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Preface

It is not your duty to complete the work,
But neither are you free to desist from it.
R. Tarphon, Sayings of the Fathers.

One of the questions that intrigued me in the 1950s was to find conditions
for an embedding of a non-commutative ring in a skew field to be possible.
I felt that such an embedding should exist for a free product of skew fields,
but there seemed no obvious route. My search eventually led to the notion
of a free ideal ring, fir for short, and I was able to prove (i) the free product
of skew fields (amalgamating a skew subfield) is a fir and (ii) every fir is
embeddable in a skew field. Firs may be regarded as the natural generalization
(in the non-commutative case) of principal domains, to which they reduce when
commutativity is imposed. The proof of (i) involved an algorithm, which when
stated in simple terms, resembled the Euclidean algorithm but depended on a
condition of linear dependence. In this form it could be used to characterize
free associative algebras, and this ‘weak’ algorithm enables one to develop a
theory of free algebras similar to that of a polynomial ring in one variable. Of
course free algebras are a special case of firs, and other facts about firs came to
light, which were set forth in my book Free Rings and their Relations (a pun
and a paradox). It appeared in 1971 and in a second edition in 1985. A Russian
translation appeared in 1975.

More recently there has been a surprising increase of interest, in many fields
of mathematics, in non-commutative theories. In functional analysis there has
been a greater emphasis on non-commutative function algebras and quantum
groups have been introduced in the study of non-commutative geometry, while
quantum physics uses non-commutative probability theory, in which even free
associative algebras have made their appearance. The localization developed
in Free Rings has also found a use by topologists. All this, and the fact that
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xii Preface

many proofs have been simplified, has encouraged me to write a book based
on the earlier work, but addressed to a wider audience. Since skew fields play
a prominent role, the prefix ‘skew’ will often be left out, so fields are generally
assumed to be not necessarily commutative.

The central part is Chapter 7, in which non-commutative localization is
studied. For any ring R the various homomorphisms into fields are described
by their singular kernels, the matrices with a singular image, which form a
resemblance to prime ideals and so are called prime matrix ideals. Various
classes of rings, such as firs and semifirs, are shown to be embeddable in fields,
and an explicit criterion is given for such an embedding of a general ring to be
possible, as well as conditions for a universal field of fractions to exist. This is
the case for firs, while for free algebras the universal field of fractions can be
shown to be ‘free’. The existence of the localization now has a simpler and more
direct proof, which is described in Sections 7.1-7.4. It makes only occasional
reference to earlier chapters (mainly parts of Chapter 0) and so can be read at
any stage.

In the remaining chapters the theory of firs is developed. Their similarity
to principal ideal domains is stressed; the theory of the latter is recalled in
Chapter 1, while Chapter O brings essential facts about presentations of modules
over general rings, particularly projective modules, facts that are perhaps not as
well known as they should be. Chapter 2 introduces firs and semifirs and deals
with the most important example, a ring possessing a generalized form of the
division algorithm called the weak algorithm. The unique factorization property
of principal ideal domains has an analogue in firs, which applies to square
matrices as well; this result and its consequences for modules are discussed in
Chapter 3. It turns out that the factors of any element form a modular lattice
(as in principal ideal domains), which in the case of free algebras is even
distributive; this result is the subject of Chapter 4. In Chapter 5 the module
theory of firs and semifirs is studied; this leads to a wider class of rings, the
Sylvester domains (characterized by Sylvester’s law of nullity), which share
with semifirs the property of possessing a universal field of fractions. Chapter 6
examines centres, centralizers and subalgebras of firs and semifirs.

Results from lattice theory, homological algebra and logic that are used in the
book are recalled in an Appendix. Thus the only prerequisites needed are a basic
knowledge of algebra: rings and fields, up to about degree level. Although much
of the work already occurs in Free Rings, the whole text has been reorganized to
form a better motivated introduction and there have been many improvements
that allow a smoother development. On the other hand, the theory of skew field
extensions has been omitted as a fuller account is now available in my book
on skew fields (SF; see p. xv). The rather technical section on the work of



Preface xiii

Gerasimov, leading to information on the localization of n-firs, has also been
omitted.

I have had the help of many correspondents in improving this edition, and
would like to express my appreciation. Foremost among them is G. M. Bergman,
who in 1999-2000 ran a seminar at the University of California at Berkeley
on the second edition of Free Rings, and provided me with over 300 pages
of comments, correcting mistakes, outlining further developments and raising
interesting questions. As a result the text has been greatly improved. I am also
indebted to V. O. Ferreira for his comments on Free Rings.

My thanks go also to the staff of the Cambridge University Press for the
efficient way they have carried out their task.

University College London
October 2005 P. M. Cohn



Note to the reader

Chapter O consists of background material from ring theory that may not be
entirely standard, whereas the Appendix gives a summary of results from lattice
theory, homological algebra and logic, with reference to proofs, or in many
cases, sketch proofs. Chapter 1 deals with principal ideal domains, and so may
well be familiar to the reader, but it is included as a preparation for what is
to follow. The main subject matter of the book is introduced in Chapter 2 and
the reader may wish to start here, referring back to Chapters 1 or 0 only when
necessary. In any case Chapter 2 as well as Chapter 3 are used throughout the
book (at least the earlier parts, Sections 2.1-2.7 and 3.1-3.4), as is Chapter 5,
while Chapters 4 and 6 are largely independent of the rest. The first half of
Chapter 7 (Sections 7.1-7.5) is quite independent of the preceding chapters,
except for some applications in Section 7.5, and it can also be read at any
stage.

All theorems, propositions, lemmas and corollaries are numbered consec-
utively in a single series in each section, thus Theorem 4.2.5 is followed by
Corollary 4.2.6, and this is followed by Lemma 4.2.7, in Section 4.2, and in
that section they are referred to as Theorem 2.5, Corollary 2.6, Lemma 2.7
(except in the enunciation). The end or absence of a proof is indicated by .
A few theorems are quoted without proof. They are distinguished by letters,
e.g. Theorem 7.8.A. There are exercises at the end of each section; the harder
ones are marked * and open-ended (or open) problems are marked °, though
sometimes this may refer only to the last part; the meaning will usually be
clear.

References to the bibliography are by author’s name and the year of publica-
tion, though 19 is omitted for publications between 1920 and 1999. Publications
by the same author in a given year are distinguished by letters. The follow-
ing books by the author, which are frequently referred to, are indicated by
abbreviations:
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CA. Classic Algebra. John Wiley & Sons, Chichester 2000.

BA. Basic Algebra, Groups, Rings and Fields. Springer-Verlag, London 2002.

FA. Further Algebra and Applications. Springer-Verlag, London 2003.

SF. Skew Fields, Theory of General Division Rings. Encyclopedia of Mathematics and
its Applications, 57. Cambridge University Press, Cambridge 1995.

UA. Universal Algebra, rev. edn. Mathematics and its Applications, Vol. 6. D. Reidel,
Publ. Co., Dordrecht 1981.

IRT. Introduction to Ring Theory. Springer Undergraduate Mathematics Series.
Springer-Verlag, London 2000.

FR.1. Free Rings and their Relations. London Math. Soc. Monographs No. 2. Academic
Press, New York 1971.

FR.2. Free Rings and their Relations, 2nd edn. London Math. Soc. Monographs No. 19.
Academic Press, New York 1985.



Terminology, notation and conventions used

For any set X, the number of its elements, or more generally, its cardinality is
denoted by | X |. If a condition holds for all elements of X except a finite number,
we say that the condition holds for almost all members of X.

All rings occurring are associative, but not generally commutative (in fact,
much of the book reduces to well-known facts in the commutative case). Every
ring has a unit-element or one, denoted by 1, which is inherited by subrings,
preserved by homomorphisms and acts as the identity operator on modules.
The same convention applies to monoids (i.e. semigroups with one). A ring
may consist of 0 alone; this is so precisely when 1 = 0 and R is then called the
zero ring. Given any ring R, the opposite ring R? is defined as having the same
additive group as R and multiplication a.b = ba (a, b € R). With any property
of aring we associate its left-right dual, which is the corresponding property of
the opposite ring. Left-right duals of theorems, etc. will not usually be stated
explicitly.

We shall adopt the convention of writing (as far as practicable) homomor-
phisms of left modules on the right and vice versa. Mappings will be composed
accordingly, although we shall usually give preference to writing mappings on
the right, so that fg means ‘first f, then g’. If R is any ring, then for any left
R-module M, its dual is M* = Homg (M, R), a right R-module; similarly on
the other side. The space of m x n matrices over M is written "M", and we
shall also write "M for "M (column vectors) and M" for 'M™ (row vectors).
A similar notation is used for rings.

In any ring R the set of non-zero elements is denoted by R *, but this notation
is mostly used for integral domains, where R* contains 1 and is closed under
multiplication. Thus an integral domain need not be commutative. If R* is a
group under multiplication, R is called a field; occasionally the prefix ‘skew’ is
used, to emphasize the fact that our fields need not be commutative. An element
u in a ring or monoid is invertible or a unit if it has an inverse u~" satisfying

XVvi



Terminology, notation and conventions used XVii

uu~" = u~'u = 1. Such an inverse is unique if it exists at all. The units of

a ring (or monoid) R form a group, denoted by U(R). The ring of all n x n
matrices over R is written 9,(R) or R,. The set of all square matrices over
R is denoted by 9(R). Instead of U(R,) we also write GL,(R), the general
linear group. The matrix with (i, j)-entry 1 and the rest zero is denoted by
e;j and is called a matrix unit (see Section 0.2). An elementary matrix is a
matrix of the form B;;(a) =1+ ae;;, where i # j; these matrices generate a
subgroup E,(R) of GL,(R), the elementary group. By a permutation matrix we
understand the matrix obtained by applying a permutation to the columns of the
unit matrix. It is a member of the extended elementary group E;(R), the group
generated by E,(R) and the matrix I — 2¢y;. If in a permutation matrix the
sign of one column is changed whenever the permutation applied was odd, we
obtain a signed permutation matrix; these matrices generate a subgroup P,(R)
of E,(R).

An element u of a ring is called a left zero-divisor if u # 0 and uv = 0 for
some v # 0; of u is neither O nor a left zero-divisor, itis called right regular. Thus
u is right regular whenever uv = 0 implies v = 0. Corresponding definitions
hold with left and right interchanged. A left or right zero-divisor is called a
zero-divisor, and an element that is neither O nor a zero-divisor is called regular.
These terms are also used for matrices, not necessarily square. Over a field a
square matrix that is a zero-divisor or O is also called singular, but this term
will not be used for general rings.

An element u of a monoid is called regular if it can be cancelled, i.e. if
ua = ub or au = bu implies a = b. If every element of a monoid S can be
cancelled, S is called a cancellation monoid. A monoid is called conical if
ab = 1 implies a = 1 (and so also b = 1).

An element of a ring is called an arom if it is a regular non-unit and cannot
be written as a product of two non-units. A factorization is called proper if
all its factors are non-units; if all its factors are atoms, it is called a complete
factorization. An integral domain is said to be atomic if every element other than
zero or a unit has a complete factorization. If a, b are elements of a commutative
monoid, we say that a divides b and write a|b if b = ac for some element c.

The maximum condition or ascending chain condition on a module or the left
or right ideals of a ring or a monoid is abbreviated as ACC. If a module satisfies
ACC on submodules on at most n generators, we shall say that it satisfies ACC,,.
In particular, left (right) ACC, for a ring R is the ACC on a n-generator left
(right) ideals of R. A module (or ring) satisfying ACC,, for all n is said to satisfy
pan-ACC. Similar definitions apply to the minimum condition or descending
chain condition. DCC for short.



XVviii Terminology, notation and conventions used

Two elements a, b of aring (or monoid) R (or matrices) are associated ifa =
ubv for some u, v € U(R). If u = 1 (v = 1), they are right (left) associated; if
u = v~!, they are conjugate under U (R). A polynomial in one variable (over any
ring) is said to be monic if the coefficient of the highest power is 1. Two elements
a, b of aring R are left coprime if they have no common left factor apart from
units; they are right comaximal if aR + bR = R. Clearly two right comaximal
elements are left coprime, but not necessarily conversely. Two elements a, b
are said to be right commensurable if there exist a’, b’ such that ab’ = ba’ # 0.
Again, corresponding definitions apply on the other side. A row (ay, ..., a,) of
elements in R is said to be unimodular if the right ideal generated by the a; is
R; thus a pair is unimodular precisely when it is right comaximal. Similarly, a
column is unimodular if the left ideal generated by its components is R.

Let A be a commutative ring; by an A-algebra we understand a ring R
which is an A-module such that the multiplication is bilinear. Sometimes we
shall want a non-commutative coefficient ring A; this means that our ring R is
an A-bimodule such that x(yz) = (xy)z for any x, y, z from R or A; this will
be called an A-ring. To rephrase the definitions, a A-ring is a ring R with a
homomorphism « — «.1 of A into R, while an A-algebra is a ring R with a
homomorphism of A into the centre of R. Moreover, the use of the term ‘A-
algebra’ implies that A is commutative. Frequently our coefficient ring will be
a skew field, usually written K, or also £ when it is assumed to be commutative.

Let R be an A-ring. A family (u;) of elements of R is right linearly dependent
over A or right A-dependent if there exist A; € A almost all but not all zero, such
that > u;A; = 0. In the contrary case (u;) is right A-independent. Occasionally
we speak of a set being linearly dependent; this is to be understood as a family
indexed by itself. For example, two elements of an integral domain R are right
commensurable if and only if they are right linearly R-dependent and both
non-zero.

. . A 0 .
If A, B are matrices, we write (0 B) as A @ B or diag(A, B). We shall

also sometimes write columns as rows, with a superscript T to indicate trans-

position (reflexion in the main diagonal). In such cases the blocks are to be
T

BT
matrix A its index i(A) is defined as n — m, and m X n, or n in case m = n, is
described as its size or order.

The letters N, N.¢, Z, F,, Q, R, C stand as usual for the set (respectively
ring) of non-negative integers, all positive integers, all integers, all integers mod
p, rational, real and complex numbers, respectively. If T C S, the complement
of T in § is written S\T .

A
transposed as a whole, thus (A, B)T means <B ), not < > For any m x n
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In a few places in Chapter 7 and the Appendix some terms from logic are
used. We recall that a formula is a statement involving elements of a ring or
group. Formulae can be combined by forming a conjunction PAQ (P and Q),
a disjunction PV Q (P or Q) or a negation =P (not P). A formula that is not
formed by conjunction, disjunction or negation from others is called atomic.
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(Notation that is either standard or only used locally has not always been

included.)
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R*
U(R)
RO
M, (R), R,
M"
MI
MD
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0

Generalities on rings and modules

This chapter collects some facts on rings and modules, which form neither
part of our subject proper, nor part of the general background (described in
the Appendix). By its nature the content is rather mixed, and the reader may
well wish to begin with Chapter 1 or even Chapter 2, and only turn back when
necessary.

In Section 0.1 we describe the conditions usually imposed on the ranks of
free modules. The formation of matrix rings is discussed in Section 0.2; Section
0.3 is devoted to projective modules and the special class of Hermite rings is
considered in Section 0.4.

Section 0.5 deals with the relation between a module and its defining matrix,
and in particular the condition for two matrices to define isomorphic modules.
This and the results on eigenrings and centralizers in Section 0.6 are mainly
used in Chapters 4 and 6.

The Ore construction of rings of fractions is behind much of the later devel-
opment, even when this does not appear explicitly. In Section 0.7 we recall the
details and apply it in Section 0.8 to modules over Ore domains; it turns out
that the (left or right) Ore condition has some unexpected consequences. In
Section 0.9 we recall some well-known facts on factorization in commutative
rings, often stated in terms of monoids, in a form needed later.

0.1 Rank conditions on free modules

Let R be any ring, M an R-module and / a set. The direct power of M with
index set / is denoted by M, while the direct sum is written M), When I
is finite, with n elements, these two modules agree and are written as M", as
usual. More precisely, M" denotes the set of rows and "M the set of columns of
length n.



2 Generalities on rings and modules

With every left R-module M we can associate its dual
M* = Homg(M,gR),

consisting of all linear functionals on M with the natural right R-module struc-
ture defined by (ac, x) = («, cx), where x € M, € M* and ¢ € R. Similarly,
every right R-module N has as dual the left R-module N* = Homg (N, Rg).
In particular, (R")* =Z "R, ("R)* = R"; more generally, if P is a finitely gen-
erated projective left R-module, then P* is a finitely generated projective
right R-module and P** = P. Forif P & Q = R", then P*® Q* = "R and
P @ Q" = R". Now the obvious map §p : P — P**, which maps x € P to
X f — (f, x)is an isomorphism, because ép ® 5p = 1.

Let R be any ring and M a left R-module with a minimal generating set X.
If X is infinite, then any generating set of M has at least | X| elements, and
in particular, any two minimal generating sets of M have the same cardinality.
However, when X is finite, this need not be so, thus a free module on a finite free
generating set may have minimal generating sets of different sizes. We shall
say that R" has unique rank if it is not isomorphic to R” for any m # n. Using
the pairing provided by * we see that R” has unique rank if and only if "R has
unique rank. For any free module F of unique rank n we write n = rk(F).

A ring R is said to have the invariant basis property or invariant basis
number (IBN) if every free R-module has unique rank. Most rings commonly
encountered have IBN, but we shall meet examples of non-zero rings where
this property fails to hold.

Occasionally we shall need stronger properties than IBN. A ring R is said
to have unbounded generating number (UGN) if for every n there is a finitely
generated R-module that cannot be generated by n elements. Since any n-
generator module is a homomorphic image of a free module of rank #, it follows
that in a ring with UGN a free module of rank » cannot be generated by fewer
than n elements, and this condition characterizes rings with UGN. It also shows
that UGN implies IBN.

A ring R is said to be weakly n-finite if every generating set of n elements
in R" is free; if this holds for all n, R is called weakly finite (WF). Weakly
1-finite rings are sometimes called ‘directly finite’, ‘von Neumann finite’ or
‘inverse symmetric’. As an example of weakly finite rings we have projective-
free rings, where a ring is called projective-free if every finitely generated
projective module is free, of unique rank.

Let R be any non-zero ring and suppose that R” has a generating set of m
elements, for some m, n > 1. Then we have a surjection R — R”, giving rise
to an exact sequence

0—-K—R"— R"—=0.
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Since R" is free, the sequence splits and so R” = R" @ K. This shows that the
three properties defined here may be stated as follows:

IBN. For all m, n, R™ = R" implies m = n.
UGN. For allm,n, R™ = R" & K impliesm > n.
WE. For all n, R" = R" & K implies K = 0.

By describing the change of basis, we can express these conditions in matrix
form:

IBN. For any A € "R",B € "R",if AB=1,,, BA =1, thenm = n.
UGN. Forany A € "R",B € "R", if AB = I, then n > m.
WE. Forany A, B € R",if AB =1,then BA =1.

We see that aring has IBN if and only if every invertible matrix has index zero; it
has UGN if and only if every matrix with a right inverse has non-negative index,
and it is weakly finite if and only if all inverses of square matrices are two-sided.
The UGN condition can also be defined in terms of the rank of a matrix, which
over general rings is defined as follows. Given any matrix A, of the different
ways of writing A as a product, A = PQ, we choose one for which the number
of rows of Q is least. This number is called the inner rank of A, written p(A)
or pA, and the corresponding factorization of A is called a rank factorization.
For matrices over a field this notion of rank reduces to the familiar rank; now
we observe that a ring has UGN if and only if the inner rank of any n x n unit
matrix is 7. Such a matrix is said to be fu/l. Thus a matrix is full if and only if it
is square, say n x n, and cannot be written as a productof ann x r by anr x n
matrix, where r < n. We note that every non-zero element (in any ring) is full
as a 1 x 1 matrix, and the unit matrix of every size is full precisely if the ring
has UGN. Over a field the full matrices are just the regular matrices (see Section
5.4), but in general there is no relation between full and regular matrices.

Either set of the above conditions makes it clear that the zero ring is weakly
finite, but has neither IBN nor UGN. For a non-zero ring,

WF = UGN = IBN,

andif aring R has any of these properties, then so does its opposite R°. Moreover,
if R — § is a homomorphism and $ has IBN or UGN, then so does R. Clearly
any field (even skew) has all properties; more generally this holds for any
Noetherian ring (see BA, theorem 4.6.7 or Exercise 5 below), as well as any
subring of a field. Using determinants, we see that every non-zero commutative
ring also has all three properties. Examples of rings having IBN but not UGN,
and rings having UGN but not weakly finite, may be found in Cohn [66a] or in
SF, Section 5.7 (see also Exercise 2 and Section 2.11).
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For a non-zero ring without IBN there exist positive integers %, k such that
R" = RME hk > 1. (1)

The first such pair (%, k) in the lexicographic ordering is called the type of the
ring R. We observe that for a ring R of type (1, k) R™ = R” holds if and only if
m =norm,n > hand m = n(mod k) (see, e.g. UA, Theorem X.3.2, p. 340).

Proposition 0.1.1. Let f:R — S be a homomorphism between non-zero
rings. If R does not have IBN and its type is (h, k), then S does not have
IBN and if its type is (W', k'), then h' < h, k'|k.

Here it is important to bear in mind that all our rings have a unit element, which
is preserved by homomorphisms and inherited by subrings.

Proof. By hypothesis (1) holds, hence there exist A € "R", B € "R™ sat-
isfying AB =1, BA =1, with m = h,n = h + k. Applying f we get such
matrices over S, whence it follows that $" = $"**, 5o S cannot have IBN and
h < h, Kk ]

The next result elucidates the connexion between weak finiteness and UGN.

Proposition 0.1.2. A ring R has UGN if and only if some non-zero homomor-
phic image of R is weakly finite.

Proof.  If a non-zero homomorphic image S of R is weakly finite, then S
has UGN, hence so does R. Conversely, assume that the zero ring is the only
weakly finite homomorphic image of R. By adjoining the relations Y X =1,
for all pairs of square matrices X, Y satisfying XY = I, we obtain a weakly
finite ring S. For suppose that I — AB = X{U;(I - Y; X;)V;, where X;Y; =
ILBytakingX =X ®--- @ X,,. Y =Y1&®--- @Y., U=U,...,U:),V =
V1, ..., V)T, we can write this as

I-AB=U(I-YX)V, )

and XY =1.IfA,Baren xnand X,Y are m x m,then U isn x m and V is
m x n. Suppose that n > m; on replacing X,Y by X @ L, Y @ I, respectively,
where I is the unit matrix of order n — m, and completing U, V to square
matrices by adding columns, respectively rows of zeros, we obtain an equation
(2), where all matrices are square of order . Similarly, if » < m, we can achieve
the same result by taking diagonal sums of A, B with I. Writing Z = AX +
UIl-YX),W=YB+(A-YX)V,wehave ZW =Tand ZY = A, XW =
B, hence | — BA = X(I1— WZ)Y. Therefore S is weakly finite and so must
be the zero ring. It follows that R becomes zero by adjoining a finite number
of such matrix equations, and by taking diagonal sums we obtain a single pair
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X,Y, each s x s, say, for which this happens. Thus XY = I, while the ideal
generated by the entries of I — Y X is the whole ring. Replacing each of X, Y
by a diagonal sum of an appropriate number of copies, we may assume that
there exist p € R®, g € °R such that p(I — Y X)q = 1. Therefore we have

X
(- (p(I ’ YX)> ¥ A-YX)q)

and this equation shows that UGN fails for R. [ ]

For another characterization of weak finiteness we shall need to refine the
notion of inner rank. Given a non-zero ring R, let A be any matrix over R
and consider A @ I,, the diagonal sum of A and the r X r unit matrix. Since
any factorization of A can also be used to factorize A @ I,, it follows that
p(A@ 1) < p(A)+ r. Therefore we have

p(A)yzp(Adl)—1=zp(A®L)-2=... 3)

If this sequence has a finite limit, we denote it by p*(A) and call it the stable
rank of A. An n x n matrix of stable rank 7 is said to be stably full. Thus a
square matrix A is stably full if and only if A @ I, is full for all » > 1. Hence
every stably full matrix is full, but the converse need not hold.

For a ring without UGN the unit matrix of some size is not full, say the
n X n unit matrix I, has rank n — 1. Then the sequence (3) is unbounded below
and we formally put p*(A) = —oo for every matrix A. If R has UGN, we have
p(A @ 1,) > r,soin this case the sequence (3) is bounded below by 0 and hence
has a limit; thus in any ring with UGN the stable rank of every matrix exists as a
non-negative integer. Conversely, if the stable rank exists for some matrix A, say
p*(A) = r, then for some n and all s > n, p(A @& I;) =r + s. Hence for any
t>0,r+s+t=pABL L) <p(ADIL)+ pd;,) =r + s+ p(;). Thus
p(I;) > t and this proves that R has UGN. We now have the following connexion
with weak finiteness.

Proposition 0.1.3.  For any non-zero ring R the following are equivalent:

(a) R is weakly finite,
(b) every non-zero matrix over R has a stable rank, which is positive,
(c) every non-zero idempotent matrix over R has a stable rank, which is positive.

Proof. 'We note that in each case the stable rank is finite. Now let A be any
m X n matrix over R, of stable rank ¢, say; then for some s > 0, p(A B I;) =
t +s =r, say. So we can write

A0 B )
(0 Ix) = (B’) c ), 4



6 Generalities on rings and modules

where B €™R",B’ €*R",C €¢"R",C' €¢"R*. Thus we have B'C’' =
I, BC'=0=B'C,BC = A.

To prove (a) = (b), assume that p*(A) = 0; thenr = s, so by weak finiteness,
C’'B’ =1, hence B = 0 = C and therefore A = BC = 0.

(b) = (c) is clear; to prove (c) = (a), assume that R is not weakly finite.
Then there exist B’, C' € Ry with B'C’ =1, C’'B’ # 1, so (4) holds with m =
n=r=s,A=B =C =1-C’B’, and this is a non-zero idempotent matrix
of zero stable rank. [ ]

In conclusion we note another consequence of weak finiteness.

Proposition 0.1.4. Let R be a weakly n-finite ring and let A € "R", A’ €
"R',B €"R*, B' € "R" besuchthat AB =0, AA' = 1,, B'B = I;,wherer +
s = n. Then there exists P € GL,(R) such that

A=d, 0P, B=P! (?)

Proof.  These equations just state that A constitutes the first r rows of P,
while B forms the last s columns of P~'. To prove this result, we have by

hypothesis
A , I, O
(B’) (A B)— (B,A/ IY> 9

where all the matrices are n x n. By subtracting B’ A’ times the first  rows
from the last s we reduce the right-hand side to I, so the result follows by taking
P=(A,B'E)T, P! = (A, B), where E =1— A’A. [ |

Exercises 0.1

1. Show that over a ring of type (4, k)(k > 1) every finitely generated module can
be generated by % elements. Find a bound for the least number of elements in a
basis of a finitely generated free module.

2. If K is a non-zero ring and / an infinite set, show that R = End(K?’) does not
have IBN and determine its type.

3. If every finitely generated R-module is cyclic, show that R cannot be an integral
domain; in particular, obtain this conclusion for a ring of type (1, k).

4. Aring R is said to have bounded decomposition type (BDT), if there is a function
r(n) such that R” can be written as a direct sum of at most r(n) terms. Show that
any ring with BDT is weakly finite.

5. Show that a ring with left ACC, for some n > 1 is weakly n-finite. Deduce that a
left (or right) Noetherian ring, or more generally, a ring with left (or right) pan-
ACC is weakly finite. (Recall that ‘pan-ACC’ stands for ‘ACC, for all n’.) Obtain
the same conclusion for DCC,. (Hint: See Exercise 7.10.)
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6. Let R be a non-zero ring without IBN and for fixed m, n(m # n) consider pairs
of mutually inverse matrices A € ”R", B € "R™. Show that if A’, B’ is another
such pair, then P = A’B is an invertible matrix such that PA = A’, BP~! = B’.
What is P~!'?

7. LetR be a weakly n-finite ring. Givenmapsa : R — R"and : R" — R*(r +
s = n) such that 8 = 0, o has a right inverse and 8 has a left inverse, then
there exists an automorphism p of R” such that oy : R” — R”" is the natural
inclusion and pum = B, where & : R" — R* is the natural projection. Show that
conversely, every ring with this property is weakly n-finite. (Hinz: Imitate the proof
of Proposition 1.4.)

8. Show that a ring R is weakly n-finite if and only if (F): Every surjective endomor-
phism of R" is an automorphism. If a non-zero ring R has the property (F), show
that every free homomorphic image of R” has rank at most n. Deduce that every
non-zero weakly finite ring has UGN.

9*. Which of IBN, UGN, weak finiteness (if any) are Morita invariants?

10°. Characterize the rings all of whose homomorphic images are weakly finite.

11. (Leavitt [S7]) Show that if a ring R has a non-zero free module F with no infinite
linearly independent subset, then F has unique rank.

12*. (Montgomery [83]) Let A be an algebra over the real numbers with generators
ap, a1, by, by and defining relations apby — a1by = 1, a;by + apb, = 0. Show (by
using a normal form for the elements of A) that A is an integral domain, hence
weakly 1-finite, but not weakly 2-finite. Show also that A @ C is not weakly
1-finite (see also Exercise 2.11.8).

13°. Is the tensor product of two weakly finite k-algebras again weakly finite?

14°. Is every weakly 1-finite von Neumann regular ring weakly finite?

15. Let V,,, be a k-algebra with 2mn generators, arranged as an m x n matrix A and
an n X m matrix B and defining relations (in matrix form) AB =1, BA = I (the
‘canonical non-IBN ring’ for m # n). Show that V , is a simple ring for n > 1;
what is V1 ?

16. (M. Kirezci) If V,,, is defined as in Exercise 15 and m < n, show that
there is a homomorphism V,, ,1r—my = Vinn, for any r > 0. [Hint: If
in V., A=(A], Ay), B = (B, B,)", where A, B, are square, verify that
(A", Arl_lAz, ..., Ay)and (B}, BzBf_', ..., By)T are mutually inverse.] Deduce
that V ,, for n > 1, can be embedded in V ;.

0.2 Matrix rings and the matrix reduction functor

Given a ring R, consider a left R-module which is expressed as a direct sum of
certain submodules:

M=U & --®U,. ()
Let m;: M — U; be the canonical projections and u; :U; - M the
canonical injections, for i =1,...,n. Thus (xy,...,xX,)T = X;, XQu; =
O, ..., x,...,0) with x in the ith place and 0 elsewhere. Clearly we have

Wi = 8;j, )
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where § is the Kronecker delta: §;; = 1if i = j and 0 otherwise. Further,

Zni,u,- =1. (3)

With each endomorphism f* of M we can associate a matrix (f;;), where f;; :
U; — U, is defined by

fij=wifrm;. 4

Similarly, any family of homomorphisms f;; : U; — U; gives rise to an endo-
morphism f of M defined by

f=ZJTifiij- ®)

These two processes are easily seen to be mutually inverse and if we add
and multiply two families (f;;) and (g;;) ‘matrix fashion’: (f + g)i; = fij +
8ij» (f8)ix = Xfij& k. the correspondence is an isomorphism, so that we have

Theorem 0.2.1. Let R be any ring. If M is a left R-module, expressed
as a direct sum as in (1), then each element f of Endgr(M) can be writ-
ten as a matrix (fi;) where fi; : Up — U;, is obtained by (4) and in turn
gives rise to an endomorphism of M by (5), and this correspondence is an
isomorphism. |

In the particular case where all summands are isomorphic, we have M = U"
and so we find

Corollary 0.2.2. Let A be a ring, U a left A-module and R = End,(U). Then
for any n > 1 we have

Ends(U") = M, (R). m (6)

The matrix ring 9, (R) in (6) is also denoted by R,,. Let us consider it more
closely. Writing e;; = m; 4 j, we obtain from (2) and (3) the equations

ejjex = dkey, ey =1. (7N

The ¢;; are just the matrix units and the matrix ring R, may be defined as the ring
generated by R and n? elements ¢;;(i, j = 1, ..., n) satisfying the conditions
(7) and ae;; = e;ja for all a € R. The general element of R, is then uniquely
expressible as ) a;;e;; (a;j € R). In fact matrix rings are characterized by (7),
which gives a decomposition of 1 in R into n idempotents: 1 = ej; +--- +

enn .

Theorem 0.2.3. Let S be any ring with n* elements e;; satisfying the equations
(7). Then S = M, (R), where R is the centralizer of all the e;;.
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Proof. Foreacha € S we define a;; = ZV eyaej,; then it is easily checked
thata;; € Randa = Zij a;je;j. Now the correspondence a < (a;;) is seen to
be an isomorphism: S = R,,. |

Using the language of categories, we can say that the process of forming
the n x n matrix ring is a functor from Rg, the category of rings, to Rg,, the
category of n x n matrix rings: to eachring R corresponds the matrix ring R,, and
to each ring homomorphism f : R — § there corresponds the homomorphism
from R, to S, obtained by applying f to the separate matrix entries; conversely,
any homomorphism R,, — §, arises in this way from a homomorphism R — S,
because R is characterized within R, as the centralizer of the ¢;;. Moreover,
every object T in Rg, is of the form 90, (C), where C is the centralizer of the ¢;;
in T. This shows the functor 21, to be a category equivalence (BA, Proposition
3.3.1 or Appendix B below). Thus we have proved

Theorem 0.2.4. The matrix functor M, establishes an equivalence between
the categories Rg and Rg,, for any n > 1. [ ]

Of course this is just an instance of the well-known Morita equivalence (see
Appendix B). Given a left A-module U with endomorphismring R = End4(U),
when we considered U” as an A-module, its endomorphism ring turned out to be
R,.Butwe can also consider U" as an A,-module; in that case its endomorphism
ring, i.e. the centralizer of A, in End(U"), is the centralizer of the matrix basis
{e;j}in R, i.e. R itself. Thus we have

End, (U") = R. ®)

In the two cases (6) and (8), U" may be visualized as consisting of row vectors
and column vectors, respectively, over U. We shall distinguish these cases by
writing the set of column vectors as "U and the set of row vectors as U". More
generally, we denote by "U" the set of all m x n matrices with entries in U,
and omit reference to either of m or n equal to 1. For aring R, R, is just "R",
considered as a ring. We shall also allow m or n to be 0. Thus °U" is the set
of matrices with no rows and n columns; there is one such matrix for each n
(including n = 0). Similarly for "U?; of course Ry is the zero ring. The unique
0 x 0 matrix over R will be written 1(, and an m x n matrix where mn = 0 will
be called a null matrix.

If M is an (R, S)-bimodule, then ”M" is an (R,,, S,)-bimodule in a natural
way. As an example, take R itself, considered as an R-bimodule; the set of
row vectors R” has a natural (R, R,)-bimodule structure and the set of column
vectors "R a natural (R,, R)-bimodule structure. Writing Rz, R for R as
right, respectively left R-module and p, : x = xa, A, : x > ax for the right,
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respectively left multiplication by a, we have Endg (s R) = R via the map a
pq and Endg(Rg) = R° viathe map a — X,, where the opposite ring R° means
that the R-endomorphisms of R form a ring anti-isomorphic to R (because
Aap = Aphy). In this case equations (6) and (8) become

Endg(R") = R,, Endg (R") = R°. )

The row vectors e = (1,0,...,0),e, =(0,1,0,...,0),... and the corre-
sponding column vectors e] form bases for R", "R respectively, as R-modules,
called the standard bases.

Returning to the case of a general R-module M, we can summarize the
relation between M and "M as follows.

Theorem 0.2.5. Let R be a ring and M a left R-module with endomorphism
ring E. Then "M may be regarded as an R,-module in a natural way, with
endomorphism ring E, and there is a lattice-isomorphism between the lattice
of R-submodules of M and the lattice of R,-submodules of "M, in which (R,
E)-bimodules correspond to (R, E)-bimodules.

Proof.  The first part is just a restatement of (8). To establish the isomorphism
we recall that " M consists of columns of vectors over M; any submodule N of
M corresponds to a submodule "N of "M and the correspondence

N +— "N (10)

is order-preserving. Conversely, if P is an R,-submodule of "M, then the n
projections w;: P — M (i = 1, ..., n) all have the same image and associate
with P a submodule of M. The correspondence P +— P easily seen to be
an order-preserving map inverse to (10), hence (10) is an order-isomorphism
between lattices, and so a lattice-isomorphism. The rest follows because the
E-action on M and on "M is compatible with the R-action. ]

The equivalence between R and R, may be used to reduce any categori-
cal question concerning a finitely generated module to a question for a cyclic
module, over an appropriate ring. For, given M, generated as left R-module by
ui,...,uy,,say, we apply the functor

M + "M = Homg("R, M) = "R ®z M, (11)

and pass to the left R,-module "M, which is generated by the single element

(g, ..., un)T~
Thus we have proved

Theorem 0.2.6. Any R-module M with an n-element generating set corre-
sponds to a cyclic R,-module under the equivalence (11). |
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For example, if R is a principal ideal ring, then as is well known (see Proposition
1.4.5 for the case of a principal ideal domain), any submodule of an n-generator
module over R can be generated by n elements. Applying Theorem 2.6 we see
that any submodule of a cyclic R,-module is cyclic, in particular, R, is again a
principal ideal ring. In the other direction, if R), is a principal ideal ring, then any
submodule of a cyclic R,,-module is cyclic, whence it follows that any submod-
ule of an n-generator R-module can be generated by n elements. This can happen
for some n > 1 in rings that are not principal ideal rings (see Webber [70]).
Another functor of importance in what follows is the matrix reduction func-
tor 20,, which is defined as the left adjoint of the n x n matrix functor. We note
the rule for its construction: given any ring R or more generally, a K-algebra
for some base ring K, we form a ring §,(R; K) by adjoining a set of matrix
units ¢;; to R that centralize K. Since this ring contains a set of matrix units, it
has, by Theorem 2.3, the form S,,, where S is the centralizer of the e;;. Now S
is the n-matrix reduction of R, as K-algebra. When R = K, §,, becomes K ,; in
general, this ring S contains, foreacha € R, n? elements a;j and these elements
centralize K and the ¢;; in §,(R; K). In other words, we take the elements of
R and interpret them as n x n matrices, with the elements of K as scalars. In
terms of the coproduct * the definitions of §, and of 2, may be written

$n(R; K) = R, (K) = 20, (R; K) @k M,y (K). (12)

Examples:

1. R = k[x], the polynomial ring in x over a field k. To obtain 20, (R; k), we
write x as an n X n matrix, thus we have the free algebra on n? indeterminates
(see Section 2.5).

2. R is the k-algebra generated by a, b with defining relation ab = 1. Here
20, (R; k) is the algebra on 2n? generators a;;, b;; with defining relations in
matrix form AB = I, where A = (a;;), B = (b;;). Thus we obtain the universal
ring that is not weakly n-finite.

3. R is the k-algebra generated by a, b with defining relation ab = 0. Now
20, (R; k) again has generators as in example 2, with defining relation (in matrix
form) AB = 0. Whereas R has zero-divisors, 20, (R; k) is an integral domain
for n > 1 (see Section 2.11 or SF, theorem 5.7.6).

Exercises 0.2

1. (Palmer [94]) Let R be any ring; if there exist e, w € R satisfying ew'~'e = §;;e
(Kronecker delta), Z/w'~Lew!™ = w" = 1, then R = 9M,,(S), where S is the cen-
tralizer of e, w in R. (Hint: Calculate w'~'ew!=/.)
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2. If R satisfies left ACC,, show that R, satisfies left ACC, where k = [n/r] is the
greatest integer below n/r.

3. If every left ideal of a ring R can be generated by r elements, show that for any n-
generator left R-module M, every submodule of M can be generated by nr elements.

4. Show that if R satisfies left pan-ACC, then so does every finitely generated free left
R-module.

5. If aring R is injective, as left R-module over itself, show that R, (n > 1) has the
same property.

6. For any ring R, show that R and R, (n > 1) have isomorphic centres. Prove this
fact by characterizing the centre of R as the set of all natural transformations of the
identity functor on g Mod.

7. LetR = K, beafull matrixringand f : R — S any ring homomorphism. Show that
Sisafull n x n matrix ring, say S = L, and there is a homomorphism ¢ : K — L
inducing f.

8. (G. M. Bergman) Let n > 1 be an integer and R a ring in which every right ideal
that is not finitely generated has a finitely generated direct summand that cannot be
generated by n elements. Show that R satisfies right ACC,.

9. (Jacobson [50]) Let R be anon-zero ring that is not weakly 1-finite, sayab = 1 # ba.
Writing e;; = b'~'a/~' — b'a’, show that the e;; satisfy the first set of equations (7)
for matrix units and the universal weakly 1-finite image of R is R /e, where ¢ is the
ideal generated by ey;.

10. Let R be a projective-free ring. Show that the only rings Morita-equivalent to R are
the full matrix rings R, (n = 1,2, ...).

0.3 Projective modules

Let R be any ring; if P is a finitely generated projective left R-module, generated
by n elements, say, then we have P @ P’ = R" for some projective R-module
P’. The projection of R" on P is given by an idempotent n x n matrix E and
we may write P = R"E; in fact, P is the left R-module generated by the rows
of E. We record conditions for two idempotent matrices to define isomorphic
projective modules.

Proposition 0.3.1. Let R be any ring and let E € R,,, F € R, be idempotent
matrices. Then the following conditions are equivalent:

(a) E=XY,F =YX forsome X € "R",Y € 'R";

(b) E=AB,F = BA, for some A€"R",B €'R", where EA = AF =
A, FB =BE = B;

(c) the projective left R-modules defined by E and F are isomorphic: R".E =
R".F;

(d) the projective right R-modules defined by E and F are isomorphic: E"R =
F'R.
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Proof. (a)=>(b). Assume (a)andput A = XY X, B = Y XY ; then (b) follows
by the idempotence of XY and Y X. (b) = (c). Let P, Q be the left R-modules
generated by the rows of E, F, respectively. Since EA = A = AF, the right
multiplication by A maps E to F; similarly right multiplication by B maps F
to E, and these maps are mutually inverse, because EAB = E, FBA=F.
(c) = (a). Let 6 : R"E — R'F be an isomorphism and suppose that 6 maps £
to X while 67! maps F to Y. Since X € R'F, we have XF = X; hence E =
EO0~' = X07' = (XF)0~' = X(F6~') = XY .Thus E = XY ,and similarly,
F =Y X. Thus (a), (b), (c) are equivalent; by the symmetry of (a) they are also
equivalent to (d). [ ]

Two idempotent matrices E, F that are related as in Proposition 3.1 are
said to be isomorphic. They will be called conjugate if there is an invert-
ible matrix U such that F = U~'EU. When R has IBN, this is only pos-
sible when E and F are of the same order, but we shall not make this
restriction. If P and Q are the projective modules defined by E € R,, F €
R,, respectively, and P @ P’ = R", Q & Q' = R, then conjugacy of E and
F just means that P = Q and P’ = Q’. The following is a condition for
conjugacy:

Proposition 0.3.2. Let R be a ring and E, F idempotent matrices over R.
Then E and F are conjugate if and only if E is isomorphic to F and I — E is
isomorphic to I — F.

Proof. If E, F are conjugate, say F = U-'EU, then we can take X =
EU,Y =U7'E; it follows that XY = E,YX =F, so E and F are iso-
morphic. Since we also have [ — F = U'A—EW,I1—E and I— F are
also isomorphic. Conversely, when the isomorphism holds, we have E =
AB,F =BA,EAF = A, FBE=Bandl—E=AB' 1-F=B'A",(I1-
EYAQ1—-F)=A",(I-F)B(I1—E)=B".LetusputX =A+ A, Y =B+
B’; then B'0— E)= B’, hence B'E =0 and similarly EA’" = 0; hence
YEX =BEA+BEA+BEA"+B'EA' = BEA = F. For the same rea-
son, Y(I— E)X =1— F,hence Y X = I. By symmetry, XY = I, and it follows
that £ and F are conjugate. [ ]

We also note the following result, relating E to the number of generators of
P.

Lemma 0.3.3. For any ring R, let P be a projective R-module defined by an
idempotent n x n matrix, P = R"E. Then the minimal number of generators
of P is the inner rank of E; thus if E has inner rank r, then P can be generated
by r but no fewer elements.
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Proof. Given any factorization
E = XY, where Xisn xrandY isr x n, €))]

the matrix F = Y XY X is an idempotent isomorphic to E and so defines a
module isomorphic to P; since F is r x r, it follows that P can be generated
by r elements. Conversely, if P can be generated by r elements, then it can be
represented as the image of an idempotent » x r matrix F, hence E = XFY
and pE < r. Thus the minimal number of generators of P equals the least value
of rin (1), i.e. pE. |

For any ring R denote by gproj (projr) the category of all finitely generated
projective left (right) R-modules and all homomorphisms between them. We
have seen in Section 0.1 that the correspondence P — P* defines a duality (i.e.
anti-equivalence) between gproj and projg such that P** = P.

We shall denote by S(R) the monoid whose elements are the isomorphism
classes of objects in gproj; thus each P € gproj defines an element [P] of S(R),
where [P] = [P'] if and only if P = P’. The operation on S(R) is given by

[P1+[Q]l=[P @ Q]

Clearly this is well-defined, i.e. the right-hand side depends only on [P], [Q]
and not on P, Q themselves. We see that S(R) is a commutative monoid, in
which we may regard [R] as a distinguished element. It is conical, i.e. o +
B = 0 implies o« = 0 and hence B = 0. Its universal group (see Section 0.7),
often called the Grothendieck group, is the projective module group K,(R) (see
e.g. Milnor [71]). By the duality between gproj and projg we have S(R°) =
S(R), Ko(R®) = Ko(R). The element of K,(R) corresponding to P may be
written (P), so the general element has the form (P) — (Q) and we have (P) =
(P)in Ky(R)ifand only if P @ S = P’ @ S for some S € gproj. Here S may
be taken to be free of finite rank, so we have

(P)=(P')in K,if and only if P ® R" = P’ @ R" for somen > 0. (2)

We can equally well define S(R) in terms of idempotent matrices. For any
ring R a finitely generated projective left R-module is generated by the rows of
an idempotent matrix; thus if P is generated by n elements, it has the form R"E,
where E is an idempotent n X n matrix. By Proposition 3.1, two projective R-
modules R"E and R™F are isomorphic if and only if there exist matrices X (n x
m), Y (m x n), such that the matrices XY = E and Y X = F are idempotent.
Moreover, if E corresponds to P and F to Q, then the diagonal sum E & F
corresponds to the direct sum P @ Q, so S(R) may be defined as the set of
isomorphism classes of idempotent matrices with the operation E & F.
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The structure of S(R) is closely related to certain properties of the ring R,
while K,(R) reflects the corresponding stable properties. This is illustrated in
the next result, where by a stably free module we understand a module P such
that P @ R™ = R”, for some integers m, n > 0.

Proposition 0.3.4. LetR be any ring and denote by A : Z — Ko(R) the homo-
morphism mapping I to (R). Then (i) R has IBN if and only if X is injective and
(ii) every finitely generated projective module is stably free if and only if A is
surjective.

Further, R is projective-free if and only if the natural homomorphism N —
S(R), is an isomorphism.

Proof.  Clearly A fails to be injective if and only if n(R) = 0 in K,(R) for
some n # 0, say n > 0. Then R" @ P = P for some P, and if P & P' = R’,
then R"*" = R", so either r = 0 and R is the zero ring, or 7 > 0 and IBN fails
in R. The converse is clear.

If every finitely generated projective module P is stably free, then for any P
there are integers m, n such that P @ R™ = R”", hence [P] = n[R] — m[R] =
(n — m)[R] = Mn — m), and conversely, if [P] = A(r), then P @ R™ = R™"
for some m > 0 and P is stably free. The final assertion follows because R is
projective-free if and only if every P satisfies [P] = n[R] in S(R), for a unique
n € N, depending on P. [ ]

It will be useful to relate the monoid S(R) to S(R/a), where a is an ideal
contained in J(R), the Jacobson radical of R. We recall that J(R) is defined as
the intersection of all maximal left (or equivalently, all maximal right) ideals
of R (equivalently, the set of all @ € R such that 1 — xa is a unit, for all x € R,
see BA, Section 5.3).

We shall be particularly concerned with rings R for which R /J (R) is a field.
They are the /local rings, characterized in

Proposition 0.3.5. For any non-zero ring R the following conditions are equiv-
alent:

(a) Ris alocal ring,i.e. R/J(R) is a (skew) field,

(b) the non-units in R form an ideal,

(c) for any a € R, either a or 1 — a has a one-sided (at least) inverse, not
necessarily on the same side.

Proof. (a)= (b).PutJ = J(R).If R/J isafield, thenJ is the unique maximal
ideal and hence consists of non-units. For u ¢ J we have uv = vu = 1 (mod
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J) for some v € R, hence uv =1 + ¢ (¢ € J) is a unit, so u has a right inverse
that is two-sided, by symmetry. Thus J is the set of all non-units.

(b) = (c) is clear. To prove (c) = (a), we first note that an idempotent e # 1
cannot have even a one-sided inverse, for if eu = 1, then ¢ = ¢*u = eu = 1.
Thus when (c) holds, R has no idempotents # 0, 1. Next, if ab = 1, then ba is
a non-zero idempotent, hence ba = 1, so all one-sided inverses are two-sided.

Now let u € R; if u has no inverse, then neither does ux, for any x € R,
hence 1 — ux always has an inverse, so u# € J. Thus all non-units are in J and
(a) follows. ]

Here (a) or (b) is the usual form of the definition of a local ring, while (c) is
the easiest to verify.

Let R be a ring with an ideal a C J(R); write R= R /a and for any left R-
module M, put M = M /aM . Then M is an R-module in a natural way and if M
is finitely generated non-zero, then M /J M # 0 by Nakayama’s lemma, hence
M # 0, because a € J. Suppose now that f : R — S is a surjective homo-
morphism. The next result gives conditions for ker f to be contained in J(R).
Here a ring homomorphism is called local if it maps non-units to non-units.

Lemma 0.3.6. Let f : R — S be a surjective ring homomorphism. Then the
following conditions are equivalent:

(a) ker f < J(R),

(b) the homomorphism induced by f on n x n matrix rings (for any n > 1) is
local,

(c) fis a local homomorphism.

Proof.  (a) = (b) Let A be a matrix over R and suppose that A7 is a unit,
say A/ B = 1. Take By over R such that B] = B; then ABy =1+ C, where
C’/ = 0and so C has entries in J(R). It is easily checked that J(R,) = J(R),;
so it follows that I 4 C is a unit, hence ABy(I+ C)~' = I. Thus A has a right
inverse; by symmetry it has a left inverse, and so is a unit. Now (b) = (c) is
clear, and to prove (c) = (a), leta € kerf. Thena/ = 0, hence (1 + ax)’ =1,
so 1 + ax has an inverse for all x € R and it follows that a € J(R), thus (a)
holds. [ |

Any ring homomorphism f : R — S induces a monoid homomorphism
S(f):S(R) — S(S) that preserves the distinguished element: S(f)[P] =
[S ®& P]. This homomorphism need be neither injective nor surjective, even
when f is, but we have

Theorem 0.3.7. LetR, S be any rings and ¢ : R — S a homomorphism that
is surjective and local; in particular S may be R /J (R), with the natural map ¢.
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Then the induced homomorphism S(¢) : S(R) — S(S) is an embedding. Thus
if S is projective-free, then so is R. If S has IBN, UGN or is weakly finite, then
the same is true of R.

Proof.  Write R = R /ker ¢ and M = M /(ker )M . Given any finitely gen-
erated projective R-modules P, Q such that P = Q, we have the following
diagram, where f is an isomorphism:

P >

]

> 0

g

| €———
~

0 ;Q > ()

The map g to make the diagram commutative exists since P is projective.
If coker ¢ = L then L = 0 implies L = 0, by Nakayama’s lemma, hence g
is surjective. Therefore Q splits P, i.e. P = Q & M, where M = ker g. By
the diagram, M = 0, hence M = 0 and this proves g to be an isomorphism,
as claimed. Further, when R /ker ¢ is projective-free, then S(S) = N and the
natural homomorphism preserves the generator of N, whence S(R) = N. The
assertions for IBN and UGN are evident; for weak finiteness we take square
matrices A, B over R and suppose that AB = I; then their images in S are
mutually inverse, hence BA = I 4 C, where C has entries in J(R) andso I + C
is invertible. This shows that A is invertible. By Lemma 3.6 all these results
hold when S = R/J(R). |

Of course the embedding obtained here will not in general be an isomor-
phism. We remark that the result also follows by considering the corresponding
idempotent matrices (see the remarks before Proposition 3.1). Since every field
is projective-free, and any projective-free ring is clearly weakly finite, we obtain
from Theorem 3.7,

Corollary 0.3.8. Every local ring is projective-free and hence weakly
finite. [ ]

Sometimes a more general notion of local ring is needed. Let us call R a
matrix local ring if R/J(R) is simple Artinian. By Wedderburn’s theorem this
means that R/J(R) = K, where K is a field and n > 1; n is sometimes called
the capacity of R. When n = 1, we are back in the case of a local ring. By
contrast this is sometimes called a scalar local ring, but we generally omit the
qualifier, so ‘local ring” will mean as usual ‘scalar local ring’.
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We conclude with some conditions for a ring to be projective-free.

Theorem 0.3.9. Let R be a non-zero ring such that the set of all full matrices
admits diagonal sums. Then R is projective-free.

Proof.  Since R # 0, the 1 x 1 unit matrix is full, hence the unit matrix of
any order is full, so R has IBN (it even has UGN). It remains to prove that
every finitely generated projective R-module P is free. Let n be the minimal
number of generators of P and choose Q such that P & Q = R". We have
P = R"E, where E is idempotent and full, by Lemma 3.3; similarly, if the
minimal number of generators for Q is m, then Q = R™F for some idempotent
m x m matrix F, where F is again full. By hypothesis, E @ F is again full, and
its image is P & Q = R"; by fullness, m +n = n. Hence m =0, Q = 0 and
P = R". |

Theorem 0.3.10. Let R be a ring. If for every n > 1 the product of two full
n X n matrices is again full, then every finitely generated projective module is
stably free.

Proof.  Suppose there is a finitely generated projective module that is not
stably free; we choose such a module P with the least number of generators, n
say. We have P = R"E, where E is an idempotent matrix, which must be full,
by Lemma 3.3 and the minimality of n. The module Q = R"(I — E) is such
that P @ Q = R", and since E(I — E) = 0,1 — E cannot be full, so Q can be
generated by fewer than n elements and hence is stably free. Thus Q & R* = R”
andso P @ R" = P & Q & R® = R"™, which shows P to be stably free. B

If the hypothesis of Theorem 3.10 holds and in addition every full matrix is
stably full,i.e., whenever amatrix A is full, thensois A & 1, then each projective
is actually free, as we can see by verifying the hypothesis of Theorem 3.9. Thus
let A, B be full matrices; then A @ I, I & B are full (for unit matrices of any
size), hence so is their product A @ B. Moreover, since [ is full, R has IBN.
This proves

Corollary 0.3.11. Let R be a ring. If the product of any two full matrices
of the same size is full and any full matrix is stably full, then R is projective-
free. |

Exercises 0.3

1. Verify the equivalence of the two definitions of S(R), in terms of projective
modules and idempotent matrices.
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2. Let R be a ring and J = J(R). By considering the kernel of the homomor-
phism R, — (R/J), induced by the natural homomorphism R — R/J, show
that J(R,) = J,.

3°. Show that if R is a matrix local ring and n > 1, then so is R,. Does the converse
hold?

4. For any ring R, show that R /J (R) is weakly finite if and only if R is weakly finite.
Deduce that any matrix local ring is weakly finite. Show that if R has IBN or
UGN, then so does R/J(R).

5. Let K be a field and R a subring such that for any x € K, either x or x~! lies in
R. Show that for any non-unit @ € R, a(1 — a)~! € R; deduce that R is a local
ring.

6. In any local ring show that the additive order of 1 is O or a prime power.

7. Let R be a local ring with residue-class field K = R/J(R). If M is a finitely
generated left R-module such that K ® M = 0, show that M = 0.

8. Show that any Artinian matrix local ring is a full matrix ring over a scalar local
ring. (Hint: Recall that in an Artinian ring idempotents can be lifted from R /J (R)
to R, see e.g. FA, Lemma 4.3.2.)

9. LetR be thering of rational quaternions with denominator prime to p, an odd prime.
Show that the Jacobson radical of R is pR and R/pR is the ring of quaternions
over [F,,. Deduce that R is a matrix local ring which is not a matrix ring over a
scalar local ring.

10. Show that for any ring R the following are equivalent (see Lorimer [92]):

(a) Rislocal and any finitely generated left ideal is principal,
(b) the principal left ideals of R are totally ordered by inclusion,
(c) all left ideals of R are totally ordered by inclusion.

11. (Beck [72]) Let P be a finitely generated projective left R-module. If P/JP is free
over R/J, where J is the Jacobson radical of R, show that P is free over R. (This
holds even if P is not finitely generated, see Beck [72].)

12*. (Kaplansky [58]) Let P be a projective module over a local ring. Show that any
element of P can be embedded in a free direct summand of P; deduce that every
projective module over a local ring is free.

0.4 Hermite rings

The conditions of IBN, UGN and weak finiteness discussed in Section 0.1 hold
in most rings normally encountered, and counter-examples belong to the pathol-
ogy of the subject. By contrast, the property defined below forms a significant
restriction on the ring.

Clearly any stably free module is finitely generated projective. If P & R"™
is free but not finitely generated, then P is necessarily free (see Exercise 9). In
any case we shall mainly be concerned with finitely generated modules.

A ring R is called an Hermite ring if it has IBN and any stably free module
is free. More specifically, if n-generator free modules have unique rank and any
left R-module P is free whenever P @ R” = R™(r < m < n), then R is called
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an n-Hermite-ring. Thus, denoting by H(7,,) the class of all (n-)Hermite rings,
we have

HiD2H,2... and NH,=H. (1)

From results in Section 2.11 (or also SF, 5.7) it follows that all the inclusions
in (1) are proper. The class of Hermite rings clearly includes all projective-free
rings, and is contained in the class of all weakly finite rings. More generally, it
is easily seen that every n-Hermite ring is weakly n-finite.

To describe Hermite rings in terms of matrices, let us call an m x n matrix
A over aring R completable in R, if either m = n and A is invertible, or A can
be completed to an invertible matrix by adjoining n — m rows, if m < n, or
m — n columns, if m > n. We note that in a non-zero ring, if a matrix with a
right inverse is completable, then its index must be non-negative. For suppose
that AB = I, where A is m x n and m > n. Since A is completable, there is an
m x m — n matrix A’ such that (A, A’) is invertible. Let (C, C’)T be the inverse;

then we have
C
A A)=1L
(S)an

Hence C A = 1, which together with AB = Ishows that C = B.Further, CA’ =
0, C'’A’ =1, but C is the inverse of A, hence A’ = 0, which contradicts the fact
that C'A” = 1. So this case cannot occur.

We now have the following description of Hermite rings in terms of matrices,
where a unimodular row is defined as a 1 x n matrix with a right inverse.

Theorem 0.4.1. For any non-zero ring R and any n > 1 the following condi-
tions are equivalent:

(a) R is n-Hermite.

(b) Every r x m matrix over R, where r,m < n, with a right inverse is com-
pletable, more precisely, if AB = I,where A € "R™,r < m < n, thenthere
is an invertible matrix with A as its first r rows, whose inverse has B for the
first r columns.

(c) Every unimodular row over R of length at most n is completable.
Moreover, R is n-Hermite if and only if its opposite R° is.

Proof. (a) = (b). Let R be n-Hermite and take A € "R™, B € "R’ such that
AB = 1. Interpreting A, B as mappings «, 8 between R” and R™, we have a
split exact sequence

0 R -5 r" 2 p o, )
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where P = coker «. It follows that R” = R" @ P; thus P is stably free and hence
free: P = R*, where s = m — r. Since the sequence (2) is split, 8’ has a left
inverse o’ : R® — R™ and if A’, B’ are the matrices corresponding to o', 8’,
then AB =1, A’/B’ =1, AB’ =0, and so

A W (1 0
(A,>(B B)_<A’B I)'

The matrix on the right is invertible and multiplying by its inverse on the left,
we obtain

I 0\[A LA ,
I=<—A/B 1) <A’>(B B)_<A’(I—BA)>'(B B,

and since the ring R, being n-Hermite, is weakly n-finite, the matrices on the
right are inverses of each other and are of the required form.

(b) = (c) is clear. To prove (c) = (a) we must show that when (c) holds,
then P @ R” = R™ implies P = R™™"; consider first the case r = 1. Thus let
P & R = R™. Then we have again a split exact sequence

0>R-SprR" 2 P

Let a be the 1 x m matrix corresponding to «; since the sequence is split,
there is a map B : R™ — R such that ¢ = 1. If B is represented by b, then
ab = I.Byhypothesis, there exists A’ € "~!R" such that (a, A’)" isinvertible.
Let the inverse, correspondingly partitioned, be (¢, C’); then g’ : R”™ — P is
represented by C’, hence P = R™~'. Suppose now that P @ R" = R™; we
claim that » < m, for if r > m, then by successively cancelling R we obtain
P & R"~™ =0, a contradiction, since R # 0. Taking P = 0, we also see that
R has IBN up to rank n. Thus » < m, and by successive cancelling we find
that P = R™™"; in particular, when » = m, it follows that P = 0. Hence R is
n-Hermite. Now the rest follows from (a) by duality. [ ]

The proof shows that we have the following characterizations of Hermite
rings:
Corollary 0.4.2. For any non-zero ring the following conditions are equiva-

lent:

(a) R is an Hermite ring,
(b) if P® R = R", then P = R"!,
(c) ifP®R = R"™, thenr <mand P = R™"". [ ]

For 2-Hermite rings there is a simple criterion that is sometimes useful:

Proposition 0.4.3. An integral domain R is 2-Hermite if and only if, for any
right comaximal pair a, b,aR N bR is principal.
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Proof. 1Ifa, b are right comaximal, then the mapping u : (x, y)T + ax — by
is a surjective homomorphism of right R-modules 2R — R, giving rise to the
exact sequence

0>P—R-5R>0. (3)

where P = ker u. Thus any right comaximal pair a, b leads to a sequence
(3), and such a sequence always splits to give R @ P = 2R. Conversely, if
R @ P = °R, we have a split exact sequence (3), and if (a, —b) is the matrix
of 11, then a, b are right comaximal. Now (x, y)T € P if and only if ax = by €
aR NbR;thus P = aR N DR and P is free if and only if aR N bR is principal.

|

The following characterization of Hermite rings in terms of the notion of
rank is also of interest. We recall from the definitions, that whenever the stable
rank p*(A) is defined, then for any matrix A we have

p(A) = p*(A). “4)

Proposition 0.4.4. A non-zero ring is Hermite if and only if the stable rank
of every matrix exists and equals its inner rank.

Proof.  We shall use Proposition 1.3 and the factorization of A @ I; given
there. Suppose that R is Hermite, hence with UGN, and let A be a matrix with

the factorization
A 0 B ,
(0 v)=(5)e o

where as before, B’ iss x r.Thenr > sandifr = s,then A = 0by Proposition
1.3, so we may assume that > s. Since B'C’ =1, there exist (by Theorem 4.1)
B"” € "R, C" € "R"~ such that (B’, B")T and (C’, C”") are mutually inverse.
Hence

B/

B = B(C, C”) <B//

) = BC"B",

because BC’ = 0.Itfollowsthat A = BC = BC”.B"C,hence p(A) <r —s <
p*(A), and so by (4) we have equality of ranks. Conversely, if the stable rank
equals the inner rank, then by Proposition 1.3, R is weakly finite. To show that
R is Hermite it is enough, by Theorem 4.1, to show that every unimodular row
is completable. Let a be a unimodular row of length n, say ab = 1, and put
F=1—ba. Then F2=F,Fb=0=aF,aset of equations summed up in

¢ )-C)e v



0.4 Hermite rings 23

This shows that p*(F) =r < n,s0 p(F) =r,say F = B’A’, where B’ isn x r
and A’ is r x n. We now have (B’, b)(A’, )T =1; since Iis full, » + 1 = n and
by weak finiteness these matrices are mutually inverse, so R is Hermite. [ ]

Over an Hermite ring we have the following stability property of matrix
factorizations.

Proposition 0.4.5. Let R be an (n + r)-Hermite ring, C € R, and suppose
that there is a factorization into matrices (not necessarily square)

C®Il, =P ---P,.
Then there are invertible matrices U;(i = 0,1, ...,t),Uy = U, = I, such that
U \PU =P &I and C=P]...P.

Proof. By induction it will be enough to treat the case of two factors; thus

we have
cC 0 A’ , .

with an appropriate block decomposition. We have A”B” =1, and since R is
(n + r)-Hermite, A” forms the last » rows of an invertible matrix P say, and
B” the last r columns of the inverse, i.e. A” = (0, )P, B” = P~'(0, DT. If we
replace A, B by AP~!, PB, we obtain

(6 D=6 "))

On multiplying out, we find that A, = 0, B, = 0, C = A B and now the con-
clusion follows by induction. [ ]

A square matrix C will be called a stable matrix atom if C @ I, is an atom
for all » > 1. From Proposition 4.5 we obtain

Corollary 0.4.6. Over an Hermite ring every matrix atom is stable. [ ]

We can specialize our ring still further. A ring R is called cancellable if for
any projective modules P, O, P @ R = Q @ R implies P = Q. Itis clear that
every projective-free ring is cancellable and every cancellable ring is Hermite.
Thus for non-zero rings the following classes of rings become smaller as we go
down the list:

1. Rings with invariant basis number.
2. Rings with unbounded generating number.
3. Weakly finite rings.
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4. Hermite rings.
5. Cancellable rings.
6. Projective-free rings.

We have seen in Section 0.3 that a finitely generated projective left R-module
P is given by an idempotent matrix E, representing the projection of R” on P.
Further, by Proposition 3.1, P is free, of rank r say, if and only if P = R", i.e.
if E = AB,where Aisn x r and Bisr x n such that BA = . An idempotent
matrix with this property is said to be split. Thus we obtain the following
criterion for a ring to be projective-free:

Proposition 0.4.7. A ring is projective-free if and only if it has IBN and each
idempotent matrix is split. |

Unlike some of the other properties, projective-freeness is not a Morita
invariant. We therefore define a ring R to be projective-trivial if there exists a
projective left R-module P, called the minimal projective of R, such that every
finitely generated projective left R-module M has the form P”, for an integer
n that is uniquely determined by M. Clearly being projective-trivial is a Morita
invariant, and a projective-trivial ring R is projective-free precisely when its
minimal projective is R. The precise relationship between these two concepts
is elucidated in

Theorem 0.4.8. For any ring R the following properties are equivalent:

(a) R is a full matrix ring over a projective-free ring,

(b) there exists n such that for every finitely generated projective module P, P"
is free of unique rank,

(c) R is Morita equivalent to a projective-free ring,

(d) R is projective-trivial.

(a®)—(d®) the corresponding properties for the opposite ring.

Proof. Clearly (a) = (b) = (c) = (d). Now assume (d): R is projective-trivial,
with minimal projective P, say. Since R is finitely generated projective, we have

R= P, 5)

for some positive integer n. Write E = Endg(P); then by Corollary 2.2 we find,
on taking endomorphism rings in (5), that R = E,,. Here E is again projective-
trivial, and (5) shows that its minimal projective is Endg(P) = E, hence E is
projective-free, i.e. (a) holds. Now the final assertion follows by the obvious
symmetry of (a). |
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Exercises 0.4

Show that a 1-Hermite ring is the same as a weakly 1-finite ring.

. Let A, B be matrices whose indices have the same sign. Show that A @ B is com-

pletable whenever A and B are. Prove the converse when R is Hermite.

Which of the properties 1.—6. are Morita invariant? For the others describe the rings
that are Morita invariant to them.

If in an Hermite ring, AB = I and B is completed to an invertible matrix (B, B’),
show that for suitably chosen A’, (A, A")T has the inverse (B, B’ — BAB').

Given A € "R", B € "R™, where m < n, over any ring R, such that AB = 1,,,, show
that A is completable if and only if A:0 = {x € "R|Ax = 0} is free of rank n — m
(Kazimirskii and Lunik [72]).

Define an n-projective-free ring as a ring over which every n-generator projective
module is free of unique rank. State and prove an analogue of Theorem 4.1 for such
rings.

Find examples of Hermite rings that are not cancellable.

If R is any commutative ring and P @ R"~' = R”", show that P = R. [Hint: In the
exterior algebra on P show that AP = 0 for k > 1 and calculate A"(P @ R"™").]
(M. R. Gabel, see Lam [78]) If P is not finitely generated but P @ R™ = F, where
F is free, show (by writing this as a split exact sequence with F' as middle term)
that F' = Fy, @ F), where each F; is free, Fy is finitely generated and F = P +
Fy, Fy = (P N Fy) & R™. Deduce that P /(P N Fy) = F; and hence show that P is
free.

(Lam [76]) Let R be any ring and P a projective module that has R as a direct
summand. If P @ R” = R”, where n > m, show that P"*! is free. (Hint: If P =
O @ R, compute P"*! and use R" to ‘liberate’ P and the resulting R" to ‘liberate’

Qm.)

. (Ojanguren and Sridharan [71]). Show that the polynomial ring D[x, y] over a

non-commutative field D is not 2-Hermite, by verifying that for suitable a, b € D,
the pair (x + @, y + b) is a unimodular row, but is not completable. (Hint: Choose
non-commuting a and b; for the last part apply Proposition 4.3. See also Exercise
1.1.11.)

Show that a ring is Hermite if and only if it has IBN and for every idempotent matrix
E that splits, I — E also splits.

0.5 The matrix of definition of a module

Given a ring R, we have, for any R-module M, a presentation

G—>F—->M-—O0,

where F', G are free. If F may be taken of finite rank, M is finitely generated; this
holds even if F is merely projective (and finitely generated), for on replacing
F,Gby F & P,G & P for asuitable finitely generated projective P, we obtain
a free module F' @ P of finite rank mapping onto M. If G may be taken to be
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of finite rank, M is finitely related, and if both F' and G can be taken to be of
finite rank, M is finitely presented. Thus a finitely presented left R-module M
has a presentation

R" 5 R — M —> 0. (1)

Here M is determined up to isomorphism by a presenting matrix for o. Con-
versely, every m x n matrix A defines a finitely presented left R-module M in
this way, as M = coker «, where « is the mapping from R” to R” described by
A. We note the following property of modules that are finitely related but not
finitely generated.

Proposition 0.5.1.  Over an arbitrary ring R, any finitely related R-module is
the direct sum of a finitely presented module and a free module.

Proof. Wehave M = F /G, where G is finitely generated. Write F = F' +
F”, where F’ is free on the generators occurring in elements of G and F” is
free on the remaining generators of F. Then G € F’,hence M = (F'/G) ® F”,
which is the required decomposition. ]

Returning to (1), we see that « is injective if and only if A is left regular. In
that case M has a ‘finite free resolution’ of length 1:

0— R" % R" — M — 0, )

and we define the characteristic x (M) of M as the index of the presenting matrix,
thus (M) = n — m. In a ring with IBN this is well-defined and independent
of the choice of presentation, by Schanuel’s lemma (Appendix Lemma B.5, or
also Theorem 0.5.3 below).

It should be observed that for general rings, modules with a finite free reso-
lution of length at most 1 are very special; however, for the rings discussed in
later chapters they include all finitely presented modules, which is why we treat
them in more detail. In particular, we can show that for such modules, short
exact sequences correspond to matrix equations.

Proposition 0.5.2. Let R be a ring with IBN. Given any left R-modules M,
M', M" with finite free resolutions of length 1 and a left regular matrix C
presenting M, there exists a short exact sequence

0O-M->M-—->M -0 3)
if and only if there exists a factorization

C = AB, “4)
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where A, B are left regular matrices presenting M', M", respectively, and

X(M) = x(M') + x(M"). &)

Conversely, any equation (4) between left regular matrices corresponds to a
short exact sequence (3).

Proof.  Given (3) with the stated properties, there exists a free module F
mapping onto M, with free kernel H, both of finite rank. We also have a surjection
F — M”, and if the kernel is denoted by K, then K 2O H and we have the
commutative diagram with exact rows and columns:

—_—

\

(e

Y
Tm‘— o

Y

=

o
\4

\/

\/
Ce—ge¢—me g g« —°
\/

cCe—Te—Te«—o

()

v
CEe—— T

v

Since M” has a finite free resolution of length 1, there are free modules
F| 2 K of finite rank such that M"” = F /K. By Schanuel’s lemma we have
K @& F| = K| @ F, therefore on replacing F by F @ F|, K by K & F) and H
by H @ F) we can ensure that K is also free. If the matrices defining M', M", M
are A, B, C, respectively, then by the commutativity of the diagram, C = AB.
Now x(M)=1k F —tk H, (M) =1k K — 1tk H, x(M") =1k F —1k K,
and (5) follows. Conversely, given left regular matrices A, B, C satisfying
(4), we obtain the first two columns of the above diagram, hence the third
follows by the dual of the 3 x 3 lemma (see Mac Lane [63], p. 49, or Appendix
Lemma B.3). u

We shall call two matrices over R left similar if the left modules they define
are isomorphic; right similar matrices are defined correspondingly, and two
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matrices are called similar if they are left and right similar. Thus in an integral
domain R two elements a and b are similar if and only if R/aR = R /bR, or
equivalently, R/Ra = R/Rb.

The precise relationship between similar matrices was found by Fitting [36].
This relation can be simplified by restricting attention to matrices that are left
regular, corresponding to the case where « in (1) is injective. We shall give an
explicit description of similarity in this case; in essence this is just a formulation
of Schanuel’s lemma (Mac Lane [63], p. 101, or also below).

Two maps between R-modules, « : Q — P,a’ : Q' — P’ are said to be
associated if there is a commutative square

0 “ > P

\{ o’ R \IV)’

where the vertical maps are isomorphisms. If there are two R-modules S, T
such that o @ 1y is associated to 17 @ «’, then « and «’ are said to be stably
associated. The next result and its corollary describe similarity of matrices in
terms of stable association.

Theorem 0.5.3. Let R be any ring and let« : Q — P and o’ : Q' — P’
be two homomorphisms of left R-modules. Then the following conditions are
equivalent:

(a) there is an isomorphism pu : Q & P’ — P & Q' of the form

/ /
n= <a ’B) with inverse ' = (8 , ’3,> ,
vy 8 Voo

(b) « is stably associated to o'
Further, these conditions imply

(c) cokera = cokera/,

and if P, P' are projective modules and o, &' are injections, then the converse
holds, so (a), (b), (c) are then equivalent.
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Proof. (a) = (b). If we take S = P/, T = P, we obtain the commutative
square

o® Iy
0®F > P®P
u v
\ 4 \ 4
P®Q >PDP
Ip® o

with the vertical isomorphisms

(o B (1 0\ (1 —p
= 5) we =G NG T)

This result is also proved more simply by the equation

G 1)-G 06D 0

(b) = (a). If « is stably associated to «’, we have a commutative square, which
is expressed by an equation

G0 D=0 )06 =)
(S D A NG I 9

Now (a) follows with

(o Y 1 (prt —q
(%) = (),

as is easily checked.

(b) = (c) is clear. Now let P, P’ be projective, «, @ injective and assume
(c). Then there exist maps y: P’ — P and 8': P — P’ making the following
diagram commutative, and y induces —y’: Q" — Q, while B’ induces —§ :

Q-0

where
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0 > O o > P ¢ »coker o6 ———» 0
Bl |7 Bl |r =
/ a/ / ¢/ ’
0 > O > P »coker o ———>» 0

Further, (1 — B'y)¢ =0, whence 1 — B’y = 8§« for some §:P — Q,
because P is projective. Likewise (1 — y8')¢’ = 0, whence 1 — y8’ = §o’ for

some §: P’ — Q'. Now it is easily verified that (a f) QP - P Q
14

! /
has inverse <5, ﬂ/> P ® Q' — Q& P’, which proves (a). |
y «

The implication (c) = (a) (under the given conditions) is just the assertion
of Schanuel’s lemma. The proof of the equivalence (a) < (b) shows that the
definition of stable association can be made a little more precise.

Corollary 0.5.4. If «:Q — P is stably associated to o': Q" — P’, then
o @ lp is associated to 1p @ a'. Hence two matrices A € "R™ and A’ € *R"
are stably associated, qua maps, if and only if A@® I, is associated to
I, ® A ]

In terms of matrices we obtain the following criteria by taking P, P’, Q, Q'
to be free.

Corollary 0.5.5. Let A €'R™, A’ € °R" be any two matrices. Then of the
following, (a) and (b) are equivalent and imply (c):

A *
(a) there exists an (r + n) x (s + m) matrix <* *> with an inverse of the

")
(b) A and A’ are stably associated,
(c) A and A’ are left similar.

If A, A" are left regular, all three conditions are equivalent. Moreover, two
regular matrices are left similar if and only if they are right similar.

Proof.  The equivalence follows from Theorem 5.3, while the left—right sym-
metry is a consequence of the evident symmetry of (a) or (b). |
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Two matrices A, A" standing in the relation (a) are said to be GL-related. By
Corollary 5.5 this means the same as ‘stably associated’. We also note that an
invertible (square) matrix is stably associated to the unique 0 x 0 matrix 1.

From (a) we see that if two matrices A, A’ over R are stably associated,
then their images under any ring homomorphism are again stably associated.
In particular, if A maps to a unit under some homomorphism, then so does
A’. We further note that for any ring with IBN any two GL-related matrices
have the same index, which is also the characteristic of the corresponding left
R-modules, assuming the matrices to be left regular.

Over a weakly finite ring the notion of similarity of matrices can still be
simplified. Consider a relation

AB' = BA' 7

between matrices. This can also be written

(A B) (;B> =0.

We shall call A, B right comaximal if the matrix (A  B) has a right inverse,
and A’, B’ left comaximal if (A’ B’) has a left inverse. Now (7) is called
a comaximal relation if A, B are right comaximal and A’, B’ left comaximal.
We shall find that in a weakly finite ring stable association can be described in
terms of comaximal relations.

Proposition 0.5.6. Let R be any ring and let A € 'R™, A’ € °R". Then the
following two relations are equivalent:

(a) A, A’ satisfy a comaximal relation (7),
(b) there is an (r + n) x (s + m) matrix with first row block (A B), with a
right inverse whose last column block has the form (—B' AT .

In particular, (a) and (b) hold whenever
(c) A and A’ are stably associated,

and in a weakly finite ring (a)—(c) are equivalent for two matrices of the same
index.

Proof. Suppose that A, A’ satisfy a comaximal relation (7), say
AD'— BC'=1, DA —CB' =1 ®)

Then on writing

A B D —B’
M:(C D> and N:(_C, A’)’ )
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I
P

D' —B\(1 0\ _ (* -8B
A )J\-p 1) a)

and (b) follows. Conversely, if N in (9) is a right inverse of M, then (7) and (8)
hold, hence (7) is then a comaximal relation. This shows that (a) < (b).

Now (c) = (b) by Corollary 5.5, and (b) = (c) under the given conditions,
because when m —r =n — s, then r +n = s 4+ m, and for a square matrix

0 .
we have MN = ( I)’ where P = CD’ — DC’. Hence M has the right

inverse

over a weakly finite ring any right inverse is an inverse. |

For later use we note the explicit form of the relation of stable association
between A and A”:

A O D" —-B'\ (I+BC" —-B\ (1 0}, (10)
0 1)\-c" A ) —C’ I 0 A')°

another form of such a relation is given by (6). We also restate the criterion for
stable association derived in Proposition 5.6.

Proposition 0.5.7. In a weakly finite ring R, two matrices A and A’ are stably
associated if and only if they have the same index and satisfy a comaximal
relation AB’ = BA'. [ ]

Finally we note a remark on the invertibility of endomorphisms that will be
useful later.

Lemma 0.5.8. Given modules M, N over any ring,lets:M — N,t:N — M
be module homomorphisms, so that st, ts are endomorphisms of M, N, respec-
tively; further denote the identity mappings on M, N by e, f, respectively. Then
e — st is an automorphism of M if and only if f — ts is an automorphism of N
and the inverses are related by the equations

(f —ts) ' = f+1(e—st) s, (11)
(e—st)y ' =e+s(f—ts) 't (12)

Proof.  Assume that e — st is invertible. Then

(f —ts)(f +tle— st)_ls) =f—ts+tle— sty s — tst(e — st s
= f—ts+tle—st)e—s) s
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Thus f — ts has the right inverse given by (11); a similar calculation shows
that this is also a left inverse, so f — ts is an automorphism of N. The reverse
implication follows by symmetry. [ ]

Exercises 0.5

1. Show that a matrix is stably associated to I if and only if it is a unit; if it is stably
associated to an m x n zero matrix, where m, n > 0, then it is a zero-divisor.

2. Let A be a matrix over any ring R. Show that the left R-module presented by A is
zero if and only if A has a right inverse.

3. LetRbe aring and A € "R", B € "R". Show that I + AB is stably associated to
I+ BA. Deduce that | + AB is a unit if and only if I + BA is; prove this directly
by evaluating I — B+ AB)™'A.

4°. Under what circumstances is AB stably associated to BA?

5. Let R be a ring with UGN. If A, A’ satisfy a comaximal relation (7), show that
i(A) > i(A’). Deduce thatif A, A’ satisfy a comaximal relation and A’, A likewise,
then A and A’ are stably associated.

6. Show that the condition on the index cannot be omitted from Proposition 5.7.
Hence find examples of pairs of matrices (over a weakly finite ring, say) that satisfy
a comaximal relation but are not stably associated.

7*. Let R be anon-zeroring and § = Endz(R™). Show that §, = §; is it the case that
any two stably associated 1 x 1 matrices are associated?

8*. Since the relation of stable association is clearly transtitive, it follows by Corollary
5.5 that being G L-related is transitive. Give a direct proof of this fact. (Hint: Take
the case of elements first.)

0.6 Eigenrings and centralizers

Let R be a ring, M a left R-module and N a submodule of M. We define the
idealizer of N in M over R as the set

I(N) = {p € Endr(M)INB S N}.

Clearly I(N) is a subring of Endz(M) and if we put a = Homg(M, N), then
a is a left ideal in Endg(M) and a two-sided ideal in /(). The quotient ring
E(N) = I1(N)/ais called the eigenring of N in M over R. Writing Q = M/N,
we have a natural ring homomorphism /(N) — Endg(Q); the kernel is easily
seen to be a, so we obtain an injection

E(N) — Endg(Q). (1)

Suppose now that M is projective. Then any endomorphism ¢ of Q can be lifted
to an endomorphism 8 of M such that N8 C N; this shows the map (1) to be
surjective, and so an isomorphism. We state the result as
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Proposition 0.6.1. Given any ring R, if P is a projective left R-module and N
a submodule of P with eigenring E(N), then there is a natural isomorphism

E(N) = Endg(P/N). n

In particular, if P = R, then a is a left ideal of R and we have I(a) = {x €
Rlax C a}and E(a) = I(a)/a = Endg(R/a).

Now let A € "R" and let o: R™ — R" be the corresponding map. Tak-
ing P = R", N = ima,wehave Endg(R") = R,,hence I[(N) = {8 € R,|NB
C N}and a = Homg(R", N) = "N, as left R,,-module. We define the left ide-
alizer of a matrix A over R as the corresponding set of matrices

I(A) = {B € R,|AB = B'Afor some B’ € R,,},

and the left eigenring of A as the quotient ring E(A) = I(A)/("R™)A. By
Proposition 6.1, E(A) = Endg(M), where M is the left R-module defined by
A. The right eigenring of A is defined similarly, and it is clear that for a regular
matrix A the left and right eigenrings are isomorphic, the isomorphism being
induced by the mapping

B+ B’, where AB = B'A.

In the particular case where m = n = 1, the matrix becomes an element a of R
and we have E(a) = I(a)/Ra = Endg(R/Ra).

