied.
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Table 8.29 Stopping Distance Datum

Values (sddv’s) Given the Associated Initial

Speed Value (isv) at the Instant the Brakes

of an Unidentified Automobile Are Applied

Initial speed (mph) Stopping distance (feet)

4 4

5 2,8,8,4

7 6,7

8 9,8,13,11

9 5,13,5

10 8,17,14

12 11,21,19

13 18,27,15

14 14,16

15 16

16 19,14,34

17 29,22

18 47,29,34

19 30

20 48

21 55,39,42

22 35

24 56

25 33,59,48,56

26 39,41

27 78,57

28 64,84

29 68,54

30 60,101,67

31 77

35 85,107

36 79

39 138

40 110,134
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Visual examination of Figure 8.9 suffices to indicate that a quadratic
conceptual regression model is appropriate, viz.,

CRHNDSDDVi; j’s ¼ mean i APRCRHNDSDDV ’sð Þ þ CRHNDSDEE i; j ’s

¼ clp1 � isvi þ clp2 � isv2i þ CRHNDSDEE i; j ’s

The primary issue of interest in examining this model is whether the H
in CRHNDSDDV ’s connotes homoscedasticity or heteroscedasticity.
Accordingly, we now test the null hypothesis Hn: the standardized concep-
tual normal distribution homoscedastic variate yi; j is equal to (sddvi; j � clp1
isvi þ clp2 isv2i Þ=csp versus the alternative hypothesis Ha: the standardized
conceptual normal distribution heteroscedastic variate yi; j is equal to
(sddvi; j � clp1 � isvi � clp2 � isv2i )/(csp0 þ csp1 � isvi). Microcomputer pro-
grams QNRMHOSD (quadratic normal regression statistical model with a
homoscedastic standard deviation) and QNRHESD (quadratic normal
regression statistical model with a heteroscedastic standard deviation) com-
pute the respective est(clpj ’s) and est(cspj ’s) as well as the associated data-
based values for the respective maximum estimated loge(likelihoods) given
Hn and given Ha.
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Figure 8.9 Stopping distance datum values (sddvi; j ’s) plotted versus the corre-

sponding initial speed values (isvi’s).
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Recall that the LR test statistic is equal to (2 � {est[loge(likelihood)
given Ha]} � 2 � {est[loge(likelihood) given Hn]}) and that its respective
realization values asymptotically generate Pearson’s central �2

4�3¼1 concep-
tual sampling distribution under continual replication of the experiment test
program. Thus, the data-based value for the LR test statistic of specific
interest for our stopping distance example is

2 � �155:38656ð Þ � 2 � �174:40727ð Þ½ � ¼ 38:04 ¼ �2
1;p

and the associated asymptotic null hypothesis rejection probability is equal
to 0.0000. Clearly, the null hypothesis of a homoscedastic standard devia-
tion for our stopping distance datum values must rationally be rejected.
Accordingly, we conclude statistically that the appropriate quadratic con-
ceptual stopping distance statistical model has a heteroscedastic standard
deviation that increases with increasing initial speeds. Thus, the width of the
classical 100(scp)% (two-sided) asymptotic statistical confidence interval
that allegedly includes [mean(APRCRHNDSDDV ’s) given isvi ¼ isvi*]
increases with increasing initial speeds.

Remark: Recall that, because the mean and median have the same
value for a conceptual normal distribution, [mean (APRCRH
NDSDDV ’s) given isvi ¼ isvi*] can also be written as sd(50) given
isvisv*.

Observe that, given Ha and our example stopping distance datum values,
est(csp0) is negative. Thus, we now consider the following revised alternative
hypothesis RHa: the conceptual normal distribution heteroscedastic stan-
dard deviation is equal to csp1 � isvi. Microcomputer RQNRM (revised
quadratic normal regression statistical model) computes the respective
est(clpj ’s) and est(cspj ’s) as well as the associated data-based value for the
maximum estimated loge(likelihood) given RHa.

