
Applied Regression 
Including Computing and Graphics 



WILEY SERIES PROBABILITY AND STATISTICS 

TEXTS AND REFERENCES SECTION 

Established by WALTER A. SHEWHART and SAMUEL S. WILKS 

Editors: Vic Barnett, Noel A. C. Cressie, Nicholas I. Fisher, 

lain M. Johnstone, J. B. Kadane, David G. Kendall, David W. Scott, 

Bernard W. Silverman, Adrian F. Smith, Jozef L. Teugels; 

Ralph A .  Bradley, Emeritus, J. Stuart Hunter, Emeritus 

A complete list of the titles in this series appears at the end of this volume. 



Applied Regression 
Including Computing 
and Graphics 

R. DENNIS COOK 

SANFORD WEISBERG 

The University of Minnesota 

St. Paul, Minnesota 

A Wiley-Interscience Publication 

JOHN WILEY & SONS, INC. 

New York . Chichester . Weinheim - Brisbane Singapore Toronto 



This book is printed on acid-free paper. @ 

Copyright @ 1999 by John Wiley & Sons, Inc. All rights reserved. 

Published simultaneously in Canada. 

No part of this publication may be reproduced, stored in a retrieval system or transmitted 

in any form or by any means, electronic, mechanical, photocopying, recording, scanning or 
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright 

Act, without either the prior written permission of the Publisher, or authorization through 
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood 
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher 

for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 
605 Third Avenue, New York, NY 10158-0012, (212) 850-601 1, fax (212) 850-6008, E-Mail: 
PERMREQ@ WILEY.COM. 

For ordering and customer service, call 1-800-CALL WILEY. 

Library of Congress Cataloging-in-Publication Data: 

Cook, R. Dennis. 
Applied regression including computing and graphics / R. Dennis 

p. cm. - (Wiley series in probability and statistics. Texts 

“A Wiley-Interscience publication.” 

Includes bibliographical references and index. 
ISBN 0-471-3171 1-X (alk. paper) 

1. Regression analysis. I. Weisberg, Sanford, 1947- . 

Cook, Sanford Weisberg. 

and references section) 

11. Title. 111. Series. 

QA278.2.C6617 1999 

5 19.5’36-dc21 99- 17200 
CIP 

Printed in the United States of America 

1 0 9  8 7 6 5 4  



This book is dedicated to the students 
who turn words and graphs into ideas and discoveries. 



Contents 

Preface xxiii 

PART I INTRODUCTION 

1 Looking Forward and Back 

1.1 Example: Haystack Data, 3 

1.2 Example: Bluegill Data, 5 

1.3 Loading Data into Arc, 6 

1.4 Numerical Summaries, 7 

1.4.1 Display Summaries, 7 

1.4.2 Command Line, 9 

1.4.3 Displaying Data, 10 

1.4.4 Saving Output to a File and Printing, 10 

1 .5 Graphical Summaries, 10 

1 S.1  Histograms, 10 

1.5.2 Boxplots, 12 

Bringing in the Population, 13 

1.6. I The Density Function, 14 

1.6.2 Normal Distribution, 14 

I .6.3 Computing Normal Quantiles, 16 

1.6.4 Computing Normal Probabilities, 16 

1.6.5 Boxplots of Normal Data, 17 

1.6.6 The Sampling Distribution of the Mean, 18 

1.7.1 Sample Mean, 20 

1.7.2 

1.7.3 

1.6 

1.7 Inference, 20 

Confidence Interval for the Mean, 21 

Probability of a Record Bluegill, 21 

1 

3 

vii 



viii CONTENTS 

1.8 Complements, 22 

Problems, 22 

2 Introduction to Regression 

2.1 Using Boxplots to Study Length I Age, 28 

2.2 Using a Scatterplot to Study Length I Age, 3 1 

2.3 Mouse Modes, 31 

2.3.1 

2.3.2 Slicing Mode, 32 

2.3.3 Brushing Mode, 33 

2.4 Characterizing Length I Age, 33 

2.5 Mean and Variance Functions, 35 

2.5.1 Mean Function, 35 

2.5.2 Variance Function, 36 

Show Coordinates Mouse Mode, 32 

2.6 Highlights, 37 

2.7 Complements, 37 

Problems, 37 

3 Introduction to Smoothing 

3.1 Slicing a Scatterplot, 40 

3.2 Estimating E(y Ix) by Slicing, 42 

3.3 Estimating E(y Ix) by Smoothing, 42 

3.4 Checking a Theory, 45 

3.5 Boxplots, 45 

3.6 Snow Geese, 48 

3.6.1 Snow Goose Regression, 49 

3.6.2 Mean Function, 51 

3.6.3 Variance Function, 5 1 

3.7 Complements, 53 

Problems. 53 

4 Bivariate Distributions 

4.1 General Bivariate Distributions, 56 

4. I .  1 

4.1.2 Connecting with Regression, 59 

4.1.3 Independence, 59 

4.1.4 Covariance, 60 

4. I .5 

Bivariate Densities, 58 

Correlation Coefficient, 62 

21 

40 

56 



CONTENTS ix 

4.2 Bivariate Normal Distribution, 63 

4.2.1 

4.2.2 Correlation Coefficient in Non-normal 

Regression in Bivariate Normal Populations, 69 

4.3.1 Mean Function, 70 

4.3.2 

4.3.3 

4.3.4 Variance Function, 74 

Smoothing Bivariate Normal Data, 76 

4.5.1 

4.5.2 References, 78 

Correlation Coefficient in Normal Populations, 64 

Populations, 68 

4.3 

Mean Function in Standardized Variables, 70 

Mean Function as a Straight Line, 72 

4.4 

4.5 Complements, 78 

Confidence Interval for a Correlation, 78 

Problems, 78 

5 Two-Dimensional Plots 

5.1 

5.2 Power Transformations, 84 

5.3 

5.4 Log Transformations, 87 

5.5 

5.6 Linking Plots, 89 

5.7 

5.8 Brushing, 90 

5.9 Name Lists, 90 

5.10 Probability Plots, 90 

5.1 1 Complements, 92 

Aspect Ratio and Focusing, 8 1 

Thinking about Power Transformations, 86 

Showing Labels and Coordinates, 88 

Point Symbols and Colors, 90 

Problems, 93 

PART11 TOOLS 

6 Simple Linear Regression 

6.1 Simple Linear Regression, 98 

6.2 Least Squares Estimation, 101 

6.2.1 Notation, 101 

6.2.2 

6.2.3 

6.2.4 

The Least Squares Criterion, 102 

Ordinary Least Squares Estimators, 105 

More on Sample Correlation, 106 

81 

95 

97 



X CONTENTS 

6.2.5 Some Properties of Least Squares Estimates, 106 

6.2.6 Estimating the Common Variance, (T*, 107 

6.2.7 Summary, 107 

6.3.1 Interpreting the Intercept, 110 

6.4.1 Inferences about Parameters, 1 12 

6.4.2 Estimating Population Means, 1 15 

6.4.3 Prediction, 117 

6.3 Using Arc, 107 

6.4 Inference, 1 12 

6.5 Forbes’ Experiments, Revisited, 118 

6.6 Model Comparison, 120 

6.6.1 Models, 120 

6.6.2 Analysis of Variance, 122 

6.7.1 Derivation of Estimates, 125 

6.7.2 Means and Variances of Estimates, 126 

6.7.3 Why Least Squares?, 128 

6.7.4 

6.7.5 Accuracy of Estimates, 130 

6.7.6 Role of Normality, 130 

6.7.7 Measurement Error, 130 

6.7.8 References, 132 

6.7 Complements, 125 

Alternatives to Least Squares, 129 

Problems, 132 

7 Introduction to Multiple Linear Regression 

7.1 The Scatterplot Matrix, 140 

7.1.1 Pairs of Variables, 141 

7.1.2 Separated Points, 142 

7.1.3 Marginal Response Plots, 143 

7.1.4 Extracting Plots, 145 

7.2 Terms and Predictors, 145 

7.3 Examples, 147 

7.3.1 Simple Linear Regression, 147 

7.3.2 Polynomial Mean Functions with One 
Predictor, 148 

7.3.3 Two Predictors, 150 

7.3.4 Polynomial Mean Functions with Two 
Predictors, 15 1 

7.3.5 Many Predictors, 151 

139 



CONTENTS 

7.4 Multiple Linear Regression, 152 

7.5 Estimation of Parameters, 153 

7.6 Inference, 158 

7.6.1 Tests and Confidence Statements about 
Parameters, I59 

7.6.2 Prediction, 160 

7.6.3 Leverage and Extrapolation, 161 

7.6.4 General Linear Combinations, 163 

7.6.5 Overall Analysis of Variance, 164 

7.6.6 The Coefficient of Determination, 165 

Regression Through the Origin, 167 

7.9.1 An Introduction to Matrices, 168 

7.9.2 Random Vectors, 172 

7.9.3 Correlation Matrix, 173 

7.9.4 

7.9.5 

7.9.6 References, 178 

7.7 The Lake Mary Data, 166 

7.8 

7.9 Complements, 168 

Applications to Multiple Linear Regression, 173 

Ordinary Least Squares Estimates, 174 

Problems, 178 

8 Three-Dimensional Plots 

8.1 Viewing a Three-Dimensional Plot, 185 

8.1.1 Rotation Control, 187 

8.1.2 Recalling Views, 187 

8.1.3 Rocking, 187 

8.1.4 Show Axes, 188 

8.1.5 Depth Cuing, 188 

8.1.6 Zooming, 188 

Adding a Polynomial Surface, 188 

8.2.1 Parametric Smoother Slidebar, 188 

8.2.2 Extracting Fitted Values, 189 

8.2.3 Adding a Function, 189 

8.2.4 Residuals, 190 

8.3 Scaling and Centering, 190 

8.4 2D Plots from 3D Plots, 191 

8.2 

8.4.1 

8.4.2 Rotation in 2D, 192 

Saving a Linear Combination, 192 

185 



xii C N T E N T S 

8.4.3 

8.4.4 Summary, 194 

Removing a Linear Trend in 3D Plots, 194 

Extracting a 2D Plot, 194 

8.5 

8.6 Using Uncorrelated Variables, 196 

8.7 Complements, 198 

Problems, 199 

9 Weights and Lack-of-Fit 

9.1 Snow Geese, 202 

9.1.1 Visually Assessing Lack-of-Fit, 202 

9.1.2 Nonconstant Variances, 204 

9.2 Weighted Least Squares, 204 

9.2.1 Particle Physics Example, 206 

9.2.2 Predictions, 209 

9.3.1 Visual Lack-of-Fit with Smooths, 21 1 

9.3.2 Lack-of-Fit Based on Variance, 212 

9.3.3 Variance Known, 213 

9.3.4 External Estimates of Variation, 214 

9.3.5 Replicate Observations, 2 14 

9.3.6 Subsampling, 217 

9.4 Fitting with Subpopulation Averages, 217 

9.5 Complements, 2 19 

9.5.1 Weighted Least Squares, 219 

9.5.2 The lowess Smoother, 220 

9.5.3 References, 220 

9.3 Lack-of-Fit Methods, 210 

Problems, 221 

10 Understanding Coefficients 

10.1 Interpreting Coefficients, 230 

10.1.1 Rescaling, 230 

10.1.2 Rate of Change, 23 I 

10.1.3 Reparameterization, 232 

10.1.4 Nonlinear Functions of Terms, 234 

10.1.5 Variances of Coefficient Estimates, 234 

10.1.6 Standardization of Terms, 235 

10.2 The Multivariate Normal Distribution, 235 

10.3 Sampling Distributions, 237 

202 

230 



CONTENTS xiii 

10.4 Correlation Versus Causation and the Sleep Data, 238 

10.4.1 Missing Data, 239 

10.4.2 The Mean Function, 240 

10.4.3 The Danger Indicator, 240 

10.4.4 Interpretation, 242 

10.5.1 

10.5.2 

10.6 Properties of 2D Added-Variable Plots, 247 

10.6.1 Intercept, 247 

10.6.2 Slope, 247 

10.6.3 Residuals, 248 

10.6.4 Sample Partial Correlation, 248 

10.6.5 t-Statistics, 248 

10.6.6 Three Extreme Cases, 248 

10.7 3D Added-Variable Plots, 250 

10.8 Confidence Regions, 250 

10.5 2D Added-Variable Plots, 243 

Adding a Predictor to Simple Regression, 244 

Added-Variable Plots in Arc, 247 

10.8.1 Confidence Regions for Two Coefficient 
Estimates, 25 I 

10.8.2 Bivariate Confidence Regions When the Mean 
Function Has Many Terms, 254 

10.8.3 General Confidence Regions, 255 

10.9.1 Missing Data, 256 

10.9.2 Causation, Association, and Experimental 
Designs, 256 

10.9.3 Net Effects Plots, 256 

10.9.4 References, 257 

10.9 Complements, 256 

Problems, 257 

11 Relating Mean Functions 

1 1.1 Removing Terms, 263 

1 1.1.1 Marginal Mean Functions, 264 

1 1.1.2 Marginal Variance Functions, 265 

1 1  .I .3 Example, 266 

11.2 Tests to Compare Models, 266 

1 1.3 Highway Accident Data, 267 

I 1.3.1 

11.3.2 Offsets, 270 

Testing Equality of Coefficients, 269 

263 



xiv CONTENTS 

1 1.4 Sequential Fitting, 27 1 

11.5 Selecting Terms, 272 

11.5.1 

1 1 S.2 

11.5.3 Highway Accident Data, 276 

Criteria for Selecting Submodels, 274 

Stepwise Methods, 275 

1 1.6 Complements, 283 

Problems, 283 

12 Factors and Interactions 

12.1 Factors, 287 

12.1.1 Two Levels, 287 

12.1.2 Many Levels, 288 

12.2 Twin Data, 288 

12.3 One-way Analysis of Variance, 290 

12.4 Models with Categorical and Continuous Predictors, 292 

12.4.1 Fitting, 294 

12.4.2 Tests, 296 

12.5 Turkey Diets, 297 

12.5.1 The Zero Dose, 298 

12.5.2 Adapting to Curvature, 298 

12.6.1 Effect Through the Intercept, 301 

12.6.2 Effect Through Intercept and Slope, 304 

12.6 Data, 299 

12.7 Factorial Experiments, 305 

12.8 Complements, 308 

12.8.1 Alternate Definitions of Factors, 308 

12.8.2 Comparing Slopes from Separate Fits, 309 

12.8.3 References, 309 

Problems, 3 10 

13 Response Transformations 

13.1 Response Transformations, 3 16 

13.1.1 Variance Stabilizing Transformations, 3 17 

13.1.2 Transforming to Linearity with One 
Predictor, 3 17 

13.1.3 Inverse Fitted Value Plot, 320 

13.1.4 Numerical Ckir:  Transformation, 321 

13.2.1 Visual Choice of Transformation, 324 

13.2 Transformations to Normality, 324 

287 

316 



CONTENTS 

13.2.2 

13.2.3 Possible Routes, 329 

13.3.1 The Box-Cox Method, 329 

13.3.2 Profile Log-Likelihoods and Confidence 

13.3.3 Transformation Families, 330 

13.3.4 References, 33 1 

Automatic Choice of Transformations, 326 

13.3 Complements, 329 

Curves, 330 

Problems, 332 

14 Diagnostics I: Curvature and Nonconstant Variance 

14.1 The Residuals, 336 

14.1.1 Definitions and Rationale, 336 

14.1.2 Residual Plots, 337 

14.1.3 Choosing Residual Plots, 339 

14.1.4 Examples of Residual Plots, 340 

14.1.5 A Note of Caution, 342 

14.2 Testing for Curvature, 343 

14.3 Testing for Nonconstant Variance, 346 

14.3.1 Transactions Data, 347 

14.3.2 Caution Data, 349 

14.4 Complements, 350 

Problems, 350 

15 Diagnostics 11: Influence and Outliers 

15.1 Adaptive Score Data, 356 

15.2 

15.3 Residuals, 360 

Influential Cases and Cook’s Distance, 357 

15.3.1 Studentized Residuals, 360 

15.3.2 Cook’s Distance Again, 360 

15.4 Outliers, 361 

15.4.1 

15.4.2 Checking Every Case, 364 

15.4.3 Adaptive Score Data, 364 

Testing for a Single Outlier, 362 

15.5 Fuel Data, 365 

15.6 Complements, 368 

15.6.1 Updating Formula, 368 

334 

354 



XVi CONTENTS 

15.6.2 Local Influence, 368 

15.6.3 References, 369 

Problems, 369 

16 Predictor Transformations 

16.1 Regression Through Transformation, 373 

16.1.1 

16.1.2 Transformations via Smoothing, 375 

16.1.3 General Formulation, 375 

16.2.1 Constant E(ulj I u,), No Augmentation, 377 

16.2.2 Linear E(u,, I u,), Linear Augmentation, 377 

16.2.3 Quadratic E(ulj I u,). Quadratic 
Augmentation, 377 

16.2.4 General E ( u , ~  I Smooth Augmentation, 378 

Power Curves and Polynomial Fits, 373 

16.2 Ceres Plots, 376 

16.3 Berkeley Guidance Study, 378 

16.4 Haystack Data, 380 

16.5 Transforming Multiple Terms, 383 

Estimating Additive Transformations of Several 
Terms, 383 

16.5.1 

16.5.2 Assessing the Transformations, 384 

Ceres Plots with Smooth Augmentation, 384 

Transforming Two Terms Simultaneously, 388 

16.7.1 

16.7.2 Example: Plant Height, 389 

16.8.1 

16.8.2 References, 393 

16.6 

16.7 

Models for Transforming Two Terms, 388 

16.8 Complements, 392 

Mixed Forms of E(ulj I u,), 392 

Problems, 393 

17 Model Assessment 

17. I Model Checking Plots, 397 

17.1.1 Checking Mean Functions, 399 

17.1.2 Checking Variance Functions, 401 

17.2 Relation to Residual Plots, 403 

17.3 Sleep Data, 404 

17.4 Complements, 406 

Problems. 407 

373 

396 



CONTENTS 

PART 111 REGRESSION GRAPHICS 

18 Visualizing Regression 

18.1 Pine Trees, 41 1 

18.2 The Estimated 2D Summary Plot, 412 

18.3 Structural Dimension, 41 3 

18.3.1 Zero-Dimensional Structure, 413 

18.3.2 One-Dimensional Structure, 41 3 

18.3.3 Two-Dimensional Structure, 416 

18.4 Checking an Estimated Summary Plot, 417 

18.5 More Examples and Refinements, 419 

18.5.1 

I 8.5.2 

18.5.3 

Visualizing Linear Regression in 3D Plots, 419 

Linear Regression Without Linearly Related 
Predictors, 422 

More on Ordinary Least Squares Summary 

Views, 423 

18.6 Complements, 425 

Problems, 425 

19 Visualizing Regression with Many Predictors 

19.1 Linearly Related Predictors, 430 

19.2 Checking Linearly Related Predictors, 43 1 

19.3 Linearly Related Predictors and the 1D Model, 432 

19.4 Transforming to Get Linearly Related Predictors, 433 

19.5 Finding Dimension Graphically, 434 

19.5.1 The Inverse Regression Curve, 434 

19.5.2 Inverse Marginal Response Plots, 436 

19.6 Australian Athletes Data, 438 

19.7 Complements, 441 

19.7.1 Sliced Inverse Regression, 441 

19.7.2 References, 442 

Problems, 442 

20 Graphical Regression 

20.1 

20.2 Mussels’ Muscles, 447 

Overview of Graphical Regression, 446 

20.2.1 The GREG Predictors, 447 

20.2.2 Graphical Regression, 448 

xvii 

409 

41 1 

430 

446 



xviii CONTENTS 

20.3 Reaction Yield, 452 

20.3.1 Linearly Related Predictors, 453 

20.3.2 Graphical Regression, 454 

20.3.3 Continuing the Analysis, 454 

20.4.1 Standardizing the Linear Predictors, 457 

20.4.2 Improving Resolution in 3D Added-Variable 
Plots, 457 

20.4.3 Model Checking, 458 

20.4.4 Using the Linearly Related Predictors, 460 

20.5.1 GREG Predictors and Principal Hessian 
Directions, 46 1 

20.5.2 References, 462 

20.4 Variations, 457 

20.5 Complements, 461 

Problems, 462 

PART LOGISTIC REGRESSION AND GENERALIZED 
LINEAR MODELS 

21 Binomial Regression 

21.1 Recumbent Cows, 467 

2 1.1.1 Categorical Predictors, 468 

2 1.1.2 Continuous Predictors, 470 

21.2 Probability Models for Counted Data, 471 

2 1.2.1 The Bernoulli Distribution, 47 1 

2 1.2.2 Binomial Random Variables, 472 

2 1.2.3 Inference, 474 

21.3.1 

21.3.2 Summary, 477 

21.4 Fitting Logistic Regression, 478 

21.4.1 Understanding Coefficients, 480 

21.4.2 Many Terms, 482 

21.4.3 Deviance, 483 

21.4.4 Goodness-of-Fit Tests, 485 

21.3 Binomial Regression, 475 

Mean Functions for Binomial Regression, 476 

2 1.5 Weevil Preferences, 486 

21.6 Complements, 489 

21.6.1 

21.6.2 

Normal Approximation to the Binomial, 489 

Smoothing a Binary Response, 490 

465 

467 



CONTENTS xix 

2 1.6.3 Probit and Clog-Log Kernel Mean Functions, 490 

2 1.6.4 The Log-Likelihood for Logistic Regression, 49 1 

2 1.6.5 References, 493 

Problems. 493 

22 Graphical and Diagnostic Methods for Logistic 
Regression 

22.1 

22.2 

22.3 

22.4 

22.5 

22.6 

22.7 

One-Predictor Methods, 497 

22.1.1 Jittering to See Relative Density, 498 

22.1.2 Using the Conditional Density of x l y ,  498 

22.1.3 Logistic Regression from Conditional 
Densities, 500 

22.1.4 Specific Conditional Densities, 500 

22.1.5 Implications for the Recumbent Cow Data, 501 

Visualizing Logistic Regression with Two or More 
Predictors, 504 

22.2.1 Assessing the Predictors, 505 

22.2.2 Assessing a Logistic Model with Two 
Predictors, 506 

22.2.3 Assessing a Logistic Model with Three 
Predictors, 507 

Transforming Predictors, 509 

22.3.1 Guidelines, 509 

22.3.2 

Diagnostic Methods, 5 12 

22.4.1 Residual Plots, 5 12 

22.4.2 Influence, 5 13 

22.4.3 Model Checking Plots, 514 

Adding Factors, 5 17 

Extending Predictor Transformations, 5 19 

22.6.1 

22.6.2 Ceres Plots, 519 

Complements, 5 19 

22.7.1 

22.7.2 Relative Density, 520 

22.7.3 Deviance Residuals, 520 

Transforming x ( y  to Multivariate Normality, 510 

Power Transformations with a Binomial 
Response, 5 19 

Marginal Odds Ratio, 5 19 

497 



xx CONTENTS 

22.7.4 Outliers, 520 

22.7.5 Overdispersion, 52 1 

22.7.6 Graphical Regression, 521 

22.7.7 References, 522 

Problems, 522 

23 Generalized Linear Models 525 

23.1 

23.2 Normal Models, 527 

Components of a Generalized Linear Model, 525 

23.2.1 Transformation of Parameters, 53 1 

23.2.2 Transformation to Simple Linear Regression, 53 1 

23.3.1 Log-Linear Models, 538 

23.3 Poisson Regression, 532 

23.4 Gamma Regression, 539 

23.5 Complements, 540 

23.5.1 Poisson Distribution, 540 

23.5.2 Gamma Distribution, 542 

23.5.3 References, 542 

Problems, 542 

Appendix A Arc 

A.1 Getting the Software, 545 

A.l.l Macintosh OS, 545 

A.1.2 Windows OS, 547 

A.1.3 Unix, 548 

A.1.4 What You Get, 548 

A. 1.5 Data Files, 548 

A.2 The Text Window, 549 

A.2.1 Typing in the Text Window, 549 

A.2.2 Qping Data, 549 

A.2.3 Working with Lists, 55 1 

A.2.4 Calculating the Slope and Intercept, 552 

A.3.1 Text, 553 

A.3.2 Graphics, 554 

A.3 Saving and Printing, 553 

A.4 Quitting, 554 

A S  Data Files, 554 

A.5.1 Plain Data, 554 

A.5.2 Plain Data File with Variable Labels, 555 

545 



CONTENTS 

A.5.3 

A.5.4 Special Characters, 555 

A.5.5 

A.5.6 Formatted Data File, 556 

A.5.7 

A.5.8 Old-Style Data Files, 558 

A.5.9 Missing Values, 559 

A.6 The Arc Menu, 559 

A.7 The Data Set Menu, 560 

A.7.1 Description of Data, 560 

A.7.2 Modifying Data, 561 

Graphics from the Graph&Fit Menu, 562 

A.8.1 Histograms and Plot Controls, 563 

A.8.2 Two-Dimensional Plots and Plot Controls, 564 

A.8.3 Three-Dimensional Plots, 566 

A.8.4 Boxplots, 566 

A.8.5 Scatterplot Matrices, 566 

Importing Data from a Spreadsheet, 555 

Getting into Trouble with Plain Data Files, 555 

Creating a Data Set from the Text Window, 558 

A.8 

A.9 Fitting Models, 566 

A.10 Model Menus, 567 

A.l 1 Adding Statistics to a Data Set, 567 

A. 12 Some Useful Functions, 567 

A. 12.1 Getting Help, 570 

References 

Author Index 

Subject Index 

571 

579 

583 



Preface 

This textbook is about regression, the study of how a response variable de- 
pends on one or more predictors. Regression is one of the fundamental tools of 
data analysis. This book is intended for anyone interested in applying regres- 
sion to data. The mathematical level required is intentionally low; prerequisite 
is only one semester of basic statistical methods. 

The main features of the book are as follows: 

- Emphasis is placed on results through graphs. We present many 
easily used graphical methods, most based on simple two-dimensional 
scatterplots, that provide analysts with more insight into their data than 
would have been possible otherwise, including a deeper appreciation for 
interpretation. 

. We provide user-friendly computer software called Arc that lets the reader 
immediately apply the ideas we present, both to the examples in the book 
and to their own data, Many of the methods we use are impossible or at 
best difficult to implement in standard statistical software packages. 

This book is a textbook on applied regression suitable for a one 
semester course. We start with very basic ideas, progressing from stan- 
dard ideas for linear models integrated with newer graphical approaches, 

to regression graphics and more complex models like generalized linear 
models. 

The book includes over 300 figures. The reader following along on the 
computer can reproduce almost all of them. 

Most of the examples and homework problems are based on real data. 
All of the data sets used in the book are included with Arc. 

A companion Internet site includes the software, more problems, help for 
the reader, additional statistical material, extensions to the software, and 

much more. 

We have used drafts of this textbook for several years as a basis for two 
different courses in applied regression analysis: One is intended primarily for 

xxiii 



xxiv PREFACE 

advanced undergraduate and beginning graduate students in fields other than 
statistics, while the other is intended for first-year statistics graduate students. 
Drafts have also been used by others for students in social science, business, 
and other disciplines. After completing these courses, our students can analyze 
regression problems with greater ease and more depth than could our students 
before we began to use this book. 

Arc 

Integrated into the text is discussion of a computer package called Arc. This 
is a user-friendly program designed specifically for studying this material, as 

well as for applying the ideas learned to other data sets. The program permits 
the user to do the analyses discussed in the book easily and quickly. It can 
be down-loaded for free from the Internet site for this book at the address 
given in the Appendix; versions are available for Windows, Macintosh, and 
Unix . 

For those readers who prefer to use other statistical packages, we include 
on our Internet site descriptions of how a few of the major packages can be 
used for some of the calculations. 

ORGANIZATION AND STYLE 

When writing the book, we envisioned the reader sitting at a computer and 
reworking the examples in the text. Indeed, some of the text can be read as 
if we were next to the reader, suggesting what to do next. To maintain this 
low-key style, we have tried to avoid heavy algebra. References and technical 
comments are collected in the complements section at the end of each chapter. 

PATHS 

The book is divided into four parts: 

Z: Introduction. The first part consists of five chapters that present many 
basic ideas of regression to set the stage for later developments, including 
the one-sample problem, using and interpreting histograms and scatterplots, 
smoothing including density estimates and scatterplot smoothers, and bivariate 
distributions like the normal. These chapters weave together standard and non- 
standard topics that provide a basis for understanding regression. For example, 
smoothing is presented before simple linear regression. 

ZZ: Multiple Linear Regression. The second part of the book weaves stan- 
dard linear model ideas, starting with simple regression, with the basics of 
graphics, including 2D and 3D scatterplots and scatterplot matrices. All these 
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graph types are used repeatedly throughout the rest of the book. Emphasis 
is split between basic results assuming the multiple linear regression model 
holds, graphical ideas, the use of transformations, and graphs as the basis for 
diagnostic methods. 

ZZZ: Graphics. The third part of the book, which is unique to this work, 
shows how graphs can be used to better understand regression problems in 
which no model is available, or else an appropriate model is in doubt. These 
methods allow the analyst to see appropriate answers, and consequently have 
increased faith that the data sustain any models that are developed. 

Other Models. The last part of the book gives the fundamentals of fitting 
generalized linear models. Most of the graphical methods included here are 
also unique to this book. 

For a one-quarter (30-lecture) course, we recommend a very quick tour of 
Part I (3-5 lectures), followed by about 18 lectures on Part 11, with the re- 
mainder of the course spent in Part For a semester course, the introduction 
can be expanded, and presentation of Parts and 111 can be slowed down as 
well. We have used Part IV of the book in the second quarter of a two-quarter 
course; completing the whole book in one semester would require a fairly 
rapid pace. Some teachers may prefer substituting Part for Part we 
don’t recommend this because we believe that the methodologies described in 
Part are too useful to be skipped. 

Some of the material relating to the construction of graphical displays is 
suitable for presentation in a laboratory or recitation session by a teaching 
assistant. For example, we have covered Section 7.1 and most of Chapters 5 
and 8 in this way. Further suggestions on teaching from this book are available 
in a teacher’s manual; see the Internet site for more information. 

OTHER BOOKS 

The first book devoted entirely to regression was probably by the Ameri- 
can economist Mordechai Ezekiel (1924, revised 1930 and 1941 and finally 
as Ezekiel and Fox, 1959). Books on regression have proliferated since the 
advent of computers in universities. We have contributed to this literature. 
Weisberg ( 1985) provided an introduction to applied regression, particularly 
to multiple linear regression, but at a modestly higher mathematical level. This 
book includes virtually all the material in Weisberg (1985); even some of the 
examples, but none of the prose, are common between the two books. Cook 
and Weisberg ( 1 994b) provided an introduction to graphics and regression. 
Nearly all of the material in that book, though again little of the prose, has 
found its way into this book. Chapter 15 contains a low-level introduction to 
the material in the research monograph on residual and influence analysis by 
Cook and Weisberg (1982). Finally, Cook (1998b) provides a mathematical 
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and rigorous treatment of regression through graphics that is the core of this 
book. 

On the Internet site for this book, we provide additional references for 
reading for those who would like a more theoretical approach to this area. 
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P A R T  I 

Introduction 

In the first part of this book, we set the stage for the kind of problems we 
will be studying. Chapter 1 contains a brief review of some of the funda- 
mental ideas that are required for the rest of this book. Chapter 2 contains an 

introduction to the fundamental ideas of regression. This theme is continued 
in Chapters 3-5 with discussions of smoothing, bivariate distributions, and 

two-dimensional scatterplots. 
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C H A P T E R  1 

Looking Forward and Back 

1.1 EXAMPLE: HAYSTACK DATA 

Hay farming invites risk. It is complex, requires hard work and also the co- 
operation of the weather. After cutting and drying, hay is usually stored in 
small rectangular bales of 25-60 pounds for a “two-string” bale or 80-180 
pounds for the large “three-wire’’ bales favored in California. Modern balers 
can produce large round bales of up to 2000 pounds. In some areas, hay is 
stacked in the field today as it was 100 years ago. The enormous haystacks 
found in the Montana range country are a memorable sight. 

The value of a ton of hay can vary considerably, depending on the type of 
hay, weed content, whether it was cut early to maximize nutrition or late to 
maximize yield, and whether it was dried properly before baling. In the sum- 
mer of 1996, baled hay from a first cutting of alfalfa in Scottsbluff County, 
Nebraska was offered for $120 per ton, while a ton of baled hay from in- 
termediate wheatgrass was offered for $35 in Charles Mix County, South 
Dakota. 

Before balers, hay was gathered loose and was subsequently stacked in 
the field or stored in a barn mow. While the size of haystacks could vary 
considerably, hay on the inside of a stack keeps the best, resulting in some 
preference for large round stacks. This was the prevailing condition in much 
of the United States around the beginning of the 20th century. Although steam 
balers were known during the middle part of the 19th century, this technolog- 
ical innovation was slow to be adopted in the West. In particular, farmers in 
the Great Plains during the 1920s sold hay by the stack, requiring estimation 
of stack volume to ensure a fair price. Estimating the volume of a haystack 
was not a trivial task and could require much give-and-take between the buyer 
and seller to reach a mutually agreeable price. 

A study was conducted in Nebraska during 1927 and 1928 to see if a 
simple method could be developed to estimate the volume of round haystacks. 
It was reasoned that farmers could easily use a rope to characterize the size 
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4 CHAPTER 1 LOOKING FORWARD AND BACK 

of a round haystack with two measurements: The circumference around the 
base of a haystack and the “over,” the distance from the ground on one side 
of a haystack to the ground on the other side. The haystack study involved 
measuring the volume, circumference, and “over” on 120 round haystacks. 
The volume of a haystack was determined by using survey instruments that 
were not normally available to farmers in the 1920s. 

For notational convenience, let Vol and C represent the volume and cir- 
cumference of a haystack, and let Over represent the corresponding “over” 
measurement. The issue confronting the investigators in the haystack study 
was how to use the data, as well as any available prior information, in the 
development of a simple formula expressing the volume of a haystack as a 
function of its circumference and “over” to a useful approximation. In other 
words, can a function f be developed so that 

Vol M (Over, 

The symbol “M” means “is approximately equal to.” To be most useful, the 
approximation should hold for all future round haystacks, as well as for the 
120 haystacks represented in the data. 

The haystack study is an instance of a broad class of experimental prob- 
lems that can be addressed using regression, the topic of this book. There are 

several types of regression problems. The one that covers the haystack study 
begins with a population of experimental units, haystacks in our instance. 
Each experimental unit in the population can be characterized by measuring 
a response variable, represented generically by the letter y ,  and predictor vari- 

ables, represented generically by x1 ,x2,. . . , x p ,  where p is the total number of 
predictors used. In broad terms, regression is the study of how the response y 
depends statistically on the p predictors: Knowing the values of xI , x2 , .  . . , xp  

for a particular unit, what can we say about the likely value of the response 
on that unit? In the haystack study the response variable is y = Vol and the 
p = 2 predictors are x, = C and x2 = Over. The ordering of the predictors is 
unimportant, and we could equally have written x I  = Over and x2 = C. The 
goal of the haystack study was to use the observed data on 120 haystacks to 
produce predictions of volume for other haystacks, based on measurements of 
C and Over. Prediction is a common goal of regression, but in some problems, 

description of the dependence of the response on the predictors is all that is 
desired. 

In other literature, the response variable is sometimes called the dependent 

variable, and the predictor variables may be called independent variables, ex- 
planatory variables, carriers, or covariates. These alternate names may imply 
slightly different contexts, but any distinctions among them are not important 
in this book. 

As in the haystack problem, regression studies are often based on a ran- 
dom sample of units from the population. There are many ways to use the 
resulting data to study the dependence of the response on the predictors. 
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One way begins by postulating a model, a physical or mathematical metaphor 
that can help us tackle the problem. To frame the idea, let’s again return 
to the haystack study, and imagine a haystack as being roughly a hemi- 
sphere. The volume of a hemisphere, being half that of the corresponding 
sphere, can be written as a function of only the circumference C of the 
sphere, 

hemisphere volume = - 
127r2 

This simple formula gives us one possible way 
haystack volume: Ignore Over and use 

- 
127r2 

to use C and Over to estimate 

(1 .2) 

This representation is an example of a model relating VoZ to C and Over. As 
the book progresses, our models will become more comprehensive. 

Approximation (1.2) reflects the fact that if a haystack were really a hemi- 
sphere, farmers would not need Over because then C = 2 x Over. However, it 
seems unreasonable to expect haystacks to be exact hemispheres and so we 
should not expect C = 2 x Over. On the other hand, it may be reasonable to 
expect C % 2 x Over, so that the two predictors are giving essentially the same 
information about haystack volume. Eventually, we will be using the data to 
test the adequacy of possibilities like (1.2), to test if haystacks can really be 
treated as hemispheres, to suggest alternative models, and to quantify uncer- 
tainty when predicting the volume of a haystack from its circumference and 

“over.” 
We consider in  the next section a different example that will allow us to 

focus on specific ideas in regression, and to review some of the prerequisites 
for this book. We will return to the haystack data in later chapters. 

EXAMPLE: BLUEGILL DATA 

Bluegills aren’t the hardest fish in the world to catch, but they won’t jump 
into your boat either. Native to the eastern half of the United States and 
adjacent portions of Canada and Mexico, bluegills have now been intro- 
duced throughout the United States as a sport and forage fish. The scientific 
name for bluegills is Lepomis macrochirus, which in Greek means “scaled gill 
cover” “large hand.” The average weight in a bluegill population varies some- 
what with the region. In Minnesota, the typical weight is about 110 grams 
(0.25 pound); the state record goes to a 1275-gram fish caught in Alice Lake. 
The state record for Ohio is a whopping 1475 grams (3.25 pounds) for a fish 
that was more than 30 cm long. 
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Fishery managers are interested in the way fish, including bluegills, grow. 
One might wonder, for example, how long a bluegill takes to grow to 25 
or 30 cm, and what fraction of a bluegill population would eventually reach 
such lengths. The maximum life span for a bluegill is 8-10 years. A good 
understanding of the statistical relationships between bluegill size and age can 
be a great help in developing answers to such questions. 

In 1981 a sample of 78 bluegills was taken from Lake Mary in Minnesota, 
and the Length in mm and Age in years of each fish was determined. The 
method of collection of the data, and the time and location of the data are 
important because the relationship between Lengrh and Age can depend on 
such factors. For example, some lakes will provide better habitat for bluegills 
than will others. For many species of fish, including bluegills, age can be 
determined by counting the number of annular rings on a scale, much the 
same as is done with tree rings. These data can be approached as a regres- 
sion problem. The response variable is bluegill Length and the single predic- 
tor is Age. We would like to study the statistical dependence of Lengrh on 
Age. 

We have a long way to go before these issues, or those raised in connection 
with the haystack data, can be addressed fully. In the rest of this chapter 
we describe how to perform basic tasks using Arc, the regression computer 
package developed for this book, and we review statistical methodology for a 
single variable, knowledge of which is the primary prerequisite for this book. 

We return to the topic of regression in the next chapter. 

1.3 LOADING DATA INTO Arc 

The bluegill data from Lake Mary are available in the data file . l s p .  

If you are following along on a computer, you may need to read parts of the 
Appendix. Loading data files is discussed in Section A.5. Data files can be 
loaded into Arc either by selecting “Load” from the Arc menu or by typing 

the command in the text window. 
Two menus appear on the menu bar each time a data set is loaded into Arc. 

The first is referred to generically as the set The actual name of 
this menu is specified in the data file, and it can be set to reflect some aspect 
of the problem. For the bluegill data we named the data set menu “LakeMary,” 
which is the name of the lake sampled to collect the fish. The items in the 
data set menu generally allow you to manipulate the data and compute sum- 
mary statistics. The second menu, which is always named “Graph&Fit,” con- 
tains items that allow you to plot the data and fit models. The various items 
within these menus will be discussed at the appropriate time as the book pro- 

gresses. 
All of the data sets discussed in this book come with Arc. Instructions on 

how to prepare your own data to be read by Arc are given in Appendix A, 
Section A S .  
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Summary statistics for ... 
Prints a few summary statistics 

for the selected uariates. 

Candidates Selection 

FIGURE 1.1 The “Display summaries” dialog. 

TABLE 1.1 Output from “Display summaries” for the Lake Mary Data 

Data s e t  = LakeMary, Surmnary S t a t i s t i c s  

Variable N Average S t d .  Dev. Minimum Median Maximum 

Age 78 3.6282 0.92735 1. 4. 6. 

Length 78 143.6 24.137 62. 150. 188. 

Data s e t  = LakeMary, Sample Correlations 

Age 1.0000 0.8573 

Length 0.8573 1.0000 

Age Length 

1.4 NUMERICAL SUMMARIES 

1.4.1 Display Summaries 

To compute summary statistics for the bluegill data from Lake Mary, select 
“Display summaries” from the data set menu, which is called “LakeMary” in 
this example, to get the dialog shown in Figure 1.1. The items in the “Candi- 
dates” list are the available variables in the active data set (see Section A.6), 

and the items in the “Selection” list are the variables you have selected for 
which summary statistics will be computed. Variables can be moved from 
the “Candidates” list to the “Selection” list by double-clicking on the vari- 
able name, or by clicking once on the variable name to select it and then 
clicking once in the “Selection” window. Variables can be moved back to the 
“Candidates” window in the same way. In Figure 1.1 two variables, Age and 
Length, have been moved from the “Candidates” list to the “Selection” list. 
The variable Cawnumbers assigns numbers to the fish from 0 up to 77; it is 
of no interest for the present. Variable selection in other Arc dialogs follows 
the same pattern. 

Once your dialog is the same as that in Figure 1.1, click on the “OK’ 
button. The summary statistics shown in Table 1.1 will then be displayed in 
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the text window. Table 1.1 consists of two parts. The first contains univariate 
summary statistics and the second contains the sample correlations. We discuss 
the correlation coefficient in Chapter 4. For now we stay with the univariate 
summaries. 

The first column of the summary statistics contains the variable names and 
the second contains the number of observations. The third and fourth columns 
contain the average and standard deviation, respectively. As a generic notation, 
let y , ,  . . . ,y l l  denote the n = 78 values of the response. The j is 
computed as 

- - y = -  - 143.6 mm 
n 

(1.3) 

and the sample standard deviation sd(y) = 24.137 mm is the square root of 
the sample variance, 

In this book we will always use the symbol sd(y) to indicate the sample 
standard deviation of the samples of y-values; this is often denoted by in 
other books. We will not have special notation for a sample variance, but rather 
will always denote it as the square of a standard deviation. 

The fifth and seventh columns of Table I .  1 give the minimum and maxi- 
mum observations in the data. The maximum length is 188 mm, or about 7.4 
inches, which seems considerably less than the length of Minnesota’s record 
bluegill, 10.5 inches. The size of the difference 10.5 - 7.4 = 3.1 inches can 
be judged in terms of the distribution of by finding the number of 
standard deviations that 10.5 is above 7.4. This could be done in millimeters 
as the original data are recorded, or in inches. To perform the calculation in 
inches, we need to convert the standard deviation of from 24.137 mm 
to inches. In general, if we multiply all observations by a constant and then 
add another constant b, the standard deviation sd(b + in the new scale of 
b + is related to the standard deviation sd(y) in the original scale as follows: 

sd(b + = 1 ~ 1  x sd(y) (1.5) 

where IcI denotes the absolute value of c. Now, 1 millimeter equals c = 0.03937 
inches, so the standard deviation of in inches is 

sd(cy) = IcI x sd(y) = 0.03937 x 24.137 = 0.95 

The length of the record bluegill is therefore about 

10.5 - 7.4 
= 3.26 

0.95 
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standard deviations above the maximum length observed in the Lake Mary 
study. What value would we have obtained if we had performed the compu- 
tation in millimeters rather than inches? 

The sixth column in Table 1 . 1  gives the sample medians. The median di- 
vides a sample into the lower half and the upper half of the data; it is defined 
to be the middle observation in the ordered data if n is odd, and the average 
of the two middle observations if n is even. 

1.4.2 Command Line 

Numerical summaries can also be computed by typing in the text window’s 
command line following the prompt >. For example, the following output 

shows how to compute the mean, median, and standard deviation of Length 
after loading the data file . l s p .  

150 

The text on each line following a prompt, including the parentheses, is typed 
by the user. After pressing the “Enter” key, the output is given on the line 
following the command. Thus, the mean length is 143.603 mm. 

Sample quantiles other than the median can be computed by using the 
command. This command takes two arguments, the name of a vari- 

able and a fraction between 0 and I indicating the quantile. Informally, the 
,fth quantilc divides a sample so that f x 100 percent of the data fall below 
the quantile and ( I - , f )  x 100 percent fall above the quantile. The exact defi- 
nition needs to be a bit more detailed to account for the fact that a sample is 
discrete: The ,fth quantile of a univariate sample is a number that divides 
the sample into two parts so that 

At most ,f x 100 percent of the observations are less than 

. At most ( 1 - f )  x 100 percent of the observations are greater than 4f 

The three sample quurrifes are the quantiles corresponding to f = 0.25, 0.5, 
and 0.75. They can be computed as follows: 
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The quartiles divide the sample in four. The first quartile q,25 is the median 
of the lower half of the data, and the third quartile q,75 is the median of the 
upper half of the data. The 0.5 quantile is the same as the median. 

Arc has many other commands that can be used to manipulate data and 
do statistical computations. Many of the statistical commands will be intro- 
duced as needed. The syntax for basic numerical calculations is described in 
Appendix A, Section A.2. 

1.4.3 Displaying Data 

All the data on selected variables can be displayed in the text window by using 
the “Display data” item in the “LakeMary” menu. After selecting “Display 
data” you will be presented with a dialog for choosing the variables to be 
displayed. 

Alternatively, you can display all the data on a variable by simply typing 
its name without parentheses in the text window: 

>length 
(67 62 109 83 9 1  8 8  137 1 3 1  122 122 118 115 131 
143 142 . . . 130 160 130 170 170 160 180 160 170) 

1.4.4 Saving Output to a File and Printing 

For information on how to save output to a file, perhaps for later printing, see 
Appendix A, Section A.3. 

1.5 GRAPHICAL SUMMARIES 

1.5.1 Histograms 

To construct a histogram of select the item “Plot of’ from the 
Graph&Fit menu. In the resulting dialog shown in Figure 1.2, move 
from the “Candidates” list to the “H” box. This can be done by simply double 
clicking on or clicking once on to select it and then click- 
ing once in the “H” box. Generally, “H,” “V,” and “0” refer to the hori- 
zontal, vertical, and out-of-page axes of a plot. Placing variables in the “H” 
and “V” boxes will result in a 2D plot, while placing variables in all three 

boxes will result in a 3D plot. If only the “H” box is used, the plot pro- 
duced will be a histogram. Leave the “V” and “0” boxes empty and place 

in the “H” box, as shown in Figure 1.2, and then click “OK.” The 
histogram of shown in Figure 1.3 will be displayed in its own win- 

dow on the computer screen. On Macintosh and Windows, the title “His- 

togram” is added to the menu bar; on Unix a button labeled “Menu” appears 
on the plot itself. The menu is used to change characteristics of the histogram. 
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/i 
Histogram, 20 or 30 plot of... 

Candidates flitis choicer 

r1 H: ii, ‘ J  length 

I I ”’ I I 

0: 

Mark by ... 7 1  
W e i g h t d t r i a l s  7 1  

FIGURE 1.2 The “Plot of’ dialog. 

NumBins 

GaussKerDen 0.8 

Length 1 

L’ Case deletions 

200 

Length 

FIGURE 1.3 Histogram of bluegill length 

The purpose of many of the items in this menu can be discovered 
them. 

by trying 

The intervals o n  the horizontal axis marked off by the individual rectangles 
are called The area of an individual rectangle gives the fraction of the 
observations that fall in the corresponding bin. Histograms produced by Arc 

will always have all bins of equal width. 
At the left of the histogram are three and three menus 

marked by triangles. Two of the pop-up menus are located just to the left 
of the second and third slidebars. The first slidebar, named “NumBins,” con- 
trols the number of bins in the histogram, as shown at the right of the 
slidebar. The histogram in Figure 1.3 has 8 bins. The the dark area 
within the slidebar, is used to change the number of bins by changing its 
position. The position of any slider can be changed by clicking the mouse 
in the slidebar to the left or right of the slider, or by dragging the slider, 
holding down the mouse button on the slider and moving it to the right or 
left. 
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The second slidebar causes a smooth version of the histogram to be super- 
imposed on the plot, as shown in Figure 1.3. The slider controls the amount of 
smoothing. The corresponding pop-up menu allows the smoothing method to 
be changed. The third slidebar transforms the plotted values, and the pop-up 
menu “Case deletions” is used to delete and restore observations from a data 

set. These items will be discussed in more detail when the associated statistical 
ideas are introduced. 

The histogram in Figure 1.3 indicates that the distribution of is 
skewed to the left, with more extreme small fish than large fish. This asymmetry 
might have been anticipated from the summary statistics in Table 1.1 because the 
sample mean of is less than the sample median of Regulations 
that place a lower limit on the length of fish that can be removed from the 
lake would contribute to the asymmetry of the distribution. 

You can resize a histogram or any other plot by holding down the mouse 
button on the lower-right corner of the window and dragging the corner. You 
can move a plot by holding down the mouse button on the top margin of the 
window and dragging. To remove a plot from the screen, click on the plot’s 
close box. On the Macintosh, the close box is a small square at the upper-left 
corner of the plot. With Windows, the close box is at the upper-right corner 
on the plot; it is a small square with a x in it. On Unix, the close box is a 
large button labeled “Close.” 

1.5.2 Boxplots 

The boxplot is another option for visualizing the distribution of Se- 
lect the item “Boxplot of” from the Graph&Fit menu. In the resulting dialog, 
move to the “Selection” window and then click “OK.” A boxplot like 
the one in Figure 1.4, but without the added commentary, will then be con- 
structed. A boxplot consists of a box with a horizontal line through it, and 
two vertical lines extending from the upper and lower boundaries of the box. 
The line through the box marks the location of the sample median relative to 

the vertical axis of the plot. The lower edge of the box marks the location of 
the first quartile q.25 and the upper edge marks the third quartile q,75. The box 
contains 50% of the observations. The width of the box contains no relevant 
information. 

The line extending down from the box terminates at the data point which 
is closest to, but larger than 

Data points with values smaller than are called lower Similarly, 
the line extending up from the box terminates at the data point being the closest 
to, but smaller than 
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Closest value smaller - 4.7.5 + -9.25) 

- Third quartile, 4, 7s - Median, q,5 - First q~ar t i l e ,4 .~~  

Closest value larger than - yz5 - 1.5(q75 - 4 , 2 5 )  

0 

o - Outer values 

FIGURE 1.4 Boxplot of bluegill length. 

Data points with values larger than U are called In the box- 
plot for bluegill length, there are no upper outer values, so the line terminates 
at 188 mm, which, from Table 1.1, is the maximum value of 

The boxplot for bluegill length in Figure 1.4 again leads to the impression 
that the data are skewed toward the smaller values of because there are 
n o  upper outer values while there are several lower outer values. 

1.6 BRINGING IN THE POPULATION 

We use the notation E(y) and Var(y) to denote the population mean and pop- 
ulation variance of a random variable y. The notation E(y) is shorthand for 
“the expectation of y.” In many texts, the population mean and variance are 

denoted using Greek letters, (mu) for the mean and (sigma squared) for 
the variance, but here we will mostly stay with the fuller notation to smooth 
the transition to regression in the next chapter. The 

of y is the square root of the population variance. For example, 
and Var(Lengrh) refer to the mean and variance of in the population of 
bluegills in  Lake Mary. The population mean and variance are two useful prop- 
erties indicating how a random variable is distributed across the population. 
The distribution of y can be characterized fully by the 

(cdf), Pr(y 5 which is read as “the probability that y is less than 
or equal to the number u.” It is a function of the argument If we knew 

5 I‘) for every number then the distribution of would be 
known completely. 
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1.6.1 The Density Function 

The distribution of a continuous random variable y is usually represented 
using a smooth curve with the property that Pr(y 5 a) is the area under the 
curve to the left of a. For illustration, think of the smooth curve in Figure 1.3 
as representing the distribution of Length. Then Pr(Length 5 150) is the area 
under the curve to the left of 150. Similarly, the probability that Length exceeds 
150, Pr(Length lSO), is the area under the curve to the right of 150, and the 
probability that Length is between 100 and 150, Pr(100 5 Length 5 l50), is the 
area under the curve between 100 and 150. These smooth curves are called 

or just because they show relative density: The 
curve in Figure 1.3 shows the relative density of bluegills with respect to their 
length. 

Occasionally we will need to construct new random variables by taking 
a linear function of y, say = a + x y) where a and b are constants. The 
population mean and variance of are related to the population mean and 
variance of y as follows: 

E(w) = a + (b  x E(y)) (1.6) 

and 

Var(w) = b2 x Var(y) (1.7) 

1.6.2 Normal Distribution 

The family of normal distributions has a central place in statistics. It serves 
as a reference point for many types of investigations and it provides a useful 
approximation to the random behavior of many types of variables, particularly 
those associated with measurement error. 

Suppose that the random variable y is normally distributed. To characterize 
fully its normal distribution, we need only the population mean E(y) and the 
population variance Var(y ). Symbolically, we write 

to indicate that y has a normal distribution with mean E(y) and variance Var(y). 
If we have a random sample y, ,y2,. . . ,yn from the same normal distribution, 
we will write 

yj - NID(E(y),Var(y)), i = 1, .  . . , n (1.9) 

where the symbol “NID” means normal, independent, and identically dis- 
tributed. 

For the normal distribution y N(E(y), Var(y)) with E(y) and Var(y) known, 
we can compute Pr(y a )  for any value a that we choose. This is one of the 
distinguishing characteristics of the normal distribution, since for many other 
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FIGURE 1.5 

variance 4. 

Histogram of 1000 observations from a normal distribution with mean 10 and 

distributions knowledge of the mean and variance is not enough to calculate 
the cumulative distribution function. 

Figure 1.5 shows a histogram of 1000 observations from a normal distri- 
bution with E(y) = 10 and Var(y) = The smooth version of the histogram 
closely matches the normal distribution’s bell-shaped density function. As 

suggested by the figure, the density for the normal distribution is symmetric: 
If we fold the density at its mean of 10, the two halves will coincide. 

The standardized version of y ,  

Y - E(Y) 

d=m 

follows a distribution, N N(0, l ) ,  the normal distribution 
with mean E(z) = 0 and variance Var(z) = 1. The mean and variance of fol- 
low from the general rules for determining the mean and variance of a linear 
function of In reference to (1.6) and ( 1.7), set 

and 
1 

We can write any quantile of the normal distribution of y in terms of the 
quantiles of the standard normal distribution of in the same way. For example, 
let and denote the second quartiles (medians) for y and 
We have used the uppercase letter Q for quantiles because they are being 
computed from the population rather than from a sample; we previously used 

the lowercase letter q for sample quantiles. In this notation, 
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FIGURF 1.6 The “Calculate quantile” dialog. 

1.6.3 Computing Normal Quantiles 

Arc has a menu item for computing quantiles of standard distributions like the 
standard normal distribution. For example, to compute Q(z, 0.73, the point 
with fraction 0.75 of the probability to its left, select the item “Calculate 
quantile” from the Arc menu. The resulting dialog is shown in Figure 1.6. In 
this dialog, enter the value 0.75 in the box for the “Fraction,” and then select 
the distribution you want. At this point, we are interested only in the standard 
normal, but the other distributions will be used later. Click the “OK’ button, 
and the following is displayed in the text window: 

= 

Thus 75% of the probability under the standard normal density function is to 
the left of about 0.67. The 0.75 quantile of y ,  a normally distributed variable 
with mean E(y) and variance Var(y), is E(y) + (0.67 x (Var(~))’/~). 

1.6.4 Computing Normal Probabilities 

Normal probabilities can be computed in Arc using the “Calculate probability” 
item in the Arc menu. If z is a standard normal random variable, then the dialog 
can be used to compute any of the lower-tail Pr(z 5 c), upper-tail Pr(z 2 c), or 
two-tail Pr( IzI c )  probabilities. The dialog is shown in Figure 1.7. To use this 
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FIGURE 1.7 The “Calculate probability” dialog. 

dialog for normal probabilities, select the button for the normal, give the value 
c,  and select the region you want, either the upper-tail, the lower-tail, or two- 

tails. As shown in the dialog, we have entered the value 0.67449, and selected 
the lower-tail. After clicking the “OK” button, the following is displayed in 
the text window: 

>Normal d i s t . ,  value = 0.67449, = 0.75 

which shows that Pr(z 5 0.67449) = 0.75. If we had selected the button for a 
two-tail probability the answer would have been 

Pr(z 5 -0.67449 or 0.67449) = 0.50. 

The answer for the upper-tail probability would have been Pr(z 2 0.67445) = 

0.25. 
Normal probabilities can also be computed using typed commands, as will 

be discussed in Problem 1.3. 

1.6.5 Boxplots of Normal Data 

Figure 1.8 shows a boxplot of a large = 1000) sample from a nor- 
mal distribution with mean 10 and standard deviation 4. Since the normal 
is symmetric about its mean, the mean and the median coincide, and the 

center line of the box is close to the actual value of 10. The upper and 
lower quartiles are at approximately 10 + 4Q(z, 0.75) and 10 - 4Q(z, 0 .23 ,  or 

at about 12.7 and 7.3, respectively. We can also compute the approximate 
fraction of outer values in a normal population to be about 0.007, as in Prob- 
lem 1.3. 
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FIGURE 1.8 A boxplot of a random sample from a normal distribution. 

In this last calculation we considered the fraction of outer values when con- 
structing a boxplot of an entire normal population. The fraction of outer values 
in a sample from a normal population is expected to be larger, depending on 

the value of n. For sample sizes between 10 and 30, the expected fraction of 
outer values ranges between 0.02 and 0.03. For n > 30 the expected fraction 
is about 0.01, while for 5 5 n < 10 the expected fraction of outer values can 
be as large as 0.09. 

1.6.6 The Sampling Distribution of the Mean 

Think of a random sample y ,  , . . . , yn of size n from some population. The sam- 
ple might be the n = 120 observations on haystack volume, for example. The 
central limit theorem tells us that, even if the sampled population is not normal, 
the sampling distribution of the sample mean j might be approximated ade- 
quately by a normal distribution, the approximation becoming progressively 
better as the sample size increases. 

To illustrate this idea, consider the following process. We took the smoothed 
version of the histogram in Figure 1.3 as the true density of the bluegill length 
in the Lake Mary population. This distribution is skewed to the left, so it is not 
normal. We next randomly selected n = 2 bluegill lengths from this distribution 
and computed the sample mean. Repeating this process 500 times resulted in 

500 sample means each based on = 2 observations. The histogram of the 
500 sample means is shown in Figure 1.9a. This is essentially the sampling 
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FIGURE 1.9 Four histograms illustrating the central limit theorem 

distribution of a mean of 2 observations from the Lake Mary population. Like 
the sampled population, it is still skewed to the left. Figures 1.9b-d were 
constructed in the same way, only the value of n was changed. The sampling 
distribution for n = 4 is still noticeably skewed, but the skewness is no longer 
evident visually for n = 16. The sampling distribution for n = 64 is very close 

to the normal. 
The ranges on the horizontal axes of the histograms in Figure 1.9 decrease 

with t i .  For example, the range of the data for n = 2 is 200 - 50 = 150, while 
the range for n = 64 is only 25. This reflects the general fact that the variance 
of a sample mean decreases as the sample size n increases. In particular, 

(1.10) 

The variance of the sample mean is 1/n times the variance in the sampled 
population, or by taking square roots of both sides of ( 1. lo), the standard de- 

viation of a .sumple mean is 1 / f i  times the standard deviation in the sampled 
population. Finally, 

which says that the population mean of a sampling distribution is the same as 
that for the original population. 

Putting all this together in a summary statement, we can say that for “large” 
samples, j is approximately normal with mean E(y) and variance Var(y)/n. 
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1.7 INFERENCE 

1.7.1 Sample Mean 

The sample mean j is an estimate of the population mean E(y), which can be 

expressed as @y) = j ,  where estimation is indicated by the “hat” above the 
E. Similarly, the sample variance is an estimate of the population variance, 

Z ( y )  = sd2(y). 
From Section 1.6.6, we have that the standard deviation of the sample mean 

is equal to (Var(y)/n)’/*. In practice, this standard deviation is estimated by 

replacing Var(y) by an estimate %(y).  The quantity obtained by replacing 
parameters by estimates in the standard deviation of a statistic is called its 
standard erroLThe standard error of the sample mean is denoted by se(j) and 
is given by (Var(y)/n)’/*. For the bluegill data, y = Length and 

- sd(y) 24.137 
se(y) = - = - = 2.73 mm 

J t l m  

Suppose that h is some hypothesized value for the population mean E(y); 
for the sake of this discussion, let’s assume that h = 150 mm. We can form a 
test of the null hypothesis 

NH: E(y) = h 

against the alternative hypothesis 

AH: E(y)#h  

The test is computed using the t-statistic, 

To summarize the evidence concerning the null hypothesis in the data, we 
compute a p-value, which is the probability of observing a value of the statistic, 
here fobs, at least as extreme as the one we actually obtained, given that the null 
hypothesis in fact holds. If the p-value is small, then either we have observed 
an unlikely event, or our premise that the null hypothesis holds must be false. 
Consequently, the p-value can be viewed as a weight of evidence, with small 
values providing evidence against the null hypothesis. 

The statistic tabs has a t-distribution with - 1 degrees of freedom (do  when 
the null hypothesis is true. To get a p-value, we can use the “Calculate prob- 
ability” item in the Arc menu. When you select this item, a dialog similar 
to Figure 1.7 will appear, but now we use it to compute a probability based 
on a t-distribution. Specify the value of the sta:,stic, -2.34, the t-distribution 
with 77 df, where the df is n - 1 = 78 - 1 = 77. Select either Lower tail if 
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the alternative hypothesis is AH: E(y) 5 h;  Upper tail if the alternative is AH: 
E(y) 2 or Two tail if the alternative is E(y) # h. Since we have specified a 
two-tailed alternative, use this option. After pressing “OK,” the following is 
displayed in the text window: 

d f ,  value = - 2 . 3 4 ,  
= 0.0218758.  

This result indicates that-if the null hypothesis were true-an outcome less 
favorable to the null hypothesis than the observed outcome would occur about 
22 out of 1000 times. This is a fairly rare event, and we might conclude that 
this provides fairly strong evidence against the null hypothesis. Occasionally, 
decision rules are used, in which we “reject” the null hypothesis when the 
p-value is less than some prespecified number, like 0.05. We will rarely use 
formal accepdreject rules of this type. 

1.7.2 Confidence Interval for the Mean 

A confidence interval for E(y) can also be computed using a t-distribution. 
Returning to the bluegill data, a 95% confidence interval for E(Length) is the 
set of all values for E(y) such that 

.i - Q(t7,,0.975)se(j) E(y) 5 j + Q(t77,0.975)se(j) 

143.6 - 1.99 x 2.73 5 E(y) 5 143.6 + 1.99 x 2.73 

143.6 - 5.4 5 E(y) 5 143.6 + 5.4 

138.2 5 E(y) 5 149.0 

where Q(r7,,O.975) is the 0.975 quantile of the t-distribution with 77 df. This 
value can be computed using the “Calculate quantile” dialog, selecting the 

f-distribution, and setting the df to 77. In repeated data sets, the true population 
mean E(y) will be included in 95% of all confidence intervals computed this 
way. 

1.7.3 Probability of a Record Bluegill 

How likely are we to break the record for bluegill length while fishing in 
Lake Mary? Phrased somewhat differently, how likely is it that the length of a 
fish randomly selected from Lake Mary exceeds 10.5 inches or 267 mm, the 
length of Minnesota’s record bluegill? In symbols, what is Pr(y > 267), where 
y denotes bluegill length in millimeters? 

For illustration and review, let’s pretend that v is normally distributed with 
population mean E(y) and population variance Var(y). Then the standardized 
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variable 
Y - E ( Y )  

JW 
is normally distributed with population mean E(z) = 0 and population variance 
Var(z) = 1. 

We don’t know E(y) or Var(y), but they can be estimated by using the 
corresponding sample statistics from Table I .  I .  Thus, 

Pr(y > 267) = Pr(z > (267 - E ( y ) ) / J W )  

= Pr(z > (267 - 143.6y24.137) 

= Pr(z > 5.1) 

The probability that a standard normal random variable exceeds 5.1, which 
is quite small, can be computed using the “Calculate probability” dialog. The 
answer is about 0.00000017. Clearly, we shouldn’t expect to catch a record 
bluegill in Lake Mary. 

1.8 COMPLEMENTS 

The haystack data used in this chapter were presented by Ezekiel (1 930). The 
bluegill data were presented in Weisberg (1986). Our discussion of the bluegill 
data is dedicated to the memory of Richard Frie, who collected the data. 

Arc is written in a computer language called Xlisp-Stat, which was written 
by Luke Tierney; in fact, Arc includes a complete copy of Although 
not required for using Arc, you can learn more about from Tierney 
(1990), by subscribing to the Lisp-Stat listserv on the Internet (send email 
to lisp-stat@ stat.umn.edu containing the one-word message “subscribe”), or 
in several Web sites, including http://www.stat.cmu.edu, the UCLA 
statistics web site, http://www.stat.ucla.edu, and the University of Minnesota 
statistics web site, http://www.stat.umn.edu. 

The results in Section 1.6.5 on the fraction of outer values in normal sam- 
ples are due to Hoaglin, Iglewicz, and Tukey (1986). 

A figure very similar to Figure 1.5 in Section 1.6.2 can be generated with 
the following statements in Arc: 

(+  (* 4 Randomdata 
Draw the histogram 

Add plot controls 

PROBLEMS 

1.1 As in Section 1.4. I ,  convert all measurements to metric units and show 
that the record bluegill is 3.26 standard deviations above the largest ob- 
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served value, the same answer obtained when the measurements were 
converted to English units. 

1.2 The file l s p  gives the haystack data described in Section 1.1. 
Load this file into Arc. This will produce two menus, the data set menu 
which is labeled “Haystacks” in this example, and the Graph&Fit menu. 

1.2.1 

1.2.2 

1.2.3 

1.2.4 

1.2.5 

1.2.6 

Obtain both a histogram and a boxplot of haystack volume, Vol. 
Describe the distribution in these plots. Does Vol appear to be 
approximately normally distributed? 

Give the standard error for the average volume of the 120 hay- 
stacks in the study. Give the standard error for the average volume 
in cubic yards. (A yard is a measure of length equal to three feet, 
or about 0.91 m.) 

Give a 90% confidence interval for E(Vol), along with a brief 
interpretation. 

Construct the p-value for the hypothesis that the mean volume is 
3500 cubic feet versus the alternative that it does not equal 3500. 

Assume that Vol is normally distributed with population mean 
301 8 cubic feet and population standard deviation 915 cubic feet. 
Find 

a. The probability that a randomly selected haystack has Vol less 
than 2500 cubic feet. 

b. The fraction of haystacks with between 2000 and 4000 
cubic feet. 

c. The number 11 such that 

Pr(E(Vol) - u 5 5 E(Vo1) + = 0.95 

d. The 0.25 quantile of Vol. 

e.  The median and first quartile of 

f. The distribution (including the mean and variance) of Vol when 

g. A 95% confidence interval for the volume of a randomly se- 

If the distribution of Vol were skewed to the right, would the 
median of the distribution be larger or smaller than the mean? 
Why? 

it is measured in cubic yards. 

lected haystack. 

1.3 Normal probabilities and quantiles can be computed using the dialogs 
described in the text, or they can be computed using typed commands. 

If is a standard normal random variable, the command 
c )  will return Pr(z 5 c ) .  The command is short for 
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For example, 

returns the area to the left of 0 for a standard normal random variable, so 
Pr(z < 0) = 0.5. Similarly, the command f )  will return 

Q ( z , f ) .  For example, 

The commands and are inverses of each 

other. They both solve the equation 

Pr(z 5 c) = f (1.11) 

with solving for f for given and solv- 
ing for c for given Taken together, these two commands represent a 
computerized version of the normal tables found in many textbooks. 

1.3.1 Upper-tail probabilities of the form Pr(z > can be computed by 
writing them in terms of probabilities directly computed by the 

command 

Pr(z > c) = 1 - Pr(z L 

so the value of Pr(z > 1) = 1 - Pr(z 5 1) can be computed as 

>(- 

(How to perform arithmetic with the is discussed in Appendix 
A, Section A.2.) Compute P r -  1 5 5 l),  which is approximately 
equal to 0.68, a reminder that about 68% of a normal distribution 
falls within one standard deviation of the mean. Also, find the 
probability that a normal random variable falls within two stan- 
dard deviations of the mean and then the probability that it is 
within three standard deviations of the mean. 

1.3.2 Consider constructing a boxplot of a standard normal population. 
About what fraction of the population would we expect to be outer 
values, either lower outer values or upper outer values? Because 
the normal is symmetric, the fraction of upper outer values is 
the same as the fraction of lower outer values. Thus, to find the 
required fraction we need to compute only the fraction of lower 
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outer values and then multiply by two: 

2Pr(z < Q(z,0.25) - 1.5[Q(z,0.75) - Q(z,O.25)1) (1.12) 

Show that this value is approximately equal to 0.007, so only 
about 0.7% of a normal population will appear as outer values in 
a boxplot. 

1.4 The data file . l s p  is a demonstration program that can be used 
to illustrate the sampling distribution of the mean and the central limit 
theorem as in Figure 1.5. When you load this file into Arc, you will get 
a new menu called CLT, which is short for central limit theorem. 

From the CLT menu, select the item “Haystack volume.” This will 
create two histograms. The upper histogram is for the raw values of 
the 120 volumes in the data. (The volumes have all been divided by 
1000 to make reading the values on the horizontal axis a bit easier, so, 
for example, the value means four thousand cubic feet.) The lower 
histogram was created by plotting 500 means of random samples of size 
two from these 120 volumes; every time you do the demo, you will get 
a different set of 500 samples. On both histograms, a normal density 
has been superimposed with mean and standard deviation that match the 
sample values (for the upper histogram, the mean and standard deviation 
of the volumes; for the lower, the mean and standard deviation of the 

500 means of size two). 

1.4.1 Which appears to be closer to a normal density, the original data 
or the means of size two? Are the means of size two close to 
normally distributed? As you push the mouse button to the right 
of the slider in the slidebar marked “Sample size,” the number 
of observations used to compute each of the sample means will 
increase. Examine the histograms for each sample size, and give 
a qualitative description of the agreement between the histogram 
and the approximating normal. Does the mean stay about the same 
as sample size increases? Does the standard deviation stay the 

same? How can you tell? 
The slidebar has a pop-up menu obtained by pushing the mouse 

button on the little triangle under the words “Sample size;” this 
has one item called “Adjust scale.” If you select this item, then 
every time you change the sample size, the range on the horizontal 
axis is adjusted so that the histogram fills the plotting area; if you 
select it a second time, then this automatic adjustment is turned 
off. You will get better resolution if you select this item, but you 
may lose visual information on changes in standard deviation. 
Hence, you may want to look at various sample sizes, sometimes 
adjusting for scales changes, sometimes not adjusting. 
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1.4.2 Repeat 1.4.1, but using the item which is just a set of 
normal random numbers with mean 10 and standard deviation 4. 

1.4.3 Repeat 1.4.1, but using the item “Highly skewed exponential 
data,” which are random numbers generated from an exponential 
distribution that looks nothing at all like a normal distribution. 

1.4.4 Repeat 1.4.1, but using the item “Cauchy data.” If x and y are inde- 
pendently distributed as N(0, I ) ,  then the ratio x / y  has a Cauchy 
distribution. This is a favorite among statisticians because it is 
simple to generate, but both the mean and variance of x / y  are un- 
defined. For Cauchy random variables, the central limit theorem 
does not apply, and so the results should be different from the 
previous three sections of this problem. 

1.5 The data in the file are similar to the data on Lake Mary, 
except they were collected on a different lake. The data file also includes 
the radius of a key fish scale, measured from the center to the edge of 

the scale. 

1.5.1 The length distribution in Lake Mary appeared to be skewed to 
the left. Is this true also for Camp Lake? 

1.5.2 Test the null hypothesis that the mean length in Camp Lake is 
the same as the mean length in Lake Mary against the alternative 
hypothesis that the mean lengths are different. This requires a 
two-sample t-test that is a prerequisite for this book, but was not 
reviewed in this chapter. 
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Introduction to Regression 

In the previous chapter we saw several different ways of studying the distri- 
bution of the length of bluegills, without regard to their age or any other vari- 
able. These distributions are often called marginal to emphasize 
that other variables of interest are not simultaneously considered. In contrast, 
regression is the study of The bluegill population in 
Lake Mary is made up of several subpopulations, one for each possible value 
of the predictor The distribution of in any one of these subpopula- 
tions is called a conditional distribution to remind us that a condition has been 
imposed; namely, that all the bluegills are of the same age. The description 
of a conditional distribution usually includes a name for the subpopulation. 
For example, the conditional distribution of given = 3 is just the 
distribution of in the subpopulation of 3-year-old bluegills. The condi- 
tional distribution of given = 5 is the distribution of in the 
subpopulation of bluegills that are 5 years old. 

The primary goal in a regression analysis is to understand, as far as possi- 
ble with the available data, how the conditional distribution of the response y 

varies across subpopulations determined by the possible values of the predictor 
or predictors. Since this is the central idea, it will be helpful to have a conve- 
nient way of referring to the response variable restricted to a subpopulation in 
which the predictor does not vary. We will use the notation y I = to indi- 
cate the response in the subpopulation where the predictor is fixed at the value 

The vertical bar in this notation stands for the word If the particular 
value of x is unimportant for the discussion at hand, we will use abbreviated 
notation and write y I x, understanding that the predictor is held fixed at some 
value. For example, we may refer to the distribution of 1 = 
which means the distribution of in the specific subpopulation of 2- 
year-old bluegills. Or, we may refer to the distribution of 1 which 
is the distribution of in the subpopulation determined by the value of 

The mean and variance of y 1 = .?), the response variable restricted 
to the subpopulation in which = are represented by E(y I = and 

Applied Regression Including Computing and Graphics 
R. Dennis Cook,Sanford Weisberg 

Copyright 0 1999 by John Wiley & Sons, Inc 
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FIGURE 2.1 The “Boxplot of’ dialog with conditioning. 

Var(y I x = or more simply by I x) and Var(y I x )  when the particular 

value of x is not at issue. As we move from subpopulation to subpopulation by 
changing the value of x, both E(y 1 x )  and Var(y I x )  may change. For example, 

in the bluegill population it is surely reasonable to expect that 4-year-old fish 
are, on the average, longer than 1-year-old fish; that is, 

I = > I = 1) 

The key point is that both E(y 1 x )  and Var(y I x )  are functions of the value 
of x. To emphasize this fact, we will refer to them as the and 
the Similarly, the is simply the 
square root of the variance function. The mean and variance functions are 
the most frequently studied properties of the conditional distributions of y I x, 

but other properties like quartile functions or the median function may be of 

interest. 

2.1 USING BOXPLOTS TO STUDY 1 

After loading the Lake Mary data, select “Boxplot of” from the Graph&Fit 
menu and move from the “Candidates” box to the “Selection” box. In 
addition, place in the “Condition on” box; this can be done by clicking 
once on to select the variable and then clicking once in the “Condition 
on” box. Click “OK” when your dialog box looks like Figure 2.1. 

Conditioning on in this manner causes to produce several boxplots 
in a single display, one boxplot for each value of the conditioning variable as 
shown in Figure 2.2. 

Each boxplot in Figure 2.2 gives a graphical summary of the observations 
from the distribution of I for one value of in the data. Taken 
together they show how the distribution of I changes with the value 
of Age for the 78 observations from Lake Mary. 

In addition to visual representations of conditional distributions provided 
by the boxplots, numerical summaries can be helpful. These can be obtained 
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FIGURE 2.2 Boxplots of Length given Age. 

in Arc by using the “Table data” item in the data set menu, which is la- 
beled “LakeMary.” Arrange your dialog to resemble Figure 2.3. To move 

to the list of “Variates,” click once on the name of the variable, and 
then click on  the list under the heading “Variates.” Age can be moved to the 
“Condition on” list in the same way, or you can simply double-click on A g e .  

Click on the boxes for the mean and the standard deviation (SD) to select 
them. Click on the button for “Quantiles” to get the quantiles you type in 
the text area; in this example we will use the default 0.50 quantile to get 
the median. Next, click on the button for “Display as list.” Finally, click on 
the “OK” button. This setup will cause the number of observations, mean, 
median (denoted as and standard deviation to be computed and dis- 
played for the variate Length at each value of Age,  as shown in the output of 
Table 2.1. 

Return to the boxplots of Figure 2.2. The first and last of the boxplots look 
different from the rest. We have only two samples for Length 1 (Age = I ) ,  and 
only one sample for I (Age = 6), as can be seen in the second column of 
Table 2.1. Otherwise, the boxplots seem remarkably similar, except for their 
location: Both the sample mean and sample median of Length increase with 
the value of Age.  Estimates of points along the mean and variance functions 
can be taken from Table 2.1. For example, 

E(Length 1 Age = 4) = 153.8 

cr(Length I Age = 4) = 9.92 
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TABLE 2.1 

Setup Shown in Figure 2.3 

= 

1 = 

2 = 

Col.  3 = 

4 = 

5 = 

1 2  64.5 3.53553 64.5 

2 7 100.429 14.164 100.0 

3 19 134.895 11.4741 137.0 

4 41 153.829 9.90177 152.0 

5 8 166.125 13.6532 165.0 

6 1  170. 0 170.0 

Output from "Table data" for the 

-- 

and the estimate of the standard deviation at Age = 4 is 9.9. Finally, the stan- 

dard error of E(Lengrh I Age = 4) is 9.9/* = 1.6. 
There is no clear indication that other characteristics such as skewness 

of the conditional distribution of Length I Age change with the value of Age.  
By comparing Figures 1.4 and 2.2, we see that the lower outer values in 
Figure 1.4 are all measurements on 1- or 2-year-old bluegills. The skewness 
in the marginal distribution of Length is evidently linked to bluegill age. Going 
a bit further, after conditioning there is little visual evidence to suggest that 

the conditional distributions of Figure 2.2 are skewed. This observation is 
supported by the similarity of the means and medians in Table 2.1. 

In summary, regression is the study of how the conditional distribution of 

y 1 x changes with the value of x .  Often special attention is devoted to the mean 
function and the variance function. For the bluegill data, our visual analysis 
suggests that the distribution of Length 1 Age changes primarily through its 
mean function E(Length I Age) ,  which increases with the value of Age.  
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FIGURE 2.4 Scatterplot of Length versus Age for the Lake Mary data on bluegills. 

2.2 USING A SCATTERPLOT TO STUDY LENGTH I AGE 

A scatterplot is another graphical display that can be quite useful for showing 
how the conditional distribution of y I changes with the value of x .  Two- 
dimensional scatterplots for a regression with a single predictor are usually 
constructed with the response assigned to the vertical axis and the predictor 
assigned to the horizontal axis. 

To construct a two-dimensional plot of Lengrh versus Age for the data on 
bluegills, return to the Graph&Fit menu and select “Plot assigning Length 
to the V-axis and Age to the H-axis. The resulting plot should look like Fig- 
ure 2.4. Ignore the highlighting of the points in the dashed rectangle and the 
text just below the plot; these will be discussed shortly. 

The scatterplot in Figure 2.4 shows how the distribution of Length I Age 

changes with the value of Age.  The plot is similar to the boxplots of Figure 2.2 
except the data from the conditional distributions have not been graphically 
summarized with boxplots. Again, we see that the distribution of Length I Age 
changes primarily in the mean, with n o  notable evidence that the variance 
function is not constant. 

2.3 MOUSE MODES 

The controls on plots can be used to convert the visual information in plots 

into numerical information. Go to the menu called “2Dplot” for the scatter- 
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plot of Figure 2.4, and select the item “Mouse mode.” You will be presented 
with a mouse mode dialog like that shown in Figure 2.5. The dialog allows 
you to choose from four mouse modes by clicking on one of the four radio 
buttons. The default mouse mode with the cursor appearing as an arrowhead 
is “Selecting mode.” 

2.3.1 Show Coordinates Mouse Mode 

Click in the radio button for “Show coordinates,” and then click the “OK’ 
button. The cursor should now be a hand with a pointing finger. Place the tip 
of the finger on the single point from the distribution of I (Age = 6) and 
press the mouse button. As long as the mouse button is pressed the following 
information will be displayed in the computer screen: 

73:(6,170) 

The first number is the unless you specify case names using the 
item “Set case names” from the data set menu, the program will assign names 
to cases. If you have text variables, then the program will use the first of 
these as case names. If you do not have any text variables, then the program 
will number the cases according to their order in the data file and use these 
numbers as the case names. Case numbering in Arc starts with 0, not with 1. 
Thus, the 73 above refers to bluegill number 73, which is really the 74th fish 
in the data file. 

The pair of numbers in parentheses following the colon are the coordinates 
of the point: So this point corresponds to Age = 6 on the horizontal axis and 

= 170 on the vertical axis. The same operation can be repeated for any 
point on the plot. 

2.3.2 Slicing Mode 

Return to the “Mouse mode” menu and select “Slicing mode.” The cursor will 
now change to a paint brush with a long thin rectangle outlined by dashed 
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lines. The rectangle is shown in Figure 2.4 without the cursor. The rectangle 
itself is called the Several things happen as the brush is moved across 
the plot, a procedure called First, the points within the brush are 

Second, the number of points, sample mean and standard devia- 
tion are computed and printed at the bottom of the plot for the highlighted 
points. For example, we see in Figure 2.4 that there are n = 41 fish which 
are 4 years of age in the sample. The mean and standard deviation of the 

of those fish are j = = 153.83 and sd(y) = SDy = 9.9018. Clicking 
the mouse button while in the slicing mode will display the summary statis- 
tics for the slice in the text window. These statistics are also available from 
Table 2.1. 

The slicing mode can be used with boxplots like those in Figure 2.2. In 
this case the brush serves as a device for selecting a boxplot. The summary 
statistics printed below the plot are for the data used in the construction of the 
selected boxplot. 

The slicing mouse mode allows you to use both graphical and numerical in- 
formation when investigating how the conditional distribution of y 1 x changes 
across a scatterplot, or a series of boxplots. Moving the brush in Figure 2.4 
from age to age while observing the summary statistics below the plot can 
provide information to support visual impressions. 

The size of the brush can be changed by selecting the item “Resize brush” 

from the 2Dplot menu. This item produces a small window with the instruc- 
tions, “To resize brush click in this window and drag.” The idea here should 

be clear after a little experimentation. The slicing mode works with any brush 
size and the statistics displayed below the plot are for those points within the 
brush. A long narrow brush that captures all the points above a short interval 

on the x-axis should be used when studying conditional distributions y 1 x in 
a scatterplot of y versus x. Smaller rectangular brushes will be used when 
studying bivariate distributions in Chapter 4. 

2.3.3 Brushing Mode 

The final mouse mode is the “Brushing mode.” This mode works like slicing 
mode, except no summary statistics are displayed. We return to brushing in 

Chapter 5 .  

2.4 CHARACTERIZING LENGTH 1 AGE 

Our graphical analysis of the bluegill data supports the notion that the mean 
function 1 Age)  increases with the value of age, while the variance 
function Var(Length I A g e )  is constant. The conclusion regarding the mean 
function agrees with our prior expectation. The conclusion regarding the vari- 
ance function is less firm for two reasons. First, seeing changes in the vari- 
ance function is more difficult than seeing changes in the mean function. 
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FIGURE 2.6 Scatterplot of Length versus Age for the bluegill data with a smooth of the mean 

function. 

The slicing mouse mode is often useful for gaining numerical information 
on how Var(y I x )  could be changing across a scatterplot. Second, there are 
only two observations available to judge Var(Length 1 Age = l), and there is 
only one observation from the distribution of Length I (Age = 6) .  Our tentative 

conclusion about the constancy of the variance function may well change if 
we could get more data on the conditional distributions at Age = 1 and 6, 
but for now we have to do the best we can with the information that we 

have. 
At this point it may be useful to characterize how the mean function is 

increasing. A better visualization of the_ mean function can be obtained by 

marking the position of the estimates E(Length I Age) on the scatterplot of 
Figure 2.4 and then connecting the adjacent points with straight lines. This 
can be done in Arc using the following procedure. First, make sure that the 
mouse is in selecting mode, and then click once in the slidebar titled “lowess.” 

Your plot of Length versus Age should now look like Figure 2.6. The curve 

on the plot connects the sample means of the data from the six conditional 
distributions. Such a curve is called a smooth of the data. More will be said 
about the rationale and construction of smooths in the next chapter. For now, 
we see that the mean function seems to be a nonlinear function of Age because 
the change in length from one age to the next is larger for some ages than for 
others. In particular, it seems that older fish do not grow as fast as younger 
fish. 
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2.5 MEAN AND VARIANCE FUNCTIONS 

The mean and variance functions-E(y 1 x) and Var(y 1 x t a r e  important char- 
acteristics of the conditional distribution of y 1 x. We study some properties of 
these functions in this section. 

2.5.1 Mean Function 

The expected response E(y) in the total population and the mean function 
E(y I x ) ,  which gives the expected response in the subpopulation determined 
by the value of x, are related: The population mean is the expected value of 
the mean function with respect to the distribution of the predictor. That is, 

= weighted mean of E(y I x) 

= weighted mean of the subpopulation means (2.1) 

This equation says that the mean response E(y) is a mean of means; take the 
weighted mean of the subpopulation means, where the weights are the relative 
sizes of the subpopulations. Further, if the mean function is constant, then each 
subpopulation mean must be the same as the overall mean, E(y 1 x )  = E(y). 

Let's return to the bluegill data to explore the meaning of this relationship 
a bit more. We first need to describe the structure of the bluegill population so 
we can get a handle on the weights. Suppose that nine years is the age of the 
oldest bluegill in Lake Mary. There are then nine subpopulations of bluegills 
determined by age. For each subpopulation, let Pk denote the number of 
k-year-old bluegills divided by the total number of bluegills in the population. 
pk is the fraction of the total population of bluegills that are years old. The 
fraction 5 is also the probability that a randomly selected bluegill falls in the 
kth subpopulation.' 

The mean length E(Length) can be thought of as the expected length of a 

randomly selected bluegill. A bluegill can be selected randomly in two stages: 

. Randomly select a subpopulation according to the probabilities P, , . . . 
Then select a bluegill at random from the selected subpopulation. 

The expected length E(Length) is the same as a weighted mean of the mean 
subpopulation lengths, 

9 

= x E(Lengrh 1 Age = k ) )  

k =  I 

' A s  most anglers know, the fish in a lake are not equally likely to be captured, so randomly 

selecting a bluegill may not be easy in practice. 
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Comparing this result to the general description in (2.1), we see that inter- 
preting E(y) as the expected value of E(y I x) is the same as saying E(y) is a 
weighted mean of the mean function, where the weights are the relative sizes 
of the subpopulations. 

So far, our discussion has been in terms of the population, but the same 
ideas work for the data. The average length in the sample is 143.603 mm. 
This is related to the sample subpopulation means of Table 2.1 in the same 
way that the population mean is related to the subpopulation means: 

143.603 = (;8 - x 64.5 )(;* + - x 100.429) + . . .  + ($ x 1’70) 

2.5.2 Variance Function 

The variance function can be written as 

This equation may not be as formidable as it might seem at first glance. It 

describes the following steps to construct a variance function: 

Form the mean function E(y I x). 

. Form the new variable e = y - E(y I x) and square it to get e2,  which is 
just the squared deviation of an observation from its subpopulation mean. 

Form the mean function E(e2 I x). 

The variance function can be viewed as a mean function for the regression 
of the squared deviations e2 on x. It describes the mean-squared deviation 
from the mean function. This characterization of the variance function will be 

used in subsequent chapters to construct estimates. The first instance of such 
a construction is in Section 3.6.3. 

We saw in the last section that the population mean E(y) is a weighted 
mean of the subpopulation means. Is the same true for the variance function? 
Is it true that Var(y) = E{Var(y 1 x)}? The answer is generally no; the relation- 
ship between the population variance Var(y) and the subpopulation variances 
Var(y 1 x) is a little more complicated than the relationship between the means 
that we saw in the last section. But there is a very useful relationship never- 
theless: 

Var(y) = E{Var(y 1 x>> + Var{E(y I 
= weighted mean of Var(y 1 x) + variance of E(y I x) 

= weighted mean of Var(y I x) 

+ weighted mean of {E(y I x) - E(Y)}~  (2 .3 )  
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This can be written more explicitly for the bluegill data, 

9 

Var(Length) = c(pk x Var(Length I Age = k ) )  

k =  I 

9 

+ 4 x { E(Length I Age = k )  - E(Length))’ (2.4) 
k =  1 

These various expressions tell us that the variance of y is equal to the 
expected variance function plus the variance of the mean function. If the mean 
function is constant, E(y I = E(y), then the variance of the mean function is 
zero and in this special case 

But otherwise the variance of y will be greater than the expected variance 
function. 

The relationships described in this section also work for the data, as dis- 
cussed in Problem 2.3 

2.6 HIGHLIGHTS 

Regression is the study of how the conditional distribution of y I changes with 
the value of Special emphasis is often placed the mean function E(y I 
and on the Var(y I When there are only a few possible 

values of x ,  as in the bluegill data, a boxplot display of the data from the various 
conditional distributions can be useful for visualizing how the distribution of 
y I x changes with the value of x. A scatterplot of y versus can be used in 
the same way. 

When there are many values of the predictor in the data, the fundamental 
ideas of this chapter do not change, but regression is a bit more complicated. 
We use the haystack data to address associated issues in the next chapter. 

2.7 COMPLEMENTS 

Boxplots are a relatively recent invention due to John Tukey. An early de- 
scription of them is given in Tukey (1  977). 

PROBLEMS 

2.1 The data file l s p  contains data on a sample of fish similar to 
the Lake Mary data described in the text, except from a different lake in 
Minnesota. 
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2.1.1 Reproduce the equivalents of Table 1.1, Figure 1.3, Figure 2.2, 
Table 2.1 and Figure 2.6. 

2.1.2 Give a brief description of the major differences between the Lake 
Mary and Camp Lake populations with respect to the distribution 
of I Age. 

2.1.3 Suppose that the distributions of and of I (Age = 5) 
are normal, with means and variances given by the sample values. 
Without doing any calculations, which will be larger, Pr(Length > 
167.5) or Pr(Length > 167.5 I Age = 5)? Why? Compute estimates 
of these two quantities and verify your conjecture. 

2.2 Construct the p-value for the hypothesis that E(Length I Age = 5) is the 
same for the Lake Mary and Camp Lake populations, versus the alterna- 
tive that these subpopulation means differ. This requires use of a 
test not described in the text.) 

2.3 Equation 2.4 describes what happens in the population of bluegills. Ver- 
ify that this relationship holds for the Lake Mary sample of bluegills by 
following these steps. 

a. Compute the sample mean and variance of 

= 143.603 and = (24.137)’ 

b. Compute the weighted mean of the sample variances from the sub- 
populations, 

weighted mean of I Age) = (- 2 x (4.53553)’) 

78 

+ ( 78 7 x (14.164)’) 

+ .  . . + ($ x 

c. Compute the weightec mean of the squared deviations of the sample 
mean function from 

sample variance of I Age) = x (64.5 - 143.603)’ 

1 + (& x (100.429 - 143.603)’ 

+ . . .  ) + x (170 - 143.603)2 
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d. Apart from rounding error, the sample variance 

G ( L e n g t h )  = (24.137)* = 582.595 

should equal the sum of the quantities computed in steps (b) and (c). 

2.4 Reproduce Figure 2.2. After printing the figure, construct estimates of 
the median function and the third quartile function by connecting the 
corresponding estimates for the individual subpopulations as illustrated 
in Figure 2.6. 



C H A P T E R  3 

Introduction to Smoothing 

The haystack data introduced in Section 1.1 consist of the response and 
two predictors, C and Over. In this chapter we ignore Over and consider only 
the regression of on C, because we are not yet ready to tackle regressions 
with p = 2 predictors. The data are available in the file I sp .  

3.1 SLICING A SCATTERF'LOT 

Shown in Figure 3.1 is a scatterplot of versus C. Unlike the bluegill data, 
there are many different values of the predictor in the haystack data. This 

makes seeing how the conditional distributions change a bit more difficult, 
but the fundamental regression problem is the same: We want to study how 
the distribution of I C changes across the subpopulations determined by 
the value of C. 

FIGURE Scatterplot of versus C from the haystack data. 
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FIGURE 3.2 Scatterplot of versus from the haystack data with slices at C = 67 and 80. 

Suppose that we want to use Figure 3.1 to compare the distribution of 
1 (C = 67) to the distribution of j (C = 80). There are few, if any, values 

in the data at which is exactly 67 or 80, but there are many values of C 
close to these values, and we will treat nearby values as if they have the same 
value of C. This procedure is called 

To compare the distributions of I (C = 67) and I (C = 80), we sliced 
the plot in Figure 3.1 about the values 67 and 80 on the horizontal axis, and 
we deleted the other points for visual clarity. The resulting plot is shown in 
Figure 3.2. The portion of the horizontal axis covered by a slice is called the 

and the width of a slice window is called the The 
two slice windows in Figure 3.2 are centered at 67 and 80, and the common 
window width is about 4 feet. The slices in Figure 3.2 are visual aids that 
enable us to focus on the data in question. The average of Vol for the slice at 

= 67 is clearly less than the average for the slice at C = 80. 
Figure 3.2 was constructed by holding down the mouse button while drag- 

ging the cursor over the points that correspond roughly to the slice at = 67, 
and then, with the shift key depressed, selecting points in a similar fashion 
that correspond to the slice at C = 80. Holding down the shift key extends 

the selection to include both sets of points. From the plot’s menu, choose 
the item “Focus on Selection” to remove all points that are not selected. To 
return to the plot in Figure 3.1, select the “Show all” item from the plot’s 
menu. 

The slices in Figure 3.2 serve as graphical enhancements to aid in the 
discussion of statistical interpretations of a scatterplot. They are usually not 
needed in practice because our eyes provide a smooth transition between the 
distributions of I C for adjacent values of C. 
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3.2 ESTIMATING E(Y I X )  BY SLICING 

Estimating the mean function for the bluegill data was fairly straightforward 
because there were only six conditional distributions, one for each value of Age 
in the data. The situation is a bit more complicated for the haystack regression 
because there are many more conditional distributions represented in the data. 

Consider the slice about C = 67 in Figure 3.2 with a window width of about 
4 feet. We use this slice to approximate observations from the distribution of 
Vol 1 (C  = 67) with observations from the distribution of Vol 1 (65 5 C 5 69), 
where 69 - 65 = 4 is the window width. In effect, we are approximating the 
subpopulation in which C = 67 with observations from the somewhat larger 
subpopulation in which 65 5 C 5 69. 

It appears from Figure 3.2 that E(Vol1 is fairly constant within the slice, 
65 5 C 5 69, and that any within-slice change in E(Vol I is surely small 
relative to the within-slice standard deviation in Vol, or in symbols 

E[Vol I C = 691 - E[VoZ I C = 651 

within-slice SD of Vol 

is small. Since the change in the regression function within the slice is rel- 
atively small, we summarize the data in this slice by using the average of 
the responses, which is about 2,716 cubic feet, and the midpoint of the slice 
window, which is 67. Thus 2,716 cubic feet should be a useful estimate of 
E(Vol I C = 67), the mean volume of haystacks with a circumference of 67 feet. 
The slicing mode introduced in Section 2.3.2 allows this general operation to 
be performed rapidly as the brush is moved across the plot. 

3.3 ESTIMATING E(Y I X )  BY SMOOTHING 

We can use slicing to construct a crude estimate of the mean function by par- 
titioning the range of the predictor variable into several nonoverlapping slices. 
Within any slice, estimate E(y 1 x) to be constant and equal to the average of 
the response for all points within the slice. 

Return to Figure 3.1 and, with the mouse in selecting mode, place the cursor 
in the small triangle indicating a pop-up menu just to the left of the smoother 
slidebar, the slidebar that is initially marked “lowess.” Press and hold the 
mouse button. While the mouse button is pressed, a pop-up window will be 
displayed. Move the mouse to select the item “SliceSmooth” and then release 
the mouse button. The name above the slidebar should now be “SliceSmooth.” 
Finally, click once in the slidebar to the right of the slider. Two things should 
have happened: The number 32 should now be above the slidebar, and a 
series of connected line segments should have appeared on the plot, as shown 
in Figure 3.3. 

The number of slices is equal to 32, the number shown. The slice smoother 
is defined to put as close to an equal number of observations in each slice 
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FIGURE 3.3 Scatterplot of versus C for the haystack data along with a slice smooth 

as possible by varying the slice widths. There are 120 observations in the 
haystack data, so with 32 slices each slice should contain about four obser- 
vations, subject to the limitations imposed by ties among the values of the 
predictor on the horizontal axis. The horizontal line segments on the plot 
mark the width of the slices at the slice means. The vertical line segments that 
join the horizontal segments aid visualization by giving your eye something 
to follow. The result is called (somewhat confusingly) a “curve.” This curve 
gives a rough idea about how the mean function changes with the circumfer- 
ence. 

The procedure leading to the curve on Figure 3.3 is an instance of 
The curve traced on the plot is called a of the data. The name 

comes from the process of representing each slice by a smooth curve, in this 
case a horizontal line segment. The final smooth need not actually be smooth, 
as should be clear from Figure 3.3.  The curve on Figure 2.6 is also a smooth 
constructed in a related but somewhat different way. There are many different 
smoothing methods. Most come with a that allows the 
user to control the amount of smoothing. 

The smoothing parameter for the slice smooth shown in Figure 3.3 is the 
number of slices. Moving the slider changes the number of slices and the 
amount of smoothing. A large number of slices as in Figure 3.3 provides 
minimal smoothing, leading to a very rough curve that is too variable and is 
called Too few slices will giving very smooth curves 
that may miss important features of the mean function, resulting in bias in es- 
timation of the mean function. In the extreme case of a single slice, the smooth 
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FIGURE 3.4 Scatterplot of Vol versus C for the haystack data along with a lowess smooth. 

is simply a horizontal line at the average of for all 120 observations, which 
is a very poor estimate of E(Vol I C ) .  A reasonable value for the smoothing 
parameter that balances between undersmoothing and oversmoothing, or be- 
tween variability and bias, can usually be obtained by interactively changing 
the smoothing parameter and visually judging the smooth against the data. 
The references in the complements to this chapter discuss numeric techniques 
for selecting a smoothing parameter. 

The slice smoother is pretty crude compared to others available, but it serves 
to illustrate basic ideas underlying smoothing. Arc has a more sophisticated 
smoother, called the smoother. The construction of this smoother relies 
on techniques presented later in the book, but the underlying ideas are like 
those for the basic slice smoother. We will discuss construction in a later 
chapter, after developing necessary background material. For now we will use 
smoothers as visual aids for understanding mean and variance functions. 

The lowess smoother can be selected from the pop-up menu next to the 
smoother slidebar. The smoothing parameter is always between 0 and 
1. Values close to 0 usually produce undersmoothed jagged curves, while val- 
ues close to 1 usually produce oversmoothed curves. Values of the smoothing 
parameter between 0.4 and 0.7 usually produce smooths that match the data 
well, as shown in Figure 3.4. The lowess smooth gives a much cleaner impres- 
sion of the mean function than the slice smooth in Figure 3.3. Nevertheless, 
both smooths suggest that the mean volume increases nonlinearly with cir- 
cumference, as might be expected. 
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Throughout this book, we will call the slidebar that is used to add a smoother 
to a plot the 

3.4 CHECKING A THEORY 

During our initial discussion of the haystack data in Section 1.1, we conjec- 

tured that the simple approximation 

- 
1279 

might give a useful prediction of the volume of a haystack based on its cir- 
cumference. We can now make this possibility a bit more precise by imagining 

that if haystacks are hemispheres on the average, then 

(3.1) 
C3 

E(V0l I C)  = - 
127r2 

One way to check this conjecture is to add a plot of this mean function on a 
scatterplot of versus C .  

A curve can be added to a scatterplot in using the “Options” dialog. 
Remove any smooths by moving the smoother slidebar to the left, and then 
click on the triangle by the word “Options.” The resulting dialog is shown in 
Figure 3.5. This dialog, which is described more fully in Appendix A, Section 
A.8.2, allows changing many features of a plot, including the range and labels 
on the axes. To add the curve specified by (3.1), type the equation as shown 
in Figure 3.5 in the long narrow text window in the dialog and click “OK.” A 

plot of the mean function (3.1) will be added to the scatterplot. For purposes 
of comparison, a smooth with smoothing parameter 0.6 is also shown 
on the plot i n  Figure 3.6. 

The plot of the mean function given by (3.1) is the lower curve in Fig- 
ure 3.6. It passes though the bulk of the data and suggests that treating round 
haystacks as hemispheres gives predictions that might be useful. However, 

since the smooth passes uniformly the conjectured mean func- 
tion, treating haystacks as hemispheres will uniformly the mean 
function E(Vo1 I leading to underpayment to farmers. There is room for 
improvement. 

3.5 BOXPLOTS 

In the previous section we relied on a scatterplot of versus C to study 
the conditional distribution of I C. Boxplots can also be used to study this 
regression problem. 
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FIGURE 3.6 Scatterplot of versus Cfor the haystack data. The lower curve is the conjectured 
mean function (3.1). The upper curve is a lowess smooth. 

As discussed in Section 1.5.2, boxplots for the regression of on C can 
be constructed by using the “Boxplot of’ item in the Graph&Fit menu for 
the haystack data by moving Vol to the “Selection” list, and moving C to the 
“Condition on” box. The dialog shown in Figure 3.7 will then appear. The top 
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Number o f  slices 

47 

7 

FIGURE The dialog for slicing prior to the construction of boxplots. 

line in this dialog tells us that there are 33 unique values of C in the data set. 
Conditioning on C will result in 33 boxplots in a single display. The dialog 
gives us an opportunity to view the 33 boxplots by clicking the top button in 
the dialog. By selecting the second button, we can slice C into the number 
of slices we specify. One boxplot will be drawn for each slice. Conditioning 
on 33 values of will not be very effective because each boxplot will be 
based on very few observations; slicing will be more effective. As shown in 
the dialog, we have selected seven slices. 

After clicking the “OK” button, the program will create a new variable 
called that divides C into seven groups, each containing about the 
same number of observations. Ties may cause these numbers to be uneven. 
The mean value of C for all the observations in the first slice is 62.57, and this 
is the value of for all these observations. Similarly, in the last slice the 
mean is 77.85, and the value of for the corresponding observations is 
77.85. You can view all the values of using the “Display data” item 
in the data set menu. 

Figure 3.8 is the set of boxplots produced by this process. This display con- 
sists of seven boxplots, as expected. The horizontal axis is labeled according 
to the within-slice circumference mean. The number of observations per slice, 
as well as the sample mean and variance of within each slice, can be found 
by using the slicing mouse mode. The slice and lowess smooths provide infor- 
mation on the mean function E( I C). In contrast, the boxplots of Figure 3.8 
show medians and consequently allow us to judge the behavior of the 

of 1 C. The median function would be a linear function of C if 
the rate of increase in was the same at all values of C. The plots suggest 
that the median function is a nonlinear, increasing function of the value of 
The nonlinearity may be more apparent if you imagine a straight line from 
the median of the first slice to the median of the last slice. The medians of the 
other slices all fall below the line. 

For symmetric distributions, the mean and the median are the same. Since 
the seven boxplots of Figure 3.8 all seem fairly symmetric, the median function 
is about the same as the mean function estimated by the smoother for 
the haystack regression in Figure 3.4. 

Finally, since the boxes at the right of Figure 3.8 are longer than the boxes 
at the left, the variance function increases with C. This conclusion 
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FIGURE 3.8 Boxplots for visualizing the conditional distribution of C in the haystack data. 

might be reached also by visual inspection of the scatterplot in Figure 3.4, but 
the visual evidence doesn’t seem nearly as strong. Additional enhancements to 
scatterplots are usually needed for visual inference about the variance function. 
This is discussed in the next example. 

3.6 SNOW GEESE 

Snow geese are large, impressive birds that can have wing spans of three feet 
and weigh six pounds. Traveling a mile high at 50 miles per hour, their yearly 
migration cycle can cover 6000 miles. Snow geese arrive at their breeding 
grounds in Arctic regions of North America and extreme Siberia during late 
May or early June, and they begin their journey south in late August or early 
September. The snow geese of North America winter in the south-central 
United States near the Gulf of Mexico, particularly in Louisiana and Texas. 
Some venture into Mexico. 

In 1985 nearly half a million snow geese nested in the McConnell River 
area on the west coast of Hudson Bay near Arviat (formerly Eskimo Point) 
in the Northwest Territories. The coastal plain of Hudson Bay’s west coast 
is covered with countless shallow lakes interspersed with meadows of wet 
and dry tundra. The snow geese of the McConnell River area are likely the 
most intensively studied in the Canadian Arctic. Biological studies began in 
the 1950s, but it wasn’t until the late 1970s that aerial survey methodology 
was developed to track the size of the McConnell River population. Aerial 
photo surveys are currently conducted every five or six years during July and 
August when the birds are in moult and flightless. 
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Several different methods were tried during the development of the aerial 
survey methodology. Visual aerial surveys, in which observers visually esti- 
mated flock size, were relatively fast and cheap, and the results were immedi- 
ately available. But flocks of tlightless snow geese can range in size from a few 
to several hundred and so the accuracy of visual estimates was at issue. Aerial 
photo surveys were known to be accurate, but also more time consuming and 

An experiment was conducted in 1978 to study the ability of trained ob- 
servers to estimate flock size visually. Two trained aerial observers estimated 
the sizes of n = flocks of snow geese. The actual size of each flock was 
determined from photographs taken during the survey. The data from this 
experiment are available in the Arc file geese. l s p .  

costly. 

3.6.1 Snow Goose Regression 

The results from the snow goose survey consist of three variables, the actual 
flock size determined from the aerial photographs, and the estimated 

flock sizes, and from each of the observers. The issue in this 
experiment can be approached as a regression with response y = and 
p = 2 predictors x,  = and x2 = However, we will stay with a single 
predictor and consider only the regression of on 

The regression problem is to study the distribution of I If the 
observer estimates that a particular flock has 100 geese, what can we say about 
the actual flock size? As in our previous examples, the mean and variance 
functions I and Var(Photo 1 may be of particular interest, 
but the goals of this regression study are somewhat different from those for the 
haystack or bluegill data. Here the scientists were interested only in gaining 
information to aid in choosing between photo and visual surveys. Once their 
decision was made, the results of the experiment would cease to be of much 
interest, except as might be needed in support of that decision. 

A plot of versus is shown in Figure 3.9. The points with the 
four largest values of account for a substantial portion of the available 
plotting region. Because of this it is difficult to see the data from the con- 
ditional distributions having small values of The visual resolution in 
the plot can be improved by removing the four points in question. This can 
be done by first selecting the four points so that they become highlighted, as 
shown in Figure 3.9. Next, from the plot’s menu select the item “Remove Se- 
lection.” This causes the four selected points to be removed from the plot. The 
item “Focus on Selection” would cause all points those selected to be 
removed from the plot. After removing the selected points, the plot will look 
just like that in Figure 3.9 but the points in question will no longer be present. 

Finally, return to the plot’s menu once again and select the item “Rescale 
plot.” This final action rescales the plot so the space is filled by the remaining 
points. Your plot should now look like that in Figure 3.10 but without the two 
superimposed lines. 
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FIGURE 3.9 Scatterplot of the photo count versus the visual estimate by observer 
2 from the snow geese data. The points with the four largest values of are selected. 

> Options 

7 Rem lin trend 

7 Zero line 

3 Join points 

OLS NIL 
v- 
lowess 0.6 

In- 

i 

Case deletions 

0 50 100 150 200 
Obs2 

FIGURE 3.10 Scatterplot of the photo count versus the visual estimate by observer 2 Obs2 
from the snow geese data. The four points with the largest values of have been removed 

for visual clarity. 
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3.6.2 Mean Function 

If the second observer’s estimates were very accurate, we could expect the 
mean function to be close to a straight line with intercept zero and slope one. 

We begin the analysis by thinking of the possibility that 

I = (3.2) 

Given this mean function, the observer would be correct on the average. For 
example, if the observer were to estimate each of 500 flocks to be of size 40, 
we would expect the average photo count for these flocks to be close to 40, 
although the photo counts for the individual flocks would surely vary about 
this average. Any systematic deviation of the actual mean function from the 
possibility given in (3.2) would represent a in the observer’s estimates. 
Consistent over- or underestimation of flock size could certainly have a serious 
impact on estimates of the size of the snow goose population produced from 
a full survey by the second observer. We can therefore think of the mean 
function in (3.2) as the mean function; the subscript on the mean 
function is intended to remind us of this characterization. 

The scatterplot of Figure 3.10 contains two lines. The curved line is the 

estimate I with smoothing parameter 0.6. The straight 
line is simply y = x; it corresponds to the unbiased mean function (3.2). This 
line was placed on the plot by typing y = into the text area of the plot’s 
“Options” dialog, as in Section 3.4. We see from the plot that for small values 
of 

I M 1 

where I represents the estimate of the mean function 
1 This makes sense because the observer could actually count 

the number of geese in very small flocks. However, the observer seems to 
underestimate the size of flocks containing 15 to 80 geese, and to overestimate 

the size of larger flocks. There may be good reason to question the accuracy 
of visual estimates by the second observer. 

3.6.3 Variance Function 

In addition to providing information on the regression function, Figure 3.10 
also suggests that the variance function increases with the second observer’s 
count. The telling characteristic of the plot is the increasing variation about the 

smooth. Again this seems reasonable if the observer could essentially 
count the number of geese in very small flocks. 

Remove the lines on your copy of Figure 3.10. The smooth can be 
removed by moving its slider to the extreme left position. The straight line 
can be removed by checking the box “Clear all lines” in the plot’s “Options” 
dialog. Next, go to the pop-up menu on the smoothing slidebar and select the 
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FIGURE 3.11 Scatterplot of the photo count Photo versus the visual estimate by observer 2 
Obs2 from the snow geese data. The lines superimposed on thc plot are lowess smooths for the 

mean and variance function. The four points with the largest values of Obs2 have been removed 

for visual clarity. 

item “lowess+-SD.” Finally, move the slider to select a smoothing parameter 
of 0.5. Your plot should now look like that in Figure 3.1 1 .  

Figure 3.1 1 contains three curves. The middle curve is just the esti- 

mate of the mean function, which is currently represented by I 
The upper and lower curves are of the form 

I + I 

and 

I - d p  I 

where I is a estimate of the standard deviation 
function. The two curves together are called 

Estimates of the standard deviation function are constructed by accord- 
ing to the discussion of (2.2) in Section 

1. A smooth estimate of the mean function E(y I x) is constructed using the 

2. The new variable 

smoothing parameter selected with the slider. 

= - E(y I x))2 

is formed. 
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A smoothed estimate of E(i2 I x) is formed using the same smoothing 
parameter selected for the mean function in the first step. This step is 
just like smoothing a scatterplot of i2 versus 

4. Finally, (=(y 1 is set equal to the square root of the smooth esti- 
mate of E(i2 I x) from the third step. 

The variance smooths on Figure 3.1 1 support our previous visual impres- 
sion that the variance function is increasing. Additionally, it seems to increase 
rapidly for values of between 25 and 80 geese and then become relatively 
stable. 

COMPLEMENTS 

Regression smoothing has become a major focus of statistical research, with a 
recent change in emphasis from theoretical to practical results. Altman (1992) 
provides an introduction to the area. Book-length treatments with an applied 
orientation include Hkdle ( 1990) and Simonoff ( 1996). Bowman and Azzalini 
(1997) provide interesting discussions of the use of smoothing in inference, 
and they also provide excellent computer code that can be used with the S-plus 
computer package. 

The slice-smoother described in the early part of this chapter is not used 
very often in practice, but it does provide an introduction to the ideas of 
smoothing. The smoother was suggested by Cleveland (1979), and if 
the mean function is smooth, will give similar results to other popular 
smoothing techniques. The variance smoothers described in Section 3.6.3 can 
be improved upon at the cost of more calculations; see Ruppert, Wand, Holst 
and Hossjer (1997). 

The ozone data used in Problem 3.2 were discussed by Breiman and Fried- 
man (1985). The snow geese experiment was designed and supervised by one 
of the authors (RDC). 

PROBLEMS 

The following problems relate to the snow goose study. 

Construct a plot of versus and remove the four points 
with the largest values of Next, construct a estimate 
of I with smoothing parameter 0.6. Compare this 
estimate of the first observer’s mean function to the unbiased 
mean function. Does observer 1 seem to be a “better” estimator 

of tlock size than observer 2? Why? 

Describe the estimate of Var(Photo I Do the pre- 
dictions by observer 1 seem more or less variable than those by 
observer 2? Why? 
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3.1.3 Construct a plot of versus remove the 4 points with 
the largest values of and construct a estimate 
of I with smoothing parameter 0.6. Next, from the 
pop-up menu on the smoother slidebar, select the item “Extract 
mean.” This item allows you to save the values for 

= I ,  ..., 45, as the variable h, or the name you type in the text 
area of the dialog that appears on the screen. Next, draw a plot 
with on the vertical axis and h on the horizontal axis. What 
does this plot show? Finally, draw a plot of versus h. What 

information about the regression is available in this last plot? 

3.2 The file l s p  provides daily measurements on ozone level and 
several other quantities for 330 days in 1976 near Upland, in southern 
California. Load this data file, and then draw the plot of the ozone level 

versus the temperature in degrees Fahrenheit Use smoothers 
to describe the dependence of on 

3.3 A sample of n = 52 faculty members was selected from a small midwest- 
ern college. For each faculty member in the sample the investigator deter- 

mined their sex (Sex = 0 for males and = 1 for females), their salary, 
and their years of service. The data are available in file salary.  l s p .  The 
data were collected in the early 1980s, so the salaries are much lower 
than those today. 

Suppose we select another faculty member at random from the college 
and determine only herhis salary. Using the data collected, can we say 
anything about whether the faculty member is more likely to be male or 
female? We can approach this as a regression with as the response 
and as the predictor. To gain information to help us answer the 
question, we need to study the conditional distribution of I So 

far in this book we have considered response variables that are continuous 
or many-valued. The regression in this problem is a bit different because 
the response is taking two values zero or one. This does not change 
the general issues, but special interpretations are possible and useful. 

Because the response is binary, I has a Bernoulli distribu- 
tion with a probability of female (“success”), Pr(Se.x = 1 I that 
can be a function of the salary. (Bernoulli distributions, which are the 
same as binomial distributions with one trial, are assumed as part of the 
prerequisites for this book, but they are reviewed in Section 21.2.) This 
probability is the same as the regression’s mean function. 

3.3.1 Show that 

E(Sex I = Pr(Sex = 1 I 

Calculate the expectation of a Bernoulli random variable. 

3.3.2 Construct a scatterplot of Sex on the vertical axis versus on 
the horizontal axis. Does the highest salary belong to a female or 
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male faculty member. What is the lowest salary of a male faculty 

member? (Hint: Use the “Show coordinates” mouse mode.) 

Place a lowess smooth with tuning parameter 0.6 on your plot. 
Describe what the smooth is estimating. What does the smooth 
say about the mean function? What does this imply about the 
salary structure at the college? Do the results necessarily imply 

anything about discrimination at the college? 

3.3.4 Continuing with the same plot, delete the point corresponding to 
the highest female salary. How did the smooth change and why 
did it do so? 

Estimate the mean function for the regression of Sex on Year using 
a slice smooth with 6 slices. Combining this information with that 
from the regression of Sex on Salary, what can you infer about 
the equity of the salary structure at the college? 

3.3.3 

3.3.5 
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Bivariate Distributions 

In Section 1.6 we reviewed ways of thinking about the distribution of a single 
random variable and then applied some of those ideas to the normal distri- 
bution. Our goal in this chapter is to study a pair of random variables, with 
emphasis on the normal. This study can help gain insights into the nature of 
regression. 

Regressions often begin with a population of experimental units, such as 
haystacks in Nebraska, bluegills in Lake Mary, or some well-defined popu- 
lation of people. The experimental units might be characterized by several 
measurements, but in this chapter we will be concerned with only two at a 
time. We denote these two measurements by x and y .  Selecting an experimen- 
tal unit at random from the population gives an observation on the random 

pair (x,y). Both x and y are random variables and they vary together from 
experimental unit to experimental unit. The bivariate distribution of (x, is 
relevant when it is important to understand how x and y vary together. For 
example, as part of the haystack study we might wish to investigate the joint 
distribution of circumference and “over.” 

Not all regressions are of this type. Consider an experiment to investigate 
the effect on grain yield of adding 5, 10, 15 or 20 pounds of nitrogen 
( N )  per acre. The experiment is conducted by applying each rate of nitrogen 
to 10 fields, for a total of 40 fields. In this experiment it is valid to speak 
of the distribution of I N .  But the experiment does not allow a bivariate 
distribution for ( Y , N )  because N is purposefully selected by the experimenter 
and therefore is not random. 

In this chapter we restrict attention to studies in which both x and y are 
random variables. 