Given any matrices A, B over R, if M, N are the left R-modules defined
by them, then each R-homomorphism f: M — N is completely specified by a
matrix P over R such that

AP = P'B )

for some matrix P’. If I(A, B) denotes the set of all such P and b is the left
R-module spanned by the rows of B, then as before,

I(A, B)/b = Homg (M, N) 3)

is an isomorphism of (E(A), E(B))-bimodules.
For later use we record the effect of a change of base field on Homg (M, N):

Proposition 0.6.2. Let R be a k-algebra, where k is a commutative field. Given
a field extension E/k, write R = R ®; E and for any R-module M denote the
extension M Q@i E by Mg. If M, N are R-modules such that Homg(M, N) is
finite-dimensional over k, then

Homg(M, N) ® E = Homg, (Mg, Ng). “)
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Proof.  There is a natural map from the left- to the right-hand side in (4),
which is clearly injective, so it will be enough to show that both sides have the
same dimension.

Let (e;), (f») be bases for M, N as k-spaces (possibly infinite-dimensional);
then the action of R is given by

ex =Yy pijej,  fix=Y 0 )f, (x€R),

and Homgz (M, N) is the space of all solutions « over k of the system
D o, =Y 60,0 )
j s

LetV = Hom;(M, N) as k-space and C be the subspace of solutions (c;; ) of (5).
ThenV = C @& D for some k-space D and by hypothesis C is finite-dimensional,
say dim; C = n. Let py, ..., p, be linearly independent functionals on V such
that Nkerp, = D. Then (5) together with

p@)=0 (wv=1,...,n),

has only the trivial solution over k and the same holds over E. It follows that
the solution of (5) is again n-dimensional over E, and so (4) holds. [ |

The eigenring of a ring element is closely related to its centralizer and to
some extent both may be treated by the same method, by the device of adjoining
an indeterminate. The basic result is:

Theorem 0.6.3. Let R be a ring and S = R[t] the ring obtained by adjoin-
ing a central indeterminate t to R. Given a, b € R, write C = C(a,b) = {x €
Rlax = xb}. Then there is a natural isomorphism of abelian groups:

C(a, b) = Homs(S/S(t — a), S/S(t — b)).

Proof. Let R, denote R viewed as left S-module with ¢ acting by right mul-
tiplication by a. By mapping ¢ > a we define a left S-module homomorphism
S — R, with kernel S(t — @), and so

Homg(S/S(t —a), S/S( — b)) = Hom s(R,, Rp).

For any f:R, — R, we have a(1f) =af = (t1)f = t(1f) = (1f)b; there-
fore therule f + 1 f defines ahomomorphism from Homg(R,, Ry)to C(a, b).
Conversely, for any x € C(a, b), right multiplication by x defines a left S-linear
map R, — Rj; so we obtain a homomorphism C(a, b) - Homg(R,, R}),
clearly inverse to the previous map. [ ]

By putting b = a we can express the centralizer of @ as an eigenring:



36 Generalities on rings and modules

Corollary 0.6.4. The centralizer of an element a € R is isomorphic to the
eigenring of t — a in the polynomial ring R[t]. [ |

The following result is well known in the special case of matrix rings over
a field, where it is used to obtain the canonical form of a matrix (see CA,
p. 355).

Proposition 0.6.5. Let R be a ring and t a central indeterminate. Then two
elements a, b of R are conjugate under U(R) if and only if t —a and t — b
satisfy a comaximal relation

ft—a)=(@—-b)g (6)

in R[t], and in any such comaximal relation (6), f and g can be found to lie in
U(R).

Proof. If a, b are conjugate, say ua = bu, where u € U(R), then clearly
u(t — a) = (t — b)u is a comaximal relation. Conversely, assume a comaximal
relation (6). By subtracting an expression (+ — b)h(¢ — a) from both sides, we
obtain the equation

u(t —a)=({—b)v, @)

where u = f — (t — b)h, v = g — h(t — a). Here we may choose % so that u
has degree 0 in ¢, i.e. u € R. Then on comparing degrees in (7) we find that
v € R, while a comparison of highest terms shows that v = u and so

ua = bu. ®)

Further, since u = f(mod (t — b)R[t]), u and t — b are still right comaximal,
say

up + (t — b)g =1, where p, g € R[t]. )

Replacing p by p — (¢ — a)k for suitable k € R[¢] and using (7), we can reduce
(9) to the case where p has degree 0. Then ¢ = 0, by comparing degrees, and
now (9) shows p to be a right inverse to u. By the symmetry of (8), u also
has a left inverse and so is a unit. Now (8) shows a and b to be conjugate, as
claimed. |

Exercises 0.6

1. In any ring R, if ab’ = ba’', show that a’b lies in the idealizer of Rb’b and that of
a'aR.
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2. Let R be a ring and ¢ a central indeterminate. Given a, b € R*, show that the
elements a"b(n = 0, 1, . . .) are right linearly dependent over R if and only if t — a
and b are right commensurable in R[7].

3. In any ring R, show that Homg(R/aR, R/bR) = R/dR where d is the largest
element (in terms of divisibility) similar to a left factor of a and a right factor of b.

4. LetAbeamatrix with eigenring E. Show that A @ - - - @ A (r terms A) has eigenring
E..

5. Show that a unit has zero eigenring and conversely, an element with zero eigenring
over an integral domain is a unit.

6. LetR bearing and ¢ a central indeterminate. If 1 — g and i € R|[¢] satisfy a comaxi-
mal relation f.(t — a) = h.g, show that g can be taken to lie in R, but not in general
f- (Hint: Use a nilpotent element of R to construct f* as an invertible element of
degree 2.)

7*. (Robson [72]) (a) In a ring R, let a = m; N ... N my, where the m; are maximal
left ideals (such an a is called semimaximal). If B = {b € R|ab € m;} and A is the
idealizer of a, show that B /m, is a simple left A-module.

(b) If a and A are as before, show that any simple left R-module is either simple
as left A-module or is a homomorphic image of R/a.

(c) With the notation as before, let M be a simple left R-module. Then M is
simple as left A-module, unless for some i, M = R/m; and aR ¢ m,;. In that case
M has a unique composition series R O A +m; D m,.

8*. (G. M. Bergman) Prove Proposition 6.2 under the hypothesis that M is finitely
generated, as R-module.

9. Given two left R-modules with finite free resolutions of length 1,U =
R"/R"X,V = R*/R"Y, show that Extp(V,U)='R"/(Y*R" +'R"X). Simi-
larly if W ="R/Z(*R) is a right R-module, show that Tor ®(W, V) = (Z*R* N
hR"Y)/Z*R'Y .

10. Let R be any ring and A an m X n matrix over R, which is not right full. Given
B € I(A), if B represents zero in E(A), show that B is not full.

0.7 Rings of fractions

As is well known, a commutative ring has a field of fractions if and only if
it is an integral domain. In the general case this condition is still necessary,
but not sufficient, as Malcev [37] has shown. Malcev then gave a set of nec-
essary and sufficient conditions for a semigroup to be embeddable in a group
(Malceyv [39],[40]; see also UA, p. 268), but for rings the problem of finding an
embeddability criterion remained open until 1971 (see Cohn [71a] and Chapter 7
below). However, a simpler set of sufficient conditions was found by Ore [31]
and after some generalities we briefly recall the details.

Let R, R’ be any rings and S a subset of R. A homomorphism f:R — R’is
said to be S-inverting if f maps S into U (R’). It is clear that there always exists
a universal S-inverting ring Rg, obtained by adjoining for each x € § a new
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element x’ and adding the relations xx" = x’x = 1. The construction shows
that the natural map A:R — Rg is an S-inverting homomorphism and it is
easily checked that any S-inverting homomorphism can be factored uniquely
by X (see FA, Section 7.1). However, it is not easy to decide when A is injective,
or indeed when it is non-zero. The same construction can be used to find, for
a given monoid M with a subset S, a universal S-inverting monoid Mg with a
natural homomorphism A: M — Mjy. In particular, taking S = M, we obtain
a group G(M), with a homomorphism M — G(M), which is universal for all
homomorphisms from M to a group. G(M) is known as the universal group of
M, also called Grothendieck group, see Section 0.3.

Ore’s construction asks under what conditions the elements of the universal
S-inverting ring Rg can be written in the form as ~!, where s € S. Clearly it
is necessary for s~'a to be expressible in this form, say s~!
multiplying up, we find the condition as; = sa;; this may also be stated as

O.1 Foranya € R,s € S,aSNsR # 0.

In addition we shall also need a cancellation condition:

a =a1s1_'. On

0.2 Foreacha € R,s € §,ifsa = 0,thenat = Oforsomers € S,and0 ¢ S.

Further, it is convenient to assume S to be multiplicative, i.e. to contain 1 and
be closed under multiplication. A multiplicative subset of a ring satisfying O.1
and O.2 will be called a right Ore set. If R has such a subset, then by 0.2 and
multiplicativity, 1 # 0, so R must be non-zero. In the expression as ~! of an
element, a is called the numerator and s the denominator. Now the basic result
may be stated as

Theorem 0.7.1. LetR bearing andS aright Ore setinR. Then all the elements
of the universal S-inverting ring Rg can be expressed in the form as~', where
a € R,s € S. When the right Ore set S consists of regular elements, then the
natural map ):R — Rg into the universal S-inverting ring is an embedding.
Conversely, when RS '={as YlaeR,secS}isa ring, then S is a right Ore
set.

Proof. We shall give a sketch of the proof, referring to FA, 7.1 for the details.
Define a relation on R x S by setting (a, s1) ~ (a2, s») whenever there exist
t1,ty € R such that s;t; = spt, € S and a1t; = axty; this is easily verified to be
an equivalence. Denoting the equivalence class of (a, s) by a/s, where a is the
numerator and s the denominator, we observe first that any pair of elements
can be brought to a common denominator: if @; € R, s; € S are given and
t; € R is chosen as before (by the Ore condition), so that s1#; = sy, € S, then
ai/sy = ait1/sity, az/s» = arty/s»tr andsit; = s»tp. To define addition, we first
bring the elements to a common denominator and then put a;/s + ay/s =
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(a; + a2)/s. To multiply a, /s, and a,/s,, we determine a3 € R, s3 € S such
that sja3 = ays3 and then put a;/s;.ax/s» = (ajaz)/(s2s3). Of course it needs
to be checked that the results do not depend on the choice of a;, 5| and a5, s,
within their equivalence classes. This is a routine verification that may be left
to the reader, as well as the verification of the ring laws. The mapping a — a/1
is easily seen to be a homomorphism from R to Ry, which is injective when S
consists of regular elements. The converse is also a straightforward verification.

|

The ring Ry is also called the localization of R at S; when S consists of
regular elements, so that A is injective, Ry is called the ring of fractions of R by
S. When R is an integral domain and S = R*, R is called a right Ore domain;
its localization Rp~ is the field of fractions of R. The condition for an integral
domain R to be right Ore is therefore

aR N bR # Ofor alla, b € R*. 1

Corresponding definitions apply on the left and we speak of an Ore domain
when the side is not specified (rather in the way one speaks of a module).

For a right Ore domain R the localization at R* is also called the field of
right fractions of R. By symmetry every left Ore domain can be embedded in
a field of left fractions, and for a two-sided Ore domain the fields of left and
of right fractions coincide, by the uniqueness of the latter (see below). We also
note that every commutative integral domain is both a left and right Ore domain.

As a special case of Theorem 7.1 we obtain

Corollary 0.7.2. Any right (or left) Ore domain can be embedded in a field,
and the least such field, unique up to isomorphism, is the universal R* -inverting
ring. Hence any (left or right) Ore domain is weakly finite.

Proof.  To establish the uniqueness, suppose that there exist two embeddings
intofields R — K, R — K’.Theidentity map on R can be extended to elements
ab ~" and this shows K , K’ to be isomorphic. Suppose there are two embeddings
of R in the field of fractions K; then we have an automorphism of K, which
reduces to the identity on R. For if ab~! <> a’b'~!, we can find a common
denominator and so obtain c¢d ~' <> ¢’d~"; multiplying by d we find that ¢ = ¢’
and so the automorphism reduces to the identity on R, as claimed. The last
statement is clear, since R is a subring of a field. [ |

In general, when X is not injective, its kernel has the form

kerA = {a € R|at = O for somet € S}. 2)



40 Generalities on rings and modules

We remark that any finite set of elements of Ry may be brought to a common
denominator, which is a right multiple of the given denominators. The case of
two elements was dealt with in the proof of Theorem 7.1; now letcy, ..., ¢, €
Rs and use induction on n. We first bring ¢, ¢, to acommon denominator b and
then bring b~' ¢3, ..., c, toacommon denominator »’. This is a right multiple
of the denominators of b~!, cs, . .., ¢,, hence also of that of ¢y, ¢; and so it is
the desired common denominator. Thus we have

Proposition 0.7.3. Let R be a ring and S a right Ore set in R. Then any finite
set of elements of the localization Rg can be brought to a common denominator,
which is a right multiple of the denominators of all the given elements. |

To find Ore sets in a ring one looks for its ‘large’ elements. An element ¢ of
an integral domain R is said to be right large if cR NaR # Oforalla € R*.The
set L of all right large elements is always multiplicative. For clearly 1 € L and
ifa, b € L and c € R*, then there exist x, y € R* such that ax = cy and there
exist u, v € R* such that bu = xv, hence abu = axv = cyv and this shows
that ab € L. Further, if aR N bR # 0 implies ab’ = ba’ with either a’ or b’
in L, then it follows that L is a right Ore set. For if « € L and b € R*, then
aRNbR #£0, say ab' =ba’ #0.1f a’ € L, then aR NbL # @, as claimed;
otherwise b’ € L and then ab’ € L, hence ba’ € L. Now for any ¢ € R* there
exist x, y € R* with ba’x = bcy, hence a’x = cy and this shows again that
a’ € L. Thus we have proved

Proposition 0.7.4. In any integral domain R the set L of right large elements
is a submonoid. If aR NbR # 0 for a, b € L implies that ab’ = ba’, where
either a’ or b’ is right large, then the set L of all right large elements in R is a
right Ore set and the natural map R — Ry is an embedding. |

IfRisaringand T is aright Ore setin R, then any T-inverting homomorphism
toaring S, f:R — S extends in a unique fashion to a homomorphism of Ry
into S, by the universal property of Rr. Sometimes we shall need this result for
R-subrings of Rr; the proof is quite similar to that of Theorem 7.1, though it
does not actually follow as a special case.

Proposition 0.7.5. Let R, S be rings and f:R — S an injective homomor-
phism. If T is a right Ore set in R such that Tf is regular and R’ is an R-subring
of Rt such that

a € R'b(aeR,beT)impliesaf € S.bf, 3)

then f extends to a unique homomorphism f': R’ — S and ' is again injective.
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Proof. Givenr € R, we can write r = ab~"(a € R,b e T),thusa = rb and
soaf = s.bf forsome s € S, by (3). We define r f' = s and note that if instead
ofa, b wehadused au, bu, where bu € T ,then (au) f = s.(bu) f with the same
s, so any expression 7 = au.(bu)~! leads to the same value of  f'. Since any two
representations of » can be brought to a common denominator, they lead to the
same value for rf’ and this shows f’ to be well-defined. The homomorphism
property and injectivity follow as in the proof of Theorem 7.1. [ ]

An integral domain R that is not a right Ore domain must contain two non-
zero elements a, b that are right incommensurable: aR N bR = 0. It follows
that the right ideal aR + bR is a free right R-module of rank 2. Moreover, the
elements a"b(n = 0, 1,2, .. .) are right linearly independent; for if albe; =
O(ci € R, not all 0), then by cancelling on the left as many factors a as possible,
we can write this equation as

bco+abey +---+a be, =0 (co #0),
hence bcy € aR N bR, a contradiction. This proves

Proposition 0.7.6. An integral domain that is not a right Ore domain contains
free right ideals of any finite or countable rank. [ ]

Since a free right ideal of countable rank is not finitely generated, we obtain
Corollary 0.7.7. Any right Noetherian domain is a right Ore domain. [ ]

Examples of non-Ore domains are free associative algebras of rank at least
2 (to be defined in Section 2.5).

LetR, A, Bbeanyrings,a: R — A, f:R — Btwohomomorphismsand M
an (A, B)-bimodule. Then an («, 8)-derivationfromRtoMisamapé: R — M
that is additive and satisfies

(xy)’ = x*y° +x°yF. )

In particular, if A = R and o = 1, we speak of a (right) 8-derivation. Putting
x =y =1 1in (4) and observing that 1* = 12 =1, we see that any (o, B)-
derivation 8 satisfies 1° = 0. It is easily verified that ker § is a subring of
R, called the ring of constants (with respect to §). Moreover, any element of
ker § that is invertible in R is also invertible in ker §, as follows by the formula
(itself easily checked):

(7 = —(hHrat (e HE.

We list some examples of derivations.
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1.Let M = R = A = B = k(t) be the field of rational functions in ¢ over
some field &, and let f’ be the usual derivative of f. Then on takinga = 8 = 1,
we obtain the familiar formula

(fe) =re' +f'g.

as a special case of (4).

2.Let M = R = A = B and let « be any automorphism of R. Then f° =
f¢ — f is a right a-derivation. In particular, when R = k[¢] and o: f(¢)
f(t + 1), then § is the differencing operator f(¢t) — f(t + 1) — f(¢).

3. For any R, A, B, M take m € M and define §,,: R — M by the rule

S iX > x%m — mxP. ®)

This is easily seen to be an («, B)-derivation; it is called the inner (o, B)-
derivation induced by m. Thus the differencing operator in example 2 is the
inner a-derivation induced by 1, where « is the translation operator. A derivation
that is not inner is called outer.

With any (A, B)-module M we can associate the ring(A

M consistin
0 B £

of all matrices

a m
(O b) (@ae A,be B,meM),

with the usual matrix addition and multiplication. The (A, B)-bimodule prop-
erty just ensures that we get a ring in this way:

a m\(a m'\ (ad" am’+mb
0 pJ\0 ») \O bb’ '
Givenmapso:R — A, :R — B,5:R — M, we can define a map from R to

A M
(O B)bytherule
x¢ x?
xn—)(o xf‘)’ (6)

and it is easily checked that this is a ring homomorphism if and only if «, 8
are homomorphisms and § is an (¢, 8)-derivation. This alternative method of
defining derivations is often useful, for example in proving

Theorem 0.7.8. Let R, A, B be rings, T a right Ore set in R and M an
(A, B)-bimodule. Then any T-inverting homomorphism a: R — A extends to
a unique homomorphism o' : R — A, and given T-inverting homomorphisms
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a:R — A, B:R — B,any(«a, B)-derivation§:R — M extendstoan(«', B')-
derivation §' of Ry into M.

Proof.  The existence and uniqueness of o’ follow because Ry is universal T -

M), whichis T -

. . . A
inverting. Now § defines a homomorphism (6) from R to( 0 B

. . . X XY

inverting and therefore extends to a homomorphism of Ry :x +— ( 0 ﬂ,>.
X

It follows that &’ is an («’, 8’)-derivation. [ |

We conclude this section by briefly discussing a special class of monoids
that are embeddable in groups. Let S be a cancellation monoid; an element ¢ of
S is said to be rigid (sometimes called equidivisible), if

ab' =ba =c¢ @)

implies a = bu or b = au, for some u € S. Thus c is rigid if the left factors of ¢
form a chain under the ordering by divisibility. When (7) holds, and @ = bu, then
bub' = ba’ ,hence a’ = ub'; this shows the condition to be left-right symmetric.
A monoid is said to be rigid if it admits cancellation and all its elements are
rigid. Thus S is rigid if it is a cancellation monoid such that

aSNbS#0W=aS CbSorbS Cas. ®)
Theorem 0.7.9. Every rigid monoid is embeddable in a group.

Proof.  Let S be a rigid monoid and for a, b € S denote by {a.b} the set of
all elements of the form a’b”, where a = a’a”, b = b’'b”. We first establish the
following assertions:
(x) ue€fac.b},u ¢ {a.b}=ucas,
() uc € {a.bc} = u € {a.b}.
To prove (o) we have by definition, u = pgq, ac = px, b = yq. By rigidity,
a € pS or p €aS. In the first case u € {a.b}, which is excluded, so p € a$
and hence u € aS. To prove (B), let uc = pg,a = px, bc = yq. Now either
p =uz;thena = uzx and so u € {a.b}, or u = pz; then g = zc, b = yz and
again u € {a.b}. Thus («) and (3) are established.

We next consider the set of all expressions

p=aoh;'aib;' ... a,_1b;'a,, wherea;, b; €. )
The expression (9) is said to have length n; it is said to be reduced if

a; ¢ {b,’.b,’_H} (i = 1, oo, n = 1), b,‘ ¢ {Cl,‘.d,‘_]} (l = 1,...,1’1). (10)
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Clearly if (9) is reduced, none of the a’s or b’s except possibly ay or a,
can be 1. We define the following elementary transformations on (9), for any
x €S

Ri:a; b7 > aix(bix)™ (i=1,...,n),

Li:b 'ai v+ (xb) 'xa; (i=1,...,n).

Two expressions are called equivalent if we can pass from one to the other by a
finite chain of elementary transformations and their inverses; clearly this is an
equivalence. We note in particular that every element of S forms an expression
of length 0, which is reduced and admits no elementary transformations.

We claim that a reduced expression stays reduced under elementary trans-
formation. Consider the effect of R; on (9) and the first condition (10). It is
clear that this will not be affected unless j =i ori 4 1. We take these cases in
turn.

R;. Suppose that @; € {b;x.b;1,}. Since a; ¢ {b;.b;1+1}, we have a; € b; S by
(), but this contradicts the fact that b; ¢ {a;.a;_1}.

R;4. Since a; ¢ {b;.b;j1+1}, we have a;x ¢ {b;.b;11x} by (B).

Rfl. Let a;_1 = aj_,x, b; = bjx; if a; € {b].b;11}, then a; € {b/x.bj1} =
{b;.bi11}, a contradiction.

Rijrll. Let a; = ajx,bjy1 =b; x and a] € {b;.b} ,}; then a; =a';x €
{b,-.bl’,rlx} = {b;.b;+1}, which is again a contradiction.

By symmetry L ; leaves the first condition (10) unaffected, and we can deal
similarly with the second condition (10) by considering the formal inverse of
).

Thus the conditions (10) are unaffected by elementary transformations, so
for any reduced expression (9) the length is an invariant of the equivalence class.
In particular, two expressions of length 0 are equivalent if and only if they are
equal, as elements of S.

We now define G(S) as a group of permutations on the set of equivalence
classes of reduced expressions and verify that S acts faithfully; this will show
that S is embedded in G(S). Given ¢ € S and a reduced expression p as in (9),
we define

1 1 .
apby ay...b, a'c" ifc=cc",a,-1 =ad'a’", b, =a,c'a".

(11)
Clearly the first form is reduced; when it does not apply, we have
b, € {a,c.a,_1}, but b, ¢ {a,.a,_1}, hence by («), b, = a,u and so a,u €
{a,c.a,_1}. By the left-right dual of (B),u € {c.a,_1}, so c =c'¢",a,_1 =

a'a’,u =ca" and b, = a,c’a”, which is the second alternative in (11). It is

pe = {aobf]al ...a,,_lbn_la,,c if b, ¢ {a,c.a,1},
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reduced, for if b, € {a'c".a,_,}, then since b,_| ¢ {a,_.a,_»}, we have
b,_1 ¢ {a’.a,_»} and so by («), b, = da’v, but then a,_| € {a'v.a,c’a"},
which contradicts the condition a,_; ¢ {b,—1.b,}.

A routine verification shows that this action is compatible with the elemen-
tary transformations R;, L; and their inverses, so that (11) defines an action on
the equivalence classes. Next we define for ¢ € S and p as in (9),

aobl_lal ...bn’lanc’ll ifc ¢ {l.a,} and a, ¢ {b,.c},

pc !l = aphy'ay ...b;'u if a, = uc,
aphy'ay ...b "t a, (D) ifa, =b'c", b, =bb",c=cc".
(12)
In the case n = 0, the centre line applies, but a is then omitted, i.e. pc~! = u.

The first form is clearly reduced. If it does not hold, suppose that ¢ € {l.a,},
say a, = uc. By hypothesis, b, ¢ {a,.a,—1} = {uc.a,—}, hence b, ¢ {u.a,_}
and this shows the second form to be reduced. Finally, if ¢ ¢ {1.a,} but
a, € {b,.c},let c =c'c", b, =b'b",a, =b'c"; then we are in the third case
and it will be reduced, provided that a,_; ¢ {b,_;.c’b"}. So suppose that
an—1 € {b,_1.c'b"}; since a,_; ¢ {b,_1.b,}, we have a,_1 € Sb” by the left—
right dual of (@), say a,_; = vb”; but then b, € {a,.a,_}, which is a contra-
diction. Again it is straightforward to show that the action is compatible with
L,’, R,‘.

To verify that we have a representation, we shall use ~ to indicate equiva-
lence.

(i) cc™! = 1. If pc has the first form (11), it is clear that pcc™! = p. For the
second form we have
—1

aobl_lal ...b 1a’c/_ll,

PCC = ~agbay .. b a1 (ca") " ~ p.
(ii) c~'c = 1.If pc~! has the first form (12), all is clear. If the second applies,
we have

1

pcc= aobflal .. .bn_luc ~ p,
and for the third,
pclc = aobl_1 .. .b;ﬁllan_l(c’b”)flc
~ aobf1 .. .b;_llan,lb”_lc” ~ p.

(iii) (pc)d = p(cd). If p(cd) has the first form (11), then b, ¢ {a,cd.a,—1},
hence b, ¢ {a,c.a,—1}, and so

(po)d = aphy" ... b, ayed = p(ed).
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If p(cd) has the second form (11) and b,_; ¢ {a'c"d.a,_>}, then

(poyd = aobfl ) ..b;_lla/c”d = p(cd).

Ifb,_ 1 € {dc"d.a,_»},saya’c"d = e'e",a,> = f'f",by_1 =€ f”, then

(po)d = aghy" - b, fle” = p(cd).

It is clear that p1 = p, so we have a representation of S by permutations of the
classes of reduced expressions (9). Further, for any x, y € S, if x and y have the
same action, then x = 1.x = 1.y = y; this shows that S acts faithfully, so S is
embedded in G(S), as claimed. [ |

10*.

11.

12.

Exercises 0.7

. In a monoid S, if aba is invertible, show that a and b are both invertible. Show

also that it is not enough for ab to be invertible. What is the generalization to n
elements?

Let R be any ring; show that any R*-inverting homomorphism into a non-zero
ring must be injective.

Verify the formula (2) for the kernel of A.

Let R be an integral domain. Show that any Ore subring of R is contained in a
maximal Ore subring.

Show that a direct limit of Ore domains is again an Ore domain.

Let R be a ring and T a left and right Ore set in R. If R is (left or right) Ore,
Noetherian or Artinian, show that the same is true of Ry.

In any ring show that any left factor of a right large element is again right large.
In an integral domain, is the same true of any right factor?

. Let R be a right Ore domain with right ACC; and a an ideal of R that is princi-

pal as left ideal. If R/a is an integral domain, show that it is again a right Ore
domain.

If R is an ordered ring that is a right Ore domain, show that the ordering can be
extended in a unique way to the field of fractions of R.

Let R be an integral domain that is not right Ore and let n > 1. Show that "R can
be embedded in R as a right ideal, and if "R does not have unique rank, show
that "R contains a strictly descending chain of direct summands that are free of
rank n. Deduce that if an integral domain satisfies right pan-ACC then R has
IBN.

Let R be a right Ore domain and X its field of fractions. If A € R, is right regular
in R, show that it is right regular in K, and hence invertible, with an inverse of
the form Bd~', B € R,,d € R*. Deduce that every right zero-divisor in R, is a
left zero-divisor. Does the reverse implication hold generally?

Let E D F be a skew field extension of finite right dimension. Show that in
the polynomial ring E[x] the monic polynomials with coefficients in F' form a
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right Ore set. (Hint: In the relation au’ = ua’, wherea,a’ € E[x], u,u’ € F[x],u
monic, equate coefficients and eliminate the coefficients of a’.)

(L. G. Makar-Limanov) Let S be a cancellation monoid. Given a, b € S, denote
by T the submonoid generated by a, b. Show thatif aT NbT = &, then T is free
ona, b. Deduce that a cancellation monoid containing no free submonoid on more
than one element can be embedded in a group.

Let R be aring with IBN and S a right Ore set; show that the localization Rg need
not have IBN. (Hint: Take a ring generated by the entries of rectangular matrices
A, B with defining relations AB = AI, BA = AI, where X is another generator,
which is central.)

Let R be an Hermite ring and T a right Ore set; show that the localization Ry need
not be Hermite. (Hint: See Exercise 14; use the completion with respect to the
powers of A.)

Let R be a right hereditary right Ore domain. Can every right ideal be generated
by two elements? (This is true in the commutative case, but as we shall see later,
false in the non-Ore case.)

(S. Rosset) Let G be a group and A a torsion-free abelian normal subgroup of G.
Show that in the group algebra kG (over a field k) the set (kA)* is a left and right
Ore set consisting of regular elements.

Show that the kernel of a derivation acting on a local ring is again a local ring.
Prove Leibniz’s formula for derivations:

@h)s' =Yy <7> (as))(bs" ™).

More generally, if § is an a-derivation, show that
(ab)s" =y a8 bf!'(@,9),

where f(a, 8) is the coefficient of #' in the formal expansion of (fa + 8)".

If § is a derivation on an integral domain of prime characteristic p, show that §”
is again a derivation.

If § is a nilpotent derivation of exponent r on an integral domain K (i.e. 8" = 0 #
8"y andr > 1, show that K has prime characteristic p and r = p’. (Hint: Apply
8" to ab, where b8 # 0 = b6 and use Leibniz’s formula to show that p|r; now
repeat the argument with § replaced by 67.)

Let D be a skew field with centre F' and let R be the F-algebra generated by all
multiplicative commutators in D : R = FD’. Show that R is a (left and right) Ore
domain with field of fractions D.

0.8 Modules over Ore domains

Many results on modules over commutative integral domains hold more gen-
erally either for right modules or for left modules over right Ore domains. For
convenience we shall deal with left modules over left or right Ore domains in
this section and leave the reader to make the necessary modifications.
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Let R be an integral domain and M a left R-module. An element x € M
is called a torsion element if ax = 0 for some a € R*. When R is a left Ore
domain, the set M, of all torsion elements of M is easily seen to be a submodule.
If M, =0, we say that M is torsion-free; if M, = M, one calls M a torsion
module. This definition is the customary one, at least over Ore domains; later, in
Sections 3.2 and 5.3 we shall use this term in a different sense, so we shall reserve
the term for later and call M, the submodule of torsion elements. It is clear that
for any module M over an Ore domain, M, is a module of torsion elements and
M /M, is torsion-free; moreover, these two properties serve to determine M,.

Let R be aring and T a left Ore set in R; then the localization Ry may be
expressed as a direct limit

Ry =lim{t 'Rt € T}.

For, given 1,1, € T, there exists t € Tt; N R, and so tflR U t{lR ctIR.
This process can be applied to modules as well as rings; for simplicity we state
the result only for Ore domains, the case of principal interest:

Proposition 0.8.1. Let R be a left Ore domain, K its field of fractions and M a
left R-module. Then K @g M can be described as the set of all formal products
b~'x(x € M,b € R*) subject to the relations: b='x = b'~'x" if and only if
there exist u, v € R* such that ux = vx’, ub = vb’. Moreover, the kernel of the
canonical map

M—K®M ey
is M,, so (1) is an embedding if and only if M is torsion-free.

Proof.  Any element of K ® M has the form x = Zbl—_lai Qx;. Ifbisa
common left multiple for the b; : c;b; = b, then

P Zb_lciai ® x; =b! (Z Ciaixi)'

Thus every element of K ® M has the form b~'x,x € M,b € R*. Given
p=>b"'xand p’ = b'~'x/, there exist u, v € R* such that ub = vb’ = c, and
wehavecp = ux, cp’ = vx'. If p = p/,thencp = cp’,i.e. ux = vx’in M, con-
versely, if cp = cp’, then ux = vx’andso p = ¢ '.cp = ¢~ l.ep’ = p'. Now it
follows that 5~'x = 0 if and only if ux = 0 for some u € R*, i.e. precisely if
Xx € M;. Hence the kernel of (1) is M, and the rest is clear. [ |

For aright R-module there is no such convenient description, but in that case
there are two ways of describing the linear functionals on M, using the dual
M* = Homg(M, R).
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Proposition 0.8.2. Let R be a right Ore domain with field of fractions K and
let M be a finitely generated left R-module. Then there is a natural isomorphism
of right K-modules

M*®r K = Homg(K @ M, K). 2)
Proof. By adjoint associativity, applied to (x Kg, g M, kK ), we have

Homg (K ®z M, K) = Homg(M, K)
=~ Homg(M,lim Rb~").

Since M is finitely generated, we can find a common denominator for the
images of elements of M, so we can replace lim Rb~! by Rb~! for any given

homomorphism; thus we have
Homg(M, lim Rb™") = lim Homg(M, R)b™' = M* @& K.
|

We have seen that the field of fractions K of a left Ore domain R has the
form K = limb~'R; here each 'R is a free right R-module. Let us call a

module semifree” if every finite subset is contained in a finitely generated free
submodule. Then we can say that K is semifree as right R-module, hence flat,
therefore, if a family of elements in a left R-module M is linearly independent,
then so is its image in K ® M. Hence the dimension of K ® M as a vector
space over K equals the cardinality of a maximal linearly independent subset
of M. This number is an invariant of M, which we shall call the rank of M and
denote by rtk M. In particular, rk M = O precisely when M consists of torsion
elements. On free modules the rank clearly agrees with our previous definition
of rank, and since tensoring preserves exactness, we have

Proposition 0.8.3. Let R be a left Ore domain. If0 - M’ - M — M” — 0
is an exact sequence of left R-modules, then

kM =1kM +1kM".

In particular, if N is a submodule or a homomorphic image of M, then rk N <
rkM. [ ]

The last assertion, relating to homomorphic images, holds (under an appro-
priate definition of rank) for a large class of rings, including all that can be

* This is sometimes called ‘locally free’, but we shall avoid that term, as it has quite a different
meaning in commutative algebra.
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embedded in fields, and hence most of the rings considered later. However,
apart from this, none of the other assertions holds with ‘right’ in place of ‘left’
Ore domain. Thus let R be any right Ore domain (or indeed, any integral domain)
that is not left Ore and let x, y € R* be such that Rx N Ry = 0; then R contains
the left ideal Rx + Ry, which is isomorphic to R2: this shows that the first part
of Proposition 8.3 cannot be extended to such rings. For an example showing
that K need not be semifree as right R-module, take x and y as before; then
the submodule x 'R + y~!R of the right R-module K contains a, b # 0 such
that ax = by (namely x~!' and y~'), but such elements do not exist in R and
hence do not exist in general domains; however, it remains true for right Bezout
domains (see Proposition 2.3.19).

The following property of right Ore domains is not in general shared by left
Ore domains (see Exercise 3).

Proposition 0.8.4. Let R be a right Ore domain and K its field of fractions.
Then any left K-module, considered as left R-module, is semifree, and in par-
ticular, torsion-free.

Proof. Let M be a finitely generated R-submodule of a left K-module, which
may without loss of generality be taken to be K", for some n. We can choose a
common right denominator ¢ € R* for the components of the finite generating
set of M. Then M € R".c~! and the latter is a free R-module. [ ]

By combining this result with Proposition 8.1, we obtain

Corollary 0.8.5. IfR is a left and right Ore domain, then every finitely gen-
erated torsion-free R-module is embeddable in a free R-module. |

Finally we note that the flatness of the ring of fractions, well known in the
commutative case, continues to hold in the Ore case.

Proposition 0.8.6. Let R be a ring and T a right Ore set in R. Then Ry is left
R-flat. If R is any integral domain, then Rg~ is non-zero and left R-flat if and
only if R is a right Ore domain.

Proof. Wehave Ry = lim Rc‘l(c € T), therefore Ry is a direct limit of free

left R-modules Rc¢~! and hence is flat, in particular, K = Rg~ is so when R is

right Ore.
Conversely, if Rgx is left R-flat and non-zero, take a,b € R*; then
a.a”' —b.b~! =0, hence there exist u; € K, p;,g; € R such that a=! =

> piui, b~V =" qiui, ap; — bq; = 0. Not all the p;,q; can vanish, say
p1, q1 # 0; then ap; = bq; is the desired right multiple. |



0.8 Modules over Ore domains 51

The last part of this proposition shows in effect that if R is a right Ore domain
with field of fractions K, then K is left R-flat but not right R-flat unless R is also
left Ore.

50

7*.

9°.

10.

Exercises 0.8

. LetK be a field and E a commutative field with a subring A isomorphic to a subring

of K. Show that K ®,4 E is an Ore domain, provided that it is an integral domain.
(Hint: Note that every element of K ® 4 E has a right multiple of the forma ® 1,
wherea € K.)

Let F be a commutative field, £ an algebraic commutative field extension and A
an F-algebra that is a right Ore domain with field of fractions K. If A ®7 E is an
integral domain, show that it is a right Ore domain with field of fractions K ®p E.

. Let R be a left but not right Ore domain and K its field of fractions. Show that K, as

left R-module, has rank 1 but is not semifree (see Exercise 5.1.7).

(Gentile [60]) Let R be a subring of a field. If every finitely generated torsion-free
left R-module can be embedded in a free left R-module, show that R is right Ore.
Note that this is a converse to Corollary 8.5. Investigate the truth of other possible
converses.

Does Exercise 4 remain true when R is merely assumed to be an integral domain,
not necessarily contained in a skew field?

Show that a projective left ideal a of a left Ore domain is finitely generated.
(Hint: Use a projective coordinate system to show that a is invertible or 0, see
BA, Proposition 10.5.1.) Deduce that every projective left R-module that is uni-
form (i.e. any two non-zero submodules have a non-zero intersection) is finitely
generated.

Let R be aright Ore domain, X its field of fractions and a any non-zero right ideal of
R.Show that a ® K = K (as right R-modules). Show thatin K ® K any element
s € K satisfies 1 ® s = s ® 1 and deduce that K ® K = K. [This is equivalent
to the assertion that the embedding R — K is an epimorphism in the category of
rings (see Theorem 7.2.1); this equivalence actually holds for any ring R with a
homomorphism to a field K (Corollary 7.2.2).]

(Bergman [67]) Let R be a right Ore domain and K its field of fractions.
Prove that the following conditions on a finitely generated left R-module M are
equivalent:

(a) the canonical map M — K ® M is an embedding,

(b) M is embeddable in a K-module (qua left R-module),

(c) M is embeddable in a free left R-module,

(d) Homg(M, R) distinguishes elements of M,

(e) Homg (M, K) distinguishes elements of M.

Find the relations between (a)—(e) of Exercise 8 when (i) K is a field and R a subring
generating K as a field, (ii) K is any ring and R a subring. Find conditions on the
finitely generated R-module M for (a)—(e) to be equivalent.

Show that for any finitely generated left R-module M over a (left and right) Ore
domain R with field of fractions K, K @ M = K ® M**.
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0.9 Factorization in commutative integral domains

Asis well known, acommutative integral domain is called a unique factorization
domain (UFD for short) if every element not zero or a unit can be expressed
as a product of atoms and any such expression is unique except for the order
of the factors and up to associates. This definition makes it clear that unique
factorization is a property of the multiplicative monoid of the ring, even though
other aspects of the ring are usually needed to establish it. We therefore restate
the definition in terms of monoids.
Any commutative monoid S has a preordering by divisibility:

alb if and only if b = ac for somec € S. @))
If a|b and b|a in a cancellation monoid S, then
a = bufor some unitu € S, 2)

i.e. a and b are associated. We recall that a monoid is called conical if xy = 1
implies x = y = 1; for a cancellation monoid this just means that 1 is the only
unit. Clearly (1) is a partial ordering of S precisely when S is conical. With every
commutative cancellation monoid S, having a group of units U, we can associate
a conical monoid S/U whose elements are the classes of associated elements
of S. Since the relation (2) between a and b clearly defines a congruence on S,
the set of these classes forms a monoid in a natural way.

A commutative cancellation monoid S will be called a UF-monoid if the
associated conical quotient monoid S/U is free commutative. With this defi-
nition it is clear that a commutative ring R is a UFD if and only if R* forms a
UF-monoid under multiplication. In studying unique factorization in commu-
tative rings we can therefore limit ourselves to UF-monoids.

To state the conditions for unique factorization in monoids succinctly, let us
define a prime in a commutative monoid S as an element p of S that is a non-unit
and such that

for anya, b € S, plabimplies pla or p|b.

Clearly any associate of a prime is again a prime. Further, a prime in a cancella-
tion monoid is necessarily an atom. For any prime p is a non-unit and if p = ab,
then pla or p|b,say a = pg;hence p = ab = pgb and by cancelling p we have
gb =1, so b is a unit. The converse is false: an atom need not be prime, e.g.
consider the monoid generated by a, b with the defining relation a> = b?; here
a is an atom but not prime. In fact for a commutative cancellation monoid, the
converse, together with a finiteness condition, is easily seen to ensure that we
have a UF-monoid.
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For later applications it is useful to consider a slightly more general case.
An element ¢ of a monoid S (not necessarily commutative) is said to be right
invariant, if ¢ isregular and for any x € S thereexists x’ € S suchthatxc = cx’.
Since c is regular, x’ is uniquely determined by x. Left invariant elements are
defined similarly and c is called invariant if it is left and right invariant, i.e. ¢
is regular and

cS = Sc.

Lemma 0.9.1. [nanymonoidS the set Inv(S) of all invariant elements is a sub-
monoid containing all units of S. More generally, if two elements of the equation

c=ab

are invariant, then so is the third.

Proof.  Clearly every unit of S is invariant. If ¢ = ab, where a, b are invariant
and cx = cy, then abx = aby, hence bx = by and so x = y, which shows
¢ to be right regular; left regularity follows similarly. Further, ¢S = ab$ =
aSbh = Sab = Sc, hence c is invariant. Suppose now that a and ¢ are invariant.
If bx = by, then cx = abx = aby = cy, and it follows that x = y, therefore
b is right regular. Suppose next that xb = yb and let ax = xja, ay = y;a;
then x,c = x1ab = axb = ayb = yab = y;c; hence x| = y|, soax = xja =
yia = ay, and hence x = y. This shows b to be left regular. Now abS = ¢S =
Sc = Sab = aSh, anditfollowsthatbS = Sb, so bisinvariant. Similarly, when
b and c are invariant, then so is a. [ |

If every element of S is invariant, we say that S is invariant. Since every
element is then regular, an invariant monoid always has cancellation. Moreover,
in any invariant monoid S, xy = 1 implies yx = 1. For if xy = 1, then y'x =
1 for some y’ € S, hence y' = y'xy =y, so y is a two-sided inverse of x,
as claimed. Invariant monoids clearly include all commutative cancellation
monoids and they share with the latter the property that right associates are
the same as left associates; more generally, the preordering by left divisibility
(which is defined in any monoid) and that by right divisibility coincide. For
if a = bc, then also a = ¢b’ and a = ¢’b for some b’, ¢’ € S; thus the relation
alb is unambiguous in an invariant monoid. Further we can define primes as
in commutative monoids and we can again associate a conical monoid S/U
with S, whose elements are the classes of associated elements. An invariant
monoid S with group of units U will be called a UF-monoid if its associated
conical quotient monoid S/ U is free commutative. This clearly generalizes the
previous definition.
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Let S be a commutative cancellation monoid; for any finite family (a;) we
define the highest common factor (HCF for short; also called GCD = greatest
common divisor) as an element d such that d|a; for all i and any d’ with the
same property divides d. Similarly the least common multiple (LCM for short)
is defined as an element m such that a;|m for all i and any m’ with the same
property is a multiple of m. We note that the HCF and LCM are each defined
only up to a unit factor but they are unique elements of S/ U . Since left and right
divisibility in an invariant monoid coincide, it is clear that the notions of HCF
and LCM can also be defined in that case. By contrast, in a general monoid (or
ring) we need to speak of highest common left (or right) factor and least common
right (or left) multiple, a case that will be considered later (in Section 2.8).

The relation between HCF and LCM is elucidated in

Proposition 0.9.2. In any invariant monoid S two elements a and b have an
HCF whenever they have an LCM, and the HCF d and LCM m are then related
(in a localization of S) by the equations

m=>bd'a, d=am'b. 3)

Moreover, if in a commutative integral domain a and b have an HCF of the
formd = au + bv, then they have an LCM m and (3) holds.

Proof.  Suppose that a, b have an LCM m. Then a|m, hence ba|bm, so
bam~'|b. Thus b = bam™"'c for some c; by cancellation am~'c = 1, hence
cam™" =1, and so cam~'b = b, i.e. am~'b|b. By symmetry, am~'b|a and it
follows that am~'b is a common factor of ¢ and b. Now suppose that u|a, u|b;
then bu~'a is divisible by a and b, hence also by m, so we have bu"'a = fm
for some f. Thus bu—'am~'b = fb = bf’ for some f’, and so am™'b = uf’.
This shows that u|am~'b and it shows am~'b to be an HCF of a, b. Writing
am~'b = d, we clearly have m = bd~'a and (3) holds.

Suppose now that a, b in a commutative integral domain have an HCF d
such that d = au + bv and put m = bd~'a. Clearly a, b|m; if n € S is such
that a, b|n, say n =rb = sa, then b|nu + sbv = s(au + bv) = sd, and so
bd~'a|sa = n. It follows that m = bd~'a is indeed the LCM of a and b and
(3) is satisfied. [ |

The relation d = au + bv is known as Bezout's relation. As Exercise 6
shows, without it the LCM may not exist.

For the study of factorizations ACC; is particularly important. Thus let S
be a cancellation monoid with left and right ACC; and take any ¢ € S. Then
¢S # S if and only if ¢ is a non-unit and in that case, by right ACCy, there is
a maximal principal right ideal p; S such that ¢S € p;S C S. This means that
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¢ = pjc; and p; is an atom. Repeating the procedure on c; we see that unless
it is a unit, we can write ¢; = p,cy, where p; is an atom. Continuing in this
fashion, we get a strictly ascending sequence of principal left ideals

ScCSc;CSer ...,

which must terminate by left ACC;. It follows that every non-zero element of
S is either a unit or a product of atoms. A cancellation monoid (or an integral
domain) with this property is said to be atomic, and what we have proved can
be stated as

Proposition 0.9.3. Any cancellation monoid, in particular any integral
domain, with left and right ACC| is atomic. [ ]

It is clear that in an invariant monoid left and right ACC; coincide, and as
we have just seen, such a monoid is atomic, but the converse is not generally
true, even for commutative integral domains (see Grams [74], Zaks [82] and
Exercise 9 below). We have

Theorem 0.9.4. [nany invariant monoid S the following conditions are equiv-
alent:

(a) S is a UF-monoid, i.e. S/U is free commutative, where U is the group of
units,

(b) S satisfies ACC and any two elements have an HCF,

(c) S satisfies ACC| and any two elements have an LCM,

(d) S satisfies ACC, and the intersection of any two principal ideals is
principal,

(e) S is atomic and every atom of S is prime.

Here the assertion obtained by replacing the intersection in (d) by the union (or
even by the sum) is not equivalent to the others.

Proof.  None of the conditions is affected if we pass to the associated con-
ical quotient monoid T = S/U, and 1 is the only unit in 7. It is clear that a
free commutative monoid is conical and satisfies (b), so (a) = (b). To prove
(b) = (c), assume (b). Given a, b € T, there is a common multiple, namely ab.
Let m be a common multiple of a, b for which mS is maximal; if m’ is another
common multiple of a, b, we claim that m|m’; for otherwise the HCF, d say,
of m and m’ is again a common multiple and has the property that mT C dT.
Thus m is in fact the least common multiple, as claimed.

It is clear that (¢) < (d), because two elements a, b have an LCM m if and
only if aT NbT = mT . To prove (c) = (e), leta, b € T and let p be an atom
such that p|ab. Denote the LCM of p and a by m; thenm = ap; = pa, say, and
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since ap is a common multiple, we have ap = md = ap,d, say. Thus p = pd,
but p is an atom, so either (i) d =1 and p=p; or (ii) py=1andd =p
(because 1 is the only unit). Case (i): m = ap is an LCM; since plab, alab, we
have ab = me = ape for some e € T, therefore b = pe, p|b. Case (ii): m = a
is an LCM, hence p|a. Thus p is prime and T is atomic, by ACCj, so (e) holds.

Finally, to prove (e) = (a), take distinct atoms a, b and let ab = bay, say.
Then a|ba; but a does not divide b. Since a is prime by (e), it follows that
alay, say a; = au. Thus ab = bau; by symmetry ba = abv = bauv, hence
uv =1and sou = v = 1 and ab = ba. This shows that the monoid generated
by the atoms is commutative, but this is the whole of T, since T is atomic. This
also shows T = S /U to be commutative. Now the uniqueness proof follows a
well-known pattern. If

c:p‘f‘...pﬁ‘”:pf'...pf”, “4)
where the p; are distinct atoms and 0 < «; < B say, then p; divides ¢ but not

P52 ... p2, hence pi|p{", therefore oy > 0. So we can cancel p; in (4) and use
induction on ) ¢; to obtain (a). [ |

This result shows in particular that in a UF-monoid the number of prime fac-
tors in a complete factorization of an element c is the same for all factorizations;
it will be denoted by /(c) and called the length of c.

Frequently one needs to know the effect of localizing on unique factorization.
Again we begin by setting out the problem in terms of monoids. If S is an
invariant monoid, then any submonoid T is a right Ore set and we can form the
localization St. The following criterion for S to be a UF-monoid generalizes a
theorem of Nagata [57].

Theorem 0.9.5. Let S be an invariant monoid and T a submonoid generated
by certain primes of S. Further, assume that S is atomic and that the localization
St is a UF-monoid. Then S is itself a UF-monoid.

Proof. By Theorem 9.4 we need only verify that every atom of S is prime.
Denote the canonical map S — S7 by x — x’ and let p be an atom of S. We
claim that p’ is an atom or a unit; for if p’ is a product of non-units, say, then
p' =af'bg~', where a, b are non-units and f, g € T are products of primes.
Each such prime divides either @ or b and cancelling them in turn, we find that
p = aiby, where a; or by must be a unit and it follows that p’ is an atom or a
unit. We treat these two cases separately.

(i) p’ is an atom and hence a prime in Sy. If plab, say pc = ab, then
p'c’ =a'b’, hence p'la’ or p'|b’, say the former. This means that

pe=ar, whereee S,reT.
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No prime factor of r can be an associate of p, for otherwise p’ would be a
unit. Hence the prime factors of » divide e, and cancelling them one by one, we
obtain an equation pe; = a, so pla, which shows p to be a prime.

(ii) p’ is a unit in S7. Then pg = r, where r € T and ¢ € S. Again we can
cancel the prime factors of r one by one, but this time we find that one of them
is associated to p, for otherwise p would be a unit. Hence p is a prime. [ ]

Applied to rings, Theorem 9.5 yields

Theorem 0.9.6. [n any ring R let T be a submonoid of Inv(R), the monoid of
all invariant elements in R. Further, assume that Inv(R) is generated by certain
elements that are primes in Inv(R). If Inv(R) is atomic and its image in the
localization Ry is a UF-monoid, then Inv(R) is itself a UF-monoid. [ ]

Taking R to be a commutative integral domain, we find that Inv(R) = R*
and we obtain the following slight generalization of Nagata’s theorem:

Corollary 0.9.7. Let R be a commutative atomic integral domain. If T is a
submonoid of R* generated by certain primes and the localization Ry is a
UFD, then R is a UFD. |

Exercises 0.9

—_

Show that every Noetherian integral domain is atomic.

2. Let k be a commutative field and R = k[x, y, z, f], a = (xt — yz)R. Show that
the ring R /a (the coordinate ring of a quadric) is an atomic integral domain, but
not a UFD.

3. If an invariant monoid § satisfies ACC, and the join of any two principal ideals
is principal, show that S is a UF-monoid. Show that the converse is false, by
considering the multiplicative monoid of a suitable UFD.

4. If Sis aninvariant monoid and Q a normal submonoid,i.e.aQ = Qaforalla € S,

define the quotient monoid S/Q and show that it is again invariant.

Show that any invariant element in a simple ring is a unit.

6. Let R be the subring of Z[x] consisting of all polynomials with even coefficient
of x. Show that two elements of R may have an HCF without having an LCM.

7*. (Novikov [84]) Let S be an invariant monoid generated by two elements. Show

that the associated conical monoid §/U is commutative. What happens for more
than two generators?

8. Let S be a monoid (in multiplicative notation) and let &S be its monoid algebra
(over a commutative field k). Show that kS is atomic if and only if S is. Likewise
for ACC;.

9*. (G. M. Bergman) Let oy, o3, . . . be a sequence of real numbers, linearly indepen-

dent over Q, such that 0 < o, < 1/n and denote by S the submonoid of the addi-

tive group of real numbers generated by all elements «,,, 1/n — o, (n = 1,2, ...).

Verify that S contains all positive rational numbers and so does not satisty ACC;.

bt



58 Generalities on rings and modules

Show further that for any s € S, if s # 0, then for some n > 1, either s > «,, or
s > 1/n — «,. Deduce that S is atomic.
10°. Is every invariant conical monoid necessarily commutative?

Notes and comments on Chapter 0

Much of this material is part of the folklore and the citations given below are probably
far from exhaustive. The first thorough discussion of IBN (treated in Section 0.1) occurs
in Leavitt [57]; Shepherdson [51] gives an example of a ring that is weakly 1- but
not 2-finite. For a connected account of IBN, UGN and weak finiteness (showing that
these classes are distinct), see Cohn [66a]. Proposition 1.2 is proved for regular rings
by Goodearl [79], Theorem 18.3, and generally by Malcolmson [80a]. Proposition 1.3
is taken from Cohn and Schofield [82], where Lemma 3.3 is also proved. The notion
of inner rank was defined in Bergman [67], but goes back much further; almost any
pre-1914 book on matrix theory defines the rank of a matrix A as the least number of
terms in the expression of A as a sum of dyads, i.e. products of a column by a row,
which is a matrix of inner rank 1. Stephenson [66] has shown that the injective hull of a
non-Ore domain is a ring Q satisfying QN = Q; see also O’Neill [91].

The matrix theory of Section 0.2 is fairly standard and occurred in FR.0.1, but is
not always stated in this explicit form. The matrix reduction functor was first used
in Bergman [74b] and Cohn [72c, 79]; for a fuller account see SF, 1.7. The projective
module group K,(R), taken from K -theory, contains much of the ‘stabilized’ information
about the category gproj, though for best results one needs to take the affine structure
into account; see an instructive study by Goodearl and Warfield [81]. The (unstabilized)
facts about S (R) are well known, e.g. Theorem 3.7 generalizes a result of Bass [68], p.
90. Lemma 3.6 is due to Bergman, who also helped with Theorems 3.9, 3.10.

The term Hermite-ring (or H-ring) was introduced by Lissner [65] (the term was
used earlier by Kaplansky [49] for a special type of Bezout ring). The symmetry of
the condition occurs repeatedly, e.g. in Drogomizhska [70] and Kazimirskii and Lunik
[72]; see also Lam [78] for the commutative case. Theorem 4.1 occurs in Lam [78]; the
present proof is based on Cohn [2000a], while Corollary 4.2 is new. Proposition 4.3 is
due to Ojanguren and Sridharan [71]. Proposition 4.4 is essentially Proposition 5.6.2 of
FR.2 and goes back to Cohn and Schofield [82]. The stability properties (Proposition
4.5, Corollary 4.6) were new in FR.2, while the notion ‘projective-free’ is defined (as
‘p-free’) in Cohn [66¢], where Theorem 4.8 is also proved.

The notion of stable association and its connexion with the matrix of definition
of a module is implicit in Fitting’s work [36]; in the form given in Section 0.5 it is
developed from the factorization theory in Cohn [63a], see also Cohn [82a]. Lemma 5.8
was suggested by Bergman in connexion with Proposition 7.2.6 (see also Exercises 3
and 2.7.9 below). The concepts of idealizer and eigenring seem to have been first used
by Ore [32] (though also implicit in Levitzki’s work) in his papers on the formal theory
of differential equations. Proposition 6.1 (for the case P = R) is due to Fitting [35], and
special cases of Theorem 6.3 are well known (see e.g. Amitsur [58]); they are stated in
this form by Cohn [70a].

Since Ore’s original construction (Corollary 7.2; see Ore [31]) there have been innu-
merable papers dealing with extensions, analogues for monoids, etc. We have here
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concentrated on the cases used later in the book. For a comprehensive survey see Elizarov
[69]. Corollary 7.7 is due to Goldie [58]; this is an easy special case of his main theorem
(the customary proof actually gives Proposition 7.6). Theorem 7.9 is due to Doss [48],
who proves it by applying the Malcev conditions (itself a non-trivial verification). The
present proof, presented in FR.2, corrects an error in FR.1 (pointed out by L. A. Bokut).
The discussion in Section 0.8 is based on Bergman [67]; Proposition 8.2 occurs in Cohn
and Schofield [82] and Corollary 8.5 in Gentile [60].

The results of Section 0.9 are for the most part well known, though their formulation
for invariant (rather than commutative cancellation) monoids was new in Section 3.1 of
FR.2. Theorem 9.5 was proved by Nagata [57] for commutative Noetherian domains.



1

Principal ideal domains

Since the main classes of rings considered in this work generalize principal ideal
domains, it seems reasonable to start by recalling the properties of the latter. We
begin in Section 1.1 by looking at examples that will be important to us later,
the skew polynomial rings, and in Section 1.2 discuss the division algorithm,
which forms a paradigm for later concepts. Sections 1.3 and 1.4 recall well-
known properties of principal ideal domains and their modules, while Section
1.5 describes the Malcev—Neumann construction of the ordered series field
of an ordered group, and the Bergman conjugacy theorem. The concluding
Section 1.6 deals with Jategaonkar’s iterated skew polynomial rings, leading to
one-sided PIDs with a transfinite-valued division algorithm. The later parts of
Sections 1.5 and 1.6 are not essential for an understanding of the rest and so
may be omitted on a first reading.

1.1 Skew polynomial rings

Polynomial rings are familiar to the reader as the rings obtained from commu-
tative rings by adjoining one or more indeterminates. Here we want to discuss a
generalization that is often useful in providing examples and counter-examples.
It differs from the usual polynomial ring k[x] in one indeterminate x over a field
k in that k£ need not be commutative, nor commute with x. However, it resembles
the classical case in that every element is unique of the form

f=ao+xa+---+x"a,, 9]

where the a; lie in the ground ring (which need not be a field). Thus let R
be any non-zero ring and consider a ring containing R as subring, as well as
an element x such that every element f of the subring A generated by R and
x is uniquely expressible in the form (1). If a, # 0, we define the degree of

60
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f as d(f) = n, as in the commutative case. This function d has the following
properties:

D.1. Fora € A*,d(a) € N, while d(0) = —o0,
D.2. d(a — b) < max{d(a), d(b)}.

We shall assume further, that it satisfies
D.3. d(ab) = d(a) + d(b).

A function d on a non-zero ring A will be called a degree-function if it satisfies
D.1-D.3; it will be called trivial if it is O on all of A*.

For any degree-function we have, by D.3, d(1) = 0. By D.2 we have, as for
valuations, d(a) = d(—a) and

d(a 4+ b) < max{d(a), d(b)}, 2)

with equality holding whenever d(a) # d(b) (‘every triangle is isosceles’). We
note that in our case the elements of degree zero are just the non-zero elements
of R, showing that R is an integral domain. More generally, as a consequence
of D.3, the set A* is closed under multiplication and contains 1, so A is also an
integral domain. Further, for any a € R*, the product ax has degree 1 and so is
of the form

ax = xa® +a® (a € RX). 3)

In the first place we note that a%, a’, are uniquely determined by @ and moreover
« is injective; by comparing the expressions for (@ + b)x and (ab)x we see that
« is an endomorphism, while § is such that

(@a+bP’ =d® +b°, (ab) =a’b* +ab’. 4)

Thus § is an a-derivation, as defined in Section 0.7. We observe that the additive
structure of A is determined by (1), while the multiplicative structure follows
from (3): by the distributive law it is enough to know x"a.x"b, and by (3) we
have

X"a.x"b = xm+laaxn—1b _i_xmaéxn—lb’

which allows us to compute x™a.x"b in all cases, by induction on n. Thus A is
completely fixed when R, «, 6 are given. We shall write

A = R[x;a, 6], (5)

and call A the skew polynomial ring in x over R determined by «, §. Instead
of R[x;w, 0] one also writes R[x;a] and R[x;1,0] is just R[x], the usual
polynomial ring in a central indeterminate x.
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It remains to show that for any integral domain R with an injective endo-
morphism « and an «-derivation §, there always exists a skew polynomial ring
R[x;a, 8]. As in the commutative case we define it by its action on infinite
sequences. Consider the direct power M = R" as right R-module and define
an additive group endomorphism of M by the rule

x:(a) e (@ +a',) (ay =0). (6)

Clearly right multiplication of M by an element of R* is injective, so we may
identify R with its image in End(M). Now the action of the endomorphism x
defined by (6) satisfies the rule

(chax = (cia)x = ((¢;a)’ + (¢;i-1a)%)
= (cfa"‘ + cia® + ¢ a%)
= (c;S + ¢y )a” + (c;))a®
= (¢;)(x.a* + a®).

This proves that (3) holds and, moreover, that every element of the subring
of End(M) generated by R and x can be brought to the form (1). This form is
unique, because when f = ag + xa; + - -- + x"a, is applied to (1, 0,0, ...),
it produces (ag, ai, . .., ay, 0, ...). Further, the function d(f), defined as the
subscript of the highest non-zero coefficient a;, is easily seen to satisfy D.1—
D.3, using the fact that R is an integral domain and « is injective. So the
polynomial ring is again an integral domain; in all we have proved

Theorem 1.1.1.  Let R be an integral domain with an injective endomorphism
a and an a-derivation §. Then there is a skew polynomial ring R[x;«a, 8] that
is an integral domain, and every skew polynomial ring arises in this way. W

The result is not left-right symmetric because in (3) the coefficients were written
on the right. One therefore sometimes introduces the /eft skew polynomial ring,
in which the coefficients are on the left and the commutation rule instead of
3)is

xa = a%x +a°. (7

In general R[x; «, §] will not be a left skew polynomial ring, but when « is an
automorphism of R, with inverse 8 say, then on replacing a by a” in (3) and
rearranging the terms, we obtain

xa =aPx —adP?. (8)

Thus we have
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Proposition 1.1.2. The ring R[x; «, 8] is a left skew polynomial ring provided
that a is an automorphism. [ |

We have an analogue of the Hilbert basis theorem for skew polynomial rings,
with a similar proof, but we shall need to restrict & to be an automorphism, as
Exercise 3 below shows.

Proposition 1.1.3.  Let R be a right Noetherian domain, a an automorphism
and § an a-derivation of R. Then the skew polynomial ring A = R[x;«, 8] is
again right Noetherian.

Proof. This is essentially as in the commutative case. Let us consider A as
a left skew polynomial ring, i.e. with coefficients on the left, as we may, by
Proposition 1.2, since « is an automorphism. If a is a right ideal of A, let
ag = Zf ¢; R be the ideal of its leading coefficients and fori =1, ..., k take
a polynomial f; in a with leading coefficient ¢;. If n = max {d(f;)}, we can
reduce every element of a to a polynomial of degree less than n and a linear

combination of fj, ..., f;. For each degree i < n there is a finite basis B; for
the polynomials in a of degree i and the union of all the B; and {fi, ..., fi}
forms a finite basis for a. [ |

If K is any field, with an endomorphism « and an «-derivation &, then
K[x;«, 8] is a right Noetherian domain (it is even a principal right ideal
domain, as we shall see in Section 1.3), hence right Ore, by Corollary 0.7.7,
and so has a field of fractions, which we shall call the skew rational function
field and denote by K (x;«, §). More generally, let R be a right Ore domain
with field of fractions K. If « is an injective endomorphism of R and é an
«-derivation, they can be extended to K, by Theorem 0.7.8, and we have the
inclusions

Rlx;a,8] C K[x;a,8] € K(x;a, ).

Any element u of K (x;«, §) has the form fg‘l, where f, g € K[x;«, 8].
On bringing the coefficients of f and g to a common right denominator we
canwrite f = fic~!, g = g1c”', where fi, g1 € R[x;a, 8§]and c € R*.Hence
u= fg~' = fig;" and we have proved

Proposition 1.1.4.  Any skew polynomial ring over aright Ore domain is again
a right Ore domain. [ ]

Here we localized at the set of all non-zero polynomials; so we obtain by
Theorem 0.7.1,
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Corollary 1.1.5. IfR is a right Ore domain with an injective endomorphism
o and an o-derivation 8, then the non-zero polynomials in R[x; o, 8] form a
right Ore set. [ |

We now give some examples of skew polynomial rings, both as illustration and
for later use.

1. The complex-skew polynomial ring C[x;~] consists of all polynomials
with complex coefficients and commutation rule

ax = xa, where a is the complex conjugate of a.

We observe that the centre of this ring is R[x?] , the ring of all real polynomials
in x2. The residue class ring mod x2 + 1 is the field of real quaternions.

2. Let k = F(t) be the rational function field in an indeterminate ¢ over a
commutative field F. The usual derivative f +— f’ defines a derivation on k, and
this gives rise to a skew polynomial ring R = k[x; 1, '], the ring of differential
operators.

3. Let F be a commutative field of characteristic p # 0 and E/F a separable
field extension of degree p, say E = F (&), where £” — & € F. The mapping
a: f(&) = f(& + 1)defines an automorphism of order p and we have the skew
polynomial ring E[t; o].

4. Let k be any field with an endomorphism « and let ¢ € k™. Then the map-
ping 8 : a — ac — ca® defines an a-derivation, called the inner «-derivation
determined by c. The skew polynomial ring R = k[x;«, §] can then be written
as k[y;«], where y = x — ¢, as is easily verified. Similarly, if « is an inner
automorphism, say a® = b~ 'ab, then the skew polynomial ring k[x; ] can be
written as k[y], where y = xb~!.

5. Let K be any field and denote by A;(K) the K-ring generated by x, y
centralizing K, with the defining relation xy — yx = 1. This ring A(K), called
the Weyl algebra on x, y over K, may also be defined as the skew polynomial
ring A[y; 1, '], where A = K[x] and’ is the derivation with respect to x (as in
Example 2). Example 2 above is obtained by localizing at the set of all monic
polynomials on x over k, and Example 3 by putting £ = xy, r = y and then
localizing at the set of all monic polynomials in & over F.

The Weyl algebra is useful as an example of a finitely generated infinite-
dimensional algebra which in characteristic O is simple. For in any non-zero
ideal we can pick an element f(x, y) # O of least possible x-degree. The ideal
still contains df/dx = fy — yf, which is of lower degree and so must be zero.
Therefore f = f(y) is a polynomial in y alone. If its y-degree is minimal, then
of/dy = xf — fx = 0,hence f = ¢ € K*; therefore the ideal contains a non-
zero element of the ground field and so must be the whole ring. This shows
A1(K) to be simple. Further, A{(K) is Noetherian, by Proposition 1.3.



1.1 Skew polynomial rings 65

6. The k-algebra generated by x, y with the defining relation xy = y(x + 1)

may be defined as R = A[y; t], where A = k[x] is the polynomial ring with
the shift automorphism 7 : x > x + 1; R is called the translation ring.

7. Let p be a prime, g = p" a prime power, I, the field of g elements and T’

the endomorphism f > f7 of IF,[x]. If the operation of multiplying by a € F,
is simply denoted by a, then each polynomial }_ ; T’ defines an endomorphism
of Fy[x], and it is easily verified that (applying endomorphisms on the right) we
have aT = T a”; hence the endomorphisms of IF,[x] form a skew polynomial
ring Fy[T; o], where o : a > a”. (This has an application to finite fields; see
Ore [33]).

8*.

9*.

Exercises 1.1

. Let R = K[x;a, §] be a skew polynomial ring over a field K. Show that K may be

regarded as a right R-module by letting each a € K act by right multiplication by
a and letting x correspond to the action by §. When is this representation faithful?
Let R = K[x;«, §] be a skew polynomial ring. If «é = da, show that @ may be
extended to an endomorphism of R by taking x* = x; what value could be assigned
to x% in this case?

. Let R = K[x;«, §] be a skew polynomial ring, where K is an integral domain and

« an endomorphism such that K“a N K* = 0 for some a € K *. Show that R is not
left Ore. If K is a field, show that R is left Ore if and only if « is an automorphism.
(Bergman) Let A = k[t; | i € Z] and « the shift automorphism ¢; — #;;. Show that
in R = A[x; ] the monic polynomials do not form a right Ore set. [Hint: Consider
the equation (x — 1) f = cg.]

Prove the existence of the skew polynomial ring (Theorem 1.1) by means of the
diamond lemma (see Bergman [78a] or FA, Lemma 1.4.1).

Let R be an integral domain with an injective endomorphism «. If S is a right
Ore set in R admitting o, show that § is also a right Ore set for R[x;«] and
that the localization of R[x;c] at S can be obtained by localizing R at S, i.e.
Rlx;als = Rg[x;a].

(Ore [32]) Let R be a skew polynomial ring over a field K and let £, g¢ be polynomials
of degrees m, n, respectively. Denote by K the centralizer in K of f, and let r be
the dimension of K as right K-space. Show that Homg(R/fR, R/gR) is a right
Ko-space of dimension at most rm. [Hint: Use (3) of 0.6.]

(D. A. Jordan) Let k be a field, K = k(x;|i € Z), E = k(x;|i > 0) and « the auto-
morphism x; — x;4; of K. Let S be the set of all monic polynomials in a central
indeterminate ¢ over E, put A = K[t]s and extend « to A by the rule * = ¢. Show
that A[y; «] is right Noetherian and left Ore but not left Noetherian. [Hint: Use the
fact that if a ring is right (left) Ore or right (left) Noetherian, then its localization
at a right Ore set has the same property.]

(L. Lesieur) Let R be a right Noetherian domain and « an endomorphism of R.
Show that R[x; o] is right Noetherian if and only if, for any sequence of right ideals
a; such that a; C a;, there exists ng such that a,, = a; R for all n > n,.
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10.

11.

12.

13.

14.

Principal ideal domains

(Ince [27], Section 5.5) In the ring of differential polynomials R = k(x)[D; 1, ']
show that P = D> — 2x~2and Q = D> — D.3x~2 4+ 3x~3 commute but cannot be
written as polynomials in the same element of R. (Hint: Verify that P? = Q? and
note that P, Q are obtained by conjugating D2, D3, respectively, by D + x~! in
the field of fractions of R.)

Let K be a non-commutative field and R = K [x, y] the polynomial ring in two
central indeterminates. If [a, b] = ¢ # Ofora, b € K, verify that [x +a, y + b] =
c¢; deduce that (x + a)R N (y + b)R is isomorphic to a stably free but non-free right
ideal of R (thus R is not Hermite).

(Bergman and Dicks [78]) Let ¢:R — S be a k-algebra homomorphism. The
multiplication mapping p : S ®g S — S is given by x ® y = xy(x, y € §), and
its kernel is denoted by Qg,z, while the universal derivation of S relative to
R,d:S§ — Qg/g is defined by s = s ® 1 — 1 ® s (Eilenberg). Show that there
exists an exact sequence

0= Torf(S.8) > S ®r L@ § —> Qi — Qg — 0

(the mapping d¢ is called the derivative of ¢ relative to the category of k-algebras).
Show further that (a)—(d) below are equivalent:

(a) d¢ is injective,

(b) Qsr =0,

() S®r S — S is surjective,

(d) ¢ is an epimorphism (in the category of k-algebras).

(See also Proposition 7.2.1).

Let A =k[t]and« : f(¢) — f(¢ + 1). Show that for suitable elementsa € A, ¢ €
R = A[x, x';a], @ and c are right comaximal but ca® ¢ aR; deduce that R is not
2-Hermite.

Let K be a right Noetherian domain and A = K'[x;«, §] a skew polynomial ring
with an automorphism a. If ¢ € K is a non-unit such that }_ ¢* .K = K, show that
cA NxA is stably free but not free. Deduce that for any right Noetherian domain
K, A1(K) has stably free right ideals that are not free. Conclude that the Weyl
algebra A, (k) is not 2-Hermite (see also Corollary 5.3 below).

1.2 The division algorithm

In the study of rings of algebraic integers as well as rings of polynomials
the division algorithm is an important tool, leading to the familiar Euclidean
algorithm. Here we make a general study, but much of this section is not essential
for later work.

A ring R is said to satisfy the division algorithm relative to a function § on

R taking values in a well-ordered set, if
DA. Given a, b € R, if a # 0, then there exist ¢, r € R such that

b=aq+r, whered(r) < é(a). (D)
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Here ¢ is the quotient and r the remainder. We note that if a is chosen in
R so as to minimize §(a), we must have r = 0 in (1), so that b = aq. Since
this holds for all » € R, a must then have a right inverse. This also shows
that §(0) has the least value, usually taken to be 0, or also sometimes —1
or —oo. Strictly speaking, DA should be called the right division algorithm,
since it is not left—right symmetric, but we shall usually omit the qualifying
adjective.

It is often convenient to replace DA by the following condition, which
demands less, but is easily seen to be equivalent (see Exercise 1):

A.Ifa,b € R and §(a) < §(b), then there exists ¢ € R such that

8(b —ac) < §(b). 2)

We note that any condition such as DA or A is relative to a function §, but to
investigate the existence of an algorithm we need not presuppose that § is given.
For any ring R and subsets S, T of Rletusput S+ 7 ={s+¢tlse S,t €T}
and define the derived set of S as

§"={x € RIS+ xR = R}. 3)

Thus S’ is the set of divisors for which we can always perform the division with
a remainder in S. Now define a sequence of subsets {S,} of R recursively by
putting

So=1{0}, Sys1 =S, U S,/l. @)

For example, S; consists of 0 and all right invertible elements of R. These sets
form an ascending chain

0}=ScSc.... )
If their union is the whole ring,
Us. =&, ©)
we shall say that R is Euclidean and define a function ¢ : R — N by
¢(x) = min{n|x € S,}. @)

Thus S, consists of all x € R such that ¢(x) < n. The concepts of Euclidean
ring and division algorithm are related in the following way:

Theorem 1.2.1. IfRisaEuclideanring, then R satisfies the division algorithm
relative to the N-valued function ¢ on R defined by (7). Here

$(0)=0, o()=1, ®)
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and R is an integral domain if and only if
¢(ab) > ¢p(a) foralla,b € R*. 9)

Conversely, if R satisfies the division algorithm relative to a function: R —
N, then R is Euclidean and

¢(x) <8(x) forallx € R.

Proof.  Suppose that R is Euclidean; then it is clear that (8) holds. If a, b €
R, a # 0, are given, say ¢(a) = n > 0,then S,,_; + aR = R, sothere existr €
S,_1,¢ € R such that r +ac = b, hence ¢(b —ac) = ¢(r) <n—1 < ¢(a);
this proves A and hence DA. If R is an integral domain, then for a, b € R* we
have ab # 0, so ¢(ab) =n > 0 for some n € N, hence R = S,_; +abR C
S,_1 4+ aR, therefore a € S, and ¢p(a) < n = ¢(ab), i.e. (9). Of course, when
(9) holds, then ¢(ab) > 0 for a, b € R* and by (8), 1 # 0, so R is an integral
domain.

Conversely, assume that R satisfies the division algorithm relative to some
N-valued function §. For n € N, put T, = {x € R |5(x) < n}; we shall show
by induction on n that T,, € S, for all n. For n = 0 this is clear, so assume that
n>0,T, €S, and consider a € R such that §(a) = n + 1. By DA, for each
b € R there exists g € R such that (b —aq) <d(a)=n+1,s0b—aq €
T,and b e T,+aR C S, +aR. This holds for all b € R, so S, + aR =R
and a € S,+1. Hence T,+1 € S,+1 and by induction, T,, C S, for all n. Since
UT,, = R, we see that (6) holds, so R is Euclidean and ¢(b) < &(b) for all
b € R. |

If a ring satisfies the division algorithm relative to some N-valued function
& on R, then by Theorem 2.1, ¢ (given by (7)) is defined and is the smallest
N-valued function for which the algorithm holds. By repeated application of
the division algorithm to a and b we obtain a series of equations, known as the
Euclidean algorithm, leading to the HCLF of a and b; this is certainly familiar
to the reader and we shall encounter it (in a generalized form) in Section 2.8.
Later, in Proposition 2.4, we shall see that forany a € R, §(a) is an upper bound
to the number of steps in the Euclidean algorithm for any pair a, b, so in a sense
¢ gives the ‘fastest’ Euclidean algorithm.

Even when (6) fails, we can continue the sequence transfinitely, putting

Set1 = Sq US,,, Sy = Uy<sS, at a limit ordinal A. (10)

If S; = R for some ordinal 7, we say that R is transfinitely Euclidean and define
an ordinal function ¢ on R by

¢(x) = min{x | x € Sy}. (1
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We note that if x € S, where A is a limit ordinal, then x € S, for some o < A,
hence ¢(x) is never a limit ordinal.

Clearly R is Euclidean if and only if we can take T = w. In any case, to
check whether R is transfinitely Euclidean, we need only consider ordinals not
exceeding |R]|.

As before we have (with the same proof)

Theorem 1.2.2. If R is a transfinitely Euclidean ring, then R satisfies the
division algorithm relative to the ordinal-valued function ¢ defined on R by
(11). This function again satisfies (8), and (9) holds if and only if R is an

integral domain.
Conversely, if R satisfies the division algorithm relative to an ordinal-valued
function § on R, then R is transfinitely Euclidean and §(x) > ¢(x) forall x € R.
|

In many Euclidean rings the remainder r in the division algorithm (1) is
uniquely determined and we record the conditions for this to happen.

Proposition 1.2.3. Let R be a Euclidean ring relative to the function §. Then
the remainder in the division (1) is unique if and only if

(i) 6(a — b) < max{s(a), §(b)}foralla,b € R, and
(ii) 6(a) < 6§ (ab) for all a, b € R such that ab # 0.

Proof.  Suppose that remainders are unique. Givena, b € R,putx =a,y =
a—b; then x =y.04a =y.1 + b, hence by uniqueness, §(a) > §(y) or
3(b) = 8(y), i.e. (i). To establish (ii), if 8(ab) < &(a) but ab # 0, then 0 =
ab — ab = a.0 + 0, which contradicts uniqueness.

Conversely, when (i) and (ii) hold and x = yq; +r = yq, + s, where
8(r), 8(s) < 8(y), then on writing ¢ = ¢» — q1, if yg =r —s # 0, we have
8(yq) = 8(r —s) < 8(y) < 6(yq), which is a contradiction, hencer =s. ®R

In fact, the uniqueness of the remainder ensures that we have the fastest
algorithm:

Proposition 1.2.4. Let R be a Euclidean ring relative to 8. If the remainder
in the division algorithm is unique and the values of § and their limits form
an initial segment of the ordinals, then § is the least function for which the
algorithm holds.

Proof.  Let ¢ be the least function for which the algorithm holds. Then ¢(x) <
8(x) for all x € R and we must show that equality holds. Assume the contrary;
then

¢(a) < 6(a) forsomea € R, (12)
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and we can choose a so that ¢(a) is as small as possible. If we take b € R
such that §(b) = ¢(a), then there is a unique element r = b — aq such that
8(r) < 8(a). Infact, since 5(b) < §(a), wehaver = b by uniqueness, and for any
g such thatag # 0, 8(b — aq) > §(a) > ¢(a). Now take ¢ = b — aq such that
¢(c) < ¢(a); then ¢(c) < ¢p(a) < 8(a) < 8(c), and this contradicts the choice
of a. Hence (12) cannot be satisfied and the result follows. [ |

Sometimes it is convenient to put ¢(0) = —oo, ¢(1) = 0. With this defini-
tion we can show that for Euclidean domains with unique remainder the least
function defining the algorithm is in fact a degree-function (satisfying D.1-D.3
of Section 1.1).

Proposition 1.2.5. LetR be a Euclidean domain and let ¢ be the least function
with values in N U{—o00} defining the algorithm. Then

¢ab) = ¢p(a) + ¢(b) fora, b #0, (13)
with equality provided that remainders are unique.

Proof. By Theorem 2.1, ¢(ab) > ¢(a). Now fix ¢ # 0; clearly ¢(cx) still
has values in N U {—o00}, as does 6(x) = ¢(cx) — ¢(c). We shall show that R is
Euclidean relative to the function §(x). Given a, b € R, where a # 0, we have
ca # 0 and by the division algorithm,

cb=ca.q+s, ¢@s)<pca). (14)

Here s = cr, where r = b — aq. We can now cancel c¢ in (14) and obtain b =
aq + r, and by subtracting ¢(c) from the inequality we have 6(r) < §(a). Thus
R is Euclidean relative to §. By Theorem 2.1 we have §(x) > ¢(x), which is
(13). If the remainders for ¢ are unique, then they are also unique for §, so
& = ¢ by Proposition 2.4, and it then follows that equality holds in (13). [ |

The principal applications of the division algorithm are to two classes of
rings:

(i) rings of algebraic integers,
(ii) polynomial rings over fields.

In (i) the role of § is played by the norm; in (ii) one uses the degree of the
polynomial. Of these only the latter is a degree-function, and since we shall
mainly be concerned with generalizations of (ii), we shall concentrate on rings
satisfying the division algorithm relative to a degree-function.

Let R be any ring with a degree-function d. Then as we have seen in Section
1.1, R is an integral domain; moreover, any unit of R has degree 0, forifab = 1,
thend(a) + d(b) = d(ab) = d(1) = 0,hence d(a) = d(b) = 0. In particular, if
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R is a field, then every non-zero element has degree 0, so d is trivial and the
division algorithm holds relative to d.

Next consider the polynomial ring in an indeterminate x over a field K. Of
course this satisfies the division algorithm relative to the usual degree-function,
and as we have seen in Section 1.1, this holds even for the skew polynomial ring
K[x; o, 8] relative to an endomorphism « and an «-derivation §. However, the
left division algorithm is not satisfied unless « is an automorphism of K.

We now show that the examples just given exhaust the rings with a right
division algorithm relative to a degree-function.

Theorem 1.2.6. Let R be a ring with a degree-functiond : R — N U {—o00}.
Then R satisfies the right division algorithm relative to d if and only if either (i) R
is afield or (ii) R is of the form K [x; «, &] for some field K, with endomorphism
o and a-derivation §, where d(x) > 0.

Here d is trivial in (i), and in (ii) is a multiple of the usual degree.

Proof.  Suppose that R satisfies condition A relative to d and write K =
{a € R|d(a) < 0}. By the properties of the degree-function, K is a subring
of R. Given a € K*, we have d(a) = 0, hence there exists b € R such that
d(ab—1) <d(a) =0,s0ab = 1,and d(b) = 0,i.e. b € K*. Thus every non-
zero element of K has a right inverse in K, whence it follows that K is a field.
If d is trivial then R has no elements of positive degree, so R = K and case (i)
follows. Otherwise we take an element x, say, of least positive degree in R and
assert that every element of R is of the form

ap+xa; +---+x"a,, wherea; € K,n > 0. (15)

For if this were not so, let » be an element of least degree that is not of the
form (15). By DA, there exists ¢ € R such that d(b — xg) < d(x) and by the
definition of x it follows that b — xg € K. Thus for some a € K we have

b=xq+a, (16)

and d(q) <d(x)+d(q) = d(xq) < max{d(b),d(a)} = d(b). Therefore, by
the choice of b, ¢ must have the formg = ina,»(af € K).Inserting this expres-
sion in (16), we obtain

b= inJrlai +a,

which contradicts the assumption that b is not of the form (15). Moreover,
the form (15) for any element of R is unique, for otherwise we should have a
relation

co+xc1+--+x"c, =0,
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say, where ¢, # 0. Hence
d(x") = d(x"¢c,) < max{d(x'c;)|i =0,1,...,n—1},

i.e. nd(x) < (n — 1)d(x), in contradiction to the assumption that d(x) > 0.
Finally we have, for any a € K,

ax = xay + ap,

where d(a;) < d(x) and d(a;) < d(ax) — d(x) = 0, hence a|, a; € K. By the
uniqueness of the form (15) it follows as in Section 1.1 thata + a; is an endo-
morphism «, say, of K and a — a; is an a-derivation §, thus R = K [x; «, §]
as asserted.