Now let RHa be considered the null hypothesis relative to Ha. The
resulting data-based value for Bartlett’s likelihood ratio test statistic gener-
ates an asymptotic null hypothesis rejection probability equal to 0.6843, viz.,

2 � �155:38656ð Þ � 2 � �155:46923ð Þ½ � ¼ 0:16534 ¼ �2
1;p

Accordingly, the conceptual normal distribution heteroscedastic standard
deviation csp1 � isvi cannot rationally be rejected in favor of the (physically
noncredible) conceptual normal distribution heteroscedastic standard devia-
tion (csp0 þ csp1 � isvi). We thus adopt the RHa conceptual statistical stop-
ping distance statistical model.
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C> COPY DATAHOM DATA

C> QNRMHOSD

Presumed Conceptual Normal Distribution Mean ¼ clp1 � isvi þ
clp2 � isvi2:

Presumed Conceptual Normal Distribution Homoscedastic
Standard Deviation ¼ csp

est(clp1) ¼ 0.555256D+00
est(clp2) ¼ 0.626918D� 01
est(csp) ¼ 0.966363D+01

Estimated Maximum loge(Likelihood)] ¼ �0.17440727D+03

C> COPY DATAHEM DATA

C> QNRMHESD

Presumed Conceptual Normal Distribution Mean ¼
clp1 � isvi þ clp2 � isvi2:

Presumed Conceptual Normal Distribution Heteroscedastic
Standard Deviation ¼ csp0 þ csp1 � isvi

est(clp1) ¼ 0.655211D+00
est(clp2) ¼ 0.587758D� 01
est(csp0) ¼ 0.300930D+00
est(csp1) ¼ 0.464066D+00

Estimated Maximum loge(Likelihood)] ¼ �0.15538656D+03
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8.F.1. Discussion

When the experiment test program datum values are presumed to be nor-
mally distributed and homoscedastic and when there are no suspended tests,
then both covar[est(clp1),est(csp)] and covar[est(clp2),est(csp)] are equal to
zero. Thus, given our example stopping distance datum values, the esti-
mated asymptotic covariance matrix pertaining to Hn is:

0:03821396 �0:00126131 0:00000000
�0:00126131 0:00004550 0:00000000
0:00000000 0:00000000 0:74115673

������
������

On the other hand, when the experiment test program datum values are
presumed to be normally distributed and heteroscedastic, then these covar-
iances are not necessarily equal to zero. For example, given our example
stopping distance datum values, the estimated asymptotic covariance matrix
pertaining to Ha is:

0:01428673 �0:00060385 �0:01554849 0:00119109
�0:00060385 0:00003262 0:00065202 �0:00004995
�0:01554849 0:00065202 0:50325707 �0:03960520
0:00119109 �0:00004995 �0:03960520 0:00465823

��������

��������
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C> COPY DATARHEM DATA

C> RQNRM

Presumed Conceptual Normal Distribution Mean ¼ clp1 � isvi þ
clp2 � isvi2:

Presumed Conceptual Normal Distribution Heteroscedastic
Standard Deviation ¼ csp1 � isvi

est(clp1 ) ¼ 0.646591D+00
est(clp2) ¼ 0.591359D� 01
est(csp1) ¼ 0.441880D+00

Estimated Maximum loge(Likelihood)] = �0.155469D+03
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8.F.2. Extension

Suppose we wish to assert that, based on the RHa conceptual statistical
stopping distance statistical model, we have approximately 95% statistical
confidence that 99% of all possible replicate stopping distances will actually
be less than some specific (calculated) stopping distance value given the
isv ¼ isv* of specific interest. First, we write

est½sdð99Þ given isv ¼ isv�� ¼ est½meanðAPRCRHNDSDDV ’sÞ
given isv ¼ isv��

þ 2:3263 � estðcsp1Þðisv�Þ
¼ estðclp1Þ � ðisv�Þ þ estðclp2Þ � ðisv�Þ2

þ 2:3263 � estðcsp1Þ � ðisv�Þ

and then we use the propagation of variability methodology to generate the
following asymptotic expression for the est(var{est[sd(99) given isv ¼ isv�]}):

estðvarfest½sdð99Þ given isv ¼ isv��gÞ ¼ ðisv�Þ2 � estfvar½estðclp1�g
þ ðisv�Þ4 � estfvar½estðclp2Þ�g
þ 2 � ðisv�Þ3 � estfcovar½estðclp1Þ;

estðclp2Þ�g
þ ð2:3263Þ2 � ðisv�Þ2 � estfvar½estðcsp1Þ�g

In turn, we obtain numerical values for est{var[est(clp1)]}, est{var[-
est(clp2)]}, est{covar[est(clp1),est(clp2)]}, and est{var[est(csp1)]} from the
following estimated asymptotic covariance matrix:

0:01470763 �0:00061199 0:00000000
�0:00061199 0:00003226 0:00000000
0:00000000 0:00000000 0:00154966

������
������

The upper 95% (one-sided) asymptotic statistical confidence limit that alleg-
edly bounds the actual value for the sd(99) is depicted in Figure 8.10.
However, the plotted curve is extremely deceptive. This statistical confidence
limit actually pertains only to the single initial speed value isv* of specific
interest. Moreover, the credibility of this upper 95% (one-sided) asymptotic
statistical confidence limit is dubious at low speeds, say below 12 to 15 miles
per hour, because the associated 90% (two-sided) asymptotic statistical
confidence interval improperly includes negative values for the actual
value of the stopping distance.
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Exercise Set 9

These exercises are intended to support the numerical results pertaining to
Hn, Ha, and RHa to provide perspective regarding the likelihood ratio test
for the adequacy of a conceptual statistical model.

1. Given Hn, state the appropriate first and second derivative
expressions of the loge(likelihood) with respect to the conceptual
parameters and verify analytically that the respective asymptotic
covariances of the estimated conceptual homoscedastic standard
deviation and the estimated conceptual location parameters are
equal to zero.

2. Given Ha, state the appropriate first and second derivative
expressions of the loge(likelihood) with respect to the conceptual
parameters and verify analytically that the respective asymptotic
covariances of the estimated conceptual heteroscedastic standard
deviation and the estimated conceptual location parameters are
not equal to zero.
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Figure 8.10 Estimated quadratic conceptual stopping distance statistical model

defined by RHa. At 40 mph, the ML estimate of the actual value for the sdð50Þ is
120.48 ft, and the upper 95% (one-sided) asymptotic statistical confidence limit that

allegedly bounds the actual value for the sdð99Þ is 172.15 ft. Accordingly, we can say

with approximately 95% statistical confidence that 99% of all replicate stopping

distance datum values will actually be less than or equal to 172.15 ft.
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3. Given RHa, state the appropriate first and second derivative
expressions of the loge(likelihood) with respect to the conceptual
parameters and verify analytically that the actual values for the
respective asymptotic covariances of the estimated heteroscedas-
tic standard deviation and the estimated conceptual location
parameters are equal to zero.

Exercise Set 10

These exercises are intended to provide perspective regarding ML analysis
by reconsidering the simple linear regression conceptual statistical model.

1. (a) Given the following the conceptual simple linear regression
statistical model:

CRHNDRDVi’s ¼ meaniðAPRCRHNDRDV ’sÞ þ CRHNDREEi’s

¼ clp0þ clp1 � ivvi þ CRHNDREEi’s

first write the standardized conceptual normal distribution vari-
ate as yi ¼ (clp0 þ clp1 � ivvi)/csp and then state the joint PDF
for nrdv regression datum values. Next, (b) restate this joint PDF
expression as likelihood and analytically establish expressions for
the ML estimates of the actual values for the parameters in the
conceptual simple linear regression model. In turn, (c) compare
these ML estimation expressions to the corresponding least-
squares estimation expressions. Then, (d) suggest an ad hocmulti-
plicative statistical bias correction factor for the ML estimate of
the actual value for the csp. Finally, (e) do you recommend using
a scp-based value for Student’s central t1;ndsdf¼nrdv�nclp

variate
instead of the asymptotically correct scp-based value for the stan-
dardized normal y variate to compute the upper 100(scp)% (one-
sided) asymptotic statistical confidence limit for the actual value
of mean(APRCRHNDRDV ’s) give ivv ¼ ivv*? Discuss.