4.1 GENERAL BIVARIATE DISTRIBUTIONS 

Using the haystack data for illustration, a basic way of understanding the joint 
distribution of (x, y )  is through probability statements of the form 

Pr(cl I C I c, and 5 Over 5 (4.1) 
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FIGURE 4.1 Representative regions for illustrating joint distributions. 

where the c’s and i i ’ s  are constants to be specified. For example, the state- 
ment 

Pr(C < 67 and Over < 35) (4.2) 

represents the probability that a randomly selected haystack has circumfer- 
ence less than 67 feet and “over” less than 35 feet. It can be visualized as 
the probability that a randomly selected haystack falls within the rectangu- 
lar region in the lower left of the plot shown in Figure 4.la. Similarly, the 
statement 

Pr(73 5 C 5 79 and 40 5 Over 5 45) 

represents the probability that a randomly chosen haystack falls within the rect- 
angular region in the upper right of Figure 4.1 a. The regions in Figure 4.1 a 
are shown again in Figure 4. lb  superimposed on a scatterplot of the circum- 
ference and “over” for the 120 haystacks in the data set. The point cloud gives 
information on how C and Over vary together. Haystacks with relatively large 
values of C tend to have relatively large values of Over, for example. In ad- 
dition, while the probability in (4.2) is unknown, it can be estimated by using 
the fraction of sample haystacks that fall within the region. Since there are 35 
haystacks in the region, the estimated probability is 35/ 120 = 0.29. The num- 
ber of haystacks in rectangular regions can be determined quickly by using 
the “slicing mode” and resizing the brush to the desired shape, as described 
in Section 2.3.2. 
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FIGURE 4.2 An illustrative bivariate density. 

4.1.1 Bivariate Densities 

If we could calculate probability statements like in (4.1) for any values of 
the constants, we would know the joint distribution of y and x, although it 
could still be difficult to gain a useful mental image of how y and x vary 
together. In some cases the nature of the random variables themselves allows 
more intuitive representations of their joint distributions. In particular, the joint 
distribution of continuous random variables (x, is usually expressed in terms 

of their bivariate densityfunction. The bivariate density for C and Over from 
the haystack data gives the relative density of haystacks with respect to their 
circumference and “over.” Generally, bivariate densities are interpreted much 
like the univariate densities reviewed in Section 1.6, except they characterize 
the joint variation of two random variables rather than the variation of a single 
random variable. 

An illustrative bivariate density for two generic random variables is shown 
in Figure 4.2, which consists of a 3D surface and a series of contours drawn 
in the horizontal xy-plane. Ignore the contours for the moment and focus 
on the surface. The height of the surface gives the relative density in the 

population; the most likely values are in the region of the xy-plane where the 
density is the highest. In the case of a single random variable, probabilities 
are associated with area under its density. Similarly, for joint distributions, 
probabilities are associated with volume under the density. The total volume 
under the density of Figure 4.2 is 1, and the probability of an observation 
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falling in any region in the xy-plane is the volume under the density and 
above that region. 

Bivariate densities can also be represented as a series of concentric curves 
that trace contours of constant height of the density function. Each of the con- 

tour curves in the horizontal plane of Figure 4.2 traces a path of constant height 
on the density function. The smallest contour in the center marks the region 
of highest density. That contour encloses the most likely values of ( x , y ) .  The 

probability that (x ,  falls within the region enclosed by the smallest contour 
is the volume under the density and above that region. 

4.1.2 Connecting with Regression 

Recall that regression is the study of conditional distributions. When x and y 
are both random, so that ( x , y )  follows a bivariate distribution, there are two 

possible regressions. We could study either the regression of y on x or the 
regression of x on y ,  although usually the nature of the study dictates which 
variable will be the response and which will be the predictor. For example, 
in the haystack data the pair follows a bivariate distribution, and we 
could study either the regression of on or the regression of C on 
although thc goal of predicting from C suggests that should be the 
response. 

Suppose now that y is the response variable. Creating a regression set- 
ting from a bivariate distribution requires creating conditional densities for 
y I x from the bivariate density for This can be done by slicing the bi- 
variate density at the desired value of x .  For example, to get the conditional 

density of y I ( x  = 0) from Figure 4.2, mentally slice the density perpendic- 
ular to the xy-plane with another plane containing the line x = 0. The in- 
tersection of the slicing plane with the bivariate density forms a curve that, 
when normalized to have area one, gives the conditional univariate density 
of y 1 ( x  = 0). Figure 4.3 shows a stylized representation of five conditional 
densities formed in this way. The means of these five conditional distributions 
fall on a common line which corresponds to the mean function E(y I x ) ;  hence, 
for this regression the mean function is linear. The mean function could well 
be nonlinear in other regressions, in which case the means would fall on a 

curve rather than a straight line. The variances of the five conditional distri- 
butions are not the same, and thus the variance function Var(y 1 is noncon- 
stant. 

4.1.3 Independence 

The notion of independence is an important special case for bivariate random 

variables: The random variables x and y are independent if the conditional 
distribution of y I does not depend on the value of x .  Equivalently, x and 
y are independent if the conditional distribution of y I is the same as the 
marginal distribution of y regardless of the value of x. The roles of x and y 
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Mean function 

FIGURE 4.3 Conditional distributions whose means lie on a line with variance that changes as 

the mean changes. 

can be changed in this definition without changing its meaning; saying that 
the conditional distribution of y I x is the same as the marginal distribution of 
y is the same as saying that the conditional distribution of I y is the same as 

the marginal distribution of x. 

Independence means just what the name implies: Knowing the value of x 

gives absolutely no information about y .  If x furnishes any information at all 
about y ,  then x and y are said to be 

In some regressions it may be obvious that two random variables are 
dependent. It seems clear that and are dependent in the haystack 
data, and that and are dependent in the Lake Mary data. How- 
ever, this will not be so clear in other regressions that we encounter in this 
book. 

Two random variables can be dependent in many different and complicated 
ways. Consequently, there are no general measures of the strength of depen- 
dence between two random variables. But there are measures for special types 
of dependence. We discuss in the next section a way of measuring the strength 
of between two random variables. 

4.1.4 Covariance 

In this section we introduce the denoted Cov(x, 
which is a numerical measure of how two random variables x and y vary 
together. Specifically, Cov(x,y) measures the degree to which x and y are 

How tightly would the points in a scatterplot of y versus x 

cluster about a common straight line with nonzero slope? 
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The population covariance is defined as 

Cov(x.y) = E{rx - E(x)l[y - E(y)l) 

= mean of { [ x  - E(x)l[y - E(y)l} 

(4.3) 

= E(xy 1 - E(x)E(y 1 (4.4) 

= mean of the product - the product of the means 

Equations (4.3) and (4.4) are alternate expressions for the same quantity. We 
can see from (4.3) that Cov(x,y) is positive if x above its mean tends to occur 

with y above its mean, and x below its mean tends to occur with y below 
its mean. If x tends to be below its mean when y is above its mean, or vice 
versa, then Cov(x,y) is negative. In both cases, the absolute value of Cov(x,y) 
indicates the strength of the linear relationship between x and y .  

The absolute value of a covariance can never be larger than the product of 
the standard deviations. 

If Cov(x,y) = (Var(x)Var(y))'/*, then there must be an exact linear relationship 
between x and y, and all pairs of observations must fall on a straight line with 
positive slope. If Cov(x,y) = -(Var(x)Var(y))Ii2, then again there must be an 
exact linear relationship between x and y ,  but now all pairs of observations 
must fall on a straight line with negative slope. If Cov(x,y) = 0, then there 
is no linear relationship between x and y ,  although generally there could be 

some more complicated type of dependence. 
The population covariance can be estimated using either (4.3) or (4.4) by 

replacing the population means with sample averages, 

A 1 "  
Cov(x,y) = - C(Xi - - 

n - 1  
i= I 

(4.6) 

The divisor of n - 1 ,  instead of n,  is conventional and brings about certain 
desirable statistical properties. In any event, the effect of using n - 1 instead 
of n is negligible, unless n is quite small. 

Here is a list of additional properties of the population covariance. We will 
not be using all of them immediately, but it should be helpful to have them 
collected in one place for future reference. 

- The covariance is a symmetric measure of linear dependence: The covari- 
ance between x and y is the same as the covariance between y and x .  In 
symbols, Cov(x,y) = Cov(y,x). 
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The covariance of a random variable x with itself is the same as its vari- 
ance, 

Cov(x,x) = Var(x) 

Define the new random variable w = a + x where a and b are con- 
stants. Then 

Cov(w,y) = Cov(a + x x),y) = b x Cov(x,y) 

Adding a constant to either or y does not change their covariance, but 
multiplying either x or y by a constant results in the covariance being 
multiplied by the same constant. This property, which is similar to that 
for standard deviations discussed in Section 1.6, reflects the fact that the 
magnitude of the covariance depends on the units in which x and y are 
measured. Changing the units of either x or y will change the value of 
the covariance, unless Cov(x,y) = 0. 

Let x ,  y, and be three random variables. Then 

Cov(x,y + = Cov(x,y) + Cov(x,z) 

The variance of the sum of two random variables is equal to the sum of 
their variances plus twice their covariance: 

Var(x + y) = Var(x) + Var(y) + 2Cov(x,y) (4.7) 

. The last equation generalizes: If y, ,y2,. . . ,yk are k random variables and 

b, ,  b,, . . , , bk are any k constants, then 

/ k  \ k k - l  k 

+ 2 c  b,bjCov(y,,yj) 

i = l  j = i + l  

4.1.5 Correlation Coefficient 

Although the covariance measures the linear relationship between two vari- 
ables, it is hard to use because interpretation of its value depends on the prod- 
uct of the standard deviations: We can't tell if Cov(x,y) = 1 is large or small 
without knowing the values of Var(x) and Var(y). If (Var(~)Var(y))'/~ = 1, 
then Cov(x,y) = 1 has attained its upper limit, and we know that y is an ex- 
act linear function of but if (Var(~)Var(y))'/~ = 1000 there is only a weak 
linear association between the random variables. It will be easier to interpret 
the population covariance if we standardize it by dividing by the product of 
the standard deviations. The standardized population covariance is called the 
population correlation coefficient and is denoted by using the Greek letter p 
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(rho): 

63 

(4.9) 

When the random variables x and y are clear from context, we will simply 
write p for p(x,y) .  

The population correlation coefficient can also be expressed in terms of the 
stundurdized variables: 

x - E(x) 
= - 

and 

The correlation between x and y is the same as the covariance between 2, and 

Z ,  : 

P(X, Y) = COV(Z,, 2,) 

The sample correlation coefficient is just the sample covariance divided by 
the product of the sample standard deviations: 

(4.10) 

The sample correlation coefficient can be obtained in Arc as described in 

Section 1.4 and illustrated in Table 1 . 1 .  
Because we have divided by the product of the standard deviations, the 

correlation coefficient is a unitless number that always falls between -1 and 
1. If p(x,y) = 0, the random variables are said to be uncorreluted. Otherwise, 
the magnitude of p(x,y) indicates the degree to which x and y are linearly 
related, just as the population covariance does. If p(x ,y )  = 1, then (x,y) always 
falls on a line with positive slope. If p(x,y) = -1, then ( x , y )  always falls on a 
line with negative slope. Beyond that, careful interpretation of the correlation 
coefficient depends on characteristics of the bivariate distribution. In the next 
section we study the meaning of the correlation coefficient in the family of 
normal distributions. 

4.2 BIVARIATE NORMAL DISTRIBUTION 

The family of bivariate normal distributions is frequently encountered in statis- 
tics. Five numbers are required to specify a particular bivariate normal distri- 
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bution for (x,y) :  

The marginal population mean E(y )  and variance Var(y) of y 

The marginal population mean E(x )  and variance Var(x) of x 

The correlation coefficient p(x,y)  

These five numbers are the only population information that is required to 
compute the joint probability statements discussed in Section 4.1. 

Of these five numbers the first four are used to characterize the marginal 
distributions of x and y .  In particular, if ( x , y )  has a bivariate normal distri- 
bution, then the marginal distributions of x and y are each univariate normal. 
This means that only one additional number, the correlation coefficient p(x, y). 

is needed to specify the joint variation for a bivariate normal. This is one of 
the distinguishing properties of the normal distribution. For many other distri- 
butions, the correlation coefficient is not enough to characterize joint variation 
fully. We will return to this idea in Section 4.2.2. 

A is any bivariate normal in which x 

and y have each been standardized to have mean 0 and standard deviation 1. 
There are many standard bivariate normal distributions, one for each possible 
value of p(x,y). 

4.2.1 Correlation Coefficient in Normal Populations 

The following cases serve as first benchmarks for understanding what the 
correlation coefficient measures in bivariate normal populations: 

Independence, p = 0. If x and y are uncorrelated so that p(x,y)  = 0, then 
they are This is another special property of the bivariate normal 
distribution. Uncorrelated random variables need not be independent unless 
they follow a bivariate normal distribution. 

The density for a standard bivariate normal distribution with p = 0 is shown 
in Figure 4.4. In this case the contours of constant density are concentric 
circles, although the perspective view shown in the figure makes them appear 
as ellipses. Figure 4.5a shows contours along with a sample of 100 points 
from the standard bivariate normal with p = 0. Reading from the inside out, 
the contours enclose lo%, 30%, 70%, 90%, and 98% of the population. 
The probability that an observation on the random pair ( x ,  y )  falls within the 
smallest contour is 0.10, and the probability that it falls outside the largest 

contour is 0.02. Thus for our sample of 100 points, we should expect about 
10 to fall within the smallest contour and about 2 to fall outside the largest 
contour. 

The Sign of p. If p # 0 then x and y are The sign of p indicates 
the qualitative nature of the dependence. Positive correlations indicate that 
larger values of tend to occur with larger values of y .  Similarly, negative 
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FIGURE 4.4 Standard bivariate normal density function for p = 0 

correlations indicate that larger values of x tend to occur with smaller values 
of y .  This is the same interpretation that we discussed for the population 
covariance in Section 4.1.4. 

The Magnitude p. When the correlation coefficient is positive the con- 
tours of the bivariate normal distribution change from circles to ellipses that 
become increasingly narrow as p approaches 1. Figures 4.5b4.5d, which were 
constructed in the same way as Figure 4Sa,  show how standard bivariate nor- 
mal distributions change as p increases; when p = 1 all contours collapse to 
the line with slope I that passes through the origin, and all sample points must 
fall on this line. 

The same comments apply when p < 0 except the contours are oriented 
from upper left to lower right, as illustrated in Figure 4.6. 

Units p. The correlation coefficient is a unitless number between -1 
and 1. Figure 4.6a shows contours of the standard bivariate normal distri- 
bution with p(x,y)  = -0.75, along with a sample of 100 observations. Fig- 
ure 4.6b was constructed in the same way, except the variance of y was set 
to Var(.y) = 100’. Except for the numbers on the vertical axes, the visual im- 
pressions of these two figures are nearly identical. The plot in Figure 4 . 6 ~  
was constructed from a bivariate normal distribution with p ( x , y )  = -0.75. The 
numbers on the axes have been removed so we have no information on the 
mean or variance of x or y .  However, the plot still allows an impression of the 
relationship between x and y ,  and of the correlation coefficient. The particular 



66 CHAITER 4 BIVARIATE DISTRIBUTIONS 

m 

l9 
rl 

0 

4 

7 

a. p = 0. 

I 

1 
I 

b. p = 0.5. 

I 

c .  p = 0.75. d. p = 0.95. 

FIGURE 4.5 Contour plots and 100 observations from four standard bivariate normal distribu- 
tions. In each case the contours enclose 10%. 10%, 70%, 90%, and 98% of the population. 

units attached to and y do not matter for interpretation of the correlation 
coefficient. 

Plotting Guidelines. The plot in Figure 4.6d is a little different. Like Fig- 
ure 4.6a, the plot is of a sample from a standard bivariate normal distribution 
with p = -0.75. However, the range on the y-axis of Figure 4.6a is -3 to 3, 

while the range on the y-axis of Figure 4.6d is -6 to 6. Such differences in 
plot construction can change the visual impressions of the plot, the strength of 
relationship, and of the magnitude of the correlation coefficient. For ease and 
consistency of interpretation, scatterplots should be constructed so that ( 1) the 
physical length of the vertical axis is the same as that of the horizontal axis, 
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FIGURE 4.6 Contour plots and 100 observations from four standard bivariate normal distribu- 

tions. In each case the contours enclose 1096, 30%, 50%. 70%. 90%, and 98% of the population. 

and (2) 

Vertical axis range Horizontal axis range 
N 

sd(y) sd(x) 

so that the ranges on the vertical and horizontal axes cover about the same 
number of standard deviations. 

The plots in Figures 4 .6a-4.6~ were constructed so that 

Vertical axis range Horizontal axis range 
= 6  - - 

rn m 
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For this reason the contours look identical from plot to plot. However, the 
range for the vertical axis of the plot in Figure 4.6d covers 12 standard devia- 
tions. This difference in plot construction accounts for the different appearance 
of Figures 4.6a and 4.6d. 

Arc uses rules for determining axis ranges that attempt to balance several 
competing objectives, including consistent visualization of strength of rela- 
tionship, but changing these ranges is sometimes required. The range of ei- 
ther axis of a 2D plot can be changed from the “Options” dialog as shown in 
Figure 3.5, and typing the upper and lower limits of the range in the “Range” 

boxes. In particular, typing 3sd or -3sd in the first of the two range boxes 
for an axis will give that axis a range of six standard deviations. Similarly, for 
any number k, typing ksd will result in a range of 2k standard deviations for 

the axis. 

4.2.2 Correlation Coefficient in Non-normal Populations 

When the population has a bivariate normal distribution, the correlation co- 
efficient is all that is needed to characterize fully the joint variation. The 
mental image is of an elliptical cloud of points that becomes narrower as 
the magnitude of the correlation coefficient increases. When the population 
is non-normal, the correlation coefficient still gives a measure of the strength 
of any linear relationship, but it may miss important additional information 
about joint variation. 

Figures 4 .7a-4 .7~  show scatterplots of 100 observations from each of three 
non-normal populations. The structure of these plots is quite different, and yet 
the sample correlation coefficient for each plot is the same, 0.75. All the points 
in Figure 4.7a fall on a curve, but the correlation coefficient cannot recognize 
this. The data in Figure 4.7b fall in two distinct clusters. The 50 observations in 

each cluster are from bivariate normal populations with p = 0, but each cluster 
has a different mean and standard deviation. Again, the correlation coefficient 
cannot tell us of this structure. In Figure 4 . 7 ~  all points except one, the point 

at x = 8, fall on a line. If this point were removed the correlation coefficient 
would be 1, but with the point the correlation coefficient is again 0.75. Unlike 
the normal case, the correlation coefficient provides an incomplete description 
of the joint variation. 

Figure 4.8 gives plots of 100 observations from each of two non-normal 
populations. The population correlation coefficient is zero for each plot. If 
the populations were normal, this would imply that x and y are indepen- 
dent. But the populations are not normal, and x and y are dependent in each 
plot. The dependence in Figure 4.8a comes about because there is an exact 
quadratic relationship between x and y ;  given x you know the exact value of 
y because y = x2. In Figure 4.8b, Var(y I x = 0) < Var(y I x = 10) and thus x 

and y are again dependent. In summary, a correlation of zero does not imply 
that x and y are independent, unless they follow a bivariate normal distribu- 
tion. 



4.3 REGRESSION IN BIVARIATE NORMAL POPULATIONS 69 

N4 * 

3 L - 0  

-2 0 2 

- 0  

x 

r-- 

> 

v: 
0 10 

X 

a. p = 0.75. b. p = 0.75. 

N ii, , , , 

3 
I R  

8 

q J P  

-2 2 4 6 8 
X 

p = 0.75. 

FIGURE 4.7 The correlation coefficient in three non-normal samples. 

4.3 REGRESSION IN BIVARIATE NORMAL POPULATIONS 

When sampling from a bivariate population there are two possible regressions, 
the regression of y on x and the regression of x on y. In this section we focus 
mostly on the regression of y on x, understanding that the roles of x and y 

can be interchanged at any point in the discussion. 
If ( x , y )  follows a bivariate normal distribution, then the conditional dis- 

tribution of y I = is univariate normal for each value X of x. A univari- 
ate normal distribution is completely characterized by its mean and variance. 
Thus, when y)  follows a bivariate normal distribution, the mean function 
E(y 1 x = X) and the variance function Var(v I x = X) completely characterize 
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FIGURE 4.8 Tho non-normal samples, each with a sample correlation of 0. 

the distribution of y I (x = equivalently, they completely characterize the 
regression of y on x. 

4.3.1 Mean Function 

Beginning with a bivariate normal random variable (x,  y), the mean function 
for the regression of y on x is 

(4.1 1) 

The mean function depends on all five parameters of the bivariate normal 
distribution. If p = 0, then E(y I x = = E(y) and x and y are independent. If 

= E(x), then at this point E(y I x = = E(y). Beyond these first properties, 
there are two different ways to understand the mean function. 

4.3.2 Mean Function in Standardized Variables 

Rearranging terms in (4.11) gives a form for the mean function in terms of 
standardized variables: 

(4.12) 

Imagine that we wish to predict y when x = X. A reasonable prediction for 
y is just E(y I x = the mean of the conditional distribution of y I (x = 
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TABLE 4.1 

Study 

Output from “Display summaries . . . ” for the Berkeley Guidance 

= 

70 87.253 3.3305 80.9 87.1 97.3 

70 166.54 6.0749 153.6 166.75 183.2 

= 

2 0.6633 

0.6633 

Equation (4.12) tells us two basic results: 

If X is one standard deviation above the mean of x, then E(y 1 x = X) will 
be p standard deviations above the mean of y .  

More generally, if is = (X - E(x))/(Var(x>)’/* standard deviations from 

the mean of x, then E ( y  I x = X) will be p x standard deviations from 
the mean of 

A brief example may illustrate why the interpretation of the standard- 
ized form is important in regression. Table 4.1 gives the Arc summary of 
the height at age 2, and the height at age 18, both in cm, of 70 
girls born in Berkeley, California in 1928-1929 and monitored on a number 
of growth measurements periodically until age 18 in the Berkeley Guidance 
Study. These data, along with additional description, are available in Arc data 
file l s p .  The scatterplot of versus shown in Figure 4.9 
has an elliptical shape, indicating that the joint distribution could be bivariate 
normal. Approximate bivariate normality is typical for this type of data. 

The five population parameters for the height data are unknown, but they 
can be estimated by using the sample versions from Table 4.1. The estimated 
version of the mean function (4.11) is obtained by simply replacing the un- 
known parameters by their estimates. 

Suppose we wish to predict the height at age 18 of a girl whose height 
was one standard deviation above the average height at age two, or 87.253 + 
3.331 = 90.584 cm. According to (4.12), theestimateof 1 = 90.584) 
is = 0.6633 standard deviations above the mean of or 166.54 
+ 0.6633 x 6.075 = 170.57 cm. 

Suppose we turn the prediction problem around, and start with a girl whose 
height is 170.57 cm at age 18. What do we expect was her height at age two? 
Interchanging the roles of variables, we can again use (4.12): At age 18 the girl 
is 0.6633 standard deviations above the average. We should expect that she was 

x 0.6633 = 0.4400 standard deviations above the average at age 
two, or 87.253 + 0.4400 x 3.33 1 = 88.7 I9 cm. There is an inherent asymmetry 
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FIGURE 4.9 Scatter plot of versus for the Berkeley Guidance study. 

in our predictions: 

E(Ht18 I = 90.584) = 170.57 

I H f 1 8  = 170.57) = 88.719 

but 

This arises because there are really two different regressions. We will return 
to this issue after discussing an alternate form for the mean function. 

4.3.3 Mean Function as a Straight Line 

The mean function shown in (4.1 1) is a linear function of X. We can empha- 
size this fact by rearranging the terms in (4.1 I ) ,  rewriting the mean function 
as 

(4.13) 
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We have defined two new symbols, using the Greek letters alpha and beta 

(PI: 

qIx = - P,I,EW (4.14) 

and 

(4.15) 

The subscript I is meant as a reminder that the intercept and slope are 
for the regression of y on x. 

The final equation (4.13) shows that the mean function is a straight line 
with slope /j,,l and intercept ( Y , ~ ~ .  The slope can be interpreted as the increase 

in E(y 1 x = S )  per unit increase in The sign of the correlation coefficient 
determines the sign of the slope of the line. We can obtain estimates of the 
intercept and slope by substituting estimates for the quantities that define them. 
For the Berkeley Guidance Study the estimated slope is 

= 1.21 
6.075 

3.331 
= 0.6633 x - 

and the estimated intercept is 

The line drawn on Figure 4.9 is the estimated mean function 

Suppose that we now consider the regression of x on y. The linear form of 
the regression equation can be obtained by simply interchanging the roles of 
the variables in (4.13): 

where 

and 

(4.16) 
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FIGURE 4.10 Scatterplot illustrating two regressions. Solid line is the mean function for the 
regression of y on x .  Dashed line is the mean function for the regression of x on y. 

The crucial point here is that the two mean functions E(x I y = y)  and 
E(y I x = X) can be quite different, and one cannot be obtained directly from 
the other. This difference can be traced to two causes: The basic definition of 
a mean function and the elliptical nature of the bivariate normal density. To 
illustrate how the difference arises, consider Figure 4.10, which consists of a 

sample of 400 observations from a standard bivariate normal population with 
p = 0.65. The mean function E(y I x )  = is shown as the solid line on 
the plot, and the other mean function E(x I = is shown as the dashed 
line on the plot. The mean of the y values over the highlighted points in the 
vertical slice on the plot is an estimate of E(y I x = 1.25). As the slice is moved 
across the plot, the slice means will fall close to the line E(y 1 x )  = The 
horizontal slice on the plot is interpreted similarly, except the slice means 
will fall close to the dashed line, the mean function for the regression of x 

on y .  

4.3.4 Variance Function 

If ( x , y )  follows a bivariate normal distribution, then the variance function for 
the regression of y on x is 

Three properties of this variance function are particularly important. 
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FIGURE 4.11 Conditional distributions from a bivariate normal. 

The variance is constant since it does not depend on Regressions with 
nonconstant variance functions are generally more difficult to analyze 
than regressions with a constant variance function. 

- Var(y I x) decreases as the magnitude of the correlation coefficient in- 
creases. We again see that if p = 1 or - 1, y will be completely determined 

by x because in those cases Var(y 1 x )  = 0. 

. Because 0 5 p2 5 1 ,  the constant variance function is never greater than 

the marginal variance of the response, 

Shown in  Figure 4.1 1 is a stylized representation of the regression of y on x 

when (x ,y)  follows a bivariate normal distribution. The figure shows five den- 
sities of y 1 x corresponding to five values ofx. Each conditional distribution is 
normal and each has the same variance. The means of the five representative 
conditional densities lie on a line, reflecting the mean function. 

As with the mean function, the variance function can be estimated by sub- 
stituting estimates for the unknown parameters. For the regression of on 
Hr2 from the Berkeley Guidance Study, the estimated variance function is 

= (1 - 0.66332)6.0752 

= 20.67 

which is considerably less than the estimated marginal variance of y ,  G ( y )  = 
36.90. 
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FIGURE 4.12 Dialog for the demonstration program l s p  that generates bivariate 

normal samples. 

To summarize the Berkeley Guidance Study regression, the distribution of 
I is approximately normal with estimated mean function 

I = 60.98 + 

and estimated variance function %-(y 1 x) = 20.67 = 4S2.  The predicted height 
at age 18 of a girl who was 100 cm tall when she was two years old is 
181.98 cm. Further, as a first approximation, there is about a 68% chance 
that the girl’s height at age 18 will be within one standard deviation of the 
estimate. The predicted height is 18 1.98 cm + 4.5 cm or so. Refined standard 
errors will be discussed in later chapters. 

4.4 SMOOTHING BIVARIATE NORMAL DATA 

The bivariate normal distribution is special because the associated regressions 
have linear mean functions and constant variance functions. These two proper- 
ties can be used to gain insights about the behavior of the smooths discussed 
in Chapter 3 by using a demonstration program that comes with Arc. This 
demonstration will generate samples from bivariate normal distributions, and 
display them for you to examine. 

After loading the file the dialog of Figure 4.12 will appear 
on the computer screen. This dialog is used to specify six items, the five 
parameters of the bivariate normal and the sample size; these must be entered 
in the order indicated in the dialog’s instructions. The six numbers that have 
been typed into the text window of the dialog in Figure 4.12 instruct Arc 

to generate 200 samples from a standard bivariate normal distribution with 
correlation coefficient p = 0.5. After typing the desired values and sample 
size, click the “OK’ button, and a plot similar to Figures 4.5 and 4.6 will 
appear on your screen. The plot shows the n points and six contours of the 

specified bivariate density function. The contours will always be the same as 
those shown in Figures 4.5 and 4.6: Reading from the inside out, the contours 
enclose lo%, 30%, 70%, 90%, and 98% of the population. If desired, 
these contours, along with any other lines that may have been subsequently 
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FIGURE 4.13 Plot produced from the dialog in Figure 4.12. 

drawn on the plot, can be removed by checking the “Clear all lines” box in 
the plot’s “Options” dialog. 

Figure 4.13 contains the plot generated from the dialog of Figure 4.12, 

along with 4 lines that were added subsequently. The straight line passing 
through the middle of the point cloud is the true mean function for the re- 
gression of y on x .  It was added by typing y = .5*x into the curve-generating 
text area of the plot’s “Options” dialog, as demonstrated previously in Fig- 
ure 3.5. The other three lines are mean and standard-deviation smooths from 
Arc smoothing options discussed in Section 3.6.3. Would you have thought 
that a linear mean function and a constant variance function were reasonable 
possibilities in view of the mean and standard-deviation smooths? 

The plots produced from the demonstration module contain two special 
buttons. Clicking in the button for “New sample” will result in a new sample 
of iz observations from the same bivariate normal distribution. Any smooths 
present will be updated automatically, but any curves drawn on the plot with 
the “Options” dialog will not be updated. In this way, smooths of many dif- 
ferent samples can be viewed in a short period of time. This should provide 
some intuition about the behavior of smooths when the underlying regression 
has a linear mean function and a constant variance function. 

The second special button “New graph” allows the generating bivariate 
normal distribution to be changed. Samples from different bivariate normal 
distributions can be viewed at the same time in separate plots by loading the 
demonstration module as necessary. 
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4.5 COMPLEMENTS 

4.5.1 Confidence Interval for a Correlation 

Given a bivariate normal population, a confidence interval for the population 
correlation p can be obtained by (1) transforming to a scale in which it is 
approximately normal, (2) computing a confidence interval for the transformed 
correlation, and (3) back-transforming the end-points of the interval to the 
original scale. Fisher ( 1  92 1) showed that the quantity, usually called Fisher's 

I 1 +; 
2 1 - P  

2, = -log (-) 
is approximately normally distributed with variance 1 - 3). For example, 
suppose that the sample size is n = 9, and = -0.889. Then = 1.417, and 
(I/(n - 3))'/2 = 0.408. For a 95% confidence interval based on the normal, 
the appropriate multiplier is 0.975) = 1.96, and the confidence interval in 
the transformed scale has lower end-point = 1.4 17 - 1.96(0.408) = 0.6 17 
and upper end-point q, = 1.417 + 1.96(0.408) = 2.217. The end-points of the 
interval in the correlation scale are obtained by using the inverse of the 2,- 

transformation. For the lower end-point, we get (exp(2zL) - l)/(exp(2zL) + 1) 
= 0.549 and (exp(22,) - l)/(exp(2zu) + 1) = 0.976. Restoring the sign, the 
confidence interval for p is then from -0.976 to -0.549. 

4.5.2 References 

Figures 4.2 and 4.4 are reproduced from Johnson (1987) with permission 
01987  John Wiley & Sons, Inc. The Berkeley Guidance Study data are taken 
from Tuddenham and Snyder ( I  954). 

PROBLEMS 

4.1 State whether the conclusion in each of the following situations is true 
or false, and provide a brief one or two sentence justification for your 
answer. Each statement concerns a bivariate random sample ( x i , y i ) ,  = 
1,. . . ,n, from the joint distribution of (x,y). 

a. 

b. 

C. 

A scatterplot of yi versus clearly shows that Var(y I x )  is not con- 
stant. Therefore, ( x ,  y) cannot have a bivariate normal distribution. 

It is known that (x,y) follows a bivariate normal distribution, and 
a scatterplot of yi versus xi clearly shows that E(y 1 x )  is constant. 
Therefore, x and y are independent. 

It is known that ( x , y )  follows a standard bivariate normal distribution 
with p = 0.5. Therefore, to predict x from y we should use x = y/2, 
and to predict y from x we should use y = 2x. 
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4.2 

4.3 

4.4 

4.5 

4.6 

d. It is known that p ( x , y )  > 0. Therefore, Var(x + > Var(x) + Var(y). 

e.  It is known that p(x ,y>  < 0. Therefore, Var(x + > Var(x) + Var(y). 

f. It is known that x and y are uncorrelated. Therefore, Var(x + = 

Recall (4.7). 

Var(x) + Var(y). 

Suppose (x ,y )  follows a bivariate normal distribution with = E(y) = 

0, Var(x) = 4, Var(y) = 9 and p = 0.6. Find the variance of the sum, 

Var(x + 

Suppose (x, follows a standard bivariate normal distribution with p = 

0. Find Pr(y < 0.5). Give the mean and variance functions E(y I x) and 

Var(y 1 x). 

In the haystack data given in file l s p ,  assume that the joint 
distribution of (C, is bivariate normal. 

4.4.1 Estimate the mean functions I and 1 C). 

4.4.2 If haystacks were hemispheres on the average, we would expect 
E(C I = 2 x Judging from the data, does this seem a 
reasonable possibility? Why? 

4.4.3 A particular haystack has a circumference that is 1.5 standard 

deviations above the average circumference. How many standard 
deviations is I C) above the mean of 

In the haystack data, obtain the p-value for a test of NH: E(C) = 2 x 

E(Over) against the alternative E(C) # 2 x 

Suppose we approximate a haystack with a hemisphere having circum- 
ference C, = (C + 
4.6.1 Construct a scatterplot of Vol versus C, and describe the 

mean and variance functions. 

4.6.2 Estimate the correlation coefficient p( Vol, C, ). Is the correlation 
coefficient sufficient to describe the joint variation of Vol and C, ? 

4.6.3 Estimate the variance of C, directly by using the sample values 
of C, and indirectly by substituting estimates of the variances 
and covariance on the right side of (4.7). In (4.7) take x = C and 
y = 2 x Should the two estimates agree? 

If haystacks can be well approximated by hemispheres with cir- 
cumference C, then we should have 

4.6.4 

C? 
E(Vol1 = - 

1 2 4  
(4.18) 

Plot VoZ versus V = Do the data provide clear visual 
information to contradict the possibility that follows a 
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4.6.5 

4.6.6 

bivariate normal distribution? Is the correlation coefficient a good 
way to characterize the joint variation of these random variables? 

Does the scatterplot of Vol versus V support or contradict (4.18)? 
Compare (4.18) to a lowess estimate of the mean function. 

Assuming that (Vol,C,) follows a bivariate normal distribution, 

estimate the standard deviation (Var(Vol1 Cl))'/2. Next, use the 
slicing mode in a scatterplot of Vol versus C, to estimate (Var( 
C,))1/2 for various values of C, . Do the estimates obtained while 
slicing seem to agree with the estimate obtained under the as- 
sumption of bivariate normality, remembering that there will be 
variation from slice to slice? What does this say about the as- 
sumption of bivariate normality? 

4.7 As illustrated in Figure 4.10, the two population mean functions (4.13) 
and (4.16) intersect when drawn on the same graph. What is their point 
of intersection? When will they be perpendicular? Is it possible for them 

to be the same? 

4.8 Using the haystack data, construct a scatterplot of C versus includ- 
ing lowess estimates with smoothing parameter 0.6 of the mean and vari- 
ance functions. Next, using the bivariate normal data generator in file 

l s p ,  generate several different plots of 120 bivariate normal 
observations having means, variances, and correlation the same as the 
sample values from the plot of C versus Based on visual compar- 
ison of the normal plots with the haystack data, does it seem reasonable 
that the joint distribution of (C, is close to bivariate normal? 
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Two-Dimensional Plots 

Not all 2D scatterplots are equivalent for the purposes of gaining an under- 
standing of the conditional distribution of y I x or of the mean or variance 
functions. Two scatterplots with the same statistical information can appear 
different because our ability to process and recognize patterns depends on 
how the data are displayed. We encountered an example of this in Section 4.2 
when considering how to visualize strength of linear dependence in scatter- 
plots. At times the default display produced by a computer package may not 
be the most useful. 

In this chapter we discuss various graphical problems that may be encoun- 
tered when using a 2D plot to study a regression with a single predictor. 

5.1 ASPECT RATIO AND FOCUSING 

An important parameter of a scatterplot that can greatly influence our ability 

to recognize patterns is the aspect rafio, the physical length of the vertical axis 
divided by that of the horizontal axis. Most computer packages produce plots 
with an aspect ratio near one, but this is not always the best. The ability to 
change the aspect ratio interactively can be important. 

As an example, consider Figure 5.1, which is a plot of the monthly U.S. 

births per thousand population for the years 1940 to 1948. The horizontal 
axis is labeled according to the year. The plot indicates that the U.S. birth 
rate was increasing between 1940 and 1943, decreasing between 1943 and 
1946, rapidly increasing during 1946, and then decreasing again during 1947- 
1948. These trends seem to deliver an interesting history lesson since the U.S. 

involvement in World War started in 1942 and troops began returning home 
during the first part of 1945, about nine months before the rapid increase in 
the birth rate. A copy of Figure 5.1 can be obtained from Arc by loading 
the tile l s p  and then using the item “Plot of’ in the Graph&Fit 
menu to plot Birfh on the vertical axis versus Year on the horizontal 
axis. This plot has plot controls removed by selecting the item “Hide plot 
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FIGURE 5.1 Monthly U S .  birth rate per 1000 population for the years 1940-1948. 

I Year 

FIGURE 5.2 Monthly U.S. birth rate with a small aspect ratio. 

controls" from the plot's menu. Selecting this item again will restore the plot 

controls. 
Let's now see what happens to Figure 5.1 when the aspect ratio is changed. 

Hold down the mouse button in the lower right corner and drag up and to the 
right. One reshaped plot is shown in Figure 5.2 which has an aspect ratio 
of about 1 : 4. The visual impact of the plot in Figure 5.2 is quite different 
from that in Figure 5.1. The global trends apparent in Figure 5.1 no longer 
dominate our visual impression, as Figure 5.2 reveals many peaks and valleys. 
Is it possible that there are relatively minor within year trends in addition to 
the global trends described in connection with Figure 5. I ?  
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40 42 43 

I Year 

~ ~~ 

FIGURE 5.3 Monthly U S birth rate for 1940-1943. 

To answer this question we canfocus on part of the data. Select the points 
corresponding to the years 1940-1943. Now from the plot’s menu select the 

item “Focus on selection.” This will remove the points in the plot that are not 
currently selected. The menu item “Remove selection” would, as the name 

implies, remove the selected points, and leave the rest. Return to the plot’s 
menu and select the item “Rescale plot,” which will recompute the values on 
the axes so the remaining data fill the plotting area. The result is shown in 
Figure 5.3. A within-year cycle is clearly apparent, with the lowest within- 
year birth rate at the beginning of summer and the highest occurring some 
time in the fall. This pattern can be enhanced with plot controls showing by 
pushing the “Join points” button. This will draw lines between adjacent points. 
This gives the eye a path to follow when traversing the plot and can visually 
enhance the peaks and valleys. 

The aspect ratio for the plot in Figure 5.3 is again about I :4 .  To obtain 
this degree of resolution in a plot of all the data would require an aspect ratio 
around 1 : 8. To return the plot of Figure 5.3 to its original state, choose the 
“Show all” item from the plot’s menu and reshape it so that the aspect ratio 
is again about 1 : 1 .  

Changing the aspect ratio and focusing are useful methods for changing the 
visual impact of a plot, but they will not always work. Figure 5.4 contains a 
plot of body weight in kilograms and brain weight in grams 

for sixty-two species of mammal. This plot can be obtained by loading the file 
and then drawing the plot of versus The plot 

consists of three separated points and a large cluster of points at the lower left 
of the plot, and because of the uneven distribution of points it contains little 
useful visual information about the conditional distribution of brain weight 
given body weight. Removing the three separated points and rescaling the 
plot helps a bit, but a large cluster near the origin remains. Repeating the 
procedure does not seem to help. The problem in this example is that the 
measurements range over several orders of magnitude. Body weight ranges 
from 0.01 kg to 6654 kg, for example. Transformations are needed to bring 
the data into a usable form. 
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FIGURE 5.4 Plot of BrainWt versus BodyWr for 62 mammal species. 

5.2 POWER TRANSFORMATIONS 

The most common transformations are A power trans- 
formation of a variable 'u is simply where X is the 
eter. For example, the notation refers to a variable with values 
equal to the square root of We call this a 

The transformation parameter can take any value, but the most useful 
values are frequently found in the interval - 1 5 X 5 2. The variable 'u must 
be positive, or we will end up with complex numbers when X is not an inte- 
ger. 

Another type of power transformation is called a 
for which we use the notation d'). For a given A, we define the transfor- 

mation to be 

(5.1) 

When X # 0, the scaled power transformation differs from the basic power 
transformation only by subtracting one and dividing by A. These changes 
have no important effect on the analysis, so when X # 0 the scaled power 
transformations and the basic power transformations are practically equivalent. 
When X = 0, the basic power transformation has the value 71' = 1; but for the 
scaled power transformation do) = log(*u), using natural logarithms. This form 
therefore adds logarithms to the family of power transformations. Also, unlike 
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transformation slidebars. 

Both and are transformed according to the values given on  the 

t i ” ,  ~ ~ ( ” )  is a continuous function of A, so varying X will not produce jumps 
when using the transformation sliders described next. 

Return to the brain weight data displayed in Figure 5.4. Select the item 

“Options” from the plot controls, and in the resulting dialog check the item 
“Transform slidebars” and then push the “OK” button. This will add two 
slidebars to the plot, as shown in Figure 5.4. The slidebars on the plot are 
used to choose a scaled power transformation. They are labeled according 
to the axis and the current value of the transformation parameter A. Initially 
X = I ,  which means that no transformation has been applied. Each time you 
move the slider the value of X is changed and the plot is updated to display dx) 
in place of 1 1 ,  unless the new value of X equals 1. For this case, the original data 
are displayed. The labels on the axes are not changed after a transformation; 
to see the power you must look at the numbers above the slidebars. 

Here and elsewhere in Arc, X can take the values f 1 ,  f0.67, f0.5, f0.33, 
0, 1.25, 1.5, 1.75, and 2. These values of X should be sufficient for most 
applications, but additional values of X can be added to a slidebar by selecting 
“Add power choice to slidebar” from the slidebar’s pop-up menu. 

One possible transformed plot is shown in Figure 5.5, where the scaled 
power transformation with X = 0.33 has been applied to BodyWt, while the 
scaled power transformation with X = 0.5 has been ap lied to BruinWt. Fig- 
ure 5.5 is thus a plot of BruinWl‘”’) versus ). This figure doesn’t 
give a very good representation of the data, although it does seem a little 
better than the plot of the untransformed data. Manipulate the sliders a bit 

P .  
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FIGURE 5.6 Another transformation of the body weight data. 

and see if you can find a better pair of transformations for the brain weight 
data. 

5.3 THINKING ABOUT POWER TRANSFORMATIONS 

There are two simple rules that can make manipulating the power choice 
sliders easier: 

To spread the small values of a variable, make the power X smaller 

To spread the large values of a variable, make the power X larger. 

Most of the values of B~-ainWt('.~' in Figure 5.5 are clustered close to zero, 
with a few larger values. To improve resolution, we need to spread the smaller 
values of BrainWt, so X should be smaller. The values of are also 
mostly small, so we should spread the small values of body weight as well, 
again requiring a smaller power. 

Decrease the transformation parameter for BrainWt in Figure 5.5 to X = 
0.33. The resulting plot is an improvement, but we still need to spread the 
small values of both and BrainWt, and this indicates that we need to 
make both transformation parameters smaller still. 

Set the transformation parameter for BodyWt to 0.5 and for BrainWt to 
-0.33, as shown in Figure 5.6. We now need to spread the larger values of 
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FIGURE 5.7 Log transformed brain weight data. 

BruinWr, and thus we should make X larger. At the same time we need to 
spread the small values of BodyWr, and this is accomplished by decreasing A. 

Figure 5.7 shows a plot of the brain data after applying the log transforma- 
tion to both variables, = log(BodyWt) and BruinWt(') = log(BruinWt). 
This plot gives a good depiction of the data and strongly suggests that there 
is a linear relationship in  the log-log scale; that is, 

E(log(BruinWt) 1 log(BodyWt)) 

is a linear function of log(BodyWr). In addition, the elliptical shape of the point 
cloud supports the possibility that (log(BruinWr), log(BodyWt)) is a bivariate 
normal random variable. The sample correlation coefficient 0.96 therefore 
provides a useful characterization of the dependence between the transformed 
variables. In contrast, the sample correlation between the untransformed vari- 
ables falls considerably short of providing a useful numerical characterization 
of the dependence shown in the scatterplot of Figure 5.4. 

5.4 LOG TRANSFORMATIONS 

Transformation of variables to log scale will frequently make regression prob- 
lems easier. Here is a general rule: Positive predictors that have the ratio be- 
tween their largest and smallest values equal to 10 and preferably 100 or more 
should very likely be transformed to logarithms. This rule is satisfied for both 



88 CHAPTER 5 TWO-DIMENSIONAL PLOTS 

with range 0.005 kg to 6654 kg, and for with range 0.14 g 
to 5712 g, so log transformations are clearly indicated as a starting point. 

5.5 SHOWING LABELS AND COORDINATES 

Every case in a data file has a If your data file has one or more 
text variables, then the first text variable read is used as case names; if no text 

variables are included, then the case names are the numbers from 0 to n - 1. 
You can change the case names to another variable using the item “Set case 
names” from the data set menu. 

Selecting the “Show labels” item from the plot’s menu will cause the case 
names to be displayed as point labels for any points selected in the plot. When 
the “Show labels” option is on, a check will appear beside the “Show labels” 
menu item. To turn the option off, select “Show labels” again. 

To find the coordinates of a point, select the item “Mouse mode” from 
the plot’s menu. A dialog box will appear with four choices. Choose “Show 
coordinates” and then push “OK.” The cursor will change from an arrow to a 
hand with a pointing finger. Pointing at any data point and clicking the mouse 
button will show the point label and the coordinates as long as the mouse 
button is depressed; holding the shift key while depressing the mouse button 
will make the coordinates remain on the plot. To remove the coordinates, shift- 
click again on the data point. To return to the usual selecting mode, choose 
“Selecting” from the “Mouse mode” dialog box. 

5.6 LINKING PLOTS 

refers to connecting two or more plots, so that actions such as focusing, 
selecting, and removing points in one plot are automatically applied in the 
others. The applicability of linking plots in simple regression is somewhat 
limited, but another set of birth rate data provides a convenient opportunity to 
introduce the idea. 

Load the data file We begin by constructing a plot of 
versus for the U.S. birth data between 1956 and 1975. The 

plot is shown in Figure 5.8a, which is constructed by plotting each data point 
against the year in which it was obtained, ignoring the month. This plot pro- 
vides information on the distribution of monthly birth rates given the year 

but not the month. There is still one point for each month in the plot but the 
correspondence between points and months is lost. Additional information 
might be obtained from Figure 5.8a, if we could tell which points correspond 
to each month. There are a variety of ways to do this. One is to construct 
a linked plot of versus as shown in Figure 5.8b. Most plots in 

for a single data set are linked automatically; to unlink a plot, select the 
“Unlink view” item from the plot’s menu. This is an uninteresting plot by 
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FIGURE 5.8 U.S. birth rate data 

itself, but it is useful because it is linked to the plot in Figure 5.8a. Select- 
ing all the points for any month in Figure 5.8b will cause the corresponding 
points in Figure 5.8a to be highlighted, as demonstrated for the month of 
September. 

5.7 POINT SYMBOLS AND COLORS 

The point symbols on a scatterplot can be changed using the 
and, if your computer has a color monitor, the color can be changed using 
the First select the point or points you want to change, and then 
click the mouse button on a color or symbol in the palettes at the top of the 
plot controls. Colors and symbols are by all plots linked to the plot 
you changed. Later in the book, we will learn about methods that set colors 
and symbols of points automatically using 

5.8 BRUSHING 

An alternative method of selecting points is called In this method, 

the mouse pointer is changed into a selection rectangle. As the rectangle is 
moved across the screen, all points in the selection rectangle are highlighted, 
as are the corresponding points in all plots linked to it. 

To use brushing, select "Mouse mode" from the plot's menu, and select 
"Brushing" in the resulting dialog box. After pushing the "OK' button, the 

mouse pointer is changed into a paintbrush, with an attached selection rect- 
angle. The size and shape of the rectangle can be changed by selecting the 



90 CHAPTER 5 TWO-DIMENSIONAL PLOTS 

“Resize brush” item from the plot’s menu and following the instructions given 

to resize the brush. Usually, long, narrow brushes are the most useful. 
In the plot shown in Figure 5.8b, change the mouse mode to brushing, and 

make the brush a narrow horizontal rectangle. Then, brush across the plot 

from bottom to top. As you do so, examine the plot shown in Figure 5.8a. 
The within-year trends are easy to spot as you move the brush. In particular, 
it appears that September always had the highest birth rate. 

5.9 NAME LISTS 

A is used to keep track of case labels. It is displayed as a sepa- 
rate window by selecting the “Display case names” item from the data set 
menu. Since this window is linked with all graphics windows, point selection, 
focusing, and coloring will be visible in this window. 

5.10 PROBABILITY PLOTS 

The primary use of the 2D plots discussed so far in this book has been to 
study the conditional distribution of the variable on the vertical axis given a 
fixed value of the variable on the horizontal axis-in short, regression. Two- 
dimensional plots can have other uses as well, where conditional distributions 
are not the primary focus. One plot of this type is the 

A probability plot is used to study the distribution of a random variable. 
Suppose we have n observations y , ,  . . . ,yn,  and we want to examine the hy- 
pothesis that these are a sample from a specific distribution, such as a normal 
distribution. Let 5 . . .  5 be the y,’s reordered from smallest to largest. 
Let 4[ , ]  5 . . .  5 be the expected values of an ordered sample of size n from 
the hypothesized distribution. That is, q,,, = E(z,,,) where i , ,  . . . is a sample 
from the hypothesized distribution. For a given standard hypothesized distri- 
bution, the can be easily computed, or at least closely approximated, so 
we can assume that the 4’s  are known. 

If the true distribution of the is in fact the same as the hypothesized 

distribution, we would expect the ordered to be linearly related to the 
4’s. A probability plot is a plot of ylil versus If the sampling distribution 
of the y’s is the same as the hypothesized distribution, then the plot should 
be approximately straight; if the plot is significantly curved, then we have 
evidence that the y ’s are not from the hypothesized distribution. 

Judging if a probability plot is straight requires practice. To help gain the 
necessary experience, load the demonstration file l s p ,  and select 

the item “Probability plots” from the “ProbPlots” menu. You will get the 
dialog shown in Figure 5.9. You can specify the sample size, the true sampling 
distribution, and the hypothesized distribution. 

For the first set both distributions to be normal, and leave the sample size 
at 50. A probability plot similar to Figure 5.10 will result. The points in this 
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FIGURE 5.10 A sample probability plot. 

plot should lie close to a straight line because the sampling and hypothesized 
distributions are the same. A new sample from the sampling distribution can 
be obtained by using the “New sample” button on the plot; this can be repeated 
many times. 

After looking at several plots with sample size 50, start the demonstration 
over by again selecting “Probability plots” from the menu, but this time set 
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the sample size to 10. Can you judge normality as easily for a sample of size 
10 as you could for a sample of size 50? 

Non-null shapes of probability plots can be studied by setting the sampling 
distribution and the hypothesized distribution to be different in the dialog; 
this will require selecting the “Probability plots” item again. Relative to the 
normal, the uniform distribution has short tails, that is, few extreme values. 
The t-distributions, for which you must specify the degrees of freedom, have 
long tails for small df. The distributions are skewed to the right; the smaller 
the degrees of freedom, the greater the skewness. 

Probability plots are obtained in Arc by selecting the item “Probability plot 
of’ from the Graph&Fit menu. Choose one or more variables to be plotted, 
and the target distribution to get the 4,;). If the distribution chosen is x 2  or t ,  

then the number of degrees of freedom must be specified as well. Only one 
probability plot is shown in the window at a time; use the slidebar on the plot 

to cycle between the plots, 

5.11 COMPLEMENTS 

Becker and Cleveland ( 1  987) discuss scatterplot brushing and Stuetzle (1987) 
discusses plot linking. The birth rate data are taken from Velleman (1982). The 
brain weight data are from Allison and Cicchetti (1  976). The soil temperature 
data in Problem 5.1 was provided by Orvin Burnside. 

The probability plot described here is often called a as it is a plot 
of the quantiles of the hypothesized distribution against the observed quan- 
tiles of the sample. Gnanadesikan ( 1  977) is a standard reference for these 
plots. 

PROBLEMS 

5.1 Load the file aspect.  l s p .  This file will produce one plot. Can you see 
any pattern in this plot‘? Now, using the mouse, change the aspect ratio 
so the plot becomes increasingly long and narrow. At what point do you 
see the pattern, and how would you describe that pattern? Are there any 
other graphical tools that might have helped you find the pattern? This 
plot provides a demonstration that interaction between the user and the 
plot may be required for the user to extract information. 

The figure you just examined is based on simulated data, but the 
same phenomenon can occur with real data. Load the file mitchel l .  

which gives average monthly soil temperature for Mitchell, NE over 17 
years during a weed longevity experiment. Draw the plot of Temp versus 

After attempting to summarize the information in the original 
plot, change the aspect ratio to get the plot into a more useful form, and 
summarize the (not very surprising) information that it contains. 
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5.2 Take a closer look at the data of Figure 5.8 by using the graphical tools 

discussed in this chapter. Is it really true that the highest birth rate always 
occurred in September? Which month tended to have the lowest birth 
rates? 

Redraw Figure 5.7. Which species has the highest brain weight and the 
highest body weight? Which species has the lowest brain weight and 
body weight? Find the point for humans on the plot and give the coor- 
dinates for the point. 

5.4 The discussion of the brain weight data suggests that and 
appear to be approximately bivariate normally distributed. 

If they are approximately bivariate normal, then each of their marginal 
distributions must be approximately univariate normal. Use probability 
plots to explore normality of each of these marginal distributions. 

While it  is true that bivariate normal implies that both and y 
have univariate normal distributions, the converse is not true: x and y 
both univariate normal does not guarantee that is bivariate normal. 
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Tools 

This part of the book presents tools for studying regression. Many of the tools 
make use of the linear regression model, as linear models continue to have a 
central role i n  the analysis of regression. In the next few chapters, we present 
many of the basic ideas behind this approach. 
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Simple Linear Regression 

In Part I of this book we introduced regression, which is the study of how 
the conditional distribution of a response variable y changes as a predictor x 

is varied. We have seen in Chapter 3 how the conditional distribution of y 
given can be summarized graphically using boxplots and scatterplots, and 
how the mean function can be estimated by using a smoother. This method of 
summarization requires only minimal assumptions and is primarily graphical. 
At another extreme, we have seen in Chapter 4 that if the pair (x ,y)  fol- 
lows a bivariate normal distribution, then the conditional distribution of y I x 

is completely specified as another normal distribution, with mean function 
E(y 1 x) given by (4.1 1) and with constant variance function Var(y I x) given 
by (4.17). Consequently, when (x ,y)  has a bivariate normal distribution, we 
end up with a simple and elegant summary of the statistical dependence of y 

on In this case, the use of a smooth to represent the mean function remains 
valid, but the resulting summary of a regression by a plot with a smooth is 
more complicated than is needed. 

The assumption of bivariate normal data is an example of a 
In this chapter, we will study the use of models for regressions with one 
predictor that do not require bivariate normal data. 

Models consist of assumptions about how the data behave, and one or more 
equations that describe their behavior. Models can be based on theoretical con- 
siderations like physical laws or economic theories, or they can be empirical, 

found while examining a scatterplot. For example, in the discussion of the 
haystack data in Section 1.1, we were led to Equation (3.1), which relates 
haystack volume to the circumference C of the haystack: 

C3 
E(Vo1 I C) = - 

1279 

This is a model for the mean value of Vol for a given value of C. It is an 
example of a model based on theoretical considerations since the actual data 
played no role in its formulation. It is somewhat unusual for a statistical model 
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because it has no free parameters, unknown quantities that must be estimated 
to tailor a model to fi t  the data at hand. In this chapter we begin by considering 
an important class of models called simple linear regression models. 

6.1 SIMPLE LINEAR REGRESSION 

In the 1840s and 1850s a Scottish physicist, James D. Forbes, wanted to esti- 
mate altitude above sea level from measurement of the boiling point of water. 
He knew that altitude could be determined accurately with a barometer, with 
lower atmospheric pressures corresponding to higher altitudes. More precisely, 
he stated in a paper published in 1857 that the logarithm of barometric pressure 
is proportional to altitude; that is, 

log(barometric pressure) = x altitude 

for some constant Forbes didn’t give this constant at the time, but instead 
referred the reader to some of his earlier work. In any event, he considered the 
logarithm of barometric pressure as an effective substitute for altitude. With 
this substitution, Forbes modified his goal to that of estimating the logarithm 
of barometric pressure from the boiling point of water. His interest in using 
boiling point to measure altitude via the logarithm of barometric pressure was 
in part motivated by the expense and difficulty of transporting the barometers 
of the time, as well as by the relative ease of boiling water and measuring 

temperature. 
The data file contains measurements that Forbes took at 17 

locations in Scotland and in the Alps, from his 1857 paper. Forbes drew a 
scatterplot equivalent to the one shown in Figure 6.1 of loglo(Pressure) versus 
temperature in degrees Fahrenheit (Temp). Forbes’ paper is one of the earliest 
published uses of a scatterplot to study a regression, and indeed it predates 
the coining of the term regression. Following Forbes, we will also use base 
10 logarithms. 

Examine Figure 6.1. As Temp increases, so does log,o(Pressure). A smooth 
curve fit by eye for the mean function looks like it might be a straight line. 
Consequently, we proceed by assuming that the mean function is a linear 
function of Temp, understanding that we will need to check this assumption 
eventually. A straight line is determined by two parameters, an intercept and a 
slope. When a straight line is appropriate, the essential information about the 
mean function is contained in estimates of these two parameters. 

We now have the first ingredients for building a more comprehensive 
model. Here is the general idea. We want to study E(y I x) using data that 
consist of n pairs of observations on ( x , y ) .  In Forbes’ data, x = Temp and 
y = log,,(Pressure). We then write the identity 
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FIGURE 6.1 Forbes' data. 

so each observation is viewed as a sum of two terms. The first term is E(y I x), 

which is the same for all observations taken at the same value of The 
function E(y 1 x )  is unknown, and estimating it from data is often of primary 
interest. The quantity I which is the difference between the response y I x 

and the mean function E(y I x) at the same value of x, is usually called an error. 
Don't confuse an error with a mistake; statistical errors are devices that account 
for variation about a central value, usually the mean function. The errors are 
random variables with mean E(e I x) = 0 and variance Var(e I = Var(y I x); 

these results can be verified by rearranging terms and using (1.6) and (1.7). 
Relationship (6.1) is theoretical because neither E(y I x) nor 1 are observable 
directly; we only get to see x and y .  The derivation (6.1) does not require any 
assumptions; all that we have done so far is to define notation. 

To make further progress, we need to say something about E(y 1 For 
Forbes' data, Figure 6.1 suggests that E(y I x )  may be replaced by a straight 
line, so we write 

Equivalently, using (6. I), we may write 
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x 

FIGURE 6.2 The equation of a straight line. 

In equations (6.2) and (6.3), q0 is the the value of 1 x )  when 
x = 0. The symbol 7 is a Greek letter, read eta; it is roughly equivalent to 
the Roman letter h. The intercept and the q1 are called 

The slope can be interpreted as the change in E(y I x )  per unit 
change in x :  the difference between population means I x = xo + 1) and 
E(y 1 x = xo) is 

and so when the predictor increases by one unit the expected response in- 
creases by ql units, as illustrated in Figure 6.2. This change will be the same 
for any initial value As the intercept and slope, and q , ,  range over all 
possible values, they give all possible straight lines. The statistical estimation 
problem is to pick the best values for the slope and intercept using the data. 

Using (6.2) for the mean function is our first real assumption, and like any 
assumption it  represents an approximation that may or may not be adequate. 
Our specification for the mean function comes from examining the scatterplot 
of Figure 6.1, not from any theory. Forbes apparently did have a theoretical 
reason for choosing this mean function; Forbes' theory has been improved 
considerably over the last 140 years, as will be explained later in Section 6.5. 

At this point, our regression model (6.3) can be visualized using Figure 4.3, 
page 60, as a prototype. The line in that plot is a representation of the mean 
function (6.2). The four different distributions about the mean function rep- 
resent distributions of the error e I x at four different values of x .  As shown 
in the figure, those distributions have different variances, so the distribution 
of e x depends on the value of x .  For example, the variation about the mean 
function is much smaller at the smallest value of x represented in the figure 
than it is at the largest value of x .  

It is often assumed that the distribution of e 1 x does depend on x at all, 
so that the error is independent of x .  Under this assumption, we can write 
in place of e I x without confusion. The condition that e I x is independent of 
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implies that the variance function is constant: 

(6.4) 
2 Var(y I x) = 

As is conventional, we use the symbol where is the Greek letter 
to denote the common value of the variance. Equation (6.4) says that for each 
value of the variance function Var(y 1 has the same value, 

Assuming that the mean function is linear and that e I x is independent of 
x, the simple linear regression model can be written as 

with Var(e) = IS*. Figure 4.1 1, page 75, provides a schematic representation of 
the simple linear regression model. The main difference between Figures 4.1 1 

and 4.3 has to do with the error structure. The error distributions are all the 
same in Figure 4.1 1 because e I is independent of x. The error distributions 
differ in Figure 4.3, reflecting that the distribution of e 1 x depends on the value 
of x. 

The simple linear regression model (6.5) is appropriate when ( x , y )  follows a 
bivariate normal distribution. In that case, the parameters of (6.5)-q0, and 
a-can be interpreted in terms of the parameters of the underlying bivariate 
normal distribution, as in Sections 4.3.3 and 4.3.4. But bivariate normality 
is not a necessary condition for using (6.5), and the simple linear regression 
model may hold when is not bivariate normal. For example, consider 
the experiment mentioned briefly at the beginning of Chapter 4 to investigate 
the effect on grain yield ( Y )  of adding 5, 10, 15, or 20 pounds of nitrogen 
( N )  per acre. The simple linear regression model (6.5) could be appropriate 
for I N ,  but cannot be bivariate normal because N is selected by the 
experimenter and therefore is not random. 

We are now ready to think about estimating qo, 77,' and 02,  which are the 
three parameters that characterize the simple linear regression model (6.5). 

6.2 LEAST SQUARES ESTIMATION 

Suppose that the simple linear regression mean function (6.2) is in fact appro- 
priate for our data. We need to estimate the unknown parameters qo and 
The general idea is to choose estimates to make the estimated mean function 
match the data as closely as possible. The most common method of doing this 
uses leust squares estimation. Later in the book we will use other estimation 
methods that take advantage of additional information about a regression. 

6.2.1 Notation 

Recall that our data consist of n independent observations on (x ,y) .  We call a 
pair of observations on a When necessary, we use the subscript 
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to label the cases in the data, so are the values of the predictor and the 
response for case = 1,. . . , n. In terms of our full notation, xi is the ith value 
of x ,  and means the same thing as y I ( x  = x i ) .  When we leave subscripts 
off, y and x are not restricted to the data, but they are restricted to the data 
when the subscripts are present. 

To maintain a clear distinction between parameters and their estimates, we 
will continue the practice of using Greek letters like ilO, 7,  , and to represent 
unobservable parameters. Estimates will be indicated with a so G I ,  which 
is read denotes an estimate of q .  Upon occasion, we will need a 
value to replace an unknown parameter in an equation, and for this we will 
use a Roman letter like h to replace a Greek letter like 7 .  

With simple linear regression, the mean function is E(y I x )  = + rl ,x.  

Given estimates Go and G I ,  the is I x )  = Go + ;I,.. 
This equation for the estimated mean function can be evaluated at any value 
of x .  When it is evaluated at the observed values xi of x, we get the 

n 

The Zi ,  are defined as the differences between the observed values 
of the response and the fitted values, 

There is a parallel between equation (6.1) that defines the errors and the def- 
inition of the fitted values and residuals. We can write the two equations: 

Equation ( 6 4 ,  which is the same as (6.1), divides the random 

variable y I x into two unknown parts, a mean and an error. Equation (6.9) 
divides the values of into two parts, but now the parts are numbers 
that can be computed with estimates of the parameters. 

6.2.2 The Least Squares Criterion 

Figure 6.3 shows two candidates for an estimate of the simple regression mean 
function for a hypothetical regression. The fi t  in Figure 6.3a is considerably 

better than the fit in Figure 6.3b because the line in Figure 6.3a more closely 
matches the data. The least squares line corresponds to choosing values for 
the intercept and slope that minimize a particular function of the data, called 
an 

Suppose now that (ho,h l )  is a pair of candidate values for the parameters 
(riO,ql). The least squares summary of the fit of the candidate straight-line 
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FIGURE 6.3 Two candidate fitted lines. 

mean function h, + h , x  to the data is 

n 

The symbol h ,  ) stands for “the eval- 
uated at h,, and Better choices for will have smaller values of 

The values that will be called the or- 
leusr or the OLS estimates of the parameters 77, and 

T I ] .  Thinking in terms of a scatterplot with y on the vertical axis and x on the 
horizontal axis, the least squares criterion chooses estimates to minimize the 
sum of the squared vertical distances between the observed values yi, and cor- 

responding point h, + h , x i  on the estimated line, as represented in Figure 6.4. 
Finding the OLS estimates is equivalent to solving the calculus problem of 

minimizing the residual sum of squares function For the simple 
linear regression model, one pair ({,,<,) minimizes RSS, and there is a simple 
formula for the estimates. Other mean functions may not have simple formulas 
for the estimates, and a solution to the calculus problem can be achieved only 
numerically, usually on a computer. Even for simple regression, where the 
estimates have simple formulas, using a computer is nearly universal. Least 
squares is a purely mathematical formulation that does not depend on any 
assumptions concerning the errors, or on whether or not the simple linear 
regression mean function is reasonable. 

The least squares estimates for simple linear regression depend on a few 
summary statistics defined in Table 6.1. The summaries include the sample 
averages and j ,  and sample variances sd2(x) and sd2(y), which are just the 
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X 

FIGURE 6.4 Schematic representation of ordinary least squares. 

TABLE 6.1 Definition of Symbols“ 

Quantity Definition Description 

- 
X c xi Sample average of x 

Y Sample average of 

Sum of squares for the x’s 

sd2(x) - 1) Sample variance of the x ’ s  

sd(x) d- Sample standard deviation of the x’s 

Sum of squares for the 

sd’(y) - 1 )  Sample variance of the y ’ s  

sd(y) Jm Sample standard deviation of the 

r k y )  - l)sd(x)sd(y)} Sample correlation 

C(x, - = C(x; - 

- = - 

c ( x i  - X)(y, - j )  = c ( x ,  - Sum of cross products 

each equation, the symbol means to add over all the values or pairs of values in the 
data. 

squares of the sample standard deviations, and the sample correlation, r (x ,  y ) .  

The hat rule described earlier would suggest that different symbols should 
be used for these quantities. For example, & , y )  might be more appropriate 
notation for the sample correlation if the population correlation is p ( x , y ) .  This 
apparent inconsistency is deliberate, because the hat notation makes sense only 
if p ( x , y )  is meaningful in the first place. For example, in Forbes’ experiments, 

data were collected at 17 selected locations. As a result, the sample variance 
of boiling points, sd2(x) = 33.17, does not estimate any meaningful population 
variance because no clear population has been defined and sampled. Similarly, 
the value of r ( x , y )  can be made larger by choosing experimental units whose 
values of x are as different as possible, or smaller by choosing experimental 
units whose values of x are as alike as possible. The value of the sample cor- 
relation may reflect the method of sampling as much as it does the population 
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value p(x,y) ,  should such a population value make sense. In short, a sample 
correlation can always be computed, but it may not be a sensible estimate of 
a population correlation. 

6.2.3 Ordinary Least Squares Estimators 

The formulas for the OLS estimators, which are derived in Section 6.7.1, are 

(6.1 1) 

;lo = jJ - ;II. (6.12) 

According to (6.1 l ) ,  the estimated slope is the ratio The second 

form in (6. I 1  1 shows the close relationship between the slope and the sample 
correlation r ( x , y ) :  The slope equals the sample correlation multiplied by the 
ratio of sample standard deviations sd(y)/sd(x). This second form was used in 
Section 4.3.1 during the earlier discussion of bivariate normal populations. If 
the data were rescaled so both x and y had sample standard deviations equal to 
1, then the estimated slope would equal the sample correlation for the rescaled 
data (see Problem 6.2). 

The third form for the estimated slope in (6.1 I ) ,  which can be derived by 
substituting C(x, -X>y, for shows that the estimated slope is a 

of the y ,  with coefficients 

c; = ( X i  - 

That is, ;I, = C c i y i .  The coefficients always sum to 0, Cci = 0. These facts 
are useful when working out the properties of these estimates. 

To interpret the intercept parameter, we compute the estimated population 
mean at x = 

Thus the estimated intercept ensures that the point falls exactly on the 
estimated regression line, and the line passes through the center of the data. 

We next find the smallest possible value of the residual sum of squares 
function, RSS(;Io,;Il), and we will call this number simply the residual 
sum of squares. Algebra given in Section 6.7.1 gives the formula 

n 

= xi?; = 1 - r2(x ,y) )  (6.13) 
i=  I 

The residual sum of squares is the sum of the squared residuals. It can be 
computed by multiplying by ( 1  - The relationship between and 
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SYY is similar to the relationship between Var(y I x) and Var(y) given in (4.17). 

Equation (6.13) can be solved for r2 to give 

RSS S Y Y - R S S  

SYY SYY 
r2 (x , y )  = 1 - - = (6.14) 

If we think of SYY as the total variability in the sample, and RSS as the vari- 
ability remaining after conditioning on x, then we see from (6.14) that can 

be interpreted as the proportion of variability explained by conditioning on x. If 
r2 has its maximum value of one, then the data must fall exactly on a straight 
line with no variation; if r2 has its minimum value of zero, then conditioning 

on explains none of the variability in y .  

6.2.4 More on Sample Correlation 

Every sample correlation coefficient r (x , y )  is a one-number summary of the 

2D scatterplot of y versus x. This correlation summarizes the plot through the 
proportion of variability explained by the simple linear regression of y on x. 

As with any one-number summary of such a complex object, the correlation 
can be misleading. As described in Section 4.1.5, the correlation coefficient 
measures only how well the scatterplot is approximated by a straight line. This 
was illustrated in Figure 4.7 (page 69) and Figure 4.8 (page 70), where plots 
with very different appearance have the same correlation. Without examining 
the corresponding scatterplot, the correlation may be of little value. 

6.2.5 Some Properties of Least Squares Estimates 

If the simple linear regression mean function is appropriate, then the OLS 

estimates are unbiased, meaning that on the average the estimates will equal 
the true values of the parameters, E(6,) = and E(6,) = qo. The proofs of this 

and the other results of this section and the next are given in Section 6.7.2. 
We next turn to the variances of the estimates. Remembering that we have 

assumed Var(y 1 x) = u2 to be constant, we can get formulas for the variances 
and covariance of the OLS estimates: 

Val-(<,) = u 2 1  (6.15) 

2 x  COV(ij",ij,) = -0 - sxx 

(6.16) 

(6.17) 

The covariance between the estimates is negative if is positive, and it is 
positive if is negative. 
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6.2.6 Estimating the Common Variance, 

Under the constant variance assumption and the simple linear mean func- 
tion (6.2), the expectation of the squared difference e2 = (y - qo - qlx)’ is 
equal to The usual estimate of is based on the squared residuals = 

(y, - 7jo - ljlx,)2, since these estimate the squared errors. The residual sum of 
squares then provides a basis for estimating the variance, 

G2 = - = - (6.18) 

Using - 2) as a divisor gives an unbiased estimate, E(G2) = u2. Estimated 
variances of the OLS estimates are obtained by substituting G2 for u2 in equa- 
tions (6.15) and (6.16). Taking square roots, we get the errors of the 
estimates, 

I /2 

1 = (&) (6.19) 

(6.20) 

We use the term error of an estimate to refer to the square root of 
the variance of an estimate with all parameters like replaced by estimates 
like 

6.2.7 Summary 

The simple linear regression model is usually viewed as consisting of both the 
linear mean function and the constant variance function, 

E(y I x) = + 7]1x and Var(y 1 x) = u2 (6.21) 

The parameters in the mean function can be estimated by using least squares, 
and the variance can be estimated from the minimized value of 
Checks on the adequacy of any model are usually necessary, and they will be 
discussed in later chapters. 

6.3 USING Arc 

Arc can be used to obtain the statistics discussed in the last few sections. Load 

the file f orbes . l s p  to create the Forbes data set. First, we compute the loga- 
rithm of pressure. Select the item “Transform” from the data set menu, which 
for the example is called Forbes. This gives the dialog shown in Figure 6.5. 
The dialog can be used to transform variables via power transformations or 
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FIGURE 6.5 The “Transform” dialog 

TABLE 6.2 Output from “Display summaries” for Forbes’ Data 

= 

S t d .  

= 

by taking logarithms. More general transformations require using the “Add a 
variate” item in the data set menu. 

Move the variables you want to transform from the “Candidates” list to the 
“Selection” list. All selected variables will be transformed in the same way, 
as specified with the buttons and text areas at the bottom of the dialog. If 
you are transforming a variate the transformation will be a power 

+ c)p if p # 0, or it will be log(z + c) if either p = 0 or the 
“Log transformations” button is selected. The base of the logarithms is chosen 
in the text area for the default is to use natural logarithms with base e = 

2.7 18.. . , but any positive number will work. In this book, we will use natural 
logarithms, and logs to base 2 and base 10. To be consistent with Forbes, we 
will use base 10 logarithms in this regression and set b = 10. 

Next, use the “Display summaries” item from the data set menu to obtain 
the summary statistics shown in Table 6.2. Among other values, this out- 
put gives the sample means and standard deviations. The sample correlation 
r(Temp,loglo(Pressure)) is given in the correlation matrix in Table 6.2. Since 
r(Temp, log,o(Pressure)) = r(log,o(Pressure), Temp), the same value of 0.9975 
is given for both off-diagonal entries. This output does not give the sample co- 
variance, but it can be determined from the output by using its definition (4.6). 
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FIGURE 6.6 The OLS regression dialog 

To get Arc. to compute the OLS estimates, you need to fit a model. Select 
the item “Fit linear LS” from the “Graph&Fit” menu to get a dialog like the 

one shown i n  Figure 6.6. This dialog is used to select the predictors and the 
response. As shown in the figure, log,o(Pressure) has been specified as the 
response, and Temp as the predictor using the usual mouse-click commands. 

At the top of the dialog you can specify a name for the model; the default 
name is LI, indicating that it is the first model of type “L” (Linear) for this 
data set. The other items in the dialog-setting weights and an offset, selecting 
an alternative form for the mean function, and toggling the intercept-will be 
used later and are not needed for this example. 

When you click on the “OK” button, the simple linear regression model 
for loglo(Pressure) on Temp will be calculated and summary statistics will be 
displayed in the text window, as shown in Table 6.3. Besides giving the output, 
a model menu will be created with the name Ll or whatever you typed for the 
name of the regression model; the items in this model menu will be of interest 
in later chapters. 

In the output, the column marked “Estimate” in Table 6.3 gives the esti- 
mated parameter values, -0.421642 for the intercept and 0.00895618 for the 
slope. Be careful when working with such small numbers: It is very easy to 
drop one of the leading zeroes. The column marked “Std. Error” gives the 
standard errors of the estimated intercept and slope. These are both very small 
relative to the values of the estimates, as can be seen from the numbers in the 
column labeled “t-value,” which are the estimates divided by their standard 
errors. The standard error for ijl is given as 0.000164575. Many computer 
programs would write this in scientific notation as 1.645758-4. Arc generally 
avoids scientific notation except for very small or very large numbers. 

The next number in the output is labeled “R Squared,” which is 0.994961. 
For simple linear regression, this is just r 2 ( x , y ) ,  and so almost all (99.5%) of 
the variability in log,o(Pressure) is explained by the value of “Sigma 
hat” is a, the square root of the estimated variance assuming that the variance 
function is constant. has the same units as the response. The “Degrees of 
freedom” is equal to the number of observations used in the calculations, which 
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TABLE 6.3 Simple Linear Regression Output for Forbes’ Data 

= = 

= 

= 

= 

: 

ss 

- 

is 17, minus the number of regression coefficients estimated, which for simple 

linear regression is two, namely the intercept and the slope. The “Summary 
Analysis of Variance Table” in Table 6.3 is described in Section 6.6. 

We can get a visual impression of how well the OLS line matches the data. 
From the Graph&Fit menu, select “Plot of,” and then draw the plot with Temp 
on the horizontal axis and log,,,(Pressure) on the vertical axis. We want to add 
the OLS line to this plot. The slidebar on the plot that is initially marked “OLS” 
can be used for this; we call this the parametric smoother slidebal: If you click 
the mouse button on this slidebar, the OLS simple linear regression with the 
quantity on the vertical axis as response and the quantity on the horizontal 
axis as predictor will be computed, and the OLS line will be displayed on the 
figure. More general use of this control will be discussed later. The resulting 
plot is shown in Figure 6.7. Apart from one point, the OLS line matches the 
data closely. 

6.3.1 Interpreting the Intercept 

The equation for the OLS line shown in Figure 6.7 is 

~ ( J J  I = -0.42 + 0.009~ 

where the estimates of the slope and intercept have been rounded for this 
discussion. From the slope estimate we expect an increase of 0.009 in log 
pressure per degree increase in the boiling point of water. At first glance, the 
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FIGURE The OLS simple linear regression f i t  for Forbes' data. 

intercept indicates that the expected log pressure is -0.42 when the boiling 
point of water is 0 degrees F. How do we know that this interpretation of 
the intercept is scientifically reasonable? The answer is that we don't, at least 
not from statistics alone. We do know from Figure 6.7 that the fitted line is 
a close approximation of the expected response over the range of tempera- 
tures 194.3 < Temp < 212.2 observed by Forbes. But we have no data, and 
thus no, statistical information, on the response for temperatures outside this 

range. E(y I x = 0) = -0.42 might be a good estimate, or it could be way off 
because the linear relation that is so clear in Figure 6.7 breaks down for small 
temperatures. A key point is that extrapolation, using a fitted model as the 
basis for inferences outside the range of the data, should be avoided unless 

there is external subject-matter information to support it. A second point is 
that in some regressions the intercept may be only a tuning parameter with no 
intrinsic scientific meaning. 

Interpreting the intercept can often be made easier by reparameterizing the 
model by centering by subtracting the average from x,. Beginning with the 
simple linear regression model, 

= + 7 ,  ( x  - + + e 

= qo + 7, + q1 (x  - + e 

= + 'r1,X + e 
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Here we have defined the new intercept using the Greek letter alpha ( t ~  = 

v0 + and the centered predictor X = (x - X). Q is the expected response 
when the centered predictor equals 0, = 0. Equivalently, is the expected 
response when the original predictor equals its sample average, x = Because 

is always within the observed range of x, the new intercept should always 
have a reasonable interpretation. 

6.4 INFERENCE 

Several types of inference might be of interest in simple linear regression, 
including hypothesis tests and confidence statements concerning regression 
coefficients, or prediction of future values of y for new cases. To develop in- 
ference statements, we use an additional assumption beyond those concerning 
the mean function and variance function summarized by (6.2 1 ). 

The assumption we now add is that y 1 x is normally distributed (see Sec- 
tion 1.6.2), which we write as 

This is called the 

As a result of the normality assumption, the coefficient estimates (7j0,Gl) 
follow a bivariate normal distribution with the means, variances, and covari- 
ance as given in Section 6.2.5. The correlation between Go and can be found 
in the usual way, by dividing the covariance by the product of the standard 
deviations. 

The estimated variance G2 depends on the squares of the so it will not 
have a normal distribution. However, its distribution is related to a 

written using a Greek letter as x2. A Chi-squared distribution has 
a single parameter called the or df. We denote the Chi- 
squared distribution with d degrees of freedom as 

We can now write 

(6.24) 

which means that - 2)G2/u2 is distributed as a Chi-squared random variable 
with n - 2 df. In addition, G 2 ,  the estimate of u2, is statistically independent 
of the estimates of the regression coefficients and 'j, . 

More discussion on the role of normality is available in Section 6.7.6. 

6.4.1 Inferences about Parameters 

Hypothesis tests and confidence statements concerning 7 ,  , and linear com- 
binations of them are based on a r-distribution. As in Section 1.7.2, page 21, 
we will use the notation td to denote the t-distribution with d df, and the no- 
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tation Q(r,,.f) for the f th  quantile of the distribution. This means that the 
following equation is satisfied: If a random variable V has a distribution, 
then 

The most common inference method for regression coefficients and lin- 
ear combinations of them is based on a general paradigm used through- 
out this book. Suppose we have constructed a statistic W that is (approxi- 
mately) normally distributed with mean E(W) and variance a2c, where is 
a known number that can depend on the sample size and any predictors, but 
not on the response. For example, W could be the average j of a simple 
random sample y , ,  . . . ,yn from a population with mean E(y,) = E ( j )  and vari- 

ance = Var(y,). We know from the discussion of Section 1.6.6 that j~ will 
be approximately normally distributed with mean E(y,) and variance 02/n.  
Thus, W = .v is approximately normally distributed with Var(W) = where 

= l /n.  
The standard error of is estimated by se(W) = i?cl’’. Suppose that the 

estimate has d df and is independent of This holds for the statistics Go 
and based on data from the normal simple linear regression model (6.23). 
Then a ( 1  - x 100% confidence interval for E(W) is 

W - Q(r,,, I - a/2)se(W) E(W) W + Q(rd. 1 - cr/2)se(W) (6.25) 

We interpret this confidence statement to mean that, if the same experiment 
was repeated many times, then ( I  - x 100% of the confidence intervals 
computed from those experiments would include the population mean E(W). 

We can apply this result to find a confidence interval for the slope in Forbes’ 
data. Our statistic W in this case is G I ,  and E(W) = q , .  From Table 6.3, = 

0.00896 and se( ) = 0.000 165, rounding the results to three significant digits. 
If we take o = 0.05, we seek a 95% confidence interval. The estimate G2 has 
d = n - 2 = 17 - 2 = 15 df. We can find the value of Q(t,,,0.975) using the 

“Calculate quantile” item in the Arc menu. The result is Q(f,,,0.975) = 2.13, 
rounded to two decimal digits. Then the 95% confidence interval is 

0.00896 - 2.13(0.000 165) < ‘ r l ,  < 0.00896 + 2.13(0.000 165) 

0.00861 < 7 ,  < 0.00931 

The r,  distribution can also be used to assess competing hypotheses con- 
cerning regression coefficients, using a strategy paralleling that for the mean 
of a normal distribution reviewed in Section I .7.1. The usual procedure is 
based on using the data to compare a null hypothesis we label NH to an alter- 
native hypothesis AH. The null hypothesis specifies a restriction on a model, 
while the alternative gives the unrestricted model. For example, hypotheses 
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concerning the slope are 

NH : = h ,  , arbitrary 

AH : rl, # h, ,  arbitrary 
(6.26) 

where h,  is some specified value of interest. 

native hypothesis by using the general 
Null hypotheses of the form given in (6.26) can be judged against an alter- 

estimate - hypothesized value 

standard error of the estimate 
t =  

- -- (6.27) 

where W is still the general estimate defined at the beginning of this section 
and h is some specified value. In normal linear regression, this statistic is 
conventionally labeled as t ,  as we do here. Recalling the estimate G2 has d df, 
a p-value is obtained by comparing t to the td distribution. 

For example, consider again the slope q1 in Forbes’ data and the hypothesis 
given by (6.26). The general test statistic t applied to the slope becomes 

(6.28) 

with d = - 2 df. The context for Forbes’ data does not furnish a particular 
value of h, ,  so for the purpose of this example we will choose h,  = 0.0095 to 
illustrate the computations. The t-statistic for the null hypothesis ql = 0.0095 
is 

0.00896 - 0.0095 
t =  -3.3 

0.0001 65 

We can use the “Calculate probability” item in the Arc menu to compute the p -  
value. After selecting this item, you will get a dialog like the one in Figure 1.7 
on page 17. Enter the value -3.30 for the value of the statistic, choose the t -  

distribution, and set the df to 15. The alternative hypothesis we have specified 
is two-tailed, so click the “Two tail” radio button. Use the lower tail for AH: 
ql < 0.0095, and use the upper tail for AH: q ,  > 0.0095. After pressing “OK,” 
the following is displayed in the text window: 

t d i s t .  wi th  15 d f ,  = - 3 . 3 ,  

two- ta i l  p robab i l i t y  = 0.0048589 

Against the general two-tailed alternative, the finding of p = 0.005 provides 
reasonably strong evidence against the null hypothesis that ql = 0.0095, since 
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a value o f t  this extreme would be observed only about five times in a thousand 
if the null hypothesis were true. 

The regression output for Forbes’ data shown in Table 6.3 gives a “t-value” 
for each estimated regression coefficient. These are the values of for the 
default hypotheses that the regression coefficients equal 0. For example, the 
Arc t-value for the slope is 

estimate - 0 

standard error of the estimate 
Arc t-value = 

- 61 - 
se(6,) 

- 0.00896 

0.00165 
- - = 54.42 

This result shows that the estimate of the slope is about 54 standard errors 
above 0, giving a very strong indication that 77, # 0, which should agree with 
the visual impression of the fit shown in Figure 6.7. 

6.4.2 Estimating Population Means 

From time to time, we may be interested in obtaining an estimate of E(y 1 x), 

the population mean of y at a given value of The estimated mean at x is 

E(y 1 x) = ;lo + i ,x, with standard error se(E(y 1 x ) )  given by the standard error 
of the linear combination & + 6,x. The general inference paradigm discussed 
in Section 6.4 applies to this regression. In particular, with E(W) = E(y I x )  

equations (6.25) and (6.27) can be used to construct confidence intervals and 
test hypotheses about E(y I x). The only missing ingredient is the computation 
of 

se&y I x ) )  = se(i, + ijlx) 

We can compute this standard error from the basics by first writing 

These expressions are based on the properties of covariance discussed in Sec- 
tion 4.1.4. Estimates of the two variances and covariance in the second ex- 
pression can be computed from (6.15), (6.16), and (6.17) after substituting c?* 

for 0’. We then get se(E(y 1 x)) by taking the square root of the estimate of 
Var(’j, + 6,x) obtained by adding the estimates of the individual terms in its 
sum. 

Arc automates this procedure. Suppose that the name of the model menu for 
the Forbes data is L I .  Select the item “Prediction” from the model menu L1. 
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Compute ... 

@ Predlrllon. esllm~lml mesn ualue. and re 

Llnear comblnallon and so 

iype usiues Separalsd by spares ror 

Temp 

-II Welghl lor  predlcllon 

FIGURE 6.8 The “Prediction” dialog. 

TABLE 6.4 Output from the Prediction Dialog Shown in Figure 6.8 for Forbes’ 

Data 

Data set  = Forbes, N a m e  of F i t  = L1 

Normal Regression 

Kernel mean func t ion  = I d e n t i t y  

Response = loglO[Pressure]  

T e r m s  = (Temp) 

Term va lues  = (200) 

Predic t ion  = 1.36959, w i t h  s e ( p r e d )  = 0.00393167 

Leverage = 0.0752518, Weight = 1 

E s t .  populat ion mean va lue  = 1.36959, se = 0.00104011 

The resulting dialog shown in Figure 6.8 can be used to calculate an estimated 
mean and its standard error. For example, to get the estimated population 
mean of logl0(Pressure) at Temp = 200, type 200 into the text area of the 
dialog and then click “OK.” Table 6.4 gives the results that will be displayed 

in the text window, The estimated population mean is E(y I x = 200) = 1.370 

and its standard error se(E(y I = 200)) = 0.001. A (1 - x 100% confidence 
interval for E(y I x = 200) is 

k (y  I = 200) - Q(r,,, 1 - x se(E(y 1 x = 200)) 

5 E(y I x = 200) 

5 l?(y I = 200) + e(td, 1 - 0/2) x se&y I x = 200)) 

1.37 - Q(t15,l - ~ / 2 )  x 0.001 

5 E(y 1 x = 200) 5 1.37 + Q(t15,l - 0 / 2 )  x 0.001 

The remaining information in the table is discussed in the next section. 
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6.4.3 Prediction 

An estimated model is often used to predict y I a future value of y for a 
new case with predictor We assume that the data used to estimate E(y 1 is 
relevant to prediction. In the Forbes example, we might not expect reasonable 

predictions of pressure at temperatures very different from those in Forbes’ 
experiment. However, we can expect the model to be valid for temperatures 
in experiments conducted at similar altitudes; we will make this notion of 

extrapolation more precise in a later chapter. With this understanding, a point 
prediction Y,,,.ed at x is equal to the estimated population mean at x: 

A prediction differs from an estimated population mean in that prediction 
refers to a single as yet unobserved response y I x, while an estimated popula- 
tion mean corresponds to E(y I This difference affects the standard errors. 

Suppose first that we know the variance function and the mean function 
exactly: in simple linear regression this means knowing qo, ql and 0. Taking 
a single future observation is the same as sampling from a population with 
mean E(y 1 x )  and standard deviation (Var(y I x))lI2 = 0.  Our prediction, the 
population mean, will not agree exactly with the future value of y I because 
of the inherent population variation represented by In this simple case, the 
standard error of a prediction is just the known population standard deviation. 
Since we don’t actually know the regression coefficients, there will be an 

error due to estimating them. This additional error is the same as the 

standard error of the estimated mean, se(E(y I this quantity was discussed 
earlier in Section 6.4.2. These two components are added in the variance scale: 

Var(y,,re, 1 x )  = population variance + estimation variance 

The standard error of a prediction is now found by taking the square root of 
the prediction variance, with an estimate G2 used in place of the unknown 
value of 02. This standard error is given by 

This expression shows that the standard error of a prediction will always be 
larger than the standard error of the corresponding population mean estimate 
because of the inherent variability in the population. 

The item “Prediction” in a model menu gives results for population mean 
values and predictions at the same time. Table 6.4 contains the prediction and 
its standard error for the example with Forbes’ data. For this example, the 
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standard error of the prediction is nearly four times the standard error of the 
estimated population mean value. 

A confidence interval for a prediction can be obtained using a t-distribution 
because the prediction is a linear combination of normally distributed esti- 
mates, and the variance estimate 6* is independent of the estimates. To com- 
pute of a 90% prediction interval, for example, we need Q(t,,,O.95), which, 
from the “Calculate quantile” item in the Arc menu, is about 1.75. The con- 
fidence interval is then 

where ypred I (x = 200) is calculated using (6.29), and se(ypred 1 (x = 200)) is 
calculated using (6.3 1). Then 

1.370 - 1.75 x 0.0039 y I (X = 200) 1.370 + 1.75 x 0.0039 

1.363 5 y I (X = 200) 5 1.377 

A 90% confidence interval for pressure = 10’ can be obtained by exponenti- 
ating the end-points of the interval: 

101.363 < < - 101.377 
- 

23.05 I Pressure I (Temp = 200) 5 23.82 

This last interval is in inches of mercury, the units that would be of interest to 
most investigators. Although the regression model appeared to be very precise, 
a fair amount of variability remains as the prediction interval has a width of 
about 0.75 inches of mercury. 

6.5 FORBES’ EXPERIMENTS, REVISITED 

We chose to use simple linear regression for Forbes’ data because the plot for 
the 17 data points appears to be linear. Forbes apparently selected this model 
from theoretical considerations not explicitly given in his paper. Advances in 
physics since Forbes’ time provide us with additional theory in the form of 
the Clausius-Clapeyron formula of classical thermodynamics. According to 
this formula. we should find that 

1 
E,(logIo(Pressure) I Temp) = vo + 711 - 

Ktemp 
(6.32) 
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Add a uartate to  Forbes 

Type an equation like “y-niz”,  where g i s  the name o f  the 
new uariate to be created. and n and are enisting uariates. 
The right side of the equation may be either a math enpression or 

a lisp enpression. 

ul=1/((5/9)*Temp + 255.57)  1 
[0,1[=[,,,,,,](7GF] 

FIGURE 6.9 The “Add a variate” dialog. 

where Ktemp is temperature in degrees Kelvin, which are degrees Celsius 
above absolute zero. The subscript C on E, is intended as a reminder that this 
mean function is implied by the Clausius-Clapeyron formula. If we were to 

graph this mean function on a plot of logIO(Pressure) versus Ktemp, we would 
get a curve, not a straight line. 

Even though this mean function is curved, we can estimate the parameters 
and qI using simple linear regression methods. Define the new variable u 1  

to be the inverse of temperature in degrees Kelvin, 

1 - 1 
U I  = - - 

Ktemp (519)Temp + 255.37 

Then the mean function (6.32) can be rewritten as 

(6.33) 

(6.34) 

for which simple linear regression is again suitable. This technique of replac- 
ing the predictor by a transformation of it allows us to adapt simple linear 
regression models to a variety of situations. Notice also the notation we have 
used in (6.34): The left side of the equation says we are conditioning on Temp, 
but the variable Temp does not appear explicitly on the right side of the equa- 
tion. The conditioning comes about because the predictor u 1  on the right side 

is a function of Temp as given by (6.33). 
Computing u I  is too complicated for the “Transform” menu item, but gen- 

eral transformations like this can be computed using the “Add a variate” item. 
After selecting this item from the data set menu, you will get a dialog like 
Figure 6.9. In the text area of this dialog, first type a name for the new vari- 
ate, then an equal sign, and then an expression that defines the new variate. 
The expression in Figure 6.9 transforms to the inverse of degrees Kelvin. 
The expression can be in regular mathematical format, or a statement in a 

computer language called this latter type of expression is illustrated in 
Sections A.2 and A.7.2. Following computation of u I ,  the simple linear re- 
gression of loglO(Pressure) on u I  can be carried out as described previously 
in this chapter. 
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Fit-Values, yc 

FIGURE 6.10 Scatterplot of fitted values from the fit shown in Table 6.3 versus the fitted 

values from the fi t  of the Clausiusxlapeyron formula. The reference line y = x was added to 

the plot using the plot's options menu. 

We now have two possible models for the same data, the model 

E(log,o(Pressure) I = + (6.35) 

used by Forbes, and model (6.34) based on the Clausius-Clapeyron formula. 
Which is better? Forbes approach is supported by empirical evidence, but 
(6.34) is supported by theory. 

from the fit of model 
(6.35) shown in Table 6.3 versus the fitted values from model (6.34). 
The diagonal reference line on the plot is y = x. The plot shows that the two 
sets of fitted values are nearly identical, falling very close to the diagonal 
reference line. Although model (6.35) may not be supported by present-day 
theory, it seems to provide a very good approximation over the range of tem- 
peratures covered by Forbes' data. Empirical regression models can provide 
very good approximations even if they are not fully supported by substantive 
theory. 

Shown in Figure 6.10 is a plot of the fitted values 

6.6 MODEL COMPARISON 

6.6.1 Models 

The discussion so far has been mostly in the context of the simple linear re- 
gression model y I x = qo + 711x + e, which can be stated equivalently as the pair 
of conditions E(y I x) = qo + q l x  and Var(y I x) = u2. Sometimes, even simpler 
models might be useful. For example, for the haystack data we might study 
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FIGURE 6.11 

linear regression model (6.41 ). 

Representation of model (6.38) with a constant regression function and the simple 

the model 

E(Vol1 C) = C3/127r2 and Var(VoZ I C )  = o2 (6.36) 

For the snow geese data (Section 3.6.2), the model 

E(Photo I = and Var(Photo I = g2 (6.37) 

might be considered. These two models contain no unknown regression coef- 
ficients, but o2 is still unknown. The general ideas discussed in this chapter 
apply to these simpler models. 

Returning to simple linear regression, we might want to consider any of 
the four models 

E(y I x )  = 0 and Var(y 1 x )  = 2 (6.38) 

E(y 1 x )  = qo and Var(y 1 = o2 (6.39) 

E(y I x )  = rIIx and Var(y 1 x )  = o2 (6.40) 

(6.41) E(y 1 x )  = qo + ?/lx and Var(y I x )  = 2 

The mean function is constant in (6.38) and in (6.39) and does not depend 
on the predictor. In model (6.38) the constant value of the mean function 
is specified as 0. In model (6.39) the constant value of the mean function 
is an unknown value represented by the regression coefficient The mean 
function for model (6.40) is linear in the predictor with a single regression 
coefficient r i l .  This model is often referred to as regression through the origin 
since the intercept is zero. Model (6.41) is the simple linear regression model. 
Figure 6.1 I illustrates models (6.38) and (6.41) for a particular data set. 
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We can use OLS to fit any of these models by choosing the regression 
coefficients to minimize the residual sum of squares function 

where E(y I x i )  can be set to any of the four mean functions described pre- 
viously, and is a pair of candidate values for the parameters 
In the case of models (6.36), (6.37), and (6.38), there are no regression co- 
efficients and thus no minimization is necessary because the residual sum of 
squares function is constant. 

In the case of model (6.39), the residual n sum of squares depends only on 

h, and is minimized at = j .  Thus, E(y 1 x )  = Go = j and the residual sum of 
squares is just 

!l 

= c(yi - I x i ) ) 2  
i=  1 

n 

1 

= (6.42) 

Arc can be used to f i t  model (6.40) by un-checking the box “Fit Intercept” in 
the regression dialog shown in Figure 6.6. 

The estimate of u2 follows the same form for any of the models we have 

discussed: 

where the degrees of freedom 

df = n - number of ?]-terms estimated 

For models (6.36), (6.37), and (6.38), df = n. For models (6.39) and (6.40), 
df = n - 1; and for the simple linear regression model (6.41), df = n - 2. 

Finally, tests of hypotheses and confidence intervals can be constructed 
following the general steps of Section 6.4. 

6.6.2 Analysis of Variance 

Analysis of variance is used to summarize the calculations necessary for com- 
paring competing models on the same data. For example, consider the follow- 
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ing two models stated as hypotheses: 

NH : E(y I x )  = 

AH : E(y I x )  = + i ] , x  

with Var(y I x )  = 
(6.43) 

with Var(y I x )  = uz 

The mean function of the null hypothesis is a constant. Under the simple linear 
regression model of the alternative hypothesis, there is no restriction on the 
estimated mean function as long as it is a straight line. The NH is a special 
case of the AH, obtained by setting the parameter q, = 0. Because of this we 
say that the model of the NH is nested within the model of the AH. Analysis 
of variance is appropriate only for such nested hypotheses. 

Before turning to the analysis of variance for (6.43), let's consider some 
other hypothesis that might be of interest: 

NH : E(y I = 0 

AH : E(y I x )  = qo + 71,x 

with Var(y I x )  = u2 

with Var(y I x )  = u2 
(6.44) 

Here the null hypothesis contains no unknown parameters, but it is still nested 
within the model AH, and analysis of variance is appropriate. 

NH : E(y I x )  = q,x 

AH : E(y 1 = 71" + rl,x 

with Var(y I = 
(6.45) 

with Var(y I x )  = uz 

Now the null  hypothesis specifies a straight line with intercept equal to zero 
and slope unrestricted. Under the AH the slope and intercept are both unre- 
stricted. Again, the model of the NH is nested within the model of the AH, 
and analysis of variance is again appropriate. Finally, consider the hypothe- 
ses 

NH : E(y I x )  = 710 

AH : E(y 1 = q , x  

with Var(y I = u2 

with Var(y 1 = uz 
(6.46) 

These hypotheses differ from those above because the model of the NH is not 
nested within the model of the AH. Analysis of variance cannot be used for 

this test. 
Consider any of the hypotheses described above except (6.46). If the AH 

model provides a much better fit than does the NH model, we would ex- 
pect that the residual sum of squares under the null hypothesis RSS, will be 
considerably larger than the residual sum of squares under the alternative hy- 

pothesis RSS,,. This comparison provides the basis for a test of the competing 
models. The test statistic is 
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TABLE 6.5 Generic Analysis of Variance Table 

Source df ss MS F 

Regression dfNH ~ df,,, - SS/df See (6.47) 

Residual dfAH SS/df = G 2  

TABLE 6.6 Analysis of Variance for Forbes’ Data, Repeated from Table 6.3 

1 0.0425757 0.0425757 2961.55 0.0000 

15 0.000215643 0.0000143762 

where G i H  is the estimate of o2 under the AH model. Large values of F are 
evidence against the NH and in favor of the AH. When the null hypothesis is 
true, this statistic has an Fd,,d2 distribution with d ,  = dfNH - dfAH and d, = dfAH. 
We have used dfAH to denote the df for the residual sum of squares under the 
AH. Similarly, dfNH is the df for the residual sum of squares under the NH. 
The p-value of the test is computed as the probability that an Fd,,d2 random 
variable is as large or larger than the observed value of F. The calculations for 
this F-test are traditionally summarized in an analysis of variance as shown 

in Table 6.5. 
Now, consider the hypotheses in (6.43). We can get least squares estimates 

under the NH by minimizing the residual sum of squares - over 
all possible values of h,. This leads to = SYY with df,, = n - I df, 
as shown in (6.42). For the simple linear regression model of the AH, we 
have previously seen that the residual sum of squares is given by (6.13) with 
dfAH = n - 2. 

The elements needed for the test of (6.43) on Forbes’ data are summarized 
in the Analysis of Variance table shown in Table 6.6. The column marked 
“Source” refers to descriptive labels given to the sums of squares. The df 
column gives the number of degrees of freedom associated with each named 
source. The next column gives the values of the sums of squares. A 
squure is defined to be a sum of squares divided by its df. The mean square 
on the residual line is G2. 

The sum of squares in this table on the line marked “Regression” gives the 
difference - RSS,, while the associated degrees of freedom is dfNH - 
df,,. The NH and AH here are those in (6.43). Consequently, the F-test for 
comparing the two models is just the ratio of the two mean squares shown in 
the Analysis of Variance table. This ratio, shown in the column marked “F,” 
is 2961.55, and its p-value rounds to zero in the four significant digits shown. 
The evidence against the NH is very strong, as might have been expected from 

inspection of Figure 6.7. 
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The F-test for the hypotheses in (6.44) and (6.45) are automatically 
summarized in a single Analysis of Variance table by Arc. Instead, two mod- 

els need to be f i t  in each case, and the test statistics calculated by hand for 
each using (6.47). Results can then be summarized, again by hand, using an 
Analysis of Variance table. 

For the hypothesis tests specified by (6.26) with h ,  = 0, we used the statistic 
labeled and compared it to the distribution to get a p-value. For (6.43) 
we used an F-test. These two approaches appear to be identical: Both allow 
the intercept to be arbitrary, but under the NH the slope is zero. For the 
simple linear regression model, these two tests give the same information and 
t2  = 54.422 = 2961.55 = F .  

6.7 COMPLEMENTS 

6.7.1 Derivation of Estimates 

In this section we derive OLS estimates. Understanding regression models is 
quite possible without learning any of these details, but some readers may find 
that the algebra deepens their understanding. 

Deriving the OLS estimates for the simple linear regression model is sim- 
plified by centering the data as in (6.22). Given the simple linear regression 

mean function and data ( x i , y i ) ,  = 1,. . . , n, we can write the model as 

yi = n + rl, (x i  - + ei (6.48) 

where 

= + (6.49) 

Once we have determined the OLS estimates of and ql,  we can get the OLS 

estimate of 7)" by substituting these estimates into (6.49). 
The least squares estimates minimize the residual sum of squares function, 

= 

i=  I 

n 

= C[(y; - j )  - - j )  - h, ( X i  - 

i =  1 

where the second equation is obtained by adding and subtracting j ,  and we 
have replaced the parameters Q and by place holders and h,  because the 
residual of squares function is defined for any values of and h , ,  not 
just for the true values of the parameters. Squaring the term in the square 
brackets and then adding, this can be rewritten after a modest amount of 
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algebra as 

= SYY + n(a - j ) 2  - 2 h , S X Y  + h:SXX (6.50) 

The notation SXY, and SXX is defined in Table 6.1, page 104. The least 
squares estimates will make (6.50) as small as possible. Since a enters (6.50) 
only through (a  - setting a = j will make (6.50) as small as possible. To 
find the least squares estimate of the slope parameter, we must find the value 
of h, that minimizes the quadratic equation SYY - 2 h , S X Y  + Recalling 
that the minimum of a quadratic equation co + cIz + occurs at - c I / 2 c 2 ,  

provided that is positive, the minimum residual sum of squares occurs 
at 

-2SXY SXY 
'rll = -- = - 2sxx sxx (6.5 1) 

The estimate of the intercept is obtained by substituting the estimates obtained 
so far into (6.49): 

< o = y - < I j  (6.52) 

To find the residual sum of squares substitute a = j and h ,  = 6, = 

SXY/SXX into and simplify: 

SXY 

(SXX)  (SYY) 
= S Y Y -  [ ] SYY 

= SYY( 1 - r 2 ( x , y ) )  

as given by (6.13). 

6.7.2 Means and Variances of Estimates 

The least squares estimates are linear combinations of the so results given 
previously can be used to find moments of the estimates. Assume the simple 
linear regression model 

We recall from (6.5 1 )  that the OLS estimate of 'rII is = SXY/SXX.  Writing out 

i=  I i =  1 
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we can write el as given by (6.1 1): 

41 =?(&)x  xi ~ x 

i=  I 

(6.53) 

Viewing the xr as fixed numbers, we recognize GI as a linear combination of 
y , ,  . . . , y t , .  Wc now turn to finding the mean and variance of As notation 
we use only in complements sections, let X stand for all the observed values 
x I , .  . . , x t l .  Using (6.53) and applying the formula E(C:= I c , y , )  = c:=, 
we obtain 

Now E(y, I X )  = E(y, I x i )  because y ,  depends on X only through x i .  Substitut- 
ing, we get 

To complete the computation we need two further results that can be proved by 
direct summation; C ( x i  - X) = 0, and C ( x i  - X)xi = C ( x .  I - - - 3XX. Substi- 
tuting these results into the last equation gives 

E(il1 I XI  = , ) I  

showing that ,c, is an unbiased estimate of As notation for the main part 
of this book, we will not give the conditioning on X explicitly, and we write 
this result simply as E(ljl) = q l .  A similar proof will show that the intercept 
is also unbiased. 

We next turn to finding the variances of the estimates. Assuming that ob- 
servations are independent, using (4.8), page 62, we can write 



128 CHAPTER 6 SIMPLE LINEAR REGRESSION 

where once again we used the fact that the distribution of depends on X 

only through xi.  We next substitute Var(y, I = 

as was given by (6.15). A similar derivation under the same assumptions gives 
both the variance of the intercept (6.16) and the covariance of the estimates 
(6.17). 

Finally, we apply equation (4.8) to find the variance of an arbitrary linear 
combination of the OLS estimates, + b17jl, where b, and b,  are any real 
numbers: 

~ar(b,.rj, + b,7jl 1 = b;Var(rj, I X )  + h:Var(7jl I 

+ 2b,b1Cov(~~,,~4, I 

This formidable-looking equation simplifies greatly in special cases. In the 
case of a fitted value, b, = 1 and b ,  = x, and j = 6, + elx.  We get the simple 
formula 

This variance depends on the unknown value of and on the known value of 
x .  To get an estimated variance that can be used in practice, &* is substituted 
for The standard error of 9 is 

The item “Prediction” from a regression model’s menu can be used to 
compute the estimate and standard error for any linear combination, and also 
to compute estimates and standard errors for fitted values and for predictions, 
as described in Sections 6.4.2-6.4.3. 

6.7.3 Why Least Squares? 

The least squares criterion (6.10) chooses estimates that minimize the squares 
of the vertical differences between the observed values of y and the values 
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that fall on the fitted line. This is but one of many possible ways of defining 
a objective function to estimate parameters. For example, we could minimize 
the sum of the absolute values of the vertical differences, or we could use 
the differences in some other way. Why choose this particular criterion func- 
tion? 

Most of the methodology outlined in this book doesn’t depend very strongly 
on using least squares. However, the estimates we use must have a few proper- 
ties. In the “must have” category is Roughly speaking, this means 
that if the simple linear regression model is true, then as the sample size 
increases, the difference between the estimates and the true values of the pa- 
rameters should get smaller. If we could collect enough data and if the model 
we use were true, we could eventually know the values of the parameters. OLS 

shares consistency with many other estimation methods. See Problem 6.3 for 

more on this topic. 
A second “must have” criterion is called The results of an anal- 

ysis should be unchanged, or changed in a deterministic way, when the data 
are scaled, for example by changing from Imperial to metric units. Again, 
least squares shares invariance with many other estimation methods. See Prob- 
lem 6.2 for more on this topic. 

One of the principal theoretical justifications for the use of OLS estimates 
is the which states that if the model (6.21) holds, 
then the OLS estimates have the smallest variance among estimates that are 

unbiased and that can be written as a linear combination of the elements 

Also, there is the connection between OLS and the bivariate normal distri- 
bution described in Section 4.3.3. The estimates of the slope and the intercept 
in that section are identical to the OLS estimates. 

In later chapters of this book we will consider other estimators besides 
least squares. We will do this because we want to take advantage of additional 
information, often about the relationship between the mean function and the 
variance function. Least squares is based only on the mean function, essen- 
tially assuming that the variance function is constant; later we will generalize 

to weighted least squares to allow the variance function to vary independently, 
but not as a function of the mean. When the mean and the variance are related, 
then other estimation methods should be used. 

The method of least squares was apparently first proposed by C. F. Gauss 
in a series of papers and letters presented to the Royal Society of Gottingen 
in 1821, 1823, and 1826. 

of y .  

6.7.4 Alternatives to Least Squares 

There are many estimation methods other than the methods described in this 
book. A good introduction to alternative methods of regression is available in 
the book by Birkes and Dodge (1993). 
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6.7.5 Accuracy of Estimates 

In this book, we often present tables of numbers just as they are presented 
by the computer. This is done both to allow users to reproduce our results 
and to allow the output shown to be used in intermediate calculations. Re- 

sults presented with too many digits are hard to read. For this reason we 
often round computer output when illustrating calculations. Ehrenberg (198 1) 
presents some simple rules for presenting tables of numbers that make them 

easy to read and to facilitate comparisons. 

6.7.6 Role of Normality 

We started our discussion of inference in Section 6.4 by assuming that the 
conditional distribution of y I x is normal (see equation (6.23)). When this 
assumption holds, tests and confidence intervals have the properties we de- 

scribed. When normality does not hold, the inference procedures are approx- 
imate, which means that the level of a test or confidence interval may not 
be as the normal theory says. How accurate are inference procedures for re- 
gression coefficients when normality does not hold? When the sample size 
is reasonably large relative to the number of regression coefficients, they are 
generally quite accurate and the assumption of normality is not really cru- 
cial. This conclusion holds for all of the regression coefficients studied in this 
chapter, as well as for the coefficients in more complicated models discussed 

in later chapters. 
The reason for this conclusion begins with the form of an estimated regres- 

sion coefficient. For OLS, estimated regression coefficients are always linear 
combinations of the responses, = zy=, where the ti's are constants that 
can depend on the predictor and the sample size, but not on the response. 
Linear combinations of independent normal random variables are themselves 
normally distributed. Thus, if the are independent and normal, then ;I is 
normally distributed. The inference procedures discussed in this chapter are 
based on this fact. If the are not normally distributed, will still be approx- 
imately normal, the accuracy of approximation increasing with sample size n.  

This is the same phenomenon described during our discussion of the central 
limit theorem in Section I .6.6. Thus, as long as the sample size is reasonably 
large, the inference can proceed as if the responses were normally distributed. 

There are exceptions to this general conclusion. One is confidence intervals 
for a prediction, because here we do not gain the benefits of the central limit 

theorem. Generally, confidence limits for prediction require that we know the 
distribution of the response so we can adequately characterize the uncertainty 
in a single future observation. 

6.7.7 Measurement Error 

Measurement error refers to the idea that we can’t measure with sufficient 
precision what theory says we need to measure. To illustrate the complications 
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that can be caused by measurement error, consider a response y and a predictor 
x that follow a bivariate normal distribution. We know from the results of 
Section 4.3 that the mean function is linear in x. 

where 

In addition, the variance function is constant: 

Suppose we can't determine y precisely, so instead of observing y we ob- 
serve j = y + 6, where 6 represents an independent normal measurement error 
with mean 0 and variance 0;. For example, y might represent the weight of 
a light object. If our scale isn't sufficiently precise, we could obtain different 
independent readings each time the same object is weighted. The variance 0; 

represents the variation from weighing to weighing of a single object. The 
condition E(6) = 0 means that our scale is unbiased; the average of many 
different weighings of the same object would give its actual weight. 

Using .? in place of y, the simple linear regression model becomes 

again with constant variance 

I x) = o2 + 0; (6.55) 

The mean function for j I x is the same as the mean function for y I x, but 
the variance has increased by 06'. The result of measurement error in y is to 
increase the variation about the mean function. 

Measurement error in the predictor has different consequences. Suppose 
we observe = x + E instead of x. The independent measurement error in the 

predictor is represented by E with mean E(E) = 0 and variance 0:. Assuming 
that E is normally distributed, (y,X) has a bivariate normal distribution that 
is the same as the bivariate normal distribution of (y,x), except that Var(X) = 

0; + o?, where 0: = Var(x). Thus, the mean function for the regression of y 
on is 

E(y I = GO + G1x (6.56) 

where 

(6.57) 
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As a consequence, the slope from the OLS fit of y on is not an estimate of 
q1 but instead is estimate of GI 5 q, .  The implication of this calculation is 
that measurement error in the predictor can result in a biased estimate of the 
regression coefficient. The estimated regression coefficient from the regression 
of y on i will be too small on the average, the magnitude of the bias depending 
on the relative sizes of and If 0: is small relative to the measurement 
error could be unimportant, but otherwise the bias may be substantial. In the 

case of simple linear regression, measurement error in  the predictor causes 
the estimated slope to be too small. In regressions with multiple predictors, 
estimated regression coefficients can be too small or too large on the average. 

There is a substantial literature on measurement error in linear regression. 
Fuller (1 987) provided a comprehensive reference for the area. Measurement 
error in the predictors is not considered further in this book. 

6.7.8 References 

Forbes' data are from Forbes (1857), with some of the discussion in Sec- 

tion 6.5 adapted from Brown (1 993). The Clausius-Clapeyron formula goes 
back to Clausius (1850). The Old Faithful Geyser data used in Problem 6.8 
were provided by Roderick Hutchinson, the Yellowstone Park Geologist. The 
data in Problem 6.9 are from Sacher and Staffeldt (1 974). The paddlefish data 
in Problem 6.10 were provided by Ann Runstrom. 

PROBLEMS 

6.1 Suppose we fit a simple linear regression model with data ( x j , y i ) ,  = 
I , .  . . ,n. Write out a table like Table 6.3, using the formulas based on 
the summaries given in Table 6.1 in place of numbers. 

6.2 Invariance. Suppose we have data (x,,y,), = 1,.  . . ,n, and we use OLS 

to fit the simple linear regression model 

E(y, I x i )  = 11" + q l x j  with Var(y, I x i )  = c2 (6.58) 

Let y: = a + by, and X; = c + dx,  for known numbers with b # 0 
and d # 0. Suppose we fit the simple linear regression model 

What is the relationship between estimated from (6.58) and es- 
timated from (6.59)? Between Go and io? Is the same in the two 
regressions? What about the relationship between G2 and Are tests 
(both t and F-tests) the same or different (consider the tests for ql = 0 
for example)? 
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This problem can be done two ways. First, you can use the formulas 
for the various quantities given in Section 6.2. Alternatively, you can 
choose any data set, fit the simple linear regression model for y on 

then fit the simple linear regression model for y* on x* for some 
and see what happens. This also provides a way of checking 

the formulas obtained using the first method. 

6.3 The variance of the 01s estimate G I  is Under what condition 
o f x  will this variance approach zero as the sample size n 

grows toward infinity? What happens to G I  as approaches zero? 
Can you construct an example (that is, a sequence of values xI ,x2,. . .) 

such that as the sample size goes to infinity the variance of cl  will not 
approach zero? If you can find such an example (and this is possible), 
then you will have shown that for some configurations of the OLS 

estimates will not converge to the true value. 

6.4 An experiment was conducted to estimate the slope rll in the simple 
linear regression of y on The predictor had five possible values, - I ,  
-0.5, 0, 0.5, 1, and one observation was sampled from each of the 
corresponding five conditional distributions of y 1 The resulting data 

were of the form (xf,yf), i = 1 ,..., 5. 
After the experiment, the investigator decided to collect additional 

data. One assistant suggested that two additional observations be taken, 
one at = -1 and one at = 1. Another assistant suggested that 20 
additional observations be taken, all at = 0. Which design is better? 
Why? This problem illustrates a general result on how to select predictor 
values in simple linear regression. Can you guess the result? 

6.5 The file 1. l s p  repeats Forbes’ data plus additional observations 
taken by Joseph Hooker at about the same time, but at generally higher 
altitudes in India. 

6.5.1 In principal, any one case could be and its deletion 
could cause large changes in parameter estimates. Using the 
model summarized in Table 6.3 fit to Forbes’ data only, how 
does deletion of case 11 change the estimates with these data? 
You can answer this by comparing (a) the fitted model obtained 
with all the data and (b) the fitted model obtained with the sus- 
pect case not used. 

6.5.2 The Clausius-Clapeyron equation of thermodynamics suggests 
that the coefficient i l l  in the fit of (6.34) should be equal to 
-21 1 I ,  which is the gas constant, the heat of evaporation of 
water around 373 K. Test the hypothesis that has this value, 

against the alternative that q1 has some other value. Also, ob- 
tain a confidence interval for Do your computations based 
on ( I )  the combined data of Forbes and Hooker in data file 
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forbesl . l s p ;  (2) the combined data, but without case 11; (3) 
Forbes’ data alone; and Hooker’s data alone. Summarize your 

results. 