To prove the converse, take the skew polynomial ring K [x; «, 8] with a
degree-function d. We have already seen that the elements of K* must have
degree 0, and by hypothesis, d(x) = A > 0, hence the degrees d(x") = nA are
all different for different ». It follows that for ¢, # 0,

d(co + xc1 + -+ + x"¢,) = max{d(x'c;)|i =0,1,...,n} = na.

Thus all degrees are multiples of A. We may therefore divide the degrees by A
and so obtain the usual degree-function on K [x; «, §]. As we saw earlier, the
right division algorithm holds for this degree-function. |

Exercises 1.2

1. Show, by induction on 8(b — ac), that condition A is equivalent to DA.

2. Show that if a ring R has a division algorithm relative to a function that is constant
on R*, then R is a field.

3. Show that the ring of integral quaternions over Z (the rational integers) is Euclidean
relative to the norm function [q is called integral if it is a linear combination of
1,i, j,kand (1 +i+ j + k)/2)]. Does this still hold for the ring of quaternions
with integer coefficients? (Recall that every commutative principal ideal domain is
integrally closed in its field of fractions. See BA, 9.4)

4. (Sanov [67]) Let R be a commutative Euclidean domain relative to an N-valued
function ¢ and on the matrix ring R, define |A| = ¢(det A). Show that for any
A, B € R, with |A| # 0, there exist P, Q € R, such that

B=AQ+P, 0<|P|<|AlorP =0.

Use this result to obtain a reduction to triangular form for matrices over R.
5°. (P. Samuel) Determine all Euclidean rings in which the number of atomic factors
in the complete factorization of an element serves as a value function.
6. Let R be a Euclidean domain with a fastest algorithm given by ¢. Given a € R*,
show that ¢(xa) = ¢(x) for some x € R* if and only if a is a unit.
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7. If R is a Euclidean domain and T is a right Ore set in R, show that the localization
Ry is again Euclidean.

8*. (Lenstra[74]) Show that for acommutative ring R with unique remainder algorithm,
U(R) U {0} = k is a field. Deduce that a commutative ring has a unique remainder
algorithm relative to a function ¢ if and only if § is a degree-function or R =
Fz X Fz.

9. (Lemmlein [54]) Let R be an integral domain with an N-valued unbounded function
¢ suchthat¢p(0) = 0, ¢(x) > Oforx # 0, and there exists ny such thatforanyx € R
satisfying ¢(x) > ny there exists y € R such that ¢(y — gx) > ¢(x) forallg € R.
Show that R is not Euclidean.

10. (S. Singh) Find an integral domain that is Euclidean and whose least value function
does not satisfy D.3 of Section 1.1.

1.3 Principal ideal domains

The reader will be familiar with the notion of a principal ideal domain, as
an integral domain, usually commutative, in which every ideal is principal,
i.e. it can be generated by a single element. Here we shall be interested in
the non-commutative case, where one has to distinguish between left and right
ideals. Thus a principal right ideal domain is an integral domain in which every
right ideal is principal, and a principal left ideal domain has a corresponding
definition, while a domain that is both left and right principal will be called a
principal ideal domain, often abbreviated to PID; a principal right ideal domain
is briefly referred to as a right PID and similarly for a left PID. An integral
domain in which every finitely generated right ideal is principal is called a
right Bezout domain; left Bezout domains are defined similarly, and when both
conditions hold we speak of a Bezout domain.

Suppose R is a ring with a division algorithm relative to a degree-function d;
we claim that R is then a right PID. The degree-function shows it to be an integral
domain; now let a be any right ideal of R; we have to show that a is principal.
When a = 0, there is nothing to prove, so assume that a % 0 and let @ € a be
a non-zero element of least degree. We claim that a = aR; for clearly aR C a
and if b € a, then b = aq + r, where d(r) < d(a). Hencer = b — aq € a; by
the minimality of d(a), » = 0 and this shows that b € aR. Thus a is indeed a
principal right ideal, and we obtain

Proposition 1.3.1. Let R be any ring with a degree-function d satisfying the
division algorithm DA. Then R is a principal right ideal domain. [ ]

As an example consider a skew polynomial ring R = K [x; «, §], where K is
afield with an endomorphism « and ¢-derivation §. Given f = x"a +...,g =
x"b + ... € R, where only the leading terms are indicated, if d(f) < d(g), then
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m < n and so g — fa~'x"~"b has degree less than n and this shows that the
division algorithm holds in R. It follows that R is a right PID. When « is an
automorphism, R also satisfies the left-hand analogue of DA and it follows that
R is a PID. So we have proved

Theorem 1.3.2. Let K be any skew field with an endomorphism o and an «-
derivation §. Then the skew polynomial ring K [x; «, 8]isaprincipal rightideal
domain, it is a principal ideal domain whenever « is an automorphism. [ |

Sometimes a slight refinement of this result is useful:

Proposition 1.3.3. Let A be any principal right ideal domain with an endo-
morphism o« mapping A* into U(A) and an o-derivation §. Then the skew
polynomial ring Alx; «, §] is again a principal right ideal domain.

Proof. The ring R = A[x; o, §] may no longer satisfy DA, but under the
given condition we can proceed as follows. Given a non-zero right ideal a in R,
let m be the least degree of elements of a, and consider the leading coefficients
of elements of degree m in a. Together with O they clearly form a right ideal in
A; let a be a generator of this right ideal and f = x™a + . .. a polynomial with
this leading coefficient. We claim that a = f R; in one direction this inclusion
is again clear, so let g € a, say g = x"b + ... . By the definition of m we have
n > m;ifn = m,thenb € aA,sayb = acandsod(g — fc) < d(g). Otherwise
n > mandnow fx = x"*'a® 4 .. has aunit as leading coefficient and so fxa’
is monic for some a’ € A; now d(g — fxa’x""~'b) < d(g). Thus we have in
all cases found an / such that g — fh has degree less than n = d(g), so it follows
as before that a = f R, as claimed. [ ]

In the commutative theory an important result states that every commutative
PID is a unique factorization domain. For general PIDs there is a corresponding
result, though inevitably rather more complicated. In any ring we recall that an
atom is a non-unit that cannot be written as a product of two non-units. If every
element other than O or a unit is a product of atoms, the ring is said to be
atomic. Two elements a, b are said to be associated if there exist units u, v such
that a = ubv. In Section 0.5 two elements a, b of an integral domain R were
called similar if R/aR = R/bR or equivalently, if a, b are stably associated;
in particular, two associated (regular) elements are always similar. Given two
non-zero elements a, b of an integral domain R, consider any factorizations of
a and b:

a =ujuy---UuU, (1)

b =vvy---vy. 2)
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The number of atomic factors of a is called its length, thus [(a) = r. These
factorizations of a and b are said to be isomorphic if r = s and there is a
permutation o of (1, ..., r) such that u; is similar to v;,. Our first observation
is that similar elements have isomorphic factorizations.

Proposition 1.3.4. Let R be an integral domain and let a, b be non-zero
elements of R that are similar. Then any factorization of a gives rise to an
isomorphic factorization of b.

Proof.  Any factorization of @ may be regarded as a chain of cyclic submodules
from R to aR, and by the isomorphism R/aR = R /bR we obtain a chain from
R to bR in which corresponding factors are isomorphic. [ ]

Here the permutation involved in the isomorphism is the identity, but we shall
soon meet cases where this is not so. Let us define a unique factorization domain
(UFD) as an atomic integral domain R such that any two complete factorizations
of a given element are isomorphic. It is easily seen that this reduces to the usual
definition in the commutative case; the following result provides a source of
non-commutative UFDs.

Theorem 1.3.5. Every principal ideal domain is a unique factorization
domain.

Proof. LetR be aPID; then left and right ACC; holdsin R, and asin Section 0.9
we see that every element of R, not zero or a unit, has a complete factorization.
Suppose a € R has the complete factorization (1). This corresponds to a chain
of submodules

RODOuiR>OuiuR>O...Du;...uR =aR. 3)

Leta = vjv, ... v, be a second factorization of a into atoms and consider the
corresponding chain

RODvRD...Dv...vsR =aR. (@)

Since R is a PID, every right ideal containing aR has the form cR, where cis a left
factor of @, and (3), (4) are actually composition series from R to aR, because the
u; and v; are atoms. So we can apply the Jordan—-Hélder theorem to conclude
that » = s and for some permutationo of (1, ...,r), R/u;R = R/vi- R, i.e. u;
is similar to vj,. [ ]

Later, in Section 3.2, we shall find a far-reaching generalization of this result.
Let us now take a general ring R and look at cyclic modules R /a, where a is a
right ideal of R, and examine when two such modules are isomorphic. We shall
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say that two right ideals a, o’ of a ring R are similar if
R/a=R/d. 5)

When these right ideals are principal, say a = aR, @’ = a’R, this reduces to
the notion defined in Section 0.5. The following criterion for similarity is often
useful:

Proposition 1.3.6.  In any ring R, two right ideals a, o' are similar if and only
if there exists ¢ € R such that (i) a4+ cR = R and (ii) {x € R|cx € a} = d'.

In an abbreviated notation, (ii) may be expressed as a’ = ¢~ 'a.

Proof.  Suppose that a is similar to a’ and let 1 (mod a’) correspond to ¢ (mod
a) in the isomorphism (5). Then ¢ generates R (mod a), so (i) holds. Further x
(mod a’) corresponds to ¢x (mod a), so cx € aifand onlyif x € a’, which s (ii).
Conversely, when (i) and (ii) hold, then R/a = (a + cR)/a = cR/(a NcR) =
R/d. ]

Note that whereas the relation of similarity is clearly symmetric, the criterion
of Proposition 3.6 is not, so there are two ways of applying the result, once as it
stands and once with a and o’ interchanged. If ¢ € R is right regular, (ii) takes
on the form

anNcR =cd. (6)

In particular, when R is an integral domain and a is a proper right ideal, then
¢ # 0 by (i), so (ii) can then be put in the form (6).

We also see from (ii) that @’ is determined in terms of a and ¢. For example,
if a is a maximal right ideal, then (i) holds provided that ¢ ¢ a and it follows
that the right ideal o’ determined by (ii) is also maximal, because of (5). The
result may be stated as

Corollary1.3.7. Ifaisamaximal (proper)rightideal ofaringRandc € R\a,
then the set c~'a = {x € R | cx € a} is a right ideal similar to a and hence is
also maximal. |

Exercises 1.3

1. Let R be a commutative Bezout domain and F its field of fractions. Show that
every element of F can be written in the form a /b, where a and b are coprime (i.e.
without a common factor). To what extent is this representation unique?

2. Show that a principal ideal domain R is primitive if and only if it has an unbounded
atom (i.e. it has an atom a such that Ra contains no non-zero ideal).
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Show that a Bezout domain with right ACC; is right principal.

Let R be an integral domain that is weakly finite. Show that if R has an infinite
centre, then the polynomial ring R[¢] is again weakly finite.

What happens in Exercise 4 when the centre of R is finite?

(A. Hausknecht) Let R be a principal ideal domain; if the units together with 0
form a field &, is R necessarily a polynomial ring over k?

Let R be an integral domain in which every right ideal generated by two elements
is principal. Show that R is a right Bezout domain.

(Hasse [28]) Show that a commutative integral domain R is a principal ideal domain
if and only if there is an N-valued function ¢ on R* such that (i) a|b imples ¢(a) <
¢(b), with equality if and only if aR = bR and (ii) if neither of a, b divides the
other, then there exist p, ¢, r € R suchthat pa + gb =r, ¢(r) < min{¢(a), ¢p(b)}.
Generalize Exercise 8 to obtain a characterization of Bezout domains.

Investigate rings with a positive real-valued function satisfying the conditions (i)
and (ii) of Exercise 8.

Show that over the field of real quaternions the equation x>+ 1=0 has
infinitely many roots. (Hint: Observe that any conjugate of a root is again a
root.)

Show that Bezout domains form an elementary class (i.e. they can be defined by
elementary sentences; the class of PIDs is not closed under ultraproducts and so
cannot be elementary). (Hint: Use Exercise 7.)

Show that a PID may be characterized as a Bezout domain such that (a) every
non-unit (% 0) has an atomic left factor, and (b) left ACC; holds. Deduce that
any right PID that is elementarily equivalent to a PID is itself a PID. [Hint: (a) is
elementary, but not (b); see Cohn [87a].]

Let K be a field with an automorphism «, no power of which is an inner automor-
phism of K, and let § be an a-derivation. Show that in the skew polynomial ring
R = K[x; «, §] the monic right invariant elements form a monoid M and either
(i) M is generated by a single element d # 1 and all ideals of R are of the form
d"R(v =0,1,...),or (i) M = {1} and R is simple (Cohn [77a]). [Hint: Choose
a monic element u of least degree subject to the condition cu = uc’ forall c € K,
and apply the division algorithm.]

Let R = K[x; «, §] be as in Exercise 14. Show that in case (i) M is a right Ore
set and Ry, is a simple PID while in case (ii) R is a simple right PID that is left
principal if and only if « is an automorphism of K.

1.4 Modules over principal ideal domains

Let R be a principal ideal domain; then R is in particular a (left and right)
Ore domain, so every R-module M has a submodule M, of torsion elements
with the torsion-free quotient M /M, (see Section 0.8). Suppose now that M is
finitely generated torsion-free left R-module and let K be the field of fractions
of R. Then M can be embedded in K ® M by Proposition 0.8.1 and the latter is
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semifree as left R-module (Proposition 0.8.4); this shows that M is free and we
obtain

Proposition 1.4.1. Let R be a principal ideal domain. Then any finitely gen-
erated torsion-free left (or right) R-module is free. [ |

This result still holds for left modules over right PIDs (even over right Bezout
domains, see Proposition 2.3.19), though not for left modules over left PIDs,
as the remark after Proposition 0.8.3 shows. In that case a stronger hypothesis
is needed to ensure freeness (see the remark after Corollary 2.1.3).

Let R be a PID or more generally, a Bezout domain; then R clearly has IBN
(in fact it is weakly finite, but this is not needed yet). Any finitely generated
projective module is clearly torsion-free and hence free; thus R is projective-free
and we obtain

Corollary 1.4.2. Every Bezout domain, in particular, every principal ideal
domain is projective-free, hence it is an Hermite ring. |

We shall also need a description of Ore sets in PIDs; as long as 0 is excluded,
the set will be regular, so we need not worry about property O.2 of Section 0.7.
More generally we shall consider right PIDs:

Proposition 1.4.3. Let R be a principal right ideal domain and S a submonoid
of R* such that (i) ab € S implies b € S, and (ii) if a € S, then any element
similar to aisin S. Then S is a right Ore set in R.

Proof. Givena € R,u € S, we have to show that aS N"uR # @.Fora =0
this is clear, so let @ # 0; then aR + uR = dR, say a = da;,u = du. Here
u; € S by (i) and (ay, uy) is unimodular, hence there is an invertible matrix P
such that (a;, u;)P = (1, 0). Moreover, we have a relation a;u’ = uya’ # 0. If

P W, —a)" = (v, -b)", (1)

then 0= (a;,u)W’, —a)T =(1,0) (v, —b)T =v; hence PO,-b)T =
(', —a’)T and this shows that b is a common right factor of u’ and a’, say
u' =u"b,a’ = a’b. By cancelling b and equating the last components in (1)
we find that " and a” are left comaximal. Now aju” = u1a” is a comaximal
relation, so by Corollary 0.5.5 and Proposition 0.5.6, u” is similar to #; and by
(i), u” € S. [ ]

Let us return to an arbitrary finitely generated module M over a PID R. Then
M /M, is finitely generated torsion-free, hence free, and so it can be lifted to a
free submodule F of M complementing M,; since F = M /M,, it is unique up
to isomorphism and we have
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Corollary 1.4.4. Let R be a principal ideal domain. For any finitely generated
R-module M there exists a free submodule F such that

M=M,&F.

Here M, is uniquely determined as the submodule of torsion elements of M,
while F is unique up to isomorphism. [ |

The principal ideal property also translates to a property of the modules:

Proposition 1.4.5. Let R be a principal ideal domain and n € N. Given an
n-generator left R-module M, any submodule of M has an n-element generating
set. If moreover, M is free, then so is the submodule.

Proof. By writing M = F /L, where F is free of rank n, we see thatitis enough
to prove the result for free modules. So take F' to be free of rank n» and N any
submodule. Let 7 be the projection of F on the first coordinate; then Nz is a
left ideal of R and so is principal. Hence we have the exact sequence

0—-> Nnkermr - N— Nnm — 0.

Clearly ker m is free of rank n — 1, hence by induction N Nker 7 can be
generated by n — 1 elements, while Nm is generated by a single element. It
follows that N can be generated by n elements. When M is free, N is torsion-
free and hence free by Corollary 4.4. [ ]

Now every module over a PID R has a finite free resolution of length at most
1, so it has a characteristic, as defined in Section 0.5, and by Proposition 4.5
this is non-negative for any finitely generated R-module. In Chapter 2 we shall
meet a class of rings, over which every finitely presented module has a finite
free resolution of length at most 1, but where the characteristic can assume any
integer values, negative as well as positive.

Proposition 4.5 also shows that over a PID, every finitely generated mod-
ule is finitely presented. Let M be a finitely generated left R-module with the
presentation

R" 2y R" s M — 0, 2)

and let A be the m x n matrix over R that represents the homomorphism
o:R™ — R" relative to the standard bases in R”, R". Then M is completely
specified by A, and if we change the bases in R” and R", this amounts to replac-
ing Aby PAQ~!, where P € GL,,(R), QO € GL,(R). Thus our next task will
be to find a normal form for matrices under association. To state the result, we
need another definition. In an integral domain, an element a is said to be a total
divisor of b, written a||b, if there exists an invariant element ¢ such that a|c|b.
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We observe that an element is not generally a total divisor of itself; in fact a|la
if and only if @ is invariant. The invariant element of shortest length divisible
by a is also called its bound,; clearly it is unique up to associates. If the ring R is
simple, it has no non-unit invariant elements and a||b implies that either a is a
unit or b is 0. In a PID the invariant elements serve as the generators of ideals.

Proposition 1.4.6. (i) In any ring R, an element c is invariant if and only if ¢
is regular and the left and right ideals of R generated by c coincide.

(ii) If R is an integral domain, then any non-zero ideal that is principal both
as left and as right ideal has an invariant generator.

Proof. (i) is clear, since cR = Rc for any invariant element c. For (ii) take
aR = Ra’ and let a = ua’, a’ = av; then a = uav. Now ua € aR, say ua =
aw, so a = awv, hence wv = 1. In an integral domain this shows v to be a
unit, similarly for #, and so aR = Ra. [ ]

The notation diag(ay, . . ., a,) for a matrix with ay, . . ., a, on the main diag-
onal and Os elsewhere will be used here even for matrices that are not square; the
exact size will be indicated explicitly, unless it is clear from the context, as in (3)
below. For any matrix the maximum number of left linearly independent rows
is called its row rank; column rank is defined similarly as the maximum number
of right linearly independent columns. We now have the following reduction
for matrices over a PID, known (in the commutative case) as the Smith normal
form.

Theorem 1.4.7. Let R be a principal ideal domain and A € "R". Then the

row and column rank of A are the same; denoting the common value by 1, we
can find P € GL,(R), Q € GL,(R) such that

PAQ_l = dlag(elv "'161‘509 "'50)3 ei||ei+17 er 7é 0' (3)

Proof.  'We have the following four types of operations on the columns of A,
of which the first three are the well-known elementary operations:

(i) interchange two columns and change the sign of one,
(ii) add a right multiple of one column to another,
(iii) multiply a column on the right by a unit factor,
(iv) multiply two columns on the right by an invertible 2 x 2 matrix.

As is well known, (i) and (ii) correspond to right multiplication by an ele-
mentary matrix, while (iii) corresponds to multiplying by a diagonal matrix.
The object of using (iv) is to replace the first two elements in the columns by
their highest common left factor and 0, respectively. Thus if these elements are
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a, b, not both zero, we have aR + bR = kR, saya = ka,, b = kb,. This means
that (a;, by) has a right inverse, and (since a PID is evidently an Hermite ring),
it can be completed to an invertible 2 x 2 matrix C say. Hence (k, 0)C = (a, b)
and (a, b)C~! = (k, 0), as required. Corresponding operations can of course be
carried out on the rows, acting on the left.

We can now proceed with the reduction. If A = 0, there is nothing to prove;
otherwise we bring a non-zero element to the (1, 1)-position in A, by permut-
ing rows and permuting columns, using (i). Next we use (iv) to replace aj;
successively by the HCLF of a;; and aj,, then by the HCLF of the new ay
and a3, etc. After n — 1 steps we have transformed A to a form where the first
row is zero except for a;;. By symmetry the same process can be applied to
the first column of A; in this reduction the first row of A may again become
non-zero, but this can happen only if the length (i.e. the number of factors)
of aj; is reduced; therefore by induction on the length of a;; we transform
Ato PyA Qal = aj; @ A;. By another induction, on max(m, n), we reach the
form

PiAQ;! = diag(ay, as, ..., a,,0,...,0),

where P;, Q; are invertible matrices and the a; are non-zero. Here r, the number
of non-zero a; is the row rank and the column rank. Consider a; and a,; for any

d € R we have
1 d a 0 _[a@ day
0 1 0 a) \0 a )’

and now we can again diminish the length of a; unless a; is a left factor of
da, foralld € R,i.e.unlessa;R 2 Ra,.Butinthatcase ;R 2 Ra,R 2 Ray;
thus ay |c|a,, where c is the invariant generator of the ideal Ra, R. Hence a ||a>,
and by repeating the argument we obtain the form

PAQ~! = diag(e;, es,...,¢,,0,...,0), where

P, Q are invertible, ¢;|le;jand e, # 0.

We see that this matrix has row and column rank r. Clearly A and P AQ ! have
the same column rank; similarly for the row rank and so the assertion follows.
]

We remark that if R is a Euclidean domain (hence a PID), we can instead
of (iv) use the Euclidean algorithm, with an induction on the degree instead of
the length, to accomplish the reduction in Theorem 4.7. Most of the PIDs we
encounter will in fact be Euclidean.

We record two consequences of Theorem 4.7.
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Corollary 1.4.8. Let R be a principal ideal domain that is simple. Then any
matrix over R is associated to I @ a @ 0, and hence stably associated to a & 0,
where a € R.

Proof. 1fal|b,theneither b = 0 ora is aunit. Now any unit can be transformed
to 1 by applying (iii), so there can be only one diagonal elementnotOor1. N

In the case of a field every non-zero element is a unit, so in this case every
matrix A is associated to I, @ 0, where r is the rank of A, a fact well known
from linear algebra (see CA, Section 4.7).

As a further application of Theorem 4.7 we describe the rank of a matrix
over K (t), where K is a field. We recall that a polynomial of degree # in ¢ over
a commutative field k£ cannot have more than # zeros in k. Over a skew field
this is no longer true, as the example of 2 4 1 over the quaternions shows (see
Exercise 3.11, also SF, Section 3.4). However, a polynomial of degree n over
a skew field K has at most n zeros in the centre of K; this follows as in the
commutative case:

Lemma 1.4.9. Let K be a field with infinite centre C and consider the poly-
nomial ring K[t], in a central indeterminate t, with field of fractions K(t). If
A = A(t) is a matrix over K[t], then the rank of A over K(t) is the supremum of
the ranks of A(«), a € C. In fact this supremum is assumed for all but a finite
number of values of «.

Proof. By Theorem 4.7 we can find invertible matrices P, Q over K [¢] such
that

PAQ™' =diag(fi,..., f,0,...,0), where f; € K[t]. 4)

The product of the non-zero diagonal terms on the right gives us a polynomial
f whose zeros in C are the only points of C at which A = A(¢) falls short of its
maximum rank, and the number of these cannot exceed deg f. |

We now come to the application of Theorem 4.7 to describe modules over a
PID, in a result that generalizes the fundamental theorem of abelian groups.

Theorem 1.4.10. Let R be a principal ideal domain. Then any finitely gener-
ated left R-module M is a direct sum of cyclic modules

M=R/Re;®---®R/Re, ® R", 4)
where e; | e; 1, and this condition determines the e; up to similarity.

Proof. Let M be defined by a presentation (2) with matrix A. By Theorem
4.7, A is associated to diag(e;, ..., e, 0,...,0) with ¢;|le;+1, and since this
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change does not affect the module, we obtain (5). It only remains to prove the
uniqueness.

We begin with the remark that modules of finite length can be cancelled.
Thus if

MONZMeN, (6)

where M, N, N’ are of finite length, then N = N'. This follows from the Krull-
Schmidt theorem (see FA, Section 4.1 or IRT, Chapter 2).

Now let us write R/Ra; & --- ® R/Ra, as [ay,...,a,] for short. Then
[a] = [p] if and only if a is similar to b, and by what has been said above,
la,by,...,b ] = [a,c1,...,cs] implies [by,...,b] = [c1, ..., cs]. We take
two representations of M as direct sums of cyclic modules:

Mg[d],...,dr]g[fﬁ,...,er], di||di+l’ei||ei+l‘ (7)

It is no loss of generality to assume the same number of summands on both
sides, since we can always add zero summands, represented by unit factors:
R/R = 0. Further we may suppose that the torsion-free part has been split off,
so that the d;, e; are all different from 0. If » = 1, the result is clear, by what has
been said, so let 7 > 1 and use induction on . We shall write /(a) for the length
of a and assume that /(d,) > [(e;); further, let d;|c|d,, where c is invariant. If
N is any left R-module, cN is a submodule; more specifically, if N = R/Ra
and c is invariant, then N /cN = R/(Ra + Rc). Now consider M /c M ; writing
Re; + Rc = Rf;, we have by (7),

M/cM = [dy,c,....c]1 = [f1, frr -5 i )

and/(f;) <l(c)i=1,...,r),I(f1) <I(e) <I(d). Comparing lengths in (8)
(which must be equal, as the length of a composition series for M /cM), we
find that /(d;) + (r — DI(c) = >_I(fi), i.e.

1) = 1(fi) + Y _ol(e) = 1(f)) = 0.

Since each term is non-negative, all are zero and I( f1) = I(e) = I(d}y), [(f;) =
[(c). It follows that [ f1] = [e1], [ fi] = [c](@ > 1), and now (8) reads

[di,c,...,c]1=[e1,c,...,c].

By cancellation we find that e; is similar to d;; so we may cancel the first term
on both sides of (7) and obtain [d>, ...,d,] = [es, ..., ¢,]. Now an induction
on r gives the result. [ ]

If M consists of torsion elements, the last term in (5) is absent. If moreover,
R is simple, then there are no non-unit invariant elements, so at most one of the
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e; in (5) can be a non-unit. But units can in any case be omitted, so (5) reduces
to a single term; hence over a simple PID any finitely generated module of
torsion elements is cyclic. In Proposition 4.12 below we shall obtain this result
in a somewhat more general context.

Theorem 4.10 shows that the e; in Theorem 4.7 are determined up to similar-
ity; we shall generally omit the units among them, since they do not contribute
to M. The e; are called the invariant factors of the matrix A or also of the mod-
ule M. The condition imposed on the e; (that each e; be a total divisor of the
next) ensures that (5) is a decomposition of M into cyclic modules with as few
terms as possible. At the other extreme we have a decomposition into as many
terms as possible, i.e. a complete direct decomposition into indecomposable
modules. The indecomposable parts must then be cyclic, by Theorem 4.10 and
they are unique up to order and isomorphism, by the Krull-Schmidt theorem.
The factors in this case are called the elementary divisors of the module (or
the matrix). For example, over the integers, M = [3, 15, 750] has the invariant
factors 3, 15, 750 and the elementary divisors 3; 3, 5; 2, 3, 53,

It is of interest to extend the decomposition of Theorem 4.10 beyond the
principal case. Here the following lemma is useful:

Lemma 1.4.11. Let R be a non-Artinian simple ring. Then any R-module of
finite length is cyclic.

Proof. Let M be a left R-module of finite length and suppose first that M has
a simple submodule that is a direct summand:

M=M &S, whereSissimple. 9)

By induction on the length, M’ is cyclic, say M’ = Ru. We denote by a the
left annihilator of u in R; it is a left ideal and since R is non-Artinian, a # 0. If
aS =0,then S = RS = aRS = 0, a contradiction, so there exists v € S such
that a ¢ Ann(v). It is clear that v # 0, so Rv = S by simplicity; we claim that
u + v generates M. Consider Ann(u + v); if x(u + v) = 0, then xu = xv =0
by (9), so x € a N Ann(v). Thus the map x + x(u + v) gives an isomorphism

R/(aN Ann(v)) = R(u + v).

On the left we have a module of length > I(M’), hence of length [(M), so
R(u + v) = M and M is cyclic, as claimed.

There remains the case when no simple submodule is a direct summand.
Of course, M has a simple submodule (unless M = 0), S say. By induction
hypothesis, M /S is cyclic, generated by u + S, say. Hence M = Ru + S and by
hypothesis, Ru NS # 0, so Ru 2 S by the simplicity of S, therefore Ru = M
and M is cyclic. u
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As a consequence we have

Proposition 1.4.12. Let R be an atomic simple principal left ideal domain,
not a field. Then any finitely generated left R-module of torsion elements is
cyclic.

Proof.  Since R is non-Artinian simple, we need only verify that a finitely
generated left R-module of torsion elements is of finite length. By induction
it is enough to check this for cyclic modules and this clearly holds by unique
factorization and the fact that all left ideals are principal. [ ]

This result then shows that over an atomic simple principal left ideal domain
(e.g. any simple PID) R, every regular matrix A is stably associated to an element
of R.

Exercises 1.4

1. Show that (iv) is not needed in the proof of Theorem 4.7 if every invertible matrix is
a product of elementary and diagonal matrices. What simplifications are possible
when R is commutative? Prove the uniqueness in this case (Theorem 4.10).

2. Verify that the bound of an element, if it exists, is unique up to associates.

3°. What kind of reduction theorem can be proved for R when R is (i) an atomic
principal left ideal domain or (ii) a Bezout domain?

4. (Kaplansky [49]) By an elementary divisor ring is meant a ring over which every
matrix admits a diagonal reduction as in Theorem 4.7. Show that a ring over which
every m X n matrix, where m, n < 2, admits a diagonal reduction is an elementary
divisor ring.

5. (Kaplansky [49]) Show that an elementary divisor ring that is an integral domain
is weakly finite.

6°. Is every commutative Bezout domain an elementary divisor ring?

7. Let R be a finitely generated module over a PID R. Given a decomposition (5)
into cyclic modules that are as ‘short’ as possible, show directly that the e; can be
numbered so that each is a total divisor of the next.

8*. LetR be a PID and M a finitely generated R-module. Prove directly that the bounds
of the elementary divisors of M are independent of the choice of decomposition
of M.

9. UseLemma4.11 to prove that any left or right ideal in a simple Noetherian domain
can be generated by two elements.

10. A ring R is called semi-Euclidean (D. Goldschmidt) if there is a function ¢ :
R* — N such that for any a, b € R* either a = bg +r, ¢(r) < ¢(b), or ¢p(a) =
¢(b) and b = aq +r, ¢(r) < ¢(a). Prove a triangular reduction of matrices over
semi-Euclidean rings. Show that every valuation ring is semi-Euclidean.

11. LetA be aright Bezout domain and X its field of fractions. Show that every finitely
generated right A-submodule of K is cyclic. (Hint: Use Proposition 0.7.3.)

12°. Which of the results of this section go over to principal left ideal domains, or to
Bezout domains?
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1.5 Skew Laurent polynomials and Laurent series

Let A be an integral domain and « an automorphism of A, and consider the
skew polynomial ring A[x; «]. We can localize this ring at the powers of x;
the resulting ring is denoted by A[x, x~ ! o] and is called the skew Laurent
polynomial ring; it reduces to the Laurent polynomial ring A[x, x~'] when
o = 1. The latter may be thought of as the group algebra of the infinite cyclic
group and many of the concepts introduced apply to general group algebras.
This is true particularly of derivations.

Thus let G be any group, kG its group algebra over a field k and ¢ : kG — k
the augmentation mapping, defined as a k-linear mapping such that ge = 1 for
all g € G.The (g, 1)-derivations of kF, where F is the free group, are called the
Fox derivatives (Fox [53]). We shall have no more to say on this topic, except to
remark that if F' is free on X = {x;}, each mappingd: X — kF defines a unique
Fox derivative. Each such d can be written as a linear combination of the d;,
where d; maps x; to §;;. For if u € kF has the form u = ue + > (xi — Ddiu,
and d is any Fox derivative, then df = > dx;.d; f.

Rings of skew (Laurent) polynomials are often useful in constructing
counter-examples; as an illustration we shall obtain conditions for such a ring to
be non-Hermite. We shall need a lemma on Ore sets in skew polynomial rings.

Lemma 1.5.1. Let A be a right Noetherian domain with an automorphism
o, an a-derivation § and put R = Al[x; «, §]. Then the set S of all monic
polynomials in R is a right Ore set.

Proof. By Proposition 1.3, R is again right Noetherian. Now take f € S, g €
R* and putdeg f = d.Then R/f R is a free right A-module of rank d and hence
Noetherian. Therefore the submodule generated by the images of g, gx, gx?, . ..
is finitely generated over A, say gx" = Y gx'h; (mod fR); hence gu = fv for
some u € S, v € R, as we had to show. |

Proposition 1.5.2. Let A be a right Noetherian domain, o an automor-
phism and § an «o-derivation of A and write (i)R = Alx; «, 8] or (ii) R =
Alx, x L al. If a, c € A are such that a is a non-unit and a, x + ¢ are right
comaximal in R, and in case (ii) ca® & aA, then aR N (x + ¢)R is stably free
but non-principal, hence R is not 2-Hermite.

Proof. By Proposition 0.4.3 it is enough to show that aR N (x + ¢)R is not
principal. In case (i) every element of R is a polynomial in x, while in case
(ii) every element is associated to a polynomial. By Lemma 5.1 the monic
polynomials form a right Ore set, so there exists a monic polynomial f such
thataf = (x + c)u.
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Secondly, we have
ax = xa® +a® = (x + 0)a® + (@® — ca®), )

where § is taken to be 0 in case (ii). By hypothesis there exista;, a, € A, a; # 0,
such that (a® — ca®)a, = aay, hence on multiplying (1) by a; on the right and
simplifying, we find

a(xa; — ax) = (x + ¢)a’a;y.

We put g = xa; — ay. If aR N (x + ¢)R were principal, equal to ahR for some
polynomial % say, then g € AR, so d(h) < 1. Thus / (after multiplication by
a suitable unit in case (ii)) has the form & = xb; 4+ b,, where b; € A. Since
ah € (x +c)R,d(ah) > 1,s0d(h) > 1and b; # 0.Now f € hR,say f = hd,
comparing highest terms and bearing in mind that f is monic, of degree r, say,
we find x” = xbx"~'d,. Since « is an automorphism, this shows b; to be a
unit, and dividing 4 by b; we may take it to be of the form h = x + b (b € A).
By the definition of & we have a(x 4+ b) = (x + ¢)k, i.e.

a(x +b) = xa*+a® +ab = (x + )k forsomek € R. )

It follows that k = a®, ck = ab + a°, and so
ca® =ab+ad’. 3)
In case (ii) @® = 0 and so (3) is excluded by hypothesis. When (i) holds, we have
(x+c)p+ag=1, {forsomep, g€ R. “)

If we write ¢ =(x+b)gq +r, where ¢, € R,r € A, then by (2),
aq = a(x + b)g; + ar = (x + c)kq, + ar, and so

=& +)(p+kq)+ar

A comparison of degrees shows that p + kg; = 0, ar = 1, which contradicts
the fact that @ is a non-unit. Thus aR N (x + ¢)R is not principal, even though
it is stably free, as we see by considering the short exact sequence

0—>aRNx+c)R—> R>—> R — 0. [ |

As an example consider the Weyl algebra; this may be written A[x; 1, '],
where A = k[y] and " is d/dy. Here y is a non-unit and x, y are comaximal,
this answers Exercise 1.1.14.

Corollary 1.5.3. The Weyl algebra A(k) is not a 2-Hermite ring. [ ]

Explicitly this means that R = A;(k) contains a non-principal right ideal a
such that a @ R = R?. Moreover, the precise form of a is given by Proposition
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5.2 (see also Exercise 1.11). In fact, every finitely generated projecive module
over a Weyl algebra is stably free (see Stafford [77]).

Besides polynomial rings we shall also need formal power series rings.
Taking first the case of a zero derivation, we can describe the formal power
series ring in x over A with endomorphism «, denoted by R = A[[x; «]], as
the ring of all infinite series

f=ao+xa+x’a+..., )

with componentwise addition and multiplication based on the commutation
rule ax = xa®. With each power series f we associate its order o( f), defined as
the suffix of the first non-zero coefficient in (5). When A is an integral domain
and « is injective, this satisfies the conditions for an order-function analogous
to D.1-D.3:

O.1. fora € A*, o(a) = 0, while 0(0) = oo,
0.2. o(a — b) = min{o(a), o(b)},
0.3. o(ab) = o(a) + o(b).

We can localize this ring at the set of all positive powers of x and so obtain the
ring of formal Laurent series

oo
f=) x"a,. 6)
n=—k
We shall examine this ring more closely in the case where A = K is a field. To
express the multiplication we shall at first assume that ¢ is an automorphism;
putting 8 = a~!, we can write the commutation rule in the form

ax ' =x"14P.

Now it is an easy matter to show that the set of all series of the form (6) forms
a field. If o( f) = —k, so that a_; # 0, then we can write f = x *a_,(1 — g),
where o(g) > 0, and so f has the inverse f~! =} gi)a:,:xk. The resulting
field is denoted by K ((x; «)) and may be obtained from the power series ring
K[[x; a]] by formally inverting x. Since K [x; «] is embedded in the power
series ring, it is also embedded in K ((x; «)), therefore, by the uniqueness of
the field of fractions, so is K (x; «).

From O.3 above we see that o( ) will not be an order-function unless § = 0,
so when § # 0, the above method cannot be used, essentially because left mul-
tiplication by non-zero elements of K is not continuous in the x-adic topology,
as the equation

ax = xa* +a° @)
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shows. To overcome this difficulty we introduce y = x~! and rewrite the com-
mutation formula (7) in terms of y as

1 -1

ay”' =y"'a" +a’; ®)

multiplying up, we obtain
ya =a"y+ ya’y. 9)

In operator form (9) may be written as L, = «R, + 6L R, where L, (R,)
stands for left (right) multiplication by y. Solving this equation for L ,, we obtain

ya:ao‘y+a5°‘y2+a52"‘y3+... . (10)
The result may be summed up as

Proposition 1.5.4. Let K be a field with endomorphism o and a-derivation §.
Then the skew function field K (x; o, §) may be embedded in the field of skew
Laurent series in y = x~' with commutation rules (8), (9). [ |

When « is an automorphism, we can write every Laurent series in the form
3" ya;, but this is no longer possible if & is merely an endomorphism. However,
the same normal form can be achieved as follows. In any case &« must be injective,
as a field homomorphism, so we have an isomorphism between K and its image
K. Let us write K, for the image of K under «” (n > 0); since ", like «,
is injective, it provides an isomorphism between K = K and K. For each
m =1,2,...wetake an isomorphic copy K_,, of K and embed K _,, in K_,,,_;
by identifying K_,, with the image of K_,,_; under «. In this way we obtain a
filtration

..K,CK,,C...CKiCKyCcK_;C...,

whose union is again a field, which we shall write as K'*). Since a: K, — K,
is an isomorphism for all n € Z, « is an automorphism of K[,

We remark that K% may also be obtained more directly as follows. In the
skew function field K (x; o) we have the inner automorphism induced by x,
which agrees with « on K (because a* = xlax foralla € K); hence K_,, =
x"Kx™" and K = Ux”Kx~". So in order to form Laurent series when «
is not surjective (and § = 0), we may take K “1((x; a)).

When « is not surjective and § # 0, we can still form K[! but now § will
not be defined on all of K™ and there is no natural way of doing so unless we
have a commutation relation between « and §, such as «é = do.

The power series representation is often useful for rational functions, e.g.
for determining the centre of a rational function field. For simplicity we assume
that § = 0.
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Proposition 1.5.5. Let K be a field and a an endomorphism of K, no positive
power of which is inner. If C is the centre of K and C the subfield of C fixed by
o, then the centre of K(x; o) is Cy.

Proof. If @™ is inner, then so is «’, hence no power al(i # 0) is inner.
Consider a power series f = inai; if this centralizes K (x; o), thenbf = fb
forall b € K, hence Y x'(b* a; — a;b) = 0, so a;b = b* a;, but &' is not inner
fori # 0;hencea; = Ofori # Oandso f = ag € C.Further wehave fx = xf
and it follows that af = ag, i.e. f € Cy. ]

Sometimes it is useful to have a criterion for the rationality of a power series.
Such acriterion is familiar for complex series, and this carries over to the general
case, to provide the following rationality criterion:

Theorem 1.5.6. A power series Y x'a; € K((x; )) is a rational function of
x if and only if there exist integers r, no and elements cy, ..., c, € K such that
ay =da,_ci+a, ,co+---+ay_.c, foralln > ng. an

Proof.  This is just the condition that
(3 xa) (1 - zxfcj>
I
should be a polynomial, except for a factor x ~*. |

As an illustration of this result we have

Corollary 1.5.7. Let K C L be fields and o« an automorphism of L mapping
K into itself. Then

K((x;)NL(x; o) = K(x; o). (12)

Proof.  Clearly the field on the right is contained in the left-hand side. Con-
versely, any element of L(x; o) may be written uniquely as a Laurent series
f= in a; with coefficients a; in L, and if it is a Laurent series over K, it
follows that a; € K. If f belongs to the left-hand side of (12), it is rational over
L and so its coefficients satisfy the above criterion. Thus the equations (11) have
a solution for the ¢; in L. They are linear equations with coefficients in K and
hence have a solution in K. This means that f € K(x; «) and the equality (12)
is established. ]

In the commutation relation for a formal power series ring over K we may
from the beginning allow all higher powers; the most general relation is then
of the form

ax = xa® + x*a® + x3a®” + ..., (13)
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where &, 81, 82, . . . is a sequence of mappings of K into itself. As in the case
of skew polynomial rings (Section 1.1) we can show that the és are additive
and §y preserves 1, while §; for i > 0 maps 1 to 0. Moreover, §, must be an
endomorphism of K, while the §s satisfy

(aby =Y " a™'b", (14)
i=0

where A’ is the coefficientof £ in (3 #+18;)*!. Such a sequence (8, 81, . . .)
with §o = « is sometimes called a higher o-derivation. We shall not need a
special notation for the ring defined by such a higher derivation.

As an example of a ring with a commutation formula (13) let us again take
a skew polynomial ring K [x;«, 8], where K is a field. In the skew function
field K[x;«, 8] consider the subring generated by K and x~ 1 here it will be
convenient to write the coefficients on the left. Writing y = x~ !, we have as
before, ya = a“y + ya‘sy, or in operator form, L, = «R, + LR, we again
obtain (10), and this is indeed of the form (13), with §, = §"«, except for a
change of sides. In particular, if § is nilpotent, say §"+t1 = 0, then (10) reduces
to the polynomial formula

ya = auty +a5ay2 + ... +a8r°‘y"+l. (15)

Of course not every higher «-derivation is of the special form §, = §"«, but
it is a remarkable result, due to T. H. M. Smits [67], that if in (13) §; = O for
i > r, then (with another mild restriction) we do indeed have §,, = §"«. The
rest of this section will not be needed later and so can be omitted without loss
of continuity.

Theorem 1.5.8. Let A be the ring of polynomials in an indeterminate y with

coefficients in a field K, with the normal form
f=a+ay+---+ay" (a € K), (16)
such that o(f) = min{i|a; # 0} is an order-function, and for any a € K,
ya=a"y+a"y’ +---+a"y "t (17)

Assume further that (i) r is independent of a, (ii) « is an automorphism of K
and (iii) a, 81, . . ., 8, are right linearly independent over K, in the sense that
forallby,...,b,,1andalla € K,

a’by +a"b*+ - +a"b,, =0implies by =by = ... =b,4; =0.

Then A is obtained from a skew polynomial ring R = K[x; o, 8], where § is
a nilpotent a-derivation: 8"*' = 0, by adjoining y = x~" and passing to the
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subring generated over K by y. Conversely, every skew polynomial ring with a
nilpotent a-derivation 8 leads to a ring satisfying (15), with 8; = §' .

Proof. The converse has already been established. To prove the direct part,
we have from (17), by induction on 7,

yna :annyn +ann+1yn+l +"'+ankykv (18)
where k£ may depend on n, but not on a. We shall write (18) as
ynazzaniyis (19)

where the summation is over all 7 and a,; =0 for i < n or i > k. Clearly
a +— (ay;) is a matrix representation of K over itself. From (17) we find, by
induction on n,

any = a” . (20)
For n = 1 we have from (19),

y(ab) =Y (ab);y',

(ya)b = (Z aliy[) b= aybjy.
Hence for j > r + 1,

Zalibij =0 (j=r+2,...).

S

Now a;; = a%, a;; = a®~', and all these elements are right linearly independent

over K, by (iii) above, so we obtain
bijj=0 fori=1,....r+1;j=r+2,....
Thus (18) takes the form
via=aipy +aiy ™+ +apay (2D
In particular, taking i = r 4 1 and remembering (20), we find
ytla = a"’my"H. (22)
Similarly, for i = r, (21) becomes
ya=a"y +a,y™.

Letuspute™! = B and write a” for a,,,; using (22), we may write this relation
formally as

y_la _ yraﬂrﬂy_r_l _ aﬂy_l + aﬂ,-+ly.
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If we define 8 by setting a® = —a®'7, this relation takes on the form

yla=afy™' —a?. (23)

1

We now replace a? by a and recall that 7! = o, y~! = x, and obtain

xa® = ax — a’,

which by rearrangement yields
ax = xa* +a’.

Thus A is obtained from the skew polynomial ring K [x; «, 6] by taking the
subring generated by K and y = x~!. To find the relation between § and the §;
in (17) we apply y’1 to (17) and use (23):

a=yl@y+ay +---+a"y

—a+a Py a By _gPy MOy L Byl

r+1)

Equating coefficients, we find that §, 8 = 6, §; 8 = 8;—1 86, 6,86 = 0, hence by
induction, §; 8 = 8!, and so we obtain the desired relations

Si=8a, i=1,...,r, & =0 m

The power series ring and the Laurent series ring are special cases of the
following construction, which allows the group algebra of any ordered group
to be embedded in a field.

Let M be an ordered monoid, i.e. a monoid with a total ordering ‘<’ such
that @; < b;(i =1, 2) implies aja; < b1b,. By a convex submonoid we shall
understand a submonoid S such thata, b € Sanda < x < bimpliesx € S. Let
K be any ring and consider the direct power K, regarded as a K-module. With
each f € KM we associate its support, defined as

D(f)={a € M|f(a) # 0}.

The elements of finite support may be written as finite sums »_ f(a)a and just
constitute the monoid ring K M of M over K, with the multiplication rule

fg=h, whereh(c)= Z fla)g(b). (24)
ab=c

When M is a group, the latter sum may also be written >_ f(x)g(x~'c). Now
let R = K((M)) be the set of elements of K™ with well-ordered support; here
the definition (24) for the product still makes sense, for if the terms f(a)g(b)
are ordered so that a; < ap < ... for the arguments of f, then for ¢ = a;b; we
have b; > b, > ... and this must break off, by the well-ordering of D(g). Thus
each h(c) is defined; let us show further that / again has well-ordered support
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and that R is in fact a ring. Clearly we may suppose that the supports of f and
g are both infinite. If ¢, € D(h), say ¢, = a,b,, consider a sequence

L >Cp>....

By the well-ordering of D(f) the sequence (a,) has a subsequence that is
increasing, hence the corresponding subsequence of b’s is decreasing and so
must terminate. Thus D (/) is well-ordered and this shows that h = fg € R;
clearly f + g € R and it is easily checked that R is a K-ring. We shall call
R = K((M)) the ordered series ring of M over K. We remark that R has an
order function defined on it, with values in M, by

o(f) =min{a € M| f(a) # 0}.

If o(f) = a, then the term f(a)a is called the leading term of f. We claim
that f is invertible if and only if the leading term of f is invertible. For this
condition is clearly necessary for invertibility. Conversely, assume that it holds,
let f = foao+ ..., and write g = aoflfoflf; then g has the form 1 — &, where
h =Y h(x)x has support consisting entirely of elements > 1. Formally we can
write

p=l4+h+h>+... . (25)

If we can show that p € R, then it is clear that p is indeed an inverse of g, and
this will prove f to be invertible.

We shall show that D(p) is well-ordered; for if not, then we would have an
infinite descending chain

ZL=UL oo Uy > o> 2 = Ui Uy, > (26)

where u;; € D(h). By omitting some of the z; we may assume that n; < ny <
....Letv; betheleastof u;y, ..., ujn,; thenv; > v, > ..., and this contradicts
the fact that D(h) is well-ordered. The same argument shows that any element
of M occurs in at most a finite number of the D(4"). For otherwise we would
have an infinite chain as in (26), but with equality signs; now the same argument
as before shows that the chain breaks off. Thus p is well-defined and we have
proved

Theorem 1.5.9. LetK be aring and M an ordered monoid. Then the set K((M))
of power series with well-ordered support is a ring, the ordered series ring of
M over K, and an element of this ring is invertible if and only if its leading term
is invertible. ]

When M is a group and K is a field, every non-zero element of K ((M)) has
an inverse and we obtain the Malcev—-Neumann construction:
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Corollary 1.5.10. Let K be a field and G an ordered group. Then the ordered
series ring K((G)) is a field. |

We shall want to apply this result to free groups, so we shall need to prove
that every free group G can be totally ordered. This follows for example, by
writing the elements of G as infinite power products of basic commutators and
taking the lexicographic ordering of the exponents (see Hall [59], Chapter 11,
or also Exercise 10).

We conclude this section with an interesting result due to G. M. Bergman,
on normal forms under conjugation in ordered series rings.

Theorem 1.5.11. Let K be a commutative ring and M an ordered monoid,
and let f be an element of K((M)) with invertible leading term f,.u. Then there
exists an element q in K((M)) with leading term 1 such that g~ fq has support
entirely in the centralizer of u in M.

Further, g may be chosen so that no element of its support except the leading
term 1 commutes with u. Under this hypothesis q is unique.

Proof. If u = 1, there is nothing to prove, so we may assume that # # 1 and
on replacing f by f~! if necessary (bearing in mind that f is invertible, by
Theorem 5.9), we may suppose that # > 1. Further, we may assume without
loss of generality that f, = 1.

We shall denote the centralizer of u in M by C,. Our aim will be to show
that any term «t of f such that ¢t ¢ C, can be got rid of by conjugating by an
element (1 + atu~") or (1 — au~'t), at the expense of adding higher terms.
The process is then repeated on the new leading term. We shall need to set up
some machinery to show that the construction of ¢ can be made to ‘converge’.

We shall use the customary notation [u, v], [u, v), etc. for closed, half-open,
etc. intervals in M and let oo be such that s < oo for all s € M. This will allow
us to use the phrase: ‘the leading term of f is a#’, even when f = 0, in which
case ¢ is taken to be oo and « undefined. If u, s € M, where u is invertible, we
put s/u = max{su~', u~'s}; it is easy to verify that x < y = x/u < y/u.

Let X be the set of triples (¢, g, p), where ¢ € (4, oo], g, p € K((M)) and
g has leading term u and support in C, N [u, t), while p has leading term
1 and support in [1,¢/u) such that pgp~! — f has a leading term of form
at. By our convention this means that pgp~' = f if and only if t = co. We
partially order X by writing (¢, g, p) < (t/, ¢, p))ift <t/, D(g' — g) C [t, 1)
and D(p’ — p) C [t/u, t'/u); these conventions just mean that the series g’ and
p’ ‘extend’ g and p, respectively.

If the leading term of f — u is ¢, then (¢, u, 1) € X; this shows that X # @.
Our aim is to show that X is inductive, so that Zorn’s lemma can be applied.
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Suppose then that we have a chain {(#;, g», p») | A € I} in X. We can ‘piece
together’ the g; to get a common extension g, with support in U, [u, ;), and
similarly from the p; form a common extension p with supportin U, [1, (¢, /u)).
It is clear that g and p again have well-ordered supports; we also see that
pgp~' — f will have support in [u, 00)\ U; [u, t;). If we write the leading
term of pgp~' — f as at, we see that (¢, g, p) majorizes the given chain; hence
X is inductive and so by Zorn’s lemma, X has a maximal element. To complete
the proof we show that if (¢, g, p) € X and t < oo, then we can construct
', ¢, p) > (g, p). It will follow that a maximal element of X must have the
form (00, i, q), so that ghg ™' — f = 0,i.e. h = ¢~ fq, as claimed.

Let the leading term of pgp~' — f be at, say. We shall find an element
¢’ extending g and having support in [u, 7] (recall that D(g) C [u, t)) and p’
extending p with supportin [1, ¢ /u], and show that D(p’g’'p'~! — f) C (¢, o0).
Hence if art’ is the leading term of p’g’p’~! — f,then (¢, g, p) < (¢', g, p)) €
X. We distinguish three cases.

@) tu=' > u~'t. Then t/u = tu~" and we write p’ = p — atu™'; since p
has leading term 1, we see that p'~! = p~! + atu~"' + higher terms. Take
g = g; on multiplying out p’g’ p’~! we find that the new terms introduced are
(—atu™"u.l = —at, Lu.(atu™") = autu™", and higher terms. Since tu~'
u~'t, wehave utu~' > t, so the lowest term introduced is —«; this cancels the
leading term at of pgp~! — f, hence D(p'g'p'~' — f) C (¢, 00) as claimed.

(i) tu=' <u~"t. Now t/u =u""t; we put p' = p+au~'t and again
take g’ = g. The lowest terms introduced are (ou~'t).u.1 = au='tu and
l.u.(—au~'t) = —at. Here the latter is the lower and again this cancels the
leading term at of pgp~! — f.

(iii) fu~' = u~'t. Now t commutes with u; in this case the terms arising

1
1

under (i), (ii) would cancel and so be of no help in eliminating the leading
term of pgp~! — f. So we set p’ = p and g’ = g — at, which is permissible
because ¢ € C,. Now the lowest term by which pgp~' — f has changed is
1.(—at).1 = —at, so here too, p’g’p’~! — f has support in (¢, 00).

This then proves the existence of g; since in the above construction we never

added a term from C,, to our p’s, we can clearly take ¢ so that
D(g)nC, = {1}. (27

Let g be so chosen and suppose that ¢’ # ¢ is another element with leading
term 1 such that D(¢’~' fq') € C,. Write ¢’ = q(1 + h), g = g~' fq, so that
g =q7"fqg = +h)'g(1 + h). If at is the leading term of h, suppose that
t & Cy; then g’ would have a term ut or tu (whichever is the smaller), but by
hypothesis, D(g’) € C,, sot € C,. This means that ¢’ = ¢(1 + k) will have in
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its support a term ¢ # 1, which commutes with u, a contradiction. Hence ¢ is
the unique element with the desired property and satisfying (27). [ ]

We note that the assertion of Theorem 5.11 is strongest when the centralizer
C, is small. In particular, in a free group the centralizer of any element # 1 is
a cyclic group. It follows that every element f with leading term ou, u # 1, is
conjugate to a series in a single variable, and this even holds when the leading
term is o, by applying the argument to f — «. Thus we obtain

Corollary 1.5.12. Let G be a free group and k a commutative field. In the
ordered series ring k((G)) every element is conjugate to a Laurent series in a
single variable. [ ]

Exercises 1.5

1. Show that if R is weakly finite, then so is R[x]. What happens for R[x; «, 8] or
R[[x]]?

2°. Obtain an analogue of Proposition 5.4 when 6 # 0 and « is not surjective (try the
cases ad = *+da first).

3°. To what extent are the conditions (i)—(iii) of Theorem 5.8 necessary?

4. (P. Samuel) If R is a Euclidean domain, show that R[[x]][x '] is also Euclidean.
[Hint: Define ¢(>_ x'a;) = ¢(a,), where s = min{i|a; # 0}.]

5. (Dress [71]) Let R be an integral domain. If R[[x]][x~'] is a Euclidean domain
relative to a function ¢, show that R is Euclidean relative to ¢, where ¢r(a) =
min{¢(f) | d(f) € Ra}, where d( f) is the coefficient of the least power occurring
inf.

6. Show that in an ordered group G any inner automorphism is order-preserving.
Deduce that an element f of k((G)) commutes with u € G if and only if the
support of f lies in the centralizer of u.

7*. (L. G. Makar-Limanov) Show that for any commutator [a, b] = ab — ba in an
ordered series ring k((G)) the coefficient of 1 is 0. Deduce that [[a, b], b] =0
implies [a, b] = 0.

8. Inthe ordered series ring k((F')) of a free group F over a field £ show: if f commutes
with > Au’ & k(u € F), then f commutes with u. Deduce that two elements of
k((F)) commuting with the same element of k((F))\k commute with each other,
i.e. commutativity is transitive on k((F))\k. (Hint: Use the fact that commutativity
is transitive on F'\{1}.)

9. Let M be an ordered monoid for which commutativity is transitive on M \{1}. Show
that f commutes with a conjugate of g if and only if the leading term of f commutes
with a conjugate of the leading term of g.

10. Let F be a free group and F, the nth term of the lower central series (defined as the
subgroup generated by all repeated commutators of weight n). Given that F,,/ F,,
is free abelian and NF,, = 1, show that F can be ordered.

11*. (G. M. Bergman) Let R((X)) be the free power series ring over the real numbers.
Verify thatif | X| = r, the elements 1 — x(x € X) with inverses ) x” form the free
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generators of a free group of rank . Show that R ((X)) and hence the free group can
be totally ordered by taking any ordering on X, extending it to the lexicographic
ordering of the free monoid on X and then ordering R ((X)) by the sign of its lowest
term.

12. Let R be a principal ideal domain with endomorphism o and «-derivation 6 and let

S = R[x, x~';«, 8]bethe skew Laurent polynomial ring over R. Writing y = x !,

show that the y-adic completion of S is again a principal ideal domain (see Cohn
[87a]). What can be said when R is only left or right principal?

13°. A groupis called right-ordered if ithas a total ordering such thata < b = ac < bc.
Given a right-ordered group G, is its group algebra embeddable in a field?

1.6 Iterated skew polynomial rings

From any ring R with an automorphism « we can form the skew polynomial
ring R[x; o], but this will not be a principal ideal domain unless R was a field.
However, when « is only required to be an endomorphism, we get a PID under
wider conditions, as we saw in Proposition 3.3. The exact class was determined
by Jategaonkar [69a], who used it to give an ingenious construction of ‘iterated
skew polynomial rings’, which form a useful source of counter-examples. We
shall here follow Lenstra’s presentation in showing more generally that the
iterated skew polynomial rings of Jategaonkar type (‘J-rings’) form the precise
class of integral domains with a unique remainder algorithm.

Let R be a ring, o an endomorphism and § an «-derivation of R. Then the
skew polynomial ring R[x; «, 8] is called a J-skew polynomial ring over R or
simply a J-ring if « is injective and maps R into U (R).

Given a ring R, a subring K and an ordinal number 7, we shall say that R is
an iterated skew polynomial ring of type T over K if R contains an ascending
chain of K-rings R; (A < 1), such that

J1. Ry =K,

J.2. R, is a skew polynomial ring over R, (A < 1),
J3. R, = U, R, for any limit ordinal u < 7,

J4. R, =R.

From the definition it is clear that every element of R can be written uniquely
as

ZXAI c X oy G, EKGAL > 2 A (1)

If K is a field and each R, is a J-skew polynomial ring over R;, R will be
called a J-ring of type T over K.
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From Proposition 1.4 we know that any skew polynomial ring over aright Ore
domain (with an injective endomorphism) is again right Ore. Jategaonkar’s basic
observation was that a J-skew polynomial ring over a right PID is again right
principal (Proposition 3.3). We now show that a J-ring over a Euclidean domain
is again Euclidean. In a Euclidean ring we shall denote the function giving the
least algorithm by 6, where 6(0) = —oo. We also recall the multiplication of
ordinals (see BA, Section 1.2): 2.0 = w, 0.2 = w + w.

Proposition 1.6.1. Let R be an integral domain with unique remainder algo-
rithm, defined by Og and suppose that S = R[x; o, 8] is a J-ring. Then S has
again a unique remainder algorithm, with the function

0 (Z xiai> = A.n+6g(a,) (a,#0), ()
0

for some ordinal .

Proof. Leta =Y gx'a;,b =3¢ x'bi(a,, by # 0), and note that & = 0 on
R.If0(a) > 6(b),thenn > m.Eithern > m;thena’ =a — bx(bf‘n)_]x"_"’_la,,
has degree < n and so 0(a’) < 6(a); or n = m, 6(a,) > 6(b,) and so by the
algorithm in R, 6(a, — b,c) < 0(a,) for suitable ¢ € R, hence 0(a — bc) <
0(a). This shows S to be Euclidean; now the conditions of Proposition 2.3 are
easily checked, so we have a unique remainder algorithm on S. [ ]

Since any field has a unique remainder algorithm, we obtain by transfinite
induction

Corollary 1.6.2. For any ordinal t,aJ-ring of type t over a field is an integral
domain with a unique remainder algorithm. [ ]

It is of interest to note that the converse also holds:

Theorem 1.6.3. A ring R is a J-ring of type T over a field (for some ordinal
T) if and only if R is an integral domain with unique remainder algorithm.

Proof.  The direct part was proved in Corollary 6.2. For the converse, let R
be an integral domain with unique remainder algorithm 6 = g ; by Proposition
2.5, 6 is a degree-function. Take an ordinal t bounding 6 and define A as the
set of ordinals A < t in the range of 6 such that

A>0andB,y <A=B+y <A. 3)
We claim

AeAB<A= B+Ai=A )
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For the unique solution y of 8 + y = A cannotbe < A by (3), butclearly y < A,
hence y = A.

We index A by an initial segment of the ordinals such that Az < 1, =
< y, and define

Rg={a e R|0(a) < rg} (B <71).

Since 6 is a degree-function, Rg is a subring of R. Now A9 =1, so Ry =
{a € R|6(a) <0}, and this is a field, K say. For any limit ordinal y we have
A, = limg., Ag and hence

Ry, = J Rs.

B<y

while R; = R, so it only remains to show that for any 8 < 7, R4 is a J-skew
polynomial ring over Rg. Choose x € R such that 6(x) = Ag and denote by
Rg[x] the set of all polynomials f = inai (a; € Rg). We claim that Rg[x] is
aJ-skew polynomial ring. Given f € Rg[x] of degree n with leading coefficient
a,, we have 0(f) = Ag.n +6(a,), hence f # 0 and the expression for it is
unique. Given @ € Rj, we have ax = xa” + a® for unique a%, a® € R and
0(@®) < 6(x) = Ag, SO ab e Rg. Next we have 6(ax) = 0(a) + 0(x) = 6(x) by
(4), so O(xa®) = 6(x), whence 6(a*) = 0 and it follows that a® € Ry C Ryg.
Therefore «, 6 map Rp into itself (if we define 0% = 0° = 0) and Rg[x] is
indeed a J-skew polynomial ring.

To establish the equality Rg 1 = Rg[x] wenote that L = Ag.wis the smallest
ordinal of A thatis > Ag, hence gy = Ag.w. We take f € Rgi1\Rg[x] such
that 0(f) has its least value. By the Euclidean algorithm, f = xa + b with
b € Rg. Asbefore, 0(f) = 0(x) + 60(a) = Ag + 0(a), since a # 0. But0(f) <
Agt1,sowehave O(f) = Ag.n + y withy < Agand1l <n < w.Hence6(a) =
Ag(n — 1) +y < Agn < 6(f), therefore a € Rg[x], by the minimality of 6( 1),
and so f = xa + b € Rg[x], a contradiction. This shows that Rg; = Rg[x],
as claimed. [ |

There remains the problem of constructing J-rings of a given type over a field.
The J-rings of type O are fields, J-rings of type 1 are the usual skew polynomial
rings over fields, J-rings of type 2 may be obtained by an ad hoc construction
(see Exercise 8), but beyond that it is no easier to construct a J-ring of finite
type than one of arbitrary type. In particular it is not possible to give a recursive
construction, because the set K* must contain an isomorphic copy of R*, so
that K depends very much on t. To construct K we shall use the field containing
a free group, constructed in Section 1.5.
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Let X = {x,}(e < 7) be a sequence of indeterminates and denote by E the
ordered series field constructed from the free group on X over k by Corollary
5.10. Denote by K the subfield generated over k by the elements

-1
UBa).ap = (Xgy o+ o Xey)” XpXgy oo Xgyy, Q1= >0,00>B,r>1. (5)

Lemma 1.6.4. In the field K defined above, the centralizer of x,,, for any y is
k.

Proof.  Let F be the free group on X and G the subgroup of F generated
by the right-hand sides of (5). Each of these generators has odd length in the
Xx’s, and in any expression of an element of G as a power product of the u’s,
cancellation cannot affect the central factor of any u. It follows that each such
expression must begin with a factor x; ' and end in a factor xg, even after all
the cancellations have been made, for this is true of the u’s and their inverses.
In particular it follows that G does not contain xy, for any n # 0.

Consider any a € K; this is a power series: a = Y _ a,u, where u runs over
G.

Conjugation by x,, maps G into itself; explicitly we have
x;luﬂm___mx}, = u;ly . ”o;%/”ﬂal...afqy“my s Ugy,
where i is such that o;_; > y > ;.

Since x, commutes only with the powers xJ, it follows that conjugation
by x, fixes only 1 € G and moves all other elements in infinite orbits; to be
precise, the elements in each orbit arise from the positive powers of x,,, since G
admits conjugation by x,,, but not by x,’'. Hence x, 'ax, = a is possible only
ifa, =0foru #1,ie.a =a; €k. [ ]

To prove the existence of a J-ring of given type, let G be as before and denote
by ¢, the endomorphism of G induced by conjugation with x,, ; this can clearly
be extended to an endomorphism of K, again denoted by ¢,,. Thus we have

ax, = x},a‘by (a € K). 6)

Let E again be the ordered series ring on G over K and R the subring of £
generated by K and the xg (8 < 7). By (6), each element of R can be written
as a finite sum

Zxa] .. Xe,Qg,..q, Whereay, o €K. 7)

Fix any term in (7) and let «; be the last suffix such that o; < ;1 > -+ - > ¢,
Then we can use (5) to pull x,, through to the right; this will only change the
coefficient. Repeating the process if necessary we can ensure thato; > --- > «,
in each term of (7). We assert that under this condition the expression (7) is
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unique. Thus assume that the expression (7) vanishes, where now o > - -+ >
a,, and assume that not all coefficients are 0. Let o be the highest suffix such
that x,, occurs in (7); then we have the equation

i
E x,c; =0,

where each ¢; is a polynomial in the xg (8 < «), with right coefficients in K,
and not all ¢; vanishing. On conjugating by x, we get

le ¢a

where the coefficients now lie in K; hence x, is right algebraic over K. If
we take a monic equation of least degree satisfied by x, and conjugate with
Xq, We get another monic equation, which must equal the first, by unique-
ness. By Lemma 6.4 it follows that the coefficients lie in k, so x,, is algebraic
over k, which is a contradiction. This proves the uniqueness of (7), so we
obtain

Theorem 1.6.5. Let k be any field and t an ordinal. Then there exists a J-ring
of type T over k (with zero derivation). [ |

By Corollary 6.2 the resulting J-ring has a Euclidean algorithm and hence is a
principal right ideal domain. However, it is not atomic if t > 1, for then we have

—1 n —n
X2 = X1 XUy = X[ XolUqy,

s0 x, has factorizations of arbitrary length.

A closely related class of rings has been studied by Brungs [69b], namely
rings in which the set of all right ideals is well-ordered by inclusion, i.e. they
are totally ordered and every set has a greatest member. Actually it is enough to
take the set of all principal right ideals. Such a ring contains a unique maximal
principal proper right ideal that is clearly also the unique maximal proper right
ideal and hence is the Jacobson radical / = J(R) of R. Hence J is two-sided
and R/J is a field, because it has no non-trivial right ideals. Thus R is a local
ring and we have the following structure theorem:

Theorem 1.6.6. Let R be a ring in which the set of all principal right ideals
is well-ordered by inclusion. Then all right ideals of R are principal and are in
fact two-sided; thus all regular elements of R are right invariant.

Proof.  Let a be a non-zero right ideal, bR the maximal principal right ideal
properly containedinaand ¢ € a\bR.ThencR C abutcR ¢ bR,hence bR C
c¢R C a, and so cR = a. Thus all right ideals are principal. Further, R is right
invariant, for otherwise take a maximal right but not left ideal aR; there exists
b € R such that baR D aR, hence a = bac, where ¢ is a non-unit and so lies
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in J. But baR is two-sided, by the maximality of aR, so b.ba = ba.b’, hence
ba = b.bac = bab’c. This shows that ba(l — b’'c) = 0, where ¢ € J, and so
1 — b'c is a unit. It follows that ba = 0, which is a contradiction, and this
shows each right ideal of R to be two-sided. [ ]

In order to examine these rings more closely, we note that they have the
following property:

Lemma 1.6.7. Let R be a ring as in Theorem 6.6, and a,b,c € R. If ab €
cR,b & cR, then a” € cR for some n > 1.

Proof. If Na"R = dR, then adR = dR, hence d = adu for some u € R.
Now if bR C dR, say b = dv, then b = dv = aduv = advu’ = abu’ € cR,
which contradicts the hypothesis; thus dR C bR, whence a” R C bR for some
n, and so a"t! € abR C cR. [ ]

We now define elements p,(c > 0) of R as follows: poR is the maximal
right ideal of R, and for any o > 0, p,, is defined (up to a right unit factor) by
(| psgR ifwis alimit ordinal,
B<a
putR =
Np,_ R otherwise.

Clearly, if « > B, then p, R C pgR; moreover, pgp,R C py R, and by defini-
tion of py, po = pgc for some non-unit ¢. Since py & po R for all n, we have
¢ € poR, 50 p, € pgpe R, and therefore p,R = pgpu R, i.e.

PBPa = Pallag for B < a, where uqg € U(R). ®)
We claim that each a € R™ is expressible uniquely as
a=pq, -..po,u, whereu e U(R),a; > --- > . )

For let « be the least ordinal such thata ¢ p, R; then o cannot be a limit ordinal,
say = o’ 4+ l anda € p[,R for some n. Taking n as large as possible, we have

,
a=pha, whered & pyR.

By repeating this process on a’ we find by induction that @ has the form (9) as
claimed, and this expression is unique, from the way it was found.

We denote by o the order type of the sequence of right ideals of R and express
o in the form

oc=0"n +o%ny+ - +onp_; +n; +1, (10)

where 7y > 7 > -+ > T;_p > 1. Then the p, are indexed by all @ < 7y, and
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(10) corresponds to the relation

pipe .. py T pgt = 0. (11)

It only remains to construct a ring with these properties. To do this we take
a J-ring of type t; over any field and localize at the set of all polynomials
with non-zero constant term, using Proposition 4.3. Now add the relations (11),
where the p, correspond to the x,.

Exercises 1.6

1°. Show in Proposition 3.3 that the sufficient condition is also necessary when § = 0.
What happens in general?

2. Show that a left Ore domain whose right ideals are well-ordered (under inclusion)
is a principal ideal domain.

3. (Jategaonkar [69a]) Let P be the localization of a J-ring of type t at the set of all
polynomials with non-zero constant term. Show that the Jacobson radical of P is
J = x| P. If transfinite powers of J are defined by the equations J%™! = J*J and
J = Npa J# at alimit ordinal &, show that J* D x, P. Deduce that J* # 0 if and
only if @ < t. Show also that J¢ is a two-sided ideal.

4. (Jategaonkar [69a]) Let R be a J-ring of type r. Show that the elements 1+
Xy (@ < ) are left linearly independent over R. If T is a limit ordinal, show
that every non-zero right ideal contains an ideal of the form x, R. Show also that
a =Y R(1+x,) is a proper left ideal and that no maximal left ideal containing
a can contain a non-zero ideal. Deduce that in this case R is left but not right
primitive.

5. By a strong prime ideal in a ring R is meant an ideal p such that R/p is
an integral domain. Determine the strong prime ideals in a J-ring of given
type.

6. Show that a reduced ring (i.e. without non-zero nilpotent elements), whose right
ideals are well-ordered is an integral domain.

7. (Brungs [69b]) Let R be a ring whose right ideals are well-ordered of type . Show
that R is an integral domain if and only if 0 = ", and R is left Noetherian if and
only ifo < w.

8*. Let k be a commutative field with an endomorphism « such that k£ contains an
element 7 transcendental over £ and denote by K the subring of k(y) consisting of
all fractions f.(1 + yg)~!, where f, g € k[y]. Show that a can be extended to K
by letting y > ¢ and verify that the resulting endomorphism maps K * into U (K).
Show that the power series ring R = K [[x; «]] is a principal right ideal domain in
which the right ideals are well-ordered, and determine the order type of its chain
of right ideals (see Cohn [67]).

9. Let R be a principal right ideal domain that is also left Ore. If all atoms of R are
right associated to a single one, p say, show that J(R) = pR; deduce that R is a
right principal valuation ring.
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10. Let F be the free group on x, y, with the ordering as defined in the text, and let §
be the monoid of elements > 1. Show that S is conical and rigid, but not atomic;
deduce that § is locally free, i.e. every finitely generated submonoid is contained
in a free submonoid of S.

Notes and comments on Chapter 1

Skew polynomial rings were first studied systematically by Ore [33a]. The proof of
Proposition 1.3 is modelled on the commutative case and Proposition 1.4 is due to
Curtis [52]; the analogue for power series does not hold, see Kerr [82].

The familiar Euclidean algorithm occurs in Euclid, Book VII, Propositions 1 and
2, as a method of finding the highest common factor of two integers. The extension
to polynomials was not undertaken until the 16th century, when Simon Stevin in his
Arithmetic (1585), Book II, Problem LIII, uses it to find the HCF of two polynomials.
He remarks that this application is probably new, since Pedro Nuiiez, writing only a
few years earlier (Libro de Algebra, 1567) attempts to treat the same problem, but does
not get beyond a few generalities; this was possibly because he considered polynomials
with integer coefficients, which present a harder problem.

There is a very extensive literature dealing with the Euclidean algorithm in algebraic
number fields; most of this does not concern us, but Motzkin [49], who determines the
imaginary quadratic extensions admitting a Euclidean algorithm with respect to any
function, introduces the notion of derived set and proves most of Theorem 2.1. As in
FR.2 we have followed Samuel’s ([71]) definition of derived set, see also Rodosski [80].
Propositions 2.3-2.5, giving conditions for the algorithm to be defined by a degree-
function, are taken from Lenstra [74], who also determines all rings with a transfinite
unique remainder algorithm; see also Section 1.6. The first commutative examples of a
(genuinely) transfinite Euclidean algorithm were found by Hiblot [75]. Theorem 2.6 is
due to Jacobson [34] and was found again (independently) by Cohn [61a].

An interesting generalization of the Euclidean algorithm is considered by Leutbecher
[78], who defines a ring R to be quasi-Euclidean if there is a function of two arguments
0:R?> — Nsuchthatfor (a, b) € R x R* thereexistsg € R suchthatd(—b, a — bg) <
O(a, b). He shows that this is sufficient to derive many of the usual consequences of the
Euclidean algorithm and in particular he proves that a ring R is quasi-Euclidean if and
only if R is a GE,-ring and every matrix A € R, is right associated to a matrix with
(1,2)-entry 0.

The first non-commutative UFD to have been studied is the ring K[D;
1,'] of linear differential operators. It is discussed at some length by Schlesinger [1897],
who proves that it is an integral domain. Landau [1902] shows that all complete factor-
izations of a given operator have the same length, and corresponding irreducible factors
have the same order (= degree in D). Loewy [1903] shows that corresponding factors
are ‘equivalent’ operators, in a sense introduced by Poincaré, and this turns out to corre-
spond to the notion of similarity. A large number of papers on the subject appeared at this
time. The first abstract account of this ring was given by Ore [32], who also introduced
the notion of ‘eigenring’. A further generalization, to PIDs, is undertaken by Asano
[38]. This and much other work is summarized in chapter 3 of Jacobson [43], where the
criterion of Proposition 3.6 is proved for PIDs. Proposition 3.3 is due to Jategaonkar
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[69a]. The general notion of non-commutative UFD is defined in Cohn [63a], where it
is shown to include a wider class of rings, which will be considered in Chapter 3.

The general results on PIDs, 4.1-4.6, are part of the folklore. Theorem 4.7 was
proved in a weak form, for (non-commutative) Euclidean domains, by Wedderburn
[32], and the full form by Jacobson [37]. This was generalized to PIDs by Teichmiiller
[37] and a uniqueness statement added by Nakayama [38]. A final touch, describing
exact conditions for the equivalence of two reductions, was given by Guralnick, Levy
and Odenthal [88]. If elements a, b in an integral domain R satisfy aR O ¢R D bR fora
right invariant element c, a is called a fotal right divisor of b. Now Theorem 4.7 can be
generalized to right principal Bezout domains but with ‘total divisor’ replaced by ‘total
right divisor’; this is proved in Cohn [87a]. In fact the result holds for right principal Ore
domains, for as we shall see in Section 2.2, such a ring is a semifir, and being Ore, has to
be Bezout. Our account in Section 1.4 follows Jacobson [43] with some simplifications
(see Amitsur [63]). For a general study of elementary divisor rings see Kaplansky [49].
An example of a PID for which the non-elementary operation (iv) is needed is the ring
of integers in Q(4/ — 19), which is therefore not Euclidean, though principal, see Cohn
[66b]. Lemma 4.11 appears to be folklore, communicated to the author by Stafford, who
also (in Stafford [85]) provided the source for Proposition 5.2.

Polynomial rings with the commutation rule (15) have been studied by Smits [68a],
to whom Theorem 5.8 is due. The use of generalized Laurent series has a long history;
infinite series with support other than N were considered by Levi-Civita [1892] and
skew Laurent series were used by Hilbert [1899] to construct an ordered field that is
not commutative. Proposition 5.4 is implicit in Schur [1904]: Hahn [1907] showed that
every totally ordered abelian group I" can be embedded in a (lexicographically ordered)
ordinal power of R, and in the same paper introduced the ring R((I")). Theorem 5.9
(for groups) was proved independently by Malcev [48] and Neumann [49]; our proof
follows the former source, but is stated for monoids. Another proof, based on properties
of algebras with a divisibility ordering was given by Higman [52]. Theorem 5.11 and
Corollary 5.12 are due to Bergman [78b].

The notion of unique remainder algorithm is described by Lenstra [74], to whom
Proposition 6.1 is due. Jategaonkar [69a] constructed his J-rings by transfinite induction;
the more direct proof given here was new in FR.1. Theorem 6.3 was proved by Lenstra
[74]; see also Korotkov [76]. Theorem 6.6 (for rings with well-ordered set of right ideals)
is due to Brungs [69b], who also describes their structure.
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Firs, semifirs and the weak algorithm

After a brief preamble on hereditary rings (Section 2.1), this chapter introduces
our main topic, free ideal rings (firs) which form a generalization of principal
ideal domains (Section 2.2 and 2.3); frequently they satisfy a weak algorithm
relative to a filtration (Section 2.4), which generalizes the division algorithm
(relative to a degree-function), to which it reduces in the commutative case. The
most important example is the free associative algebra over a field k, character-
ized as a filtered k-algebra with weak algorithm in Section 2.5, while a useful
invariant, the Hilbert series, is described in Section 2.6. Some consequences of
the weak algorithm are traced out in Section 2.7 and 2.8; the inverse weak algo-
rithm, using a generalization of the order-function, is used to describe power
series rings in Section 2.9 and a transfinite form of the weak algorithm is applied
in Section 2.10 to construct one-sided examples. In Section 2.11 a method is
described which in many cases allows one to read off from the presentation of
aring whether the n-term weak algorithm holds. This enables one to construct
quite naturally n-firs that are not (n + 1)-firs.

2.1 Hereditary rings

Homological algebra classifies rings according to their global dimension, i.e.
the length of projective resolutions of modules. The case of zero dimension
(semisimple rings) is fairly well known, and we shall mainly be concerned with
the next case; a ring has global dimension 1 precisely when all submodules
of projective modules are projective but the ring is not semisimple. As is well
known, this holds for left modules, say, if all left ideals are projective. By taking
a little care in the proof it is possible to derive a more precise result, which will
be needed later. Given a cardinal « (finite or infinite), a module is said to be
«-generated or an «-generator module if it has a generating set of cardinal not
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exceeding «. A ring R is called left a-hereditary if every a-generated left ideal
is projective. Thus to say that R is left |R|-hereditary is to say that every left
ideal of R is projective, i.e. R is left hereditary. A ring is left semihereditary if it
is left n-hereditary for all natural numbers n. Corresponding definitions apply
on the right.

Theorem 2.1.1. Let o, k be any cardinals and let R be a left o-hereditary
ring. If F is a free left R-module of rank «, then every a-generated submodule N
of F is isomorphic to a direct sum of at most k left ideals of R, each a-generated
projective. More precisely, this direct sum has finitely many terms if o is finite
and at most min(«, k) terms for infinite o.

Proof.  We shall identify cardinals with their least ordinals. Let {e |t < «}
be a basis of F, put F, =Y _,_; Re, and for each ¢ < k write p, : F — R for
the (th coordinate projection. If N N F is «-generated, then so is its pro-
jection on R via p,, hence projective; now ker(p,|N N F,.1) = N N F,, so we
have

NmFH—l:(NmFt)@Pt-&-l’ (1)

where P,; = (N N F,41)p,. If this holds for all ¢ < «, it follows that N =
@, <« P41 as claimed; it remains to show that N N F,; is a-generated for all
t < k, and for infinite o there are no more than « terms. There are two cases.

(1) o is finite. Then N lies in a submodule of F' generated by finitely many e’s,
so we may assume k = k finite. Then F' = Fy1, N N Fi11 = N is a-generated
and by (1) for ¢ + 1 = k, N N F}, is a-generated. Now a downward induction
on k shows that each N N F; is «-generated, as we had to prove.

(ii) « is infinite. Take a generating set {ng|B < a} for N and for 8 < «
denote by Ny the submodule of N generated by all n,(y < B). Then N N
Fiy1 = Ug<o(Ng N Fi41) is a union of o submodules, each B-generated (by
induction over o) and hence a-generated; since o =q,itis a-generated, as
claimed. [ |

We note the special cases of hereditary and semihereditary rings; when R is
hereditary, @ = |R| and we can omit the hypothesis on the submodule.

Corollary 2.1.2. Let R be a left hereditary ring. If F is a free left R-module
of rank k, then every max(|R|, k)-generated submodule of F is isomorphic to
a direct sum of at most « left ideals. |

Corollary 2.1.3. Let R be a left semihereditary ring and n a natural number.
If F is a free left R-module of infinite rank, then every n-generator submodule
of F is isomorphic to a direct sum of finitely many n-generator left ideals. 1
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Corollary 1.2 shows again that every submodule of a free module of rank
n over a PID is free of rank at most n (Proposition 1.4.5). Secondly, if R is an
integral domain in which every finitely generated left ideal is principal, i.e. R is
aleft Bezout domain, then by Corollary 1.3, every finitely generated submodule
of a free left R-module of rank 7 is again free of rank at most #.

We also note a symmetric form of Corollary 1.3 due to Bergman, which
will be used later. To state it, we define a ring to be weakly semihereditary
if, given maps « : Py — Py, B : P — P, between finitely generated projec-
tive modules, such that o = 0, there is a direct summand Q of P; such that
imo C Q C ker . In terms of matrices, R is weakly semihereditary if for any
r x n matrix A and n x s matrix B over R such that AB = 0, there exists an
idempotent matrix E such that AE = A, EB = 0.