2. This exercise extends the ML analysis begun in Exercise 1. (a)
Derive analytical expressions for the respective elements of the
estimated asymptotic covariance matrix. Then, (b) compare these
expressions to the corresponding variance and covariance expres-
sions pertaining to simple linear regression and comment appro-
priately.
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Index

Alternative hypotheses, 2

omnibus, 231

omnibus composite, 245

simple (one-sided), 88

specific simple (one-sided), 245

specific composite (two-sided), 245

ANOVA, 231–307

ctesc’s, 232

enumeration-based, 288

equally replicated CRD experiment

test program, 246

fixed effects, 231

normality, 278

randomization-based, 288

snedecor’s central F statistic, 232

summary and perspective, 275

unreplicated RCBD experiment test

program, 247

unreplicated SPD experiment test

program, 262

Arithmetic averages, 19

Asymptotic sampling distributions, 124

Asymptotically unexcelled, 410

Batches, 33

Batch-to-batch effects, 16, 305

between(MS), 231

Bias (see also Statistical bias), 12

Binomial distribution, 132

Block design experiment test programs,

57

Blocking (see also Planned grouping),

9, 10, 63–68

Blocks (see also Time blocks), 12, 28

Bogey, 74

analytical, 387

experimental, 387

Classical:

analysis of variance, 231

distribution-free (non-parametric) A-

basis, B-basis statistical

tolerance limits, 472
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582 Index

[Classical]

hyperbolic 100(scp)% (two-sided)

statistical confidence bands, 384

sign test, 88

(shortest) 100(scp)% (two-sided)

statistical interval, 211 226

Comparative:

experiment test programs, 75

maximum likelihood analyses, 443

(multiple treatment) experiment test

programs, 35

Completely randomized design (CRD)

test program, 29, 31

Cognate:

conceptual sampling distributions,

368, 370

simulation studies, 166

Conceptual:

block effects (cbe’s), 58

block treatment interaction effects

(cbtie’s), 58

experimental error, 25

life (endurance) distributions, 403

(one-parameter) binomial

distribution, 132

parameter, 27

random datum values (CRDV’s), 16

random homoscedastic datum values

(CRHDV’s), 19, 36

random homoscedastic experimental

errors, 36

random homoscedastic normally

distributed experimental errors

(CRHNDEE’s), 234

random statistically identical datum

values (CRSIDV’s), 18, 30

random statistically identical

experimental errors (CRSIEE’s),

19, 30

sampling distribution, 25

statistical distribution, 25, 117

statistical distribution mean (csdm),

20, 25, 30

statistical model, 25

statistical model mean (csmm), 36

treatment effects (cte’s), 36

[Conceptual]

treatment means, (ctm’s, ctKm’s),

29–83, 233, 276

(two-parameter) normal distribution,

176–181, 193–195

(two-parameter) smallest extreme-

value distribution, 404

(two-parameter) Weibull distribution,

403

uniform distribution, 0 to 1

uniform random numbers, 102

Confounding (see also Statistical

confounding), 79

Continually replicated experiment test

program, 16

Constrained randomization, 9

CRD experiment test program:

equally replicated, 246

example, 261

Cumulative distribution (CD), 118

function (CDF), 117

Design synthesis, 387

Dimensioning components, 372

Elastic modulus (em), 368

Empirical:

randomization-based probability

simulation-based probability, 97

Estimators (see also Statistical

Estimators), 7

unbiased, 12

Exact enumeration-based probability,

84

Expected value (expectation), 119

Experiment test program planning tips,

15

batch-to-batch effects, 15

equal replication, 15

orthogonality, 15

preliminary testing, 15

time blocks, 15

Factorial:

arrangement of treatment

combinations, 43
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[Factorial]

design experiment test program, 43

Fair-coin experiment test program, 85

Fatigue failure, 389

statistical model, 390–393

Fisher’s enumeration based test

(FEBT), 94

Fractional factorial arrangements, 79

Fundamental probability behaviors,

101

Heteroscedasticity, 375

Histogram for proportions, 114

Homoscedastic, 18

Homoscedasticity, 68, 280, 350

Hypotheses

alternative, 2, 126

null, 2, 125

simple (one-sided) alternative, 88

Indicator variables, 355

Intrinsic statistical estimation errors, 20

Inverse simple linear regression (one-

sided), 343, 344

Latin-square arrangement, 63

Least-squares estimation, 47

column-vector-based, 47

Life (endurance), 393

data, 393–395, 542, 556

quantitative analysis, 409

Likelihood, 410

Linear regression:

analysis, 308–386

conceptual simple (multiple) model

multiple analysis, 352

simple, 311

Linearizing transformations, 349

Lower 100(SCP)% (one-sided)

statistical confidence limits, 141

Maximum deviation (md), 195

Maximum likelihood (ML):

estimation, 109

analyses, 359, 476–491

Mean, 17, 26

expected value, 119

Mechanical:

reliability, 73, 387, 389

reliability perspective, 127

reliability terminology, 388

Minimum variance strategy, 340

Monotonic association, 168–170

Normality, 350

test example, 196

testing for replicate datum values,

195

Nuisance variables, 63, 356

Null hypothesis, 2

Omnibus alternative hypothesis, 195,

Orthogonal:

estimated conceptual statistical

models, 19

Orthogonality, 15, 44

Paired-comparison experiment test

programs, 59

Pearson’s Central (Chi Square)

conceptual sampling distribution,

202–203

computer programs for, 208

pfo, 139

Planned grouping, 3, 9

Point masses, 17

Probability:

density function (PDF), 114

enumeration-based, 84

function (PF), 118

randomization-based, 98

simulation-based, 97

Probability paper (plotting replicate

datum values), 183

normal, 183

Pseudorandom:

datum values, 184

eight-digit uniform, 102

integers, 4

number generator, 101
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[Pseudorandom]

uniform numbers, 99

Pseudoreplication, 55

Qualitative (comparative) CRD

experiment test programs, 42

Quantitative:

CRD experiment test programs, 42

maximum likelihood analysis, 410

reliability experiment test programs,

74

(single treatment) experiment test

programs, 29

Random:

discrete, 129

sample, 3

variable (conceptual random), 84

Randomization, 3

Randomized complete block design

(RCBD) experiment test program,

viz., unreplicated

RCBD experiment test program, 57

Randomness, 283, 350

Reliability, 139

associated statistical confidence

probability value, 138

Replicate:

experiment test programs

(continually replicated), 84

replicate measurements

(observations), 7

Replication, 3, 7

Sampling distributions, 122

asymptotic, 124

empirical, 123

Sign test, 88

Simple (one-sided) alternative

hypothesis, 88, 245

Snedecor’s central F:

conceptual sampling distribution,

203–205

computer programs for, 208

[Snedecor’s central F]

test statistic, 231

Split-plot design (SPD):

experiment test program, 43

unreplicated conceptual statistical

model, 68

Standard deviation, 26

Statistic, 28

test, 28

Statistical:

analysis fundamentals, 16

analysis of variance, 167,

bias, 27, 506–511

confidance band, 344, 346,

confidence interval, 233

confidence limits, 343

confidence probability (scp), 139

confounding, 79

degrees of freedom, 30, 57, 59, 69

estimate, 27

estimator(s), 27

power, 284

tolerance band, 348

tolerance limits, 344

weight, 130, 491–506

Statistically:

equivalent, 56

identical, 18

Strength (resistance), 395, 403

data, 543, 559

qualitative analysis, 409

test program strategies, 396–402

Student’s central t conceptual sampling

distribution, 205–207

computer programs for, 208

Subsystem, 451–458

reliability, 451

repaired, 457

Sums of positive signed-ranks (spsr), 92

Test statistic, 28, 122

Time blocks, 15

Treatment, 28

effect contrasts, 76
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Type I error, 89

Type II error, 89

Unbiased statistical estimator, 27

Underestimated, 194

Uniform pseudorandom numbers, 99,

109

sum of n, 151

sum of one, 152

sum of three, 155

sum of two, 152

Unreplicated

SPD experiment test program,

262–268

Variability:

between, 8

propagation, 358

within, 8

Unbiased statistical estimator, 27

Up-and-Down test method, 396, 397

Variance, 26

Weighted average, 302

Wilcoxon’s signed-rank test, 91

within(MS), 231

Yate’s enumeration algorithm, 44
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