6.6 Regression through the origin. Occasionally, it may be useful to con- 
sider a model in which the intercept is zero: E(y I x) = rllx, and Vx(y I x) 
= n2. The residual sum of squares function for such 
the is RSS(h) = C ( y j  - 

6.6.1 Show that the least squares estimate of q1 is given by 

Show that is unbiased and that Var(6,) = n’ /Cx: .  Find an 
expression for G 2 .  How many df does it have? 

Derive the analysis of variance table for the null hypothesis that 

E(y I x) = vlx versus the alternative E(y I x) = qo + vlx.  Show that 
the F-statistic derived from this table is equal to the square of 
t = GO/se(7i,) computed under the alternative model. 

6.6.3 In the file r iv leve l .  l s p ,  the predictor x is equal to the water 
content of snow on April 1 and the response y is equal to water 

yield in inches from April to July in Wyoming’s Snake River 
Watershed for the = 17 years from 1919 to 1935. 

Draw the plot of y versus x. On the basis of the plot, is linear 
regression through the origin plausible? Why or why not? The 
plot’s options menu can be used to change the ranges on the 
axes so 0 is included. 

Test the hypothesis that the intercept is zero against the al- 
ternative that it is not zero. To compute regression through the 
origin with Arc, in the regression dialog un-check the item “Fit 

Intercept.” 

6.6.2 

6.7 

6.7.1 For the haystack data, let u = C 3 ,  and consider the regression of 
on u.  Draw the scatterplot of versus u. Does a simple 

linear regression model seem plausible? Why or why not? One of 
the haystacks seems to be well-separated from the others, with a 

value of that is too large for its circumference. Find its case 
number. 

6.7.2 Based on the simple linear regression model for Vol on u,  provide 
90% prediction intervals for haystacks with values of C equal to 
60, 70, and 80 feet. Do you think the prediction interval equation 
used here would be accurate for a very small haystack with C = 5 ,  
or a very large one with C = 150? Why or why not? 



PROBLEMS 135 

6.7.3 Using the analysis of variance discussed in Section 6.6, perform 
the following hypothesis test: 

NH : E(VoI 1 C) = q l u  

AH : E( Vol I C) = qo + u 

where under both NH and AH we assume that Var(Vol I C )  is 
constant. Summarize the result of the test by giving the p-value, 
and a one-sentence summary of the result of the test. Also, obtain 
a t-test of the same hypothesis, and thus show numerically that 
t2  = F .  

6.7.4 Consider the hypothesis test: 

NH:  E(Vol I C) = (1/127r2)u 

AH : E(Vol I C) = + q l u  

This hypothesis test compares the mean function suggested by 
assuming that a haystack is a hemisphere, as in Section 3.4, to a 
linear mean function. 

Perform the F-test of this hypothesis. To get the F -  
statistic, equation (6.47) can be used. You must figure out how to 
compute and dfNH.) 

6.7.5 Give the estimated slope for the simple linear regression of on 
when C is measured in yards rather than feet. Will the estimate 

of cr2 change when the units if C are changed? (The answer to 
this question is related to Problem 6.2.) 

6.8 The data in the data file l s p  gives information about eruptions 
of Old Faithful Geyser during October 1980. Variables are the 
in seconds of the current eruption and the the time in minutes 
to the next eruption. The data were collected by volunteers. Apart from 
missing data for the period from midnight and 6 AM, this is a complete 

record of eruptions for that month. 
Old Faithful Geyser is an important tourist attraction, with up to sev- 

eral thousand people watching it erupt on pleasant summer days. The 
park service uses data like these to obtain a prediction equation for the 
time to the next eruption. 

6.8.1 Use simple linear regression methodology to obtain a prediction 
cquation for from Summarize your results in a 
way that might be useful for the nontechnical personnel who staff 
the Old Faithful Visitor's Center. The remaining problems on the 
Old Faithful data use these results. 

Construct a 95% confidence interval for 6.8.2 

= 
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6.8.3 An individual has just arrived at the end of an eruption that lasted 
250 seconds. Give a 95% prediction interval for the time the individ- 
ual will have to wait for the next eruption. 

6.8.4 Estimate the 0.90 quantile of the conditional distribution of 

I = 

assuming that the population is normally distributed. 

6.9 The data in the data file al lomet .  l s p  contains information on brain 
weight, body weight, gestation period, and litter size for 96 placental 
mammal species. These are not the same data used in Chapter 5 ,  and so 
some of the values for brain weight and body weight may differ from 
the values given there. In this problem, consider only the relationship 
between brain weight and gestation period. 

Draw the plot of brain weight versus gestation period. Does the sim- 
ple linear regression model appear to be satisfactory for these data? If 

not, perhaps transforming the response, the predictor, or both will help. 
Add transformation slidebars to the plot using the “Options” plot con- 
trol, and the methodology of Section 5.2 can be used to try to achieve 
linearity. When you are satisfied that a simple linear regression mean 
function might be appropriate in the transformed scale, fit this model, 
and provide a summary of your fit that you think includes the relevant 
summary features and plots. 

6.10 The paddlefish, is a large North American freshwater 
fish. The fossil record shows that it has existed for at least 300 million 
years. It has a limited range, primarily in the central United States, and 
exists in very small numbers. 

Even though they are protected by law in some states, the paddlefish 

may become endangered, a victim of past overfishing, pollution, and 
poaching. Their meat and eggs are considered a delicacy by many, and 
the value of a single large paddlefish can be several thousand dollars. 

The data in the file paddle.  l s p  represents one of the largest collec- 
tions of data on paddlefish, collected in 1970 on the Mississippi River 
along the Iowa-Illinois border. For this problem, consider the regres- 
sion of weight on length. Draw the scatterplot of weight versus length, 
and find a transformation of one or both of the variables that linearizes 
the mean function and, if possible, gives a constant variance function. 
Present both numerical and graphical summaries. 

6.11 The data in the file wine. l s p  gives the average per capita consumption 
of wine in liters and the mortality rate from heart disease per thousand 
for 18 countries. Analyze the data with the goal of summarizing the de- 
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pendence of mortality on wine consumption. If you find a dependence, 
do you think you can infer that is, does drinking wine change 
(either decrease or increase) the risk of heart disease? 

6.12 

6.12.1 In the simple linear regression model, show that 

where is the population correlation. How can the values 
of x be chosen (1) to make p(?ji),el) arbitrarily close to zero and 
(2) to make p(40,41) close to + I  or - l ?  

I n  owtz describe what p(?jo, f i , )  means. 

Let = x, - be the predictor centered to have average value 
zero. An alternative version of the simple regression model is 

6.12.2 

6.12.3 

where = ]lo + 711. i .  Write Var(6) as a function of n and and 
find the value of p(&,el) for this model. 

6.13 Supposc you fit a simple regression, y I x = + qlx + e .  Obtain a 95% 
confidence interval for a fitted value at x = 25 given the following val- 
ues: tz = 42; = 20; se(fio) = 6.5; se(4,) = 0.3, and Go + el x 25 = 60. 

6.14 Consider the geese data discussed in Section 6.6. In the OLS fit of 
the simple linear regression model for on the estimate 
of o2 is 1971 $6, and the correlation = 0.8662. Also, 

= 0.9245. Using only these three numbers and without 
using give the estimate of from the OLS fi t  of the simple linear 
regression model for on 

6.15 

6.15.1 Prove that in the OLS fit of a simple linear regression model 

with an intercept, we have 

, 

1 i =  1 i=  1 

6.15.2 Show that the sample covariance between and equals zero, 
and hence that the residuals and the fitted values are uncorre- 
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lated. (Hint: This problem is easy in the matrix formulation of 
linear regression, but it is more challenging using the notation 
of this chapter. It is helpful to write j i  = j + 6, (xi  - X). You will 

also need to use the result that C ( u i  - - 6) = - i ) b i . )  

6.16 Verify equation (6.57) using the results of Section 4.3 and the fact 
that has a bivariate normal distribution. You may need to refer to 
Section 4.1.4 to find how to evaluate expressions like Cov(y,X). 
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Introduction to Multiple Linear 
Regression 

We now begin the study of problems with more than one predictor, presenting 
here the This model generalizes simple linear 
regression in  two ways: It allows the mean function to depend on more than 
one predictor, and to have shapes other than straight lines, although it does 
not allow for arbitrary shapes. 

We first introduce a graphical device called a that can be 
used to view many variables at once. Then, we describe how mean functions 
can be constructed for multiple linear regression, making a distinction between 
(a) which are measured variables, and (b) which are functions 
of the predictors. We next show how to fi t  multiple linear regression models 
and how to do standard operations like estimating parameters, determining 
their standard errors, and obtaining tests and confidence intervals. Deciding 
if a particular linear regression model is useful in any given problem and 
deciding what it means are more challenging questions that we will address 
in the next few chapters. 

The multiple regression model is not the only approach to studying 
the dependence of a response on a set of predictors, and later in this book 
we provide other approaches to studying this type of dependence. However, 
the tools of linear regression are fundamental to the methodology, and they 
deserve careful study in their own right. 

In a general regression, we have a response y ,  and p predictors x, ,  . . . , x p .  

For compact notation, we collect the predictors into a p x 1 vector given by 
the boldface symbol 
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TABLE 7.1 The Big Mac Data 

City 

Minutes of labor required by an average worker to buy a BigMac 

Minutes of labor required to buy one kilogram of bread. 

The lowest cost of a ten-kilometer bus, tram, or subway ticket, in 

The average annual salary of an electrical engineer, in thousands of 

The average tax rate paid by engineers. 

Annual cost of 19 services, primarily relevant to Europe and North 

The average annual salary of a primary school teacher, in thousands 

The average tax rate paid by primary teachers. 

Average days of vacation per year. 

Average hours worked per year. 

Name of city. 

and French fries. 

U.S. dollars. 

U.S. dollars. 

America. 

of U.S. dollars. 

With p predictors, the general goal in regression is to study how the conditional 
distribution of y I x changes as the value of x changes, often concentrating on 
the mean function 

and less frequently on the variance function Var(y 1 x). These functions now 
depend on p arguments, the values of the individual predictors. Regression 
with one predictor is the special case when p = 1. 

7.1 THE SCATTERPLOT MATRIX 

A scatterplot matrix is a 2D array of 2D plots. To introduce the idea, load the 
file l s p .  This file includes economic data on world cities from 
the period 1990-1991. The Big Mac hamburger is a simple commodity that 
is virtually identical throughout the world. One might expect that the price 
of a Big Mac should therefore be the same everywhere, but of course it is 
not the same. magazine has published a Big Mac parity index, 
which compares the costs of a Big Mac in various places, as a measure of 
inefficiency in currency exchange. We will use these data to study how the 
cost of a Big Mac varies with economic indicators that describe each city. The 
variables in the data file are described in Table 7.1; in this discussion we will 
use and 

Select “Scatterplot matrix of” from the Graph&Fit menu. In the resulting 
dialog, move variable names from the left list to the right in the order 

and and then push the “OK’ button. The 
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TeachTax 1 

TeachSal 1 

BusFare 1 

Bread 1 

BigMac 1 

Transformations 

Case deletions 

FIGURE 7.1 Scatterplot matrix of the Big Mac data. 

plot on your computer screen should look like Figure 7.1. You may wish to 
make the plot larger by resizing. You can’t change the aspect ratio in scatterplot 
matrices. 

Except for the diagonal, each frame of the matrix in Figure 7.1 contains a 
scatterplot. The variable names on  the diagonal label the axes; the variables 
appear in the order selected beginning in the lower left and proceeding up 

the diagonal. The numbers in the diagonal cells are the minimum and max- 
imum of the corresponding variable. for example, ranges between 
4.3% and while varies from $0.09 to $2.66. The plots above 
the diagonal are “inverses” of the plots below the diagonal. For example, 
the bottom right plot is versus while the top left plot is 

versus Variable names may be truncated to fit along the 
diagonal. 

7.1.1 Pairs of Variables 

Scatterplot matrices tell us about relationships between each pair of 

variables without reference to the other variables, particularly the mean and 
variance functions. For example, the plot of versus appears 
to have an approximately linear mean function with constant variance, which 
means that, ignoring all other variables, the regression of on 
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can be described by the simple linear regression model. The plot for 
versus may also be approximately linear, but the variability appears 
to increase as increases. The 2D plots that include appear to 
be nonlinear, although the impression of these plots is strongly influenced 
by at least one isolated point. The characterizations of these plots provide 
an interesting descriptive summary of the 2D relationships, but how this is 
related to the larger regression issue of understanding how depends 
on all four predictors simultaneously is not obvious. For example, does the 
curvature in the plots including imply that the relationship between 

and all four predictors is curved? We will return to this important 

point later. 

7.1.2 Separated Points 

Scatterplot matrices can be helpful in finding isolated points. In several frames 
in the scatterplot matrix for the Big Mac data, one point appears to be separated 
from the others. Is it always the same point? To answer this, simply select 
the point and it will be highlighted in all frames of the scatterplot matrix. 
Assuming that you highlighted the point with the extremely high cost of bread, 
you will see that this point is very low on and moderate 
on and high, but not extreme, on Which city is this? Select 
“Show labels” from the plot’s menu, and then select the point again: This 
city is Lagos, Nigeria. One might wonder if our impression of these plots 

would be altered if Lagos were removed from the plot. As with other plots, 
a point can be removed by selecting the point, and then selecting the menu 
item “Remove selection” from the plot’s menu. After selecting “Rescale plot,” 
the plot is shown in Figure 7.2. Removing Lagos does not change most of 
the qualitative judgments concerning the bivariate relationships between these 

variables. Also, we see that the next largest value of for Manila, is 86 
minutes. 

We are now faced with a common problem in regression analysis: an appar- 

ently unusual point. A value of 216 for means that the average worker 
must work for more than 3.5 hours to buy one loaf of bread. At this price, 
bread must be a luxury item in the Nigerian diet, or the value of 216 is an 
error. In any case, we choose to continue analysis without Lagos included in 
the data. 

Using the “Remove selection” item in the plot’s menu makes a point invis- 
ible in that plot and all other plots that are linked to it, but it does not delete 
the point from the data set. To remove Lagos from the data set, first restore 
it to the plot by selecting the “Show all” item from the plot’s menu. Then, 
select the point for Lagos again, and finally hold down the mouse button over 
the plot control called “Case deletions” and select the item “Delete selection 
from data set.” Lagos will now be ignored in all future calculations. You can 
restore Lagos to the data by selecting the “Restore all” item from the “Case 
deletions” plot control. 
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TeachTax 1 
v- 
TeachSal 1 
v- 
BusFare 1 
v- 
Bread 1 
v- 
BigMac 1 
v- 

Transformations 

V Case deletions 

FIGURE 7.2 Rescaled scatterplot matrix of the Big Mac data after removing Lagos. 

7.1.3 Marginal Response Plots 

Figure 7.3 gives the scatterplot matrix for the Big Mac data, still excluding 
Lagos, with all the predictors transformed to a log scale. The 2D plots of 
predictors appear to be more informative in Figure 7.3 than were the corre- 
sponding plots in Figure 7.2, because the points in each frame of the plot 
are more evenly spread out, and relationships between predictors appear to 
be more nearly linear than were the relationships between the untransformed 
predictors. We will see later that this is a very desirable situation for under- 
standing a regression. 

The last row of Figure 7.3 gives the 2D plots of the response versus each 
of the transformed predictors. We call these marginal response plots because 
they display the dependence of the response y on each transformed predictor 
log(x,) without regard for any of the other predictors. Each of these four plots 
shows curvature to some degree. For example, the marginal response plot 
Mac versus log(TeachSal) suggests that decreases with log(TeachSaf), 
but the decrease is not necessarily linear in log(TeachSal). Similar statements 
can be made concerning the other three marginal response plots, and each 
of these can give useful information if the plot behaves in an unexpected 
way. For example, the cost of a Big Mac is lower in cities with higher 
taxes, a conclusion that might not have been anticipated before looking at 
the plot. 
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I 
TeachTax 0 
v- 
Teach Sa I 0 
V D  

BusFare 0 
v- 
Bread 0 

BigMac 1 
v- 
\J Transformations 

V Case deletions 

FIGURE Scatterplot matrix for the Big Mac data with the predictors in log scale. The 

transformations are indicated by the numbers above the transformation slidebars. The value 0 
corresponds to log transformations. 

The marginal response plots display information about the marginal regres- 
sion of the response on each of the predictors. What can we learn from this 

row of plots about the full p-dimensional mean function 

E(y I x) = E(y I b , J 2 , . . ' , q ?  

The marginal response plots always provide a visual lower bound for the 

goodness-of-fit that can be achieved with the full regression. If x,j does a 
good job explaining the response y, then a set of predictors that includes x j  

shouldn't do worse than xi alone. Without further knowledge of the regression 
relationships among the predictors, the marginal response plots tell only about 
bivariate relationships. For example, the marginal response plots in Figure 7.3 
are all curved, indicating that E(y I x j )  is nonlinear for each predictor. Can 
we take this as evidence that the full regression function E(y I x) is curved? 
Similarly, if each of marginal response plots had been linear, could we have 

concluded that the regression function E(y I x) is linear? Without further qual- 
ifications that will come in later chapters, the answer to these questions is no. 

When inspecting a scatterplot matrix of a response and p predictors, it is 
important to remember the general purpose of the regression, to study the con- 
ditional distribution of y I Try not to get sidetracked by studying marginal 
regressions shown in a scatterplot matrix unless there is good reason to do so. 
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7.1.4 Extracting Plots 

Individual plots in a scatterplot matrix can be enlarged by moving the mouse 
over a plot and holding down both the option and shift keys on the Macintosh, 
or the control and shift keys on Windows or Unix, and pushing the mouse 
button. A window will open containing the plot you selected. For example, 
a larger version of the plot of log(TeuchSul) versus log(TeuchTax) can be ob- 

tained in this way to examine the relationship between these two variables 
more closely and to take advantage of the plot controls available on 2D plots. 

If you click the mouse on a variable name with the appropriate keys held 
down, a histogram of that variable or of its transformation will be created in 
a window. 

7.2 TERMS AND PREDICTORS 

A general regression has a response variable y and p predictors collected into 
the vector x, and the goal is to study how the conditional distribution of y I 
changes as the value of x changes, usually concentrating on the mean function 
E(y 1 x). For example, in the Big Mac data, the response is the minutes of labor 
required to buy a Big Mac hamburger and French fries, and the four predictors 
describe economic variables-either prices, taxes, or salaries-for each of the 
cities in the study. 

In a study of the effects of environmental factors on fish growth in several 
lakes, the response might be the average size or growth rate of a particular 
species of fish in the lake. The predictors might consist of characteristics of the 
lakes, including size, location, maximum depth, concentrations of pollutants, 
and pH. Additional predictors might describe the management practices for 
the lake, such as whether or not fishing is permitted. 

The definition of the predictors may not be unique; for example, a concen- 
tration could be replaced by its logarithm, or several predictors might be com- 
bined in some way into an index. For now we will take the predictors as given. 

Predictors can be numerical measurements or they can be categorical. Mea- 
sured predictors include age, weight, length, temperature, and so on. A cat- 
egorical predictor need not be numerical and could be a variable like sex, 
which has the two categories male and female, or eye color, which may have 
many categories like blue, gray, and green. Some categorical predictors have 
ordered categories; for example, judgment of health made by a physician may 
be chosen from poor, good, very good, and excellent. While very good is 
better than good, the categories may not be assigned numerical scores easily 
because the difference between poor and good may be quite different from 
the difference between good and very good. 

Terms are built from the predictors. In its most general form, the multiple 
linear regression mean function is 

(7.1) 
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There are k in this mean function, u",. . . ,uk- I ,  Each term u j  is a function 
of the predictors. A more complete representation for the j th  term would 
be to show the dependence on explicitly. We will generally use the 
simpler notation, but keep in mind that terms always depend on the predictors. 
Conditioning on x on the left side of (7.1) may seem a bit odd, since does 
not appear explicitly on the right side of this equation, but if we condition on 

then the u-terms are determined. This mean function is said to be 
because the qo, T I ] , .  . . , qk- I enter the equation linearly. 
Examples of linear and nonlinear regression models are give in Problem 7.4. 

Here are definitions of terms that can appear in multiple linear regression 
models. 

The Intercept. The term uo for the intercept is a constant, always equal 
to one, uo = 1. Most of the models we study will include an intercept. As in 

simple regression, qo is the the value of E(y I x) when all the other terms equal 
zero. The multiple linear regression model with an intercept can be written 

as 

Since uo = 1,  we usually write just qo instead of 7/0u0, as in (7.3). Models 
without an intercept can also be expressed in the form (7.2) setting uo = 0. 

Predictors. The simplest type of term is equal to one of the predictors, x J ,  
u I  = u I ( x )  = x j .  Many multiple linear regressions will consist solely of terms 
of this type. 

Powers of Predictors. Terms can be constructed from powers of a predictor. 
For example, u2 = xJ' has values that are the squares of the values of x J ;  other 
powers can be used as well. Mean functions that can be expressed as poly- 

nomials in a predictor are therefore included in the multiple linear regression 
family. 

Transformations of Predictors. A term might consist of a transformation 
of a predictor, like u3 = log(xJ) if x, is strictly positive. The transformation 
can be as simple as the logarithm or more complex. For example, the two 
predictors height and weight might be used to create a body mass index, 
given by height/weight*. 

Binary Predictors. A binary predictor consists of two categories, such 
as success or failure, living or dead, treated or not. A binary predictor can 
be included by defining a term that is coded with the values 0, perhaps for 
failure, or 1, perhaps for success. 

Factors. Categorical predictors are called A factor with only two 
categories is equivalent to a binary predictor, but with more than two categories 
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several binary predictors are required. A factor with P distinct levels usually 
requires the addition of P - 1 terms to a mean function. We defer the details 
of using factors to Chapter 12. 

An interaction term is equal to the product of two or more 
other terms. The simplest interaction is the two-term interaction, consisting of 
the product of two predictors, u4 = x I x 2 ,  but more complex interactions like 

= log(x,) x x; are possible. 

Interactions. 

A regression with p predictors can have any number of terms in the mean 
function, but fitting problems result if the number of terms is greater than the 
number of cases n. The mean function can have fewer than p terms if some of 
the predictors are ignored or appear in the mean function only through combi- 
nations of the predictors. There can be more than p terms if the mean function 
includes polynomials, factors, and interactions. The distinction between pre- 
dictors and terms plays an important role in understanding regression through 

plots. For example, a regression with one predictor can always be studied us- 
ing the 2D scatterplot of the response versus the predictor, regardless of the 
number of terms required in the mean function. 

7.3 EXAMPLES 

To illustrate the use of terms and predictors, we briefly describe several re- 
gressions that are discussed at greater length elsewhere in this book. 

7.3.1 Simple Linear Regression 

Let’s begin by reviewing the mean functions used for Forbes’ data in Chap- 
ter 6, and recast them using the notation of this chapter. The response is 
y = log,,,(pressure), and the single predictor is x = temperature in degrees 
Fahrenheit. The first mean function considered for Forbes’ data was, repeating 

(6 .3 ,  

(7.4) E ( y  I x )  = vou0 + v l u I  = + 

This mean function has two terms. The term uo for the intercept is always 
equal to I .  The second term is u I  = x, so this term is equal to the predictor. A 

plot of this mean function against x will trace a straight line. 
An alternative mean function was used for Forbes’ data in Section 6.5. That 

mean function is given by 
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FIGURE 7.4 The Lake Mary bluegill data. The straight line is obtained by using OLS to fit 

simple linear regression. The curved line is obtained by using 0t.s to fit the quadratic polynomial 

(7.8). 

This is also a linear regression mean function, again with two terms. As before, 
the first term is the constant uo = 1. The second term is u2 = 1/(255.37 + 
(5/9)x),  the inverse of the temperature measured in degrees Kelvin. The same 
symbols have been used for the parameters q0 and TI ,  in (7.4) and (7 .3 ,  but 
in each the parameters have different meanings and values. In (7.4), 7 ,  gives 
the change in E(y I x )  for a unit change in temperature in degrees Fahrenheit, 
while in (7.5), gives the change in E(y 1 x )  for a unit change in the inverse of 
the temperature in degrees Kelvin. qo is an intercept parameter in each of the 
two mean functions, but the values of the intercept are likely to differ. Perhaps 
some clarity could have been obtained if we had used different symbols for 
the parameters in these two mean functions, but this can become cumbersome 
when we consider several mean functions at once. Using the same symbols in 
many mean functions, even though their meanings may change, is a common 
practice that we will follow in this book. 

7.3.2 Polynomial Mean Functions with One Predictor 

Figure 7.4 is a plot of y = length against x = age for the Lake Mary bluegill 
data. Superimposed on this plot is the OLS fit of 
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w 

FIGURE 7.5 

the range of .x. while in (c) and (d) the minimum or maximum is outside the range of x .  

Four polynomial mean functions. In (a) and (b) the minimum or maximum is in 

which is the simple linear regression mean function with the two terms uo = 1 
and u ,  = x. This function is shown as a straight line on the plot. The mean 
function does not appear to match the data very well, as the line is above all 
the observed values at ages one and six, and does not appear to match the 

subpopulation averages for ages two and five. A straight-line mean function 
specifies that the rate of growth is the same for all ages of fish, but judging 
from the plot, growth rates appear to be slower for older ages. 

Lacking a specific functional form for the mean function, we might try 
to match the data by using a polynomial. regression provides a 
rich class of mean functions to fit as alternatives to the straight line used in 
simple linear regression. A polynomial is often used to approximate a mean 
function for which we don’t have a specific form, and they work well because 
a function can often be approximated adequately by a polynomial. When using 
a polynomial of degree d for the mean function we have 

The polynomial of degree d with one predictor has k = d + 1 terms, one for 

the intercept and one for each of the d powers of x. 

The shape of the polynomial depends on both the degree d and on the 
t i ’ s .  When d = 2, the polynomial is a quadratic in x and, depending on the 
T I ’ S ,  the mean function can have any of the shapes shown in Figure 7.5. In 
the first two frames of Figure 7.5,  we see the full quadratic curve, which is 
symmetric about a minimum or maximum. Quadratic polynomials are often 
used in experiments where the goal is to determine the value of x where the 
mean function is minimized or maximized. The quadratic curve is one of the 
simplest functions that has a single minimum or maximum. 

The remaining two curves in Figure 7.5 are obtained by using only a part 
of the quadratic curves; in these figures, the minimum or maximum occurs 
outside the range of the data. A quadratic can therefore be used to provide an 
empirical mean function that increases at an increasing rate as x increases or a 
mean function that has a decreasing rate of change with x. Polynomials with 
degree d > 2 are more flexible than quadratics and include (a) mean functions 
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that are not symmetric about a minimum or maximum and (b) functions with 
local minima or maxima. 

In Arc, polynomial mean functions with one predictor are fit on a scatterplot 
of the response against the predictor using the parametric smoother slidebar. 
The degree of the polynomial, as given by the number above the slidebar, 
increases as the slidebar is moved to the right. For the Lake Mary data in 
Figure 7.4, the second-degree polynomial fit is similar in shape to the quadratic 
in Figure 7.5d. There appears to be an improvement over the straight-line mean 
function of (7.6) by fitting this quadratic instead, as given by 

E(y I Age) = 7j0 + qlAge + q2Age2 (7.8) 

7.3.3 Two Predictors 

An important component in making a business more efficient is to understand 
its costs. In some manufacturing businesses, determining costs can be fairly 
easy, but in the service industry where the main component of cost is in time 
spent serving customers, determining costs can be harder. Imagine a large 
enterprise like a bank whose employees perform two types of transactions with 
customers. In this example, data were collected on n = 261 branch banks; on 

each we have the response = total minutes of labor spent on transactions, 
along with two predictors and & that give the number of transactions of 
each type for the 1985-1986 financial year. Since cost is determined largely 
by transaction time, our goal is to study as a function of the counts of 
the two types of transactions. All transactions in these branches are either of 

type one or type two. 
Suppose that, on average, a transaction of type one takes ti1 minutes, and a 

transaction of type two takes v2 minutes. If all transactions are independent, 
the average time spent on transaction type one in a given branch is expected 
to be vl  but any specific transaction may take more or less time. Similarly, 
the time spent on type two transactions is expected to be minutes; thus 
the total time on transactions is expected to be giving the mean 

function 

(7.9) E(Time I = '7" + r l lT, + 

The additional parameter q, represents a fixed cost of doing business in a 
branch, and it is the number of minutes of labor even when no transactions 
occur; possibly qo = 0. This example has two predictors T, and & and three 
terms, uo = 1, u1  = T,, and u2 = The mean function is constructed from con- 
siderations about the predictors. Even here, however, the mean function could 
be wrong if transactions were not independent, if the branches performed 
some other type of transaction not included in the data, or if the complexity 
of transactions was different in each branch. 

In (7.9), each of the parameters has a clear meaning: qo is the minutes of 
labor required in the absence of transactions; ql is the average minutes of labor 
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per transaction of type one, so it has the units of minutes per transaction, and 
similarly ti2 is in minutes per transaction. The coefficients q1 and 7j2 convert 
the units of T, and which are the number of transactions, to the units of 

the response which are minutes. 

7.3.4 Polynomial Mean Functions with Two Predictors 

The terms in a polynomial mean function with two predictors, x1 and x2, are 
generally powers and interactions. The 

has six terms: an intercept, two linear terms xI and x2, two squared terms 
x i  and .x;, and one interaction term xlx2: 

The double subscripts on the t i ' s  are intended as reminders about the corre- 
sponding terms. For example, the term for 711 I is xlx l  = x:, while the term for 
q12 is xIx2. The squared terms allow for nonlinearity in the corresponding pre- 
dictors, as shown in Figure 7.5, while the interaction term allows for twisting 
of the surface in a 3D plot of E(y 1 x) versus the two predictors. 3D plots will 
be discussed in Chapter 8. 

To gain a little understanding of the full quadratic mean function, imagine 
holding x, fixed and allowing x, to vary. With this in mind, rewrite the mean 
function as 

Holding x2 fixed, this is a quadratic polynomial in x l .  The intercept is the first 
quantity in curly brackets, the first regression coefficient is the second quantity 
7 ,  + t/12x2 in curly brackets, and the coefficient of the quadratic term is q1 I. 

As we change the value of x2, this intercept changes as a quadratic function 
of x2, while the first regression coefficient changes linearly. The coefficient 
of .x: is constant. If q I 2  = 0 so the interaction term is not needed, then the 
coefficient of x 1  is constant as well. We return to the interpretation of the full 
quadratic mean function in Chapter 8. 

Polynomial mean functions in two predictors can contain higher powers 
and interactions as well. For example, they might contain the terms x I x ;  

or r ; x : .  Mean functions containing such higher-order terms can be quite dif- 
ficult to interpret, and they tend to be the exception rather than the rule in 
practice. 

7.3.5 Many Predictors 

Return to the Big Mac data presented in Section 7.1. Lacking a theory that 
connects to the predictors, we are apparently free to contemplate a 
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wide variety of mean functions: in particular, we have no reason to believe 
that the mean function with each term equal to a predictor, 

will match the data or provide any useful information. For example, the alter- 
native mean function 

with the five terms 

uo = 1, u I  = log(Bread), u2 = log(TeachSal), 

u3 = log(TeachTax), and u4 = log(BusFare) 

may provide a better description. This latter mean function uses terms corre- 
sponding to the plotted quantities in the scatterplot matrix in Figure 7.3. 

of this book presents methods for building mean functions when a general 
theory is lacking. 

7.4 MULTIPLE LINEAR REGRESSION 

Before proceeding to estimation in the next section, we are in a position to give 
a more comprehensive statement of the family of multiple linear regression 
models. All the above examples can be approached using the same general 
framework. We begin with p predictors, x, ,x2,. . . ,xp, which will be collectively 
referred to by using the vector x. The response is called y. All the variables 
have been measured on each of independent cases. From the predictors, we 
create the terms uo, u I ,  u 2 , .  . . , uk- I : for this discussion we will assume that the 

term u0 is included for the intercept, so there are k - 1 regression coefficients in 
addition to the intercept. Most regression fitting procedures require specifying 
at least the mean function and the variance function. Recall that the mean 
function for multiple linear regression with an intercept is 

The variance function is for now assumed to be constant, 

Var(y I x) = o2 

(7.1 1) 

(7.12) 

Equations (7.1 1) and (7.12) define a multiple linear regression model. 
For notational simplicity, we will rewrite (7.1 1) with the predictors, terms, 

and parameters expressed as vectors. In addition to x, u is the k x 1 vector 
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of terms and is a x I vector whose elements are vo,. . . I .  Using the 
convention that a vector is always a column, we can write these vectors in full 

as 

, u =  

‘ k -  I 

Also, we will write, for exan I 

1 

U I  

‘ k -  1 

le, x = (x l , .  ..,x,)~, since the transpose 
changes a column vector into a row vector. A brief introduction to matrices 

and vectors is given in Section 7.9.1. 
We can now rewrite (7.1 1) as 

E(y I X) = ~ 7 u  

once again with the reminder that u depends on Apart from the complements 

sections, about the only matrix algebra used is the definition of $u, which is 
shown in Section 7.9.1 to equal the final equation of (7.13). 

When referring to the data from a particular regression, we may add the 
subscript ‘7’’ to indicate the ith case, just as we did in simple linear regression. 
For example, (7,13) may be rewritten as 

where x, = (x,],. . . , x , J T  is the vector of predictor values for the ith case, and 
is the ith value of the jth predictor, = 1 ,..., n, = 1 ,..., p .  Similarly, u, = 

u,  I , .  . . , I is the vector of term values for the ith case in the data, and 
u,/ is the ith value of the j th term, where again = 1, .  . . , n ,  = 0 ,..., - 1. 
These subscripts will be used when needed to clarify exposition, or to describe 
algebraic operations with the data. 

Even allowing for a wide variety of definitions of terms from the predictors, 
there is no intrinsic reason why this family of models should be appropriate 
for every regression. For now, however, its usefulness is unquestioned, and 
we seek estimates assuming that this mean function is correct. 

7.5 ESTIMATION OF PARAMETERS 

We now turn to estimating the unknown parameters in a mean function for 
multiple linear regression. As with simple regression, we use least squares 
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estimates that minimize the residual sum of squares function, 

I1 

RSS(h) = c ( y i  - hrui)2 (7.14) 

i=  I 

The symbol h is used rather than because is a fixed though unknown 
parameter vector. We will write 6 for the value of h that minimizes (7.14), 
and 

As long as some of the terms are not exact linear combinations of each other, 
and k < 11, this minimization problem has a unique solution 6,  and there is 
an equation that can be used to compute the estimates. We will call these the 
ordinary least squares (OLS) estimates as before. Deriving the estimates and 
giving their formulas is greatly simplified using matrix and vector notation, 
and we reserve this to Section 7.9.5. 

Once 6 is determined, we have 

ith fitted value = = GTui 

ith residual = ei = - 

I1 I1 

(7.15) 

i=  I i=  I 

RSS 
g -  = - 

n - k  

To illustrate the methodology, we return to the transactions example pre- 
sented in Section 7.3.3. For the remainder of this chapter, we will assume that 
the variance Var(Time I is constant, although we might expect that vari- 
ability will be larger in branches with many transactions. If the assumption of 

constant variance is not satisfactory, then the estimates, and particularly stan- 
dard errors, can be improved upon by using information about the variances 
in computing estimates. 

The OLS estimates and related statistics depend on just a few basic summary 
statistics. After loading the file l s p ,  those summary statistics can 
be obtained by selecting the item “Display summaries” from the Transactions 
menu. This gives a dialog to choose the variables of interest; select Time, T, 
and The summary statistics are shown in Table 7.2. 
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TABLE 7.2 Summary Statistics for the Transactions Data 

Data s e t  = T r a n s a c t i o n s ,  Summary S t a t i s t i c s  

Var iab le  N Average S t d .  Dev Minimum Median Maximum 

Time  261 6607.4 3774. 487. 5583. 20741. 

T1 261 281.21 257.08 0. 214.  1450. 

T2 261 2421.7 1180.7 148. 2192. 5791. 

Data s e t  = T r a n s a c t i o n s ,  Sample C o r r e l a t i o n s  

T i m e  1.0000 0.8632 0.9236 

T1 0.8632 1.0000 0.7716 

T2 0.9236 0.7716 1.0000 

T i m e  T1 T2 

From Table 7.2 we see that the range of each of the variables is quite large. 

The values of range from about 487 to over 20,000 minutes. The standard 
deviation of the measurements is about 3800 minutes. The number of 
type one transactions T, ranges from no transactions in some branches to 1450 
in other branches. also has a wide range of values. As in Section 5.4, these 
large ranges are an indication that the logarithm may be a useful transformation 
of the predictors. We don’t pursue transformations here because our emphasis 
is on basic fitting and because the mean function we use has a theoretical 
basis. 

Also included in  Table 7.2 is a matrix of sample correlations. For exam- 
ple, the sample correlation between and is 0.86, and the correlation 

between 7’, and is 0.77. This matrix of correlations is symmetric because 
the correlation between two variables u ,  and 7j2 is the same as the correlation 
between I ) ?  and u , .  The correlations are fairly large in absolute value. From 
Section 6.2.4, we know that each correlation is a summary statistic for the 
2D scatterplot of the variables used in the correlation, and that these statistics 
cannot be easily interpreted without examining the scatterplot itself. All the 
2D scatterplots are given in the scatterplot matrix in Figure 7.6. One interest- 
ing feature of these plots is the large number of cases for which T, = 0: many 
branches do not perform type one transactions. While this does not invalidate 
the fitting of multiple linear regression, it does make the use of a correlation 
as a summary statistic questionable because the correlation is a measure of 
the linear relationship between variables. 

Computing least squares estimates for multiple linear regression using Arc 

is similar to computing estimates for simple linear regression. As shown in 
Section 7.9.5, the least squares estimates depend only on the summary statistics 
shown in Table 7.2; any two data sets for which these values are identical will 
give the same least squares estimates. After loading the file l s p ,  

select the item “Fit linear LS” from the Graph&Fit menu. In the resulting 
dialog, move to be the response and move and to make them 
predictors. The output shown is in Table 7.3. 
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FIGURE 7.6 Scatterplot matrix for the transactions data. 

TABLE 7.3 The OLS Regression of Time on T, and 
~ 

= = 

= 

= 

= 



7.5 ESTIMATION OF PARAMETERS 157 

The first part of Table 7.3 summarizes the regression, giving the type of 
mean function, the response, and the terms in the model. The information given 
about the mean function is not yet relevant, but will be so in later chapters. 
The next part of the table, headed “Coefficient Estimates,” gives information 
about the ~4’s. In particular, 

144.369 (‘i) = (5.46206) 

2.03455 

The estimated transaction time for type one is about 5.5 minutes per transac- 
tion, and for type two it is about 2.0 minutes per transaction. The intercept is 
about 144 minutes. After rounding the coefficient estimates, the mean function 
estimated using OLS is thus 

I T,,q) = Go + GIT, + 

= 144.4 + + 2.0q 

The estimate of depends on the residual sum of squares and is given by 
the formula 

(7.16) 
C:=,(yi -;;)* - ! = I ! -  -- 

(7- = - - - 
n - k  n - k  

where the fitted values and residuals were defined at (7.15). Additional short- 
cut formulas for computing are given in Section 7.9.5. The denominator 
n - k is the degrees of freedom for a*. There are n - k = 261 - 3 = 258 df for 
the transactions data. The value of 6 is about 1143 minutes from Table 7.3. 
The value of = I143 is much smaller than the standard deviation of 
3774 minutes, given in Table 7.2. Given and q. the standard deviation of 

is 1 143; without knowledge of T, and &, the standard deviation of 
is 3774. 

Recall that the standard error of a statistic is the estimated standard deviation 
of that statistic. The computer output in Table 7.3 has a column marked “Std. 
Error,” and this column gives the standard errors. Both 6, and T j2  are large 
relative to their standard errors. The column labeled “t-value” gives the ratio 
of each estimate to its standard error. The intercept eo is somewhat smaller 
than its standard error. 

A complete description of the variability of the coefficient estimates re- 
quires determining both the estimated variances of the estimates, which are 
just the squares of the standard errors, and the estimated covariances between 
the estimates. The variances and covariances are usually collected into a k x k 
matrix. Using equation (7.42) in Section 7.9.5, the variance-covariance matrix 
can be written as 

Var(6) = rr’M (7.17) 
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TABLE 7.4 The Variance-Covariance Matrix, Correlation Matrix of the 
Coefficient Estimates, for the Transactions Data 

- 

where M is a known k x k matrix that can be computed from the observed 
values of the terms. The estimated variance-covariance matrix is 

Kr(ij) = ~ P M  (7.18) 

The elements of the matrix G2M can be viewed by selecting the item “Display 
variances” from the regression menu. The output is shown for the transaction 
data in Table 7.4. The diagonal elements of the estimated variance-covariance 
matrix G2M are the squares of the standard errors of the regression coef- 
ficient estimates; for example, se(6,) = 0.18771/2 = 0.4332. The off-diagonal 
elements of G2M are the estimated covariances between estimated coefficients. 
The matrix G2M is symmetric because the covariance between 6, and 7jk is the 
same as the covariance between 7jk and G J .  

The second matrix shown in Table 7.4 takes G2M and converts it to a 
correlation matrix, using the formula p(Gl,,7j/) = as described in 

Section 7.9.3. While the elements of G2M are occasionally needed in compu- 
tations, the rescaling of them into a correlation matrix can make interpretation 
of the elements easier. We see that G2, the coefficient estimate for is neg- 
atively correlated with both the intercept and the coefficient estimate for T,, 

while GI ) is considerably smaller. 

7.6 INFERENCE 

Making inferences requires an assumption about the distribution of the re- 
sponse given the predictors. The assumption we need, in addition to fitting 
the correct mean function and the correct variance function, is that Time given 

and is normally distributed: 

Time I (TI ,  N N(vTu, 02) (7.19) 
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This is a direct generalization of the assumption used for simple regression in 
Section 6.4, and the results here generalize the simple regression results. In 
Section 6.7.6 the discussion of the importance, or more precisely the lack of 
importance, of this assumption applies to multiple regression as well. 

As a result of the normality assumption, the coefficient estimates are nor- 
mally distributed: 

6 - N(% 02W (7.20) 

Assuming that the mean function is appropriate, that the variance function 
is constant, and that y I is normally distributed, the estimate 6 is normally 
distributed, with mean and variance-covariance matrix a2M. Since o2 is 
unknown, we estimate it using G 2 .  Additionally, in parallel to (6.24), we have 

(7.21) 

7.6.1 Tests and Confidence Statements about Parameters 

Given the results of the last section, all the results for simple linear regression 
of Section 6.4.1 apply without modification. For example, a (1  - x 100% 
confidence interval for ?I i ,  j = 0, 1,. . . ,k - 1, is 

where the df cl = n - k ,  and as before Q(td, f )  is the f t h  quantile of the rd 
distribution. This is the same as with a slight change of notation. 

For the transactions data, d = 258, so to get 90% confidence intervals we 
obtain Q(t,,,,0.95) = 1.65 using the “Calculate quantile” item. The confidence 
intervals for the two transaction time parameters are 

5.46 - (1.65 x 0.43) 5 711 5 5.46 + ( I  .65 x 0.43) 

4.75 5 T / ,  I 6.17 

and 

2.03 - (1.65 x 0.094) 5 5 2.03 + (1.65 x 0.094) 

1.88 5 7i2 5 2.19 

respectively. 

simple linear regression. For example, to test 
Tests of hypotheses concerning individual coefficients parallel those for 

NH : 77” = 0, vI ,7 i2 arbitrary 

AH : # 0, 11, ,7 j2  arbitrary 



160 CHAPTER 7 INTRODUCTlON TO MULTIPLE LINEAR REGRESSION 

we can use a Wald test based on the test statistic 

estimate - hypothesized value 

se(estimate) 

The column marked “t-value” in Table 7.3 gives the Wald test statistic that is 
appropriate for testing each of the individual coefficients to be zero. For the 
intercept, the value is I = 0.847. To get a p-value, use the “Calculate probabil- 
ity” item. Since this is a two-tailed alternative, the p-value is about 0.4. There 
is little reason to think the intercept is different from zero. 

7.6.2 Prediction 

Moving from simple regression to multiple regression requires only minor 
modification of the results of Section 6.4.3. Suppose we have observed values 
of the predictors x for a new case for which the response is as yet unobserved. 
To predict the response, first compute the corresponding terms u from The 
point prediction is just 

AT 
Yprrc/ I = v u 

The standard error of prediction has two components: a part due to uncertainty 
in estimating and a part due to the variability in the future observation. 
Combining these, the standard error of prediction is 

(7.23) 

The quantity h in (7.23) depends on the values of the predictors for all the 
cases in the data, but it does not depend on the response. It is called a 
and is discussed in the next section. 

The item “Prediction” in the regression menu can be used to obtain pre- 
dictions, estimated mean values, and their standard errors, as described in 
Section 6.4.2. The only change is that now a value for each term in the model 
except the intercept must be entered in the text area of the dialog of Fig- 
ure 6.8, page 116. For example, the results for a new branch with T, = 500 
and = 1000 are 

Response = Time  

Terms = ( T 1  T2) 
Term v a l u e s  = (500 1000) 
P r e d i c t i o n  = 4909.95, w i t h  s e ( p r e d )  = 1164.91, 
Leverage = 0.0395223, Weight = 1 
Es t ima ted  p o p u l a t i o n  mean v a l u e  = 4909.95, se = 227.143 



7.6 INFERENCE 161 

The predicted number of minutes of labor is about 4910 with a standard error 
of about 1165 minutes. Prediction intervals can be computed as discussed in 
Section 6.4.3, page 117. 

7.6.3 Leverage and Extrapolation 

Equation (7.23) shows that the standard error of prediction depends on the 
leverage The variance of the ith residual 2i also depends on the leverage: 

Var(gi I = n2( 1 (7.24) 

An understanding of how the leverages behave is useful for understanding 
when predictions are likely to be reliable, as well as for understanding residuals 
and other diagnostic statistics to be introduced in Chapter 15. A fuller notation 
for the leverage would be = since the leverage may be different for 
each value of u. 

When the leverages are computed at one of the the resulting is always 
between zero and one, 0 5 5 I .  The leverages depend only on the terms in 
the model, not on the response, and are the diagonal elements of the 
defined at (7.44) in the Complements to this chapter. For a mean function with 
k terms, = k ,  so the average value of is If n is large compared 
to k ,  then the average leverage is small and the individual leverages will 
often deviate little from the average. 

As approaches one, the residual variance approaches zero and the fitted 
regression surface will approach y i .  In this sense, a point with large has more 
“leverage” on the fitted surface than a point with small. In the extreme, if 

= I ,  then the fitted regression surface must pass through that is, = yi 

and thus ei = 0. 

The leverage is largest for cases with farthest from U and is smallest for 
cases with closest to U. The measure of closeness depends on the sample 
correlations between the terms in the mean function. For example, shown in 
Figure 7.7a is a scatterplot of u ,  versus u2 for a mean function with an intercept 
and k = 3. The contours are determined from the values of the terms. They 
characterize the density of points in the plot just as the contours discussed in 
Section 4.2 characterize the density in a bivariate normal population. These 
contours are used to measure the distance between and U in terms of the 
density of the sample. All on 

U und Leverage increases as we move from the 
inner contours to the outer contours. The highlighted points in Figure 7.7a that 
lie near the outer contour have about the same leverage, near the maximum 
leverage for these data. The point in the lower left corner of the plot has 
the largest leverage. The points within the inner contour have the smallest 

leverage. 
The contours in Figure 7.7b are circles because u ,  and u2 are uncorrelated. 

As suggested in Figure 7.7, contours of equal leverage will always be ellipsoids 
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FIGURE 7.7 
points marked with a x have the highest leverage. 

Scatterplots of u-terms with contours of constant leverage. In plots a, b, and d, 

centered at U for mean functions with an intercept. Figure 7 . 7 ~  gives contours 
of constant h for the transactions data. Even though the data are not elliptically 
distributed, contours of constant h remain elliptical. 

The u-terms in Figure 7.7d are highly correlated, and the density of points 
is highest along a line. The point with the highest leverage is the highlighted 
point that is outside the last contour and that lies just above and to the left 
of the point cloud. This point lies close to the center in terms of Euclidean 
distance, but lies quite far from the center when distance is measured in terms 
of the density contours. The leverage for the point in the upper right of the 
plot is slightly less than that for the highlighted point. 
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Plots of leverage versus case number are useful for identifying high-leverage 
cases. After fitting a model, leverages are available in Arc and can be plotted 
using the “Plot of” item in the Graph&Fit menu. 

The standard error of a prediction corresponding to any future value is 

where h is the leverage corresponding to u = u(x). When u is not equal to 
one of the u,, the value of h can possibly exceed one; the larger the value of 

h ,  the farther from u to U, according to the contours determined by the data. 
Generally, predictions will be reliable only if the corresponding value of h is 
sufficiently small. If h is larger than the maximum value of observed in the 

data, the corresponding prediction should be termed an and may 
be unreliable. 

7.6.4 General Linear Combinations 

In some regressions we may be interested in estimating a linear combination 
of the coefficients. In the transactions data, for example, the difference ql  - ’12 

is the expected number of additional minutes for a type one transaction. Linear 
combinations can be estimated by replacing parameters by estimates, so 

711 - 112 = ;I, - 7j2 = 5.46 - 2.03 = 3.43 minutes per transaction 

On the average, a type one transaction takes about 3.4 minutes longer than a 
type two transaction. 

In general notation, a linear combination is given by 

I .. . 

L = c a j i j j  
j = O  

(7.25) 

which is a weighted sum of the random variables, GO,. . . , 7 j k - ,  . The expected 
value of L is obtained by replacing each of the random variables in the sum 
by its expectation, so 

E(L) = C a j E ( G j )  = x u j q j  (7.26) 

;=o j = O  

The variance of a general linear combination is computed as an application of 
(4.8) to be 

k--  I k - 2  k - l  

Var(L) = Ca?var( i j , )  + 2 C  x a j a , ~ o v ( r j i , ~ , )  (7.27) 
;=o j = O l = j + l  
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FIGURE 7.8 Prediction dialog used to find an estimated linear combination and its standard 
error. 

The standard error of L can be found by first substituting estimates of Var(7jj) 

and Cov(7jj,$), which can be obtained from the elements of the matrix G2M, 
and then taking the square root of the resulting estimate of Var(L). 

The item “Prediction” in an LS regression menu can be used to obtain L and 
its standard error. The resulting dialog is illustrated in Figure 7.8. As shown, 
the estimate and standard error of - 712 will be computed and displayed. To 
get the computer to work with linear combinations instead of fitted values, 
you must select the appropriate button in the dialog and provide multipliers 
for each of the 71’s. The multiplier for the intercept, if present, is entered into 
a separate text area, and in the example this multiplier is zero. The output is 
in part 

Response = Time  

Terms = T 2 )  
Term va lues  = (1  -1) 
Mul t ip l i e r  f o r  i n t e r c e p t  = 0 
Lin Comb = 3.42751, w i th  se = 0.509601 

so the estimated difference is about 3.4 minutes per transaction, and its stan- 
dard error is 0.5 minutes per transaction. The t-distribution with df equal to 
the df for G 2  could now be used to construct a confidence interval. 

7.6.5 Overall Analysis of Variance 

The overall analysis of variance is used to summarize information needed to 
compare the mean functions, 

NH : E(y I x) = with Var(y I x) = o2 

AH : E(y I x) = $u with Var(y I x) = o2 
(7.28) 
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TABLE 7.5 Overall Analysis of Variance for the Transaction Data 

ss 
2 3366491409. 1683245705. 1289.42 0.0000 

258 336801747. 1305433. 

The mean function of the null hypothesis does not depend on and we 
have seen in Section 6.6 that for this mean function the residual sum of squares 
is = with df,, = n - 1 .  The residual sum of squares from the fit of 

the alternative hypothesis model is just = with dfAH = - k df. The 
F-test and analysis of variance table are now constructed just as described in 
Section 6.6. 

The analysis of variance table for the transactions data is shown in Table 7.5. 
The value F = 1289 should be compared to the Fkp,,npk distribution, or in this 
case the F2,258 distribution. The p-value is computed as an upper-tail test. This 
p-value, which is 0 to four digits, is given in the analysis of variance table 
and suggests that the mean function ignoring the predictors provides a much 
worse fit than the mean function including the predictors, as would certainly 
be expected by the nature of the regression. 

7.6.6 The Coefficient of Determination 

As with simple regression, the ratio 

- -- (7.29) 

gives the fraction of variability in the response explained by adding the terms 
u . . , u k p ,  to the constant mean function. To distinguish multiple linear re- 
gression from simple linear regression, we now use instead of Since 
the residual sum of squares for the constant mean function E(y I = is just 

R2 can also be viewed as a summary statistic comparing the two models 
of (7.28). 

The value of also called the is between 
zero and one. If R2 = 1, then = 0, and the mean function matches the 
data perfectly. If = 0, then = RSS, and knowledge of the terms tells 

us nothing about the response. The value of R2 in the standard regression 
output shown in Table 7.3 equals 0.909 for the transactions data, indicating 
that 90.9% of the marginal variation in is explained by 7', and 

Suppose we draw a scatterplot with the fitted values y, = ?fu, on the hori- 
zontal axis, and the responses y, on the vertical axis, as shown in Figure 7.9. 
As long as the mean function includes an intercept, is the square of the 
sample correlation between y, and associated with this scatterplot. The cor- 
relation is a meaningful summary of the scatterplot only if the points fall into 
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FIGURE A summary plot for the regression of Time on and T2 in the transactions data. 

an elliptical cluster about the fitted line. By careful examination of the figure, 

it appears that points at the upper right of the plot are farther from the fitted 
line than are points in the lower left, suggesting nonconstant variance. If this 

were so, the assumption that Var(Tinze I T,,T,) was constant would be called 
into question. Many of the results in this chapter that depend on the constant 
variance assumption would no longer hold. First, R2 would not be an appro- 
priate measure of variability explained. Second, the computations made in the 
last few sections concerning predictions and variances of estimates need mod- 
ifications that account for the nonconstant variance. We return to this issue in 

later chapters. 

7.7 THE LAKE MARY DATA 

In this section we return to the Lake Mary data in file The 
fitted quadratic polynomial is shown in Figure 7.4 on page 148. This fit 
was obtained using the parametric smoother slidebar which can be used to fit 
polynomials up to degree 5 ;  the degree of the polynomial is shown above the 
right end of the slidebar. The degree can be changed by moving the slider to the 
left or right. The quadratic fit shown in Figure 7.4 is nearly identical to a lowess 
fit (not shown), and the quadratic mean function matches the data quite well. 

To get the parameter estimates for a quadratic polynomial, it is necessary 
to create a new term Age2 using the “Transform” menu item. The quadratic 
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TABLE 7.6 Quadratic Fit for the Lake Mary Data 

= = 

= 

= 

= 

~ 

mean function is 

so the mean function has k = 3 terms. OLS estimates can be obtained using the 
“Fit linear LS” item in the Graph&Fit menu. The output is shown in Table 7.6.  
The estimated mean function is 

1 Age) = 13.6 + 54.OAge - 4.7Age2 

This model specifies slower growth rates for older fish than for younger fish, as 
one might expect for biological organisms. The model is empirical, however, 

and could give misleading answers for fish outside the range of the data. For 
example, because of the general behavior of a quadratic curve, the model must 
predict that very old fish have shorter lengths. The estimated length of a five- 
year-old fish is 165.9 mm, while the estimated length of a seven-year-old fish, 
according to the quadratic model, is only 160.8 mm. 

7.8 REGRESSION THROUGH THE ORIGIN 

Occasionally, we may like to fit a mean function that does not include the 
term uo for the intercept. This causes no particular problem in either the the- 
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ory or the computations. We interpret the vector u for terms having the k - 1 
components, u = ( u l , . .  . , u , - , ) ~ ,  and similarly = . . , T / , ~ ~ ) ~ .  With these 
minor modifications, all the results of this chapter apply. In Arc, mean func- 
tions without an intercept can be obtained by un-checking the box for “Fit 
Intercept” in the regression dialog. 

7.9 COMPLEMENTS 

7.9.1 An Introduction to Matrices 

Many of the results in multiple linear regression use matrix and vector notation 
for compact representations. However, nearly all the results in the main part of 
the text can be understood without any familiarity with manipulating matrices. 
We provide only a brief introduction to matrices and vectors, so everything 
we do is defined. More complete references include Graybill (1992), Searle 
(1982), Schott (1 996), or any good linear algebra book. 

Boldface type is used to indicate matrices and vectors. We will say that 
is an r x c matrix if it is an array of numbers with r rows and c columns. A 
specific 4 x 2 matrix is 

An element of a matrix is given by x , , ,  which is the number in the ith row 
and the column of For example, in the preceding matrix, x3* = 4. 

A vector is a special matrix with just one column. A specific 4 x 1 matrix 

y, which is a vector of length four, is given by 

The elements of a vector are generally singly subscripted; thus, y ,  = -2. A 

special vector written as 1, is the r x 1 vector with all elements equal to one. 
Similarly, 0, is the r x 1 vector with all elements equal to zero. 

A row vector is a matrix with one row. We don’t use row vectors in this 
book. If a vector is needed to represent a row, a transpose of a column vector 
will be used (see below). 

A square matrix has the number of rows r equal to the number of columns 
c.  A square matrix Z is if zi j  = z j i  for all i and j .  A square matrix 
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is if all elements off the 
The matrices C and D below are 

17 3 2 

169 

main diagonal are zero, = 0, unless = j .  
symmetric and diagonal, respectively: 

The diagonal matrix with all elements on the diagonal equal to one is called 

the for which the symbol I is used. The 4 x 4 identity matrix is 

1 0 0 0  

A is a I x 1 matrix, an ordinary number. 

Addition and Subtraction. Two matrices can be added or subtracted only 
if they have the same number of rows and columns. The sum C = A + B of 
r x matrices is also r x Addition is done elementwise: 

a l l  +bl l  a12 +bl2 

u31 h3l b32 a31 + b3l + b32 

C = A + B =  ['"' c~~~ ::::) + [::: = [ a 2 l  a22 

Subtraction works the same way, with the + signs changed to - signs. The 
usual rules for addition of numbers apply to addition of matrices, namely 
commutativity, A + B = B + A, and associativity, (A + B) + C = A + (B + C). 

Multiplication by a Scalar. If k is a number and A is an r x c matrix with 

elements ( ( I , , ) ,  then kA is an r x matrix with elements (kajj). For example, the 

matrix 0'1 has all diagonal elements equal to and all off-diagonal elements 
equal to zero. 

Matrix Multiplication. Multiplication of matrices follows rules that are 
more complicated than are the rules for addition and subtraction. For two 
matrices to be multiplied together in the order AB, the number of columns of 
A must equal the number of rows of B. For example, is A is r x and B is 

x q,  then we can form the product C = AB, which will be an r x q matrix. If 

the elements of A are (a;,,) and the elements of B are then the elements 
of C = are given by the formula 

k =  I 
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This formula says that is formed by taking the ith row of A and the j th 
column of B, multiplying the first element of the specified row in A by the 
first element in the specified column in B, multiplying second elements, and 

so on, and then adding the products together. 
Possibly the simplest case of multiplying two matrices A and B together 

occurs when A is 1 x c and B is c x 1. For example, if A and B are 

then the product AB is 

AB = ( 1  x 2) + (3 x 1) + (2 x -2) + ( -1  x 4) = -3 

AB is not the same as BA. For the preceding matrices, the product BA will 
be a x 4 matrix: 

2 6 4 - 2  

3 

8 -4 

Consider a small example that can illustrate what happens when all the 
dimensions are bigger than one. Symbolically, a 3 x 2 matrix A times a 2 x 2 
matrix B is given as 

Using numbers, an example of multiplication of two matrices is 

1 5 + 0  3 + 4  15 

10+0 2 + 8  

In this example, BA is not defined because the number of columns of B is not 
equal to the number of rows of A. However, the associative law holds: If A 
is r x c, B is c x q, and C is q x p ,  then A(BC) = (AB)C, and the result is an 
r x p matrix. 
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Transpose a Matrix. The transpose of an r x c matrix is a c x matrix 
called X T  such that if the elements of are (x i , ) ,  then the elements of X T  are 
(x j i ) .  For the matrix given earlier, 

The transpose of a column vector is a row vector. The transpose of a product 
(AB)T is the product of the transposes, in so (AB)T = BTAT. 

Suppose that a is an r x 1 vector with elements . . Then the product 
aTa will be a 1 x 1 matrix or scalar, given by 

r 

aTa = + ... +a;  = 

i = l  

(7.30) 

Thus aTa provides a compact notation for the sum of the squares of the el- 
ements of a vector a. The square root of this quantity (ara)'/* is called the 

or of the vector a. Similarly, if a and b are both r x 1 vectors, 
then we obtain 

r r 

aTb = a,h,  + + . . .  + anhn = = = bTa 
i=  I 1 

The fact that arb = bra is often quite useful in manipulating the vectors used 
in regression calculations. 

Another useful formula for regression calculation is obtained by applying 
the distributive law: 

(a - b)T(a - b) = aTa + bTb - 2aTb (7.31) 

Inverse a Matrix. For any scalar c # 0 there is another number called 
the of c, say d ,  such that the product cd = 1.  For example, if c = 3 ,  
then d = 1 = I / 3 ,  and the inverse of 3 is 1 / 3 .  Similarly, the inverse of 1 / 3  
is 3 .  

A square matrix can also have an inverse. We will say that the inverse of a 
matrix C is another matrix D, such that CD = I, and we write D = C-I. Just 
as not all scalars have an inverse-zero is excluded-not all square matrices 
have an inverse. The collection of matrices that have an inverse are called 
 full rank, or A square matrix that is not invertible is 

of less than full rank, or If a matrix has an inverse, it has a unique 
inverse. 

The inverse is easy to compute only in special cases, and its computation 
in general requires a computer. The easiest case is the identity matrix I, which 
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is its own inverse. If C is a diagonal matrix, say 

0 0 0  

c = [ i  -; ; I) 
0 0 1  

then C-' is the diagonal matrix 

as can be verified by direct multiplication. For any diagonal matrix with 
nonzero diagonal elements, the inverse is obtained by inverting the diagonal 
elements. If any of the diagonal elements are zero, then no inverse exists. 

7.9.2 Random Vectors 

An n x 1 vector y is a if each of its elements is a random 
variable. The mean of an n x 1 random vector y is also an n x 1 vector whose 
elements are the means of the elements of y, so symbolically 

The variance of an n x 1 vector y is an n x n square symmetric matrix, often 

called a written Var(y). The diagonal elements of Var(y) 
are the variances of the elements of y; if we write V = Var(y) and if the 

elements of V are called then qi = Var(y;) for = 1,2,. ..,n. The off- 
diagonal elements of V are the covariances between the elements of y, so 

= Cov(yi,y,) = Cov(y,,yi) = Since the covariance function is symmet- 
ric, so is the covariance matrix. 

The rules for working with means and variances of random vectors are 
matrix versions of the equations given previously in scalar form. If y is an 
n x 1 random vector with mean E(y) and variance Var(y), and b, is any n x 1 
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vector of constants and B is any n x n matrix of constants, then 

E(b, + By) = b, + BE@) (7.32) 

(7.33) Var(b, + By) = BVar(y)BT 

Many of the random variables in this book are conditional, given the fixed 
values of predictors. The same rules apply to conditional random variables as 
to unconditional ones. For example, suppose x is a vector of predictors. Then 
E(y I x) is a vector the same length as y with ith element E(y, I x). 

7.9.3 Correlation Matrix 

A correlutiori matrix is simply a rescaling of a covariance matrix. Given a 
covariance matrix V with elements a correlation matrix with elements 

r,, is obtained by the rule r,, = The diagonal elements of are 
all equal to one, while the off-diagonal elements are correlations. 

7.9.4 Applications to Multiple Linear Regression 

We begin with data (x,,y,) observed on each of n cases. Each y ,  is a scalar, 
and each x, is a p x I vector of values for the predictors for the ith case: 

To save space we would usually write x, as xIT = ( x , , , x l z , .  . . From each 
x,, we compute a vector of k terms u(x,), as defined in Section 7.2, where 
each element of u(x,) is a function of x,: 

The first element of u(x,) is uo = 1 for fitting an intercept, and the remaining 

k - 1 terms are sometimes collected into a - 1) x 1 vector ul(x,). To make 
notation less cluttered, we generally will just write u, rather than u(x,) and 
uIi rather than u,(x,), but the terms are always derived from the underlying 
predictors. 

Let q be a k x 1 vector of parameters. We can partition qT = (rlo,qlT) to 
conform to the partition of u, so is the parameter for the intercept and 
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vl  is the vector of the remaining regression coefficients. The multiple linear 
regression mean function is given by 

E(y; I u;) = 70 + + ' ' ' + 1 Ui,k-  1 

In this equation we have conditioned on ui, but we could have conditioned 

on x i .  
To write the mean function in matrix form, we first collect the response 

into an n x 1 vector yT = (yl ,y,, . . . ,y,). Next, we will collect the terms ui into 

an n x k model matrix U: 

1 U I 1  U I 2  . "  

U =  
. .  

1 u,* ." 

(7.34) 

The ith row of U consists of a one for the intercept, followed by u: , the values 
of the terms for the ith case. We can write the mean function in matrix form 

as 

(7.35) Wy I U) = Uv 

The multiple linear regression model is sometimes written as 

y I U = E(y I U ) + e  = Uq + e  (7.36) 

where e is an n x 1 random vector with elements ei. Equation (7.36) specifies 
that the random vector y I U can be expressed as a fixed part E(y I U) = Uq, 
plus a random vector e, the error term, similar to the derivation of the simple 
linear regression model at (6.1). This additive form for y I U equal to mean 
plus error is a special feature of linear models that does not carry over to many 
nonlinear models for data. 

Since e is a random vector, it has a mean vector and a covariance matrix. 

We assume it has mean zero, E(e I U) = On,  and that all elements of y I U have 
variance o2 and are uncorrelated, so Var(e I U) = 021. 

7.9.5 Ordinary Least Squares Estimates 

The OLS estimate 6 of 71 is given by the arguments that minimize the residual 
sum of squares function, 
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Using (7.3 I ) ,  we obtain 

RSS(h) = y'y + hT(UTU)h - 2fUh (7.37) 

Before finding the OLS estimates, we examine (7.37). RSS(h) depends on the 
data only through three functions of the data: y'y, U'U, and y w .  Any two 
data sets that have the same values of these three quantities will have the 
same least squares estimates. Consulting the formulas in Table 6.1, we can 
write 

n 

so apart from a centering constant ny2, this is just the total sum of squares 
The k x k matrix UTU has entries given by the sum of squares and 

cross-products of the columns of U, and the 1 x k matrix y% contains cross- 
products of the columns of U and the response. The information in these 
quantities is equivalent to the information contained in the sample means 
of the predictors plus the sample covariances of the predictors and the re- 
sponse. In Arc, the averages, standard deviations and correlation matrix can 
be obtained using the "Display summaries" item in a data set menu. Any 
two regressions that have identical values for sample averages, standard de- 

viations, and sample correlation matrix will have identical OLS estimates of 
coefficients. 

Using calculus, minimization of (7.37) is straightforward. Differentiating 

(7.37) with respect to the elements of h and setting the result equal to zero 
leads to the normul equations, 

U'Uh = U'y (7.38) 

The OLS estimates are any solution to these equations. If the inverse of (U'U) 

exists, the 01.s estimates are unique and are given by 

6 = (UTU)-'UTy = MU'y (7.39) 

We have defined 

M = (UTU) (7.40) 

because this matrix will be used elsewhere. If the inverse does not exist, then 
the matrix (UTU) is of less than full rank, and the OLS estimate is not unique. 
In this case, Arc and most other computer programs will use a subset of the 
columns of U in fitting the model, so that the reduced model matrix does have 
full rank. This is discussed in Section 10.1.3. 



176 CHAPTER 7 INTRODUCTION TO MULTIPLE LINEAR REGRESSION 

Properties of Estimates. Using the rules for means and variances of random 
vectors, (7.32) and (7.33), we find 

E(G I U) = E((UTU)-'UTy I U) 

= (UTU)-IUTE(y I U) 

= (U'U) - I u'ur) 

(7.41) 

so 6 is unbiased for as long as the mean function that was fit is the true 
mean function. The variance of 6 is 

where we have defined M as in (7.40) to be equal to (UTU)-I. Thus, the 
variances and covariances are compactly determined as times a matrix 
whose elements are determined only by U and not by y. The matrix (T2M 

can be displayed from a linear regression model menu using the "Display 
variances" menu item. 

The Residual of Squares. Let f = UG be the n x 1 vector of fitted 
values corresponding to the n cases in the data, and similarly, = y - f is the 
vector of residuals. One representation of the residual sum of squares, which 

is the residual sum of squares function evaluated at G, is 

n 

= (y - f)'(y - f )  = 6% = 

i=  I 

which suggests that the residual sum of squares can be computed by squaring 
the residuals and adding them up. In multiple linear regression, it can also be 
computed more efficiently based on summary statistics. Using (7.37) and the 
summary statistics U'U, U'y, and y'y, we write 

= = y'y + G'U'UG - 2y'UG 

We will first show that = yW6. Substituting for one of the Gs, we get 

~TuTu(uTu)-%J'y = ij'u'y = y'UG 
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the last result following because taking the transpose of a 1 x 1 matrix does not 
change its value. The residual sum of squares function can now be rewritten 
as 

= y’y - GTUTUG 

= y’y - 

where ? = UG are the fitted values. The residual sum of squares is the differ- 
ence in the squares of the lengths of the two vectors y and ?. Another useful 
form for the residual sum of squares is 

RSS = 1 - R 2 )  

where is the square of the sample correlation between f and y. This result 
generalizes the simple regression relationship, = SYY( 1 - r&), to multiple 

regression, so can be interpreted as the proportion of variability in the 
response “explained” by the regression on u (see also Problem 7.6). 

Estimate Variance. Under the assumption of constant variance, the esti- 
mate of u2 is 

(7.43) 
d 

6 2  = - 

with d df, where d is equal to the number of cases n minus the number of 
terms with estimated coefficients in the model. If the matrix U is of full rank, 
then d = ~ k ,  but the number of estimated coefficients will be less than k if 
U is not of full rank. 

The Hut Matrix. The leverages in Section 7.6.3 are the diagonal elements 
of a matrix called the Hat matrix, defined by 

H = U(UTU)-’UT (7.44) 

assuming that UTU has full column rank. H is an n x n symmetric matrix. The 
fitted values are given by = Hy, and the residuals are given by 6 = y - Hy = 

(I - H)y. The hat matrix has many other useful properties that are easy to 
verify directly from the definition in (7.44): 

H U = U  

(I - H)U = 0 

H2 = H 

H(I - H) = 0 

(7.45) 

(7.46) 

(7.47) 

(7.48) 
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Equations (7.45) and (7.46) show that the covariance between the residuals 
(I - H)y and any linear combination of the columns of U has zero covariance, 
and hence zero correlation. Equation (7.48) shows that the residuals and the 
fitted values are uncorrelated. The matrix H is not of full rank, so it does not 
have a unique inverse. Its rank is equal to the number of regression coefficients 
that can be estimated, usually equal to the sum of the leverages, which are the 

diagonal elements of H, is equal to the rank of H. 

7.9.6 References 

The transactions data were provided by Alan Welsh. The data for Problem 7.3 
are from Tuddenham and Snyder (1954). The Big Mac data are from Enz 
(1991). The data for Exercise 7.1 were furnished by Mike Camden. The leaf 
area data used in Problem 7.7 were provided by Todd Pester. 

PROBLEMS 

7.1 Data on 56 normal births at a Wellington, New Zealand hospital are given 
in file The response variable is BirthWf, birth weight in 
grams. The three predictors are the mother’s age denoted by Age, term 
in weeks denoted by Term, and the baby’s sex, Sex = 0 for girls and 1 for 
boys. Construct a scatterplot matrix of the variables BirthWt, Age, Term, 
and Sex. 

7.1.1 Describe the relationships in each of the marginal response plots 
with emphasis on the individual regression functions. Why do 
the points in the scatterplots involving Sex fall in two lines? Since 
the plots including Sex contain little information, the information 
about this binary variable can be encoded in the plot by using it 
as a marking variable. Redraw the scatterplot matrix, but use Sex 
as a marking variable. 

7.1.2 Study the marginal response plots BirrhWr versus Age and BirthWt 
versus Term, separately for each sex. This can be done by clicking 
on the “1” at the bottom left of the plot to get the boys only, on 
the “0” to get the girls only, or on the name of the variable Sex to 
get all the points at once. Is there visual evidence to suggest that 
the relationship between BirthWt and Age or BirthWt and Term 
depends on the sex of the baby? Describe the visual evidence that 
leads to your conclusion. 

7.2 In the Big Mac data, use a scatterplot matrix to find the cities with the 
most expensive Big Macs. Find the cities with the least expensive Big 
Macs. Where are bus fares relatively expensive? You might want to use 
a name list by selecting the “Display case names” item from the data set 
menu. 
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TABLE 7.7 Definitions of Variables in the Berkeley 
Guidance Study Data" 

Label Description 

Sex 

Age 2 weight, kg 

Age 2 height, cm 

Age 9 weight, kg 

Age 9 height, cm 

Age 9 strength, kg 

Age 18 weight, kg 

Age 18 height, cm 

Age 18 strength, kg 

Sex 0 for boys, 1 for girls 

Age 9 leg circumference, cm 

Age 18 leg circumference, cm 

Somatotype, a 1 to 7 scale of body type 

Case numbers from the source 

"The data for boys are in the file . l s p ,  for girls in 

l s p .  and combined in l s p .  

7.3 The Berkeley Guidance Study was a longitudinal monitoring of boys 
and girls born in Berkeley, California between January 1928 and June 

1929, and followed for at least eighteen years. The data we use are 
described in Table 7.7. There are three data files: . for boys, 

. l s p  for girls, and l s p  for all cases. 

7.3.1 For the girls, obtain the usual summary statistics (means, stan- 
dard deviations, and correlations) of all the variables, except 

and Sex. Obtain a scatterplot matrix for the age 2 variables, 
the age 9 variables, and HT18. Summarize any information in the 

Fit the multiple linear regression model 

plot. 

7.3.2 

assuming that Var(HTI8 I x) = 02, and give estimates and standard 
errors for all parameters and the value of 

7.3.3 Show numerically that is the same as the square of the sam- 
ple correlation coefficient between HT18 and the fitted values 
from (7.49). Thus a scatterplot of the response versus the fit- 
ted values provides a visual interpretation of the coefficient of 
determination. 
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7.3.4 

7.3.5 

7.3.6 

7.3.7 

7.3.8 

CHAPTER 7 INTRODUCTION TO MULTIPLE LINEAR REGRESSION 

“1 

0 - l  I 0.4 0.6 0.8 1 1 .2  1.4 

FIGURE 7.10 Curve defining a function of x2 for Problem. 

Give the measurement units of each of the estimated regression 

coefficients. 

Obtain tests that each coefficient is equal to zero, and give the 
value of the test statistic, its p-value, and a brief summary of the 
outcome. 

Test the hypothesis that the age 2 predictors are not needed in 
the mean function; that is, test NH: 1 1 ,  = 172 = 0 versus the general 
alternative. 

Write a sentence that summarizes the information in the overall 
analysis of variance table for (7.49). 

Give 95% confidence intervals for 1i4 and for q4 - q2 in (7.49). 

7.4 Consider a regression with two predictors, x1 and x2. For each of the 

following five mean functions, (a) decide if the mean function specifies 
a multiple linear regression model, and (b) if so, give the number k of 
terms in the mean function and the definition of each of the terms. 

a. E(y I x) = vo + vlxl + q2x2 + 1 / 3 x l x 2  + 7/4(xI/x2) 

b. E(Y I x) = 7 0  + log(ri,x, + 

c. E(y I x) = + qI  exp(x, /(xl + 

d. E(Y 1 x> = 1/(1 + exp{-[qo + ~ 1 x 1  + ~2x21)) 

e. E(y I x) = qo + 7/,x1 + where is defined by the curve 
shown in Figure 7.10. The curve was found by smoothing the scatter- 
plot of the points shown in the figure, so there is no explicit formula 
for computing f ( x 2 )  from x2. 
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7.5 This is a demonstration to show that the value of in a regression 
depends on the sampling distribution. Load the file l sp .  You 
will get a dialog to generate a bivariate normal sample with means and 
variances you select. You also get the select the population correlation 
and the sample size. 

7.5.1 Set the means to be 0, the standard deviations to be 1 ,  the popu- 

lation correlation to be 0.8, and n = 250. Assuming that has 
a bivariate normal distribution, what is the distribution of I x? 

7.5.2 Fit the OLS regression of y on According to theory, the OLS 

estimates are unbiased for the population values, and estimates 

p2 = 0.64. Are the estimates of the regression parameters close to 
the true values? Is the estimate of close to the true value? 

7.5.3 Draw the plot of y versus and use the mouse to select about 
30% of the points with in the middle of its range, and then use 
the “Case deletions” plot control to remove these points. For this 

reduced data set, does the true mean function change? Why or 
why not? Will the OLS estimates of regression coefficients remain 
unbiased? Why or why not? Select the item “Display estimates” to 
redisplay the regression computed without the deleted cases. Have 
the estimates of regression coefficients changed very much? The 

value of however, is now much larger; why? 

Restore all the points, and then repeat problem 7.5.3 but this time 
delete about 15% of the points with the largest and smallest values 
of the value of will now decrease; why? 

7.5.5 Repeat this problem a few times, varying the correlation to 
see that what you observed in this problem will always occur. 
The same results will also occur with many predictors, where 

is the square of the correlation between y and ?. It is a clear- 
ly meaningful number when the plot of versus ? looks like a 
bivariate normal sample, but its value depends both on the distri- 
bution of points and on the linearity of the mean function between 
them. 

7.5.4 

7.6 Let be the square of the sample correlation between the observed 
response y and the fitted values in a multiple linear regression. Show 
that = SYY(1 - and hence is the proportion of variability in 
y explained by the linear regression. The problem is simplified if 
.? = 0. This can always be achieved by replacing by - j .  Show that 
the correlation you need is unchanged by this substitution.) 

7.7 Study of the growth of plants can be a crucial element in understanding 
how plants compete for resources. For example, soybean varieties with 
large early leaves may be desirable in no-till farming because larger 
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TABLE 7.8 Definitions of Variables in the Leaf 

Area DataR 

Label Description 

Year 

DAP Days after planting 
Length 

Width 

Area 

Year of experiment, 1994 or 1995 

Length of terminal leaflet, cm 
Width of terminal leaflet, cm 
Actual terminal leaflet area, cm2 

aThe data are in the file l s p .  

leaves can shade the ground and inhibit weed growth. In a study com- 
paring soybean varieties on leaf growth, it was necessary to develop an 
inexpensive method for predicting leaf area from measurements that can 
be taken without removing the leaf from the plant. 

Table 7.8 describes variables measured on each of n = 148 leaves of 
the soybean variety Heifeng-25. The goal is to predict Area, which is 
measured using a destructive method in the laboratory, using nonde- 
structive measures. The data are available in file heifeng. l s p .  

7.7.1 Construct a scatterplot matrix of the three variables, Area, Length, 
and Width. Briefly describe the information in the plot. 

7.7.2 The area of a rectangle is equal to the length times the width, or 
in log scale, log(Area) = log(Length) + log( Width). This suggests 
postulating the mean function 

E(log(Area) I Length, Width) = yo + qI log(Length) + q2 log( Width) 

(7.50) 

What is the response? What are the predictors? What are the 
terms? If leaves were exactly rectangles, what values should we 
expect to find for 7i0, T I , ,  and 7i2? 

7.7.3 Fit the multiple linear regression model with mean function 
assuming constant variance. Provide a brief interpretation of the 
results of the F-test in the summary analysis of variance table. 

7.7.4 Obtain the estimated covariance matrix of the estimates, and show 
numerically that the standard errors in the regression summary are 
the square roots of the diagonal entries of the estimated covariance 

matrix. 

7.7.5 Assuming normal errors and constant variance, test the null hy- 
pothesis that the intercept is zero against the general alternative 

7.7.6 Assuming normal errors and constant variance, test the null hy- 
pothesis that the area of a leaf can be well approximated by the 
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area of a rectangle. That is, test the null hypothesis 
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E(log(Area) 1 Length, Width) = log(Length) + log( Width) 

against the alternative (7.50). 

7.7.7 Assuming normal errors and (7.50), provide a 95% confidence 
interval for the difference - q,. 

7.7.8 Assuming normal errors and (7.50), obtain 90% prediction inter- 
vals for (a) log(Area) and (b) Area for a leaf with length 7 cm and 
width 4 cm. 

Draw a plot of log(lengrh) versus log( Width), and from this graph 
identify the five cases that are likely to have the highest leverage, 
and explain how you selected these cases. Then, draw the plot 
of leverage versus case number, and verify that the points you 
selected from the first plot do in fact have large leverage. 

7.7.10 Suppose you wanted to predict log(Area) using (7.50) for a 
leaf that has Length = Width. Should this prediction be called 
an extrapolation? Does your answer depend on the value of 
Length? 

7.7.9 

7.8 Continuing with the leaf area example in Problem 7.7, consider the model 
with mean function 

E(Areu I = + Width + t7, Width2 (7.5 1)  

7.8.1 Identify all the terms in this model. 

7.8.2 Give a short justification of this mean function based on geometric 
considerations. 

7.8.3 Fit the model, and perform a test to compare the fit of the simple 
linear regression of Area on Width to (7.51). Summarize your 
results. 

7.9 Suppose we have a k x k symmetric matrix A, partitioned as 

where A ,  , is k ,  x k , ,  A,, is k,  x k ,  and A,, = AT2, and k ,  + k,  = k .  

7.9.1 Show by direct multiplication that if A is of full rank, meaning 

that A-I exists, then 
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where 

B = A,; A,, 

D = A,, - A,, AT; A,,  

Suppose we partition the matrix U given at (7.34) into U = 
(Uo,U,), where U, is the x 1 vector of l's, and U, is the re- 
maining k - 1 columns of U. Show that UTU in partitioned form 
is 

where U is the ( k  - 1) x 1 vector of means of the terms, and UTU, 
is the ( k  - 1) x ( k  - 1) matrix of uncorrected sums of squares and 
cross-products. Show also that for the matrices of Problem 7.9.1, 
B = UT, and D is the matrix of corrected of squares and cross 
producrs. This means that if C is the sample covariance matrix of 
u , , .  . . , u k - , ,  then C = D / ( n  - 1). (Hint: To obtain this last result, 
use a matrix generalization of the result that C ( a ,  - = a: - 
nii2.) 

Give an expression for (UTU)-' in terms of n, U, and the matrix 
D. If we partition the parameter vector = separating 
out the intercept, give expressions for Var(7,) and Var(r],). This 
will show that Var(q,) depends only on o2 and the inverse of D. 

Let U ,  be the matrix U , ,  but with column means subtracted off, so 

U ,  = U, - lUT, and also D = UYU, . By direct multiplication based 
on the partitioned form of (UTU)-I, show that 

6 ,  =D-'UTy 

Go = j - U T 6 ,  

If is replaced by centering, y = y - jl, how will the estimates 
of v0 and change? 

7.10 The formula for the ith leverage value is h, = uT(Um)-'u,. Show that, 
using centered matrices as defined in the last problem, 

1 

n 
= - +(ui-u)~(upJ,)- ' (ui- i i )  

which is the equation of an ellipsoid centered at U with contours deter- 
mined by (U;lJ,)-', as shown in Figure 7.7. 
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Three-Dimensional Plots 

In this chapter we return to the theme of using graphs to study regression 
and introduce a graphical method that uses motion to allow the user to see 

three dimensions. These plots can have great value in regressions with two 
predictors, since we can then see all the data at once, and in regressions with 
many predictors, as discussed in Chapter 20. We also illustrate important ideas 
in  regression introduced in the last two chapters. 

8.1 VIEWING A THREE-DIMENSIONAL PLOT 

A three-dimensional (3D) plot has three axes, a vertical axis we will generally 
label and a pair of horizontal axes we will label for the axis that can 
initially be seen in the flat 2D computer screen, and 0 for the out-of-page 
axis that is not visible initially. Figure 8.1 shows how these three axes look in 
three dimensions. Three-dimensional plots are difficult to represent accurately 

FIGURE 8.1 The 3D plotting region. 
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FIGURE 8.2 The initial “Home” view of the “View a surface” demonstration. 

on a two-dimensional page, so using the computer while reading this chapter 
may be particularly useful. 

Figure 8.2 is a 3D plot created with Arc. It can be duplicated by loading the 
file and then selecting “View a surface” from the “Demos:3D” 
menu. The main difference between Figure 8.2 and the plot you produce is 
that the background and foreground colors are different: the motion of white 
points on a dark background is easier to see than the usual black on white. 
If you want to change the background color, first select “Options” from the 
plot’s menu and then push the “White background” button and finally push 
“OK.” With Mac 0s and Windows, the plot’s menu is called “3Dplot.” The 
out-of-page dimension is not visible in Figure 8.2 because this dimension is 
perpendicular to the page of this book. To see the out-of-page dimension, it 
is necessary to rotate the plot. 

In Arc, the plot’s axes are always labeled with the letters V ,  and 0. The 
names of the variables plotted on the axes are shown to the left of the plot; 
in Figure 8.2, these are x ,  y ,  and respectively. We will refer to this as a 
plot of y versus ( x , z ) ,  meaning that y is on the vertical V axis; and x and 
are on the horizontal axes, with displayed on the axis and on the 0 
axis. 

The vertical screen anis and the horizontal screen axis are the fixed vertical 
and horizontal directions on the computer screen. When in the initial “Home” 
position, the and V axes of a 3D plot are the same as the horizontal and 
vertical screen axes. But after a 3D plot is rotated, its and V axes may no 
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longer align with the screen axes. The plot axes and the screen axes will both 
play a role i n  the interpretation of 3D plots. 

8.1.1 Rotation Control 

The basic tools for rotation control are three pairs of buttons at the bottom 
of the plot. Pushing any of these buttons will cause the points to rotate. The 
two “Yaw” buttons cause the plot to rotate either to the left or right about the 
vertical screen axis. The “Roll” buttons cause rotation about the direction per- 

pendicular to the computer screen, while “Pitch” rotates about the horizontal 
screen axis. Holding down the shift key while pushing a control button causes 
the plot to rotate continuously until one of the six control buttons is pushed 
again. In many of the applications of 3D plots in regression graphics, rotation 
will be about the V-axis only, using the Yaw buttons. 

The rate of rotation is changed by selecting the “Faster” or “Slower” item 
in the plot’s menu. These items can be selected more than once, and each 
selection will result in a slightly faster or slower rate of rotation. 

Select the item “Mouse mode” from the plot’s menu, and then select “Hand 
rotate” in the resulting dialog. This changes the pointer into a hand; as you 
hold down the mouse button you can use the hand to push the point cloud 
in various directions, much like you might push on the surface of a bas- 
ketball to start it rotating. Pushing near the outside of the point cloud will 
result in relatively fast motion, while pushing near the center of the point 
cloud will result in relatively slow motion. Effective pushing takes some prac- 
tice. 

8.1.2 Recalling Views 

The item “Recall home” from the “RecallExtract” pop-up menu restores the 
plot to its original orientation. The item “Remember view” will put an internal 
marker at the current view. You can recall this view by selecting the item 
“Recall view.” The other items in this menu will be described later. 

Before rotation in Figure 8.2, the dominant feature is a linear trend; while 

rotating, distinct curvature emerges. From the rotating plot, one can clearly 
recognize shapes. Relating the shapes to a specific functional form is quite a 
different matter, however. Shapes will generally be less obvious in real-world 
data analysis problems. 

8.1.3 Rocking 

During rotation a striking pattern may be seen, but it may be visible only while 
rotating. The impression of three dimensions can be maintained by stopping 
rotation near the view where the pattern is visible and then holding down the 
“Rock” button at the bottom left of the plot. As long as the mouse button 
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is down, the plot will rock back and forth, allowing an impression of three 
dimensions to be maintained while staying near the interesting view. 

8.1.4 Show Axes 

Occasionally the axes in a 3D plot may be distracting. They can be removed 
by selecting “Show axes” from the plot’s menu. Repeating this operation will 

restore the axes to the plot. 

8.1.5 Depth Cuing 

To create an appearance of depth, points in the back of the point cloud are 
plotted with a smaller symbol than are points in the front. As the points rotate, 
the symbol changes from small to large or vice versa. If some of the points 
are marked with a special symbol, either chosen from the symbol palette or 
obtained using point marking, then depth cuing is turned off. To turn depth 
cuing off by hand, select “Depth cuing” from the plot’s menu. Selecting this 
item again will turn depth cuing back on. 

Depth cuing has been turned off in all the 3D plots shown in this book. 

8.1.6 Zooming 

The two adjacent triangles just to the right of the symbol palette control the 
distance that the points are from the observer. Holding down the mouse in the 
top triangle causes the points to move closer to the observer, while holding 
the mouse in the bottom triangle causes the points to move away. A plot can 

be returned to its normal state by using the item “Zoom to normal size” in the 
“RecalUExtract” menu. Zooming can be useful when there are many points in 
a plot and increased resolution is needed to see structure. 

8.2 ADDING A POLYNOMIAL SURFACE 

8.2.1 Parametric Smoother Slidebar 

The slidebar on 3D plots initially marked “OLS” is the equivalent of the 
parametric smoother slidebar on 2D plots. In 3D plots this slidebar is used to 
fit quadratic polynomial surfaces by using least squares to estimate quadratic 

models, like the full quadratic, 

@V I = b, + + b20  + + 

where is the quantity on the vertical axis, and and 0 are on the horizontal 
axes. As the slider is moved to the right, the coefficients for the linear terms 

and 0 are always estimated, but different combinations of the other are 

set to zero. You can fit a mean function that is a plane = b,, = b,, = 
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fit with one or both of the quadratic terms, fit with only the interaction term, 
or fit with all terms (the “Full Quad” mean function). Here is a partial list 
showing how the brief phrases above the slidebar describe the form of the 
fitted model: 

plane: 

pln+H^2: 

E(V 1 = b, + + b 2 0  

1 = b, + + 
pln+HO: 

pln+quad: &V I = b, + + b 2 0  + + b2,02 

E(V I = b, + + b 2 0  + 

Start the plot shown in Figure 8.2 rotating by shift-clicking in the left “Yaw” 
button, and then click in the parametric smoother slidebar to see how the 
various polynomial mean functions match the data. None of these polynomial 
mean functions match the data very well, since the data were not generated in 

this way. The parametric smoother slidebar is useful for understanding how 
the various models can fi t  data. 

The last option on the slidebar is to fit a “1 D-Quad” model, which estimates 
a mean function of the form 

The computations for estimation of the coefficients in this model may take 
longer, because this mean function is not in the family of linear models. This 
mean function is called the model, and it will be discussed in 
Section 18.3.2. 

8.2.2 Extracting Fitted Values 

The parametric smoother slidebar has a menu with several options. The 
item “Extract mean” creates a new variable with the name you specify that 

contains the values of = E(V I the fitted values for the fit to the 
data. 

8.2.3 Adding a Function 

The item “Add arbitrary function” on the parametric smoother slidebar menu 
allows adding a function to the plot. If you select this item, and in the resulting 
dialog type 

y = s i n ( x ) + Z * c o s ( z ) + s i n ( x ) * c o s ( x )  

the graph of this function will be added to the plot. It matches the data very 
closely, as it  should since the data were generated using this as the mean 
function. 
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8.2.4 Residuals 

Recall that the residuals from any of the fits possible with the parametric 

slidebar are defined as 2; = - v, for = 1 , .  . . , n. If the model is correct, then 
the residuals should appear to be independent of Hi and 0;. 

The residuals from any of the slidebar fits can be emphasized in a 3D plot 
by selecting the item “Show residuals” from the slidebar menu. This causes 
line segments parallel to the V-axis to appear between each point in the plot 

and the fitted surface. The length of a line segment give the magnitude of the 
corresponding residual. The line segments for the positive residuals above the 
surface have a different color than the line segments for the negative residuals 
below the surface. 

,. 

Use the parametric smoother slidebar to place the fitted model 

on the 3D plot for the “View a surface” demonstration, and then select “Show 

residuals” from the slidebar menu. While rotating the plot about the V-axis, 
the positive residuals all appear at the edges of the fitted plane, while the 
negative residuals appear in the center. This indicates that the residuals are 
not independent of and thus that the model is wrong. 

8.3 SCALING AND CENTERING 

The plotting region shown in Figure 8.1 is the interior of a cube centered at 
the origin, with sides running from - 1 to 1. The data are centered and scaled 
to fit into this region. This can influence the interpretation of a 3D plot. 

Suppose a quantity 1)  is to be plotted on one of the axes. In Arc and in most 
other computer programs, centering and scaling are based on the range ru = 
max(v) - min(v) and the mid-range = (max(v) + min(w))/2. The quantity 
actually plotted is 2(w - mt,)/rl,, which has minimum value - 1 and maximum 
value 1. The centered and scaled variable fills the plotting region along the 
axis assigned to 7). If the program is given instructions to construct the plot of 
y versus (x,z), what will really be produced is the plot 

where 

= 2/ry, b = 2/rx and c = 2/r, 

Centering usually has no effect on the interpretation of the plot. Scaling, how- 
ever, can have an effect and we refer to the operation leading to (8.1) as 
abc-scaling. Because of the scale factors h, and c in (8.1), we will not be 
able to assess relative size in plots produced with abc-scaling: A plot of l0Oy 
versus (lox, 1000~) will look identical to the plot of y versus (x,z). 
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FIGURE 8.3 The same data as in Figure 8.2, rotated about the vertical by 60”. 

When relative size is important, it may be better to use aaa-scaling in which 
the three scale factors in (8.1) are all replaced by the minimum scale factor, 
min(a,b,c). With aaa-scaling, the data on one of the axes will fill the plotting 
region, but the data on the other two axes may not fill their axes. A plot of 
lO0Y versus (lox, 1000~) will appear quite different from the plot y versus 
(x,z) when uaa-scaling is used. When the plotted variables all have the same 
units, aaa-scaling of a plot can give additional useful information about the 
relative size and variation of the three plotted variables. In Arc, aaa-scaling is 
obtained by pushing the “aaa Scaling” button. Repeating this operation will 
return to abc-scaling. 

8.4 2D PLOTS FROM 3D PLOTS 

Use the “RecallExtract” menu to return Figure 8.2 to the “Home” position 
and then rotate about the vertical axis by using the right “Yaw” button through 

roughly 60”. The plot should now resemble Figure 8.3. The variable on the 
vertical screen axis is still y, but the variable on the horizontal screen axis 
is some linear combination of x and Which linear combination is it? After 
using the right “Yaw” button to rotate about the vertical axis through an angle 
of 0, the variable on the horizontal screen axis is 

horizontal screen variable = d + h = d + b(cos8)x + c(sin0)z (8.2) 
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Here b and c are the scale factors used in (8.1), d is a constant that depends 
on the centering constants m, and mz and on the scale factors b and c, and 
is the linear Combination of x and that appears on the horizontal screen axis. 
Equation (8.2) might be understood by thinking of a circle in the horizontal 
plane. Each point on the circle determines a linear combination h of x and 
2 .  If rotation had been about the vertical axis using a “Yaw” button and 

about another axis using another button, then the linear combination on the 
horizontal screen axis would depend on two rotation angles, and it would be 
a linear combination of x, and y. 

Since horizontal screen variables play an important role in statistical ap- 
plications of 3D plots, Arc allows you to display the values of d and h, and 
also to save h as a variable for future calculations. Select the item “Display 
screen coordinates” from the “RecallExtract” pop-up menu. This will display 
the linear combination of the quantities plotted on  the horizontal and vertical 
screen axes. For the view in Figure 8.3, the displayed output looks like this: 

- + + 0 

- + 

The H ,  and 0 refer to the quantities plotted on the horizontal, vertical and 
out-of-page axes of the plot, which for the example are x, and respectively. 
The quantity on the horizontal axis is h = 0.16~ + 0.282 with the constant d = 
- 1.40. Apart from a constant, the quantity on the vertical axis is proportional 
to y. Your output may be slightly different because the rotation angle you use 
is not likely to be exactly 60”. You can rotate to exactly 60” by selecting the 
item “Move to horizontal” from the “RecalVExtract” menu. Since cos60” = 0.5 
and sin60” = 0.866, enter the multipliers = 0.5, u2 = 0, u3 = 0.866 in the 
resultant dialog. 

8.4.1 Saving a Linear Combination 

When rotation is stopped, we see a 2D scatterplot of y versus h. The linear 
combination h that is visible on the horizontal screen axis can be saved for 
future calculations. Select the “Extract axis” item from the “RecalVExtract” 
pop-up menu. You will be presented with a dialog to enter a name for this 

new quantity, and to choose either the horizontal screen variable or the ver- 
tical screen variable; you will usually want the default, the horizontal screen 
variable. Push “OK’ after you have chosen an axis and typed a name for the 
extracted variable. Further rotation of the plot will not change the value of the 
saved variable. 

8.4.2 Rotation in 2D 

The static view shown in Figure 8.3 is a projection of the points in the full 
3D plot onto the plane formed by the vertical screen axis and the horizontal 
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FIGURE 8.4 A 2D view of the “View a surface” demonstration. The slidebar for H adds rotation 

to a 2D plot. 

screen axis defined by (8.2). Since this is really a 2D plot, it could be viewed 
in a 2D scatterplot, as in Figure 8.4. We can use this figure to explain how 
rotation is done. When rotation is about the V axis, we write 

h = h(0)  = b(cosH)x + c(sinH)z 

to recognize the dependence of h on the angle H of rotation. Imagine changing 
H by a small amount; this will change but will not change the variable 
plotted on the vertical axis. The computer screen can be refreshed by deleting 

the current points and then redrawing y versus h(0) for the updated value of 
8. Repeating this process over and over gives the illusion of rotation. For a 
full 3D rotating plot, depth cuing and updated axes are all that need to be 

added. 
Select the item “Rotation in 2D” from the “Demos:3D” menu to reproduce 

Figure 8.4, except that the rotation angle is initially set to H = 0. A slidebar 
marked “Theta” has been added to this plot. As you hold down the mouse in 
this slidebar, H and / z ( H )  are changed, and for each new 0 the plot is redrawn. 

The slidebar changes 0 in 10” increments, which is a much larger change 
than is used in the built-in rotating plot. As you change 8,  the full 3D plot is 
visible. If you reverse the colors using the “Options” item in the plot’s menu, 
the rotation is a bit clearer. 



194 CHAPTER 8 THREE-DIMENSIONAL PLOTS 

We now see that 3D rotation about the vertical axis is nothing more than 
rapidly updating the 2D plot y versus h(0)  as 0 is incremented in small steps. 
Rotating a 3D plot once about the vertical axis by using one of the “Yaw” 
buttons corresponds to incrementing 0 between 0” and 360”. During rota- 
tion, plots of y versus all possible linear combinations of x and are visi- 
ble. 

8.4.3 Extracting a 2D Plot 

Any 2D view of a 3D plot can be put into its own window by selecting the 
“Extract 2D plot” item from the “RecallExtract” menu. The new 2D plot has 
the usual plot controls, including smoothers. 

8.4.4 Summary 

The ideas of this section form a basis for viewing regression data in 3D plots, 
and so a brief summary is in order. The 3D plot is of y versus (x,z), with y 
on the vertical axis and x and on the horizontal axes. While rotating this 
plot once around the vertical axis, we will see 2D plots of possible linear 
combinations of x and on the horizontal screen axis, with y on the vertical 

axis. When the rotation is stopped, we see a 2D plot. The variable (8.2) on 
the horizontal screen axis can be extracted by using the “Extract axis” item in 
the “RecallExtract” menu. This variable will correspond to some particular 
linear combination of x and 

8.5 REMOVING A LINEAR TREND IN 3D PLOTS 

A strong linear trend in a 3D plot like the one apparent in Figure 8.5 may 
visually mask other interesting features, particularly nonlinearities. Figure 8.5 
can be reproduced by selecting the “Detect a small nonlinearity” item from the 
“Demos:3D” menu and then rotating the plot. This problem can be overcome 
by removing the linear trend, leaving any nonlinear effects behind. In Arc, 
a plot is detrended in this way by pushing the “Rem lin trend” button on a 
3D plot. This will replace the variable on the vertical axis with the residuals 

I from the fitted plane 

E(V I H , O )  = b, + + 

Also, the label on the vertical axis becomes as a reminder that we 
are now plotting residuals. A detrended 3D plot is thus of I versus 

( H , O ) .  
Figure 8.6 is obtained from Figure 8.5 by clicking the “Rem lin trend’ 

button. The systematic pattern to the residuals in Figure 8.6 is nearly invisi- 
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FIGURE 8.5 A 2D view of the “Detect a small nonlinearity” demonstration. 
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FIGURE 8.6 The same 2D view as in Figure, with the linear trend removed. 

ble in Figure 8.5, even while rotating. These data were generated by taking 

100 points on a 10 x 10 grid for x ,  and x2,  and defining y = + exp(-z)/ 
(1 + exp(-z)), where = 0 . 9 0 9 ~ ~  - 0 . 4 1 6 ~ ~  is a linear combination of the pre- 
dictors. 
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FIGURE 8.7 View of the 3D plot of residual versus (TI from the transaction data. 

The illustrative analysis of the transaction data in Chapter 7 was based on 
the model 

If this model were correct, then we would expect the residuals 2 to be inde- 
pendent of (q,q). Shown in Figure 8.7 is one view of the 3D plot ei versus 
(q , ,  q2). The variability of the residuals increases along the horizontal screen 
axis, indicating that the residuals are not independent of (T, ,T2) and thus that 
the data contradict the illustrative model. 

8.6 USING UNCORRELATED VARIABLES 

Select the item “Collinearity hiding a curve” from the “Demos:3D’ menu and 
rotate the resulting 3D plot. What do you observe? The points in the plot 

appear to fall close to a rotating vertical sheet of paper. One static view of 
this plot is given in Figure 8.8. This figure and the full rotating plot are of 
little help in finding structure because the predictors plotted on the H and 0 
axes are highly correlated. To see this clearly, return the plot to the “Home” 
position and then use the “Pitch” control to rotate to the 2D plot 0 versus 
H .  The high correlation between the variables should now be apparent, as 
all the points fall very close to a line. Finding structure in 3D plots is likely 
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FIGURE 8.8 A 2D view of the “Collinearity hiding a curve” demonstration. 

to be difficult when the variables on the H and 0 axes are even moderately 
correlated. 

With highly correlated variables, some 2D views of the 3D plot lack suf- 
ficient resolution for any structure to be clearly visible. This is the case in 
Figure 8.8, where the values of the horizontal screen variable are tightly clus- 
tered about the origin of the plot. To ensure good resolution in a 3D plot, we 
would like the values of the horizontal screen variable to be well spread in 

every 2D view. This can be accomplished by replacing the original variables 
on the H and 0 axes with an equivalent pair of The 
new plot created in this way will be of the form V versus (H,Onew), so we 
will need to change only the variable on the out-of-page axis. The variable 
One, is just the residuals from the simple linear regression of 0 on H ,  includ- 
ing an intercept. These residuals are represented as I H ) .  Since the sample 
correlation between the residuals On,, = 1 H )  and H is zero, the variables 
on  the horizontal and out-of-page axes of the new plot will be uncorrelated, 
and the values of the horizontal screen variable should be well spread in any 
2D view. 

Beginning with any 3D plot, a new plot with uncorrelated variables on the 
horizontal axes is obtained by pushing the “0 to e(0lH)” button. Pushing the 
button again will restore the plot to its original state. 

Figure 8.9 is obtained from Figure 8.8 by changing to uncorrelated variables 
on the horizontal axes. A curved trend is now plainly visible. In this example, 
x ,  and have correlation close to 0.99, and the mean function is a full 
quadratic in the predictors x ,  and x2. 
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FIGURE 8.9 The same 2D plot as in Figure 8.8, but with the “0 to e(0 I H)” button pushed. 

We gain resolution when changing to uncorrelated horizontal variables in 
a 3D plot, but do we lose information? Since the residuals 2(0 I H) = On,, 
from the regression of 0 on H are computed as a linear combination of 0 and 
H, rotating the new plot of versus I H)) will still display 2D plots 

of all possible linear combinations of 0 and just as happens when rotating 
the original plot versus No information is lost when changing to 

uncorrelated variables. 

8.7 COMPLEMENTS 

The data in Figures 8.5 and 8.6 were generated by setting and each to 
be 100 uniform random numbers between 0” and 360” and then computing 
y = sin(x) + 2cos(z) + sin(x)cos(x). 

Plot rotation was introduced in the statistics literature by Fisherkeller, 
Friedman, and Tukey (1974). Many early papers on this subject are 
reprinted in Cleveland and McGill (1988). Tierney (1990, Section 9.1.3) 
provides a useful reference for many of the details of plot rotation. 
The need for uncorrelated variables in a rotating plot was presented by 
Cook and Weisberg (1989, 1990a). In the latter paper, an optimality prop- 
erty of this procedure is derived. The discussion of rotation in Sec- 
tion 8.4 is limited to rotation about the vertical axis, but it is easily general- 
ized. 
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A more complete study of 3D plots suitable for readers with Masters level 
background in statistics is available from Cook (1998b). 

The RANDU generator discussed in Exercise 8.2 is taken from Tierney 
(1990, p. 41). Exercise 8.3 is based on a demonstration included with 

also by Luke Tierney. The data in Problem 8.7 are discussed in 
Mielke, Anderson, Berry, Mielke, Chaney and Leech (1983). 

PROBLEMS 

8.1 In Figure 8.4, the tick-marks on the horizontal axis cover the range from 
-1.5 to 1.5, even though each of the variables displayed in the plot 
are scaled to have values between -1 and 1. Why is this larger range 
necessary‘? Hint: Think of rotating the cube in Figure 8.1. 

8.2 Many statistical methods use a sequence of numbers that behave as if 
they were a random sample from some specified distribution. The most 
important case is generating a sample from the uniform distribution, 
so each draw from the distribution is equally likely to be any number 
between zero and one. Most random number generators are deterministic, 
so if you start the generator in the same place, it will always give the 
same sequence of numbers. Consequently, generators must be tested to 
see if the deterministic sequences they produce behave as if they really 
are a random sample from a distribution. 

A well-known generator of uniform random numbers from the early 
days of computing is called RANDU. Load the file This 
will give you a 3D plot obtained by taking 600 consecutive draws from 
RANDU, defining x ,  from the first 200 draws, from the second 200 
draws, and xj  from the third 200 draws, and then plotting x2 versus 

8.2.1 As you spin the plot, the points fall in a cube. Is this expected, or 
is it evidence that RANDU is not generating numbers that behave 
like a uniform sample? 

If the numbers all behaved as if they were independent draws from 
a uniform distribution, what would you expect to see in every 2D 
view of this plot? Spin the plot, and see if you can find a 2D view 
that is not random. You may need to spin slowly to find anything. 
What do you conclude? 

( X ,  ,.x3 1. 

8.2.2 

8.3 Load the file l s p .  This will automatically produce two 3D 
plots. Move one so both are visible at the same time. Start both rotating 
by using the left “Yaw” button while pressing down the shift key. What 
is the difference between Plot 1 and Plot 2? If you are having trouble 
finding any difference, select a slice in each plot, and then examine the 
slice as the plots rotate. 
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8.4 This problem uses the haystack data in the data file haystack.  l sp .  

8.4.1 Inspect the 3D plot VoZ versus (C, while rotating about the 
vertical axis. Write a two- or three-sentence description of what 
you see as the main features of the plot. 

8.4.2 Change to aaa-scaling in the 3D plot versus Write a 
brief description of the result and why it might have been expected 
based on the nature of the measurements involved. 

Remove the linear trend from the plot versus by 

clicking the “Rem Lin Trend” button. Describe the quantity on the 
vertical axis of the detrended plot. Write a two- or three-sentence 
description of the main features of the detrended plot. 

8.4.3 

8.5 This problem uses data from the Berkeley Guidance Study for girls, in 

the file l s p .  

8.5.1 Draw the plot of 8 versus Inspect this plot while 
rotating about the vertical axis. Write a two- or three-sentence 
description of what you see. 

Change to aaa-scaling in this 3D plot. Explain what happened. 
Does the scaling convey additional information? What is the in- 
formation? Remember that all three variables are measured in the 
same units. 

8.5.2 

8.6 Data on 56 normal births at a Wellington, New Zealand hospital are given 
in file b i r thwt  . l s p .  The response variable for this problem is 
birth weight in grams. The three predictors are the mother’s age denoted 
by Age, term in weeks denoted by and the baby’s sex, Sex = 0 for 
girls and 1 for boys. Construct the 3D plot versus (Age, 

Inspect the plot using any of the plot controls discussed in this chapter 
and write a brief description of your impressions. 

8.7 It has long been recognized that environmental lead can pose serious 

health problems, particularly when ingested by young children. Although 
leaded paint and gasoline have been subject to strict controls for some 
time, leaded paint in old homes located in inner-city neighborhoods is 
still a recognized hazard. 

A study was conducted in Baltimore to assess the concentration of 

lead in the soil throughout the metropolitan area. The lead concentration 
(ppm) was determined in each of 424 soil samples from the Baltimore 
area. The data file b a l t l e a d .  contains the lead concentration 
the coordinates ( X , Y )  in kilometers of the sampling location with the 

center of Baltimore as the origin, and the distance = of 
the sampling location from the center of Baltimore. The investigators 
expected that the highest lead concentrations would be found near the 
center of Baltimore, and that the lead concentration would decrease with 
the distance from the city center. 
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8.7.1 Fit the mean function 

I = + + 

using ordinary least squares. Based only on the usual summary 
statistics from this fit, what do you conclude about the distribution 
of lead concentration in the metropolitan area? 

Construct a 3D plot with on the vertical axis and the co- 
ordinates on the other two axes. Describe what you see 
while rotating the plot around the vertical axis. Do your impres- 
sions agree with the experimenter’s prior opinions? In view of 
this plot, comment on the usefulness of the results from the fit in 
the previous problem. 

8.7.3 As a plot of versus shows, a simple linear regression of 
Leud on certainly isn’t appropriate. Use the power transforma- 
tion sliders to estimate visually powers A, and A, that induce a 
relatively simple relationship in the regression of LeadXL on 
Power transformation sliders can be placed on a plot of ver- 
SLIS by checking the “Transform sliders” box at the bottom of 
the plot’s “Options” menu. 

8.7.4 Construct a lowess estimate of the mean function for the regres- 
sion of on What does the smooth suggest about 
the distribution of soil lead in the metropolitan area? Does a linear 
mean function seem appropriate? 

8.7.5 Is there any evidence in the data to indicate that the coordinates 
contain information on beyond that furnished by 

log(D)? More specifically, is there evidence in the data to indi- 
cate that the distribution of I is different from the 
distribution of I This is a challenging problem. 
Consider transforming to polar coordinates using the “Add 
a variate” item and the functions for polar coordinates described 
in Appendix Section A. 12. 

8.7.2 
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Weights and Lack-of-Fit 

In this chapter we examine two related aspects of the multiple linear regression 
model: (1) checking for lack-of-fit of a mean function and (2) allowing the 
variance function Var(y I x) to be nonconstant. 

9.1 SNOW GEESE 

9.1.1 Visually Assessing Lack-of-Fit 

An example on counting snow geese was introduced in Section 3.6. Figure 9.1 
provides a scatterplot of the data, along with the OLS fit. Recall that the re- 
sponse y = is the true size of a flock of geese as determined from a 
photograph, and the single predictor x = is the visually estimated flock 
size by the second observer. As in the discussion of Section 3.6, we removed 
the four cases with the largest values of to improve visual clarity. 

The fitted line in Figure 9.1 seems to give a reasonable characterization of 

E(y I x) for the larger values of x, but it overestimates the size of all flocks 
with x 5 30. The residuals 2, = y,  - j ,  become important when assessing a 
fitted mean function against the data. The conclusion that the fitted line in 
Figure 9.1 overestimates the size of all flocks with x 5 30 comes about because 
all of the residuals are negative for x 5 30. Similarly, the model seems to fit 

better for larger values of x because the associated residuals have no apparent 
pattern. Plotting the residuals versus the predictor can help in assessing the 
fit of a model since this focuses on deviations from a fit by removing the 
linear trend from the plot. The linear trend can be removed from any 2D plot 
produced by Arc by clicking the “Rem lin trend” control box. This command 
causes Arc to compute the residuals from the simple linear regression of the 
y-axis variable on the x-axis variable, and then replace the y-axis variable with 
the residuals. 

Beginning with the plot in Figure 9.1, remove the fitted line, activate the 
“Rem lin trend” control, and then click the box for “Zero line.” The resulting 
plot of 2 versus is shown in Figure 9.2. If the multiple linear regression 
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FIGURE 9.1 Snow geese data for the second observer with the OLS fit. 

model is correct, then a plot of the residuals versus the predictor should ap- 
pear as if the mean and variance functions are constant with E(2 I x) = 0. The 
horizontal line at zero in Figure 9.2 is thus the mean function when the model 
is correct. If either the residual mean or variance function is not constant, 
then we have evidence that the multiple linear regression model is incorrect. 
More generally, if the multiple linear regression model is correct, then the plot 
should appear as if the residuals and predictor are independent. Any evidence 

of dependence is evidence against the model. 
As long as an intercept is included in the mean function, the average of 

the residuals from an OLS fit of the multiple linear regression model is always 
zero, I = 0, and the residuals are always uncorrelated with the predictor, 
Cov(i?,x) = 0. This means that the OLS fit of the residuals 2, on the predictor x, 

will always have slope and intercept equal to zero. The zero line in Figure 9.2 
is therefore the fitted line for the simple linear regression of 2, on x,. 

The overestimation for smaller values of x in Figures 9.1 and 9.2 is evidence 
against the simple linear regression model 

E(y I x) = + r / I x  and Var(y I x) = o2 (9.1) 

It could be that the constant variance function is not appropriate for the snow 
geese data. Or it could be that the linear mean function is not appropriate. 
Perhaps both are inappropriate. We consider nonconstant variance functions 
and tests for the mean function in this chapter. 
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FIGURE 9.2 Scatterplot of versus Ohs2 for the snow geese data. 

9.1.2 Nonconstant Variances 

The aerial observers could count the number of geese in a small flock, but 
they visually estimated the size of large flocks. For a very small flock of 
about ten birds, the counting error will most likely be zero. For a very large 
flock of about 100 birds, an error of about 20% might be anticipated. Counts 
for small flocks will therefore be more precise than counts for large ones, 
and the variance function Var(y I x )  should increase with the value of as 
previously discussed in connection with Figure 3.1 1 .  When fitting a mean 
function in a regression with a nonconstant variance function, we should give 
more weight to cases with small variances. For the regression of Figure 9.1, the 
weight should be a decreasing function of Obs2 because the variance function 
increases with Obs2. 

The OLS criterion introduced in Chapter 6 gives equal weight to all cases. 
In the next section we adapt the OLS objective function to allow for differential 
weighting when the variance function is not constant. 

9.2 WEIGHTED LEAST SQUARES 

Additional information about the variance function can be incorporated into 
the multiple linear regression model by writing 

E(yi 1 xi) = qTui and Var(yi 1 xi) = 0 2 / w i ,  = (9.2) 



9.2 WEIGHTED LEAST SQUARES 205 

where the weights > 0 are constants. Figure 4.3, page 60, 
provides a schematic representation of this regression when the variances are 
not constant. 

The model given by (9.2) can be given in a single equation as 

y , ~ x ,  = q T u , + e , / f i  for 1 ,..., n (9.3) 

where the random variable has zero mean = 0 and constant variance, 
Var(ei) = 02. Taking the mean and variance of both sides of (9.3) gives the 
results in (9.2). 

The interpretation of the constant o2 depends on the choice for the weights. 
Generally, o2 is the variance of the response in the subpopulation with weight 

= 1 .  This subpopulation serves as a reference point for the variances in all 
other subpopulations. The variance in the subpopulation with = 2 is half 
that in the reference population, for example. Weights are always proportional 
to reciprocals of variances. 

Here are a few ways we might get nonconstant variance with known 
weights. if y, is the average of independent observations, each with vari- 
ance 02, then Var(y, I x i )  = and the weights are wi = If yi is the 
sum of independent observations, Var(y, I x i )  = and the weights are 
wi = l/nzi. If the variance is a known positive function of a predictor x, say 
Var(yi 1 x i )  = $02,  then = I/,$. In addition, weights could be based on a 
plausible assumption about the variance function. In the snow geese data for 
example, the assumption that Var(Photo 1 = o2 x may give a rea- 
sonable approximation of the variance function. This implies that = l 

The known weights are incorporated into the least squares criterion to give 
the criterion. Starting with the multiple linear regression 
mean function E(y 1 x) = qTu, we choose estimates to minimize the weighted 
residual sum of squares, 

RSS(h) = wi(yi - h 1 ’ 2  u,) 

I =  I 

(9.4) 

The value of h that minimizes (9.4) is called 6 ,  the weighted least squares, or 
WLS, estimate. The same notation is used for WLS and OLS estimates because 
the OLS estimates are a special case of WLS obtained by setting all the weights 
to be equal. 

The weighted residual sum of squares pays more attention to squared differ- 
ences (y, - hTu,)2 with larger weights than to differences with smaller weights. 
Observations with larger weights have smaller variances, and therefore they 
contribute more information for estimation. On one extreme, letting one weight 

grow very large forces the variance Var(y, 1 x,) = to approach zero and 
also forces the fitted line to pass through the corresponding point (y/ ,x{) .  On 
the other extreme, letting a weight approach zero is equivalent to deleting 
the case from the data so it is ignored in the fitting. 
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Weighted least squares estimates depend only on the relative magnitudes 
of the weights. Multiplying all the weights by the same constant c > 0 will 
not change 6,  but it will change the meaning of u2, since it is the variance 
in the reference population with weight one. In some regressions, scaling the 
weights to have maximum value one can be helpful because u2 is then the 
largest variance for the data. 