By applying the duality * (or replacing E by I — E in the matrix condition)
we see that this condition is left-right symmetric. In a left semihereditary ring,
if , B are as above, then im § is a projective module, by Corollary 1.3, hence
P splitsoverim 8, Py = im 8 @ ker f and im o C ker 8, so the ring is weakly
semihereditary; by symmetry the same holds for right semihereditary rings.
Using a theorem of Kaplansky, we can now prove

Theorem 2.1.4. Over a weakly semihereditary ring every projective module
is a direct sum of finitely generated modules.

Proof.  Let P be a projective module, say P & Q = F is free, and let A be a
finite subset of P. We first show that A is contained in a finitely generated direct
summand of P.

The elements of A involve only finitely many coordinates in F, hence A lies
in a finitely generated free direct summand Fj of F. Let |[A| = n and take « :
R"™ — F; as the homomorphism mapping a standard basis to A; if the projection
F — Q, restricted to F is denoted by 8, then o = 0, hence Fy = P' & P”,
where im o C P’ Cker 8 = P N Fy. Thus P’ is a direct summand in Fy and
contained in P, hence it is a direct summand of P and P’ 2 ima 2 A, as we
wished to show.

When P is countably generated, by ey, e,, . .. say, we can complete the proof
as follows. Suppose we already have a direct decomposition P = P, @ P,
where P, contains ey, ..., e, and is finitely generated. By the first part there
is a decomposition P = P’ @ P”, where P’ is finitely generated and contains
en+1 and a generating set for P,. Then P, is contained in P’ and is a direct
summand in P, hence it is a direct summand in P’ (see the Appendix, Lemma
A.2), so on setting P, = P’, we have P = P, & Q’, where P, contains
e, ..., e+ and is finitely generated. By induction on n, P has a submodule of
such a direct sum containing all the e’s, but this set generates P, so P is a direct
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sum of finitely generated modules. Now the conclusion follows by applying
Kaplansky’s theorem, that every projective module is a direct sum of countably
generated modules (Kaplansky [58]). |

Exercises 2.1

1. LetR be aright semihereditary ring and let A € " R". Show that the right annihilator
of A in R, has the form ER,, where E is an idempotent # x n matrix.

2. (Kaplansky [58]) Let M be a countably generated module over a ring R. Assume that
each direct summand N of M is such that any x € N can be embedded in a finitely
generated direct summand of N; show that M is a direct sum of finitely generated
modules.

3. Show that a ring R is weakly semihereditary if and only if for any finitely generated
projective left R-module P # 0, a finite subset A of P and a finite subset B of P* such
that AB = 0, there exists a direct decomposition P = P’ @ P” such that A € P’
and P'B = 0.

4. Show that any right Noetherian weakly semihereditary ring is right hereditary.

5. (Bergman [72a]) Show thatif in the definition in Exercise 3 of ‘weakly semihereditary
ring’ we delete the condition that B resp. A be finite, then we obtain a characterization
of left resp. right semihereditary rings.

6. If R is weakly semihereditary and M; € M, C ... is an ascending chain of finitely
generated modules whose union M is projective, show that there is a cofinal chain
P, € P, C ...suchthateach P; is a direct summand of M (the P; and M are cofinal
in M if each M is contained in some P; and each P; is contained in some M;).

2.2 Firs and o-firs

Within the class of hereditary rings the projective modules occurring can still
be very varied, and to take a simple case we shall assume that all projective
modules are free. To exclude pathologies we also assume IBN for our ring.

Thus we are led to define a free right ideal ring, or right fir for short, as aring
in which all right ideals are free of unique rank. Left firs are defined similarly
and a fir is just a left and right fir. We note that a right (or left) fir necessarily
has IBN, since it is either right Ore or contains free right ideals of any rank, by
Proposition 0.7.6.

Our first observation is that by Corollary 1.2, in a fir submodules of free mod-
ules are free; however, it need no longer be true that the rank of the submodule is
bounded by the rank of the free module; this follows from the previous remark
about right ideals.

The property of being a fir is preserved by localization, as the next result
shows.
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Proposition 2.2.1. Let R be a right fir and T a right Ore set in R. Then the
localization Ry is again a right fir.

Proof. Let abe aright ideal of Rr; then a N R is a right ideal of R, and hence
is free, with a basis (vg)g<q. It is clear that the vg generate a as right ideal of Rr;
forvg € aandifx € a,thenxd € aN R forsomed € T,soxd = > vgag and
hence x = )" vgagd~'. We claim that the v are right linearly independent over
Ry; forifnot, let Y vgbg = 0(bg € Ry) be anon-trivial relation, where almost
all but not all the bg are 0. Then we can bring the b's to a common denominator,
and multiplying up, we obtain a relation ) _ vgcg = O(cg € R), where cg # 0 if
and only if bg # 0. But this contradicts the linear independence of the vg over
R, hence they form a free generating set of a. Moreover, if a is finitely generated,
then it has a finite basis, and since every basis arises from one of a N R over R,
all have the same number of elements, so Ry is indeed a right fir. [ ]

We next investigate the presence of chain conditions in firs. It is easy to see
that a fir is not Noetherian except in the rather special case of a PID. Nevertheless
there is a chain condition that holds in all firs, namely the ACC on n-generator
right (or left) ideals. We begin by treating the Ore case:

Proposition 2.2.2. For any ring R the following conditions are equivalent:

(a) R is aright fir and a right Ore domain,

(b) R is a principal right ideal domain,

(c) R is a right Noetherian right fir,

(d) R is a right Bezout domain with ACC on principal right ideals.

Proof. (a) = (b) follows because a right Ore domain cannot have a right
ideal that is free of rank > 1. (b) = (c) is clear; (c) = (a) follows by Corollary
0.7.7. Now it is clear that (b) = (d), and (d) = (c), because (d) implies ACC
on finitely generated right ideals, so the ring is right Noetherian. [ ]

This result shows in particular that a commutative fir is just a PID. In treating
the general case it is useful to cast our net a little wider. Let us define a right
o-fir, for any cardinal «, as a ring in which all «-generated right ideals are free,
of unique rank, and similarly for left «-firs. As in the case of firs, Theorem 1.1
shows that in a right «-fir every a-generated submodule of a free module is free.

To investigate chain conditions, let us say that a ring has right ACC,, if
it satisfies ACC on n-generator right ideals; following Bonang [89], we shall
say that a ring with right ACC,, for all n has right pan-ACC. Similarly, a right
module with ACC,, is a module with ACC on n-generator submodules and a
right module with ACC,, for all n is called a module with pan-ACC.
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We note that an ¢-fir is a §-fir, for any 8 < «, so for the strongest results on
a-firs we take a hypothesis with « as small as possible. We shall come to the
case of finite « in the next section; when « is infinite, the results are then best
stated for No-firs.

Theorem 2.2.3. Let R be a right Ry-fir. Then any finitely related right R-
module has pan-ACC, in particular R has right pan-ACC.

Proof.  Suppose first that F is a free right R-module; given any infinite strictly
ascending chain

NiCN,C..., (1)

of n-generator submodules of F, their union Fy = UN; is countably but not
finitely generated, and hence is free of countable rank. Take a basis uy, us, ...
and for a fixed n let P be the submodule generated by uy, ..., u,4+1. Then P C N;
for some i and P is a direct summand of F, hence of N; by the Appendix, Lemma
A.2. But N; is free of rank at most n, and so cannot have a direct summand
of rank n + 1, which is a contradiction. This proves the assertion for free right
R-modules.

Now let M = F /L be finitely related, where F is free and L is m-generated,
say. Then for any ascending chain (1) in M we can write N; = F; /L. If in (1)
each N; is n-generated, then F; is (n + m)-generated; by the first part of the
proof the sequence (F;) becomes stationary, hence so does (1). |

Theorem 2.3 can also be used to factorize matrices over 8-firs if they have
no zero-divisors as factors. This will be done in Chapter 3 in a more general
context, where this rather cumbersome condition on the factors is expressed in
a different form.

Exercises 2.2

1. Give a direct proof that every principal right ideal domain is a right fir.

2. IfRisan 8-fir and a right Ore domain, show that R is a principal right ideal domain.

3. A non-zero ring without IBN in which all right ideals are free is called a right
metafir; if all finitely generated right ideals are free, we have a metasemifir. Which
results of this section carry over to metafirs or to metasemifirs?

4. In a (two-sided) fir, let a be a two-sided ideal and b a right ideal. Examine the
possible relations between the ranks of a + b and b.

5*. (A. H. Schofield) Let R be a right Ry-hereditary ring such that for any infinite
sequence Py, P,, ... of non-zero finitely generated projective right R-modules the
number of generators of P, @ --- @ P, is unbounded as n — oo. Show that any
projective right R-module has pan-ACC.

6°. Show that a right ideal ¢ in a fir is join-irreducible if and only if ¢ is principal and
the ring is local. Investigate meet-irreducible right ideals in firs.
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2.3 Semifirs and n-firs

We now turn to a-firs, where « is finite. When o« = n, we speak of an n-fir,
while a ring which is an n-fir for all natural numbers 7 is called a semifir. Here
we need not distinguish between left and right, as we shall see in Theorem 3.1.
In spite of evident similarities with firs there are significant differences, which
we shall discuss here.

In the study of semifirs we shall need to consider relations of the form

X~)’=X1Y1+~--+xnyn=0- (1

Such a relation is said to be trivial, if for each i = 1,...,n, either x; =0
or y; = 0. Of course every non-zero ring has non-trivial relations (1), e.g. x =
(a,ab),y = (bc, —o)T, for anya, b, c € R,yields arelation which is non-trivial
unless a = 0, c = 0 or ab = bc = 0. Let us say that the n-term relation (1) is
trivialized by the invertible matrix P if the relation xP~L.pP y = 0 is trivial; the
passage to this relation is called an inessential modification and a relation is
called trivializable if an invertible matrix trivializing it exists. It turns out that
the rings in which all relations are trivializable are just the semifirs.

Theorem 2.3.1. For any non-zero ring R and any natural number n, the
following conditions are equivalent:

(a) every m-term relationy -, x;y; = 0 where m < n, can be trivialized by a
square matrix,

(b) given xi, ..., X, € R(m < n) which are right linearly dependent, there
exist m x m matrices P, Q over R such that PQ = I and the vector
(X1, ..., Xn)P has zero as its first component,

(c) any right ideal of R generated by m < n right linearly dependent elements
has a generating family of fewer than m elements,

(d) any right ideal on at most n generators is free, of unique rank, i.e. R is an
n-fir,

(e) if ¢ is a map of "R into a free right R-module (m < n), then for some
r < m there is an automorphism p of "R which induces an isomorphism
v :im @ — "R andwhose restriction to ker ¢ provides an isomorphism with
R, where s = m — r. Thus we have the following commutative diagram:

kerp —"R —> im¢
Vulkerg Jpu v 2)
‘R —*R® 'R —'R.

Here the maps in the bottom line are the natural inclusion and projection.
Moreover, these conditions are equivalent to their left—right duals.
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The existence of a commutative exact diagram (2) with isomorphisms w, v is
expressed by saying that the two rows of the diagram are isomorphic; in that
case u|ker ¢ is clearly also an isomorphism.

Proof.  'We shall prove (a) = (b) = ... = (e) = (a). Since (a) is left-right
symmetric, the conditions must then be equivalent to their left-right duals. The
implication (a) = (b) is evident.

(b) = (c¢). Letabe aright ideal, generated by x1, . . ., x,, and suppose that the
x’s areright linearly dependent. By (b) there exist P, Q € R, suchthat PQ =1,
and if x" = x P, where x = (xy, ..., x,), then x; = 0. Clearly x7, ..., x,, € a
and since x = xPQ = x’Q, a is generated by x5, ..., X, .

(c) = (d). If ais an n-generator right ideal, (c) allows us to reduce the number
of generators until we get a linearly independent set; so a will be free on at most
n generators. Let m < n be the least integer such that a = " R and suppose that
MR = m+kR for some k > 0. Then a has a surjective endomorphism ¢ with
kernel “R. If we take a set of m generators of a, their images under ¢ will again
generate a but will be linearly dependent, because ker ¢ # 0. Hence by the
previous argument, a will be free on m’ < m generators, a contradiction, which
proves that a has unique rank.

(d) = (e). Given ¢ as in (e), an induction shows that im ¢ is free, say

~

im ¢ = "R. Then the exact sequence
0—>kerop - "R — imp — 0 3)

splits; so ker ¢ is a direct summand of "R, hence also free, say ker ¢ = °R.
Thus (3) is isomorphic to the bottom line in (2); since ” R has unique rank, it
follows that r 4+ s = m.

(e) = (a). Given an m-term relation x.y = 0, where y # 0,let¢p : "R — R
be the mapping v — v.y. By (e) im ¢ = "R, where r > 0, hence ker ¢ = °R,
where s = m —r < m; thus since x € ker ¢, then for some invertible matrix
P, x P has a zero component. If the relation x P. P y’1
repeat the process; after at most 7 steps the relation has been trivialized. |

= 0O isnon-trivial, we can

Of the above conditions we shall find (a) and (e) the most useful tools, while
(b) is the easiest to verify. Conditions (c) and (d) are weaker in appearance than
the others, since they do not explicitly assume anything about the modules R".

We note a useful consequence of Theorem 3.1. If we have arelation XY = 0,
where X is an r X n matrix and Y an n x s matrix, the relation is called trivial
if foreachi = 1, ..., n either the ith column of X or the ith row of Y is 0; now
the notion of trivialization can be defined as before. The following result is an
easy consequence of Theorem 3.1; in fact the given condition is sufficient as
well as necessary.
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Corollary 2.3.2. In a semifir any matrix relation XY = 0 can be trivialized;
moreover, for any X € "R" there exists an invertible n x n matrix P such that
the non-zero columns of XP are right linearly independent, likewise there exists
an invertible r x r matrix Q such that the non-zero rows of QX are left linearly
independent. Hence in a semifir any full matrix is regular. [ ]

For non-zero expressions the trivializability condition of Theorem 3.1(a)
takes the following form:

Corollary 2.3.3. Given an expression ¢ = ab in a semifir R, where a =

(@, ...,ay),b=(by,...,by)T, there exists P € GL,(R) such that aP =
0,d',a"), P~'b =", b, 00", where the row a' is right regular and the col-
umn b’ is left regular. [ ]

Proof.  We first transform a to the form (0, a*), where a* is right regular; if
b takes the form (b”, b*)T, with a corresponding subdivision, we transform a*
and b*T to the form (a’, a”) and (b', 0)T, where b’ is left regular, and of course
a’ is still right regular. ]

It is clear that an n-fir either has IBN or is of type (4, k), where & > n (see
Section 0.1). Hence by Theorem 3.1(e), every n-generator projective module is
free; a ring with this property is called n-projective-free. Thus we obtain

Corollary 2.3.4. Any semifir is projective-free and hence an Hermite ring.
More specifically, any n-fir is n-projective-free and so is n-Hermite. [ ]

From Theorem 3.1(d) we also obtain the following characterization of semi-
firs:

Corollary 2.3.5. A ring R is a semifir if and only if R has invariant basis
number and every finitely generated right (or equivalently, left) ideal is
free. [ ]

Of the chain of n-fir conditions, the case n = 1 is really too general to be
of interest, since a 1-fir is just an integral domain. On the other hand, 2-firs
form an important class, e.g. in the commutative case they already comprise
all semifirs, and so form the class of Bezout domains. By convention a O-fir
is understood to be a non-zero ring. Since every n-fir is also an »’-fir for all
n’ < n, we shall generally choose n as small as possible in our hypotheses and
as large as possible in our conclusions.

The following rank formula is often useful:

Proposition 2.3.6. Let R be an n-fir and A, B any submodules of a free R-
module such that A @ B is n-generated. Then there is a split exact sequence

0—>ANB—A®B—>A+B—0, “
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all modules occurring are free and
rk(A+ B)+rk(ANB)=rkA+rkB. 5)

Proof. We map A® B to A+ B by the rule (a, b) — a — b; clearly the
kernel is A N B and we obtain the result by applying Theorem 3.1(e). |

By Theorem 3.1(c), a 2-fir can be characterized as an integral domain in
which any two right linearly dependent elements generate a principal right
ideal: the case m = 1 of (c) asserts that R is an integral domain; m = 2 is the
above ideal condition, which is also reformulated in the next result. For any
integral domain R and ¢ € R* we shall denote by L(cR, R) the set of principal
right ideals containing cR; similarly for L(Rc, R).

Theorem 2.3.7.  For any integral domain the following conditions are equiv-
alent:

(a) R is a 2-fir,

(b) for any a,b € R* we have aR N bR = mR for some m € R, while aR +
bR is principal if and only if m # 0,

(c) inthe lattice Latg(RR) of all right ideals of R, the set L(cR, R) of principal
right ideals of R containing a given ¢ € R* forms a sublattice,

(d) any two principal right ideals that intersect non-zero have a principal sum,

(@°)—(d°) the left-right duals of (a)—(d).

Proof. (a) = (b). Leta, b € R*; by Proposition 3.6, aR + bR and aR N bR
are free and have ranks adding up to rk(aR) + rtk(bR) = 2. Clearly tk(aR +
bR) > 1,sortk(aR NbR) < 1,i.e.aR N bR = mR forsomem € R. Moreover,
m # 0 if and only if rk(aR + bR) = 1, i.e. when aR + bR is principal.

The implications (b) = (c) = (d) are clear. To prove (d) = (a), assume (d):
then any two elements that are right linearly dependent generate a principal
right ideal, hence R is a 2-fir, by Theorem 3.1(c). Finally the symmetry is clear
from (a). |

Since any totally ordered set is a lattice, we have, by condition (d):
Corollary 2.3.8. Any rigid domain is a 2-fir. |

In a commutative 2-fir, i.e. a commutative Bezout domain, L(cR, R) is a
sublattice of the lattice of all fractional principal ideals, a lattice-ordered group
and hence distributive (see Birkhoff [67], p. 294). In Chapter 4 we shall investi-
gate 2-firs in which L(cR, R) is distributive; of course for any 2-fir R, L(cR, R)
is modular, as sublattice of Latgz (RR).
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In any integral domain R, two non-zero elements a, b are said to have a least
common right multiple (LCRM) mif aR N bR = mR # 0; clearly such m, if it
exists, is unique up to a unit right factor and it reduces to the usual LCM when
R is commutative. A corresponding definition applies to the least common left
multiple (LCLM). Suppose now that R is a 2-fir; from Theorem 3.7(b) it is clear
that any two right commensurable elements in R have an LCRM. In particular,
this holds for right comaximal elements.

Corollary 2.3.9. [n a 2-fir any two non-zero right comaximal elements are
right commensurable and hence have an LCRM.

Proof.  Given a,b € R*, if aR +bR = R, then aR NbR =mR # 0 by
Theorem 3.7(b). |

These results may be used to derive a normal form for fractions over a 2-fir:

Proposition 2.3.10. Let a, b be left commensurable elements of a 2-fir R and
assume that R is a subring of a ring S in which every factor of b is invert-
ible. Then the element s = ab™' of S can be written in the form a’b'~", where
a', b’ are left comaximal in R, and if also s = pq~", where p,q € R, then
(p. )" €@, R. In particular, if p, q are left comaximal, then (p, q)" is
right associated to (a’, b')T .

Proof. By Theorem 3.7(d), Ra + Rb = Rd for some d € R*, say a =
a'd,b=>b'd. Then Ra’+ Rb' = R, so a’ and b’ are left comaximal in R
and b, d are invertible in S, hence s = ab~! = a’dd~'b'~! = a’b'~!. Further,
Ra’ N Rb' = Rm # 0, hence m = bya’ = apb’; it follows that ay = bys and
clearly boR NagR = mR. Thus if we have s = pg~!, where p,q € R, then
aoq = bop = mr = bpa'r = aph'r, so (p, q)" = (a’, ¥)"r, as claimed. [ |

Occasionally we shall want to impose a stronger condition on our rings. Let
G, be a subgroup of the general linear group G L,(R) such that G, contains
all the n + 1 natural images of G ; if the ring R is such that for any m < n, every
m-term relation in R can be trivialized by a member of G,,, R will be called a
strong G ,-ring; if this holds for all integers n, R is called a strong G-ring. For
example, a strong GL-ring is just a semifir, by Theorem 3.1(a). These terms
will be used in particular for G, = E,(R), the group generated by all n x n
elementary matrices, differing from the unit matrix only in one off-diagonal
place. We note that a strong E,-ring is the same as a strong G E,-ring, where
G E,(R) is the group generated by E,(R) and the diagonal invertible matrices.
By a G,-ring we shall mean a ring R such that GL,(R) = G,(R); if this holds
for all n, we speak of a G-ring. We note that a strong GE-ring is a GE-ring, but
a strong E-ring need not be an E-ring.
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We also note the following homological characterization of semifirs:

Theorem 2.3.11. A ring R is a semifir if and only if it is weakly semihereditary
and projective-free. In this case every projective (left or right) R-module is
free; in particular, every projective left (or right) ideal is free. For a semifir R
moreover, any finitely generated submodule of a free R-module is free, of unique
rank.

Proof. If R is a semifir, then it is right semihereditary, hence weakly semi-
hereditary; further it is projective-free and every finitely generated projective
module, as a submodule of a free module, is itself free.

Conversely, assume that R is weakly semihereditary and projective-free,
and consider a relation (1) in R. Using it we can define a map f : R" — R
by (a1, ..., ay) = Y a;y;; then x = (xq, ..., x,) € ker f by hypothesis, and
since R is weakly semihereditary, there is a decomposition R” = P & Q such
that x € P and Py = 0. Since R is projective-free, P and Q are free, with bases

ui,...,u, for P and u,,y,...,u, for Q. The matrix U = (uy, ..., u,)" is
invertible and since x € P,x = xju; +---+xu, = (x},...,x.,0,...,0U,
while Uy = (0,...,0, 4,41y, ..., u,y)T. Thus U trivializes the relation xy =

0 and this shows R to be a semifir. By Theorem 1.4 every projective R-module
is a direct sum of finitely generated projective modules, which are free because
R is projective-free.

To prove the final assertion we note that a semifir is semihereditary and by
Corollary 1.2, every finitely generated submodule of a free left R-module is a
direct sum of finitely generated left ideals, which are projective and hence free.

|

For example, using Theorem 3.11, we see that any local ring that is weakly
semihereditary is a semifir, by Corollary 0.3.8. Moreover, by Theorem 1.1 we
have

Corollary 2.3.12. Avringisaright(a-)firifandonly ifitisright («-)hereditary

and projective-free. [ |
In any ring R, a family ay, ..., a, € R is right linearly dependent if there is

a relation
aby+---+a,b, =0, b; €R, (6)

which is non-trivial, i.e. where the b; are not all 0. If one of the g; is linearly
dependent on the rest, this means that there is a relation (6) in which some b; is
aunit. In that case ay, . . ., a, will be called right unit-linearly dependent. With
these definitions we have
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Theorem 2.3.13. Let R be a ring. Then R is a local ring and a semifir if and
only if R is an integral domain and every right linearly dependent family in R
is right unit-linearly dependent.

Proof.  Assume that R is a local ring and a semifir. Then R is non-zero, and for
any non-trivial relation (6) there is an invertible matrix P = (p;;) trivializing
(6), by Theorem 3.1; thus Y a; p; ; = 0 for some j. Since P is invertible over
the local ring R, each column contains a unit, so for any given j, there exists i
such that p;; is a unit, hence the a; are right unit-linearly dependent.
Conversely, assume that R satisfies the given conditions. Then in any right
linearly dependent family one element can be written as a linear combination
of the rest and an induction on the number of elements shows R to be a semifir.
To verify that R is a local ring, assume the contrary. Then there exist non-units
a,be R suchthata+b=1.Soa,b#0,1and ab=(1—>b)b=>b(1 —b),
hence a, b are right linearly dependent, and by hypothesis, unit-linearly, so one
must be linearly dependent on the other, say b = au. Therefore a(l 4+ u) = 1,
but this would mean that a is a unit, a contradiction, which shows R to be a
local ring (Proposition 0.3.5). [ ]

Since being weakly semihereditary is a categorical property, we can apply
Theorem 0.4.8 to obtain the following Morita-invariant description of semifirs:

Theorem 2.3.14.  For any ring R the following conditions are equivalent:

(a) R is a full matrix ring over a semifir,
(b) R is Morita-equivalent to a semifir,
(c) R is weakly semihereditary and projective-trivial. [ ]

The trivialization procedure of Theorem 3.1 may also be applied to matrix
products in which there is merely a block of zeros:

Lemma 2.3.15. (Partition lemma) Let R be an n-fir and let A € "R", B €
"R* such that AB has anr’ x s” block of zeros as shown:

c’ 0\r
AB =
(C C//)r//
/ "

N N

wherer’,r”,s', s"” indicate the numbers of rows and columns, respectively. Then
there exists T € GL,(R) such that

A 0 B, 0
T71 1 T 1
A (A3 A4> - T8 <Bs B4> ’ @

where Ay has r' rows and By has s” columns.
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Proof.  Partition A, B as A = (A, A”)T, B = (B’, B"), where A’, A” have
r’,r” rows respectively and B’, B” have s’,s” columns respectively. Then
A’B” = 0, hence by Theorem 3.1 there exists T € G L, (R) such that the first n’
rows in T B” are 0 and all columns after the first n’ in A”T ~' are 0,s0 AT ~!, TB

have the form shown in (7). [ ]
Let R be a semifir and M a left R-module, with presentation
0O—-K—-F—->M-—=0,

where F is free and K is a submodule of F. If M is finitely presented, then F, K
may be taken to be finitely generated and K is then free, so the characteristic of
M is given by

x(M)=1kF —rkK.

If M is finitely generated but not finitely related, we put x (M) = —oo, while
for M not finitely generated we put y (M) = oo. This defines the characteristic
of M in all cases, although care is needed in adding characteristics, since both
00 and —o0 can occur.

The following reduction, familiar from field theory, is also of interest.

Proposition 2.3.16. Let R be an n-fir. Then any nilpotent n x n matrix A
over R has a conjugate that is strictly upper triangular with zeros on the main
diagonal, and in particular, A" = 0.

Proof. We may assume without loss of generality that A # 0. Let m be the
least integer such that A”*! = 0 and write A” = B. Then B # 0 and AB = 0;
thus the columns of A are right linearly dependent. Hence, by Corollary 3.2
there exists U € G L,(R) such that the first column of AU is 0, and so the first
column of U ' AU is also 0. Deleting the first row and column from U ~' AU
we obtain an (n — 1) x (n — 1) matrix that is again nilpotent; by induction on
n it is conjugate to a matrix that is strictly upper triangular; hence so is A. Now
the last part follows easily. |

Let us see what becomes of our definitions in the commutative case. More
generally, let us take a right Ore domain R: in R any two elements are right
linearly dependent, therefore any free right ideal has rank at most 1. Hence
if a right Ore domain is a 2-fir, Theorem 3.1(c) shows that any two elements
generate a principal right ideal; hence every finitely generated right ideal is
principal, i.e. we have a right Bezout domain. For Bezout domains we have the
following analogue of Proposition 2.2.
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Proposition 2.3.17.  For any ring R the following conditions are equivalent:

(a) R is a semifir and a right Ore domain,

(b) R is a2-fir and a right Ore domain,

(c) R is a right Bezout domain,

(d) R is an integral domain in which every 2-generator right ideal is principal.

Proof. (a) = (b) and (c) = (d) are clear and (b) = (c) follows from earlier
remarks. To prove (d) = (a), if (d) holds, an easy induction shows that R
is a semifir, and if a, b £ 0 but aR N bR = 0, then aR + bR is free and not
principal, which contradicts (d); hence R is also right Ore and (a) follows. W

The commutative case yields
Corollary 2.3.18. Every commutative 2-fir is a Bezout domain. [ ]

Thus for right (or left) Ore domains our chain of conditions from 2-fir to semifir
collapses to a single condition. By contrast, in the general case there are n-firs
that are not (n + 1)-firs, for each n, as examples in Section 2.11 will show.

The remark after Corollary 1.3 showed that for a left Bezout domain R,
every finitely generated submodule of R” is free (of rank at most 7). There is no
corresponding result for finitely generated left R-modules over a right Bezout
domain, but we have the following partial analogue:

Proposition 2.3.19. Let R be a right Bezout domain. Then any finitely gener-
ated torsion-free left R-module is free.

Proof. LetM be torsion-free and generated by uy, . . ., u,, where n is minimal.
Suppose that Y a;u; = 0, where not all the @; vanish; then Y " a;R = dR # 0
forsome d € R, say a; = day;,and Y_ ay; R = R. Since a right Bezout domain
is Hermite, the row (aii, ..., a1,) can be completed to an invertible n x n
matrix A = (a;;). It follows that M is also generated by vy, ..., v,, where
vi = Y ajuj.Butdvy =) daju; =) aju; = 0,andsince M is torsion-free,
v; = 0, so M is generated by v», ..., v,, which contradicts the minimality of
n. |

When we come to chain conditions, it is clear that there can be no such
conditions for a general semifir, since there are none even in the commutative
case. However, imposing one chain condition will entail others; thus we note

Proposition 2.3.20. A semifir with right ACC, satisfies ACC,, on free right
modules.

Proof.  This clearly holds for a right Ore domain R, for R will then be right
Bezout, hence right principal (see Exercise 1.3.3). Otherwise an ascending chain
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of n-generated submodules of a free module is contained in a free module of
countable rank, and this is isomorphic to a right ideal of R, by Proposition 0.7.6,
and here ACC, holds by hypothesis. |

Over a semifir we have the following description of flat modules:

Proposition 2.3.21.  Let R be a semifir and U a right R-module. Then U is flat
if and only if every finitely generated submodule of U is free, i.e. U is semifree.

Proof. Clearly U is flat whenever all its finitely generated submodules are flat;
this is so when the latter are free, so the condition is sufficient. To show its neces-
sity suppose that U is flat and let V be a finitely generated submodule. We have to
show that V is free, so let us take a generating set vy, . . ., v, of V, where n is mini-
mal. The conclusion will follow if the v; are linearly independent, so assume that
there is a non-trivial dependence relation vx = 0, where v = (vy, ..., v,) € V,,
and 0 # x € "R. By Corollary 3.2 there exists P € GL,(R) such that the non-
zero entries of Px are left linearly independent. Replacing x by Px and v by
vP~! and renumbering the components if necessary, we may assume that for
some 7,1 <r <n,xy,...,x, are left linearly independent, while x; = O for
Jj > r. It follows that the map from R” to R given by (z1,...,2,) = Y | ziX;
is injective. Since U is flat, the induced map U ® R™ — U ® R = U is again
injective; this maps (uq, ..., U, ) to Z'l u;x; from U" to U. But (vq, ..., v,)is
in the kernel, so v; = 0 fori =1, ..., r; this contradicts the minimality of n
and it shows that V is free on vy, ..., v,, as claimed. [ ]

It is clear that a semifir R is coherent (Appendix B.(xi)), hence by Theorem
B.10, R’ for any set [ is flat and by Proposition 3.19 we obtain a strengthening
of Corollary 3.4 (see also the remarks after Theorem 5.1.5 for the corresponding
statement for n-firs):

Corollary 2.3.22. Let R be a semifir and I any set. Then every finitely gener-
ated submodule of R is free, i.e. R is semifree. |

If in the proof of Proposition 3.21, R is a right Bezout domain, then r = 1
and we can weaken the hypothesis by assuming U to be torsion-free instead of
flat:

Corollary 2.3.23. Over aright Bezout domain R a left module is semifree and
hence flat if and only if it is torsion-free. |

We conclude this section with a result on what may be called ‘«-complete’
direct limits of «-firs. A partially ordered set will be called a-directed if every
subset of cardinality at most & has an upper bound. A directed system over an
a-directed set is also called an «a-directed system.



2.3 Semifirs and n-firs 123

Proposition 2.3.24. Let o be any cardinal greater than 1. Then the direct
limit of any o-directed system of a-firs is again an a-fir.

Proof.  Let {R;} be the given system of a-firs, with maps f;; : R; — R;, and
put R = li_r)n R;. When o = n is finite, the assertion is simply that the direct
limit of any directed system of n-firs is an n-fir; this follows easily from the
characterization of n-firs given in Theorem 3.1(a). Thus we may take o to be
infinite. Further, by the finite case, R will be a semifir, so it remains to show that
given any set X C R, of cardinality at most o, RX = {>_a;x;|a; € R, x; € X}
will be a free left ideal of R.

Since our system is «-directed we can find a ring R, such that each x € X
has an inverse image x" in R;;. Write X' for the set of all these x’. For each
finite subset Y of X’ and each i > i’ consider the rank of the left ideal R;(Y f;;).
For fixed Y this rank is non-increasing in i, so it ultimately equals a minimum,
which it attains for some i depending on Y. Since there are no more than «
finite subsets Y of X', we can find i” > i’ such that all the ranks rk(R;Y fi/;)
have their minimum value for i > i”. Put X” = X' f;;;» and let B be a basis for
the left ideal R;» X" of the a-fir R;». We claim that for all i > {” and each finite
C C B, Cfj» is left linearly independent in R;. It will follow that the image of
C in R is left linearly independent, hence the image of B will be left linearly
independent, and so will form a basis of RX.

Thus assume that C f;+; is linearly dependent. Pick a finite subset ¥ of X”
such that C C R;»Y; then R;»C, being a direct summand in R;»B 2 R;»Y, will
be a direct summand in R;»Y . Hence C can be extended to a basis C’ of R;»Y .
But Cf;»; is linearly dependent, so tk(R;/Y fi»;) < |C’'| = tk(R;»Y), and this
contradicts the choice of i”. ]

Exercises 2.3

1. For each n > 1, determine which of the following are n-firs: k, k[x], k[x, y] (k a
commutative field), Z, Z[x].

2. For which n is it true that every subring of an n-fir is an n-fir? Give an example of
an integral domain which cannot be embedded in a semifir.

3. For any n > 1, show that a direct limit of n-firs is an n-fir. Does this result extend
to semifirs?

4. Is the inverse limit of a system of semifirs always a semifir? (Hint: Note that the
intersection of any directed system of subrings may be written as an inverse limit.)

5. Give a proof of Proposition 1.4.1 using Theorem 3.1.

6. Let R be an n-fir and S a subring that is also a homomorphic image of R, under
a homomorphism fixing S (i.e. S is a retract of R). Show that S is again an
n-fir.
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7*.

10*.

11*.

12.

13.

14.

15.
16*.

17.

18.

19°.

20°.
21°.

22.

Firs, semifirs and the weak algorithm

(G. M. Bergman) Let R be an n-fir and S a set of R-linear automorphisms of R".
Show that the set of fixed elements is free and is a direct summand of R".

. Let R be an n-fir. Given a relation x;y; +---+ x,y, =0 in R, show that

k(3" x;R) + 1k(3_ Ry;) < n. Does this remain true if x; € "R, y; € R*?

Show that a semifir is a right fir if and only if it is right hereditary. (Hint: Use
Theorem 1.4.)

Let R = Z + xQ[x] be the ring of all polynomials in an indeterminate x with
rational coefficients and integral constant term. Show that R is a Bezout domain,
but not principal, although all maximal ideals are finitely generated.

Give an example of a semifir R, not a left fir, in which all maximal left ideals are
finitely generated. (Hint: Try the ring in Exercise 10.)

Show that for any n-fir and any R-module P, P = R",where 1 < m < n, implies
P =R.

Let R be aright Bezout domain with left ACC,. Show that if every finitely generated
torsion-free right R-module is free, then R is left and right Bezout.

Let R be a semifir and F a free R-module. Show that the intersection of two finitely
generated submodules of F is finitely generated. (Hint: Remember Proposition
3.6.)

Show that every strong G E,-ring is a strong E,,-ring.

(G. M. Bergman) Let R be a ring for which R” has unique rank. If every n-term
relation in R can be trivialized, show that R is an n-fir. (Without the uniqueness of
the rank of R” it can be shown that R is weakly semihereditary, all finitely generated
projective modules are free and if R has type (h, k), then n =i + jk,2h — 1 <
i<h+k, j>1)

For any local ring R define G,(R) as the group of all invertible matrices whose
entries below the main diagonal lie in the maximal ideal. If R is a commutative
discrete valuation ring, show that it is a strong G-ring. If R is a local ring, what can
be said about the form of R when R is a strong G-ring?

Show that a left (or right) Ore domain is a strong G-ring if and only if it is a strong
G,-ring.

Let R be a semifir, K a subfield of R and o an automorphism of R such that for each
n # 0, the fixed ring of o is K. Find conditions for K [x, x~!; ] to be a semifir.
Is every weakly semihereditary local ring a semifir?

Is every non-Ore right fir semiprimitive (i.e. with zero Jacobson radical)? Can a
non-Ore fir be simple?

Show that if every relation in aring R can be trivialized, then every finitely generated
right ideal of R is free and R has IBN, i.e. R is a semifir (thus the condition in
Theorem 3.1(a) that the matrices are square is not needed. Hint: Take a minimal
generating set of the right ideal).

2.4 The weak algorithm

As we have seen in Section 2.2, firs may in a sense be regarded as a natu-
ral generalization of principal ideal domains, and it now remains to find some
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examples. Just as a ring can often be recognized as a principal ideal domain by
means of the division algorithm (see Section 1.2), so we shall find a character-
istic property generalizing the division algorithm and possessed by many firs;
this is the weak algorithm, to which we now turn.

Any generalization of the division algorithm will necessarily depend on the
form of the value function. We shall not make the most general choice, but take
our function to be a filtration. This means that we have a mapping from R to
N U {—o0} with the properties:

V.1. v(x) > 0 for all x # 0, v(0) = —o0,
V2. v(x — y) < max{v(x), v(y)},

V3. v(xy) < v(x) + v(y),

V4. v(1) =0.

These rules essentially state that —v(x) is a pseudo-valuation, though we shall
not use that term. If equality holds in V.3, we have a degree-function, as defined
in Section 1.1; then —v(x) is a valuation, as usually defined. This will mostly
be the case, so we shall also call v(x) the degree of x.

Given any filtration on R, let us write R, for the set of elements of degree
at most /1; the Ry are subgroups of the additive group of R such that

) 0=R-00) SRy SR E ...,
(i) URy) = R,
(i) RiRj) S R+ )
(iV) 1e R(O).

Conversely, any series of subgroups R, of the additive group of R satisfying
(i)—(iv) leads to a filtration v, given by v(x) = min{/|x € R}, as is easily
seen. We remark that every ring has the trivial filtration

0 if x#0,
—oo if x=0.

v(x) = {

Let R be a filtered ring, with filtration v. Given an element a of R and a
family (a;) (i € I) of elements, a is said to be right v-dependent on the family
(a;) if a = O or if there exist b; € R, almost all 0, such that

v(a — Za,-b,-) < v(a) and (@) + v(b;) < v(a) foralli. @))

In the contrary case a is said to be right v-independent of the (a;). We note that
dependence on a family is unaffected by adjoining O to or removing 0 from the
family.
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A family (@;) in R is said to be right v-dependent if there exist elements
b; € R, almost all 0, such that

v (X aib) < max(via) + v(b), @

or if some a; = 0; otherwise the family is right v-independent. We note that
any right v-independent family will be right linearly independent over R. Of
course the converse need not hold; in fact linear dependence is just the special
case of v-dependence obtained by taking v to be the trivial filtration.

If an element of a family (a;) is right v-dependent on the rest, the family is
clearly v-dependent. Let us call a finite family (ay, ..., a,) strongly right v-
dependent if, given an ordering such that v(a;) < ... < v(a,,), some q; is right
v-dependent on ay, . .., a;_1; a general family is strongly right v-dependent, if
this is true of some finite subfamily. It follows that a strongly right v-dependent
family is right v-dependent, but the converse is not generally true; in fact the
converse constitutes the ‘weak algorithm’, as expressed in the following

Definition A ring R with a filtration v is said to satisfy the n-term weak
algorithm relative to v (for a positive integer n), if R is non-trivial and any right
v-dependent family of at most n members of R is strongly right v-dependent.
If R satisfies the n-term weak algorithm for all n, we shall say that R satisfies
the weak algorithm for v.

We note that if a is right v-dependent on a family (a;), then by (1), b; =0
whenever v(a;) > v(a), hence a is right v-dependent on the a; of degree at most
v(a). If moreover, every element of degree zero is a unit (which will normally
be the case), then a family (a;) is strongly right v-dependent precisely when
some a; is right v-dependent on the rest.

For example, the 1-term weak algorithm for R states that v(ab) < v(a) +
v(b) implies that @ = 0 or b = 0, in other words, v(ab) = v(a) + v(b) for all
a,b # 0, i.e. v is a degree-function, and so R is an integral domain. When the
2-term weak algorithm holds in R, v is a degree-function and for any right
v-dependent a, b € R suchthat v(a) > v(b), there exists ¢ € R such that v(a —
bc) < v(a). In other words, the division algorithm holds for any pair of right
v-dependent elements. Suppose further, that v(a) = 0; the family (a, 1) is right
v-dependent, since a.1 — 1.a = 0 and v(a) = v(1), hence v(1 — ab) < 0, for
some b € R, i.e. ab = 1. Since R is an integral domain, it follows that a is a
unit; so when the 2-term weak algorithm holds, every element of degree zero
is a unit.

At first sight it looks as if the weak algorithm refers to the right-hand side,
but in fact the notion is left—right symmetric, as we shall now show.
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Proposition 2.4.1. A filtered ring satisfies the n-term weak algorithm if and
only if the opposite ring does.

Proof. LetR be afiltered ring with n-term weak algorithm. Given two families
of non-zero elements ay, ..., ay, by, ..., b,(m < n) such that

v (Y aibi) < max(ia) + v(b).

we have to show that the b; are strongly left v-dependent. For m = 1 there is
nothing to prove, so we may assume thatm > 1. If max{v(a;) + v(b;)} = k, we
may omit any terms a;, b; for which v(a;) + v(b;) < k, and so we may assume
that

vig))+vb)=k for i=1,...,m. 3)
Further, the terms may be renumbered so that
v(ay) <...<wv(a,), andhence wv(by)>...> v(by).

We shall use a double induction, on m and k. By the weak algorithm some
a; is right v-dependent on the preceding a’s, say for i = m, without loss of
generality; using j as an index running from 1 to m — 1, we have

v (am - Zajcj) <v(an), va;)+v(c;) < viay). 4

o o
Write a, = a,, — )_ajc;; then

Zd,‘bl‘ =Za‘,~bj + (d;n +Z ajcj) b, :Zdj(bj + C‘,‘bm) + a;nbm ®)

Now by (4), v(a,,) < v(an), and so v(a,,) + v(by,) < k. Further, v(c;b,) <
v(c;) + v(by) < v(an) — v(a;) + v(by) = k —v(a;) = v(b;), by (4) and (3).
Hence v(b; + ¢;b,) < v(b;) and so

max ;{v(a;) + v(bj + cjbn)} < k. (6)

If equality holds in (6), we can omit the last term on the right of (5) and
use induction on m, while for strict inequality in (6) we can use induction
on k. In either case we find that for some j, say j = 1, by + c1by, is left v-
dependent on the rest, hence b is left v-dependenton b,, . . ., b,, as we wished to
show. |

We note that for any n’ < n, the n-term weak algorithm entails the n’-term
weak algorithm. Thus in any filtered ring R we shall be able to prove more
about R, the larger n is. Let us define the dependence number of R relative to
the filtration v, written A,(R), as the greatest integer n for which the n-term
weak algorithm holds, or oo if it holds for all n. Thus A,(R) = 0o means that
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the weak algorithm holds for v in R, while A,(R) > 1 means that the 1-term
weak algorithm holds, i.e. v is a degree-function. In particular, such a ring will
be an integral domain. For this reason the notion of dependence as defined here
is of no interest for rings other than integral domains. In fact, we shall almost
exclusively be concerned with integral domains in this book.

In any filtered ring R, the set Ry = {a € R|v(a) < 0} is clearly a subring.
If moreover, 1,(R) > 2, then as we saw, every element of degree O is a unit. It
follows that R ) is a field whenever R satisfies the 2-term weak algorithm for
v. For this reason, in considering filtered rings, we shall usually confine our
attention to rings where R is a field (not necessarily commutative).

To illustrate the notion of dependence let us consider the commutative case
or, a little more generally, the case of Ore domains. In a right Ore domain any
set of more than one element is clearly right v-dependent. Hence, if A,(R) > 2,
the familiar division algorithm holds, in the form A of Section 1.2. Conversely,
if the classical division algorithm holds in R, then any element of R is right
v-dependent on any non-zero element not of higher degree, and this in turn
shows that 1, (R) = oco. These results are summed up in

Proposition 2.4.2.  For any filtered right Ore domain R there are exactly three
possibilities:

(i) Ay(R) = 0: v is not a degree-function,
(ii) 2y(R) = 1:v is a degree-function, but the division algorithm does not
hold,
(iii) Ay(R) = 00 : v is a degree-function and the division algorithm holds in R.
| |

In contrast to this result, for non-Ore domains X, can have any positive integer
value, by the results of Section 2.11 or also SF, Section 5.7. All this is of course
in strict parallel with the n-fir condition (see Proposition 2.2).

In order to describe the connexion between the weak algorithm and semifirs
we shall need a general result on filtered rings:

Lemma2.4.3. LetR be afiltered ring. Then any n-term row vector over R can
be reduced by a member of E,(R) acting on the right, to a row whose non-zero
components are not strongly right v-dependent.

Proof. Letu € R" and suppose its non-zero components are strongly right
v-dependent; thus a non-zero term is right v-dependent on the rest. Then by
adding to it an appropriate right linear combination of the remaining terms,
we can reduce its degree without affecting the degrees of the other terms.
Clearly this operation corresponds to a right action by a member of E,(R). We
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repeat the process until no such terms remain; it must terminate since the set of
values of v is well-ordered: —o0, 0, 1, 2, ... and so is the sequence of degrees
(v(uy), ..., v(uy,)) in the lexicographic ordering. [ |

Now let R be aring satisfying the n-term weak algorithm relative to a filtration
v. Then for m < n, any m-tuple can be reduced by a member of E,,(R) to one
in which the non-zero terms are not strongly right v-dependent, hence right
v-independent and so linearly independent. This establishes

Theorem 2.4.4. If R is a filtered ring satisfying the n-term weak algorithm,
then R is a strong E,-ring, and in particular an n-fir. Moreover, any filtered
ring with weak algorithm is a semifir and a strong E-ring. [ ]

In fact a filtered ring with weak algorithm is a fir, as we shall see in a moment
(Theorem 4.6). As a further consequence of Lemma 4.3 we have

Corollary2.4.5. LetR be afiltered ring withweak algorithm. Given an expres-
sion

c=Y ab, ™
i=1

where ay, ..., a, are right linearly independent and by, . . ., b, are left linearly
independent, there exists a matrix P = (p;;) € E,(R) such that on writing
a;. =Y aipij,bi =Y p,'jb;., we have v(a)) + v(b}) < v(c).

Proof. By elementary transformations we obtain a} = Y a;p;; such that
aj, ..., a, areright v-independent, but this just means that (2) cannot hold, i.e.
v(a)) + v(b}) < v(c), as claimed. u

Let us consider more closely the structure of a right ideal a in a filtered ring
R, where R ) is a field. A family B of elements of a will be called a weak v-basis
for a if (i) all elements of a are right v-dependent on B, and (ii) B is not strongly
right v-dependent. It is easily seen, using the well-ordering of the range of v,
that a weak v-basis of a generates a as a right ideal; but in a general filtered
ring it need be neither v-independent nor a minimal generating set.

When R is a field K, every right ideal a of R has a weak v-basis, which
may be constructed as follows. For any integer 2 > 0, a¢,y = a N R, is clearly
a right K-space; moreover, the set aéh) of all elements of a, that are right v-
dependent on a1y is also a right K-space. For evidently a;;,, is closed under
right multiplication by elements of K; closure under addition is clear if the sum
has degree &, while if it does not, the sum lies in a,—1y. Now for each & > 0,
choose a minimal set B, spanning a; over a,,, i.e. representatives for a K-
basis of a)/ay,, and put B = UB. By induction on # it follows that every
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member of ag, is right v-dependent on B, for all 4. However, B itself is not
strongly v-dependent, by the minimality condition in our choice of B(;; thus B
is a weak v-basis for a.

Conversely, every weak v-basis of a must have the property that its elements
of degree /1 form a right K-basis of a,) (mod ag,)). Hence any two weak v-bases
of a given right ideal a have the same number of elements in each degree &,
viz. dimg (ag)/ aEh)). This number will be called the number of v-generators in
degree h and denoted by r,(a). It is clear that when the weak v-basis of a is
right v-independent, then a is free of rank »_ rj(a).

If a and b are two right ideals of R such that a D b and s is the least degree for
which ag,y # by, then r,(a) = r,(b) for i < s, while r,(a) > r4(b), provided
that r,(b) is finite.

Although every right ideal in a filtered K-ring R has a weak v-basis, this
basis need not be right v-independent. But if a happens to have a v-independent
generating set B say, then B must be a weak v-basis. For, given a € a, where
a =Y bic; (b; € B,c; € R), we have v(a) = max{v(b;) + v(¢;)} by the v-
independence of the b;; it follows that v(e — > _ b;¢;) = —oo is a relation of
v-dependence of a on B. Hence all the elements of a are v-dependent on B,
while B is not strongly v-dependent, by definition.

So far R was any filtered ring in which R(q) is a field. We now strengthen
this assumption by imposing the weak algorithm. Then any weak v-basis of a
right ideal a is right v-independent, so a is free, with any weak v-basis as free
generating set. We claim that a has a unique rank; for the proofitis enough to take
the case where a is finitely generated (see BA, Proposition 4.6.4). Consider any
basis of a, not necessarily a weak v-basis. By treating in turn the basis elements
of degrees 0, 1,2, ... we find that this basis can always be transformed to a
weak v-basis by a sequence of elementary transformations, and so it has the
same number of elements as the latter. Thus a has unique rank; by Proposition
4.1 the same holds for all left ideals and so we have proved

Theorem 2.4.6. Every filtered ring with weak algorithm is a fir, and each left
or right ideal has a v-independent basis. |

We note that the IBN for rings with a weak algorithm also follows from
Theorem 4.4. Of course, as we saw in Proposition 1.3.1, a ring with a right
division algorithm is a right PID; here we do not have a two-sided conclusion,
owing to the asymmetry of the division algorithm.

Next we turn to the case of aring with n-term weak algorithm. As in Theorem
4.4 we find again that this is an n-fir, but in addition we shall see that it also
satisfies left and right ACC,,. The result will follow from a general property of
weak v-bases in filtered rings:
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Lemma 2.4.7. Let R be a filtered ring such that R ) is a field. Then R satisfies
(left and right) pan-ACC.

Proof. Let a be a right ideal which is generated by a family of at most n
elements. Then a has a weak v-basis ay, ..., a,(m < n). We associate with
a the n-tuple (v(ay), ..., v(a,), 00, ..., 00) (with (n — m)oo’s) as ‘indicator’.
Clearly this indicator is independent of the choice of weak v-basis. If a D b,
the indicator of a will be smaller, in the lexicographic ordering, than that of
b. Since the set of these indicators is well-ordered, the ideals satisfy ACC. By
symmetry this also holds for left ideals. |

For rings with n-term weak algorithm, where n > 2, R(q) is a field, as we
have seen, so this leads to the following result:

Proposition 2.4.8. Let R be a filtered ring with n-term weak algorithm, where
n > 2. Then R is an n-fir and satisfies left and right pan-ACC. This conclusion
still holds for n = 1, provided that R, is a field. [ ]

Exercises 2.4

1. Verify that a ring R has a filtration v such that A,(R) > 1 if and only if R is an
integral domain.

2. Show that for any filtered ring with 2-term weak algorithm R g, is a field. Give an
example of a ring with 1-term weak algorithm but not satisfying left or right ACC;.
(Hint: Use Lemma 4.7.)

3. Define filtered modules over a filtered ring R and introduce the notion of weak algo-
rithm for filtered modules. Show that every module satisfying the weak algorithm
is free; what does the existence of a module (# 0) with weak algorithm imply about
R?

4. Investigate rings satisfying the weak algorithm relative to the trivial filtration.

5. Show that the weak algorithm holds in a filtered ring R if and only if (i) in every
right v-dependent family one member is right v-dependent on the rest, and (ii) every
element of degree 0 is a unit.

6°. Generalize Hasse’s characterization of PIDs (see Exercise 1.3.8) to firs.
7°. Investigate the notion of a weak algorithm relative to a function ¢ more general
than a filtration.

8. Extend Corollary 4.5 to the case where the a’s and b’s are not necessarily linearly
independent.

2.5 Monomial K-bases in filtered rings and free algebras

In this section we shall prove an analogue of Theorem 1.2.6, which will describe
the rings with a weak algorithm. For any filtered ring R we define the ‘formal
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degree’ of an expression ) ; d;i . . . djn, s
max ;{v(a;1) + - - + v(ain,)}-

Clearly the actual degree of an element of R never exceeds the formal degree
of any expression for it. We also note that the definition of v-independence of
a family states that the degree of elements represented by certain expressions
should equal the formal degree of these expressions.

Let R be a filtered ring for which R ) is a field K. A family X of elements
of R is called a monomial right K-basis if the monomials in X span R as right
K-space and are not strongly right v-dependent. A corresponding definition
applies to a monomial /eft K-basis. It is clear that any element of a monomial
right K-basis has a strictly positive degree. Such a family X may be constructed
recursively as follows.

For each 1 > 0 denote by R{h) the right K-subspace of R, spanned by the
products ab, where a, b € R¢,—1) and v(a) + v(b) < h. Now choose a minimal
family X, spanning R (mod R{;)) over K, i.e. a family of representatives for a
right K-basis of R/ R(;,, and put X = UX,. To show that X has the properties
stated above, suppose that X is strongly right v-dependent, say

X = ijbj(modR(h,l)), (1)

where v(x;) + v(b;) < v(x) = h. Any terms x;b; with v(x;) < & lie in Réh),
so (1) takes the form x = ) x;B; (mod R()'), where 8; € K and v(x;) = h
whenever ; # 0. But this contradicts the construction of X; so no element
of X is right v-dependent on the rest, i.e. X is not strongly right v-dependent.
Now an easy induction on the degree shows that the monomials in X span R
as right K-space; more precisely, the monomials of formal degree at most A
span R¢,. Thus we see that every filtered ring R for which K = R(g, is a field
has a monomial right K-basis. As in the case of weak v-bases of right ideals,
we see that the cardinality of a monomial right K-basis (and more precisely,
the number of elements of a given degree) is independent of the choice of
basis. Correspondingly a monomial left K-basis can be constructed for R, by
symmetry.

We now show that the monomial right K-basis is v-independent precisely
when the weak algorithm holds. Given any family X of elements in a K-ring
R, if R is spanned as right K-space by the monomials in X, we can define a
filtration on R by assigning to each x € X a positive integer as degree and to
each element a of R the minimum of the formal degrees of the right K-linear
expressions in X representing a. We shall denote by x; = xx; . .. x, amonomial
in X.
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Theorem 2.5.1. Let R be a filtered ring such that R, is a field K, and let X be
a monomial right K-basis for R. Then the following conditions are equivalent:

(a) R satisfies the weak algorithm,
(b) X is right v-independent,
(c) the degree of any expression y_ xjaj(a; € K) is equal to its formal degree.

When these conditions are satisfied, the monomials in X form a right K-basis
for R.

Proof. (a) = (b). If R satisfies the weak algorithm, then any monomial right
K-basis X of Ris clearly right v-independent and each x € X has positive degree.

(b) = (c). Since R(p) = K, X has no elements of degree 0. If (c) does not
hold, then the monomials in X are right K-linearly dependent, say Y x;a; = 0.
By splitting off the left-hand factor from X in each x; we can write this as

Zxax—i—a:O xeX,a € R,a € K)a.

By the v-independence of X, each a, = 0 and so ¢ = 0. Now an induction on
the formal degree shows that the given relation was trivial. Thus the monomials
in X are right K-linearly independent; hence they form a right K-basis for R and
(c) holds.

To prove (c) = (a) we show that R satisfies the left-hand analogue of the
weak algorithm, which by Proposition 4.1 is equivalent to the weak algo-
rithm itself. Let us consider how monomial terms, i.e. scalar multiples of
monomials multiply in R. The product (x; ...x;a)(y; ...y;B) can be written
(x1...x)(ay;...y;B). If we write the second factor as a right K-linear com-
bination of monomials, little can be said about the terms that will occur, except
that we know their degrees. However, in the product all terms will clearly have
X1 ...X; as a left factor.

Let us fix a monomial x; ... x; of degree r and define the right transduction
for this monomial as the right K-linear map a > a* of R into itself which sends
any monomial of the form x; ... x;b to b and all other monomials to 0. Thus
a* is the ‘right cofactor’ of x; ... x; in the canonical expression for a. For any
a € R we have v(a*) < v(a) — r, because the degree of a equals its formal
degree. Further, if a, b € R, and v(b) = s, then

(ab)* = a*b(mod R;_y)). )

This is clear if @ is a monomial of degree at least r; in fact we then have equality.
If a is a monomial of degree less than r, the right-hand side of (2) is 0 and so
(2) holds as a congruence. If a = wa, where w is a monomial and o € K*,
then (ab)* = (wab)* = (w(ab))* = w*(ab) = (wa)*b, by the case previously
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proved, and the congruence is mod R,_py, where s = v(b) = v(ab). Now (2)
follows by linearity.
Assume now that by, ..., b, is a left v-dependent family, i.e.

v (Z aib,-> < d = max{v(a;) + v(b)}. 3)

We have to show that the b; are strongly left v-dependent, i.e. taking the b;
ordered so that v(b;) > --- > v(b,), we must show that some b; is left v-
dependent on those that follow. By omitting terms if necessary we may assume
that v(a;) + v(b;) = d for all i, hence v(a;) < --- < v(ay).

Let x; ... x;, be a product of maximal degree = v(a;) occurring in a@; with
non-zero coefficient « and denote the right transduction for x; ...x; by *. In
the expression Y _ a;*b; the ith term differs from (a;b;)* by a term of degree
< v(b;) < v(by). Hence the sum will differ by a term of degree less than v(b;)
from (3 a;b;)*, which has degree < v(}_a;b;) —r <d —r = v(by). There-
fore v(3_a;*b;) < v(by), and this gives a relation of left v-dependence of b; on
the remaining b;, since a;* = o € K*. [ |

More generally, let K be a field and V' a K-bimodule and define its tensor
powers

F,=V"=V®---®V (ntermsforn > 0, Fy = K). (@)

We define the direct sum F = Fy @ F| @ ... as a K-ring with multiplication
induced by the natural isomorphism F,, ® F, = F,,(m,n=0,1,...); the
ring F so obtained will be called the tensor K-ring on V and we write F = K[V].
If X is a right K-basis for V, then the free monoid on X, denoted by X*, is a
right K-basis for F, with the products of n factors from X as a basis for F),.
Taking X to be indexed: X = {x;}, we can write the general element of X* as

Xp = Xj Xiy « o - Xj, s (5)

where I = (iy, ..., i,) runs over all finite sequences of subscripts (including
the empty sequence, to represent 1). Clearly each element of F is uniquely
expressible in the form

f= mez[ (a; € K, almost all 0). (6)

This ring F is called the tensor K-ring over X (with base field k) and is denoted
by K (X).

By the natural filtration on K[V'] we understand the filtration obtained by
assigning the degree 1 to the elements of X and using the induced formal degree.
By definition it then follows from Theorem 5.1 that K[V] satisfies the weak
algorithm. Bearing in mind Theorem 4.6, we obtain
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Corollary 2.5.2. Let K be a field and V a K-bimodule. Then the tensor K-ring
onV, K[V], satisfies the weak algorithm relative to the natural filtration; hence
it is a fir. [ ]

An important example is obtained by taking V' as the K-space with basis
X = {x1, ..., x4} and left K-action defined by cx; = x;c(c € K). The ring thus
obtained is denoted by K (X) or K (xy, ..., x4) and is called the free K-ring on
X, or in case K is commutative, the free K-algebra on X. By Corollary 5.2 the
free K-ring satisfies the weak algorithm; in particular, for the free algebra we
obtain a characterization in this way:

Theorem 2.5.3. Let R be an algebra over a commutative field k, with a filtra-
tionv suchthat Ry = k. Then R is the free associative k-algebra on a set X with
the formal degree induced from v : X — N if and only if the weak algorithm
holds in R for v.

Proof. By hypothesis, k is contained in the centre of R and when the weak
algorithm holds, the form of the elements described in Theorem 5.1 shows R
to be the free k-algebra on X. The converse has already been noted above. W

Let K be a field and R, S any K-rings; then we can define the coproduct
P = R*g S of R and S over K as the pushout of the maps K — R, K — S (see
Appendix B(ii)). In fact it is not necessary for K to be a field, for the coproduct
to be defined, but when we do have a field K, then the coproduct is faithful and
separating,i.e. R, S are embedded in P and their intersection is K. This follows
by taking any right K-bases X of R\ K and Y of S\ K and noting that the formal
products

m=w...w, @)

with factors from X U Y U {1} form a right K-basis of P. If moreover, R and S
are both filtered with Ry = S = K, then P has a natural filtration obtained
by taking P to be spanned by products from monomial right K-bases of R and
S of total degree n. Now we have the following result whose proof generalizes
that of Theorem 5.1:

Theorem2.5.4. LetR,S befiltered K-rings withweak algorithm, where R o) =
Sy = K. Then their coproduct R*k S with the natural filtration also satisfies
the weak algorithm.

Proof. The coproduct P = R*g S has the right K-basis (7); so every ele-
ment of P is a sum of monomial terms w; ... w,«a, where the w; are taken
from monomial right K-bases in R and S and o € K, and any product
(wy ... wyo)(wy ... wy,B) can be written (w; ... wy,)(aw, ... w,, B). Thus for
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any product m = w; ... w, of degree r we can define again the right transduc-
tion as the right K-linear map a +— a* of P into itself that sends any monomial
wi ... w,b to b and all other monomials to 0. Now exactly the same proof as
for Theorem 5.1 (c) = (a) shows that P satisfies the weak algorithm. [ |

By taking the free K-ring as one of the factors we obtain the following
consequence:

Corollary 2.5.5. Let R be a ring with weak algorithm, where Ry = K. Then
for any set X the free R-ring Ry (X) satisfies the weak algorithm and hence is
a fir. |

In particular, if D is any field and K a subfield, then the free D-ring Dg (X)) is
a ring satisfying the weak algorithm.

In connexion with Theorem 5.1 we note that, given a field K and a K-ring R
with a subset X such that the monomials in X form a right K-basis for R, if we
assign arbitrary degrees to members of X and give elements of R their formal
degrees when expressed in terms of this basis, this will not necessarily define
a filtered ring structure on R. The main reason is that for « € K, x € X, the
element ax, when expressed as a right linear combination of monomials in X,
may not have the same formal degree as x. When the weak algorithm holds, as
in the above example of free associative algebras, or even in the case of tensor
rings on X, this cannot happen. But in general it may not be possible to assign
a suitable filtration; e.g. we may have ax = 2+ y(x € K,x,y € X). In the
proof of Theorem 5.1 essential use was made of the fact that v was given as a
filtration on R.

The tensor ring K[V'] is an example of an augmented K-ring, that is a K-
ring R of the form R = K @ I, for an ideal [, the augmentation ideal. This
augmentation ideal / is a K-bimodule and has all the properties of a ring, except
that it lacks a unit element, but the standard procedure for adjoining a unit
element yields the ring R. Given R, we recover [ as follows. The unit element
1 of R is uniquely determined, and now K is the set of all scalar multiples of 1.
So we can form the quotient K-bimodule R /K, which is /. This argument can
be used to show that V' is determined up to isomorphism by K[V ]:

Theorem 2.5.6. Let K be a field and V a K-bimodule. Then the tensor ring
K[V determines V up to K-bimodule isomorphism.

Proof.  Suppose that U,V are K-bimodules such that there is a K-ring
isomorphism K[U] = K[V]. We can write K[U] =K & I, where [ =U &
U?@®...; similarly K[V]=K @ J, where J =V ®V?>@.... Then J =
K[V]/K =K[U]/K =1I;henceU = 1/I*=J/J*>=V. |
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In the case of a tensor K-ring over X we have V = (K° ® ;K)*, and this
shows the cardinality of X to be determined by V', hence we have

Corollary 2.5.7. For any field K with subfield k and any set X, the cardinality
of X is determined by the tensor K-ring K;(X). [ ]

The cardinality of X is called the rank of K;(X). Since the tensor ring K [V]
is a graded ring, we also have an order-function, where the order of an element
f € K[V] is defined as the lowest degree of any terms occurring in f. With
the help of this function we can form the completion of K[V], denoted by
K[[V]] = ]_[ff:o V" and called the power series K-ring over V. Its elements
are infinite series f = fo + f1 +--- (fu € V™). For a family X we shall denote
the completion of K;(X) by K;({(X)). In the case where X is infinite, it is
sometimes advantageous to assign degrees to the elements of X in such a way
that only finitely many are of degree < n, for any integer n. The ring so obtained
will be larger than the completion where all elements of X have degree 1.

The description in Theorem 5.1 of rings with a weak algorithm is not very
explicit, for although it enables us to write down many examples, it does not
provide a method for constructing all rings with a weak algorithm. We shall
now describe such a method, but in order to do so we need another concept.

By a truncated filtered ring of height h (briefly, h-truncated ring), R, we
shall mean a finite chain of abelian groups

0=Ro) SRS RHE...CRp,

with a function called multiplication defined on U{R;y X R()|i + j < h} such
that:

T.1. Fori + j < h, multiplication restricted to Ry x R(; is a biadditive func-
tion with values in R j),

T.2. Fori+ j +k < h, multiplication is associative on Ry x R(jy X Ry,

T.3. R contains the neutral element for multiplication, 1.

Here we have used the same symbol, Ry, for the last term of the defining chain
and the total structure.

By a morphism f : R,y — Sq, of truncated filtered rings we mean a map f
respecting addition, multiplication and unit element, such that R, f € S(;; in
particular, h < k.

Let R, be a truncated filtered ring and let a € R(;,). We define the degree,
v(a), of a as the least i such that a € R(;y. From the definition of multiplication
in Ry we see that ab is defined precisely when v(a) + v(b) < h.

With every filtered ring and every integer /4 there is associated a truncated
filtered ring of height 4, obtained by ‘forgetting the terms of degree > h’.
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This ‘truncation’ functor has a left adjoint, associating with every A-truncated
ring R(;) the universal filtered ring U (R)) generated by R;). More gener-
ally, for every h-truncated ring and each k > & there is a universal k-truncated
ring.

It is clear how to define ‘v-dependence’ and ‘strong v-dependence’ for a
family of elements of a truncated filtered ring, exactly as for ordinary filtered
rings. Of course the value of max;{v(a;) + v(b;)} in the relations considered
must not exceed A. If every v-dependent family is strongly v-dependent, the
ring is said to satisfy the weak algorithm. Theorem 5.1 is then easily seen to
go through in this context; in particular, for any monomial right K-basis of a
truncated filtered K-ring with weak algorithm the degree of any element is equal
to its formal degree in X.

Given a truncated filtered ring R satisfying the weak algorithm, let us
denote the field R by K and construct X as in the discussion preceding The-
orem 5.1. We denote by Réh 41 the right K-space having as right K-basis the
monomials in X of formal degree < & 4 1 and for degree-function the formal
degree obtained by expressing elements in terms of this basis, using the degrees
in R, of the elements of X. We claim that R, , ;) is the universal truncated
filtered ring of height 4 + 1 for Ry).

Indeed, the space R(’h +1y Will clearly have the desired universal property if it
can be given a truncated filtered ring structure extending that of R;. It is clear
how we must define addition, right multiplication by elements of K and left
multiplication by elements of X to obtain this structure, so it remains to define
left multiplication of monomials in X by elements of K, i.e. to give a left K-space
structure to Réh 1) Since we are given this structure on Ry, it suffices to define
products cru, where @ € K and u is a monomial of degree # + 1 in X. Such a
monomial can be written as u = xw, where x € X and w is amonomial of lower
degree. In Ry we have ax = ) _ x; 8/, where v(x;) < v(x) and for each I we
have Byw = > x;y,7, v(xy) < v(w). We then put ou = axw = > x;xX;¥y;.
To show that this leads to an (k& + 1)-truncated filtered ring structure on Réh 4
we need to verify the associative law. By linearity this only needs to be checked
for triple products of monomial terms. We consider four cases, where «, 8, y €
K, u # 1 is a monomial and p, ¢ are arbitrary elements of R(/h 41y Of degrees
such that products below are defined.

(1) (up)q = u(pq). Here the left multiplication by u is just the formal product
of monomials.

(2) (eu)p = a(up). If u = xu', where x € X is of degree r, and ax = > _ y;6;,
then (au)p = (axu’)p = (O yi8;u’) p, which equals a(up) by associativity
in R(h+1_,~).
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(3) (@B)u = a(Bu). If u = xu’, where x € X is of degree r, then (a¢B)x =
a(Bx) by associativity in R and now the result follows by associativity
n Rii1-r).

(4) Finally (¢B)y = a(By) by associativity in K.

Using these four cases we can now verify the associativity of triple products of
monomial terms without difficulty.

By Theorem 5.1 (in its extended form, for truncated filtered rings), R(’h 4
now satisfies the weak algorithm and its A-truncation will be R). Our aim is
to find the most general form for an (4 + 1)-truncated ring R,y with weak
algorithm, having R as its A-truncation. If R, is such a ring, it is clear
from the method of proof of Theorem 5.1 that the family X constructed for R,
can be enlarged to a corresponding family X’ for R,1). Since the monomials
in X’ must be right K-linearly independent, R(;1) will have R, | ) embedded
in it, i.e. the map given by the universal property will be injective.

We shall take for Ry any K-bimodule containing Réh +1) as subbimodule
and extend v to it by setting it equal to & 4 1 outside R(;. In this way R ;41
becomes a truncated filtered ring of height 4 + 1. For the only multiplications
that need to be defined on the elements of degree / + 1 are their products with
members of Ry = K, and the conditions T.1-T.3 that they must satisfy are just
the conditions for a K-bimodule. Further, R(,41), as a truncated filtered ring,
will satisfy the weak algorithm because on enlarging X by adjoining a minimal
generating set for the right K-space R+1) (mod R, ;) we obtain a generating
set for R4 1y satisfying Theorem 5.1.

Since any filtered ring R with a weak algorithm can be written in a unique way
as UR ), where each Ry is an h-truncated ring satisfying the weak algorithm,
and equal to the A-truncation of R 1), it follows that R may be constructed in
this way. Thus we have proved

Theorem 2.5.8. Any filtered ring with weak algorithm can be constructed by
the following steps:

(0) choose an arbitrary field K to be R ),
(h) given Ry, form the universal extension Réh) as above, let R,y be any

K-bimodule containing R, as subbimodule and consider Ry as truncated
filtered ring,

(00) define R = URy,) as the required ring. [ ]

We note that at step (1) we have R(;) = R), so this step is simply: choose a
K-bimodule containing K. Of course the structure of K-bimodules over a field K
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is itself a non-trivial topic, for K-bimodules are effectively (K ° ®7 K )-modules
and a ring of the form (K° ®; K) can have a highly complicated structure.

Exercises 2.5

1. Give a direct proof that the centre of a non-Ore filtered integral domain with a
weak algorithm is a field (see also Section 6.4).

2. IfRisaring with weak algorithm, show that R ) is complemented by a right ideal.
Give examples to show that R, may not have a complement that is a two-sided
ideal. (Hint: Try skew polynomial rings.)

3. Let R be a K-ring with a subset X whose monomials form a right K-basis for R.
Given a filtration on R such that R € K, show that X is right v-independent if
and only if every element of positive degree in R is v-dependent on X. Deduce
that R satisfies the weak algorithm relative to this filtration.

4. Define a filtration on the free algebra R = k(X) for which the weak algorithm
does not hold (Hint: Regard R as the universal associative envelope of the free Lie
algebra on X.)

5. InZ(X) define the content c(f) of f by c(0) = 0, while for f # 0 c(f) is the HCF
of all the coefficients. Prove Gauss’s lemma in the form c(fg) = c(f)c(g) (Hint:
Imitate the proof in the commutative case.)

6. State and prove an analogue of Theorem 5.1 for truncated filtered rings.

7. For any filtered ring R write T, R for the h-truncation obtained from it, and for
an h-truncated filtered ring R, denote by UR 5, the universal filtered ring. Given
an h-truncated filtered ring R ), show that the canonical map R — T,U R is
surjective but not necessarily injective.

8. LetF be QorIF, (p prime). Show that every F-bimodule is a direct sum of copies
of F as F-bimodule. Deduce that every filtered F'-ring R with weak algorithm such
that R, = F is a free algebra.

9. Show that the Jacobson radical of a tensor K-ring R = K[U] is zero. Let [ be the
augmentation ideal of K[U]; show that N/" = 0, and when R = K (X), find an
ideal not contained in / with the same property (see also Section 5.10).

10. Let kF be the group algebra (over a commutative field k) of a free group F. Show
how to compute the rank of F in terms of kF.

11. Given a commutative field k£ and two disjoint sets X and Y, the mixed free k-
algebraon X, Y,Y ! is defined as the k-algebra k(X, Y, Y ~!) generated by X, Y
and the inverses of elements of Y, which is universal for Y-inverting maps of
X UY into k-algebras. Prove that the numbers of invertible and of non-invertible
free generators in a mixed free algebra are independent of the choice of free
generators.

12. Let R = k(xy, ..., x,) be the free k-algebra, d; the derivation mapping x; to §;;
and D = )_ x;d; the derivation that is the identity on the x;. Show that for any
element a = Y _a, of R, where a, is homogeneous of degree n,a? =Y na,.
(This result generalizes Euler’s theorem on homogeneous functions.)

13. (Jategaonkar [69c]; Koshevoi [70]) Let R be an integral domain that is not right
Ore. If xRN yR =0 (x, y # 0), show that x and y generate a free algebra (over
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Z or F,); deduce that an integral domain contains a free algebra on two free
generators unless it is a left and right Ore domain.

Given a left but not right Ore domain, obtain an embedding of the free algebra
of rank 2 in a field.
In R = k(x, y) show that the elements xy"(r =0, 1, ...) form a free generating
set of the subalgebra k 4 xR, and deduce that the free algebra of countable rank
can be embedded in the free algebra of rank 2.
In a free algebra R = k(X) show that every non-zero Lie element, i.e. sum of
repeated commutators, is an atom. (Hint: Let L be the free Lie algebra on X, with
a k-basis B which may be taken totally ordered and note that by the Birkhoff-Witt
theorem, k(X) is isomorphic to the universal associative enveloping algebra U,
of L, with a basis formed by all ascending monomials in B. Now observe that an
elements of R is in L if and only if it is linear in B.)
Find the centralizer of X in Qz(X). What happens in the general case K;(X)?
(See Dicks [77], p. 575.)
Let R = k{(x,y,y~!) be the mixed free algebra. Show that the elements x; =
y~ixy'(i € Z)form a free set. Denoting by A the subalgebra generated by these
elements and by o the automorphism defined on A by a +— y~'ay, show that
R = Aly, y s al.
Let R = k(x, y) and write [ab®"] = ab — ba, [ab"*D] = [[ab"]b]. Show that
the subalgebra S generated by the elements [yx®](r = 0, 1, ...) is freely gener-
ated by these elements. If § is the derivation on S defined by a — [axV], show
that R = S[x; 1, 8].
(McLeod [58]) Let k£ be a commutative field of characteristic zero. Show that
the subalgebra (without 1) of k(x, y) generated by all commutators is an ideal.
Show also that this fails to hold in finite characteristic or for more than two free
generators.
(Andrunakievich and Ryabukhin [79]) For any word w in X = {x, x5, . ..} define
its length [(w) as the number of its factors x; and the weight p(w) as the largest
suffix of any x; occurring. A word w is light if p(w) < [(w) and heavy if no
subword is light. If / is the ideal generated by all light words, show that k(X )/ has
abasis consisting of all heavy words and this algebra is prime but locally nilpotent.
Let D be afield which is a k-algebra, with subalgebras A, B that are isomorphic viaa
k-linear isomorphism ¢. Define D as an A-bimodule with the usual right multiplica-
tion and with left multiplicationa.u = (a@)u (u € D, a € A).Show that the tensor
D-ring D[M], where M = D ® 4 D, has an element ¢ # 0 such that at = t(ag)
for all a € A. (This is an example of the HNN-construction, see SF, Section 5.6.)

2.6 The Hilbert series of a filtered ring

In Section 2.4 we met the notion of a filtered ring; we shall also need to consider
graded rings and we briefly recall the definition. A graded ring is a ring H
expressible as a direct sum of abelian groups: H = Hy® H, & H, & ... such
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that the multiplication maps H; x H; into H; ;. It follows that Hy is a subring
and each H; is a Hy-bimodule.

If R is a filtered ring, where R is a field K, we consider the associated
graded ring grR = {gr, R}, where gr,R = R(,)/R(,—1). If each gr, R is finite-
dimensional as right K-space, say dimg (R(,)/R—1)) = @,, then we can form
the formal power series

HR:K)=) ay". )

It is called the Hilbert series of R. Using Theorem 5.1, we can calculate the
Hilbert series of any filtered ring with weak algorithm:

Proposition 2.6.1. Let R be a filtered ring with weak algorithm, where
Ry = K.Givenamonomial right K-basis X = UX, for R, define A, = |X,| =
dimK(R(,,)/R(’n)) in the notation of Section 2.5; further, put H(X) =Y Ayt".
Then

HR:K)=(1—-HX) . ()
Proof. 'We saw that a right K-basis of R,)/R(,—1) is formed by the set of all
monomials x; of degree n. Each sequence (ny, ..., n,) such that n; +--- +

n, = n gives rise to A,, ... A, monomials of degree n, hence
O = uy -
where the summation is over all ordered partitions of #. It follows that
HQR:K)= dpt" .. 21",
ie. (2). ]

In a moment we shall give another proof of (2). Meanwhile we note the
special case of free algebras:

Corollary 2.6.2. Let R be the free k-algebra of rank r, R = k{xy, ..., x;)
where all the x; have degree 1. Then H(X) = rt and therefore H(R : k) =
a—-ro~ . u

We return to a filtered K-ring R and consider the Hilbert series of a right ideal.
Given any right ideal a of R, let B, = r,(a) = dim(a,)/ aén)) (See Section 2.4)
and y, = dimg (a(,)/a—1)). We note that 8, and y,, are bounded by dim(R,)) =
o,, hence we may define the Hilbert series

H(a:R) = Z,B,,z”, H(@:K)= Zynt".
If R satisfies the weak algorithm, these series are related by the formula

H(a:K)=H(a: R)H(R : K). 3)
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For if (e)) is a weak right K-basis of a, then a right K-basis of a¢,)/a(,—1) is
given by the family of all ¢; x; of degree n. Hence we have y, = > B;a,—; and
(3) follows.

We can use (3) to give another proof of (2). We note that (2) is essentially
a statement about grR, so we may assume R to be a graded ring. Then XR is
the augmentation ideal, so that we have R = K @ XR as right K-spaces, and
H(XR:R)=HX),HR:K)=1+ H(XR : K). Inserting these values in
(3)(fora = XR),weobtain H(R : K) =1+ H(X).H(R : K), from which (2)
follows.

We now turn to modules over filtered rings with a weak algorithm and derive
a presentation that in some cases provides information about the characteristic
of the module. We recall that for any ring R and any set B, the free right R-
module on B is written R®); more explicitly, if g, denotes the generator indexed
by b € B, its elements have the form of a finite sum Y _ g,7,(r, € R, b € B).

Theorem 2.6.3. Let R be afiltered ring with weak algorithm, where R, = K,
and let M be a right R-module. If {g,|b € B} is the basis of R®) corresponding
to a right K-basis B of M and X is a monomial right K-basis of R, then there is
an exact sequence

0— REXO L, p®) % b, )

where o 2 gy > b(b € B)and B : (b, x) > gpx — Y gehex if bX =D ey
inM (ex € K, b,c € B).

Proof.  We have Ba = 0 by the definition of o and . The cokernel of 8 is
the right R-module with generators g, and defining relations g,x = Y gcAcx,
hence the right K-space spanned by the g, is already an R-module and so is
all of coker 8. Thus the natural surjection coker § — M is an isomorphism.
So far we have only used the facts that B is a right K-basis of M and that the
monomials in X span R.

It remains to show that 8 is injective. The module R®**) has a basis uy, (b €
B, x € X) and the general non-zero element has the form

s = Z Up yX1 -+ oo Xy Ap yxy... X
Put
n = max{v(yx ... xXn)|Ap yx,..x,, 7 0for some b},

and consider sB. By the definition of 8 we have u; . = gpx+ terms of lower
degree, hence the terms of highest degree (viz. n) in s8 are

E 8byX1 .. -xm)\hfy,xl...x,,,a
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summed over all terms with v(yx; ... x,) = n. This is non-zero, hence s # 0
and so S is injective. ]

If X and B are finite, the characteristic of M as R-module is, by (4),
xr(M) = (1 — |X|)dimg (M) . %)

For example, if R = k(xy, ..., x,), a is aright ideal of finite rank d as right R-
module and dimg (R /a) = m, then taking M = R/a, we have xg(M) =1—d
and (5) becomes

d—1=(@U—1Dm. (6)

This formula, due to Lewin, and known as the Schreier—Lewin formula, is a
precise analogue of Schreier’s formula for free groups. It tells us that in a free
algebra of finite rank, any right ideal a of finite codimension is finitely generated.
This result holds in fact more generally.

Thus let R be any k-algebra, generated by r elements over k, and write F
for the free k-algebra of rank r, so that R = F /n for some ideal n of F. Any
right ideal a of R corresponds to a right ideal 2 of F' containing n such that
R/a = F /2 as right k-spaces. In particular, if a is of finite codimension m
over k, then so is 2 and by (6), 2 is then free as right F-module, of rank
d = (r — 1)m + 1. Hence a = 2(/n can be generated by d elements; moreover,
if R is infinite-dimensional over k and c is any regular element of R, then cR is
infinite-dimensional and so meets a non-trivially. Thus we obtain

Corollary 2.6.4. Let R be a k-algebra generated by r elements over the com-
mutative field k. Then any right ideal a of finite codimension m in R over k can be
generated by (r — 1)m + 1 elements. Further, if [R : k] = oo, thencRNa # 0
for any regular element c in R. In particular, in a free algebra of finite rank
every right ideal of finite codimension is right large and finitely generated. R

Exercises 2.6

1. Let R, S be filtered algebras over a commutative field kand T = R ® S their tensor
product over k. Show that if the Hilbert series of R, S are defined, then so is that of
Tand H(T : k)= H(R : k)H(S : k).

2. LetRbeafiltered ring, where R o) is a field K. Show thatif H(R : K) is defined, then
it has an inverse 1 — L(R : K), where L(R : K) is a power series in ¢ with integer
coefficients and zero constant term. Verify that L(K [x] : K) = ¢t.If R, S are filtered
rings such that H(R : K) and H(S : K) are both defined, and P is their coproduct
over K, show that H(P : K)isalsodefinedand L(P : K) =L(R : K)+ L(S : K).

3*. Let M = C ®g C where C is an R-ring and consider the tensor C-ring T = C[M].
Show that T is the coproduct of an ordinary polynomial ring over C and a
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complex-skew polynomial ring over C. How does this generalize to finite Galois
extensions?

4. (Lewin [69]) Show that any two-sided ideal in a free algebra R has the same rank
as left and as right R-module.

5. LetR = k(xi, ..., x,) be afree algebra and a a non-zero principal right ideal. Then
the formula (6) gives

dimg(R/a) =1 —r)"'1 =1)=0.

Explain this paradox.

6. Examine the relation (3) between Hilbert series when R = K[x;«, 8] is a skew
polynomial ring. Do the same for the Hilbert series of the opposite ring when « is
not surjective.

7. Define the notion of a filtered module M (over a filtered ring R) satistying the weak
algorithm. Show that any submodule M’ with the induced filtration again satisfies
the weak algorithm. Under suitable hypotheses define a Hilbert series H (M : R)and
show that H(M : R) = H(M : R)H(R : Ry)). If M" = M /M’ has the induced
filtration, show that

HM" :Rgp)=[HM :R)—HM':R)].H(R : Rg)).

8*. For any K-ring R the universal derivation bimodule Q,/x may be defined as the
kernel of the multiplicationmap x ® y — xy inR so that we have an exact sequence

0—>QR/K—>R®KR—>R—>0,

(See FA, Section 2.7 or Exercise 1.1.12), where A : dx— x ® 1 — 1 ® x. When
R = K(X,Y,Y ') is the mixed free algebra, verify that Qg/x = R*"") and hence
obtain the exact sequence

0> (MQ®x ¥ > M®xR—> M — 0.

When G is the free group on Y and X = &, then R = K G is the group algebra. Let
H be any subgroup of G and put M = K[H\G], where H\G = UgH is the coset
decomposition. Deduce Schreier’s formula in the form 1 —rkH = (G : H)(1 —
k G).

9*. Let R be a K-ring with a subset X of r elements such that the monomials in X
span R as right K-space. Show that for any right R-module M there is a sequence
(4), exact except possibly at R>X)_If M is s-generated as right R-module, deduce
that M = R°/N, where N is (mr + s)-generated. If a is a right ideal of finite
codimension m in R over K, show that a can be generated by (mr + 1) elements.

2.7 Generators and relations for G E»(R)

Our next objective is to treat the analogue of the Euclidean algorithm that exists
in rings with 2-term weak algorithm. One of the main consequences is that such
aring is always a strong E,-ring (see Section 2.3 and Theorem 4.4); moreover,
there is a convenient normal form for the elements of G E,(R), which leads
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to a presentation of GL,(R). Since many of the formulae are valid in quite
general rings, we shall digress in this section to discuss generators and relations
in G E»(R) for general rings.

For brevity let us write

o=(1Y) e=(% 3w D)

=01 =(") o).

and put D(ar) = [, @~']. We note the following relations between these matri-
ces, valid over any ring R, forany x, y € R, o, B € U(R):

Tx+y)=TWT(), Ex+y)=-EWEOE®Y), EO0O=0, (1
D(a) = —E(@)E(@™HE(), (@)
EWle, Bl = (B, 2lE(B'xa), [a, Bl Bl = [, Bl (3)

We also observe that Q = T(—1)T (1)TT(—1) € E»(R) (where the super-
script T indicates the transpose) and conversely, T (x) = O 'E(X), T(x)" =
E(—x)0Q~!. Thus GE»(R) is generated by E5>(R) and all [«, B]. Further we
note the following consequences of (1)—(3):

Q*=-1E(1)Y =-1,E(-1) =1, “)
E)™ = QE(-0)Q, ®)
EMEW ' =Ex—»0~'=-E(x -0, (6)
EWEY 'E@) = E(x —y+72), (M
EWE@E(®y) = E(x —a HD@E(y —a™"), ®)

where x, y,z € R and o € U(R). Using (3) and (5), we can bring any element
A of GE>(R) to the form

A = [a, BlE(a)) ... E(ay). €))

If a; =0 for some i # 1, n, this relation can be shortened by (1), while if
a; € U(R) fori # 1, n, it can be shortened using (8) and then (3) to bring D ()
to the left. Thus in any ring R we can express any matrix A in G E»(R) in the
form (9), where «, 8 € U(R), a; € R and such that for 1 <i < n,a; is not 0
or a unit. Such an expression for A will be called a standard form for A. In the
next section we shall see that in any ring R with 2-term weak algorithm there is
a unique standard form for each A € G E,(R); this will be shown to hold more
generally in any ring R with a degree function such that R g, is a field.
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If R is a ring with unique standard form for G E5, then in any relation in this
group the left-hand side can be brought to standard form and by uniqueness this
must be [, i.e. any relation can be transformed to the trivial relation I = I using
only (1)—(3). This proves

Proposition 2.7.1. [n any ring R with unique standard form for GE, the
relations (1)—(3) form a complete set of defining relations for G E>(R). |

The sufficient condition given here is not necessary, since it does not hold for
the ring of integers Z, which however satisfies the conclusion (see Exercise 3).

The expression (9) can also be used to describe comaximal relations; for this
purpose it is more convenient to replace E(x) by the matrix P (x), given by

P(x) = <)lc (1)> .

This matrix is no longer in E,(R), since its determinant is —1, but it belongs
to E5(R), the extended elementary group, defined as the group generated by
E>(R) and 1 @ —1. The reader should have no difficulty in writing out the
analogues of (1)—(3) for P(x) instead of E(x), and in this way we obtain for
each A € G E,(R) the standard form

A =la, BlP(ay)...P(a,), ai€R,a,BecU(R), a #0forl <i <n.
(10
We observe that A € E(R) if it is given by (10) with 8 = +o~!. To obtain
explicit formulae for the product in (10) we shall define a sequence of polyno-

mials p, in non-commuting indeterminates #;, f5, . . . with integer coefficients.
The p,, are defined by the recursion formulae:

p-1=0, po=1, (11)

Pn(tl’ LR ] tn) = pn—](t] LR ] tn—l)tn + pn—Z(tla AR ] tn—Z) . (12)

For n > 0, the subscript of p, indicates the number of arguments, and so may
be omitted when the arguments are given explicitly. We shall do so in what
follows and write the subscript only when the arguments are omitted. We assert
that

Pty oosty) Pty tas1)
P(t)... P(t) = . 13
(- Plt) (p(tz,...,t,a p(t2a~~~’tn—l)) (13)

This is clear for n = 1; the general case follows by induction, since on writing
pi = p(t1, ..., 1), p; = p(ta, ..., ti11), we have

(pnl pn2) ([n 1) — ( Pn pnl)
Pyna Pp3/ \1 0 Pyt Py
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From the symmetry of (13) it is clear that the p’s may also be defined by (11)
and
pn(tla RN tn) = flpn—l(fb s tn) + pn72(t3v ] tn) . (14)

Either definition shows that p, may be described as the sum of ##, ..., and
all terms obtained by omitting one or more pairs of adjacent factors #;¢;11. This
mode of forming the p, might be called the leapfrog construction; the number
of terms in p, is f,, the nth Fibonacci number. The first few polynomials are
pr=t, pp=th+1,  p3=tbtz+h+1,
ps =thtsts + it + ity + 314+ 1.

Equivalently, p, may be described as the polynomial part of the formal product
(when expanded):

+ 65+ G+ 1, (15)
From (12) it easily follows that
pn(()’ t27 LR ] tn) == pn—z(t_% AR ] tn)’
pil(]s ..., tn) = p)171(t2 + ]s 13,..., tn) ) (16)
while (14) yields
pn(tla M) [n—la 0) = pn—2(t1» R Zn—z)a
Pn(l‘l’ ceesbn—1, 1) = pn—l(l‘l, ety 1+ 1) (17)

When the #’s are allowed to commute, the p’s just reduce to the continuant
polynomials, used in the study of continued fractions, and we shall use the term
continuant (polynomial) also to describe the p’s in the general case.

It is easily verified that the inverse of P(x) is given by P(x)~! =
P(0)P(—x)P(0); hence the inverse of P(¢;)... P(¢,) is given by

PO)P(—t,)... P(—t))P(0)
0 1 p(—ty, ..., —t1) p(—ty, ..., —h) 0 1
= . (18
(1 0) (P(—ln—l, e, —t) p(=ta1, --.,—f2)> <1 0) (18)
It is clear that
p(_tl,...,_tn):(_l)np(tl,...,tn), (19)
hence (18) reduces to

[P()... Pl = (—1) ("(’""""’2) A “"“)>. (20)

=Py, tr) pltn, ... 1)
Comparing this formula with (13), we obtain



2.7 Generators and relations for G E»(R) 149

Lemma 2.7.2. The continuant polynomials satisfy

(D) p(tr, .. t)pta—ts oo 2) = p(ti, ot )P, - - 12) = (= 1)" and
(ii) p(ti, ..., t)pta—1,.... 1) — p(t1y ..., ta—))p(tn, ..., 1) =0. ]
Of course this lemma can also be proved directly by induction; it corresponds
to the well-known relations between successive convergents to a continued
fraction.
We shall now use these formulae to analyse comaximal relations in G E;-
rings. We recall that in any ring R a relation

ab' = bd’

is called comaximal if there exist ¢, d, ¢’, d’ € R such that da’ — ¢b’ = ad’ —
bc’” = 1. Suppose now that R is weakly 2-finite. Then by Proposition 0.5.6, there
exists A € GL,(R) such that

A=(f f?), A1:<: 7”), @1
a

where the asterisks denote unspecified elements. Similarly, if R is a 2-Hermite
ring, then every relation of comaximality ad’ — bc’ = 1 arises, by Proposition
0.5.6, from a pair of mutually inverse matrices

A= (f f), A = (_dc :) - (22)

This leads to the following explicit formulae for comaximal relations in a G E;-
ring:

Proposition 2.7.3. Let R be any ring and use x, ..., X,, y, Z to denote ele-
ments of R and «, B units in R.

(i) If R is a weakly 2-finite G E,-ring, then every comaximal relation in R has
the form

ap(Xy, .oy X)) PXn—1, -, XDB =ap(X1, ..., Xy ) pXpy o .., X1)B (23)

(ii) if R is a 2-Hermite G E,-ring, then every equation of comaximality can be
written as

ap(X1, -y X)) PXnets -y X2)@” (= 1)
—ap(X1, ey X )P Gy o X2)o (=1 =1 (24)

(iii) if R is a strong E,-ring, then every equation rs = uv, where 1, s are not
both 0 and u, v are not both 0, can be written

X1y ooy X)) Pty v oy, X1)Z = YPX1y oy X )P Xy oo, X1)Z . (25)
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Proof. (i) In a weakly 2-finite ring every comaximal relation ab’ = ba’ arises
from a pair of mutually inverse matrices (21). Since R is a G E,-ring, we can
write A in the form (10):

A=[a, BUPx)) ... P(xn) ., (26)
A7l = P(O)P(—x,)... P(—x))PO)[a™ ", BT, 27)

and now (23) follows on combining (26) and (27).

(ii) This follows similarly from (26), (27) and the form (22) for matrices
arising from a relation of comaximality.

(iii) Since a strong E,-ring is a 2-fir, every relation s = uv is obtained from
a comaximal relation ab’ = bad’, in the form ya.b'z = yb.a’z. The result now
follows by applying (i) and remembering that 2-firs are weakly 2-finite. ]

The significance of this proposition becomes clearer if we make the following
definitions. We recall from Section 0.5 that two elements a, @’ in any ring R are
said to be GL-related if there exists A € GL,(R) such that A has a as (1,1)-entry
and A~! has a’ as (2,2)-entry. If such A can be found in G E,(R) we say that
a, a’ are GE-related. Thirdly, if A can be found in E,(R), then a, a’ are said to
be E-related. This means that A has the form

A=D(@)E(ay)...E(a,) .

Clearly E-related elements are GE-related and GE-related elements are GL-
related. Moreover, by (13) and (20) a, a’ are E-related if and only if there exist
X1,..., X%, € R, € U(R)suchthata = ap(xy,...,x,),d = p(x,, ..., x)a.
By Corollary 0.5.5 we see that a, a’ are GL-related if and only if they are stably
associated. In G E,-rings we further have

Proposition 2.7.4. In a GE,-ring R, for any two elements a,a’ € R, the
following assertions are equivalent:

(a) ais GL-related to d,
(b) ais GE-related to d,
(c) ais E-related to an associate of d'.

Proof. The equivalence of (a) and (b) is immediate. When (b) holds, then by
(10),a = ap(xy, ..., x,),a = p(x,, ..., xl),B’l, whence (c) follows, and the
converse is clear. [ |

In order to compare E-related elements we make use of the following
formulae, which follow from the leapfrog construction of continuants.
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Let xy, ..., x, be any elements of a ring and « a unit. Then we have for odd
n,
-1 -1
pxro, @™ X2, X30, ..., @7 Xpo1, X,@) = p(X1, ..., X, (28)
-1 -1
plax), Xo , 0X3, ..., Xy 10, 0X,) = P(X1, ..., Xp), 29)

while if » is even,

-1 -1
P10, o X, X3+, Xy 10, @7 X)) = PXL, L X)), (30)
plaxy, xzofl, X3, e, OX 1, xnofl) =ap(xg,..., x,,)ofl. 31D

Further, an easy calculation shows that for any n:

pn(xl’ ce ’xn) = Pn+1(x1, ey Xp—1,Xp — 19 1) . (32)

This formula allows us to change the parity of » in any representation of an
element by a continuant, as in the proof of the next result:

Proposition 2.7.5. In any ring R, if a is E-related to a’ and o is a unit, then
(i) aa is E-related to d'«, (ii) aa is E-related to ad’ and (iii) a is E-related to
a~Vad'a; hence aa is E-related to d' «.

Proof. Leta = p(xy,...,x,),d = p(xp,...,x1). Then (i) follows by (28)
if n is odd; if n is even, we can replace it by n + 1, using (32) for a and the
left-hand analogue of (32) for a’, and then applying the preceding argument.
Similarly, (ii) follows from (29). To prove (iii) we first ensure that n is even
(using (32)) and then apply (30) and (31). Now the last part follows because
aa is E-related to .o~ 'a’a = a’a, by (i) and (ii). [ |

We note that this proposition may be used to give another proof of Proposition
7.4. In the case of a free algebra there is a bound on the length of continuant
polynomials for a given pair of E-related elements, which may be stated as
follows:

Proposition 2.7.6. Let a,a’ be two E-related elements in the free algebra
k(X).Thena, a’ have the same degree d, say, and these elements can be written
in the form

a=ap(ay,...,a),d =apa,,...,a1), a €k(X),ack,
wherer <d + 2.

Proof.  The normal form (24) or equivalently, (9) shows that a; may be taken
to be neither 0 nor a unit for 1 < i < r. It follows that the degree of a (and that
ofa’)isd >r —2, whencer <d + 2. ]
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6".

7.

10.

11.

12*,

13*.

14*.

15°.

16*.
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Exercises 2.7

. Prove that p,(xy,...,x,) = pr(xX1, .o s X )Py Kpi1y ooy Xn) + Pro1(Xy, oo

Xr—1)Pn—r—1(Xy42, ..., Xp), foranynand 1 <r <n.

Derive the formulae for P(x) corresponding to (4)—(8), with Q replaced by P =
12 + e31 and D(a) replaced by C(a) = [ar, —a™'].

Verify that (1)—(3) is a complete set of defining relations for G E»(Z), but show that
the standard form (9) is not unique, by finding an expression for E(2)E(—2)E(2)
in terms of E(2) and E(3).

(After Brenner [55]; see also Farbman [95]) Show that the matrices T () and
T (B)" generate a free group if «, B are any real numbers such that o8 > 4.

By considering characteristic polynomials find all pairs of complex numbers u, v
such that (P (u)P (v))" = 1.

. . (x .
Show that in k(x, y, z, t) the matrix (z i} ) cannot be written as a product of

elementary and diagonal matrices.

Let R = A,(k) be the Weyl algebra on x and y over a field k of characteristic
2

not 2. Show that the matrix (i f fcy) is invertible but not in G E,(R). (Hint:

Compute the inverse in k(y)[x; 1,”] and use the filtration by degree for the last

part.)

(Helm [83]) Show that (1)—(3) is a complete set of defining relations for G E»(R)

provided that for any two non-units a, b in R there exists a unit o such that a + «

and b + «~! are units.

In any ring R, prove the identity E(X)E(y)[1,1—yx]=1[1—xy, 1]

x E(0)E(y)E(x)E(0)™!,forany x, y € R suchthatatleastoneof 1 — xy, 1 — yx

is a unit in R.

Show that any local ring R is a GE-ring and that there is a relation of the form

[, BIP(a)P(b)P(c)P(d) = I, where b, ¢ are neither zero nor units, unless R is

a field.

Let R be a totally ordered ring (i.e. a ring with a total ordering compatible with

addition and multiplication by positive elements). Givena,, ..., a, € R such that

a; > 0 for 1 <i < n, show that p(ay, ..., a,) > 0. Show that this still holds if

a; > 0and a; > 0for2 <i < n, provided that n > 2.

Let R be a totally ordered ring such that ¢ > 0 implies @ > 1. Show that R has

a unique standard form (26) for G E, (see Cohn, [66b]), subject to x; > 0, x; >

0(1 <i < n)and when n = 2, xy, x, are not both zero.

Let D be a field with a central subfield £ and put R = D, (x). Find all elements

E-related to x. Under what conditions is an element p of k[x] an atom in R? (Hint:

Note that xp = px and use the natural homomorphism D (x) — D[x] to show

that x cannot be comaximal with any non-unit factor of p.)

By using Exercise 13, show that for any a € k[x], if in D;(x), a = bc, then for

some & € D*ba, ¢ € k[x].

(Bergman [67]) In a free algebra, is every element that is E-related to a square

itself a square? (See Exercise 4.3.10.)

In a free algebra R, show that GL-related elements are E)-related, where EJ is the

derived group of E,(R) (see Cohn [66b], Theorem 9.3).
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17°. (G. M. Bergman) The continuant polynomials may be regarded as providing a
general solution for the equation ab’ = ba’. Find a general solution to the equation
inr + s unknowns ay, ...,a,, by, ..., bs : p(ay,...,a.) = p(by,...,by).

18. (H. Minkowski) Show that any matrix A in SL,(Z) has the form (10) with [«, 8] =
L

19. The Fibonacci series is defined by fo = fi = 1, fu4+1 = fu + fu—1. Express the
entries of P(1)" in terms of the f,.

2.8 The 2-term weak algorithm

We shall now develop the usual Euclidean algorithm, using the 2-term weak
algorithm. In particular, everything that is said will apply to classical Euclidean
domains in which the algorithm is defined relative to a degree-function, as well
as to free algebras, which possess a weak algorithm by Theorem 5.3.

Let R be any filtered ring with 2-term weak algorithm. Given an equation

ab' =ba' £0 (D

in R, if we choose ¢ € R such that v(a — bq) is minimal, we find by an easy
induction (as in Section 1.2) that v(a — bq;) < v(b). Thus

a=bqy+ry, v <vb), )

where ¢, r| are unique, by Proposition 1.2.3. Substituting from (2) into (1),
we find r1b = (a — bg)b' = bla’ — q\V'). If we put r{ = a’ — ¢,’, this may
be written

rib’ = bry| . 3)

By (3) and (2), v(b) + v(r}) = v(r1) + v(d") < v(b) + v(b'), hence v(r}) <
v(b’), so there is complete symmetry (as we know there must be, by Propo-
sition 4.1). It may happen that ; = 0, but by (3) this is so if and only if r| = 0.
If this is not the case, we can apply the same reasoning to (3) and so obtain
the familiar chain of equations of the Euclidean algorithm. More precisely, we
obtain two such chains, one for left and one for right division:

a=bqg+r, a=qb+r;,, rb =br
b=riqga+ry, b =qor]+ry, rry=rrj,

. . o W / A
ry=rnrxqs+ri, r;=4qsry,+ry, Iy, =rr;,

“

Note that whereas the remainders 7;, ] on the two sides are in general dis-
tinct, the quotients g; are the same. The degrees of the remainders decrease
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strictly:

v(b) > v(ry) > v(r2) > ..., vd)>v)) >v0y) > ..., 5)
so the remainders must vanish eventually. Let n be the least integer such that
rny1 = 0. Since 7,17y, = rur, ., it follows that r; | = 0; if we had r; =0

for some k < n, then by symmetry r, = 0, which contradicts the definition
of n. Hence both chains in (4) end at the same step, i.e. 7, 41 18 the first
vanishing remainder of the right-hand division, and the last two rows of

(4) read

. _ . r_ ’ ./ Lo ./
Fn—2 =Tn—1qn + 7 Ty_p =Gqnly_y + 1y, 'nly_1 = T'n—17y,

. . ’ _ L/ . R _
n—1 = nqn+1, rn—l —QH-H’", Fn+1 _rn—H —0

(6)

From (4), (6) and the inequalities (5) we see that v(g;) > Ofor2 <i <n 41,
while v(g;) > 0 if and only if v(a) > v(b).
X

Let us again write P(x) = ( |

1
0), for any x € R. Then we can express

equations (4) and (6) as follows:

(@ b)y=0n 0P@ns1)P(Gn) ... Plq1),

a PP p r @)
<b/)— (q)P(q2) ... (Cln+1)(0>-

These equations make it evident that r,, is a common left factor of a and b and
since the P’s are invertible, it is actually a highest common left factor (HCLF).
Likewise r; is a highest common right factor (HCRF) of ¢’ and #'. In particular
it follows that R is a strong G E,-ring.

In the algorithm (4) the remainders, and hence the quotients are unique,
subject to the inequalities (5), and these inequalities will certainly hold if we
perform the algorithm in the fewest possible number of steps. In this case,
moreover, g, ..., g,+1 have positive degree and when v(a) > v(b), then gq;
also has positive degree. On changing notation and bearing in mind (13) of 2.7,
we thus obtain

Proposition 2.8.1. Let R be a filtered ring with 2-term weak algorithm. If a,
b are right commensurable elements of R, then there are expressions

a=upXi,...,xy),b=upxy,...,x4—1), U, X1,..., X, €R, (8)

and if n is chosen minimal, then x, ..., x,_1 are non-zero non-units and the
expressions (8) for a, b are unique. Moreover, x, is non-zero if and only if
v(a) = v(b), with equality if and only if x, is a unit.
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Proof. 'We need only observe that n can be reduced if x; for some i in the
range 1 <i < n is O or a unit; the uniqueness now follows by the uniqueness
of the remainders. ]

Let us return to the case of a dependence relation (1) between a and b. If (8)
holds, we have of course

a =pk,,...,x)v, b =p,_1,...,x)v forsomev € R*,

so the relation (1) takes the form of (23) of 2.7, with «, B replaced by u, v.

We remark that when ¢, . . ., g,+ are all of positive degree in the algorithm
(4), then the degrees of the remainders must be strictly decreasing. Thus the
expression (8) will also be unique if instead of prescribing n to be minimal we
require xp, ..., X,—; to be non-zero non-units. Thus in every invertible 2 x 2
matrix A we can reduce the first row by (7) and so write A uniquely as

((: 2) P(x1)...P(x,), where xi, ..., x,_1 € R“\U(R),

and where «, 8 € U(R) because A is invertible. Now

C’O)=Mﬂwmww”w,
u B

hence
A = [a, BIPOP(B'u)P(x1)... P(x,),

and this form is unique, with the proviso that the first two P’s are to be
omitted if ¥ =0, or transformed by the relation P(x)P(«)P(y) = P(x +
a HC(a)P(y + a~") (corresponding to (8) of Section 2.7) if  is a unit. Sum-
ming up, we have

Proposition 2.8.2. Any filtered ring R with 2-term weak algorithm is a strong
E,-ring and the standard form for G E,(R) is unique. [ ]

Exercises 2.8

1. Let R = k(xy, x5, ...) be the free algebra of finite or countable rank. Show that
GL,(R) = GLy(k[x]). (Hint: Find a k-linear map that preserves the defining rela-
tions, see Cohn [66b].)

2. Given two right comaximal elements a, b in a 2-fir R, show that the equation ax —
by = f has a solution (x, y) for any f € R. More precisely, prove the existence of
a',b',c,d € Rsuchthatad’ = ba’, ad’ — bc’ = 1 and the general solution (x, y)
has the formx =d'f +b'g,y = ¢’ f + a’g, where g is arbitrary in R.
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3. Let F be a free group. Show that the group algebra kF is a strong E-ring. (Hint: If
F is free on X, show that every matrix over kF is stably associated to a matrix over
k(X), see Section 5.8.)

4*. (Bergman [71a]) Let R be a filtered ring with 2-term weak algorithm and S any
monoid of (ring-)endomorphisms of R. Show that the set of fixed points under the
action of S is a strong E,-ring (see Proposition 6.8.1).

5. In R = k{x,y) show that (1 —xy)R N (1 — yx)R = 0. Does the same hold for
kix,x7 1y, y™H)?

6. In the ring R =k(x,y,u, u~',v) find non-zero elements @, b such that
au~'x = xu='b. (Hint: Putt; = x,t, = y + v, t3 = u and examine the continuant
polynomials.)

7. (C. Reutenauer) In R = Z(X) show that p(a,, ..., a,) and p(a,, ..., a;) have the
same content, as defined in Exercise 5.5. (Hint: Use Exercise 5.5 and apply induction
on n to Proposition 7.3.)

8*. (G. M. Bergman) Show that in a free algebra k(X ) the number of elements E-
related to a given element is finite. [Hint: If a € k(X) has degree d, it is enough
to show that there are only finitely many ways of writing a as p(ay, ..., a,) with
r < d 4+ 2. If not, then the infinitely many distinct sets («, ay, ..., a,) such that
ap(ay, ..., a,) = aform an algebraic subset of a finite-dimensional k-space. Since
its image under the map to ap(a,, ..., a;) is infinite, it contains an algebraic curve
mapping to a curve under that map. Let L be the function field of this curve; some
coefficient of ap(a,, . .., a;) must be transcendental over k and so have a pole. This
means that there is a valuation on L taking a negative value at this coefficient. Now
apply Exercise 7.]

2.9 The inverse weak algorithm

The classical division algorithm, as described for the polynomial ring k[x] in
Section 1.2, depended essentially on the degree-function d(a) defined in this
ring. If instead we use the order-function o(a) defined in Section 1.5, we have
an analogous statement, with the opposite inequality:

Givena, b € k[x] such that o(b) < o(a) < 00, there exist q and a; such that

a=bq+a, ola)>o). (D)

The process can be repeated, but since N has no maximal element, there
is no reason why the process should terminate. However, we can pass to the
completion of the ring k[x], namely the formal power series ring k[[x]]. Here
a repetition of the step (1) leads to a convergent process, and in fact one can
make deductions about divisibility in k[[x]] that are quite similar to (and often
stronger than) the consequences of the classical division algorithm. Indeed,
the ring k[[x]] displays such simple divisibility behaviour that its connexion
with the algorithm (1) is usually forgotten. In the non-commutative case we do,
however, obtain non-trivial results from the ‘inverse algorithm’.
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By an inverse filtration on a ring R we shall mean a function v such that:

IL1. v(x) e Nforx € R*, v(0) = o0,
1.2. v(x — y) > min{v(x), v(y)},
L3. v(xy) > v(x) + v(y).

If equality holds in 1.3, we have an order-function as defined in Section 1.5.
Writing R[,) = {x € R|v(x) > n}, we find that the inverse filtration takes
the form

R=Ro 2R 2Rp2...., RR;j1 € Risj;, NRp=0; (2

we can again form the associated graded ring grR = {gr,R}, where gr,R =
Ri/Rp+1(n =0, 1, ...). To give an example, let R be a ring with an ideal
a such that Na” = 0; then (2) holds with R,; = a”; this is called the a—adic
filtration on R.

In an inversely filtered ring the notions of (strong) v-dependence and (n-
term) weak algorithm can be defined just as in an ordinary filtered ring, bearing
in mind that all the inequalities have to be reversed; we shall refer to it as
the (n-term) inverse weak algorithm. As before, the inverse weak algorithm is
left-right symmetric.

For an inversely filtered ring R we define the inverse dependence number
1y (R) as the greatest integer n for which the n-term weak algorithm holds, or
oo if it holds for all n.

Given a € R*, if v(a) =n, we write @ =a + Rp,4+1] € gr,,R;(_) is not
defined. If R satisfies the 2-term inverse weak algorithm, then gryR = R/Rj)is
a field (and hence Rjj; is a maximal ideal). This means that the following gen-
eral principle applies to such rings; in the case of the ordinary weak algorithm
there is a corresponding principle, which we were able to use without stating it
formally, because in that case our ring actually contained a field:

Lemma 2.9.1. (Exchange principle) Let R be an inversely filtered ring such
that R /Ry, is a field. Givena,a’ € Rand A C R, ifv(a) < v(a’) and a is right
v-dependent on A U {a’}, then either a is right v-dependent on A or a’ is right
v-dependent on AU {a}.

Proof.  For a = 0 this holds trivially; when a # 0, there exist by hypothesis,
a; € AU {a'}, b; € R such that

n
a= Zéil_),- in gr R;
1

thus v(a;) + v(b;) = v(a).Ifnoq; equals a’, this shows a to be right v-dependent
on A. Otherwise let a’ = ay, say; since v(a) < v(a’), we have equality here and
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so v(by) = 0, by € gryR and by hypothesis by is a unit, say b;¢ = 1. It follows
that

and so @’ = ay is right v-dependent on A U {a}. |

The earlier remarks show that this principle holds whenever ©,(R) > 2. By
assuming it explicitly we shall find that some of our results can be extended to
arbitrary inversely filtered rings.

Let R be an inversely filtered ring. The chain (2) may be taken as the neigh-
bourhood base at 0 for a topology on R, and we can form the completion of
R, denoted by R. Explicitly we have R = C /M, where C is the ring of all
Cauchy-sequences in R and 91 the ideal of sequences converging to O (see BA,
Section 9.2, p. 314). The ring R again has an inverse filtration and there is a
natural embedding R — R respecting the filtration; we shall usually take this
embedding to be an inclusion. If this inclusion is an isomorphism, R is said
to be complete; for example, R is always complete. In any case, the induced
mapping of graded rings gr R — gr R is easily seen to be an isomorphism,
hence /Lv(f?) = y(R); thus R satisfies the n-term weak algorithm if and only
if R does.

Frequently R is a local ring; we record a sufficient condition for this to
happen:

Proposition 2.9.2. Let R be a complete inversely filtered ring. Then any x € R
is invertible if and only if its image in R/R(y is invertible, hence R is a local
ring if and only if R/ Ry is. In particular, R is a local ring whenever R /Ry is
a field.

Proof.  Clearly any unit in R maps to a unit in R/Ry;}; conversely, if @ has
a right inverse b, then ab = 1 — ¢, where ¢ € Ry}, so ¢" € Rp,p and Y " is
convergent. Now ab(}_ ¢") = 1, so every element not in Ry has aright inverse.
Letau = 1;thenu ¢ Rjjjandsoua’ = 1forsomea’,anda’ = aua’ = a, which
shows that @ has the inverse u. If R is a local ring with maximal ideal m, then
m 2 Ryy; and so R/Ryyy is a local ring with maximal ideal m/Ry;;. Conversely,
if R/Rpy is a local ring, then any element outside the maximal ideal has an
inverse (modRy;}) and so by the first part, it has an inverse in R, showing R to
be a local ring. Now the last part is clear. |

Before we can apply the inverse weak algorithm we still need two general
reduction lemmas. To obtain the best results we shall take our rings complete:
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Lemma2.9.3. LetRbeacompleteinversely filteredringanda, ay, . .., a, any
elements of R. Then there exist by, ..., b, € R such that v(a;) + v(b;) > v(a)
and a — Y a;b; is either O or right v-independent of ay, . .., a,.

Proof.  Assume that we can find b, ; such that v(b;;) > v(a;) — v(a) and

v (a — Zaib,‘,k> >va)+k.

Ifa — )" a;b; ; is right v-independent of the a;, the result follows; otherwise
we can subtract a right linear combination of the @; of formal order > v(a) + k
to get an element a — Y_ a;b; y41 of order > v(a) + k + 1. If this holds for all
k, then b; ; converges to an element b; by completeness and a = Y a;b;. W

We can now obtain an analogue of Lemma 4.3, but in a much stronger
form. We recall that P,(R) is the subgroup of GL,(R) consisting of all signed
permutation matrices, and write 7'r,(R) for the subgroup of upper unitriangular
matrices, i.e. matrices having 1’s on the main diagonal and 0’s below it. Clearly
Tr,(R), like P,(R), is a subgroup of E,(R).

Lemma 2.9.4. Let R be a complete inversely filtered ring such that R /Ry,
is a field, and let ay, ...,a, € R. Then there exists P € P,(R)Tr,(R) such
that (ay, ...,a,)P = (d},...,a.,0,...,0), where the a] are not strongly right
v-dependent.

Proof. Letaj = a; be any element of least value. Applying Lemma 9.3, we
can modify the a;(j # i) by right multiples of a| so as to make them O or right
v-independent of a{. This can only increase their values, so v(a}) will still be
minimal. Let @), be of least value among the resulting elements other than a/;
by another application of Lemma 9.3 we can make all the elements other than
ay, aj zero or right v-independent of «/, @}. Continuing this process, we get
a sequence a;, d5, . . ., a, that will clearly be the image under a unitriangular
matrix of a certain ordering of ay, ..., a,. Since

v(ay) <v(@y) < ... <v(ay,) .,

by construction, all zeros will occur at the end. Now suppose that some a; is
right v-dependent on the remaining a_’i. By the exchange principle we conclude
that some a_’,- is right v-dependent on those preceding it, but this contradicts
the construction. Hence no &/ is right v-dependent on the rest, i.e. they are not

strongly right v-dependent. [ ]

We now impose the inverse weak algorithm to obtain an analogue of
Theorem 4.4.
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Theorem 2.9.5. Let R be a complete inversely filtered ring with n-term inverse
weak algorithm, where n > 1. Then R is a local ring, a strong E,-ring and an
n-fir. In particular, if the inverse weak algorithm holds in R, then R is a local
ring, a strong E-ring and a semifir.

Proof.  This is clear when n = 1. For n > 1 it follows from Lemma 9.4, by
using the n-term inverse weak algorithm. ]

Weak v-bases for right ideals of inversely filtered rings can be defined as
before (see Section 2.4) and constructed similarly; the definition, the construc-
tion and Lemma 4.7 can all be stated in gr R, using the right ideal of leading
terms of members of the right ideal a under construction. If R is complete and
B is a finite weak v-basis of a, then B is a generating set for a; in the general
case it is no longer true that B generates a but the right ideal generated is merely
dense in a. As in Proposition 4.8 we obtain

Proposition 2.9.6. Let R be a complete inversely filtered ring with n-term
inverse weak algorithm, for some natural number n, and in case n = 1 assume
also that R /Ry is a field. Then R has left and right ACC,,. |

In Section 2.4 we saw that a filtered ring with weak algorithm is a fir (Theorem
4.6). This is not to be expected here; for a ring with inverse weak algorithm we
find instead that it is a kind of ‘topological fir’:

Proposition 2.9.7. Let R be a complete inversely filtered ring with inverse
weak algorithm. Then any right ideal a of R contains a right v-independent set
B such that BR is dense in a.

Proof. Let B be a weak v-basis for a. By the inverse weak algorithm it is right
v-independent and any a € a is right v-dependent on B. It follows that for any
b € B and any natural number £ there exist elements ¢, ; € R such that

v (Cl — Zbcb'k) >k ,
where b runs over B and the sum is finite for any given k. As k — 00, ¢p &
converges to c¢p, say, and we obtain a = ) bc;, in the completion of R. The sum
here may be infinite, but it is convergent in the sense that only finitely many
terms of value < k occur for any £; this just means that BR is dense in a. [ ]

The construction of the monomial right K-basis in the remarks preceding
Theorem 5.1 was essentially carried out in grR and so can be repeated here. But
instead of finite sums we must now allow infinite convergent series of monomial
terms, with coefficients chosen from a set of representatives of R/Ryi;.

From Proposition 9.7 we have (as in Section 2.5)
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Theorem 2.9.8. Let R be an inversely filtered ring. Then R satisfies the inverse
weak algorithm if and only if R /R(1; is a field K and R has a right v-independent
weak v-basis for Ry, as right ideal. In this case, if K is a set of representatives of
K in R (with 0 represented by itself, for simplicity), and X = {x;} is a monomial
right K -basis for Ry}, then any element in the completion R can be uniquely
expressed as a convergent series

Zx;oq, where a; € K , 3)
and where I = (iy, ..., i,) runs over all finite suffix-sets and x; = x;, ...x;,.
Conversely, all such expressions represent elements of R. [ ]

Here the sum (3) is understood to be convergent if for each integer k, the set
{I'lv(x;) < k and «; # 0} is finite. We remark that the finite sums (3) form a
dense subgroup of R.

The most important example of a ring with inverse weak algorithm is the
power series ring in a number of non-commuting indeterminates over a field. We
shall indicate briefly how the inverse weak algorithm can be used to characterize
such rings.

Let R be an inversely filtered K-ring, where K is a field. Then R/Ryy; is a
K-ring in a natural way; if it is equal to K, we shall call R a connected inversely
filtered K-ring. This just means that R = K @ Ryy;.

For simplicity let us take a commutative field k, form the free k-algebra
R = k(X) on a set X and denote by v the usual order-function on R, given by
the terms of least degree. This defines an inverse filtration on R, for which R is
a connected k-algebra. More generally, we may assign different degrees to the
various elements of X; thus we take X = UX; itself to be graded, X; being the
set of elements of degree i (before we had the special case X = X). This is
particularly useful when X is infinite and each X; is chosen to be finite. When
X is graded in any way, we have a function v : X — N.( and the resulting
completion k{(X)) is the power series ring in the graded set X over k.

The power series ring over a field has the following characterization, analo-
gous to the characterization of free algebras in Section 2.5.

Proposition 2.9.9. If k is a commutative field and R a complete inversely
filtered connected k-algebra, then R is a power series ring in a graded set X
over k if and only if R satisfies the inverse weak algorithm.

Proof. If R = k(X)) has an inverse filtration as defined above, then grR =
k({X) and this ring satisfies the inverse weak algorithm; hence the same holds
for R.



162 Firs, semifirs and the weak algorithm

Conversely, if R satisfies the inverse weak algorithm, then by Theorem 9.8,
Ry1; has a right v-independent weak v-basis X; hence the k-algebra generated
by X is free on X and is dense in R. Therefore R is equal to its completion k (X )).

|

Corollary 2.9.10. In a power series ring k(X)) in a graded set X over k, any
closed subalgebra satisfying the inverse weak algorithm is again a power series
ring in a graded set over k. |

Here ‘closed’ refers of course to the topology: every convergent series of
terms in the subalgebra has a sum in the subalgebra.

Corollary 2.9.11. Let R be a complete inversely filtered connected k-algebra,
where k is a commutative field. Then R is a power series ring in a single variable
over k if and only if R # k and for any a, b € R* such that v(a) > v(b), a is
right v-dependent on b.

Proof.  Any ring R satisfying the hypotheses has inverse weak algorithm and
s0, by Proposition 9.9 is of the form k(X)) for some X # &.If X contains more
than one element, say x, y € X, x # y, then neither of x, y is right v-dependent
on the other. This contradicts the hypothesis, hence | X | = 1. Conversely, k[[x]]
clearly satisfies the hypothesis. |

The rings in Corollary 9.11 turned out to be commutative. If we consider
general commutative inversely filtered rings (or even Ore domains), we again
find that the weak algorithm already follows from the 2-term weak algorithm.
Let us define a right principal valuation ring, PVR for short, as an integral
domain R with a non-unit p such that every non-zero element of R has the form
p'u(@r = 0,u € U(R)).When R is commutative, this just reduces to the usual
definition of a PVR as a discrete rank 1 valuation ring. In general these rings
need not be commutative, so that we may have a right (or left) PVR. These
rings arise when the 2-term inverse weak algorithm holds in Ore domains:

Proposition 2.9.12. Let R be a complete inversely filtered right Ore domain.
Then the 2-term inverse weak algorithm holds in R if and only if R is either a
field or a right principal valuation ring.

Proof.  Clearly the 2-term inverse weak algorithm holds in any right PVR,
and it remains to prove the converse. If Rj;; =0, then R = gry R is a field.
Otherwise take p € Ryy; such that v(p) has the least value. Givena € R, a and
p are right linearly dependent by hypothesis, hence they are right v-dependent
and so by Lemma 9.3, either a = pc or p = ac, for some ¢ € R. If a is a non-
unit, then v(a) > v(p), thus in the second case v(c) = v(p) — v(a) < 0, hence
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c is then a unit, so we have in any case @ € pR whenever « is a non-unit. If we
have
-
a=pu, 4

then v(a) > rv(p), hence r is bounded and if we choose it maximal in (4), then
1 must be a unit. Thus R is a right PVR and this clearly satisfies the inverse
weak algorithm. [ ]

A second important case (which actually includes the case of power series
rings in a finite ungraded set) arises from rings with an a-adic filtration. Given
aring R and an ideal a of R, let us write

K =gtyR =R/a, M, =gr,R=a"/a""", (5)

so that K is a ring and M,, is a K-bimodule. We first give a general condition
for gr R to be a tensor ring:

Theorem 2.9.13. Let R be a ring and a an ideal in R. If in the notation (5),
M = M, is free as right K-module and

a®ga=a’ (6)
then the graded ring associated with the a-adic filtration, grR = ®M,,, is a
tensor ring:

grR = K[M].
Proof. Since M = M| = a/a? is free as right K-module, we can take a K-
basis and lift it back to a subset Y of a. This gives amap f : RY) — a, defined
by (ay) = Y_ ya,, such that the induced map f ®x K : K¥) — M, is an iso-
morphism. For each n we have the induced homomorphism

f®g R/a": (R/aM)Y) — a/a™!, (7

which we shall show by induction to be an isomorphism, for all #. This holds
for n = 1, so assume that n > 1 and that (7) is an isomorphism. Applying @ra
to (7), we obtain an isomorphism

f®a/an+l :(a/an-f-l)(Y)_)a@a/an-H ;a®a®R/an

a2 ® R/an o~ a2/a11+2’

1

where all tensor products are taken over R and (6) has been used in the last but
one step. We thus have an exact commutative diagram
0 — (a/a™™HY - (R/a"HD) 5 (R/a)Y) — 0

¥ ¥ i

0— cl2/an+2 s a/an+2 s a/aZ -0
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We have just seen that the first column is an isomorphism, the third column
is an isomorphism by the case n = 1 of (7), hence the middle column is an
isomorphism. So (7) holds with » replaced by »n + 1, and hence for all n.

Thus a/a"*! is free as right R /a"-module, and so the sequence

O—>an_l/un—)R/an

remains exact under the operation a/a"t!' ®p /o — = a ®p —. Hence we have
an embedding

a®za"/a" — a/a"t!. 8)
Here the image is M,, = a”"/a"*!, so we have an isomorphism a @ M,_; =
M,.Since a ®g — = a/a® ®r/qa — = M ®x —, it follows that M ®@x M, =
M,,; therefore by induction, M,, = M®" and the result follows. |

It is easy to derive conditions for the a-adic filtration to satisfy the inverse
weak algorithm:

Corollary 2.9.14. Let R be a ring with an ideal a such that (i) R /a is a field,
(ii) Na" = 0 and (iii) a @ a = a~. Then R satisfies the inverse weak algorithm
relative to the a-adic filtration. In particular this holds for a semifir that is a
local ring with a maximal ideal w, finitely generated as right ideal, such that
nm" = 0.

Proof. By Theorem 9.13, grR = K[M], where K = R/a is a field. Hence
gr R satisfies the inverse weak algorithm, by Theorem 9.8, and clearly the same
holds for R itself. When R is a semifir and a local ring, whose maximal ideal m
is finitely generated as right ideal, then m has a right linearly independent gen-
erating set uy, ..., u,, say. Now the mapping m ® m — m? can be described
as Y u; ® a; —> Y u;a;, where ¢; € m, and this is an isomorphism by the lin-
ear independence of the u’s. Thus (iii) holds as well as (i), (ii) and the result
follows. |

By Corollary B.8 of the Appendix the relation a ®z a = a? holds, for exam-
ple, if a is flat as right (or left) R-module. In Section 5.10 we shall see that in
a fir R any proper ideal a satisfies Na” = 0, and a, being free, is then flat, so
Corollary 9.14 applies to a fir whenever (i) is satisfied.

We note a second case in which the conditions may be applied.

Corollary 2.9.15. Let R be an augmented k-algebra, with augmentation ideal
a, and let V be the complement of a* in a as k-space. If a ®g a = a2, then the
natural map f : k[V] — R is injective.
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Proof.  Write S = k[V] and denote the augmentation ideal in S by b. We
have Nb" = 0, so if f is not injective, then there exists ¢ € b”, ¢ ¢ bt for
some n and cf = 0. Hence ¢f maps to 0 in a”/a"*!, but the induced map
b" /6"t — a"/a"*! decomposes into a sequence of isomorphisms

bn/[]”+l o~ V®n o~ (a/a2)®n o~ an/an+l
which is a contradiction, because ¢ # 0in b"/b"*!. [ ]

We now come to an important relation between a free algebra and its comple-
tion, but some preparation is necessary. We need to deal with row and column
vectors from a ring. The components of such a vector will generally be denoted
by a Latin suffix, thus a has the components @; and a; has the components a;;.
The precise range will be indicated in brackets when it is not clear from the
context. We shall also continue to use the notation ab for the product of a row
a and a column b, thus ab = ) _ a;b;.

Let R C S beapairof rings. Givena € S§", b € 'S, the productab = ) _ a;b;
is said to lie trivially in R, if for eachi = 1, ..., n, either ¢; and b; lie in R or
a; = 0 or b; = 0. Further, the subring R of S is said to be totally n-inert in S if
for all m < n and any families (a,) of rows in §” and of columns (b,,) in 'S
such that @, b, € R for all A, u, there exists U € GL,,(S) such that on writing
d;, = a,U,b), = U""b,, each product a}b), lies trivially in R. If R is totally
n-inert in S for all n > 1, we say that R is totally inert in S.

Theorem 2.9.16. (Inertiatheorem) Anyfree algebrak{X) over acommutative
field k is totally inert in its power series completion k{{X)).

Proof. LetusputR = k(X), R = k({(X)); these rings are inversely filtered by
the order-function v and satisfy the inverse weak algorithm. We now define

Ry ={f € Rlv(f) >0}, Ry ={feR(f) >0},

so that Ry is the closure of Ry in R. By the inverse weak algorithm we
have R/Ry;} = R/Ryy) = k. The set X is a weak v-basis of Ry as right ideal,
moreover Ry is free as right ideal, with X as basis. Clearly X is also a weak v-
basis of Ry}, so each element f € Ryjj can be written uniquely as a convergent
series

f= fox, where f, € R . ©

We note that v(f) > min{v(f,)|fr # 0,x € X} and f € Ryy; if and only if all
the f lie in R and are almost all zero.

Let A C IA?", B C "R be such that AB C R; we may enlarge A, B to be
maximal in the sense that each consists of all the rows (resp. columns) mapped



166 Firs, semifirs and the weak algorithm

into R by multiplication with the other. Then A is a left R-submodule of R”
and B a right R-submodule of " R. Further, the image A of A in (R/ R[I])” = k"
is a left K-space of dimension s, where s < n. By R-column operations on A
(and the corresponding row operations on B) we may assume that A contains
el, ..., es, part of the standard basis for row vectors, while any component after
the first s in any element of A is a non-unit in R, i.e. has positive order.

Consider the case s < n. We claim thatforalla = (ay, ..., a,) € A, a, = 0.
For if not, let us choose a € A so as to minimize v(a,). By adding left R-
multiples of ey, ..., e; to a we may suppose that each a; has positive order.
Hence we can write

a= Zxax, where a, € R". (10)

We claim that all the a, lie in A. For, given b € B, we have Y xa,b = ab € R,
hence a,b € R and by the maximality of A we find thata, € A. By (10) the nth
component of a, must have lower order than a,,. This contradicts the minimality
of v(a,),soa, = Oforalla € A. We can now omit the final componentin A, B
and reach the desired conclusion by induction on 7.

There remains the case s = n. Then R” € A C R" hence B C "R. By sym-
metry we may also assume that the image B of B in ”(IA?/IA?“]) ="(R/R1)) has
dimension n, and so is all of "(R/R[7). If b € B has image b = 0, then in terms
of a left weak v-basis Y of R; we have b = ) byy, where by, € "R and the b,
are almost all 0. As before we find that b, € B, hence

"(R/Rp11) = B =B/BRy) = B ®& R/Ryy - 1D

Now R = k(X) is a fir, so B is a free right R-module, of rank 7, by (11). If we
take any right R-basis of B, we have n columns forming an » x n matrix P over
R. By (11) the columns of P (mod Ry;;) form a k-basis of "k(= "(R/R1})), i.e.
P is invertible (mod R[;;) and hence invertible over R. Now B = P("R), so
P~'B ="R and hence AP = R", as we wished to show. [ ]

We remark that this result holds also for the tensor ring K;(X) and its
completion. If R is a local semihereditary ring and its maximal ideal m is finitely
generated as right ideal, with basis xy, ..., x,, then R satisfies the inverse weak
algorithm relative to the m-adic filtration and R is the power series ring on
X1, ..., X,. Thus we obtain

Corollary 2.9.17. Let R be a local semihereditary ring with a maximal ideal
m and suppose that m is finitely generated as right ideal. Then R satisfies the
inverse weak algorithm relative to the m-adic filtration if and only if "m" = 0;
moreover its completion R is a power series ring in which R is embedded as a
totally inert subring. |
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There are other subalgebras of k(X)) that we may sometimes wish to con-
sider, in particular the algebra of all rational, and that of all algebraic power
series.

The least subalgebra of k(X)) containing X and closed under taking inverses
when they exist in k{(X)) is denoted by k{(X ), and is called the algebra of
rational power series. It is clear that every element with non-zero constant
term has an inverse, hence k(X)) is a local ring. In Chapter 7 we shall
see that k(X)) consists of the components of the solutions u of the matrix
equation

u=Bu+b, BeMKk(X)), be"kX), (12)

where B has zero constant term.

An element f of k(X)) is said to be algebraic over k(X) if it is of the form
f =a+u;, where o € k and u; is a component of the solution u of a system
of equations

up = @iy, .o g, X1, .., X)), I=1...n, 13)

where ¢; is a (non-commutative) polynomial in the #’s and x’s without constant
terms or terms of degree 1 in the u’s. The set of all algebraic elements of k(X))
will be denoted by k(X )).i;. We remark that for commutative rings this reduces
to the usual definition, e.g. k[[x]]. is the relative algebraic closure of k[x] in
k[[x]] (see Exercise 18). The set k{(X)),; may be described in the following
terms.

Theorem 2.9.18. [n the free power series ring k{{(X)), any system (13), where
each ¢; is a polynomial without constant term or terms of degree 1 in the u’s,
has a unique solution with components of positive order, and the set k{{X))aig
is a subalgebra of k{{X)), it is a local ring, the non-units being the elements of
positive order.

Proof.  Denote by u;, the component of u#; of degree v in the x’s. Then by
equating homogeneous components in (13) we find u;, = ¢;,(u, x). Here ¢;,
is the sum of the terms of degree v; by hypothesis, for any term u ;,, occurring
in ¢;;,, we have < v, therefore the components u;, are uniquely determined
in terms of the u;, with u < v, while u;o = 0, by hypothesis. Thus (13) has a
unique solution satisfying o(u;) > O.

fu =¢iw,x)i=1,...,m),v; =¢;w,x)(j=1,...,n) are two such
systems, then to show that u; + vy, u;v; are algebraic, we combine the above
systems of equations foru;, v; withw = ¢ + @1, w = ¢ ¢, respectively. Thus
we have indeed a subalgebra. Further, the system w = ¢ + u;w shows that
(1 — u;)~! — 1is algebraic, hence so is (1 — u;)~" and it follows that we have
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a local ring. For the last assertion take an element f of order 0 in £ {X)) g, say
f=a+u,ack;then f =a(l+a'u), hence f'=ao'(1+a'u)!
and this shows f to be a unit in k{(X)),,. [ |

‘We have the inclusions
(XY Ch{X D C (X Nug C k(X)) -

It is not hard to see that all these inclusions are strict; this is already clear when
|1 X|=1.

In Section 2.5 we defined the notion of transduction for k(X ) and it is clear
how this extends to k{(X)). Let us show that both X {{X )« and k (X)), admit
all transductions. It will be enough to examine the (left or right) cofactor of a
generator x since the cofactor of a monomial can then by obtained by iteration.

Let u; be a component of a solution of (12), where B has zero constant
term, and for a given x € X let p — p’ be the transduction ‘left cofactor of x’.
Clearly the constant term « of u equals that of b, as we see by putting # = « in
(12). Now if # = o + v, where v has zero constant term, then v again satisfies
an equation of the form (12), namely v = Bv + by, where b = b — o + Bo.
Thus we may assume that we have a system (12) in which u has zero constant
term. If we now apply ” we find

u =[Bu+bl=Bu +0,

hence u’ satisfies a system of the form (12) and so is again rational, but of lower
degree than u, so the result follows by induction on the degree.

Next consider the algebraic case. Thus we take u = (u;) to be a solution of
(13), where ¢; contains no constant terms or terms of degree 1 in the u’s. We
modify u by subtracting its linear terms, so that it contains no terms of degree
less than 2. Further we may assume the alphabet X to be finite. Each u; now
has the form u; = ) u;,x, where the u;, have no constant terms, and we can
write ¢; = ) ¢;ju; + Y ¢;x. The equations (13) now take the form

Uiy = Z¢ijujx + Gix -

If we express ¢;;, ¢;, in terms of the x and u;, we obtain a system as before,
except that some of the ¢;, may have constant terms. But this would lead to
constant terms in the u;, and hence linear terms in the u;, contradicting the fact
that there are no such terms. So we have indeed a system of the form (13) for
the u;,, showing that the u;, are again algebraic. This result may be applied as
follows:
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Proposition 2.9.19. Any subring of k{{X)) containing k and admitting inverses
for all elements of zero order and all X-transductions is a semifir. In particular,
k{X N rar and k(X )aig are semifirs.

Proof. Let R be a subring satisfying the conditions and consider a relation in
R:

Za,-bi =0, wherea;,b; €R. (14)

If some a; has a non-zero constant term, it is a unit in R and we can trivialize
(14). Otherwise let p be a monomial of shortest length occurring in any a;, say
in @, and let f — f’ be the transduction ‘right cofactor of p’. Then we have
Za; b; = 0, and here a] has a non-zero constant term «, say, where « is the
coefficient of p in a;; moreover, a; € R by hypothesis. So a; is a unit and this

allows b; to be expressed as a right linear combination of by, ..., b,, therefore
(14) can be trivialized. The rest is clear since, as we have seen, both & (X ))at
and k(X )),; admit transductions. [ |

In Chapter 7 we shall see that k {{X )4 is actually a fir; by contrast k(X)) a,
is not a fir when | X| > 1 (see Proposition 5.9.9).

Exercises 2.9

1. State and prove an analogue of Proposition 4.2 for the inverse dependence number.

2. Investigate rings satisfying the inverse weak algorithm relative to the trivial inverse
filtration.

3. Find an extension of Lemma 9.4 to the case of an infinite family (a;).

4. Investigate a converse for the exchange principle (Lemma 9.1).

5. Verify the inverse weak algorithm for the following rings and their completions:
(i) Z with v = v, the p-adic valuation for a prime p,
(i) k(X), where £ is a field and v is the degree of the least non-zero terms.

6. Show that every complete inversely filtered connected K-ring with an inverse
division algorithm (1) is a power series ring in one indeterminate x, with the
commutation rule

ax = xa® + x%a® + X3a® + ...,

where « is an endomorphism of K and (y, §5, . . .) is a higher «-derivation.
7*. Let A be the group algebra over k of the free group on X and define an order-
function with values in Z U {oo} in terms of the total degree:

dixi'...xiny = Ze,- .

Show that A has a completion A relative to this function and that k{(X)) can be
embedded in A.
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10.

11.

12*.

13.

14.
15.

16°.

17°.

18.

19%.

20",

21°.
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Let R be a complete inversely filtered ring with u,(R) > 2. Show that R* is a
rigid monoid.

Let R be as in Exercise 8. If a, b, a’ € R* are such that v(a) > 0 and ab = bd’,
find u,v € R and r > O such that a = uv,d’ = vu,b=a"u = ua". Show that
for any b € R* there is an order-preserving mapping of the set of left ideals of the
eigenring E(b) into the set of left ideals of R of the form Ra’, where ab = ba’.
Deduce that in a power series ring the eigenring of a non-zero element is an
Artinian local ring.

If X is a finite set, the elements of k(X)) can be described as formal infinite sums
> " x;a;, where x; ranges over all monomials in X. Show that for infinite X this
is no longer true, but when X is countable, there is a ring whose elements are all
formal power series in X, and which is obtained as the completion of k(X ), when
suitable degrees have been assigned to the elements of X. (To extend this result to
arbitrary sets X one would need transfinite degrees.)

(Jooste [71]) Let R be a complete inversely filtered ring with inverse weak algo-
rithm and let d be any derivation of R with kernel N. Show that any family of
elements of N left linearly dependent over R is also left linearly dependent over N.
Deduce that for any family (y;) of elements of N, N N )_ Ry, = > Ny;. Hence
show that NV is a semifir and that R is flat as an N-module.

(Jooste [71]) Show that in any complete inversely filtered ring R with n-term
inverse weak algorithm the kernel N of any derivation of R is an n-fir. (Hint: Use
Exercise 11.)

Show that k(X)) is faithfully flat over k(X ))ra and k(X ))ae. (Recall that a ring R
is left faithfully flat over a subring S if and only if R/S is flat as left S-module; see
Bourbaki [72].)

Show that in a semifir any finitely generated left or right ideal satisfies (6).

Let R = k{(X)) be the power series ring on a countable set X = {xy, x5, ...}.
Show that the set aj,; of all elements of order > n is an ideal in R and that
R =ap Dayy D ... . Show also that ajja;;; C aj4j; (Hint: For example, for
i = j = 1show that ) x;*'lies in apy but not in af;.)

In Theorem 9.13, can the condition on M, (to be free) be omitted, or replaced by
the condition that M, be projective?

Investigate inversely filtered k-algebras with inverse weak algorithm which are
not connected.

For any commutative field k, show that k[[x]],, is the rational function field k(x)
and k[[x]]ag is the relative algebraic closure of k[x] in k[[x]].

(G. M. Bergman) In k{(x, y)) consider the subalgebra S generated by x, y and
z =) x"y". Show that the augmentation ideal of S has a 2-element weak v-
basis, even though it is free of rank 3. (Hint: To show that x, y, z are right
linearly independent, take a relation and apply a transduction with respect
to x.)

(G. M. Bergman) In k{x, y)) define z as in Exercise 19, let T be the subalge-
bra generated by x, y, xz and T be its completion. Show that T is not 1-inert
inT.

(G. M. Bergman) Let R be a free algebra and R its power series completion. If an
element of R is a square in R, is it associated (in R) to the square of an element
of R?
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22°. (G. M. Bergman) Let A = R[¢] and put a = (> + 1)A. Show that the a-adic
completion is C[[x]], where x = t> — 1. What is the completion of R{s, ), when
a is the kernel of the homomorphism to the quaternions, mapping s to i and ¢ to j?

2.10 The transfinite weak algorithm

In Section 1.2 we saw that the classical division algorithm can be defined for any
ring R with a function from R to N, or more generally, for any ordinal-valued
function. However, in defining the weak algorithm we used the additivity of
the values v(x) in an essential way, and so were limited to N. Nevertheless,
the definition of the weak algorithm can be modified so as to apply to ordinal-
valued functions. The resulting notion is not left-right symmetric (in contrast to
the ordinary weak algorithm); this makes it suited for studying rings that lack
left-right symmetry in some respect. Instead of filtrations we need to study
more general functions whose precise form is suggested by Theorem 1.2.2.

Let R be a ring with a function w defined on it, satisfying the following
conditions:

T.1. w maps R* to a section of the ordinals, w(1) = 0, w(0) = —1,
T.2. w(a — b) < max{w(a), w(b)},
T.3. w(ab) > w(a) for any b € R*.

From T.3 it follows that R must be an integral domain. Moreover, Proposition
1.2.3 shows that when a division algorithm of the forma = bq + r, withw(r) <
w(b) exists, then the remainder r is unique.

We shall refer to a function w satistying T.1-T.3 as a transfinite right degree
function on R and call w(a) the degree of a. Given such a function w on R, we
shall say that a family {a;} of elements of R is right w-dependent if some a; is
0 or if there exist elements b; € R, almost all 0, such that

w (Za,b,-) < max;{w(a;b;)}.

Otherwise the family {a;} is called right w-independent. An element a € R is
said to be right w-dependent on a family {a;} if a = O or if there exist b; € R,
almost all 0, such that

w (a — Za,b,-) < w(a), w(a;b;) <w(a)foralli. €))]

Otherwise a is right w-independent of the a;. If in (1), b; # 0, then w(a;) <
w(a;b;) < w(a); hence in any dependence (1), a is already right w-dependent
on the a; of degree < w(a). We also note that a is right w-dependent on the
empty set if and only if a = 0.
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Now strong right w-dependence is defined as for degree-functions. Again
we see that any strongly right w-dependent family is right w-dependent and we
have the:

Definition. A ring with a transfinite right degree w is said to satisfy the
transfinite right weak algorithm if any right w-dependent family is strongly
right w-dependent.

We emphasize that in contrast to the case considered in Section 2.4, the
transfinite weak algorithm does not possess left-right symmetry. In what follows
we shall only be concerned with right w-dependence and so we often omit the
qualifying adjective.

Let R be a ring with a transfinite right degree w satisfying the transfinite
weak algorithm; it follows as before that the set K = {x € R | w(x) <0} is
a field. Given a right ideal a of R, let us well-order the elements of a in any
way so that elements of smaller degree precede those of larger degree and omit
any element right w-dependent on earlier ones. The resulting set B is a right
w-independent basis of a, for it is clearly a generating set, and if w(}_} a;b;) <
max; {w(a;b;)} where a; € B and the a; occur in the order ay, ..., a,, so that
w(ap) < ... < w(a,), then by the transfinite weak algorithm, for some i,

i—1

a; = Zajcj +al, where w(a)) < w(a;) . )
1

Hence a; is right w-dependent on earlier elements, contradicting the fact that
a; € B. Thus B is right w-independent, and a fortiori right R-linearly indepen-
dent, hence a basis of a. To show that R has IBN, suppose that a is generated

byai, ..., a,, where w(a;) < ... < w(a,) say, and that these elements are lin-
early dependent. Then (2) holds for some i and we can replace a; by a;. By
induction on the n-tuple (w(ay), ..., w(a,)) we find that a can be generated by

fewer than n elements, hence by Theorem 3.1, a has unique rank and so R has
IBN. Remembering Theorem 2.3, we obtain

Theorem 2.10.1.  Any ring with a transfinite right degree function w satisfying
the transfinite right weak algorithm is a right fir, and hence has right pan-ACC.
Moreover, every right ideal has a right w-independent basis. |

To obtain examples of this construction we shall take certain monoid rings
and we begin by looking at the monoids that we shall need. Let S be a conical
rigid monoid with right ACC;. On S we can define a partial preordering by left
divisibility:

u < vifand only if v = us for some s € S. 3)
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Since S has cancellation and is conical, this is in fact a partial ordering and it
satisfies the DCC by the right ACC; on S. Moreover, for any s € S, the lower
segment determined by s, i.e. {x € S | x <} is totally ordered, by rigidity,
and hence by ACC; is well-ordered and so is order-isomorphic to an ordinal
number, which we shall denote by w(s) and call the transfinite degree (defined
by left divisibility). From the definition it is clear that we have

w(u) < w(v) implies w(cu) < w(cv), foru,v,ce s, “4)

w(b) < w(c) implies w(bu) < w(cu), forb,c,uecS§. 5)
Now consider the monoid ring R = k£S; we extend w to R by putting
w (Z Ass) = max{w(s)|r; # O}.

As usual, by aleading term of a € kS we mean a term of highest degree. Then it
is easily seen that (4), (5) still hold for b, ¢ € kS, u, v € S. Moreover, it is clear
that T.1 and T.2 hold, and T.3 also follows, forifa = ) A;u;, b =) p;v; and
w(ab) < w(a), let u; be a leading term of a. Then w(ab) < w(u) < w(uv;)
for all j; thus each term uv; must be cancelled by a sum of other terms u; vy.
Choose j so that v; is not a right factor of any vy; we have uv; = u; vy, where by
the choice of u (and rigidity) u; = u;s, s # 1, hence v = sv;, acontradiction.
Thus we have indeed a transfinite degree function. We claim that it satisfies the
right transfinite weak algorithm.
Letay, ..., a, be aright w-dependent family; thus

w (Z a,-bi) < max;{w(a;b;)} . (6)

If one of the a; is 0, there is nothing to prove, so we may exclude that case. We
again suppose the a¢; numbered so that

w(al) <...= w(an) . (7)

We shall show that some «; is right w-dependent on ay, . .., @;—;. By omitting
superfluous terms we may suppose that

w(a1by) = ... =wl(a,b,) =a.

Since cancellation holds in S, the left cofactor of an element « in a product vu is
well-defined, and for a given u € S we can define the left transduction @ — a*
in R, where forany a € R, a* is the left cofactor of u,i.e.a = a*u + ..., where
dots denote products not ending in u.

We shall need two properties of transductions.

Lemma 2.10.2. Let S be a conical rigid monoid with right ACC and let
R = kS be the monoid algebra with the transfinite degree function w defined
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by left divisibility. Given u € S, u # 1, let * denote the left transduction with
respect to u. Then

(i) foranya,b € R,
(ab)* = ab™ + terms of degree < w(a), 8)

(ii) if a, b, c € R, where c includes u among its leading terms, and w(a) <
w(bc), then w(a*) < w((bc)*).

Proof. (i) By linearity we need only check this claim when b € S. If b = tu
for some ¢ € S, then ab = atu and so (ab)* = at = ab*, hence (8) holds then.
Otherwise we have u = tb, for some t € S, t # 1, by rigidity. Now write a =
ai + ay, where a; is the sum of all terms A;s occurring in a such that sb has u as
a right factor. Then a;b = cu = ctb for some ¢ € R. Hence (ab)* = (a1b)* +
(a2b)* = ¢, b* = 0and w(c) < w(a;) < w(a), so (8) is again satisfied.

(ii) Write @ = aju + a,, where no term in a, has u as aright factor. Then a* =
ai, (bc)* = b+ lower terms and w(a u) < w(a) < w(bc) = w(bu), where we
have used (4). Hence by (5) w(a™) = w(a;) < w(b) = w((bc)*), as claimed in
(ii). [ |

We shall apply the lemma to (6), where (7) is assumed to hold. Among the
leading terms of b,, pick one, u say, which is not a right factor of any other
leading term of b,; it is clear that u cannot be a right factor of any non-leading
term of b,. Denote the coefficient of u in b, by A. If * is the left transduction
with respect to u, then by (8) we have

Za,—b;" = (Z a,—b,-)* + terms of degree < w(a,) . 9)

Since w(}_ a;b;) < w(ayb,) and (a,b,)* = Aa,+ terms of lower degree, it
follows by (ii) of Lemma 10.2 that w((}_ a;b;)*) < w(a,), and with (9) this
shows that w(}_ a;b]) < w(ay,); since b} = A # 0, this shows a, to be right
w-dependenton ay, ..., a,—;, and so we obtain

Theorem 2.10.3. Let S be a conical rigid monoid with right ACC. Then the
monoid algebra kS satisfies the right transfinite weak algorithm relative to the
partial ordering by left divisibility, and hence is a right fir. [ |

As an example to illustrate Theorem 10.3 consider the monoid S generated
by y, xi(i € Z) subject to the relations

yxi=xi1 (€Z). (10)
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It is easily checked that the elements of S can be uniquely expressed in the form
Xip...x;,y", wherei, €Z, r,m=>0. (11)

Clearly S is conical, the form (11) of its elements shows that it is rigid and we
have

m n
Xip o X, YIS DX x YIS

ifandonlyifr <s,i, = j,(0p =1,...,7r), m < n; this shows that right ACC,
holds in S. Therefore Theorem 10.3 can be applied to show that the monoid
algebra R = kS is a right fir, but it is not a left fir, because the left ACC; does
not hold in R:

Rxo CRxi CRxy C....

We note that y is right large in R, in fact we have Ry C yR, i.e. y is right
invariant in R.

Exercises 2.10

1. Show that in a ring with right transfinite weak algorithm any element of degree 0
is a unit and any element of degree 1 is an atom.

2. Let F be the free group on x and y and let T’ be the submonoid generated by y and
all elements y™"x(n =0, 1,2, ...). Verify that T is isomorphic to the monoid §
defined after Theorem 10.3. Carry out the proof that this monoid has right ACC;.

3. LetRbearing with right transfinite weak algorithm. If p € R is anelement of degree
1 and a is a proper right ideal containing p, show that a has a right w-independent
basis including p.

4. Prove an analogue of Lemma 4.7 for the transfinite degree function.

5. Show that the only non-trivial monoid with right cancellation in which (3) is a
well-ordering is N. What are the monoids with this property but instead of right
cancellation having left cancellation? (See Cohn [61a]).

6°. (Samuel [68]) Let R be a commutative ring with transfinite algorithm. Does R
necessarily have an integer-valued algorithm? What is the answer if the residue-
class field (mod p), for every atom p, is known to be finite?

7. Let R be the ring defined at the end of Section 2.10 (with the defining relations
(10)). Show that the cyclic left R-module R/Rx, is Artinian but not Noetherian
(see Cohn [97D]).

8*. Let S be the monoid on x;, y;, z(i € Z) with defining relations x; = zx;_, y; =
zy;—1. Show that the monoid ring R = kS is a right fir, but that the lattice of
principal right ideals containing x; R is not complete.

9. (Ced6 [88]) Let M be the monoid generated by x, y subject to the relation yxy = x.
Show that M is conical and rigid, but that the monoid algebra kM is not a semifir.
(Hint: Use the relation (1 — x)(1 — y) = (1 — y)(1 4+ xy) in kM.) Does left or right
ACC, hold in kM?
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2.11 Estimate of the dependence number

Many situations require counter-examples in the form of an n-fir that is not
an (n + 1)-fir. Usually it is easy to see that the proposed example is not
an (n + 1)-fir, but it is less easy to prove that it is an n-fir and our aim in
this section is to derive a result that in certain cases allows the dependence
number to be estimated and hence shows the given ring to be an n-fir for
appropriate 7.

For example, to construct aring that is weakly n-finite but not weakly (n + 1)-
finite, one would take a k-algebra R on 2(n + 1)*> generators a; i bi, j =
I,...,n+1) and form matrices of order n + 1, A = (a;;), B = (b;;) with
defining relations

AB =1. 6]

Theorem 11.2 below shows R to be an n-fir and hence weakly n-finite. If it
were an (n + 1)-fir, it would be weakly (n + 1)-finite, but that is not so, since
in R we have

BA#1. (@)

Intuitively it is clear that the relation (1) does not entail the relation BA = I, and
this can be made into a rigorous proof using a normal form argument. Another
method is to interpret A, B as endomorphisms of a free left R-module V of
infinite rank. We take a basis {u,;} of V indexed by N x {n + 1} and define
linear mappings «, 8 of V into itself:

> objjuy_y; ifv>0,
Wi = dijliyirj,  Unif = {O jPijtv=1j e

Then it is easily verified that «8 = 1, S # 1; since R can be represented in
End(V') by mapping A — «, B — S, it follows that BA # I.

Let R be a k-algebra (k a commutative field), generated by a set U; thus if
F =k(U),wehave R = F/a, where a is the ideal of relations holding in R. On
F we have the usual degree-function d(f). Let us write a > a for the natural
homomorphism F — R and define a filtration v on R by

v(r) = inf{d(a)la = r}.

Givenr, s € R,choosea, b € F suchthata =r, b = sandv(r) = d(a), v(s) =
d(b). Then

v(r + ) < d(a + b) < max{d(a), d(b)},
v(rs) < d(ab) = d(a) 4 d(b).



2.11 Estimate of the dependence number 177

Hence we obtain
v(r +5) < max{v(r), v(s)}, v@rs) <v@)+ v(s);

clearly v(1) =0, so v is indeed a filtration on R. For any a € F we define
v(a) = v(a). Then it is easily seen that v is also a filtration on F.

Consider a set of defining relations for R. If one of them is linear, say
Soju; +B=0(u; € U,q;, B € k), then we can use it to eliminate one of the
generators u;, because £ is a field. Thus we may assume that there are no linear
relations. We shall take the generating set U to be of the form U = X UY,
where X is indexed by N x I : X = {x,,;}; the elements of X have degree 1,
while those of Y have degree &, where § is a small positive number whose exact
size will be fixed later. The defining relations of R are all taken to be of the form

ZXU,'XW' :b,‘j, (3)
0

where b;; is an expression in the members of Y. The relation (3) is assigned the
index (i, j). Now § is chosen so small that the total degree of b;; is less than 2.

Eachelement f € F = k(U) is a polynomial in U. It is said to be in reduced
form for the suffix 0, briefly 0-reduced, if no term in f contains a factor xo; xo;,
for any of the defining relations (3). Any f € F can be brought to O-reduced
form by applying the moves

XoiXoj —> bij — vaixvj “4)
v#£0

arising from (3), whenever possible. It is clear that for any f a O-reduced form
is reached in a finite number of moves. In general there may be more than one
such reduced form for a given f; if for each f € F there is just one O-reduced
form, we shall call it the normal form of f (for the suffix 0), and we also say that
a normal form for the suffix 0 exists. Similarly, for each suffix u = 1,2,...,n
a p-reduced form and a normal form may be defined, using instead of (4) the
moves

X i Xy j [ b,’j — E XviXyj - (4M)
VFEL

The normal form of f for u, when it exists, will be denoted by [ f],,.
We can now give conditions on a presentation for the n-term weak algorithm
to exist:

Theorem 2.11.1. Let R be a k-algebra generated by a set U = X UY , where
X ={x,}@ el,v=0,1,...,n), with a set of defining relations indexed by
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some subset of 1*:

n
E XyiXyj = bij ,
v=0

where b;; is an expression in the elements of Y. Further, assume that a normal
form exists for each n =0, 1, ..., n satisfying N,: For any u,v,w € U, if uv
is v-reduced, then the terms of highest value in u[vw], are in normal form
forv.

Then L,(R) > n; thus R satisfies the n-term weak algorithm and hence is an

n-fir.

Proof.  Let us write
H" ={f € Rlv(f) =r}.
We have to prove that the n-term weak algorithm holds; thus if
Hgr+ ot fugn =0mod ™), v(fo) + v(ga) =1, ®)

where m < n, we have to show that some g, is left v-dependent on the g’s of
value not exceeding v(g).

In order to reduce (5) we shall work with the normal form for the suffix 0
and therefore write [ f] for [ f ]y in what follows. We shall also need to make use
of transductions: given f € R and u € U, we shall denote the right cofactor of
u in the expression [ ] by (“f).

We note that under the given hypotheses N, actually holds for any u, v, w €
R. By linearity we need verify this only when u, v, w are products of generators.
Now the reducibility of a product f.g, where g is a reduced monomial with
leftmost factor x,,; depends only on 1 (whether i = v) and on j (whether there
is a relation (i, j) such that f has a rightmost factor x,;), but (4,) shows that
the terms of highest value resulting from a reduction have the same ‘left-hand
data’ as the original word.

Now return to (5): if v( f,) = O for some «, then f;, is a unit and the result is
clear; so we may assume that v(f;,) > O for all . We take the terms of highest
value in f,, and g, in normal form; put v(f,) = s and let

fo= uC'f) mod ™) (u € U) ©)

be the expression of f,, in normal form (mod terms of lower value than v( fy)).
Inserting this expression in (5), we obtain a congruence that may be written as

D ul(* fu)ga] = 0 (mod H™ ™). (7)

u
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Ifv(f,) > 1 forall «, then the left-hand side of (7) has all its terms of highest
value in normal form, for there can be no reduction in u[(* f,)g.] unless this
was already possible in f;,, by Ny. From the uniqueness of the normal form it
now follows that the coefficient of each « in (7) must vanish, and going back to
the original form of this coefficient we find that

Y (“fu)ga =0 (mod H" 7). ®)

Now the result follows by induction on r.

There remains the case where for some «, say « = 1, v(f1) = 1 and fg; is
not O-reduced. This means that for some i € I, say i = 1, f; contains a term
Xo1 and xo1 g1 is not O-reduced. Let us write

fo=x01(" fa) + fh )

and

ga—Zxo, " ga) + 8- (10)

Substituting from (9) and (10) into (5), we obtain
Z (X()l(‘m f(x + f (Zxoj ga + ga) = 0 (mod H"*l) ]

Now reduce the terms of the first sum and equate the terms of value » with xg;
as left-hand factor. We may assume the f,, so numbered that (*! f;,) has value
Ofora =1,...,s and positive value for « > s. Then, since

Xo1Xoj = — E Xp1Xyj + by,
v

we have
ZZ (" f5) (vorxui (" g6) + boj (' 25) +Zx01 (" f5)g
p=lv=1 |
+ Z xo1(" )8y + Y faga =0 (mod H'™).
y=s+1 a=1

Equating cofactors of x¢; we find

S

Y ("Mfe)ep+ D (U fy)gy =0 (mod H ). (11)

p=1 y=s+1
Now by hypothesis (**! f1) is a non-zero scalar, A say; write

g =g +1/2 (Z (" fo)es + D (X(”fy)gy> : (12)

p=2 y=s+1
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so by (11), on putting A~ (*' f5)(* gg) = h s, we find

g = Zxo_/h_/ﬁ + terms of lower value. (13)
Bj

Now (12) represents an elementary transformation of the g’s that does not
affect g, for o # 1. Hence if f1g; is not O-reduced, we can by an elementary
transformation bring g; to the form g} given by (13) without disturbing the
other g’s. Since the xg; are all distinct, f1g; is now p-reduced for any suffix
u # 0. Next take . = 1; as before there is a term f,, g, that is not 1-reduced.
By what has been said, « # 1 and after suitable renumbering of the f’s and g’s
we may take o = 2. The same argument now shows that there is an elementary
transformation bringing g» to the form g5 = " x;;h jg+ terms of lower value,
without disturbing the other g’s. By induction on # we may therefore suppose
that gg is replaced by

gz = Zx,g_ljhﬁiy + lowerterms (8 =1,...,¢t — 1). (14)

Now some f, g, isnotreduced. Thismeansthata # 1, ..., t — 1 and by renum-
bering the f’s and g’s we may take o = ¢. As before we can bring g, to aform g;'
given by (14) without affecting the gg(B8 # ¢). This applies forr = 1,2, ..., m
and since m < n, we eventually reach a contradiction. So we are reduced to the
first case and the result follows. |

The hypotheses of Theorem 11.1, although rather cumbersome to state, are
quite natural ones holding in many cases, and when they do hold they are
usually easy to verify. We shall do so in one important case, that of matrix
reduction, which was discussed in Section 0.2. We recall that 253,,(R) is obtained
by regarding the elements of R as n x n matrices.

Theorem 2.11.2. Let R be a non-zero k-algebra (k a commutative field). Then
W, +1(R) has a filtration v for which the n-term weak algorithm holds.

Proof. It is clear that there is a natural homomorphism A : R — §,+1(R) =
Ri9M,41(k). The elements of R will be denoted by a, b, etc. and their images
al, b (which are matrices) by (a,.), (b,,), etc. Our task is to establish the n-
term weak algorithm on 20,1 (R) relative to a suitable filtration. The defining
relations of R may be taken in the form ab = c. As a matrix equation this reads

E arbys = Cps
v

and this is of the form (3). If we regard the moves (4) as a ‘straightening
process’, we see that every expression can be O-reduced, by an induction on the
number of ‘bad’ factors a,bo,. To show that we actually get a normal form we
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have to check that for any expression containing two ‘bad’ factors the results
of the two ways of reducing them can themselves be reduced to a common
value, and here it is clearly enough to consider the case where the two factors
in question overlap (this is in effect an application of the diamond lemma, see
Bergman [78a] or FA, Section 1.4). Thus we have to examine products of the
form a,obgocos. If we add certain (uniquely reducible) terms, we obtain

E ar,ub;wcvs P

and here we can reduce either the first pair of factors and get ZV (ab),,c,s, which
by a further reduction gives (abc),s; or reducing the second pair first we get
3 uAru (bc),s, which againreduces to (abc),s. Thus we get equality (essentially
by the associative law) and this establishes the existence of a normal form for
the index O; the same argument holds for u =1, ..., n.

It remains to verify N,; again we need only consider Ny. Thus uv is 0-
reduced, so a typical term will be a;,,b,,, where ., v are not both 0 if ab occurs
in a defining relation. If vw is not reduced, then p = 0 and w will have the form
Coo» SO [DyoCoo] = (BC)vo — ), £0 by Cvo and when we multiply on the left by
ay,, itremains O-reduced because w, v are not both 0. Thus all the conditions of
Theorem 11.1 are satisfied and so the n-term weak algorithm holds in 27,1 (R).

|

Instead of interpreting the elements of R as square matrices of order n + 1
we can also take them to be rectangular matrices. Thus if each generator u
is interpreted as an n, x m, matrix, where the numbers »n, m are such that the
defining relations, as matrix expressions, make sense, and if further, m,,, n,, > n,
then the resulting ring again has n-term weak algorithm. The proof is essentially
the same and so is left to the reader.

It is clear from Theorem 11.2 that the ring described at the beginning of this
section (with matrices A, B of order n + 1 satisfying (1) and (2)) is an n-fir.
In the same way we can construct a ring over which every finitely generated
module can be generated by n elements, but where n cannot be replaced by
n — 1. We need only take an (n + 1) x n matrix A and an n x (n + 1) matrix
B with the relation

AB =1. (16)

By Theorem 11.2 the resulting ring U, ,+; is an (n — 1)-fir, hence weakly
(n — 1)-finite, but from Section 0.1 we know that on writing R = U,, 41, we
have R" = R"*! @ P for some R-module P, hence RN = RN*! @ P for all
N > n and it follows that every finitely generated R-module is n-generated.
However, R" cannot be generated by fewer than n elements, because R is weakly
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(n — 1)-finite. Here the remark (on rectangular matrices) following Theorem
11.2 is not needed since the relation (16) can be written A’ B j = 8;j, where Al
is the ith row of A and B is the jth column of B. However, this remark is needed
for the next example.

Let A be m x n and B be n x m and consider the ring R = V,, , with gen-
erators a;,, b;; satisfying

AB =1, BA=1L

If m < n, R is an (m — 1)-fir but does not have IBN; in fact it may be shown
to be of type (m, n — m) (see Exercise 2 below).

Exercises 2.11

1. Prove Theorem 11.2 when the generators are interpreted as rectangular matrices.

2. If V,,., (as defined in the text) is of type (k, k), show that m > h, n = m (mod k).
Use the fact that V), , is an (m — 1)-fir to show thatm = h. (The factthatk = n —m
can be shown by a trace argument, see Cohn [66a] or Corner [69].)

3. (Bowtell [67a]). Let A be n x m and B be m x n, where n > m > 2. Consider the
ring R with the entries of A, B as generators and defining relations (AB);; = 0 for
i #j,i,j=1,...,n. Show that R is an (m — 1)-fir but is not embeddable in a
field. (Note that Theorem 11.2 does not apply as it stands.)

4. (Klein [69]) Let A be n x n and consider the ring R generated by the entries of
A with defining relation A”*! = 0. Show that A" # 0 and that R is an (n — 1)-fir.
Apply Theorem 3.16 to deduce that R cannot be embedded in an n-fir.

5. Let A,, B,(v=1,2,...) be n x n matrices and consider the ring generated by
their entries with defining relations

Avfl - AvBu(V = 1, 2, .. )

Show that R is a semifir and that each A, is non-invertible. Moreover, show that
Ay(R) = n — 1 and deduce that R satisfies right ACC,_; but not ACC,.

6. Let A be n x n and consider the ring R generated by the entries of A with defining
relation A2 = A. Show that R is an (n — 1)-fir but that there is an n-generator
projective module that is not free.

7. Construct an (n — 1)-fir with an n-generator module that is stably free but not free.

8. (Montgomery [83]) Let k be a commutative field and £ = k(«) a simple commuta-
tive extension of degree n + 1, with minimal equation X rax"+ . Fa =
Ofor o (a; € k). LetR be the k-algebra generated by xo, xy, ..., X,, Yo, - .., Y, With
defining relations obtained by equating the powers of o in (}_ x;0)(}_ y;a/) = 1.
Show that R is weakly n-finite but that R ®; E is not weakly 1-finite.

9. (Malcev [37]) Let A, B be 2 x 2 matrices and consider the ring R generated by
their entries with defining relations AB = ej;. Show that R is an integral domain
but is not embeddable in a field. Show that R is not embeddable in a 2-fir. (Hint:
Use the partition lemma.)
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10. (M. Kireczi) Use Exercises 2 and 0.1.16 to show that there is no homomorphism
Vi, = Vp,whenr > 1,1 <m < n.