The WLS estimates can also be obtained from an ordinary least squares fit 
of a slightly modified set of data. To see this, rewrite (9.4) as 

P I  

RSS(h) = A y i  - hT( &ui))* 

i= I 

This is the residual sum of squares function for the regression 

E(f iy ,  I x i )  = v*(&ui) and Var(fiy, I x i )  = u 2 

This shows that the weighted least squares estimates can be obtained as the 
OLS estimates with response f l y ,  and terms obtained by multiplying each of 

the elements of ui by fl, including the term for the intercept. 
In Arc and most other regression programs, you can do weighted least 

squares by declaring a column of data to serve as weights and then speci- 
fying the unweighted response and predictor terms as usual. The computer 
program solves the weighted least squares analysis by solving the equivalent 
OLS regression. 

With WLS, the fitted values, residuals, residual sum of squares, and estimate 
of o2 are, respectively: 

ith fitted value = jji = GTui 

ith residual = ei = - S i )  

RSS = wi(yi  - $i )2 = 2; (9.5) 

i=  I i =  1 

n - k  

These differ from the similar expressions given in (7.15) only in that (1) 
residuals are multiplied by the square root of the weight and (2) the quantities 
that depend on residuals also implicitly include the weights. 

9.2.1 Particle Physics Example 

As an example, we consider an experiment in particle physics. A beam of 
particles was aimed at a target containing protons. Outgoing particles were 
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TABLE 9.1 The Physics Data from File 

X 

0.345 

0.25 I 

0.225 
0.207 
0.186 

0.161 
0.132 

0.060 

0.287 

0.084 

367 
31 1 

295 
268 
253 
239 
220 
213 

193 
192 

17 
9 
9 
7 

7 

6 
6 
6 

5 
5 

detected and counted. Our goal is to study the total output of particles as a 

function of the input energy. Physicists measure the total output using the 
scattering cross section, y ,  which is a function of the number of particles 
and the density and size of the target, and is measured as a rate per second. 
Theoretical considerations suggest that 

where x is the inverse of the total input energy. Table 9.1, which was con- 
structed from the file l s p ,  gives the data from the experiment. For 
each row in this table, the experimenter set xi and then observed y i .  The 
third column of the table gives the known population standard deviations 
Si = ,,/- for each value of xi .  

It may seem strange that an experimenter would know the standard devi- 
ations but not E(yi l but this can happen. For example, imagine we are 
using a sensitive scale to weigh a light object. Each time the object is placed 
on the scale, a different reading for its weight is obtained. The variance in 
the readings depends on the accuracy of the scale and not the object itself. 
After weighing the object a large number of times, we calculate the aver- 
age weight which is essentially the object’s true weight, assuming that our 
scale is unbiased. Further, the standard deviation of the weights is essen- 
tially the true standard deviation for the scale. Now suppose we put a differ- 
ent object on the same scale and take a single reading. We don’t know the 
true weight of the second object, but we do know the true standard devia- 
tion because it’s the same as the scale’s known standard deviation obtained 
from the many weighings of the first object. Our physics experiment is like 
ten scales, corresponding to the ten values of x, with known standard devia- 
tions. 

Returning to the physics experiment, we see that the standard deviations 
in the third column of Table 9.1 are not the same. This means that weighted 
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least squares should be used when fitting (9.6). According to the general form 
(9.2), we must therefore have 

How should we pick the weights and what does mean? Remembering 
that weights are proportional to reciprocals of variances and that the positive 
proportionality constant doesn’t matter except for the interpretation of we 

can take the simplest route and set 

1 
w. = 

Var(Y; I x;) 

Substituting this choice into (9.7) and solving for o2 gives rs‘ = 1. This agrees 
with the interpretation of given previously: is the variance in the refer- 
ence population with weight equal to 1. 

The weights should be used to fit the mean function (9.6). They should 
also be used when smoothing plots that have the response on the vertical 
axis. First, load the file To create the weights, you need to 
compute l/Var(yf I and this can be done using the “Transform” menu item 
by selecting S from the candidate list, and using the power p = -2. Next, from 
the Graph&Fit menu, select “Plot of,” and then choose x for the horizontal 
axis and y for the vertical axis. Finally, select the variable S-’ to be used as 
weights in the plot: click once on the name of this variable, click once in the 
empty box labeled “Weights/trials,” and then click on “OK.” The resulting 
plot is shown in Figure 9.3. The line shown on the plot is the weighted least 

squares line, computed by clicking in the parametric smoother slidebar to get 
the number “1” above the slidebar. The title of this slidebar has changed to 
“WLS’ to reflect that the fitted line uses weighted least squares, not ordinary 
least squares. 

To obtain the estimates, select the item “Fit linear LS” from the Graph&Fit 
menu; the resulting dialog is shown in Figure 9.4. The mean function is spec- 
ified as usual; the only new feature is setting s-’ to be weights. The output is 
shown in Table 9.2. 

The output from a weighted fit is nearly identical to the output for OLS. 

In particular, the analysis of variance can be used to test NH: E(y I = q0 
against the alternative AH: E(y I x) = qo + rllx.  The p-value in Table 9.2 is 
zero to four decimals, so y is certainly not independent of x. The fitted line is 

E(y 1 x) = 148.5 + 530.8x, and = 1.7. The numerical summaries in Table 9.2 
appear to indicate a good fit of the straight-line mean function; the standard 
errors of the estimates are relatively small, the overall F-value is very large, 
and R’ = 0.94 is very large. All of these numerical summaries conflict with 
the impression in Figure 9.3, where the fitted line seems to miss the 
systematic curvature that can be seen in the graph. We need methodology to 
supplement the visual comparison of the data to the fitted mean function. In 
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particular, the lack-of-fit tests in Section 9.3 are based on a comparison of 
g 2  = 1, which is an implication of our model, with the estimate G2 = 1.72 that 
comes from the data. 

9.2.2 Predictions 

Predictions for multiple linear regression were discussed in Section 7.6.2. 
When weighted least squares is used, the methodology for getting the value 
of the prediction is unchanged, but the standard error of prediction must be 
modified to include a weight. The revised standard error of prediction, from 
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TABLE 9.2 Weighted Least Squares Estimates for the Physics Data 

= = L1 

= 

= 

= 

(7.23), is 

where is the weight attached to the future value to be observed at In the 
physics experiment, the weights are given only at the values of x in the data. 
To construct the standard error of prediction, must be known for the value 
of used in the prediction. 

Standard errors of prediction for weighted fits can be obtained by using the 

regression model’s menu item “Prediction.” The appropriate weight should be 
entered in the corresponding text area “Weight for prediction” of the dialog 
shown in Figure 6.8, page 116. For example, suppose as part of the physics 
study that we want a prediction at x = 0.2, and we know the variance of the 
future observation is 5 0 0 ~ .  Consequently, assuming n2 = 1,  the weight for the 
future observation is 1/50 = 0.02. Entering 0.2 and 0.02 into the appropriate 
text areas of the prediction dialog and then clicking “OK’ gives the prediction 
ypled I ( x  = 0.2) = 254.64 and its standard error se(yPred I x = 0.2) = 12.4037. 

9.3 LACK-OF-FIT METHODS 

In this section we present methods that can be used to decide if the form of 
the mean function used to obtain a fitted model is reasonable in a particular 
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regression. This is a continuing theme of this book: Model checking is an 

essential part of regression analysis. 

9.3.1 Visual Lack-of-Fit with Smooths 

We have seen two examples in this chapter where, by visual assessment, a 
fitted model does not agree with the data. Smooths of the data can be used 
as well. For illustration we return to the Lake Mary bluegill data, introduced 
in Section 1.2, page 5, and discussed more fully in Sections 2.1 and 2.2, 
pages 28-3 1 .  We are interested in characterizing the dependence of Length 

of fish on Age using a sample of 78 fish. A scatterplot of the data is shown 
in Figure 9.5. We would like to decide if there is information in the data 
to contradict the mean function of the simple linear regression model. The 
straight line shown on Figure 9.5 is the estimate of E(Length I A g e )  assuming 
that the simple linear regression model holds. A curved smooth is also shown 
on the graph. Recall from Chapter 3 that this smooth is another estimate of 

I Age) ,  one that is not restricted to be linear. If the simple linear 
regression model were correct for these data, we should expect that these two 
estimates of the mean function would be approximately the same. Since the 
two estimates don’t seem to match very well, we have a visual clue that simple 
linear regression may not be appropriate. 

The comparison between an OLS fit and a smooth can depend on the 
smoothing parameter. In Figure 9.5 the smoothing parameter was chosen to 
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be small so that the smooth joins the average value for each of the ages. This 
gives a summary of the mean function that does not depend on a model. If a 
larger smoothing parameter was chosen, then the difference between the two 
fits would be reduced. Consequently, one might consider a range of smoothing 
parameters in making such a comparison. 

The ideas discussed above can be applied equally to a plot of the residual 
versus the predictor, as shown in Figure 9.6. Here we have used a smooth 
after removing the linear trend and drawing the zero line. This smooth is an 
estimate of the residual mean function E(2 I x). Since the smooth does not 
seem to sustain the possibility that the residual mean function is constant, we 

again have visual evidence against the simple linear regression model. 
Visual comparisons of two curves can be formalized by using 

tesfs. In the context of the multiple linear regression model, the lack-of-fit 
tests discussed in this chapter are all tests of the hypotheses 

NH: 1 X) = vTu versus AH: E(y 1 # vTu (9.9) 

given that Var(y I x) = where the weights are known. 

9.3.2 Lack-of-Fit Based on Variance 

The first type of lack-of-fit test is based on comparing two fitted curves visu- 
ally, as we saw in the last section. We now turn to numerical methods based 
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on variances. Suppose we fit a model with some mean function E(y I and 
variance function Var(y I = a 2 / w .  The variance function must be correctly 
specified for any of the lack-of-fit tests discussed in this chapter. If the mean 
function is correctly specified, then the residual mean square G 2  from the 
weighted least squares fit provides an unbiased estimate of If the mean 
function used in the fit is wrong, then will be too large on the average, 
because its size will be increased by systematic biases due to fitting the wrong 
mean function. The differences between the fitted values for the two curves in 
Figure 9.5 are estimates of the systematic biases due to fitting a linear mean 

function. 
All of the lack-of-fit tests discussed in this chapter are based on the fol- 

lowing general idea. Suppose we can obtain a second estimate of that is 

unbiased regardless of the correctness of the mean function. This second esti- 
mate will be used as a baseline for judging the lack-of-fit of the mean function. 

If the baseline estimate is about the same size as then we have information 
to sustain the mean function. On the other hand, if the baseline estimate is 
significantly smaller than s2, then we have information to contradict the mean 
function. 

9.3.3 Variance Known 

In the physics data introduced in Section 9.2, the value of is known and 
equal to one. This is the baseline estimate. From Table 9.2, we have the model- 
based estimate = 2.744 with 8 df. Evidence against the null hypothesis in 
(9.9) will be obtained if we judge large relative to a2 = 1. The test statistic 
is - k)G2/n2 .  Here, n - k is the df for so k is the number of regression 
coefficients estimated in the mean function; k = 2 for simple linear regression. 
To compute a p-value, we need to know the distribution of this test statistic 
when the null  hypothesis is true. If the distribution of y I x is normal and the 
mean function is correct, then 

(9.10) 

Thus, we should use the Chi-squared distribution with n - k df to get a p-value 
for this test. 

For the physics data we have - 2)G2/a2 = 8(2.744)/1 = 21.95. Using 
the “Calculate probability” item, we get a p-value of about 0.005, giving clear 
evidence against the null hypothesis in (9.9), which agrees with the visual 
impression of Figure 9.3. 

Given that the simple linear regression model is inappropriate for these 
data, we might consider alternatives. The physical theory suggests fitting a 
quadratic polynomial in place of simple linear regression. The lack-of-fit test 
applied to the quadratic polynomial suggests that this alternative model may 
be adequate (see Problem 9.6). 
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TABLE 9.3 “Table Data” Output for the Lake 
Mary Data 

= 

1 = 

2 = 

3 = 

4 = 

1 2 64.5000 3.53553 

2 7 100.429 14.1640 

3 19 134.895 11.4741 

4 41  153.829 9.90177 

5 8 166.125 13.6532 

6 1 170.000 0.000000 

9.3.4 External Estimates of Variation 

In some regressions, we might have an estimate of o2 that is external to the 

current experiment. For example, imagine an industrial process whose out- 
put has variability u2.  If the process has been running for a while, an es- 
timate of o2 might be available. If an experiment that may alter means but 
not variances is done on the process, we could compare the external base- 
line estimate of cr2 ,  say Gzxt, to the estimate G2 from the experiment. In the 
last section we discussed the case in which the baseline variation is known. 
Here the situation is similar, except the baseline variation is estimated and not 

known. 
The test statistic is just the ratio of the two estimates, = G2/Gzxt. Under 

the null hypothesis that the mean function is correct, this statistic has an Fnpk,d 

distribution, where d is the df for Gzxt. 

9.3.5 Replicate Observations 

Suppose we have observed several responses at the same value, say, of 
the predictor x, so we have several observations from the distribution of 
y I (x = i), called replicates because they are taken under the same experimen- 
tal conditions, and thus come from the same subpopulation. In the Lake Mary 
experiment, multiple bluegills were observed at all ages except age six. The 

lengths of the five-year-old bluegills, for example, are replicates because they 
come from the same subpopulation. The standard deviation of the replicate 
values of y at a fixed value of x provides a baseline estimate of variance that 
does not depend on the mean function, and this in turn provides the basis for 
another test of lack-of-fit. 

Consider the data from Lake Mary summarized in Table 9.3. There are 78 
observations, but only six different values of x = Age. The five nonzero stan- 
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dard deviations in Table 9.3 estimate the corresponding subpopulation standard 
deviations. Our first task in developing a test for lack-of-fit is to combine the 
individual estimates of into one overall estimate. A little notation will help 
describe how this is done. 

Suppose there are g unique values of corresponding to g subpopulations, 
so g 5 n, the total number of observations. Let be the number of obser- 
vations from the ith subpopulation, for = 1,. . . ,g,  and let denote the j th  
observation from the ith subpopulation, j = 1,. , . In the Lake Mary data, 
we have g = 6 and = 7, for example. Next, let sdi be the sample standard 
deviation of the responses from the ith subpopulation. For example, in the 
Lake Mary data, sd, = 14.1640, which is computed from the rn2 = 7 obser- 
vations y2, ,  , . . . , y2 , , .  We assume that the variance in the ith subpopulation is 

n2/wi.  The estimates of the variances, sd?, are then combined into a baseline 
estimate, given by 

x 

= x c i s d f  

(9.1 1 )  

(9.12) 

i =  I 

where 

We have used the notation for the baseline estimate of o2 to denote a pure 

error estimate that imposes no constraints on the mean function. The estimate 
is given by the ratio of SS,, = - l)sd;, the of squares pure 

error, divided by its df, df,, = - 1) = - g. 

A second form of i?;e is given in (9.12) to show that it is a weighted average 

of the subpopulation estimates sd;. The subpopulation estimate sd; has - 1 
df, so the weight for sd; is its df divided by the total df for 

For the Lake Mary data all the = 1 and, 

~ I x (3.53553)* + . ' .  + 7  x (13.6532)2 8812.68 
- - - = 122.398 

72 
Ll;, = 

1 + 6 + 1 8 + 4 0 + 7  

with - 1 )  = 72 df. 
We now use the pure error estimate of o2 to construct the test for lack-of- 

fit. First, the rationale: If the mean function does hold, then the residual mean 
square from that fit will also estimate but if the mean function does not 
hold, then the residual mean square will be too large. Comparison of these 
two estimates of variance is the essence of the test for lack-of-fit. 
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TABLE 9.4 Simple Linear Regression Summary for the Lake Mary Data 

= = 

= 

= 

= 

62.6490 5.75454 10.887 

22.3123 1.53726 14.514 

0.734882 

12.5094 

78  

76 

32965.8 32965.8 210.66 0.0000 

76 11892.8  156.485 

4 3080.15 770.038 6 . 2 9  0 . 0 0 0 2  

72  8812.68  122.398 

Comparison of these two estimates of variance is done via an F-test. The 
F-statistic is given by 

where is the residual sum of squares for the fitted model, is the number 
of regression coefficients (terms) in the model, SS,,, = - SS,,, and df,,,, = 
n - k - dfpe. We have defined two new quantities in this equation, the 
squares for SS,,,, and its df, df,,,,. Under the normality assumption 
for y I x and assuming that the mean function holds, F - c,-kpdfpe,dfpe and large 

values of F ,  corresponding to small p-values, provide evidence of lack-of-fit. 
The computations needed for this test can be obtained using Arc in a variety 

of ways. First, Table 9.3 could be used to find the sum of squares for pure 

error as demonstrated above. The residual sum of squares and its df can be 
obtained in the usual way. These can then be substituted into (9.13) to get the 
test statistic. 

Arc provides a simpler way to do this test. For the Lake Mary data, fi t  the 
simple linear regression of Length on Age; the output is shown in Table 9.4. 
In the summary analysis of variance table, the is 11892.8 with 76 df. 
Arc checks to see if the data has replicate observations. If it does, then Arc 
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computes the sum of squares for pure error and its df, which for this regression 
are 88 12.68 and 72, respectively. The difference between the residual sum of 
squares and the SS,,, 11892.8 - 8812.68 = 3080.15, is labeled as the sum 
of squares for lack-of-fit, with 76 - 72 = 4 df. These values are used in the 
numerator of the lack-of-fit test; the denominator is G:e = 122.398. The 
statistic for lack-of-fit and corresponding p-value are given in the output. Since 
F = 6.29 and p = 0.0002, we have strong evidence that the null hypothesis 
(9.9) is false. If we want to continue with parametric modeling for the mean 
function, we need to seek a more flexible functional form than the straight 
line, or else consider using a transformation of or y in the fitting procedure. 
One possibility would be to use a quadratic mean function, which we tried in 
Section 7.7. The quadratic fit is shown in Figure 7.4, page 148, and the output 
for fitting the quadratic model was given in Table 7.6. The p-value for lack- 
of-fit of the quadratic model is 0.83, suggesting that the quadratic fit gives an 
adequate description of the mean function over the range of ages available in 
the data. 

9.3.6 Subsampling 

A warning is in order here: Observations taken at the same value of do 
not always supply replication. For example, in the haystack data, suppose the 
volume of each haystack had been measured twice, rather than once, giving 
a total of 240 measurements. The variability between the two repeated mea- 
surements is due to variability in the measuring method, not the variability 
in volume between two different haystacks with the same values of C and 

This is an example of in which the same experimental unit 
is measured more than once. To get replication, different experimental units 
must be measured. For example, in a study of fish health as a function of 
lake characteristics, measurements of fish in different lakes can provide repli- 
cation, but measurement of fish in the same lake will generally provide only 
subsampling. 

Subsampling is a special case of Methodology for 
variance components problems is beyond the scope of this book. However, 
problems with subsampling can be handled using the methods we describe 
in Section 9.4 by taking as the response variable the mean of the subsamples 
within an experimental unit. 

9.4 FITTING WITH SUBPOPULATION AVERAGES 

When replicates are present, the data are often summarized in a table of the 
unique values of the subpopulation response averages j ,  standard deviations 
sd, and sample sizes We have seen how to get data summarized like this 
using the “Table data” item on the data set menu in Section 2.1. For the Lake 
Mary data, this table is given in Table 9.3. 
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Consider conducting an analysis based just on the subpopulation averages. 
In particular, if 

(9.14) E(yii I x i )  = T ui and Var(y,, I x i )  = 2 

In the second model (9. the ith response is the subpopulation average 
Thus, when using subpopulation averages as the response, fitting must be done 

by weighted least squares with weights w, = because I x i )  = 
This differs from the physics data because here we assume that the variance 
per observation is constant, while in the physics data the variance is different 

for each subpopulation. 
There are close connections between the fits of (9.14) and (9.15), and the 

lack-of-fit test statistic (9.13): 

. The OLS estimates of the regression coefficients from (9.14) are identical 
to the weighted least squares estimates of the regression coefficients from 
(9.15). 

The residual sum of squares from the weighted fit of the mean model 
(9.15) is the SS,,, needed for computation of the F lack-of-fit test statistic 
(9.13). Weighted least squares must be used in (9.15) for this to hold, even 
if the mi are all equal. Let 

Gkf = SS,,,/df,,, 

Then the numerator of F is the estimate of u2 coming from the 
weighted fit of (9.13, while the denominator is the model-free, pure error 
estimate of 

The RSS needed for computation of (9.13) is the residual sum of squares 

from the OLS fit of (9.14). 

The estimate G 2  from the OLS fit to the full data (9.14) is a weighted 
average of the estimate 6 i , p m  the subpopulation mean model (9.15) 
and the pure error estimate pie: 

Equivalently, 

RSS = SS,,, + SS,, 

(9.16) 

The summary of the analysis for the Lake Mary data is shown in Table 9.5. 
To reproduce this table, load the data file and select “Table 
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TABLE 9.5 Weighted Least Squares Estimates for the Data Shown in Table 9.3 

= = L1 

= 

= 

= 

= 

62.6490 12.7653 4.908 

22.3123 3 .4101 6 . 5 4 3  

0 .914549 

: 27.7496 

6 

4 

ss 
1 32965.8 32965.8 42.81 0 .0028 

4 3080.15 770.038 

data” from the data set menu. Set up the resulting dialog as shown in Fig- 
ure 2.3, page 30, except that the item “Make new data set” should be activated. 
This will create a new data set, with values as shown in Table 9.3. The variable 

contains the sample sizes m,,  the variable is the average 

length, j , ,  Age is the predictor x , ,  and gives the standard devia- 
tions of the response at each value of the predictor. After you push the “OK’ 
button, the data will be displayed in the text window, and a new data set menu 
will appear for the summarized data. From the menus for the newly created 
data set, fit weighted least squares to get the estimates shown in Table 9.5. 

Compare the fit in Table 9.5 based on the averages to the fit in Table 9.4 
based on the original data. The estimates of regression coefficients are identical 

in each, but all the other summary statistics differ. The cause of this difference 
is easy to find: In the fit to the original data in Table 9.4, the residual sum of 
squares has 76 df, and = SS,,, + SS,,. 

9.5 COMPLEMENTS 

9.5.1 Weighted Least Squares 

Using matrix notation, Section 7.9.1, suppose we have that 

Var(y I = a2w-’ 
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where W is a diagonal matrix whose diagonal elements are known positive 
weights. In addition, suppose we have a mean function 

for some model matrix U derived from X. The weighted least squares estimate 
is the value of h that minimizes 

which is equivalent to (9.4). As before, we can convert this into an OLS re- 

gression. Let W1/2 be the diagonal matrix with elements on the diagonal. 
We can then write 

RSS(h) = (W'/2y-W'/2Uh)T(W1/2y-W'/2Uh) 

and we need only solve the OLS regression with response W'i2y and model 
matrix w'/*u. 

9.5.2 The lowess Smoother 

The smoother is a For a 2D scat- 
terplot of y versus x, a fitted value y p  at a particular point x p  is obtained as 
follows. (1) Select a value for a smoothing parameter f ,  a number between 
zero and one, for example, set = 0.6. (2) Find the closest points to x,, for 
example, if n = 100, find the = 60 closest points. (3) Among the 

to xp ,  compute the WLS estimates for the regression of y on x, with 
weights determined so that points close to x, have the highest weight, and the 
weights decline toward zero for points farther from x(. We use a triangular 
weight function that linearly decreases from a maximum value at to zero 

at the edge of the neighborhood. (4) Return the fitted value at (5) Repeat 
1-4 for many values of x i ,  and join the points. 

The smooth was first suggested by Cleveland (1979), and it is also 
given as the first step in Algorithm 6.1.1 by Hkdle (1990, p. 192). 

9.5.3 References 

The physics data were taken from Weisberg et (1978). The apple shoot 
data were collected by Bland (1978). Galton's data on sweet peas used in 
Problem 9.5 were given by Pearson (1930). Jevons' data in Problem 9.9 were 
provided by Stephen Stigler. A recent discussion of lack-of-fit tests based on 
smoothing is given by Bowman and Azzalini ( 1  997), who provide Splus com- 
puter code to get numerical tests for comparing parametric and nonparametric 
curves. 
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Variance component models mentioned in Section 9.3.6 are discussed in 
virtually any book on experimental designs and analysis of variance, such as 
Kuehl ( 1  994, Chap. 

PROBLEMS 

9.1 An experiment was conducted to study the effect on turkey growth of 

supplemental methionine in the diet. Ten diets were formulated to con- 
tain 0.05%,0.10%, . . . methionine and each diet was randomly 
assigned to two turkeys. The turkeys, which were all of the same age, 
were weighed at the beginning of the experiment and again four weeks 
later. The response G is the weight gain, the final weight minus the 
initial weight. 

9.1.1 Suppose it is known that the variance of gain is proportional 
to the square of methionine, Var(G I = c2 x M 2 ,  where is 
an unknown constant. Describe how to estimate the regression 
coefficients in the mean function 

9.1.2 Describe how to perform a lack-of-fit test for the mean function 
in Problem 9.1.1. 

9.2 For the Camp Lake data in file Problem 2.1, fit the 
simple linear regression of on and examine for lack-of- 
fit. The results do not seem to be consistent with the results for the 
Lake Mary data, even though the data sets were collected in the same 
way in the same year by the same person using the same methodol- 

ogy. 
Summarize the differences between the dependence of on 

for the two lakes, and give at least two possible explanations or theories 
what might cause the differences in  the mean functions. To aid in this, 
you may want to use the file that contains the data for 
both lakes. You can draw a plot of versus and use Lake as 
a marking variable. 

9.3 Continuing with the Camp Lake data, suppose that the length increment 
in  the jth year of life for the ith fish is approximately normally 

distributed: 

N N(pj,02), j = 1,2,. . . 

9.3.1 For the ith fish of age at capture, let L ,  = gi, be the total 
length at capture. What is the distribution of I 
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9.3.2 Suppose that to a reasonable approximation for the range of ages 
of fish in the data, we have 

Given these assumptions, describe E(L,, 1 a)  and Var(L, I and 
how you would fit this model. 

9.3.3 Do you think the assumption that Var(gjj) = o2 is reasonable? 
If not, what assumption do you think might be better? How 
would this change your method of fitting in the last part of this 
problem? 

9.4 Continuing the discussion of the haystack data in file 
started in Problem 4.6, let’s approximate a haystack with a hemisphere 
having circumference C, = (C + 20ver)/2. 

9.4.1 Construct a scatterplot of versus C:. Does your visual im- 
pression lead you to think a simple linear model would be ap- 
propriate for the regression of Vol on Cf? Why? 

9.4.2 Give the mean square for pure error for the model 

E(Vo1 1 C,) = + 

with Var(Vo1 I C,) = cr2. State in your own words what the mean 
square for pure error is estimating in terms of these data, and 
describe how it is computed. 

9.4.3 Give the mean square for pure error for the model with mean 
function 

r 3  

9.4.4 Give the lack-of-fit mean square for the model of Problem 9.4.2. 
In terms of these data, describe what this mean square is esti- 
mating and how it is constructed. 

9.4.5 Construct a lack-of-fit test for the simple linear regression model 
of Problem 9.4.2 based on the estimate of pure error. Do the 
results of the test agree with your visual impressions indicated 
above? 

9.4.6 Construct the lack-of-fit test based on pure error for the model 
of Problem 9.4.3. 

9.4.7 Construct a new data set by conditioning on C; using “Table 
data” in the data set menu. The ith row of the data set will consist 
of three values: the ith unique value C:; of C:, the number 
of observations in the original data set with that value of C:;, 
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TABLE 9.6 Galton’s Sweet Pea Data“ 

Average 
Diameter of Diameter 
Parent Peas of Progeny Peas 

(hundredths of (hundredths of Standard 
an inch) an inch) Deviation 

21 17.26 1.988 
20 17.07 1.938 
19 16.37 1.896 
18 16.40 2.037 
17 16.13 1.654 
16 16.17 1.594 
15 15.98 1.763 

“The data are also given in the file l s p .  

Source: Pearson ( I  930). 

and the mean of the volumes for these haystacks. Should 
the simple linear regression of on C:, be fit with ordinary 
or weighted least squares? If weights are needed, what are the 
weights? Describe how the correct least squares fit is related 
to the lack-of-fit mean square in Problem 9.4.4. Carry out the 
necessary calculations to check your answer. 

9.5 Many of the ideas of regression first appeared in the work of Sir Francis 
Galton on the inheritance of characteristics from one generation to the 
next. In a paper on “Typical Laws of Heredity” delivered to the Royal 

Institution on February 9, 1877, Galton discussed his experiments with 
sweet peas. By comparing the sweet peas produced by parent plants to 
those produced by offspring plants, he could observe inheritance from 
one generation to the next. Galton categorized parent plants accord- 
ing to the typical diameter of the peas they produced. For seven size 
classes, which are essentially slices, from 0.15 to 0.21 inches, he 
ranged for each of nine friends to grow ten plants from seed in each 
size class; however, two of the crops were total failures. A summary of 
Galton’s data was later published by Karl Pearson (1930), as given in 
Table 9.6. Only average diameter and standard deviation of the offspring 
peas were given by Pearson. For the purpose of this exercise, assume 
that each average diameter is based on 90 observations, the number of 
friends times the number of plants. The data are available in  the file 

gal ton .  l s p .  

9.5.1 Draw the scatterplot of = average progeny diameter versus x = 

parent diameter. Does a straight line seem plausible for the mean 
function? Why or why not? 
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9.5.2 Assuming that the standard deviations (sd’s) given are popula- 
tion values, compute the appropriate weighted regression of 

on x, and add the fitted line to your graph. 

9.5.3 Galton wanted to know if characteristics of the parent plant 
such as size were passed on to the offspring plants. In fitting 
the regression a parameter value of = 1 would correspond to 
perfect inheritance, while rl l  < 1 would suggest that the off- 
spring are “reverting” toward “what may be roughly and perhaps 
fairly described as the average ancestral type.” (The substitution 
of “regression” for “reversion” was probably due to Galton in 

1885.) Test the hypothesis that r l l  = 1 against the alternative that 

9.5.4 Obtain a test for lack-of-fit of the mean function E(y 1 x) = qo + 
771x assuming that V x ( y  I = g2. 

71 ,  < 1. 

9.6 Fit a quadratic polynomial to the physics data in file 
Section 9.2, and test for lack-of-fit of the quadratic polynomial. 

9.7 Several particle physics experiments like those described in Section 
9.2.1 were done. The experiments differed only by the choice of the 
input particle a and the measured output particle The input a could 
be either the meson or its anti-particle and similarly c could be 
either or giving four possible choices for combinations. 
All four are given in the data file After loading the data 
file, obtain a listing of the data using the item “Display data” from the 
data set menu. 

Draw the plot of y versus x, setting the weight variable appropriately 
and using Expt as a marking variable (click once on Expt and then click 
again on the text area next to “Mark by”). The plot will then show the 
points from the four experiments using different colors and symbols. 
Add four weighted least squares lines, one for each experiment. This is 
done by selecting the item “Fit by marks-general” from the parametric 
smoother slidebar (which should be labeled WLS) and then using the 
slider to add the linear fits to the plot. Is there visual evidence that a 
straight line mean function is appropriate for any of the groups? Why 
or why not? 

9.8 Many types of trees produce two types of morphologically different 
shoots. Some branches remain vegetative year after year and contribute 
considerably to the size of the tree. Called long shoots or leaders, they 
may grow as much as 15 or 20 cm over a single growing season. 

On the other hand, some shoots will seldom exceed 1 cm in total 
length. Called short, dwarf, or spur shoots, these usually produce flow- 
ers from which fruit may arise. To complicate the issue further, long 
shoots occasionally change to short in a new growing season and vice 



PROBLEMS 225 

9.8.1 

9.8.2 

9.8.3 

9.8.4 

versa. The mechanism that the tree uses to control the long and short 
shoots is not  well understood. 

The data in this exercise come from a descriptive study of the dif- 
ference between long and short shoots of McIntosh apple trees. Using 
healthy trees of clonal stock planted in 1933 and 1934, samples of long 
and short shoots were taken from the trees every few days throughout 
the 197 1 Minnesota growing season, about 106 days. The shoots sam- 
pled are presumed to be a random sample of the available shoots at 
the sampling dates. The sampled shoots were removed from the tree, 
marked, and measured in a laboratory, and the number of stem units in 
each shoot was counted. The long and short shoots could differ because 
of the number of stem units, the average size of stem units, or both. A 
summary of the data is given in Table 9.7. The data file shoots. l s p  

has six columns including the day number Day; the number of replicate 
observations nz; the average length Ave.len = j ,  which is the average of 

the measurements on y = number of stem units; and sd, the standard 
deviation of the m values of y observed on that day. The remaining two 
columns both indicate the type: Type.num is 1 for long shoots and 0 for 
short shoots, and Type is equal to “Long” or “Short.” 

Draw a scatterplot of Ave.1en versus Day, using Type as a marking 
variable. Delete all the points for long shoots both from the plot 
and from the computations. An easy way to do this is to draw 
the histogram of the variable Type.num, select all the points with 
T>pe.rzum = 1,  which are the long shoots, and then select the item 
“Delete selection from data set” from the “Case deletions” pop- 
up menu. These points will then not be used in any succeeding 
regression calculation. 

Draw a plot of the within-day standard deviations versus day. Is 
constant variance 1 Day) = o2 plausible? If it is, then the 
within-day standard deviations can be used to obtain a mean 
square of pure error, and hence lack-of-fit tests will be possible. 

Computing the pure error is a little harder in this problem. The 
sum of squares for pure error is given by - l)sd2, where 
the sum is over the short shoot observations. The first step in this 
computation is to create a new variable. Select “Add a variate,” 
and then type z = in the text area. Next, select the 
item “Table data,” and choose Type to be the conditioning vari- 
able, and the newly created variable, to be the variate. Push 
the buttons for “Total,” and for “Table all cases,” and then push 
“OK.” A small table will be displayed that gives the value of 
C ( m  - l)sd2 separately for long and short shoots. 

From the plot of Ave.len versus Day and assuming cor.rant 
within-day variance, a simple linear regression mode’ seems 
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TABLE 9.7 McIntosh Apple Shoot Data" 

Long Shoots Short Shoots 

Day Y sd Day Y sd 
- 

0 
3 
7 

13 
18 
24 
25 
32 
38 
42 
44 
49 
52 
55 

58 
61 
69 
73 
76 
88 

I00 
106 

5 
5 

5 
6 
5 

6 
5 
7 
9 

10 
19 
14 
1 1  

9 
14 
10 
12 
9 
7 

10 

7 

10.20 
10.40 

10.60 
12.50 
12.00 

15.00 
15.17 
17.00 
18.7 I 
19.22 
20.00 
20.32 
22.07 
22.64 

22.78 
23.93 
25.50 
25.08 
26.67 
28.00 
3 1.67 
32.14 

0.83 
0.54 
0.54 
0.83 
1.41 

0.82 
0.76 
0.72 
0.74 
0.84 
1.26 
1 .oo 
I .20 
1.76 
0.84 
1.16 
0.98 
1.94 
1.23 
1.01 
1.42 
2.28 

0 
6 
9 

19 
27 
30 
32 
34 

36 
38 
40 
42 
44 
48 
50 
55 
58 
61 
64 
67 
75 
79 
82 

85 
88 
91 
94 
97 

100 
106 

5 
5 
5 

11 
7 
8 
8 
5 
6 
7 
4 
3 
8 

22 
7 

24 
15 
12 
15 
10 
14 
12 
19 
5 

27 
5 

16 
12 
10 
15 

10.00 
1 1  .oo 
10.00 
13.36 
14.29 
14.50 
15.38 
16.60 
15.50 
16.86 
17.50 
17.33 
18.00 
18.46 

17.71 
19.42 
20.60 
21 .oo 
22.33 
22.20 

23.86 
24.42 
24.79 
25.00 
26.04 
26.60 
27.12 
26.83 
28.70 
29.13 

0.00 

0.72 
0.72 
1.03 
0.95 
1.19 
0.5 1 

0.89 
0.54 
1.35 
0.58 
1.52 
0.76 
0.75 
0.95 
0.78 
0.62 
0.73 
0.89 
0.79 
1.09 
1 .oo 
0.52 
1.01 
0.99 
0.54 

1.16 
0.59 
0.47 
1.74 

OThe data are given in the file shoots.  l s p  

plausible for short shoots. To obtain the estimates of parameters, 
weighted least squares should be used since the responses are 
averages. Fit the simple linear regression model with weighted 
least squares, and obtain a test for lack-of-fit of the straight-line 
mean function. The p-value for the lack-of-fit test provides evi- 
dence against the straight-line mean function. However, an F-test 
with so many df is very powerful and will detect very small de- 
viations from the straight-line mean function. Thus, while 
the result here may be statistically significant, it may not be 
scientifically important, and for purposes of describing the 
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TABLE 9.8 Jevons’ Gold Coin Data“ 

Ave, x, Sample Average Minimum Maximum 
Decades Size = m Weight = j sd Weight Weight 

1 123 7.9725 0.01409 7.900 7.999 
2 78 7.9503 0.02272 7.892 7.993 
3 32 7.9276 0.03426 7.848 7.984 
4 17 7.8962 0.04057 7.827 7.965 
5 24 7.8730 0.05353 7.757 7.961 

T h e  data are also given in the file j evons . l s p .  

growth of these apple shoots, the straight-line mean function 

may be adequate. 

9.8.5 Repeat the earlier sections of this problem, but for the long 
shoots rather than the short shoots. When you repeat Problem 
9.8.2, you will discover that a constant within-day variance as- 
sumption is not very plausible; be sure to summarize the evi- 

dence for this conclusion. Justify the empirical choice of 
Var(y I = + 1)u2 for the variance function, based on 
examining a graph. Complete the remaining sections of this 
problem assuming this variance function rather than constant 
within-day variance. If 1 = + l)u2, then 

sd: estimates + l)u2, so sd?/(Day, + 1) estimates u2. Thus, 
the mean square for pure error that estimates u2 is 

with - 1)  df.) 

9.9 The data in this example are deduced from a diagram in a paper written 
by W. Stanley Jevons in 1868. In a study of coinage, Jevons weighted 
274 gold sovereigns that he had collected from circulation in Manch- 
ester, England. He cleaned each coin and then recorded the weight to 
the nearest 0.001 gram, along with the date of issue. Table 9.8 and the 
data file j evons . l s p  list the average, minimum, and maximum weight 
for each of five age classes. The age classes are coded 1 to 5 ,  roughly 
corresponding to the age of the coins in decades. The standard weight 
of a gold sovereign was supposed to be 7.9876 grams; the minimum 
legal weight was 7.9379 grams. 

9.9.1 Let x be the coded age and j be the average weight. Draw a 
scatterplot of j versus and comment on the applicability of the 
usual assumptions of the simple linear regression model. Also 
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draw a scatterplot of sd versus x, and summarize the information 
in this plot. 

9.9.2 Assuming that the population variances are equal to the squares 
of the sample values given in Table 9.8, Var(.V I X j  = sd2/m, com- 
pute the appropriate weighted regression of j on 

9.9.3 Compute a lack-of-fit test for the linear regression model, and 
summarize your results. 

9.9.4 Based on these data and the fitted model, obtain a 95% confi- 
dence interval for the mean weight of new coins (that is, coins 
with x = 0). Give a brief written description of why you think 
this interval estimate is useful, or why you think it might give 
misleading results. 

a. For previously unsampled coins of age = 1 and x = 5 ,  esti- 
mate the probability that the weight of a coin is less than the 
legal minimum. For these calculations, use the assumption 
that the subpopulation variance for a coin of age x decades 
is the known value sd2. Hence, predicted values will have 
normal, not distributions. 

b. Estimate the age at which the mean weight of coins is equal 
to the legal minimum. The point estimate of this value can 
be obtained by setting E(y I xj  = 7.9379 and solving the fitted 

regression equation for x. This problem is called 
and is discussed at length by Brown (1993 j. 

9.9.5 

9.10 Repeat the analysis of Section 9.4 for the Lake Mary data in file 
. l sp ,  except this time fit the quadratic mean function rather 

than the simple linear regression mean function. Compare the results 
you get to those in Table 7.6. 

9.11 This problem continues the analysis of the transactions data in file 
l s p .  

9.11.1 Figure 7.9, page 166, gave a summary plot for the OLS fit to 
the transactions data. In the discussion of that plot, we argued 
that variability increased from the lower left to the upper right 
of that graph. Use a residual plot to verify that variance seems 
to be increasing from left to right. 

9.11.2 Let S = + & equal the total number of transactions in a given 
branch. If all transaction times are equally variable, then a rea- 
sonable form for the variance function might be Var(Time l 
T,,&) = Fit the weighted least squares regression of Time 
on T, and using the implied weights. Compare the resulting 

output to Table 7.3. Are the coefficient estimates very different? 
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Are the standard errors very different? Compare and interpret 
the estimates of cr2. 

9.11.3 Obtain a prediction and prediction standard error at = 500, 

9.11.4 Construct a 95% confidence interval for the difference - 

t j2  and compare to the results in Section 7.6.4. Gilstein and 
Learner (1 983) present a comprehensive discussion of weighted 
least squares estimates that can be obtained as the weights are 
changed, and Bloomfield and Watson (1975) discuss the ineffi- 
ciency of fitting with the wrong weights. The OLS estimates and 
the weights used in this problem are only two of the possible 
weightings. 

= 1000, and compare to Section 7.6.2. 
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Understanding Coefficients 

One of the primary advantages of fitting a parametric mean function is that 
the regression can then be characterized by just a few numbers like and the 
estimates of the regression coefficients. Consequently, understanding what the 
regression coefficients mean is of primary importance, and in this chapter we 
discuss how parameters in linear regression can be interpreted and used, as 
well as limitations on their use. 

10.1 INTERPRETING COEFFICIENTS 

10.1.1 Rescaling 

Measurements generally have units attached to them. In the transactions data 
described in Section 7.3 .3 ,  the response Time is measured in minutes, and the 
terms T, and are counts of the number of transactions of type one and two. 

In the mean function 

the regression coefficient 71, has the units of a rate, minutes per type one trans- 
action, that converts the term T, to the units of the response Time. Similarly, 
the units of 7i2 are minutes per type two transaction. The intercept has the same 
units as the response; it is measured in minutes in  this example. The variance 
function Var(Time I 7', , is measured in minutes squared, so the standard 
deviation has the same units as the response. The only commonly encoun- 
tered unit-free statistics in regression are test statistics, correlation coefficients, 

and R2. 
What happens in a regression if the units change? Suppose, for example, 

that the response Time had been measured in hours rather than minutes. One 
would hope that the analysis would be unchanged when a variable or a term 
is multiplied by a constant, and in a sense this is true. Unit-free quantities like 
tests and correlations are unchanged, but regression coefficients will change 
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in predictable ways. For example, if Time was replaced by Hours = Time 160, 
all the regression coefficient estimates using Time would be divided by 60 
because 

E(Huurs I T,,T,) = E -Time I T,,?) 

1 

60 
= -E(Time I T,, 

- _  I v2 - +-T, + 
60 60 60 

The variance would be divided by 602, 

Var(Hours I T, , = Var 

= -Var(Time I I T, ,T2) 602 

so the standard deviation would be divided by 60. 
If T, was replaced by T,+ = T, / 100, which is the number of hundreds of 

transactions, then in the regression of Time on T,' and T2, the regression coef- 
ficient estimate for rll would be multiplied by 100. The key in understanding 
this operation is to remember that the product of a coefficient times a term in 
a model is always in the units of the response regardless of the units of the 
term. If we divide a term by a constant, then we must its coefficient 
by the same constant to keep the product unchanged. For example, 

m 

I 
r l l T ,  = (100 x 7 j l ) L  = (100 x 7 / , ) T , *  = v;T,* 

100 

where '7; is the coefficient of T,* in the regression of Time on T,' and If a 
constant is added to any of the terms or to the response, the intercept changes 
but not the other regression coefficients or the standard deviation. 

10.1.2 Rate of Change 

A regression coefficient can be interpreted as the change in the expected re- 
sponse given a change in  the corresponding term by one unit, assuming that 
the other terms are held fixed. For example, the estimated mean function for 
the transactions data assuming that the variance function is constant was found 
in Section 7.5 to be 

E(Time I T l , G )  = 144.37 + 5.461; + 2.03T, 

If in a particular branch the number of T, transactions was increased by one, 
then the expected increase in Time is estimated to be 6, minutes, or 5.46 
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minutes. In some problems, this simple description of a regression coefficient 
cannot be used, particularly if changing one term while holding others fixed 
doesn’t make sense. For example, in the polynomial mean function 

changing by one unit while holding x2 fixed is generally impossible. For 
polynomials, the plot of the fitted curve is likely to be more informative than 
the values of the parameters. In other mean functions, the relationship between 
terms may be more subtle and may require knowledge external to the data at 
hand. In a study of the effects of economic policies on quality of life, for 
example, changing one term like the prime interest rate may necessarily cause 
a change in  other possible terms like the unemployment rate. In situations like 
these, interpretation of coefficients can be difficult. 

10.1.3 Reparameterization 

In general, we could consider replacing terms by linear transformations of 
them. For example, suppose we define A = (T, + to be the average num- 
ber of transactions of the two types and define = - T2 to be the difference 
in the number of transactions. Consider fitting the mean function with three 
terms, including the intercept: 

One might hope that fitting with this reparameterized mean function will give 
the same essential information as fitting (10.1). To examine this, Table 10.1 
summarizes the OLS fi t  of these two mean functions along with two others: 

All four mean functions give the same overall summaries-the same df, the 
same value for 6 and R 2 ,  and the same value for the overall F statistic. All 
four mean functions also give the same fitted values and residuals. They all 
have the same values for the estimated intercept. 

Compare the coefficient estimates for (10.3) to those for (10.1) and (10.2). 
It is not an accident that the coefficient estimate for the term in (10.3) is 

identical to the coefficient estimate for A in ( 1  and the estimate for in 
(10.3) is identical to the estimate for T, in (10.1). In mean function (10.3), 
if is increased by one unit, then the only way that could be held fixed 
is if is also increased by one unit. Thus an increase in of one unit in 

(10.3) corresponds to an increase of one unit in both T, and in (lO.l), so 

the coefficient for should equal the sum of the coefficients for T, and in 
(10.1). Apart from rounding error, this is what we see in Table 10.1. Similarly, 
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TABLE 10.1 Coefficient Estimates for Four Linear 
Transformations of the Transactions Data" 

Mean Function for 

Equation Equation Equation Equation 

Term (10.1) (10.2) (10.3) (10.4) 

Constant 144.37 144.37 144.37 144.37 
5.46 5.46 

2.03 7.50 2.03 

A 7.50 Aliased 

1.71 5.46 Aliased 

= 1142.56, = 0.909 

"All four mean functions producc the same fitted values and 

residuals. 

increasing by a unit with fixed can occur only if T, is increased by a unit, 
so the coefficient for in  (10.3) must be the same as the coefficient for T, 
in (10.1). The moral of this story is that the value of the coefficient estimate 
for a term depends on the other terms in the model, and trying to interpret a 

coefficient without reference to the rest of the mean function will often lead 
to incorrect conclusions. We can see the same thing using a little algebra: 

The coefficient of in the regression of on is the same as the 
coefficient of in the regression of on (T,, The coefficient of is 
different in the two forms of the regression: It equals q2 in the regression of 

on but it equals (ql  + r i 2 )  in the regression of on 
Again, we see that the value and meaning of a coefficient depend on the other 
terms in the mean function. 

The last of the four mean functions ( I  0.4) is different from the other three 
in that it nominally includes four terms beyond the intercept, terms for 7', and 
T2, and also for their average and their difference. But, given and we 

can calculate the terms A and so they contain no additional information. 
for 

of Arc checks for such redundancy 
and, when found, notes it in the output using the word in place of 
an estimated value. If the regression had been specified in another order- 
possibly A,  then then T,, and finally T,-then the aliased terms would be 
the last two specified. 
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The property of invariance-giving essentially the same summary of the 
data after a linear transformation of the terms or the response-is an important 
property shared by least squares estimation and all other estimation methods 
described in this book. 

10.1.4 Nonlinear Functions of Terms 

While fitted regressions are invariant under linear transformations of terms, 
they are not invariant under nonlineur transformations. For example, if in the 
transactions data we replaced TI and by = ?/(TI + T) and = log(T,), 
we will get different results. In particular, if the regression of Time on TI and 
has a linear mean function, then the regression of Time on and will not 
have a linear mean function. Later in this book, we often seek transformations 
for which the mean function has a useful form. 

10.1.5 Variances of Coefficient Estimates 

The standard error of a coefficient estimate depends on the other terms in 
the model. These standard errors can be computed from a rather simple and 
revealing formula. 

Define to be the value of for the linear regression of the j th term u j  

on all other terms in the mean function. This quantity tells us how closely u j  

can be approximated by some linear combination of the other terms; if is 

close to one, then u j  is nearly redundant given the other terms, while if is 

close to zero, then u j  has the potential for containing information about the 
response that is not available from the other terms in the mean function. The 
standard error of can be written as 

5 .  

(1 

where n is the total sample size. Only the last factor on the right side of 
(10.5) depends on the other terms in the mean function. If is close to its 
maximum value of one, then u, is nearly equal to a linear combination of the 

other terms and 1 / ( I  - is large. Consequently, the standard error of G, is 

then large. If has its minimum value of zero, then se(6,) has its minimum 

value of i?/((n - l)I!,sd(u,)), which is essentially the same as the standard 
error of the regression coefficient in simple regression. If terms are added to a 
mean function, the value of for the jth term can either increase or stay the 
same, but it never decreases. Consequently, adding variables generally leads 
to larger standard errors for coefficient estimates. Adding terms also changes 
the value and meaning of all regression coefficients. 

There is another lesson in (10.5) that tells us about the likely consequences 
of collecting more data. As we increase the sample size the standard error 
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of a regression coefficient decreases at approximately the same rate as 1 / f i .  
For example, if we start with 100 cases and would like to collect additional 
data to reduce the coefficient standard errors by 1/2, then we must take an 
additional 300 cases, so the total is 400, four times the number of cases we 
started with. The other quantities in ( 1  0.5) will also change with the addition 
of data, but these changes are likely to be relatively inconsequential if the 
same experimental protocol is used. 

10.1.6 Standardization of Terms 

Terms are often rescaled by subtracting their sample averages and then divid- 
ing by their sample standard deviations, so for j = 1,. . . , k - 1, the j th  term 
is replaced by the standardized terms u; = ( u j  - ij)/sd(uj). When we fit the 
multiple linear regression model using these standardized terms, the estimate 
of the intercept is $, = j ,  and the estimate of q,i becomes 

One unit in the standardized scale is equivalent to one standard deviation, so 
7jJ is the estimated increase in the expected response per standard deviation 

increase in the term. 
Some investigators compare standardized coefficient estimates for different 

terms. Under this logic, terms with larger standardized coefficients are more 
important. Comparing standardized coefficient estimates can be more infor- 
mative than comparing estimates in different scales, but it is also possible to 
be misled. For example, if two analysts collect data on the same predictors, 
one collecting data over a small range and the other over a larger range, they 
may come to completely different conclusions about the relative magnitudes 
of the standardized coefficients because of the different standard deviations. 

10.2 THE MULTIVARIATE NORMAL DISTRIBUTION 

Another very useful interpretation of regression coefficients is possible when 

the response and the terms have a joint distribution that is multivariate normal. 
We will write 

( 10.6) 

where y is the response and u,  is the ( k  - 1 )  x 1 vector of terms excluding 
the term for the intercept. In this compact notation, y is normally distributed 
with mean p,  and variance n:. The terms ul are also normally distributed. 
Each element has mean given by the corresponding element of the ( k  - 1) x 1 

vector and variance given by the corresponding diagonal element of C,. 

The off-diagonal elements of C, are the covariances between the elements 
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of u , .  Finally, the elements of C,, are the covariances between y and the 
elements of u , .  (Some readers may wish to consult Section 7.9.4 for more on 

this notation.) 
With multivariate normal data, we get a generalization of results summa- 

rized in Section 4.2 for the bivariate normal. In particular, the conditional 
distribution y 1 uI is another normal distribution, 

I UI - N(qo + rlTu,,a2) (10.7) 

which is just the multiple linear regression model with normal errors and 
constant variance. The unknown parameters in (10.7) depend only on the 
parameters of the multivariate normal, 

and is the population squared multiple correlation coefficient, defined to 
be the square of the correlation between y and With one term in u, ,  this 
reduces to the results of Section 4.2 for the bivariate normal. For a sample 
from a multivariate normal population, the regression parameters are therefore 
determined by parameters of the normal, and the conditional distribution of 
y 1 u, can always be studied in terms of the linear regression model with 
normal errors. The multivariate normal provides a helpful target when using 
graphical methods to help build regression models. 

The multivariate normal has several other important characteristics that we 
will use in later sections: 

Selection the Response. If the role of the response y is reversed with any 
of the terms, say u j ,  we still get a linear regression model with normal errors 
for study of the distribution of u j  given y and the remaining terms. 

Normal Subsets. If y and uI  are multivariate normal, then y and any subset 
of uI  are also multivariate normal. Consequently, we will have a linear regres- 
sion model with constant variance for the distribution of y given any subset 
of the terms. 

Joint Distribution Pairs Variables. All pairs of variables will have 
a bivariate normal distribution. In particular, all 2D scatterplots must exhibit 
linear mean functions and constant variance functions. Although linear mean 
function and constant variance function for all pairs of variables does not 
guarantee multivariate normality, in many problems transforming predictors 
to achieve this goal can provide a good starting point for regression modeling; 
we return to this in Chapter 13. 

Partial Correlation. Let u2 be a single term in u, and collect the remaining 
terms in uI into the vector u3 so that 

rlTu, = 72u2 + r13 T u3 (10.8) 
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Then the joint conditional distribution of given u3 is bivariate normal. 
The mean of this bivariate normal distribution can depend on the value of u3 

but the variances, Var(y I u3) and Var(u2 1 u3), and the covariance Cov(y, u2 1 u3) 
do not depend on the value of u3. Consequently, the correlation between y 

and u2 given u3 

also does not depend on the value of ug. This correlation is called the popu- 
lation between y and u2 given u,. This is the same as the 
usual correlation between y and u2 computed in a bivariate normal subpop- 
ulation in which u3 is held fixed at some value, the particular value being 
irrelevant . 

(10.8) and the partial correlation (10.9): 
There is a close connection between the regression coefficient of u2 in 

If there is only one u-term other than the intercept, 
bivariate normal distribution and, from (4.15), 

(10.10) 

then follows a 

(10.11) 

Thus we see that the coefficient (10.1 1) in a simple linear regression model 
has the same interpretation as the coefficient q2 in a multiple linear regression 
model relative to a subpopulation in which u3 is held fixed. 

10.3 SAMPLING DISTRIBUTIONS 

The usefulness of coefficients and inferences about them and about the re- 

gression depends on the of the data. Consider again the 
haystack data. If the haystacks we have are a random sample of haystacks in 
the area under study at the time of the study, then any model estimated from 
these data would be relevant to all other unmeasured haystacks of that time and 
place. The model could be used to predict volumes, for example, of the other 
haystacks. Similarly, in the Lake Mary data, if we view the fish in the sample 
as a random sample of fish in the lake, a model fit to these data can be applied 
to all the fish in that lake. The fish in the sample were probably not a random 
sample of fish in the lake because some fish are harder to catch than others, 
and the fishing gear used may be size selective, so fisheries managers are often 
concerned about potential biases introduced by the way data are collected. 
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In many designed experiments the investigator assigns the values of the 
predictors to experimental units at random. For the generic response y and 
predictors we often assume that the observed values are obtained from 

where the error e is treated as if it were a random draw from a distribution with 
mean zero and often constant variance a2. The distribution of the errors then 
provides the basis for understanding coefficients and for making inferences 
and predictions. Random assignment of values of to experimental units is 
enough to make this paradigm useful. 

This paradigm can be used with Forbes’ data. Although Forbes chose a 
convenience sample of locations to take measurments, the division of the ob- 
servation into an expectation plus an error is reasonable, and so we expect 
that a model estimated from Forbes’ data could be used to predict pressure, 
and hence altitude, at other locations. The Baltimore lead study described in 
Problem 8.7 is similar, except the fitted model would be thought to be ap- 
propriate only for the geographical area studied, the area around Baltimore, 
with no suggestion in the data that the same model could be applied to other 
areas. 

In many problems, inference from a convenience sample to a population 

may not make any sense. In the Big Mac regression, the data were collected 
for a list of world cities, mostly in Europe and the United States. These are 
hardly representative of a population of cities, and so the regression provides 

a description of the data, but a fitted model should not be used for inference 
outside of the data without either additional information or additional assump- 
tions. As a second example, imagine a hypothetical study of the relationship 
between birth weight and mother’s weight, with data collected from all births 
in a particular clinic. If we take the population of interest to be women served 
by that clinic, the data provide a census for a particular time period. We may 
be able to justify using a fitted model to predict for the next woman in that 
clinic by assuming that she is from the same population as the previous data. 
Generalizing to women in a particular geographic area, or to other clinics, or 
to women in general, is not possible without additional information. If, for 
example, this particular clinic serves poor women, then models may not apply 
to clinics that serve the wealthy. 

10.4 CORRELATION VERSUS CAUSATION AND THE SLEEP DATA 

In the transactions data, it is easy to imagine a relationship between the 
number of transactions and the total time: Increasing the number of transac- 
tions should increase the total time spent on transactions. In many regressions, 
we need to be much more cautious about interpreting an observed association 
in data as implying a causal relationship. We illustrate this by example. 
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TABLE 10.2 Definitions of Variables in the Sleep Example 

Name Description of variable 

Label 

PS 

Br 

GP 

n, 

Species of animal 

Slow wave nondreaming sleep, hrslday 

Paradoxical dreaming sleep, hrslday 

Total sleep, hrs/day 

Body weight in kg 

Brain weight in g 

Maximum life span, years 

Gestation time, days 

Danger index, 0 = relatively low danger from other animals, 1 = 

relatively high danger from other animals 

All known mammalian species spend at least part of each day sleeping, 
some species sleeping more than others. Sleep must serve some biological 
function, but why do sleep requirements vary so much from species to species? 
One approach to getting information that might help understand this question 
is to study the dependence of hours of sleep on species characteristics. In the 
file s leep .  l s p ,  we have data on 62 species, covering at least 13 different or- 
ders of mammals. This is surely not a random sample of species, so some care 
must be taken in generalizing any results to all mammal species. The variables 
defined in Table 10.2 are species averages. The problem of interest is to un- 
derstand the dependence of hours of sleep on the other species characteristics 
recorded in the data. 

These data are more complicated than most of the data we have encountered 
so far. First, the number of variables is larger. Also, three possible response 
variables are given: the hours of slow-wave or deep, nondreaming sleep; 

the hours of paradoxical or dreaming sleep, and their sum = + 
Using any 0 1  these three as the response could be meaningful. We will use the 
total hours of sleep, as the response variable. The predictor D, is really 
an indicator variable that equals one for species that face danger from other 
animals, and equals zero for species that face less danger from other animals. 

10.4.1 Missing Data 

A problem we haven’t encountered before is of missing data: Not all variables 
are measured on each species. You can verify this by loading the data file and 
selecting the item “Display data” from the Sleep menu. Arc can accommodate 
missing data if the missing data code ? is used in place of a value in the data 
tile. Arc follows a simple rule with missing data: Any given calculation is 
based only on fully observed cases. You can change both the missing value 
code and the way missing data are handled, using the “Settings” item in the 
Arc menu (see Section A.5.9). When using as the response, the data include 
only 5 1 fully observed species, and all computations are based on these. Using 



240 CHAPTER 10 UNDERSTANDING COEFFICIENTS 

SWS as the response would give fewer complete cases; only 39 of the species 
are observed on all the variables. Further discussion of missing data is given 

in the Complements to this chapter. 

10.4.2 The Mean Function 

We can define a multiple linear regression mean function that might be used 
to describe E(TS I as a function of the predictors. The mean function will 
consist of six terms: an intercept, and the logarithms of SW, BrW, Life, and 
GP. The need for logarithmic transformations of these variables is indicated 

by the general rule for ranges discussed in Section 5.4 that positive predictors 
that have the ratio between their largest and smallest values equal to 10 and 
preferably 100 or more should very likely be transformed to logs. We have 
used logs to the base two in this example. 

From the scatterplot matrix in Figure 10.1 we see that the pairwise rela- 
tionships between the continuous terms generally have linear mean functions. 
We also see that at least some of the terms are associated with the response; 
for example, the conditional mean of given log,(BW) is clearly decreasing: 
Larger species sleep less. Each scatterplot in the bottom row appears to have 
a mean function that is decreasing with the term. The plots that include 
are hard to analyze because has only two values, zero or one. 

We now to fitting the mean function 

where is the 5 x 1 vector of predictors. 

10.4.3 The Danger Indicator 

Model ( 1  0.12) is our first example of a mean function that contains an indica- 
tor. To understand the role of think of the two subpopulations of species 
defined by the danger index, = 0 for species in low danger and = 1 for 
species in high danger. For notational convenience, let denote the 4 x 1 vec- 
tor of predictors excluding The mean function (10.12) defines two other 
mean functions, one for each of the subpopulations defined by We can 
write these subpopulation mean functions by substituting = 0 and = 1 
into (1 0.12): 



10.4 CORRELATION VERSUS CAUSATION AND THE SLEEP DATA 241 

FIGURE 10.1 Scatterplot matrix for the sleep data. 

These two subpopulation mean functions are identical except for their inter- 
cepts. The intercept in the low danger subpopulation is just as it is in the 

overall model (1 0.12), but the intercept in the high danger subpopulation is 
11” + where ilS is the coefficient of in (10.12). The subpopulation mean 
functions are parallel hyperplanes in the four logarithmic terms, the constant 
distance between the hyperplanes being In Chapter 12 we will encounter 
subpopulation mean functions that are nonparallel planes. 

To illustrate the idea of separate planes arising from an indicator, let’s 
take a brief detour and consider the regression of on = (10g2(Life), 

f. Construct a 3D plot of versus (10g2(Life), setting 

to be the marking variable in the “Plot of” dialog. In the resulting plot, 
select the item “Fit by marks” in the pop-up menu for the parametric smoother 
slidebar. The parametric slidebar can now be used to fit separate planes, one 
for = I and one for D ,  = 0. The planes are very nearly parallel for the 
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sleep data, suggesting that the model 

may be appropriate. 

10.4.4 Interpretation 

Returning to mean function (10.12), we now add the assumption of constant 
variance, Var(TS I = 02,  and estimate the mean function via OLS. The result- 
ing output is shown in Table 10.3. Before examining the fit of this model to 
the data, let's assume that the mean function (10.12) is correct, and for the 
sake of discussion let's suppose that the coefficient 1j4 for log gestation period 
is negative. Can we infer that longer gestation periods cause less sleep? Here 
the causal link seems tenuous at best. More likely is the possibility that 
longer gestation period and fewer hours of sleep are caused by some other 
factors; and what we see in the data is an association, but not a causation. In 
observational studies like this one, regression models generally tell us about 
association, but not about causation. 

We turn now to the output in Table 10.3. Look first at the coefficient es- 
timates and their standard errors. The estimate for is negative and large 
relative to its standard error, indicating that animals with = 0 sleep more 
than animals with = 1. The value of the estimate, -3.8, gives us an idea 
of how much more: If we could find two species with all characteristics 
the same, except one has = 0 and the other = 1, we would expect 
the species with = 1 to sleep about 3.8 hours less than the species with 

= 0. The coefficient for log,(GP) is estimated to be -0.97. Since we used 
logs to the base two, this means that every time the gestation period doubles, 
so log,(GP) increases by one unit, the average amount of sleep decreases by 
0.97 hours. 

Two of the remaining coefficient estimates are positive, in contradiction to 
our expectation from examination of the last row of the scatterplot matrix. In 
addition, even though log,(BW) and log2(BrW) appear to have the strongest 
relationship with in Figure 10.1, they both have coefficient estimates that 
are small relative to their standard errors; indeed the p-value for testing the 
coefficient for log,(BW) equal to zero is larger than 0.9, so log,(BW) does 
not appear to be an important predictor given the other terms in the model. 
Furthermore, the signs of the coefficient estimates for these two terms are 

opposite, one positive and one negative. 
There is nothing wrong with the regression calculations shown here, what is 

wrong is trying to infer about individual coefficients without reference to the 
other terms in the mean function. We have already seen that the standard error 
of a coefficient estimate depends on the relationship between the correspond- 
ing term and the other terms in the mean function; the value of the coefficient 
estimate also depends on this relationship. The plot of the response against a 
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TABLE 10.3 Regression Summary Mean Function (10.12) in the Sleep Data 

= = 

= 

= 

= 

[ 

[ 

[ 

5 

- 

- 

F 

0.0000 

single term is not directly relevant to an interpretation of its estimated regres- 
sion coefficient. However, we find a plot that allows visualization of the 
effect of each term in a mean function. This plot is called an 

10.5 2D ADDED-VARIABLE PLOTS 

The added-variable plot is a graphical object that (1)  always provides visual 
information on the numerical calculation of the coefficient of a term, and 
in some situations provides (2) diagnostic information on the model and ( 3 )  

a visual assessment of the net effect of a predictor or term: the effect of a 
predictor in a subpopulation in which all other predictors are held fixed. 

We begin by describing added-variable plots for mean functions with two 
terms in addition to an intercept, and then look at the general case. 
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FIGURE 10.2 Three 2D plots for the transactions data. 

10.5.1 Adding a Predictor to Simple Regression 

Let’s return to the transactions data. In (lO.l), the mean function depends 
on a linear combination of and q, and the regression is the study of the 

conditional distribution of Time given both T, and Let’s suppose that we 
have already examined the conditional distribution of given only T, . We 
now study what happens when a second term q is added to the mean function. 
The three plots in Figure 10.2 are relevant here. Figure 10.2a is a summary 
of the marginal relationship between Time and The fitted OLS line on the 
plot seems to match the data quite well, except perhaps at TI = 0, reflecting 
some branches with no T, transactions but many 5 transactions. Figure 10.2b, 
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which is the plot for the simple regression of on tells a very similar 
story: Ignoring T,,  and are linearly related. 

The third plot in Figure 1 0 . 2 ~  is a 2D scatterplot of the predictors, q ver- 
sus This plot allows us to visualize the mean function E(T2 1 While 
the relationship between and TI is not of direct interest to us, this plot is 

important because it shows that E(T, 1 depends on linearly. To put it 
another way, if we know the value of T, ,  we have some information about 

If we contemplate using as a second predictor of after using T,,  
we should expect that the effect of q would be adjusted for the part of 
that can be explained by T, . In other words, only the part of that constitutes 
new information beyond that already furnished by T, should be used. Multiple 
linear regression does an appropriate adjustment. 

Use the “Fit linear LS” item in the Graph&Fit menu to estimate the mean 
function for I T,, assuming the simple linear regression model. The esti- 
mated mean function is 

1 = 3044 + 12.67T, (10. IS) 

with 1 T,) = 1909, I T,) = 0.75. We added the I T,)” to 
these symbols to remind us explicitly that these statistics have been computed 
from the regression of on q only. Notice also that the coefficient estimate 
for about 12.7 minutes per transaction, is quite different from the 5.5 
minutes per transaction we found when using both and q. We can get a 
similar fitted equation for the mean function in Figure 10.2b by fitting the 
regression of on q, 

I = -542 + 2.95q (1 0.16) 

with ;(Time 1 = 1450 and I = 0.85. The variable alone gives 

a somewhat larger value of than fitting TI alone. 

We can view the fitted mean function I as dividing each obser- 
vation into two pieces, the part of explained by and the part of 

not explained by q ,  so 

= Explained + Unexplained 

= I + - I T, ) )  

= E( I ) + 1 ) 

where I are the residuals from the regression of on Let’s 
think about adding to a model that already includes T,.  We want to 
explain the part of not explained by This suggests fitting a regression 
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FIGURE 10.3 Added-variable plot for in the transactions data. The axis labels have been 

modified to correspond to the notation in this book. In  particular, there are no “hats” on the e’s 

in the plots produced by Arc. 

model, not with as the response but with the residuals I T, )  as 
the response. However, this won’t quite work because T, and T2 are related 
to each other, as shown in Figure 10.2c, and so some of the information in 

is redundant. The solution is to fi t  the linear regression of on T, and 
get the residuals ;(? I T , )  from that regression. This is the part of that is 
not explained by T,. Then, fit the regression of on ;(T2 IT , )  to 
study the effect of adding T2 to a model that already includes The slope 

estimate from the simple linear regression of 1 T,) on ;(T2 I TI) will give 
the change in for a unit change in adjusted for fitting TI first, and 
this is exactly what we want. The plot of I T,) versus I T,) is an 

plot. 
can be used for these calculations. We need the residuals from the 

regressions of on TI and of on T,. In the transactions example, use 
the Graph&Fit menu to fit these OLS regressions. Then, use the Graph&Fit 
menu to plot the residuals from these two regressions against each other. This 
plot, shown in Figure 10.3, can be studied like any other 2D plot, checking 
for strength of linear relationship or examining for points that are separated 
from all the other points. In Figure 10.3, the points are clustered about the 
OLS regression line shown on the plot, apart from one separated point. This 
is a graphical indication that is a useful additional predictor when has 
already been used as a predictor. 
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10.5.2 Added-Variable Plots in Arc 

The example we have worked here for added-variable plots has only two terms, 
but exactly the same methodology can apply no matter how many terms we 
have. Suppose we have a mean function 

where we have divided the k x 1 vector of terms u into two pieces, uI  with 
k - 1 terms and u2 with the remaining term. The added-variable plot for u2 is 
a plot of I u , )  versus I u, ) .  

While the procedure outlined in  the last section can be carried out to get an 
added-variable plot, there is a shortcut available in Arc. Fit the model with 
mean function (10.17), and then select the item “AVP-A11 2D” from the 
model’s menu. You will get a 2D scatterplot that initially shows the added- 
variable plot for the first term. You can obtain the added-variable plot for any 
other term by using the new slidebar on the left of the plot to select the desired 
term. 

10.6 PROPERTIES OF 2D ADDED-VARIABLE PLOTS 

Added-variable plots are closely related to regression calculations. Consider 
fitting a line by OLS to the points in an added-variable plot, as shown in 
Figure 10.3. To do this, the two sets of residuals must be saved as variables, 
as described in Appendix A, Section A. 1 I .  

10.6.1 Intercept 

As long as the intercept is in the mean function, the estimated intercept in the 
added-variable plot will be zero. 

10.6.2 Slope 

The estimated slope in an added-variable plot will always be the same as the 
estimated coefficient fi2 in the OLS fit of (10.17), so fitting the simple linear 
mean function by OLS to an added-variable plot gives 

I U I )  I a u *  I u,) )  = 0 + G ( 4  I U I )  

In this way the added-variable plot always provides visual information on the 
numerical calculation of the coefficient of a term. 

For the transactions data, the fitted mean function for the added-variable 
plot is 

E(;(Time I T,) I I TI)) = 0 + 1 T, )  
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and the estimated regression coefficient for I is the coefficient estimate 

for q2 in the OLS fit to (10.1). 

10.6.3 Residuals 

The residuals in an added-variable plot are identical to the residuals from 
the OLS fit of the full model (10.17), 

since the added-variable plot has “response” I u I )  and “fitted values” e2 x 

I u,) .  For the transactions data this relationship simplifies to 

2 = I T,,T,) = I T , )  - I j2 x 2 ( q  I T,) 

This can be verified numerically by plotting the residuals from the model fit  
to the points in the added-variable plot versus the residuals obtained from the 
fit of the full model. 

10.6.4 Sample Partial Correlation 

Under multivariate normality (10.6), the sample correlation between 1 u I )  
and 2(u2 1 u l )  is the sample partial correlation between y and u2 given ul : 

Thus, an added-variable plot for u2 after allows us to visualize the sample 
partial correlation in the same way as a scatterplot of y versus u2 permits us to 
visualize the marginal correlation between y and u2.  The use and interpretation 
of the sample partial correlation is subject to the same limitations discussed 
in Section 4.2.2 for the ordinary correlation. 

10.6.5 ?-Statistics 

If is small relative to n, the t-statistic for testing the hypothesis that the slope 
equals 0 in an added-variable is approximately the same as the t-statistic for 
testing 7i2 = 0 in the full mean function (see Problem 10.3). Thus, the term u2 
is important if its added-variable plot is strongly linear, with small residuals, 

indicating that the t-statistic for testing q2 = 0 is large. This is the situation we 
have observed in the transactions data. 

10.6.6 Three Extreme Cases 

We next discuss three extreme cases of added-variable plots. While these cases 
rarely occur in practice, they may provide additional understanding of 2D 
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FIGURE 10.4 Three extreme added-variable plots. 

added-variable plots. The three cases are depicted in Figure 10.4 as the added- 
variable plot for u2 in the generic regression model (10.17). 

Points on a Diagonal Line: I u) = 0. In the left frame of this plot, all 
the points lie exactly on a straight line with nonzero slope. What does this tell 
us about the fit of (10.17)'? Since the points fall exactly on a line, the residuals 
from the added-variable plot regression are all zero. This tells us that the 
residuals from ( 10.17) must all be zero and thus all the data fall exactly on a 

plane in the k terms. Adding u2 to the model gives a perfect fit, so u2 is useful 
even after the contributions of the terms in uI . 

Points on Horizontal Line: I = 0. Suppose next that the points in 
an added-variable plot lie exactly on a straight line with zero slope, as in the 
second frame of the plot. In this case we must have I u,)  = 0 for every case 
in  the data. There is no reason to consider adding u2 because the regression 
of on u, explains all the variation in the response. In practice, scatter about 
a horizontal line indicates that a term will have a coefficient close to zero in 
a fitted mean function. 

Points on a Vertical Line: 1 u I )  = 0. The third frame illustrates the 
extreme case with I u I )  = 0. This means that u2 is an exact linear 
function of u , .  In the context of the multiple linear regression model, all 

of the information about the response available from u2 is already avail- 
able from u I ,  so u2 is an entirely redundant term. Most computer programs 
will give an error message and refuse to include terms that are an exact or 
nearly exact linear combination of other terms in the model. This situation 
is often identified by the word We have seen an example of 
exact collinearity already in the attempt to fit mean function (10.4) to the 
transactions data, where the program recognized that the two additional 
terms were of no value after including the first two terms T, and and 
characterized these terms as aliased. Approximate collinearity, where one 

of the predictors is almost an exact linear combination of the others, is 
quite common in some areas of application. It can be diagnosed if the 
range of the values of I u , )  is tiny relative to the range of the values 
of u2. 
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10.7 3D ADDED-VARIABLE PLOTS 

Two-dimensional added-variable plots can be generalized to three dimensions 
straightforwardly. Consider the mean function 

where we have divided the k x 1 vector of terms u into three pieces, u1 with 

k - 2 terms and the individual terms u2 and u3 .  The 3D added-variable plot 
for (u2,u3) is a plot of I u I )  versus I ul),2(u3 1 u,)) .  

The item “AVP-3D” in an Arc model menu can be used to construct a 3D 
added-variable plot, and the parametric smoother slidebar can then be used to 
superimpose the fitted OLS plane, as discussed in Section 8.2. The properties of 
a 3D added-variable plot constructed in this way are the same as the properties 
of a 2D added-variable plot. In particular, 

- the intercept of the fitted plane will be zero if the full model contains an 

the estimated coefficients for the fitted plane are G2 and G3, and 

- the residuals from the fitted plane are the same as those from the full 

intercept 

model. 

10.8 CONFIDENCE REGIONS 

Load the file . l s p .  This file contains the data on boys from the Berke- 
ley Guidance Study. For this example, we will study how weight at age 18, 

depends on measurements of height, weight, leg circumference, and 
strength at age nine, via the mean function: 

with Var(WT18 1 = m2. 

In Chapter 7 we learned how to make confidence statements concerning 
regression coefficients. A confidence statement for a coefficient q2, for exam- 
ple, paid no attention to the value of any of the other coefficients. However, 
coefficient estimates can be correlated, and thus joint confidence statements 
can be more informative than marginal ones. 

To construct a joint 95% confidence region for and in mean function 
( 10.20), select “Confidence regions” from the model’s menu. In the resulting 
dialog, move WT9 and from the left list to the right list. The result is shown 
in Figure 10.5a. The cross hairs mark off marginal 95% confidence intervals 
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FIGURE 10.5 Joint and marginal 95% Confidence regions for the Berkeley Guidance Study for 

boys. 

on the coordinate axes for and q4. For example, the 95% confidence interval 
for r)2 runs from about -0.6 to 1.4. 

The elliptical region in Figure 10.5a is a joint 95% confidence region for q2 

and Confidence regions for two coefficients in a multiple linear regression 
model assuming that the errors are normally distributed are always elliptical. 
The ellipse in Figure 10.5a is nearly a circle, but this characteristic of the 
shape depends on the aspect ratio in the plot and on the correlations between 
the estimated coefficients. The cross hairs in  Figure 10.5a sit well within the 
joint confidence region, so the range allowed for either coefficient in the joint 
region is larger than the corresponding range of either marginal confidence 

interval. 
Construct a joint confidence region for the coefficients of and as 

shown in Figure 10.5b. Figures 10.5a and 10.5b are qualitatively different. The 
major axis of the ellipse in Figure 10.5b has a negative slope, so 7 j 2  and G3 are 
negatively correlated. When the scaling in the plot is the default scaling like 
in these figures, elongation of the ellipse indicates large correlation. The cross 
hairs in Figure 10.5b extend outside of the joint confidence region because 
of the high correlation. In Figure 10.5a the near circularity suggests that the 
correlation between the coefficients of WT9 and ST9 is small. 

10.8.1 

Consider a joint confidence region for the regression coefficients in 
the mean function 

Confidence Regions for Two Coefficient Estimates 

I = + V I U I  + V 2 U 2  
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This mean function has three terms: The intercept and two nonconstant terms 
u I  and u2.  We assume further that errors are normally distributed with mean 
zero and constant variance function Var(y I x) = 02. Let = (q1,q2)*, with OLS 

estimate 6. From (7.18), we know that the estimated covariance matrix for .fi 
is of the form G2M, or 

The elements of M depend on u I  and u2 only through their standard 

deviations sd(u,) and sd(u2) and through their sample correlation rI2. 

A joint (1 - x 100 percent confidence region for is the set of all values 
of the 2 x 1 vector h that satisfies the inequality 

where Q(F2,n-,, 1 is the 1 - quantile of the F2,n-3 distribution, and 

[Kr(6)]-l is the inverse of the 2 x 2 covariance matrix for 6 (see Section 7.9.1). 
The points satisfying this inequality fall inside an ellipse. The center of the 
ellipse is at 6. The size of the ellipse is partially controlled by the choice 
of the level 1 - As we require more confidence, 1 - becomes bigger, 

1 - becomes bigger, and the area of the ellipse increases. 

The element of that corresponds to is 

(10.22) 

where r,2 is the sample correlation between u ,  and u2 .  This is the same as 
the variance estimate we encountered when discussing the standard error of 
coefficient estimates in Section 10.1.5. The standard errors of the coefficient 
estimates determine the lengths of marginal intervals, and these are strongly 
determined by rf2. The length of a confidence interval increases as rf2 in- 
creases, so high correlation between the predictors gives relatively long con- 
fidence intervals. 

The shape of a joint confidence interval depends on p(C1 , 7 j 2 ) .  the correlation 
between G I  and G2,  and on scale factors. Holding the scale factors fixed, the 
joint confidence region becomes elongated as Ip(GI , i 2 ) l  increases. What will 
make Ip(G1,7j2)1 large? There is a close connection between this correlation 

and rI2: 

Thus, the correlation between the OLS estimates of 7jl and 7i2 in a regression 
model with just two nonconstant terms is the negative of the sample correlation 
between these terms. To gain some intuition about why this is so, imagine a 



10.8 CONFIDENCE REGIONS 253 

r12 -0.95 - r12 0 - 
‘i 
?i 

-10 -5 0 5 10 

E t a l  

rl 

N 

7 

w‘ 

0 -5 0 5 10 

E t a l  

a. r12 = 0. b. = -0.95, 

FIGURE 10.6 Confidence region demonstration. 

3D plot of y versus in which the points occur at the tips of the slats in 
a picket fence that runs up a hill. Now imagine trying to balance (fit) a sheet 
of plywood (a regression plane) on the picket fence. The plywood will be 
stable and easily balanced in the direction of the fence, but it will be unstable 
and hard to balance in the direction perpendicular to the fence. Similarly, 
the regression coefficients are well-estimated in the direction of the fence, 

but not so in the perpendicular direction. The uncertainty in the regression 
coefficients runs primarily in the direction perpendicular to the fence. Along 
the fence, there is little variability, so the confidence region along the fence will 
be narrow, while perpendicular to the fence variability is high, producing wide 
confidence regions. These combine to explain why a high positive correlation 
between u I  and u2 results in coefficient estimates that are highly negatively 
correlated. 

Load the demonstration l s p .  A brief description of the demon- 
stration will be displayed, and a 2D plot with a slider labeled “1-12” will appear 

on  the computer screen: “r12” is the sample correlation rI2 between u I  and 
u2.  This demonstration is for a regression with u I  and u2 scaled to have mean 
zero and equal standard deviations, sd(u,) = sd(u,). In this scaling and with an 
aspect ratio of one, the shape of a confidence region depends only on the cor- 
relation r I2 .  The initial plot shown in Figure 10.6a is the joint 95% confidence 
region for ( 7 i 1 ,  rI2) when r12  = 0. The cross hairs on the plot give marginal 
intervals, assuming that 6 = and that G2 = 1. The slidebar controls the 
sample correlation rI2. As the slidebar is moved, the confidence regions are 
redrawn. 

Figure 10.6a with rI2 = 0 is similar to Figure 10.5a. Before moving the 
slider, consider what will happen as it is moved to the right. What will happen 
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to the cross hairs? The demonstration has been constructed to keep the center 
at the origin, so only lengths and orientation can change. What will happen 
to the ellipse? How will its orientation change? 

As the slider is moved to the right, the marginal intervals depicted by the 
cross hairs get longer. Was this predicted by the previous discussion? Also, 

the slope of the major axis of the ellipse is now negative when r12 is positive. 
Was this predicted by the previous discussion? The plot when the sample 
correlation rI2 = -0.95 is shown in Figure 10.6b. 

10.8.2 Bivariate Confidence Regions When the Mean Function Has 
Many Terms 

With minor modifications, we can apply our understanding of confidence re- 
gions to the general model, 

where uI  and u2 are single terms and all remaining terms are collected in the 
vector u,. This problem differs from that discussed in Section 10.8.1 because 
it has more than two terms beyond the intercept. 

How do we construct a joint confidence region for (v1,rl2)? Aside from 
the presence of u,, this is the same problem considered in Section 10.8.1. 
The required confidence region can be constructed by first getting ;(u, I u,), 
the residuals from the OLS fit of u I  on u,, and 2(u2 I u,), the residuals from 
the OLS fit of u2 on u,. Both of these regressions should include an inter- 
cept term because there is an intercept term in (10.24). Now go back to Sec- 
tion 10.8.1 and replace u I  with ;(ul I u,) and u2 with 2(u2 I u3). Except for a 
change in df, the discussion of the previous section now applies verbatim to 
a confidence region for (v1,7l2) in (10.24). To apply equation (10.21), replace 
Q(F2,n-,, 1 - 11) with Q(F2,np,, 1 - where is the number of terms including 

the intercept. 
The shape of confidence regions in regressions with two terms beyond 

the intercept is determined by the sample correlation rI2. In the many-term 
generalization, the shape of confidence regions for two terms is determined 
by the sample correlation between 2(ul I u3) and 2(u2 I u3). This correlation 
is the sample partial correlation between u 1  and u2 adjusted for u3. It is the 
sample correlation between u 1  and u2 after removing any linear association 
with u3. and therefore the sample partial correlation between u 1  and u2 is 
just the correlation for the scatterplot of 2(u1 I u,) versus I u,). Recall 
that a 3D added-variable plot for ( u I  , u 2 )  is the 3D plot of 2(y I u,) versus 
(e(u, I u3),2(u2 I u,)). The correlation between the variables in the horizontal 
plane of a 3D added-variable plot is thus the same as the partial correlation 
between u 1  and u 2 .  In addition, a 3D added-variable plot for two terms in a 
many-term model can be used to understand their coefficients just as a 3D plot 
of y versus (u I ,  is used when there are only two nonconstant terms in the 
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FIGURE 10.7 A three-dimensional confidence region. 

model. In particular, the picket fence analogy for the behavior of confidence 
regions for ( r i 1 , 7 j 2 )  i n  the model E(y I x) = + + applies also to a 
3D added-variable plot for in model (10.24). 

10.8.3 General Confidence Regions 

Joint confidence regions for more than two coefficients follow the same gen- 
eral ideas. In  particular, letting denote a subset of q coefficients in a multiple 
regression model, a ( I  - x 100% confidence region for is the set of all 
values of the q x 1 vector h that satisfy the following inequality: 

- A  

where 6, is the OLS estimate of and [ V a r ( ~ ~ ) ] - l  is the inverse of the q x q 
covariance matrix for (see Section 7.9.1). This specifies a q-dimensional 
ellipsoid. To get a 3D ellipsoid using Arc, select the “Confidence regions” 
item from the model menu, and choose three terms. All the points in this 
plot will be on the surface of a 3D ellipsoid giving a confidence region. 
A view of this plot for the three variables and is shown in 
Figure 10.7. Since the 3D plot is automatically centered and scaled, about 
all the user can see in this plot is orientation and elongation. When ro- 
tating this plot, one learns that the coefficient estimates for and 
are strongly and negatively correlated; the coefficient estimates for and 
STY are nearly uncorrelated, as are the coefficient estimates for and 
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10.9 COMPLEMENTS 

10.9.1 Missing Data 

The practical expedient of deleting cases with some values of the predictor 
or the response missing is but one method of dealing with missing values. 
This can be a reasonable approach in many problems, as long as the cause of 
the missing values is independent of the values themselves. For example, in 

the sleep data if is unobserved only because its value is very small and 
therefore difficult to observe, simply deleting cases with unobserved will 
lose information and can result in biases. In general, dealing with missing data 

is a hard problem, and each problem may call for different solutions. Little 
and Rubin ( I  987) provide a summary of the literature on analysis of problems 
with missing data. 

In you can force the use of only the same fully observed cases on 
all computations by adding the line = t to the data file, as 
discussed in Appendix A, Section A.5.9. 

10.9.2 Causation, Association, and Experimental Designs 

When can we infer causation? A useful distinction is between 
and In an observational study, we collect a sample 

of observed variables, as in the sleep data presented in Section 10.4. In obser- 
vational studies we can rarely declare causation because other factors may be 
the causes of both the response and the predictors. This is not always the case: 
The transaction data are also observational, but inferring causation is logically 
acceptable. 

In a randomized study, we set the values of some of the predictors by as- 
signing treatments to units using a randomization scheme. On average, treated 
and untreated units differ only because of the added treatment effect, so a re- 
gression coefficient attached to a treatment effect can generally be interpreted 
as a causal effect. For example, consider a cloud seeding experiment in which 
days are randomly assigned to be seeded or not. If the conditional distribution 
of rainfall given the seeding indicator and other predictors depends on the 
seeding indicator, we might be able to infer that seeding causes a change in 
rainfall. 

Berk and Freedman (1995) provide an interesting discussion of when sta- 
tistical models fit to a data set can be generalized to a larger population, 
particularly in the context of social justice data. 

10.9.3 Net Effects Plots 

Added-variable plots will sometimes display the effects of adding a 
term to a regression equation; discussion is given by Cook (1998b, Chapter 
13). 
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10.9.4 References 

The sleep data are from Allison and Cicchetti (1976). The data in Problem 
10. I are from Hald (1960). The data in Problem 10.1 1 were provided by 
Paul Weibel. The data in Problem 10.12 are from Samaniego and Watnik 
(1997). 

PROBLEMS 

10.1 The data in  the file give values of the hardness y of = 

I3 Portland cement mixtures consisting of varying amounts-xI, 

x3. and x4-0f four chemicals. Define several additional terms, as fol- 
lows: 

s, = X I  

s, = + 
= XI - 

= X, - 

10.1.1 Draw the scatterplot matrix for y and the four predictors 
and and present a qualitative summary of the infor- 

mation it contains. 

Using OLS, fit four multiple linear regression models, all with 
y as the response variable and with predictors given in the 
order specified by 

10.1.2 

a. In the fit of L3, some of the coefficient estimates are labeled 
as Explain what this means. 

b. What aspects of the fitted regressions are all the same? 
What aspects are different? 

c. Why is the coefficient estimate for x2 in Ll equal to the 
coefficient estimate for in L3? 

d. Show how each of the coefficient estimates in L2 could be 
obtained from the coefficient estimates in L1. 

e. Describe how an added-variable plot for in L3 would 
look. 
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10.2 Consider a multiple linear regression with mean function 

E(y I x) = + vI  u 1 + ' ~ 9  

with terms u1 = x1 and u2 = x2. 

10.2.1 

10.2.2 

10.2.3 

10.3 

10.3.1 

10.3.2 

Suppose we fit the regression, but with terms given by u 1  and 
u3 = i ( x ,  I x l ) ,  the residuals from the simple linear regression 
of x, on x,, so the mean function is 

Find expressions for yo and yI in terms of vo and q l .  

Show that the sample correlation between u I  and u3 is zero 
and hence the OLS estimates of 71, and y3 are identical. 
This is very similar to Problem 6.15.2.) This also shows that 

The added-variable plot for u2 is the plot of 1 u I )  versus 
2(u, I ul). For the regression of 2(y  I u I )  on i ( u ,  1 u l ) ,  use the 

results of Problems 10.2.2 and 10.2.3 to show that (1) the 
intercept is zero; (2) the slope is i j2, and the residuals are the 

same as 2(y I u I  , u 2 ) .  

2(Y 1x1)  

Verify numerically that in the transactions data, the estimated 
slope in the added-variable plot for is the same as 6,. the 
coefficient for in the multiple linear regression model. Also, 
verify that the intercept in this plot is zero. 

Let t' be the t-statistic for testing the hypothesis that the slope 

in the added-variable plot is zero, and let be the t-statistic 
for testing r12 = 0 in the original regression model. Show that 
the values of these two statistics are different. Then, show that 

= - - where k is the number of terms in the 
mean function. The constant corrects for df in the estimates 
of variance. 

10.4 This is a continuation of Problem 7.3 using data from the Berkeley 
Guidance Study for girls, in the file l s p .  

10.4.1 Describe the population for which these data are relevant. Do 
you think the results from analysis of these data can be applied 
to girls born in Berkeley in 1998-1999? Why or why not? 

10.4.2 Consider the following linear regression model: 

I x = qo + rlI + + q 3 W T Y  

+ q4HT9 + + + e (10.26) 
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10.4.3 

10.4.4 

10.4.5 

10.4.6 

with Var(e I x) assumed to be constant. Give estimates and stan- 
dard errors for all coefficients, and the value of the proportion 
of variability explained. Give the of each of the estimates. 

If were changed from cm to inches, how would 6, and 
se(6,) change? How would G 2 ,  the other elements of 6 ,  and 

the overall statistic change? 

If were changed from cm to inches, how would and 
se(6,) change? How would R', the other elements of and 
the overall F statistic change? 

If each predictor were centered to have average zero, what 
would be the estimate of Q? 

Construct added variable plots for and Briefly de- 
scribe the information these plots contain. The sample correla- 
tions between the variables on the axes of these plots are sample 
partial correlations. What are these sample partial correlations 

measuring? 

10.5 Continuing with the data from the Berkeley Guidance Study for girls, 
obtain the OLS fit of the model 

I x = 71" + q1 WT9 + + e 

and notice that G I  is negative. On the other hand, the sample correlation 
coefficient between and is positive, which seems to agree 
with intuition but is contradicted by Recall that 7, can be interpreted 
as the change in I x) when is fixed and WT9 is increased 
by one unit. 

Construct two plots, a scatterplot of versus WT9 and a his- 
togram of The scatterplot shows a positive correlation as men- 
tioned before. Now, use the histogram to slice and observe the 
corresponding highlighted points in the scatterplot. Repeat this opera- 
tion for several different slices. 

Explain how this demonstration helps us understand the estimate 
of 7i1  and the partial correlation between and adjusted for 

10.6 Refer to model (10.26). 

10.6.1 Construct the sample partial correlation coefficient between 
and WT9 given fixed values of the remaining terms in 

( I  0.26). Describe what this partial correlation means and how 
it differs from the correlation between and 

10.6.2 What is the relationship between the sample partial correla- 
tion coefficient between and WT9 and a joint confidence 
region for their coefficients in model (10.26)? 
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10.7 

10.8 

10.9 

CHAPTER 10 UNDERSTANDING COEFFICIENTS 

10.6.3 What is the relationship between the sample partial correlation 
coefficient between LG9 and and a 3D added-variable 
plot for (LG9, 

In this problem we continue with the data from the Berkeley Guidance 
Study for girls, but now change the response to somatotype, Soma. 
Somatotype is an index of body type on a seven-point scale, with 
value one for the most slender body type and the value seven for the 
least slender. This measurement was taken from photographs at age 18. 

10.7.1 Obtain the OLS fit of the model 

Soma I = 'tio + q,  + + + e 

The p-value for the coefficient of is about 0.065, which 
is at least suggestive of a significant result. Because the re- 
gression coefficient for is negative, the results seem to 
indicate that an overweight two year old will tend to be a rel- 
atively slender teenager, a conclusion that doesn't make much 
sense. 

10.7.2 Refit the model after reparameterizing to the three predictors 
= - and = - Do the 

results in terms of the new predictors (weight changes) make 
more sense than the results in terms of the original predictors? 
Why? 

This problem uses the sleep data in the file 

10.8.1 Obtain the added-variable plot for log,(Life) using mean func- 
tion (10.12). Three points appear at the extreme right of this 
plot. To what species do these correspond? How does the 
added-variable plot change if (1) all three are removed from 
the data or (2) only the two most extreme cases are removed 
from the data? 

10.8.2 Construct a 3D added-variable plot for log2(BW) and 
log,(BrW). Give a brief description of what you think is im- 
portant in the plot. 

In Problem 7.7 we considered predicting the area of a soybean leaf 
from its length and width using the model 

log(Area) I = + q,  log(Length) + log( + e 

(10.27) 

10.9.1 Construct a 95% confidence region for and give a 
careful interuretation of its meaning. 
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10.9.2 Based only on your confidence region for ( v , , 7 1 2 ) ,  can you 

tell if log(lengrh) and log( are positively correlated or 
negatively correlated? Why? 

10.9.3 Based on the description of the data collection given in Prob- 
lem 7.7, can the results of this experiment be applied to a 
larger population? What is that population and why? 

10.10 Run the l s p  demonstration as described in Section 10.8.1. 

Then, change the aspect ratio in the plot by making the window twice 
as long as it is high, and run the demonstration again. Describe any 
qualitative differences. Since the data have not changed, there are no 

differences, but perception of the plot can change. 

10.11 The file r a t .  l s p  contains data from an experiment on 19 rats that were 
given a dose of a drug, the dose being roughly in proportion to the 
body weight of the animal. At the end of the experiment, each rat was 
sacrificed, its liver was weighed and the amount of drug in the liver was 

determined. The experimenters believed that the amount recovered, 
y, should be independent of the three predictors, Dose, and 

10.1 

10.1 

. 

10.11.1 

.2 

.3 

10.11.4 

Fit the OLS regression of y on the three predictors. Two of the 
predictors have relatively large t-values. What does this indi- 

cate? Get the correlation between these two estimated coef- 
ficients by selecting “Display variances” from the regression 
model menu. Guess the shape of the joint confidence region 
for these two coefficients. 

Draw the joint confidence region for the two coefficients with 
large t-values. Is the shape as you expected it to be? 

Without removing the plot of the confidence region, draw a 
3D added-variable plot for the two predictors identified. As 

you rotate this plot, examine it for any features that may help 
understand the plot of the confidence region. Using the “0 
to e(0lH)” plot control may be helpful. 

In the 3D added-variable plot, one point should have been 
identified as different from the others. How is it different? 
Select this point, and only this point, and then delete it by 

using the “Case deletions” plot control. Not only is this plot 
updated, but the plot of the confidence region is updated 
as well. On the confidence region plot, the new ellipsoid 
and cross hairs are drawn in a different color, but the old 

ones are not removed. How does the confidence region 
change? What does this tell you about the case that was de- 
leted? 
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10.12 The data in the file give the number of games 
won, the total payroll for all players, the payroll for 
pitchers, and the payroll for other players, for all major league 
baseball teams in the 1995 baseball season. 

10.12.1 

10.12.2 

10.12.3 

10.12.4 

10.12.5 

10.12.6 

Examine the 3D plot of versus and 
summarize the information in this plot. Which teams appear 
to have done well (that is, won more games than might be 
expected for their payroll)? Which did poorly (that is, won 
fewer games than might be expected for their payroll)? 

Consider fitting regression models, all with constant variance 
function and the three mean functions: 

E( I = 17" + '17, 

E( I x) = + 
E( I x) = 7" + + 

(10.28) 

(10.29) 

(10.30) 

Under what conditions will the fit of (10.28) give the same 
as the fit of (10.30)? 

Given that = + without doing any 
calculations, is it possible for (10.29) to fit better than 
(10.28)? Why or why not? Fit both models to confirm your 
answer. 

In the fit of (10.30), examine the added-variable plots for 
and and summarize the information they 

contain. 

In the fit of (10.29), interpret the value of 6,. 
These models provide a description of the dependence of 
wins on baseball salaries, but probably cannot be used for 
prediction of future values. (That is, if the Minnesota Twins 
were to increase their pitcher's salaries by 10 million dollars, 
this model could not be used to predict the additional number 
of games won.) Explain why this is so. 
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Relating Mean Functions 

In this chapter we continue to assume that the multiple linear regression model 
with mean function E(y I = qTu is appropriate for a particular problem. But 

now we begin to think about comparing this mean function to a mean function 
obtained by constraining some of the coefficients in 77 to equal specified val- 
ues, or to equal one another. Models formed in this way are called 

because they are formed by imposing constraints on the regression coefficients 
in the E(y I x) = qTu. 

For example, here are three ways in which the coefficients 77 = (q,,ql, 

in a regression with three terms could be constrained to yield a submodel 
mean function: 

submodel 77 = (ii) or (:) or ( T : , )  

711 

In the first case, i12 is constrained to equal zero. This is the same as deleting 
the last term from the full mean function. In the second case, the last two 
coefficients are set equal. This is equivalent to replacing u ,  and u2 in the full 

mean function with their sum, 

+ 711 1 + 711 = + 711 1 + ~ 2 )  

In the final case, the first coefficient is set equal to five and the last two 
coefficients are again constrained to be equal. 

We begin our study of submodel mean functions in the next section, focus- 
ing on the removal of terms from the full model. 

11.1 REMOVING TERMS 

Suppose we have a linear regression model with mean function 

(11.1) 
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where uI  consists of k - I terms, and u2 is just one term. The k terms (ul ,u2) 
are functions of the p predictors but for the calculations of this section, 

conditioning on u is sufficient. 
Assume that the variance function Var(y I = Var(y I u) = o2 is constant. 

What, if anything, can be said about the regression of y on u I ,  the regression 
in which u2 is dropped from consideration? 

This question can be answered with the assistance of two fundamental 
results that we previewed in Section 2.5 for a special case. Here we state the 
results in general. 

11.1.1 Marginal Mean Functions 

Suppose we know that the mean function for the regression of y on (u,,u,) is 
given by ( I  I . I ) .  Then the mean function for the regression of y on uI  alone 
is given by 

( 1 I .2) E(.Y 1 ~ 1 )  = E[Eb  Iu19~2) I u I I  

= E [ ( v T ~ I  + 7 1 2 ~ 2 )  I U I  1 

= VT.1 + 7?*E(U2 I U I )  ( 1  1.3) 

Equation ( I  1.2) is the general result that shows how to get a mean function 
based on fewer terms. Equation (1 1.3) is the specific result for the multiple lin- 
ear regression model: We replace u2 by the mean function from the regression 
of u2 on u l .  

For example, suppose that the true mean function for the regression of a 
response y on two predictors xI  and x2 is 

E(y 1 x) = 1 + 2xl + 3x2 with Var(y I x) = o2 

What can we say about the regression of y on x1 alone? From (1 I .3), the mean 
function is 

(1 1.4) E(y I X I )  = I + 2.~1 + 3E(X2 1 X I )  

and this depends on the regression of x2 on xI  . There are a number of important 
special cases. If x2 and are independent, then E(x, I x I )  = E(x2) which is a 

constant. Substituting this into (1 1.4) gives 

This is the mean function for the simple regression model with terms uo = 1 

and u 1  = x,. The regression coefficient for x1 is the same whether x2 is included 
or not, but the value of the intercept changes from 1 to 1 + 3E(x2). 
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Suppose next that the mean function for the regression of x2 on x ,  is linear, 
E(x, I x i )  = ( k o  + o I x I .  Substituting this into (1 1.4) gives 

so we again get a simple linear regression mean function with terms uo = I 

and u ,  = but the values of both the intercept and the slope have changed. 
If ( I ,  was a sufficiently large negative number, the sign of the coefficient for 
x ,  could even become negative. 

Finally, suppose the mean function for the regression of x2 on x ,  is a non- 
linear function, say E(x, I xi)  = + o1 exp(tr2xl). The mean function for the 
regression of v on x ,  becomes 

E(y I = ( I  + + + exp(a2xl) 

Because the parameters o,  and o, do not enter this mean function linearly, 

this is a mean function and not a mean function. 
A regression model based on a subset of terms depends on the distribution 

of the terms, which in turn depends on the distribution of the predictors. If the 

terms are independent or linearly related, then submodel mean functions gen- 
erally have the same form as the full mean function. If the terms are dependent 
but not linearly related, anything can happen, and the regression for the full 
model may tell us little about the regression for a submodel. These comments 
apply whenever the term deleted has a nonzero regression coefficient q2 in 
( 1  1. I ) .  If the coefficient is zero, then deleting the term has no effect on the 
mean function. 

11.1.2 Marginal Variance Functions 

A formula that parallels (2.3) tells us how the marginal variance function for 
the regression of v on u ,  is related to the variance function for the regression 
of y on both u, and u2:  

Equation (1 1.5) is the general result. The second equality (1 1.6) is obtained 
by substituting E(y 1 u) and Var(y I u) as specified by the model. Dropping a 

term u2 may result in a regression with a nonconstant variance function if 
Var(u, 1 u , )  is not constant, even if the variance function in the full model is 
constant. 
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11.1.3 Example 

Imagine a regression intended to describe the dependence of salary of fac- 

ulty members in a college on their sex (0 = male and 1 = female) and on 
the number of years of service. Suppose we have the following two mean 

functions: 

I Sex, = 1 8065 + 20 1 Sex + 
E(Salary 1 Sex) = 24697 - 334OSex 

In the mean function with two predictors, we see that female faculty members 
earn about $201 per year more on average than male faculty members with 
the same number of years of service. However, if we remove from the 
problem, then the coefficient for Sex is negative, indicating that females earn 
$3340 less than men, on the average. How can both these mean functions be 

true at the same time? 
The results of this section give us the answer: If the mean function for the 

regression of on Sex is linear, with a negative slope, we can get both the 
mean functions. In particular, if 

E(Years 1 Sex) = (6632/759) - (3541/759)Sex 

then from (1  I . 3 )  both equations can be seen to hold. The change in sign of 
the coefficient is due to females having fewer years of service on average than 

males. Data on these three variables and a few others for a small midwestern 
college are given in the file The mean functions used in this 
example are essentially the same as those obtained from the actual data. 

11.2 TESTS TO COMPARE MODELS 

The results of the previous section show that dropping a term from a regression 

can change both the mean function and the variance function in important 
ways, unless the value of the regression coefficient for that term is = 0. 
Consequently, testing q2 equal to zero, or more generally testing any subset 
of the regression coefficients to be zero, plays a useful role in many analyses. 
The paradigm for F-tests described in Sections 6.6 and 7.6.5 can be applied 
to compare any submodel with a full model. This leads to the descriptive 
hypotheses 

NH: Submodel mean function applies with Var(y, 1 = g2/w i  

AH: Full model mean function applies with Var(yi I = 

where the weights wi are known. Recalling notation from Section 6.6, let 

and be the residual sum of squares from the fits of the mean 
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TABLE 11.1 

Predictor 

Rate 

Len 

ADT 

Trks 

Slim 

sigs 

Acpt 

Highway Accident Data 

Term Description 

log, (Rare) 

log,(Len) 

log,(ADT) 

log,(Trks) 

+ I ) - '  

log, ( A W )  

1973 accident rate per million vehicle miles. 

Length of segment in miles. 

Average daily traffic count in thousands. 

Truck volume as a percent of total volume. 

Speed limit (in 1973, speeds above 55 mph were 

Number of signalized interchanges per mile. 
Number of access points per mile. 

permitted). 

functions, and let dfNH and dfAH be the df associated with each of the resid- 

ual sum of squares. Since the residual sum of squares measures lack of fit, 

we compare the fits by looking at the difference RSS,, - RSS,,. If this num- 

ber is small, then the two mean functions fit about equally well; and if it is 

significantly large, then the constraints imposed to get the submodel are con- 

tradicted by the data. In other words, the submodel fails to describe significant 

systematic trends in the data. 

If y I x is normally distributed, then the scaled value of the difference pro- 

vides a test statistic. We compute 

(1 1.8) 

where G2 is the estimate of u2 from the fit of the full model. Large values of 

provide evidence against the null hypothesis and in favor of the alternative 

hypothesis. Significance levels for this test are obtained by comparing the 
observed value of to the <yMH LtfAH.,L4H distribution. 

11.3 HIGHWAY ACCIDENT DATA 

As an example, we consider data relating automobile accident rates, in ac- 

cidents per million vehicle miles, to six potential predictors, as described in  
Table 1 1.1, for 39 segments of Minnesota highways. The data are available in 

the file highway. l s p .  

A reasonably good full model must be available before considering issues of 

comparing models. The model we developed has response y = l og2(Ra te )  and 
the six terms shown in Table 1 1.1 in addition to the intercept. The terms are all 

power transformations of the predictors. They were chosen, in part, to make 

the transformed predictors linearly related. According to the results of Sec- 
tion I 1 . 1 ,  the study of mean functions is more straightforward when the predic- 

tors are linearly related. To allow for transformation of Sigs, which has many 
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TABLE 11.2 Regression Summary for Highway Accident Data 

= 

= 

= 

A -  

.oooo 

zero values, the new variate Sigsl  = Sigs + 1 was used. As in other problems, 
we used base-two logarithms to facilitate interpretation. The specific methods 
and ideas we used in the development of this full model are discussed in 
Part I11 of this book. 

The fitted OLS mean function for the full model 

is shown in Table 11.2. The overall F-test indicates that the response is related 
to the terms. 

Let's first test the hypothesis that log,(Rate) does not depend on the two 

terms Sigsl- '  and Slim. Both the speed limit and the number of signals can be 
changed by the state highway department, so the effects of these on accident 
rate might be of special interest. The reduced mean function is 
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which is obtained from ( 1  1.9) by setting = 7j6 = 0. The mean function 
( 1 1.10) is the submodel mean function, and ( 1 I .9) is the full model mean func- 
tion. From Table 11.2, we find = 4.7566 and dfAH = 32. After fitting 
the submodel mean function ( 1  I .lo), we find = 5.9649 and dfNH = 34. 
The F statistic can now be computed: 

(5.9649 - 4.7566)/(34 - 32) 
F =  = 4.06 

4.7566132 

Using the “Calculate probability” item in the Arc menu, we find that the 
upper-tail p-value is 0.03, providing evidence against the null hypothesis. 

11.3.1 Testing Equality of Coefficients 

We use the transactions data I sp)  described in Section 7.3.3 to 
illustrate the procedure for testing equality of regression coefficients. The full 
mean function is 

where is the average time per type one transactions and 1i2 is the average 
time per type two transactions. We assume as in Problem 9.11, page 228, 
that the variance function is Var(Time I T,,  = + 5).  Consider testing 
the null hypothesis that the average time per transactions is the same for each 
of the two types, 71, = q2. Substituting for qZ in (1 1.1 l), we get 

Mean function ( 1 1.12) can be estimated via WLS with terms for the intercept 
and for S = T, + and also using 1/S as weights. To fit this mean func- 
tion in Arc, use the “Add a variate” item to create the new term S = 

and to create the weights, = Fit via WLS to get = 129729 
and dfNH = 259, while under the alternative mean function (1 1.1 l), = 

107600 with df,, = 258. Consequently, the F-statistic for testing the null hy- 
pothesis ( 1 1.12) versus the alternative ( 1 1 . 1  1 ) is 

(129729 - 107600)/(259 - 258) 
= 53.06 

107600/25 8 
F =  

which can be compared to the distribution to get a p-value. To four 

decimals, p = 0.0000, so we have strong evidence against the claim that 
the number of minutes per transaction is the same for each transaction 

type. 
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11.3.2 Offsets 

Continuing with the transactions data and assuming model (1  1.1 I), suppose 
we had reason to believe that the value of 7j1 should be five minutes per 
transaction. Using the t-tests described earlier, we could test the hypothesis 
that vi = 5 against a general alternative, but we could also use an F-test. The 
advantage of the F-test is that it can be used to test a variety of hypotheses 
that cannot be tested with a t-test. 

Rewrite the alternative model (1 1. I I )  so it incorporates the possibility that 

= 

E(Time 1 TI = qo + qlT, + 

= + (7, - 5 + 5)Tl + v25  

= + $T, + 5T, + 7 2 5  

where 7; = ql - 5 .  Since the term 5Tl includes no unknown paramaters, it can 
be moved to the left side of the equation and used to ofSser the response, 

where the offset response Time* = Time-ST,.  Testing if ql = 5 in model 
( 1  1.1 1) is the same as testing if 7; = 0 in model (1 1.13). Thus, by offsetting 
the response, we have reformulated the original model hypotheses 

in terms of a comparison of equivalent models 

that involves deleting terms. The models of the two null hypotheses are the 
same, as are the models of the alternative hypotheses. 

Arc allows for offsets without explicit reformulation of the mean function. 
We again use the transactions data for illustration. Use the “Add a variate” 
menu item to create the new offset variable Next, to fit the model 
of the null hypothesis 
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use the “Fit linear LS” item and specify the response the single predictor 
move qfto the Offset box, and use 1/S as weights. From this we find that 

the residual sum of squares is = I08307 with dfNH = 259. The value of 
the F-statistic, which is now computed in the usual way, is F = 1.70, which 
gives a p-value of 0.19 when compared to the F-distribution with (1,258) df. 

In general, an offset will consist of a known linear combination of terms. 
In this example, the offset is 

11.4 SEQUENTIAL FITTING 

The sequential analysis of variance table provides a summary of the infor- 

mation needed to compare any two mean functions obtained by successively 
adding terms to a base For example, consider the sequence of mean 
functions for the highway accident data given by 

1 u) = + r1410g2(Len) 

1 u) = + 7l4log2(Len) + @fim 

1 u) = + r/410g,(Len) + 

(11.14) 

(11.15) 

+ log,(Aw) ( 1  1.16) 

I u) = + + 

+ ~/,log,(Acpt) + r1210g2(Trks) (11.17) 

I u) = 71” + ?14logz(Len) + 

+ rl,log,(Acpr) + q,log,(Trks) 

+ 7/3log2(ADT) (1 1.18) 

1 u) = + + q,Sfirn 

+ r7,log,(Acpt) + 7]2log,(TW 

+ + (11.19) 

The base mean function (1 I .  14) consists of the intercept and log,(len). Each 
subsequent submodel mean function is obtained by adding one term. Select 
the item “Examine submodels” from the menu for the full model (1 1.9). This 
will give the dialog shown in Figure 11.1. By default, the names of all the 
terms in the mean function are shown in the right list, and the button for “Fit 
in specified order” is pushed. Move the term log,(Len) to the base model in 
the left list. Often, the base model will have no terms other than the intercept, 
in which case no terms need to be moved. You can also change the order of 
fitting terms by moving the term names between the two lists. 

Table 1 1.3 summarizes the sequential analysis of variance. The two columns 
under the heading Total give the df and for each of the six mean functions. 
The labels tell u s  about the order of the sequential fitting: The first row is 
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FIt 0 sequence of models 

Add to bare model liorward Selection1 

Delete from full model (Backward Ellmlnatlon) 

@I Fit  in specified order (Sequential Flttingl 

Change In deviance lor llttlng each tsrm last 

Base Model tldd/Delete... 

log211enl 

log2lAcptl 

i o g z i n ~ r i  

log2lTrksl 

FIGURE 11.1 

The option “Fit in specified order” is used to fit a sequential analysis of variance. 

The dialog for fitting a sequence of mean functions based on subsets of terms. 

TABLE 11.3 A Sequential Analysis of Variance Table for the Highway Data 

of  

= 

1 d f  MS 

[ 

1 - - 1 

37 11.4138 

36 6.11216 

35 5 .49940 

34 5 .09933 

33 5.08693 

32 4.75660 

1 5.30162 5.30162 

1 0.612764 0 .612764 

1 0 .400072 0 .400072 

1 0.0123937 0.0123937 

1 0.330335 0.330335 

32 4.7566 0.148644 

from fitting the base model, was added for the second row, log,(Acpt) 
was added for the third row, and so on. The remaining three columns are 
derived from these to facilitate some computations: the change in df, and 
M S  (mean square) between adjacent mean functions. The RSS for the mean 
function with all the terms is repeated as the last row of the change columns. 
The information in this table can be used to compare the fits of any two 
mean functions in (1 1.14)-( 11.19) by using the F-statistic in (1  1.8). Tests for 
comparing other mean functions can be constructed by changing the order in 

which terms enter the sequential analysis of variance dialog of Figure 1 1.1. 

11.5 SELECTING TERMS 

A standard problem in regression analysis is deciding which terms should ap- 
pear in the mean function. Sometimes, we will have information to help make 
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decisions. In the transactions data, for example, we used the mean function 

As long as the average time for a transaction is the same in each branch office, 
and the fixed time not spent on transactions is the same in each branch, this 
mean function should be correct. In other problems, we may not be so sure. In 
the highway accident data, several potential predictors and terms derived from 
them are available, but we don’t have a theory that tells us the functional form 
of the mean function. The analyst generally faces a number of challenges: 
( I )  What are the relevant predictors? and (2) How should the predictors be 
combined into terms? These concerns will be addressed in Part I11 of this 
book. For now, we consider a more limited issue. Suppose that we have a 
linear regression model with the usual variance function Var(y I = 

and k terms in the mean function 

Throughout this section, i s  Our 
goal is to tind which, if any, terms can be deleted from the mean function 
without important loss of information. A little additional notation will help. 
Let Z be the subset of term indices that we will keep in the mean function, and 

let be the complementary subset of indices of terms that we will consider 
deleting from the mean function. The full mean function (1 1.20) can now be 

reexpressed as 

T 
E(Y I = + 

where vZ and denote the subvectors of that correspond to the term indices 
in Z and The mean function for the submodel contains just the Z terms, 

EAY I = 7 (11.21) 

Here the subscript on E, is intended as a reminder that this is the hypothe- 
sized mean function for the submodel which may or may not be correct. For 
example, if we start with the five-term mean function 

E(Y I = ‘lo + V I U ,  + + v3u3 + 7744u4 

we might consider deleting u2 and u 4 .  In this case, uD = ( U , , U , ) ~ ,  u, = 

The issue now is how to assess the relative advantages of the full mean 
function ( 1 1.20) and the submodel mean function (1 1.2 1). We do this using the 
appropriate WLS or OLS fitted values from the two models. Let j ,  and denote 

the fitted values from the full model and the submodel, i = 1,.  . . ,n. Because 
the full model is assumed to be correct, its fitted values are unbiased in the 

T 
= and = ( 7 1 0 , ~ 1 , ~ 3 )  . 
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sense that the expectation of the ith fitted value is equal to the corresponding 
point on the mean function, E(ji) = E(y 1 x i ) .  The same may or may not be true 
of the submodel. If = 0, then the fitted values from the submodel are also 
unbiased, E(yi,z) = E(y I x i ) .  But if # 0, the fitted values from the submodel 
will be biased, E(ji,z) # E(y I x i ) .  Bias may be tolerable if it is not too large. 
To judge the worth of the submodel, we investigate the i n e m  squared error 

(MSE) of a fitted value from the submodel 

This measures how close the ith fitted value from the submodel is to the 
corresponding point on the true mean function, on the average. We would like 

this number to be small. To see what controls the size of M S E ( ~ , , ~ )  consider 
the decomposition, 

= VarG,,d + {E(i,,z) - E(Y I x,)12 

= variance + {bias}2 

The mean squared error of is the sum of its variance and its squared bias. 
We could make M S E ( ~ ; , ~ )  small if we could reduce its bias and its variance. 
Using the results in Section 10.1.5, deleting terms from a model reduces the 
variances of the fitted values; the more terms we delete, the more we reduce 
variance. Deleting terms from a model with nonzero coefficients increases the 

bias of the fitted values; the more terms we delete, the more we increase bias. 
Good submodels compromise between deleting terms to reduce variability and 
including terms to reduce bias. 

Dropping a term can be particularly helpful when it is nearly a linear com- 
bination of other terms in the model. We have seen previously in (10.5) that 
the variance of a coefficient estimate from the full model is 

where sdj is the sample standard deviation of the j th  term, and R; is the 

value for the linear regression of the j th term on all the other terms. If is 
close to one, then Var(Gj) will be large, and Var(yi) will also be large because 
it is a function of the variances of coefficient estimates (see Section 7.6.4). 
Consequently, including highly correlated terms in a regression model can 
inflate the variances of estimates, fitted values and of predictions. 