Notes and comments on Chapter 2

The generalities on hereditary rings were for the most part well known. Thus Corollaries
1.2 and 1.3 (without reference to k) occur in Cartan and Eilenberg [56], p. 13, see also
Guazzone [62]; the proof of Theorem 1.1 is modelled on these cases. Kaplansky [58]
proved that for any ring, every projective module can be written as a direct sum of
countably generated modules, and he deduced a commutative form of Lemma 4.7: over
acommutative semihereditary ring every projective module is isomorphic to a direct sum
of finitely generated ideals. This was proved for left modules over a /eft semihereditary
ring by Albrecht [61] and over a right semihereditary ring by Bass [64]. Both results are
included in Theorem 1.4, which is taken from Bergman [72b].

Firs, i.e. free ideal rings, and semifirs (originally called ‘local firs”) were introduced in
Cohn [64b]; the account in Sections 2.2 and 2.3 is based on that source and on Bergman
[67]. The partition lemma 3.15 is taken from Cohn [82a]; it is used mainly in Chapter 7.
The notion of n-fir arose out of an idea in Cohn [66a], which leads to a general method
of constructing n-firs that are not (n + 1)-firs, see Cohn [69c], Bergman [74b] and SF,
Section 5.7. The generalization to a-firs is due to Bergman [67], who proved Proposition
3.20, generalizing the fact (proved by Cohn [67]) that any left fir has left pan-ACC. The
fact that free modules over firs satisfy pan-ACC can be viewed as a result in universal
algebra (see Baumslag and Baumslag [71]). The characterization of local rings that
are semifirs (Theorem 3.13) is taken from Cohn [92a]. Theorem 3.14 first occurs in
Cohn [66¢]. We remark that the hypotheses of Theorem 3.14 are symmetric and show
incidentally that for a projective-trivial ring, ‘left semihereditary’ is equivalent to ‘right
semihereditary’. For general rings this is no longer so, as an example in Chase [61]
shows. Klein [69] has proved that for any integral domain R over which every nilpotent
n X n matrix A satisfies A" = 0, the monoid R* can be embedded in a group. Thus
Proposition 3.16 can be used to prove that the monoid of non-zero elements in any semifir
is embeddable in a group. This holds more generally for any 2-fir (see Gerasimov [82]).
For an application of Proposition 3.21 see Jensen [69]. Prest [83] has shown that for any
existentially complete prime ring R, every non-zero finitely generated projective module
is isomorphic to R; thus such a ring is a ‘metasemifir’ of type (1,1) (see Exercise 1.9).

2-Firs were defined (under the name ‘weak Bezout rings’) and studied in Cohn
[63a]; the present (weaker) form of their definition is due (independently) to Bergman
[67], Bowtell [67a] (see Exercise 3.1.5), Williams [68a] and for right Bezout rings (i.e.
rings in which every 2-generator right ideal is principal), Lunik [70]. This observation is
essentially Theorem 3.7 (a) = first part of (b). Commutative Bezout domains are studied
(under the name ‘anneau de Bezout’) by Jaffard [60] and Bourbaki [72], Chapter 7; the
name is intended to convey that any two coprime elements a, b satisfy the ‘Bezout
relation” au — bv = 1.

The notion of a weak algorithm was introduced by Cohn [61a, 63b] as a simplified
and abstract version of what was observed to hold in the free product of fields (Cohn
[60]). It was rediscovered by Bergman [67] and later greatly generalized in the coprod-
uct theorems of Bergman [74a] (see SF, Chapter 5). Our presentation is based on all
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these sources; in particular the original definitions have been modified as suggested by
Bergman [67] so as to be closer to the usual notion of dependence; the term ‘strong
dependence’ is new (it was first used in IRT). The n-term weak algorithm was intro-
duced by Cohn [66a, 69b], where Proposition 4.9 was proved. The proof in the text,
using weak v-bases, is due to Bergman [67]. For a right ideal in a free algebra, a weak
v-basis is always a Grobner basis (see e.g. Froberg [97]), though the converse need not
hold.

The dependence number as defined in Section 2.4 seems more natural than the notion
defined in FR.1 which was larger by one. For any ring R the dependence number A(R)
may be defined independently of any filtration as the supremum of the A,(R) as v runs
over all filtrations of R. This is a positive integer or 0o, defined for any ring; e.g. A(R) > 1
if and only if R is an integral domain. Bergman [67] gives examples of rings R such that
Ay(R) is finite but unbounded, as v ranges over the filtrations on R; thus A(R) = oo, but
R has no filtration for which the weak algorithm holds.

The results of Section 2.5, characterizing free algebras by the weak algorithm, are
due to Cohn [61a], though the presentation in Results 5.1-3 largely follows Bergman
[67]. This proof uses transductions, whose use in the study of rational and algebraic
power series goes back to Nivat [68] and Fliess [70a]. Theorem 5.4, showing that the
weak algorithm in filtered K -rings extends to the coproduct, was first proved by Bergman
[67], p. 211; see also Williams [69b]. The problem of constructing all rings with a weak
algorithm was raised by Cohn [63b] and solved by Bergman [67], whose presentation we
follow in Section 2.5. The analogue of Schreier’s formula in Section 2.6 was obtained by
Lewin [69] as a corollary of the theorem that submodules of free modules are free, which
Lewin proves for free algebras by a Schreier-type argument; it was also found by D. R.
Lane (unpublished). Its extension to rings with a weak algorithm first appeared in FR.1;
the present version owes simplifications to Bergman and Dicks (see also Dicks [74]).
Hilbert series (sometimes called Poincaré series, also (following M. Lazard) gocha,
in FR.1) have been studied intensively for commutative graded rings in the 1980s,
particularly the cases of rationality (see Roos [81]). On Corollary 2.4 see also Rosenmann
and Rosset [94].

The Euclidean algorithm in a (non-commutative) integral domain with a division
algorithm was treated by Wedderburn [32]; the presentation in Section 2.8, valid for any
ring with 2-term weak algorithm, follows Cohn [63b], and the description of G E,(R)
in 2.7 is taken from Cohn [66b]. Proposition 7.1 is improved by Menal [79], who shows
that R has unique standard form for G E if and only if R is ‘universal’ for G E; (i.e. the
conclusion of Proposition 7.1 holds) and the subring generated by U (R) is a field.

The inverse weak algorithm (Section 2.9) was introduced by Cohn [62a], where
Results 9.7-12 are proved; 9.13—14 are taken from Cohn [70c], but the present version
of 9.13, with the present simple proof, is due to Dicks [74]. The exchange principle
(Lemma 9.1) and Results 9.3—6 are due to Bergman [67], who also proves the inertia
theorem (9.16) for free algebras in the case of 1-inertia. The case of total inertia was
new in FR.1, though with some gaps in the proof, which were filled in FR.2, following
Cohn and Dicks [76]. A special case of Theorem 9.16 was proved by Tarasov [67], who
showed that an atom (without constant term) in the free algebra remains one in the power
series ring. For an application of the inertia theorem to represent a free radical ring by
power series see Cohn [73b]. Corollary 9.17 is taken from Cohn [92b]. Theorem 9.18
answers a question raised by Fliess (in correspondence) and first appeared in FR.2.
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The transfinite weak algorithm is taken from Cohn [69b] and was suggested by a
method of Skornyakov [65], used there to construct one-sided firs. The construction in
the text is based on that by Skornyakov. In FR.1 the right transfinite weak algorithm
in the example was checked directly; the proof of Theorem 10.3, applying to a whole
class of monoid rings, was new in FR.2. More generally, Kozhukhov [82] has shown
that the monoid algebra &S is a right fir if S is a rigid monoid with right ACC, such that
the subgroup of units in S is a free group and for any unit # and non-unit a, au € Sa
implies that u = 1. Kozhukhov shown further that these conditions on S are necessary
as well as sufficient for kS to be a right fir.

The HNN-construction (Higman, Neumann and Neumann [49]) starts from a group
G with two isomorphic subgroups A, B via an isomorphism ¢ : a — a¢ and constructs
a group G, containing G and an element ¢ such that at = t.a¢(a € A); G, is obtained
by freely adjoining ¢ to G subject to these relations. Of course it has to be proved that G
is embedded in G,. The analogue for rings mentioned in Exercise 5.21 was introduced
and used by Macintyre [79]; for the field analogue see Cohn [71a] and SF, Section 5.5
(see also Exercise 7.5.18).

A ‘ringoid’, i.e. a small preadditive category, may be regarded as a ring with several
objects, and many of the results on general rings, appropriately modified, still hold for
ringoids (see Mitchell [72]). By analogy, left free ideal ringoids (‘left firoids’) may
be defined and many of the results of this chapter proved in this context. Thus Faizov
[81] obtains analogues of Theorem 3.1 and constructs firoids by a form of the weak
algorithm. Wong [78] defines, for any small category € and any ring R, the category
ring RC (analogous to the group ring). By a bridge category Wong understands the
free category freely generated by an oriented graph with arrow set A and inverses for a
certain subset B of A. For the moment let us call a category a delta if all its morphisms
are isomorphisms and its only endomorphisms are the identities. Now Wong [78] proves
that if R is any ring and € a small category, then R€ is a firoid if and only if either (i)
Cis a delta and R is a fir, or (ii) € is a bridge category and R is a field. Thus for any
free monoid M # 1, the monoid ring RM is a fir if and only if R is a field. In a similar
vein, Dicks and Menal [79] have shown that for any non-trivial group G and any ring
R, the group ring RG is a semifir if and only if R is a field and G is locally free. More
generally, Menal [81] has shown that for any monoid M # 1, finitely generated over its
unit group, and any ring R, the monoid ring RM is a semifir if and only if R is a field
and M is the free product of a free monoid and a locally free group. It will follow from
Corollary 7.11.8 that the group algebra of a free group is a fir.

Theorem 11.1 was proved in Cohn [69c], generalizing a particular case from Cohn
[66a]. Theorem 11.2 is a special case of results in Bergman [74b]. The k-algebra with
matrices A, B of order n + 1 satisfying AB = BA = 1 is an n-fir, by Theorem 11.2, in
fact it is a fir, by results in Bergman [74b], see also SF, Section 5.7.
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Factorization in semifirs

For the study of non-commutative unique factorization domains we begin by
looking at the lattice of factors and the notion of similarity for matrices in
Section 3.1. The resulting concept of non-commutative UFD, in Section 3.2,
is mainly of interest for the factorization of full » x n matrices over 2n-firs;
thus it can be applied to study factorization in free algebras. Another class,
the rigid UFDs, forming the subject of Section 3.3, generalizes valuation rings
and is exemplified by free power series rings. We also examine various direct
decomposition theorems (Sections 3.4 and 3.5), but throughout this chapter we
only consider square (full) matrices, corresponding to torsion modules over
semifirs. The factorization of rectangular matrices, which is much less well
developed, will be taken up in Chapter 5.

3.1 Similarity in semifirs

To study factorizations in non-commutative integral domains it is necessary to
consider modules of the form R /aR. We recall from Section 1.3 that two right
ideals a, o/ of a ring R are similar if R /a = R/da’. In the case of principal ideals
the similarity of aR and a’R (for regular elements a and a’) just corresponds to
the similarity of the elements @ and a’ as defined in Section 0.5 (see Proposition
0.5.2 and the preceding discussion, as well as Section 1.3).

In a semifir it is possible to simplify this condition still further. Let R be any
ring and A € "R"; the matrix A is said to be left full if for any factorization
A = PQ, where P € "R", Q € "R", we necessarily have r > m. Clearly this
can only hold when m < n. Right full matrices are defined similarly and a left
and right full matrix is just a fu/l matrix, as defined in Section 0.1. Over a semifir
we have the following relation between full and regular matrices:

186
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Lemma 3.1.1. Over a semifir every right full matrix is right regular.

Proof. Let R be a semifir and suppose that A € "R" satisfies AB = 0 for
some B # 0. Then thereisa T € GL,(R) such that AT = (A’, 0), where A’ is
nxn—1. Butthen A = A'(I,_;,0)T !, showing that A is not right full. M

We note that this argument holds more generally for an m x n matrix in any
n-fir. We also note

Proposition 3.1.2. An m x n matrix (over any ring) with an r x s block of
zeros cannot be right full unless r + s < m. In particular, an n x n matrix with
anr x s block of zeros, where r + s > n, cannot be full.

Proof. LetAbem x n,withanr x s block of zeros in the north-east corner,

say. Then
A— T 0\ (T 0\(I 0
“\wv v) \o 1J\u Vv)’

where T isr x (n — s) and V is (m — r) x s. This expresses A as a product of
anm X (im+n—r —s)byan(m +n —r — s) X nmatrix, so if A is right full,
thenm+n—r —s>n,ie.r +s <m. |

It is clear that the conclusion still holds if the zeros do not occur in a single
block but are distributed over 7 rows and s columns, not necessarily consecutive.
Ann x nmatrix withanr x s block of zeros, wherer + s > n,is called hollow.

An m x n matrix A over any ring R is called left prime if in any equation

A=PQ, whereP eR,,Qc"R", 1

P necessarily has a right inverse; right prime matrices are defined correspond-
ingly. Any right invertible matrix is left prime, forif A = PQ and AB = I, then
P.QB =1, so P is right invertible. For a square matrix the converse holds: a
square matrix that is left prime is right invertible, as we see by taking Q =1
in (1). Thus, over a weakly finite ring any square matrix that is left prime is a
unit. Any left prime matrix over a weakly finite ring is left full, for if not, say
A € "R" has the form A = P;Q,, where P, € "R",r < m, then we can write
A = PQ, where P = (P, 0) € R, and since P has a column of zeros, it is not
a unit in R,, and so has no right inverse. This shows that A cannot be left prime.
So for a matrix over a weakly finite ring we have the implications

right invertible = left prime = left full. 2)
A matrix relation

PQ =0, where P € 'R",Q € "R’ 3)
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is called right comaximal if P has a right inverse, left coprime if P is left prime
and left full if P is left full, with similar definitions on the other side. A full
relation is a relation that is left and right full. By (2) we have, for any matrix
relation (3), the implications

right comaximal = left coprime = left full.
This terminology also applies to relations of the form
AB' = BA', “)

where Aisr x n’, Bisr x n”, A’isn” x s and B is n’ x s, since this may be
brought to the form (3) by writing it as

(A B)(;,B/) =0.

Ifin (3), (4) we haver + s = n = n’ + n”, the relation is said to be balanced. In
any relation (4) the indices satisfy i(A) —i(A") = i(B) —i(B")(=n —r — s);
so this relation is balanced if and only if either A, A’ or equivalently, B, B’ have
the same index.

Proposition 3.1.3. Let R be an n-fir and P € "'R", Q € "R® such that (3)
holds as a full relation. Then

r+s <n, )

and when (3) is balanced, so that equality holds in (5), then by cancelling
full matrices from the left and right in (3) we get a coprime relation, which
is also comaximal. In terms of a matrix relation (4) this states that if (4) is a
full relation, then i(A’) < i(A),i1(B’) < i(B), and (4) is balanced if and only if
either inequality becomes an equality.

Proof. By Corollary 2.3.2, (3) may be trivialized; after modifying P and Q
we may assume that P = (P’,0), Q = (Q’, Q")', where P’ is a right regular
r x t matrix, Q' is a r x s matrix and Q” an (n — ) x s matrix. Now (3)
becomes P’'Q’ = 0 and so Q' = 0, because P’ is right regular. By hypothesis,
P is left full, hence so is P’ and it follows that r < ¢. By symmetry Q" is
right full, hence s < n — t, and (5) follows. When equality holds in (5), then
r=t,s =n —t,hence P’, Q" are then square and so are full. Cancelling them,
we obtain the relation (/, 0)(0, I)T = 0, which is clearly comaximal. Hence the
original relation (3) becomes comaximal after cancelling full factors on the left
and right. When our relation has the form (4), the inequality (5) can be restated
in terms of the indices. |
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The inequality (5) is a special case of the law of nullity, which we shall
meet again in Section 5.5. The condition on the index is necessary, since over

k{x,y,z,t) we have
z z
(x y)<t>=(x y)<[>,

a coprime relation that is not comaximal and of course (x, y) is not stably
associated to (z, £)T.

As we shall see later (Section 5.9), if R satisfies left ACC, and right ACC;
then we can cancel full matrices on the left and right of (3) so as to obtain a
coprime relation. Proposition 1.3 shows that for a balanced relation (3) over an
n-fir we do not need ACC. As an easy consequence we have

Corollary 3.1.4. Over any ring R a comaximal matrix relation (4) is coprime.
When R is a semifir, then conversely, any balanced coprime relation is comax-
imal. If R is an n-fir and (4) is a relation between n x n matrices that is left
coprime and right full, then A, B are stably associated to left factors of A', B’
respectively.

Proof.  The first part is clear from Proposition 1.3. To prove the last part,
we have a balanced full relation; by Proposition 1.3 we obtain a comaximal
relation by cancelling a full matrix C on the right. If the result is ABy = B Ay,
then A’ = AoC, B’ = ByC and by Proposition 0.5.6, A, B are stably associated
to Ag, By respectively, which gives the desired conclusion. [ ]

Sometimes two elements a and a’ of a ring R are called ‘similar’ if the
right ideals aR and a’R are similar; as we have seen, for regular elements this
condition is left-right symmetric. We then have three names: ‘stably associated’,
‘GL-related’ and ‘similar’, which for regular elements of a ring (or for regular
square matrices) mean the same thing. Nevertheless it is convenient to use
them all, depending on the context. Thus ‘stably associated’ is mainly used
for matrices, ‘similar’ for regular elements, while ‘GL-related’ is used in the
context of relations in G L,(R), as in Section 2.7.

Another consequence of Proposition 1.3 is the fact that the product of full
matrices over a semifir is full. We shall prove a slightly more general result:

Proposition 3.1.5. Over a semifir R any product of left full matrices is left
full.

Proof. Let A € "R™ and B € "R" be left full and suppose that

AB = PC, whereP € 'R*,C € °R",
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and s < r. We write (B, C)T = (B’, C")TQ, where B’ € "R',C’' € *R", Q €
! R"; if this factorization is chosen so that ¢ is minimal, then (B’, C")T is right full,
hence the relation AB’ = PC’is full, because A is left full. Hence by Proposition
13, r+t<m+s,som—t>r—s > 0,ie.t < m,but this contradicts the
fact that B is left full. [ |

A further consequence of Proposition 1.3 is most easily proved by looking
at modules.

Proposition 3.1.6. Let R be a semifir, A € "R" a right prime matrix and
A" € "R" a left full matrix. Then

{(B, B)|JAB' = BA'} = {(AN,NA)|N € "R™}. 6)

Proof. If M and M’ are the left R-modules presented by A and A’ respectively,
then the homomorphisms M — M’ correspond to the pairs B, B’ on the left
of (6). By the hypotheses, A is right prime, hence right full and A’ is left full.
Hence M is a module such that all its quotients have negative characteristic,
whereas M’ has positive characteristic; the only such homomorphism is the
zero map, hence (6) follows. [ |

Exercises 3.1

1. Show that Proposition 1.4.3 holds for any 2-fir and any submonoid S consisting
of right large elements.

2. (a) Let a, b be two right ideals in a ring R such that a + b = R. Verify that the
sequence

0= anb—sa@b—L5 R0

is split exact, where A(x) = (x, x), u(x, y) =x — y.
(b) Let a, ' be similar right ideals of R and assume that a’ = {x € R|cx € a},
where c is regular (see Proposition 1.3.6). Show that

adR=Zd DR.

(c) Give an example of a ring containing similar right ideals for which there
is no such isomorphism and give examples of similar right ideals that are not
isomorphic.

3. Show that in a 2-fir any right ideal similar to a principal right ideal is itself
principal. More generally, show that this holds in any 2-Hermite domain. (Hint:
Use Proposition 0.3.2.)

4. The permanent of a square matrix A is obtained by changing all the minus signs in
the determinant expansion to +. Show that the permanent of A with non-negative
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real entries is zero if and only if A is hollow, possibly after permuting its rows and
its columns (Frobenius—Konig theorem, see Minc [78], p. 31).

. (Bowtell [67a]) If (f b) and < d o ) are two mutually inverse matrices,

d
show that aR NbR = ad'bR + bc'aR. Deduce that if R is an integral domain
in which the sum of any two principal right ideals with non-zero intersection is
principal (i.e. R is a 2-fir), then this intersection is again principal.

Show that any element GL-related to a zero-divisor is itself a zero-divisor, and
that any element GL-related to a unit is a unit. Explicitly, if @, @’ occur in mutually
inverse matrices as in Exercise 5, and a is a unit, then a'~! = d — ca™'b.

In a weakly 1-finite ring, show that any element GL-related to O is 0. Is there a
converse?

In a 2-fir let ¢ = ab. Given ¢’ similar to c, find @’ similar to a and b’ similar to b
such that ¢’ = a’b’. Does this hold in more general rings?

In any ring, if AB’ = BA’ is a full relation, show that i(A) = —i(B’) >0 >
i(A") = —i(B).

Show that for any finitely generated right ideal a in a semifir R and any ¢ €
R,1k(a N cR) < rk(a), with equality if and only if a + cR is principal.

Let R be aring and R, the ring of infinite matrices over R that differ from a scalar
matrix only in a finite square. Show that any two regular matrices in R, that are
similar are associated.

(Fitting [36]) Let R be any ring and a, b € R. Show that aR and bR are similar
. . . a 0 0 0 b 0 0 0

if and only if the matrices A = (0 1 0 0) and B = (0 1 0 0) are
associated.

Let k£ be a commutative field of characteristic 2 and « the endomorphism that
sends each element to its square. Show that in the skew polynomial ring k[x; o]
there are just two similarity classes of elements linear in x. Generalize to the case
of characteristic p > 2.

Examine similarity classes of polynomials of higher degree in the ring of Exercise
13; also the case of more general skew polynomial rings.

Show that in any skew polynomial ring, similar elements have the same degree.
In a free algebra, show that if two homogeneous elements are similar, then they
are associated.

(G. M. Bergman) In the complex-skew polynomial ring C[x; —], show that x* + 1
can be written as a product of two atomic factors in infinitely many different ways.
By considering the factors, deduce the existence of a similarity class of elements
that contains infinitely many elements that are pairwise non-associated (see also
Williams [68b]).

Ina2-firR,ifau — bv = c and a, c are right comaximal, show thatua’ — b'w = ¢/,
where «’ is similar to a, b’ to b and ¢’ to ¢. (Hint: Take a comaximal relation
ac’ = ca’, multiply the given equation by @’ on the right and use the fact that
aR N bR is principal as a right ideal.)

Show that over a commutative ring the determinant of any non-full matrix is zero.
Does the converse hold? (Hint: Try Z[x, y]; see also Section 5.5.)

Show that in any ring the intersection of all maximal right ideals similar to a given
one is a two-sided ideal. (Hint: Recall Corollary 1.3.7.)
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3.2 Factorization in matrix rings over semifirs

We saw in Section 1.3 that to study factorization in a principal ideal domain
R it is convenient, in considering an element ¢ € R*, to look at the module
R/cR. This is a module of finite composition length and the Jordan—-Holder
theorem immediately yields the fact that R is a UFD, at least in the commutative
case, but it continues to hold for non-commutative PIDs with the appropriate
definition of UFD, as in Section 1.3. Since every square matrix over a PID
is associated to a diagonal matrix, by Theorem 1.4.7, the notion of unique
factorization even extends to matrices in that case. However, for firs this is no
longer so and we shall need to consider, together with the ring R, the n x n matrix
ring R,,.

Let R be a semifir; an R-module M is said to be a torsion module if it is finitely
generated, such that y (M) = 0 and every submodule M’ satisfies x(M') > 0,
or equivalently, y (M /M’) < 0. As explained in Section 0.8, we shall only use
the term ‘torsion module’ in this sense, while the usual sort will be called a
‘module of torsion elements’. Any n-generator torsion module M over a semifir
R has a presentation

00— R"->R'"—- M—0, (D

and we shall also call a torsion module with this presentation an n-torsion
module.
Given any other presentation of M (by a free module of rank )

0—-Q—R'—-M—0,

we have, by Schanuel’s lemma, R" & Q = R 21 and since R is an Hermite ring,
Q = R". An alternative description of torsion modules is given in

Proposition 3.2.1. Let R be a semifir. Then
(i) Any finitely presented left R-module M has a presentation
0—-R"->R'->M-—O0,

and M is a torsion module if and only if m = n and the presenting matrix
is full.
(ii) Given any short exact sequence of R-modules,

0-M —>M-—->M -0, )

if any two modules are torsion, then so is the third.
(iii) In any homomorphism f between torsion modules, ker f and coker f are
again torsion modules.
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Proof. (i) Let M be presented by the matrix A. If M is torsion, then x (M) = 0,
so A is square, say n x n. In any factorization A = PQ, P corresponds to a
submodule M’ of M with quotient defined by Q, and since x(M’) > 0, P has
non-negative index, therefore A is full. Conversely, a full matrix A ensures that
x(M)=0and x(M’) > 0, so M is torsion.

(ii) Given an exact sequence (2), we have x(M") — x(M) + x(M") =0,
hence if two of these numbers are zero, so is the third. Suppose now that M’
and M" are torsion modules and let N be a submodule of M. Then

X(N) = x(NNM')+ x(N/(NNM)). 3

Since N N M’ € M’, the first term on the right is non-negative, and so is the
second, because N/N N M’ = (N + M’)/M’ and the right-hand side is a sub-
module of M/M’' = M". It follows that M is a torsion module.

Next suppose that M in (2) is a torsion module. Any submodule N of M’ is
also a submodule of M, hence x(N) > 0 and if M” is torsion, this shows M’ to
be torsion. Now any quotient module Q of M” is also a quotient of M, hence
x(0) < 0, and when M’ is torsion, this shows M” to be torsion.

(iii) Consider a homomorphism between torsion modules, f : M — N. This
gives rise to an exact sequence

0— kerf > M — N — coker f — 0.

The alternating sum of the characteristics is 0 and x (M) = x(N) = 0, hence

x(kerf) = x(coker f).

Here the leftis > 0 and the right is < 0, so both sides are 0. Further, any submod-
ule of ker f is a submodule of M and so has non-negative characteristic, while
any quotient of coker f is a quotient of N and so has non-positive characteristic,
therefore ker f and coker f are both torsion, as claimed. [ ]

We observe that for n-torsion modules this holds more generally over any
n-fir.

For any semifir R we shall denote the category of all right torsion modules
and all homomorphisms between them by Torg; similarly we write g Tor for
the category of left torsion modules. Since every full matrix over R is regular,
there is a correspondence between Torg and gTor in which the right module
defined by A corresponds to the left module defined by A. This correspondence
is actually a duality (see also Section 5.3).

Theorem 3.2.2. Let R be a semifir. Then Torg and gTor are dual categories,
i.e. there are contravariant functors F :Torgp — glor and G : gTor — Torg
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such that FG and GF are each naturally isomorphic to the identity functors on
Torg, gTor respectively.

Proof.  Let M be a right R-module, presented by a full matrix A. If Aisn x n
and S = R,, we have M = §/AS and its dual is FM = S/SA. Given an R-
homomorphism f: M — N between right R-modules, we can choose 7 so that
M = S/AS, N = S/BS for full matrices A, B over R. Then f is determined by
a matrix C such that for some matrix C’ we have

CA = BC'. “)

Conversely, any pair (C, C') satisfying (4) defines a homomorphism M — N
by the rule

x(mod AS) — Cx(mod BYS),

where x is a column vector. Now C is determined by f up to an element of BS;
thus if C; = C + BZ, then by (4), C{A = CA + BZA = B(C' + ZA). This
shows C’ to be determined by f up to an element of SA, and so it defines a
unique R-homomorphism

F(f)=S/SB — S/SA.

Clearly we have F(fg) = F(g)F(f) and F(1s/45) = 1s/s4; thus F is a con-
travariant functor. In particular, if f is an isomorphism, then so is F(f), hence
F(S/AS) depends only on the isomorphism class of S/AS, not on A itself. Now
G : gTor — Torg is defined by symmetry and a routine verification shows that
FG=1,GF =1. ]

We again note that Theorem 2.2 holds more generally for n-torsion modules
over n-firs. The following is a more general interpretation of the result: given a
factorization of a full matrix C over a semifir R,

C=A4A...4,

we associate with (5) the series of right ideals of the matrix ring S (containing
C)over R

SDAISDAASD...DA...AS=CS,
and the corresponding series of torsion quotient modules
S/ALS, A1S/A1AS = S/ALS, ..., S/A,S.
We also have the series of left ideals

SO SA DSA,1A, 2...28A,...A, =5C,
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and torsion quotients
S/SA, ..., S/SA.

In discussing a factorization (5) we can for most purposes use either of these
series and Theorem 2.2 is a general way of expressing this symmetry. It will be
described as the factorial duality. For the case of elements (1 x 1 matrices) we
see that it holds in any integral domain (= 1-fir).

Theorem 3.2.3. For any semifir R, the category Torg of torsion modules
is closed under sums and intersections, in fact it is an abelian category.
Further, a torsion submodule of an n-torsion module is again an n-torsion
module.

Proof. Given f: M — N inTorg, ker f and coker f are in Torg by Proposition
2.1,andim f = M /ker f is also in Torg. Further Torg admits direct sums, again
by Proposition 2.1. Now if N, N’ are torsion submodules of a torsion module
M, then N + N’ is a submodule of M and a quotient of N @& N’, hence N + N’
is a torsion module; further, by Proposition 2.1, (N + N')/N' = N/(N N N')
is torsion, and so is N N N'. Hence Tory, as full subcategory of Mody, is abelian,
by Appendix Proposition B.1. For the last part let M be an n-torsion module
with a torsion submodule M’. If M is presented by an n x n matrix C, then there
is a factorization C = AB, where A is a matrix presenting M'. If Aisn x r,
then r > n, because M is torsion and so C is full; we have r = n, since M’ is
torsion, so M’ is also n-torsion. [ ]

This result has numerous applications. In the first place we can derive an
analogue of Schur’s lemma, using the notion of a simple object in Torg. A
torsion module M is said to be Tor-simple if it is a simple object in Torg, i.e. if
M # 0 and no submodule of M, apart from 0 and M, lies in Torg. For example,
if R = k(x, y) is a free algebra, then R /xR is Tor-simple, though of course far
from simple as R-module. If we write down the factorization corresponding to
a chain of submodules in Tory, we see that over a semifir R, a torsion module
defined by a matrix A is Tor-simple if and only if A is a matrix atom, i.e. it is a
full matrix that cannot be written as a product of two square non-unit matrices.
Schur’s lemma now takes the following form:

Proposition 3.2.4. Let R be a semifir. Then for any matrix atom A over R, the
eigenring of A is a field.

Proof. 'We have seen that A is a matrix atom precisely if the module M defined
by it is Tor-simple. Any non-zero endomorphism f of M must have kernel and
cokernel 0, by Proposition 2.1, hence f must be an automorphism. [ ]
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This result holds more generally for an n x n matrix atom over a 2n-fir. In
some cases a more precise statement is possible. Thus let R be a semifir that is an
algebra over a commutative field k. Then the eigenring of any matrix over R is
again an algebra over k. Let A be a matrix atom, so that its eigenring E is a field
over k. If A is any element of E that is transcendental over &, then the elements
(A — B)~! for B € k all lie in E and are linearly independent over k. This shows
that the dimension of E over £ is at least |k|. If the dimension of R over £ is less
than |k, this cannot happen (at least when « is infinite), so we obtain

Proposition 3.2.5. IfR is a semifir that is an algebra over a commutative field
k, of dimension less than |k|, then the eigenring of any matrix atom is algebraic
over k.

Proof.  For infinite k this follows from the above remarks; when & is finite,
the conclusion follows directly. |

As an immediate consequence we have

Corollary 3.2.6. If R is a semifir that is an algebra of at most countable
dimension over an uncountable commutative field k that is algebraically closed,
then the eigenring of any matrix atom is k itself. |

Proposition 2.5 and Corollary 2.6 again hold for n x n matrix atoms over
2n-firs. Over a semifir with left and right ACC,, every ascending chain of m-
generator submodules of R”, for any fixedm < n,becomes stationary, by Propo-
sition 2.3.20, and the same is true for descending chains, by duality. Hence every
torsion module in Torg has finite length, and by the Jordan—Holder theorem,
any two composition series are isomorphic. In terms of matrices a composition
series corresponds to a complete factorization, i.e. a factorization into atomic
factors, so this result may be stated as

Theorem 3.2.7. Over a semifir with left and right ACC,, everyfull n x n matrix
admits a complete factorization into matrix atoms, and any two such complete
factorizations are isomorphic. |

Here we can again replace the class of semifirs by the wider class of 2n-firs;
moreover, for Ro-firs and in particular, for firs, the result holds without assuming
chain conditions. A semifir in which every full matrix admits a factorization
into matrix atoms will be called fully atomic; a 2n-fir in which every fullm x m
matrix for m < n admits a factorization into matrix atoms will be called n-
atomic.

In the applications of this theorem the following entirely elementary result
will be of use. We recall that an elementary matrix is a matrix differing from
the unit matrix in just one off-diagonal entry.
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Proposition 3.2.8. Any upper (or lower) triangular matrix (over any ring) is
a product of diagonal matrices and elementary matrices.

Proof.  This is an almost trivial verification, which is best illustrated by the
3 x 3 case:

a a a’ 1 0 0\ /1 0 a\/1 0O O
0O b PV |=]1010 0O1 )10 b O
0 0 ¢ 0 0 c 0 0 1 0 0 1
1 a 0 a 0 0
01 0Jfo 1 O
00 1/\0 0 1 u

Given a fully atomic semifir R, let us consider the different factorizations
of an element in more detail. Given ¢ € R*, if we have two complete
factorizations of ¢, we pass from one to the other by a series of steps in each
of which one side in a parallelogram of the factor lattice L(cR, R) is replaced
by the opposite side (as in the usual proof of the Jordan—Holder theorem). In
detail, we have a comaximal relation ab’ = ba’, where a, b, a’, b’ are atoms,
and aR + bR = R,aR N bR = mR, and in one factorization

we replace an occurrence of ab’ by ba’.

We shall call this passage from ab’ to ba’ a comaximal transposition and say
that a, b’ (in that order) are comaximally transposable if there exist elements
a’, b such that ab’ = ba’ is a balanced comaximal relation. More generally,
these terms will be used whena, b, a’, b’ are full matrices. The above discussion
may be summed up as follows.

Proposition 3.2.9. Every fir is fully atomic. In a fully atomic semifir every
full matrix C has a complete factorization into a product of matrix atoms, and
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given any two complete factorizations of C, we can pass from one to the other
by a series of comaximal transpositions. [ |

Exercises 3.2

1. Show that in any integral domain the following are equivalent: (a) right ACCy, (b)
ACC on principal right ideals generated by left factors of a fixed non-zero element
and (c) DCC on principal left ideals generated by right factors of a fixed non-zero
element.

2. Show that in a 2-fir with left ACC, any family of elements, not all 0, have a highest
common left factor.

3°. Let R be a k-algebra with generators (in matrix form) ¢; = (¢;1, ..., ¢iy) € R" and
A; = (@) € R, and defining relations ¢;_; = ¢;A;(i = 1,2, ...). Show that R is
a semifir (by expressing it as a direct union of free algebras). If a; denotes the right
ideal generated by the components of ¢;, show that a; C a, C ... and deduce that
R does not satisfy right ACC,. Is it true that every full » x n matrix over R is a
product of matrix atoms?

4. Let R be an integral domain that is a k-algebra, @ € R* and let ¢ be an element
of the eigenring of a that is algebraic over &, thus ca = ac’, f(c) = ab for some
monic polynomial f over k and b € R. Prove that f(c¢’) = ba and ¢’b = bc.

5. Let R be a 2-fir and M = R/cR a 1-torsion module. Show that every finitely
generated submodule of M is a torsion module if and only if ¢ is right large. Show
also that the qualifier ‘finitely generated’ can be omitted if R is atomic.

6. Show that any element stably associated to a right large element of a 2-fir is again
right large.

7. Over a 2-fir R, show that R/cR is simple as R-module if and only if ¢ is a right
large atom.

8. In any ring R, given a, b € R, show that there is an automorphism of R as right
R-module that maps aR to bR if and only if a is left associated to b.

9. Show that for a principal ideal domain the notion of torsion module as defined in
Section 3.2 agrees with the definition of a module of torsion elements in Section
0.8. Show that over a simple principal ideal domain the class of 1-torsion modules
admits direct sums.

10°. Find a class of 2-firs for which the class of 1-torsion modules admits direct
sums.

11. Let R be a 2-fir. Show that Homg(R/Ra, R/Rb) # 0 if and only if there is a
non-unit right factor of a similar to a left factor of b.

12*. Let A be the group algebra of the free group on x, y, z over a commutative field k
and let R be the subalgebra generated by z™"x, z7"y, z(n = 1, 2, ...). Show that R
is a right fir but not a left fir. Show also that the pair {x, y} has no highest common
left factor.

13. Let R be an atomic 2-fir in which every principal right ideal is an intersection of
maximal principal right ideals. Show that every 1-torsion module is a direct sum of
Tor-simple 1-torsion modules. Show also that in general there are infinitely many
pairwise non-associated elements stably associated to a given atom.
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14. Show that any atomic right Bezout domain is a principal right ideal domain. Deduce
that a ring is a principal ideal domain if and only if it is an atomic left and right
Bezout domain.

15. In the Weyl algebra A;(k) on x and y, where char(k) = 0, verify that 1 4 xy is
an atom and is stably associated to xy. Deduce that xyx 4+ x has two complete
factorizations of different lengths.

16. Show that Z(x, y) is not a UFD, by considering factorizations of xyx + 2x. What
forms can the eigenring of an atom take?

17. Show that any permutation of 1, 2, ..., n can be written as a product of at most
n(n — 1)/2 transpositions of neighbouring numbers. Deduce that in an atomic 2-fir,
given any non-zero non-unit ¢, we can pass from any one complete factorization
of ¢ to any other by a series of at most n(n — 1)/2 comaximal transpositions.

18°. Verify that in the free algebra k (x, y), x and yx + 1 are comaximally transposable.
Find an element in k (X') with two factorizations of length n > 3, where n(n — 1)/2
comaximal transpositions are needed to pass from one to the other.

19*. LetR be a semifir with an involution *. Show that by combining it with transposition
it can be extended to an involution on the n x n matrix ring over R. Let A be a
symmetric matrix over R (i.e. A* = A). Show that if A is not full, of inner rank
r, then it has the form A = PUV*P*, where P is n x r,U and V are r x r and
UV* = VU~ is a balanced comaximal relation.

3.3 Rigid factorizations

Let us return to the definition of a UFD and consider more closely in what
respects it differs from the definition in the commutative case. As we saw,
given two complete factorizations,

c=aj...a, and c=b...b, (1)

of an element c, necessarily of the same length, there is a permutation i > i’
of 1, ..., r such that

R/a;R = R/b;/R. 2)
However, we note that

(i) a; and b;: are not necessarily associated and
(i1) in general we do not obtain ¢ by writing the b’s in the order by by ... b,.

To this extent, unique factorization in non-commutative domains, as here
defined, is a more complicated phenomenon than in the commutative case,
but there is a more restrictive concept that is sometimes useful.

Let R be an integral domain. We recall from Section 0.7 that an element
¢ € R* iscalled rigidif c = ab’ = ba’ impliesaR C bR or bR C aR.In other
words, ¢ is rigid if the lattice L(cR, R) is a chain. If every non-zero element of
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R is rigid, R is called a rigid domain. In that case R* is a rigid monoid in the
sense of Section 0.7 and by Theorem 0.7.9 we have

Proposition 3.3.1. Let R be a rigid domain. Then R* can be embedded in a
group. ]

We observe that a rigid domain is necessarily a 2-fir, by Corollary 2.3.8.
Now a rigid UFD is defined as an atomic rigid domain. For example, in the
commutative case a rigid domain is just a valuation ring and a rigid UFD is a
principal valuation ring. More generally, a rigid domain is right Ore if and only
if all the principal right ideals form a chain; such a ring is called a right chain
ring. However, a non-commutative rigid domain can be much more general
than a chain ring.

Our main source of rigid UFDs stems from the following result.

Theorem 3.3.2. Any complete inversely filtered ring with 2-term inverse weak
algorithm is a rigid UFD.

Proof.  Let R be a ring satisfying the hypothesis. By Theorem 2.9.5, R is a
2-fir; if ab’ = ba’ # 0 and v(a) < v(b) say, then a, b are right v-dependent and
so, by the same theorem, aR D bR, hence R is rigid. By Proposition 2.9.6 it
has left and right ACC; and so is atomic. Thus R is a rigid UFD. [ ]

An obvious example of a rigid UFD (other than a valuation ring) is a formal
power series ring k((X)) in any number of variables.

We go on to describe rigid domains in more detail; for this we need the
following lemma, which is also useful elsewhere.

Lemma 3.3.3. LetR be an Hermite ring. Two matrices A € "R", B € "R" are
comaximally transposable if and only if there exist matrices X € '"R™,Y € "R"
such that

XA —BY =1. 3)
Proof.  Suppose we have a balanced comaximal relation
AB =B'A'. 4)
By Proposition 0.5.6 there exist mutually inverse matrices P =
A B Pl = X -B hence XA — BY =1, i.e. (3). Conversel
y )" T\z a) = e Y

given (3), since R is an Hermite ring, the matrix (X, —B) is completable, so

. X -B\ . . A .
we obtain Q = <* . ) with inverse Q7! = <* *> and equating the
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(1, 2)-entries in the equation Q~'Q =1 we obtain (4); by construction this
relation is comaximal. [ |

As a first consequence we characterize the Jacobson radical J of a semifir,
or more generally, of a matrix ring over an Hermite ring.

Theorem 3.3.4. Let R be a total matrix ring over an Hermite ring. Then J (R)
consists of those elements of R that cannot be comaximally transposed with any
non-unit.

Proof.  Suppose that ¢ € R cannot be comaximally transposed with any non-
unit. For any x € R we have the proper comaximal relation

c(xc+1)=(cx + 1)c, 5)

hence cx 4+ 1 is a unit for all x € R and this shows that ¢ € J(R). Conversely,
suppose that ¢ € J(R) and that b, ¢ can be comaximally transposed. Then by
Lemma 3.3, cx + yb = 1 for some x, y € R; by the choice of ¢, yb =1 — cx
is a unit, and since R is weakly finite, b must be a unit. A similar argument holds
if ¢, b can be comaximally transposed. [ ]

Corollary 3.3.5. Let R be an atomic 2-fir. Then a right large element of R lies
in J(R) if and only if it has every atom of R as a left factor.

Proof. If ¢ € R is right large and has every atom as a left factor, then in any
equation (5) cx + 1 must be a unit, for otherwise it would have an atomic left
factor p; by hypothesis this is also a left factor of ¢, and hence of 1, which is
a contradiction. Thus we see as before that ¢ € J(R). Conversely, if ¢ € J(R),
let p be an atom that is not a left factor of c. Since c is right large, we have
cR N pR # 0; by Theorem 2.3.7 this intersection is principal, so we have a
coprime relation ¢p’ = pc’. By Corollary 1.4 this is comaximal, so p’ is a
non-unit and ¢, p’ are comaximally transposable, which contradicts Theorem
34. [ |

We remark that in a principal right ideal domain this result applies to every
non-zero element.

Secondly we shall obtain sufficient conditions for an element (or matrix) in
a semifir to be rigid.

Proposition 3.3.6. Let R be an n x n matrix ring over a 2n-fir and let ¢ be a
full matrix in R such that any two neighbouring non-unit factors occurring in
a factorization of ¢ generate a proper ideal of R. Then c is rigid. If ¢ has an
atomic factorization, then it is enough to check a single complete factorization
of c; there will only be one complete factorization when c is rigid.
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Proof.  If ¢ is not rigid, then ¢ = ab’ = ba’, where neither of a, b is a left
factor of the other. By Proposition 1.3, we obtain a comaximal relation a1 b, =
bia, by cancelling full matrices on the left and right. Thus a = day, b = dby,
where ay, b; are right comaximal non-units; moreover, m = a;b, = bya, is
an LCRM of a; and b;. It follows that @’ = aye, b’ = bre and a;b, = bjas is a
comaximal transposition occurringinc¢ = da;b,e. ByLemma3.3,xa; — byy =
1 for appropriate x, y € R, so the ideal generated by a; and b, is improper, a
contradiction. In the atomic case we can pass from any complete factorization
to any other by a series of comaximal transpositions, by Proposition 2.9; since
no comaximal transpositions can occur when c is rigid, there will only be one
such factorization. [ ]

Now rigid domains are described by

Theorem 3.3.7. An integral domain is rigid if and only if it is a 2-fir and a
local ring.

Proof.  We have seen (Corollary 2.3.8) that any rigid domain is a 2-fir, and
clearly no two non-units are comaximally transposable, hence by Theorem 3.4,
J(R) includes all non-units, i.e. R is a local ring. Conversely, in a 2-fir that is a
local ring, any two non-units generate a proper ideal, hence by Proposition 3.6,
every non-zero element is rigid. |

Adding atomicity, we obtain

Corollary 3.3.8. A ring is arigid UFD if and only if it is an atomic 2-fir and
a local ring. [ |

The description of commutative rigid UFDs, namely as principal valuation
rings, can be extended to right Ore domains. It is easily verified that any right
principal valuation ring is a rigid UFD and conversely, a rigid UFD is a right
principal valuation ring if and only if any two atoms are right associated. The
next theorem gives conditions for this to happen.

Theorem 3.3.9. Let R be a rigid UFD. Then R is a right principal valuation
ring if and only if it contains a non-unit ¢ such that cR N\ pR # 0 for every
atom p. In particular, this holds when R contains a right large non-unit.

Proof.  Suppose the rigid UFD R contains an element ¢ satisfying the given
conditions. For any atom p of R we have cR N pR # 0, hence either cR € pR
or pR C cR. Since c is a non-unit, the second alternative would mean that
cR = pR, so in any case cR C pR, i.e. ¢ has every atom as left factor. By
rigidity this means that all atoms are right associated. Given any atom p, every
a € R* can be written as @ = p*u and by choosing k maximal we ensure that
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u is a unit. Therefore R is a right PVR. Conversely, in a right PVR the unique
atom is a right large non-unit. [ ]

From the normal form of the elements it is clear that in a right PVR every
right ideal is two-sided. By symmetry we obtain

Corollary 3.3.10. [f R is a rigid UFD with a left and right large non-unit,
then R has a unique atom p (up to unit factors) and every left or right ideal of
R is two-sided, of the form p"R = Rp". [ ]

For matrices over local semifirs the factorization is no longer rigid, but we
can say a little more than in the general case. We begin with a general lemma.
We shall say that a matrix A is in an ideal a if all its entries lie in a.

Lemma 3.3.11. (i) Let R be a ring and a a proper ideal of R such that R /a
is weakly finite. If a matrix A over R is in a, then A is not stably associated to a
matrix of smaller size.

(ii) If R is a weakly finite ring and

AB' = BA' )

is a comaximal relation, where A, A’ € 'R™,and A or A’ is in J(R), then B, B
are invertible and hence A, A’ are associated.

Proof. (i) Let A € 'R™, A’ € *R" and denote the images in R = R /a by bars.
If A, A’ are stably associated, then so are A, A’. We shall interpret these matrices
as homomorphisms between free left R-modules. By hypothesis, A = 0, hence
coker A = R™, therefore coker A’ = R™ and so R" splits over coker A': R" =
R™ @ im A’. This shows that m < n and a dual argument shows thatr <s.
(i) R = R/J(R) is again weakly finite, for if XY =1, then XY =1+ C is
invertible, with inverse D, say; then DXY = I,hence YDX = I,butD = DXY =
I, therefore Y X =1 and it follows that R is weakly finite. Suppose that A is
in J(R). Over R we have a comaximal relation AB’ = BA’ and A = 0, so by
comaximality B is a unit, hence A’ = 0 and B’ is also a unit. But any matrix
invertible mod J (R) is invertible over R, hence B, B’ are invertible and so A, A’
are associated. [ ]

Let R be a local ring; it is clear that R is weakly finite, for if XY = I, then
XY =1 hence Y X = I, so YX is invertible and it follows that YX = I. Therefore
the index of a matrix is preserved by stable association. In particular, any matrix
stably associated to a square matrix is itself square. For a square matrix A we
define the level as the least value of the order of any matrix stably associated to
A. For example, A has level 0 if and only if it is a unit.
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Proposition 3.3.12. Let R be a local ring with maximal ideal m and let A €
MmR" have the image A over R/m of rank r. Then A is stably associated to an
(m —r) x (n —r) matrix A’ in m, but to no matrix of smaller size than A’. In
particular, if A is n x n, then its level isn —r.

Proof.  Since A has rank r, it is stably associated to the (m —r) x (n — r)
zero matrix, but to no matrix of smaller size. Thus we have

A 0 _ (0 O
U(O I>V:<O I)(modm),

where U, V are invertible (mod m). It follows that U, V are invertible over R

and we have
A 0 P P,
U V = ,
(0 1) (P 3 P4>

where Py, P,, P;areinm and P4 = I (mod m); hence P is invertible over R. By
row and column operations we can reduce P4 to I and P,, P; to 0 and thus find
that A @ I is associated to A’ @ I, where A’ is in m. Thus A is stably associated
toan (m — r) x (n — r) matrix A’ in m, but clearly to no matrix of smaller size,
by Lemma 3.11().

In particular, if A is n x n, then the level of A is n — rk A. |

We conclude this section by another example of a one-sided fir; this depends
on the following lemma that uses an idea of Chase [62].

Lemma 3.3.13. Let R be an integral domain with UGN and an element p # 0
such that Np"R = 0. Then RN, as left R-module, is not projective.

Proof. Letus writt AV = R, A=T[[2 AD, A, =[], AV, so that RN =
A = A, for all r. If A were projective, there would be a left R-module B such
that

A®B=d; C,, whereCy, = R and o runs over a set /. @)

Let us denote by f,:A — C, the projection from A on the summand C,. We
first show that there exists » > 1 such that

A, fy =0 for almost all or. (®)

For suppose this is not so; then for each r, A, f, # 0 for infinitely many . We
shall construct an increasing sequence {n;} of positive integers and sequences
{a;}, {x;} such that o; € I, x; € p"'A; and

xkfa’ = () fol‘k < iy -xifot, ¢ pnicai' (9)
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Choose o € I such that A; f,, # 0 and set ngp = 0; then A, fy, L P"'Cq, for
some n; > 0, hence there exists x; € p"°A; such that x; f,, ¢ p"'Cq, and (9)
holds fori = 1.

Suppose now that x;, o, n; have been constructed for k < i to satisfy (9).
Since xi, ..., x;—; lie in the sum of a finite subfamily of the C,, there exist
Bi, ..., Br €1 such that x; f, =0 for @ # B4, ..., B, and for all k < i. So
we may choose o; # f1, ..., B, such that A; f,, # 0, hence A; f,, € p"Cy,
for some m. Let us put n; = n;_; + m; then there exists x; € p"-' A; such
that x; fy, ¢ p" Cq,. Now the sequences X, oy, i for k < i satisty (9), so the
construction is complete.

Let us write x; = (x\), where x,ﬁ” e AD Since x; € p"-' Ay, it follows that
x,ﬁ” = 0fork > i,sox® = >"77 x,ﬁi) is a well-defined element of A, Further,
since ng < n; < ..., there exists y € A® such that x@ = x{"' + ... 4 x® 4
p"y®, so on writing x = (x1), y, = (yV), we have

xX=x1+x+---+x +p"y forallr>1. (10)

From (9) it is clear that the «; are all distinct, hence there exists ¢, such that
Xfy, = 0. Writing x in the form (10) and applying f,,, we find that

xrfotr = _pn, (yrfa,-) € Pmcars

but this contradicts (9) and so (8) is established.
Suppose now that A, f, = 0 except for @ = By, ..., B,; then on writing

C'=Cp & 0Ch, C"=0C,,
we have A, C C’. Now (7) may be written as
AVp... oA A, ®&dB=C' D C".

Since A, C C’, it follows that A, is complemented in C’, i.e. there exists D
such that A, @ D = C’. Now C’ = R" is finitely generated, whereas A, = R"
is not, because R has UGN. So we have reached a contradiction and this shows
that R cannot be projective. |

We shall use this result to construct a one-sided fir as follows. Let K be a
field with an endomorphism « that is not surjective and consider the skew power
series ring R = K [[x; «]]. This is a right principal valuation ring with maximal
ideal xR. Moreover, R is atomic and so is a rigid UFD; clearly R also has UGN.

To show that R is not a left fir it will be enough to find a left ideal that is not
free. In fact we shall find a left ideal isomorphic to RY; the result then follows by
Lemma 3.13 (with p = x). To obtain such a left ideal we only need a sequence
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(u,) tending to O (in the filtration topology), which is left v-independent. For
then Y f,u, € R for all (f,) € RY, and by the v-independence the map

(f) > Y faltn

is an isomorphism from R™ to a left ideal of R. For any ¢ € K\ K the sequence
(xcx™) has the required properties. Clearly it tends to 0, and if Y, f,xcx” =0,
then by cancelling a power of x on the right, if possible, we may assume
that fy # 0. If we extend o to an endomorphism of R by putting x* = x,
then

ntl on
2 :xn+1fna = 0,

and so xfjc € R%, whereas not all the coefficients of xf*c lie in K*. This
contradiction shows that the xcx” are left v-independent, and so we have
proved

Theorem 3.3.14. Let K be a field with a non-surjective endomorphism «.
Then the skew power series ring K [[x; o]] is a right fir (in fact a right principal
valuation ring), but not a left fir. [}

Exercises 3.3

1. Show that a direct limit of rigid UFDs is again rigid, but not necessarily a UFD.
2*. Let R = k[x; «], where k is a commutative field of characteristic p and « is the
pth power map. Find all elements of low degree that are rigid.

3. Let R be arigid domain with right ACC, and a left and right large non-unit. Show
that R is a principal valuation ring.

4. Let R be a semifir and consider a matrix relation PA" = AP’, where P, A are left
coprime and A, A" are square. Show that if A’ is full and P is in J(R), then A is
invertible. Let ab = pc, where b # 0 and p is an atom of R contained in J(R).
Show that if @ is a non-unit, then a € pR.

5. Show that in a rigid UFD any relation ca = ac’ between non-zero non-units holds
if and only if ¢ = agh, ¢’ = bay, a = ¢"ag = apc”” for some r > 1.

6. Show that Lemma 3.3 and Theorem 3.4 hold for 2n-firs and for matrices of the
appropriate size.

7. (Koshevoi [66]) An ideal p in aring R is called strongly prime if R /p is an integral
domain. Let R be an atomic 2-fir and p a strong prime ideal in R. Show that p
contains, with any atom q, all atoms similar to a. Let ¢ € R have the complete
factorizations ¢ = a, ...a, = by ...b,; show that if factors not in p are omitted,
then the same number of factors remain in each product and corresponding terms
are similar.

8. Let R be a right hereditary local ring but not a valuation ring. Show that its centre
is a field (Cohn [66d], see also Section 6.4).
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9. Show that when |X| > 1, then R = k((X)) has left ideals isomorphic to RN and
hence is not a fir.

10. Let R be an integral domain with UGN and let p € R* be such that N\p"R = 0.
Write P = R and S for the submodule of P with almost all components zero.
Show that P /S is not projective.

11. Show that every homogeneous Lie element in the free algebra k(X) is an atom.
(Hint: Use a basis of the universal associative envelope of the free Lie algebra
consisting of ascending monomials.)

12°. Can the multiplicative monoid of every UFD be embedded in a group?

13°. Investigate firs with finitely many atoms, and those with finitely many matrix
atoms.

14*. (G. M. Bergman) Consider the formal power series ring S =
k{{x11, X12, X21, X22, Y1, y2)) Wwith the homomorphism f defined in matrix
form X — X,y Xy. Let R be the direct limit of repeated iterations of
this homomorphism (i.e. take a countable family S™ of copies of S with
f:S®W — S¢+D and put R = lim S&m) and show that R is a local ring and a

semifir. Verify that the intersection of the powers of the maximal ideal is non-zero,
even though R is atomic and hence a UFD. (Hint: Show that Sf is inert in S, and
deduce that S is inert in R. See also Sections 1.6 and 5.10).

3.4 Factorization in semifirs: a closer look

We shall now examine the relation between different factorizations of an element
of a 2-fir, or more generally, afull n x n matrix over a 2n-fir. For ease of notation
we shall take R tobe the n x n matrix ring over a 2n-fir S and consider an element
c of R that is a full matrix over S. A study of the factorizations of ¢ is essentially
a study of the factor lattice L(cR, R), but we shall usually express the result
directly in terms of factorizations. In speaking of the ‘left factors’ of an element
we shall tacitly understand the equivalence classes under right multiplication
by units. In this way the left factors of an element ¢ correspond to the principal
right ideals containing cR:

¢ = ab (for some b € R) if and only if cR C aR.

Similarly, a chain of principal right ideals from cR to R corresponds to a fac-
torization of c that is determined up to unit factors; we shall call the two fac-
torizations

c=ajay...a, and c="bby...b,,

essentially the same, if b; = ui__lla,»u,-, where u; is a unit and u, = u, = 1 and
essentially distinct otherwise.
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With these conventions a rigid UFD may be described as an integral domain
in which each element has essentially only one atomic factorization. In a general
UFD the atomic factorizations of a given element are of course by no means
unique, but neither can the factors be interchanged at will. Let us compare the
different factorizations of a full » x n matrix over a 2n-fir. The isomorphism of
two factorizations of a given full matrix is defined as in Section 1.3 for elements.
A factorization

c=ai...a (1)
is said to be a refinement of another,
C=b1...bs, (2)

if (2) can be obtained from (1) by bracketing some of the a’s together; in other
words, if (1) arises from (2) by factorizing the b’s further. The factors of ¢
correspond to the torsion factor-modules of R /cR; by Theorem 2.3 they admit
+ and N and so form a modular lattice. By the Schreier refinement theorem for
modular lattices (Appendix Theorem A.2) we obtain

Theorem 3.4.1. Over a 2n-fir, any two factorizations of a full n x n matrix
have isomorphic refinements. |

Looking at the proof of the lattice-theoretic result quoted here, we find that
we can pass from the refinement of one chain to that of the other by a series of
steps, which each change the chain at a single point, from

ZXVYZXZXAYZ ... 0 L. ZXVYZYSXAY> L.
This corresponds to a change in the factorizations of the form
/ /
ap...a@q1...4 —> ai...Q;_ 10, ,4;a;y2 .. .Gy, 3)

where a;a;1 = a; +1alf is a comaximal relation; thus (3) is a comaximal trans-
position, as defined in Section 3.2. In this way we obtain the following more
precise form of Theorem 4.1, which is also a slight generalization of Proposition
2.9.

Theorem 3.4.2. Over a 2n-fir, any two factorizations of a full n x n matrix
have refinements that can be obtained from one another by a series of comaximal
transpositions of terms. |

As an illustration, let ¢ = pg = rs be two factorizations of an n X n matrix
over a 2n-fir R and write pR +7R = uR, p = ua,r = ub,sothataR + bR =
R, and similarly Rg + Rs = Rv, ¢ = b'v, s = a’v. Then our factorizations
become (ua)(b'v) = (ub)(a’'v), where ab’ = ba’ is a comaximal transposition.
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In a general ring R a factorization ¢ = ab of a regular element ¢ need not
induce a corresponding factorization in a similar element ¢’ — the submodule of
R/cR corresponding to aR /c R will again be cyclic, but need not have a cyclic
inverse image in R. However, in the n x n matrix ring over a 2n-fir, the principal
right ideals between cR and R are characterized by the fact that they give rise
to n-torsion submodules of R /cR; now an application of the parallelogram law
for modular lattices gives

Proposition 3.4.3. [nthe n x n matrix ring R over a 2n-fir, let ¢ and ¢’ be full
matrices that are stably associated. Then the lattices L(cR, R) and L(¢'R, R)
are isomorphic and the right ideals corresponding to each other under this
isomorphism are similar.

Proof.  The first assertion is clear; the second follows because corresponding
right ideals are endpoints of perspective intervals. [ ]

The isomorphism in Proposition 4.3 can be described explicitly as follows:
if ¢’ = bc’ is a comaximal relation for ¢ and ¢/, then to each left factor d of
¢ corresponds the left factor d’ of ¢’ given by dR N bR = bd’'R and to each
left factor d’ of ¢’ corresponds the left factor d of ¢ given by dR = cR + bd'R.
These maps are inverse to one another and induce an isomorphism between the
lattices of left factors of ¢ and ¢’

bR
dR

bd'R
cR

¢b’R=bc'R
Figure 3.1

However, we note that the actual lattice-isomorphism we get may depend
on our choice of comaximal relation — or, equivalently, on our choice of the
isomorphism between R/cR and R/c¢'R. For example, take the ring C[x; —]
of complex-skew polynomials; this is a principal ideal domain and hence a fir.
The automorphism of the lattice of factors of x> — 1 induced by the comaximal
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relation (x> — 1)x = x(x2 — 1) interchanges the factorizations (x + i)(x + i)
and (x — i)(x — i) and leaves the factorization (x 4+ 1)(x — 1) fixed. The auto-
morphism induced by the relation

x?=Dl=1x>=1)
is of course the identity, while the automorphism induced by
2=1Di=ix>=1)

interchanges the factorizations (x + 1)(x — 1) and (x — 1)(x + 1).

Over any semifir the factorizations of a given full matrix are closely related
to those of its factors; this is best understood by looking first at the situation
in lattices. In any lattice L, a link or minimal interval is an interval [a, b] in
L consisting of just two elements, namely its end-points, and no others, thus
a <bandnox € L satisfiesa < x < b.

In any modular lattice L of finite length there are only finitely many projec-
tivity classes of links, and the homomorphic images of L that are subdirectly
irreducible are obtained by collapsing all but one equivalence class of links;
these are in fact the simple homomorphic images of L. Here we count two homo-
morphic images as the same if and only if there is an isomorphism between
them, forming a commuting triangle with the homomorphisms from L. If the
distinct images are Ly, ..., L,, we have a representation of L as a subdirect
product of Ly, ..., L,. In a distributive lattice of finite length, no two links
in any chain are projective, as we shall see in Section 4.4, so the only simple
homomorphic image is the two-element lattice [0, 1], also written 2. Hence, by
the Birkhoff representation theorem (Appendix Theorem A.8) we obtain

Theorem 3.4.4. (i) Any modular lattice L of finite length can be expressed as
a subdirect product of a finite number of simple modular lattices, viz. the simple
homomorphic images of L.

(i) Any distributive lattice L of finite length is a subdirect power of 2; more
precisely, if L has length n, it is a sublattice of 2". |

There is another representation of modular lattices, to some extent dual to
that of Theorem 4.4, that is of use in studying factorizations.

Theorem 3.4.5. Let L be a modular lattice. Given a, b € L, there is a lattice-
embedding [a AN b, a] X [a,a VvV b] — L given by

(X, ) xVbBAY)=xVD)AY. %)

Proof.  Since y — b Ay is an isomorphism, it follows that (x, y) > x V
(b A y) preserves joins and similarly (x, y) — (x V b) Ay preserves meets.
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Figure 3.2

Thus (4) is a lattice homomorphism. It is injective because we can recover x
and y from the right-hand side: x V (b Ay)Va=((bAy)Va=yA(bVa)=
y,xVbAyra=xVbAa=xVbAra)=x. [ ]

Let L be a lattice and for any a € L put (a] ={x € L|x <a},[a)={y €
Lla < y}. The proof of Theorem 4.5 suggests that we consider the map L —
(a] x [a) defined by

2> (z Aa, zVa). (5)

Of course, in general this is not a lattice-homomorphism, but it clearly is one
when L is distributive; further it is then injective, because two elements with
the same image are relative complements of a in the same interval, and so must
coincide. If moreover, a has a complement, b say, then (a] = [a A b, a], [a) =
[a, a Vv b] and if we now invoke Theorem 4.5, we obtain

Proposition 3.4.6. Let L be a distributive lattice and a € L. Then there is an
embedding L — (a] x [a) given by (5), and when a has a complement in L,
this is an isomorphism. |

The translation of these results into factorizations reads as follows:

Proposition 3.4.7. Let R be the n x n matrix ring over a 2n-fir and let ¢ be a
full matrix in R. Then any comaximal relation

c=ab =bd (6)
givesrise to an embedding of L(aR, R) x L(bR, R)into L(cR, R).IfL(cR, R)
is distributive, this is an isomorphism. [ ]

This result gives us a powerful tool relating the factorizations of a and b to those
of c. For example, suppose that we have a comaximal relation (6) in which a
has a factorization xyz and b has a factorization uv. This gives us chains of
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lengths 3 and 2 in the lattice of left factors of a, b respectively, and by applying
Proposition 4.7 we find that the lattice of left factors of ¢ will have a sublattice
of the form shown in Fig. 3.3. Here intervals are marked with the factor of ¢ to
which they correspond.

Factorizations are given by paths from the top to the bottom of this diagram;
every parallelogram corresponds to a comaximal relation, not only minimal
parallelograms, giving relations such as yu” = u’y’, but also larger ones, such
as (y'z')v"” = v'(y”z"). Thus, in these various factorizations of ¢, any factor
from a@ and any factor from b are comaximally transposed.

Figure 3.3

Further, if, say x and y are comaximally transposed, xy = y’x’, giving the
subdiagram of left factors shown in Fig. 3.4, then from Proposition 4.7 we
get a corresponding expanded diagram of factors of ¢, including comaximal
parallelograms like xy = y'x’.

Figure 3.4

However, when L(cR, R) is not distributive, the embedding of Proposition
4.7 need not be an isomorphism. In terms of factorizations this means that some
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factors of ¢ and b may be comaximally transposed in more ways than the one
induced by the comaximal relation (6). For example, in Fig 3.3 some of the
parallelograms may be replaced by the diagram of Fig. 3.5. An example of
such behaviour occurs in the complex-skew polynomial ring. Here x> — 1 =
(x + D(x —1)=(x — D(x + 1) is a comaximal relation in which each factor
is an atom, yet its full diagram of factorizations is of the form of Fig 3.5, because
x? — 1 = (x 4+ u)(x — i) for any u on the complex unit circle.

Figure 3.5

Of course this cannot happen when L(cR, R) is distributive; as we have
seen, it is then a subdirect power of 2. This case will be studied in more detail
in Section 4.4.

Exercises 3.4

1. Show that the group algebra (over k) of the additive group of rational numbers
(written multiplicatively) is a non-atomic Bezout domain. (Hint: Write the elements
as Y cex®, o € Q, and express the ring as a directed union of polynomial rings.)

2. Show that the ring of power series Y c,x%(« € Q, & > 0) with well-ordered sup-
port is an atomless Bezout domain.

3. (A.H. Schofield) Let X = {x, x, ...} and consider the free power series ring P =
k{{X)), where each x; has degree 1. Verity that the endomorphism 0 : x; — x;x; 4,
on P maps non-units to non-units and that every non-unit in im 0 has x; as a proper
left factor. Deduce that the direct limit of the system (P, 6") is an atomless semifir,
which is neither left nor right Ore.

4. In a 2-fir, if an element ¢ can be written as a product of two atoms in at least three
different ways, show that all the atomic factors of ¢ are similar. Generalize the result
to n factors.

5. Over a 2-fir R consider the equation p @ ¢ = AB, where p, g are dissimilar atoms
and A, B are non-invertible matrices. Show that this factorization is equivalent to
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either (p & 1)(1 ® g) or (1 & ¢)(p @ 1). What are the possibilities when p is similar
to q?

6°. Develop a theory of UFDs that are not necessarily 2-firs (see Brungs [69a]; Cohn,
[70a, 73c]).

7. Over a fully atomic semifir, if A is a full matrix that is stably associated to AU, show

that U is a unit (without atomicity this need not hold, see Section 1.6).

8°. Investigate non-commutative 2-firs in which any two elements with no common
similar factors can be comaximally transposed.

3.5 Analogues of the primary decomposition

Besides the multiplicative decomposition of elements there is the primary
decomposition of ideals, which plays a role for commutative Noetherian rings.
Much of this can be formulated in terms of lattices and by applying it to Torg
we obtain various types of decomposition for full matrices over semifirs.

In a weakly 1-finite ring R, an element c is said to be decomposable if it has
two proper factorizations (i.e. factorizations into non-unit factors)

c=ab =bd, (D

which are left and right coprime; if ¢ is not decomposable and a non-unit, it is
said to be indecomposable. This term (to be distinguished from ‘factorizable
into a product of non-unit factors’) recalls the fact that for any (in)decomposable
element ¢ the module R/cR, equivalently, R/Rc, is (in)decomposable.

If ¢ has two proper factorizations (1) that are left (right) coprime, c is said to
be left (right) decomposable; if not, and ¢ is a non-unit, it is left (right) indecom-
posable. Clearly any decomposable element is both left and right decomposable;
hence any element that is either left or right indecomposable is indecompos-
able. For example, in an atomic 2-fir a non-unit c is right indecomposable if and
only if every complete factorization ends in the same right factor (see Propo-
sition 5.9). It is clear that a left and right decomposable element need not be
decomposable (see Exercise 4). We also note that a 2-fir that is a local ring is
rigid, by Theorem 3.7, hence in such a ring every element not O or a unit is
indecomposable.

If R is the n X n matrix ring over a 2n-fir, the definitions may be rephrased
as follows:

(1) afull matrix c in R is right decomposable if and only if there exista,b € R
such that

¢cR =aRNbR, wherecR # aR,bR, 2)
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(i1) afull matrix c in R is decomposable if and only if there exist a, b € R such
that

¢cR=aRNbR and aR +bR =R, wherecR # aR,bR. 3)

When c is invertible, we have cR = R; this case will usually be excluded. We
observe that the definitions depend only on the module type of R/cR, as the
following result shows.

Proposition 3.5.1. Let R be the n x n matrix ring over a semifir and let ¢ be
a full non-invertible matrix in R. Then

(i) c is right decomposable if and only if R/cR is an irredundant subdirect
sum of two torsion modules,
(ii) cis left decomposable if and only if R /cR is a sum of two torsion modules,
(iii) ¢ is decomposable if and only if R/cR is a direct sum of two torsion
modules.

In particular, if c is (left, right) decomposable, then so is any matrix similar to
it.

Proof. (i) Let ¢ be right decomposable, say (2) holds. Then there is a
monomorphism

R/cR — R/aR & R/bR. )

The result of composing this with the projection onto either of the summands
is surjective, but neither is injective; hence R/cR is an irredundant subdirect
sum of R/aR and R/bR. Conversely, given any subdirect sum representation
of R/cR, the kernels of the projection modules are again torsion modules, say
R/aR, R/bR, which will satisfy (2).

(i1) If ¢ is left decomposable, we have a relation (1), where a, b are left
coprime. Hence we have

R/cR = (@R + bR)/cR = aR/cR +bR/cR = R/V'R + R/d'R;  (5)

thus R/cR is a sum of two torsion submodules. Conversely, when R/cR is a
sum of two torsion modules, say R/a’R and R/b'R, then (5) read from right to
left, shows that (1) holds with @ and b left coprime.

(iii) In particular, when ¢ is decomposable, then the sum in (5) is direct,
because aR N bR = cR. The converse is clear. |

We now consider the representations of an element or matrix that correspond
to subdirect sum decompositions and direct decompositions of a module, with
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more than two terms. Let R be the n x n matrix ring over a 2n-fir and c a full
matrix in R; suppose that we have an irredundant representation

cR=aRN...Na R, (6)

where each g; is right indecomposable. Such an equation means that the natural
map

R/cR — ®R/a;R @)

obtained by combining the maps R/cR — R/a;R(i =1, ...,r) is injective.
Thus we have a subdirect sum representation of R/cR. Such a representation
certainly exists if R is atomic. The irredundancy of (6) means that no term on the
right of (7) can be omitted, while the right indecomposability of the a; shows
that each module R/a; R is subdirectly irreducible, by Proposition 5.1. If we
now apply the Kurosh—Ore theorem for modular lattices (Appendix Theorem
A.7), we obtain

Theorem 3.5.2. Let R be the n x n matrix ring over a fully atomic semifir.
Then for each full non-invertible matrix c in R, cR has an irredundant rep-
resentation (6), where each a; is right indecomposable, and if a second such
decomposition of cR is given, cR = bR N ... N bR, then r = s and the b;R
may be exchanged against the a; R, i.e. after suitably renumbering the b’'s we
have fori =1,...,r,

CR:alRﬂ...ﬁa,—Rﬂb,-HRﬂ...ﬂb,.R. |

Similarly, cR has a representation (6), where each a; is indecomposable and
such that

@R #R, a,-R-i—(ﬂajR) =R, (=1,...r). (8)
i#]
Let us call a representation (6) satisfying these conditions a complete direct
decomposition of cR. When (8) holds, the map (7) is an isomorphism, so that a
complete direct decomposition of ¢R corresponds to a direct sum representation

R/cR=R/a\R&® - ® R/a,R. 9)

The first condition in (8) shows that each term on the right is non-zero, while the
fact that each ¢; is indecomposable means (by Proposition 5.1) that each module
R /a;R is indecomposable in the category Torg. We shall express this by saying
that each R /a; R is Tor-indecomposable; thus R /cR is Tor-indecomposable (by
Proposition 5.1) precisely when c¢ is indecomposable. Since the terms in any
direct sum decomposition are always torsion modules (Theorem 2.3), this is
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equivalent to R/cR being indecomposable as module. If we now apply the
Krull-Schmidt theorem for modular lattices (Appendix Theorem A.6) to the
lattice of principal right ideals containing cR, we obtain

Theorem 3.5.3. Let R be the n x n matrix ring over a fully atomic semi-
fir. Then for each full non-invertible matrix ¢ in R, cR has a complete direct
decomposition (6) (i.e. satisfying (8)) and if a second such decomposition
cR=bRN...NbgRisgiven,thenr = sandtheb’'s may be exchanged against
the a’s. Moreover, the a’s and b’s are similar in pairs; thus after suitably renum-
bering the b’'s we have a set of coprime relations

ua; = bju;, (10)
where u corresponds to a unit in the eigenring E(cR).

Proof.  All except the last part follows from the preceding remarks. Now let
u € I(cR) correspond to the automorphism of R/cR transforming the isomor-
phism (9) into the corresponding relation with the b’s. Then there is a coprime
relation uc = cu’, say, and if ¢ = b;b; = a;a;, then we have ua;a; = b;bju’;

since u, c are right comaximal, so are u, b; fori =1, ..., r. If the b’s are now
renumbered so that R /a;R — R/b; R in the automorphism, then we have the
coprime relations (10), for some u; € R. |

We note that Theorems 5.1-5.3 hold more generally for the n x n matrix ring
over an n-atomic 2n-fir. We also note that since any left or right indecomposable
element is indecomposable, it follows that any complete direct decomposition
(6) can be refined to an irredundant decomposition. Therefore the decomposition
of Theorem 5.3 can have at most as many terms as that of Theorem 5.2.

The Krull-Schmidt theorem for modules can be proved either by lattice
theory, as above, or by Fitting’s lemma, which states that for an indecomposable
R-module M of finite length the endomorphism ring Endg (M) is completely
primary, i.e. alocal ring in which the maximal ideal is nilpotent (see FA, lemma
4.1.1 or IRT, p. 80). Using Proposition 0.6.1, we can restate Fitting’s lemma in
the following form:

Proposition 3.5.4. Let R be the n x n matrix ring over a fully atomic semifir.
Then the eigenring of an indecomposable full matrix is completely primary. B

Thus if ¢ is indecomposable and a, a’ € R are such that ac = ca’, then either
a, ¢ are right comaximal or there exists b € R and r > 0 such that a" = cb.
When a is assumed to be an atom, we thus find
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Corollary3.5.5. LetR beasin Proposition5 .4 and let c be an indecomposable
full matrix, with idealizer I(cR). If I(cR) contains an atom p, then either p is
right comaximal with c or c is right associated to p”, for some r > 0.

Proof. The remarks made earlier show that if ¢ is not right comaximal with
p, then cb = p” for some b € R and some r > 0. Thus p defines a nilpotent
endomorphism of E(cR) and

RDODcR+pR>D...DOcR+p  'RDOcRDp'R.

Successive quotients (cR + p'R)/cR form a strictly decreasing sequence of
torsion submodules of R/cR whose quotients have no torsion submodules
(because p is an atom); thus ¢R = p’R and so c is right associated to
P |

Of course in general the atomic factors of an indecomposable element need
not all be similar, e.g. take xy in the free algebra k(x, y); any atom in the
idealizer of xy, such as 1 4 xy, is comaximal with xy. This example also
shows that a factor of a member of /(cR) need not be a member of I(cR),
so an idealizer can contain composite elements without containing their atomic
factors.

We note the special case of a rigid UFD:

Corollary 3.5.6. [n a rigid UFD, the eigenring of any non-zero non-unit is
completely primary.

Proof. By Corollary 3.8, such aring R is an atomic 2-fir and a local ring. By
the remark at the beginning of this section, any non-unit in R is indecomposable,
so the result follows from Proposition 5.4. ]

For cyclic modules there is a criterion for direct decomposability that actually
holds quite generally.

Lemma 3.5.7. Let R be any ring and a,b € R, where a is right regular.
Then

R/bR = aR/abR, (11)

and this is a direct summand of R/abR if and only if there exist c,d € R such
that

da —bc = 1. (12)
Moreover, in that case we have

R/abR = R/bR & R/aR. (13)
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Proof. Write M = R/abR and suppose that
M = N, & N,, where N\ =aR/abR.

Denote by u theimage of 1 in M; thenu = v; + vy, where v; € N;, further, Ny =
R /bR by (11), which follows because a is right regular. Now N; = v; R and we
have v,x =0 < ux € N; & x € aR; hence N; = R/aR and (13) follows.

To establish (12), we have v; € uaR, say v; = uad; hence u = uad + v,
and so v; = u(1 — ad). Now u(1 — ad)a =0, so (1 — ad)a = —abc for some
¢ € R, and hence a(1 — da + bc) = 0. Since a is right regular, we have da —
bc = 1,1i.e. (12).

Conversely, given (12), we put r =1 —ad, u = uad + u(l — ad), and
so M =uadR + urR. If uax = ury, then ax —ry = abz; hence ax — y +
ady = abz,so0y € aR.Nowra = (1 — ad)a = a(l — da) = —abc.Itfollows
that ura = 0, hence ury = 0 and so uaR Nur R = 0, as claimed. |

To apply the result to 2n-firs, we note that if S is a 2n-fir, then an n-generator
torsion module over S corresponds under the Morita equivalence (Theorem
0.2.4) to a cyclic S,-module. We thus have

Proposition 3.5.8. Let R be the nxn matrix ring over a 2n-fir and let M, N
be cyclic right R-modules defined by full matrices. Then M @ N is cyclic if
and only if there is a left comaximal pair of full matrices a, b in R such that
M = R/aR,N = R/bR.

Proof. If M & N is cyclic, where M = R/aR, N = R/bR, then (12) holds;
hence a, b are comaximally transposable, say ab = b’a’. But then a is similar
to a’ and @', b are left comaximal.

Conversely, if a, b are left comaximal, let a;b = b;a be a comaximal rela-
tion; then a; is similar to @ and a;, b are comaximally transposable; hence by
the lemma, R/a;R @ R /bR is cyclic. [ ]

We also note the following condition for one-sided decomposability:

Proposition 3.5.9. Let R be the n x n matrix ring over a 2n-fir and c a full
matrix in R. Then the following conditions are equivalent:

(a) c is right indecomposable with an atomic right factor,

(b) the lattice L(cR, R) has a unique minimal element covering cR,
(c) the lattice L(Rc, R) has a unique maximal element covered by R,
(d) ¢ has an atomic right factor, unique up to left associates.

Proof.  This follows easily from what went before; the details may be left to
the reader. [ ]
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Using (c) we obtain

Corollary 3.5.10. IfR and c are as in Proposition 5.9 and c is right indecom-
posable, then so is any right factor of c. [ |

Of course this result holds more generally in any integral domain; in fact it is
true for any cancellation monoid.

Another type of decomposition, sometimes of interest, exists for certain
full matrices over semifirs, namely those whose associated torsion module is
completely reducible (or semisimple). A full matrix ¢ in the n X n matrix ring
R over a semifir is said to be fully reducible if

cR =Np;R, (14)

where the p; are matrix atoms. By passing to the corresponding torsion module
we see that c is fully reducible if and only if R /cR is a subdirect product of Tor-
simple modules. Thus being fully reducible is again a property of the module
type R/cR. If moreover, R is atomic (e.g. if the ground ring is fully atomic),
then it is enough to take finitely many atoms on the right of (14). Taking the
number of terms to be minimal, we obtain R/cR as a subdirect sum of the
R/p; R, and by minimality the sum is actually direct:

R/cRZR/p\R® - ®R/p,R. (15)

By the factorial duality, being fully reducible in R is a left-right symmetric
property. Further, any factor of a fully reducible element is again fully reducible,
as the representation (15) shows. More generally, the decomposition (15) holds
for an n x n matrix ¢ over an n-atomic 2n-fir.

In order to relate full reducibility to factorizations we need another concept,
which is most easily stated for cancellation monoids. In any cancellation monoid
the notion of full reducibility can be defined in analogy to (14). Now let S be a
cancellation monoid. Given a factorization of a non-unit ¢ in § into non-units:

¢ =ab, (16)

if every left factor of c is either a left factor of a or a right multiple of @, then a is
called a left block of c, while c is said to be cleft. Dually, b is then a right block
of ¢ and (16) is called a block factorization or cleavage of c. An element is said
to be uncleft if it is a non-unit with no cleavage into more than one non-unit.

It is clear that block factorizations are ‘rigid’ in the sense that, given two
block factorizations of ¢, say ¢ = ab’ = ba’, we have a = bu or b = au for
some u € S. Let ¢ € S be fully reducible; a given factorization of c:

c=ai...ay (17
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is called a cleavage if, for k =2,3,...,r — 1, every left factor a; ...a; is a
left block or equivalently, every right factor a; . . . a, is a right block. In the case
of two factors this just reduces to the earlier notion.

If ¢ with a cleavage (17) also has an atomic factorization, this can always be
obtained by refining (17) without reordering the terms. It follows that the set of
left blocks is finite and by taking a cleavage (17) of ¢ with a maximal number
of factors the a; are uncleft, because otherwise we could increase the number
of factors by taking a cleavage of a;. We note the following uniqueness result:

Lemma 3.5.11. Let S be a cancellation monoid and c € S an element of finite
length, i.e. with a complete factorization. Then the set of its left blocks is finite,
vielding a cleavage (17) that is maximal with respect to refinement. The factors
a; are uncleft, and they are the only maximal uncleft factors of c.

Proof.  Suppose that c has an atomic factorization of length n. Then there are
at most n left blocks, ordered by left divisibility, and this leads to a cleavage
(17) maximal with respect to refinement. Here the factors a; are uncleft, since
a cleavage of a@; would induce a cleavage of ¢ that is a proper refinement of
(17). We claim that a4, .. ., a, are the only maximal uncleft factors of c. For if
¢ = uvw, where v is uncleft, then a comparison with (17) shows that v must be
a factor of some q;; for if v had a left factor in ¢; and a right factor in a; 1, this
would lead to a cleavage of v, against the hypothesis. If v is a proper factor of
a;, then it is not a maximal uncleft factor, so the maximal uncleft factors are,
up to associates, the a’s themselves, as claimed. [ ]

To give an example, let us take R = 7Z, or more generally, any commutative
principal ideal domain. If p is an atom such that p 4 1 is a non-unit, then the
element p%(p + 1) is uncleft, but it has the cleft factor p2. Let us call an element
totally uncleft if all its factors are uncleft; thus in a commutative PID the totally
uncleft elements are just the ‘squarefree’ elements. The connexion with fully
reducible elements is given by

Proposition 3.5.12. Let R be the n x n matrix ring over a semifir. For any
full matrix c in R admitting a complete factorization, the following conditions
on ¢ are equivalent:

(a) c is totally uncleft,

(b) c is fully reducible,

(c) any two neighbouring factors in a complete factorization of ¢ can be comax-
imally transposed.