11.5.1 Criteria for Selecting Submodels 

Most subset selection methods try to select a submodel that results in relatively 
small values of the sum of the mean squared errors. For a submodel this 
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total mean squared error can be expressed as 

i = l  

The total mean squared error has a variance component and a bias compo- 
nent, and the selected subset must balance these. 

The parameter is unknown and therefore must be estimated for each 1. 
One useful estimate of which is called Mallows’ C, statistic, is given by 

= (i2 + 2k, - n 

- 

6 2  
+ k,  - (k - k,) - - 

( 1  1.22) 

(1 1.23) 

= ( k  - - 1)  + k, (1 1.24) 

where the subscript refers to statistics computed from the submodel, while 
statistics without subscripts are computed from the full model. Also, k, is the 
number of terms in  the submodel (which is the same as the number of indices 
in k is the number of terms in the full model, and is the F-statistic for 
testing 

Good candidates for submodel mean functions will have C, nearly equal 

to or less than k,. When applied to the full model, C, = k, = k .  Thus the full 
model is always judged to be a good candidate by this general rule. Use of C, 

will often lead to a number of candidate models for further study rather than 
one obvious best choice. In many problems, it is best to use C, to screen out 
the worst models, rather than to find a single best model. 

Equation ( 1  1.24) shows that C,  5 k, if and only if 5 1. Thus, it is gen- 
erally good to delete sets of terms when the F-statistic is less than one. 

11.5.2 Stepwise Methods 

The C, statistic is easy to use when there are only a few subsets to consider 

for deletion. When there are no obvious first candidate subsets for deletion, we 
might attempt to find better models by using an automated computer search 
of all possible subsets. With k terms, there are 2k possible submodels. If k 
is small, say ten or less, then this is a manageable problem, with at most 
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2’O = 1024 subsets to consider. If k is large, say 20 or more, then considering 
220 = 1,000,000 or more subsets can be computationally expensive and time- 

consuming. Three basic approaches to the computational problem have been 
developed. The first is brute-force computation, in which C, is computed 
for all possible submodels. The second approach uses a clever computational 
algorithm that can eliminate most submodels without actually fitting them. 
The third possibility uses regression, in which only a small fraction of 
submodels is examined. Stepwise regression doesn’t guarantee finding optimal 
subsets, although the results obtained with this approach are often useful in 
practice. Simple stepwise methods are implemented in Arc. 

Arc includes two simple algorithms for stepwise regression, using forward 
selection, in which terms are sequentially added to a base mean function, and 
backward elimination, in which terms are removed from a mean function. We 
discuss these procedures in the context of an example. 

11.5.3 Highway Accident Data 

The fitted OLS mean function for the full model for the highway accident 
data was given in Table 1 1.2. The overall F-test indicates that the response is 
related to the terms, but most of the terms have small t-values. We may be 
able to reduce the total mean squared error by deleting some of the terms. 

For example, suppose we wish to contrast the full model with the submodel 
obtained by deleting log,(Acpt) and log,(Trks). To calculate C, we need to fi t  
the submodel to get k ,  = 5 and the residual sum of squares RSS, = 5.2463. 

Combining this with the results of Table 11.2, we compute 

RSS, 
= + 2k, - n 

+ 2 x 5 - 39 z 6.29 
5.2463 

0.1486 
- -- 

This is somewhat larger than k, = 5. Although this submodel may be reason- 
able, we would hope to do better, perhaps by using stepwise methods. 

Our general goal is to find a subset of the predictors that can be removed 
from the mean function without significant loss of information. In examining 
subsets, the term log,(Lcn) will be considered to be part of the base model 
that is included in every subset. If we assume that accidents tend to occur at 
a few dangerous points rather than uniformly over a highway segment, then 
if the length of a segment were increased, the number of miles driven would 
increase, but the number of accidents might stay constant unless another dan- 
gerous point were added. Lengthening a segment will lower the accident rate, 
so accident rate and length should be negatively related. Including log,(kn) 
in all models essentially adjusts for this artifact. 

Forward Selection. Stepwise methods can be accessed in Arc by selecting 
the item “Examine submodels” from the model menu to get the dialog shown 
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Fit a sequence or models 

0 Add to base model IForward selection) 

Delete lrom full model IBackward Elimination) 

Fit in specified order (Sequential Fitting1 

Change in deulnnte ror r l t t ing each te rm Iasi 

Bars Model Rdd/Oelete ... 

log2ILenl iogzincpti 

log21lrksl 

FIGURE 11.2 Dialog for model selection. 

in Figure I I .2. We have seen this dialog before when getting sequential anal- 
ysis of variance tables, but we now use the radio buttons to select the item 
for forward selection. As shown in the dialog, the variable log,(len) will be 
included in all mean functions. The other terms were left in the list of terms 

to add. The results are shown in Table 11.4. 
Here is a description of the output. At the first stage, the base rneanfunc- 

tiorz consists of the intercept and the term log,(len). Arc then fits each mean 
function obtained by adding one of the remaining terms, so there are five 
regressions, each consisting of the base mean function plus one other term. 
The output consists of the df, the residual sum of squares, C,, and k, for each 
of the five mean functions. The mean functions are ordered according to the 
value of C,, from smallest to largest. The term associated with the smallest 
C,, is now added to the base mean function, and we proceed to the next 

stage. 
At the second stage, the base terms are log,(len) and The process of 

adding a term is then repeated, adding one of the remaining terms to the two 

already selected. This whole process is then repeated until all the terms are in 
the mean function. 

Examining 'hble 11.4, we see that adding log,(Acpt) and then S i p - '  de- 
creases C, to a value close to the number of terms k,  in the submodel. Thus the 
four-term model with log,(Len), log,(Acpf), and is a reasonable 
starting point for further analysis. 

Backward Elimination. Backward elimination is similar to forward selec- 

tion, except at each step a term is removed from the current mean function. 
The output for backward elimination, again forcing log,(len) into each mean 
function, is shown in Table 1 1.5. Use the same dialog as in Figure 11.2, except 
the button for backward elimination should be pushed. 

At the first stage, all six-term submodels obtained by dropping one of the 
terms other than log,(len) are considered. Summary statistics are reported, 
again ordering the mean functions based on C,. The term whose removal 
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TABLE 11.4 Forward Selection Output for the Highway Accident Data 

= = 

= 

= ] 

= 

I 
1 
I 
I 

RSS I 

I 

I 

I 
I 
I 
I 

I 
I 
I 

I 
RSS I 

corresponds to the smallest C, is then removed, and we proceed to the next 
stage. This is continued until all the terms apart from log,(len) are removed 
from the mean function. The submodels with C, close to k, are a reasonable 
starting point for further analysis. The results from forward selection and 
backward elimination agree in this example, but there is no guarantee that 
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TABLE 11.5 Backward Elimination Output for the Highway Accident Data 

= = 

= 

= 

= 

I 
I 
1 
1 
1 
1 

I 
I 
I 
I 
I 

1 
1 
1 
1 

1 
1 

1 

1 

I 

this will always be so. The mean function for the submodel suggested for the 

highway data is summarized in Table 11.6. 

Other Criteria. There is nothing we have said so far that gives a clear 
indication about how to choose a single “best” submodel. At each stage, terms 
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TABLE 11.6 Regression Summary for the Submodel Mean Function for the 

Highway Data 

= = 

= 

= 

= 

ss 

are added or deleted based on the value of until the list of terms is ex- 
hausted. The results may suggest a number of possible mean functions that 
could be investigated further by using other methods and relevant contextual 
information. 

The stepwise procedures implemented in other computer programs may use 
different criteria, including specific rules for selecting a “best” model. For ex- 
ample, with forward selection, terms may be added until the r-statistic for the 
next term is less than a user-selected cutoff called r-in. With backward elim- 
ination, terms are deleted until the t-statistic for the next term to be deleted 
is greater than the cutoff. We do not recommend such stopping rules for rou- 
tine use since they can reject perfectly reasonable submodels from further 
consideration. Stepwise procedures are easy to explain, inexpensive to com- 
pute, and widely used. The comparative simplicity of the results from stepwise 
regression with model selection rules appeals to many analysts. But, such al- 
gorithmic model selection methods must be used with caution. We conclude 
with a discussion of two simulated examples that illustrate the problems that 
can arise when using stepwise procedures to select a “best” model. 

Algorithmic Stepwise Model Selection Can Overstate Significance. A data 
set of iz = 100 cases with a response y and 50 predictors was generated using 
standard normal random numbers, so that y is independent of the predictors 



1 I .S SELECTING TERMS 281 

TABLE 11.7 Results of a Simulated Example with 
= 100 and 50 Predictors 

Number of 
Terms 

with p-Value 5 
Overall 

Method k p-Value 0.25 0.05 

No selection 50 0.59 0.13 16 6 

r-in = fi 16 0.48 < 0.001 16 11 
t-in = 2 4 0.46 < 0.001 4 4 

and thus all 50 predictors have regression coefficients of zero. Table 11.7 
summarizes several regressions. The first line is the summary for the regression 
of y on all 50 predictors. The value of R 2  = 0.59 may seem surprisingly large 
considering that all the data are independent random numbers. The overall 
F-test gives a p-value of 0.13 for these data. In repeated simulations like 
this one, the p-value of the test is equally likely to be any value between 
zero and one. The final two columns give the number of terms in the mean 
function with p-value less than or equal to 0.25 and 0.05. The second line 
of the table summarizes the mean function obtained using forward selection, 
stopping when the r-test for the next term to be added was less than the cutoff 
t-in = Sixteen predictors were added, R2 is a little lower than for the full 
model, and the corresponding overall F-test now has a p-value less than 0.001, 
suggesting that y is indeed related to these terms. We know of course that this 
is not the case. 

We changed the stopping criterion in the third line, continuing to add terms 
until the r-statistic for the next term to be added was less than the cutoff 
thin = 2, resulting in only four predictors being added. The value of R 2  remains 
fairly large, even with just four terms, and the r-values for each of the terms 
are now all larger than two in absolute value. Similar results would be found 
repeating this simulation, except of course the terms chosen as important by 
the algorithm would be different. 

This example demonstrates many lessons. First, stepwise selection of terms 
can have important effects on the apparent significance of results. The co- 
efficients for the terms left in the mean function will generally be too large 
in absolute value and will appear much more important than they really are. 
Second, when the response and the terms are independent, 

E(R’) = - l ) / (n  - I )  

so R’ can be large even if the response is independent of the terms. In our 
simulated example, n = 100 and k = 51 so E ( R 2 )  E 0.5 1 which agrees well 
with the observed value R’ = 0.59. Since selection retains the terms that make 
R’ large, the value of R2 for the submodel mean function will be close to the 
value for the full mean function. 
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FIGURE Plot of mean square error against t-in for three choices of q : qcl = ( fi, A, fi, 
qb = = ( ~ , O , O , O , O ) 7 .  The lower dashed line is the mean square 

error without selection, while the upper line is the mean square error when all predictors are 
ignored. 

Do Algorithmic Stepwise Methods Reduce Mean Squared Error? An im- 

portant question is whether a subset Z selected by a stepwise method will 
actually have lower mean squared error than the mean function without selec- 
tion. In some cases, exact computations are possible; one of these is depicted 
in Figure 11.3. This figure was constructed for regressions with n = 100, five 
predictors and E(y I x) = + q r ) x ,  where the subscript on q(.) will be changed 
to indicate different coefficient vectors. The predictors are taken to be uncor- 
related and with equal variances. Three cases were considered with different 
values of qc ). 

. a. 

- 6. 

q, = fi, and subset selection is probably not 

In this case, qb = (6, ~'??,0,0,0)~, so it is certainly desirable to 

Here, = so we would like to delete all but 

desirable because all predictors contribute equally. 

delete the last three predictors. 

the first predictor. 

Figure 11.3 shows the total mean squared error as a function of t-in for 
these three choices of q. In Case we see that the mean square error for 
some values of t-in (in the range from 2 to is even larger than the mean 



PROBLEMS 

square error for the null model, the model E(y I = 7". Here subset selection 
is worse than ignoring the predictors altogether! 

In Case 0,  the mean square error of prediction is usually worse and never 
much better than the expected mean squared error for the full model, so subset 
selection still does not help. 

In Case c, where we expect selection to be the most help, we do get some 
improvement in mean squared error, but only if t-in is small enough. 

11.6 COMPLEMENTS 

Formulas ( I 1.2) and (1 1.5) are proved, for example, in Casella and Berger 
(1990), Theorem 4.4.1 and Theorem 4.4.2. The simulated example in Sec- 
tion 11.5.3 is similar to examples in Freedman (1983) and in Rencher and 
Pun (1980). The second example in Section 11.5.3 is from Copas (1983). 

Mallows' C, was described by Mallows (1973). 
Computationally intensive approaches to subset selection have been pro- 

posed. These essentially require computing a simulation for each mean 
function and estimating a criterion function from the simulation. See, for 
example, Breiman and Spector (1992) for an example of this approach. 
Book-length treatments of variable selection are given by Miller (1990), by 
Linhart and Zucchini (1986) and by McQuarrie and Tsai (1998). Bayesian 
ideas for mean function selection were introduced by George and McCul- 

loch (1993). Furnival and Wilson (1974) provided a computational algorithm 
that can find the best few submodel mean functions based on a function 
like C,. 

In most presentations of regression, an analysis of variance table consists 
only of the last three columns of Table 11.3. 

The salary data are from Weisberg ( 1  985). The black cherry tree data in 
Problem 1 1.1 are from Ryan, Joiner, and Ryan (1976). Problem 1 1.3 is mod- 
eled after results in Mantel ( 1970). The species data in Problem 1 1.5 are from 

Johnson and Raven (1973). 

PROBLEMS 

11.1 The data in the file provide measurements on 31 black 
cherry trees from the Allegheny National Forest, Pennsylvania. The 
goal of the study is to obtain a prediction equation for the volume of 
marketable timber in a given tree, and perhaps in a whole forest, from 
measurements taken on diameter D and height Ht. For the sample of 
trees, the volume Vol was also measured. 

If a tree were shaped like a cylinder, we would have Vol M (.ir/4)D2Ht; 
if i t  were another conic section like a cone, the constant multiplier 
would change but not the exponents on the predictors. Taking logs of 
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this equation, we get a starting point for study of these data: 

E(log(Vol) I D ,  Ht)  = + ril + (1 1.25) 

rithms, 

lect. 

11.1.1 

11.1.2 

11.1.3 

11.1.4 

where qo = log(.ir/4), q1 = 2 and q2 = 1 .  This mean function is likely 
to be at best an approximation because trees are not cylinders and the 
log of a mean is not exactly the same as the mean of a logarithm. 
Use mean function (1 1.25) as a starting point for this problem, along 
with the assumption that Var(log(Vol) I = Use natural loga- 

although the results would be the same for any base you se- 

Identify the predictors in the problem and the terms in (1 1.25). 

Obtain a test of the hypothesis that ql = 2 against the alternative 
that 7i1  is arbitrary. Do the test two ways, first based on the t-test 
and then using offsets. Show that the two tests give identical 
inference (that is r2 = F ) .  

Obtain a test of the null hypothesis that q1 = 2,q2 = 1 versus the 
general alternative in the fit of (1 1.25). (Hint: You will need to 
fit a mean function that has no additional parameters beyond the 
intercept. In Arc, create a new variable whose value is one for 
all 31 observations using the “Add a variate” item and typing 

1 31). Then, fit a model with no intercept and 
with the single predictor 

Foresters would prefer a prediction equation that uses only 
log(D) as a predictor of Vol because it is much easier to measure 
in the field. Starting with the mean function (1 1.25), under what 
conditions is the mean function for the regression of log( Vol) on 
log(D) a simple linear regression model? Are those conditions 
satisfied with these data? Under what conditions is the variance 
constant in the submodel? Are those conditions satisfied with 
these data? How much information is lost by predicting volume 
from diameter alone? 

11.2 In the highway data in the file perform the following 
hypothesis tests: 

NH: eq. (11.14) 

NH: eq. (11.14) 

NH: eq. (11.14) 

NH: eq. (11.14) 

NH: eq. (11.15) 

NH: eq. (1 1.15) 

NH: eq. (1 1.16) 

NH: eq. (11.17) 

versus 

versus 

versus 

versus 

versus 

versus 

versus 

versus 

AH: eq. (1 1 

AH: eq. (11.16) 

AH: eq. (11.17) 

AH: eq. ( 1  1.18) 

AH: eq. (1 1.16) 

AH: eq. (11.17) 

AH: eq. (11.17) 

AH: eq. (11.18) 
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TABLE 11.8 Data for Problem 11.3 

XI 1 2  X3 

5 1 1004 6 

6 200 806 1.3 
8 1058 11 

9 909 100 13 
506 505 13.1 

All the information needed for these tests is given in Table 11.3. 

11.3 Using the simulated data in Table 11.8 in the file fit via 
OLS with the mean function E(y 1 x) = qo + q x l  + q2x2 + q3x,. Apply 
both the forward selection and backward elimination algorithms, and 
compare results. What is the “correct” mean function? 

11.4 In this problem, we will generate some random data to show that the 
fitted coefficients for unnecessary terms need not be zero. First, generate 
x, to be a sample of 100 from a distribution that is Uniform on the 
interval [0,1]. Then generate x2 = lOOx, + Uniform random number, so 
x2 is a rescaling of x, plus a small random amount. Finally, compute y = 
x2 + Uniform random number on the interval 0 to 5. These computations 
can be done in Arc, and then put into a data set, with the following 
commands 

(+  (*  

( +  (*  

: Ityt1) t l S i m t t )  

We can clearly view y as depending on either x ,  or x2, since these 
differ only in the third significant digit. Fit the OLS regression of y on 
x, and x2. What are the coefficient estimates for 77, and q2? Repeat 
several times (you can do this using the “Add a variate” menu item 
to create a new y for the given and x2 by typing the expression 
y l  = ( +  (*  5 into the dialog and then using 

y ,  as the response. Summarize your findings. 

11.5 The Galipagos Islands off the coast of Ecuador provide an excellent 
laboratory for studying the factors that influence the development and 
survival of species. The file l s p  gives data for each of 29 is- 
lands. For each island, the total number of animal species was recorded, 
along with the number of endemic species (those that were not intro- 
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11.6 

duced from elsewhere), and several physical characteristics of the island, 
such as its area, maximum elevation, distance to and size of the nearest 
island, and distance from Santa Cruz Island. A few elevation measure- 
ments are missing for very small islands. Examination of large-scale 
maps suggest that none of these elevations exceed 200 m. 

Use these data to find variables that seem to influence diversity, as 
measured by some function of the number of species and the number 
of endemic species, and summarize your results. 

We continue the sleep regression in the file sleep. l s p  discussed in 
Section 10.4, using the mean function 

A summary of the fit of this function is given in Table 10.3. 

11.6.1 

11.6.2 

11.6.3 

11.6.4 

11.6.5 

11.6.6 

11.6.7 

Test the hypothesis that E(TS I x) does not depend on the size 
terms, log,(BW) and log,(BrW), and summarize results. 

Next, test the hypothesis that does not depend on log2(BrW), 
with log2(Bw) not included in the mean function. Do the results 

of this test appear to contradict the last result? Compare the 
coefficient estimate for log,(BW) in the full model and in the 
model without log,(BrW). Can you explain the change in sign? 

Based on the full model, examine a 3D added-variable plot for 
log,(BrW) and log,(BW), and summarize your findings. 

Assuming that the full model provides a useful approximation 
for the mean function for TS given the predictors, use both 
forward selection and backward elimination to find a subset of 
terms that can describe the mean function without important 
loss of information. 

Construct the C,-statistic for comparing the full model to the 
model with mean function 

Based on C,, what do you conclude about the two models? 

Compute the C, statistic for comparing the full model to (a) the 
model without log,(BrW), and (b) the model without log,(BrW) 
and . In each case, provide interpretation of C,. 

Consider the mean function without the term log,(BW). An 
investigator has a theory that predicts that the coefficient of 
log,(GP) should be twice the coefficient of log,(BrW) in this 
reduced mean function. Test the hypothesis that this theory is 
correct against the alternative that it is not correct. 
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Factors and Interactions 

Allowing categorical predictors increases the range of questions that can be 
studied using regression methodology. In this chapter we discuss the use of 

which convert categorical predictors into numerical ones for use in 
regression models. 

12.1 FACTORS 

Categorical predictors have two or more Sex is an example of a cate- 
gorical predictor with two levels, male and female. Treatment status, with the 
levels treated and control, is another example of a categorical predictor with 
two levels. Other categorical predictors can have many levels, such as age, 
grouped as young, not-so-young and old; auto type, with levels sedan, van, 
and truck; or location, with one level for each location where data were col- 
lected. Categorical predictors serve to distinguish populations on qualitative 
rather than quantitative variables. 

To use categorical predictors in regression models we must have a way 
to indicate their levels using numerical variables. This is done by creating 

and sets of indicator variables called 

12.1.1 Two Levels 

Suppose we wanted to include a predictor in a mean function, where 
has two levels, either or indicating whether an ex- 

perimental unit  is given the treatment or given the control. We can obtain an 
indicator for the levels of by defining the variable ti1 to have the value 
1 if = and the value 0 if = We know that if 
L’, = 1 ,  then the experimental unit received the treatment, and if v I  = 0, then 

it received the control. In the data file, pi, would appear as a column of zeroes 
and ones. Any two different numbers could be used in place of zero and one 
to indicate the levels of but zero and one are used because the resulting 
models are the easiest to interpret. The variable u ,  is called an 
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able, or sometimes a variable. Only one indicator variable is required 
to describe a two-level categorical predictor. 

Suppose further that we have a sample of n ,  independent treated experi- 
mental units and an additional n2 independent control units, and we wish to 
test the hypothesis that the expected response for the control population is the 
same as that for the treated population. The usual two-sample t-test is often ap- 
propriate for this test. It arises naturally in the context of the regression model 

where u1 is the indicator for Action as described above. The mean for the 
control group is E(y I = 0) = r],,, while the mean for the treated group is 
E(y I = 1 )  = q,, + T I , .  Thus, q1 is the difference between the population means 
for the treatment population and the control population. The f-statistic for the 
hypothesis that q,  = 0 is the same as the usual two-sample t-statistic for com- 
paring the means of two populations with the same variance. 

12.1.2 Many Levels 

Two indicator variables o2 and o3 are required to describe a categorical pre- 
dictor with 3 levels: 

u2 = 0 and u3 = 0 for level one 

7+ = 1 and u3 = 0 for level two 

u2 = 0 and u3 = 1 for level three 

The variable u2 is the indicator for level two, and u3 is the indicator for level 
three. By convention, the subscript on the variable is the same as the level it 
is indicating. If the level is neither two nor three, we know it must be level 
one, the only remaining level. 

A categorical predictor C with levels requires C -  1 indicator variables 
. . , For any observation, at most one of these indicator variables is equal 

to one, and all the rest are equal to zero. If they are all zero, then C is equal 
to its first level. If w j  = 1 ,  then C is equal to its j th level. 

The set of indicator variables used to describe the levels of a categorical 
predictor is called afactor. In Arc, a categorical predictor can be converted into 
a factor using the “Make factors” item in the data set menu. We will illustrate 
the use of this dialog shortly. 

12.2 TWIN DATA 

Known particularly for his work on the heritability of IQ, Sir Cyril Burt (1 883- 
197 1) was among England’s most honored psychologists during his lifetime. 
Shortly after his death, scientists began to question statistical peculiarities in 
his published work, leading to the headline “Crucial data was faked by eminent 
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psychologist” on the front page of the Times in October 1976. 
Burt’s work fell into disrepute for some time thereafter. However, it has been 
argued recently that Burt did not get a fair hearing at the time and that he is 
in fact innocent of the charges that he “faked the data.” 

The data file t w i n s .  l s p  contains one of Burt’s data sets that was published 

in 1966. The data set contains the IQ scores for 27 pairs of identical twins, 
one reared in a foster home and the other reared by their biological parents. 
In addition, there is a categorical predictor C which indicates the social class 
of the biological parents, with C = 1 for upper class, C = 2 for middle class, 
and C = 3 for lower class. We begin by considering the regression of the 
IQ for the twin reared by the biological parents, on social class. 

The first step is to convert C into a factor, a set of two indicator variables 

that indicate the levels of social class. To create factors in Arc, select the item 
“Make factors” from the data set menu. This results in the dialog shown in 

Figure 12.1. Select the variables from which you wish to create factors and 
then select the way you want the factors to be computed. The default is to use 
the first level as the baseline for measuring the effects of the other variables. 
This is the way we defined indicator variables in Section 12.1. This option 
creates a factor with the same name as the variable, but with the prefix { F } .  
The factor { F } C  represents the collection of indicator variables describing 
the categorical predictor C. The other two choices for computing factors are 
to create one indicator variable for each level, or to use effect coding. These 
options are described in the complements to this chapter. For now, we will 
use only the default. 

To fi t  the model 

I C )  = qo + + with Var(ZQb I C) = o2 (12.1) 

in Arc, specify as the predictor and as the response. The regression 
output is shown in  Table 12. I .  The indicator variables ti2 and u3 are called 

{ F } C [ 2 ]  and in  the regression output, the number in square brackets 
indicating the level of C. The first level of C is used as the baseline and thus 
does not appear in the output. 
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TABLE 12.1 Fit of the Regression Model (12.1) 

= = 

= 

= 

= 

[21 - 
( F I C  [31 - 

According to the regression coefficient for the mean difference 
I C = - I C = 1)  is estimated to be about 6 ,  = -17.1 points, 

while the difference E(ZQb I C = 3) - I C = 1) is estimated to be about 
7 j 3  = - 16.4 points. Note also from the analysis of variance table that the resid- 
ual sum of squares is the same as the pure error sum of squares; can you 
explain why this happens? 

The results of our analysis so far can be visualized by constructing box- 
plots of conditioning on C ,  as shown in Figure 12.2. The boxplots con- 
firm the results of the numerical analysis that the population mean for the 
upper social class I C = 1) is greater that the population means for the 
other two classes. The plots suggest also that the variance in IQ for the upper 
social class could be larger than the variance in the other two populations. 
Methods of testing for nonconstant variance are discussed in Chapter 14, and 
the task of testing for nonconstant variance in this regression is set as Prob- 
lem 14.6. 

12.3 ONE-WAY ANALYSIS OF VARIANCE 

Let C be a categorical predictor with l! levels, and consider the regression 
model 

with Var(y I C) = u2 (12.2) E(y I C )  = + q2u2 + . . .  + 
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FIGURE 12.2 Boxplots of IQb conditioning on C from the twin data. 

The mean for the population associated with the first level of the categorical 
predictor is just because this population is indicated by v2 = . . .  = v, = 0. 
For j > I ,  the mean for the population with vJ = 1 is E(y I C = j )  = vo + 77,. 
The means of the !2 populations determined by the levels of C are all equal 
if and only if 11, = 0 for j = 2,. . .,!. Thus, we can test the hypothesis that 
the population means are equal by using the F-statistic to compare the null 
hypothesis mean function E(y I C) = 7i0 with the mean function (12.2) for the 
alternative hypothesis: 

NH : E(y 1 C = 1) = . . .  = E(y I C = !2) = 70 

AH : NH not true; that is, at least one 71; # 0, j = 2,. 

This procedure is called a of Despite its name, the 
one-way analysis of variance is a procedure to analyze differences in means. 
When fitting (1  2.2) in Arc, the analysis of variance output corresponds to a 
one-way analysis of variance. For example, the F-statistic in the summary 
analysis of variance table of Table 12.1 can be used to test the hypothesis 
that the population mean IQ for children reared by their biological parents 
does not depend on social class. The “Show ANOVA” button that appears on 
boxplots will cause the one-way anova table for comparing the subpopulation 
means to appear on the plot. 

We can test the hypothesis that two population means are equal by formu- 
lating equivalent tests based on the regression coefficients in (12.2). The test 

depends on whether the first (standard) level of C is one of the two means 
compared. The hypothesis E(y 1 C = 1) = E(y I C = j )  is equivalent to the hy- 
pothesis that ‘1, = 0. This test can be carried out using a f-test from the fit of 
(12.2) in the usual way. 
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On the other hand, for j > 1 and k > 1, the hypothesis 

is equivalent to the hypothesis that qj = qk discussed in Section 1 1.3.1. We 
can also use an equivalent t-test based on the test statistic 

The standard error of a linear combination of coefficient estimates is discussed 
in Section 7.6.4, but for the special case of one-way analysis of variance the 
standard error is just 

with G2 the residual mean square from the one-way analysis of variance table, 
and j j  is the mean response for the jth level of the factor. Under the hypothesis 

of equal population means, this statistic has a distribution. 

12.4 MODELS WITH CATEGORICAL AND CONTINUOUS 
PREDICTORS 

Continuing with the twin data, consider the regression of y = the IQ of 
the twin reared by foster parents, on and C. There is now one continuous 
predictor and one categorical predictor, social class C. Let's think about 
how social class can affect the mean function. Suppose that for each fixed level 
of C the mean function for the regression of IQfon can be expressed using 
a simple linear regression model: 

E(y I = = 7iOc, + with Var(y I = g 2  

(12.3) 

The additional subscript on the 71's allows for the possibility that 

We distinguish four cases for (12.3). 

Model I :  Unrelated Regression Lines. In this, the most general case, the 
intercept and slope parameters for each social class are different, and we have 
a circumstance like that in Figure 12.3a. The social class with the highest 
average y may depend on the value of For some values of one social 
class is best, and for others a different social class is best. We say that there 
is 
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I 

d. Model 4: Coincident regressions. 

FIGURE 12.3 Four models for comparing regressions 

Model 2: Parallel Regression Lines. In this model, the slopes are equal, 
= t i lz  = r / , 3 ,  but the intercepts may differ. The mean functions shown in 

Figure 12.3b are three parallel lines. This is a very important special case, 
because the effect of social class does not depend on the value of and we 
can speak unambiguously of a social class effect as the difference between the 
intercepts. In this case we may also say that no C 

Model 3: Equal Intercept Regression Lines. In this model, intercepts are 

equal, ‘lo, = = qo7, but the slopes may differ, as shown in Figure 12 .3~ .  The 
lines never cross for > 0, the ordering of the social classes is always the 
same, but the size of the difference changes with In other experiments, 
the lines may cross at some point other than on the y-axis. 

Model 4: Coincident Regression Lines. Here, all lines are the same, so 
all the intercepts are the same and all the slopes are the same. This case is 
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FIGURE 12.4 The twin data, with a separate regression line shown for each level of C ,  according 
to general model I .  The solid line with the largest intercept is for C = 3, the dashed line is for 

C = 2, and the remaining line is for C = 1. 

illustrated in Figure 12.3d, where there is only one regression line that is 
common to all social classes. In this case, social class has no effect. 

To examine these four possibilities for the twin data, we begin by looking 
at a plot of the data, shown in Figure 12.4. In creating this plot you should 
specify C as a marking variable. This will cause points to have a different 
symbol and color for each social class. Ignore the lines on the plot for now; 
they will be discussed shortly. 

12.4.1 Fitting 

We now discuss how Arc can be used to fit each of the four models. We start 
with Model and then progress to the more complicated models. 

class and use OLS to fit the usual simple linear regression of y on ZQb, 
Fitting Model 4: Coincident Regression Lines. To fit Model 4, ignore social 

You can superimpose the fitted version of this model on the plot of Figure 12.4 
in the usual way using the parametric smoother slidebar. 



12.4 MODELS WITH CATEGORICAL AND CONTINUOUS PREDICTORS 295 

TABLE 12.2 Summary of Four Models for the 
Twin Data 

~~ 

Residual 
Name Model df RSS MS 

Unrelated 1 21 1317.47 62.74 

Parallel 2 23 1318.40 57.32 

Equal intercepts 3 23 1326.46 57.67 

Coincident 4 25 1493.53 59.74 

Fitting Model 2: Parallel Regression Lines. Model 2 has three intercept 
parameters and one slope parameter. If the two terms making up the factor 

are called u2 and t i 3 ,  so = 1 when C = 2 and 713 = 1 when C = 3 ,  the 
mean function for parallel regressions is just 

In this mean function, the common slope is q l ,  and the intercepts are qo if 
= 1 ,  *tjo + *i/02 if C = 2, and qo + if C = 3 .  The subpopulation with the 

first level, C = 1, has been used as a standard and the intercepts for the other 
two levels are measured relative to it. Thus, is the change in the intercept 
when passing from the standard level to level 2, and 7jO3 is the change in the 
intercept when passing from the standard level to level 3 .  For this reason it is 
often useful to construct data files so the first level of any factor corresponds 
to the experimental control, or another meaningful standard. 

You can fit model (12.4) in Arc using “Fit linear LS,” specifying the re- 
sponse y along with terms and To compare models using F-tests, 

we need only the residual sum of squares and residual degrees of freedom; 
these are given in Table 12.2. 

Assuming you have used C as a marking variable, you ca.n superimpose 
the fitted version of model (12.4) on Figure 12.4 by selecting the item “Fit by 
marks-parallel’’ from the pop-up menu for the parametric smoother slidebar. 

Fitting Model 3: Equal Intercept Regression Lines. To fit Model 3 ,  we need 
to have a way of specifying a separate slope for for each level of C. This 
is done by creating an intrrucfion between and the factor using the 
“Make interactions” item in the data set menu. The interaction dialog creates 
a new variable called either or depending on the order 
you specify the variates, consisting of the two terms ii2 x and 7 i 3  x 

These are used in the coincident lines mean function: 

The common intercept is and the three slopes are ill  if C = 1, rlI + rI12 if 
= 2, and + if C = 3 .  Again, the first level of C is used as a standard, 
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and the slopes for the other two levels are measured relative to it. For example, 
r ) 1 2  is the change in the slope when passing from the standard level to level 2. 

Fit model (12.5) using y as the response, along with terms and 
The results are summarized in Table 12.2. You can add these regres- 

sion lines to your version of Figure 12.4 by selecting “Fit by marks-equal 
intercept” from the parametric smoother slidebar pop-up menu. 

Fitting Model I :  Unrelated Regression Lines. The most general model, 
Model 1, requires fitting the regression of y on and to 
give separate slopes and intercepts for each level of C: 

The results are also summarized in Table 12.2. You can add these regression 
lines to your plot by selecting “Fit by marks-general” from the parametric 
smoother slidebar pop-up menu. These are the lines we added to Figure 12.4. 
Although the lines are allowed to have different slopes, it appears from the 

plot that the estimated slopes are very similar, suggesting that Model 2 may 
be appropriate. 

12.4.2 Tests 

Most tests concerning the slopes and intercepts of different regression lines 
will use the general model, Model 1, as the alternative model. The usual F- 

statistic for testing Model 2, 3, or 4 against Model 1 is 

(12.7) 

where = 2,3,4 represents the model being tested. In ( 12.7), RSS, is the resid- 
ual sum of squares for model number P, with df, degrees of freedom, and 

is the estimate of o2 from Model 1.  To get a p-value, compare to the F 
distribution with (df, - df , ,df , )  df. 

(RSS, - RSSI)/(dfp - df , )  

lq 

For the twin data, 

( 1 3 18.40 - 13 17.47)/(23 - 2 1) 
= 0.007 

62.74 
= 

The very large p-value, about 0.99 agrees with our visual impression of Fig- 
ure 12.4. This p-value was obtained by comparing the value 0.007 with the 

distribution. 
Other comparisons are possible, provided the model of the null hypothesis 

is nested within the model of the alternative hypothesis. For example, we could 
test NH: Model 4 versus AH: Model 2, but we cannot use the F-test for NH: 

Model 3 versus AH: Model 2. 



12.5 TURKEY DIETS 297 

TABLE 12.3 The 'hrkey Growth Data 

= Source = Dose = Reps y = AveGain = WithinSS 

Control 

1 

1 

1 

1 

2 

2 

2 
2 

3 

3 

3 

3 

0 
0.04 

0.10 

0.16 

0.28 

0.04 
0.10 
0.16 

0.28 
0.04 

0.10 

0.16 

0.28 

10 

5 
5 
5 
5 
5 

5 
5 

.5 
5 
5 

5 
.5 

623.0 

680.2 

72 I .4 

750.4 

789.4 

672.2 

709.2 
731.2 

778.2 

668.4 
715.6 

732.0 

794.0 

3408.0 

206.8 
1841.2 

1223.2 

861.2 
28 10.8 

860.8 

592.8 
2642.8 

2399.2 
327.2 

12.54.0 

1488.0 

12.5 TURKEY DIETS 

Methionine is an amino acid that is essential for normal growth in turkeys. De- 
pending on the ingredients in the feed, it  can be necessary for turkey producers 
to add supplemental methionine for a proper diet. Too much methionine could 
be toxic. Too little methionine could result in malnourished birds. 

An experiment was conducted to study the effects on turkey growth of 
different doses of methionine, ranging from 0.04% to 0.28% of the total 
diet, from three different commercial sources S. Methionine from each of the 
three sources was added to turkey feed in each of four doses, resulting in 12 

treatment combinations. In addition, the experiment included a control diet 
in which no methionine was added. The total experiment thus consisted of 
the 13 treatment combinations shown in the first two columns of Table 12.3. 
Each of the 12 methionine treatments was randomly assigned to five pens of 
turkeys, and the control was randomly assigned to 10 pens. The total experi- 
ment consisted of x 12) + 10 = 70 pens, each containing the same number 
of birds. 

Pen weights were obtained at the beginning and the end of the experiment 
three weeks later. The response variable is the average weight gain in grams 
per pen. Reported in Table 12.3 are all treatment combinations, the number 

of pens that received each treatment, the average y of the weight gains per 
treatment, and WS, the sum of squares between the pen weight gains within a 
treatment. These data are available in file l s p .  

The within-treatment sum of squares WS can be used to compute a sum 
of squares for pure error, to be used in testing lack of fit; see Section 9.3.5, 
page 214, to refresh your memory about data summarized in this way. The 
sum of squares for pure error is just the sum of the 19916, with (4 x 12) 
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+ 9  = 57 df. Thus, 8ie = 19916/57 = 349.404 is a model-free estimate of pen 

to pen variation with 57 df. 

12.5.1 The Zero Dose 

The results of this experiment are similar to those for the twin data because 
there is one categorical predictor S and one continuous predictor We can 
think of within-source models just as we thought of models within social class 
in the twin data. There are two important differences between the two data 
sets, however. First, in this experiment we do not have the data on individual 
pens, and the number of replicate pens for the control diet is different from 
that for the methionine diets. This means that we will need to use weighted 
least squares when fitting models, where the number of replicates is used as 
the weight. Second, there is a zero dose that complicates matters a bit. Since 
a zero dose of one source is the same as a zero dose of any other source, 
the within-source mean functions must agree at = 0, so that the intercepts 
for the within-source mean functions must be equal. This means that only 
coincident and equal-intercept models are reasonable for this experiment. 

How should the zero dose be included in the indicator variables? Actually, 
it doesn’t matter for fitting mean functions with a common intercept for all 
sources. In the data file, we have coded the zero dose to have S = 1. 

12.5.2 Adapting to Curvature 

Figure 12.5 is a plot of the data obtained by using S as a marking variable 

and the number of replicates as weights. The plot appears curved, suggesting 
that straight-line within-source mean functions may not be adequate for these 
data. The curvature can be seen more clearly by removing the linear trend. 
To confirm, fit the weighted least squares regression of y on and D { F } S ,  
fitting the mean function for equal intercepts and different slopes. For the fit 

of this mean function, the residual mean square is 1391.90 with 9 df, and the 
F-test for lack of fi t  is F = 1391.90/349.404 = 3.98, which, when compared 
to the distribution, gives a p-value less than 0.001. Fitting with straight 
lines doesn’t make sense here. Some reflection on the problem may convince 
you that this finding is appropriate. If weight gain increased linearly with the 
amount of methionine, we could keep adding the supplement to get bigger 
and bigger turkeys. We might reasonably expect that, above some value for 

additional supplementation has no effect, or a toxic effect. This suggests 
that the within-source mean functions should be curved, and flatten out as 

increases. 
As discussed in Chapter 7, quadratic polynomials might be useful for de- 

scribing the response to dose over the range in this experiment. In particular, 

the quadratic model 
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FIGURE 12.5 Turkey growth data. 

allows separate regression coefficients of and D 2  for each level of S, but 
requires a common intercept. To fit this mean function, use weighted least 
squares with response y and terms and The fi- 
nal term provides for interaction terms between D2 and We 
leave it as an exercise to (a) show that this quadratic mean function matches 
the data well and (b) compare it to the coincident regression mean func- 
tion, 

E(y 1 = + + r/?D2 

12.6 CASUARINA DATA 

Seeds from a tropical tree called were collected from 
two seed sources. Six plants from each seed source were grown with fertilizer 
and another six without. After four years, diameter was measured at 65 cm 
above ground. The trees were then cut down and weighed. The goal for this 
example is to study the dependence of the response, = weight in kg, on the 
three predictors, diameter in cm, the use of fertilizer F ,  and seed source S. 

The data are in the file l s p .  

The variables and are categorical predictors, so to use them in regression 
models we need to form factors. However, S is coded to have the values 0 
for one source and 1 for the other, and similarly is coded 0 for trees grown 
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without fertilizer and 1 for trees grown with fertilizer. The factors we create 
from these categorical predictors would in this case be identical to the vari- 
able itself; consequently, in this special case the variables are already factors. 

If there were more than two sources, or if S were coded as a text variable 
with values “SO” and “S 1 ,” for example, then factors would have to be cre- 

ated. 
We begin by thinking about how W might depend on D for fixed values of 

S and Elementary physics and geometric considerations suggest that 

Weight = Volume of wood x Wood density per unit volume 

Furthermore, if a tree were a perfect cylinder, then 

Volume of wood = (7r/4j x height x D2 

Putting these two together, we get 

E(W I D, height, density) = 7r/4 x density x height x D2 (12.8) 

This relationship depends on height and density, which are unknown. How- 
ever, we can use the results of Section l l .  l to get marginal relationships. First, 
take logarithms, 

E(log(W) 1 D, height,density) FZ l o g ( ~ / 4 )  + log(densityj 

+ log(heightj + 2log(D) 

This equation is an approximation because (1 2.8) is approximate and because 
the logarithm of expectation is only approximately the same as the expecta- 
tion of a logarithm. We now average over the predictors we have not observed 
to get a mean function involving only D. Using equation (1 1.2), we find 

E(log(W) 1 D) = log(7r/4) + E(log(density) I 

+ 2 log(D) 

+ E(log(height) I D j  

This equation depends on log(D) and on the mean functions for the regressions 
of log(density) on D and log(height) on D. We have no data to estimate these 
mean functions, so we must make an informed guess about them. Suppose that 
wood density is independent of diameter of the tree, so E(log(densityj I D) is 

constant for all trees in a seed source/fertilizer combination. Call this constant 
d .  We can also hypothesize about the relationship between height and diameter. 
Suppose 

E(height 1 D j  = mODn’’ 
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If = 1, then height and diameter are linearly related. If m l  = 0, then height 
and diameter are unrelated. Other values of provide nonlinear relation- 
ships between height and diameter. We can then write E(log(height) 10) 

log(mo) + m ,  log(D). Combining these terms gives a mean function for 
log(W): 

E(log(W) I log(71-/4) + d + log(mo) + (2 + m,)log(D) 

= + v l  W D )  (12.9) 

The intercept is 71" = l o g ( ~ / 4 )  + d + log(mo), and the slope is = 2 + We 
can estimate q1 and as usual. An estimate of will be given by 6, - 2, 
but we cannot estimate d or 

The discussion so far is for fixed values of S and The effect of either 

of these categorical variables, if there is one, can be through the intercept, the 
slope, or both. There are four possible populations formed by the two levels 
of S and the two levels of F. 

12.6.1 Effect Through the Intercept 

The model 

E(log(W) I = + 7i2S + ri3F + + 7 ,  log(D) (12.10) 

allows for separate intercepts, but forces a common slope. Terms of the form 
SF are called because they allow for interactions be- 
tween two factors, in this case S and F. This mean function has four separate 
intercepts, as follows: 

The population with S = 0 and F = 0 has intercept qo and is used as the stan- 
dard. is the effect of passing from ( S  = 0, F = 0) to (S = 0, F = l), while i l2 

is the effect of passing from (S = 0, F = 0) to (S = 1, F = 0). What happens if 
we change both seed source and fertilizer? Would we get the benefits of both 
changes, or might there be some unique effect? The effects of S and F are said 
to be if r14, the coefficient of the interaction term S F ,  is zero. Other- 
wise, when r14 # 0, there is an interaction between S and F and the effects are 
said to be The effects could be nonadditive if the fertilizer was 
effective with one seed source but not with the other seed source. Additive 
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FIGURE 12.6 Four situations illustrating additive and nonadditive effects in model (12.1 1) .  

effects are often much easier to understand than nonadditive effects, so testing 
q4 = 0 is usually of interest. 

To gain additional insight into the difference between additive and nonaddi- 
tive effects, let’s momentarily consider a simplified version of model (12.10) 
without the term for 

where y = log(W). 
Figure 12.6a illustrates additive effects when 7i4 = 0. The plot consists of 

four points, the four values of the mean function E(y I F )  for model (12.1 1). 
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E(yl S, F) 

I I I 
so s= 1 s=2 

- 
I I I 

s=o S=l s=2 

a .  Additive b. Konadtiit,ive 

FIGURE 12.7 
predictors with 2 and 3 levels. 

Two situations illustrating additive and nonadditive effects with two categorical 

The two lines connecting the pairs of points for F = 0 and = 1 are for 
reference and visual clarity and are not part of the mean function. 7i0 marks 
the mean of the standard reference population (S = 0, F = 0), and all other 
effects are measured relative to it. The two reference lines are parallel because 
rj4 = 0. The effect of fertilizing is the same for the two seed sources, and 
the eEect of changing from seed source zero to seed source one is the same 
whether we fertilize or not. 

Figures 12.6b-d illustrate different types of nonadditive effects. In Fig- 
ure 12.6b, fertilizing is beneficial for both seed sources, but the effect is 
greater for seed source one than for seed source zero. Figure 1 2 . 6 ~  is similar 
to Figure 12.6b, except that = 0 so there is no benefit to fertilizing seed 

from source zero, but there is still a benefit for seed source one. An extreme 
interaction is illustrated in Figure 12.6d. 

Figure 12.7 illustrates additive and nonadditive effects when S has three 
levels. Again, the line segments connect the population means for = 0 and 

= I .  These segments are not part of the mean function, but they help us 
recognize additive effects: The parallel line segments in Figure 12.7a indi- 
cate additive effects, while the nonparallel line segments in Figure 12.7b 
indicate nonadditive effects. Also, in Figure 12.7b there is an additive ef- 

fect between S = 0 and S = 1, but not between S = I and S = 2. Overall, 
S has a nonadditive effect because we still need the interaction term 
in the mean function. Graphs such as these could be used in practice by 
replacing population means with sample means. Their appearance will de- 
pend on the order in which the categories are represented on the horizon- 
tal axis, but reordering cannot change additive effects into nonadditive ef- 
fects. 
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2 2.5 3 
logP1 

FIGURE 12.8 The Custrarinu data, with a separate OLS line fi t  to each S F  combination. For 
S = F = 0, the points are circles, and the fitted line is the solid line. For S = F = 1, points are +, 
and the fitted line has long dashes. For S = 0, F = I ,  points are x, and the fitted line has short 
dashes. For S = 1, F = 0, points are diamonds, and the fitted line has intermediate dashes. 

12.6.2 Effect Through Intercept and Slope 

Returning to the regression including S, F and log(D), the most general mean 
function with separate slopes and intercepts is given by 

E(log(W) I = + + + q4SF + 7/,log(D) 

+ log(D) + log(D) 

+ rl,SFlog(D) (12.12) 

This mean function allows a separate slope and a separate intercept for each 
combination of S and It requires fitting with several 

and a S F  log(D). 
Figure 12.8 is a plot of log(W) versus log(D), with points marked separately 

for the four groups defined by combinations of S and F .  The marking variable 
was created using the “Add a variate” item and then typing 
in the text area of the dialog. = I 1  if S = F = 1, 10 if S = 1, F = 0, 1 
if S = 0, F = 1, and 0 if S = F = 0. Also shown on the plot are the OLS regres- 
sion lines fit to each group separately. Although formal testing may be de- 
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TABLE 12.4 Regression Summary for the Casuan'na Data 

= = L1 

= 

= F) 

2.15514 0.0946287 22.775 

= 

-1.88002 0.221641 -8.482 

S -0.168918 0.0614421 -2.749 

-0.0558921 0.0605592 -0.923 

0.965764 

: 0.148293 

24 

20 

ss 
12.4068 4.1356 188.06 0.0000 

20 0.439819 0.0219909 

sirable, from the plot it appears that a common slope model may be adequate, 

and for exposition here we will assume that the effects of F and S are ad- 
ditive. 

This suggests fitting a mean function with log(W) as the response and with 
terms F ,  and as summarized in Table 12.4. Of the two categorical 

variables, only source S seems to be important, and F can probably be dropped 
from the mean function without important loss of information. We see that 
the estimate for the coefficient of log(D) is 2.155 with a standard error of 

0.095. From this we can compute the t-statistic for testing = 0 as (2.155 - 2) 
/0.095 = 1.63. Comparing this to the t20 distribution gives a two-tailed p -  

value of about 0.12, so these results are reasonably consistent with = 0. 
At least for these four-year-old trees, E(height I 0)  appears to be independent 
of D = diameter, trees of seed source zero weigh more on the average than 
trees of seed source one, and fertilizer does not appear to have an effect on 
weight. 

12.7 FACTORIAL EXPERIMENTS 

In some experiments, data are collected at all combinations of levels of a 
few factors. For example, a 2 x 3 x 4 factorial experiment has three factors, 
and the first factor has two levels, the second has three levels, and the third 
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TABLE 12.5 The Wool Data 

Variable Definition 

Len 

Amp 
Loud 

Cycles 

Length of test specimen (250, 300, 350 mm) 
Amplitude of loading cycle (8, 9, 10 mm) 

Load put on the specimen (40, 45, 50 g) 
Number of cycles until the specimen fails 

factor has four levels. In a single replicate of a complete factorial experiment, 
one observation is taken at each possible combination of the factors, so in a 
2 x 3 x 4 experiment there will be n = 24 observations. Experiments are often 

done with more than one replication; and in experiments with many factors, 
fractional replication, in which some combinations of the factor levels are 

not used, may be required. Most of the methodology described in this book 
can be applied to the analysis of factorial experiments. However, there is a 
huge literature on designing and analyzing experiments with factors, including 
many topics that will not be covered here; the complements include a few 
references. 

As an example, the data in the file wool. l s p  are from a small experiment to 
understand the strength of wool as a function of three factors that were under 
the control of the experimenter. The variables are summarized in Table 12.5. 
We will use the logarithm of the number of cycles to failure log2(Cycles), as 
the response. This data set has three factors, each at three levels, and would 
be called a 3’ design. It has a single replication, so n = 33 = 27. 

As a first analysis of these data, consider fitting a model with just 
efects, which correspond to fitting indicator variables for the three factors 
without any interaction terms. Create three factors from the three variables and 
then fit the OLS regression of log2(Cycles) on {F}Len,  {F}Amp, and 
as summarized in the top part of Table 12.6. The coefficient estimates in 
Table 12.6 can be interpreted similarly to the coefficient estimates for factors in 
the earlier examples in this chapter. For example, the estimate for 
is the estimated difference between the response when the load is 300 and 
when the load is 250, all other factors held fixed. The overall F-test confirms 
that the response is not independent of the predictors. 

The analysis of experimental data like these is often summarized in a se- 
quential analysis of variance table. Select the item “Examine submodels” from 
the regression menu. You need to select order for entering the terms, but in 
balanced factorial experiments like this one, the order doesn’t matter because 
all the terms are This means that the estimated coefficient for a 
term is the same with or without any of the other terms in the mean func- 
tion. If the experiment is just slightly unbalanced-for example, if one of the 
27 observations were missing-then orthogonality does not hold. Select any 
order you like. The result is in the bottom part of Table 12.6. 
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TABLE 12.6 Main Effects Only Model for the Wool Data 

= 

= 

= 

[ 9 1  

: 

.OOOO 

= 

I 

1 
I 
I 
I 

The usual summary for this analysis consists of the last three columns of the 
bottom part of Table 12.6. We see that each of the changes for adding a term 
has two df, because each main effect has two df. Because of the orthogonality 
of the design, the ratio of each of the changes in sum of squares for fitting 
a main effect to the residual mean square is an F-statistic for testing that the 
regression coefficients for that term are all equal to zero; all three main effects 
are clearly nonzero in this regression. 

The analysis of these data could continue by adding interactions to the mean 
function to see if they are required to summarize log2(Cycles) adequately; we 
reserve this to Problem 12.7. 
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12.8 COMPLEMENTS 

12.8.1 Alternate Definitions of Factors 

In addition to the method described in Section 12.1, the “Make factors” dialog 
includes two other options for constructing the terms that make up a factor. 
These alternatives can be useful in some circumstances. 

One Indicatorfor Each Level. Let’s return to the turkey growth data. Sup- 
pose that we choose to define a factor from S using the option “One indicator 
for each level,” as shown in the sample dialog in Figure 12.1. This would 
create three indicators: Y, for level one of S, u2 for level two of S, and ti3 for 
level three of S. A factor created in this way is indicated by the prefix 

Since by construction v I  + u2 + u3 = 1 = uo, the additional term 11,  is in 

fact redundant information: Given the value of 1i2 and u3 ,  the value of Y, 

is determined. However, it can be useful to fit all three indicators to allow 
alternative interpretations of the parameters. If we fit the regression model 
with response y and predictors and fhrough the we will be 
fitting the mean function 

and the three parameters qol, 1jO2 and 1 1 ~ ~  are directly interpretable as the three 
source intercepts. Similarly, if we fit the regression of y on and 
again through the origin and omitting the term from the mean function, we 
will get 

which give the intercepts and the slopes directly. These are just reparameteri- 
zations of the models from Section 12.4, as discussed in Section 10.1.3. Thus 

the results are really the same if we f i t  with the factor defined as { F } S  or 

Effect Coding. The final option of effect is a bit more complicated, 
although it too will give results that are equivalent to using simple indicator 
variables. The terms created under effect coding have the values 0, 1, or - 1. 
For a factor S with e levels, the - 1 terms ul,. . . , v y p ,  are defined as follows: 

1 if S = .j 

-1 if S 

0 otherwise 

A factor created using this coding is denoted by the prefix { C } .  
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If we f i t  the regression model with response y and predictors {C}S and 
we will be fitting the mean function 

In this parameterization, the intercepts for the three sources are q0 + q1 

'ria + /lI2, and - r l l ,  - q12. If you add the three intercepts together, you will 

get a multiple of The quantities 7/12 and -vl - qI2 are called effects that 
add to zero. This parameterization is generally used in discussing experimental 
designs, using the constraint to make the effects of a factor sum to zero. Effect 
coding is used in some standard computer programs. 

12.8.2 Comparing Slopes from Separate Fits 

Probably the most common problem in comparing groups is testing for parallel 
slopes in simple regression with two groups. Since this F-test has 1 df in the 
numerator, it  is equivalent to a t-test. Let GI , ,  n,, and SXX, be, respectively, 
the estimated slope, residual mean square, sample size, and sum of squares 
of the predictor within group j ,  for j = 1,2. Then a pooled estimate of g2 

IS 

- 2  - (nl - 2);: + - 2);; 
0 -  

n I  + n 2 - 4  

and the t-test for equality of slopes is 

611 - 6 1 2  

a,( 1 / S X X ,  + 1 / s x x p  t =  

with n I + n2 - 4 df. The square of this t-statistic is numerically identical to the 
corresponding F-statistic. 

12.8.3 References 

Factorial experiments and designs mentioned briefly in Section 12.7 are 
very widely used. There are many books devoted to this topic, including 
Kuehl (1994) and the classic in this area, Cochran and Cox (1957). The 

twin data were given by Burt (1966). The turkey data are from Noll, 
Weibel, Cook, and Witmer (1984). The data were provided by 
Ross Cunningham. The wool data are taken from Box and Cox (1 964). The 
FACE-1 data in Problem 12.8 are from Woodley, Simpson, Bioindini, and 
Berkeley (1977). The cathedral data in Problem 12.3 were provided by 
Stephen Jay Gould. 
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PROBLEMS 

CHAPTER 12 FACTORS AND INTERACTIONS 

12.1 

12.2 

12.3 

12.4 

12.5 

12.6 

In the turkey growth data, show that the quadratic regression model dis- 
cussed in Section 12.5 is adequate, perform an appropriate test compar- 
ing the equal intercept and coincident mean functions, and summarize 
your results. 

Give a complete summary of the differences between long and short 
shoots in the apple shoots data, Problem 9.8. 

The data in the tile l s p  give y = total length and x = nave 
height, both in feet for medieval English cathedrals. The cathedrals are 
classified according to their architectural style, either Romanesque for 
the earlier cathedrals or Gothic for the later cathedrals. Some cathedrals 
have both a Gothic and a Romanesque part, each of differing height; 
these cathedrals are included twice. 

Use the data to decide if the relationship between length and height 
is the same for the two architectural styles. If they differ, describe the 
differences. 

In the twin data, one way to assess the effects of environment on IQ is 
to investigate the difference in IQ, = fQb - If environment has 
no effect, then we might expect that 

E(fQd 1 C) = 0 with I C) = cr2 

Using an F-test, compare this model to the more general model in which 

Table 12.7 gives output from fitting Model coincident lines, to 

the turkey data shown in Table 12.3 with the number of replicates as 
weights. In forming the output related to pure error, Arc assumes that 
the three values of y at each value of D are replicates. They are not, 
however, because each corresponds to a different source. An important 
point here is that computer programs cannot assess true replication. The 
three values of y at each value of D would be equivalent to replicates 
only if the three sources were in fact equivalent. 

Construct a test of lack-of-fit of Model using the within treatment 
sum of squares for an estimate of pure error. 

The tile contains data on yearly salary and other character- 
istics of faculty in a small midwestern college. The data were collected 
as evidence in a class-action case to judge a claim of salary discrim- 
ination against women. All persons represented in the data file held 
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TABLE 12.7 Fit of the Coincident Regression Model to the 'krkey Data 

= = 

= 

= 

= 

647.288 6.91625 93.589 

532.281 43.9435 12.113 

0.930256 

35.5023 

13 

11 

ss 
1 184929. 184929. 146.72 0.0000 

11 13864.5 1260.41 

3 11289.2 3763.07 11.69 0.0027 

8 2575.33 321.917 

TABLE 12.8 Variables in the Salary Data 

Variable Description 

Sex 

Rank 

Year 

Degree 

Salary 

Sex, coded 1 for female and 0 for male. 

Rank: I = Assistant Professor, 2 = Associate Professor, 3 = 

Number of years in current rank. 

Highest degree, coded 1 for Doctorate and 0 for Masters. 

Number of years since highest degree was earned. 

Academic year salary in dollars. 

Full Professor. 

tenured or tenure-track positions at the time of the study; temporary 
faculty were not included in the action. The variables described in Ta- 
ble 12.8 are included in the data file. In all sections of this problem, 
use y = log2(Salary) as the response variable. 

12.6.1 Write a mean function for the regression of y on all five pre- 

dictors that allows for the possibility of an interaction between 
Rank and Sex, but forces the effects of the other three predictors 
to be additive. Describe how to test for an interaction between 
Rank and Sex in your model. 



312 

12.6.2 

12.6.3 

12.6.4 

12.6.5 

12.6.6 

12.6.7 

12.6.8 

12.6.9 

CHAPTER 12 FACTORS AND INTERACTIONS 

Write a mean function for the regression of y on all five pre- 
dictors that allows for the possibility of an interaction between 
Rank and Sex and an interaction between Year and Sex but forces 
the effects of the other two predictors to be additive. Describe 
how to test for an interaction between Rank and Sex in your 
model. Describe how to test for an interaction between Year 
and Sex in your model. 

Construct a plot of y versus Year with the points marked by 
Rank. Based on your interpretation of the plot, suggest a mean 
function for the regression of y on Year and Rank. 

Using all five predictors, give the mean function that contains 
the two-factor interactions {F}Rank x Degree, {F}Rank x Sex, 
and Sex x Degree and is additive in the other two predictors. 
Briefly explain the roles of the various terms in this mean func- 
tion. 

If there is no discrimination, the mean function should be in- 
dependent of Sex: 

E(y I Rank, Degree, Year, YD, Sex) = E(y I Rank, Degree, Year, YO) 

Starting with the mean function of Problem 12.6.4, investigate 
the evidence for discrimination using appropriate tests. 

Starting with the mean function of Problem 12.6.4 and neglect- 
ing the issue of discrimination, develop a model for predict- 
ing y .  

Starting with the mean function of Problem 12.6.4, is there any 
evidence in the data that Year and YD have nonlinear effects? 

Starting with the mean function of Problem 12.6.4, describe 
when the three-factor interaction would be needed. No calcula- 
tions are necessary. 

Salary increases are usually given as a percentage of the current 
salary. Using the regression of y on Rank, estimate the average 
percentage increase for each rank. Is there evidence that the 
three ranks receive different percentage increases on the av- 
erage? Is there evidence that the percentage increase changes 
systematically with time? 

12.7 This problem continues the analysis of the wool data, begun in Sec- 

tion 12.7. 

12.7.1 Obtain the sequential analysis of variance table, as in the bottom 
part of Table 12.6, but do the fitting using a different order. 
Show that the results are the same. 

12.7.2 Since this design is orthogonal, the correlations between the 
coefficient estimates for the indicator variables should all be 
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TABLE 12.9 Definitions of Variables in the FACE Experiment on Cloud Seeding 

A 

D 

S 

C 

Action, coded I of the day is seeded with silver iodide, 0 otherwise. The 

decision to seed or not was made at random for each suitable day. 

A time trend: The number of days after June 15, 1975. 

The suitability for seeding score. A score of S 1.5 was required for 

Cloud cover in the experimental area, measured using radar in Coral 

Prewetness, the amount of rainfall in the hour preceding seeding, in 

Echo motion category, either 1 or 2 ,  a measure of the type of clouds 

Rainfall in 10’ cubic meters in the target area following the action. 

including the day in the study. 

Gables, Florida. 

10’ cubic meters. 

present. 

12.7.3 

12.7.4 

12.8 Cloud 

zero. Obtain the correlation matrix of the estimates and verify 
that this is in fact true. 

Use the “Table of’ command to obtain a table of means for 
log,(Cycles), conditioning on Show that the estimated co- 

efficient for is equal to the difference between the 
mean for log2(Cycles) given = 45 and = 40. Show 
that the standard error of this coefficient is given by $(2/9)’/*, 
and explain where this formula comes from. 

Refit the data, but use a mean function that includes all main 
effects and all two-factor interactions. Verify that the two-factor 
interactions are orthogonal to each other and orthogonal to the 
main effects. Test the hypotheses that each of the two-factor 
interactions is zero against a general alternative. 

Seeding. Judging the success or failure of cloud seeding de- 
signed to increase rainfall is an important practical problem. Results for 
cloud seeding experiments have generally been mixed: Sometimes the 
observed effect of seeding has been to increase rainfall, sometimes to 
decrease rainfall, and sometimes no effect is observed. During the rainy 
season, the suitability of each day for seeding is judged, and on suitable 
days a decision to seed or not is made at random. The total rainfall in a 
target area during a fixed period of time following the treatment is the 
response variable. Comparing the rainfall on seeded days to unseeded 
days provides the basis for deciding if seeding increases rainfall. 

Data from the first Florida Area Cumulus Experiment (FACE) from 
1975 are given in the file cloud. l s p .  In that year, n = 24 days were 
judged to be suitable, and the variables in Table 12.9 were recorded. 

12.8.1 In these data, how many days are seeded? How many un- 
seeded? Draw a boxplot of log(Ruin) conditioned on A,  and 
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summarize the information in this plot. Given the information in 
this boxplot, which assumption underlying the test for = 0 
in the fit the mean function E(log(Ruin) I A )  = + T ~ ~ A  with 
Var(log(Rain) I A) = g 2  is likely to be violated? 

A storm, whether seeded or not, may produce rain over a 

target or it may change course and produce rain elsewhere. It 

could produce heavy rain in a small area or light rain over 
a larger area. Consequently, direct comparison of seeded and 
unseeded days may be too variable to find differences due to 
seeding because of the natural variability in rainfall. To improve 
precision, we use other predictors that may account for some 

of the variability that is not due to the treatment. 

12.8.2 Suppose we consider first only a single additional predictor S, 
and consider the mean function 

Give hypothetical values of the that correspond to the fol- 
lowing situations. 

a. Rainfall is independent of A. 

b. Rainfall is independent of S. 

c. Seeding increases log(Rain) with the same expected increase 

d. Seeding increases log(Rain), but the increase is larger for 

e. When S is small, seeding increases log(Rain), but when S is 

12.8.3 Consider next adding the term log(P) to the mean function, 

for all values of S. 

larger values of S .  

large enough, seeding decreases log(Rain). 

Summarize the meaning of r14 and 715 in this mean function. 

12.8.4 Draw the scatterplot matrix of log(Rain) and the predictors 
( D , S , C , P ) ,  using A as a marking variable. Identify any appar- 
ently unusual cases, and explain why they are unusual. Trans- 
form the predictors as needed to make the mean functions in  
the 2D frames of the scatterplot matrix linear. What additional 
information is available from marking the points in two colors? 

Use OLS to fit the model with mean function E(log(Rain)  Ix) = 

qTu, with 
12.8.5 

u r = ( l , w % l o g ( C ) , A , A S )  



PROBLEMS 315 

and summarize results, particularly with regard to the coeffi- 
cients for A and AS. 

Identify any cases with high leverage in the fit of the model 
in Problem 12.8.5. What causes the large leverage? Was this 
obvious from examination of the scatterplot matrix in Prob- 
lem 12.8.4? Refit the model as in Probelm 12.8.5, after deleting 
the two cases with largest leverage. Is there much change in the 
results? 

12.8.6 

We will continue this analysis in Problem 15.8. 
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Response Transformations 

In the transactions data, mean function (7.9) 

makes sense: The expected number of minutes is equal to the number of each 
type of transaction multiplied by the average transaction time. In the haystack 
data, we are not certain which form to use for the mean function, but since the 
volume of a hemisphere is proportional to the cube of its circumference, we 
might expect to use C3 and as terms, or else possibly transform both 
predictors and the response to log scale. In the Big Mac data, Section 7.3.5, 
or the sleep data, Section 10.4, we don’t have a theory to help us convert 
predictors to terms or to choose an appropriate transformation for the response. 
For either of these data sets and for many others, the multiple linear regression 
model may provide a useful approximation to the conditional distribution of 
the response y given the predictors x, but only after y and x are transformed, 
often using a logarithmic transformation, but in general using various types 
of transformations. 

The general goal of transforming is simply stated: Find a transformation 
of y and terms u derived from x, so that the regression of the transformed y 
on u is linear and perhaps has other desirable properties as well. In this chap- 
ter, we consider transforming y alone, as well as 
where both the response and the predictors may be transformed. Predictor 
transformations are discussed in Chapter 16. 

13.1 RESPONSE TRANSFORMATIONS 

We use the notation to represent a strictly monotonic transformation of 

y .  Examples might be = log(y) or T(y) = In the first case, is 
the logarithmic transformation, and in the second it is the square root trans- 
formation. A strictly monotonic function is either always increasing or always 
decreasing. 
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Transformations of y are chosen to meet a particular goal. For example, we 
can choose T ( y )  so that the mean function E(T(y) I = qTu for a fixed set of 
terms u. We call this the goal of A second possibility 
is to select the transformations to make the errors in the transformed scale as 
close to normally distributed as possible. This is the goal of 

A third goal of transforming the response might be to stabilize the 
variance function Var(T(y) I by making it constant. In a surprisingly large 
number of regressions, linearity and variance stabilization can be achieved 
with the same transformation. 

13.1.1 Variance Stabilizing Transformations 

can be useful when the variance func- 
tion of a strictly positive response y at depends on the value of the mean 
function at or symbolically, 

where v(.) is a function called the For example, if 
y I has a Poisson distribution, Section 23.5.1, then the variance function 
is equal to the mean function, so v(E(y I = E(y I For distributions in 
which the mean and variance are functionally related as in (13.1), a general 
theory tells us how to find a transformation T(y) that will stabilize variance. 
For the Poisson case, for example, the transformed response T(y) = fl has 
variance that is nearly constant. Table 13.1 summarizes the common variance 
stabilizing transformations. The first three transformations are used when the 
relationship between the mean and variance is monotonic, while the last one 
can be used with binomial data, for which the variance depends on the prob- 
ability of success, and is largest when the probability is 0.5 and is smallest 
when the probability is close to zero or one. 

An alternative to variance stabilizing transformations is to use 
that use information about the relationship between the mean 

function and the variance function in estimation. These models are discussed 

for binomial data in Chapters 21 and 22, and for other types of data in Chap- 
ter 23. 

13.1.2 Transforming to Linearity with One Predictor 

Suppose we have a regression with response y and single predictor x. If the 
response plot y versus x is clearly curved, then we know that the mean function 
E ( y  I cannot be summarized by the simple linear regression on x .  Sometimes 
a nonlinear relationship can be turned into a linear one by a suitable monotonic 
transformation T(y) of y. If transformation can linearize the mean function, 
the regression model in the transformed scale is 

1 x = ‘lo +7 / ,x+e  ( I  3.2) 
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TABLE Common Variance Stabilizing Transformations 

T(y  1 Comments 
~ ~~~ 

or 

fi + @ 

Appropriate when Var(y I 0: E(y I for example for Poisson 

distributed data. The latter form is called a Freeman-Tukey 

deviate, and it gives better results if the y,  are small or if 
some y,  = 0. 

Though most commonly used to achieve linearity, this is a 

variance stabilizing transformation when Var(y I K 

[E(y I x)I2. It can be appropriate if the errors are a percentage 

of the response, like lo%, rather than an absolute deviation, 
like f 1 0  units. 

Var(y I K [E(y I x)I4. It can be appropriate when responses 
are mostly close to zero, but occasional large values occur. 

This is usually called the arcsine square-root transformation. It 
stabilizes variance when y is a proportion between zero and 

one, but it can be used more generally if y has a limited range 

by first transforming y to the range (0,l) and then applying 
the transformation. 

I l Y  The inverse transformation stabilizes variance when 

s i n - ' ( m  

v!. 
rl 

5, 

r i .  

0 0.2 0.4 0.6 0.8 

m . 3 

0 . I  

0 0.2 0.4 0.6 

a. Response y. b. Response Y' '~ .  

FIGURE 13.1 The mean function for the summary plot (a) is curved. In (b), y has been replaced 
by y'/?' ,  and the mean function is linear. The variance function is also different in the two plots. 

Analyzing a model that is linear in x on a transformed scale is often much 
easier than analyzing a model that is nonlinear in x in the original scale. 

Consider the response plot y versus x shown in Figure 13.la. You can 
reproduce this figure from the data file l s p .  Since the mean func- 
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tion for this plot is nonlinear, we can use simple linear regression only if we 
transform y .  transform x ,  or transform both. Figure 13.lb is obtained from 
Figure 13.la by replacing y with = No curvature is apparent in this 
plot, and so we could proceed by fitting the linear regression model (13.2) with 

= Y ’ / ~ .  The plot in Figure 13.1 b provides a visualization of the regression 
function E(T(y) 1 x). Transforming the response in this example has linearized 
the mean function and changed the variance function. In Figure 13.la the 
variance increases with x ,  while in Figure 13. l b  the variance function is con- 
stant. The transformation thus achieved a linear mean function and a constant 
variance function. 

In the example we knew the appropriate transformation = but 
we will not normally have this information. How can we determine a suit- 
able response transformation with real data‘? The plot in Figure 13.la does 
not help because the mean function for the plot is E(y 1 x). However, the in- 

verse response of x versus y can help us choose a suitable transformation 
when the untransformed regression function E(y I x )  is monotonic, as in Fig- 
ure 13.la. If E(y 1 x) is not monotonic, then a response transformation may 
not be appropriate, and adding terms like a quadratic to the mean function 
may be needed. 

An inverse response plot is useful for choosing a transformation when 
E(y 1 x) is monotonic because then 

This equation tells us that the mean function for the regression of x on y 
is approximately the required transformation. The transformation itself can 
be estimated by fitting a curve to the plot. Once an appropriate estimate is 
determined, the transformed values can be extracted and then used as the 
response in further analysis. 

This method will work well as long as equation (13.3) holds to a reasonable 
approximation. Equation (13.3) will be a good approximation if the signal 
dominates the noise. If the plot x versus y shows a well-determined curve, 
then (13.3) is a good approximation and the curve can be used to guide the 
selection of a transformation. If the plot x versus y does not show a well- 
determined curve, then finding a useful response transformation will likely be 
problematic. 

For the example in Figure 13.1 a, the inverse response plot of x versus y 
is shown in Figure 13.2. The plot shows a power curve obtained by using 
the “Power curve” menu item from the parametric slidebar pop-up menu, 
with power 0.33. Since the curve matches the data, the cube-root transfor- 
mation is suggested. Figure 13.lb shows the response plot in the cube-root 

scale. 
Arc fits power curves in the following way. Let X denote the power for 

the scaled power transformation defined in Section 5.2, as shown at the 
right of the power curve slidebar, and let h and 71 denote the variables plotted 
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FIGURE 13.2 Inverse response plot corresponding to Figure 13.la. The power curve addcd 

suggests transforming y to y’13. 

on the horizontal and vertical axes. For each value of A, Arc first 

constructs the fitted values Cj = Go + from the OLS fit of the simple 

superimposes a plot of C j  versus hi on the plot, connecting adjacent points 

linear regression with response ii and predictor and then 

for visual clarity. 

13.1.3 Inverse Fitted Value Plot 

The ideas discussed in the last section can be extended to regressions with 
many predictors. We suppose that there is a transformation T ( y )  so that 

The analog to the inverse response plot for the one-predictor case is the inverse 

jitted value plot, in which we plot on the vertical axis the fitted values from 

the OLS fit of y on u and the response y on the horizontal axis. As with the one- 
predictor case, a power curve or even a nonparametric curve can be used to 
estimate the mean function of this plot. The estimated mean function is then 
our estimate of T ( y ) .  If the inverse fitted value plot has a well-determined 
mean function, then the estimate of that mean function provides an estimate 

of T ( Y ) .  
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The procedure just described requires a condition that is not needed for 
the one-predictor case. The condition has to do with all the u-terms in model 
(1 3.4) excluding the constant uo = 1 for the intercept; the condition does not 
involve the response. Let u,, be one of the nonconstant terms. Then the mean 

functions E(u, 1 rfu) should all be linear: 

E(u, I rfu) = + hjrfu for j = l , . .  . ,p  (1 3.5) 

This condition enables us to gain information on in (13.4) without knowing 
in the first place. We will identify situations in which (13.5) holds by 

saying that the In many situations the terms will be 
the same as the predictors, in which case we will refer to 

The consequences of having linearly related predictors are discussed 
more fully in Section 19.2. 

Condition (13.5) cannot be checked directly because is unknown. How- 
ever, it is guaranteed to hold when the terms follow a multivariate normal 
distribution. Condition (13.5) should also hold to a good approximation if ev- 

ery frame in a scatterplot matrix of the terms has a mean function that is either 
linear, or at least not noticeably curved. If any frame has a clearly curved mean 

function, then condition (1  3.5) may fail. In that case we may attempt to induce 
linearly related terms by transforming to multivariate normality. Methodology 
for inducing multivariate normality is outlined in this chapter and expanded 
in Section 19. I .  

As an example, we use the wool data described in Section 12.7. The re- 

sponse variable Y = is the number of loading cycles to failure of worsted 
yarn. The three predictors are and The response was measured 
at all possible combinations of three settings for each predictor, resulting in 
3 3  = 27 observations. Load the file wool. l s p  and specify as the re- 

sponse and specify the other three variables as terms. The fitted values from 
the OLS fit of v on the three terms will be used to study the need for a trans- 

formation of the response. 
Draw the plot .? versus y as shown in Figure 13.3. If the mean function for 

Figure 13.3 were a straight line, no transformation would be needed. Since the 
plot is plainly curved and the mean function is monotonic, a transformation 
is needed. 

The next question is the choice of transformation, and this can be deter- 
mined visually by adding a fitted curve to the plot. Since the response is 
strictly positive, we can try power curves. Shown in Figure 13.3 is the curve 
for log(y ), which seems to match the data quite well, suggesting that log(y) is 
appropriate. 

13.1.4 Numerical Choice of Transformation 

The Box-Cox is a numerical procedure for choosing a response trans- 
formation. The use of an inverse fitted value plot requires linear relationships 
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FIGURE 13.3 Inverse fitted value plot to display a response transformation for the wool data. 

among the terms, and then a transformation to linearity is selected. The Box- 
Cox method doesn’t require linearly related terms, although it will work better 
if terms are linearly related. While the inverse fitted value plot selects a trans- 
formation for linearity, the Box-Cox method selects a transformation to make 
the errors as close to normally distributed as possible. 

Using the Box-Cox method requires specifying a 
indexed by a parameter A, so choice of transformation is reduced to estimation 
of A. We will find both point and interval estimates of this parameter. 

We recall from Section 5.2 the definition of a scaled power transformation. 
If the variable y is positive, we define from (5.1) by 

We assume that there is a value of X so that the linear regression model holds 
in the transformed scale, 

I = $u + e (1  3.6) 

where the errors are normally distributed with mean zero and constant vari- 
ance. We might consider estimating X by choosing the value that minimizes 
the residual sum of squares RSS(X) from the OLS regression of on u. While 
the general idea is right, the details are wrong because the units of RSS(X) 

are different for every value of A. Consequently, we can’t compare values of 
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FIGURE 13.4 Confidence curves for choosing a transformation in the wool data. 

RSS(X) for different values of A. A way out is to adjust the transformation 
so that the units are always the same. Define a modified power transformation 

z ( N  by 

Z(X) = y(”gm(y)I~’ 

where gm(y) is the geometric mean of the observed values of y. The estimate 

of X minimizes RSS;(X), the residual sum of squares from the regression of 
z(X) on 

Finding the value i that minimizes RSSZ(X) is now a one-dimensional min- 
imization problem easily solved numerically on the computer. The results can 
be viewed in a plot using confidence curves, which are a plot of 

X versus {n[log(RSS,(X)) - log(RSS,(i))]}l/* 

For the wool data, the confidence curves are given in Figure 13.4. The value 

that minimizes RSS,(X) is the point where the curves meet the vertical axis, 

which is i = -0.05 for the wool data. The confidence curves can be used to 
get an interval estimate for A. The horizontal axis of Figure 13.4 is labeled 

Values on this axis correspond to the standard normal distribution. 
For example, the interval between the two curves at 1.96 on the horizontal 
axis, which is approximately -0.18 to +0.06, is a 95% confidence interval 
for X because the area under a standard normal curve bet_ween -1.96 and 
+ 1.96 is 95%. The log transformation is suggested because X is close to zero, 
in agreement with the transformation chosen using the inverse fitted value 

To draw Figure 13.4, select the item “Choose response transform” from the 
regression menu. You will get a dialog to choose the transformation family, and 

whether or not a constant is to be added to the response before transformation. 

plot. 
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The defaults are appropriate here, so just push the “OK’ button. The other 
choices are discussed in the complements. 

The estimate of X will generally fall in the range between about -2 and +2. 
Estimates outside this range often, but not always, indicate that transformation 
of the response will not aid in understanding a regression. 

We now have two methods for choosing a response transformation: (1) the 
inverse fitted value plot described in Section 13.1.3 and (2) the Box-Cox 
method. For the wool data, these two gave the same transformation, but they 
need not always agree. The inverse fitted value plot chooses transformations 
to linearize the response function, while the Box-Cox method tries to make 
the errors in the transformed scale as close to normally distributed as possi- 

ble. For example, suppose that E(y I x )  was independent of x ,  but with errors 
that have a skewed distribution. The inverse fitted value plot will suggest no 
transformation, while the numerical method will choose a transformation to 
make y more nearly normally distributed. 

13.2 TRANSFORMATIONS TO NORMALITY 

The multivariate normal distribution was introduced in Section 10.2. If the 
pair ( y , x )  has a multivariate normal distribution, then according to (10.7), the 
regression of y on x follows a linear regression model with constant variance 
function. This brings up an interesting idea: Can we find a transformation T ( y )  
of y and a set of terms u that are element-wise transformations of x ,  such that 
the pair ( T ( y ) ,  u) has a multivariate normal distribution, excluding the constant 
u,, = 1 ? If so, we then know that the multiple linear regression model is appro- 
priate for the conditional distribution of I u, and this model can provide 
a basis for understanding. We know this cannot be done in all data sets-for 
example, a factor cannot be transformed to be approximately normal-but this 
idea can be very useful in problems with continuous predictors. 

13.2.1 Visual Choice of Transformation 

Return to the Big Mac data in file described in Section 7.1, 
and focus on the conditional distribution of y = BigMuc given x 

These three variables are shown in the scatterplot matrix in Fig- 
ure 13.5. If these three variables had a joint normal distribution, then every 
frame of this scatterplot matrix would resemble a plot from a bivariate normal 
distribution: All mean functions would be linear, and all variance functions 
would be constant. In examining Figure 13.5, we see that the mean functions 
E( and I are approximately linear. 

Figure 13.6a gives the plot of versus but with the lin- 
ear trend removed and with a zero line and lowess smooth added. The plot 
suggests that there is some nonlinearity in the mean function, so perhaps lin- 
earity, and therefore normality, can be improved by transformation. Since both 
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and are measured in the same units, we might require using 
the same transformation for both variables. Figure 13.6b shows the resulting 
plot with both variables in cube root scale. Linearity seems apparent here. 

The plots in Figure 13.5 that include are clearly curved, and once 
again transforming may help. After a bit of exploration, using 
seems to linearize the mean function in all frames of the scatterplot matrix. 

We have found that has an approxi- 
mately linear mean function for each pair of variables, with no clear evidence 
of nonconstant variance. We know that if the three variables have a multivari- 
ate normal distribution, then all 2D plots have a linear mean function with 
constant variance. Finding linear mean functions and constant variance in the 

frames of a scatterplot matrix does not guarantee multivariate normality, but 
it is usually a good indicator. With only three variables, we can explore mul- 

tivariate normality using a 3D plot, by plotting the three variables and then 
removing all linear trends (push the “Rem lin trend” and “0 to e(O(H)” but- 
tons). The plot should then resemble a spherical cloud of points with constant 
mean and variance functions in every 2D view. Draw this plot to verify that this 
actually happens in this data set. Treating 
as if it were normally distributed is therefore reasonable, and this immediately 
implies that the regression of on can be 
well-approximated by a linear model. 

The units of the transformed variables are an interesting feature of these 
results. Both and are in units of dollars per year, or in generic 
terms, items per unit time. on the other hand, is in units of minutes 
of labor to buy a hamburger and French fries, or more generally in units of 
time per item. In the transformed scale, all three variables are in units of the 
cube root of items per unit time. 

13.2.2 Automatic Choice of Transformations 

Arc provides automatic tools that can be used to select a transformation so 
that the transformed data behave as much like a normally distributed random 
sample as possible. Consider transforming The goal is to find a 
scaled power transformation parameter X so that is as close to 
normally distributed as possible. This is actually just an application of the 
Box-Cox method introduced in Section 13.1.4. 

Select the item “Find normalizing transformation” from the pop-up menu 
next to the slidebar for in the scatterplot matrix in Figure 13.5. After 

short calculation, the estimate from the Box-Cox method is returned as 

XTrurhSul = 0.48, not far from the value of 1 /3 determined visually. This process 
can be repeated for each of the variables, yielding transformations that make 
the distribution of each variable as normal as possible. 

A preferable procedure is to choose all the transformations at the same time 
to make the distribution of the variables as normal as possible, using a 
generalization of the Box-Cox method. Let A be a vector of transformation 
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FIGURE 13.7 The transformation dialog from a scatterplot matrix. 

parameters, one for the response and one for each of the predictors. The goal is 
to choose X to normalize the resulting component-wise transformed variates. 

From the “Transformations” plot control on the scatterplot matrix, select 
the item “Find normalizing transformations.” You will get the dialog shown 
in Figure 13.7. Select the variables to be transformed. You then can choose 
from among several options that will help the computational algorithm find 
the transformations that do the best job at achieving joint normality; the de- 
faults are good choices, but you might want to change the defaults if the 
computational method fails. The buttons at the bottom of the dialog that allow 
conditioning will be described in a later chapter and are not relevant here. The 
computation can be very slow with several variables or with large samples, 

but good starting values can speed up computations. Starting values can be 
set by first doing visual transformation, and leaving your estimated transfor- 
mations on the slidebars which are then used by Arc as the starting values 

for the computational algorithms. The Nelder-Mead computational algorithm 
is slower, but it will sometimes give answers when the standard Newton’s 

method fails. 
After pushing the “OK” button i n  the dialog, the selected variables are 

transformed in the scatterplot matrix using the estimated transformation pa- 
rameters. You can judge visually if the transformations succeed in obtaining 
approximate normality by checking each of the relevant frames in the scatter- 

plot for approximate linearity and constant variance. Also, output is obtained 
as shown in Table 13.2. 

The column headed in Table 13.2 gives the estimates of the 
scaled power transformations. The next column marked gives the standard 
errors of these estimates. The next two columns are test statistics for testing the 
hypotheses that each individual transformation parameter is either zero or one. 
For example, the test that the transformation parameter for EngSuZ is zero, and 
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TABLE 13.2 Output from “Finding Normalizing Transformations” 

=O =1  

-0.396 0.185 -2.14 -7.56 

0.383 0.116 3.31 -5.32 

0.328 0.098 3.34 -6.87 

= 18.651 = 3 = 

= 1: 113.561 = 3 = .OOO 

hence that a log transformation is needed, against the alternative that it is not 
zero is given by (0.383 - 0)/0. 1 16 = 3.3 1. The test statistic for the hypothesis 
that no transformation is needed, X = 1, is (0.383 - 1)/0.116 = -5.32. These 
Wald test statistics can be compared to a normal distribution to get approximate 
p-values. The p-values for all three variables for the log-transformation are 
very small, as are the p-values for no transformation, suggesting that neither 
choice is acceptable. 

At the foot of Table 13.2 are two more test statistics. The first of these is 
for the simultaneous test that the optimal transformations are logarithms, 
while the second is for the test that all the optimal transformations are X = 

1 for untransformed values. These likelihood ratio test statistics have 
approximate x 2  distributions, with degrees of freedom equal to the number of 
variables, which is three in this example, leading to the p-values of 0.000 to 
three digits for each of these tests. Neither of these hypotheses is supported 
by the data. 

Other overall tests can be performed as well. For example, using visual 
fitting, we estimated the transformations to be XVisua, = (-0.33,0.33, 0.33)T, 

not too far from the value = by the automatic 
procedure. We can test that the transformation is equal to XVisua, by selecting 
the item “Evaluate LRT at” from the “Transformations” pop-up menu. You 
will then get a dialog, in which you can type the hypothesized values for the 
three transformation parameters. These must be typed in the same order as the 
variables listed in the dialog. The resulting output is 

LRT t h a t  lambda = ( - 0 . 3 3  0 . 3 3  0 . 3 3 )  (BigMac EngSal 
TeachSal): 0 . 4 1 3  p-value = .938 

providing no evidence against this hypothesis. The transformations chosen 
visually are as good as the transformations chosen by the automatic proce- 
dure. In practice, transformations can and should be rounded to convenient or 
meaningful values, provided that the rounded values are not contradicted by 
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the LRT. If a transformation parameter of 0.33 is as good as one of 0.383, 
then the simpler 0.33 will generally be preferred to the 0.383, which is less 
likely to be meaningful in any real-life situation. In this regression, select- 
ing the transformation parameters to be equal for and and 
equal but of opposite sign for makes the units of the three quantities 
comparable. 

The transformation plot controls have several other options. First, you can 
add an individual transformed variable to the data set by selecting the item 
“Add transformed values to data set” from the variable’s slidebar. The vari- 
ables added are the ordinary power transformations, not the scaled power 
transformations; if the value of the transformation parameter is zero, then the 
natural log transformation is saved. You can add all transformed variables to 
the data set by selecting “Add transformed variables to the data set” from the 
“Transformations” pop-up menu. You can add a value for X to a slidebar using 
the item “Add power choice to slidebar.” Finally, you can restore to the plot 

either all untransformed variables, or all their logarithms, using items in the 
“Transformations” menu. 

13.2.3 Possible Routes 

There are at least two ways of using transformations of the response and the 
predictors x in an attempt to induce a linear regression model: 

1. We could try transforming the response and predictors simultaneously 
to joint normality using the methods discussed in Section 13.2. 

2. Or, we could transform just the predictors to joint normality and then 
use the inverse fitted value plot discussed in Section 13.1.3 to transform 
the response as needed. This use of inverse fitted value plots requires 
linearly related predictors. The transformation of the predictors to joint 
normality is used to ensure this condition. 

In many regressions these two routes will lead to essentially the same answers. 
Nevertheless, the requirements for transforming y and x to joint normality are 
more stringent. The method based on inverse fitted value plots is more robust 
and may give reasonable results when the other fails. 

The requirement of linearly related predictors needed for the fitted value 
plot plays a role in methods discussed later in this book, particularly in Chap- 
ter 16 and in Part 111. 

13.3 COMPLEMENTS 

13.3.1 The Box-Cox Method 

Transformations to normality in the univariate setting were first discussed in 
a pioneering paper by Box and Cox (1964). They also gave the wool data and 
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various technical details concerning the derivation of the modified power fam- 
ily; see also Cook and Weisberg (1982) and Atkinson (1985). Velilla (1993) 
proposed the multivariate generalization of the Box-Cox method for simulta- 
neous transformation. Whereas the Box-Cox method minimizes the residual 
sum of squares in the transformed response after modification to correct for 
scale changes, the multivariate generalization minimizes a function of the ma- 
trix of sums of squares and cross products. 

These transformation methods try to make the data appear as normal as 
possible. This certainly does not guarantee success. Hernandez and Johnson 
(1980) give several examples where closest-to-normal is hardly normal at all. 

13.3.2 Profile Log-Likelihoods and Confidence Curves 

The confidences curves derived in Section 13.1.4 are a rescaling of a plot of 
the profile log-likelihood, which is defined by 

n 
L(X) = - 5 log(RSS,(X)) 

The value of X that maximizes L(X) is the same as the value that minimizes 
RSS,(X). The usual plot of the profile log-likelihood is of L(X) versus A, as 

shown in the upper left of Figure 13_.8. The value X maximizes this curve. The 

second frame of Figure 13.8 is 2(L(X) - L(X)) versus A, obtained from the first 
frame by flipping the curve and then changing the values on the vertical axis. 
In the third frame, the values on the Yertical axis are replaced by their square 

roots. This results in a sharp point at A. The final frame interchanges the axes, 
giving the confidence curves. 

13.3.3 Transformation Families 

Other families of transformations have been suggested in place of the power 
family, particularly for cases in which the response either is not strictly positive 
or is bounded on the interval zero to one. In Arc, we include two additional 
families. The modulus family can be used when the response is not strictly 
positive. It was defined by John and Draper (1980) to be 

This is like a power transformation, with the same power applied to y and to 

-y. The folded power family, Mosteller and Tukey ( 1977), is defined for data 
bounded on the interval from zero to one to be 
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13.3.4 References 

Scheffk (1959, Section 10.7) gave the general method of finding variance 
stabilizing transformations. The inverse fitted value plot discussed in Sec- 
tion 13.1.3 for visualizing a response transformation was proposed by Cook 
and Weisberg ( 1994a,b). Confidence curves were proposed by Cook and Weis- 

berg (1990b). They are generally useful for displaying the uncertainty in the 
estimates of parameters in nonlinear models where confidence intervals can 
be asymmetric. 
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The data for Problem 13.1 are available from the UCLA Statistics Web 
server. 

PROBLEMS 

13.1 A major source of water in Southern California is the Owens Valley. 
This water supply is in turn replenished by spring runoff from the Sierra 
Nevada mountains, to the east of the valley. If runoff could be predicted, 
engineers, planners, and policy makers could do their jobs more effi- 
ciently. The data in the file l s p  contains 43 years worth of pre- 
cipitation measurements taken at six sites in the mountains and stream 

runoff volume at a site near Bishop, California. The three sites with 
name starting with “0” are fairly close to each other, and the three sites 

starting with “A” are also fairly close to each other. 

13.1.1 

13.1.2 

13.1.3 

13.1.4 

Load the datafile, and construct the scatterplot matrix of the 
six snowfall variables, which are the predictors in this prob- 
lem. Using the methodology for automatic choice of transfor- 
mations outlined in Section 13.2.2, find transformations to 

make the predictors as close to normal as possible. Obtain a test 

of the hypothesis that all = 0 against a general alternative, 
and summarize your results. Do the transformations you found 

appear to achieve linearity? How do you know? 

Consider the multiple linear regression model with mean func- 
tion given by 

E(log(y) I = vO + 7i110g(APMAM) + v2 log(APSAB) 

+ ril log(APSLAKE) + log(0PBPC) 

+ ‘rl5 log(0PRC) + 7i610g(OPSLAKE) 

with constant variance function. Estimate the regression coef- 
ficients using OLS. You will find that two of the estimates are 
negative; which are they? Does a negative coefficient make any 
sense? Why are the coefficient estimates negative? 

Examine the scatterplot matrix of the terms in the mean func- 
tion (the predictors in log scale). This scatterplot matrix gives 
guidance on how one might proceed to remove terms from the 
model. What is the guidance? 

In the OLS fit, the regression coefficient estimates for the 
three predictors beginning with are approximately equal. 
Would you expect these coefficients to be equal? Why or why 
not? 



PROBLEMS 333 

13.2 

13.2.1 In the wool data, we have seen that the model with response 
Cycles and terms given by the three predictors does not match 
the data well, and that transformation is required. However, we 

did not check for linearly related predictors. Does the condition 
of linearly related predictors seem reasonable for these data? 

Instead of transforming the response in the wool data, we might 
continue to use as the response and consider adding in- 
teractions to the mean function. Are any of the two-factor in- 
teractions important with response Cycles? Are any of the two- 
factor interactions important with response log(Cycles)? The 

phrase removable nonudditivity refers to interactions that can be 
made insignificant by transforming the response. 

13.2.2 

13.3 In transforming (BigMac, TeachSal, for multivariate normality, 

test the hypothesis that X = (- 1 , 1 , This transformation would also 
make all three variables in the same units of items per time. 

13.4 The following questions relate to transforming the response in the Big- 

Mac data after replacing the four predictors Bread, BusFare, TeachSal, 
and by their logarithms. 

13.4.1 Set up the regression using the four predictors in log scale and 
the response, BigMac, Draw the inverse fitted value plot of 

versus BigMac. Does this plot suggest that transformation of 
BigMac may be necessary? Estimate the best power transfor- 
mation. Check on the adequacy of your estimate by refitting 
the regression model with the transformed response and then 
drawing the inverse fitted value plot again. If transformation 
was successful, this second inverse fitted value plot should have 
a linear mean function. 

13.4.2 Construct confidence curves for the best Box-Cox power trans- 
formation parameter and read an approximate 95% confidence 
interval from the plot. Do these results agree generally with the 

graphical results? 

13.4.3 The inverse fitted value plot versus BigMac contains four 
cities with the largest values of that are likely to be 
very important in determining the transformation. Identify these 
cities. The “Case deletions” plot control can be used to see how 
deleting these cities will change the information concerning a 
transformation. Did deleting these cities change your view of 

the need to transform 
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Diagnostics I: Curvature and 
Nonconstant Variance 

In the last few chapters we studied various statistical methods for the multiple 
linear regression model, 

for i = 1,.  . . ,n.  The vector ui consists of k terms u J ( x , ) ,  j = 1,. . . , k ,  each de- 
rived from the p predictors in the predictor vector The variance function 
depends on the known positive weights and the unknown positive con- 
stant u2. 

Diagnostic methods are used to help decide if we have information in the 
data to contradict the model. The need for diagnostic methods can be illus- 
trated by the four artificial data sets in file shown in Fig- 
ure 14.1. Each data set consists of 1 1 data pairs ( x , y )  and each produces iden- 
tical estimates from fitting the simple linear regression model with u1 = x :  
Go = 3.0, el = 0.5, G2 = 1.53, and R2 = 0.667. Since the fitted models are 
the same, one might conclude that the simple linear regression model is 
equally appropriate for each data set, but this is clearly contradicted by the 

The first data set in Figure 14.la is what we might expect to observe if 
the simple linear regression model was appropriate. The second data set in 
Figure 14.lb shows that the simple linear regression model is incorrect and 
that a quadratic polynomial would likely be a much better choice. 

We see in Figure 1 4 . 1 ~  that a simple linear regression could be correct, 
but one data point is unusually far from the other data points. Perhaps that 

case was recorded incorrectly, and either the actual value of x should have 
been much larger, or the actual value of y should have been smaller to get 
the point to match the linear relationship in the rest of the data. Possibly the 
outlying point should be deleted from the data set, and the regression re- 

plots. 
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FIGURE 14.1 Four hypothetical data sets. 

computed. Without a clear context for the regression, we cannot judge the 
outlying point as “correct” or “incorrect.” Finding which are cases 
with unusually large or small values of the response, is a topic in Chap- 
ter 15. 

For the final data set shown in Figure 14. Id, there is not enough information 
to make an informed judgment about the correctness of the model. The fitted 
line must pass through the isolated point with the largest value of the predictor. 
The leverage for this point is h, = 1; and if it is deleted, we could not estimate 
the slope. We must be wary of conclusions from an analysis that is so heavily 
dependent upon a single case. Finding such is also a topic in 
Chapter 15. 
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14.1 THE RESIDUALS 

14.1.1 Definitions and Rationale 

Write the multiple linear regression model in the additive form given at (9.3): 

y i ~ x j = q T u i + e , / \ l t ; ,  for 1, ..., n ( 1  4.2) 

Regardless of the weights, the unobservable ei have constant variance, while 
the variance function depends on the weights, or 

A final assumption of the multiple linear regression model that we make ex- 
plicit is 

e; independent of xi  (14.4) 

This independence assumption has two consequences that will be useful when 
interpreting diagnostic plots: 

E(ei I x i )  = E(ej) = 0 

Var(ei I xi> = Var(ei) = 

(14.5) 

(14.6) 

Equation (14.5) says that the mean function for the errors must equal zero, 
while from (14.6) the variance function for the errors must be constant. If we 

actually observed the errors, diagnostic information about the model could be 
obtained by plotting the errors versus functions of x .  Information to contra- 
dict (14.5) or (14.6) suggests that the model is wrong. If (14.5) and (14.6) are 

supported, we have no evidence against the model. 
The immediate obstacle to using these ideas in practice is that the errors are 

unobservable, and so we estimate them using residuals. Let = GTui denote 
the ith fitted value from the WLS fit of (14.2). The ith residual 2; estimates ei 

and is defined as 

2; = 

To see how the residuals estimate the errors, substitute qTui + e i / f i j  for yi 

and substitute G'u; for 

2; = f i ; ( y ;  - 

= f i i ( q T u i  + e i / J w i  - ijTuj) 

= ei + - ij'u;) 

= ei + E ;  
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The ith residual equals ei plus a random deviation E;  = - fi)Tui. 
Whether the model is correct or not, E(ci  I xi) = 0 so the mean function for 
the residuals equals the mean function for the errors E(2i I = E(ei 1 The 
mean function estimated from a plot of residuals versus a function of esti- 
mates the mean function for the unobservable errors versus that function of 

so the plot can be used to find model deficiencies. 
Although the mean functions for e I and I match, the variance functions 

do not because of variation due to estimation. If all the leverages are small, 
then I x i )  = Var(ei I x i )  whether the model is correct or not. There are 
notable exceptions to this conclusion that are discussed in Chapter 15. Also, 
if all the leverages are approximately equal, then the variance function for the 
residuals will differ from the true variance function only by a multiplicative 
constant. 

14.1.2 Residual Plots 

If the model is correct, then in  a plot of residuals versus predictors, u-terms, 
or linear combinations of predictors and u-terms, the residual mean func- 
tion is constant and the residual variance function is approximately constant. 
If the data show that either function is clearly not constant, then we have 
information to contradict the model. For example, Figures 14.2a-d and Fig- 
ures I4.3a and 14.3b are plots of the residuals versus a single predictor from 
six different data sets, each with n = 75 cases. For each data set, the resid- 
uals were constructed from the simple linear regression of the response on 
the predictor. The interpretations of the plots don’t depend on the number of 
terms k in the model, as long as k is small relative to n. A estimate 

E(i? I x) of the residual mean function is shown on each figure; Zowess esti- 

mates of the residual standard deviation function are shown in Figures 14.2a 
and 14.3a. 

The residuals in Figure 14.2a appear to be independent of the predictor, 

and the Zowess estimates of the residual mean and standard deviation func- 
tions don’t vary much relative to the variation in the residuals. Thus, the plot 
is consistent with our expectations under the model. The smooths in 
Figure 14.2a are not exactly constant, and we should not expect them to be 

even if the model is correct. Anomalies can be found in all residual plots 
if we look hard enough. Generally, the model underlying a residual plot is 

sustained when the variation in the estimated residual mean function E(2 I x) 

is dominated by the variation in the residuals about E(2 1 x). Problem 14.1 
describes how to gain intuition on the natural variation in residual plots when 
the underlying model is correct. 

In Figure 14.2b we see clear curvature in k(2 I and thus the model is 
not sustained by the data. We reach the same conclusion in Figure 14.2c, 
except now the estimated residual variance function is clearly not constant. In 
Figure 14.2d the data seem sustain the model, except for a single outlying 

,. 
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FIGURE 14.2 Plots of residuals versus a single predictor x from four hypothetical data sets. 

point. The pattern in Figure 14.3a, which is a combination of the patterns 
in Figures 14.2b and 14.2c, indicates that the residual mean and variance 
functions are both nonconstant. 

Figures 14.2a-d and Figure 14.3a represent the kinds of patterns to watch 
for in residual plots: curvature indicating a nonconstant residual mean func- 
tion, a shape indicating a nonconstant residual variance function, a few 
outlying points that are well-separated from the main point cloud, or a com- 
bination of these patterns. 
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FIGURE 14.3 Plots of residuals versus a single predictor x from two hypothetical data sets. 

Figure 14.3b illustrates a different type of problem, and we must conclude 
that there is a mistake some place. Why? 

If the weights are constant, all = 1, and there is an intercept in the mean 
function, the sample correlation coeficient between the residuals and any the 

u-terms in the model or any linear combinations them is zero, as indicated 

in (7.45)-(7.48). This also implies that the average of the residuals is zero. 
Similarly, the OLS regression coefficient of the simple linear regression of 
on any u-term equals zero. 

The sample correlation coefficient in Figure 14.3b is clearly not zero, so 

either there must be a mistake or the model fit did not include an intercept but 
probably should have. 

14.1.3 Choosing Residual Plots 

There are many possible residual plots. Here are the residual plots that have 
been found to be most useful in practice, roughly in order of their importance: 
Plot residuals versus 

- fitted values .$, 

- individual predictors x k ,  or pairs of predictors in a 3D plot; equivalently, 

- potential predictors that are not represented in the model, 

individual u-terms that do not correspond to individual predictors, 

plot u-terms of the form u ( x )  = x k ,  

linear combinations of the u-terms. 
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FIGURE 14.4 Residuals versus fitted values for the transaction time data. 

Regardless of the quantity on the horizontal axis, Figures 14.2a-d and Fig- 
ures 14.3a and 14.3b represent the kinds of patterns to watch for in residual 

plots. 

14.1.4 Examples of Residual Plots 

As a first example, we return to the transaction time data in file l s p .  

The fitted mean function is, assuming a constant variance function (see Ta- 

ble 7.3, page 156), 

Time = 144.369 + 5.46206T, + 2.034557; (14.7) 

and the estimate of 
As a first step in examining this model for deficiencies, we plot the resid- 

uals against the fitted values. After fitting with Arc, select the item “Plot of” 

from the Graph&Fit menu and then select and 

where is assumed to be the name of the model. The resulting plot with 
lowess estimates of the mean and standard deviation functions is shown in 
Figure 14.4. 

We see in this plot that the estimated residual mean function does not change 
much across the plot. Since the model includes a constant term, the average 
value of the residuals is zero. If the mean function is constant, it must equal 
zero for all values on the horizontal axis. The standard deviation function 

is = 1142.56. 
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FIGURE 14.5 Residuals versus for the transaction time data 

does not appear to be constant, however. Judging from the residual plot, the 
variability in time must be smaller in branches with few transactions than in 

branches with many transactions. 
Shown in Figure 14.5 is a scatterplot of the residuals versus the predictor 
The interpretation of this plot is similar to that in Figure 14.4, although 

the conclusion of nonconstant variance seems a bit stronger here. The same 
conclusion was reached when we discussed the 3D plot of 2 versus in 
Section 8.5. 

Is the finding that I T I ,  is not constant important? This depends 
on the goal of the analysis. If the only goal is to estimate the number of min- 

utes each transaction takes on the average, then the estimates obtained when 
using the wrong variance function, while somewhat inefficient, are still unbi- 
ased and useful. But any computation that depends on the estimated variance 
function, such as standard errors, prediction variances, tests, and so on, can be 
misleading. For example, prediction variances for very small branches will be 
too large, while prediction variances for very large branches will be too small. 
In addition, the F-tests in Section 11.3.1 involving the transactions data may 
not be accurate. 

As a second example, Figure 14.6 is a plot of residuals against fitted val- 

ues for the sleep data in file using the mean function given by 
(1 0.12), page 240, with assumed constant variance. The residual mean and 
variance functions both seem to be constant, so there is no clear information 
to contradict the model in this plot. 
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FIGURE 14.6 Residuals versus fitted values for the sleep data. 

14.1.5 A Note of Caution 

A general residual plot is of residuals against some linear combination hTu of 
the u-terms from the model. The linear combination could correspond to a sin- 
gle u-term, or to the fitted values when h = 6. Suppose the plot clearly shows 
that Var(2 I hTu) is and that E(2 1 hTu) is as illustrated in 
Figure 14.2b. Does this imply that the model's mean function is incorrect? Or, 
suppose that the plot clearly shows that Var(2 I hTu) is and that 
E(2 I hTu) is as in Figures 14.4 and 14.5. Does this imply that the 

model's variance function is incorrect? 
If we conclude that either E(2 I hTu) or Var(2 I hTu) is not constant, then 

we must conclude that the model is incorrect respect, but we may 
not be able to tell if the problem is due to a misspecified mean function or a 
misspecified variance function. For example, if a plot of 2 versus xk suggests 
that E(2 I x k )  is nonconstant, the model's mean function could be deficient in 
the way xk is used, it could be deficient in the way some other predictor is 
used, or both. Adding higher-order terms in xk like x i  can sometimes, but not 

always, help. 
Shown in Figure 14.7 is a plot of residuals versus OLS fitted values from a 

constructed data set with two predictors and 100 cases. The data are available 
in file l s p .  The model used to fit the data and generate the residuals 
is 

y I ( x , , x , )  = + ''IIXI + 772x2 + (14.8) 
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FIGURE 14.7 

model in a constructed data set with two predictors. 

Plot of residuals versus fitted values for the fi t  of a multiple linear regression 

with Var(y I x) = Var(e I x) = 02. We conclude from the residual plot in Fig- 
ure 14.7 that E(2 I x) is constant and that Var(2 I x) is nonconstant. Does this 
imply that Var(y 1 is nonconstant? While nonconstant Var(y I x) may explain 
a pattern such as that in Figure 14.7, it is not the only explanation. The true 

regression for this example is 

(14.9) 

where e is a standard normal error. Thus, Var(y I x) = Var(e I x) = o2 is in fact 

correct, while the model's mean function (14.8) is incorrect because the true 
mean function is a nonlinear function of x. A 3D plot of the residuals versus 
( x I  ,x2) shows the situation quite clearly. 3D plots can be superior to 2D plots 
because they allow for an additional predictor to be included. 

14.2 TESTING FOR CURVATURE 

Suppose we plot the residuals versus a linear combination hTu of the u- 

terms in the linear model and judge through visual inspection that the resid- 
ual mean function is curved. It is generally useful at this point to quantify 
the visual impression with a statistical test for curvature. In this section we 
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present two general tests for curvature. The first is applicable when h is not 
random, and the second is for the plot of residuals versus fitted values so 

h = i. 
When h is fixed, we can quantify our visual impressions of curvature by 

adding the term (hTu)2 to the model and testing whether its coefficient is zero. 
Specifically, fit the model 

I xi = qTui + 6(hTui)2 + (14.10) 

and then construct the t-test for the hypothesis that = 0. A small p-value is 

taken as confirmation of our visual impression that the original model (1 4.2) 

is incorrect. 
When h = .;I we must consider the possibility that the curvature depends on 

qTu. We test the hypothesis that 6 = 0 in the model 

yi I xi  = vTui + + (14.11) 

This model is nonlinear in the regression coefficients so the testing procedure 
for (14.10) cannot be applied straightforwardly. Instead, we use a diagnostic 
testing procedure called Tukey’s Tukey’s test for 6 = 0 is 
computed by first finding the fitted values = iTui under the null hypothesis 
that 6 = 0. These fitted values are the same as the fitted values from the WLS fit 
of (14.2). Next, substitute these fitted values for the nonlinear term of (14.1 1) 
to get the approximating linear model 

yi I = vTui + 6(ijTui)2 + e , / J w ,  (14.12) 

Tukey’s test statistic is the same as the usual t-test for 6 = 0 in this approxi- 
mating model but it is compared to standard normal distribution. 

We use the haystack data as a first example of detecting curvature in residual 
plots. Fit the multiple linear regression model 

I = qo + q,C + + e (14.1 3) 

by using OLS. Then select the item “Residual plots” from the model’s menu. 
The resulting dialog allows you to select variables to be’ plotted on the hor- 
izontal axis of a residual plot. The default choices are the fitted values and 

the u-terms in the model. The scatterplot produced in this way has an ex- 
tra slider that controls the variable on the horizontal axis, and the appropri- 
ate curvature test statistic and p-value are shown at the top of the plot. Arc 

automatically calculates Tukey’s test for the plot of residuals versus fitted 
values. 

For example, shown in Figure 14.8 is the residual plot for The plot 
shows definite curvature which is confirmed by the curvature test shown at 
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FIGURE 14.8 Plot of residuals versus Over from the haystack data. 

the top of the plot. The curvature statistic in this case is the usual t-statistic 
for the coefficient of the added term 

At this point we might try to improve the model by actually adding the 
term to obtain the new model 

This model could be checked for curvature using the same procedure. How- 
ever, no test will be reported in the plot of residuals versus because the 
term is already in the model. The curvature test reported on the plot of 
residuals versus is constructed by adding the term = Over4 to 
the model. 

Adding quadratic or higher-order terms sometimes removes curvature found 
in a residual plot, but this is not generally a very satisfying way to build mod- 
els. For example, we saw in Problem 4.6, equation (4.18), that a reasonable 
mean function for the haystack data could be 

(C/2 + 
127l-2 

E( C, M 

To match this mean function by adding terms to (14.13), we would need to 
add the four cubic polynomial terms in the expansion of (C/2 + If we 
also added quadratic terms, we would end up with a ten-term model. 
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14.3 TESTING FOR NONCONSTANT VARIANCE 

To study nonconstant variance, it is useful to have a functional form for the 
variance function. Let v consist of terms constructed like the u-terms in the 

mean function. The component terms u j  of v are functions of the predictor 
vector x and will be called 11-terms. The v-terms can be individual predictors, 
71,(x) = x k ,  or they can be the same as some of the u-terms, = 

We model the variance function as 

var(y I x) = a2exp(a'v) (14.14) 

The parameter a2 is the variance of y when v = 0, and is a vector of param- 
eters. The exponential in (14.14) ensures that the variance function is positive 
for all values of a'v, but for the tests described in this section the exact form 
of the variance function isn't very important. The constant variance function 
is a special case of (14.14), obtained when = 0. 

Taking the logarithm of (14.14) gives an alternate representation for the 
variance function that can be interpreted like a mean function: 

log(Var(y I XI) = Iog(a2) + a'v (14.15) 

The role of the intercept is taken by log(a2), and so a constant term should 
not be one of the v-terms. 

The variance is often a function of the mean; generally, as the mean in- 
creases, so will the variance. This is just an important special case of (14.15) 
obtained when v = u, a'v = rrfu = yE(y I x), giving 

log(Var(y I = log(& + r7fu 

in which the log variance is a linear function of the mean. The variance func- 
tion (14.16) is constant when = 0. 

For (14.14), and equivalently (14.15), a test of = 0 is a test for constant 
variance against an alternative of nonconstant variance. We use a score test, 

which requires that the mean function E(y I x) be correctly specified. To com- 
pute the score test, fit model (14.2) via OLS. The squared residuals 22 contain 
information about the variance function, and the test statistic is just the regres- 
sion sum of squares SSreg from the OLS regression of on v, divided by the 
scale factor 2 ( C  

SSreg(z2 on v) 
Test statistic = 

To get a p-value, this statistic should be compared to the x2 distribution with 
df equal to the number of v-terms. 
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FIGURE 14.9 Nonconstant variance plot as a function o f  the mean for the transactions data. 

To test = 0 in model (14. I6), fit the OLS regression of z2 on the fitted 
values from the fit of (14.2), and then compute the statistic in the same way. 
The resulting statistic is to be compared to a x2 distribution with 1 df. 

If we knew a plot of z versus a'v should show the typical fan-shaped 
pattern that characterizes nonconstant variance. The sign of the residuals is 
not usually relevant information when assessing nonconstant variance. Conse- 
quently, visual impressions can be enhanced by folding the fan-shaped pattern 
in half at zero so the negative residuals overlay the positive residuals, chang- 

ing the fan shape into a right triangle. Arc goes a step further and provides 
plots of 121''* versus an estimate of aTv. 

14.3.1 Transactions Data 

After fitting the mean function E(Tirne I = + + by using OLS, 

select the item "Nonconstant variance plot" from the model's menu. This 
will produce the plot shown in Figure 14.9. The vertical axis in this plot 
is I;l'/*. The plot is initially based on model (14.16) with the logarithm of 
the variance a linear function of the mean, and so the fitted values are plot- 
ted on the horizontal axis. The general trend in the plot is increasing to the 
right, suggesting that variance increases with the mean. This is confirmed 
by the score test, given at the top of the plot. The value of the statistic is 
61.66, with one df and the corresponding p-value is zero to three decimal 
places. 
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FIGURE 14.11 Score test for nonconstant variance in the constructed data of Section 14.1.5. 

data because the mean function is known to be correct, and transforming will 

change the mean function. If the variance is a function of the mean, we could 
use generalized linear models, in which the relationship between the mean and 
variance functions is part of the model. We pursue this option in Chapter 23, 
and in particular for the transactions data in Section 23.4. 

Another approach is to use a reasonable approximation for weights and then 
use weighted least squares. In the transactions data, we might hypothesize 
that Var(7'ime I = + so each transaction contributes the same 
variability to the response. We used this approach in Problem 9.1 1 and in 
Section 1 1.3.1. 

14.3.2 Caution Data 

Consider testing for nonconstant variance in the data l s p )  intro- 
duced in Section 14.1.5. The test and plot shown in Figure 14.1 1 are for the 
linear mean function 

and the variance function ( I  4.16). The p-value is quite small, and the plot 
seems to confirm the test. However, we know from the way in which the data 
were generated [see equation (14.9)] that Var(y I is constant. The issue here 
can be traced back to one of the assumptions underlying the test; namely, 
that the mean function is correct. The mean function used for the test in 
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Figure 14.1 1 is incorrect, so we can’t be sure what the test is telling us. The 
same sort of issues can arise in testing for curvature while assuming that the 
variance function is correctly specified. 

14.4 COMPLEMENTS 

Cook (1998b) and Cook and Weisberg (1982) provide a more theoretical de- 
velopment of residuals, including additional uses for them. 

Tukey (1 949) proposed Tukey’s test for curvature in the context of two-way 
tables; see St. Laurent (1990) for a discussion of generalizations of this test. 
Like the nonconstant variance test, Tukey’s test is a score test; Buse (1982) 
provides a comparison of score tests, which he calls Lagrange multiplier tests, 
likelihood ratio tests, and Wald tests. 

The score test for nonconstant variance was given by Cook and Weisberg 
(1983). The results of Chen (1983) suggest that the form of the variance 
function is not very important. Hinkley (1985) stated that the difference of 
score statistics as used in Section 14.3.1 can be compared to a distribution 
to compare nested models. The use of 121 in the nonconstant variance plots 
is based on results given by Hinkley (1975). Other relevant references on 
variance modeling and diagnostics concerning the variance function include 
Carroll and Ruppert (1988) and Verbyla (1993). 

The example discussed with Figure 14.1 was first presented by Anscombe 

(1973). The mussels data in Exercise 14.3 were furnished by Mike Camden. 
The lettuce data in Exercise 14.4 are taken from Cochran and Cox (1957, p. 
348). The data in l s p  are from Cook (1  994). 

PROBLEMS 

14.1 The demonstration program l s p  discussed in Section 4.4 can 
be used to gain intuition on the behavior of residual plots when the 
model is correct. Load the program and generate a scatterplot of n = 10 
cases from a standard bivariate normal distribution with p = 0. Next, 
remove the linear trend, which replaces the response by the residuals, 
and then superimpose estimates of the residual mean and vari- 
ance functions. Does the plot leave the impression that the residuals are 
independent of the predictor? Using a button on the plot, get four new 
samples and keep the sample that gives the clearest impression that the 
residuals are riot independent of the predictor. 

Finally, repeat the simulation for n = 20, 30, and 50. What do you 
conclude about the usefulness of residual plots? 