Proof. (a) = (b). Let ¢ be totally uncleft; then not every complete factor-
ization of ¢ ends in the same atom, say ¢ = ¢ p; = ¢z p2, where Rp; # Rp;.
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Then cR = ¢;R N ¢ R; now ¢y, ¢, as factors of ¢ are again totally uncleft and
by induction on the length of ¢, each ¢; is fully reducible, say ¢;R = N;p;;R.
Hence cR = N;; p;; R, which shows the truth of (b).

(b) = (c). Assume c fully reducible, take a complete factorization ¢ =
aj ...a, and fix i in the range 2 < i <r. Then a;_,qa; is fully reducible, as
factor of ¢, hence there is a comaximal relation a;_1a; = ala;.

(c) = (a). This follows because any cleavage of any factor of ¢, on being
refined to a complete factorization, leads to a pair of neighbouring atomic factors

that cannot be comaximally transposed. ]

Inarigid UFD any factorization is clearly a cleavage. Generally let us say that
a factorization of a certain type, e.g. into maximal uncleft factors, is essentially
unique if it is unique up to inessential modification (i.e. by unit factors). Now
Lemma 5.11 shows the truth of

Theorem 3.5.13. Let R be the n x n matrix ring over a semifir. Then every
full matrix c in R of finite length has a factorization

c=a..a (18)
into maximal uncleft factors, and this is essentially unique. [ |

The factorization (18) is always a cleavage; if the factors are atoms, this
means that no two neighbours are comaximally transposable. In terms of lattices
this means that L(cR, R) is a chain. Thus we have

Corollary 3.5.14. A full matrix c of finite length in the n x n matrix ring R
over a semifir has a cleavage into atomic factors if and only if L(cR, R) is a
chain, or equivalently, if c is rigid. |

Here (as in Proposition 5.12 and Theorem 5.13) the ring can again be taken to
be a 2n-fir.

Exercises 3.5

1. In the complex-skew polynomial ring R = C[x; —], find all possible irredundant
representations (6) of (x> — 1)R.

2. Show thatin any commutative principal ideal domain that is not a local ring there are
elements that have no essentially unique factorization into maximal totally uncleft
factors.

3. Show that in a commutative UFD every factor of an indecomposable element is
again indecomposable, and find a counter-example in the ring k[x2, x*]. Show also
that in k(x, y, z) the element zx(yx + 1)z is indecomposable (even left and right
indecomposable), but has a decomposable factor.
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4. Find an element in k(x, y, z) that is indecomposable but not left or right indecom-
posable.

5. Show that in an atomic 2-fir any factor of a fully reducible element is fully reducible.

6. Anelement c of aring R is called primary if cR = Np; R, where the p; are pairwise
similar atoms. Show that in the n X n matrix ring over an n-atomic 2n-fir every full
matrix that is fully reducible can be written uniquely as LCRM of primary matrices.

7. Let S be a cancellation monoid and leta = a; . . . a, be a factorization into maximal
uncleft factors. If b is a left factor of a, with factorization b = b, . . . by into maximal
uncleft factors, then for some i < min(r, s),a;...4;S =b;...b;S,bir1...b;S 2D
ai1S.

8°. Investigate atomic 2-firs (other than principal valuation rings) in which any two
atoms are similar (see Faith [73], p. 362).

9. (Beauregard and Johnson [70]) Fori = 1, ..., n let p; be the ith prime in N. Verity
that the subring R; of Q[x] consisting of all polynomials f such that f (i) has a
denominator prime to p; is a Bezout domain. (Hint: Replace x by x —i). Show
further that R = NR; is a Bezout domain. Show that R contains elements that are
pi-prime but not a product of atoms.

Notes and comments on Chapter 3

The notion of full matrix (Section 3.1) was introduced by Cohn [71a]; for left full,
left prime, etc. see Cohn [82a], where results 1.3—1.5 are also proved. Much of Section
3.2 follows Cohn [63a,69a,70a], though the strictly cyclic (= cyclic torsion) modules of
FR.1 were replaced by torsion modules in FR.2. This corresponds to taking factorizations
of full matrices rather than elements, and most of the subsequent results are stated in
this more general form, which is usually no harder to prove. Many of the results are just
consequences of the fact (Theorem 2.3) that the torsion modules over a semifir form an
abelian category. Factorizations of unbounded length have been studied by Beauregard
[69], Beauregard and Johnson [70], Brungs [78] and Paul [73]. The proof of Proposition
2.5, based on the linear independence of the (A — B)~!, where A is transcendental, is
Amitsur’s well-known trick (which he apparently noticed while lecturing on complex
function theory).

An interesting generalization of UFD, to include the case of Z(X), has been proposed
by Brungs [69a]; for another approach see Cohn [70a] and for a survey, Cohn [73c]. A
detailed study of similarity, foreshadowing a form of Schanuel’s lemma, was undertaken
by Fitting [36]; the parts relevant for us are contained in Sections 0.5 and 3.1 (see
also Cohn [82a]). For Section 3.3 see Cohn [62a] and Bowtell [67a]. Proposition 3.6
generalizes a result by Koshevoi [66] for free algebras, and Proposition 3.12 is taken
from Cohn [85a]. Lemma 3.13 is the special case for integral domains with UGN of a
result of Chase [62]; for the application made here, see Cohn [66d].

Section 3.4 is due to Bergman [67] (see also an unpublished manuscript by
Bergman, dating from 1969), while Section 3.5 generalizes earlier results of Ore [33a];
see also Feller [60], Johnson [65] and Cohn [69a, 70a, 73c]. For another approach
to primary decomposition in non-commutative rings, see Barbilian [56], Chapter 2.
Lemma 5.7 generalizes a result proved in FR.1 and is taken from Dieudonné [73],
p. 164.
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Cozzens and Faith [75] define a V-ring as a ring in which every simple right module
is injective (e.g. the commutative V-rings are just the von Neumann regular rings). It
can be shown that a right PID is a V-ring if and only if every non-zero element is fully
reducible. Every V-ring is a TC-ring, defined as follows: a fest module for a ring R is
amodule T such that, for any R-module M, Homg (M, T) = 0 implies M = 0; if every
test module is a cogenerator (i.e. Homg(—, T') is a faithful functor of T'), then R is called
a TC-ring. Let R be a TC-ring and S a simple R-module with injective hull £(S); then
Endg(E(S)) is a local ring and a semifir (see Vamos [76]).
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Rings with a distributive factor lattice

This chapter examines more closely those 2-firs in which the lattice of factors of
any non-zero element is distributive. After some generalities in Section 4.1 and
their consequences for factor lattices in Section 4.2 it is shown in Section 4.3
that this holds for free algebras and the consequences are traced out in Sections
4.4 and 4.5 while Section 4.6 describes the form taken by eigenrings in this case.

4.1 Distributive modules

Given any ring R, a full subcategory @ of RMod, the category of all left R-
modules, is said to be admissible if any kernel or cokernel (taken in g Mod) of
a map of « is again in . In general @ may not admit direct sums; if it does,
we have an abelian category, by Appendix Proposition B.1. A module in @ will
be called an d-module; likewise we shall speak of (f-submodules, (I-quotients,
etc., but the reference to ( will sometimes be omitted when it is clear that
we are dealing with (f-modules. For example, the category of torsion modules
over a semifir is admissible and admits direct sums, as well as sums of torsion
submodules.

Since an admissible category @ admits kernels and cokernels, it also admits
images and coimages and it follows that the set Latg(M) of (l-submodules of
any R-module M is a lattice, necessarily modular. If Latg(M) is distributive,
the module M is said to be d-distributive, or simply distributive, if the meaning
is clear (see Appendix A). The following are some examples of occurrences of
distributive modules:

(1) @ =gMod, where R is a commutative Bezout domain (or more generally,
a Priifer domain). Any cyclic R-module is distributive (Jensen [63]).

225
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(i) @ =gMod, where R is semisimple Artinian. An R-module M is distributive
if and only if each simple module type occurs at most once in M. If each
simple module type occurs exactly once, then M is faithful. For this reason
R is called distributively representable by Behrens [65].

(iii) In every right Artinian algebra of finite representation type the lattice of
all two-sided ideals is distributive, see Pierce ([82], p. 104).

(iv) In Section 4.3 we shall see that any 1-torsion module M over a free algebra
R = k(X) is Tor-distributive. Here it is essential to consider M as an object
of gTor' rather than xMod.

In the rest of this section we shall examine the structure of a distributive
module, in preparation for what follows. If M is a distributive module, then
clearly any submodule and any quotient of M is again distributive. We begin
with a simple characterization of distributive modules, which is often useful.
Let M be a module and suppose that M = M @& M,. With any homomorphism
o : My — M, we associate a submodule of M, the graph of «:

') = {(x, xa)|x € M,}. (D)

It is clear that I'(«) N M, = 0, I'() + M, = M; thus I'(«) is a complement
of M, in M, and it is easily seen that any complement of M, in M defines a
homomorphism M; — M5 in this way. Since in a distributive module comple-
ments are unique, there can then only be one such map, necessarily the zero
map. Thus we obtain

Proposition 4.1.1. Given an admissible module category a, let M, M, be
any A-modules and put M = M| & M. Then each homomorphism a : M| —
M, determines a graph T'(«) given by (1), which is a complement of M, and
conversely, each complement of M is the graph of a homomorphism M, — M.
Moreover, when M is distributive, then Hom(M, M>) = 0. [ ]

This result shows in particular that a distributive module cannot be of the form
N2, i.e. the square of a non-zero module. Let us call M square-free if it has no
factor module isomorphic to such a square. This yields the following criteria
for distributivity:

Theorem 4.1.2. For any module M in an admissible category the following
conditions are equivalent:

(a) M is distributive,
() Hom(P /(P N Q), Q/(P N Q)) = 0 for all submodules P, Q of M,
(c) M is square-free.

Proof. (a)= (b).If M is distributive, thensois (P + Q)/(P N Q)= P/(P N
0)® Q/(P N Q), and now (b) follows by Proposition 1.1.
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(b) = (c). If (c) is false, then M D A D B, where A/B is a square;
this means that there exist P, Q D B suchthat P+ Q = A, PN Q = B and
P/B = Q/B, but this contradicts (b).

(c) = (a). Suppose M is not distributive. Then Lat(M), being modular, has a
five-element sublattice of length 2, by Appendix Proposition A.5, i.e. there exist
Pi(i=1,2,3)suchthat P, + P; = A, P, N P; = B fori # j; hence A/P; =
P;/B,and so A/B is a square. [ ]

Let M be any module, A, B submodules of M and o a homomorphism of
some module into M. Then we clearly always have

Ae~'+Ba~' C(A+ B,

but equality need not hold. It is easily seen that we have equality when A or B
lies in the image of «. Dually, we have, for a homomorphism g from M into
some module,

(ANB)B S ABN BB,

and here we have equality if A or B contains ker 8, but not generally. In fact,
equality (in either case) characterizes the distributivity of M:

Proposition 4.1.3.  For any module M in an admissible category the following
conditions are equivalent:

(a) M is distributive,
(b) for any module P and homomorphisma:P — M,

(A+ B)a~' = Ao~ + Ba™! for all submodules A, B of M,
(c¢) for any module Q and homomorphism f:M — Q,
(AN B)B = AB N BB for all submodules A, Bof M.

Proof. (a) < (b). For any submodule S of P containing ker « the corre-
spondence S — S« is a bijection between the set of submodules of P con-
taining ker « and the set of all submodules of P, with inverse A Aal,
where A is a submodule of Pa. Hence (b) holds if and only if (A + B)a~'a =
Aa"'a + Ba~'a. Since Aa"'a = AN Pa, thisisjust (A+B)NPa=AN
Pa + B N Pa, which is distributivity.

(a) & (c).Let K =ker B;then ABB~! = A+ K,andsox € (AB N BB)B™!
ifand only if x € (A + K) N (B + K). Thus (c) holds if and only if (A N B) +
K =(A+K)N(B+ K), which is (a). [ |

We shall need another technical result on homomorphisms between distribu-
tive modules.
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Lemma 4.1.4. Let P, Q be any modules in an admissible category and o, €
Hom(P, Q).
(i) If Q is distributive and X is a submodule of P, then

(a) P =(@{ma)B~ ' +(imPa~t, ®) X =X NXap™H+ (X NXBa™h),
(ii) if P is distributive and Y is a submodule of Q, then

(a) 0 = (ker @) N (ker B, (b)Y =X +Ya 'B)NY +YB 'a).

Proof. (i) We have im(« 4+ ) € im « + im 3, hence by Proposition 1.3,

P = (ima +imB) e + )" = (ima)(a + B)~" + (imB)(a + p)~"
= (ima)8~! 4 (im B)a~".

Now (b) follows by setting v for the inclusion map of X in P and applying (a) to
va, v8, thus: X = Xa(wB) ™' + XBva) ' = (X N Xap™H+ X NXBa™h).
(ii) follows similarly from Proposition 1.3. |

A module M is said to be meta-Artinian if every non-zero factor of M has a
simple submodule; dually, if every non-zero factor of M has a simple quotient, M
is called meta-Noetherian. Clearly these properties are inherited by submodules
and quotients. When M is taken from an admissible category , it is understood
that only submodules and quotients in ( are understood.

For modules satisfying these hypotheses Lemma 1.4 can be extended as
follows:

Proposition 4.1.5. Let A be an admissible module category admitting sums
of submodules. Given -modules P, Q and o, B € Hom(P, Q),

(i) if P is meta-Artinian and Q is distributive, then ker a C kerf implies
impB Cima,

(ii) if Q is meta-Noetherian and P is distributive, then im B C im « implies
ker a C kerp.

Proof.  Suppose that ker o« C ker B butim 8 ¢ im«, and define
A=Y (B < P|BBC Ba}.

Clearly A is the largest submodule of P such that A € A«. In particular it
follows that ker « € ker § C A. Since im 8 ¢ im«, we have A # P. By
hypothesis there exists X € P such that A C X and X/A is simple. But
ACAup ' CXap'and A S X NXap~! C X. Since XB ¢ X and X/A
is simple, we find that A = X N XaB~!. By Lemma 1.4 (i)(b),

X=XNXef H+XNXBa™H=A+XNXBa™h)
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and so Xa = Aa + (X NXBa Do = Aa + Xa N XB) = Aa + (Xaf™' N
X)B = Aa + AB = Aa.Sincekera C A, we findthat X = A, a contradiction;
hence im B € im «. This proves (i); now (ii) follows similarly, by applying dual
arguments. ]

We recall that a submodule of a module M is called fully invariant if it is
mapped into itself by all endomorphisms of M. We shall see that under suitable
finiteness conditions distributive modules have an even stronger property:

Corollary 4.1.6. Let  be an admissible module category admitting sums of
submodules. (i) If M is a meta-Artinian distributive d-module and N a submod-
ule of M with a homomorphism o.: N — M, then N C N. In particular, M is
fully invariant and any two isomorphic submodules of M are equal.

(ii) If M is a meta-Noetherian distributive module with a submodule N and
a homomorphism f:M — M /N, then ker B 2 N, so that B is induced by
an endomorphism of M/N. In particular, distinct submodules of M determine
non-isomorphic quotients. Moreover, M is fully invariant.

Proof. (i) is an immediate consequence of Proposition 1.5, putting o =
there and taking « in (i) to be the inclusion map. Now the first part of (ii)
follows similarly; to show that M is fully invariant, let N be a submodule and
v : N — M/N the natural map. By the first part, we have xv = 0 = xBv =0
for any x € M and it follows that N8 C N. [ ]

In Section 4.6 we shall need a further result. We begin with a lemma.

Lemma 4.1.7. Let d be an admissible module category admitting sums of
submodules. Given an d-module M with submodules U, V, suppose that neither
is contained in the other and that U,V each have a unique maximal submodule
U’, V' respectively. Then

U+V)U +VYZU/U V]V 2)

Proof.  The natural maps U/U’ — (U +V)/(U'+V)and V/V' — (U +
V)/(U'+ V') giverisetoamapU/U' ®V/V' — (U +V)/(U' + V'), which
is clearly surjective; we have to show that it is injective. Suppose that ([x], [y])is
in its kernel, where square brackets denote the residue-classes mod U’ and mod
V’; this means that x + y € U’ + V', hencex +y = u + v, whereu € U', v €
V’. It follows that x —u = v — y, where x —u € U, v — y € V; hence their
common value liesin U N V. By hypothesis the latter is a proper submodule of U
and of V, and so by the maximality of U,V itmustliein U’ N V'. Therefore x =
(x —u)+u € U’ and so [x] = 0; similarly [y] = 0 and our map is injective,
hence an isomorphism. n
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Proposition 4.1.8. Let 4 be an admissible module category admitting sums
of submodules, and let M be an A-module with a unique maximal submodule
M'. Then for any two homomorphisms o, 8: M — N, where N is a distributive
module, one of Mo, MB is contained in the other.

Proof. 'We may assume that o, 8 # 0; then ker « is a proper submodule of M,
hence kera € M', Ma = M /ker «, and it follows that M« has a unique maxi-
mal submodule, namely M’«. Similarly M 8 has the unique maximal submodule
M’ and if Mo, Mp are incomparable, then by Lemma 1.7,

(Ma+ MB)/(M'a+ M'B)=Ma/Ma®MB/M'B=(M/M)*
this contradicts the fact that N is square-free and the conclusion follows. H

To end this section let us note a useful result on the endomorphism ring of
a distributive module that is a direct sum.

Theorem 4.1.9. Let A be an admissible module category admitting sums of
submodules, and let M be a distributive -module such that

M=M@ - ®d&M,. 3)

Then

End(M) = ]_[ End(M;). “)
i=1

Proof.  Any endomorphism o of M is represented by a matrix (¢;;), where
a;; € Hom(M;, M;), and by Theorem 1.2, ;; = 0 fori # j. [ |

If M is indecomposable of finite length, then End(M) is completely primary,
by Fitting’s lemma, and the Jacobson radical of End(M) may be described as
follows:

Corollary 4.1.10. Let @ be an admissible module category admitting sums of
submodules, and let M be a distributive -module of finite length, with a direct
decomposition (3) into indecomposable submodules M;. Then each End(M;)
in (4) is completely primary and the Jacobson radical J(End(M)) is nilpotent,
given by

J (End(M)) = HJ(End(Mi)). (5)

i=1
Proof. Tt is clear from (4) that J(End(M)) has the form (5); since each
J(End(M,)) is nilpotent, the same holds for J(End(M)). [ |
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Exercises 4.1

1. Show that a finitely generated Z-module is distributive if and only if it is cyclic.

2. (Jensen [63]) Let M be a distributive R-module. If a, b € M, show that either
Ra € Rbor Rxb C Ra for some x € R such that 1 — x is a non-unit. Deduce that
if R is a local ring, then Lat(M) is totally ordered.

3. Let M be a distributive module. Show that if a perspectivity between two chains of
modules exchanges two simple factors P, Q, then P and Q cannot be isomorphic.

4. Let M be a distributive module of finite length. By the Jordan—Holder theorem, any
two composition series of M are projective, in the sense that we can pass from one
to the other by a series of perspectivities. Use Exercise 3 to show that any such
projectivity preserves the order of the factors of a given isomorphism type.

5*. (G. M. Bergman) Given a module M, if any homomorphism of a submodule N of M

into M maps N into itself, is M necessarily distributive? [Hint: For acounter-example
try a three-dimensional vector space over a field &, regarded as left R-module, where

a 0 O
R consists of all matrices | 0 a 0 |, wherea, b, c € k.]
b ¢ a
6. Let M be a distributive module of finite length. If Ay, ..., A, are the simple factors

(with their multiplicities) occurring in a composition series of M, show that every
endomorphism of M maps each term of a composition series into itself. Deduce that
there is a homomorphism End(M) — []/_, End(A4;), whose kernel is the radical of
End(M) and that this radical is nilpotent.

7*. (Vamos [78]) (i) If M = Ra + Rb is distributive, show that Ra N Rb + R(a + b)
contains Ra and Rb; deduce that M = Ra N Rb + R(a + b). (ii) Show that any
finitely generated Artinian distributive module is cyclic. [Hint: Let A be minimal
finitely generated non-cyclic and B minimal of the form Ra N Rb, where A =
Ra + Rb. Use (i) to show that A = R(a + b) + By, where By is a cyclic submodule
of B, and that By N R(a + b) C B; deduce that By = B C R(a + b) and obtain a
contradiction. ]

8. (Stephenson [74]) Let A = k[x, y], K = k(x, y), denote by R, S the subrings
of K obtained from A by localizing at all elements prime to x, y respectively,
and let «: R — § be the k-isomorphism interchanging x and y. Show that T =
{ ?) aua la € R,u € K ¢t is aring whose left as well as right ideals are totally

ordered, hence T is distributive as left or right T-module, but neither left nor right
invariant (T is left invariant if cT C Tc forallc € T).
9. (Camillo [75]) Let k£ be a commutative field and o an endomorphism such that 1 <

[k; k%] < co. Show that the ring R = { )?;) [x,y e k} has only R, J(R)

X
0
and 0 as left ideals, hence Latg (R) is distributive, and R is left but not right invariant.

4.2 Distributive factor lattices

From Theorem 2.3.7 we see that a 2-fir may be defined as an integral domain
R such that for any ¢ € R* the set L(cR, R) is a sublattice of the lattice of all
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right ideals of R. In the commutative case this condition simply states that the
principal ideals form a sublattice of the lattice of all ideals. In that case we can
go over to the field of fractions and consider the principal fractional ideals; by
what has been said they form a modular lattice with respect to the ordering by
inclusion. Clearly they also form a group under multiplication, and the group
operations respect the ordering. Thus we have a lattice-ordered group; such a
group is always distributive, as a lattice (Birkhoff [67], p. 294). This suggests
that we single out 2-firs with the corresponding property, and we make the
following

Definition. An integral domain R is said to have a distributive factor lattice,
DFL for short, if for each ¢ € R*, the set L(cR, R) is a distributive sublattice
of the lattice of all right ideals of R.

From the definition (and Theorem 2.3.7) it is clear that a ring with distribu-
tive factor lattice is a 2-fir. Moreover, since L(cR, R) is anti-isomorphic
to L(Rc, R), by the factorial duality (Theorem 3.2.2), the notion defined
here is left-right symmetric. We shall reformulate this condition below in a
number of ways, in terms of 1-torsion modules. We begin with a technical
lemma.

Lemma4.2.1. LetR be a 2-firanda € R*. Then

(i) a is right comaximal with an element similar to a if and only if a is right
comaximal with ba, for some b € R,

(ii) there exist two elements similar to a and right comaximal if and
only if there is an equation xay + ua,v = 1, where ay, a, are similar
to a.

Proof. (i) The similarity of @ and a’ can be expressed by the existence of two
mutually inverse matrices

a b -1 d, _b/
A= , AT = .
<c d) (—c’ a
Let us replace these matrices by T A, A~1T !, where for some ¢ € R to be

determined later,
1 0
T = ;
(1)

then the equation of comaximality obtained by equating the (1, 1)-entry in
TA.A'T 1is

ald +b't)—b(d +at)=1. (D
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By hypothesis a and @’ are right comaximal, say
au —a'v =1, 2)
hence a’vc’ + ¢’ = auc’, and taking ¢ = vc’ in (1), we find
a(d + b'vc’) — bauc =1, 3)

which shows a and ba to be right comaximal. Conversely, if @ and ba are right
comaximal, say ad’ — bac’ = 1, then by Lemma 3.3.3, taking this relation in
the form a.d’ — b.ac’ = 1 we have a comaximal relation ac’.a = a;v, where
a; ~ a. Hence a is right comaximal with a; and (i) follows.

(i) For any p,q € R the comaximal relation (1 + pg)p = p(1 4+ gp)
showsthatl 4+ pg ~ 1 + gp.Nowifxa;y + uav = 1,thenl — xa,;y = uayv,
hence 1 — ajyx ~ uayv, say 1 —a;yx = u'azv’ (see Exercise 3.1.8), where
as ~ ay ~ a; thus 1 —u’azv’ = a;yx, and repeating the process, we have
1 — azv'u’ = a4z, where a4 ~ a. Thus the elements a3, a4 similar to « are right
comaximal. Conversely, if a;, @, are similar to a and right comaximal, then
aiR + aR = R. [ |

We now list some conditions for the distributivity of L(cR, R); it turns out
to be more convenient to list the negations, i.e. conditions for non-distributivity:

Proposition 4.2.2. LetR be a 2-fir and ¢ € R*. Then the following conditions
are equivalent:

(a) the lattice L(cR, R) is not distributive,

(b) ¢ = amb, where R/mR = M?* # 0 for some 1-torsion module M,

(¢) ¢ = amb, where m = a;a; = azay is a comaximal relation in which
ai, ..., ay are all similar non-units,

(a%)—(c?) the left—right analogues of (a)—(c).

Proof. By Proposition 1.1, L(cR, R) fails to be distributive precisely if it is
not square-free, i.e. (b), or contains a five-element sublattice of length 2, i.e.
(c). Now the symmetry holds by the form of (c). [ |

Next we have the following conditions for global distributivity:
Theorem 4.2.3. Let R be a 2-fir. Then the condition

(a) for any similar a, @ and any b € R,baR Na’R # 0 = ba € a'R, implies
(b) for any similar a,a’ € R,aRNa’'R #0 = aR = d'R,
and this implies the following conditions, which are equivalent among them-
selves and to their left—right analogues:
(c) for each c € R*, the lattice L(cR, R) is distributive,
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(d) thereis no comaximalrelation a;a, = azay, whereay, . . ., aq are all similar
non-units,

(e) if a is a non-unit, (R /aR)? is not cyclic,

(f) if a, a are similar non-units, there is no equation xay + ua’'v = 1,

(g) for any non-unit a, there is no equation ax + uav = 1.

Moreover, when R satisfies right ACC,, then all the conditions (a)—(g) are
equivalent.

We see that DFL is the condition (c); a 2-fir satisfying (a) is sometimes said
to possess the right strong DFL property. Left strong DFL is defined similarly
and strong DFL means ‘left and right strong DFL’.

Proof. (a) = (b) = (c). Taking b = 1 in (a) we find that whenaR Na'R # 0,
then aR C a’R and by symmetry, aR = a’'R, i.e. (b). Now (b) asserts that
isomorphic 1-torsion quotient modules of a 1-torsion module have the same
kernel; if L(cR, R) is not distributive, it has a five-element sublattice of length
2, hence we can find isomorphic quotient modules with distinct kernels, i.e.
non-(c) = non-(b) and so (b) = (¢).

To prove (c) = (a) when right ACC; holds for R, consider the assertion (a),
say bac = a’u for c,u € R*. We observe that R /a’R is isomorphic to R/aR,
which is a quotient of R /acR; since bac € a’R, left multiplication by b defines
ahomomorphism R /acR — R/a’R, while the conclusion of (a) states that left
multiplication by b defines a homomorphism R/aR — R/a’R.1f we combine
left multiplication by b with the isomorphism R/a’'R = R/aR, we see that (a)
asserts that any homomorphism R/baR — R/aR is induced by an endomor-
phism of R/aR. So when (c) holds, then (a) follows by Corollary 1.6 (ii). Now
(c) & (d) < (e) by Proposition 2.2 and (d) < (f) < (g) by Lemma 2.1. [ |

As an application this yields another criterion for distributivity:

Corollary4.2.4. IfR is a 2-fir such that the polynomial ring R[t] is 2-Hermite,
then R has a distributive factor lattice.

Proof.  To prove the result we shall verify (g) of Theorem 2.3. Thus let ax —
yaz = 1 in R. Then we have in R[¢],

a(tz4+x)—(t +y)az = 1. %)

Since R[¢] is 2-Hermite, the row (@, t 4+ y) and the column (tz 4+ x, —az)" can
be completed to mutually inverse matrices:

a t+y) 4 <t2+x —f)
A= 5 A = ) b ) k) GR[t]
(p ¢ 4z g 18 p.q
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By equating entries in AA~! = A~'A = I we find that aza = gp, hence p, ¢
are of degree 0 in ¢. Further we have

af =@+ y)q, pltz+x)=gaz. 5)

By comparing degrees we find that f, g are linear in #; thus we may put f =
fit + fo. g = g1t + go, where f;, gi € R. By equating coefficients of ¢ in (5)
we find afy = ¢, p = g1a, so

(a t+y>_<1 t—}—y)(a 0)
p g 8 g 0 1)
This shows a to be a unit and (g) follows. [ |

We observe that every commutative 2-fir, and in particular, every commuta-
tive principal ideal domain, satisfies (a) of Theorem 2.3 and hence also (b)—(g).
The implication (c) = (a) does not hold without chain conditions (see Exercise
15). Some consequences of (a) are listed in the exercises; here we shall con-
sider 2-firs for which (b) fails to hold and show that whenever an element has
two similar atomic right factors that are not left associated, then it has (gener-
ally) infinitely many. More precisely, we give a lower bound to the number of
similarity classes.

LetR be a2-fir,c € R* andletc = ab. Then M = R/Rc has the submodule
N = Rb/Rab = R/Ra.If ¢ = a'b’ is another factorization of ¢, in which a’ ~
a, then N’ = Rb'/Ra’b’ = R/Ra’ is a submodule of M that is isomorphic
to N, and N = N’ if and only if Rb = RV, or equivalently, aR = a'R, i.c.
a and a’ are right associated. Suppose now that N # N’, say N’  N. Since
N, N’ are isomorphic cyclic modules, they have generators u, u’ respectively,
which correspond under this isomorphism. Given any « € End(N), ua + u’
generates a submodule N,, of M that is a homomorphic image of N, for the map
fu © xu > x(ua + ') clearly defines a homomorphism. We note that f,, # 0,
for if f, = 0, then ua = —u’, hence N’ = Na C N, which is not the case.

Assume now that N N N’ = 0; this means that Rb N RV’ = Rc or equiv-
alently, aR +a’'R = R, i.e. a and d’ are right comaximal. In that case the
submodules N, defined by the different endomorphisms of N are distinct,
for if Ny = Ng, then ua +u' = xwp +u'), ie. 1 —x)u’ e NNN' =0, so
u' = xu’,hence u = xu and ua = xuf = up, therefore « = B. So there are at
least as many different submodules N, as there are elements in End(N), and
each corresponds to a left factor of ¢ similar to a right factor of a. The result
may be stated as

Theorem 4.2.5. Let R be a 2-fir and suppose that ¢ € R™ has two left factors
a, a' that are similar and right comaximal. Then the number of non-right-
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associated left factors of c that are similar to a right factor of a is at least
|E(Ra)|. In particular, if a is an atom in R, then the number of non-right-
associated left factors of ¢ similar to a is 0, 1 or at least |E(Ra)]. [ |

If R is an algebra over an infinite commutative field k, any eigenring is an
algebra over k and hence infinite. Thus we obtain

Corollary 4.2.6. Let R be a 2-fir that is also a k-algebra, where k is an infinite
commutative field. Then the number of non-right-associated left factors of any
¢ € R* similar to a given atom is 0, I or infinite. |

Finally we specialize to the case of principal ideal domains. In this case
there is a simple criterion for the distributivity of factor lattices. We first describe
similar right invariant elements (recall that ¢ € R is right invariant if ¢ is regular
and Rc C cR).

Lemma 4.2.7. In any ring, two right invariant elements that are similar are
right associated.

Proof.  Let ¢ be right invariant in R. Then Rc C c¢R, so ¢R annihilates the
module R /cR. In fact, ¢R is the precise annihilator, for if ¢ annihilates cR, then
Ra C cR andsoa € cR.

Now let ¢ ~ ¢’ and assume that both ¢, ¢’ are right invariant. Then R /cR =
R/c’R and equating annihilators, we find that cR = ¢’R, hence ¢ = c'u, ¢’ =
¢v, 80 ¢ = ¢'u = cvu. Since c is right regular, vu = 1; similarly uv = 1, there-
fore ¢’ is right associated to c. |

Theorem4.2.8. A principal right ideal domain has a distributive factor lattice
if and only if every non-zero element is right invariant.

Proof. Let R be a right PID whose non-zero elements are all right invariant.
Then any two similar elements are right associated, by Lemma 2.7, and so by
Theorem 2.3, R has a distributive factor lattice.

Conversely, if R has DFL, then its lattice of right ideals is distributive and
any homomorphism «:R — R/cR is such thatker &« D ¢R, by Corollary 1.6;
taking « to be the map x — ax + cR, we therefore have ac € c¢R. This holds
for all @ € R, hence Rc C cR and so c is right invariant. [ ]

Exercises 4.2

1. Let R be an atomic 2-fir in which no two similar non-units are right comaximal.
Show that R has DFL.
2. Show that a right invariant ring always satisfies condition (a) of Theorem 2.3.
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Show that an atomic 2-fir in which any two atoms are either right associated or
comaximally transposable is right invariant and hence has DFL.

If ¢ is a right invariant element of finite length in a 2-fir, show that any element
similar to c¢ is right associated to ¢ and hence is again right invariant. Can the
condition on the length of ¢ be omitted?

Show that a skew polynomial ring over a field has DFL if and only if it is commu-
tative.

Let R be a 2-fir with DFL. If § is a subring that is a 2-fir containing all the units of
R, show that S has DFL.

Let R be an atomic 2-fir with DFL. Show that if all atoms in R are similar, then
R is a local ring. Show that the ‘atomic’ hypothesis can be omitted if we assume
instead that ‘any two non-units have a similar non-unit factor’ (in the terminology
of Section 6.4, no two non-units are totally coprime).

Let R be a 2-fir with right strong DFL. Show that for any a, b € R*, [(abR) C
I(aR).

Show that a 2-fir with right strong DFL and with a right large non-unit has a right
invariant element and hence is a right Ore domain. Show that the conclusion does
not hold for every 2-fir with DFL.

In a 2-fir, if xay + ua’v = 1, where a ~ @', is a necessarily right comaximal with
an element similar to a?

When the conditions of Proposition 2.2 hold, does it follow that xc — cy = 1 for
some x,y € R?

Show that every 2-fir with right strong DFL has elements that are not fully reducible.
Determine the structure of non-commutative invariant principal ideal domains.
(Bergman [67]) Let K / k be a Galois extension with group G = Gal(K / k) and let M
be any K-bimodule satisfying Ax = xA(x € M, A € k). Show that M = &M, (o €
G), where M, = {x € M|xa = a°x]. Let R be a k-algebra containing K, but not in
its centre. Define R, as above and show thatforany x € R, x(x —a) = (x —a%)x
is a comaximal relation. Deduce that if R is a 2-fir with right strong DFL, then for
any x € R, (0 # 1), 1 — x is a unit. (Hint: For the last part replace x by xa.)
(Brungs and Torner [81]) Let £ be a commutative field and let o be the k-
automorphism of the rational function field k(x, y)interchangingx and y. Denoting
by (x) the effect of localizing at the set of all elements prime to x, show that the
ring R = k[x, ylu) + tk(x, y)[[¢; o]]isaprincipal ideal domain and a chain ring,
and hence has DFL. Verify that y € U(R) and ytR C tR, so R satisfies (c), but
neither (a) nor (b) of Theorem 2.3.

4.3 Conditions for a distributive factor lattice

In order to find general conditions for an atomic 2-fir R to have a distributive
factor lattice we recall from Theorem 2.3 (b) that this is equivalent to requiring
that if an element ¢ has two factorizations

¢ =ab=ab, (1)
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with similar right factors b, by, then these factors must be left associated. More-
over, if an equation (1) holds in a 2-fir R with b, b, similar atoms that are not
left associated, then in case R is an algebra over an infinite field, there must
be infinitely many right factors similar to b, but pairwise not left associated,
by Corollary 2.6. Thus in a sense we have a one-parameter family of factor-
izations of c; this idea may be formalized by adjoining an indeterminate ¢ to k
and showing that (1) leads to a factorization of ¢ in R ® k() that does not arise
from a factorization in R (so that c is not inert in R ® k(¢)). Suppose however
that R is 1-inert in R ® k(¢); this holds, for example, if R is a free algebra. Then
this situation cannot occur and we conclude that similar right factors are nec-
essarily left associated. We shall see how this property can be used to provide
us with many examples of rings with a distributive factor lattice. Throughout
this section, k is a commutative field, and all tensor products are understood to
be over k.

Definition Let R be a k-algebra; any property X of R is said to be absolute
(over k) if it holds for R ® E, where E is any algebraic field extension of k; X
is said to be persistent (over k) if it holds for R ® k(¢), where ¢ is a central
indeterminate.

For example, the free k-algebra k(X)) is a persistent and absolute fir over k; if
E is a commutative field extension of k, then the tensor ring E;(X) (defined
in Section 2.4) for X # & is an absolute fir if and only if E is a regular field
extension of k (recall that E/k is a regular extension if £ ®; F is an integral
domain for all commutative field extensions F/k), and a persistent fir if and
only if E is algebraic over k.

Proposition 4.3.1. Let R be a k-algebra, which is an absolute integral domain
overk.ThenR is I-inertin R Q k(t). If further, R is a persistent 2-Hermite ring
over k, then R[t] is 2-Hermite.

Proof.  Consider an equation
c=ab, (2)

wherec € R, a, b € R[t].Since R is an integral domain, it follows thata, b € R,
so that R is 1-inert in R[¢]. Now the first assertion will follow if we show that
R[t] is l-inert in R ® k(¢), so suppose that ¢ € R[¢] has a factorization (2),
where now a, b € R ® k(). If we multiply (2) by the denominators of ¢ and b,
we obtain an equation of the form

fe=db, feklt]*,d, b eR[t. 3)
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Here we may assume that @', b’ have no non-unit factors in k[#], since any such
factor could be cancelled against f. If f has positive degree, let « be a zero of
f in k,, the algebraic closure of k£ and form R ® k,. By hypothesis this is an
integral domain and we have a'(«)b'(¢) = 0, hence either a’ or b’ is divisible
by t — «, which is a contradiction. Therefore f has degree zero; so it lies in k
and may be absorbed in a’.

Suppose now that R is also a persistent 2-Hermite ring. Then R ® k() is
2-Hermite, hence weakly 2-finite, and so is R[¢], as a subring. It remains to
show that every 1 x 2 matrix over R[¢] with a right inverse is completable. Let
a € R[t]? be right invertible over R[¢], say ab = 1 for some b € ?R[t]. Then
we can complete a, b to a pair of mutually inverse matrices over R ® k(t), and
clearing denominators, we obtain a relation

a N 10 x 7 2 42
(a’)(b b)_<o f)’ f ek[t]*,a € R[t]", b € “R[t].

If f has degree 0, this shows a to be completable over R[¢]; otherwise we have

by weak 2-finiteness,
) a
b bf ‘)(a,) =1,

and so fba + b'a’ = f.I. Therefore, if « is any zero of f in k,, we have
b'(a)a’(a) = 0. Here the column 4" is multiplied by the row @', so we have
a set of four equations; since R ® k, is an integral domain, either a’() = 0 or
b'(a) = 0.1If b'(a) = 0, then &' is divisible by an irreducible factor of f and by
cancelling it we can decrease the degree of f. If a’(«) = 0, then ¢’ is divisible by
an irreducible factor f| say, of f, and we can replace @', b’ by a’ ffl, b’ f1. Now
we can again reduce the degree of f and so complete the proof by induction on
the degree of f. [ |

Before we come to the main result, we need another lemma. For any element
a € R[t] we shall indicate the value of a obtained by specializing ¢ to O by a
subscript: ag = a(0).

Lemma 4.3.2. Let R be a 2-fir that is a k-algebra and let
ab = cd 4)

be an equation holding in R[t] such that b, d are left comaximal in R ®
k(t), by, dy are not both 0 and ay, co are right comaximal in R. Then by, dy
are left comaximal in R.



240 Rings with a distributive factor lattice

Proof.  Since ay, c¢ are right comaximal and agby = cd), this product is the
least common left multiple of by and dj in R (it was only to get this conclusion
that we had to assume R to be a 2-fir).

Now b, d are left comaximal in R ® k(¢); therefore we have an equation

pb—qd =f, p,qeR[t], fekl]”. )

If fo = 0, then poby = godp and this is a left multiple of apby = cody. Hence by
subtracting a suitable left multiple of (4) from (5) we can modify p, g so that both
become divisible by . We can then divide p, g, f all by ¢ and obtain an equation
of the same form as (5), but with f of lower degree. In this way we reduce
the degree of f, and continuing this process we eventually reach a case where
fo # 0. Taking the constant term of f as 1, we then find that poby — godo = 1,
which shows by, dj to be left comaximal. [ ]

We now come to the main result of this section, giving conditions for DFL.

Theorem 4.3.3. Let R be a k-algebra that is an absolute integral domain and
a persistent 2-fir. Then R has the strong DFL property.

Proof. 'Wehave to verify condition (a) of Theorem 2.3. Suppose that R satisfies
the hypotheses and that ba’R N aR # 0, where a ~ a’; we have a relation

ba'c = ad #0,

which is right coprime and so ¢, d are left comaximal. Further, let au’ = ua’ be
a comaximal relation between a and a’. Then in R[¢] we have

a(dt +u'c) = (bt +u)d'c. (6)

Now any common right factor of df 4+ u’c and a’c in R ® k(¢) can by 1-inertia
be taken in R (Proposition 3.1). Hence it must right-divide d, u#’c and d'c, i.e.
generate a left ideal containing Rd + Ru'c + Ra’c = Rd + Rc = R. Thus (6)
is in fact left comaximal in R & k(t); further, the constant terms of the right
factors are not both 0 and those of the left factors are right comaximal in R. Hence
by Lemma 3.2, v/c and d’c are left comaximal, i.e. ¢ is a unit and ba’ € aR, so
condition (a) of Theorem 2.3 holds, as well as its left—right dual, by symmetry,
ensuring strong DFL. |

The free k-algebra k (X)) is clearly an absolute and persistent fir over k; hence
we obtain

Corollary 4.3.4. The free k-algebra k{X) has the strong DFL property. M
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For non-commutative fields this no longer holds, for even when [X| = 1, we
have in the principal ideal domain K [x] over the skew field K, for ab # ba an
equation

(x —a)bc — b(x —a)c =1, wherec=—(ab— ba)~!,

so by Theorem 2.3 (g), K [x] does not even have DFL. By combining the above
result with Theorem 2.8, we obtain

Corollary 4.3.5. Let R be a k-algebra that is a principal ideal domain. If R is
an absolute integral domain and a persistent 2-fir over k, then it is an invariant
ring. |

Of course the converse does not hold, since a commutative PID need not be
absolute or persistent, as we shall see in Section 4.6. But there is a partial
converse to Theorem 3.3.

Proposition 4.3.6. Let R be a 2-fir with DFL that is an algebra over an infinite
field k. Then R is 1-inert in R @ k(t).

Proof. Letc € Rhaveafactorizationover R @ k(t); by clearing denominators
we can write this in the form

fc=ab, a,beR[t], f €kt )

We shall denote the degrees of a, b, f by p, g, r respectively; further we may
assume without loss of generality that a has no non-unit left factor in R and b
has no non-unit right factor in R.

Let a be the right ideal generated by the coefficients of @ = a(¢), considered
asapolynomialint. Thenforany p + 1 distinctelements o, . .., @, € k wecan
express all the coefficients of a(t) as k-linear combinations of a(xo), . . ., ala,);
hence these p + 1 elements generate a as a right ideal. If we choose p + 1 such
values so as to avoid the zeros of f in k (at most  in number), then the a(«;) are
left factors of ¢; hence Y a(a;)R = a is principal and by the assumption on a
it must be R itself. Similarly, the intersection of ¢ 4 1 of the right ideals a(«)R
is a right ideal containing cR, say eR; we assert that eR = R.

If eR # R, then the principal right ideals between eR and R form a distribu-
tive lattice # 0, and hence (Appendix A) there is a homomorphism of this lattice
onto the two-element lattice 2 = [0, 1] such that eR +— 0, R > 1. Suppose that
a(a)R maps to 0 for more than p + r values of «. Then we can find p + 1
values of «, avoiding the r zeros of f, for which a(«)R maps to 0, but as we
have seen, their sum maps to 1. This contradiction shows that a(«)R maps to
0 for at most p + r values of «. Similarly, if a(¢)R maps to 1 for more than
q + r values of «, then by choosing ¢ + 1 values avoiding the zeros of f, we
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find that their intersection eR maps to 0, again a contradiction. But every a(«@)R
maps to 0 or 1, so there cannot be more than p + ¢ + 2r; this contradicts the
fact that % is infinite, and it follows that eR = R. Thus e is a unit and it follows
that a(«) is a unit for any « not a zero of f. Now if f is divisible by ¢, then either
a or b must be divisible by # and we can cancel a power #; so we may assume
that f(0) = 1. It follows that a(0) is a unit; a similar argument shows that 5(0)
is a unit, and so ¢ = a(0)b(0) is a unit. Hence a and b are units in R ® k(¢), as
isf,andc =af 'b=af bbb =c.l. |

We note, however, that in the situation of this proposition R need not be a
persistent 2-fir, e.g. take R = E[x], where E is a commutative field extension
of k that is not algebraic over k.

Exercises 4.3

1. Let R be a k-algebra that is an absolute integral domain, a persistent 2-
fir and a right Ore domain. Show that any two similar elements are right
associated.

2. LetR be a k-algebra that is an absolute integral domain and a persistent 2-fir. Show
that if two elements of R are similar in R ® k(), then they are similar in R.

3. LetR be a k-algebra that is an integral domain. Show that an atom in R remains an
atom in R ® k(t).

4*. Let R be an n-fir over an algebraically closed field k. Show that every n x n matrix
over R[t] isinertin R ® k(). [Hint: The transforming matrix can be taken to lie in
the subgroup generated by G L, (R) and the diagonal matrices over k(¢).] Deduce
that R is totally n-inert in R[z].

5*. Let R be a k-algebra that is an absolute n-fir and a persistent 2n-fir. Given a
full matrix ¢ in R, such that any factor of ¢ in R[¢], can be reduced to one
in R, on multiplying by an element of GL,(R[t]), show that the corresponding
module R, /cR, is distributive. Taking n = 2 and p, ¢ dissimilar atoms in R, show
that ¢ = p @ ¢ satisfies the above hypotheses, but not p @ p. Verify that when
¢ = p® p, Ry/cR, is not distributive.

6. In the complex-skew polynomial ring R = C[x; —] show that x> — 1 has the fac-
torizations x> — 1 = (x — u)(x + it), where u ranges over the unit circle. Obtain
the corresponding factorizations over C(¢)[x; —] with u = (t +i)(t —i)~! and
show that these cannot be pulled back to R.

7. Let R be a k-algebra, M an R-module, P a submodule of M with inclusion map
i:P—> M and f:P — M a homomorphism. Assume that the image of the
homomorphism i + ¢f of P ® k() into M ® k(¢) is of the form N ® k(t) for
some N C M. Show that Pf C P and hence obtain another proof of Theorem
3.3.

8°. Investigate Proposition 3.6 when the field & is finite.

9. (Beauregard [80]) Let £ be a commutative field with an automorphism o
and F a subfield mapped into a proper subfield of itself by «. Write R =



4.4 Finite distributive lattices 243

E[[x; all, P = {f € R|f(0) € F}. Verify that R is a local ring and a principal
ideal domain; hence show that P is an Ore domain that is right invariant but not left
invariant.

10. In a free algebra, if ab = bc?, show that a is a square (see Exercise 2.7.15).

11. Show that in a 2-fir with DFL, for any atom ¢ and any n > 1, ¢” is indecomposable.

12°. Investigate atomic 2-firs in which the length of indecomposable elements is

bounded.

13. Let R be an atomic 2-fir with DFL. Show that if R is a matrix local ring, then its
capacity must be 1, i.e. it is a scalar local ring.

14. Show thatif R is a persistent 2-Hermite ring over £, then any equationax + uav = 1
implies that a is a unit (see Theorem 2.3 (g)).

15*. Inaring R with DFL, show thatif @, b, ¢ € R are such that any twoof aR, bR, cR
have a non-zero intersection, then @R N bR N ¢R # 0. Show also thataR N bR #
0,aR N cR # 0 is not enough. (Hint: Take b = au + 1, ¢ = av + 1 for suitable
u, v.) Find a generalization to n terms.

4.4 Finite distributive lattices

In an atomic 2-fir with distributive factor lattice, the left factors of a given non-
zero element form a distributive lattice of finite length. For a closer study of
this lattice we shall in this section describe its structure in terms of partially
ordered sets.

Let us denote by Pes the category of finite partially ordered sets, with isotone
(i.e. order-preserving) maps as morphisms. By D£,(0, 1), or DL for short, we
shall denote the category of all distributive lattices of finite length, with lattice
homomorphisms, i.e. maps preserving meet, join, 0, 1, as morphisms. In each of
these categories 2 = {0, 1} denotes the chain of length 1. We begin by defining
two functors between these categories.

Take P € Pes and consider P* = Homg)M (P, 2); this set P* may be
regarded as a finite distributive lattice, namely a sublattice of 2”. The ele-
ments of P* —isotone maps from P to 2 —may also be described by the subsets
of P mapped to 1. They are precisely the upper segments of P, i.e. subsets X
with the property

aeX,b>a 1implies beX.

An upper segment of the form p, = {x € P | x > a} is said to be principal.
We observe that the partially ordered set of all principal upper segments of P
is isomorphic to P, as member of Pes.

Clearly each @ € P*is completely determined by the upper segment mapped
to 1, and every upper segment defines such a map. Hence P* may be identified
with the set of all upper segments of P.
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Next take L € DL and write L* = Homgge(L, 2). Here we can regard L*
as a partially ordered set, writing f < g if and only if xf < xg forall x € L.
The elements of L* may be characterized by the subsets they map to 1. Given
f € L*, leta € L be the meet of all x satisfying xf = 1. Thenaf = 1 and a is
the unique minimal element with this property. Clearly ¢ > O and ifa = xVy,
then 1 = xfVvyf,hencexf = loryf =1,i.e.x > aory > a; thus a is join-
irreducible:

a#0anda =xVvy implies x=aory=a.

Conversely, any join-irreducible element a gives rise to an f € L*, defined by
therule: xf = 1 if and only if x > a. We may thus identify L* with the partially
ordered set of the join-irreducible elements of L.

Our object will be to show that * establishes a duality between DL and Pas.
Before coming to the main result we need a lemma on objects in DL, but this
is just as easily proved in a more general setting:

Lemmad4.4.1. [nany lattice with minimum condition, each element is the join
of the join-irreducible elements below it.

Proof. Let L be a lattice with minimum condition and suppose it does not
satisfy the conclusion. Then we can find a € L such that a is not the join of
join-irreducible elements. If we take a to be minimal with this property, then a
cannot be join-irreducible and a # 0, because O is the join of the empty family.
Hence a = bVvc, where b < a, ¢ < a. By the minimality of @, both b and c are
joins of join-irreducible elements, hence so isa = bVc. |

Theorem 4.4.2. The categories Pos and DL are dual to each other, via the
contravariant functors

P +— P* = lattice of upper segments of P,
L — L* = set of join-irreducible elements of L.

Moreover, if P and L correspond, then N, U on upper segments of P correspond
toV, A in L and the length of L equals |P| + 1.

Proof. It is clear that two contravariant functors are defined between these
categories by means of Hom(—, 2); it only remains to show that P** = P, L** =
L.

Let P € Pes; then P* consists of all upper segments of P. If « € P* and
ai, ..., a, are the different minimal elements of the upper segment o, then x € o
ifandonlyifx > @ or...orx > a,. Hence o = 4 V...V 1, , where u. is the
principal upper segment defined by c. This shows « to be join-irreducible if and
only if it is principal, and so P**, the set of join-irreducible upper segments of
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P, is just the set of principal upper segments of P, which we saw is isomorphic
to P.

Next, given L € DL, consider L*, the partially ordered set of its join-
irreducible elements. This set determines L, by Lemma 4.1: each @ € L can
be represented by the set of all join-irreducible elements > a, and the set of
join-irreducible elements occurring are just the upper segments, thus L** = L.

Let L and P correspond under this duality and suppose that P has n elements.
Then we can form a chain in L by picking a maximal element @; € P, next a
maximal element a, in P\{a,}, etc. It follows that every chain in L has n + 1
elements. [ ]

It is clear that every P* is finite, as subset of 2P hence we obtain

Corollary 4.4.3. Any distributive lattice of finite length n is finite, with at most
2"=1 elements. [ ]

The interest in the duality described in Theorem 4.2 resides in the fact that
for any L € DL and P € Pes that correspond under the duality, P is usually
much simpler than L. For example, a Boolean algebra corresponds to a totally
unordered set (see Exercise 2), the lattice on the left corresponds to the set on
the right,

N

and the free distributive lattice on three generators, a lattice of length 6 with 18
elements (see Gritzer [78], p. 38) corresponds to the three-peak crown:

There is another way of describing the correspondence of Theorem 4.2 that
is of importance for us in what follows.

In a distributive lattice of finite length, every link is projective to exactly one
link with join-irreducible upper end-point. Forlet L = P*; any link in P* has the
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form [S, S U {x}], for an upper segment S and an element.x such that all elements
> x lie in S. Any link perspective to it has the form [S’, §” U {x}] with the same
x and the set of all these links clearly has a lowest member, namely [T, T U {x}],
where T is the set of all elements > x; clearly T U {x} is join-irreducible.

It follows that the join-irreducible elements correspond to the projectivity
classes of links. If our lattice has length n, then there are just n join-irreducible
elements and hence n projectivity classes of links. Since each class has a rep-
resentative in each chain (by the Jordan—Holder theorem), there is exactly one
representative from each class in each chain. Thus we have proved most of

Proposition 4.4.4. Let L be a distributive lattice of length n. Then the links of
L fall into exactly n projectivity classes and each chain in L contains exactly one
link from each class. Moreover, each projectivity class contains a unique lowest
link, and its upper end-point is join-irreducible. If we partially order the set of
projectivity classes of links using the partial ordering of the corresponding join-
irreducible elements, the resulting partially ordered set is order-isomorphic to
L*. Given projectivity classes of links o and B, we have o < B if and only if
the link from o occurs below the link from B in every chain.

Proof.  Only the last assertion remains to be proved. Leta, b € P and let«, 8
be the projectivity classes of links corresponding to a, b respectively. If a, b are
incomparable in P, then we can form chains in P* in which the representative
of « lies lower than that of 8, and chains in which it lies higher, depending on
whether we choose a before b or b before @ in forming the chain. Butifa < bin
P, then we must choose a before b and hence in every chain the representative
of « lies lower than that of S. [ |

Exercises 4.4

1. Show that a modular lattice has finite length if and only if every chain in it is finite.
Give examples of (i) an infinite modular lattice of finite length and (ii) a general
lattice, all of whose chains are finite, but their lengths are unbounded.

2. Show that a finite distributive lattice is complemented if and only if the corresponding
partially ordered set is totally unordered. (Hint: In a Boolean algebra, the join-
irreducible elements are precisely the minimal non-zero elements.)

3. Show that a finite distributive lattice is indecomposable (as a direct product) if and
only if the corresponding partially ordered set is connected (i.e. any two elements
can be joined by a chain of comparable elements).

4. Examine how the correspondence of Theorem 4.2 is affected if we take (i) lower
instead of upper segments, (ii) meet- instead of join-irreducible elements and (iii)
make both these changes.
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5. Let L be a modular lattice of finite length in which any two projective intervals
are perspective. Show that L must be distributive. Determine all such lattices, using
Theorem 4.2.

6. Show (using Proposition 4.4) that in a 2-fir with DFL an element of length » has at
most n! essentially distinct factorizations (see Section 3.4).

4.5 More on the factor lattice

Let R be an atomic 2-fir with a distributive factor lattice. Foreachc € R*, L, =
L(cR, R) is a distributive lattice of finite length. We shall write P, for the
corresponding partially ordered set L. Each complete factorization of c:

C=pip2---Pn (1

corresponds to a chain in L.; if ¢ = ¢q; ... ¢, is another atomic factorization
of ¢, then p; is said to be equivalent to g; if we can pass from the link
[p1...piR, p1...piciR] tothe link [g;...q;R, q1...q;—1R] by a series of
comaximal transpositions. Here p; refers not to an element of R but to its occur-
rence in the factorization (1) of ¢; thus in xyx (in a free algebra) the two factors x
are inequivalent. Since comaximal transpositions correspond to perspectivities
in L, the equivalence classes of (occurrences of) atomic factors correspond to
projectivity classes of links in L, and thus to elements of P.. We shall refer to
an equivalence class of atomic factors of ¢ as an abstract atomic factor of c; thus
P, may be thought of as the set of abstract atomic factors of c. By Proposition
4.4, each abstract atomic factor has just one representation in each complete
factorization of ¢, and of two abstract atomic factors, p and ¢ say, p precedes
q, p < q, if p occurs on the left of ¢ in every complete factorization of c¢. On
the other hand, when p, g are incomparable, then they may be comaximally
transposed whenever they occur next to each other in a complete factorization.
Every complete factorization is completely determined by the order in which
the abstract factors occur; in particular, an element with n factors cannot have
more than n! complete factorizations.

Any expression of ¢ as a product ¢ = ab corresponds to a decomposition of
P, into a lower and a complementary upper segment, which may be identified
with P,, P, respectively. Given two factorizations

c=ab =bd, )

we see that the highest common left factor and the least common right multiple
of a, b will correspond to the intersection and union respectively, of P,, Pj.In
particular, a comaximal relation (2) for ¢ corresponds to an expression of P, as
a union of two disjoint lower segments, which means a partition of its diagram
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into two disconnected components. We note also thatinthiscase L, = L, X Ly,
in agreement with Proposition 3.4.6.

Recalling that projective links in L, correspond to similar factors, we see
that with every element of P. = L we can associate a similarity class of atoms
in R. Abstract factors corresponding to the same similarity class must be com-
parable in P, because similar atoms cannot be comaximally transposed in R (by
Theorem 2.3), hence every similarity class forms a chain within P,. It follows
that the only automorphism of P, preserving similarity classes is the identity;
hence the same holds for L. Thus for any similar elements ¢ and ¢’ the isomor-
phism between L. and L. (and between P. and P.) is unique. We state this
conclusion as

Proposition 4.5.1. Let R be an atomic 2-fir with a distributive factor lattice.
Then for any two similar elements c, ¢’ of R there is a unique isomorphism L. —
L. between the factor lattices preserving the similarity classes associated with
the links in L., L. [ |

If f: R — R’isahomomorphism of atomic 2-firs with DFL, then for any
¢ € R such that ¢ ¢ kerf, we get a lattice homomorphism from L. to L.y:
the obvious map preserves HCLFs because it preserves comaximality and it
preserves LCRMs by the factorial duality. By Theorem 4.2, a homomorphism
in the opposite direction is induced from Ps to P,.

In a commutative principal ideal domain, or indeed in any commutative UFD,
two atoms are coprimely transposable if and only if they are non-associated. It
follows that the only possible structures for the sets P, in this case are disjoint
unions of finite chains. For example, in Z, 720 = 24.32.5, hence P consists
of three chains, of lengths 4, 2 and 1. By contrast, in the non-commutative case
all possible structures for P, can be realized:

Theorem 4.5.2. Let A, =k < x1,...,x, > be the free k-algebra of rank n.
Given any partially ordered set P of n elements, there existsc € A, with P, = P.

Proof. The case n = 0is clear, so assume that n > 0 and let « be any element
of P. By induction on the number of atomic factors in « we may assume that
we have found ¢’ € A,,_; such that P, = P’ = P\{a}.

Write P’ = U UV UW, where U is the set of elements < « in P, V the set of
elements incomparable with &« and W the set of elements > «. Clearly U, U U V
and U UV UW are lower segments of P’; they correspond to left factors a, ab
and abd = ¢’ of ¢/. We put ¢ = a(bx, + 1)bd and claim that P. = P.

In the first place bx, + 1 is an atom, since it is linear in x, and in any
factorization the term independent of x,, must divide 1. We now identify P. with
P by letting the factors of @, b and d correspond as in the identification of P, and
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P’, and letting the abstract atomic factor to which bx, + 1 belongs correspond
to «. It remains to check that the partial ordering of P, agrees with that of P.

Since ab is a left factor of ¢ and bd is a right factor, the orderings on the
corresponding subsets of P. will agree with those on P,;, and Py, as required.
The new abstract factor is incomparable with the factors of b, because of the
comaximal relation (bx,, + 1)b = b(x,b + 1). Now the partial ordering will be
completely determined if we show that the factor corresponding to bx, + 1 lies
above all factors of a and below all factors of d. By symmetry it suffices to
prove the first statement.

Suppose the contrary; then for some non-unit right factor e of a, we would
have a comaximal relation e(bx, + 1) = fe’. Now we obtain a ring homomor-
phism A, — A,_; by putting x, = 0; this will preserve comaximal relations
and hence it maps f to an element similar to ».0 4 1 = 1, i.e. a unit. However f
itself is similar to the non-unit bx, + 1 in A, and so must involve x,. But then
the product e(bx, + 1) = fe’ will involve monomial terms in which x, occurs,
but is not the last factor (since ¢’ is a non-unit). This is a contradiction, and it
shows that every factor of a lies below bx, + 1. [ ]

In fact all these partially ordered sets may already be realized in A,. We
shall prove this by showing that A, (for any n > 1) can be embedded as a
1-inert subring in A;:

Theorem 4.5.3. The free algebra of countable rank can be embedded I-inertly
in the free algebra of rank 2.

Proof. LetF = k(Z),where Z = {z¢, z1, .. .}. Since F is free on Z, the map-
pingd :z; — z;11(i =0, 1,...) extends to a unique derivation of F. We form
the skew polynomial ring H = F[x; 1, §]; from the commutation rule

ax=xa+d" (aeF) 3)
and the definition of § we find that
zig1 = 2" = zix — xz; = [z;, x]. @

We claim that H is the free k-algebra on x, zg. For it is clearly generated by
x and z( over k; to show that x, z( are free generators, we establish a homomor-
phism 8 : H — G = k(x, y) such that x — x, zg — y. We begin by defining
B:Z— Gby

Bz, [...[y,x], ..., x] with n factors x.

Since F is free on Z, this map extends to a homomorphism 8’ : F — G. More-
over, we have z,°8' =z, 8 =1[...[y,x],...,x] =[z,8, x] (Where there
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are n + 1 factors x). Hence if §, is the inner derivation defined by x in G, we
have §8" = B’S,. Now the defining relations of H in terms of F are just the
equations (3), which may be written § = §,. Hence on H we have §, 8" = B'S,;
thus the defining relations of H are preserved by 8’ and so 8’ may be extended
to a homomorphism B of H into G. Since G is free on x, y, this shows H to be
free on x, z¢ as claimed. Moreover, we see that 8 is surjective, hence it is an
isomorphism between H and G.

It remains to show that the inclusion F — H is l-inert. Givenc € F,suppose
thatin H wehavec = ab,a,b € H.Wecanwritea = x"ag+ ..., b = x*by +
..., where ag, by € F and dots denote terms of lower degree in x. Then ¢ =
ab = x"aghg + . . .; by uniqueness, 7 +s = 0,hencer = s = 0anda, b € F
and it follows that ¢ is inert in H. ]

In Chapter 7, when we come to construct a universal field of fractions for
every free algebra, we shall find that the above embedding of F in H extends to
an embedding of their universal fields of fractions (Theorem 7.5.19).

Exercises 4.5

1. Let R be an atomic 2-fir with DFL. Show that any factorization ¢ = «a; ... a, cor-
responds to an isotone map of P, into the ordered set of n + 1 elements.

2. Asubset X of apartially ordered set is called convexifx, y € X, x < a < y implies
a € X.If R is an atomic 2-fir with DFL and for ¢ € R, P, denotes the set of simi-
larity classes of atomic factors as before, show that a subset X of P. is convex if and
only if ¢ has a factorization ¢ = aub, where P, = X if ¢ = a’u’b’ is another fac-
torization with P,, = X, show that /' is obtainable from u by a series of comaximal
transpositions.

3. Let R be an atomic 2-fir with DFL. Given two factorizations ¢ = ab = a’b’ of an
element ¢ of R, if each similarity class contributes at least as many terms to a
factorization of a as it does to a factorization of a’, show that a € a'R.

4. Findelementsink(x, y) with factor lattices corresponding to the following partially
ordered sets:

AN WY \(

5*. Find an element in the free algebra k(x, y, z) whose factor lattice is the free dis-
tributive lattice (with O and 1) on three free generators.
6*. (M. L. Roberts) Let * be the anti-automorphism of R = k(x, y) interchanging x and
2
v, and for matrices it is combined with transposition. Show that if P = (i) ;i 2),
then P* P is an atom of C, where C is the subalgebra of R generated by u + u*(u €
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R). Deduce that P*P is not inert in R. Show also that the embedding of C in

R does not preserve full matrices (i.e. is not honest). [Hint: Use O*Q, where

y xy* xyxy?
Q: X 2 2 )
YX© yxyx

4.6 Eigenrings

We have seen in Section 0.6 that the eigenring of a matrix is just the endomor-
phism ring of the module defined by the matrix. In the case of a fir we shall
find that the eigenrings are as a rule small, only exceptionally are they large.
So one can expect two kinds of results on eigenrings: (a) eigenrings are nearly
always small and (b) under suitable conditions eigenrings are large. Thirdly,
in the case of a ring with DFL we have (c) the consequences of distributivity
for the eigenring. Our results will mainly be under headings (a) and (c). Thus
when A is a regular matrix over R, we shall show that (i) when R is a persistent
semifir over k, then the eigenring of A is algebraic over k (Theorem 6.9) and (ii)
when R is a free k-algebra, then the eigenring of A is finite-dimensional over
k. This will be proved in a special case (column matrices) in Proposition 6.12,
the general case being reserved for Chapter 5.

As before, all our rings will be algebras over a commutative field k; hence
the eigenring of an element or a matrix will also be a k-algebra. If the eigenring
of a matrix A is k itself, we shall say that A has a scalar eigenring.

From Corollary 1.10 we obtain the following result on the structure of eigen-
rings:

Proposition 4.6.1. Let R be an atomic 2-fir with distributive factor lattice.
Then the eigenring of any ¢ € R* is a direct product of a finite number of
completely primary rings. [ ]

Beyond this rather general fact it seems difficult to apply the results on distribu-
tive modules to the study of arbitrary rings with DFL. In what follows we shall
therefore put further restrictions on the ring; most of these will be satisfied by
free algebras.

Let R be a k-algebra; we recall that R is said to be algebraic over k, if every
element of R satisfies a polynomial equation over k. If the matrix ring R, is
algebraic over k, for all n > 1, then R will be called matrix algebraic over k. Of
course for commutative R this is the same as ‘algebraic’. When R is a skew field,
this condition can be expressed in terms of the rational function field R(¢), as
we shall see in Proposition 6.7, but no examples are known of algebraic fields
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that are not matrix algebraic. However, for eigenrings we shall be able to reduce
one condition to the other by means of the following lemma:

Lemma 4.6.2. Let R be a ring and A € "R" any matrix with left eigenring
E; then the diagonal sum C = A @ --- @ A (r terms) has left eigenring E,.

Proof.  E is the endomorphism ring of the left R-module M = R"/(R™)A,
while C = A® --- @ A defines the left R-module R™"/(R™™)C = M"; this
clearly has endomorphism ring E,. [ |

A matrix A over a k-algebraR is called algebraic over k if it satisfies a polyno-
mial equation over k; A is transcendental over k if for every non-zero polynomial
f over k, the matrix f(A) isregular; this term will mainly be used when R itself is
afield. In general a matrix is neither transcendental nor algebraic, but we always
have a decomposition; to derive it we need a result known as the see-saw lemma:

Lemma 4.6.3. Let R, S be k-algebras and M an (R, S)-bimodule. Given a €
R, b € S, assume that there is a polynomial f over k such that f(a) is a unit,
while f(b) = 0. Then for any m € M, the equation

ax —xb=m (D)

has a unique solution x € M.
Proof. In Endi(M)write A, : X — ax, pp : X — xb; then (1) may be written
xX(hg — pp) = m. 2

By hypothesis f(X,) is a unit, f(p,) = 0 and X,, pp commute. Hence if we
define ¢ (s, ¢) in commuting variables s, ¢ by

B(s, 1) = M’
s —t
then ¢(Aa, pp)(ha — pb) = (Aa — Pp)P(a, pp) = f(Xa) — f(pp) = f(Xa), and
this is a unit, hence (2) and with it (1) has a unique solution in M. [ |

The result may be restated in matrix form. Consider the matrix ring

R M . e
; given a matrix in this ring:

0 S
a u
<0 b) , 3)

where f(a) is a unit and f(b) = 0, we can find a conjugate of (3) in diagonal
form. For if we transform (3) by I + xej,, we obtain

a u-+ax —xb
0 b

and by the lemma, the north-east block is O for a suitable choice of x.
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Proposition 4.6.4. Let K be a skew field that is a k-algebra. Then every square
matrix over K is conjugate to a diagonal sum of an algebraic and a transcen-
dental matrix.

Proof. Let A € K,, and consider V = "K as a (K, k[t])-bimodule, in which
the action of ¢ for a given K-basis uy, ..., u, is given by

ujt = Eaijujv A= (aij)~ “

Since K ® k[t] = K[¢] is a principal ideal domain, V has a unique submodule
Vo of torsion elements with torsion-free quotient, which, being finitely gener-
ated, is free. Let V| be a complement of V), so that

V=V®V. )

Using a basis adapted to the decomposition (5), we find that A takes the form

Ay A

0o A)’
where Ay is algebraic and A; transcendental. By Lemma 6.3 and the remark
following it we can reduce A’ to 0 and so obtain the desired conclusion. [ ]

Let us consider the following special case of (4):

uit=uiyy (G=1,....,.n—1), wu,=wa;+---+uya,, wherea; € K.

The corresponding matrix has the form

o 1 o0 0 ... O
0 O 1 o ... 0
A= 6)
o o ... ... 0 1
ap as cee .. A1 Ay

This matrix is called the companion matrix of the polynomial

f=t"—a—tay—...—t" 'a, . 7

Asiseasily verified, 11 — A is stably associated to f, and it follows that f(A) = 0
and A has the invariant factors 1, 1, ..., 1, f.

To find a criterion for algebraicity we shall use the normal form obtained in
Theorem 1.4.7. As we have seen there, if A € K,,, then tI — A is associated to
diag(Aq, ..., A,), where Aq, ..., A, are the invariant factors of A and A;_{||A;.
When £ is the precise centre of K, this leads to a criterion for A to be algebraic
or transcendental. An element ¢ of a PID is said to be bounded, if it divides
an invariant element. If ¢ has no bounded factor apart from units, it is said to
be totally unbounded. Given a monic polynomial f =t 4+ a;t"~'... 4+ a, in
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K [t], suppose that f is invariant; then bf = fb’ for any b’ € K, a comparison
of degrees shows that b’ € K and by comparing coefficients of " we see that
b’ = b. Since b was arbitrary in K, it follows that the coefficients of f lie in
the centre of K. Since every non-zero polynomial is associated to a monic
polynomial, it follows that every invariant polynomial is associated to a monic
polynomial over the centre of K.

Theorem 4.6.5. Let K be a field with centre k and let A € K,, have invariant
factors Ay, ... \,. Then

(i) Ais algebraic over k if and only if A, is bounded, equivalently, ), divides
a polynomial with coefficients in k,

(ii) A is transcendental over k if and only if A, is totally unbounded, and then
AM=...=x1 =1

Proof. (i) Since K [t] is a principal ideal domain, we can apply Theorem 1.4.7
to obtain the relation

Pl — A)Q~" = diag(h, ..., &) Gucalld), ®)

where P, Q are invertible matrices. Since tI — A is regular, the diagonal elements
on the right of (8) are all non-zero. Suppose that A, is bounded, say A, | f,
where f is an invariant polynomial. By the above remarks f may be taken to be
a monic polynomial with coefficients in k. Since each A; divides 1, and hence
divides f, there is a diagonal matrix D such that DP(t1 — A)Q~' = f1, hence
DP(t1— A) = fQ. Dividing fI by tI — A, we find

fl=H@l— A)+L, ©9)

where H, L are polynomials in A with coefficients in k[¢], k respectively. Here
we can put ¢ = A and so obtain L = f(A). Thus we have Q"'DP(t1 — A) =
f1=H(@I— A) + f(A), whence

f(A)=(Q7'DP — H)(t1 — A).

If O"'DP # H, the right-hand side will contain terms in ¢, whereas the left-
hand side does not; hence Q~'DP — H = 0 and we conclude that f(A) = 0.
Conversely, if f is a polynomial over & satisfied by A, then f1 = H(tI — A) for
some polynomial A and it follows that f is a bound for 1,.

(i1) Suppose that A, is not totally unbounded, say it has a bounded factor
p, with bound p*. Then the module V defined by A has a non-zero element
annihilated by p and so also by p*. Now p* is invariant, hence with coefficients
in k and p*(A) is singular, so A cannot be transcendental. Conversely, if A is
not transcendental, then V has a non-zero element annihilated by an invariant
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polynomial, so some invariant factor A; has a non-unit factor that is bounded,
hence A, then has a bounded factor. Thus A is transcendental if and only if A, is
totally unbounded, and then no other A; can be a non-unit, because this would
give rise to a non-unit invariant element dividing . [ ]

Corollary 4.6.6. A skew field K that is a k-algebra is matrix algebraic over k
if and only if its centre is algebraic over k and every non-zero polynomial over
K is bounded.

Proof. Let C be the centre of K. If K is matrix algebraic over k, then K is
algebraic over k, and so is C. Further, any polynomial f # 0 is the sole invariant
factor # 1 of its companion matrix B. By hypothesis B is algebraic, hence
by Theorem 6.5, f is bounded. Conversely, when these conditions hold, take
any square matrix over K; all its invariant factors are bounded, so A is algebraic
over C and hence also over k. ]

We note another condition for a field K to be matrix algebraic, in terms of
the rational function field K (), which is sometimes useful.

Proposition 4.6.7. Let K be a skew field that is a k-algebra. Then K is matrix
algebraic over k if and only if K (t) = K Q. k(t).

Proof.  Clearly we have the inclusion
K @ k(1) S K(1); (10)

we have to find when equality holds. Suppose first that & is the exact centre
of K. By Corollary 6.6, K is matrix algebraic if and only if every non-zero
polynomial is bounded. But this just means that every element of K (¢) can be
written as a fraction with denominator in k[#]*, which is precisely the condition
for equality in (10).

Now let C be the centre of K. Then C 2 k and by what we have shown, K
is matrix algebraic over C if and only if K ®¢ C(t) = K (t). Assume that K is
matrix algebraic over k. Then K is matrix algebraic over C and C is algebraic
over k; hence every polynomial over K divides a polynomial over C, which in
turn divides a polynomial over k, and so equality holds in (10). Conversely, when
equality holds in (10), then K ® C(¢) = K(¢). Hence K is matrix algebraic over
C, and (10) also shows that every polynomial over C divides a polynomial over
k; applying this result to t — a(a € C), we see that C is algebraic over £, and it
follows that K is matrix algebraic over k, as we had to show. [ |

We can now return to the study of eigenrings. For our first main result we
need a form of the inertia lemma:
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Lemma4.6.8. LetS be aring containing a central regular element t such that
Nt"S =0, and such that R = S/tS is a semifir. If the induced map GL,(S) —
GL,(R) is surjective for all n > 1, then every matrix over S is inert in S[t~'].

Here S[¢~!] denotes of course the ring obtained from S by adjoining an inverse
of #; since ¢ is central and regular, S is embedded in S [r~1].

Proof.  Write x + x for the natural homomorphism § — S/¢S = R; this
amounts to putting t = 0. We take A € ™S" and suppose that over S[¢~']:

A=PQ, where Pism xrand Qisr x n. (11

If P or Q is 0, there is nothing to prove, so we may assume P, Q # 0. Now
every non-zero matrix B over S [t~!] can be written in the form ¢¥B’, where
v € Z, B’ has entries in S and B(’) # 0. Hence on changing notation, we can
rewrite (11) as

A=t""PQ, whereP €™S",Q e’"S", Py, Qo #0. (12)

We have to show that v can be taken to be < 0, so suppose that v > 0; we
shall show how to replace v by v — 1 in (12). If v > 0, then PyQ( = 0; since
R is a semifir, we can find a matrix U; € GL,(R) trivializing this relation,
and by hypothesis we can lift U; to U € GL,(S). Hence on replacing P, Q by
PU,U~'Q we find that for some s > 1 all the columns in Py after the first s
are 0, while the first s rows of Q¢ are 0. We now multiply P on the right by
V =tl; @ 1,_; and QO on the left by V~1; then P becomes divisible by ¢, while
QO still has entries in S. In this way we can, by cancelling ¢, replace v by v — 1
in (12) and after v steps we obtain the same equation with v = 0; this shows A
to be inert in S[r~']. [}

We note that the condition ‘GL,(S) — GL,(R) is surjective’ is satisfied
under any of the following assumptions:

(i) R = S/tS isaretract of S, i.e. there is a homomorphism R — S such that
the composition with the natural homomorphism R — S — S/tS is the
identity,

(ii) Risa GE,-ring: GL,(R) is generated by elementary and diagonal matri-
ces, or

(iii) t lies in the Jacobson radical of S.

The verification is straightforward and may be left to the reader.

To illustrate the lemma, let R be any semifir, R[[#]] the ring of formal power
series in a central indeterminate ¢ and R((¢)) the ring of formal Laurent series.
Then by the lemma, every matrix over R[[¢]] is inert in R((¢)). Secondly, let R
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be a semifir that is a k-algebra, and denote by R[], the localization of R[] at
the set of all polynomials in ¢ over k with non-zero constant term. Then every
matrix over R[] is inert in R ® k(¢).

We can now prove our first main result on algebraic eigenrings:

Theorem 4.6.9. Let R be a k-algebra that is a persistent semifir over k. Then
the eigenring of any regular matrix over R is matrix algebraic over k.

Proof. If A € "R"isregular,thenB = A @ --- @ A (rterms) is againregular,
and to show that A has a matrix algebraic eigenring we must show, by Lemma
6.2, that the eigenring of B is algebraic, for all » > 1. So it is enough to show
that the eigenring of A is algebraic and then apply the result to B.

Take P € R,, P’ € R,, suchthat AP = P’A. Then in R ® k(t) we have

Ad—tP)=(1—-tP"HA. 13)

Let us show that A and I — ¢ P’ are left coprime. If Q is a square common left
factor, we have

(A,1—tP)= Q(S,T) over R ® k(t). (14)

By Lemma 6.8 and the remark following it we obtain such a factorization over
R[], and by moving any denominators from (S, T') to Q we may assume that
S has entries in R[¢]. If we now put# = 0 in (14), we obtain Q¢Ty = I. Since R
is weakly finite, Qy is invertible over R, hence Q is invertible over R[[¢]]. Over
this ring we can therefore rewrite the equation A = QS as S = Q~'A. But §
has entries in R[¢] and A is regular over R; it follows that Q! involves only
finitely many powers of ¢, and so has entries in R[f] € R ® k(¢). This shows
that Q is invertible over R ® k(¢) and so A and I — ¢ P’ are left coprime.

By symmetry A and I — ¢ P are right coprime; thus (13) is a coprime relation
and hence comaximal (Corollary 3.1.4). Replacing t by u = t~!, we obtain a
relation

Al — P) = (ul — PHA,

still comaximalin R ® k() = R ® k(u). Writing down a relation of left comax-
imality and clearing denominators in #, we obtain

CA+Dwul—P)= fI, C e€"R[ul", D € R[ul,, f € k[u]* . (15)

We now write all powers of « on the right of the coefficients and substitute P for u.
This is permissible since the substitution u +— P respects right multiplication
by matrix polynomials whose coefficients are matrices commuting with P.
If C = XC;u', then the first term in (15) is ZC; AP’ = £ C; P" A, while the
second term vanishes. Thus (15) reduces to GA = f(P) (where G = XC; P"),
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which means that P satisfies an equation mod R, A, and this holds for all P, P’
satisfying (13), hence the eigenring E(A) is algebraic over k. By the initial
remark, £ (A) is also matrix algebraic, as we had to show. |

Corollary 4.6.10. Let R be a persistent semifir over an algebraically closed
field k. Then every matrix atom of R has a scalar eigenring.

Proof. We know that the eigenring of a matrix atom is a field, by Schur’s
lemma (Proposition 3.2.4), and the only algebraic skew field extension of k is
k itself. ]

For a two-sided ideal a the eigenring is just the residue-class ring modulo a;
thus we obtain

Corollary 4.6.11. Let R be a persistent semifir over k and a a two-sided ideal
of R, non-zero and finitely generated as left ideal. Then R /a is matrix algebraic
over k.

Proof. Let uy,...,u, be a basis of a as free left R-module; then the col-
umn u = (uy, ..., u,)" is regular, and by Theorem 6.9 its eigenring is matrix
algebraic over k. |

Theorem 6.9 can be applied to free algebras but, as already mentioned, there
is a stronger result in this case.

Proposition 4.6.12. Let R = k(X) be the free k-algebra on a set X. If a is a
non-zero left ideal and b is a finitely generated left ideal, then Homg(R /a, R/b)
is finite-dimensional over k.

Proof. Let H = Homg(R/a, R/b); as we have seen in Section 0.6, H = I /b,
where I = {x € R|ax C b}.We shall enlarge / by choosing a non-zero element
¢ in a and defining I’ = {x € R|cx € b} clearly it will be enough to show that
I’/b is finite-dimensional over k. Let uy, ..., u, be a basis of b; then y € I’
precisely if

cy = Zy,u,- for some y; € R . (16)

Clearly the u; involve only finitely many of the free generators; we write X =
X' U X", where X' is the finite subset of generators occurring in the u’s and
X" is its complement in X. We assign the degree 1 to each member of X’ and
let d be the maximum of the degrees of uy, ..., u, in X’; further we assign
the degree d + 1 to each member of X”. Then it is clear that the space F of
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elements of R of degree at most d is finite-dimensional. By (16) and the weak
algorithm we have, foreach y € I’,

y=ZXfiu; +y, degy <d. (17)
This shows that I’ C b + F, and it follows that
H =Homg(R/a,R/b)=1/6CI'/bC (b+ F)/6=F/(FNb).
Hence H is finite-dimensional, because this is true of F. [ |
In particular, taking b = a, we obtain

Corollary 4.6.13. IfRisafree k-algebra and ais a finitely generated non-zero
left ideal, then Endg (R /a) is finite-dimensional over k. [ |

This result shows in particular that the eigenring of any non-zero element in a
free algebra is finite-dimensional; this will be proved for any regular matrices
in Section 5.8. The same reasoning yields a converse to Corollary 2.6.4:

Corollary 4.6.14. Let R be a free k-algebra. Then every finitely generated left
ideal that is left large has finite codimension over k.

Proof. Let a be a left ideal in R satisfying the hypothesis, and let uy, ..., u,
be a basis of a. Given any y € R*, we have Ry N a # 0, hence we again have
an equation (16) for some ¢ # 0. Now it follows as before that R /a is finite-
dimensional, as we had to show. |

In general the endomorphism ring of a distributive module need not be
commutative; it may not even be invariant, as we saw in Exercise 1.8.
However this is true for free algebras; in fact it holds under slightly wider
hypotheses.

Proposition4.6.15. LetR be a k-algebrathat is an atomic 2-fir with a distribu-
tive factor lattice. If each atom of R has a scalar eigenring, then the eigenring
of every non-zero element of R is commutative.

Proof. Let M = R/Rc, where ¢ € R*. We have to show that E(Rc) =
Endz (M) is commutative; this holds by hypothesis when c is an atom, so we
may use induction on the length of ¢. Every « € E(Rc) maps each 1-torsion
submodule of M into itself, so if M is the sum of its proper submodules, we can
embed E (Rc) into the direct product of the corresponding endomorphism rings,
hence E(Rc) is then commutative. The alternative is that the sum of all proper
submodules of M is a unique maximal submodule M’, say. By hypothesis, every
endomorphism of M /M’ is induced by multiplication by an element of k, hence
every endomorphism of M is of the form A + «, where A € k and Moo € M'. Tt
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is therefore enough to show that any two non-surjective endomorphisms of M
commute. Let us take such endomorphisms «, 8 of M. By Proposition 1.8, one
of Ma, MB is contained in the other, say Mo € M8 C M'.