14.2 Explore fitting the transactions data as suggested in Section 14.3.1 using 
weighted least squares, and show that nonconstant variance is no longer 
a problem. Summarize the analysis of these data. 
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TABLE 14.1 The Mussels Data Used in Problem 14.3 

Variable Description 

M 

H 

S 

Mass of the mussel’s muscle (g), the edible part of a mussel. 

The length of the mussel’s shell in mm. 

The width of the mussel’s shell in mm. 

The height of the mussel’s shell in mm. 

The mass of the mussel’s shell in g. 

14.3 The file l s p  contains data on horse mussels sampled from the 
Marlborough Sounds off the coast of New Zealand. The data were col- 

lected as part of a larger ecological study of the mussels. The variables 
are defined in Table 14. I .  

Load the data and then delete the cases numbered 7 and 47 from 
the data set. This can be done by drawing any plot, and then clicking 
on cases 7 and 47 in the window created by selecting “Display case 
names” from the data set menu. The cases can then be deleted by using 
the “Case deletions” plot control on any plot. All problems below refer 
to the data set without cases 7 and 47. 

14.3.1 Fit the mean function 

using OLS. Inspect the residual plots obtained using the item 
“Residual plots” in the model menu. Write a summary of vour 
conclusions, including justification. 

14.3.2 Does an appropriate Box-Cox power transformation of the re- 
sponse improve the mean function of Problem 14.3.1? Use 
residual plots to justify your answer. 

14.3.3 Fit the mean function 

using OLS. 

a. Inspect the residual plots obtained using the item “Residual 
plots” in the model menu. Is this mean function contradicted 
by the data? Provide justification for your answer. 

b. The residual plots from this mean function are noticeably 
different from the residual plots of Problem 14.3.1. Explain 
why the residual plots changed after adding S to the mean 
function. 

c. Obtain score tests for nonconstant variance assuming that the 
logarithm of the variance function is  (a) a linear function of 



CHAPTER 14 DIAGNOSTICS I: CURVATURE AND NONCONSTANT VARIANCE 

the terms in the mean function, and (b) a linear function of 
the mean function. Next, compare these two models using 
an appropriate test. 

14.3.4 Fit the mean function 

using OLS. Is there evidence in the data to indicate that this 

mean function can be improved or that the variance function 
Var((log(M) 1 is not constant? 

14.4 The data in file are the results of a 
on the effects of minor elements copper Cu, molybdenum Mn, 

and iron on the growth of lettuce in water culture. The response is 
lettuce yield, y. The sample size is only 20, so seeing trends in plots 
may be a bit difficult. 

Set up the regression with y as the response and the other three vari- 
ables as the predictors. Examine the scatterplot matrix of the four vari- 

ables. From the scatterplot matrix, describe the design. Use the methods 
described in this book to model y as a function of the predictors, and 
then use appropriate graphical methods to assess the lack of fit. Sum- 

marize your results. central composite designs are used to find the 
maximum or the minimum value of a response surface, so it is likely 
that E(y I is not a monotonic function of the predictors. 

14.5 As an alternative approach in the data in file 
Section 12.6, suppose we used the mean function 

This mean function specifies additive effects for the two categorical 
variables and a quadratic effect for D. 

14.5.1 

14.5.2 

14.5.3 

Graphically show that this is a plausible alternative to the log- 
arithmic model derived in Section 12.6. 

After fitting this mean function with constant variance using 
OLS, draw the plot of versus j .  The points with the five largest 
absolute residuals correspond to larger fitted values and to the 
five heaviest trees. This might lead one to suspect that larger 

trees are more variable. Explore this further, by getting a score 
test for nonconstant variance as a function of the mean, and 
summarize both the plot and the results of the test. 

Individual points separated from the main trend may determine 
the value of the score statistic. These can be identified in the plot 
and deleted with the "Case deletions" item. The plot will then 
be automatically updated. Five of the 24 points are generally 
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to the right and above the rest of the points. Delete all five of 
these cases and summarize how the score test changes. Are 

these the same five points you found previously? In such a small 
data set, deleting the five largest trees is undesirable because it 
limits inference to smaller trees. Restore all the data using the 
“Restore all” item from the “Case deletions” pop-up menu to 
continue the analysis. 

14.5.4 Obtain a score test for nonconstant variance that is a linear 
function of the four terms in  the mean function, and then a test 

for comparing this model for the variance to the variance as a 
function of the mean. Summarize your results. 

14.5.5 One common remedy for nonconstant variance is to transform 
the response to another scale. As we have seen in Section 12.6, 
the mean function 

provided a good approximation to the data. Does the change 
to the log scale correct the nonconstant variance? If not, find 
the simplest summary of nonconstant variance you can, and 
provide a complete summary of the analysis of these data. 

14.6 During our discussion of the twin data in Section 12.2, we conjectured 
that the variance in the IQ for the twin reared by biological parents, 
for the upper social class might be larger than the variance in ZQb for 
the middle and lower social classes. The score test discussed in this 
chapter can be used to assess that possibility. 

After creating a factor { for social class, test the hypothesis of 
constant variance using the variance model 

logVar(ZQb I C )  = log(a2) + + 

where o2 and o3 are the indicator variables for the middle and lower 
social classes. 
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Diagnostics 11: Influence 
and Outliers 

Separated or outlying points can merit special attention for many reasons. 
They can cause us to miss important trends by reducing visual resolution in 
plots. Temporarily removing them from the plot often helps, as we did in the 
analysis of the snow geese data in Section 3.6. Transformations of the data to 

more suitable scales is another option for dealing with separated points that 
reduce visual resolution. We saw an example of this during the discussion of 
the brain weight data near Figure 5.4. 

Separated points can also have a large on the results of the anal- 
ysis: Deleting them from the data set could produce conclusions quite unlike 
those based on the full data. For example, we left the analysis of the transaction 
data in Section 14.3.1 rejecting the variance model 

log(Var(y I = log(a2) + r?fu (15.1) 

in favor of the more general model 

log(Var(y I = log(a2) + a T v  (15.2) 

Shown in Figure 15.1 is a scatterplot of the residuals versus the fitted values 
from the OLS regression of Time on x = One point, case 160, on the 
plot is highlighted. Deleting that point from the data set by using the “Case 
deletions” plot control and then recomputing the tests for nonconstant variance 
gives the results shown in Table 15.1. The striking feature of these results is 

that our conclusion regarding the nature of the nonconstant variance changes 
completely once case 160 is deleted from the analysis: With case 160 we 
conclude that the data do not sustain model (15.1), but without case 160 the 
data provide no evidence to reject that model. Case 160 is an case, 
at least for testing for nonconstant variance. 
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FIGURE 15.1 

with the largest residual is highlighted. 

Scatterplot o f o ~ s  residuals versus fitted values for the transaction data. The point 

TABLE 15.1 
and without Case 160 

Score Tests for Nonconstant Variance in the Transaction Data with 

a = o  y = o  Difference 

All data 82.93 61.66 21.27 

Without 160 56.95 56.57 0.38 

I t  is difficult to know what to do about case 160 without knowing more 
about the issues behind the data, but there are three possibilities that should 
always be considered. First, case 160 may contain a mistake, perhaps a record- 
ing error, that can be identified and corrected by tracing its history. Second, it 
may be that model (15.1) is correct and that case 160 represents just a rela- 
tively rare observation. Rare events will occur with the appropriate frequency 
no matter how surprised we are that they occur in a particular analysis. Fi- 
nally, model ( 1  5.1) may be incorrect, and case 160 is the only clear evidence 
of that in the data. More generally, cases corresponding to unusual points may 
represent new and unexpected information. 

Points in scatterplots that stand apart from the main point cloud are always 
candidates for influential cases. Case 160 lies on the edge of the point cloud 
in Figure 15. I ,  as do several other cases. However, in a 3D plot of residuals 
versus (T, case 160 is clearly separated from the rest of the data. We first 
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FIGURE 15.2 The adaptive score data. 

identified case 160 in this 3D plot. The effects of individual points on an 
analysis can always be assessed by deleting them and examining the changes 
in the analysis. The “Case deletions” plot control appears on most plots to 
make this operation easy. 

In this chapter we describe methods that can be used to identify influential 
cases and to find outlying points in linear regression. Remember that Arc 

For example, case 160 is the 16 1 st case in the 
file Isp. 

15.1 ADAPTIVE SCORE DATA 

Load the file adscore. l s p .  This is a small data set with observations on 21 
children, giving their Age in months at first spoken word, and a which is 
a measure of the development of the child. The goal is to study the conditional 
distributions of given Age. Construct the plot of Score versus Age, as 
shown in Figure 15.2. Three separated points are identified on the plot. The 
mean function E(Scnre 1 Age) appears to decrease with Age, and case 18 seems 
to be fit poorly by the linear trend relative to the other data. Cases 1 and 17 
are interesting by virtue of their relatively large values of Age. 

Suppose we fit a simple linear regression model, 

E(Score I Age) = + q,Age  and Var(Score I Age) = cr2 (15.3) 
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TABLE 15.2 Adaptive Score Data Estimates with Cases Removed 

Intercept Slope SE(slope) U R2 
~~ 

All data 110 -1.1 0.3 1 11.0 0.4 1 
Not I ,  17 98 -0.1 0.62 10.5 0.00 
Not 1 109 -1.0 0.33 11.1 0.35 
Not 17 106 -0.8 0.52 11.1 0.1 1 

Not 18 109 -1.2 0.24 8.6 0.57 

to these data, as shown on Figure 15.2. How do you think the fit of the 

model will change when cases 1 and 17 are deleted? What will happen to 
the estimates of q , ,  and a2? Select those two points and use the “Case 
deletions” pop-up menu to delete them. Use the “Display fit” item in the 
regression menu to see statistics for the new fitted model. 

Selected summaries from regressions with a few cases deleted are given in 
Table 15.2. Without cases 1 and 17, the relationship between and 
disappears: A small fraction of the data effectively determines the fitted model. 
Cases 1 and 17 are clearly In this example, the two cases with large 
values of Age are influencing the fit. 

15.2 INFLUENTIAL CASES AND COOK’S DISTANCE 

When we have more than two terms, finding influential points graphically may 
not be so easy. However, a diagnostic statistic called Cook’s can be 
used to summarize essential information about the influence of each case on 
the estimated regression coefficients. Cook’s distance is a mathematical mea- 
sure of the impact of deleting a case. It is not intended for use as a statistical 
test. 

To assess the influence of the ith case, we compare Go,, the estimate of 
that is computed without case to the estimate 6 based on all the data. 

Cook’s distance combines the vector of differences Go, - 6 into a summary 

number that is a squared distance between G ( I )  and if this number is 
sufficiently large, then case is for 6. For a linear model with mean 
function E(y, I x,) = $u, and constant variance function Var(y, I = we 

get 
Let 

a formula for using the matrix notation developed in Section 7.9. 

U denote the n x k matrix defined at (7.34) to have rows ur, i = 1,.  . . ,n, 

= U;l denote the n x 1 vector of fitted values for the full data with j th  
element T,, and 

= U6(;, denote the n x I vector of fitted values when estimating 
without the ith case, with j th  element 
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Then Cook’s distance can be written as 

A scalar version of this last equation is 

(15.4) 

(15.5) 

(15.6) 

Since equation (15.4) is the equation of an ellipsoid, like the confidence re- 
gions discussed in Section 10.8, contours of constant are elliptical, defining 
a squared distance from icz) to 6. Equations (15.5) and (15.6) show that D, is 

the squared Euclidean distance between the vectors of fitted values and 
or simply the sum of squares of the differences in fitted values when case IS 

deleted, divided by a scale factor. 
Return to the adaptive score data and restore any deleted cases. Using OLS, 

fit the linear model with Score as the response and Age as the predictor; let’s 
suppose the name of this model is From the Graph&Fit menu, select “Plot 
of” to draw a plot of Cook’s distances, which are called Ll:Cooks-D, versus 
case numbers. Case 17 has the largest value, = 0.68. Deletion of case 
17 will cause the largest change in estimated coefficients, in agreement with 
what we found graphically. Case 1 does not have a particularly large value of 

when all the data are used. However, delete case 17 from the regression 
and see how changes. You will need to rescale the plot by using the item 
“Rescale Plot” from the plot’s menu. 

Figure 15.3 shows a scatterplot of Cook’s distances versus case number 
for the transactions data discussed at the beginning of this chapter. There are 

three relatively large values of and the largest value is for case 160, the 
same case that was found to influence tests for nonconstant variance. This plot 
could now be used as a control for deleting cases and studying their influence 
on the analysis. 

Cook’s distance provides an ordering of the cases in terms of their influence 

on 6. We should always study the impact of cases that have a relatively large 
value of like case 160 in the transaction data. Otherwise, it is generally 
useful to study cases that have > 0.5 and is always important to study cases 
with > 1.  These benchmarks are intended as an aid to finding influential 
cases, but they do not represent a test. Again, there no significance test 

associated with 

in the transactions 
data with three cases marked. Recall from Chapter 10 that the slope of the OLS 

line on the plot is the same as e l .  We might expect cases that are influential 
for <, to stand apart from the main point cloud in an added-variable plot. This 

Shown in Figure 15.4 is an added-variable plot for 
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expectation turns out to be essentially correct, and added-variable plots are 
useful diagnostics for identifying cases that influence the estimate of a single 
coefficient. 3D added-variable plots can be used in the same way, except now 
we look for cases that could influence two coefficient estimates. In Figure 15.4 
we see that the remote cases are the same as those identified by using Cook’s 
distance, although there will not always be such good agreement. 

15.3 RESIDUALS 

15.3.1 Studentized Residuals 

The variance of a residual is, from (7.24), equal to 

where is the ith leverage, discussed in Section 7.6.3, page 161. Residuals can 
be standardized to correct for unequal variance caused by unequal leverages 
by dividing the residual by an estimate of its standard deviation. The result is 
called a Studentized residual, 

2; 
(15.8) 

Each Studentized residual has mean zero and variance one. 

15.3.2 Cook’s Distance Again 

In the multiple linear regression model, Cook’s distance for the ith case can 
be computed without actually deleting the ith case and refitting. It can be 

expressed as a function of the Studentized residual and the leverage for that 
case, 

D . = - L x -  
k 1-h;  

(15.9) 

where, as usual, k is the number of u-terms in  the model. This representation 
gives some insight into influence. The factor h, / ( l  - will be large when 
the leverage is close to one. Cases with u, sufficiently far from U relative to 
the density contours of the u-terms will have large values of D,. In particular, 
the highlighted case in Figure 7.7d, page 162, will likely be influential. 

D, could also be large because the ith Studentized residual is large. Large 
Studentized residuals are due to outliers, points whose response falls far from 
the fitted mean function, an idea that will be developed in the next section. 
Thus, a case can be influential because the response is outlying, u, has high 
leverage, or a combination of the two. 
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Return to the transactions data and construct a 3D plot of Time versus 
(T, with the fitted plane and the residuals superimposed. We discussed 
Arc controls for doing this in Section 8.2.4, page 190. While spinning the 
plot, identify the most influential case by visualizing the leverages and 
the magnitudes of the residuals. We previously identified case 160 as the 
most influential using Cook’s distance. Did you identify the same point 
visually? 3D added-variable plots can be interpreted in much the same way, 
by looking for points that influence the estimates of the corresponding coef- 
ficients. 

15.4 OUTLIERS 

We have used the term outlier to refer to cases that somehow seem different 
from the rest of the data, in particular cases with a response that does not fit 

the pattern in the data. For example, we judged the remote case in Figure 14. lc  
to be outlying because the response seems much too large relative to the trend 
in the rest of the data. On the other hand, a case will have high leverage if its 

u-vector u, falls in a region of low density relative to the sample distribution 
of the u-terms in the mean function. A high leverage case may or may not be 
an outlier. In this section we explore the idea of an outlier and give a method 
of testing for outliers in linear models. 

definition, an outlier must outlie something. Consider the legal case of 
Hadlum v. Hadlum: 349 days after Mr. Hadlum departed for military service 
abroad, Mrs. Hadlum gave birth. Mr. Hadlum judged the observation of 349 
days to be outlying relative to the distribution of gestation times and there- 
fore filed for divorce. The statistical issue here is how to judge the weight of 
evidence against the hypothesis that the outlying observation is a valid, albeit 

extreme, realization from the known distribution of gestation times. Mr. Had- 
lum could have computed a p-value, the probability that a randomly selected 
gestation time exceeds 349 days, although we imagine that the legal case was 
more involved. 

During the Cold War the former USSR inadvertently dropped one of their 
satellites in central Canada. The joint U.S. and Canadian project to locate the 
debris was based on monitoring the level of radiation while flying over prob- 
able locations. Levels of radiation that were high relative to the background 
were taken as indicators of satellite debris. In this situation, we think of look- 
ing for radiation levels that outlie the level of background radiation. Most of 
the debris was located using this method. 

Outliers indicate important new injormation. It is now generally rec- 
ognized that an anomalous reading, which went unnoticed at the time, in 
Millikan’s famous oil drop experiment is the first documented evidence for 

quarks, a type of elementary particle in physics. Similarly, residuals of large 
magnitude can indicate that the model is wrong, possibly leading to a better 
understanding of the regression. 



362 CHAPTER 15 DIAGNOSTICS 11: INFLUENCE AND OUTLIERS 

Outliers or  be influential. The second phase of the Florida 
Area Cumulus Experiment (FACE-2) was designed to confirm the first-phase 
indications that cloud seeding can produce increases in natural rainfall. But 

the analysis of the second-phase data was complicated by a single outlier, an 
unseeded day on which the rainfall was four standard deviations above the 
average. The outlying day was very influential: With the outlier the estimated 
increase in rainfall due to seeding was about 5%, but without the outlier the 
estimated increase was 25%. 

The concern for outliers is quite old and probably dates from the first at- 
tempts to form conclusions from data. The sometimes imprudent practice of 

discarding outliers was commonplace 200 years ago. Writing in 1887, Frank 
Edgeworth’s informal notion of an outlier is much the same as it is today: 
“Discordant observations may be defined as those which present the appear- 
ance of differing in respect of their law of frequency from other observations 
with which they are combined.” 

15.4.1 Testing for a Single Outlier 

We now discuss a standard method of testing for a single outlier in the linear 

model 

E(yi I x i )  = $ui with Var(y, I x i )  = (15.10) 

for i = 1,. . . , n. More specifically, we introduce a test of the hypothesis that the 
tth case does not outlie the mean function of this model versus the alternative 
that it does. We assume that the index is chosen without reference to any 
quantity that depends on the response variable. Thus, the choice of the case 
to test cannot depend on the response, but it can depend on the predictors. 
The test itself will depend on the response variable, however. For example, 
consider a large university department with 40 male faculty and one female 
faculty member. We could reasonably ask if the salary of the female faculty 
member outlies the mean function for the male faculty. The actual test would 
depend on all salaries. 

The first obstacle we face in testing for an outlier in multiple linear regres- 
sion is that the vector of regression coefficients q is unknown. If the tth case 
is an outlier, the estimate of based on the full data may be biased. This 
suggests using estimates computed without the suspected outlier, case 8. Use 
the following procedure: 

Obtain the OLS estimate Gco. 
Predict the response for the tth case, j y  = G;)uy. 

Compute the test statistic that compares the predicted value j p  to the 

(15.1 1) 

observed value yo. 
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Compare t ,  to the quantiles of a t-distribution with n - k - 1 df. 

Here, se(j,) is the standard error for prediction, as discussed in Section 7.6.2, 
still based on the reduced data without case P. The tilde on j I  is intended to 
distinguish this prediction, which is based on the reduced data, from the usual 
prediction y, based on all the data. 

The test statistic ( I  5.1 1)  can also be obtained by adding another term to 

the model and fitting with the full data. Define the term u y )  = 1 if = e and 

= 0 otherwise. The term is an indicator variable for the lth case, as 
defined in Chapter 12. We will call it a case indicator to distinguish it from 
other indicator variables. 

The outlier test statistic is the same as the usual t-test statistic based on 
all the data for the hypothesis that 6 = 0 in the expanded linear model 

In this expanded model, the regression coefficient allows for the possibility 
that E(y, I differs from the mean function for the rest of the data. If it is 

inferred that h # 0, then we have evidence that E(y, I is in fact different, 
implying that case is an outlier. 

For the multiple linear regression model, there are very simple formulas for 

and t , :  

(15.13) 5=- e,  
1 - 

(15.14) 

where 2, is the fth residual, h, is the Pth leverage, and r, is the Pth Studentized 
residual as defined in (15.8). These statistics depend on n and k ,  and on the 
leverages and on the Studentized residuals from the fit to all the data. The 
magnitude of t ,  increases with the magnitude of rc and so they contain the 
same information about the agreement between the Pth case and the mean 
function. Thus, the squared Studentized residual rp' in Cook's distance (15.9) 
can be thought of as measuring the agreement between the mean function for 
the model and the mean for the Pth case. 

Suppose that 6 # 0 in ( 1  5.12) so the Pth case is in fact an outlier. The power 
of the outlier t-test to detect that 6 # 0 depends on the noncentrality parameter 

S2(1 - 
A =  

The power increases as X increases, although the power itself is a rather com- 
plicated function of A. For fixed values of and u2, the outlier will be the 
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hardest to find using this test when it occurs at a high leverage case, just where 

it can do the most damage. 
The discussion so far has been under the condition that Var(y, I xi) is con- 

stant. When there are known weights, replace the condition Var(y, 1 xi) = c2 

in model (15.12) with Var(y, I = 0 2 / w i .  The t-statistic for = 0 from the 
weighted least squares fi t  is then the outlier statistic tp. 

15.4.2 Checking Every Case 

In the development of the outlier t-statistic we assumed that the index 
was chosen without reference to any quantity that depends on the response 
variable. Often we may want to test for a single outlier without choosing first. 
We can test for a single outlier with unknown index by using the maximum 

absolute value of ty ,  

Because t,,, is a maximum over n test statistics, its distribution under the 
null hypothesis of no outliers is no longer a t-distribution. The exact p-value 
for t,,, is difficult to calculate. Instead, we use the Bonferroni to 
compute a bound on the p-value: 

These equations tell us that the p-value for tmax is not greater that times the 
p-value computed from a t-distribution with n - k - 1 df. This bound can be 
computed in Arc by typing the command with three argu- 
ments 

tmax n - k - 1 

15.4.3 Adaptive Score Data 

A plot of the outlier statistics versus case numbers for model (15.3) is shown 
in Figure 15.5. Case 18 has the largest value of the statistic, t I8  = 3.60698. This 
value can be obtained from Arc by selecting the item “Mouse mode” from the 
plot’s menu, choosing “Show coordinates,” and clicking on the plotted point, 
or, since this is a relatively small data set, listing the outlier statistics, labeled 
Ll:OutZier-t, and case numbers using the item “Display data” from the data 
set menu. If case 18 was identified prior to inspecting the data, the appropriate 
p-value would be computed from a t , l -k_ ,  = distribution, giving a two-tailed 
p-value of 0.002. It is a coincidence that the case number is the same as the 
df-usually this will not be so. 

However, we did not identify case 18 before hand. Instead, we selected case 
18 because it has the largest absolute value of t , .  Thus we need to compute 
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FIGURE 15.5 Outlier statistics for the adaptive score data. 

the outlier p-value bound for 

The output from this command is 0.042 = il x 0.002 = 21 x 0.002. The p-value 
for is thus smaller than its upper bound of 0.042, indicating that case 18 
significantly outlies the mean function. There are at least three possibilities to 
explain this result. Either case 18 is anomalous and should perhaps be dis- 
carded, or the mean function is wrong, or the variance function is wrong. If 

we can rule out the latter two possibilities, then we are left to explain the 
anomalous case. 

Outliers may or may not be influential. From (15.9), if an outlier (high 
Y:) has a low leverage (h ; ) ,  then may not be particularly large and case 

may not have a large influence on 6. For example, in Table 15.2 we see 
that deleting case 18 has almost no effect on the coefficient estimates, but its 
deletion reduces the estimate of Q from 1 1  to 8.6. This case is influential for 
estimating but not for estimating coefficients. 

15.5 FUEL DATA 

Load the file l s p .  These data consist of several measurements on the 
states in the United States and the District of Columbia that provide an oppor- 
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* 

TABLE 15.3 The Fuel Consumption Data 

D C  oNY oHI 

Variable Description 

1990 per person fuel consumption. 

1990 per capita personal income in 1000s of U S .  dollars. 

1990 registered cars, buses and trucks per person. 

State gas tax in cents per gallon, as of April 1, 1992. 

1989 1000s of vehicle miles of travel per vehicle. 
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FIGURE 15.6 Marginal response plot for VEH/P OP for the fuel data. 

tunity to understand how statewide fuel consumption varies with characteris- 

tics of the state. The variables are described in Table 15.3. Five points appear 
separated from the main body of the marginal response plot of 
versus shown in Figure 15.6. Three of these states have the low- 
est per capita fuel consumption, one has the highest fuel consumption, and 

one state has high fuel consumption given its value of Mark these 
points with a color or symbol for future reference. 

Next, fit the OLS regression of on the four predictors, and 
construct the plot of residuals versus fitted values as shown in Figure 15.7. 
This plot does not sustain the mean function for the linear model. The point 
for Wyoming is clearly outlying, and the test for curvature is significant. 
The Zowess estimate of the residual mean function was computed by removing 



15.5 FUEL DATA 367 

Test for curvature = 2.44, p-value =.015 - 

D Options 

O Rem lin trend N 

€4 Zero line 

0 Join points 

OLS NIL f 

lowess 0.7 

z w  
Case deletions 

r( 

-I L 1:fit-va I ues - 
()I 

r( 

0 

0 

0 

- Q 4 0 , 0 0  

O O  

D 450 600 750 900 
L1:fit-values 

FIGURE 15.7 Residual plot for the fuel data. 

(not deleting) the point for Wyoming, placing the smooth on the plot, 
and then restoring the point. The lowess estimate suggests that the residual 
mean function is not constant. We are now faced with a dilemma: Either 
the data for Wyoming are unusual in  some important respect or the model is 
wrong. 

Continuing our graphical exploration of the regression, select the item 
“AVP-All 2D” from the regression menu. As you cycle through the added- 
variable plots, note the locations of the points you have marked (you may wish 

to select the item “Show labels” from the plot’s menu). In most of the added- 
variable plots, Wyoming is separated from the bulk of the data both vertically, 
suggesting this state might be an outlier, and horizontally, suggesting that this 
state is a high leverage case. Combining vertical and horizontal separation, 

Wyoming is probably influential, and its deletion may change conclusions. 
To confirm this indication, construct the 3D added-variable plot for VEHIPOP 
and TAX, along with the regression plane and the residuals. 

Delete Wyoming and see what happens to the 2D added-variable plots. 
The most striking change is for INC, which changes from a plot with little 
evidence of a linear trend to one that has a negative trend. This is confirmed 
by using the “Display fit” item in the model’s menu and comparing coefficient 
estimates with and without Wyoming. Virtually all the coefficients show large 
changes when Wyoming is deleted. Cook’s distance is also very effective in 
locating this case, as its value is about 1.34, while the second largest value is 
only 0.18. 
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15.6 COMPLEMENTS 

15.6.1 Updating Formula 

Gauss (1821-1826) was the first to give a remarkable formula that can be 
used to obtain the estimates for a multiple linear regression model when the 
ith observation is deleted. Using the notation of Section 15.2, the basic formula 
is 

(UW) ~ UjU'(UrV) ~ (u;)u(;))-' = ( U w - 1  + 
1 

(15.15) 

A history of this equation is given by Henderson and Searle ( 1  98 1 ) .  Straight- 
forward application of this formula shows that 

.. (uW)-luj;i 

1 
= - 

..2 - . . 2n -k-r ;  
- 0 

n - k - 1  

and from these deriving (15.9), (15.13), and (15.14) is straightforward. 

15.6.2 Local Influence 

The use of added-variable plots to identify influential cases described at the 
end of Section 15.5 is based in part on a generalized method of influence as- 
sessment. The basic idea behind influence analysis is that a regression solution 
should be stable: Small changes in the data should not produce large changes 
in  the results. Deleting cases is one way of introducing small changes in the 
data, but there are others as well. 

We might assume that the variance function is not quite constant. Sup- 
pose we set Var(yi I x,) = cr2/w,, where w is the Greek letter omega. Let w = 

. . .w, )~ .  We can study the change in a single coefficient estimate, say G I ,  
as w changes. Let GI(w) denote the WLS estimate of with weights If 
w, = 1 for all cases, then = ;I,, the OLS estimate, but for other values of 
w we can get a different estimate. We can get a worst situation by solving the 
following problem: Find not too far from 1 for every case such that G , ( W )  
is as far from G I  as possible. Cases whose values for are most different 
from I are potentially influential cases. Finding the worst case is the same 
as the mathematical problem of maximizing the rate of change in 7jl(w) as 
w is varied. This maximization problem can be solved, and the potentially 
influential cases can be identified in the added-variable plot for u 

The added-variable plot for in the linear regression model fit to 
the Fuel data is shown in Figure 15.8. The most separated points are likely to 
be the most influential. From the plot, modifying the case weight for Wyoming 
will result in the greatest rate of change in the estimate of the coefficient of 
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FIGURE 15.8 Added-variable plot for VEH/POP in the fuel data. 

15.6.3 References 

A good elementary introduction to residuals, leverages, outliers, and influence 
measures is given by Fox ( 1  991). More advanced treatments are given by Cook 
and Weisberg ( 1982) and by Atkinson (1 985). Deletion influence measures 
were introduced by Cook (1 977). The use of added-variable plots for studying 
local influence is developed in Cook ( 1986a). Many other influence measures 
have been suggested; see Cook, Pefia, and Weisberg (1988) and Cook (1986b) 
for comparisons. Cook and Prescott (198 1 )  discuss the power of tests for out- 
liers and also discuss the accuracy of Bonferroni bounds. The case of Hadlum 

Hadlum is discussed by Barnett (1978). The Russian satellite debris prob- 
lem is discussed by Beckman and Cook (1983). The FACE-2 experiment is 
discussed by Kerr (1982); FACE-I data are presented in Problems 12.8 and 
15.8. The quote on page 362 is from Edgeworth ( I  887). 

The adaptive score data first appeared in Mickey, Dunn, and Clark (1 967). 
The muscles data used in Exercise 15.6 are from Cochran and Cox (1957). 
The fuel consumption data come from the World 

PROBLEMS 

15.1 In this problem we use the adaptive score data adscore. l s p  to verify 
certain properties of the residuals and fitted values. First, verify that the 
residuals add to zero. This can be done as follows. Assuming the name 
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of the model is L1, type: 

Similarly, replacing : with : verify that the sum 
of the leverages is equal to the number of coefficients in the model, 

including the intercept, which is 2 for these data. Next, verify that y = 
2 + j ,  by adding both the residuals and the fitted values to the data set, 
and then plotting their sum versus Score. Verify that the regression of 2 
on $ has slope equal to zero, and show that the square of the correlation 
between y and 2 is equal to 1 - These results hold for any OLS fit 

of a linear model with an intercept. 

15.2 The purpose of this problem is to demonstrate numerically that the t -  

statistic for = 0 in model (1 5.12) is the same as the outlier-t. We will 
do this by using the adaptive score data to construct t , 8  according to 

model (15.12). If all goes well, this should be the same as the value 
of t,8 of the variable Outlier-t for model (15.10), apart from rounding 
error. To begin, use the “Add a variate” item and the 

function (Section A. 12) by typing the following in the text area in the 
dialog: 

= 

This will create a new variable called u18 that is of length 21, and all 
of whose values are equal to 0 except for the element for case number 
18, which is equal to 1 (remember again that the numbering of cases 

always starts with 0, so case number 18 is actually the nineteenth case 
in the data file). Fit model (15.12) and compare the t-statistic for = 0 
with the corresponding element of for model (15.10). 

15.3 It is possible to test for two outliers simultaneously by adding two 
case indicators to the model. Suppose we wish to test the j th  and eth 
cases, where the cases are chosen without reference to the response, as 
in Section 15.4.1. Letting u y )  and ,Ic’ denote the corresponding case 
indicators, form the linear model 

We can now test the hypotheses 

NH:  

AH : either S j  # 0 or 6, # 0 or both are nonzero 

by using an F-test. Additional cases can be tested simultaneously in the 
same way by adding additional case indicators. 
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In the adaptive score data, test the hypothesis that = 6, = 0 against 
the general alternative. Provide a brief interpretation of the results. 

15.4 With Wyoming deleted, is there any clear information in the fuel data 
l s p  to contradict the linear model? Curvature, nonconstant 

variance, outliers, and influential cases are all relevant issues. 

15.5 In the Big Mac data, given the regression with response log(BigMac) and 
terms (log(Bread), log(BusFare), log(TeachSal), log(TeachTax)) check for 
influential cases and for outliers. Which cities seem to be different from 
the rest? How are they different? Do they strongly influence any con- 
clusions? 

15.6 The data in file l s p  comprise two replications of a 4 x 

x 3 factorial experiment on rats to investigate the use of electrical 
stimulation to prevent deterioration of denervated muscles. The re- 
sponse y is the weight ( 1  unit = 0.01 g) of the denervated muscle at 
the end of the experiment. Since larger animals tend to have larger 
muscles, the weight of the untreated muscle, x, on the other side of the 
rat was used as a covariate. The other factors in the experiment were: 
Rep, the replication number, either zero or one; TrtTime, the length 
of stimulation in minutes, either 1 ,  2, 3 ,  or Trt/day, the number 
of treatments per day, 1, 3 ,  or 6; and Trr, a qualitative factor for the 
type of current used, 1 = Galvanic, 2 = Faradic, 3 = 60 cycle, or 4 = 

25 cycle. 
Provide a complete analysis of these data, and summarize your find- 

ings. Once you obtain a target model, be sure to analyze the data for 
outliers and influential points. 

15.7 As in Problem 10.11, an experiment was conducted to investigate the 
amount of a particular drug that would be absorbed in the liver of a 
rat. The investigator knew that larger livers would absorb more of the 
drug than smaller livers, and that liver weight is strongly related to body 
weight. Further, the investigator hypothesized that if each rat was given 
about 40 mg of the drug per kilogram of body weight, then each rat 
would absorb about the same percentage of the dose. Nineteen rats were 
weighed, placed under light ether anesthesia, and given an oral dose of 
the drug according to this design. After a fixed length of time, each rat 
was sacrificed, the liver was weighed (LiverWt), and the percent of the 
dose in the liver (y) was determined. 

The investigator was disappointed by the results of the experiment 
because the linear regression of y on LiverWt, and BodyWt gave 
significant results, contradicting his hypothesis that the mean function 
is constant. 

Analyze the results of the experiment with a view towards resolving 
the dilemma. The data are in file l s p .  
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15.8 Cloud Seeding. This problem continues Problem 12.8 on the first Flor- 
ida Area Cumulus Experiment in the data file l sp .  

15.8.1 Starting with the model suggested in Problem 12.8.5, with all 
the data included, examine the data for influential cases and for 

outliers. Summarize your conclusions. 

Refit the model after deleting three cases: the most influential case 
and the most likely outliers. Are the conclusions reached dif- 
ferent from the conclusions of Problem 12.8.5? Present in a para- 
graph a summary of the analysis, and in one plot provide a summa- 
ry of the effect of seeding on rainfall. 

15.8.2 
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Predictor Transformations 

Using transformations is a continuing theme of this book. Power transforma- 
tion were introduced in Section 5.2, where we found that there is a simple 

linear relationship between log(BruinWt) and log(BodyWt). In Section 13.2.1 
we introduced general guidelines for transformations including the important 
empirical rule that positive predictors that have the ratio between their largest 
and smallest values equal to 10 and preferably 100 or more should very likely 
be transformed to logarithms. Response and predictor transformations to mul- 
tivariate normality were discussed in Chapter 13. We now consider a more 
detailed study of predictor transformations. 

16.1 REGRESSION THROUGH TRANSFORMATION 

In Problem 9.4 we reasoned that a haystack might be approximated with a 
hemisphere having circumference C, = (C + 20ver) /2 .  The mean function for 
haystack volume that follows from this approximation is 

r 3  

(16.1) 

which is the volume of a hemisphere with circumference C, . The mean func- 
tion in ( 1  6.1 ) is a linear function of a transformation T of C,, specifically a 
cubic transformation, where T is the Greek letter tau. Mean function (16.1) 
has little flexibility because it includes no unknown parameters. 

16.1.1 Power Curves and Polynomial Fits 

We could modify mean function (16.1) to get more flexibility and obtain a 
better approximation of the volume of a haystack. For example, we might use 

(16.2) 
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FIGURE 16.1 Plot of Vol versus C ,  = (C + 20ver) /2  for the haystack data with a cubic power 

curve and a lowess smooth. 

Here vo and rl, are unknown regression coefficients and we have allowed for 
the possibility of raising C, to a power other than 3. The superscript “(A)” 
indicates the scaled power transformation defined in Section 5.2. This mean 
function is a transformation of C, given by 7(CI) = + 7/,C1(’) that includes 
parameters which may be estimated to increase flexibility of the fitted function. 

Using the data in the file construct a plot of versus C, 

and select the item “Power curve” from the pop-up menu for the parametric 

smoother slidebar. As you move the slider to the right, various power curves 
are estimated, as described on page 319, and superimposed on the plot. The 
power curve for X = 3 is shown on the plot in Figure 16.1 along with a 
smooth. To construct this plot, you will need to add the value 3 to the power 
curve slidebar using a pop-up menu item. 

As the transformation parameter is varied in the plot of Figure 16.1, the 
fitted power curve can be judged against the data to select a transforma- 
tion. For the cubic transformation, the power curve and smooth nearly 
match, suggesting the cubic transformation matches the mean function. Anal- 
ysis could now proceed based on the model 

Of course, checking residual plots and watching for outliers and influential 
cases is necessary. 
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When choosing power transformations in this way, it is always appropriate 
to prefer meaningful powers, particularly X = *2,* 1, I-t2/3, 1 / 3 ,  * 1 /2, or 0, 
provided the choice is sustained by the data. Polynomial fits could be used in 
the same way as power curves, selecting the OLS option from the parametric 
smoother slidebar. 

16.1.2 Transformations via Smoothing 

Generalizing even further, we could adopt the view that 

I C, = + e (16.3) 

where is now an unkmwn transformation of The transformation 
(16.1) contains no unknown parameters, while (16.2) contains up to three un- 

known parameters that would need to be estimated. In (16.3) the entire trans- 
formation T is unknown; in effect, the transformation function 7(CI) becomes 
a superparamefer that must be estimated. 

Starting with (16.3), the transformation could be estimated from a plot 
of versus as shown in Figure 16.1. That plot can also be described as a 
plot of r(CI ) + e versus , and thus it can be used to estimate T by smoothing. 
A lowess estimate ?(C,) of 7(CI) is shown in Figure 16.1. We don’t have a 
functional form for the estimate, but we can extract its values ?(Cll) at the 
data points , i = 1 ,. . . , 120, and add them to the data set. This is done by 
using the item “Extract mean” from the pop-up menu for the slidebar. 
After selecting this item, you will be presented with a dialog for naming the 
transformation. The default name is h, but this can be changed. However, do 
not use just the letter “t” since this is reserved as a system constant in Arc. 
The transformed values will be added to the data set as a new variable with 
the name you selected. The fitted values from power curves and polynomial 
fits can be extracted similarly. 

16.1.3 General Formulation 

Consider a regression with response y and k u-terms, including a constant for 
an intercept. Let u2 be a selected nonconstant u-term and collect all remaining 
u-terms including the constant into a ( k  - 1) x 1 vector u, .  In many applica- 
tions, u2 will be one of the predictors. We want to decide if the initial linear 
model 

I x = vTu, + 772u2 + e 

can be improved by transforming u2.  To this end, we modify the model by 
including an unknown transformation 7(u2 )  of u2,  

( 16.4) 
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The goal is to estimate the unknown transformation function Gener- 
ally, we can estimate only up to an unimportant additive constant. As 
long as the mean function includes an intercept, adding a constant c to any 
transformation results in a new transformation c + that is equivalent to 
the original transformation with a different value for the intercept. Since 
constant shifts are unimportant for judging the form of the transformation and 
for subsequent data analysis, they will be neglected. 

As suggested by the previous examples, will be estimated by smooth- 
ing or by fitting a power curve or a polynomial to an appropriate plot to be 
discussed in Section 16.2. Once selected, the transformation can be substituted 
for in (16.4). 

We can distinguish between two general outcomes: 

If is judged to be linear in u2,  then we can set = v2u2 and the 
model reduces to the usual multiple linear regression model. In this way 
the methods presented in this chapter can be used as diagnostics for the 

mean function. 

- If is judged to be nonlinear in u2,  then we have evidence that a 
transformation of u2 may result in an improved model. 

We describe in the next section graphical displays that can be used to infer 
about the unknown transformation These displays are called Ceres 

Ceres is an acronym for Combining conditional Expectations and RESiduals. 
Ceres plots extend the basic ideas just introduced. 

16.2 Ceres Plots 

Suppose we know the value of 7, in (16.4). Rearranging terms, we obtain 

- r]Tu,) I x = + e (16.5) 

A plot of the adjusted response y - r]Tu, versus u2 would be the same as a 
plot of 7 ( u 2 )  + e versus u2,  and we would be able to visualize and use 
the plot to assess the evidence for transforming u 2 .  If we know the adjusted 
response, we can proceed by using the methods discussed in Section 16.1. 

Since 17, is not usually known, we need to estimate it using the data. As- 

suming we have a good estimate 6, of r], , we construct the adjusted responses 
using 6, and plot 

- T  
y-r] ,u ,  versus u2 ( 16.6) 

This is the general version of a Ceres plot. The only issue left is how to 
estimate r], without knowing in the first place. Exactly how r], can 
be estimated without knowing depends on the k - 2  term mean functions 

E(u,, I u2), j = 1,. . . , ( k  - 2), where u,,  is the j th u-term in u, excluding the 
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constant term u 

scatterplots of u , , versus u2.  
= 1 .  We can infer about these mean functions from the - 2 

16.2.1 

When the mean hnctions E(uIj I u J , j  = 2, . . . , k - 1, are constant, vi  can 
be estimated by using OLS to fit the working model 

Constant E(ul j  I u2)* No Augmentation 

v = vTu, + error ( 16.7) 

We have written out “error” explicitly to remind us that this is a working 
model fit only with the goal of estimating It need not provide a useful 
description of a regression. The plot in this case is just a plot of the 
residuals from the OLS fit of (16.7) versus u2.  We will call this a 

no 
If the term mean functions are not constant, then the estimate 6, obtained 

from the tit of (16.7) will not estimate in (16.4), and the plot with 
no augmentation may fail to give a reasonable visualization of T .  

16.2.2 Linear E(u,, I uz ) ,  Linear Augmentation 

When the term mean functions E(u,, 1 are all linear functions of u2, in- 
cluding the possibility that some may be constant, is estimated from the 
OLS fit of the working model 

y = ~ ( u ,  + + error (16.8) 

Linear augmentation adjusts for the linear form of the term mean functions so 
we can still get a good estimate of for use in plots. The only thing 
that has changed from the previous case is the way in which T,I, is estimated. 
The plot is still given by (16.6), but with the estimate of taken from 

the OLS f i t  of (16.8). 
The Crre.s plot in this case is called a 

16.2.3 Quadratic E(uIj  I Quadratic Augmentation 

Suppose that E(u I is a quadratic function of u2 for at least one j ,  while 

the mean function is either linear or constant otherwise. We now augment with 
both linear and quadratic terms in u 2 ,  and use OLS to fit the working model 

I !  

The is a plot ( 1  6.6) with 6, 
estimated from this fit. This plot will again allow visualization and 
estimation of 
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16.2.4 General I u2), Smooth Augmentation 

In this case, we make no special assumption about the term mean functions 
E(ulI I Rather, suppose that the function is an estimate of 1 u2)  

based on a smooth of the scatterplot of versus u2. Excluding the 
constant term, there are k - 2 of these one for each nonconstant component 
of u1 , We then use OLS to fit the augmented mean function 

Taking G I  from this fit, the is again 
given by (16.6). This method can be applied in any regression provided that 
good estimates are available. Smooth augmentation requires more work to 
construct the plot, but it may be necessary if the other augmentation 
types do not apply. 

16.3 BERKELEY GUIDANCE STUDY 

In the Berkeley guidance study for girls in the file consider 
the regression of the height at age 18, on three of the age 9 predic- 
tors and It is possible that we will need to transform one, 
two or all three of the predictors. It is also possible that none of the predic- 
tors will require transformation. To explore these possibilities, we will first 
consider transforming each predictor in turn. When considering transforma- 
tion of we require knowledge of the mean functions E(WT9 1 and 

I When considering transformation of we require knowl- 
edge of the mean functions I WT9) and E(ST9 I Similarly, we 
need information about two mean functions when considering All of 
these mean functions can be visualized easily in a scatterplot matrix, extracting 
the individual plots that may require more detailed analysis with smoothers. 
In this example we used a scatterplot matrix (not shown) to infer that all 
the mean functions are strongly linear, but a few present a weak indication 
of a quadratic trend. To be on the safe side, we decided to use plots 
with quadratic augmentation, although linear augmentation leads to the same 
qualitative conclusions. 

To construct the plot, use OLS to fit the linear regression of 
on the three predictors and then select the item “Ceres plots-2D” from the 
resulting model menu. This will produce the dialog shown in Figure 16.2 that 
is used to specify the type of augmentation, and the terms to be considered 
for transformation. The “Selection” box must include at least one of the term 

names; the default is to consider transforming all terms as shown. Choose 
an augmentation method using one of the four methods outlined in the last 
section. 

We used quadratic augmentation and selected all three terms. This produced 
a 2D plot with an extra slidebar and pop-up menu. The initial view in this plot 
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FIGURE 16.3 Ceres plot for in the Berkeley guidance study data. 

is the Ceres plot for the first term selected. The slidebar can be used to cycle 
through all the terms. The order of the terms on the slidebar is the same as 
the order in the “Selection” box of the Ceres dialog. 

The plot for HT9 is shown in Figure 16.3. It has an approximately 

linear mean function. The Ceres plots for the other two predictors also show 
no clear evidence of curvature. Thus no transformations are indicated and the 
Ceres analysis supports the possibility that the linear regression mean function 
may be appropriate for these data. 
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HAYSTACK DATA 

We start the analysis of the haystack data by using OLS to fit the tentative 
mean function 

I = + rl1C + (16.1 1 )  

There is clear curvature in a 3D plot of the residuals versus (C, indicat- 

ing that this mean function is deficient. It seems possible that transformation of 
one or both of the predictors could result in considerable improvement. When 
transforming C ,  we require knowledge of the mean function I C) and 
when transforming we need to know about E(C I Plots of 
versus C and C versus (not shown) indicate that both of these mean 
functions are strongly linear. Thus we next investigate plots for C and 

using linear augmentation. 
The plot for C is shown in Figure 16.4 and the plot for is 

shown in Figure 16.5. Judging from the smooths, both plots show curvature 
and thus some transformation may indeed improve the mean function. Which 
predictor should we transform? In general, if 

because the nonlinear effects of one predictor can 
leak through to the plots for other predictors. The potential confusion 
caused by this can be avoided by transforming the predictor 
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FIGURE 16.5 Initial Cues plot for Over in the haystack data. 

that shows the strongest visual fit in its plot. In the haystack data we 
choose to transform Over. 

The next step is to estimate in 

E(Vol I = + q,C + 

in an attempt to improve the mean function. There are two fits superimposed 
on the plot for in Figure 16.5. One is a lowess smooth and the 
other is the cubic power curve. The smooths agree quite well and either may 
be adequate, but we prefer to proceed using the cubic power curve because 
of its relative simplicity and the connection with the volume of a hemisphere. 
The next step is to extract the cubic power curve from the plot for 
Starting with the plot in Figure 16.5, 

. remove the lowess smooth, 

select “Extract mean” from the pop-up menu from the power curve slide- 
bar, and 

- name the transformation t[Over] in the resulting dialog. 

The data set now contains the new variable which is our estimate 
of provides a shortcut for these last two steps: Select the item 
“Add smooth to data set” from the pop-up menu for “Ceres actions” to ex- 
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FIGURE 16.6 Ceres plot for C in the haystack data using the adjusted response V o l ~  t[Overl 

after transforming Over to r[Over]. 

tract the smooth and add the transformed variable, which will be named 
t[“name on axis”], to the data set. 

Now that we have transformed Over, our current model is 

Vol I (C,Over) = q, + q C  + t[Over] + e 

Moving t[Over] to the left side, we obtain 

(Vol- t[Over]) I (C,Over) = + 71,C + e 

We now have a working model with one predictor, and we can begin again, 
using this last model as a starting point for investigating transformations of 

C, just as we started with model (16.1 1). 
To see if C should be transformed, we plot the adjusted response Vol- 

t[Over] versus C and estimate the transformation in the usual way. This plot 
is shown in Figure 16.6. Again we see that the cubic power curve fits quite 
well, suggesting a cubic transformation of C. In Arc the adjusted responses 
can be created and added to the data set by selecting the item “Add adjusted 
response to data set” from the pop-up menu for “Ceres Actions.” 

The Ceres plots we have used in this analysis indicate that both C and Over 

should be cubed, so we next consider the model 



16.5 TRANSFORMING MULTIPLE TERMS 383 

This model is the first firm alternative to the starting model (16.1 1). The fitted 
mean function is 

E(Vol I (C,Over) = - 141.252 + 0.00239258C3 + 0.04837430ve? 

with a = 195.552. An inspection of a 3D plot of Vol versus and 
various residual plots supports this model. We therefore adopt it as the final 
model for this example and turn to interpretation. 

We can gain further understanding of the fitted model by changing the units 
of the predictors to correspond to the volume of a hemisphere. Accordingly, 
define the predictors VC = C3/( I 27r2) and VOver = 1 to be the 
volumes of hemispheres based on C and Over. The fitted mean function can 

now be written in terms of the volume predictors by using the results in 
Section 10.1 : 

E(Vo1 I C,Over) = -141.252 + (O.O0239258)(12~*)VC 

+ (0.0483743)( 1 .57r2)VOver 

= - 14 1.252 + 0.2834VC + 0.7 162VOver 

Remarkably, the coefficients of VC and VOver are both positive and essen- 
tially add to 1 .  This means that, apart from the intercept term, the estimated 
mean values can be interpreted as a weighted average of two different es- 
timates of the volume of a haystack, one based on C and one based on 
Over. 

16.5 TRANSFORMING MULTIPLE TERMS 

When transforming two or more terms, we need to distinguish between two 
general types of transformation: and When transforming 

two terms, u2 and u3,  an additive transformation is of the form .r(u2,u3) = 

T ~ ( U * )  + 7?(u3) ,  so the terms are transformed individually and then the trans- 
formed values are added to get the joint transformation T .  A nonadditive trans- 

formation is any transformation that is not additive. For example, = 
u2u? is a nonadditive transformation while 7(u2,u3)  = + log(u,) is an addi- 
tive transformation. In the next section we discuss a method based on Ceres 
plots for estimating additive transformations of several terms. The method is a 
generalization of that used for the haystack data in the last section. Nonadditive 
transformations are discussed in Section 16.7. 

16.5.1 

After fitting the multiple linear regression model, inspect the 2D Ceres plots 
for convincing nonlinear trends using an appropriate form of augmentation. 

Estimating Additive Transformations of Several Terms 
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If none are found, there is no evidence that any terms should be transformed, 

and the Ceres plots sustain the model. Otherwise, transform the term with the 
strongest visual fit in its Ceres plot, say u2, .  The estimated transformation 

could be a polynomial, a power, or a smooth. 
Next, subtract from the response and f i t  the working model 

y - = qTu, + error (16.13) 

where u,  is the ( k  - 1) x 1 vector of terms excluding u 2 ] .  This is a linear model 
with adjusted response y - F(u2, )  and k - 1 u-terms, so we can begin again 
and use the Ceres plots to explore the need to transform components of u,.  

The third item “Fit new model with adjusted response” in the “Ceres 
actions” pop-up menu executes the first two items in the menu-adding the 
smooth and adjusted response to the data set-and then fits model (16.13), 
producing an associated model menu. 

After transforming q terms, u 2 , ,  . . . , the worlung model is of the form 

where uq is the (k  - x 1 vector of terms excluding u2 , , .  . . , u2(, and 

The adjusted response yl,(/; is the original response minus all of the extracted 
transformation curves. The transformation of a component of uq is determined 
as usual and the estimated transformation curve is then subtracted from 
to produce the next working model. The process continues until all relevant 
terms have been considered. 

16.5.2 Assessing the Transformations 

As a final diagnostic check on the transformations, inspect the Ceres plots for 
the working model 

where the adjusted response yudl is now the original response minus all of 
the estimated transformation curves. If all the Ceres plots have linear mean 
functions, then no further transformations are required. If some have nonlinear 
mean functions, then further transformations may be useful. 

16.6 Ceres PLOTS WITH SMOOTH AUGMENTATION 

We have concentrated on Ceres plots with linear and quadratic augmentation 
since these augmentation types will be adequate in most applications. How- 
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ever, smooth augmentation is necessary when the mean functions for the re- 
gression of one term on another cannot be described adequately a linear 
or a quadratic curve. In this section we use constructed data to show how to 
use smooth augmentation in Arc and to illustrate that using the wrong type of 
augmentation can produce misleading results. 

The file Isp  contains data on a response y and three u-terms, 
u l  I, u 1 2 ,  and u2. As suggested by the notation, we will consider transforming 
only u2 in this example, so only u, should be placed in the “Selection” box 
of the Ceres dialog for this discussion. The response was constructed as 

1 

1 + exp(-u,) 
= U I I  + u12 + 

without any error. By not including error, we will be able to illustrate conclu- 
sions more clearly. A plot of the true transformation 

1 

1 +exp(-u,) 

versus u, is shown in Figure 16.7a. This is the transformation curve we would 
like to recover by using Ceres plots. 

These data were generated so that E(u,,  I u 2 )  = u;’  and E(u,, I u,) = 

log(u,). If these two mean functions were known, a Ceres plot for u2 should 
be developed by first using OLS to fit the working model 

and then constructing the plot from (16.6) with the estimate of el = i0, ill ,  
taken from this fit. The resulting Ceres plot, which does a very good job 

of capturing the transformation, is shown in Figure 16.7b. 

The Ceres plot with linear augmentation is shown in Figure 1 6 . 7 ~ .  Apart 
from three outliers in the lower left corner, the plot has a strong linear trend; 
this would not normally be seen as providing evidence for a transforma- 

tion. This Ceres plot fails because linear augmentation does not capture the 
term mean functions. The Ceres plot with quadratic augmentation is shown 
in Figure 16.7d. This plot does a better job of indicating the need for a 
transformation, but the results are still not very good. Neither linear nor 
quadratic augmentation provides a sufficient approximation to the term mean 
functions, and consequently they both fail to give a reasonable visualization 
of 7 ( u 2 ) .  For progress in this example, we must turn to smooth augmenta- 
tion. 

Select the option “Augment using smoothers” in the Ceres dialog. With 
smooth augmentation, only one u-term can be considered for transformation 
at a time; if more than one term is placed in the “Selection” box, only the 
first one will be used. Tho plots are produced, one plot for estimating the 
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FIGURE 16.7 Four Ceres plots for the constructed data discussed in Section 16.6. 

term mean functions and a Ceres plot. The term plot has an extra slidebar 
for moving between the terms in u I .  For the constructed data, there are two 
term plots, u , ,  versus u2 and u versus u2. The term mean functions can 

be estimated from these plots using a power curve or a polynomial. 
The default is to estimate all term mean functions using Zowess with tuning 

parameter 0.5. 
Once the term mean functions have been estimated on the plots, click the 

new box "Update Ceres" on the Ceres plot. This will extract the smooths from 
the term plots, fit the working model with the corresponding augmentation 
using (16.10), and redraw the Ceres plot using the new estimate of 

I? 
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FIGURE 16.8 Ceres plot construction. 

Two plots versus terms for the example are shown in Figures 16.8a and 
16.8b with at 0.2 and the plot controls removed. The corresponding 
Ceres plot obtained by clicking the "Update Ceres" box is shown in Fig- 
ure 16 .8~ .  This Ceres plot gives a good representation of the true transforma- 
tion in Figure 16.7a. For contrast, the Ceres plot with lowess at 0.5 is shown 
in Figure 16.8d. The estimate of the transformation has clearly deteriorated. 

plots are influenced more by bias in the estimates of the term mean 
functions than by variation, so undersmoothed estimates as in Figures 16.8a 
and 16.8b are desirable. 
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TABLE 16.1 Augmenting Functions for 2D and 3D Ceres Plots" 

Augmentation Conditions 

None 

Linear 

Quadratic 

Each mean function E(ulj I u 2 . u 3 )  is constant. No augmentation 

Each mean function E(ulj I is linear or constant. The 

Each mean function E(u 

needed. 

augmenting function is 712u2 + q3u3. 

constant. The augmenting function is 

7 / 2 u 2  + 173% 7/22u; + 7133u: + 7 h 3 u 2 u 3 .  

For arbitrary relationships between the terms. In principle, 
smooth each u l j  on ( u 2 , u 3 ) ,  and use these smooths to 

augment the mean function. This is implemented in Arc only 
for 2D Ceres plots for transforming one term at a time. 

I u2,u3)  is quadratic or linear or 
I? 

Smooth 

"n this table, u, is the vector of k - 2 terms not considered for transformation, and u2 and u3 are 

the two terms being considered. For 2D Ceres plots, delete reference to 

16.7 TRANSFORMING TWO TERMS SIMULTANEOUSLY 

The same ideas can be used to transform two terms simultaneously. Let u2 and 

u3 denote the terms that may require transformation and collect the remaining 

terms into the ( k  - 2)-dimensional vector uI . The required transformation will 

be denoted by ~ ( ~ 2 , 1 1 3 ) .  

16.7.1 Models for Transforming Two Terms 

Consider the possibility of transforming two terms u2 and u3 simultaneously: 

E(Y I X I  = + 7 ( u p u 3 )  

Regardless of whether 7(u2, u 3 )  is additive or nonadditive, the procedure for 

getting a Ceres plot is analogous to the method for transforming terms one 

at a time. We obtain the OLS fit of an augmented mean function, where the 

augmenting function depends on the relationship between the terms, and then 

use the 3D plot 

~ T U ,  versus ( ~ 2 , ~ 3 >  ( I 6.1 4) 

to visualize 7 ( u 2 , u 3 ) .  The estimate of 71, comes from the augmented mean 

function as before. The augmenting functions needed are described in Ta- 

ble 16.1. As in the case of transforming a single term, the Ceres plot is used to 

estimate and the procedure should be effective if the mean functions 

E(u,, I u2, u 3 )  satisfy the augmentation conditions described in Table 16.1. The 

distinction between additive and nonadditive transformations is not important 

for constructing the plot, but may be useful for interpretation and for estimat- 

ing transformations. 
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16.7.2 Example: Plant Height 

One use for examining two terms simultaneously is to check for spatial trends. 

Agricultural field trials are often done on a rectangular field that is divided 
into a number of plots. Even if all the plots are treated identically, the expected 
responses may differ systematically because of fertility gradients. For example, 
the expected response may decrease from north to south. The 3D Ceres plot 
provides a method of studying this sort of environmental variation after the 
experiment is done. 

Consider an experiment done in the Spring of 1951 to investigate the ef- 
fects of varying doses (treatments) of cathode rays on the growth of tobacco 
seeds. The data are in the file . l s p .  Seven doses were used, one 
of which is a control dose of zero. The experimental area was divided into 
56 plots laid out in a grid with eight rows and seven columns. As is com- 

mon in experiments of this type, the experimenters believed that spatial trends 
might be possible, so they laid out the experiment as a randomized complete 

block design, using the rows as blocks. This means that within each row each 
of the seven treatments appears exactly once, allocated to plots within the 
row at random. Because of the blocking, any systematic affects due to rows 
should affect each treatment equally, and they should therefore be eliminated 
from comparisons between treatments. Any spatial trends due to columns, 

however, have not been eliminated and may influence a comparison of the 
treatments. 

For each of the field plots we know the row number Row, the column 
number the treatment number Trf, and the response Ht, the total height 
in centimeters of twenty plants. 

Imagine a response surjace over the experimental area that reflects the spa- 

tial trends. We investigate this surface using a 3D Ceres plot with linear aug- 
mentation. The and indices of a plot are coordinates of points on 
the surface. We do not have the quantitative values for the treatment levels, 
so we will regard Trr as a factor. Let the indicator term uj equal 1 if the j th  
treatment level is applied on the plot and 0 otherwise: we get the following 
general model for the experiment: 

Ht = + r j 2 v 2  + . . . + ~ i ~ u ~  + r(Row, + e 

where is the value of the response surface for a particular value 
of Row and To construct a 3D Ceres plot we need to fit the initial 
model with response Ht  and terms {F}Trt,Row and This is not the usual 
model for a randomized complete block design, which would use {F}Trt 

and as terms, where {F}Row is a factor for rows to represent the 
blocking effects. would not appear in the usual randomized complete 

block analysis. The analysis here could be used in any regression in which 
the units have coordinates in the plane, regardless of the experimental de- 
sign. 
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FIGURE 16.9 Two views of the 3D Ceres plot for the plant-height data. 

From the menu for the OLS fit of the working model 

select the item “Ceres plot-3D,” move and to the right “Selection” 
box and select “Linear augmentation.” The resulting plot is the 3D Ceres plot 
with linear augmentation for and It should give us information on 

the underlying surface 
Use the “Pitch” control to rotate the 3D Ceres plot to the 2D view versus 

The points fall on a regular 8 x 7 grid corresponding to the field layout. 
Now return the plot to the “Home” position and rotate the plot by using one of 
the “Yaw” buttons to gain a feeling for the function Two 2D views 
of the plot are shown in Figure 16.9. Substantial spatial differences across the 

field are evident. The plot seems to be composed of a linear trend, visible in 
the OLS view in Figure 16.9a, and a quadratic trend shown in Figure 16.9b. 
This is useful information, particularly for future experimental designs in the 
same area, but it would be a help in the analysis of this particular experiment 
if we could characterize the surface more specifically. 

Recall the OLS view and then display the screen coordinates: 

+ 0.4820 - 0.2502 + 
+ + .00252 

Since both and clearly contribute to the horizontal screen term, the 
strongest linear trend runs diagonally across the field and thus does not align 
with blocks, which were rows. Remove the linear trend and view the resulting 
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FIGURE 16.10 Detrended 3D Ceres plot for the plant-height data. 

plot while rotating. One view of the detrended plot with a relatively strong 
visual trend is shown in Figure 16.10. Here, the residual variation seems to be 
largely a function of so we might be able to simplify the transformation 

to the additive form 

which leads to the simplified model 

Ht = (16.15) 

Here, incorporates the linear trend from plus the nonlinear trend 
from 

To determine the transformation to use in ( 1  6.15) we can use the 2D Ceres 
plot for as shown with linear augmentation in Figure 16.11. Neither the 
quadratic polynomial fit nor the smooth shown on the plot provide 
a fully satisfactory approximation to The quadratic fails to capture the 
points at = 3. Because of the few discrete values of the lowess smooth 
just connects the averages of each group of points. If the primary goal is 
reducing variation to allow more powerful treatment comparisons, then using 
the quadratic fit may be sufficient. At the other extreme, could be included 
as a factor, which is essentially the solution suggested by the lowess curve. 
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FIGURE 16.11 Ceres plot for in the plant-height data. 

The form of in this case is 

where the ck are the indicator terms for columns. 
The analysis of the plant-height data continues in Exercise 16.7. 

16.8 COMPLEMENTS 

16.8.1 Mixed forms of E(ul1 1 u 2 )  

The various approaches discussed in Sections 16.2.1 to 16.2.4 can be com- 
bined to allow other appropriate forms of augmentation. For example, suppose 
we have the following regression with three terms: 

To construct a plot for u2 we would first need to inspect scatterplots 
of u I 1  versus u2 and u I 2  versus u2 to infer about the term mean functions 

E(u, , I u2)  and E(uI2 I u2).  Suppose it was inferred that E(u, 1 u2)  = + 
and E(u12 I u 2 )  = Po + P, log(u2). Since one of the mean functions is linear and 
one is logarithmic, we would construct the working model for estimation of 
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vl = (r/,,,rll I, 1 1 ~ ~ ) ~  by augmenting with linear and logarithmic terms in u 2 ,  

The estimate of Q ,  is taken from the OLS fit of this working model, and the 
plot for u2 is once again constructed according to (16.6). 

16.8.2 References 

Ceres plots were developed by Cook (1993), who provides the justification 

that the mean function in a Ceres plot will estimate the needed transformation. 
Ceres plots consolidate and extend two other methods. 

The basic idea with linear augmentation was given by Ezekiel (1924), and 
the linear augmentation method was fairly well known through the mid-sixties. 
For example, i t  is given in Bliss (1970, p. 309). Ceres plots with linear aug- 
mentation were rediscovered in the early seventies in two papers: Larsen and 
McCleary ( 1  972), who called them and Wood (1973), 
who called them This latter name comes from 
an alternative way of computing the vertical axis of the plot. Starting with 
( 1  6.8), we see that the vertical axis can be computed as Ijp2 + 2, where 2 are 
the residuals from the fit of (16.8). plots with quadratic augmentation 
were suggested by Mallows (1986), although his justification for them was 
quite different from the justification used here. The role of the term mean 
functions in controlling the behavior of these early plots was first discovered 
by Cook (1993). The performance of Ceres plots relative to other methods 
was studied by Berk and Booth ( 1  995) and Berk ( 1  998). 

A formal iterative process of model building that uses linear augmenta- 
tion is called see Hastie and Tibshirani ( 1  990) 
or Green and Silverman ( 1  994). The general idea, which originated with 

Ezekiel (1924), is to cycle through all relevant terms until the transforma- 
tions no longer change. One cycle through the relevant terms is often suffi- 
cient. 

The plant-height data are from Federer and Schlottfeldt (1954). The data 
for Exercise 16.8 are from Federer (1955). The constructed data used in Sec- 
tion 16.6 are from Cook ( I  993). The sniffer data in Problem 16.4 were pro- 
vided by John Rice. 

PROBLEMS 

16.1 Reconstruct the Ceres plot of Figure 16.3 

16.2 Reconstruct the plots of Figures 16.7 and 16.8. Also construct 
Ceres plots equivalent to those in Figure 16.8, but using the power curve 
option in the parametric smoother slidebar instead of smooths. 
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16.3 Load the file . l s p  which contains 100 cases on a response y 
and three terms, u I , ,  u I 2 ,  and generated according to the model 

where the e are independent N(O,.25). Using Ceres plots with an ap- 
propriate form of augmentation, estimate the unknown transformation. 

16.4 The file contains data from an experiment to study the 
quantity of hydrocarbons y emitted when gasoline is pumped into a 

tank. There are 125 observations and four predictors: initial tank tem- 
perature, temperature of dispensed gasoline, initial vapor pressure in the 
tank, and vapor pressure of the dispensed gasoline. 

Use f i  as the response and, starting with a linear mean function in 
the four predictors, investigate transformations of initial tank tempera- 

ture. Give the final transformation and briefly summarize your conclu- 
sions about the value of transforming in this analysis. 

16.5 

16.5.1 Show that a Ceres plot with linear augmentation has vertical 
axis given by = e2u2 + 2, where c2 and the residuals are 
from the fit of (16.8). 

16.5.2 Suppose we use OLS to fit the equation 

= yo + yu, + error 

Verify that +o = 0 and that =/ = e2, where e2 is the OLS estimate 
of q2 in the working model 

y = vl  T uI + 7 / p 2  + error 

that is used as the basis for constructing Ceres plots with linear 
augmentation. Do this by algebraically manipulating the usual 
formula for the slope in a simple linear regression and by using 
a numerical example to illustrate that 5, = 7j2 apart from round- 
ing error. 

16.6 In the Big Mac data in the file investigate the need to 
transform the predictors in the initial model 

I x = qo + rll TeuchTax + q2TeachSul + + e 

Which predictor is the most likely to need a transformation? Determine 
an appropriate transformation by superimposing a curve on the plot. 
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The curve could be based on fitting a polynomial using the OLS slide- 
bar, or it could be a power curve or a smoother. Follow the steps in 
Section 16.5 to see if another predictor needs to be transformed. If so, 

repeat the entire procedure to see if the remaining predictor requires 
transformation. State your final transformations. 

16.7 Complete the analysis of the plant-height data in Section 16.7.2 by com- 

paring conclusions on treatment effects under three versions of model 
(16.15). In the first, set = In the second, set = 

rj9Col + rj10Co12. Finally, set to be as given in equation (16.16). 

16.8 The file l s p  contains the results of an experiment to compare 
the rubber yield of seven varieties of guayule. The experimental area 
consisted of 35 plots arranged in a 5 x 7 grid, the rows of the grid 
forming 5 randomized complete blocks. The response for this regression 
is the total grams + of rubber for the two selected plants on each 

Aside from needing to add the terms 4 and P2 to obtain the re- 
sponse, the structure of these data is the same as that in Section 16.7.2. 
Conduct a graphical analysis of these data following the rationale and 
general steps of Section 16.7.2. Were the blocks selected to be in the 
best direction? 

plot. 

16.9 The data in the data file l s p  and used previously in Prob- 
lem 6.9 contain information on brain weight, body weight, gestation 
period, and litter size for 96 placental mammal species. 

Use the methodology of this and the last few chapters to study the 
regression with response litter size and predictors brain weight, body 
weight, and gestation period. 
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Model Assessment 

For the linear regression model, the residuals are the weighted differences be- 
tween the observed values of the response and the fitted values. As described 
in Section 14.1.2, plots of residuals against predictors, terms, or linear com- 
binations of predictors or terms provide a basis for discovering lack of fit of 
a model. A nonconstant mean function in a residual plot indicates a problem 
with the corresponding regression model. Residual plots look for lack of fit 
by focusing on deviations from the fitted model. 

A closely associated problem is assessing how well a model matches the 
data. For example, return to Figure 8.6, page 195, which is a 3D residual plot 
for an artificial data set with a response y and predictors and The curved 
pattern in any view of this residual plot indicates that the mean function fit 
to these data is incorrect, and so the plot correctly indicates that the linear 
regression model may not be appropriate for these data. Figure 17.1 shows 
a plot of y versus the fitted values from the OLS fit to these data; this figure 
can be reproduced by loading the file If we removed the linear 
trend from this plot, we would get a standard plot of residuals versus fitted 
values, and this plot would display a curved pattern. The curvature can be seen 
in Figure 17.1, although with less resolution, by observing that the points do 
not cluster about a straight line, but rather they appear to follow some other 
smooth curve. 

While the linear regression model does not match the data perfectly, it is 
apparent from Figure 17.1 that most of the variation in y is explained by 
the incorrect linear regression model because the residuals are all very small 
relative to the range of the response. An incorrect linear regression model 
can give useful results, but determining if this is so in any given regression 
depends on context. For the artificial data of Figure 17.1 there is no context, 
so the usefulness of the linear regression model as a summary of fit cannot 
be judged. 

Figure 17.1 is a simple example of a model checking in which the 
responses rather than the residuals are plotted against a function of the predic- 
tors to judge adequacy of a model. These plots are closely related to residual 
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FIGURE 17.1 A plot of y versus .; for the artificial data in the file assess. l s p .  

plots, since removing the linear trend from Figure 17.1 would give a plot of 
residuals versus fitted value. As we will see, model checking plot can have 
several advantages over residual plots. 

17.1 MODEL CHECKING PLOTS 

Let’s first think about a regression with one predictor in which we have fitted 
a simple linear regression model. The goal is to decide if a particular model 
provides an adequate summary of a set of data, as previously discussed in 
Section 3.6.1, in the development of lack-of-fit tests in Section 9.3, and fi- 
nally in the development of residuals in Section 14.1. In particular, we saw 
in Section 9.3.1 that a visual lack-of-fit test, at least for the mean function, 
can be obtained by comparing the estimated mean function computed from 
the model to the estimated mean function computed from a smooth. If these 
are very different, then the model is not reproducing the data. The graphi- 
cal procedure therefore is to compare the estimated mean function obtained 
by smoothing the points on the plot to the estimated mean function obtained 
from fitting the model. Support for the model is available if these two esti- 
mated mean functions are similar, while we have evidence against the model 
if the mean functions do not agree. 

For example, Figure 17.2 is a plot of versus C for the haystack data 
in the file We use this plot to explore the simple regression 
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FIGURE 17.2 Model checking plot for the simple linear regression of Vol on C in the haystack 

data. 

model 

I C )  = 'lo + y, C and Var( I = (T* 

From our previous work with these data and from simple geometric consid- 
erations, we should not expect this mean function to match the data very 
well. Two smooths are given on the plot: the OLS fit, which is a straight line 
that estimates I C) only if the simple linear regression model is cor- 
rect, and the fit, which estimates the mean function regardless of the 
fit of the simple linear regression model. If we judge these two fits to be 
different, then we have visual evidence against the simple linear regression 
mean function. We see in the figure that the differences are small but sys- 
tematic: The straight line slightly underestimates when C is small and large, 
and it overestimates for middle values of C. This is similar to the artificial 
data in Figure 17.1, where the mean function is wrong, but relative to the 
variation in the data the magnitude of the differences may be small enough 
to ignore. If we chose not to ignore the systematic failure of the model, we 
could improve the mean function by adding a quadratic or possibly cubic 

terms in C. 
Although Figure 17.2 is a plot of data, the primary focus in this plot is 

comparing the two curves, using the data as background mostly to help choose 
the smoothing parameter for the lowess smooth, to help visualize variation, and 
to locate any extreme or unusual points. 
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17.1.1 Checking Mean Functions 

Now suppose we have a regression with p > 1 predictors. We could in principle 
use the same method of comparing a fitted curve based on a model to a fitted 
curve based on a smoother. If the number of predictors exceeds one, we can’t 
draw the curves, so another method is needed. The approach we take uses 
marginal models. 

Suppose that the model we have fitted has mean function I x) = $u 
for some set of terms u. We will draw a plot with y on the vertical axis and 
a quantity h on the horizontal axis, where h is any function of the original 
predictors x used to define the terms u. Possible candidates for h include 

any of the original predictors, any linear combination of them, or any linear 
combination of the terms in the mean function such as the fitted values G*u. 
If we smooth the plot of y versus h, we can get an estimate of E(y I without 
any assumptions. Can we get an estimate of E(y I from the model? If the 
answer is “yes,” then we have an analogy to simple linear regression: If the 
smooth to the data and the estimate determined by the model fail to agree 
adequately within the context of the problem, then the model itself is not 
adequate. 

Getting an estimate of I from the model requires an application of 
equation ( I  1.2). Under the model, we have 

= E(qTu 1 (17.1) 

Suppose we substitute i, = G‘u for $u in (17.1). Then, h, 
E(y 1 from 9 by 

9 h. If the model is correct, then the smooth of y versus h and the 
smooth of i, versus h should agree; if the model is not correct, then these 
smooths may not agree. 

Let’s consider again the transactions data in the file l s p ,  and 
suppose h = the first of the two predictors. Figure 17.3 shows plots of 
y = versus h and of versus h. The smooth in Figure 17.3a estimates 
E(y 1 T,) whether the model is right or not, but the smooth in Figure 17.3b 
may not give a useful estimate of I T,) if the linear regression model is 
wrong. Comparison of these two estimated mean functions provides a visual 
assessment of the adequacy of the mean function for the model. Superim- 
posing the smooth in Figure 17.3b on Figure 17.3a gives a 

includes a menu item in the regression menu called “Model checking 
plots” to draw these plots. When this item is selected, a dialog appears like 
that in Figure 17.4. The dialog allows the user to specify choices for h. This 
is necessary because if if 

for h, not just for one particular choice of h. 
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FIGURE 17.3 Plots for Time versus versus q .  In both plots the curves are lowess 
smooths with smoothing parameters equal to 0.4. If the model has the correct mean function, 

then these two smooths estimate the same quantlty. 

and 

Model checking plots for Transactions:Li 
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@I Marginal plots 

Greg plots 
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FIGURE The model checking plot dialog. 

Radio buttons give three choices: 

Marginal Plots. This will give a multipanel plot allowing the user to see 
the model checking plots for h = fitted values, which are called on the 
plot, and for h equal to each of the selected predictors whose names are in the 
list at the right of the dialog. 

Greg Plots. GREG is an acronym for Both GREG and 
the GREG predictors are discussed in Chapter 20. 

The f is t  GREG plot selects a linear combination of the selected terms that 
is most likely to show curvature in the plot of residuals versus that linear 
combination. Thus, the first GREG plot is an approximation to the worst case. 
The remaining GREG linear combinations are uncorrelated with the first GREG 
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linear combination, and each is less likely than the one before it to show 
curvature. 

Random Plots. If this item is selected, the program chooses h to be a ran- 
dom linear combination of the selection. More random linear combinations 
can be chosen by pushing the mouse in a slidebar on the plot. According 
to theory, the smooths on model checking plots should match for all linear 

combinations, so checking a number of random directions can provide useful 
confirmatory information. 

Model checking plots for the transactions data are shown in Figure 17.5 
for four choices of h. In Figure 17.5a, the horizontal axis is h = GTu = y; 
this linear combination is almost always of interest. The smooth of the re- 
sponse versus h is shown on the computer screen as a blue solid line, while 
the smooth of -c versus h is shown as a red dashed line. A slidebar con- 
trols the smoothing parameter for the two lowess smooths that are added to 
the plot. In Figure 17.5a, the two smooths overlap almost exactly, indicat- 
ing that at least for this h the model is reproducing the information available 
from the data. Figure 17.5b is for h = T,, as also shown in Figure 17.3. Once 
again the two smooths are virtually identical. It is interesting perhaps that 
the slight curvature in the plot of Time versus is reproduced by the linear 
mean function fit in this regression. This is even more evident in the remain- 
ing two plots which have mean functions that are not linear. Even so, the 
mean functions are matched by the model, although Figure 1 7 . 5 ~  does show 
some disagreement at the extreme left of the plot. On the basis of these four 
plots and every other model checking plot we tried, there is no compelling 
evidence that the mean function estimated by (14.7) is inadequate for the 
data. 

17.1.2 Checking Variance Functions 

Model checking plots can also be used to check for model inadequacy in the 
variance function. The basic idea is similar to checking for the mean function. 
The plot of y versus h can be used to estimate the variance function Var(y I 
as discussed in Section 3.6.3, page 51; this estimate of the variance function 

does not depend on a model. We will write sd,,,(y I to be the square root 
of this estimated variance function. 

Next, we need an estimate of Var(y I h)  that is implied by the model, and 
this requires a slight generalization of (1 1.5) in Section 11.1.2, page 265. 
Given the model and again substituting y M E(y I u), we obtain 
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FIGURE 17.5 Model checking plots for the transactions data. In each, the smoothing parameter 
is 0.4, the solid line is the smooth from the data, and the dashed line is the smooth from the 
model. 

Equation (17.2) is the general result that holds for any model. Equation ( 1  7.3) 
holds for the linear regression model in which the variance function Var(y I 
= u2 is constant. According to this result, we can estimate Var(y I h )  under 
the model by getting a variance smooth of versus h and then adding to 
this an estimate of 02. We will call the square root of this estimated variance 
function sdmOdel(y I h). If the model is appropriate for the data, then apart from 
sampling error, sd,,,(y I h)  = sdmOde,(y I h), but if the model is wrong, these 
two functions need not be equal. 

For visual display, we show the mean function estimated from the plot 
*sd,,(y I h)  using blue solid lines and the mean function estimated from 
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FIGURE 17.6 

visihle on the computer screen. 

Model checking plot for i T u  with standard deviation function added. Colors are 

the model +sd,,,,,(y I x )  using red dashed lines. These can be obtained in 
the model checking plots by selecting the item “Mean+-SD” from the pop- 
up menu at the lower left of the plot and then using the slidebar to choose 
a smoothing parameter. The same smoothing parameter is used for all the 
smooths. 

Figure 17.6 reproduces the model checking plot in Figure 17.5a, except 
with the standard deviation functions added. The mean smooths are the same 
as in Figure 17.5a, so they continue to match, but the variance smooths do not 
match as well. The smooth under the model, given on the computer screen by 
the red dashed lines, are constant, reflecting the constant variance assumption, 
while the smooth to the data reflects the increasing variance. We have further 
confirmation that the constant variance assumption may not be appropriate for 
these data, depending on the context. Figure 17.7 shows the model checking 
plot for T, with the standard deviations included. For this choice of horizontal 
axis, the standard deviation functions from the plot and from the model agree. 
This illustrates that deficiencies may not show up in all model checking plots. 

17.2 RELATION TO RESIDUAL PLOTS 

In the linear regression model, the model checking plot with fitted values on 
the horizontal axis contains all the information in a plot of residuals versus 
fitted values, since the latter can be obtained from the former by simply re- 
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FIGURE Model checking plot for T, with standard deviation function added. 

moving the linear trend. With any other quantity on the horizontal axis, the 
model checking plots and residual plots are not identical, as detrending the 
model checking plot will not give the residuals. Residual plots emphasize 
disagreement between the data and the fitted model, while model checking 
plots emphasize agreement. Both residual plots and model checking plots in 
principle require examining plots for a variety of values of h. The same strategy 
for choosing directions can be used for both type of plots. 

One possible systematic pattern in a residual plot is curvature, and a test for 
curvature is provided in Section 14.2. While this test does not correspond to 
a comparison of the two smooths on a model checking plot, it can be used to 

calibrate these plots as well, when the difference between the two smooths ap- 
pears to be due to curvature. Other types of departure can be detected visually 
from either residual plots or from model checking plots. 

17.3 SLEEP DATA 

As an example of the use of model checking plots, we return to the sleep data 
in the file introduced in Section 10.4. Suppose we fit the model 
suggested by (1 0.12), 
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FIGURE 17.8 Model checking plots for the sleep data. 

where the variables are defined in Table 10.2, page 239. This model has four 
continuous terms and one indicator term, . 

Figure 17.8a is the model checking plot with fitted values on the horizontal 
axis. This plot, which is typical of the plots of any of the continuous terms, 
suggests close agreement between the fitted model and the data. The plot 
in Figure 17.8b is the model checking plot for the indicator term D,. Because 

has only two values, this plot is not very useful, and in general plotting 
against indicator terms won't help much. An alternative is to use as a 
marking variable. For example, in Figure 17.8c, we have a model checking 
plot for log,(BW), but using only the points for which D, = 1, and in Fig- 
ure 17.8d for = 0 (these plots are obtained by clicking the mouse on 
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FIGURE 17.9 Model checking plot for log,(CP) when the sleep data are fit ignoring 

Colors are visible on the computer screen. 

the category label in the marking legend). According to the theory, if the 
model is correct the smooths should match for subsets of the data. If the 

smooths were to match for = 1 but not for = 0, we would conclude 
that the model is matching the data for high-danger animals but not for low- 
danger animals, which might suggest the need for interactions with D, in the 
mean function. This is not the case here: The smooths match the groups as 
well as for all the data at once. 

Model checking plots can also be used with variables on the horizontal 
axis that are not included in the model. Suppose we fit a smaller model to the 
sleep data, obtained from (17.4) by deleting the term log,(GP). Figure 17.9 is 
the model checking plot with log,(GP) on the horizontal axis; the agreement 
between the smooths may be sufficient, depending on the context. The model 
does not use information about to determine estimates, so the other 
variables must be supplying the information contained in log,(GP). 

17.4 COMPLEMENTS 

Model checking plots were proposed by Cook and Weisberg (1 997). They 
can be used as outlined in just about any regression, not just in linear regres- 
sion as described here. Model checking plots emphasize mean and variance 
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functions, which are the most important properties of conditional distributions 
that can be seen in plots. 

The GREG predictors are based on principal Hessian directions (Li, 1992) 
and are discussed in the Complements to Chapter 20. 

PROBLEMS 

17.1 Use the haystack data, in the file l s p .  

17.1.1 Fit the model 

E( Vol I C, = 71” + 71, + 

Var(Voi I C, = g 2  

and 

Draw model checking plots with fitted values on the horizontal 
axis and with each of the two terms on the horizontal axis, and 
summarize results. Is there evidence that this mean function 
fails to match the data? 

17.1.2 Continuing with Problem 17. I .  1, use model checking plots to 
decide if constant variance is reasonable. 

17.1.3 Fit the model developed in Section 16.4, 

E( Vol 1 C, = 7i0 + 7 ,  C 3  + 

Var(Vo1 I C ,  = 

and 

Draw the model checking plots with C on the horizontal axis 
and with C3 on the horizontal axis. Do these plots contain dif- 
ferent information? Why or why not? Summarize the results. 

Continuing with 17.1.3, examine the model checking plot with 
fitted values on the horizontal axis for constant variance, and 
summarize results. 

17.1.5 Continuing with 17.1.3, draw the model checking plot with 
the first GREG predictor on the horizontal axis. If the model 
were “true,” then the smooths on any model checking plot of 
a function of any predictors should agree. Do they agree here? 
If not, explain a possible cause. 

17.1.4 
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Regression Graphics 

Part of this book centered on tools for using multiple linear regression 
models to summarize a regression. Multiple linear regression methodology is 
powerful and widely used. 

Graphical analysis of a regression with one predictor can be based on a 
scatterplot of the response versus the predictor. We can tell if a simple linear 

regression model is appropriate for the data, and if it isn’t we can use the 
plot to judge the success of remedial action like transformations or fitting 

polynomials. By adding fitted curves to the scatterplot, we can tell if any 

fitted model matches the data. 
With many predictors, there is no direct generalization because we can’t 

draw simple plots in many dimensions. Consequently, multiple linear regres- 
sion seems to be more mysterious than simple linear regression, because we 
can’t actually see the fitted regression model against the background of the 

data. 
In this part of the book we present graphical methods that can help us 

visualize regression in many dimensions. In Part we assumed that the linear 
model holds or can be made to hold, and we worked within that framework. 
In this part of the book, we assume no models at the outset of an analysis and 
show how plots can be used to find structure and to select a first model. 

In Chapter I8 we discuss regressions with two predictors. In Chapter 19 we 
extend these ideas to many predictors. In Chapter 20 we introduce graphical 
regression, which can be used to understand regressions through plots based 

on minimal assumptions. 
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Visualizing Regression 

This is the first of three chapters on graphical regression. A main change from 
Part I1 of this book is that at the outset no Our goal is to 
obtain regression information using plots. This approach may lead to a purely 
graphical solution in which a plot shows all the information that is available 
about the regression. It may also lead to using a particular model. 

Multiple linear regression models start with p predictors = (xI , . . . 
and from these the terms u = (uo,. . . , u k p  I ) T  are determined so that the mean 
function is given by E(y I = $u. Terms are not needed in the graphical 
approach; instead, we use the predictors directly. 

One goal in regression through graphics is to find a 
which is a plot that contains all the sample regression information about the 
conditional distribution of the response given the predictors. For example, with 
one predictor the scatterplot of the response versus the predictor is always a 
sufficient summary plot because all the sample information about the regres- 
sion is contained in this one plot. Similarly, with two predictors the 3D plot 
of the response versus the predictors is always a sufficient summary plot, and 
in principle all the regression information can be obtained from this plot. 3D 
plots are more complex than 2D plots, and understanding the information in 
a 3D plot can occasionally be quite hard, but useful descriptions are possible. 

18.1 PINE TREES 

The file contains data on 70 short-leaf pine trees. The response 
is wood volume in cubic feet. There are two predictors: the height of 
the tree in feet, and the diameter of the tree at breast height in inches. Let 
x = be the vector of predictors. The goal of regression is to understand, 
as far as possible with the available data, how the conditional distribution of 

1 varies with the height and diameter. At the outset, no model is 
assumed. 

Construct a 3D plot of versus This is a sufficient summary plot 
for this regression. Rotate the plot about its vertical axis to get a feeling for 
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I "  

FIGURE 18.1 Two views of the 3D plot of Vol versus ( H , D )  for the pines data 

any patterns in the data; two views of the plot are shown in Figure 18.1. Even 

in this relatively simple 3D plot, useful verbal descriptions may be difficult to 
formulate. For example, the two views in Figure 18.1 suggest that the mean 
function E(Vof I is curved and that the variance function is nonconstant. 
These statements characterize the 2D views, but may not have much to do with 
the full 3D plot; describing features that can be viewed only while rotating is 
more difficult. 

A general goal of statistical analysis is to reduce complex summaries to sim- 
pler ones without loss of important information. Applying this idea to plots, 
we could replace the 3D plot by a 2D plot if all the regression information 
were contained in the 2D plot. Recall from Section 8.4 that when the 3D plot 
of Vof versus is rotated around its vertical axis by an angle 0, the 2D 
plot of the response versus a linear combination h ( 0 )  = b(cos0)H + c(sin0)D 
of the two predictors is displayed on the computer screen. We will call the 
plot of y versus a 2 0  view of the 3D plot. If Vof depends on 
only through the linear combination h(0) ,  then the 2D view of versus 

will be a sufficient summary plot: All the sample information about 
the dependence of Vof on the predictors will be contained in this plot. Fur- 
ther analysis can be based on this 2D view rather than the more complex 
3D plot. 

We might ask, Is there a sufficient 2D summary plot for the pines data, and 
if so how can we estimate it? 

18.2 THE ESTIMATED 2D SUMMARY PLOT 

Every 2D view of the 3D plot of Vol versus has a mean function 
E(Vof I h(0))  and a variance function Var(Vol I Rotate the 3D plot and stop 
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FIGURE 18.2 2 D  view showing the “best” visual fit for the short-leaf pine regression. 

at the 2D view that visually has the smallest variation about the mean function, 
or equivalently where the average variance E(Var( Vol 1 is minimized. 
You may need to use the item “Slower” in the plot’s menu to slow the rate of 
rotation to get what you think is the best view. The plot we chose is shown 
in Figure 18.2. We can find the linear combination h of the predictors on the 
horizontal screen axis by using the “Display screen coordinates” item in the 
“RecalUExtract” pop-up menu: 

- + + 
- + 

Your output will be somewhat different if you stopped rotating at a nearby 
view. The 2D view in Figure 18.2 is a plot of Vol versus 

h = bTX = 0.0 1 I 12H + 0.096720 

where b = (0.0 1 1 12,0.09672)? 
Rotating to the 2D view that has the smallest average variance about the 

mean function in the plot is a visual method for estimating a summary plot. 
The mean function can have any shape at all; in Figure 18.2 it is curved. Next, 
we need a method to decide if the estimated summary plot loses regression 
information. Before doing this we need to define a few new concepts. 
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18.3 STRUCTURAL DIMENSION 

We suppose that we have a regression with response y and p predictors 
x = , . . . The structural dimension of the regression is the smallest 
number of linear combinations of x needed to characterize the regression 
without loss of information. The structural dimension is always integer 
between 0 and p .  We will speak of regressions having OD, lD, . . . , p  D struc- 

ture. 
The structural dimension of a regression with two predictors and of the 

corresponding 3D plot is either zero, one, or two. We will say the plot or the 
regression has either OD structure, ID structure, or 2D structure. 

We develop and explain the idea of structural dimension in this section. 
The general discussion is in terms of p predictors, but all illustrations and 
examples are based on two predictors. 

18.3.1 Zero-Dimensional Structure 

If y 1 x does not depend on x, we have OD structure because no linear combi- 
nation of x provides any information about y .  With OD structure, a histogram 
of y is a sufficient summary plot since any plot involving x contains no more 
information about y .  We have encountered OD structure in model checking, 
where residual plots from a correct model will exhibit OD structure. Given OD 
structure, both the mean function E(y I x) and the variance function Var(y I 
are constant for every 2D view. 

Return to the plot of VoZ versus for the pines data. We will have 
OD structure if and only if y is independent of h(0) for all 2D views of the 
3D plot. This does not hold, since dependence is apparent in both views in 

Figure 18.1. 

18.3.2 One-Dimensional Structure 

A regression has 1D structure if y depends on x through only one linear 
combination pTx of the predictors. This idea is very important, so we will 
restate it in several ways. 

In the pines data, suppose there is ID structure and we know the value 
of p. Then there is no more information in the separate values of H and 
than that contained in the linear combination pTx. To be explicit, suppose that 
p = (O.1,l  .7)T, and suppose for one tree we have xT = ( H I ,  ) = (80,5) so 

pTxl = 16.5 and for a second tree we have xc = = (46,7) and pTx2 = 

16.5. If 1D structure is appropriate, then for both trees the distribution of 
Vol I is the same because P T x ,  = PTx2. The additional knowledge that 
the first tree is narrow and tall and the second tree is wider and short has 
no regression information. A formal way of indicating this is to say that y is 

independent of x given p T x .  If the regression has 1D structure then a 2D plot 
of y versus P T x  is a sufficient summary plot. 



18.3 STRUCTURAL DIMENSION 415 

Many of the models commonly used in regression have 1D structure. One 

E(y I x) = M(,@x) and Var(y I x) = (18.1) 

model is 

where M is a function that may be known or unknown. We will call M the 
kernel meun The word kernel means “a central or essential part,” and 
M is an essential part of the mean function, since M determines its shape. 

The plot y versus pTx is a sufficient summary plot for this model because 
it contains all the information about y that is available from x. The multiple 
linear regression mean function with terms equal to the predictors is a special 

case of ( 1  8. I )  with M ( ~ ~ x )  = + = qo + -y(pTx), and is a parameter that 
converts ,B to the right scale, = Q, . 

Suppose that the pines data has 1D structure as represented in model (1 8.1) 
and that the 2D view in Figure 18.2 is a good summary, so h ;=: p*x. Then 
the mean function for the summary view should be close to the kernel mean 
function M, and M can be estimated from the summary view. A nonparametric 
estimate of M could be obtained using a lowess smooth. Alternatively, one 
might use a ID quadratic model with mean function 

If p is known, this is the mean function for a usual quadratic polynomial 
in the single predictor pTx. With ,B unknown, this is actually a nonlinear 
model. 

In most regression models the dependence of the distribution of y I x on x 
is through the mean function but the dependence on x can be more general. 
Another model with 1D structure is 

E(y 1 x) = and Vdr(y 1 x) = v(pTx) (1 8.2) 

The function v(pTx) is called the kernel variuncefunction and is a nonnegative 
function that may have a different value for each value of pTx. For example, 
one possibility for the kernel variance function is given by (14.14), page 346, 

by setting v(pTx) = u2exp(PTx). In (18.2) the mean function is constant, 
E(JJ I x) = 7l0 for all x, but the variance function changes with x. 

The most general model with 1D structure that we consider in this book is 

We will call (18.3) the model. It includes models (18.1) and (18.2) as 

special cases. For the ID model, both the mean function and the variance 
function depend on the same linear combination pTx. 

Suppose now that the pines data has 1D structure as represented in model 
( 18.3) and that the 2D view in Figure 18.2 is a good summary. Then the kernel 
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mean function M and kernel variance function v can be both visualized and 
estimated from the 2D summary plot. 

In summary, with 1D structure the 2D plot y versus PTx is a sufficient 
summary plot because this one plot contains all the information about y 1 x 
available from x. If we knew PTx, we could replace x by h* = PTx without 
loss of regression information. This is a very powerful result because it allows 
us to use the methodology from simple regression to understand a multiple 
regression. 

For example, with two predictors, we can estimate PTx visually using the 
method of Section 18.2. Given the estimate, we show in Section 18.4 how 
to check for 1D structure in a 3D plot. With more predictors, we will need 
conditions on the predictors to estimate PTx, as outlined in Section 19.1. 

18.3.3 Two-Dimensional Structure 

A regression has 2D structure if two linear combinations PTx and P ~ X  are 

needed to characterize the regression, so that y is independent of x given 
(PTx,P;x). With 2D structure, every 2D plot of the response versus one linear 
combination of predictors loses information, and a 3D plot is required to 
summarize regression information. 2D structure is the most general form of 

dependence in regressions with two predictors. 
One model with 2D structure is 

E(y I x) = M(PFx) and Var(y I x) = V@X) (1 8.4) 

provided PI and P2 are not exactly collinear. One linear combination of the 
predictors Pyx is required as the argument to the kernel mean function, while 
a different linear combination p i x  is required in the kernel variance function; 

both are needed to understand fully the distribution of y 1 x. 
Another model with 2D structure is 

(18.5) 

The mean function E(y I = M(PTx, pix) depends on the two linear combina- 
tions PTx and @x, while the variance function is constant. A simple example 
of a model of this type with two predictors has kernel mean function 

= 

where PTx = x1 + and 0:’. = xI  - x2. A product of two predictors can be 
obtained from two linear combinations of them. and so this mean function 
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a. The surriniary plot. b. The uncorrelated view, versus 

FIGURE 18.3 Assessing the summary plot for Figure 18.2. 

gives 2D structure. Most polynomial models in two or more predictors have 
dimension two or higher. 

18.4 CHECKING AN ESTIMATED SUMMARY PLOT 

Choosing between OD structure and greater than OD structure in a 3D plot 
is often easy: If any 2D view has either a nonconstant mean or variance 
function, then OD structure must be abandoned in favor of dimension one 
or higher. The choice between ID structure and 2D structure can be harder. 
Let's suppose we have an estimate for a sufficient summary plot, say y versus 
h = b'x. We know that if 1D structure holds, then y is independent of given 

the linear combination h* = PTx,  and this provides the basis for checking to 
see if a summary plot misses important information. We examine the plot 
to find information that contradicts the possibility that y is independent of 

given h. 
Imagine conditioning approximately on h by selecting points in a vertical 

slice of the 2D plot of y versus h. The summary plot shown in Figure 18.2 
is repeated in Figure 18.3a, with a slice selected. If h is all we need to know 
about the predictors, then y should be independent of within the slice and 
the selected points should form a horizontal band with constant mean and 
variance functions as the plot is rotated. If any dependence of y 

on x is apparent, then the estimated summary plot does not contain all the 
information about the distribution of y I either h is a poor estimate of h*, or 
1D structure does not hold. For full confidence that the estimated summary 
plot y versus h is adequate, y should be independent of within a series of 
slices that covers the range of h. 
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This basic checking procedure is too time-consuming to be of much prac- 
tical value, so we present a simpler procedure based on one 2D view. The 
horizontal axis of this 2D view is the linear combination of the predictors that 
is uncorrelated with h. Call this linear combination h,,,, and call the plot y 

versus h,,, the uncorrelated 2 0  If the predictors are uncorrelated, this is 
the 2D plot you would see if your computer screen were actually a 3D solid, 
and you could look at the plot from the side. Figure 18.3b is the uncorrelated 
2D view for the 3D plot in Figure 18.3a. The points corresponding to the slice 
in Figure 18.3a are shown in Figure 18.3b. If no within-slice dependence is 
apparent in any slice, then y versus h is a good summary plot for these data, 
and we have support for 1D structure. 

Here is how to use Arc to obtain the uncorrelated 2D view for checking a 
summary plot: 

1. Obtain an estimated summary plot as in Section 18.2. This view can be 
remembered for later use by selecting the item “Remember view” from 
the “RecalUExtract” menu. 

2. Select “Extract uncorrelated 2D plot” from the “RecalUExtract” menu 
to get the uncorrelated 2D view y versus h,,, in a separate window. The 
2D view of the 3D plot y versus (x,,xz) is left unchanged. 

3. You now have two plots, y versus h,  which is the 2D view visible in the 
3D plot, and y versus h,,,. The plot y versus h,,, contains an extra slider 
with a pop-up menu. The slider allows you to slice on h. As you move 
the slider, the corresponding points will be selected in both plots. The 

pop-up menu for the slider allows you to change the number of slices; 
the default is usually adequate. 

If in the uncorrelated 2D view, y appears to be independent of h,,, 

within each slice, then there is no evidence that the summary plot is 
insufficient. The points in the uncorrelated 2D view will usually move 
up or down as the slider is moved, but this does not contradict the 
possibility that y is independent of h,,, each slice. 

4. The plot y versus h misses information if within-slice dependence is 
visible in the uncorrelated 2D view. It may be that there is no sufficient 
2D plot, implying that the plot has 2D structure, and only the full 3D 
plot can summarize the regression of y on Alternatively, it may be 
that there is a sufficient 2D plot, but the present estimated summary plot 
is far from it. In this case try rotating the 3D plot to obtain another 

estimated summary plot, and return to Step 1. 

Draw the plots equivalent to Figure 18.3, and examine all the slices. To 
increase visual resolution in the plot of y versus h,,,, rescale it to fill the 
plotting area by selecting the item “Rescale plot for each slice” from the 
slicer slidebar’s pop-up menu. Repeating step 3 above, the plot for one of 
the slices is shown in Figure 18.4. Although the range on the vertical axis is 
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plotting area. 

An uncorrelated 2D view for the pines data with the plot rescaled to fill the 

very narrow, a within-slice increasing trend is visible in this slice and also in 
neighboring slices. This provides evidence against 1D structure, at least for 
trees with values of h in the middle of its range. We explore the implications 
of this further in  Problem 18. I .  

18.5 MORE EXAMPLES AND REFINEMENTS 

18.5.1 

What will a 3D plot look like when the multiple linear regression model holds? 

Let's suppose that 

J 3 y  I = 710 + V l X I  + 72x2 

Visualizing Linear Regression in 3D Plots 

(1 8.6) 

This is a 1 D model, so a sufficient summary plot is y versus = c ( ~ / , x ,  + q2x2)  

for any nonzero constant c. We examine the question using simulated data. The 
predictors and x2 were generated as independent N(0,l)  random variables, 
and the response was then constructed as 

y l x =  1 + 2 x l + 3 x 2 + e  

= I + h* + N(0 , l )  
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E(y I x) on the vertical axis. 

A 2D view of the “E[y I x ]  linear, predictors uncorrelated” demonstration, with 

where h* = 2x, + 3x,. The errors are independent, normal random variables 
with mean zero and variance one. The mean function is E(y I x) = 1 + 2x, + 31, 
with q = ( 1,2,3)T, and the variance function is Var(y I x) = 1. The data can be 
obtained by loading the file l s p  and then selecting the item “E[y 1 x] 

linear, predictors uncorrelated” from the Demos: 3D menu. 
First, construct the plot of E(y I x) versus (x , ,~ , ) .  What do you see as the 

important characteristics of the plot? Rotate the plot until the view on the 
computer screen gives a single straight line, as in Figure 18.5. This is the 
sufficient summary plot. The horizontal screen axis is equal to c(2x, + 3x2) 
for some nonzero as can be verified using the “Display screen coordinates” 
plot control. You can verify that for this example = 0.09955. 

Next, construct a plot of y versus (xl ,x2). The points in the 3D plot y versus 
(x,,x,) scatter about a plane, as is evident during rotation. They do not fall 
exactly on a plane because of the errors. 

Rotate the 3D plot to estimate a summary plot, the view that minimizes the 
average variance about the mean function in the 2D view. Your plot should 
look like Figure 18.6 or its mirror image. The linear combination of the pre- 
dictors on the horizontal axis of the 2D plot should be nearly a constant times 
h* = 2x, + 3x2, or equivalently the ratio of the multipliers for xl and x2 should 
be close to 2/3. Because there is error, we should not expect these results 
to be exact. Selecting “Display screen coordinates” from the “RecalYExtract” 
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stration, with o n  the vertical axis. 

Estimated plot for the “E[y I x] linear, predictors uncorrelated” demon- 

pop-up menu, we get: 

- + + 
- + 

The value of the horizontal screen variable h is almost equal to 0 . 1 ~  
(2x, + 3x2), and the ratio 0.1997/0.2984 = 0.6692 is not far from 2/3. We have 
nearly recovered the true linear combination of the predictors that determines 
the response. 

Fitting the mean function E(y I x1 ,x2) = + ~ , x ,  + v2x2 by OLS will deter- 
mine a linear combination h,,, = ;l,xl + i&x2. The values of this linear combi- 
nation differ from the OLS fitted values i only by the addition of the constant 

Go, so = Go + h,,,. Imagine summarizing the 3D plot by using the 2D plot 
of v versus What would this plot look like? If 6 is a good estimate of 
Q, then a 2D plot of y versus should be a good summary of the regres- 
sion. Select the item “Recall OLS” from the “RecallExtract” pop-up menu in 
the plot y versus (x,,~,). The view on the computer screen is now y versus 
h,,,. How does your visually determined summary plot compare to the OLS 

summary plot? Most people are pretty good at finding the OLS estimate by 
eye. 
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FIGURE 18.7 A 3D plot from the “E[y I x] linear, predictors nonlinear” demonstration. 

18.5.2 Linear Regression Without Linearly Related Predictors 

In the last example every 2D view of the 3D plot has a linear mean function 

and a constant variance function. As the plot is rotated, only the slope and 
the amount of variability change. In general, 2D views of a 3D plot can have 
nonlinear mean functions or nonconstant variance functions, even when the 
multiple linear regression model holds. The relationship between the predictors 
x ,  and x2 is the key. If the predictors are linearly related, then the mean 
functions for all 2D views of y versus ( x ,  ,x,) will be linear. If the predictors are 
not linearly related, some 2D views will exhibit a nonlinear trend, even when 
the multiple linear regression model ( 18.6) holds. Linearly related predictors 
were introduced in Section 13.1.3. 

Select the item “E[y I x ]  linear, predictors nonlinear” from the Demos: 3D 
menu. This example again uses artificial data, with x ,  standard normal, but 
with x2 = x: + N(O,0.25). The response y is again computed as y I x = 1 + 
2x, + 3x, + N(0,l) .  The linear regression model holds so all the data scatter 
about a plane in 3D. The only change between this and the last example is that 
E(x2 I x , )  is now nonlinear. The initial 2D view of the plot y versus (x,,x2) 

is given in Figure 18.7. This initial view can be used to estimate the function 
E(J I x,), which is nonlinear. Nevertheless, while rotating the 3D plot about 
its vertical axis, the points are seen to lie near a plane as required by the 
regression model; this can be seen perhaps a bit more clearly if you add the 
OLS plane to the plot. Using the methodology of Section 18.4, an estimated 
summary plot should be close to the OLS view, with horizontal axis close 
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to h* = 2 x ,  + 3x2. After returning the plot to the “Home” position, use a 
“Pitch” button to display the plot of x2 versus x,, which has a curved mean 

function. 
Thus E(y 1 = E(y I x I , x 2 )  is a function of while E(y I x I )  is a 

function of x ,  . This could have been predicted using Section 1 1.1. 
Repeating results from ( 1 1. I )  

This equation shows that E(y I x , )  depends on x1 and on E(x, I x l ) ,  the mean 
function for the regression of x2 on . This should clarify the example: We 

constructed the example to have E(x, I xl) = x:, and so 

The mean function E(y I x,) is therefore quadratic, as can be observed in Fig- 

ure 18.7. 
Rotate the 3D plot to display the marginal response plot y versus x2. This 

plot is approximately linear. Is this expected? Interchanging the roles of x, 

and x2 in (18.7), we find 

But E(x, I x 2 )  is zero in this example since for each value of x2. x, has a 
distribution that is symmetric about zero. Thus, E(y I x2 )  = v0 + rI2x2, and a 
linear plot should be expected. 

The effects of nonlinearly related predictors on variance functions are de- 
scribed in Problem 18.8. 

18.5.3 More on Ordinary Least Squares Summary Views 

After loading the file l s p ,  select the item “E[y I x] nonlinear, predic- 
tors linear” from the Demos: 3D menu. These simulated data comprise 100 
observations on two predictors and x2,  along with an error e,  all gener- 
ated as independent N ( 0 , l )  random variables. The response y was computed 
using 

I = 3e12+2“1)/2.5 + e  

so y I does not depend on x2, and its dependence on x,  is nonlinear. This 
problem has 1 D structure with kernel mean function M@X) = 3 exp[(2 + pTx) 

p = (2,0f, and pTx = 2x, .  The sufficient summary plot of y versus x1 

will recover the kernel mean function. 
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FIGURE 18.8 Two 2D views of the 3D plot of v versus (x, ,.r2) from the “E[y 1 xj  nonlinear, 
predictors nonlinear” demonstration. 

Use the 3D plot of y versus ( x ,  ,x2) to verify that 1 D structure is indeed 
appropriate for this regression. Rotate the plot to the estimated 1D summary 
plot. Next, use the “Rotate to OLS” control from the “RecallExtract” pop- 
up menu to rotate to the OLS linear combination. Assuming your visual f i t  
was reasonable, the OLS view and your visual fi t  should agree very closely. 
Perhaps surprisingly, fitting by OLS gives a good estimate of the sufficient 
summary plot even though the regression y on x clearly linear. Does 
this happen in general? The answer is yes, with linearly related predictors, but 
no otherwise. In particular, with 1D structure and linearly related predictors, 
then the plot of y versus $ can be a good summary plot even if the kernel 
mean function M ( ~ ~ x >  is not linear. 

Consider another version of the example by selecting the item “E[y I x ]  

nonlinear, predictors nonlinear” from the Demos: 3D menu. The data were 
generated as in the last example, except now x 2  = x: + N(0,l) .  Once again, use 
the methodology of Section 18.2 to choose an estimated summary plot from 
the plot of y versus ( x , , ~ , ) .  Your solution should be similar to Figure 18.8a. 
Compare this plot to the OLS summary view, shown in Figure 18.8b. The 
linear combinations on the horizontal axis of these two plots are very different. 
Whereas by eye we can easily pick out the 2D view with minimal average 
variation, the OLS estimator gets fooled because it looks for the best view with 
a linear mean function, and the nonlinear relationship between the predictors 
translates through (18.7) into a linear combination where the mean appears 
to be fairly linear. Examination of uncorrelated 2D views as in Section 18.4 
will confirm that the visual fitting provides a useful 2D summary view, but 
the OLS view misses relevant information. 
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The only difference between the two examples of this section is the dis- 
tribution of the predictors: In the first example the predictors were linearly 
related (actually they are independent, which is a special case of linearly re- 
lated), while in the second example the predictors were not linearly related. 
We will see that using linearly related predictors is essential for regression 
graphics; without them, plots can miss or distort information. 

Here are the essential points of the discussion of using the OLS view as a 
summary view for a 3D plot. 

- If a multiple linear regression model is appropriate, then the distribution 
of the predictors doesn’t matter and the OLS view, which is essentially a 
plot of y versus 9 ,  is a good summary plot. 

With 1D structure and linearly related predictors, the plot of y versus 
is a good summary plot even if the kernel mean function is not 
1 i ne ar. 

- If the kernel mean function is not linear and the predictors have a nonlin- 
ear relationship, then y versus .? should not be trusted as a good summary, 
even if the true model is ID. 

If the regression has structural dimension greater than one, then the plot 
y versus $ must necessarily miss information that may be relevant. 

18.6 COMPLEMENTS 

The material in this chapter is drawn from Cook and Weisberg (1994b), which 
was based on Cook (1994). Procedures for checking summary plots, including 
the method in Section 18.4, were investigated by Cook and Wetzel (1993). A 

comprehensive discussion of methods for checking summary plots was given 
by Cook (1998b, Chapter 4). 

The data for Problem 18.7 is from Weisberg (1985), originally provided by 
Doug Tiffany. The data on short-leaf pines is from Atkinson (1994). 

PROBLEMS 

18.1 The following problems relate to the data on short-leaf pines in the file 
pines. l sp .  Suppose that the view in Figure 18.2 a sufficient sum- 
mary plot so all the information about is contained in the one linear 
combination We can then study the 2D view shown in Figure 18.2 
using all of the tools we have for investigating the simple regression of 

on the single predictor h = For example, using the graphical 

response transformation method discussed in Section 13.1.2, we con- 
clude that the cube root transformation will likely linearize the mean 
function of the plot in Figure 18.2. As shown in Figure 18.9, there is 
a strong linear relation between and Our graphical analysis 
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then leads us to the model 

V O ~ ” ~  I ( H ,  = “lo + ybTx + e 

~ ~ 1 ~ ’ ~  I ( H , D )  = “lo + V , H  + T I ~ D  + e 

(1 8.8) 

(18.9) 

In ( 1  8.8) ,  b was estimated visually from Figure 18.2, and the parameters 
are an intercept and a slope In ( 1  8.9), , r / 2 ) T  was substituted 
for yb so that the coefficients of H and can be re-estimated using 

18.1.1 Use the uncorrelated 2D view to check the adequacy of the es- 
timated summary plot of Figure 18.9. What do you conclude? 
Since the distribution of I D ,  H must have the same struc- 
tural dimension as the distribution of 1 D ,  H ,  you should get 
the same answer given in Section 18.4. 

18.1.2 We didn’t use any prior information on the nature of trees in 
the graphical analysis of Section 18.1. If we model the shape 
of a tree as a cone, we get the following mean function for tree 
volume, 

E(Vo1 I H ,  D )  = t i D 2 H  

OLS. 

where (Y is an unknown parameter. If trees were exact cones, 
then LY = 12. This suggests that taking logarithms might yield 
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a useful linear model, 

log(Vol) I = qo + ql log(D) + q210g(H) + e 

(18.10) 

If trees were cones, then qo = log(7r/l2), = 2, and q2 = 1. 

a. Rotate the 3D plot of log(Vol) versus (logH,logD) to the 2D 
view with 2log(D) + log(H) on the horizontal axis. This can 
be done in Arc using the “Move to horizontal” plot control 
from the “RecalVExtract” menu. Is there evidence in the data 
to suggest that this 2D view is insufficient? If so, can you 
find a sufficient 2D view of the 3D plot of log(Vol) versus 
(log H,logD)? 

b. Using model (1 8.10), construct an F test of NH: 7 ,  = 2 and 
712 = 1 versus AH: either ‘1, # 2 or q2 # 1. Do the results of 
this F test agree with your visual impressions in part a? 

By examining the coefficients of the OLS fit using mean func- 
tion ( 18. lo), comment on the applicability of the assumption 
that a tree can be approximated by a cone. 

18.1.3 

18.2 Select the item “E[y I x] linear, correlated predictors, x2 not needed” 
from the Demos: 3D menu. These data were generated with two highly 
correlated normal predictors, p(x ,  ,x2) = 0.95, and response y = 1 + 2x, 
+N(O,  I ) ,  so x2 is not needed. 

18.2.1 Construct a scatterplot matrix of the response and the two pre- 
dictors. That the marginal response plot y versus shows a 
linear trend is unsurprising, since x, is the important predictor. 

Explain why the marginal response plot y versus x2 shows a 
strong linear trend as well. Describe how you might construct 
an example so that the same model holds but the marginal re- 
sponse plot y versus x2 shows a strong nonlinear trend. 

18.2.2 Construct the 3D plot y versus (x,,x,) and then push the 
“0 to e(0lH)” button. The resulting plot shows that only x1 is 
relevant, which is the correct conclusion in this case. Why does 
this work? Would it work if you plotted y versus (x , ,~ , )? 

18.3 From the Demos: 3D menu, select the item “E[y I x] linear, predictors 
nonlinear.” Construct the 3D plot y versus (x,,x2) and then push the 
“Rem lin trend” button. Describe the contents of this plot and what it 

shows in this example. 

18.4 Suppose model (18.6) holds. Under what conditions on is the 
marginal mean function E(y I x2) linear? Which plot can help decide if 
the required condition is satisfied? 
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18.5 This problem uses the data file . l s p  from the Berkeley Guid- 
ance Study for Girls born in Berkeley, California in 1928-1929. 

18.5.1 

18.5.2 

18.5.3 

18.5.4 

18.5.5 

18.6 Select 

Draw the 3D plot versus WT9). After observing 
the rotating plot, write a short description of the plot. 

Obtain a visual fit to this plot by rotating to the 2D view that 
minimizes the average variation. Use the “Display screen co- 
ordinates” item on the “RecalVExtract” menu to find the linear 

combination of the age-nine variables that correspond to the 
horizontal axis. Compare the ratio from the screen coor- 
dinates to the ratio 7j , /G2 from the regression output obtained 
from the OLS regression of on the two age-nine variables. 

Without rotating the plot from the view selected in Problem 
18.5.2, select the “Extract axis” item from the “RecalVExtract” 
menu to save the horizontal screen variable with the name 
Now compute the regression with as the response and 
and WT9 as predictors using the “Fit Linear LS” item in the 
Graph&Fit menu. Verify that the regression coefficient esti- 
mates for and are the same as given by the “Display 
screen coordinates” item. 

Next, create a regression model with as the response and 
as the predictor. How do you think the fitted values from 

the regression of on and will compare to the 
fitted values from the regression of on After thinking 
about this, draw the plot of one set of fitted values versus the 
other. 

For the estimated summary plot obtained in Problem 18.5.2, 
follow the steps in Section 18.4 to decide if your 2D view 
misses relevant information about the relationship between the 
response and the predictors. 

the “E[y I x] linear, correlated predictors” item from the 
“Demo: 3D” menu. This example is similar to the demonstration in Sec- 
tion 18.5.1, except that the correlation between the predictors is 0.99 

rather than zero. 
Verify the correlation between x ,  and x2 by drawing the plot of x ,  

versus and observing that these points fall nearly on a line. Before 
drawing the 3D plot y versus ( x , , x 2 ) ,  how do you think it will look? 

Now draw and describe the plot. 
Try fitting by eye to this plot. Most static 2D views of the 3D plot 

show a linear relationship of about equal strength; all that changes 
is the slope. Why is this? Fitting by eye is highly variable. To im- 
prove resolution, use the “0 to e(0IH)” plot control. Explain what this 
control does to the plot, and try to fit by eye again. What do you con- 

clude? 
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18.7 The data for this problem are from an economic study of the variation 

in rent paid for agricultural land planted with alfalfa in 1977. Alfalfa 
is a high-protein crop used to feed dairy cows. The unit of analysis 
is a county in Minnesota, and the data include: =average rent 
per acre planted with alfalfa; XI  = average rent paid for all tillable 
land; X ,  = density of dairy cows, number per square mile; = pro- 
portion of farmland in the county used as pasture; and X ,  = an indi- 
cator with value 1 if liming is required to grow alfalfa, and 0 other- 
wise. 

Load the file l s p .  View as the response variable and 
and X 2  as the predictors. We will not use X, or in this prob- 

lem. 

18.7.1 

18.7.2 

18.7.3 

Examine the scatterplot matrix of X I ,  and Does the as- 

sumption of linearly related predictors seem plausible for these 
data? Why or why not? If the assumption of linearly related 
predictors does not seem reasonable, use the transformation 

controls on the plot to transform the predictors to a set of more 
nearly linear predictors. We then view the transformed predic- 
tors as the base predictors. 

Examine the 3D plot of the response and the two transformed 
predictors from Problem 18.7.1 for the assumption of linearly 

related predictors. What do you conclude? 

Assuming that the predictors are nearly linear in the scales you 
have chosen, draw the OLS summary plot y versus ;. What 
would the summary plot look like if the linear model is true? 

What does it look like here? What do you conclude? 

18.8 Load the file and from the resulting Demos: 3D menu 
select the item “E[y I x] linear, predictors nonlinear.” This example 
is discussed in Section 18.5.2, where we see that nonlinear relation- 
ships among the predictors can lead to a nonlinear mean function 
for some 2D views, even when the multiple linear regression model 
holds. 

18.8.1 Use the results of Section 11.1.2 to show that nonlinearly re- 
lated predictors can effect the variance function of a 2D view 
in a 3D plot. For the data in the demonstration, using the fact 
that x2 = x: + N(O,0.25), show that some 2D views will show 
nonconstant variance. 

Find a 2D view of the 3D plot of y versus (x , ,x2)  that clearly 
demonstrates nonconstant variance in the 2D view. You will 
probably want to remove the linear trend from this plot to show 
the result more clearly. 

18.8.2 
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Visualizing Regression with Many 
Predictors 

With two predictors, a summary plot can be either a histogram if the re- 
gression has OD structure, a 2D scatterplot of the response versus a linear 
combination of the predictors with 1D structure, or a 3D plot if the regres- 
sion has 2D structure. With p 2 2 predictors, the structural dimension can 
be any integer between 0 and With k-dimensional structure, for exam- 
ple, the dependence of y on the predictors is through k linear combinations 
of them that would require a (k + ])-dimensional scatterplot to be viewed 

The methods described in the last chapter show how a 3D plot can be 
used to estimate structural dimension visually when p = 2. With more than 
two predictors, we must continue to rely on 2D and 3D plots to give us 
information about the regression because we can’t draw a plot of y versus all 
p predictors. To be useful the low-dimensional plots must not distort high- 
dimensional relationships. Whether or not distortion occurs depends on the 
relationships between the predictors. 

In this chapter we discuss the required conditions on the predictors for esti- 
mating structural dimension, and we show how the conditions can be checked 
and often induced. The central graphical object is the scatterplot matrix. It 
provides useful though necessarily incomplete information on the distribution 

of the predictors and on the dimension of a regression. In the next chapter we 
will take a different approach that will allow us to use just a few 3D plots to 
understand a high-dimensional regression. 

fully. 

19.1 LINEARLY RELATED PREDICTORS 

We need conditions on the predictors to guarantee that lower-dimensional plots 
do not distort higher-dimensional relationships. The conditions depend on the 
structural dimension of the regression. 
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Linearly Related Predictors with ID Structure. Suppose that the regression 
has 1D structure so y depends on  through only PTx, and let be one of 

the predictors. Linearly related predictors requires that E(xJ 1 PTx) be a linear 

function of PTx, 

I P T x )  = a, + bJPTx (19.1) 

for all predictors, = 1 ,..., p .  
In Section 13.1.3 we required in the context of re- 

sponse transformations. condition ( I  9.1 ) is the same, except it is applied to 
the predictors rather than to the terms. 

Linearly Related Predictors with 2 0  Structure. Suppose that the regression 
has 2D structure so y depends on through only PFx and p,'x, and again let 

be one the predictors. Then we will require that 1 prx,pTx) be a 

linear function of PTx and 

1 = a, + bjPTx + cjPix (19.2) 

for all predictors, = 1 ,..., p .  

Linearly Related Predictors with kD Structure. If the regression has 
kD structure, so y depends on only through the k linear combinations 

prx,. . .,P,'x, we will require that the mean function I prx,.. .,p,'x) be 
linear for each predictor x i .  We will use the phrase 
to indicate these conditions, depending on the structural dimension of the 
regression. 

19.2 CHECKING LINEARLY RELATED PREDICTORS 

The condition of linearly related predictors cannot be checked directly because 
the p's needed in the mean functions are unknown. However, there are good 
indirect checks available. The condition should hold to a good approximation 
if every frame in a scatterplot matrix of the predictors has a mean function 
that is either linear, or at least not noticeably curved. If any frame has a clearly 
curved mean function, then the condition may fail. In that case we suggest 
inducing linearly related predictors by transforming to multivariate normality 
as far as possible. If the predictors follow a multivariate normal distribution, 
then they will be linearly related regardless of the structural dimension of the 

regression. 
The results in the rest of this chapter and in the next chapter will still apply 

if the predictors are only linearly related, but gross nonlinearity 
should not be present. 
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19.3 LINEARLY RELATED PREDICTORS AND THE 1D MODEL 

Suppose we have the 1D model specified in (18.3), 

E(y I x )  = M ( ~ ~ x )  and Var(y I x) = v(P7x) 

so both the mean function and variance function can depend on the linear 
combination pTx. A plot of y versus p T x  is a sufficient summary plot, since 
from this one plot we can visualize both M and v. This plot requires knowing 
pTx. Can we estimate P without making any assumptions about M or v? If we 
have linearly related predictors, it turns out that we can get useful information 

on 0. Let 
n n  

= b, + bTx 

denote the fitted values from the OLS regression of y on x. 

not a or 

Rather, OLS is just a convenient 
method of computing an estimate. 

The ID Estimation Result. Here is a remarkable result that enable: us to 
construct a good summary plot. Assuming linearly related predictors, b is an 

estimate of cp for some constant c. Since tke magnitude of p doesn’t matter 
in a plot, the 2D summary plot of y versus bTx is an estimate of the sufficient 
summary plot of y versus pTx. Equivalently, we can take the plot of y versus 
the OLS fitted values as the summary plot. The summary plot enables us to 
visualize the kernel mean function M and the kernel variance function v. We 
call this the 

The 1D estimation result is still usefulAwhen the structural dimension is 
higher than one. The linear combination bTx will now be one of the linear 
combinations needed, so the plot of y versus the OLS fitted values may miss 

information if the dimension exceeds one, but it is still relevant. 
With many predictors we require an assumption-linearly related predic- 

tors-that was not required in the two-predictor case. This assumption allows 
us to infer about regression from 2D and 3D plots and is the price paid for 
not being able to see in high dimensions. 

19.4 TRANSFORMING TO GET LINEARLY RELATED 
PREDICTORS 

Even if predictors are not linearly related, they can often be replaced by trans- 
formations that are more nearly linearly related. Both the visual and numeric 
methods for transforming to multivariate normality discussed in Section 13.2, 
page 324, can be used, but transform the predictors, the response. 
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~~ 

FIGURE 19.1 Scatterplot matrix for the mussels data. 

As an example, consider the mussels data described in Problem 14.3, page 

35 1. The goal of the analysis is to understand how muscle mass depends 
on the length L ,  the width W, and height of the mussel’s shell and on 
the shell mass S. First examine a scatterplot matrix, as shown in Figure 
19.1. 

Many of the predictor plots have approximately linear mean functions, but 
the mean functions for the plots including S are clearly curved. Consequently, 
we may not have linearly related predictors. Transforming at least S, and 
possibly other predictors, may induce linearly related predictors. Use the Box- 
Cox method of Section 13.2 to determine suitable transformations: Select the 

item “Find normalizing transformations” from the “Transformations” pop-up 
menu. If you just select the four predictors and then push the OK button, Arc 
gives an error message and stops computing: Evidently the default starting 
values are sufficiently bad that the algorithm fails. Try again, but use “Marginal 



434 CHAPTER 19 VISUALIZING REGRESSION WITH MANY PREDICTORS 

Box-Cox starting values.” This method will succeed, and it gives the following 
output: 

of 

=1 

0.639 0.314 2.04 -1.15 

L 0.439 0 .289 1.52 -1 .94  

S 0.022 0.068 0 .32  -14.47 

0.104 0 .212 0 .49  -4 .23  

of = 6.925 df = 4 p = .140 

of = 1 :  132.665 df = 4 p = 

The likelihood ratio test that all four predictors should be transformed to 
logarithms has p-value 0.140. The scatterplot matrix in log-scale is shown 
in Figure 19.2. Linearity is supported by each 2D plot of the predictors, and 
so transformation to log scale seems to work. We will consider two further 
refinements. First, one point, identified in Figure 19.2 with an x,  is separated 
from the remaining points. This is case number 77, and since it seems to be 
different from the other mussels, all further analysis will be done without this 
point. We leave as an exercise to verify that deleting case 77 has little influence 
on the choice of transformation. Second, we could examine the transformed 
predictors in 3D plots to check for deviations from linearity. If no 2D view 
shows curvature, perhaps after using the “Rem lin trend” and “0 to e(O I H)” 
buttons to improve visual resolution, then we have further support for linearly 
related predictors. In this regression, examining the four possible 3D plots 
further confirms linearly related predictors. 

19.5 FINDING DIMENSION GRAPHICALLY 

Given the linearly related predictors for the mussels data shown in Figure 19.2, 
can we say anything about the structural dimension of the regression? If we 
conclude that we have 1D structure, then the 1D estimation result can be used 
to get a summary plot. Since the response M is related to at least one of the 
predictors, we can eliminate OD structure. How can we decide if we have 1D 
structure? 

19.5.1 The Inverse Regression Curve 

Suppose that 1D structure is appropriate so the distribution of y I x depends 
on x only through a single linear combination PTx.  We can turn the regression 
around and, rather than study y I x, we study the inverse regression of x I y. The 
inverse regression is simpler, since it is a collection of p simple regressions, 
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L 4.1744 

FIGURE 19.2 Mussel data with all predictors in log scale. 

x, I y ,  I v , .  . . , xp I y .  and each of these p regressions can be studied with a 
2D scatterplot. 

I D  Checking Conditions. We are again aided by a remarkable result. As- 

sume linearly related predictors and 1D structure. Then the mean and vari- 
ance functions for each of the simple inverse regressions have the form, for 
j = 1, . . . , p ,  

E(xj I Y )  = E(x,,) + 

Var(Xj I Var(Xj) - 

(19.3) 

(19.4) 

where 0, has the same value in  (19.3) and (19.4). Each can be positive, 
negative, or zero. These equations tell us about the mean and variance func- 
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tions of the p inverse marginal response plots of xJ versus y when there is ID 
structure in the regression of y on x. 

Equation (19.3) says that for each predictor x, the inverse mean function 
E(xJ I equals the overall mean E(x,) plus an unknown function of y 
multiplied by the scale factor ai.  The important point is that, assuming 1D 
structure, each plot of x, versus y is expected to have one of three forms: 

versus y if > 0, 

versus y if < 0, and 

. a constant versus y if a j  = 0. 

Thus, if E(xj I y )  is linear for one plot, then it must be linear for all other plots 
to be consistent with 1D structure. If E(x, 1 y)  is n-shaped for one plot, then 
it must be n-shaped or u-shaped or constant for all other plots. If this is not 
the case, then 1D structure must be abandoned. 

Condition ( 19.4) requires that the inverse variance function Var(xj 1 be 

approximately the overall variance Var(xj) minus times unknown func- 
tion s ( y )  that can depend on y, but not on j .  When looking at all p plots, the 
variability must change in the same way in each of the plots. If the variability 
does not change in the same way, then ID structure must be abandoned. 

For some plots, we may have that = 0 in (19.3) and (19.4). To be consis- 
tent with 1D structure, plots that show no dependence on y in the inverse mean 
function = 0) must show no dependence in the inverse variance function, 
even if the variance is not constant in other plots. 

We will call (19.3) and (19.4) checking conditions since they must be 
satisfied for each predictor if 1D structure is to hold. They provide a basis for 
deciding between 1D structure and greater than 1D structure. 

19.5.2 Inverse Marginal Response Plots 

The p = 4 inverse marginal response plots for the mussels data are given in  
the last column of Figure 19.2. All these plots have the same shape, a finding 
that is consistent with 1D structure. By the ID estimation result, this suggests 
that a summary plot of M versus the OLS fitted values will provide a complete 
summary for these data, as shown in Figure 19.3. To obtain this figure yourself, 
fit the OLS regression of M on the four predictors, each on log scale. Case 
77, which was not used in fitting, is shown on the plot. It conforms nicely to 
the distribution of points in the plot, so it can be restored if further analysis 
is required. 

The next step in the analysis depends on its goals. For example, if we would 
like a simple model, we might want to transform M to achieve linearity. 

The inverse response plot of versus is shown in Figure 19.4, with case 
77 restored, and with the logarithmic power curve superimposed. According 
to the discussion in Section 13.1, taking the logarithm of the response will 
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FIGURE 19.3 
used to compute the fitted values. 

Summary plot for the mussels data. Case 77 is shown on the plot, but it was not 
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FIGURE 19.4 Inverse response plot versus for the mussels data. 
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TABLE 19.1 The Australian Athletes Data 

Variable Description 

Ferr 

Hc 

Sex 

SSF 

Label 

Sport 

HS 

Lean body mass, kg. 

Height, cm. 

Weight, kg. 

Body mass index, 

Percent body fat. 

Plasma ferritin concentration. 

Hematocrit. 

Hemoglobin level. 

Red cell count. 

0 = male or 1 = female. 

Sum of skin folds. 

White cell count. 
Case labels. 

sport. 

likely result in a linear regression model. Thus, we are led to the first model 

which we could now analyze using all the methods discussed in I1 of this 
book. Because of the graphics, we can see that (1 9.5) must provide a reason- 
able starting point for modeling. Diagnostic methods for model checking may 

occasionally lead to further refinements of the graphical starting point. 

19.6 AUSTRALIAN ATHLETES DATA 

The data in the file give several measurements taken on 202 elite 
Australian athletes who trained at the Australian Institute of Sport. The vari- 
ables are defined in Table 19.1. The members of the sample participate in 
different sports, and are about equally split between men and women. For this 
example, we will consider three predictors Hr, Wr, and the red blood cell count 
RCC, and we use lean body mass LBM as the response. 

Our first task is to examine the assumption of linearly related predictors, 
using the scatterplot matrix shown in Figure 19.5. Apart from a few straggling 

points the assumption of linearly related predictors seems plausible; viewing 
the three predictors in a 3D plot with trends removed leads to the same conclu- 
sions. Removal of the straggling points, as was illustrated in the last example, 
might improve matters, but we will continue with all the data included. 

With linearly related predictors, we can use the 1D checking conditions to 
examine the plausibility of ID structure. This requires examining the inverse 
marginal response plots in the last column of Figure 19.5. To examine them 
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I 
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I 

H t  

1148.9 

I1 II 

D O  

FIGURE 19.5 Scatterplot matrix for the Australian athletes data 

more carefully, select the item “Multipanel plot of’ from the Graph&Fit menu, 
and then select Ht ,  Wt, and RCC to go on the “Changing axis” and select 
the response LBM to go on the “Fixed axis.” Using the radio buttons, set the 

fixed axis to be horizontal, rather than the default of vertical. This will 
produce a 2D scatterplot, initially showing the 2D plot with the response 
LBM on the horizontal axis, and one of the predictors on the vertical axis. 
The extra slidebar on this plot allows cycling through choices for the chang- 
ing axis. 

Fit a smoother to each of the p inverse marginal response plots. The 
smoother in the j th  plot is an estimate of the inverse regression function 

E(x, I which, according to checking condition (19.3), should approximate 
E(x,) + if 1D structure is appropriate. A different smoother can be used 
for each of the plots, with the goal of obtaining a useful estimate of the inverse 
regression functions. Any of the methods for simple regression can be used to 
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In 

s f ,  
46 62 78 94 110 

LBM 

a,. Ht. 

m x  
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b. 
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46 62 78 94 110 

LBM 

c. 

FIGURE 19.6 Inverse marginal response plots for the Australian athletes data. 

help determine a suitable fit in each of the inverse marginal response plots. The 
three inverse marginal response plots are shown in Figure 19.6 with smoothers 
added. The smoother used for H t  in Figure 19.6a is a quadratic fit with OLS. 

This plot shows both curvature and variance increasing to the right, but these 
characteristics are influenced by the straggling points mentioned earlier. The 
inverse marginal response plot for in Figure 19.6b appears reasonably well- 
matched by a linear fit, and the smoother shown is the OLS line. The third 
inverse marginal response plot for is in Figure 1 9 . 6 ~ .  The lowess smooth 
with parameter 0.6 on this plot suggests a nonlinear relationship, with different 
linear phases for low and high values of LBM. The three inverse regression 
functions are evidently different, so 1D structure is doubtful. Further evidence 
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for this conclusion comes from consideration of variances. The variance of Ht 
increases with but increasing variance is not evident in the other plots. 
We are again led to the conclusion that 1D structure cannot be supported. 

We must now face the difficult question of how to proceed. There is no fixed 
prescription since the regression is evidently quite complicated with greater 
than 1D structure. However, there are guidelines that can help. One possibility 
is to use the methods discussed in the next chapter to estimate the structural 
dimension and produce a 3D summary plot. This line of inquiry is continued 
in Problem 20.3. 

Another possibility is to seek additional variables that might remove the 
necessity for 2D or greater structure. For this particular regression, the point 
marking in Figure 19.6 provides a clue on how to proceed. The points marked 
o correspond to males, while those marked x correspond to females. In all 
three, the males and females seem to fall into separate populations. Perhaps, 
therefore, the greater than ID structure is caused by the need for a separate 
analysis for each gender. If this were so, we would expect 1D structure when 
analyzing each gender separately. 

From the Graph&Fit menu, select the item “Set marks,” and then select 

Sr.r to be a marking variable. This will mark the points in the scatterplot 
matrix using Push the mouse button over the in the mark legend to 
display only the points corresponding to males in the scatterplot matrix. For 
males only, linearly related predictors still seems plausible. Examining the 
1 D checking conditions, the inverse marginal response plot for RCC displays 
both constant variance and constant mean function, while the remaining two 
plots are approximately linear with increasing variance. In the plot for two 
relatively short athletes with high don’t follow the general linear trend. 
These athletes cause a bit of curvature in this plot; otherwise, 1D structure is 
plausible for understanding the dependence of on and RCC for 
males. We can repeat this analysis for females, and we come to essentially the 
same conclusions. 

To continue the analysis, we would use the ID estimation result and produce 

separate summary plot for males and females. The methods in Section 12.4 
could then be used to combine the two summary plots into a single analysis. 

19.7 COMPLEMENTS 

The checking condition (19.4) becomes an equality if the predictors are nor- 
mally distributed. If they are not normally distributed, this checking condition 
is not exact, but the approximation is generally quite good. 

19.7.1 Sliced Inverse Regression 

The 1D checking conditions in Section 19.5.1 provide a purely graphical ap- 
proach to determining dimension based on the inverse marginal response plots. 
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Duan and Li ( 199 I ) and Li ( 199 1) suggested that the inverse regression x I y 
can be informative about y I x, and they developed a numerical proce- 
dure called or in which the mean function is esti- 
mated in each of the inverse marginal response plots via smoothing. Li (1 99 1) 
showed that the estimated smooths can then be compared to give a test of di- 

mension. 
Similar to SIR, Cook and Weisberg (1991) suggested a method called 

or SAVE, that uses both the mean checking condi- 
tion (19.3) and the variance checking condition (19.4) to find inverse structure; 

uses only the mean checking condition. Both methods are implemented 
in Arc using the “Inverse regression” item in the Graph&Fit menu. A full 
discussion of their use is given at the Internet site for this book. 

19.7.2 References 

Hall and Li ( I  993) have shown that for regressions with a large number of pre- 
dictors the condition of linearly related predictors will generally be satisfied. 
In addition, the condition will generally be satisfied for data from experi- 
ments that use standard experimental designs. Derivations of the 1D checking 
conditions are available from Cook (1998b, Chapter 10). 

The condition (19.1) required for linearly related predictors is generally 
not checkable because it depends on unknown parameters. However, with ID 
structure, if x has an then (19.1) holds for 
any p (Eaton, 1986). This condition is much more restrictive than (19.1), but 
it can be checked in practice by checking if x has an elliptically coutoured 
distribution. The most important member of this class of distributions is the 

multivariate normal. 
The result in Section 19.2 that OLS estimates can give a consistent estimate 

of cp even when the kernel mean function is not linear is based on Li and Duan 
(1989) using earlier work by Brillinger (1983). The results in  Section 19.2 
depend on linearly related predictors for all the cases in the data. As we 
have seen in Chapter 15, a few unusual points can strongly influence the 
OLS estimates. When a few such points are observed in the data, the result 

bTx % cpTx need not hold. 
The OLS summary plot can also fail to provide a useful summary plot if the 

mean function is symmetric. In this case, the OLS estimate p will estimate zero. 
For further discussion of such occurrences, see Cook and Weisberg (1991), 
Cook, Hawkins, and Weisberg (1992), Cook (1998b), and Exercise 19.5. The 
evaporation data in Exercise 19.4 is taken from Freund (1979). 

PROBLEMS 

19.1 Suppose we have a regression with p linearly related predictors and a 
structure that is at most 1D. Let denote the fitted values from the 
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OLS regression of y on x. If the plot y versus 9 appears as a random 
scattering of points with no clear systematic features, what would you 
choose as the structural dimension of the regression? Why? 

19.2 This problem uses the Big Mac data in the file big . . 
19.2.1 

19.2.2 

19.2.3 

19.2.4 

19.2.5 

Draw the scatterplot matrix of (BusFare, Bread, TeachTax, 
TeachSal, BigMac). Identify the point for Lagos; explain why 
it is an extreme point, and delete it from further consideration. 
Use the automatic procedure described in Section 13.2.2 to sug- 
gest normalizing transformations of the predictors (excluding 
the response BigMac). Test the hypothesis that the transforma- 
tion parameters are all equal to the log transformation against 
a general alternative. 

Using log-transformed predictors, graphically explore the ad- 
equacy of the transformations to normality by checking for a 
linear mean function in each frame of a scatterplot matrix of 
the transformed predictors. 

Use inverse marginal response plots to check for 1D structure 

versus greater than 1D structure. What do you conclude? 

Find a transformation of the response BigMac so that the re- 
gression of the transformed response on the log-transformed 
predictors is approximately linear. 

Use model checking plots and residual plots to explore the ad- 
equacy of the model obtained in the last section. Summarize 
the results for this data set. 

19.3 Consider a regression with a response y and three predictors x = 

(x, , x ~ , x ~ ) ~ .  Write mean functions that correspond to the following situ- 
ations. For each, give the structural dimension of the regression, assum- 
ing that the dependence of y on x is only through the mean function. 

a. A linear regression mean function with four terms, u,, = 1, u ,  = x , ,  

= x2, and u3 = x3. 

b. A mean function that cannot be written as a linear combination of 
the predictors, but is still a linear regression mean function. 

c. A mean function that can be written as a linear combination of the 
predictors, but is a nonlinear function of the parameters and hence 
not a linear regression mean function. 

d. A mean function that can neither be written as a linear combination 
of the predictors nor as a linear function of the parameters. 

19.4 The file . l s p  contains data on daily soil evaporation Evap for 
a period of 46 days. There are ten possible predictors that characterize 
the air temperature, soil temperature, humidity, and wind speed during 
a day; use the minimum and maximum of the daily air temperature, soil 



444 CHAITER 19 VISUALIZING REGRESSION WITH MANY PREDICTORS 

temperature, and humidity, for a total of six predictors. Use the response 
Evap and the predictors and 

19.4.1 Check the assumption of linearly related predictors. Explain 
how you do this, and explain your conclusions for these data. 

19.4.2 Use inverse marginal response plots to explore the dimension of 
this regression. What do you conclude? What is the evidence? 

19.4.3 Repeat the first two parts of this problem after removing the 
predictor Compare the results of your analysis to those 
in the first two parts of this problem for the full data. 

19.5 In this problem we will construct an example that is almost identical 
to the example given in Section 18.5.3, except that the mean function 
is slightly modified. In the text window, type the following three state- 
ments: 

This has created three lists of standard normal random numbers, each 
of length one hundred. For this example, we want the mean function to 
be E(y I x) = xy, and we want the variance function to be constant with 
n = 1. We can compute y and create a data set as follows: 

(+ ( -  

This will give you a series of dialog boxes to name the data set and 
the variables (use x l ,  x2, e ,  and Every time you do this problem, 

you will get slightly different answers because the data are generated at 
random each time. By contrast, in the demonstrations used throughout 
the book, the same data values are used each time. You can create a file 
from the data you have created using the “Save to file” item in the data 
set menu. 

19.5.1 

19.5.2 

19.5.3 

Compare the data generated here to the data used in Section 
18.5.3. How do the mean functions differ? Are the variance 
functions the same or different? Is the assumption of linearly 
related predictors satisfied by the data you generated? 

Examine the 3D plot y versus (x,,x2). What is the structural 
dimension of this plot? Rotate to the strongest 2D view in 
the plot. Does i t  correspond to the way you generated the 
data? How do you know? Mark this view by selecting the item 
“Remember view” from the “RecalVExtract” pop-up menu. 

Modify the problem so it has mean function E(y, I x) = 
(1 + x , ) ~ .  Do this by creating a new response y ,  using the “Add 
a variate” item in the data set menu and typing 



PROBLEMS 445 

Draw the plot y, versus (xl,x2), and observe that the best 2D 
view is very similar to the view chosen by OLS. 

Explain why OLS gave a useful answer with y ,  as the re- 
sponse, but did not give a useful answer with y as the response. 
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Graphical Regression 

In Chapter 18 we saw how 3D plots can be used to construct graphical sum- 
maries in regressions with two predictors. In this chapter we show how to 
construct summary plots in regressions with more than two predictors. We 
assume throughout this chapter that the predictors are linearly related, but we 
do not require a model for the distribution of y I x. 

20.1 OVERVIEW OF GRAPHICAL REGRESSION 

Suppose we have a regression with response y and p linearly related pre- 
dictors x = (x,,. . . , x J T .  Since we can’t draw simple plots of more than three 
variables at a time, we will build up to the full regression by looking at the 
variables in pairs. Select two of the predictors, say x, and x,, and for notational 
convenience collect the remaining - 2) predictors in the vector x3. 

The following question is at the heart of graphical regression: Can we 
replace x, and x2 with a linear combination of them 

x12 = b , x ,  + b,x, (20.1) 

without loss of sample information on the regression? As we have seen before, 
this is the same as aslung, Can we find 6 ,  and b, so that y is independent of 
x given both x,, and x,? 

If so, and b,  = 6 ,  = 0, then both x, and x, can be deleted from the re- 
gression without loss of sample information. 

If so, and either b,  # 0 or b, # 0, then we can replace the pair of predictors 
(x, ,x,) with the single predictor x12 without loss of sample information, 
effectively reducing the number of predictors by one. We could now se- 
lect two other predictors to combine in the new regression with 1 

predictors. 
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If not, then the chosen predictors cannot be combined and the structural 
dimension of the regression of y on must be at least two. Combining 
other predictors may still be possible. 

Graphical regression is thus a sequential procedure for combining pairs 
of predictors using (20.1). The process stops when no further combining is 
possible. If the structural dimension of the regression is at most two, then the 
original p predictors can always be reduced to at most two linear combinations 
without loss of sample information on the regression. 

A 3D added-variable plot for x ,  and x ,  after can be used to tell if x,  

and x2 can be combined, and to combine them into xI2  if appropriate. Recall 
from Section 10.7 that the 3D added-variable plot for ( x I , x 2 )  is the 3D plot 
of Z(y I versus (Z(x, I x3) ,2 (x2  I The following cases show how the 
structural dimension of this 3D added-variable plot is related to the study of 

(XI 9x2): 

If the 3D added-variable plot has OD structure, then b, = b, = 0 and 
( x ,  , x 2 )  can be deleted from the regression. 

If the 3D added-variable plot has 1D structure, then ( x I , x 2 )  can be com- 
bined into x 1 2 .  The coefficients b ,  and b, are the same as the coefficients 
of e(x, I and 2(x2 1 in the sufficient 2D view of the 3D added- 
variable plot. 

- If the 3D added-variable plot has 2D structure, then x1 and x 2  cannot be 
combined, and two other predictors should be selected. 

All of the tools discussed in Chapter 18 for assessing the structural dimension 
of 3D plots can be used for the analysis of 3D added-variable plots in graphical 
regression. 

20.2 MUSSELS’ MUSCLES 

In this section we use graphical regression to analyze the mussels data dis- 
cussed in Section 19.4 and given in the datafile l s p .  The four pre- 
dictors are the length L,  width height H and mass S of a mussel’s shell; L,  

and are in mm and S is in grams. The response M is the mass in grams 
of a mussel’s muscle. We are interested in studying the regression of M on 

( H , L ,  

20.2.1 The GREG Predictors 

The first step in graphical regression is to insure that the condition of lin- 
early related predictors is not seriously violated. As we found in Section 19.4, 
deleting case 77 and replacing the predictors by their logarithms gives a new 
set of transformed predictors that reasonably satisfies the assumption of lin- 
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early related predictors. We therefore begin analysis with response M and pre- 

dictors 

= (logH,logL,logW,logS)~ 

At this point we could start graphical regression as suggested in Sec- 
tion 20.1, but useful answers can be obtained more quickly by using the 
ID estimation result discussed in Section 19.2, page 431. We do this by re- 
placing the predictors x with p new predictors which are uncorrelated h e a r  
combinations of x. The new predictors have the following properties. 

- The first linear combination is called Fit. It differs from the OLS fitted 
values from the regression for y on x only by subtraction of the intercept, 
so Fit = bELSx = - Go. If the regression has ID structure and the predic- 
tors are linearly related, then we know from Section 19.2 that the plot 
of the response versus Fit is most likely all that we need to continue the 
analysis. If the dimension is bigger than one, this linear combination is 
likely to be one of the linear combinations needed. 

The second linear combination is gr, = brx. It is defined to be a linear 
combination that is uncorrelated with the first linear combination and, 
if the regression has 2D structure, it is a good candidate for the second 

linear combination we will need in addition to Fir. 

The third linear combination gr2 = b;x is uncorrelated with the first two 
linear combinations, Fit and gr,  . If the regression has 3D structure, then 
this is a good candidate for the third linear combination we will need in 
addition to Fit and gr , .  

+ The rest of the linear combinations are defined in the same way. In gen- 
eral, the linear combinations are uncorrelated and are ordered according 
to a measure of their likely importance in the analysis. The ordering is not 
certain, however, and we still need graphics to complete the analysis. We 
will refer to these and all linear combinations constructed during graph- 
ical regression as GREG predictors, which is an acronym for graphical 
regression. 

20.2.2 Graphical Regression 

We are now ready to apply graphical regression using Arc. The data set con- 
tains the original four predictors, the four transformed predictors x, and the 
response. Case 77 should be deleted. 

Select “Graphical regression” from the Graph&Fit menu to get the dialog 
shown in Figure 20.1. The predictors and the response are specified in 
the usual way. The two buttons on the bottom of the dialog allow you to 
use the predictors specified in the dialog, or use the GREG predictors; we 
select the latter choice, which is the default. After clicking the “OK’ button, a 
graphical regression menu called “Gl” will be added to the menu bar, and the 
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Arc Name for 

Candidates Piedictors 

Graphical regresrlon 

Response ... I M  I 

Ulelghts ... - 
Start with selected predictots 

0 Start with LS fitted U B I S  and uncarr greg predr 

FIGURE 20.1 Thc graphical regression dialog 

TABLE 20.1 
Predictors as Functions of the Original Predictors 

for the Mussels Data 

Arc Output Showing the GREG 

GI.Fit -0.252 -0.595 0.472 0.599 
Gl.grl 0.906 0.322 -0.275 -0.017 

G 1 .gr2 0.625 -0.743 0.111 -0.212 
G 141-3 0.092 -0.592 -0.139 0.789 

information shown in Table 20.1 will be displayed in the text window. The 
names of the GREG predictors in the table have a prefix, “G1” in this case, 

that corresponds to the name of the graphical regression menu. The table lists 
multipliers that define the GREG predictors as combinations of the original 
predictors. For example, GI .grl = bTx with 

b, = (0.906,0.322,-0.275,-0.017)‘ 

or g r ,  = 0.9061og(H) + 0.32210g(L) - 0.2751og(S) - 0.017log(W). 
We are now ready to use 3D added-variable plots to conduct a graphical 

regression analysis using the GREG predictors. From the “Gl” menu select the 
item “3D AVP.” In the resulting dialog shown in Figure 20.2, select two of 
the predictors to combine using the ideas outlined in Section 20.1. While in 
theory you can choose any pair, starting either with the first two predictors 
(Fir and g r l ) ,  or with the last two predictors is easiest. We chose to combine 
the last two and grg .  

The dialog of Figure 20.2 produces a 3D added-variable plot for the selected 
predictors after the rest, as shown in Figure 20.3. 
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Select two terms to combine 

Candidates Selection 

G1.Fit 

Gl.grl I- 
[ T ] ( C e n c s l ]  

FIGURE 20.2 The dialog for selecting GREG predictors to combine in graphical regression. 
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3D added-variable plot from the graphical regression analysis of the mussels 

- If the 3D added-variable plot has OD structure, then we can delete the 
GREG predictors and This is done by selecting the item “Dimen- 
sion 0” in the “Greg methods” pop-up menu that appears on the bottom 
left of the 3D added-variable plot in Figure 20.3. 

If the plot has 1D structure, then we can combine the two GREG predic- 
tors by first rotating to the sufficient summary view and then selecting 
“Dimension 1” in the “Greg methods” pop-up menu. Arc evaluates the 
horizontal screen variable + b3gr3 and adds it to the data set as a 
new GREG predictor gr,, incrementing the index k by one. The new GREG 

predictor corresponds to x , ,  in the general discussion of Section 20.1. 

- If the plot has 2D structure, we cannot combine the predictors, and two 
new predictors could be selected. Two-dimensional structure is specified 
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FIGURE 20.4 Final summary plot for the mussels data. 

by selecting “Dimension 2” in the “Greg methods” pop-up menu. In this 
case, Arc returns you to the stage just prior to the construction of the 3D 
added-variable plot. 

- After taking one of these three actions, Arc displays either the final 3D 

plot if only two GREG predictors remain or the dialog for selecting two of 
the remaining predictors to combine in another 3D added-variable plot. 

At any stage you can find how the present GREG predictors are constructed 
from the original linear predictors x by selecting the item “Display active 

predictors” in the graphical regression menu. A table like Table 20.1 will then 
be displayed in the text window. 

We judged Figure 20.3, the 3D added-variable plot for (gr2,gr3) after 
( F i t , g r , ) ,  to have OD structure and selected “Dimension 0” in the “Greg Meth- 
ods” pop-up menu. 

We now have a regression with response and the two remaining GREG 

predictors, and g r , .  The plot produced by Arc is just the 3D plot of 
versus ( F i r , g r , ) .  We judged this plot to have 1D structure. After rotating to 
the summary view shown in Figure 20.4 and selecting “Dimension 1” in the 
“Greg methods” pop-up menu, the horizontal screen variable 

gr,  = + blgr l  

= 0.31 logH - 0.5010gL + O.3810gS + 0.71 lOgW (20.2) 
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TABLE 20.2 Reaction Yield Data in the File r y i e l d  . 
Variable Desicrption 

T 

I 

4 

C 

(Temp, - 122.5)/7.5, where Temp, = temperature “C during first stage. 

(Temp, - 32.5)/7.5, where Temp, = temperature “C during second 

1 + 2[log(Time,) ~ log(S)]/log(2), where Time, = run time during first 

1 + 2[log(Time,) - log(1.25)1/log(5), where Time, = run time during 

- 70)/10, where = concentration in percent. 
Yield from the two-stage chemical reaction. 

stage. 

stage in hours. 

second stage in hours. 

is computed and added to the data set. We found the coefficients shown in 
(20.2) by selecting the item “Display active predictors” in the graphical re- 

gression menu. 
We have a regression with response and single GREG predictor This 

brings us to the end of the graphical regression analysis. The summary plot 
shown in Figure 20.4 is now used to guide our study of the regression of 
on x. 

As might have been expected, we have reached the same point in the anal- 
ysis of these data that was reached in Section 19.5.2. In that section, we 
concluded ID structure, with summary plot of versus the OLS fitted values, 
whereas here the 1D structure is summarized by versus The OLS fitted 
values and are almost the same (see Problem 20.4), so both analyses give 
essentially the same result. Depending on the goals of the analysis, we would 
continue as outlined in Section 19.5.2. 

20.3 REACTION YIELD 

In this section we consider a different regression in which the response y is 
the yield from a two-stage chemical process. There are five coded predictors 
defined in Table 20.2 in terms of five measured predictors. Since the times 
varied over a wide range, they were replaced by their logarithms. 

Prior experiments had indicated that the optimum settings that maximize 
the mean function would probably be found within the ranges of the predictor 
values used in this experiment. The mean function therefore is unlikely to be a 

monotone function of the coded predictors. Accordingly, the investigators used 
a full quadratic model, Section 7.3.4, in the five coded predictors to analyze 
the experiment. This model contains 21 terms-an intercept, five linear terms, 
five quadratic terms and ten interaction terms-leading to a very complex 
summary with a model that automatically forces a high structural dimension. 
We consider how graphical regression can be used to gain insights into the 
results of this experiment. The data are in the file 
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FIGURE 20.5 Scatterplot matrix for the reaction yield data. 

20.3.1 Linearly Related Predictors 

The first step in graphical regression is always to insure that the condition 
of linearly related predictors is not seriously violated. A scatterplot matrix of 
the five coded predictors and the response is shown in Figure 20.5; ignore 
the two plotting symbols for now. There are no clear nonlinear relationships 
between the predictors, so we can proceed by assuming that the coded predic- 
tors do not seriously violate the condition of linearly related predictors, and 

set 

= 

The marginal response plots in the top row of Figure 20.5 show only weak 
relationships between y and each of the predictors individually, suggesting the 
possibility of large unexplainable variation in the response. We can expect that 
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finding structure graphically will be harder in this example than it was in the 
mussels data. 

20.3.2 Graphical Regression 

Start graphical regression as in Section 20.2.2 by select “Graphical regression” 
from the Graph&Fit menu and specify the response and predictors in the 
resulting dialog. We again use the default GREG predictors Fit and g r k ,  k = 

1,2,3,4, and begin by combining gr ,  and gr,. 

The interpretation of the 3D added-variable plot for gr3 and gr,  after 
(Fi t ,gr , ,gr , )  is not as clear as it was in the previous example. Weak depen- 
dence is apparent in the plot as can be seen a bit more clearly by adding 
a full quadratic surface to the plot while rotating. The fitted surface is only 
slightly curved. Our goal is to obtain a parsimonious summary that includes 
most of the regression information. We chose to characterize the plot as having 
OD structure, ignoring the relatively small quadratic trend to get to a relatively 
simple solution. After selecting “Dimension 0” from the “Greg methods” pop- 
up menu, we now have a regression with response y and three remaining GREG 

predictors (Fit ,gr ,  , g r 2 ) .  

There is clear dependence in the 3D added-variable plot for ( g r , , g r , )  

after Fit. We characterized the plot as having 1D structure with summary 
plot shown in Figure 20.6. The horizontal axis of this summary view is 
just the variable g r , .  The dependence in this plot can be further visualized 
by adding the curve which fits a quadratic only in the H-vari- 

able g r , ,  to the plot. We judge that y is independent of gr,  given g r , .  Ac- 
cording to the rules for graphical regression, we can therefore simply delete 

gr2. 
After selecting “Dimension I ”  from the “Greg methods” pop-up menu, 

the final 3D plot of y versus ( F i t , g r , )  is shown by Arc.  Two views of this 
3D plot are given in Figure 20.7. We judged this plot to have 2D structure, 
with a generally linear trend in one direction, and a curved trend in a second 
direction. This 3D plot is the summary plot for the experiment. As in the 
previous example, we can now use it to guide the analysis. 

If we had concluded that the 3D added-variable plot for ( g r , , g r , )  after Fit 

and the 3D added-variable plot for ( F i t , g r , )  after gr ,  both had 2D structure, 
then the full regression would have at least 3D structure, and we would not 
have been able to combine any of the predictors further. 

20.3.3 Continuing the Analysis 

Two views of the 3D summary plot are shown in Figure 20.7, but the full 
structure can be seen only while rotating. The view in Figure 20.7a shows 
generally a linear increasing trend. Contrary to expectations of the investiga- 
tors, the maximum yield may occur at the edge or even outside the experi- 
mental range. The view in Figure 20.7b shows a maximum more clearly in 
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FIGURE 20.6 Summary plot for combining gr,  and gr2 in the reaction yield data. 
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FIGURE 20.7 Two 2D views of the 3D plot y versus (Fir ,gr , )  from the reaction yield data. 

the interior of the range. Combining these two views, the general shape is of 
a cone cut off on one side. 

Two additional graphical aids may help. First, add the full quadratic fit to 
the plot to give our eyes something to follow when trying to understand the 
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FIGURE 20.8 The 3D summary plot for the reaction yield data with a full quadratic polynomial 

added. 

summary plot. A view of the summary plot with the quadratic iit added is 

shown in Figure 20.8. The maximum of the quadratic is near the edge of the 
experimental range. As a consequence, the point of maximum yield is very 
poorly estimated. 

The second tool is to link Figure 20.8 to the scatterplot matrix of the pre- 
dictors in Figure 20.5. Using plot linking, the four points where the predicted 
yield is highest are marked by x, while the remaining points are marked by 0.  

We see in the scatterplot matrix that for Lt, at least one of the high-yield points 
is at an extreme of the variable’s range, another indicator that the optimum is 
not well determined. 

There are several ways to proceed from here, depending on the specific 
goals of the investigators. Here are three possibilities: 

The summary plot itself might give sufficient information on how to 
achieve near-maximum yields by controlling the two linear combinations 
Fit and gr ,  to keep the yield near the observed peak. 

We might attempt to formulate a statistical model of the conical shape to 

refine the graphical results. 

- Finally, we might reason that additional experimental runs are required be- 
cause the maximum yield is not nearly as well-determined in Figure 20.7a 
as it is in Figure 20.7b. Additional data can be used to investigate the miss- 
ing part of the cone in the summary plot, perhaps by expanding the range 
of Lt, and Lt2. 
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20.4 VARIATIONS 

20.4.1 Standardizing the Linear Predictors 

Our graphical analysis of the mussels data in Section 20.2 ended with a sum- 
mary plot of M versus the GREG predictor (20.2), 

gr4 = 0.31logH -0.50logL+0.38logS+O.71l0gW 

As in a linear regression model, the coefficients of the linear predictors depend 
on the units of those predictors. This dependence on the scale of measurement 

can make interpreting the coefficients difficult. Rescaling each of the linear 
predictors by dividing by their sample standard deviation can simplify inter- 
pretation, as in Section 10.1.6. One unit in  the standardized scale is then one 
standard deviation in the original scale. 

For the mussels data, reexpressing g r ,  as a linear combination of the stan- 
dardized predictors gives 

log L logs log 
- + 0.81 + 0.50 

log H 

sd( log H )  0’27 sd(log L )  sd(1ogS) sd(1og 
= 0. IS 

(20.3) 

Coefficient ratios for the standardized predictors often give a better idea about 
the relative importance of the predictors than the coefficients in the original 
scale. For example, this representation indicates that the rate of change in the 
mean function E(M 1 gr4) produced by a one standard deviation change in logs  
is about (0.8 1 /O. 15) = 5.4 times as large as that produced by a one standard 
deviation change in log H .  This interpretation is subject to the cautions given 
in Section 10.1.6. 

At any point in a graphical regression analysis, you can use the item 
“Display std. active predictors” in the graphical regression menu to display 
the GREG predictors in terms of the standardized linear predictors. This is how 

we obtained the coefficients shown in (20.3). 

20.4.2 Improving Resolution in 3D Added-Variable Plots 

As with the analysis of the 3D added-variable plot for (gr3 ,gr4)  in the re- 
action yield data, the structural dimension of a 3D added-variable plot may 
not be certain. While we decided to take a parsimonious view and choose OD 
structure, there were hints of dependence. To increase the power of the 3D 
added-variable plot to show structural dimension, the residuals on the vertical 
axis can be replaced with the residuals from the,full regression of y 

on xj, without changing the horizontal axes of the plot. This is accomplished 
in Arc by selecting the item “Quadratic in ‘rest’ residuals” from the “Greg 
methods” pop-up menu; select “e(y1rest)” to return to the standard 3D added- 
variable plot. The vertical axis of the plot can also be changed to the response 
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3D added-variable plot with the quadratic option for the residuals on vertical 

y by selecting “Response” in the “Greg methods” pop-up menu. In theory, 
these 3D plots have the same structural dimension, and they have the same 
horizontal axes for a summary plot. 

The residuals used on the vertical axis are intended to remove gross varia- 
tion in the marginal mean function E(y I x,), and so the choice “e(y I rest)” will 
be adequate as long as this mean function has a dominant linear trend. When 

E(y I x3) is nonlinear without much linear trend, using the residuals from a 
full quadratic fit in xg can result in considerable improvement. When E(y I x,) 

is linear, using the full quadratic residuals results in overfitting and increased 
variability. Of course, we can try both options as needed. 

Returning to the reaction yield data, Figure 20.9 shows one view of the 
initial 3D added-variable plot for (gr3 ,gr4)  after (Fit ,gr ,  ,gr , )  with the quadratic 
option for the vertical axis. It is now clear that this plot has at least 1D structure, 
confirming the hints from the previous analysis. Continuation of this analysis 
is given in Problem 20.7. 

20.4.3 Model Checking 

Graphical regression provides a means of model checking by using residuals 
from a fi t  of the target model in place of the response. Except for this change, 
all of the ideas discussed in this chapter apply. In particular, if the model 
is correct, then all 3D added-variable plots encountered during graphical re- 
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gression will have OD structure. Evidence of 1D or 2D structure in any plot 
is evidence that the model is not correct and may therefore require remedial 
action. 

For example, suppose we have developed a linear model for our regression, 

say 

(20.4) I = + e 

where the terms in the model are written explicitly as functions of the 

linearly related predictors Letting denote the residuals from an OLS fit 
of this model, we would then apply graphical regression with response and 
predictors 

When using OLS residuals as the response in graphical regression, the GREG 

predictors may not include Fit. As discussed in Section 14.1.2, the residuals 

2 are uncorrelated with the u-terms in the model and with Fit from (20.4), so 
Fit contains no useful information. Arc automatically excludes from the 
GREG predictors; the other GREG predictors are still ordered on their likely 
importance in finding model deficiencies, with g r ,  being the most impor- 
tant. 

In addition, Arc computes a diagnostic test for the structural dimension of 
the regression of the residuals on The test is of NH: OD structure versus 
AH: greater than OD structure. If the null hypothesis is rejected then we have 
information that the model is deficient. The test supplements, but does not 
replace, the graphical procedure. No test is available when using the response 
y in graphical regression. 

With these ideas we can use graphical regression to check model (19.5) 
for the mussels data. The first step is to fit model (19.5) using OLS with case 
77 deleted. Next, we need to add the residuals from this fit to the data set 
so we can use them as the response in graphical regression. This is most 
easily done with the item “Add to data set” in the model menu for the fit of 
(19.5). Once the residuals are added to the data set we again start graphical 
regression using the Graph&Fit menu. In the resulting dialog, the linearly 
related predictors are selected in the usual way and the residuals are used as 
the response. 

Figure 20.10 shows the plot for ( g r 3 , g r 4 )  after ( g r ,  , g r 2 )  in the mussels data. 
Aside from a few outlying points that may require attention, there is little 
evidence to suggest that its structural dimension is not zero. After selecting 
“Dimension 0” from the “Greg Methods” pop-up menu, the analysis should 
be continued by inspecting the plot of 2 versus all this will lead to 
OD structure for the residual regression, suggesting that the model matches 
the data quite well. 

The diagnostic test for structural dimension is displayed in the text window 
when the graphical regression is created in Arc:  

T e s t  f o r  OD s t r u c t u r e  versus  1D o r  higher  
va lue  = 8.89109 df = p-value = 0.54247 
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FIGURE 20.10 

for the mussels data. 

3D added-variable plot for (gr3,gr4)  after ( g r ,  , g r 2 )  for checking model (19.5) 

The test statistic 8.89 is compared to a chi-squared distribution with 10 de- 
grees of freedom to get the p-value near 0.54. The visual assessment of OD 
structure in the residual regression agrees with the large p-value given by the 

test. 

20.4.4 Using the Linearly Related Predictors 

In the examples here, we have started graphical regression with the GREG 

predictors. We could use the linearly related predictors x instead simply by 
clicking the “Start with selected predictors” button on the bottom of the graph- 
ical regression dialog box. Using the original linearly related predictors x may 
be an advantage when application-specific information is available that can 
help combine variables. There are a few changes when using x instead of the 

GREG predictors. 
Unlike the GREG predictors, the linearly related predictors are not naturally 

ordered on likely importance. Although not required by the theory, ordering 
the predictors in a useful way can lead to useful answers more quickly. A 

useful idea is to view the predictors in 2D added-variable plots, using the “All 
2D AVP of active predictors” item in the graphical regression menu. The two 
predictors with the strongest dependence in their 2D added-variable plots can 
be combined first. The process is repeated: The item “All 2D AVP of active 
predictors” is used to construct all 2D added-variable plots for the 
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predictors, and the predictors exhibiting the strongest dependence are again 
selected for combining in a 3D added-variable plot. After each dimension 
decision, automatically gives a dialog for choosing the next two predictors 
to combine. 2D added variable plots can be used at this point by canceling 
the dialog and returning to the main GREG menu, effectively beginning again 
with the current active predictors. 

When studying the regression of y on linearly related predictors, most of 
the 3D added-variable plots will probably exhibit 1D or 2D structure. A useful 
starting point for examining each of these plots is to rotate to the OLS linear 
combination, since by the ID estimation result we know that this is a good 

summary if the plot has 1D structure. 
Finally, there is a direct connection between graphical regression using 

the linearly related predictors and fitting via OLS: 3 0  
is 

of y j ,  OLS of y on 

20.5 COMPLEMENTS 

20.5.1 

Apart from a constant, the first GREG predictor is the fitted values from the 
OLS regression of on the linearly related predictors If there is 1D structure 
and linearly related predictors, then the plot of y versus may be a good 
summary of the regression. 

The other GREG predictors . . . , can be based either on the 
qf which was suggested by Li (1992), or on 

(SAVE) which was suggested by Cook and Weis- 
berg ( 199 1 ) and discussed in Section 19.17.1. The method of principal Hessian 
directions is the default. In that case, is formed from the part of the first 
principal Hessian direction (linear combination) that is orthogonal to the OLS 

direction. Similarly, the remaining GREG predictors are formed from part of 
the sequence of principal Hessian direction that are orthogonal to the OLS 

direction and the previous principal Hessian directions. Background on prin- 
cipal Hessian directions, including computing formulas, is available from Li 
(1992) or from Cook (1998a), who gave the justification for combining OLS 

with principal Hessian directions as used in this chapter. The GREG predictors 
based on SAVE are formed similarly. can be instructed to use SAVE by 
using the settings menu. 

can be used to obtain the principal Hessian directions and a few related 

statistics by selecting “Inverse regression” from the Graph&Fit menu. In the 
resulting dialog, specify the response and the linearly related predictors in the 
usual way and click the option “pHd(0LS residuals)” on the dialog’s right. 
The output in the text window contains a variety of information. 

GREG Predictors and Principal Hessian Directions 
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First, a brief description of the regression is displayed, including any 
deleted cases. 

Second, a table is displayed giving the coefficients of the raw and stan- 
dardized predictors used in computing the first two GREG predictors. 

- Next, a table of test statistics is given for testing the structural dimension 
of the regression of the OLS residuals on the linear predictors. The kth row 
of the table is for testing the hypothesis NH: (k - l )D structure versus AH: 

greater than ( k  - l )D structure. The table is used by starting with the test 
in the first row and continuing until the p-value is no longer significant. 
If the p-value for the kth row is significantly small, while the p-value for 
the (k + 1)st row is not, then the structural dimension is inferred to be k .  
Equivalently, the structural dimension is just the number of significant p -  
values. The two different columns of p-values correspond to two different 
tests. Since they are based on different assumptions, the two tests need 
not agree. 

More information on this type of analysis is available on the Internet site for 
this book. 

20.5.2 References 

Graphical regression was developed by Cook (1994) and by Cook and Wetzel 
( 1993). A comprehensive treatment including theoretical development was 
given by Cook (1998a,b), who discussed the possibility of using principal 
Hessian directions to form the GREG predictors. The reaction yield data are 
from Box and Draper (1987). 

PROBLEMS 

20.1 What is the goal of graphical regression, and how might it help in a 

regression analysis? 

20.2 Give two reasons why using GREG predictors instead of the linearly 
related predictors may facilitate a graphical regression. 

20.3 We left the analysis of the Australian Athlete Data in Section 19.6 with 
the finding that the structural dimension is greater than 1. 

20.3.1 Conduct a graphical analysis of the same regression using the 
GREG predictors. Do you again reach the conclusion that the 
structural dimension is greater than l ?  

Assuming the regression has 2D structure, describe the final 
summary plot. Does the plot suggest that there might be two 
different regressions involved? Now mark the points in your 
summary plot according to Sex. What do you conclude? 

20.3.2 
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20.4 Use the mussels data, starting as in Section 20.2.1 with predictors in 
log scale, and with case 77 deleted. 

20.4.1 

20.4.2 

20.4.3 

Use the graphical regression methodology, but unlike the text 
start by combining and gr ,  , then adding and finally gr3. 

Does this lead to essentially the solution obtained as the one in 
the text? 

Compute the OLS regression of on the predictors in log scale, 
and then draw the plot of the fitted values from this regres- 
sion versus the final linear combination you obtained in Prob- 
lem 20.4.1. Summarize the information in this plot. Should you 
have anticipated the outcome, given the ID estimation result 
discussed in the last chapter? 

Repeat Problem 20.4.1, with two exceptions. Use the original 
linearly related predictors, not the GREG predictors, and in each 
3D plot always use the OLS view as a summary plot. Now repeat 
Problem 20.4.2, and summarize the information in the plot. 

20.5 This problem concerns the regression of on 

x = (log log L,  logs, log 

in the full mussels data after restoring case 77. 

20.5.1 Suppose that the following model holds: 

1 x = 7i0 + T,JX + e 

a. Describe how you expect the process of graphical regression 

to unfold using the GREG predictors and starting with a 3D 
added-variable plot for (gr2,gr3).  

b. Describe how you expect the process of graphical regression 
to unfold using the linearly related predictors x and starting 
with a 3D added-variable plot for (logs, log W). 

c. Describe how you expect the process of graphical regression 

to unfold using 2(logM I x) as the response and the GREG 

predictors. 

d. Describe how you expect the process of graphical regression 
to unfold using I x) as the response and the linearly 
related predictors 

20.5.2 Conduct a graphical regression of IogM on x using the GREG 

predictors. 
Outliers generally stand out in at least one of the 3D added-variable 

plots during graphical regression. One way to deal with outliers is to 
delete them as they are encountered, and then begin graphical regression 
again based on the reduced data. The outlier should be restored in the 
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final summary plot so they can be assessed against the reduced data. 
These ideas may be helpful in this and the next two problems. 

20.5.3 Conduct a graphical regression of 2(logM I x) on x using the 

20.5.4 Conduct a graphical regression of logM on x using the predic- 
tors x. 

GREG predictors. 

20.6 Repeat the analysis of the mussels data given in the text leading to the 

summary plot in Figure 20.4. Extract the 2D summary view and estimate 
its mean function using a smooth. Next, extract the estimated 
mean function, naming it h. Now form the residuals 2 = - h,  and 
carry out a graphical regression of 2 on x using the GREG predictors. 

Write a brief summary of your findings. 
This is one way to check a summary plot without transforming to a 

linear model. If a 1D model holds with constant variance, say E(M I x) 

= M@X) and Var(y I x) = 02, then we would expect the regression of 
2 on x to have OD structure. Otherwise we expect it to have structural 
dimension greater than 0. For example, if the ID model has nonconstant 
variance Var(y I x) = v(pTx), then the regression of 2 on x will have 1D 
structure. 

20.7 Repeat the graphical regression analysis of the data set on reaction 
yield, but this time change the vertical axis of the 3D added-variable 
plots to the residuals from the quadratic regression, as described in Sec- 
tion 20.4.2. Do you still find that the regression has 2D structure? Write 
a brief summary of your findings, including a description of your final 
summary plot. 

20.8 Conduct a graphical regression for the Big Mac data in file 
l s p ,  using as the response and the four predictors 

and Give a brief summary of your 
analysis along with a description of your final summary plot. 



P A R T  IV 

Logistic Regression 
And Generalized Linear 
Models 

In this part of the book we discuss more titting methods and models that might 
be used in regression. We first discuss logistic regression models, in which the 
response is a count of the number of successes in a known number of trials, 
giving the use and interpretation of this model in Chapter 21 and then dis- 

cussing graphical methods and diagnostics in Chapter 22. Logistic regression 
is an important special case of models, and these are pre- 
sented in Chapter 23. These models are based on additional information about 

the relationship between the mean function and the variance function, but they 
all assume that the dependence of y on x is through a linear combination rfu, 

where u is a set of terms derived from x. 
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C H A P T E R  21 

Binomial Regression 

In most of the regressions we have considered, the response has been con- 
tinuous, taking any value in a particular interval. So, for example, Vol in the 
haystacks data could take any value between around 1,200 and 6,230 cubic 
feet. In this chapter we consider regressions where the response can take only 
a few values, in particular when the response is a count of the number of 

successes observed in a known number of trials. Often, each response is bi- 
nary, either success or failure of a single trial. We present the standard logistic 
regression model and make connections to earlier chapters on the multiple lin- 
ear regression models. The next chapter covers graphical methods for binary 
response data. 

21.1 RECUMBENT COWS 

Either just before or just after calving, some dairy cows become unable to 
support their own weight, and they become recumbent-they lie down. Some 
cows with this condition will recover, but many will not, and it is of interest to 
understand how survival probability varies with characteristics of the cow. The 
data in the file l s p  are from a study of 435 recumbent cows, collected 
at the Ruakura Animal Health Laboratory, New Zealand, during 1983-1 984. 

A variety of blood tests and physical measurements were taken shortly after 
the condition was diagnosed, and the eventual outcome of survival or death 
was later determined. The goal of the study is to determine if any of the mea- 
surements are related to survival probabilities for the cows, as understanding 
these relationships may lead to a treatment for this condition. The variables 
we consider are defined in Table 2 1 . 1 .  

The analysis of these data is likely to be complicated because many records 
are incomplete. The inflammation variable, for example, was measured only 
during the second year of the study and is available for only 136 of the 435 

cows; apart from the response, none of the other variables is observed for 
every cow. Recall the strategy that Arc uses for missing values: Each compu- 
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TABLE 21.1 Data on Recumbent Cow Survival, in the File 

Name n Description of Variable 

429 

43 I 

413 

432 

136 

222 

435 
175 

266 

Serum asparate amino transferase, IUA at 30°C. 

0 if condition first occured before calving, 1 if 

Serum creatine phosphokinase, IU/I at 30°C. 

Days recumbent when measurements were taken, rounded 

Inflammation: 1 if present, 0 if absent. 
Muscle disorder: 1 if present, 0 if absent. 

Outcome: 1 if survived, 0 if died or killed. 
Packed cell volume (hematocrit), %. 

Serum urea, mmol/l. 

post-calving. 

down to the nearest day. 

tation uses as many fully observed cases as possible, so, for example, a regres- 

sion including the inflammation variable can be based on no more than 136 

cases. 

The second important feature of this regression is that the response is cat- 

egorical: The cow either survived or it died. By convention, we code the 

outcome as an indicator variable, with value 1 for survival and 0 for death. 

The association of values with categories is arbitrary; for example, actuaries 

often code a death as 1 and a survival as 0. 
The overall goal of the analysis is a familiar one: We want to understand 

how the probability of survival changes as the predictors are varied, so we are 

interested in the conditional distribution of given the predictors. 

21.1.1 Categorical Predictors 

We start by looking at a few summary statistics. For example, what fraction 

of the cows in the study survived? The fraction surviving is the number of 

cows with = 1 divided by the total number. This is the sample mean 
of which can be viewed using the “Display summaries” item in the 

data set menu. The relevant output is given in the first part of Table 21.2. 
The fraction of cows that survived is about 0.38. We can think of this number 

as follows: If we select a cow at random from this sample, the probability 

that it survived is about 0.38. If the 435 cows were a random sample of all 

recumbent cows, then the survival probability for a cow chosen at random from 

the general population of cows with this condition is estimated to be about 

0.38. These data might be a random sample of cows with this condition only 

in the area of New Zealand served by the Ruakura Animal Health Laboratory. 

We have no direct information as to whether the 38% survival can be applied 

to all of New Zealand or to other countries. 
Is the survival probability the same for cows with the muscle disorder 

as for cows without This question concerns the condi- 
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TABLE 21.2 Marginal Survival, and Survival as a Function of 
~ 

Data s e t  = Downer, Summary S t a t i s t i c s  

373 cases a r e  missing a t  l e a s t  one value. 

Variable N Average S t d .  Dev Minimum Median Maximum 

Outcome 435 0.38161 0.48634 0 0 1. 

Data s e t  = Downer, Table of included cases 

373 cases a re  missing a t  l e a s t  one value. 

Table columns are  l eve l s  of Myopathy 

Table of Outcome: Count 

Column var iab le :  Myopathy 

0 1  

I 
1 127 95 

Table of Outcome: Mean 

Column var iab le :  Myopathy 

0 1 

I 
1 .38582677 .06315789 

tional distributions of given We can summarize these 
distributions by the probability of survival given the value of 
and we estimate these survival probabilities using the observed fraction that 
survive. Select “Table data” from the data set menu, make a con- 
ditioning variable, make a variate, and get the mean of 
given The result is shown in Table 21.2. Because of missing 
data, we see that these fractions are based on relatively few observations- 
127 with = 0 and 95 with = 1. However, the survival 
fractions, about 0.39 with no myopathy and only 0.06 with myopathy, are 
quite different. Relatively few cows in the sample with myopathy survive. 
An important question, which we will address shortly, is whether or not 
we can believe that this observed difference in the survival rates is due to 
a real difference in population survival rates or simply due to chance varia- 
tion. 

We can study the conditional distributions of the response given several 
categorical predictors by computing the survival fraction given the combina- 
tion of the categorical predictors. In these data, for example, we could use the 
predictors and as conditioning variables, giving 
eight possible combinations of conditions (since each variable has two lev- 
els and 23 = 8) and with eight sample proportions surviving. The counts and 
proportions for each combination are shown in Table 21.3. We see that the 
sample sizes are now greatly reduced-only seven cows that became recum- 
bent before calving were measured on the three predictors. 
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TABLE 21.3 Survival Fraction as a Function of 

Calving, Inflarnat, Myopathy 

= 

= 

1 

01 2 9 

01 1 3 

0 

= 

01 

11 0.0 

= 

11 0.0 

-I 

01 0.0 0.0 

21.1.2 Continuous Predictors 

Computing observed proportions of survivors works well as a method of sum- 
marizing the data as long as sample sizes per group remain large, and as long 
as none of the predictors are continuous. With a continuous predictor like 

using tables to present survival fractions will require turning into 

a categorical variable by slicing. While this can be an effective method of 
summarizing data in some problems, it can lose important information if the 
categories are too coarse, or it may not be effective if the categories are too 
fine. As an alternative we can adapt regression methodology developed in the 
earlier parts of this book. 

Let’s begin with a graph of the response y = versus the predic- 
tor log,(CK), as shown in Figure 21.1 using base-two logarithms. We used 
log,(CK) instead of because the sample distributions of I are 
quite skewed, the ratio of the largest to the smallest value of within each 

outcome exceeding 1,000. Consequently, using logarithms will likely be a 
better place to start the analysis. The mean function E(y 1 log,(CK)) can be 
estimated to be the fraction of ones in a narrow vertical slice of this plot con- 
structed by using the “slicing” mouse mode described in Section 2.3.2.  As 

the slice is moved across the plot from left to right, the fraction of points 
with = 1 can be seen to decrease, suggesting that the probability of 
survival decreases as log,(CK) increases. 
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FIGURE 21.1 Oufcome versus log,(CK). A smooth has been added to the graph. 

A smoother may be necessary to visualize the mean function when the re- 
sponse is binary. Shown on Figure 21.1 is a lowess smooth with smoothing 
parameter 0.6. The smoother indicates that the mean function has maximum 

value of about 0.75 at the smallest values of log,(CK), and the survival prob- 
ability decreases as log,(CK) increases, with a faster decrease for log,(CK) 
exceeding about eight. Consequently, log,(CK) alone is an indicator of sur- 
vival, with large values of log,(CK) suggesting that survival is much less 
likely. 

is regression in which the response is a binary variable 
or the sum of binary variables. It permits the use of both continuous predictors 
and factors. Before turning to methods and models for binomial regression, 
we review briefly the Bernoulli distribution and its generalization to the bino- 

mial distribution. These provide the random element in considering binomial 
responses, much as the normal distribution provides the random element in 
many regressions with a continuous response. 

21.2 PROBABILITY MODELS FOR COUNTED DATA 

21.2.1 The Bernoulli Distribution 

Suppose we observe a binary random variable. Examples of binary variables 
include whether or not a student passes a test, whether or not a patient given 
a treatment survives, whether or not an athlete wins a race, whether or not a 
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project is completed on time, whether or not a manufactured part chosen at 
random from production meets specifications, and so on. Such a variable has 
a Bernoulli distribution. 

Let y have a Bernoulli distribution. We use the symbol 6' = Pr(y = 1) to be 
the probability that y = 1. Pr(y = 0) = 1 - 6' is the probability that y = 0. We 

can easily compute the mean of y, 

E(y) = (0 x Pr(y = 0)) + (1 x Pr(y = 1)) 

=0+6 '=6 '  

so the mean is the probability 6' that y is equal to 1. Although y can equal 
only 0 or 1, its mean value is between 0 and 1. A similar calculation gives the 
variance: 

Var(y> = E(Y - E(YN2 

= (0- O)~PI-(Y = 0) + (1 - O)*Pr(y = 1 )  

= 6'*( 1 - 6') + (1 - 6')% 

=6 ' ( l  - 6 ' ) ( O +  1-6 ' )  

= e(i - 

With normally distributed data the mean and variance are two separate 
parameters, but the variance of a Bernoulli random variable is determined by 
the mean 6'. The variance attains its maximum value of 1 when 6' = 1 /2, and 
it is close to its minimum value of 0 when 6' is close to either 0 or 1. 

If 6' were known, then we would know everything there is to know about 
the distribution of y. When 0 is unknown, we can use data to estimate it. With 
only a single observation equal to either zero or one, we cannot expect to do a 
very good job of estimating 8, but if we can take many observations we might 
be able to get a good estimate of 6'. This leads to the 

21.2.2 Binomial Random Variables 

Suppose, as in the recumbent cows example, we have a sample of cows, 
and let y be the number of cows out of that survive. When y is the number 
of successes in trials, each with the same probability of success 
8, we say that y has a and write y - Bin(m,B). If = 1, 
then y has a Bernoulli distribution, and so the Bernoulli is the simplest case 
of the binomial. 

The value of a binomial variable y can be any integer between zero and 
the number of trials. The probability that y equals a specific integer j = 
O , l ,  ..., is given by 

(21.1) 
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Here ((in) is the number of different orderings of j successes in m trials, com- 
puted from the formula 

where tn! is read as m factorial and is equal to the product of all the integers 
from 1 up to and including (and 0! = 1). We will not have much need for 
computing these values. Equation (2 1 . 1 )  is called the 
for the binomial. 

The probabilities (21.1) can be computed using the function 
For example, to get the probability of 5 successes in 9 trials when 6 = 0.5, 
use 

5 9 .5) 
0.246094 

The function can be used to compute the probability that y is 
less than or equal to some value; for example, to compute the probability that 
y 5 5 when m = 9 and 6 = 0.5, use 

9 . 5 )  

0 .746094 

The mean and variance of a binomial random variable are easy to compute 
because a binomial is a sum of m independent Bernoulli random variables, 
each with the same value of 6. Using the fact that the expected value of a 
sum of random variables is the sum of the expectations and equation (4.7), 
we obtain 

E(y) = (2 1.2) 

Var(y) = m6( 1 - 6) (2 1.3) 

Both the mean and variance depend on 6 and 

If y, - Bin(m, ,8 , )  and y2 N Bin(m2,6,), then the sum y ,  + y2 is binomially 
distributed only if 6 ,  = 6,; we can then write y ,  + y2 N Bin(m, + m2,6,). 

Data can be used to estimate 8. Our estimation method of choice is called 
maximunz likelihood and the resulting estimate is called the maxi- 
mum likelihood estimate, which is usually abbreviated as MLE. The basic idea 
is simple: Suppose we have observed y successes in m trials. The MLE of 6 is 
then the value of 6 that makes the probability of observing y successes in m 
trials as large as possible. This amounts to rewriting (21.1) as a function of 6 

with y held fixed at its observed value, 
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L(0) is called the for 0. The MLE e^ is the value of 0 that 
maximizes L(0).  Since the same value maximizes both L(0) and log(L(0)), we 
work with the more convenient log-likelihood, given by 

Maximization of (2 1.5) is an elementary calculus problem. Differentiating 
(21.5) with respect to 0 and setting the result to zero gives 

Solving for 0 gives the MLE, 

L. y Observed number of successes 
0 = - =  

Observed fixed number of trials m 

which is the observed fraction of successes. 

Computing the variance of the MLE is easy, since 

(2 1.6) 

This variance is estimated by substituting 8 for 0. 

21.2.3 Inference 

In the recumbent cow data, we have m = 435 cows, of which y = 166 survived. 
If all cows have the same probability of survival 0, and survival is independent 
between cows, then the number who survive will be binomially distributed. 

The maximum likelihood estimate of 0 is e^ = 166/435 = 0.38. The standard 

error of ê  is obtained by substituting ê  for 0 in (21.6) and then taking square 

roots, (e^( 1 - e^)/m)'l2 = (0.38(0.62)/435)'/2 = 0.02. 
As long as 0 is not too close to 0 or 1, the normal distribution can be used 

as a basis for tests and confidence statements concerning 0. In large samples 

ê  N(B, 1 - 0)/m) (2 1.7) 

The large sample variance is estimated by substituting 0 for 0. For example, 
an approximate 95% confidence interval for 0 is the set of all points 
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Suppose that the probability of survival depends on whether or not the 
cow has myopathy, and let Pr(y = 1 I Myopathy = j )  = B j ,  for j = 0 , l .  We can 
use large-sample normality to test the hypothesis that 19, = 0, , assuming that 
cows within a myopathy group have the same probability of survival and are 
independent of each other. The relevant data are given in Table 2 1.2, where the 

MLE for B0 is 0.39 based on mo = 127 trials, and the MLE for 8, is 0.06, based on 
m, = 95 trials. Each of these estimates is approximately normally distributed 
and they are independent, and so their difference is also approximately normal. 
The statistic 

0.38 - 0.06 
= 6.47 - - 

J0.38(0.62)/127 + 0.06(0.94)/95 

can be compared to the standard normal distribution to get a p-value. Whether 
the alternative hypothesis is two-sided, 8, # 8,, or one sided, 8, > 8 , ,  the re- 
sulting p-value is very small, suggesting that the rate of survival is not the 

same for the two levels of myopathy and that cows with myopathy absent 
have a higher rate of survival. 

21.3 BINOMIAL REGRESSION 

The binomial distribution for a fixed number of trials is determined by the 
probability 0 of success. Both the mean and the variance depend only on 8 
and the known number m of trials. 

Suppose that we have n binomial random variables y,, = 1 , .  . . ,n. For each 
y, we know the number of trials m,, and in addition there is an associated 
vector of p predictors x,. We suppose further that the probability of success 
8(x,) depends on x,. We can write this compactly as y, I x, - Bin(m,,O(x,)), 
= 1 , .  . . , n. It is convenient to study the random variable y,/m,, which is the 

observed fraction of successes at each because the range of yI/m, is always 
between 0 and 1, whereas the range of y, is between 0 and m, and can be 
different for each i .  Using (21.2) and (21.3), the mean and variance functions 
are 

The value of 8(xj) determines both the mean function and the variance func- 
tion, so we need to estimate 8 ( x i ) .  If the mi are all large, we could simply 
estimate B(xi) by yi/mi, the observed proportion of successes at xi. In many 
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applications the are small-often = 1 for all this method won’t 
always work. 

21.3.1 

As with the linear regression models in Section 7.2, we assume that we can find 
a set of k u-terms such that yi depends on xi  only through a linear combination 
of the u-terms. Since the u-terms may be any functions of the elements of 
we are allowing for regressions of dimension one or higher. Given the u-terms 

u;, we can write the mean function as 

Mean Functions for Binomial Regression 

e ( X i )  = M(qTUi) 

O(x i )  depends on two quantities: (1) the vector of regression parameters that 
will be estimated from the data and (2) the kernel mean function M, which we 
will select according to the regression at hand. The kernel mean function for 
binomial regression must be bounded between 0 and 1, and for generality it 

should cover the whole range from 0 to 1. The most frequently used kernel 
mean function for binomial regression is the logistic The logistic 

regression model specifies that M(T~u ; )  is given by 

A graph of this equation is shown in Figure 21.2. The logistic mean function 
is always between 0 and 1, and has no additional parameters. For the data in 
Figure 2 1.1, we have added the logistic function in Figure 2 1.3. This is done 
by using the parametric slidebar’s pop-up menu, selecting “Logistic,” and then 
moving the slidebar to 1 .  Here, the number of trials, is equal to 1 for all 

if the number of trials is greater than 1, the logistic fit can be obtained by 
plotting the observed fraction of successes against a term and then specifying 

the number of trials as weights in the “Plot of’ dialog from the Graph&Fit 
menu. The logistic function shown in this figure is obtained from the one in 
Figure 21.2 by reflection, so the coefficient for log2(CK) must be negative. 
Also, the range of probabilities in the figure is smaller than the maximum 
range from zero to one, so only a portion of the logistic function is needed. 
The smooth and the logistic fit don’t seem to match very well for very large 
and small values of log,(CK), but over most of the range the two curves are 
similar. 

21.3.2 Summary 

The logistic regression model has three components, as follows: 

The Data. The data consist of n independent observations. The ith obser- 
vation is the number of successes observed in a known number of trials. 
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FIGURE 21.2 The logistic mean function. 
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FIGURE 21.3 Logistic fi t  added to the regression of Ourcome on log,(CK). 

In many regressions, = I for all i, but in general the can be any positive 
integers. Associated with the ith observation are the values of p predictors in 

and from these we compute k terms in ui. 

The Random Part. For observation i, we assume that the trials are inde- 
pendent, each with the same probability of success. Given these two assump- 
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tions, y j  has a binomial distribution. Consequently, both the mean and variance 
of y j  depend only on and the probability B ( x i )  that a trial is a success. 

The Fixed Purt. We need to specify B(xi>.  First, assume that = M(T~u; )  
for some vector of parameters r,~ and kernel mean function M. As with the 
multiple linear regression model, $ui may include functions of x i .  Next, we 

specify the kernel mean function, and for this we use the logistic function 
(2 1 . 1 O), 

In the multiple linear regression model, the kernel mean function used is the 
identity function, M(vTui> = ?fui. 

21.4 FITTING LOGISTIC REGRESSION 

The maximum likelihood estimates for Q in logistic regression can be com- 
puted using Arc. The computational method is outlined in Section 2 1.6.4; for 
now we go directly to estimates and their general properties. As we discuss 
the methodology, we will draw parallels with the multiple linear regression 
model. 

Consider first a single predictor x = and fit with two u-terms uo = 1 
for the intercept and u ,  = 10g2(CK). 

From the Graph&Fit menu, select the item “Fit binomial response.” This 
gives a dialog like the one shown in Figure 21.4. This dialog differs slightly 
from the dialog for the multiple linear regression model. First, the name of 
the model will start with the letter “B” for binomial rather than “L” for linear; 
of course you can choose any name you want. Second, the choice of kernel 
mean functions is different. The default is the logistic function discussed so 
far; the other two choices are discussed in the complements. For the example, 
the response variable is You must also specify an additional quantity 
called Triuls. For a Bernoulli response, the number of trials is always 1; and 
since this occurs so often, an additional variable called Ones is provided by 
the program. If the number of trials is not always 1, you will need to have a 
variable in the data set that gives the number of trials. The resulting output is 
shown in Table 21.4. 

The computational method maximizes the likelihood function iteratively, 
and a history of the iterations is displayed in Table 2 I .4. We are reminded of 
the name of the data set, the missing values, the response, and the terms. The 
kernel mean function is the logistic, and the variable specifies the number 
of trials. The coefficient estimates are c0 = 4.00065 and = -0.424022. The 
estimate of $u is approximately 



2 I .4 FITTING LOGISTIC REGRESSION 479 

FIGURE 21.4 The binomial regression dialog 

TABLE 21.4 Logistic Regression of Outcome on log,(CK) for the Recumbent 

Cows Data 

I t e r a t i o n  1: deviance = 

I t e r a t i o n  deviance = 

I t e r a t i o n  deviance = 

Data s e t  = Downer, Name of F i t  = 

cases a re  missing a t  l e a s t  one value.  

Binomial Regression 

Kernel mean function = Logis t ic  

Response = Outcome 

Terms = (log2[CK]) 

T r i a l s  = Ones 

Coefficient Estimates 

Label Estimate S t d .  Error E s t / S E  

Constant 

[ CK]  

Scale fac tor :  

Number of cases:  

Number of cases used: 

Degrees of freedom: 

Pearson 

Deviance : 

From this, we can compute both the fitted probabilities = M ( $ ~ U ~ ) ,  

which are called : in Arc, and the fitted values = mi6)(xj), called 
The logistic curve drawn on Figure 21.3 is of M($~u)  versus 

log,(CK), with the points joined to give the smooth curve. The standard er- 
rors of the coefficient estimates are given in the column marked 
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and the column marked E s t  / SE gives the ratios of the estimates to their stan- 
dard errors. 

Since the variance of a binomial is determined by the mean, there is not 
a variance parameter that can be estimated separately. The output reports a 
Scale factor  that is of use in more complicated settings. but is not relevant 
here. The number of cases is the number of rows in the data set. The number of 
cases used is computed by taking the number of cases and subtracting (a) the 
number of cases missing at least one value on the response or predictors in 
the model and (b) the number of cases deleted using plot controls. This is 
followed by the degrees of freedom, which is the number of cases used minus 
the number of q-coefficients estimated. 

The remaining two values are goodness-of-fit statistics called Pearson X 2  

and Deviance. These are discussed in Section 2 1.4.3. 

21.4.1 Understanding Coefficients 

As with multiple linear regression, the estimated covariance matrix of the 
coefficient estimates can be obtained using the “Display variances” item in the 
model’s menu. In multiple linear regression with normal errors the estimates 
are exactly normally distributed, but for logistic regression the estimates are 
only approximately normal, with the approximation improving as the sample 
size increases. The ratio of estimates to standard errors in Table 2 1.4 can be 
used to provide tests of the hypothesis that the corresponding coefficients are 

equal to zero, and the normal distribution can be used to get approximate 
p-values. As usual, a test based on an estimate divided by its standard error 

is called a Wald test. 
Coefficients have a useful interpretation in logistic regression. We start with 

equation (2 1.10) for the logistic function, 

and solve this equation for qTu. We find 

(21.1 1 )  

The left side of (2 1.1 I )  is a function of H(x) and the right side is qTu. For every 

kernel mean function used in practice, we can always obtain a function of 0 
that is equal to qTu and is called a The link function log(O(x)/ 
(1 - O(x))) for logistic regression is called a 

The ratio $(x)/( 1 - O(x)) is the odds For example, if the proba- 
bility of success is 0.25, the odds of success are 1 - = 1 /3, one 
success to each three failures. If the probability of success is 0.8, then the odds 
of success are 0.8/0.2 = 4, or four successes to one failure. Whereas probabil- 
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TABLE 21.5 Logistic Regression Summary with Response and the 
Single Binary Predictor 

= 

= 

= 

-0.464889 0 .182287 -2.550 

My -2 .23199 0 .459425 -4 .858 

1 .  

435 

222 

220 

X 2 :  221.968 

: 214.137 

ities are bounded between 0 and 1 ,  odds can be any nonnegative number. The 
logit is the logarithm of the odds; natural logs are generally used in defining the 
logit. According to equation (21.1 l) ,  the logit is equal to a linear combination 
of the terms. 

I t  is (2 1.1 1 ) that provides the basis for understanding coefficients in logistic 

regression. For example, the estimate of the coefficient for log2(CK) in Ta- 
ble 21.4 is -0.424022. This means that if log,(CK) were increased by one unit 
(since this is a base-two logarithm, increasing log,(CK) by one unit means that 
the value of then the (natural) logarithm of the odds will decrease 

by 0.424022 and the odds will be by exp(-0.424022) = 0.65. For 
example, a cow with = 1000 has odds of survival that are 0.65 times the 
odds of survival of a cow with = 500. In any logistic regression, if is an 
estimated regression coefficient, and assuming that the corresponding term u, 

can be changed without affecting the other terms, then increasing u, by one 

unit will multiply the estimated odds of success by exp(Gj). 
As a second example, suppose we fit a logistic regression model with re- 

sponse and the single term The fit is shown in Table 21.5. 
The effect of observing = 1 is to multiply the odds of survival by 
exp(-2.23 199) = 0.107. The odds of survival when = 0 is estimated 
to be exp( -0.464889) = 0.628, while the odds of survival when = 1 
is 0.628(0.107) = 0.067. When the predictor is an indicator variable, it is com- 
mon to summarize the result by looking at the 0.628/0.067 = 9.32: 
The odds of survival are estimated to be over nine times higher when 
is not present. 

There is a close connection between (a) the logistic regression model with 
as the single predictor and (b) the analysis of the conditional distri- 

bution of given presented in Table 21.2 and Section 21.2.3. 
We have previously seen that the fractions surviving with = 0 and 
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TABLE 21.6 Logistic Regression with Six Terms 

= = 

one 

= 

= 

= 

= 

- 

: 

Myopathy = 1 were, respectively, 0.386 and 0.0631. If we convert these to 
odds, we get 0.386/( 1 - 0.386) = 0.628 and 0.063 1 /( 1 - 0.063 1) = 0.067, 
which are the same as the odds estimated by logistic regression. The logistic 
regression is formally identical to the earlier analysis, as it produces the same 
estimates and inferences. In Section 21.2.3 we derived a test based on the large- 
sample normality of sample proportions of the hypothesis that the probability 
of surviving is the same for both levels of From Table 2 1.5 we have 
another test, given by the ratio of the estimate for Myopathy to its standard 
error; the test statistic is equal to -4.858, and it also can be compared to the 
normal distribution to get p-values. 

21.4.2 Many Terms 

Table 21.6 summarizes the fit of a logistic regression with six terms, an inter- 
cept, indicator variables for Calving and the variable Daysrec, and 
base-two logarithms of AST and CK. Choosing terms is a topic in the next 
chapter, and for now we will simply assume that this is a reasonable model 
for the conditional distribution of survival given the predictors. 
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From Table 2 I .6, the number of cases is now only 2 16; this is the number 
of cows for which all the terms and the response were observed. Interpretation 
of point estimates is the same as in logistic regression with one predictor: The 
effect of observing = 1 while holding the others terms fixed is to 
multiply the estimated odds of survival by exp( - 1.84) = 0.16, and the effect 
of doubling equivalent to adding one to log,(CK), is to multiply the odds 
by exp(-0.15) = 0.86. 

As with logistic regression with a single term, the estimates are approxi- 

mately normally distributed, with estimated covariance matrix that can be dis- 
played using the “Display variances” item in the model’s menu. Apart from 

the ratios of the estimates to their standard errors are all less than 
2.0 in absolute value; upon comparing them to a standard normal distribution, 
only the coefficient for appears to be nonzero. We have found that 
log,(CK) is an important predictor of ignoring the other predictors, 
but that it is probably not very important after adjusting for the other predic- 
tors. The cause of this parallels the multiple linear regression case, as discussed 
in Chapter 11: The predictors are probably collinear. We will examine this 
graphically in the next chapter. For now, we turn to the testing of submodels 
obtained by deleting terms, getting results that parallel Section 1 1.2. 

21.4.3 Deviance 

In multiple linear regression, the residual sum of squares provides the ba- 
sis for tests for comparing mean functions. In logistic regression the residual 
sum of squares is replaced by the which is often called G2. The 
deviance is defined to be twice the difference between (a) the log-likelihood 

evaluated at the MLE &x,) = GTu, and (b) the log-likelihood evaluated by set- 
ting &xi) = effectively fitting one parameter for every observation. For 

logistic regression, recalling that the fitted values are $, = m,O(x,), the formula 
for the deviance is 

i=  1 

The degrees of freedom associated with the deviance is equal to the number 
of cases used in the calculation minus the number of elements of Q that were 
estimated; in the example, 216 - 6 = 210. 

Pearson’s is an approximation to the deviance defined for logistic re- 
gression by 

I 

(21.13) 
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and G2 have the same large sample distribution, and for large samples they 
will give the same inferences. In small samples there may be differences, and 
sometimes may be preferred to G2. In this book we will use G2 exclusively 

because it is more appropriate for comparing models. 
Methodology for comparing models parallels the results in Section 1 1.2. 

Write rfu = ~ T u ,  + and consider testing 

to see if the terms in u2 have zero coefficients. Obtain the deviance GiH 

and degrees of freedom dfNH under the null hypothesis, and then obtain GzH 

and dfAH under the alternative hypothesis. As with linear models, we will have 
evidence against the null hypothesis if G i H  - GiH is too large. To get p-values, 
we compare the difference ciH - ciH to the x 2  distribution with dfNH - dfAH 
df, not to an F-distribution as was done for linear models. 

Suppose we set uI = (Ones,Myopathy)T, where Ones is the vector of ones 
to fit the intercept, and u2 = (Calving, Day,srec,log,(AST), 1 0 g ~ ( C a ) ~  to test 
the hypothesis that all the coefficients except those for the constant term and 
Myopathy are zero against the alternative that they are not all zero. Fitting under 
the alternative hypothesis is summarized in Table 21.6, where we see that 

G,iH = 21 1.27 with dfAH = 210. We now need to fit under the null hypothesis. 
While we would normally do this by fitting from the Graph&Fit menu, missing 
data make the computation a bit more complicated because fewer observations 
may have missing data under the null hypothesis, and so more cases may be 
used in the fitting. For the test, the same cases must be used to fit both the 
null and alternative models. This can be guaranteed by using the “Examine 

submodels” item from the alternative hypothesis model’s menu. After selecting 
this item, double-click on the name for Myopathy to make this part of the base 
model. The constant term is always part of the base model if an intercept has 
been fit for the alternative hypothesis model. The remaining predictors are 

those in u2. Select “Fit in specified order” in the dialog; the resulting output 
is shown in Table 21.7. 

The interpretation of this table parallels closely the results for multiple 
linear regression models in Section 11.4. The first line of the table, with the 
label “Base Model,” gives the deviance when a model is fitted that includes the 
constant term and so i t  is the fit of the mean function specified by 
the null hypothesis. The deviance is 213.33, with 214 df. We can now perform 
the test of the hypothesis of interest: The change in deviance is 213.33 - 
21 1.27 = 2.06 with 214 - 210 = df. The p-value from the distribution is 

larger than 0.7, giving no evidence that any of the variables in u2 are needed 
after u , = (Ones, Myopathy) . 

As with the Sequential Analysis of Variance table discussed in Section 1 1.4, 
the Sequential Analysis Deviance cable in Table 2 1.7 provides all the in- 
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TABLE 21.7 Analysis of Deviance for Recumbent Cow Data 

= 

I 

1 
1 
1 
1 

[ 1 

formation that is needed to examine a sequence of hypothesis tests. For ex- 
ample, the line in Table 2 1.7 marked gives the deviance for fitting the 
base model plus along with its degrees of freedom. In the columns 
marked “Change”, the difference in deviance and df between this mean func- 
tion and the one excluding are given, and so the “Change” columns 

provide the information needed to test the null hypothesis that only the terms 
in u,  are needed against the alternative that both u, and are needed. 
Upon comparing the change in deviance 0.366 to the x: distribution, we get 

a p-value larger than 0.5, providing no evidence that we need to adjust for 
whether the cow becomes recumbent before or after calving in modeling sur- 
vival. 

There are three remaining items in the “Examine submodels” dialog that 
allow using stepwise methods to examine subsets further. The use of these 
items is similar to their use in the multiple linear regression model in Sec- 
tion 1 1 S . 2 ,  except that the criterion ordering mean functions is different. An 
example with Poisson regression is given in Section 23.3. 

21.4.4 Goodness-of-Fit Tests 

When the number of trials is greater than 1, the deviance G2 and Pearson’s 
statistic can be used to provide a goodness-of-fit test for a logistic regres- 
sion model, essentially comparing the null hypothesis that the mean function 
used is adequate versus the alternative that a separate parameter needs to be fit 
for each value of (this latter case is called the When all the 

are large enough, either G2 or can be compared to the x i _ k  distribution 

to get an approximate p-value. 
If the are small, then the jy2 approximation to the distribution of or 

X 2  is likely to be quite poor (the x 2  approximation when comparing two non- 
saturated models as in the last section is generally better than for comparing a 
model to the saturated model). If all the equal 1, then the value of G2 de- 
pends on the fitted values but not on the particular observed (Problem 2 1.4), 
and so G’ cannot be used for a goodness-of-fit test. 
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21.5 WEEVIL PREFERENCES 

Many regressions with a categorical response will have only categorical pre- 
dictors, and we now consider an example of this type. 

Insect herbivores often specialize to prefer just a few host plant species. The 
mechanism that determines specialization is not completely understood, with 
theories suggesting both genetic and environmental determinants. We discuss 
part of experiment using the milfoil weevil, Euhrychiopsis lecontei, that is 
designed to explore these theories (the full experiment is discussed in Prob- 
lem 21.9). Eight male weevils, called sires, were obtained from a lake where 
an exotic host plant has been present for at least 90 generations of weevils 
(about 30 years). Progeny of each sire were assigned to each of four rearing 
environments or treatments: ( 1 )  complete development on an exotic host plant; 
(2) complete development on a native host plant; ( 3 )  early development on the 
exotic and later development on the native host plant; or early development 
on the native and later development on the exotic host plant. 

After the progeny matured to adults, each was moved to a new environment 
that included both the exotic and native plant species. The observed response 
was the type of host selected by the progeny, either the exotic or native. The 
data consist of the number of adult insects in  each sirekreatment combination 

that preferred the exotic; the number of trials is the number of adults tested 
in each sirehreatment combination. The data are in the file 

The experiment included eight sires to represent the genetic variability in 
the population of weevils. If the progeny of some sires preferred the exotic 
species more than others, then we will have evidence of a genetic component 
to host plant preference. The four treatments explore the environmental effects 
on host plant preference. If progeny with treatments one and two differ with 
respect to host plant preference, then an environmental component will be 
apparent. Treatments three and four explore the environmental effects further: 
By comparing the results of these treatments to the results for treatments one 

and two, we can see if any environmental effects happen earlier or later in 
the development of the weevil. Finally, a sire by treatment interaction would 
mean that the environmental effect is potentially different for each sire, a 
very complicated outcome. However, a mean function including factors for 
sire, for treatment, and for treatment by sire interaction will have as many 
parameters as observations; seven for sire, three for treatment, 7 x 3 = 21 for 
the interaction, and one for the overall mean, giving 32 in total. As a result, 
this mean function will estimate one parameter for each observation and will 

therefore fit the data exactly. Without some simplification, we cannot assess 
this interaction. 

Table 2 1.8 shows the observed proportion of adults preferring the exotic 
plant for each combination of Trt and Sire. Examining this table without further 
summaries is not easy, as there are no clear trends. A reasonable step is to 
look at logistic regression models. Define factors corresponding to and 
Sire, and fit logistic regression with response Exotic, trials Total, and terms 
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TABLE 21.8 Table of Observed Fraction of Weevils Preferring the Exotic Host 

Plant, by Sire and Treatment” 

T r t  : 

1 2 3 4 

Sire: 

11 1.0 

21 .33333333 

41 1.0  

31 0.625 

51 .88888889 

61 .55555556 

71 .88888889 

81 .77777778 

0.625 

0 .0  

0.625 

0.875 

0 .5  

.55555556 

.57 142857 

.44444444 

0.625 

.55555556 

.66666667 

0 .5  

.57 14285 7 

.44444444 

1428571 

.55555556 

0.75 

0 .625 

.83333333 

0.5  

.66666667 

.28571429 

.88888889 

.88888889 

“This table was created by computing a new variable given by fruc = Exoric/Totul and then getting 
a table of the mean of,fruc. 

and {F}Sire, as summarized in Table 21.9. The coefficient estimates 
in Table 2 1.9 are not of immediate interest, since our first goal might be to 
test the overall hypothesis of genetic effects (coefficients for {F}Sire are not 
all zero) and environmental effects (coefficients for are not all zero) 
using differences in deviance as in Section 21.4.3. Arc includes a shortcut for 
computing these tests by selecting the item “Examine submodels” from the 
model’s menu and then pushing the button for “Change in deviance for fitting 
each term last.” The results are shown in Table 21.10. For both factors, the 
change in deviance is large, and the corresponding p-values are small, so the 
probability of selecting the exotic appears to depend on both factors. Prefer- 
ence for the exotic host has both a genetic and an environmental component. 

Next, examine the coefficient estimates for in Table 21.9. The esti- 
mate for treatment one is 0 by the parameterization, and the estimate for treat- 
ment four, which is really the difference between treatment four and treatment 

one, is not too far from zero: The ratio of the estimate to its standard error is 
-0.97. Similarly, the estimates for treatments two and three, which again are 
really the differences between these treatments and treatment one, are each 
nearly equal to about - 1. We might be able to get some model simplification 
by dividing the treatment effect into two parts. The first part compares the 
average of treatment one and four to the average of treatments two and three, 
while the second part summarizes all other comparisons of the four treatments. 

This can be accomplished by defining a new variable that has the value 0 
for treatments one and four and has the value 1 for treatments two and three. 

Select the item “Add a variate” from the data set menu, and then in  the text 
area, type 

= 2 4 )  ‘ ( 0  0 ) )  
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TABLE 21.9 Logistic Regression Fit to the Weevil Data, with Main Effects 

= = 

= 

= 

= 

= 

: 

TABLE 21.10 Likelihood Ratio Tests for the Weevil Data 

= = 

= 

= 

= 

= 

This variate will be used for the first part of the treatment effect, comparing 
treatments one and four to treatments two and three. Fitting {F}Trt after Trtl 

will take care of the second part of the treatment effect. Next, fit the logistic 
regression model with the same response and trials as before, but with terms 
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TABLE 21.11 

the First Part Comparing Treatments One and Four to Two and Three 
Sequential Deviance with Treatments Divided into Two Parts, with 

Binomial Regression 

Kernel mean function = Logis t ic  

Response = Exotic 

Terms = ({F}Sire T r t l  {F}Trt) 

T r i a l s  = Tota l  

Sequential  Analysis of Deviance 

f i t s  include an in t e rcep t .  

Predictor df Deviance 1 df Deviance 

Ones 31 62 .2451 1 
{ F } S i r e  24 41.4148 1 7 20.8303 

T r t  1 23 32 .8972 1 1 8 . 5 1 7 6 1  

{ F } T r t  21 31.3327 I 2 1 .56452 

Total Change 

Trtl ,  and {F}Trr. From this model’s menu, select the item “Examine 
submodels,” and then get a sequential deviance table, in the order { 
{ The results are shown in Table 2 1.1 1 .  The change in deviance for 
is 8.52 with 1 df, with a corresponding p-value from the xf distribution of 
about 0.004, suggesting that treatments one and four differ from two and three. 
The change in deviance for adding after Trtl is only 1.56 with 2 df, 
with a p-value near 0.46. Combining these two results, progeny reared under 
treatments one and four showed the same preference for host plant. Treatment 
one progeny grew with the exotic host plant, while treatment four progeny 
grew at first with a native host plant but were later switched to the exotic. 
In treatment two, progeny grew on the native host plant; and in treatment 

three, progeny were switched to the native host plant after initial growth on 
the exotic. The conclusion is that the host plant during growth does affect host 
plant preference, but preference is determined late in the development of the 
progeny, as the early host plant does not have an effect. The analysis of this 
experiment is continued in  Problem 2 1.8. 

21.6 COMPLEMENTS 

21.6.1 Normal Approximation to the Binomial 

If N Bin(m,H), then the fraction of successes H = will be approximately 
normally distributed as long as the true value of H is not too close to 0 or 1. 
Exactly how close is too close depends on the number of trials m. Here is 
an empirical rule that can be used in practice: The normal approximation is 
acceptable if m H (  1 - H )  2 (McCullagh and Nelder, 1989). For very small m, 

or for H near zero or one, other methods of inference are required; see Collett 
(1991, Chap. 2). 
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21.6.2 Smoothing a Binary Response 

The estimate of the mean function in Figure 2 1.1 would be negative 
for larger values of log,(CK), but of course the probability of survival must 
be in the interval [0,1]. The smoother does not use this information about the 

survival probability, so it could give results outside the permissible range. For 
our purpose of providing a general description of the dependence of the mean 
on the predictor, this smoother is adequate, and the smooth is truncated if it 

goes outside the interval between zero and one. When fitting models, we will 
require that methods produce probabilities in the range of zero to one. 

21.6.3 Probit and Clog-Log Kernel Mean Functions 

Arc includes two other kernel mean functions that can be used in place of the 
logistic mean function for binomial regression. 

The first of these is called the inverse probit mean function. It was suggested 
by Finney (1947, 1971), who derived it as follows. Suppose we administer 
a stimulus, such as the dose or log-dose of a toxic chemical to a sample of 
subjects, perhaps insects. At dosage x ,  some subjects die and some survive. 
We assume that each subject has a tolerance 11 for the stimulus. If for that 
subject 5 x the subject dies, but if > x the subject survives. Each subject 
has a different value of 1) drawn from a tolerance distribution which gives 
the probability that a randomly chosen subject has tolerance less than or equal 
to v. We can then write 

Pr(surviva1 I x) = O(x) 

= Pr(Random subject has tolerance > x) 

= 1 - H ( x )  

Under the tolerance approach, the mean function O(x) is equivalent to 1 - H ( x ) .  

For example, if the tolerances are assumed to be normally distributed N(0, l),  
then the kernel mean function is O(x) = 1 - @(x), where @ is the cumulative 
distribution function of the standard normal distribution. In general, with a 
linear predictor $u, the kernel mean function for probit regression is 

= 1 - @(Tfu) 

which uses the cumulative distribution function for the standard normal dis- 
tribution as a kernel mean function. If we invert this function to get the link 
function, we have 

@ - I (  1 - = Tfu 

The quantity @-'  (1 - O(x)) is called a probit, hence the name inverse probit 
for this kernel mean function. 
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Whether this tolerance approach makes sense in any specific binomial re- 
gression is open to debate. The stochastic element is in the subject, not in the 

observation: Given the subject, the subject’s tolerance, and the stimulus, the 
outcome can be known perfectly. In any case, there is little practical difference 
between probit and logistic regression because the shape of the inverse probit 
and the logistic kernel mean functions are very similar. 

The remaining kernel mean function that is occasionally used in practice is 

most easily defined in terms of the link function, defined by 

log(- log( I - O(x))) = Tfu 

This is called the log-log link. The corresponding kernel mean 
function, found by inverting this equation, is called the inverse complementary 

log-log kernel mean function. 

21.6.4 The Log-Likelihood for Logistic Regression 

Suppose that we have the structure laid out in Section 21.3.2. We proceed to 
obtain the MLE for We will then get the MLE for O(xj) through the equation 

= M ( ~ ~ u , ) .  Equation (21.4) gives the likelihood function for a single ob- 
servation y ,  based on m, trials. The likelihood for the complete data is obtained 

by multiplying the likelihood for each observation, 

In the last expression we have dropped the binomial coefficients because 
they do not depend on parameters. After minor rearranging, the log-likelihood 
is 

1 log(L) log ( + log( 1 - O(x;)) 
1 - 

i= I 

Next, we substitute for O(x,) using equation (21.1 1) to get 

The log-likelihood is now explicitly a function of 77 that we can maximize. 
Unlike the multiple linear regression model, there is no formula that will give 
the value of that maximizes (21.14), but rather an iterative procedure is 
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needed. Most software for logistic regression including Arc uses a simple but 
effective algorithm for this computation that has the following steps: 

1. Obtain an initial guess for 6,  say h,. The choice h, = 0 is often used in 

2. Set the iteration counter j = 1. 

3. Approximate the log-likelihood close to hjPl  by a quadratic curve. 

4. Use the known formula for maximizing the quadratic curve to produce 
a new guess h,i. 

5. Check a stopping criterion. A common criterion is to stop iteration if 
log(l(hj)) - log(l(hj-!)) is smaller than a preselected tolerance value. 
If the criterion is satisfied, report hj  as the estimator, otherwise increment 
j by one and go to step 3. 

practice. 

In logistic regression this algorithm usually attains convergence in just a few 
iterations, although problems can arise with unusual data sets (for example, if 
one or more of the predictors can determine the value of the response exactly); 
see Collett (1991), Sec. 3.12. 

Readers familiar with numerical methods for maximizing a function will 

recognize that this algorithm is related to the Newton-Raphson method. If the 
approximation used at step 3 is based on a Taylor series expansion, then the 
algorithm is exactly Newton-Raphson. Most software for logistic regression 
including Arc uses a slightly modified method called Fisher scoring that esti- 

mates the quadratic equation in a slightly different way; details are provided 
by McCullagh and Nelder (1989, Sec. 2.5), Collett (1991), and Agresti (1990, 
1996), among others. 

Using the Fisher scoring method, the update in Step of the algorithm has 
the form 

(21.15) h, = (UTW,- U)-’UTW,- I 2,- 

where both the diagonal matrix Wj-l of estimated weights and the “working 
response” z ip ,  depend on hjPl  and the kernel mean function. For logistic 
regression, if Bj-,(xi) is the estimated probability of success assuming that 

= hjPl ,  then the ith diagonal element of Wj- I is 

and the ith element of z j P l  is 

We can recognize (21.15) as a weighted least squares estimate, with weights 
and working response that change from iteration to iteration. The algorithm 
is therefore sometimes called iteratively reweighted least 
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At convergence, the estimated covariance matrix of the estimates is given 
by the usual weighted least squares formula, 

Var(ij) = (u5?u)-' 
A 

where W is a diagonal matrix with entries rni8(xi)(  1 - 8(xi)). 

21.6.5 References 

Book-length treatments of binomial regression are given by Collett (1991) and 

by Hosmer and Lemeshow (1989). McCullagh and Nelder (1989) study these 
models at a higher mathematical level. The Bernoulli distribution was named 
for James Bernoulli who first described it in 1713. 

The recumbent cow data were provided by Harold Henderson and are dis- 
cussed in Clark, Henderson, Hoggard, Ellison, and Young (1987). Data for 
the weevil experiment in Section 21.5 were provided by Susan L. Solarz, Ray 
Newman, Diane L. Byers, and Ruth G .  Shaw. The Challenger data in Prob- 
lem 2 1.6 are given by Dalal, Fowlkes, and Hoadley (1 989). The Donner party 
data were collected by Johnson ( 1  996). The Titanic data in Problem 2 1.7 were 
discussed by Dawson (1995). 

PROBLEMS 

21.1 In the recumbent cow data, why might the variable Duysrec be included 
among the predictors? After all, it is a characteristic of the study, not 
of the cows. 

21.2 Starting with (21.10), prove (21.1 1 )  

21.3 The usual formula for the sample variance of a sample y l ,  . . . , y n  is 

sd: = C(yj - - 1). Show that if the can only have values zero 

and one, then 

sd, 2 n  = - ;(I - i )  
n - 1  

where 8 is the fraction of ones in the data. Hence, apart from the 
multiplier n / ( n  - I )  that is nearly equal to one in large samples, the 
usual formula for the sample variance gives the same answer as the 

formula for a Bernoulli variance evaluated at 8 = 8. 

21.4 For the special case of binary regression where = 1 for all i ,  show 
that the formula for the deviance (2 1.12) reduces to 

i=  I 
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The curious feature of this deviance is that it depends only on the fitted 
probabilities but not on the observed patterns of zeroes and ones. Any 
two data sets that give the same values of the estimates will therefore 
have the same deviance, regardless of how well they fit. Consequently, 
in binary regression the deviance cannot be used as a summary mea- 
sure of the overall fit of a model. (Hint: First, since yj can only equal 
zero or one, we must have that ylog(y) = (1 - y)log(l - y )  = 0. To 

complete the proof, you must show that yi log{e(x,)/[ 1 - 6(xj)]} = 

~ ~ ( x j ) l o g { t ) ( x i ) / l l  - e(xj)]}. This latter result is proved by examining 
the likelihood function in Section 21.6.4 evaluated at the maximum.) 

21.5 In the winter of 1846-1847, about ninety wagon train emigrants in 
the Donner party were unable to cross the Sierra Nevada Mountains of 
California before winter, and almost one-half of them starved to death. 
Perhaps because they were ordinary people-farmers, merchants, par- 
ents, children-their story captures the imagination. The data in file 
donner . include some information about each of the members of 

the party. The variables include Age, the age of the person; Sex, whether 
male or female; Starus, whether the person was a member of a family 
group, a hired worker for one of the family groups, or a single individ- 
ual who did not appear to be a hired worker or a member of any of the 
larger family groups, and Outcome, coded one if the person survived 
and zero if the person died. 

21.5.1 How many men and women were in the Donner Party? What 
was the survival rate for each sex? Obtain a test that the sur- 
vival rates were the same against the alternative that they were 
different. What do you conclude? 

21.5.2 Fit the logistic regression model with response Outcome and 
predictor Age, and provide an interpretation for the fitted co- 
efficient for Age. 

21.5.3 Draw the graph of Outcome versus Age, and add both a lowess 

smooth and a fitted logistic curve to the graph. The logistic 
regression curve apparently does not match the data; explain 
what the differences are, and how this failure might be relevant 
to understanding who survived this tragedy. On your graph 
click on the slidebar for the logistic curve to fit a quadratic 
(so the terms in the mean function are then a constant, Age, 

and Age2). Does this mean function match the Zowess curve 
more accurately? You can get an even better match if you 
draw a graph of Outcome versus Age.’ and then fit the logistic 
with terms (l ,Age.’ ,Age).  

21.5.4 Fit the logistic regression model with terms for an intercept, 
Age5 ,  Age, Sex, and {F}Sratus. Provide an interpretation for 
the parameter estimates for Sex and for each of the parameter 
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estimates for Use the “Examine submodels” item 
on the model’s menu to obtain tests based on the deviance 
for adding each of the terms to a mean function that already 
includes the other terms, and summarize the results of each 
of the tests via a p-value and a one-sentence summary of the 
results. 

21.5.5 The standard error of the coefficient for {FjStatus[Single]  ap- 

pears to be very large. Why do you think this happened? 
Examine the number of people in each of the Status groups 
and examine the proportion surviving in each group.) 

21.5.6 Assuming that the logistic regression model provides an ade- 
quate summary of the data, give a one-paragraph written sum- 
mary on the survival of members of the Donner Party. 

21.6 The file contains data on O-rings on 23 U.S. space 
shuttle missions prior to the Challenger disaster of January 20, 1986. 
For each of the previous missions, the temperature at take-off and the 
pressure of a pre-launch test were recorded, along with the number of 
O-rings that failed (out of six). 

Use these data to try to understand the probability of failure as 
a function of temperature and also as a function of temperature and 
pressure. Use your fitted model to estimate the odds of failure of an 0- 
ring when the expected temperature was 3 1 O F ,  the launch temperature 
on January 20, 1986. 

21.7 The Titanic was a British luxury passenger liner that sank when it 
struck an iceberg about 640 km south of Newfoundland on April 14- 
15, 1912, on its maiden voyage to New York City from Southampton, 
England. Of 220 1 known passengers and crew, only 7 1 1 are reported to 
have survived. The data in the file classifies the people 
on board the ship according to their Sex, Age,  either child or adult, 
and either first, second, third, or crew. For each age/sex/class 
combination, the number of people N and the number surviving 
is also reported. 

21.7.1 Obtain a table that gives the fraction surviving for each of 
the combinations of the conditioning variables, and give a de- 
scriptive summary of the results. 

Fit a logistic regression model with predictors { F j S e x ,  { F j A g e ,  

and Based on the tables you reviewed in the first 
part of this problem, explain why you expect that this mean 
function will be adequate to explain these data. 

21.7.3 Fit a logistic regression model that includes all the terms of the 
last part, plus all the two-factor interactions. Use appropriate 
testing procedures to decide if any of the two-factor interac- 
tions can be eliminated. Assuming that the mean function you 

21.7.2 
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have obtained matches the data well, summarize the results 
you have obtained by interpreting the parameters to describe 
different survival rates for various factor combinations. (Hint: 

How does the survival of the crew differ from the passengers? 
First class from third class? Males from females? Children 

versus adults? Did children in first class survive more often 
than children in third class?) 

21.8 This problem continues the analysis of the weevil data in file 
in Section 21.5. 

21.8.1 Obtain a quantitative estimate and standard error for the dif- 
ference in exotic host plant preference between the average 
of treatments one and four and the average of treatments two 
and three (this will require fitting the logistic regression model 
with terms TrtZ and {F}Sire  and examining the coefficient es- 

timates). 

21.8.2 Given that treatment differences can be summarized by only 
one degree of freedom, the difference between the average of 
treatments one and four, and the average of treatments two 
and three, we can examine the possibility of an environmental 
by treatment interaction by fitting a mean function with terms 
Trtl ,  {F}Sire and a interaction. Fit the model, 

perform the relevant test, and summarize your results. 

21.9 The data in the file l s p  gives the full experiment on which 
the results in Section 21.5 are based. In the full experiment, eight sires 
were taken from each of two lakes. The first lake, used in Section 21.5, 

has had the exotic host plant species present for at least 90 generations 
of weevils, about 30 years. In the second lake, the exotic host plant 
has never been present. The full experiment therefore has an additional 
factor, the source of the sires. Examine these data for genetic and 
environmental effects, and summarize your results. (Hint: In fitting 
logistic regression models that include Sire effects, you must include 
a {F}Sire  x Source interaction to account for the arbitrary numbering 
of the sires: Since sire one at lake one has nothing in common with 
sire one at lake two, we need to fit a separate parameter for each of 
these, and this is done by fitting this interaction.) 

21.10 Suppose y is binary, and let = 1 - y and consider two logistic regres- 
sion models. (a) The regression of y on terms u and (b) the regression 
of on terms u. How are the two sets of coefficient estimates related 
(see (21.1 l))? How are the two deviances and df related? 
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Graphical and Diagnostic Methods 
for Logistic Regression 

In this chapter we consider graphical and diagnostic methods for logistic re- 
gression, in which the response is the number of successes in a fixed number 
of trials. For most of the chapter, we discuss the case in which the number of 
trials = I for all cases, so the response variable can only have values 0 
or I .  

22.1 ONE-PREDICTOR METHODS 

With one continuous predictor x and a continuous response y ,  the 2D plot 
of y versus .x is a sufficient summary plot: All the sample information about 
the regression of y on x is available in this one plot. When the response 
is binary, with y = 0 or y = 1, a 2D plot of y versus x is still a sufficient 
summary plot, but it may not be very useful for visualizing changes in the 
conditional distribution of y 1 x. Consider again Figure 21.3, page 477, 
which is a plot of Outcome versus log,(CK) for the recumbent cow data in 
file downer. l s p .  Concentrating on the points and not the smoothers, all we 
learn visually from the plot is that y is either zero or one, and that the 
range of points with y = 1 differs somewhat from the range of points with 

Information about the dependence of y on x is conveyed through the frac- 
tion or cknsity of ones at each value of x. The mean function at a 

particular value of x can be estimated as the fraction of ones in a narrow 
vertical slice centered at that value. In Figure 21.3, visualizing how the mean 
changes with x is very difficult because of both (a) the discrete response and 
(b) overplotting of predictor values. We need plot enhancements to see the 
dependence. The lowess smoother, which estimates the relative density by lo- 
cal averaging, is one enhancement that can help. Point jittering can also be 
useful. 
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Scatterplot of Outcome versus log,(CK) using jittering and the slicing mouse 

22.1.1 Jittering to See Relative Density 

Jittering spreads out overplotted points to making seeing individual points 
easier. Click the mouse on the plot control “Options” on the plot, and then 
check the button “Jitter slidebar.” This will add a slidebar to the plot. From 
this slidebar’s pop-up menu, select “Jitter vertical only” and then move the 
slidebar to the right. This will add a random number, with standard deviation 
equal to the value above the slidebar times the range of the data on the vertical 
axis, to the y-coordinate of each of the plotted points, making the density of 
the points easier to see. This is illustrated in Figure 22.1 along with results 
from one slice. We see from the figure that there are 85 cases within the slice 
and that the fraction of ones is about 0.3. While we can’t tell visually that the 
fraction of ones in the slice is 0.3, we should be able to see that it is roughly 
of that magnitude. 

22.1.2 Using the Conditional Density of x I y 

We can get a more complete look at the relative density of ones by estimating 
the conditional density function f ( x  I y = j ) ,  j = 0, I ,  of the predictor given 
the value of the response. To construct estimates of the two conditional den- 
sities f(log,(CK) I Outcome = j ) ,  j = 0, I for the recumbent cow data, draw a 
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FIGURE 22.2 Histogram for log,(CK) using Outcome as a marking variable. 

histogram of log,(CK) using the response as a marking variable, as 
shown in Figure 22.2. Estimates of the two conditional densities can now be 
obtained by first selecting the item “Fit by marks” from the density estimate 
pop-up menu and then moving the density estimate slider to about 0.8. We 
see that the densities have the same roughly normal-looking shape for both 

= 0 and = 1. 

How do the conditional densities f ( x  I provide information about the 

regression of y on x? Using the notation of Chapter 21, the next equation 
provides a connection between the mean function E(y I = O(x)  and the con- 
ditional densities: 

(22.1) 

To emphasize that this equation holds for multiple predictors, we have written 
it in terms of the vector although in the present discussion we are still 
concerned with just a single predictor. The factor c = Pr(y = 1)/( 1 - Pr(y = 1)) 
is the marginal odds of success ignoring the predictors. 

Equation (22.1) tells us how to use information from the density estimates 
in Figure 22.2 to gain information on the odds ratio. First, in the previous 
chapter we estimated Pr(y = 1) to be about 0.382, so we can estimate to be 
0.382/( 1 - 0.382) M 0.62. Now from Figure 22.2 we see that the conditional 
density for surviving cows at log,(CK) = 9 is about twice that for the other 
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cows, f ( 9  I y = 1 ) M 2f(9 I y = Thus, 

-- e(9) - 0.62 x 2 = 1.24 
I -0(9) 

The odds of a randomly chosen cow with log,(CK) = 9 surviving are about 
1.24. Apart from the constant the ratios of the conditional densities at x in 
Figure 22.2 estimate the odds of survival given that value of the predictor. 

22.1.3 Logistic Regression from Conditional Densities 

Taking logarithms of both sides of (22.1), we have 

log = log(c) + log 1; i;) (22.2) 

and so the log-odds equals the sum of log(c), which does not depend on x ,  

and the log density ratio, which generally will depend on x .  This is just a 
function of x ,  and, as was shown in (21.1 l), page 480, (22.2) is the equation 
for the logit link function in binary regression. Inverting this equation will give 
the logistic kernel mean function (2 1.10). Thus, the logistic regression model 
for y on x is always appropriate, with u-terms that depend on the log density 
ratio. 

22.1.4 Specific Conditional Densities 

When the densities f ( x  I are from a known parametric family, the u-terms 
that are needed in the mean function can be determined. 

Normal Densities. Suppose that f ( x  1 y = j )  is a normal density, with mean 
p j  and variance j = 0 , l .  These normal densities can be written as 

Substitute this for f ( x  I y = j )  in (22.2) and simplify to get 

is a constant that does not depend on x. Let’s look first at the important 
special case of = = so the variance is the same in each of the two 
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TABLE 22.1 Appropriate Terms for Various Densities or Probability Mass 
Functions" 

Density or Probability Mass Function of x 1 y UT = 

Normal, common variance (13x1 
Normal, different variances ( 1 ,x,x2) 

Skew, (exact for gamma densities) (1 , x , l o g ( x ) )  

x w.11 (1 9 log(x), log( 1 - x)) 

Bernoulli (that is, an indicator variable) (1.X) 

Poisson count (1 ,x) 

"Logistic regression should be fi t  with linear predictor given by 

populations. Substituting into (22.3), the term multiplying x2 is zero and we 
are left with the result 

(22.4) 

with u-terms u = ( r),, = co. and q1 = (pl - So, for the case of 

normal densities with the same variance, the log-odds depend linearly on x, the 
intercept is a function of c and of the parameters of the normal distributions, 
and the slope parameter 7i1 depends on the difference of the means scaled by 
the common variance. 

If the two normal populations have different variances, then (22.3) can be 
used directly, and u has three terms, an intercept, x, and x2. The values of 
the corresponding r l ' s  as functions of the parameters of the normal distri- 
butions can be read off from (22.3). Of course, since the parameters of the 
normal distributions are unknown, we will need to estimate the regression 
coefficients. 

Let's summarize the results when the predictor x I y is normally distributed 

for y = 0,l .  We know that logistic regression is appropriate, and the only 
question is the terms needed in the mean function. If the variances of the 

two normal populations are equal, then only x itself is needed, but if they are 
unequal, then x2 is also required. If the conditional distributions are identical 
for y = 0 and y = I ,  then the log-odds are constant, and functions of x are not 
needed in the mean function. 

Other Densities. Table 22.1 summarizes similar results for non-normal con- 
ditional densities. If the densities f ( x  1 y = j )  are skewed, then the mean func- 
tion should include terms for the intercept and either x or possibly log@). Both 
x and log@) may be required. When conducting a binary regression with a 
skewed predictor, it is often easiest to assess the need for x and log(x) by 
including them both in the model so that their relative contributions can be 
assessed directly. 
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TABLE 22.2 Logistic Regression of Outcome on CK and log,(CK) for the 

Recumbent Cow Data 

= = 

= 

= 

= 

= 

: 

Discrete predictors llke indicator variables or Poisson counts don’t have 
density functions, but rather they have probability mass functions. Poisson 
counts, as used for events that occur randomly in time or space, are discussed 
in Section 23.3. The same results hold, however, when we substitute the proba- 
bility mass function for densities in (22.2). When the math is done, a predictor 
x that is an indicator variable or a Poisson count requires terms for an intercept 

and x itself. 

22.1.5 Implications for the Recumbent Cow Data 

We apply these single predictor results for the regression of on three 
of the predictors in the recumbent cow data. 

Outcome on CK. Returning to the regression on rather than on 
log,(CK), we see from histograms constructed in the manner of Figure 22.2 
that the conditional densities I = = 0, 1, are skewed to the 
right. According to Table 22.1, this means that and log,( are likely pre- 
dictors. Our previous use of log,(CK) is consistent with this result. It remains 
to determine if we need also. If the densities estimated in Figure 22.2 
are normal with the same variance then we don’t need But if they are 
sufficiently non-normal, then probably will be needed. The easiest way to 
decide the issue is to fit a logistic regression model including both and 
log,(CK), as shown in Table 22.2. Both predictors appear to be needed in the 
regression. 
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FIGURE 22.3 Histogram of AST in  the recumbent cow data. 
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mates for the two values of Outcome. 

Histogram of AST, transformed nearly to logarithms, with separate density esti- 

Outcome on AST. Figure 22.3 gives conditional density estimates for AST. 
These estimates are clearly not normal, but perhaps approximate normality can 
be obtained via transformation; the transformation plot controls can be used 
to explore this possibility. Select the item “Find normalizing transformation” 
from the transformation slidebar’s pop-up menu. You will then get a dialog 
that allows a choice between conditioning on the marking variable or ignoring 
the marking variable. By conditioning on the marking variable, we will select a 

transformation that will make f ( A S T c X ’  1 y )  as normal as possible for y = 0 and 
y = 1, which is our goal here. The result of this automatic procedure is shown 
in Figure 22.4, with AST raised to the power -0.02, essentially replacing AST 
by its logarithm. The densities in this scale appear to be reasonably symmetric, 
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FIGURE 22.5 Histogram of PCV with separate density estimates for the two values of Outcome. 

and the variances are approximately the same; this can be verified by selecting 
the item “Display summary statistics” from the density estimate slidebar’s pop- 
up menu. The within-group standard deviations are about 0.8 for = 0 
and 0.7 for = 1.  Logistic regression with terms for an intercept and 
log,(AST) is likely appropriate here. The results from including both AST and 
log,(AST) in a logistic model supports this possibility. 

Outcome on PCV. Finally, consider the regression of on 
Conditional density estimates for are shown in Figure 22.5. The densi- 
ties appear roughly symmetric with very similar means but noticeably different 

variances. Using the normal case in Table 22.1 for guidance, the logistic re- 
gression of on may require u-terms and 

On the other hand, recall from Table 2 1.1 that is a percentage and so 
must be between 0% and 100%. Equivalently 100 must be between 0 and 
I .  Again using Table 22.1 for guidance. we may require the terms 
and log,( 100 - These log transformations for a variable with a restricted 
range are most likely needed when there are many values near the limits of 
the range. The minimum and maximum values of are 13% and 6 1 % so it 

may be difficult to distinguish between a logistic regression model with terms 
and one with terms (log,(PCV),log2( 100 - A good way 

to tell if one set of terms is clearly better than the other is to try them both. 

22.2 VISUALIZING LOGISTIC REGRESSION WITH TWO OR 
MORE PREDICTORS 

In Section 22.1.5 we concluded using separate marginal regressions that Out- 

is dependent on AST and To introduce graphical methods for vi- 
sualizing binary response regressions with two predictors, we next investigate 

the regression of on AST and simultaneously. 
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FIGURE 22.6 

circles represent survivors. The vertical slices were added to facilitate discussion. 
Binary response plot of log,(AST) versus for the recumbent cow data. Filled 

22.2.1 Assessing the Predictors 

We begin by asking if there is graphical information to indicate that AST 
furnishes information about beyond that available from alone, 
without a specific model. Equivalently, we ask if there is information to con- 
tradict the possibility that is independent of AST given 

Figure 22.6 shows a of log,(AST) versus The 
figure was constructed by plotting log,(AST) versus and marking the 
points to reflect survival, with filled circles representing surviving cows and 

open circles representing nonsurvivors. Color is usually helpful in assessing 
plots of this type. The vertical slices in the plot were added to aid discus- 
sion; they represent subpopulations in which the value of relatively con- 
stant. 

We can use this plot to see if log,(AST) contains information about 
after adjusting for or, equivalently, if and log,(AST) are 

independent given If is independent of AST given then 
the relative density of survivors should be constant throughout any narrow 
vertical slice that approximately conditions on This means that the 
fraction of survivors should be constant as we move from the bottom of a 
slice to the top, recognizing that there will be random variation along the 
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way. The density of survivors will usually change from slice to slice, but must 
be constant throughout any slice. Viewing the three slices in Figure 22.6, the 
relative density of survivors is higher at the bottom of the slices than at the 
top. This indicates that is on given Thus, any 
logistic model that includes terms in should include terms in also. 

We can turn the question around and ask if there is visual information 
to contradict the possibility that is independent of given 

To answer this question, imagine a narrow slice that intersects the 
vertical axis of Figure 22.6 between 8 and 9. The relative density of survivors 
is higher in the middle of the slice than at either end, so is dependent 
on given Thus, any logistic model that includes terms in should 
include terms in also. Combining results, we conclude further that any 
logistic model should include terms in both and 

22.2.2 Assessing a Logistic Model with Two Predictors 

We know from our visual analysis of Figure 22.6 that both and 
will likely be needed in any logistic model for the regression of on 

We now consider a specific logistic model with 

$U = + + (22.5) 

If this is the correct model, then is independent of given 
rfu. If depends on given qTu, then the model does not 
provide a complete characterization of the regression and additional terms may 
be required. 

To assess model (22.5) graphically, begin by constructing a 3D plot with 
log,(AST) on the horizontal axis, on the vertical, and case numbers on the 
out-of-page axis. The variable on the out-of-page axis is only a place holder 
selected because it contains no missing values, and it plays no role in this 
discussion. Mark the points in the plot according to the value of to 

obtain a Finally, select the item “Recall logistic (H,V)” 
from the plot’s “RecalUExtract” menu. This causes to perform two op- 
erations. First, it fits the logistic model with the binary marking variable as 
the response and the horizontal and vertical axis variables as the predictors, 
and then it determines G’u. Next, the 3D plot is rotated about its out-of-page 
axis so that the horizontal screen axis corresponds to GTu. The results of this 
operation are shown in Figure 22.7 after extracting the 2D view to facilitate 
discussion. 

The process of interpreting Figure 22.7 is the same as we used for Fig- 
ure 22.6. If (22.5) is a good model, then the plot should appear as if 
is independent of the quantity on the vertical axis given GTu which is on the 
horizontal axis. Because the density of survivors seems higher in the mid- 
dle of the slice shown in Figure 22.7 than at the top or the bottom, we have 
visual evidence to indicate that the model can be improved. The mean function 
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FIGURE 22.7 

vivors. The vertical slice was added to facilitate discussion. 
Binary response plot from the fit of model (22.5). Filled circles represent sur- 

with u-terms 1, PCV, and log,(AST) is a ID model in the base predictors 
(PCV, log,(AST)). We therefore have evidence against 1D structure for this 
regression. 

The same process can be used to fit logistic models by eye. Start by con- 
structing a 3D binary response plot with the two predictors or terms on the 

and V axes. Next, rotate the plot about the out-of-page axis by hand until 
the relative density of successes seems constant in slices perpendicular to the 
horizontal screen axis. The linear combination of H and V on the horizontal 
screen axis is then the visual estimate of rfu. With a little practice, many 

people can become quite good at reproducing logistic fits in this way. 

22.2.3 Assessing a Logistic Model with Three Predictors 

We can visually assess the fit of a logistic model with three predictors or 
terms by using a process similar to that described in the last section for two 
predictors. Our discussion is in the context of the logistic model 

= 770 + 77,log2(A3T) + 772PCV + 77310g*(CK) (22.6) 

for the recumbent cow data. 
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FIGURE 22.8 2D plot extracted from a 3D binary response plot for the f i t  of model (22.6). 
Filled circles represent survivors. The vertical slice was added to facilitate discussion. 

Construct a 30 binary response plot, assigning the terms log,(AST), PCV, 
and log,(CK) to the axes and marking with the binary response Outcome. 
If desired, visual resolution in the plot can be improved by clicking the 
“Rem lin trend” and to e(O I H)” buttons. Next, select the item “Recall 
logistic (H,V,O)” from the plot’s “RecalVExtract” menu. Arc will then fit the 
logistic model (22.6) and rotate the plot so that is on the horizontal screen 
axis. Assessing this fit is a bit more complicated than with two predictors: For 
the model to be sustained, the relative density of survivors must be constant 
within any slice perpendicular to the horizontal screen axis (iTu) in all 2 0  
views obtained by rotating about the horizontal screen axis using the “Pitch” 
control. Adding a predictor has in effect added a dimension to our visual 
assessment. 

Shown in Figure 22.8 is one slice of a view we encountered while rotating 
about the fixed horizontal screen axis GTu. The survivors are localized in the 
middle of the slice so again we find visual evidence that the model is deficient, 
and against 1D structure for the base predictors (log,(AST), log,(CK)). 
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TABLE 22.3 Appropriate Choices of Terms u for Logistic Regression with Many 
Continuous Predictors" 

Density f(x 1 y )  UT = Dimension 

Independent Predictors 

X = diagonal matrix Univariate results 2 1D 

Multivariate Normal 
Common E (1,x) 1D 
Different E ( 1, x, quadratics, possibly interactions) 1D 

Other Multivariate 
General case ? ? 

"In this table, E is the covariance matrix of x 1 y 

TRANSFORMING PREDICTORS 

22.3.1 Guidelines 

In examining Figure 22.6 on page 505, the points for the survivors and nonsur- 
vivors seem to form approximately elliptical point clouds that are characteristic 
of bivariate normal distributions. If the density of the predictors within each 
group is bivariate normal, the results in Section 22.1 concerning log-density 
ratios generalize. Results for many predictors are summarized in Table 22.3. 
Here are a few highlights: 

If any predictor xi is independent of the rest of the predictors, then the 
univariate methods can be applied to xi to find u-terms that depend on 

If all the predictors in are independent, then the univariate methods 
can be applied to each predictor separately. 

. If the conditional distributions of x I y are multivariate normal distribu- 
tions with common covariance matrix but different means, then use x for 

the terms. 

- If the conditional distributions of I y are multivariate normal distribu- 
tions with different means and different covariance matrices, both quadrat- 
ics and interactions may be required in addition to 

In the case of p = 2 predictors x = ( x , , ~ , ) ~ ,  an interaction is required only 
if the regression of x, on x2 has a different slope in each of the two groups 
(y = 0 and y = 1). A quadratic in x i ,  = 1,2, is needed if the variance of 
xi is different in the two groups. 

Returning to Figure 22.6, there seems no clear evidence to indicate that 
log,(AST) is dependent on PCV within either the survivors or nonsurvivors. 
Thus, we can use the single-predictor results of Section 22.1.5 to guide 
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FIGURE 22.9 Conditional density estimates for log,(Urea). The dashed line is for = 1, 

and the solid line for Outcome = 0. 

the construction of a logistic model for the regression of Outcome on 

(log2(AS73,PCV). 

22.3.2 Transforming x I y to Multivariate Normality 

Without normal distributions or independence, there are no generally useful 
results, so transforming toward the normal distribution provides a good start 
for an analysis. Let’s pursue this idea using the recumbent cow data with con- 
tinuous predictors AST, PCV, and Urea, which are all computed from a 
blood sample, and also the predictor Daysrec. Viewing these five predictors in 
a scatterplot matrix using Outcome as a marking variable, the joint conditional 
distributions are not multivariate normal because the mean functions are not 
all linear. However, this same scatterplot matrix can be used to find power 
transformations that may normalize their joint conditional distributions. We 
concluded that AST, and Urea should be replaced by their logarithms be- 
cause the estimated normalizing powers are all close to zero, and PCV should 
be left untransformed. We didn’t attempt to transform Daysrec for two rea- 
sons. First, there doesn’t seem to be much dependence between Daysrec and 
the other predictors so we can consider Daysrec alone. Second, Daysrec is a 
count, suggesting that it might follow a Poisson distribution and, according to 
Table 22.1, Poisson predictors should not be transformed. 

As a next step, we examined conditional density estimates for each of the 
transformed predictors. Estimates for log,( log,(AST), and PCV are shown 
in Figures 22.2, 22.4, and 22.5. The discussion of those figures applies here. 
Density estimates for log,(Urea) are shown in Figure 22.9. 

If normality is reasonable for log,(Urea) in Figure 22.9, then we should 
include log,(Urea) and [log2(Urea)12 as terms. If normality is not reason- 
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TABLE 22.4 Initial Logistic Regression Summaries for the Recumbent Cow Data 
~~ 

= = 

= 

= 

= 

= 

- 
[ 

: 

: 

able, we should include Urea as well. The possibility of interactions between 
log,(Ureu) and the other predictors can be explored by looking at a multi- 
panel plot of each of the other transformed predictors versus log,(Urea). If 
the within-group OLS regression lines in these plots are not parallel, then in- 
teractions may be needed; examination of these plots provides some evidence 
of the need for interactions, so we cannot eliminate this possibility. 

Based on this discussion, a reasonable first logistic model for the recumbent 
cow data would include the nine terms suggested by the separate density esti- 
mates: log,(AST), CK, 10g2(CK), Urea, log2( Urea), [log2(Urea)I2 
and Daysrec. It is quite likely that several of these terms will not be needed 
in the model, and there is still the possibility that interactions may be needed. 

To facilitate and enrich the discussion in the rest of this chapter, we fit a 
simpler model with terms 

u = [l~g,(Urea)]~,Daysrec)~ 

The summary of the fit of this regression is shown in Table 22.4. This regres- 
sion is based on 165 fully observed cases. 
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As with any regression, we must check to see if the fit of this model matches 
the data, and perform other diagnostic checks. Model checking plots and resid- 
ual plots can be of use here. 

22.4 DIAGNOSTIC METHODS 

22.4.1 Residual Plots 

Let 9; = mjO(xi) denote the fitted values from a logistic regression of y; on 
where denotes the number of trials for case i = I , .  . . , n. In Chapter 14, 

residuals ii were defined to be 

2; = &(y; - (22.7) 

where the weight comes from the variance function, Var(y, I xi) = In 
logistic regression the variance function Var(yi I x i )  = miO(xi)( 1 - O(x,)) can be 
put in the earlier notation by setting u2 = 1, and 

= 1 / ( r n i O ( X i ) (  1 - O(x;))) (22.8) 

Unlike the weights with the linear regression model, these weights depend on 
unknown parameters, and ther$fore the weights must be estimated along with 

the fitted values. Substituting O ( x i )  for the unknown O(x,), we obtain 

A Y; 

= 
(22.9) 

These are called because the sum of their squares add to Pearson's 
X 2  statistic, as is easily verified by examining equation (21.13). In Arc, the 
chi-residuals are called : 

The chi-residuals can be plotted as described in Section 14.1, but inter- 
preting chi-residual plots requires more care than interpreting plots with a 

continuous response. For example, shown in Figure 22.10 is a plot of 2,; 
versus iTui for the fitted model summarized in Table 22.4. Since each fitted 

value is just a nonlinear transformation of ; (xi) ,  the residuals fall on two 
smooth curves: one for cases with y = 0, for which all residuals are negative, 
and one for cases with y = 1 ,  for which all residuals are positive. The essential 
information in a plot of the chi-residuals 2,; versus a linear combination bTx 
of the predictors is contained in the mean function E(iXi I bTx). If this mean 
function is constant, then there is no information to contradict the model. But 
if the mean function is not constant, then we do have information to contradict 
the model. The smooth on Figure 22.10 is nearly constant, suggesting 
no evidence against the fitted mean function in Table 22.4. In plots against 
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FIGURE 22.10 Chi-residuals versus for the model summarized in Table 22.4. A lowess 

smooth is shown on the plot. 

other linear combinations of the predictors-for example, in Figure 22.1 1 for 
log,( Urea)-the lowess smooth also seems fairly constant. 

As the number of trials increases, chi-residual plots begin to look more 
like residual plots for a continuous response, and all the methods described 
in Section 14.1 apply. In general, we find that the model checking plots to 
be described in Section 22.4.3 are better at examining a fit of a model than 
residual plots, particularly when the are small. 

22.4.2 Influence 

Cook's distance can be applied directly to binomial regression or to most 
other regression models, with exactly the same methodology that was used 
for multiple linear regression. Recall that Cook's distance for case i provides 
a summary of the difference between an estimator f i  based on all the data and 
f i ( i )  obtained without using case i .  In multiple linear regression, f i ( i )  can be ob- 
tained without actually recomputing the regression, but in logistic regression, 
recomputing is needed to get f i ( i )  exactly. However, a good approximation can 
be obtained using the formula for multiple linear regression. The formula for 
Dj  for logistic regression is 

(22.10) 
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FIGURE 22.11 Plot of chi-residuals versus log2(Urea). 

which is the same as (15.9), but with the chi-residual divided by (1 - 
replacing the Studentized residual, and with the ith leverage hi computed with 
estimated weights given by (22.8). 

22.4.3 Model Checking Plots 

Model checking plots were introduced in Section 17.1 for linear models. The 
general idea is the same for a binomial response: For any linear combination 
aTui of the predictors or terms, we imagine drawing two plots: one of the 
observed fraction of successes yi /rnj  versus aTui, and the other of the estimated 

probabilities of success t9(xj) versus aTui. We then smooth each of these two 
plots using an appropriate mean smoother. If the smoothers agree for this 
choice of aTuj, and in principle for every other choice of aTui, then we say 
that the model is reproducing the data; if we find an aTuj for which the two 
smooths do not agree, then the model does not reproduce the data. 

We begin with the model summarized in Table 22.4 and select the item 
“Model checking plots” from the model’s menu. For the selected variables, 
choose log,(AST), log,(CK), log,( Urea), and Duysrec. Plots versus in- 
dicator variables are not informative and should be skipped. Using the option 
for marginal plots, the initial view shown in Figure 22.12 is of yi/rni on the 
vertical axis = 1 in the recumbent cow data) versus GTui estimated from 
the model. The solid line shows the Zowess smooth fit to this plot. The dashed 

,. 
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FIGURE 22.12 Initial view of the model checking plot for the model summarized in Table 22.4 

for the recumbent cow data. The horizontal axis is i T u .  The smooth fit to the data on the plot is 
shown as a solid (and blue on the computer screen) line, while the smooth fit from the model is 

shown as a dashed (and red on the computer screen) line. When plotting against iTu, the smooth 

from the model is just the kernel mean function. 

line is obtained by smoothing the fitted probabilities &xi )  versus iTui and 
then adding this smooth to the plot. Since by (21. lo), page 476, the fitted prob- 
abilities are determined by i T u  through the kernel mean function, the dashed 
curve will reproduce the mean function. If the horizontal axis is anything 
other than GTu,, the dashed line from the model will not be the kernel mean 
function. 

In examining Figure 22.12, we see most of the survivors (y = 1) have 
values of GTu that are large, while the nonsurvivors have a much wider 
range of values for iTu.  Since the two curves are essentially identical, 
the model is reproducing the data in this view. We show in Figure 22.13 
four of the five additional model checking plots for this illustration. In all 
four cases the two smooths agree reasonably well, except possibly at the ex- 
tremes of the range where apparent differences may be due to small sample 
sizes. 

In Figure 22.13a the smooth fit to the data is strongly influenced by four 
cases with small values of log,(AST) that died. The estimated probabilities 
of survival for three of these cases are around 0.8; you can discover this 
by drawing a plot of the fitted probabilities, called in Arc, 

versus log,(AST) and then selecting in the model checking plot the four points 
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FIGURE 22.13 Model checking plots for four of the continuous predictors in the recumbent 
cow data. Solid lines are fit to the data, dashed lines are fit from the model. In each case, a lowess 

smooth with = 0.6 is shown. 

for the animals with low log,(AST) that died. Observing a few animals with 
moderately high estimated survival probabilities that died is to be expected 
now and then. 

For Figure 22.13b, the agreement between the two smooths appears accept- 
able throughout the range, in spite of two cases with very low log,(CKj that 
died. (Are the low log,(CK) cases also low log,(AST) cases?) 

We next turn to PCV in Figure 22 .13~.  The model reproduces a roughly 
quadratic trend, even though a quadratic term for PCV is not in the mean 
function. The two smooths again are reasonably close, with largest disagree- 
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ment at the upper end of the range for where we have only one data 
point. 

The final plot shown in Figure 22.13d is for log,(Urea). We see that the 
model successfully reproduces the roughly quadratic shape of the dependence 
of the probability of survival on log,(Urea): Survival is low if log2(Urea) is 
far from the middle of its range. The two curves do appear to disagree for 
very small values of log2(Urea), but this may be due to one case with an ex- 
ceptionally low value of log,(Urea). When this case is deleted, the smooths 

for the remaining data look very similar. 
In Section 17.1.2, page 401, we showed how to use model checking plots 

to check for assumptions about the variance function. In models with a binary 
response, this check is not applicable because the variance is completely de- 
termined by the probability of success, regardless of the model. The checks 
on the variance function discussed in Section 17.1.2 can be used in regres- 
sions with a binomial response with > 1 because correlations between the 

responses, or heterogeneity of the observations, can lead to overdispersion. 
References for appropriate methodology are given in the complements sec- 
tion. 

22.5 ADDING FACTORS 

Many binary regressions include both continuous variables and factors. There 
are at least two issues to consider: (1) How should the factors be included? Are 
factor-by-factor or factor by continuous-term interactions required? (2) How 
should the continuous predictors be transformed? The study of interactions 
parallels the discussion in Chapter 12 for the multiple linear regression model, 
and so we will not repeat the discussion here. The choice of transformations 
is a bit trickier. 

There seem to be two strategies for transforming continuous predictors with 
factors in the regression. First, we could try to select transformations after con- 
ditioning not only on the response y but also on the factors. For example, if 
the only factor was a single indicator variable with two categories, then we 
would transform toward normality in each of four groups, all combinations of 
y and the indicator variable. This can be done in Arc by creating a marking 
variable with four values, one for each combination of y and the indicator 
variable. With two indicator variables, we would have eight groups for con- 
ditioning. It is clear that this approach will quickly get out of hand, although, 
in theory, this approach will obtain the correct transformations of predictors 
into terms. 

The second approach is more practical, but it is not as well-supported by 
theory: Transform the continuous predictors first, and then add the indicator 
variables for the factors. This method will not always give the best transfor- 
mations of the predictors, but it will generally provide a reasonable starting 
point for further analysis. 
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TABLE 22.5 Logistic Regression Summaries for the Recumbent Cow Data with 

Two Categorical Predictors Added 

= = 

= 

= 

= 

= 

[ 

: 

In the recumbent cow data, for example, there are three indicator variables, 
or factors with two levels: Influmat, Calving, and and these can be 
added to the mean function. However, because was not observed 
on the majority of animals, using this term in the mean function will reduce 
the sample size from 165 to only 7 1 ; we leave consideration of this predictor 
to Problem 22.5 and add only the other two indicator variables to u. This 
assumes that the factors enter additively, so there are no interactions, and that 
the transformations of the continuous predictors obtained previously do not 
need to be modified. Both of these assumptions can be checked, using tests, 
residual plots, and model checking plots. The summary of this regression is 
given in Table 22.5. 

Compare Tables 22.4 and 22.5: some of the terms that had relatively large 
coefficient estimates in Table 22.4 have smaller coefficient estimates in Ta- 
ble 22.5. As usual, this is caused by close relationships between the terms. 
We leave further analysis of this example to Problem 22.5. 
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22.6 EXTENDING PREDICTOR TRANSFORMATIONS 

22.6.1 Power Transformations with a Binomial Response 

The methods described in this chapter for choosing transformations of predic- 
tors are easily extended to a binomial, rather than binary, response. Suppose 
that y j  is the number of successes in trials. The automatic procedures for 
finding transformations can be computed by allocating copies of to the 
population of successes and - yi copies of to the population of failures. 

This can be done for the Box-Cox method for selecting transformations 
from a scatterplot matrix by pushing the button to “Condition using binomial 
weights” in the “Find normalizing transformations” dialog obtained from the 

“Transformations” pop-up menu. This will bring up a dialog box to specify 
the variable to use for the number of successes and the variable to use for the 

number of trials. 

22.6.2 Ceres Plots 

The transformation model 

used to motivate Ceres plots in Chapter 16, equation (16.4), can be adapted 
straightforwardly to logistic regression: 

(22.1 1) 

where is the unknown transformation of the term u2. plots for logistic 

regression can be used to visualize in the same way that Ceres were used for 
multiple linear regression in Chapter 16 provided that one additional condition 
holds: should stay away from its extremes, say 0.1 < B(x)  < 0.9. If 
can be near 0 or 1, then a plots may provide a biased representation of 
7 .  This possibility was not relevant for the discussion of Chapter 16. 

Ceres plots for logistic regression can be constructed in the Arc by select- 

ing the item “Ceres plots - 2D” from the logistic regression menu and then 
selecting the augmentation form, as discussed in Chapter 16. The form of 
can be judged by smoothing the resulting plots. 

22.7 COMPLEMENTS 

22.7.1 Marginal Odds Ratio 

The value and interpretation of = Pr(y = 1)/( 1 - Pr(y = 1)) as used in equa- 
tion (22.1) depend on the sampling plan that generated the data. If the data 
were a random sample from a population, then is the odds of success in the 
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population, as we used for the recumbent cow data. If the data were selected 
in some other way, then need not reflect a population quantity. For example, 

if the sample were selected to have 100 successes and 100 failures, then = 
+/$ = 1 is fixed by the sampling design. If the number of successes and 
failures is fixed by the sampling plan, we have a case-control study. 

22.7.2 Relative Density 

Equation (22.1 ), which provides a connection between the mean function and 
the conditional densities of the predictor, can be derived with the aid of Bayes’ 

theorem. 
Let f ( x )  be the marginal density of x. Using Bayes’ theorem we write 

(22.12) 
f ( x  I Y = 1)WY = 1) 

f ( x )  
E(y I x )  = O(x) = Pr(y = 1 1 x )  = 

We can write a similar formula relating O(x) to f ( x  1 y = 0). Recalling that 
Pr(y = 0) = 1 - Pr(y = I ) ,  we get 

Taking the ratio of (22.12) to (22.13), the marginal density f ( x )  cancels, leav- 
ing (22.1). 

22.7.3 Deviance Residuals 

Several alternative definitions of residuals to replace the i, have been pro- 
posed in the literature to overcome at least in part the systematic problems 
discussed above or to meet other specific needs. The most commonly used of 
these are the deviance residuals, which are defined so their squares add up to 
the deviance G2. For logistic regression, these are defined by 

mi - y. ‘1’ 
iDi = sign(yi - y i>  [ yi log (g ) + (mi - yi) log (-I) ] 

mi - Yi 

(22.14) 

where sign(z) is equal to +1 if z 0 and -1 if z < 0. That G2 = can 
be verified by inspection of (21.12). In Arc, the deviance residuals are called 

22.7.4 Outliers 

Outliers in logistic regression are harder to define and identify than out- 
liers in multiple linear regression. Informally, an outlier in a binary response 
plot will appear as an isolated success (failure) that is surrounded by fail- 
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ures (successes). Response outliers in logistic data were discussed by Co- 
pas (1988), who proposed a misclassification model, Williams (1987), Collett 
(199 1, Chapter 5), and Bedrick and Hill (1 990). 

22.7.5 Overdispersion 

When all the = 1 ,  the distribution of y I can depend on only through 

the mean function because the only distribution on the values 0 and 1 is 
the Bernoulli distribution, which depends only on the probability that the re- 
sponse is equal to one. If > 1 and the y j  are binomially distributed, then 

once again the variance is determined by the mean only. However, the bi- 
nomial distribution requires two assumptions that need not hold in practice: 
for an observation with trials, each trial must have the same probability 
of success, and all trials must be independent of each other. If, for example, 
the mi trials correspond to the pigs in a litter, then the pigs might com- 

pete for resources, invalidating the independence assumption. In the literature, 
this is called Methodology for overdispersed binomial data is 
presented by Williams (1982), Collett (199 1 ,  Chapter 6), and McCullagh and 
Nelder (1989, Section 

22.7.6 Graphical Regression 

The graphical regression methods discussed in Chapter 20 can be used with 
a binary response. In Arc select “Graphical regression” from the Graph&Fit 
menu, specify the predictors, and specify the binary response in the resulting 
dialog. The buttons at the bottom of the dialog allow you to work in terms 

of the original predictors or the GREG predictors, as discussed in Chapter 20. 
Next, select “Binary response plot” from the graphical regression menu. This 
will bring up a dialog box in which you can choose two or three predictors 

to combine. This discussion is for combining two predictors. It is possible to 
combine three predictors simultaneously, but the visual analysis takes more 
practice than that for two predictors. 

After selecting two predictors to combine, you will be presented with a 

binary response plot with two GREG predictors on the horizontal and vertical 
axes, and a place holder on the out-of-page axis. The points in the plot are 
marked according to the states of y and rotation is allowed only about the out- 
of-page axis. The structural dimension of this plot can be assessed visually as 
follows: 

. If the density of successes is constant throughout the plot, then the struc- 
tural dimension is zero and the two GREG predictors can be deleted from 
the analysis. In this case, select “Dimension 0” from the “Greg methods” 
pop-up menu. 

. If the structural dimension is greater than 0, to rotate the plot about the 
out-of-page axis so that the density of successes is constant in slices that 
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are perpendicular to the horizontal screen axis. If this is possible, then 
there is 1D structure which should be indicated by selecting “Dimension 
1” from the “Greg methods” pop-up menu. Arc will then compute the 
linear combination of the original predictors on the horizontal screen axis 
and add the new GREG predictor to the data set. 

Otherwise, the plot must have 2D structure and the selected predictors 
cannot be combined. It may still be possible to combine two other pre- 
dictors, however. 

The linear combination of the predictors from the fit of a logistic re- 
gression model is often a good place to start when assessing ID or 
2D structure. The binary response plot can be rotated to this linear com- 
bination by selecting “Recall logistic from the “RecalVExtract” 

menu. 

This iterative procedure is continued until no further combining is possible, 
in which case the final binary response plot is the summary of the regres- 
sion. 

Apart from the use of binary response plots and the possibility of combining 
three predictors simultaneously, graphical regression with a binary response 
is the same as that discussed in Chapter 20. In particular, it is still necessary 
to start with linearly related predictors. 

22.7.7 References 

The results in Section 22.1 for transforming one predictor were adapted from 

Kay and Little (1987). The results in Section 22.2 are from Cook (1996). 
Ceres plots for logistic regression were developed by Cook and Croos-Dabrera 
(1998). Additional discussion of graphics for regressions with a binary re- 

sponse at a more advanced level was given by Cook (1998b). The collision 
data in Problem 22.7 is from Hkdle and Stoker (1 989). The bank note data 
are from Flury and Riedwyl (1988). 

PROBLEMS 

22.1 Describe how a binary response plot for two predictors would 
look if the binary response were independent of Your answer 
should be in terms of the relative density. 

22.2 Assume that the binary response y is independent of the two predictors 
given the linear combination + 

22.2.1 Describe the essential characteristics of a binary response plot 
for ( x , , ~ , ) .  Your answer should again be in terms of the relative 
density. 
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22.2.2 Suppose now that you fit the logistic model 

How would you expect the estimates of the 7’s to be related to 
a and b in the linear combination + 

22.3 In the recumbent cow data, assume that 

(log,(CK), log,(AST)) I = j >  

22.4 

22.5 

follows a bivariate normal distribution. Based on a binary response 
plot of log,(CK) versus log,(AST), what terms do you think will be re- 

quired in a logistic model for the regression of on (log,(CK), 
log,(AST)). Give the rationale you used for your choices. 

Consider the regression of on and in the 
recumbent cow data. 

22.4.1 Assuming that and are independent and that 

is a Poisson random variable, give the appropriate lo- 
gistic model for the regression. 

22.4.2 Give an appropriate logistic model for the regression assuming 
that and are and that is a 
Poisson random variable. 

We left the recumbent cow data Section 22.3.2 with the initial logistic 

model consisting of an intercept and the nine terms log,(AST), 

log,(CK), log,( and 
The following problems are based on this 

22.5.1 Using Cook’s distance and the full model, are there any clearly 
influential cases in the data? If so, describe how they influence 
the fit and then delete them for all subsequent problems. 

22.5.2 Investigate plots of the chi-residuals from the fit of the full 
model and describe any deficiencies you see. Do the plots sus- 
tain the model? 

22.5.3 Investigate model checking plots using log,(AST), log,( 
GTu, and several randomly chosen plots. 

Are there any notable deficiencies? 

22.5.4 Using the full model, perform backward elimination, sequen- 
tially deleting terms where the coefficient estimate divided by 
its standard error is smaller than a cutoff you select. For the re- 
duced model, investigate model checking plots using log, (AST), 
log,(CK), GTu, and several randomly cho- 
sen plots. Does your reduced model seem to fit as well as the 
full model you investigated in Problem 22.5.3? 
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TABLE The Collision Data 

Age 
A d  
Vel 

Y 

“Age” of the crash dummy used in the test. 
Maximum acceleration on impact measured on the dummy’s abdomen. 
Velocity of automobile at impact. 
1 if the accident would be fatal, 0 otherwise. 

22.5.5 Finally, restore any influential cases deleted at the start in Prob- 
lem 22.5.1. Do they agree with the final model? 

22.6 The data in the file l s p  contain six physical measurements 
on 100 genuine Swiss bank notes and on 100 counterfeit Swiss bank 
notes. The goal of the analysis is to be able to predict whether a bill is 
genuine or counterfeit based on the physical measurements alone. 

22.6.1 Draw a scatterplot matrix of the six predictors, using Srurus as 
a marking variables, and summarize results. 

22.6.2 Based on examination of the scatterplot matrix, use logistic 
regression to estimate the probability that a note is counterfeit. 

22.6.3 Apply appropriate diagnostic methods to decide if the mean 
function you obtained in the last part is reasonable. 

22.6.4 Are any “outliers” (either a counterfeit bill surrounded by gen- 
uine ones, or a genuine bill surrounded by counterfeit ones in 
a plot) apparent in these data? 

22.6.5 If all counterfeit and genuine bills in the future will have the 
same characteristics as these bills, will the model you fit provide 
good discrimination between genuine and counterfeit bills? 

22.7 The data in the file l s p  describe the outcomes of 58 simulated 
side-impact collisions using crash dummies. In each crash, the variables 
described in Table 22.6 were measured. 

22.7.1 Using a scatterplot matrix and histograms of each of the three 
predictors, both using Y as a marking Variable, use the graphi- 
cal methods of this chapter to support replacing each predictor 

by its logarithm. If you think that some other terms are more 
appropriate than logs, give the evidence for a different scaling. 

22.7.2 From the scatterplot matrix, present an argument that would 
support deleting at least one of the three predictors. Then, fit 
the logistic models with and without the deleted variable to 
support what you concluded graphically. 

22.7.3 Examine the model you obtained in the last part of this problem 
using the diagnostic tools outlined in this chapter. 
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Generalized Linear Models 

In this chapter we introduce generalized linear models, or GLMS. There are 
several families of generalized linear models, including both the normal family 
that leads to multiple linear regression and the binomial family that leads to 

logistic regression. 

23.1 COMPONENTS OF A GENERALIZED LINEAR MODEL 

A generalized linear model has the following structure: 

The Data. The data consist of cases ( x i , y i ) ,  i = 1,. . .,n, where xi is a p x 1 
vector of predictors and y i  is a scalar response. We assume that cases are 

independent. As usual, the goal is to study the distribution of y I x as x is 
varied, with emphasis on the mean function E ( y  I x )  and the variance function 

The Linear Predictor. Let ui be a k x 1 vector of u-terms derived from x i .  
We assume that the dependence of y i  on is through the linear combination 
vTui, for some unknown k x 1 vector Q of regression coefficients. By allowing 
the terms to be nonlinear functions of the predictors or interactions between 

them, we are implicitly allowing for models of dimension one or higher. Vir- 
tually all of the methodology discussed previously for determining dimension 
and for graphical analysis applies to GLMS. 

The dependence of I xi on is assumed to be through the mean function, 
given by E(y, I = M ( Q ~ u ~ ) ,  where M is a kernel mean function. While the 
user has latitude in choosing M, there is a particular kernel mean function 
for each family-called the canonical kernel mean function-that is used most 
often. 

The variance function is Var(yi I x i )  = v(vTui), where v is the kernel vari- 
ance function, and qTui is the same linear combination used to determine the 
mean. If we know the mean function and the relationship between the mean 
and variance, then apart from a possible scale factor we must also know the 
variance function. 

525 

Var(y I X I .  

Applied Regression Including Computing and Graphics 
R. Dennis Cook,Sanford Weisberg 

Copyright 0 1999 by John Wiley & Sons, Inc 



526 CHAPTER 23 GENERALIZED LINEAR MODELS 

TABLE 23.1 Relationship Between the Mean and Variance for Four Families of 

Generalized Linear Models" 

Family Name Canonical Kernel Mean Function Variance Function 

OThe canonical kernel mean functions are also given for each family. In each of the variance 

functions in this table, is a known weight that may differ from case to case, and o2 is a con- 

stant. 

The Mean-Variance Relationship. The relationship between the mean and 
the variance determines a family of generalized linear models. Estimates are 
computed differently for each family. Arc includes the four most important 
families of GLMS, and for these the relationship between the mean function 
and the variance function is given in Table 23.1. 

The first family of models is the normal family. For this family, the vari- 
ance function is constant, and, apart from known weights, it depends only on 
02. The canonical kernel mean function for the normal family is the identity 
function. This choice gives the usual multiple linear regression model studied 
in Part I1 of this book. If the kernel mean function is not the identity function, 
we can get other members of the normal family that may be useful in some 
regressions, as illustrated in Section 23.2. 

The second family in Table 23.1 is the binomial family, in which the mean 
function is bounded between 0 and 1 and the variance function is ~ ( ~ f u )  
x ( l  - M($U))/W. The canonical kernel mean function is the logistic function, 
which gives logistic regression. Other choices for the kernel mean function 
were discussed in Section 21.6.3. 

In the third family, the response yi is non-negative and the variance is 

equal to the mean. This relationship between the mean and the variance 
holds for Poisson random variables (see Section 23.5.1), and the estimates 
used are maximum likelihood estimates if I has a Poisson distribution. 
Even if I is not Poisson but the mean function and the variance func- 
tion are equal, the estimates have some of the same properties as maximum 
likelihood estimates. As in the binomial case, there are no additional scale 
parameters in the kernel variance function; once the mean is determined, 
so is the variance. The canonical kernel mean function for the Poisson is 
the exponential function. Weights are generally not used with Poisson mod- 
els. 

For the gamma family the response is positive and the variance is equal to 
a constant times the square of the mean, and thus variability increases more 
quickly than it does with the Poisson. The canonical kernel mean function for 
gamma regression is the inverse function. 
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TABLE 23.2 Kernel Mean Functions for Various Choices of Fitting Methoda 

Kernel Mean Fitting 

Function Method(s) 1 X I  = 

Identity Linear LS, rlTu 

Inverse Linear LS, 1 l(OTU) 

Exponential Linear LS, exp(qTu) 

1 D-Quad Linear LS 

Poisson, Gamma 

Poisson, Gamma 

Poisson, Gamma 

+ (qTu) + cuz(~Tu)2. This model is 
described in the context of 3D plots 

in Section 18.3.2. 

possible linear, quadratic, and 

interaction terms. 

Full-Quad Linear LS Quadratic linear regression with all 

Logistic Binomial 1 /( 1 + exp(-qT@) 
Inv-Probit Binomial @(vTu), where @ is the standard normal 

Inv-Cloglog Binomial 1 ~ exp( - exp(qTu)) 

cumulative distribution function. 

"Boldface indicates the canonical kernel mean function for that fitting method 

In addition to the canonical kernel mean functions, Arc includes alternative 
choices for each of the four families that cover most practical applications of 
generalized linear models; these are listed in Table 23.2. 

Once we select the terms ui, a family for the relationship between the mean 
and variance functions, and a kernel mean function, we can compute estimates 
of unknown parameters, get standard errors, compute confidence statements 
and tests, and generally apply all the ideas we have learned for the multiple 
linear regression model and for the logistic regression model. 

23.2 NORMAL MODELS 

For the normal generalized linear model, the canonical choice of the identity 
kernel mean function M leads to the multiple linear regression model. By 
allowing M to be some other function, we can get nonlinear models. Other 
choices for M listed in Table 23.2 include the exponential and the inverse 
functions. Both of these are graphed in Figure 23.1. 

The exponential function grows large very quickly as rfu increases and 
approaches zero very slowly as qTu becomes large and negative. This kernel 
mean function can therefore be useful if the response either increases rapidly or 
else approaches a limit called an asymptote. The inverse kernel mean function 
is undefined if rfu = 0, and it should only be used if qTu does not change 
sign for the range of that might occur in practice. This function approaches 



528 CHAPTER 23 GENERALIZED LINEAR MODELS 

0 2 4 6 8 1 0  

rlTu 

a. The exponential function, = b. The inverse function, = 

exP(VT4. 1/qTu. 

FIGURE 23.1 Two mean functions. 

an asymptote for large values of qTu, and grows very large as qTu becomes 
small. 

As an example of the use of one of these kernel mean functions, we con- 
sider the Michaelis-Menten for enzyme kinetics. This relates the initial 

speed of a chemical reaction y to the concentration x of an agent via the mean 
function 

(23.1) 

Assuming that both of the unknown parameters O1 and O2 are positive, (23.1) is 
monotonically increasing; at x = 0, E(y I x )  = 0, while as x grows large E(y I x )  

approaches 19,. The second parameter 0, is a rate parameter. 
If we transform (23.1) by dividing the top and bottom of the right side of 

(23.1) by 19,xi, we get 

= l/VTUi (23.2) 

where q = (1 /el, B,/8, )T and ui = ( 1 , l  If the variance function Var(y, I x i )  

is constant, we have a generalized linear model with kernel mean function 
given by the inverse function, M($U;) = l/qTui. 

Data from an experiment for which the Michaelis-Menten model is thought 
to be appropriate are given in the file pur . Load this file, and then draw 
the graph of the response versus x as shown in Figure 23.2. The shape of the 
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FIGURE 23.2 Puromycin data. 

mean function for this graph is similar to Figure 23.lb after multiplying by a 
negative constant, so use of the inverse kernel mean function seems reasonable. 
Also, the variability between pairs of points at each value of x appears to be 
approximately constant, suggesting a constant variance function. We therefore 
have the three components needed for using a normal GLM: Terms derived 
from the predictors to define rfu, constant variance, and the inverse function 
for the kernel mean function. 

To fit this model, first transform x to l /x  to get the required term. Select 

the item “Fit Linear LS” from the Graph&Fit menu to get the usual linear 
regression dialog, as shown in Figure 23.3. Select the terms in the linear 

predictor as usual, except make use of the buttons at the right of the dialog 
to select the inverse function to be the kernel mean function. The output is 
shown in Table 23.3. 

As with most generalized linear models, estimates are computed iteratively; 
four iterations were required before a convergence criterion was met. The 
summary of the model reminds us that the kernel mean function used was the 
inverse. The estimates are maximum likelihood assuming yi 1 xi is normally 
distributed. 

Both the deviance and Pearson’s X 2  for a normal generalized linear model 
are computed from the formula 

(23.3) 
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FIGURE 23.3 

TABLE 23.3 Fit of the Normal GLM with Inverse Kernel Mean Function for the 

Michaelis-Menton Model Applied to the Puromycin Data 

= 

= 

= 

= 

= = L 1  

= 

= 

: 

which we recognize as the residual sum of squares (in the current regression, 
all the weights are equal to one). The estimate is the deviance divided 
by - k .  Tests comparing mean functions are based on the F-distribution, 
as in Section 11.2, with the deviance substituting for the residual sum of 
squares. 

We can judge how well this model matches the data using model checking 
plots. Select the item “Model checking plots” in the model’s menu. Add the 
original variable x to the “Selection” list, and select the default “Marginal 
plots.” In this regression, there is only one predictor in the model, and so we 
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FIGURE 23.4 Model checking plot for x. 

only need to consider the model checking plot for x. Use the model check- 
ing plot control to get the plot of y versus x, and then add the smoothers as 
shown on the plot in Figure 23.4. The fitted curve and the smooth fit to the 
data match very closely, suggesting that this model may be adequate for these 
data. 

23.2.1 Transformation of Parameters 

The Michaelis-Menten model was initially specified in terms of the parameters 
e l  and as given in (23.1), but we have fitted a model with parameters qo = 
1 /el and = e2/01. We can invert these equations to get 0, = 1 and = 

ql  Maximum likelihood estimates of the 8s can be obtained by substituting 
the MLES of the into these equations: 

il = 1/0.004702 = 212.68; = 0.00030148/0.004702 = 0.064 

23.2.2 Transformation to Simple Linear Regression 

Another possible approach to the Michaelis-Menten problem starts with equa- 

tion (23.2), restated as 

(23.4) 
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a. Inverse scale, with OLS line. b. Original scale with fit from (a ) .  

FIGURE 23.5 The Michaelis-Menton model in the inverse scale. 

To the extent that E( l/y, I x i )  M l/E(yi I x i ) ,  we might expect that we can turn 
this regression into a standard simple linear regression by using l/y, as a 
response variable and l / x i  as a term; this approach has been advocated previ- 
ously in discussions of transformations for linearity. The plot of l/y, versus 
l/xi in Figure 23.5 shows why this approach is likely to give worse answers 

in this particular regression. In the original scale in Figure 23.2, variability 
seems more or less constant across the plot, as the variation between pairs of 
observations is reasonably similar everywhere. In Figure 23.5a the variability 
is much larger for large values of l /x,  which correspond to small values of 
The fitted OLS line shown on Figure 23.5a may not match the data very well; 
when plotted on the original plot of y versus x in Figure 23.5b, considerable 
bias in estimating the asymptote is apparent. 

The choice between using a linearizing transformation or a nonidentity 
kernel mean function depends on the variance function. If linearizing also sta- 
bilizes variance, then linearizing is generally preferred. This is often the case 
with the logarithmic transformation, since in many regressions this transfor- 
mation of y will both linearize the mean and stabilize variance. On the other 
hand, if, as in the example, the variability is nearly constant before transforma- 
tion, fitting the nonidentity mean function using the untransformed response 
is likely to be preferred. 

23.3 POISSON REGRESSION 

Poisson random variables are discussed briefly in Section 23.5.1 of the com- 
plements to this chapter. Poisson regression is appropriate when the mean 
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TABLE 23.4 Definitions of Variables in the Possum Data 

Name Description of Variable 

Y 
Acacia 

Bark 

Habitat 

Shrubs 

Stags 

Stumps 

Asp 

Dom 

Number of possum species found on the site. 

Basal area of acacia + 1 ,  m2. 

Bark quality index. 

Habitat score for Leadbeater’s possum. 

Number of shrubs + 1. 
Number of hollow trees + 1. 

1 if stumps from past logging are present, 0 if no stumps. 

Primary aspect of plot, either SW-NW, NW-NE, NE-SE or SE-SW. 

Dominant eucalypt species, either E. regnans, delegatensis or 
E. nitens. 

function and the variance function are equal, as will occur if y is a count and 
y 1 x has a Poisson distribution. 

As an example, we consider a study of possum abundance. In Australia and 
elsewhere, demand for managing hardwood forests for timber, conservation, 
and recreation is increasing. Managers need to identify areas with high con- 
servation value, such as areas with ideal habitat for endangered animals. The 
goal of this study is to find factors that might be associated with good habitat 
for possums. Data were collected on 151 3ha sites with uniform vegetation 
in the state of Victoria, Australia. Several factors that describe the site were 
recorded, as given in Table 23.4. The data are given in the file l s p .  

The constant 1 has been added to several of the predictors to allow for the 
use of power transformations. The goal of the analysis is to understand how 
the count y of the number of possum species found in the plot depends on the 
other predictors, and to describe sites that are favorable to possums. 

Two of the predictors, Asp and Dom, are categorical, and so they should be 
converted to factors. Another, Stumps, is an indicator variable. The remaining 
predictors are all more or less continuous, so a first step might be to examine 
these remaining predictors in a scatterplot matrix to to get linearly related 
predictors. Several of the frames in this scatterplot matrix have curved mean 

functions, so transformations might help. Use the “Find normalizing transfor- 
mation” item from the “Transformations” pop-up menu to choose a starting 
point for looking at transformations. After the initial choice of transforma- 
tion (see Problem 23.1), we deleted two points and used the “Find normal- 
izing transformation” item again. After rounding, we decided on the initial 
predictors given in Table 23.4, but with log(Bark), and 
log(Stags) replacing the untransformed predictors. 

The next step is to examine inverse response plots for 1D structure (a 
multipanel plot is convenient for this, excluding the indicator predictor and 
the two factors). All the inverse response plots exhibit high variability, so 

comparing the shape of mean functions between them is very hard. In any 
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TABLE 23.5 Poisson Regression Fit for the Possum Data 

= = 

= 

= 

{ [ 

{ [ 

: 

case, there is little or no evidence against 1 D structure, and we will accept this 
as a useful starting point. However, these plots do not take into account the 

indicator variable or the factors, so interactions with these, leading to higher- 
dimensional models, cannot yet be excluded. 

Table 23.5 summarizes the fit of a Poisson regression model with u derived 
from all the predictors in Table 23.4, with four of the predictors replaced 
by their transformations discussed above and and Asp as factors. This 
table was obtained by defining the terms as needed using the data set menu 
and selecting the item “Fit Poisson response” from the Graph&Fit menu. We 

used the canonical exponential kernel mean function for the fit, as is usual in 
Poisson regression. The estimated mean function is exp(fiTu), with f i  given 
by the column marked “Estimate” in Table 23.5. As with logistic regression, 
the column marked “Std. Error” provides approximate standard errors of the 
estimates, and the ratio “Est/SE’ provides Wald tests that each of the elements 
of Q is zero, after adjusting for all the other terms in the mean function. These 
statistics can be compared to the normal distribution to get p-values. 
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TABLE 23.6 Likelihood Ratio Tests Obtained When One Term is Dropped from 
the Mean Function in the Possum Data 

1 1.747 0.1863 

1 2.103 0.1470 

1 0.033 0.8550 

1 13.154 0.0003 

1 0.5415 

7.106 0.0686 

{ 2 0.182 0.9132 

[ 1 7.033 0.0080 

As with logistic regression, there is no scale factor in the variance function, 
so the value of the scale factor is always reported as one. If jji = M(GTui) is a 
fitted value, then the deviance and Pearson’s are given by 

= - j j ; )2 / j i  

i = l  

(23.5) 

(23.6) 

These two statistics are used in goodness-of-fit tests for comparing mean func- 
tions. One set of useful tests can be obtained using the “Examine submod- 
els” item in the model’s menu. Select this item and then push the button for 
“Change in deviance for fitting each term last,” and then push “OK.” The re- 
sulting output is in Table 23.6. For example, the change in deviance between 
(a) the mean function with all the terms and (b) the mean function with all the 
terms except is 2.103, with 1 df. This difference can be compared to 
the x: distribution to get a p-value of about 0.15. This suggests that, at least 
after the other terms, provides little additional information. Similarly, 
the change in deviance for the mean function with all terms and the mean 
function that does not include { F } A s p  is 7.106, but this has 3 df, because 
{ F } A s p  is a factor with four levels. The p-value for this term is about 0.07. 
We see that at least two of the terms, log(Bark) and log(Stugs), have very small 
p-values, while Asp appears to be potentially important after adjusting for the 
others. 

The next step in this analysis is to examine the fit through the use of model 
checking plots, against ,FiTu and the continuous predictors, in random plots 
and in GREG plots. We leave it as an exercise (Problem 23.1) to show that 
this mean function matches the data very closely. Had the fitted model not 
matched the data, we might next consider that 1D structure does not hold, 
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and we might examine separate fits for values of the factors and the indicator 
variable. 

Before summarizing results, we may try to remove a few of the terms 
from the mean function to obtain a simpler summary of the regression. The 
likelihood ratio tests in Table 23.6 indicate that this approach could be useful. 
We will use backward elimination that deletes a term at each step. Select the 
item “Examine submodels” from the model’s menu, and then select “Delete 
from full model (Backward Elimination)” from the dialog. An edited version 
of the resulting output is shown in Table 23.7. 

The output is divided into several stages. At the first stage, each line in the 
table is obtained by re-fitting with one of the terms deleted from the model. 
For example, at stage one the line marked “Delete: Stumps” is for the mean 
function obtained by removing Stumps from the current mean function. This 
mean function has deviance G 2  = 117.636 and Pearson’s X 2  = 95.8036, both 
with 140 df. The value k = 11 is the number of terms in the subset model, and 
AIC, called Akaike information criterion, is a measure of relative information 
in this model compared to the model with all possible terms included. AIC is 
defined by the formula 

AIC = G 2  + 2k (23.7) 

If all terms in the mean function had 1 df, then the minimum AIC mean 
function would be the same as the minimum deviance mean function; since 

the factors have several df, AIC adds an appropriate adjustment for differ- 
ences in degrees of freedom. At the first stage, is removed. The 
second stage considers only models that exclude {F}Dom, examining the 
mean functions that can be obtained by dropping one additional term. At 
succeeding stages, Stumps, and have minimum AIC and 
are removed. The total increase in deviance for removing these 5 df is only 
119.39 - 117.26 = 2.13. Further deletion causes a large increase in deviance, 

suggesting tentatively accepting the mean function that includes the remaining 
terms. Table 23.8 summarizes the fit of this mean function. 

As an additional check on this mean function, we can examine model check- 
ing plots again, this time using the terms not in the mean function to plot on 
the horizontal axis. If the information in the terms removed from the mean 
function can be adequately approximated by the remaining terms in the model, 
then the two smooths on the model checking plots should agree; showing this 
agreement is left to Problem 23.1. 

Finally, we turn to interpretation of the coefficient estimates in Table 23.8. 
All the coefficients for the continuous predictors are positive, so higher values 
for log(Bark), Habitat, and log(Stags) all imply the presence of more possum 
species. Interpretation of the remaining coefficients is a bit different. Since no 
indicator variable is included for the category SW-NW, the three coefficients 
for {F}Asp suggest an increase in species abundance in all three aspects other 
than SW-NW. Since the coefficients for the three categories are nearly equal, 
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TABLE 23.7 Backward Elimination for the Possum Data, Starting with the 
Mean Function in Table 23.5" 

Stage Action df G 2  Pearson X 2  k A X  

Delete: 

Delete: Shrubs'.'' 

Delete: Stumps 

Delete: Acaciao 

Delete: Habitat 

Delete: {F}Asp 

Delete: log(Bark) 

Delete: log(Stags) 

141 117.445 

140 117.296 
140 117.636 
140 119.01 
140 119.366 
142 124.369 

140 124.296 

140 130.417 

95.9924 

95.7975 
95.8036 
95.4325 
98.2852 
99.426 

99.1637 
105.794 

10 

11 
11 
11 
11 
9 

11 
11 

137.445 

139.296 
139.636 

141.010 
141.366 
142.369 

146.296 

152.417 

2 Delete: 142 117.494 96.1858 9 135.494 
2 Delete: Stumps 142 117.827 96.1581 9 135.827 

2 Delete: 142 119.086 95.5212 9 137.086 
2 Delete: Habitat 142 120.027 99.1312 9 138.027 
2 Delete: {F}Asp 144 124.578 99.8735 7 138.578 

2 Delete: log(Bark) 142 125.04 99.7188 9 143.040 

2 Delete: log(S'tags) 142 130.887 105.237 9 148.887 

3 Delete: Stumps 143 117.856 96.2578 8 133.856 

3 Delete: Acaciao.' 143 119.104 95.4485 8 135.104 

3 Delete: Habitat 143 120.14 99.5269 8 136.140 
3 Delete: {F}Asp 145 124.65 100.127 6 136.650 

3 Delete: log(Bark) 143 127.161 101.748 8 143.161 

3 Delete: log(Stags) 143 130.9 105.33 8 146.900 

4 Delete: 144 119.39 95.7451 7 133.390 
4 Delete: Habitat 144 120.385 99.4518 7 134.385 
4 Delete: {F}Asp 146 125.529 99.6707 5 135.529 

4 Delete: log(Bark) 144 127.257 101.703 7 141.257 

4 Delete: log(Sitags) 144 132.371 106.571 7 146.371 

5 Delete: {F}Asp 147 127.093 98.7495 4 135.093 

5 Delete: log(Bark) 145 128.78 101.576 6 140.780 

5 Delete: Habitat 145 128.836 100.491 6 140.836 
5 Delete: log(Stags) 145 132.387 106.429 6 144.387 

6 Delete: log(Bark) 148 135.097 105.346 3 141.097 

6 Delete: Habitat 148 135.606 103.546 3 141.606 
6 Delete: log(Stags) 148 138.507 109.538 3 144.507 

7 Delete: Habitat 149 144.087 110.507 2 148.087 
7 Delete: log(Stags) 149 149.861 123.14 2 153.861 

"Each stage is obtained from the one before it by removing the term whose deletion results in 

the smallest value of AIC. 
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TABLE 23.8 Subset Mean Function for the Possum Data 

= = 

= 

= 

[ 

: 

we could replace the three factor levels of Asp by a single indicator variable 
for comparing the SW-NW aspect to any of the others. Fitting this simplified 
model in Arc requires creating indicator variable, and this is most easily 
done in two steps. First, use the “Add a variate” item in the data set menu, 
and enter 1 = The new variable Aspl will now have values 
0, 1, 2, and 3 rather than text strings for values. Then, use the same menu 
item and type = I 1) ), which 
will recode into an indicator variable The resulting fit is shown in 
Table 23.9. The coefficients for the other terms are virtually unchanged, and 
the coefficient estimate for Asp2 is 0.52, which suggests that the mean number 
of species is multiplied by exp(0.52) = 1.68 when the aspect is not SW-NW. 
The difference in G 2  for the last two models, 119.537 - 119.390 = 0.147 with 
146 - 144 = 2 df, can be used to test the equality of the three aspect terms, 
after adjusting for the other terms in the model. Nothing important is lost by 
using the mean function simplified in this way. 

23.3.1 Log-Linear Models 

Probably the most common use of Poisson regression is in the analysis of log- 
linear models for tables of counts, and Arc can be used for fitting these models. 
Log-linear models have much in common with the regression models studied 
in this book, but there are many important differences in language, notation, 
forms of models, special cases, and summaries. We provide references to a 
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TABLE 23.9 Final Fitted Model for the Possum Data 

= = P3 

= 

= Asp2)  

0.430450 0.140483 3.064 

0.0909858 0.0301258 3.020 

0.405792 0.109113 3.719 

Asp2 0.524986 0.202697 2.590 

1. 

15 1 

146 

X2: 96.193 

: 119.537 

-2.36938 0.424165 -5.586 

few of the excellent treatments of log-linear models in the complements sec- 
tion. 

23.4 GAMMA REGRESSION 

Gamma random variables are introduced in Section 23.5.2. As an example of 
gamma regression, we return to the transactions data in file 

first described in Section 7.3.3. In previous analyses, we have concluded 
that the mean function E(Tirne I q = + q,T, + q27; must be appropri- 
ate for these data, but that the variance increases with the mean. In gamma 
regression, we have that Var(y I x )  = a2E(y I x) * ,  which can be rewritten as 

= J m / E ( y  I x ) .  The quantity J m / E ( y  I x ) ,  called the coefl- 
cient is constant for gamma regression. 

Table 23. I0 summarizes the fit of a gamma regression model to the trans- 
actions data, using the identity kernel mean function. This is not the canon- 
ical kernel mean function for the gamma, and it can lead to problems in 
fitting by giving negative fitted values to a non-negative response variable. 
We use it here because we have already concluded in Section 7.3.3 that the 
identity kernel mean function is appropriate for this regression. In this par- 
ticular application, no such problems with negative fitted values occur. The 
coefficient estimates for T, and are essentially the same as obtained in 

the OLS fit given in Table 7.3, page 156. The main difference is the vari- 
ance function: For the gamma fit, we have estimated the variance function to 



540 CHAPTER 23 GENERALIZED LINEAR MODELS 

TABLE 23.10 Gamma Regression Fit to the Transactions Data 

= = 

= 

= 

= 

: 

be =(Time I 5) = 0. 1702 x E(Time I q ,q)2, rather than assuming constant 
variance. 

We can judge the fit of this model to the transactions data using model 
checking plots. Figure 23.6 shows the model checking plot for GTu. Shown 
on the plot are smooths that represent both the mean function and the variance 
function. The mean functions match very well. The variance function from the 
model appears to give variances that are a bit too large for the few branches 
with large values of q and This model is an improvement over the OLS 

fit, since a constant variance assumption cannot be supported with the data, 
and the variance function for the gamma is reasonably consistent with the 
data. 

23.5 COMPLEMENTS 

23.5.1 Poisson Distribution 

Normally distributed random variables are continuous: They can take on any 
real value. Some variables are discrete. The most important example of a 
discrete distribution is the binomial, discussed in Section 2 1.2.2, page 472. 
The second example that is also frequently encountered in practice is the 
Poisson distribution. 

Suppose the random variable y can be any non-negative integer. The Pois- 
son distribution assigns probabilities to the integers using the probability mass 
function: 

Pr(y) = e - ’ P / y !  y = 0, I , .  . . 
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FIGURE 23.6 Model checking plot for the gamma regression f i t  to the transactions data. 

where X is the parameter of this distribution, X > 0, and the factorial notation 
(y!) is defined on page 473. We will write y - Po(X) for this distribution. The 
mean of y is equal to X and that the variance of y is also equal to A. Like 
the binomial distribution, once the mean of the distribution is fixed, so is the 
variance of the distribution. Poisson probabilities are computed in Arc using 
the function to get the probability that the variable has a specific 
value and to get the probability that y is less than or equal to a 
specific value. 

The sum of independent Poisson random variables also has a Poisson dis- 
tribution, with mean given by the sum of the means of the individual Poisson 
random variables. In symbols, if yi N Po(X,), = 1,2, and if y ,  and y ,  are 
independent, then y ,  + y ,  N Po(X, + A*). 

The Poisson distribution is closely related to the binomial distribution in 
at least two ways. First, suppose y - Bin(m,B). If 0 is small and m is large, 
then y behaves like a Po(m0) random variable. Thus, the Poisson distribution 
is the limiting distribution of the binomial for small 0. The second connec- 
tion is through conditioning. Suppose, for example, that doctors in a clinic 
prescribe a certain type of drug either using a brand-name drug or using a 
generic equivalent. Let y ,  be the number of brand-name prescriptions in a 

fixed time period and let y2  be the number of generic prescriptions in that time 
period. Assuming prescriptions are independent of each other, both y ,  and 
y ,  are likely to be Poisson random variables, with means A, and A,. We can 
now ask the following question: Given that the drug was prescribed, what is 
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the probability that the prescription was for the brand-name drug? In the 
data, we have y, “successes” in m, = y1 + y2 trials, and the distribution of 

I m ,  Bin(m,,X,/(X, + X,)). 
The Poisson distribution was first derived by S. D. Poisson (1837). 

23.5.2 Gamma Distribution 

Suppose that y is a continuous random variable that can equal any positive 
value. Let’s suppose further that, unlike the normal distribution, the variance 
of y is a function of the mean of y, and that larger values of E(y) imply larger 
values of Var(y). 

One family of distributions with this property is the family of gamma dis- 
tributions. For this family, the coeficient of variation, defined to be the ra- 
tio d W / E ( y ) ,  is constant, which is equivalent to requiring that Var(y) = 
u2[E(y)l2 for some constant 

The density function of a gamma distribution depends on two positive pa- 
rameters, the mean p and a shape parameter Q = l / a2 .  The variance of y can 
be shown to equal p2/a.  The special case of Q = 1, is called the exponen- 

distribution. If > 1, the density is zero at the origin and is unimodal. 
For values of Q not too much larger than one, the density is highly skewed, 
but for large values of Q the density approaches symmetry. The Arc function 

computes values of the gamma density with p = 1. For example, 
to obtain a plot of the density for the gamma distribution with p = 1 and Q = 2, 

tY Pe 

23.5.3 References 

Generalized linear models were first suggested by Nelder and Wedderburn 
(1972). An elegant presentation of them, at a mathematical level higher than 
that of this book, is given by McCullagh and Nelder (1989). Agresti (1996) 
provides a book-length introduction to log-linear models at a level similar 
to this book that includes both logistic and Poisson models; Agresti (1990) 
covers some of the same ground at a higher mathematical level. 

The possum data were provided by Alan Welsh and are discussed in Lin- 
denmayer, Cunningham, Tanton, Nix, and Smith (1991). The puromycin data 
discussed in Section 23.2 are from Bates and Watts (1988). 

PROBLEMS 

23.1. 

23.1.1 Find normalizing transformations for the continuous predic- 
tors in the possum data, as suggested in the 
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text. Two points appear to be separated from the others in 
the transformed scale, and so these may be influential for 
the transformation choice. Select these points, delete them, 

and then obtain new normalizing transformations. How do 
the transformations change? 

23.1.2 Use model checking plots to examine the fit of the model 
in Table 23.5. Check for influence. Are the two points that 
were influential in the determination of transformations of 
predictors influential in fitting the model? 

Use model checking plots to examine the fit of the model in 

Table 23.8. 

23.1.3 
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Arc 

Arc is a computer program written in the Xlisp-Stat language. Both Xlisp-Stat 

and Arc are included when you down-load the program from the Internet. 
Arc is described in this book. The Xlisp-Stat language, which is a very pow- 

erful environment for statistical programming, is described in Tierney (1990). 
To use Arc, you do not need to know how to program in Xlisp-Srat or any 
other language. 

A.l GETTING THE SOFTWARE 

You must obtain the appropriate program for your type of computer. Arc and 
the Xlisp-Stat system are nearly identical for Windows OS, Macintosh 0s and 
Unix. 

The most recent version of Arc can be obtained on the Wiley Mathematics 
web page at / by accessing the link 
for Applied Regression and then following the directions given there for your 
computer. 

If you do not have Internet access, you can obtain Arc for a nominal fee 
by writing to Arc Software, University of Minnesota, Applied Statistics, 1994 
Buford Ave., St. Paul, MN 55108. 

A.l . l  Macintosh 0s 

Arc requires at least a 68020 processor; a Power PC is highly recommended. 
Double-click on the icon for the Arc installer that you down-loaded from the 
Web or otherwise obtained, and follow the on-screen directions for installing 
the program. After installation, you will have a folder on your hard disk called 

unless you choose some other name. You can start Arc by double- 
clicking on the icon for Xlisp-Stat. The startup screen with Mac 0s should 
resemble Figure A. 1. 

A menu bar appears at the top of the computer screen and the text window 

appears below it. The text window is common to all operating systems, and 

545 

Applied Regression Including Computing and Graphics 
R. Dennis Cook,Sanford Weisberg 

Copyright 0 1999 by John Wiley & Sons, Inc 
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FIGURE A.1 startup screen with the Mac 0s. 

its use is described in Section A.2. Menus are a little different on all three 
operating systems, so they are described separately for each. With Macintosh 
OS, the menu bar initially displays four menu names plus the Apple menu, 
but as you use the program more menus will be added to the menu bar. 

FiZe Menu. The File menu includes eight items. The item “Load” is used 
to open data files, and to read files containing computer code that can be 
read by The next six items in the menu, “New edit,” “Open edit,” 
“Save edit,” “Save edit as,” “Save edit copy,” and “Revert edit” are used to 

read and save files with the simple editor that is built into for 
the Mac 0s. Use of this editor should be familiar to anyone with Mac 0 s  ex- 
perience. The final item in this menu is “Quit,” which is used to exit 

and Arc. 

Edit Menu. The Edit menu contains the items “Undo,” “Cut,” “Copy,” 
“Paste,” and “Clear” for use with the built-in editor and with the text window. 
“Copy-paste” will copy selected text in the text window to the command line, 
which is the last line of the text window. The last two items in the Edit menu 
are “Edit selection,” which will copy the selection in the text window into a 
window for the editor, and “Eval Selection,” which will evaluate the selected 
text in an edit window. 
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Command Menu. The Command menu appears only with Mac 0s. The 
item “Show Xlisp-Stat” will return the text window to the screen if you acci- 
dentally make it disappear by pushing the mouse in the go-away box, the small 
square at the upper-left of the window. The items “Clean Up” and “Top Level” 
are generally not used with they are helpful when debugging programs 
in The final item “Dribble” is used for automatically copying all 

text in the text window to a file for later printing or editing. The same 
item appears on the Arc menu as described in Section A.6. 

Arc Menu. The Arc menu is common to all platforms and is described in 
Section A.6. 

A.1.2 Windows 0s 

You will need Microsoft Windows 3.1 1 or newer and at least 8 mb of RAM. 
About 5 mb of hard disk space is required. Separate installers are available 
on the Web page for Windows 3.11 (a 16-bit program) and for more recent 
Windows systems (a 32-bit program). Follow the instructions on the Web page 
to install the program. 

To start double-click on the icon for or else select 
from the Start button in Windows or from the Program Manager in Windows 
3.11. The Windows 0s startup screen is similar to the Macintosh 0s startup 

screen shown in Figure A.l. At startup, the Windows menu bar contains three 
menus: 

File Menu. The File menu includes only four items: “Load,” which is used 

to read data files and files of lisp statements, “Dribble,” which is described 
in Section A.3, “Exit,” which is used to leave and and “About 
Xlisp-Stat,” which gives information about Unlike the Mac 0s 
version, the Windows 0s version does not have a built-in text editor, but 
it does have a very simple stand-alone text editor called 
has two useful features. Automatic parenthesis matching can be useful in 
typing commands. Also, you can highlight text in select “Execute” 
from Edit menu, and the highlighted code will be executed by 

Edit Menu. This menu contains the usual items, “Undo,” “Cut,” “Copy,” 

“Paste,” and “Clear.” These items are used to copy and paste text in the text 
window, as well as to copy whole graphics windows to be pasted into other 
applications (see Section A.3 for information on saving text and plots). An 
additional item, “Copy-Paste,’’ will copy selected text in the text window and 
paste it onto the which is the last line of the text window be- 
ginning with a prompt >. 

Window. This standard Windows 0s menu lists the names of all the open 
windows and allows selecting one to be the top window. In addition, items 
appear here to modify the appearance of the screen. 
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A.1.3 Unix 

Unix installation instructions are given on the Web page. On networked sys- 
tems with many users, setting up this version of and Arc may require 
the assistance of a system manager. 

When the program is properly installed, Arc is usually started by entering 
the Unix command 

Like the Windows 0s and Mac 0s versions, the Unix version has a menu 
bar, but this menu bar initially contains only the Arc menu described in Sec- 
tion A.6. 

A.1.4 What You Get 

With both Windows 0s and Mac OS, you will have created a directory in- 
cluding many files. The file is the executable program file needed 
to run Arc. Arc is contained in the file the files l s p ,  

and l s p  must also be present to run the program. 
The file l s p  is read every time you start Arc, and users familiar 
with may want to modify this file to read their own code. The files 

and l s p  will also be read, if they are present. The 
files and l s p  contain copyright notices for various parts 
of the code. Most other files and directories are part of the standard 
distribution. You can learn about them in Tierney (1990) or by consulting the 
Web page for recent Internet references. 

A.1.5 Data Files 

The directory and its subdirectories contain all the data sets described 
in this book. If you know the name of the data file you want to use, you can 
load the file without actually knowing its location. For example, the typed 
command in the text window will search for the file called 

. in several standard Arc directories. You can add your own directory 
to this search list. Suppose that you keep data in the directory which 
is the directory from which you start Arc. The following command when either 
typed into the text window or added to the file will add this 
directory to your search path: 

Mac 0s : 

Windows 0s : 

I f )  

Unix : ( - - / ) 

You can add as many directories as you like by repeating the above com- 
mand with different directory names. 
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A.2 THE TEXT WINDOW 

The text window is used to display numeric output produced by the program, 
and to enter information for the program to use. Since a full implementation 
of Xlisp-Star is included with Arc, the user can execute functions, get Arc to 
perform tasks, and even write computer programs. However, almost all of the 
features of Arc can be accessed using menus and dialogs, so you do not need 
to know how to program. 

A.2.1 Typing in the Text Window 

For a brief tutorial on typing command when using Arc, consider two variables: 
(1) cigarette consumption per person per year in 1930 and (2) 1950 male lung 
cancer death rate per million males. The variables are measured for the United 
States, Canada, and nine countries in Europe. One possible analysis goal 
for these data is to see if lung cancer death rate is associated with cigarette 
smoking. The smoking data lead the cancer data by twenty years to allow time 
for cancer to develop. 

A.2.2 Typing Data 

Most often, data will be entered into Arc by reading a data file, but data 
can be entered directly into the text window. Duplicate the commands on 
each line following the prompt >. The number of items you put on one 
line is arbitrary. Each line you type ends by hitting the "Return" key. The 
computer will respond by providing a new prompt when a command is fin- 
ished. ' 

58 115 150 165 170 190 

220 250 310 510 380 

> 

245 250 350 465) )  

455 1280 460 530 1115 1145) )  

- ) 

It 

You have now created three lists of data with the names CancerRate, 
CigConsumption, and Country. To understand a little about how this happened, 

it will probably be helpful to know that lisp stands for list processor and, as the 

'You can reproduce the results without typing data by loading the data file l sp .  
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name implies, the language works by processing lists. A list is just a series of 
items separated by spaces and enclosed in parentheses. The items in a list can 
themselves be lists, or even more complicated constructions. The first item of 
a list is an instruction that tells the program what to do with the rest of the list. 
For example, the list (+ 1 2 )  contains three items-namely +, 1, and 2-and 
it instructs the program to add 1 and 2. 

Let’s now return to the first of the three commands you just typed. The 
main list contains three items: and 58 90 115 150 
165 170 190 245 250 350 465). The first item is the instruction that tells 
the program you want to define something. The next item is the 

name to be defined and the final item is the definition. The definition is itself a 
list consisting of 12 items: and the numbers 58,. . . ,465. The first item is 
the instruction for forming a list. In summary, the first command that you just 
typed instructs the program to define to be a list of 11 numbers. 
After you press the return key, the computer responds with the name of the 

list, and then the next prompt. 
The names of lists or other objects in can be of any length, 

but must not contain spaces. A few names like and are reserved 
by the system. If you try to use one of these you will get an error mes- 
sage. 

Remember these points when typing information into 

- The parentheses must match. In Mac OS, Windows OS, and some imple- 
mentations of Unix, flashes matching parentheses to make this 
easier. 

Quotation marks must match. If they do not match, the program will get 
very confused, and it will never return you to the prompt or give you any 
printed output. 

- You can have any number of items on a line. 

A command can actually take up several lines on the computer screen. 

Each command ends with a “Return” after the final right parenthesis. 

Items in a list are separated by white space, consisting of either blanks or 

tabs. 

If the computer does not respond to your typing, you need to escape 
from the current command to start over. On the Macintosh, you can se- 
lect the item “Top Level” from the Command menu, or press the com- 

mand (cloverleaf) and period keys at the same time. With Windows, press 
Control-Break, and with Unix press Control-C. 

If you have an error, you can use standard cut-and-paste methods to 
edit the command for reentry. With Windows OS, the standard keys like 
End and Start can be used to move the cursor around the command line. 
With Mac OS, the Enter key moves the cursor to the end of the command 
line. 
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A.2.3 Working with Lists 

You can do many things with lists. The simplest is just to display them. To 
see the list type 

(220 250 310 510 380 455 1280 460 530 1115 1145) 

Don’t forget to press enter after To get the number of items 
in a list, use the function: 

If you do not get 11, then you have incorrectly entered the data: Try to find 
your error, and then retype or use cut and paste to correct the data before 
continuing. 

To get the mean and standard deviation of you can use 
the and functions: 

605 

384.37 

In each of these statements, a value is computed and stored as a constant 
so it can be used in a later calculation. If you do not plan to use the value 
later, you need not store it. For example, to get the natural logarithm of 

type 

(5.39363 5.52146 5.73657 6.23441 5.94017 6.1203 7.15462 
6.13123 6.27288 7.01661 7.04316) 

while the expression 

(220 250 510 380 455 1280 460 530 1115 1145) 

computes which simply returns the original 
values. The function can take two arguments, a value and a base. For 
example, 4 10) will return the logarithm of 4 to the base 10, while 

2 )  will return a list of the logarithms to the base 2 
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of the elements of If the second argument is missing, then 
natural logarithms are used. 

Arc can also be used as a calculator. For example, 

>(+ 2 4 5 6 )  
1 7  
>( -  17 2 3)  
12 
>(*  3 
1815 
> ( /  12) 
(18.3333 20.8333 25.8333 42.5 31.6667 37.9167 106.667 
38.3333 44.1667 92.9167 95.4167) 

These statements illustrate four basic operations that can be applied to lists of 
numbers. The general form of the operation may seem a bit unnatural: After the 
opening parenthesis comes the instruction, and then the numbers. For addition 
and multiplication, this does the obvious thing of adding all the numbers and 
multiplying all the numbers, respectively. For subtraction and division, it is 
not necessarily obvious what happens with more than two arguments. As 
illustrated above, ( -  17 2 3)  subtracts 2 from 17 and then subtracts 3 from 
the result. Similarly, ( / 8 2 4 )  divides 8 by 2 and then divides the result by 
4, giving an answer of 1. 

Arithmetic operations are applied elementwise to pairs of lists having the 
same length: 

>(* 

(12760 22500 35650 76500 62700 77350 243200 112700 
132500 390250 532425) 

Multiplication of a list by a scalar is also possible: 

> ( *  1000) 
(58000 90000 115000 150000 165000 170000 190000 

245000 250000 350000 465000) 

The statement ( -  4 3 )  returns 43 = 3)  returns the square root of 3, 
and ( log  3 )  returns the natural logarithm of 3. 

Calculating the Slope and Intercept 

You can also do more complicated computations. Let xi refer to the ith value 
of the predictor CigConsumption and let refer to the ith value of the response 
CuncerRate. To get S X Y  = C ( x i  - i ) ( y j  - j )  and S X X  = C ( x i  - i)*, you can 
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(*  ( -  

( * ( -  

( -  

This last result is given in scientific notation and is equal to 1.4774 x lo6. 
The hard part in calculations like the last one is getting the parentheses to 

match and remembering that functions like + or * or go at the start of an 
expression. Xlisp-Stat allows mixing lists and numbers in one expression. In 

the above example, ( - will subtract a number, 
from each element of the list 

To complete the calculations of the slope and intercept obtained by ordi- 
nary least squares regression of CancerRate on CigConsumption, use the usual 
formulas: 

( /  

( -  (*  

A.3 SAVING AND PRINTING 

A.3.1 Text 

Xlisp-Stat does not have a built-in method for printing. Output from the pro- 
gram must be saved to a file and ultimately printed by a word processor. To 
save output, select the text you want to save by dragging the mouse across it 
with the button down; select “Copy” from the Edit menu, switch to the word 
processor, and select “Paste” from that application’s Edit menu. should 

use a jixed-width font like Courier or Monaco, or else columns won’t line up 

properly. 

The second method saves all subsequent input and output in the text window 
to a file. Saving is started by selecting the item “Dribble” from the Arc menu. 
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Choose a file name using a dialog. All text will be put in this file until you 
select “Dribble” a second time. The resulting plain text file can then be read 
by any word processor or editor. If you prefer, you can type a command: 

>(dr ibb le  ‘If ilename” ) 

to start saving the text window to the file filename. Isp,  or 

>(dr ibb le  (ge t - f i l e -d i a log  “Name of f i l e ” ) )  

to choose the file name using a file dialog. You cannot toggle the “Dribble” 
file on and off. If you select “Dribble” a third time with the same file name, 
the file will be overwritten without warning. The file you create in this way 
can be modified or printed using an editor or word processor. 

A.3.2 Graphics 

With Mac 0s and Windows OS, a plot is saved by copying and pasting it into 
a word processor document. Make sure the plot you want is the front window 
by clicking the mouse on it. Select “Copy” from the Edit menu. Switch to 
the word processor and paste the plot into a document by selecting “Paste” 
from that program’s Edit menu. On Unix workstations, plots can be saved as 
a Postscript bitmap by selecting the “Save to file” item from the plot’s menu. 

A.4 QUITTING 

To quit from Arc, select “Quit” from the Arc menu. You can also type the 
command (end) ,  followed by enter, in the text window. 

A S  DATA FILES 

A.5.1 Plain Data 

The simplest format of a data file is a j i le,  which is a text file with 
given by rows and given by columns. To read a plain data file, 

select “Load” from the Arc menu or from the File menu on the Macintosh or 
Windows. A standard file dialog will then allow you to find the file and read 
it. With Windows OS, you will initially see file names ending in .lsp, but you 
can get all files by clicking the mouse in the scrolling list for “Files of type” 
and then selecting “All Files.” After selecting a file, you will be prompted 
via dialogs to give additional information, such as a name for the data set, an 
optional description of the data, and names for the variables and descriptions 
of them. You will be able to save the data set as a formatted data file using 
the item “Save data set as” in the data set menu. 
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A.5.2 Plain Data File with Variable Labels 

You can put variable labels in the first row of a plain data file. Variable names 
will be converted to all uppercase letters; if you want lowercase, or your labels 
include blanks, you must enclose the labels in double quotes. 

A.5.3 Importing Data from a Spreadsheet 

A spreadsheet can be used to make a plain data file or a plain data file with vari- 
able labels. All other information should be removed from the spreadsheet. Miss- 
ing data should be indicated by a ?, not by a blank. Save the spreadsheet as a 
plain text file; in Microsoft Excel, save the file as a "Text (Tab delimited) .txt" 
file. 

A.5.4 Special Characters 

A few characters have special meaning and should not appear in data files be- 
cause their use can cause problems. The special characters include ( ) ; " 1 #.  ' '. 
The period "." should be noted specially, since some statistical packages use 
this as a code for missing values. Periods surrounded by tabs or blanks in 
the data file will always cause Arc to read the file incorrectly. Of course the 
symbol "." is acceptable when used as a decimal point. 

A.5.5 Getting into Trouble with Plain Data Files 

When Arc reads a plain data file, it determines the number of columns of data 
by counting the number of items on the first row of the file. If your data file 

has many variables, the editor or spreadsheet that created the file may not have 
the correct line feeds. You may get the following error message: 

by 

This message may also be caused by the presence of special characters char- 
acters on the file. Here are a few hints that might help in reading a file. 

If you know the data file called l s p  has, for example, 17 variables, 

tY Pe 

If you want the program to find the data file for you, you can type 

If this doesn't work, here are a few Xlisp-Srut functions that can help you. The 
command 
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will put all the contents of the data file in a list called with the contents of 
the first row first, then the contents of the second row, and so on. Type 

to find out how many data elements were read from the data file. Type 

(*  4 ) ) )  

to display four elements of namely elements 17, 34, and 5 1. If the data 
file had 17 columns, this would give the first four items in the first column 
of the file. You can often find problems using these functions, and then use a 
text editor to correct the data file. 

A.5.6 Formatted Data File 

Files created using the “Save data set as” item in the data set menu have a 
human-readable format. You can also create files using an editor in this format; 
be sure that files are saved as plain text files, not in a word processor’s special 
format. Table A.l shows a formatted data file. 

The first few lines of the file contain information Arc uses to assign names, 

labels, and so on. Statements are of two types: assignment statements, like 
= which assigns to be the name of the data set, and 

constructions that start with a and continue until an is reached. 
The assignment = 5 specifies that the file has five columns. Spec- 

ifying the number of columns is required only if some of the columns on the 

file are not used. The assignment = ? sets the missing value place 
holder that is filled-in for missing values. If the assignment 
is equal to t, then cases that have missing values for any variable will be 
removed from the data set. If is then all the cases are 
used and cases with missing data are deleted as necessary in the computa- 
tions. The first option guarantees that all plots/models are based on exactly 
the same observations, while the latter option allows each grapwmodel to use 
the maximum possible number of observations. 

The . . . constructions are used to define blocks of information. 
The construction allows typing in documentation for the 
data set. The documentation should be fairly short, 10 lines or less, although 
there is no formal limit. The construction is followed by 
one line for each column of data to be used that describes the data. These 
lines are in the format 

column number = variable name = variable description 

The variable name is a short label. You should avoid the use of the mathe- 
matical symbols +, -, =, and I in variable names. The variable description is 
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TABLE A.l A Formatted Data File 

= ... The name of the data set is hald. 

... The following lines describe the data: 

A .  

_.. End of the description 

; ... ; 

= ? ... Sets the missing value place holder. 

= ... 
= _ . _  

. . . Begin defining variables 

0 = = 

Col = = ; 

Col = = 

Col = = 

= = 

.._ End of defined variables 

. . .  Begin lisp instructions 

= 

= 2 )  

. . .  The data follow this statement. 

If t, cases with missing data are deleted. 

Specifies the number of columns of data. 

a longer description of a variable that may not extend over more than one 
line. 

All lines between begin and end l i s p  are executed. As shown in 
Table A. l ,  an interaction between XI and X2 will be created and added to 
the data set. You can put any valid lisp commands here that you like. Arc 
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saves factors and interactions by adding a lisp statement to the file rather than 
actually saving the values created. 

Similar to a block of lisp statements is a block of transformations. These are 
of the form “label = expression,” where the expression can use variable names 
that already exist. The expression can be in usual mathematical notation, or 
a lisp expression. This block starts with and ends 
with Any statement that would be valid on the “Add 
a variate” menu item can be put here (see Section A.7.2). 

The data follows the line The data should be preceded by a 
left parenthesis “(” and terminated with a right parenthesis ‘‘1 .” Although the 
parentheses are not required, including them speeds up reading the data by a 
subs tan tial amount . 

A.5.7 Creating a Data Set from the Text Window 

The typed command 

is equivalent to selecting “Load” from the Arc menu. Assuming that the vari- 
ables CigCon, and Country already exist, the command 

will create a new data set using the data specified in place of a data file. You 
will be prompted to supply variable names and to name the data set. You can 
skip all the prompting by typing 

: 

: ) 

A.5.8 Old-Style Data Files 

Data files that worked with the R-code version 1 that was distributed with 
Cook and Weisberg (1 994b) can also be used with Arc. You can convert old- 
style data sets to new-style data sets by reading the file into Arc and using 
the “Save data set as” item in the data set menu. New-style data sets can be 
converted to old-style data sets using the command 

where “newstyle” is the name of the data file to be converted, and “oldstyle” 
is the name of the old-style file that will be created. 
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A.5.9 Missing Values 

Missing values in the data file are indicated by a ? unless you change the 
setting to some other value using the 
“Settings” item in the Arc menu, or you set the = assignment on 
the data file. The missing value indicator can be almost anything, but 

‘‘. ”, As described above 
in Section A.5.6, if you have missing data, the program will use as many 
complete cases as are available in any given calculation. If you include the 

command = in the data file (see Table A.l), then instead 
cases with missing data on any variate are removed from the data set for all 
calculations. 

A.6 THE Arc MENU 

When you start you will get a menu called Arc. This menu allows you to 

read data files, get help, view and change settings, and do calculations with 
standard distributions. Also, the names of all data sets currently in use are 
listed in the Arc menu and you make a data set active by selecting it from this 
menu. Here are descriptions of the items in the Arc menu. 

Loud. This item is used to read data files (see Section AS)  or to load files 
of statements. With Mac 0s and Windows OS, the “Load” item on the 
File menu and the “Load” item on the Arc menu are identical. 

Dribble. With Mac 0s this item also appears in the Xlisp-Stat menu, and 
with Windows 0s it also appears on the File menu. Its use is described in 
Section A.3.1. 

Calculate Probability. This item is used to obtain p-values for test statistics. 
See Section I .7.1, page 20. 

Culculate Quantile. This item is used to obtain quantiles of standard refer- 
ence distributions for use in computing confidence intervals. See Section 1.6.3, 
page 16. 

Help. This item accesses the help system for and for See 
Section A. 12.1. 

Settings. Selecting this item will open a window that lists the names of 
many settings that the user can use to customize You can view and change 
information about a setting by clicking on the name of the setting, and then 
selecting “Update selection” from the “Settings” menu. Changes you make 
will be for the current session only unless you save them either from the 
dialog when updating a setting or from the Settings menu. If you save, a file 
called l s p  will be created and it will be read every time you start 
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Quit. Quits Arc and 

A.7 THE DATA SET MENU 

When you load a data file, two new menus are created: a menu and 
a menu named The data set menu will have the same name as 
the data set; if your data set is called Accidents, then the name of the data 
set menu will also be Accidents. Use the data set menu to modify and view 
data; use the Graph&Fit menu to obtain plots and fit models. Although you 
can load many data sets simultaneously, only one data set is active at a given 
time. You can change between data sets by selecting the name of the data set 
in the Arc menu. 

A.7.1 Description of Data 

Several items in the data set menu permit displaying numeric summaries of 

the data. These menu items are: 

Description. Display information about the data set in the text window. 

Display Summaries. Display in the text window basic summary statistics on 
the variables you specify. These include means, standard deviations, minimum, 
median, and maximum of each variable, as well as a correlation matrix of all 

pairwise correlations. See Section 1.4.1. 

Table Data. This item is used to obtain tables of counts, or of summary 
statistics. Tables of counts are called or 
and they give the number of observations for each combination of possible val- 
ues for the conditioning variables. Tables of summary statistics present means 
or other summaries for a variate for each combination of the conditioning 
variables. An example is given in Section 2.1, page 28. 

Tables can be created with up to seven conditioning variables, and as many 
variates as you like. Several options are available in the table dialog (see 
Figure 2.3, page 30). If you check the item “Make new data set,” then the 
tabled data will be saved as a new data set; Arc chooses the name. You can 
use the tabled data in plots, to fit models, and so on. You can choose to have 
the data displayed in a list rather than a table, and you can choose up to six 
summary statistics to be computed for each combination of the conditioning 

variables. 
The default is to create tables using all possible cases, but if you select the 

button “Table included cases,” then any cases that have been deleted using 
a plot control will not be used. The final item has to do with the way cells 
in a cross-tabulation with observed zeroes are to be treated when creating a 
new data set. They can be treated either as zero counts or as missing. This is 
generally important only if the table is to be saved for fitting Poisson regres- 
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sion models, as it allows the user to distinguish between random zeroes and 
structural zeroes. 

The setting determines the number of columns on a page 
used in formatting a table. You can change this setting with the “Settings” item 
in the Arc menu. 

Creating large tables with many conditioning variables can be very slow. 

Disphy Data. Lists the values of all the variables you specify in the text 

Display Case Names. Show case names in a window. This window will be 
linked to all other plots, and so this provides an alternative way of seeing case 
names of selected points without cluttering the plot. 

window. See Section 1.4.3. 

A.7.2 Modifying Data 

The data set menu has several items that can be used to modify existing data 
or create new data. 

Add a Variute. This item is used to add new variables to the data set. If you 

type the expression -2, then a variable called new will be added to 
the data set, and its values will be equal to (a + where both a and b are 
existing variables. The expression to the right of the equal sign must obey the 
rules for an expression in the language C .  In particular, the term 
is incorrect and must be replaced by 

The quantity to the right of the equal sign can also be any expression 
in the language lisp that when evaluated returns a list of n numbers. For 
example, typing (+  will create a new variable with values 
again equal to the values of (a + As a more complex example, you can 

tY Pe 

= 4 )  ‘ ( 0  

which will create a new variable new1 by taking the existing variable with 
values 1 ,  2, 3 ,  and 4 and recoding so that if x equals one, two, or three, then 
newl = 0, and if x = 4, then = 1. The function and sev- 
eral other useful functions for manipulating data are described in Section A.12. 

Delete Variable. Delete an existing variable. This needs to be done with 

care; if you delete for example, you can have problems with interactions 
or factors derived from 

Rename Variable. Change the name of an existing variable. This can also 

Transform. Create new variables using power and log transformations. See 

cause problems if the name appears in previously defined models. 

Section 6.3, page 107. 
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Make Factors. Make factors from existing variables. See Sections 12.1 and 

Make Interactions. Make interactions between existing factors and vari- 
ables. An interaction is a product of terms, so, for example, the interaction of 
a term S and another term R has values given by S x R .  An interaction between 
a factor { F } S  and another variable R is defined by multiplying R by each of 
the indicator variables that make up the factor. The interaction of { F } S  and 
{ F } R  consists of the products of all indicator variables in one factor with all 
indicator variables in the other factor. Interactions can involve more than two 
terms, again by multiplying values. 

In the dialog produced by selecting this item the user specifies a set of 
terms and the program will adds all possible two-factor andor three-factor 
interactions among these terms to the data set, depending on the buttons se- 
lected at the bottom of the dialog. Higher-order interactions requires using the 
dialog more than once. 

Set Case Names. Arc attaches a label to every case, and it uses these labels 
in plots to identify points. If you have one or more text variables, Arc uses the 
first text variable it encounters to be the case labels. If you do not have any 
text variables, then case numbers are used as the labels. The dialog produced 
by this item is used to change the variable used to define case labels. 

Save Data Set As. Saves the data set in a formatted file, as described in 
Section A.5.6, page 556. 

Remove Data Set. Deletes the current active data set and all its menus, 
models, and plots. 

12.8.1. 

A.8 GRAPHICS FROM THE GRAPH&FIT MENU 

The Graph&Fit menu has six graphics commands. 

Plot of. The plotting method for histograms, 2D and 3D scatterplots. 

Scatterplot Matrix of. Use this item to create scatterplot matrices. The use 
of this item is described in Section 7.1, page 140. 

Boxplot of. Use this item to create boxplots. The use of this item is de- 
scribed in Section 2.1, page 28. 

Multipanel Plot of. Multipanel plots allow the user to view a sequence of 
plots in one window. For 2D plots, the user specifies one or more variables 
to be assigned to a changing axis, as well as one variable to be assigned to a 
fixed axis. The fixed axis can be either the vertical or the horizontal. When 
the plot is drawn, the user can change between the multiple panels of this 
plot using a slidebar plot control. Multipanel plots are used in added-variable 
plots, Section 10.5, and in Ceres plots, Section 16.2. 
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FIGURE A.2 A histogram showing the plot controls. 

If a variable for the fixed axis is not selected, then histograms are drawn. 

Probability Plot Creates probability plots, Section 5.10. 

Set Marks. This menu item allows setting, changing, or removing a mark- 
ing variable. This variable is used to determine the color, symbol, or by default 
both, of plotted points. The settings menu item can be used to use only color 
or symbols rather than both. Marks can also be changed using the “Mark by” 
box on any dialog for creating a plot. The same marking variable will be used 
for all plots in a data set. 

Once again, a slidebar allows switching between plots. 

A.8.1 Histograms and Plot Controls 

Histograms have four plot controls. A sample histogram is shown in Fig- 
ure A.2. The first three plot controls are slidebars, which are used to select a 

value from a set of values. The slidebar for “NumBins” is used to select the 
number of bins in the histogram. 

The second slidebar is called the slidebar. As the slider is 
moved to the right, the value of the on the slider increases from 
zero. A using a Gaussian kernel, is superimposed on 
the plot. The smoothness of the density estimate depends on the bandwidth 
with larger values giving smoother estimates. If the bandwidth is too large, the 
estimate is oversmooth and biased; and if it is too small, it is undersmooth and 
too variable. The optimal choice of the bandwidth depends on the true density 
and the way that optimality is defined. One way to get an initial guess at a good 
bandwidth is to use a which is the optimal bandwidth 
when the density being estimated is a normal density. Arc computes this value 
(given by the formula h = where 3; is the minimum of the sample 
standard deviation and the interquartile range divided by 1.34) and assigns 
it the value of 1 on the slidebar. This choice of bandwidth will generally 
oversmooth, so values in the range 0.6 to 0.8 are likely to be useful in most 
problems. If you use 0.6, for example, the bandwidth is then 0.6h, where h is 
the normal reference rule. 
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FIGURE A.3 A 2D plot showing the plot controls. 

The density smoother slidebar has a pop-up menu, obtained by holding 
down the mouse button on the triangle to the left of the slidebar. This menu 
has four options. The item “Fit by marks,” permits fitting a separate density 
estimate for each marked group, with the normal reference rule computed 
separately for each group. The next entry allows adding a different bandwidth 
multiplier to the slidebar. You can display the value of the bandwidth in the 
text window using the item “Display actual bandwidth” from the slidebar’s 
pop-up menu. The final entry “Display summary statistics” displays basic 
summaries for each marked group, or for all the data with no marking, in the 
text window. 

The next control is a transformation slidebar, as discussed in Section 5.2. 
The final plot control called “Case deletions” is described in the next sec- 
tion. 

A.8.2 Two-Dimensional Plots and Plot Controls 

Figure A.3 shows all the standard 2D plot controls. At the top left of the plot 
are the “Color palette” and the “Symbol palette.” These are used to change a 
color and/or symbol assigned to a point in the plot. Simply select the points 
you want to change by clicking the mouse on them or by dragging over them 
with the mouse button down, and then click on the color or symbol you want. 
Colors and symbols are linked between plots, so changing one plot changes 
all plots (you can turn linking off by selecting “Unlink view” from the plot’s 
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menu). A side effect of using these palettes is that any marking variables, if 
defined, are removed from the plot and all linked plots. 

The “Options” plot control gives a dialog for changing the appearance of 
the plot by modifying the axis labels, tick marks, and other features of the plot. 
An example of the options dialog is shown in Figure 3.5, page 46. By selecting 
check boxes in the options dialog, you can add transformation slidebars to the 
plot and a slidebar to control jittering. 

The options dialog can also be used to add an arbitrary function to a plot. 
In the text area near the bottom of the dialog, type the function you want 
plotted. For example, will add a straight line of slope 1 to the plot, while 

will add this quadratic function to the plot. 
The “Rem lin trend” plot control is selected by clicking the mouse in the 

small rectangle, and unselected by clicking again. It computes the OLS regres- 
sion of the vertical variable on the horizontal variable (WLS if weights were 
specified in the plot’s dialog) and then replaces the quantity on the vertical 
axis with the residuals from this regression. Linear trends cannot be removed 
if transformation slidebars are on the plot. “Zero line” adds a horizontal line 
at zero to the plot, and “Join points” joins the points together with straight 
lines. 

In the parametric smoother slidebar, which is initially marked “OLS,” you 
can use the pop-up menu to fit using OLS, M-estimation with fixed tuning 
parameter (Huber, 198 l), or using logistic regression, Poisson regression, or 
gamma regression. If you have specified weights, they are used in the fitting. 
For logistic regression, a plot of the proportion of successes on the vertical 
axis with weights equal to the number of trials will fit the correct logistic 
regression. If the number of trials equals one for all cases, you do not need 
to specify weights. The use of the “Power curve” smoother is discussed in 
Sections 13.1.2 and 16.1.1. 

The smoothers available in the nonparametric smoothing slidebar include 

described in Section 9.5.2, and a very primitive slice smoother de- 
scribed in Section 3.2. The “lowess+-SD” option in the pop-up menu uses 
lowess to compute an estimate of the mean function, then computes the squared 
residuals from the lowess smooth, and smoothes them to estimate the variance 
function. The lines shown on the plot are the estimated mean and the estimated 
mean function plus and minus one times the square root of the estimated vari- 

ance function. 
Both smoother slidebars allow fitting a separate curve to each group of 

marked points by selecting the “Fit by marked group” option. On the para- 
metric smoother slidebar, there are three “Fit by marked group” options: fit 
a separate line to each group, fit with common slopes, and fit with common 
intercepts; see Section 12.4. 

The final plot control is called “Case deletions,” and this is used to remove 
or restore selected cases. If you select a point or set of points by clicking 
on them or dragging over them, you can delete them from calculations by 
selecting the item “Delete selection from data set” from the menu. These 
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cases will then be excluded from all calculations, and all previous calculations 
and plots will be updated. Cases are restored using another item in this plot 
control’s menu. 

One source of confusion in using the case deletions plot control is the 
difference between deleting points with this control and removing them using 
the item “Remove selection” from a plot’s menu. Deleting a case removes it 
from all plots and from all computation and fitted models. Removing a case 
makes the point invisible in all plots, but it does not delete it from computations 
that are separate from plots. 

If a marking variable is used in the plot, a marking legend is included at 
the bottom left of the plot. If you click on one of the symbols, only the cases 
for that symbol will be displayed in this plot and in all linked plots. This is 
like using the “Remove selection” item in the plot’s menu, as the points are 
not removed from any other computations. If you click on the name of the 
marking variable, all cases are displayed. 

A.8.3 Three-Dimensional Plots 

The plot controls for 3D plots are described in Chapter 8. 

A.8.4 Boxplots 

Boxplots are described in Section 1 S.2, page 12, and Section 2.1, page 28. 
The “Show anova” plot control on boxplots with a conditioning variable 

allows displaying an abbreviated Analysis of Variance table at the bottom 
of the plot. Weights, if set, are used in computing the Analysis of Variance. 
Boxplots are not linked to other plots. 

A.8.5 Scatterplot Matrices 

Scatterplot matrices are initially described in Section 7.1. The plot controls 
for these plots include transformation slidebars, introduced in Section 5.2, 
the “Case deletions” pop-up menu and a control called “Transformations,” 
described in Sections 13.2.2 and 22.3. 

Scatterplot matrices have a hidden control that is used to copy any frame 
of the scatterplot matrix into its own window byfocusing. To get the new plot, 
move the mouse over the frame of interest and simultaneously press option- 
shift-mouse-click on Mac OS, or control-shift-mouse-click on Windows or 
Unix. If the mouse is over a variable name, a histogram of that variable will 
be produced. 

A.9 FITTING MODELS 

Models are fit by selecting one of the fit items from the Graph&Fit menu. The 
choices are summarized below. 
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Fit Linear LS. This item is used to fit linear least squares regression. The 
regression dialog is illustrated in Figure 6.6 and described in Section 6.3, 
page 107, and Section 11.3.2, page 270. 

Fit Binomial Response. See Chapter 2 1. 

Fit Poisson Response. See Section 23.3. 

Fit Gamma Response. See Section 23.4. 

Znverse Regression. This item is used to fit inverse regression (Quadratic 
fit, Cubic fit, Sliced Inverse Regression (SIR), pHd, or SAVE). These methods 
are described on the Web site for this book. 

Graphical Regression. This item is described in Chapter 20. 

A.10 MODEL MENUS 

When a model is specified in Arc, a menu is added to the menu bar. The name 
of the menu and the name of the model are the same. We call the menu the 

Items in this menu that create plots are all discussed in the 
main text; look in the index under Regression menu. 

A.l l  ADDING STATISTICS TO A DATA SET 

Most of the statistics computed from the fit of a model that have a value 
for each case in the data can be added to the data set using an item in the 
model’s menu. For example, suppose the regression of on T, is named 
Ll .  From the “L1” menu, select the item “Add to dataset,” and in the resulting 
menu select This will save the residuals as a variable called 
L1. in the dataset. 

A.12 SOME USEFUL FUNCTIONS 

Several functions are provided that will help manipulate data. All of these 
functions require typing, and they can be used with the “Add a variate” menu 
item. 

Repeating a Value. The function is used to create a list of values 
that are all identical. For example, 

1 1  1 1  1 1  1 1  1) 

Generating a Patterned List. The function g l ,  which is short for generate 
levels, can be used to generate a patterned list of numbers. The function takes 
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two or three arguments, b,  and if n is not supplied, it is set equal to 
The function will return a list of length n of the numbers 0 to a - 1 in groups 
of size b. For example, 

2 3 12) 
(0  0 0 1 1 1  0 0 0 1 1  1) 

has generated a list of length 12 for 2 levels in groups of three. 

equally spaced numbers. Here are three examples: 
Sequences. The functions iseq and rseq can be used to generate a list of 

>( i seq  10) 

(0  1 2  3 4 5 6 7 
>(iseq 1 10) 
(1 2 3 4 5 6 7 8 
>(rseq 0 1 11) 
(0 0.1 0.2 0.3 0 

8 9 )  

9 10) 

4 0.5 0 6 0  7 0.8 0.9 1) 

Cut. The cut function is used to cut a continuous predictor into a few 
discrete values. For example, (cut x 4 )  returns a list the same length as x, 

with all values equal to 0 for values in the lower quartile of x, 1 for the next 
quartile, 2 for the third quartile, and 3 for the upper quartile. The can be 
replaced by any positive integer bigger than 1 .  (cut x ’ ( 2.1 9 ) ) returns a list 
the same length as x, with all values equal to 0 for values in smaller than 
or equal to 2.1; all values equal to 1 for values between 2.1 and 9; and all 
values equal to 2 for all other values. (cut x (“At1  “B’I 

“C”)  ) returns a list the same length as with all values equal to “A” for 
values smaller or equal to 2.1, “B” for all x values between 2.1 and 9, and 
“C” for all other values. (cut x 4 :values #‘mean) returns a list the same 
length as x, with all values less than the first quartile equal to the mean of the 
values less than the first quartile, values between the first and second quartile 
equal to the mean of those numbers, and so on. Generally, if the keyword 
:values is the name of a function like #‘mean or #‘median, then that func- 
tion is applied to all the values in the group and used as the value for the 
group. 

Recode. The function recode is used to replace a character list by a numeric 
list. For example, if has all values equal to “F” or “M,” then (recode 

will return a list the same length as x, with all the “F” replaced by 0 and all 
the “M’ replaced by 1 .  Values are assigned to the levels of by alphabetizing 
the levels. 

The function recode-value can be used to change a specific value in a 
list x to something else. For example, (recode-value x 3 300) will return 
a list like x with all values of x = 3 changed to 300 and all other values un- 

changed. 

(2 .1  9 )  :values 
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The function is used to recode many values at once. For 
example, 

3 4 )  ‘ ( 0  0 0 

will return a list like x ,  with all values of 1, 2, or 3 replaced by 0 and all values 
of 4 replaced by 1. 

Truncation. The function returns a list with all values 
that pass a test set equal to zero. For example, 0) re- 
places all values of less than 0 by 0. 0 - 
replaces all values of less than 0 by - 10, while 

replaces all values of greater than 0 by 10. The keyword can have the 
values ’ I or In addition, it 
can be the name of any function of two arguments that evaluates to true 
or nil. 

Paste. The function can be used to combine several variables into a 
single text variable. For example, suppose the variable Variety is a text variable 
giving the name of the variety of soybeans used in a particular observation, 
with values like “Heifeng,” “Champion,” and so on, and the variable Year 
gives the year in which that observation was taken, either 1994 or 1995. The 
command 

” - ” )  

would return a list with elements like “Heifeng- 1994.” The default separator 
is a blank space. 

Case Indicator. This function requires two arguments, a case number j and 
length n. It returns a list of n zeros, except the j th  element is 1. For example, 
remembering that case numbers always start at zero, we have 

0 0 1 0  0 0) 

Polar Coordinates. Four functions are available for working with polar 
coordinates. If and y are two lists of rectangular coordinates, then the 
corresponding polar coordinates are the radii r = (x2 + y2)’/2 and angles 
0 = arctan(y/x). The command returns r .  The com- 
mand returns 0, and the command 

returns ( r ,0 ) .  Finally, the command r returns 

k Y ) .  
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A.12.1 Getting Help 

Help is available for most dialogs from a button on the dialog. Help can also 
be obtained for any function and for most methods using the “Help” item in 
the Arc menu. For example, to get help about the method, type 
: in the help dialog. If available, help will be displayed in another 
dialog. 

To get help about all functions that include in their name, type 

- 

To get help with the CDF of a t-distribution, enter in the help dialog. 
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Display active predictors, 452 
Display actual bandwidth, 564 
Display screen coordinates, 192, 390, 

Display std. active predictors, 457 
Display summary statistics, 504, 564 
Extract 2D plot, 194 

Extract axis, 192, 194 
Extract mean, 54, 189, 375 
Extract uncorrelated 2D plot, 418 

Find normalizing transformation, 503, 

Find normalizing transformations, 

Fit by marked group, 565 

Fit by marks, 241,499, 564 
Fit by marks-equal intercept, 296 
Fit by marks-general, 224, 296 
Fit by marks-parallel, 295 

Fit new model with adjusted response, 

focus on a plot, 566 
Greg methods, 45045  1, 454, 

457459,521 
Home, 191, 196, 390,423 
Jitter slidebar, 498 
Join points, 83, 565 
lowess, 42 
lowess+-SD, 52, 565 

Mean+-SD, 403 
Model checking plot, 5 14 
Move to horizontal, 192 
Nonparametric smoother, 565 
NumBins, 563 
0 to e(OIH), 196-198, 261, 326,428, 

413,420 

533 

327,433, 519 

384 

OLS, 110 

Options, 45, 51, 68, 77, 85, 136, 201, 

parametric smoother, 565 
parametric smoother slidebar, 188 

Pitch, 187, 196, 390, 423, 508 
polynomials on 3D plots, 188 
Power curve, 319, 374 
Quadratic in ‘rest’ residuals, 457 
Recall home, 187 

Recall logistic (H,V), 506 
Recall logistic (H,V,O), 508 

Recall OLS, 421 
Recall view, 187 

RecalYExtract, 187-1 88, 19 1-1 92, 

498,565 

194,413,418,420421,424, 506, 

508 

434,508,565 
Rem lin trend, 194-196, 202, 326, 

Remember view, 187,418 

removing from a plot, 82 
Rescale plot for each slice, 418 

Response, 458 
Restore all, 142 
Rock, 187 

Roll, 187 
Rotate to OLS, 424 
scaling, 191 
Show anova, 566 
Show axes, 188 

Show residuals, 190 
SliceSmooth, 42 
Start with selected predictors, 460 

Symbol palette, 89, 564 
Transformation, 327, 433, 519, 533, 

Transformation slidebar, 85, 565 

Update Ceres, 386-387 
Variance terms, 348 
Yaw, 187, 191-192, 194 
Zero line, 202, 565 

Zoom to normal size, 188 
zooming, 188 

Add arbitrary function, 189 
Brushing mode, 33 
Depth cuing, 188 
Display case labels, 90 

566 

Plot menu 

434,508 Displa; data, 364 
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Faster, 187 

Focus on selection, 4 1, 49, 83 

Hide plot controls, 82 

Labels, 88 

Mouse mode, 32, 88-89, 187, 364 

Options, 186 

Remove selection, 49, 83, 142, 566 

Rescale plot. 49, 83, 142 

Resize brush, 33, 90 

Save to file, 554 

Selecting mode, 32 

Show all, 41, 83, 142 

Show coordinates, 32, 55, 88, 364 

Show labels, 88, 142, 367 

Slicing mode, 32, 57 

Slower, 187, 413 

Unlink view, 88, 564 

White background, 186 

aspect ratio, 81 
focusing, 81 

plotting region, 190 

removing a linear trend, 194 

with nonlinearly related predictors, 

Plot 

422 

Point marking, 89, 241 

Points 

colors, 89 
symbols, 89 

Poisson distribution, 526, 540 

Poisson regression, 532-539 

Polar coordinates, 569 

Polynomial regression, 148-15 1 
Pop-up menu, 11 ,  564 

Population correlation coefficient, 62 

Population covariance, 60 

Population mean, 13, 20 

Population quantile, 15 
Population standard deviation, 13 

Population variance, 13, 20 

Power curve(s), 319-320, 373-375 

Power of the outlier r-test, 363 

Power transformations, 84-88, 375 

Prediction, 4, 117-1 18 

standard error, 128 

weighted least squares, 209 
Predictor variables, 4 

Principal Hessian directions, 407, 

461462 

Printing 

graphs, 554 

results, 553-554 

Probability mass function, 473 

Probability plot, 90-9 1 

Probit, 490 
Probit regression, 490 

Profile log-likelihood, 330 

Projections, 192 

Proportion of variability explained, 106 

Pure error, 2 15, 290, 297 

Quantiles 

notation, 15 

Quartiles, 9 

Quitting, 554 

QQ-plot, 92 

106, 165, 181, 236 

Random vector, 172- I73 

Randomized complete block design, 

389, 395 

RANDU, 199 

Regression, 4 

Regression coefficients, 230-256 

Regression menu 

Add to dataset, 567 

AVP-3D, 250 

Ceres plot-2D, 378 

Ceres plot-3D, 390 

Choose response transform, 323, 331 

Confidence regions, 250, 255 

Display case names, 90 

Display estimates, 18 1 

Display fit, 357, 367 

Display variances, 158, 176 
Examine submodels, 271, 276, 306, 

Model checking plots, 530 

Nonconstant variance plot, 347 

Prediction, 128, 160, 164 

Probability plot of, 92 

Residual plots, 344 

in stepwise methods, 281 

AVP-All 2D, 247, 367 

484485,487,489,535-536 

Regression through the origin, 12 1, 134, 

Remarkable result, 432, 435 

Removable nonadditivity, 333 

167-1 68 
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Removing terms 

mean function, 264-265 

variance function, 265 

Reparameterization, 232 
Replicate observation, 2 14 

Residual plot, 202, 337-342, 397, 512 

3D, 355 

examples, 340 

testing for curvature, 343-345 
testing for nonconstant variance, 346 

Residual plots, 403 
Residual sum of squares, 125 

Residual sum of squares function, 103, 

Residuals, 102, 334-343, 360-361, 396 

studentized, 360 

Response 

categorical, 468 

Response plot, 3 17 
3D, 414 

Response surface, 389 

Response transformations, 3 16-333 

Response variable, 4 

Robust regression, 129 

125, 154 

Sample mean, 8, 20 

Sample median, 9 

Sample quantile, 9, 15 
Sample quartile, 10 

Sample standard deviation, 8 
Sample variance, 8, 20 
Sampling distribution, 237 

Sampling distribution of the mean, 18 

Saturated model, 485 
SAVE, 442, 461 
Saving 

plots, 554 

results, 553-554 
Scalar, 169 

Scaled power transformation, 84, 3 19, 

Scaling 

322, 326 

aaa, 191 
abc, 190-191 

zooming, 145 
Scatterplot matrix, 140-145, 321 

Scatterplots, 3 1, 8 1-96 
Scientific notation, 109 

Score test 

Selection 

Sequential analysis of deviance, 484 
Sequential ANOVA, 27 1-272 

Settings menu, 563 
Significance level, 20 

Simple linear regression, 97-132 

SIR, 441-442 

Skewed, 12 

Slice window, 41 

Sliced average variance estimation, 442, 

Sliced inverse regression, 441-442 

Slicing, 41, 470 

to check a summary plot, 417 

Slidebars, 1 1, 563 

Smooth, 34 
Smoother slidebar, 42, 45 

Smoothing, 40-44 

Smoothing parameter, 43 

Spatial trends, 389 

Spreadsheets, 555 

Standard bivariate normal, 
Standard deviation function, 28 

Standard error, 20, 107 

Standard normal, 15 

Standardized variables, 63 

Statistical model, 97 

Stepwise regression, 275-283 

Structural dimension, 414 
Studentization, 360 

Studentized residuals, 360, 363, 514 

Submodels, 263 

Subsampling, 2 17 

Sufficient summary plot, 41 1, 419 
Sum of squares 

nonconstant variance, 354 

extending, 41 

46 1 

transformations and, 375 

lack-of-fit, 216 

pure error, 215 

Summary plot, 412418, 430, 434 

Summary statistics, 7-10 

Symbol palette, 89 

f-statistic, 20 

Terms, 139, 145-147 
Text window, 545 
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3D plot, 185-201 

controls, 187 

extracting 2D plots, 191 

how it works, 191-194 
scaling and centering, 19&191 
uncorrelated variables, 196-1 98 

3D view, 412 

Tolerance, 490 
Tolerance distribution, 490 

Transformation, 83 

arcsine square-root, 3 18 

binary regression, 509-5 12 

Box-Cox method, 321-324, 326, 

folder power family, 330 
modified power, 323 
modulus family, 330 

parameter, 53 1-532 
predictor, 373-395 

response, 3 16-333 
scaled power, 322, 374 
smoothing, 375 

to linearity, 3 17-320 

to normality, 316317, 324 

variance stabilizing, 317, 331 
via smoothing, 375 

Transformation slidebar 

adding to a plot, 85 
Tukey’s test, 343-344 

Two-factor interactions, 301 

329-330.433, 519 

Unbiased, 5 1, I06 

Uncorrelated 2D view, 418 

Unix, 548 

Updating formula, 368 

Upper outer values, 13 

Variables 

Variance 

Variance components, 2 17 

Variance function, 28, 36-37, 75, 202 

uncorrelated, 197 

marginal, 75 

checking, 401-403 

estimation, 47 

Variance inflation, 234 

Variance of a sample mean, 19 
Variance smooths, 52 

Vector, 168 

Vertical screen axis, 186 
Visual regression 

checking, 417 

Wald test 

Wald test statistic, 114 

Web address, 545 

Weighted least squares, 204-2 10, 

logistic regression, 480 

219-220,269,273 
predictions, 209 

Windows OS, 547 

Window Menu 

Window width, 41 
Windows. 547 

Xlisp-Stat, 545 

Zero dose, 298 
Zooming, 188 

scatterplot matrices, 145 