Now « maps M into M = M /kerf, hence by Corollary 1.6 (ii), « is induced
by an endomorphism &’ of M8, i.e. « = Ba’. Let B; be the restriction of 8 to
M B; then we have

Pa = Bpa’ = Bpia’
but on M all endomorphisms commute, by the induction hypothesis. Hence
BB’ = Ba'B; = afy = aB, and so af = Ba, as claimed. [ |

Corollary 4.6.16. Let R be a k-algebra that is an atomic 2-fir and remains
one under arbitrary field extension. Then the eigenring of any non-zero element
is commutative.

Proof.  Let k' be an algebraically closed field extension of cardinality greater
than dim; R. Then all atoms in R ® k' have scalar eigenrings (Corollary 3.2.6)
and R ® k' has DFL, by Theorem 3.3, hence we can apply the result just proved
(and the change-of-rings formula, Proposition 0.6.2) to reach the conclusion. B

This corollary shows that in a free k-algebra all eigenrings of non-zero
elements are commutative. Hence the result also holds for matrices that are
stably associated to elements, but it does not extend to general matrices (see
Exercise 8).

For examples of non-commutative eigenrings let us take the complex-skew
polynomial ring C[x; —] and consider the elements x> 4 1 and x> — 1. Both are
invariant (even central), hence their eigenrings are quotients of the whole ring
by the ideals they generate. The element x2 + 1 is an atom, so the quotient is a
field (Proposition 3.2.4); this is easily seen to be the field of quaternions. The
element x2 — lis a product of two atoms, neither of them invariant, hence the
eigenring is a 2 x 2 matrix ring over C. For the algebra Z(x, y) the eigenrings
can be very different, as Exercise 3.2.16 shows.

Exercises 4.6

1. In an atomic 2-fir characterize the elements whose eigenring has zero radical.

2. (Cohn [69a]) Show that in the free algebra R(x, y) the element a = xy>x +
Xy 4+ yx +x2 41 is an atom, but does not remain one under extension to C.
Deduce that the eigenring of @ is C. Find an element in the idealizer mapping
toi.

3. (Roberts [82]) Let k =TFs(r), and in k{x,y) examine c = x’yxyxyx>+
xX2yxyx + x2y2x% + xyxyx? 4+ tx3 + x2y + xyx + yx? 4 1. Verify that ¢ is an
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atom but splits on adjoining a cube root of ¢. In Q(x, y) consider the element
obtained from ¢ by replacing ¢ by 2; show that it is an atom but splits on adjoining
a cube root of 2.

4°. (Ikeda[69]) Inafree algebra of finite rank, is every ideal that is maximal as left ideal
finitely generated as left ideal? (By Corollaries 6.14 and 2.6.4 this is equivalent to
the question: is every skew field that is finitely generated as k-algebra necessarily
finite-dimensional over k?)

5*. (H. Bass) Let R be a commutative principal ideal domain containing a field k.
Show that R is a persistent PID if and only if every prime ideal in R[f] that is
not minimal among the non-zero primes (i.e. of height > 1) meets k[#]*. Deduce
that the condition that R /p be algebraic over k for any non-zero prime ideal p is
sufficient as well as necessary for R ® k(t) to be a principal ideal domain.

6. Apply Exercise 5 to test whether R is a persistent PID in the following cases: (i)
R = k(x)[y], (ii) R is a PID whose residue-class fields are algebraic over k& and
(iii) R = k[[#]]-

7. (G. M. Bergman) In the ring of integral quaternions show that the eigenring of
each atom is commutative, but that this need no longer hold for general (non-zero)
elements.

8. Let p be an atomin a free algebra. Show that the eigenring of the matrix diag (p, p)
is not commutative.

9. Let R be a persistent semifir over k and a # 0 an ideal containing an invariant
element. Show that R/a is matrix algebraic over k.

10°. Consider fields that are k-algebras, where & is a commutative field. Find a field
that is algebraic but not matrix algebraic over k.

Notes and comments on Chapter 4

Most of the results in this chapter are due to Bergman and the author, and were first
published in FR.1. In particular, Theorem 2.3 was obtained by the author in 1964 (unpub-
lished) and he conjectured that it applied to free algebras. This conjecture was proved
by Bergman in 1966. Much of the chapter is contained in Bergman [67], especially the
later version, and Sections 4.4 and 4.5 follow this source (and other unpublished work
of Bergman in the 1960s) rather closely. In 1966 Bergman proved that the tensor ring
E(X) has adistributive factor lattice whenever E / k is a purely inseparable commutative
field extension, where the inseparability cannot be omitted. This result was never pub-
lished, but in 1981 the author, using results from Bergman [74a], found a shorter proof
(see Cohn [89a]). The results of Section 4.4, of course, go back further, e.g. Birkhoff
[67], though our presentation follows Bergman [67]. The latter also contains Theorem
5.2, while Theorem 5.3 is taken from another unpublished manuscript of Bergman (ca.
1968), with a new proof, taken from Cohn [90].

The material of Section 4.1 went through several versions and was improved as a
result of discussions with Bergman and Stephenson; FR.2 followed Camillo [75] and
Stephenson [74] in presenting properties of distributive modules. In this work the order
has been changed, putting the criterion for distributivity (based on results of Roos [67])
at the beginning (Results 5.1 and 5.2). Further, ‘semi-Artinian’ has been replaced by
the stronger notion ‘meta-Artinian’ (likewise for Noetherian) to correct an error and
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give a smoother presentation. Corollary 2.4 is taken from Cohn [82c] and Theorem 2.5
generalizes (and simplifies) a result of Noether and Schmeidler (1920).

A 2-fir such that two similar right commensurable elements are right associated was
called ‘uniform’ in FR.1, but this term is used in other senses now and has therefore
been discarded. A 2-fir R was called ‘conservative’ if R and R ® k() are 2-firs and R is
l-inertin R ® k(t); the place of this term has now been taken by the terms ‘absolute’ and
‘persistent’ as in the text. Thus Theorem 3.3, the main result of Section 4.3, originally
stated that a conservative 2-fir is uniform.

From the results of Section 4.4 it follows that every distributive lattice (not neces-
sarily finite) is isomorphic to a ring of sets, i.e. a lattice of subsets of a set under the
operations N, U. For since a finite distributive lattice is finite, any distributive lattice
can be represented as the inverse limit of the sets representing its finite subsets (the
Birkhoff—Stone representation theorem, see Gritzer [78], p. 64).

In Theorem 5.3 the construction has been changed from FR.2, which leads to a shorter
proof (and an application in Section 7.5, see Cohn [90]). The see-saw lemma and its
consequences (Results 6.3—6.6) previously formed part of Section 8.5. Theorem 6.9 was
first proved for elements in commutative PIDs by H. Bass (in a letter to the author in
1964). FR.1 contained a version for elements of a persistent 2-fir; the present version
is taken from Cohn [85b]. Theorem 6.12 has a new shorter proof communicated by
Bergman. Proposition 6.15 is also due to Bergman, dating back to ca. 1968 (unpublished),
while Corollary 6.14 was proved by Rosenmann and Rosset [91].
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Modules over firs and semifirs

Just as firs form a natural generalization of principal ideal domains, so there
is a class of modules over firs that generalizes the finitely generated modules
over principal ideal domains. They are the positive modules studied in Section
5.3; they admit a decomposition into indecomposables, with a Krull-Schmidt
theorem (in fact this holds quite generally for finitely presented modules over
firs), but it is no longer true that the indecomposables are cyclic. On the other
hand, there is a dual class, the negative modules, and we shall see how the
general finitely presented module is built up from free modules, positive and
negative modules. A basic notion is that of a bound module; this and the duality,
essentially the transpose, also used in the representation theory of algebras, are
developed in Sections 5.1 and 5.2 in the more general context of hereditary
rings. In the special case of free algebras, the endomorphism rings of finitely
presented bound modules are shown to be finite-dimensional over the ground
field. This result, first proved by J. Lewin, is obtained here by means of a normal
form for matrices over a free algebra, due to M. L. Roberts, and his work is
described in Section 5.8.

A second topic is the rank of matrices. Several notions of rank are defined,
of which the most important, the inner rank, is studied more closely in Section
5.4. Over a semifir the inner rank obeys Sylvester’s law of nullity. This leads to
a natural generalization of semifirs: the Sylvester domains, first defined by W.
Dicks and E. Sontag. They and some variants form the subject of Section 5.5
and 5.6.

In Section 5.7 we compare the different factorizations of a rectangular matrix
over a semifir. Here the results are less complete, although in some ways parallel
to the square case. There is an analysis of factorizations, which throws some
light on the limitations to be expected.

The remainder deals with various chain conditions in Section 5.9 and the
intersection theorem for ideals in firs in Section 5.10.

263
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5.1 Bound and unbound modules
Let R be any ring and J, ¥ two classes of left R-modules such that

(1) X € g if and only if Homg(X,Y)=0forall Y € &,
(i) Y € & if and only if Homg(X,Y) =0forall X € J.

If we view Hom as a bifunctor (i.e. a functor in two arguments) on the cate-
gory of modules, (i) and (ii) express the fact that 5 and & are annihilators of
each other, and we shall sometimes write § = 1§, F= 9 L There is a certain
parallel here with the concept of orthogonality in a metric linear space, but by
contrast to that case, Hom is not symmetric in its two arguments. Any J and
& satisfying (i) and (ii) are called a torsion class and its associated torsion-free
class respectively, and the pair (J, &) is called a torsion theory. Given any class
€ of R-modules, we obtain a torsion theory by setting ¥ = e, 9 =19 this is
called the torsion theory generated by €; thus J is the smallest torsion class
containing C. Analogously the torsion theory cogenerated by € is formed by
setting J = 1e5=9 L; here ¥ is the smallest torsion-free class containing
C. We shall be particularly interested in the torsion theory cogenerated by R.
Thus we define an R-module M to be bound if

M* = Homg(M, R) = 0.

This means that there are no linear functionals on M apart from 0. The modules
in the corresponding torsion-free class are said to be unbound. An unbound
module can also be defined as a module with no non-zero bound submodule.
For if N satisfies this condition and M is any bound module, then so is any
homomorphic image of M, hence Homg(M, N) = 0, and so N is unbound.
Conversely, if N has a bound submodule N # 0, then Homg(N’, N) # 0.

In every torsion theory the classes J, ¥ admit certain operations; for the
bound and unbound modules this is easily verified directly:

Proposition 5.1.1. Over any ring R, the class of bound modules is closed
under the formation of homomorphic images, module extensions, direct limits
and hence direct sums. |

Proposition 5.1.2. Over any ring R, the class of unbound modules contains
all free modules and is closed under the formation of submodules and arbitrary
direct products (hence under inverse limits and direct sums), and under module
extensions. |

Let M be any R-module; by Proposition. 1.1, M has a unique maximal bound
submodule My, viz. the sum of all bound submodules of M, and M / M}, has no
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non-zero bound submodules. Dually, M}, may also be characterized as the least
submodule of M with unbound quotient.

To give an example, over Z (or more generally, any principal ideal domain),
M, is just the submodule of all torsion elements of M. Moreover, for a finitely
generated Z-module M we have a decomposition

M =M,®F, whereF is free. (€))]
Such a decomposition exists in fact over any semifir:

Theorem 5.1.3. Let R be a semifir and M a finitely generated R-module. Then
M has a decomposition (1), where M), is the maximal bound submodule and F
is free; here My, is unique and F is unique up to isomorphism. Moreover, M* is
free and ik M* =1k F.

Proof. Let us write M = My & F, where F is a free summand of maximal
rank. This is possible because the rank of F is bounded by the number of
generators of M. If M, is not bound, there is a non-zero homomorphism f :
My — R, and since R is a semifir, im f is free. Thus we can split off a free
module from M, but this contradicts the maximality of tk F. Hence M is
bound and M /M,y = F is unbound, therefore My = M, is the maximal bound
submodule, and (1) is established. The uniqueness is clear, and dualizing (1)
we find that M* = F*, hence M* is freeandtk M* =1k F* =1k F. [ ]

The unique submodule My, in (1) is called the bound component of M.
It is clear that a corresponding result holds for n-generator modules over
n-firs. In particular, this leads to a condition for a module to be bound:

Corollary 5.1.4. A module over a fir (or a finitely generated module over a
semifir, or an n-generator module over an n-fir) R is bound if and only if it does
not contain R as a direct summand. [ ]

In the same situation a finitely generated module is unbound if and only if
it is free. More generally, a module over a fir is unbound if and only if it is a
direct limit of free modules; thus the class of unbound modules over a fir R may
be described as the closure of {R}, i.e. the class of modules obtained from R by
taking submodules, extensions and direct products.

For the moment let us write 3B, U for the classes of bound and unbound
modules, respectively (over any ring R). Sometimes we wish to consider a
wider class than U (and a corresponding narrower class than $B). Given n > 1,
if every bound n-generator submodule of a module N is zero, N is said to be
n-unbound, and the class of all such N is written U,,. It is clear that

U DU D...DU.
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The class B, =+ U, consists of all modules all of whose non-zero quotients
have a non-zero bound n-generator submodule, and it is easily verified that
B =U,. Thus (B,,U,) is a torsion theory and

B CB,C...CB.

It follows that Proposition 1.1 also holds for $, and Proposition 1.2 for U,,.

Over an integral domain the 1-unbound modules are just the modules with-
out non-zero torsion elements (i.e. torsion-free in the classical sense). This
follows from the next result, which describes the n-unbound modules over
n-firs:

Theorem 5.1.5. Let R be an n-fir. Then an R-module M is n-unbound if and
only if every n-generator submodule of M is free.

Proof. Let M be n-unbound, n > 0 and assume the result for integers less
than n. Any submodule N of M generated by n elements is a homomorphic
image of R",say N = (R")f.Let g : N — R be a non-zero homomorphism;
then fg : R" — R isnon-zero and by Theorem 2.2.1 (e), im(fg) is free of some
rank 7 > 0; thus im(fg) = R" and applying an appropriate automorphism to
R" we find maps

Rr®eR"™™ - N — R",

such that the first map is still surjective, while the composition is the projection
onto R”. Thus we obtain the decomposition N = R" & (R" ") f.Ifr =n, f is
an isomorphism; otherwise by induction (R"~") f is free and hence so is N. The
converse is clear from the definition of n-unbound. |

Of particular interest for our purpose is the fact that by Proposition 1.2 for
U,, all direct powers R! are n-unbound, so that, by Theorem 1.5, when R is
an n-fir, any n-generator submodule of R’ is free. This generalizes Corollary
2.3.22.

Bound modules satisfy chain conditions under fairly mild restrictions. To
state them we recall that a left (or right) hereditary ring is certainly weakly
semihereditary, so we can apply Theorem 2.1.4 to conclude that any projec-
tive module over a left hereditary ring is a direct sum of finitely generated
modules.

Theorem 5.1.6. Let R be a left hereditary ring, and let M be a finitely related
left R-module. Then each submodule of M is a direct sum of a finitely presented
module and a projective module.
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Proof. By hypothesis, M = F /N, where F is free and N is finitely generated.
Every submodule of M has the form P/N, where N € P C F and here P is
projective, because R is left hereditary. By Theorem 2.1.4, P is a direct sum of
finitely generated modules and so it contains a finitely generated direct summand
P’ containing N (because N was finitely generated). Writing P = P’ & P", we
have the exact sequence

0— P'/N - P/N — P/P' =P" 0.

Since P" is projective, this sequence splits and P’, N are both finitely generated,
hence P’/N is finitely presented. [ ]

Clearly a bound module contains no non-zero projective submodule as a
direct summand; so we find

Corollary 5.1.7.  Over aleft hereditary ring any bound submodule of a finitely
related left module M is finitely presented, hence M satisfies ACC on bound
submodules. [ ]

Taking the module itself to be bound, we obtain

Corollary 5.1.8. Over a left hereditary ring every finitely related bound left
module is finitely presented. ]

Exercises 5.1

1. Show that for any ring R and any left ideal a of R, R /a is bound if and only if the
right annihilator of a is zero. Deduce that for a matrix defining a left R-module
M the matrix must be left regular; M is bound if and only if the matrix is right
regular.

2. Show that a finitely related bound module over any ring is finitely presented.
Deduce that a projective module P is finitely generated provided that it has a
finitely generated submodule N such that P/N is bound.

3. Show that the class of bound left R-modules admits submodules if and only if the
injective hull of R (as left module) is unbound. (Hint: Recall that the injective hull
is the maximal essential extension.)

4. Let R be a left hereditary ring and M a finitely related left R-module. Show that
the projective submodules of M form an inductive system (i.e. admitting unions of
ascending chains).

5*. Let R be an integral domain and M an R-module. Show that a homomorphism
M — R annihilates all torsion elements; deduce that any module consisting
entirely of torsion elements is bound. Show that every finitely generated bound
R-module consists of torsion elements if and only if R is both left and right
Ore.
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6°.

10.

11.

12.

13.

14*.

15°.

16°.

Modules over firs and semifirs

(G. M. Bergman) Characterize integral domains over which every bound left mod-
ule is generated by torsion elements.

. Let K be a field and R a subring containing two right R-linearly independent

elements a, b. Verify that the submodule Ra~! 4+ Rb~! of K is bound, as left
R-module. Deduce that K is not semifree as left R-module (see also Exercise
0.8.3).

Show that over a left Bezout domain R, a finitely generated left R-module without
non-zero torsion elements (i.e. torsion-free) need not be free. (Hint: Use Exercise
7.)

Find an example of a module that is n-unbound for all n > 1, yet not unbound.
(Hint: Over a semifir this requires amodule M whose finitely generated submodules
are free, while M* = 0.)

Let R be an n-fir and €, the class of all n-unbound left R-modules with ACC,.
Show that R must have left ACC,, for €, to be non-trivial. When R has left ACC,
show that €, contains all free modules and is closed under (i) the formation of
submodules, extensions and unions of ascending sequences with quotients of suc-
cessive terms in €, (and hence direct sums) and (ii) inverse limits (and hence direct
products).

(Bergman [67]) (i) Let k be a field with an endomorphism « that is not surjective
and define R’ = k[y; «]. Show that y R’ is a two-sided ideal that is free as left ideal;
further, show that if (u;) is a left basis for k over k%, then (yu;) is a left basis for
YR’ over R’.

(ii) Let R = k* + yR’ be the subring of polynomials with constant term in £%.
Verify that R is a right Ore domain with the same field K of fractions as R’, but R
is not left Ore (note that even R’ is not left Ore).

(iii) Take x € k\k“ and let f : R> — R’ be the linear functional (a, b) —
axy — by. Then f also defines a linear functional f(by restriction) on R?. Show
that ker fzr = yR'(1, x) = T R'yu;(1, x) and deduce that a submodule of an R-
module of rank 1 can have infinite rank (for a suitable choice of k& and «). Take a
particular subscripti = 1say,andput M = R?/R’yu;(1, x). Verify that fz induces
amap fy : M — R and by showing that ker f); is embeddable in R?, verify that
M is unbound. Show also that K ® M = K?/K (1, x) and hence that M, although
unbound, is not embeddable in K ® M. Conclude that M is also not embeddable
in R for any set I.

Let R be a right Ore domain, M and N left R-modules and f : M — N a homo-
morphism. If N is finitely generated and coker f is bound, verify thatrk N < rk M.
Does this remain true without the condition that N be finitely generated? (Hint:
Try N =K.)

Show that for any finitely generated modules M, N over a semifir R, if M & R =
N @®R,then M = N.

(G. M. Bergman) Let A be the subgroup of QV consisting of all sequences (x,)
such that nx, € Z for all n and x,, € Z for almost all n, while the sum over all the
non-integral x,, is integral. Verify that A is unbound, but cannot be embedded in
any direct power of Z.

(G. M. Bergman) Characterize the rings R such that every finitely generated
unbound R-module can be embedded in a direct power of R.

Can the hypothesis on R (to be left hereditary) in Theorem 1.6 be omitted? (See
also Proposition 0.5.1).
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5.2 Duality

We shall now establish a duality for bound modules over hereditary rings, from
which it will follow that any finitely presented bound module satisfies DCC as
well as ACC on bound submodules. We shall present the actual results so as to
apply to arbitrary rings and only specialize at the end.

Let us call a module M over any ring R special if it is finitely presented and
of projective dimension at most 1. Thus a special R-module M is a module with
a resolution

0—-Q0—P—->M-—0,

where P, Q are finitely generated projective R-modules. Over a semifir the
special modules are just the finitely presented modules. If we dualize the above
exact sequence, taking M to be a left R-module, we get the exact sequence of
right R-modules

0> M*— P*— Q* — Ext(M,R) — 0,

bearing in mind that Ext (P, R) = 0, because P is projective. Let us assume that
M is bound, so that M* = 0. Dualizing once more and defining the transpose as
Tr(M) = Ext(M, R), we obtain the following commutative diagram with exact
rows:

0 » 0 » P » M » 0
o B Y
0 ————— Tr(M)* O** px* Tr2(M) — 0

Here o and B are isomorphisms, because P and Q are finitely generated projec-
tive. This allows us to define y and to show that it is an isomorphism too (by
the 5-lemma); likewise we conclude that Tr(M)* = 0. These remarks suggest
the truth of

Proposition 5.2.1.  For any ring R there is a duality Tr between the categories
of special bound left R-modules and special bound right R-modules, such that if
M = coker(Q — P),where P, Q are finitely generated projective and Q C P,
then Tr(M) = coker(P* — Q%).

Proof.  Consider a mapping f : M — M’ between two special bound left
R-modules, given by presentations of the above form
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i J
0 ) > p > M > 0
h g S
l-/ jl
0 > O’ » P’ > M’ > 0

By the projectivity of P, jf liftstoamap g : P — P’andh = g|Q mapsinto Q’.
The map f is completely determined by the pair (g, /), for any such pair of maps
induces a map of the cokernels. Moreover, two such pairs (g, #) and (g1, /1)
give the same map f if and only if there exists e : P — Q' such that g — g =
ei’,hy —h = ie (thus (g, h) and (gy, 1) are ‘homotopic’). Hence the category
of special bound left R-modules is equivalent to the category of maps Q —
P, which are injective with injective duals under homotopy-equivalence and
whose morphisms are homotopy-classes of commuting squares. This category
is clearly dual to the corresponding category of maps between projective right
R-modules, and hence to the category of special bound right R-modules. H

Here, as in every duality, monomorphisms correspond to epimorphisms; since
we are dealing with module categories, this means that injective maps corre-
spond to surjective maps under this duality and vice versa.

We observe that the duality of Proposition 2.1 is given explicitly by the
functor Ext(—, R). In the special case R = Z it is just the familiar duality of
abelian groups given by A — Hom (A, Q/Z). We indicate briefly the conditions
under which this simplification can be made.

A module M will be called strongly bound if M and all its submodules are
bound. For any ring R, let E be the injective hull of R, as left R-module and put
T = coker (R — E), so that we have the exact sequence

0—-R—-FE—>T-—0. @))

It is easily verified that M is strongly bound if and only if Hom (M, E) =0
(using the fact that R is an essential submodule of E). By (1) we have, since E
is injective, the exact sequence

0 - Hom(M, R) - Hom(M, E) - Hom(M,T) - Ext(M, R) — 0. (2)
However, when M is strongly bound, then Hom (M, E) = 0 and so we have

Proposition 5.2.2. Let R be any ring and define E, T as above. Then for any
strongly bound module M,

Ext(tM,R) = Hom(M, T). m (3)
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Over a principal ideal domain (commutative or not) every finitely generated
bound module is strongly bound and we can therefore use Proposition 2.2 to
express the duality in terms of Hom. Moreover, in this case FE is just the field
of fractions of R. This is an R-bimodule, hence T is then also an R-bimodule
and it follows that (for a left R-module M) (3) is actually a right R-module
isomorphism. When R is a left fir but not left principal, there will always be
finitely generated modules that are bound but not strongly bound. Even then
we can use the exact sequence (2) to describe Ext(M, R) as the cokernel of the
mapping Hom (M, E) — Hom(M, T'). However, we cannot in general expect
to write Ext(M, R) in the form Hom(M, I) for some I, i.e. the functor Ext(—, R)
is not representable, because Ext(—, R) is not left exact, unless we restrict the
class of bound modules further.

Returning to Proposition 2.1, let us apply the result to hereditary rings. In
the first place, every finitely presented module is now special. Moreover, by
Corollary 1.7, every finitely related bound module satisfies ACC on bound
submodules (necessarily finitely presented by Corollary 1.8), and applying the
above duality, we find that the module satisfies DCC for bound submodules.
Thus we obtain

Theorem 5.2.3. LetR be a left hereditary ring. Then any finitely related bound
left R-module satisfies ACC and any finitely presented bound right R-module
satisfies DCC on bound submodules. In particular any finitely related bound
module over a left and right hereditary ring satisfies both chain conditions for
bound submodules. [ ]

Exercises 5.2

1. What becomes of the duality of Proposition 2.1 in the case where R is left self-
injective, i.e. injective as left R-module?

2. For this exercise only, let us call a module M extra-special if it has a presentation
0— P — P — M — 0, where P is finitely generated projective. Show that in
the duality of Proposition 2.1, extra-special bound modules correspond to extra-
special bound modules.

3. Let R be a left fir. If every bound left R-module is strongly bound, show that R
is left principal. Is it enough to assume the condition for finitely generated bound
modules?

4. Let R be aleft Ore domain and K its field of fractions. Show that K is the injective
hull of R. Does this remain true for more general rings that are embeddable in
fields?

5*. Let R be a two-sided fir and E its injective hull as left R-module. Describe the
R-bimodule structure of £ and compare it with the injective hull of R as right
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R-module. (Hint: Observe that right multiplication by @ € R is an endomorphism
that extends to an endomorphism of E by injectivity.)

6. Let R be a left hereditary ring and M a finitely related left R-module. Show that if
P is a maximal projective submodule of M, then M/P is strongly bound. Deduce
that for every finitely related module M there is an exact sequence

0O—->P—>M-—>Q—0,

where P is projective and Q is finitely generated and strongly bound.

7. Give an example of a strongly bound module over k({x, y) that is not finite-
dimensional over k.

8. Let R be an integral domain and a a left ideal. Show that R /a is strongly bound if
and only if R is an essential extension of a.

9. Let R be an integral domain and E its injective hull as left R-module. Show that
for any left R-module M there exists a subset X of M such that every map X — E
extends to a unique homomorphism M — E; thus the natural embedding *R — E
extends to a homomorphism M — E.

10*. Does Theorem 2.3 hold for fully atomic semifirs? (Hint: See Proposition 9.6
below.)
11. (A.H. Schofield) Show that for bound left R-modules M, N over a hereditary ring R,
Homz(M,N) = Torf (Tr M, N). (Hint: Resolve M and note that Homz(P, N) =
P* ® N for finitely generated projective P.)

5.3 Positive and negative modules over semifirs

We have already met torsion modules in Section 3.2, where we saw that over
a principal ideal domain they reduce to finitely generated modules of torsion
elements, while many of the properties of the latter carry over to torsion modules
over semifirs. In this section we apply the results of Sections 5.1 and 5.2 to study
two classes of finitely presented modules over semifirs: the positive modules,
which over principal ideal domains correspond to finitely generated modules,
and their duals, the negative modules, which have no analogue in the classical
case.

Throughout this section all modules occurring will be finitely presented
modules over semifirs; in that case the characteristic of a module, as defined in
Section 0.6, is an integer, positive, negative or zero, and by Proposition 0.5.2,
the characteristics are additive on short exact sequences. Moreover, for any
semifir R, the category of all finitely presented left R-modules is an abelian
subcategory of gkMod, by Appendix Theorem B.12.

Definition. Let R be a semifir and M an R-module.

(1) If M is finitely presented and y (M’) > 0 for all submodules M’ of M, then
M is said to be positive.
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(ii) If M is finitely presented and x (M") < O for all quotients M" of M, then
M is said to be negative.

(iii) If M is positive and x (M’) > 0 for all non-zero submodules M’, then M
is called strictly positive, if M is negative and x(M") < 0 for all non-zero
quotients M”, then M is said to be strictly negative.

Any submodule of characteristic 0 of a positive module is a torsion module
and the same holds for any quotient of characteristic O of a negative module.
Therefore a strictly positive module may also be defined as a positive module
without non-zero torsion submodules and a strictly negative module is a negative
module with no non-zero torsion quotients. We note further that a torsion module
is just a module that is both positive and negative. Writing gPos, gNeg, g Tor
for the categories of positive, negative and torsion left R-modules, we thus have

g Tor = pPos N gNeg.

Over a principal ideal domain any finitely generated module is positive and there
are no negative modules apart from torsion modules, because the characteristic
does not assume negative values in this case (see Section 2.3). By contrast, a
semifir that is not an Ore domain will always have modules of arbitrary negative
characteristic, by Proposition 0.7.6.

We have seen that torsion modules (over semifirs) are presented by full
matrices, and we now examine the presenting matrices of positive and negative
modules. Let M be a left module presented by the m x n matrix C, which can
be taken to be left regular; it is clear that M is bound if and only if C is also right
regular. Let M’ be a submodule with quotient M = M /M’; then M’, M” may
be presented by matrices A,B such that C = AB (Proposition 0.5.2). Recalling
the definitions of left (right) full and prime matrices, from Section 3.1, we
obtain

Proposition 5.3.1.  Let R be a semifir and M a finitely presented left R-module,
with presenting matrix C. Then C is left regular, and it is also right regular if and
only if M is bound. Further, M is positive if and only if C is left full, and negative
if and only if C is right full. Finally, M is strictly positive (resp. negative) if and
only if C is left (resp. right) prime. [ ]

These results suggest that there should be a duality between positive and
negative modules, and this is in fact the case, provided that we restrict ourselves
to bound modules. We note that in the decomposition of a module,

M =M, & R", (1)
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if M is positive, then so is My, the bound component. Of course, a negative
module is always bound, by definition, since R has no non-zero submodules of
characteristic < 0.

Theorem 5.3.2. Let R be a semifir. Then Tr = Ext(—, R) provides a duality
between the category of bound positive left R-modules and the category of
negative right R-modules.

Proof.  The result follows by a straightforward application of Proposition 2.1.
]

In order to establish chain conditions we shall assume that R is a fir. Then
we can apply Theorem 2.3 to obtain

Theorem 5.3.3. Let R be a left fir. Then any positive bound left R-module sat-
isfies ACC on bound submodules and a negative right R-module satisfies DCC
on bound submodules. In particular, over a two-sided fir any positive bound
or negative module satisfies both chain conditions on bound submodules. R

Later, in Section 5.9, we shall meet other chain conditions valid over certain
semifirs.

Proposition 5.3.4. Let R be a semifir. Then Pos, Neg and the class of bound
modules all admit extensions and hence finite direct sums. Further, Pos admits
submodules and Neg admits quotients within the category of all finitely pre-
sented R-modules.

Proof.  In the short exact sequence
0—-M —>M-—>M' -0, 2)
assume that M’, M" are positive and N € M. Then x(N N M’) > 0 and
N/(NNM)Y=(N+M)M CM/M' =M",

hence x(N/N N M’) > 0, therefore x(N) = x(N/NNM')+ x(NNM') >
0. This shows M to be positive. Now assume M’, M” to be bound and let
f : M — R be a homomorphism. Then f | M’ = 0, hence f is induced by a
homomorphism f : M” — R, which must be 0, so f =0 and M is bound.
Thus Pos and the class of bound modules both admit extensions; by duality the
same holds for Neg. The remaining assertions are clear from the definitions. l

Let us consider a finitely presented bound module M over a fir R; by Theo-
rem 2.3, any chain of bound submodules in M is finite. Moreover, any bound
submodule of M is finitely presented, by Corollary 1.8 applied to (2), and so has
finite characteristic. Let M be a submodule of least characteristic, x (M) = h,
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say. Then M is negative, for any submodule N of M| satisfies x (V) > h, hence
x(M;/N) < 0. Since the set of negative submodules of M satisfies both chain
conditions and admits sums, there is a unique maximal negative submodule M~
of M. Any submodule N of M satisfies x(N) > x(M ™), soif N D M~ then
X(N/M™) > 0, with strict inequality unless N = M ~; this shows M /M~ to
be strictly positive.

Dually we can find a least submodule M* with bound positive quotient
M /M, and M7 is strictly negative; therefore M+ € M~. Of course M~ /M
is both positive and negative and so is a torsion module. Thus we have

Theorem 5.3.5. Let M be a finitely presented bound module over a fir R. Then
there is a chain

0OCMtCM CM, 3)

where M~ is the greatest negative submodule of M and M the least submodule
with positive quotient M/M™. Moreover, M/M~ is strictly positive, M™ is
strictly negative and M~ /M™ is a torsion module. [ ]

This result has an interpretation in terms of matrices, which we shall meet in
Proposition 4.7.

If we now impose the left Ore condition, we have a principal left ideal
domain, and here the positive modules admit quotients as well as submodules.
However, negative modules are absent; more precisely, they reduce to modules
of torsion elements, as do bound positive modules. Thus in the Ore case we
obtain

Proposition 5.3.6. The left torsion modules over a left Bezout domain are
precisely the finitely presented modules generated by torsion elements, and all
their elements are torsion. Moreover, in an exact sequence (2), if M is a torsion
module and M’ is finitely generated, then M', M” are torsion modules.

Proof.  Over a left Bezout domain the characteristic is non-negative, by the
remarks after Corollary 2.1.3. Now a torsion module M is certainly finitely
presented and x(M) = 0; if x € M is torsion-free, then x(Rx) =1 and so
x(M/Rx) = —1, which is a contradiction, so all elements of M are torsion.
Conversely, if M is finitely presented and consists of torsion elements, its rank is
0 and so is its characteristic. This remark also shows that x (M) = x(M") =0
in (2), and when M’ is finitely generated, then both M’ and M” are finitely
presented. [ ]
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Corollary5.3.7. Over aleft or right Bezout domain, every n-generator torsion
module has a chain of torsion submodules of length n, whose quotients are cyclic
torsion modules.

Proof.  Clearly an n-generator module over any ring has a chain of submodules
of length n with cyclic quotients. When R is left Bezout and M is torsion, these
quotients are torsion by the proposition; for right Bezout domains the result
follows by duality. |

Over a principal ideal domain a more precise decomposition can be obtained,
as we saw in Section 1.4.

So far we have confined our attention to finitely generated modules, as that
is the most interesting case (for us). However, it is also possible to extend the
notions defined here. Let us briefly mention the result for torsion modules; the
extension to positive and negative modules is entirely similar.

For any semifir R we define the category g Tor! of general torsion modules
as consisting of those left R-modules M in which every finite subset is contained
in a finitely generated torsion submodule. Then zTor! (as a full subcategory
of xkMod) is again an abelian category; moreover it has exact direct limits and
a generator, i.e. it is a Grothendieck category (see Cohn [70b] for proofs) and
may be obtained as the completion of gTor. Dually one defines the category of
protorsion modules gTor* to consist of all inverse limits of finitely generated
torsion modules and all continuous homomorphisms (relative to the natural
topology on the inverse limit). Now the functor Tr = Ext (—, R) establishes a
duality between the categories zTor" and Torg' (see Cohn [70b]).

In Section 3.5 we saw that the Krull-Schmidt theorem applies to torsion
modules over semifirs. This amounts to considering the factorization of (square)
full matrices. When we come to consider rectangular matrices, we find that a
similar result holds; we shall state it as a Krull-Schmidt theorem for finitely
presented modules (Theorem 3.9). Our first task is to prove a form of Fitting’s
lemma.

Lemma 5.3.8. Let M be a finitely presented bound indecomposable module
over a fir R. Then Endg(M) is a completely primary ring.

Proof.  We have to show that every endomorphism of M is either nilpotent
or invertible. So let o be an endomorphism of M that is not an automorphism;

then M« is a bound submodule of M and we have the descending chain

M>DMaDdMa?>D....
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By Theorem 3.3 this chain becomes stationary, say Ma” = Ma"T' = ....On
Mo", o" is a surjective endomorphism for any » > 0, and we have the exact
sequence

0— kera "Ma" — Mdo" i)Moe" — 0. )
Put N, = ker " N Ma"; then by (4), x(N,) = 0 and clearly,
NiCN,C.... (&)

If we take the bound components only, we get an ascending chain, by Theorem
1.3, which again becomes stationary, by Theorem 3.3, say (N,)p = (Nyp+1)p =
....Since x(N,) = 0, we have

Ny = (N © R, where k = —x (Ny)b)s

and in M/(N,), we have the ascending chain of modules N,/(N,)p, each
isomorphic to R*. But M /(N,) satisfies ACCy, by Theorem 2.2.2, so this
chain also becomes stationary, say N, = N, = ... . Now the rest of the
proof follows along the usual lines:

Let r = max(n, p); then for any x € M, xa’ € Ma?, say xa’ = ya?,
hence x = ya” + z, where z € ker «”, so we have

M =Mo" +kero. (6)

If x € Mo’ N ker @, then x = ya’ and ya? = xa’ =0,s0 y € kera? =
ker o, hence x = ya” = 0. This shows the sum (6) to be direct, and by
the indecomposability of M, either Mo" =0 and « is nilpotent, or
kera” =0, Mo = M and « is an automorphism. ]

We recall that any R-module M is indecomposable if and only if Endg (M)
contains no idempotents # 0, 1. In particular, when R is an integral domain,
then Endg(R) = R contains no idempotents # 0, 1 and so R is indecomposable
as left or right R-module. The Krull-Schmidt theorem for firs now takes the
following form:

Theorem 5.3.9. Let M be a finitely presented module over a fir R. Then there
exists a decomposition

MEZM & - ®&M &R, (7

where each M; is bound indecomposable, and R is indecomposable. Given a
second such decomposition of M:

M=M@---®M. @R,
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we have h = k, r = s and there is a permutation i — io of 1,...,r such that
M= M,.

Proof. Wehave M = M), @ R¥, and here k is uniquely determined as the rank
of M /My, (or also of M*) because R has IBN. Thus we need only decompose
My; by Theorem 3.3 there exists a complete decomposition, and since each
component has a local endomorphism ring, by Lemma 3.8, the conclusion fol-
lows by Azumaya’s form of the Krull-Schmidt theorem (see e.g. FA, Theorem
4.1.6 or IRT, Theorem 2.31). |

We also note an analogue of Schur’s lemma. Let us call an R-module M
minimal bound if M is non-zero bound, but no proper non-zero submodule is
bound; over a semifir this means by Theorem 1.3 that every finitely generated
proper submodule is free. Now we have the following form of Schur’s lemma:

Proposition 5.3.10. Let R be a semifir and M a finitely presented minimal
bound R-module. Then Endg(M) is a field.

Proof.  Consider an endomorphism « : M — M; its image is again bound,
hence it is O or M. Suppose that « # 0; then im ¢« = M and we have an exact
sequence

0— kera — M - M —> 0. 8)

Now ker o # M; hence it is free and by comparing characteristics in (8), it has
rank O; therefore ker « = 0 and thus « is an automorphism. ]

We conclude this section with an application of the above results (due to
Bergman [2002]), namely the embedding of any fir in a field. This question will
be taken up again later, in Chapter 7, in a more general context, but the proof
given here is more direct.

We have seen in Section 3.3 that the endomorphism ring of a simple torsion
module is a field. For strictly positive or negative modules this need not hold;
for example, if M is any strictly positive module, then so is M @& M, but its
endomorphism ring has nilpotent elements. However, we have the following
result:

Proposition 5.3.11. Let R be a semifir and M, N any strictly positive R-
modules, such that x (M) = 1. Then any non-zero homomorphism f : M — N
is injective.

Proof. We have an exact sequence

0— kerf—>M—f>N—>cokerf—>0.
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If ker f #£ 0, then x(kerf) > 0, hence x(im f) =1 — x(kerf) < 0, and so
im f =0. [ |

In particular, taking N = M, we obtain

Corollary 5.3.12. Let R be a semifir and M a strictly positive R-module of
characteristic 1. Then Endg(M) is an integral domain. [ ]

Here Endg (M) need not be a field, since, for example, R itself is strictly positive
of characteristic 1, but the endomorphism ring is a field for bound left R-modules
over a semifir with right pan-ACC, under the conditions of Corollary 3.12 (see
Exercise 10 below).

Now let R be a fir; by a pointed R-module we shall understand a pair (M, c)
consisting of an R-module M and a non-zero element ¢ € M. We consider the
category £ of all pointed strictly positive left R-modules of characteristic 1. For
example, (R, 1) is a pointed module in £. The morphisms (M, ¢) — (M’, ¢’)
of £ are the homomorphisms f : M — M’ such that cf = ¢’. We observe that
between any two modules M, M’ of £ there is at most one morphism; for if
f’ is another, then f — ' : M — M’ is a homomorphism vanishing on ¢ and
hence zero, by Proposition 3.11. Thus £ is a preordering, with (R, 1) as least
element.

Lemma 5.3.13. The category L is a directed preordering.

Proof. Let(T,a) — (M, b),(T,a) — (N, c)in Lbe given and consider M &
N. This is again strictly positive and it contains the submodule T} = {(x, —x) |
x € T}, which is isomorphic to T, hence of characteristic 1. Let S be a maximal
submodule of characteristic 1 containing 7} and write P = (M & N)/S. Then
we see (as in the proof of Theorem 3.5) that P has characteristic 1 and is strictly
positive, with distinguished element (b, 0) = (0, ¢) (mod S); moreover it is the
unique largest quotient of M @ N with this property, by the maximality of S;
therefore it is the pushout (in the category £). This shows £ to be directed. W

N » p

We now form the direct limit U of this directed system .£ of pointed modules,
identifying the distinguished elements. We observe that U is a left R-module
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containing R as submodule, for given any member (M, ¢) of £, there is a unique
embedding (R, 1) — (M, ¢). Now fix any non-zero element u of U; there is a
strictly positive submodule of characteristic 1 containing # and the submodule
generated by uis free: Ru = R.Now U can also be obtained as the direct limit of
all the pointed strictly positive modules of characteristic 1, with (R, 1) replaced
by (R, u). This means that U has an automorphism mapping 1 to u. Since u
was any non-zero element of U, we see that E = Endg (M) is transitive on the
non-zero elements of U and it contains R as a subring. Moreover, if f, g € E
and 1f = 1g, then f — g is not injective and hence vanishes, by Proposition
3.11. Thus each f € E is determined by its effect on 1 € R. Given f € E*,
there exists g € E with 1. fg = 1, hence fg = 1 and this shows E to be a field.
Thus we obtain

Theorem 5.3.14. Every fir can be embedded in a field. |

Here the finiteness conditions holding in a fir were needed in the proof. In
Chapter 7 we shall see that every semifir R can be embedded in a field; moreover,
there is a universal field of fractions for R, having any other field containing R
as a specialization.

Exercises 5.3

1. Let R be a semifir and n > 1. Taking the minimal projective over R, to have
rank 1/n, show that any finitely presented module over R, has a characteristic of
the form r/n, r € Z. How are the characteristics of modules over R and over R,
related, which correspond under the category-equivalence?

2. Show that over a semifir, every torsion submodule of an n-torsion module can be
generated by n elements. Deduce that a torsion module over a fully atomic semifir
satisfies ACC for torsion submodules.

3. Let M be an n-generator module over a semifir and M’ any submodule. Show
that M’ can be generated by n — x(M/M’) elements. (Hint: Use the diagram of
Proposition 0.5.2).

4. Let R be a principal ideal domain and ¢ € R*. A non-unit left factor b of ¢ will
be called inessential if ¢ has a non-unit left factor left coprime to b, otherwise it is
essential. Show that the cyclic left torsion modules defined by two elements ¢, ¢’
have isomorphic injective hulls if and only if ¢ and ¢’ have an essential left factor
(up to similarity) in common.

5°. Does the result of Exercise 4 hold when R is a fir?

6. Let R be a principal ideal domain and ¢ € R*. Show that the injective hull of
R/Rc can be expressed as a limit of cyclic modules. Give an example in k(x, y)
where this fails.

7. Let R = k(x, y, z) and consider the torsion modules M = R/Rxz, N = R/Ry:.
Verify that both have R/Rz as quotient, and denote the pullback by 7. Show that
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T is not a torsion module, but that it has a unique largest torsion submodule.
Show that the lattice of torsion submodules of T is finite and isomorphic to that
of R/R(xy + 1)xz.

8. Let R be a semifir, a,be R* and A= R/Ra,B = R/Rb. Show that
Ext'(B, A) = Tr (B)® A = R/(Ra + bR). Deduce that every extension of A
by B splits if and only if Ra + bR = R.

If R = k(x, y),take @ = x, b = y and find the non-split extensions apart from
the cyclic one.

9. Let R be a semifir, a,c € R*, A= R/Ra,C = R/cR. Show that Tor;(C, A) =
(cR N Ra)/cRa.

10. Let R be a semifir with right ACC,,. Show that if M is a bound strictly positive left
R-module generated by n elements, such that x (M) = 1, then Endg (M) is a field.

11°. (Bergman [67]). A module is said to be polycyclic, if it has a finite chain of
submodules with cyclic factors. Does there exist a semifir, not left or right Bezout,
over which every torsion module is polycyclic?

12°. (Bergman [67]). Determine the class of semifirs over which every polycyclic
torsion module can be written as a direct sum of cyclic torsion modules (observe
that this includes all principal ideal domains, by Theorem 1.4.10).

13. Let M, N be strictly negative modules over a semifir R such that x(N) = —1.
Show that any non-zero homomorphism from M to N is injective.

14*. Let M, N be non-zero bound modules over a semifir R. If for all non-zero bound
submodules M’ € M, N' C N we have x(M') + x(N') > x(M), show that the
kernel of any non-zero homomorphism from M to N is free. Deduce that if P
is a finitely presented non-zero R-module such that for every finitely generated
non-zero proper submodule P’ of P,2x(P’) > x(P), then Endg(P) is an integral
domain. Hence obtain another proof of Corollary 3.12.

15. Let R be a semifir and g & the full subcategory of rkMod whose objects are the
finitely presented modules. Use the characteristic to give a direct proof that & is
an abelian subcategory of xMod.

16. Let R be a semifir that is right Bezout. Show that every finitely generated bound
left R-module is negative.

17. Let R be a semifir. Show that if every left torsion R-module has finite length (in
the lattice of all submodules), then R is a principal left ideal domain.

18°. Investigate (i) firs for which there are only finitely many simple torsion modules
(up to isomorphism) and (ii) firs over which the indecomposable torsion modules
have finite length (within the category Tor).

5.4 The ranks of matrices

The rank of a matrix is a numerical invariant that is certainly familiar to the
reader, at least for matrices over a commutative ring. We shall need an analogue
for matrices over more general rings; there is then more than one invariant that
can lay claim to generalize the usual rank. This is not surprising, since even
in the commutative case one defines row and column rank separately and then
proves them equal. We shall introduce three different notions of rank, the row
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rank, column rank and inner rank. Of these, the last, already encountered in
Section 0.1, will mainly be used, but the others are sometimes of interest, and
our first task is to describe their relationship to each other. For a smoother devel-
opment we begin with some remarks on the decomposition of free modules over
n-firs.

Let M be a module over any ring R and N a submodule of M. Then we define
the closure N in M as the intersection of the kernels of all the linear functionals
on M that vanishon N.If N = M, we say that N is dense in M this is the case
precisely when M /N is bound, in the sense of Section 5.1. If N = N, we say
that N is closed; this is so if and only if N is the kernel of a mapping into a
direct power of R. Hence if N is closed in M, then M /N is unbound.

If R is an n-fir, then the submodules of R” that are annihilators of finite
families of linear functionals are direct summands of R”, by Theorem 2.3.1
(e). Moreover, any given direct sum decomposition of R” has the form R" =
R” @ R?, for a unique pair of integers r, s satisfying » 4+ s = n. It follows that
any chain of direct summands of R” is finite, of length at most #; but any closed
submodule of R"is the intersection of a descending chain of direct summands,
and so is itself a direct summand. This proves

Proposition 5.4.1. Let n be a positive integer. For any n-fir R, the closed
submodules of R" are precisely the direct summands. They form a lattice in
which every maximal chain has length n, and the height of any member of this
lattice is its rank as a free module. Moreover, if M is any closed submodule
of R", then the linear functionals vanishing on M form a free module of rank
n—rkM. |

We now give two examples to show that the relation between the ranks of a
module and its closure is not very close in general; other examples will appear
in the exercises.

Let R be any integral domain; if x, . . ., x,, are left linearly independent ele-
ments of R, then the elements (x, 0, ...,0), ..., (x,,0,...,0)of R” generate
a free submodule of rank m, but its closure (R, O, ..., 0) has rank 1. Secondly,
let yi, ..., y, be right linearly independent; then it is clear that no non-zero
linear functional of R” vanishes on (yy, ..., ¥,), so the submodule generated
by this element is dense in R”. Here we have a submodule of rank 1 whose
closure has rank n.

Let us now turn to matrices. An m x n matrix A = (a;;) over a ring R may
be interpreted in different ways, as

(a) a right R-module homomorphism of columns "R —"R,
(b) a left R-module homomorphism of rows R”™ — R",
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(c) an element of the (R,,, R,)-bimodule "R ® R",
(d) an (R, R)-bilinear mapping R” x"R — R.

Each interpretation leads to a notion of rank, of which some coincide when the
ring is suitably specialized.

Proposition5.4.2. LetRbeann-firand A € "R".Thenthe following numbers
are equal and do not exceed n:

(i) the rank of the submodule of "R spanned by the n columns of A, i.e.
rk im A under interpretation (a),
(ii) n — rk ker A under interpretation (a),
(iii) the rank of the closed submodule generated by the rows of A under inter-
pretation (b).

Proof.  The equality of (i) and (ii) is clear, as well as the fact that the common
value cannot exceed n. To prove the equality of (i) and (iii), suppose that the
closure of the image of the map A : R™ — R" has rank r, the number described
in (iii). Then we can factor A as in Fig. 5.1 above. Here B has dense image
(its target is the closure of its image); this means that as a matrix it is right
regular, while C is the inclusion in a direct summand. Dualizing, we obtain
maps represented by the same matrices and still factoring A, as shown in Fig.
5.2, where C is the projection onto a summand and B, being right regular, defines
an injective mapping. Hence the image of A in "' R is isomorphic to " R, where
r is the number defined in (i). [ ]

The common value of these numbers is called the column rank of A. This
definition makes it clear that the column rank of the matrix representing a given
linear transformation is independent of the choice of bases. In particular, we
see that the column rank is unchanged by elementary operations. However, we
have had to restrict the class of rings (to n-firs) to ensure that the image is a free
module. Sometimes one defines the column nullity of A as rk ker A; unlike the
column rank this is invariant under stable association.
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Over an m-fir we can similarly define the row rank of A. Now case (i) of
Proposition 4.2 (and its left-right dual) relates these numbers to the usual row
and column ranks of matrices, over a commutative integral domain, say. In the
case of an m X n matrix A over a max(m, n)-fir we have both kinds of ranks and
in general they will be unrelated. This is clear from the examples given earlier,
if we note that the row rank of A equals the rank of R"™.A, while the column
rank equals the closure thereof. Denoting the row and column ranks by p;, o,
respectively, we have for a product of matrices:

pr(AB) < p-(A),  pc(AB) < pc(B).

It is also possible to formulate characterizations of these two types of rank in
terms of interpretations (c) and (d) of the matrix A and the reader may wish to
do this, but they are less simple. Various versions of the definitions of row and
column rank may also be formulated for matrices over rings other than n-firs, but
they are not in general equivalent. However, the inner rank, defined in Section
0.1, is naturally defined over any ring. Moreover, it is left-right symmetric
and will be of importance later. Our next result gives some equivalent ways of
describing it:

Proposition 5.4.3. Let R be any ring and A € "R". Then the following four
numbers are equal and do not exceed min(m,n):

(i) the least r such that the map A (under interpretation (a) or (b)) can be
factored through R",
(ii) the least r such that A can be written | b; @ ¢;, under interpretation (c),
(iii) the least r such that the image of A in R" is contained in a submodule
generated by r elements (interpretation (b)) and
(iv) the least r such that the image of A in ™R is contained in a submodule
generated by r elements (interpretation (a)).

Further, this number does not exceed p,(A) in an m-fir and does not exceed
pc(A) in an n-fir.

Proof.  This is a straightforward consequence of the definitions, details of
which may be left to the reader. ]

From (ii) we see that the number described in this proposition is just
the inner rank p(A). It is most conveniently determined as the least » such
that

A = BC, where Be "R",C € 'R". (D



5.4 The ranks of matrices 285

Any factorization of A as in (1) with » = p(A) is a rank factorization of A, as
defined earlier. Using rank factorizations, we can verify the following inequal-
ities without difficulty:

p(A® B) < pA+ pB, )
p(AB) < min{pA, pB}, 3)
p((A"A")) = max{pA’, pA"}. “4)

We also note that for any a € R, pa = 0if and only if a = 0, for then (and only
then) can a be written as a product of a 1 x 0 by a0 x 1 matrix. For any a # 0
in R we have of course pa = 1. From (4) and its transpose we see that the inner
rank of any matrix is at least the rank of any submatrix. Like other ranks, the
inner rank is unchanged when the matrix is multiplied on the left or right by an
invertible matrix. Over any field it reduces to the usual rank; more generally,
we have

Proposition 5.4.4. Over a left Bezout domain the inner rank of any matrix
equals its row rank.

Proof. 'We know that in any case pA < p, A; we have to prove equality here.
Let pA = r; using interpretation (b), we can factor A by R". The image in R"
is a finitely generated submodule of R”, hence by Proposition 0.8.3 and the
sentence that precedes it, of rank at most r, therefore the image in R” also has
rank at most r, i.e. p, A <r. [ ]

In a two-sided Bezout domain, by symmetry, the row rank, column rank and
inner rank of any matrix are all equal. Recalling the definition of a left full
matrix from Section 3.1, we conclude from Proposition 4.4,

Corollary 5.4.5. A matrix over a left Bezout domain is left regular if and only
if it is left full. ]

This result will be generalized in Section 5.5, where the precise class of rings
satisfying the conclusion of this corollary will be determined, at least in the
commutative case.

We note that over any ring, the full matrices are just the n x n matrices of
innerrank n, foralln = 1, 2, .. .. Over aring with UGN, every invertible matrix
is full. For weakly finite rings we have the following more general result:

Proposition 5.4.6. Let R be a weakly finite ring and consider a partitioned

matrix over R:
A B
M_(C D>’ where A € R,.
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If A is invertible, then pM > r, with equality if and only if CA™'B = D.

Proof.  The inequality is an immediate consequence of (4) and the remark fol-
lowing it. Now by passing to associates, which leaves the inner rank unchanged,
we have

I A'B 1 A'B 1 0
M — — ) — 1 .
C D 0 D—CA'B 0 D—CA'B

If oM = s, so that s > r, this matrix can be written

PO = (P/>(Q’ 0"

- P// ’
where P' is r x s and Q' is s x r. Thus I = P'Q’; if r =5, then Q'P' =
I, by weak finiteness, but P’Q” =0, so Q” = 0; similarly P” =0 and so
D —CA™'B = P"Q” = 0. The converse is clear. [ |

‘We also note the following restatement of Theorem 3.5 in terms of matrices:

Proposition 5.4.7. Let A be a regular matrix of inner rank r over a fir R. Then
there is a factorization

A=PAy0,

where Ay € R, isfull, Pisright prime and Q is left prime. Moreover,if A = P’'Q’
is any rank factorization of A, then P’ = PU, Q' =V Q, Ao = UV, for some
matrices U,V € R,.

Proof.  This is a straightforward translation, which may be left to the reader.
|

Sometimes it is possible to describe the inner rank in terms of full matrices
alone. This will be useful for us later; we shall need the following lemma:

Lemma 5.4.8. Let R be any ring.

(i) Given a matrix A over R, suppose that A is left full but does not remain left
full when the first column is omitted. Then there is a factorization

1 0
ol )

where B is (square) full and C is left full, with one less row and column
than A.

(ii) If every full matrix over R is regular, then every left full matrix is left regular
and every right full matrix is right regular
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Proof. (i) Let A be m x n and write A = (a, A"), where ais m x 1, A’ is
m x (n — 1) and A’ is not left full. Then we can write A’ = DC, where D is
mx (m—1)and Cis (m — 1) x (n — 1); now

A=@ A)=(@ D)<(1) g)

is the desired factorization. Clearly if B = (a, D) is not full or C is not left full,
then A cannot be left full.

(i) Let A € "R" be left full; we shall use induction on n. If A remains left
full when the first column is omitted, the result follows by induction. Otherwise,
by (i), there is a factorization A = B(1 @ C), where B is full and C is left full.
Suppose that xA = 0 for some row x. Then xB(1 @& C) =0, hence xB =0,
again by induction, and so x = 0, as claimed. Similarly every right full matrix
is right regular. u

Theorem 5.4.9. Let R be a ring such that the set of all full matrices over R is
closed under products (where defined) and diagonal sums. Then the inner rank
of a matrix over R is the maximum of the orders of its full submatrices.

Proof. 'We may take R to be non-zero, since otherwise there is nothing to prove.
Let A be an m x n matrix of inner rank r, with a rank factorization A = BC.
We shall show by induction on m + n that A has a full » x r submatrix (clearly
the largest possible). Since the product of two full matrices, where defined, is
again full, by assumption, we need only show that B and C each have a full
r X r submatrix, and by symmetry it suffices to consider C. Now C is left full;
if it remains left full when the first column is omitted, then by induction the
truncated matrix, hence C itself, has a full » x r submatrix. So we may assume
that C does not remain full when the first column is omitted. By Lemma 4.8
(i) there is a factorization C = D(1 @ E), where D is full and E is left full. By
the induction hypothesis E has a full (r — 1) x (r — 1) submatrix, and since the
full matrices admit diagonal sums, 1 @ E has a full » x r submatrix, and its
product with D is the desired full » x r submatrix of C. ]

A ring homomorphism is said to be honest if it keeps full matrices full. With
this definition we have

Corollary 5.4.10. Every honest homomorphism of a ring into a field preserves
the inner rank.

Proof. Thehypothesis ensures that the class of all full matrices over R is closed
under products and diagonal sums; moreover, anon-full matrix necessarily maps
to a non-full matrix, so the result follows by applying Theorem 4.9. [ ]
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There is a criterion for projective-freeness in terms of full matrices that is
often useful:

Proposition 5.4.11. Let R be a non-zero ring such that every full matrix over
R is regular. Then R is projective-free.

Proof.  The conclusion will follow by Proposition 0.4.7 if we can show that R
has IBN and that all idempotent matrices split. Let £ be an idempotent matrix
over R and take a rank factorization E = AB. Since this is a rank factorization,
A is right full and B is left full. By hypothesis (and Lemma 4.8) it follows that
A is right regular and B is left regular. Now E is idempotent, so ABAB = AB;
cancelling A on the left and B on the right, we obtain BA = I, which shows
that E splits.

It remains to show that R has IBN. If this is not so, suppose that R" = R"*
and that # is the least value for which this is true for some £ > 0. Then there is
ann x (n + k) matrix P and an (n + k) x n matrix Q that are mutually inverse.

Let us write
X
P=U V), Q_(Y>’

where U, Xaren x n,Visn x kandYisk x n.Thus XU =1,YV =1, XV =
0, YU = 0; therefore U is not full. We take a rank factorization U = AB, where
Aisn xr,Bisr x nandr < n.Wehave XAB = XU =1,, BXAB = B,and
cancelling B on the right, we find BX A = I,. It follows that R” = R”, which
contradicts the hypothesis on #; hence R has IBN and so is projective-free. W

The converse of Proposition 4.11 is false, as an example in Section 5.5 will
show. However, the hypothesis is satisfied for all semifirs, as we saw in Section
3.1.

Exercises 5.4

1. Let R be any ring with a field of fractions K (i.e. a field containing R as a subring
and generated by R as a field). Define the K-rank rkx M of any right R-module K
as the dimension over K of M ® K. If R is a left Ore domain with field of fractions
K and M is a finitely generated right K-module, show that tkx M = rkx M*, and
that rkx M is the maximum length of chains of closed submodules in M.

2. (Klein [72a]) Let n > 1 and let R be a ring such that any chain of closed sub-
modules of R" has length at most n; show that any nilpotent n X n matrix A
over R satisfies A” = 0. If R is an integral domain, prove the converse (see also
Proposition 2.3.16).
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9*.

10°.

11.
12.

13.

14.

15.
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Let R be a ring such that R = ) | x;R; show that (x1, ..., x,) generates a direct
summand of R" and hence a closed submodule that is free of rank 1.

. Let R be a non-zero ring. Show that there is a universal bound for the inner rank

of matrices over R if and only if R does not satisfy UGN.

(Bergman [67]) Let R be an integral domain and x, y two right linearly independent
elements of R. Show that each of (x, y, 1), (0, 0, 1) generates a closed submodule
of R?, but their sum is dense in R*. Show that if R is any non-Ore 3-fir, then the
lattice of closed submodules of R? is not modular.

(Bergman [67]) Given rings R € S and an R-module M, a submodule M’ is said
to be S-closed if it is the zero-set of a family of maps M — S; thus ‘R-closed’ is
the same as ‘closed’. Show that every closed submodule of M is S-closed. If R is a
right Ore domain and X its field of fractions, show that every K-closed submodule
of a finitely generated left R-module is closed; further, if M is a finitely generated
right R-module, show that there is a natural bijection between the set of K-closed
submodules of M and the K-submodules of M ® K. Deduce that if R is a left and
right Ore domain with field of fractions K and M is a finitely generated right R-
module, then the lattice of closed submodules of M is isomorphic to Latx (M ® K),
and hence is modular.

Let R be a semifir and M a left R-module with generators ey, . .., e, and defining
relations ) a,;¢; = 0, where A = (a,;) is a given matrix. Show that M is bound
if and only if p.(A) = n. When R = k(x, y), give an example of a bound module
with positive characteristic.

Show that a ring R is projective-free if and only if, for any n x n idempotent
matrix E of inner rank r, p(I — E) < n — r. Show also that a non-zero ring R is
Hermite if and only if, for any A € "R", B € "R" such that AB is invertible, and
any C € "R™, AC = 0 implies pC <n —r.

Give a proof of Proposition 4.11 by proving directly that every finitely generated
projective module is free, of unique rank. (Hint: Use Lemma 0.3.3).

Give an example of a projective-free ring that is not an integral domain. (This
would provide a counter-example to the converse of Proposition 4.11. For another
counter-example, see Section 5.5.)

Find all rings over which every full matrix is invertible.

Show that over a semifir any matrix stably associated to a full matrix is again
full.

Let R be an n-fir. If p (2)4 g) < n, show that p (3 B

also that if (A, B, C) is any matrix over R such that p(A, B) + p(A, C) < n, then
p(A, B,C) < p(A, B) + p(A, C) — p(A).

Let R be a left Ore domain. Show that any r x s matrix over R, where r > s,
annihilates a non-zero row. Defining the row rank, resp. column rank, of a matrix
as the maximum number of linearly independent rows, resp. columns, show that
over a two-sided Ore domain, the row and column ranks of an r X s matrix are
equal (their common value may be called the outer rank).

Show that a commutative integral domain for which the inner and outer ranks
coincide has the property: a|b;b, = a = aja,, where a; |b;. (Hint: Consider 2 x 2
matrices; rings with the stated property are called primal.)

C) > pA + pB. Show
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16. (McAdam and Rush [78]) Let R be a commutative integral domain with field of
fractions K. Show that the mapping R — K preserves the inner rank of 2 x 2
matrices if and only if the inverse of every finitely generated fractional ideal of
R is semicyclic (i.e. every finitely generated submodule is contained in a cyclic
module), or equivalently, R is primal.

17. Let f : R — S be a ring homomorphism and f, : R, — S, the induced homo-
morphism of matrix rings. Show that if f preserves the inner rank, then so does

fu-
18*. Let R be a fir that is not right principal and let a be a two-sided ideal whose rank
as right ideal is finite, equal to r > 1. If u = (u; ... u,) is a basis of a, verify that

themap p : R — R, defined by au = u.p(a) is a homomorphism. Show that this
map is never honest.

5.5 Sylvester domains

In Section 5.4 we saw that the various ranks defined there coincide for Bezout
domains and this raises the problem of determining the precise class of rings
for which this holds. Even in the commutative case this includes more than just
Bezout domains, since the ranks agree, for example, for the polynomial ring
k[x, y], as will follow from Corollary 5.5. However, it fails for k[x, y, z], as is
shown by the matrix

0 z =y
-z 0 x|, (1)
y —x 0

which is full, yet a (left and right) zero-divisor (see the remarks after (8) below
and Exercise 4).

In this section we shall introduce a class of rings, following Dicks and Sontag
[78], which in the commutative case gives a complete answer to these questions.
We begin by recalling part of Proposition 3.1.3, which we shall formulate as
follows:

Proposition 5.5.1. (Law of nullity) LetR be an n-firand P € "R", Q € "R*.
if
PO =0, (@)
then
pP +pQ <n. 3)

Proof. LetP = P’Aand Q = B(Q’ be rank factorizations for P, Q; then P’ is
right full and hence right regular, by Lemma 3.1.1. Similarly, Q' is left regular,
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and so (2) implies the full relation AB = 0. Hence by applying Proposition 3.1.3,
we obtain (3). [ |

This result suggests the following:

Definition. A non-zero ring R is called a Sylvester domain if for any P €
"R", O € "R* such that PQ = 0, it follows that pP 4+ pQ < n.

As an immediate consequence of this definition we obtain Sylvester’s law of
nullity for the inner rank:

Corollary 5.5.2. Let R be a Sylvester domain and A € "R", B € "R’. Then

PA+ pB <n+ p(AB). “)
Hence the product of two full matrices (of the same order) is full.

Proof. If AB = PQ is arank factorization, so that Q has p(AB) rows, then

B
A P =0,
( )(—Q>

hence by Proposition 5.1, since (A P) has n + p(AB) columns,
B
n+p(AB) > p(A P)+p <—Q> > pA+pB.
This proves (4) and now the last part clearly follows. [ ]

Taking n = r = s = 1, we see that there are no zero-divisors, so a Sylvester
domain is indeed an integral domain. By Proposition 5.1, every semifir is a
Sylvester domain, though again the converse does not hold. We begin by deriv-
ing some consequences of the law of nullity:

Lemma 5.5.3. Let R be a Sylvester domain. Then R is projective-free and for
any matrices A, B over R,

p(A® B)=pA+pB. 5)

Further, if A, B, C are any matrices over R with the same number of rows
and if p(A, B) = p(A,C) = pA, then

p(A B C)=pA. (6)

Proof.  The definition shows that every full matrix over R is regular, hence

R is projective-free, by Proposition 4.11. To prove (5) we have, by suitably
partitioning a rank factorization of A @ B,

A O P ,
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where P has the same number of rows as A and its number of columns is
p(A @ B). Since PQ’ = 0, we have by (3),

p(A®B)> pP +pQ > p(PQ)+ p(P'Q") = pA+ pB > p(A® B),

where the last step follows by (2) of Section 5.4, and this proves (5). To
establish (6) we partition rank factorizations of (A, B), (A, C) as (A, B) =
D(E,E"),(A,C) = F(G, G’); by hypothesis, A = DE = FG are also rank
factorizations of A. Thus the number of columns of (D, F) is 2p A and since

D F)(‘GE> —o,

we have, by (3),

—E
2pA = p(D F)+p( G > = pD + pG = p(DE) + p(FG)
= pA+ pA.

Thus equality holds throughout; in particular, pA = p(D, F'). Clearly, pA <
p(A, B, C), and since

(A B C)=(WD F)(g g g/>,

we have p(A, B,C) < p(D, F) = pA. |

We now come to a result providing a source of Sylvester domains that are
not semifirs:

Theorem 5.5.4. Let A be a commutative principal ideal domain and X any
set. Then A{X) is a Sylvester domain.

Proof.  Writing K for the field of fractions of A, we have a homomorphism
A(X) - K(X) and it will be enough to show that this map is inner rank pre-
serving, for then the law of nullity will hold in A(X).

To prove that the inner rank is preserved it suffices to show that every matrix
over A(X) is inert in K (X), and since K = UA[c™'], where ¢ ranges over A%,
we need only verify inertia for A[c~!](X). Writing ¢ as a product of atoms
and using induction, we need to show that every matrix over A(X) is inert in
A[p~'1(X), where p is an atom in A. We put S = A(X); p is a central atom
in S and S/pS = k(X), where k = A/pA is a field. Hence R = S/pS is a
fir, and it is a GE-ring, even an E-ring, by Theorem 2.4.4, so we can apply
the inertia lemma (Lemma 4.6.8) to conclude that every matrix of S is inert
in S[p~'1. [ |
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If in this theorem we take X = {x} and A = k[y], where k is a commutative
field, we find that A(X) = k[x, y], and we obtain

Corollary 5.5.5. The polynomial ring in two variables over any commutative
field is a Sylvester domain. [ ]

For three variables this is no longer true, as is shown by the fact that the matrix
in (1) is full, yet a zero-divisor (see the remarks after (8)). A source of Sylvester
domains is the result of Dicks and Sontag [78], which states that the coproduct of
any family of Sylvester domains over a skew field is again a Sylvester domain;
this is also a consequence of lemma 5.7.5 of SF. By applying this result to
Corollary 5.5 above we see that the k-algebra generated by xi, ..., x4 with
defining relations xjx; = xpx1, X3x4 = X4x3 is a Sylvester domain. As another
result of Dicks and Sontag [78], we have

Theorem 5.5.A. For any positive integers m, 1, n let R(m, r, n) be the k-algebra
on r(m + n) generators written as an m x r matrix X = (x;;) and anr x n
matrix Y = (yji) with defining relations in matrix form XY = 0. Then

(i) every full matrix over R(m, r, n) is left regular if and only if r > n,
(ii) every full matrix over R(m, r, n) is regular if and only if r > max(m, n),
(iii) R(m,r, n) is a Sylvester domain if and only if r > m + n. [ |

We omit the proof, which uses Bergman’s coproduct theorems, and merely
observe that the ring R(m,r, n) is an (r — 1)-fir, but not an r-fir, by a slight
modification of Theorem 2.11.2, or also SF, theorem 5.7.6.

In order to study Sylvester domains, we shall for a moment consider a
somewhat wider class: the rings whose full matrices are left regular. This is a
one-sided class; if we impose the corresponding right-hand condition as well,
by requiring full matrices to be regular, we obtain projective-free rings, by
Proposition 4.11, but this class is still larger than the class of Sylvester domains.
Some further definitions will be needed. For any ring R, an R-module will be
called spatial if for every n > 1, any set of n R-linearly dependent elements
lies in a submodule generated by n — 1 elements. An easy induction shows
that in a spatial module every finite subset is contained in a free submodule,
i.e. every spatial module is semifree; in particular, a spatial module is always
flat. We shall define the local rank of any R-module M as the least integer n
such that every finite subset of M lies in an n-generator submodule; of course
M may very well not have a local rank. To give an example, the rational field
Q as Z-module has local rank 1, while the real field R has no local rank, and
for a finitely generated Z-module the local rank is just the minimal generating
number.
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Theorem 5.5.6. In any ring R the following conditions are equivalent:

(a) every full matrix is left regular,

(b) every left full matrix is left regular,

(c) every flat left R-module is spatial,

(d) every free left R-module is spatial,

(e) the right annihilator of any non-zero m x n matrix has local rank < n,
(f) the right annihilator of any non-zero vector in R" has local rank < n.

When these conditions hold, then the kernel of any homomorphism between
spatial right R-modules is again spatial.

Proof.  We shall prove (a) = (b) = (¢) = (f) = (a) and (b) = (¢) = (d) =
(b). (a) = (b) follows as in the proof of Lemma 4.8 (ii). (b) = (e): Let A # 0
be an m x n matrix. Any finite set of columns in the right annihilator of A can
be written as a matrix B such that AB = 0. Now for any rank factorization
B = CD, D is left full and so is left regular by (b), hence AC = 0. Again by
(b), C is not left full, but it is right full, by definition, therefore it has at most
n — 1 columns. Now the columns of B = C D lie in the submodule of the right
annihilator of A generated by the columns of C, which shows that the right
annihilator of A has local rank at most n — 1.

(e) = (f) is clear, and (f) = (a): Let A be an n x n matrix and suppose that
XA =0 for some non-zero X € R". Then the columns of A lie in the right
annihilator of X, which by (f) has local rank less than n. Thus the columns of A
lie in an (n — 1)-generator submodule of "R, so A is not full.

(b) = (c). Let M be a flat left R-module and take any finite linearly dependent
subset of M, arranged as a column X € "M, say. By hypothesis there is a non-
zero A € R" such that AX = 0. Since M is flat, this comes from an R-relation,
say X = BY,where B € "R™,Y € "M and AB = 0. Thus B is not left regu-
lar and by (b) cannot be left full, say B = C D, where C € "R"~!, D "' R™.
Then X = BY = C(DY), so the components of X lie in the (n — 1)-generator
submodule of M generated by the entries of DY, and this shows M to be
spatial.

(¢c) = (d) is obvious, and (d) = (b) by the following chain of statements,
each of which implies the next. (1) Every free left R-module is spatial. (2) For
all m, n > 1, any set of m left R-linearly dependent elements of R” lies in an
(m — 1)-generator submodule. (3) For all m,n > 1, any m x n matrix that is
not left regular is the product of an m x (m — 1) by an (m — 1) x n matrix. (4)
Every matrix that is not left regular is not left full. (5) Every left full matrix is
left regular.
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Assume now that (a)—(f) hold and that « : M — N is a homomorphism
between spatial right R-modules. Any finite linearly dependent subset of
ker @ can be written as a row, say X € (ker «)”. We write X = Y A, where
Y e M",A e "R"™and A, Y are chosen so that » is minimal. Then A has inner
rank 7, i.e. it is left full and so left regular. Since M is spatial, we have r < m and
the elements of Y are linearly independent. Now «(Y) € N” and there is again
a factorization «(Y) = Z B, where the elements of Z are linearly independent,
thus Z is right regular. We have

O=aX)=aA)=a(Y)A =ZBA;

since Z is right regular and A is left regular, it follows that B = 0, so a(Y) = 0.
Hence Y € (ker «v)” and this shows ker « to be spatial. [ ]

Thus for the rings of this theorem, spatial, flat and semifree left modules are
the same. We note that the class of rings described here is wider than the class
of Sylvester domains, since (a) is satisfied in any Sylvester domain. Of course
the conclusions of Theorem 5.6 are not left-right symmetric, i.e. there exists a
ring R such that R satisfies the conditions but R° does not, and Theorem 5.A
provides examples of rings satisfying these conditions but not their left—right
duals. The relation with Sylvester domains is more closely described by

Corollary 5.5.7.  Every Sylvester domain has weak global dimension at most
2 and is projective-free, and every flat module is spatial, hence semifree.

Proof.  Over a Sylvester domain R, every full matrix is regular, so the con-
ditions of Theorem 5.6 and their left-right duals hold. It follows that every
flat R-module is spatial, hence semifree, and the kernel of any homomorphism
between flat modules is flat; hence w.gl.dim.R < 2. Further, R is projective-free
by Proposition 4.11. [ ]

It is not known whether conversely, the conditions of Theorem 5.6 (and
its left—right dual) will ensure that R is a Sylvester domain, but the ring will
be projective-free, by Proposition 4.11. If R is projective-free of weak global
dimension at most 1, and moreover right coherent, then every finitely generated
right ideal is finitely related and flat, hence projective, and so is free, of unique
rank. So we have

Corollary 5.5.8. Every projective-free ring that is right coherent of weak
global dimension at most 1 is a semifir. [ ]

For Ore domains there is a converse to Theorem 5.6 and Corollary 5.7. In
that case the class of rings described in Theorem 5.6 coincides with the class
of Sylvester domains.
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Theorem 5.5.9. For any two-sided Ore domain R with field of fractions K,
the following conditions are equivalent:

(a) R is a Sylvester domain,

(b) w.gl.dim.R < 2 and every flat R-module is semifree,
(c) the right annihilator of any matrix is semifree,

(d) the right annihilator of any row vector is semifree,
(e) every full matrix is left regular,

(f) the embedding R — K preserves the inner rank.

(a°)—(f°) The left—right duals (a)—(f).

Proof.  For any ring R we clearly have (a)=(b) = (¢) = (d).

(d) = (e) for any right Ore domain R with field of fractions K: Let
X € R", X # 0;iftherightannihilator N of X contains 7 left R-linearly indepen-
dent elements, then they are left K-linearly independent, but this is impossible
because X # 0. By (d), N is semifree, so it has local rank at most n — 1 and
now (e) follows by Theorem 5.6.

(e) = (f) for any left Ore domain R with field of fractions K: Any full matrix
over R is left regular over R and remains so over K, hence it has a left inverse
over K. By Corollary 4.10 the embedding R — K preserves the inner rank, so
(f) holds.

(f) = (a). Sylvester’s law of nullity holds in K, therefore it holds in R, so R
is a Sylvester domain. Now (a°)—(f°) follow by the evident symmetry of (a).

Let R be an Ore Sylvester domain. Then for any Ore subset S the localization
Ry is again Sylvester, by the same reasoning as for (e) = (f) above. Hence we
obtain

Corollary 5.5.10. The localization of any Ore Sylvester domain at an Ore set
is again a Sylvester domain. |

To illustrate the result of Theorem 5.9, let R be any ring and M a left R-
module, with a finite free resolution

i — B S RS R — M0,
where F; is free of rank #;. If the matrix representing «; can be written as
A = BC, @)

where B is right regular and C is left regular, then the rows of C generate the left
annihilator of & and are left R-linearly independent, hence ker « is then free
and so pd(M) < 2. Thus for any finitely generated module (over a Noetherian
ring, say) of homological dimension at least 3 we obtain a matrix A that cannot
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be expressed as in (7). For example, if R = k[x, y, z], where k is a commutative
field, then there is a minimal resolution for k£ (Koszul resolution)

0>R 2B RA R AR _ Lk, 8)

with presenting matrices

0 z =y X
Ap=x y z2), Ai=|-z O x|, Av=|y
y —x 0 z

If A; were not full, a minimal factorization as in (7) would allow us to replace
(8) by a shorter sequence, in contradiction to the fact that pd g k = 3. Thus
A is full, but clearly it is neither left nor right regular. Since k[x, y, z] is
projective-free (the Quillen—Suslin proof of Serre’s conjecture, that polynomial
rings over a field are projective-free see e.g. Lam [78]), this shows the converse
of Proposition 4.11 to be false.

Sometimes we shall want to consider the nullity condition used to define
Sylvester domains for infinite matrices; here the inner rank of a matrix with
infinitely many rows or columns (or both) is again defined in terms of rank fac-
torizations. Thus we consider the following condition. For all natural numbers
r, n and all sets I,

ifAe 'R",B e "R and AB =0, then pA + pB < n. )

Taking / finite, we see that any non-zero ring satisfying (9) is a Sylvester domain.
Moreover, if pB = t, say, we have arank factorization B = C D, where Cisn X
tand D ist x I. Applying (9) to the relation AC.D = 0 and remembering that
pD =t, we find that AC = 0. This shows R to be right coherent. Conversely,
if R is a right coherent Sylvester domain and AB = 0 as in (9), then B = CD,
where C is n x t, for some ¢, and AC = 0. Hence we have pA + pB < pA +
pC < n, which shows that (9) holds in R. We thus obtain

Proposition 5.5.11. The class of non-zero rings satisfying (9) consists of all
right coherent Sylvester domains. [ ]

In order to describe coherent Sylvester domains we shall need the following
characterization of rings of weak global dimension at most 2:

Lemma 5.5.12. A ring R has weak global dimension at most 2 if and only if
the dual of every finitely presented left R-module is flat.

Proof. Let M be a finitely presented left R-module, say

Fi -5 Fy— M —> 0, (10)
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where Fy, F| are free of finite rank. Then by dualizing we obtain the exact
sequence

0— M* — F; - Fr, (11)

for the dual M*. If w.gl.dim.R < 2, then M* is flat, as kernel of a*. Conversely,
if the condition of the lemma holds, then the right annihilator of every matrix
is flat. To reach the conclusion it suffices to show that any homomorphism
Fy — Fy of free right R-modules has a flat kernel K. Since flatness is a local
condition, it is enough to verify that any finite subset X of K lies in a flat
submodule of K. Now X lies in a finitely generated free submodule F| of F;
and the image of F| lies in a finitely generated free submodule F;j of F. Thus
the kernel of the map F| — Fy is the right annihilator of a matrix, hence it is
flat, and as a submodule of K containing X it has the requisite properties. W

Since any Sylvester domain has weak global dimension at most 2 (by Corol-
lary 5.7), the conditions of the next result hold in any right coherent Sylvester
domain.

Proposition 5.5.13. For any ring R the following conditions are equivalent:

(a) R is right coherent and has weak global dimension at most 2,

(b) the dual of every finitely presented left R-module is finitely generated pro-
jective,

(c) the dual of every right R-module is flat.

Proof. (a) & (b). R is right coherent if and only if the dual of every finitely
presented left R-module is finitely presented (see Appendix Theorem B.9).
Using Lemma 5.12, we see that (a) is equivalent to the dual of every finitely
presented left R-module being finitely presented and flat, hence projective, i.e.
(b).

(a) = (c). Here we shall use the characterization of right coherent rings as
rings for which the dual of every free right module is flat. For any right R-
module M there is a presentation (10), where Fy, F are free right R-modules.
Dualizing gives M* as the kernel of a homomorphism between flat modules
(as in (11)), hence M* is flat, because the weak global dimension is at most
2. Now (c) = (a) follows because coherence is clear from the characterization
just used, while the condition on the weak global dimension follows from the
left-right dual of Lemma 5.12. ]

By adding right coherence we obtain a consequence of Theorem 5.9.

Theorem 5.5.14. For any two-sided Ore domain R the following conditions
are equivalent:
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(a) R is a right coherent Sylvester domain,

(b) the dual of every right R-module is semifree,

(c) R is projective-free, w.gl.dim.R < 2 and R is right coherent,
(d) the dual of every finitely presented left R-module is free,

(e) the right annihilator of every matrix is free,

(f) the right annihilator of every row vector is free.

Proof.  (a) = (b). When (a) holds, R has weak global dimension at most 2, so
by Proposition 5.13 the dual of every right R-module is flat, and by Theorem
5.9, semifree.

(b) = (c) = (d) is clear from Proposition 5.13, and (d) = (e) = (f) follows
directly.

(f) = (a). If the right annihilator of every row vector is free, then R is a
Sylvester domain by Theorem 5.9, and it is right coherent, because over a right
Ore domain a free submodule of a free right module of finite rank again has
finite rank. [ ]

As for Corollary 5.10 we see that any localization of a right coherent Ore
Sylvester domain is again a right coherent Ore Sylvester domain.

Exercises 5.5

1. Show that, for any free group F and any commutative PID A, the group ring AF' is
a Sylvester domain.

2. Let R be a ring. Show that any non-zero matrix A € "R" has a right annihilator
that is free of rank < » and a left annihilator free of rank < m if and only if R is
left and right coherent and every full matrix is regular.

3. (Dicks and Sontag [78]) Show that every Sylvester domain of weak global dimen-
sion at most one is a semifir.

4. Give a direct proof that the matrix A; in (8) is full. (Hint: Examine the 2 x 2
submatrices of the factors in a rank factorization of A;.) Show also that A; @ x is
not full. Further, show that the result of multiplying the last column of A; by z is
not full.

5. In any Sylvester domain, prove Frobenius’ inequality: if AB and BC are defined,
then p(AB) + p(BC) < p(ABC) + pB. (Hint: Take rank factorizations B = FG
and ABC = P Q and consider the relation AF.GC — P.Q =0.)

6. LetR be aright coherent Sylvester domain and a a non-zero finitely generated right
ideal. Show that x(a) > 0; deduce that any negative right R-module is bound.

7°. Let R be a right coherent Sylvester domain. Which finitely generated right R-
modules of positive characteristic and homological dimension 1 can be embedded
as right ideals in R? Which can be embedded as submodules in free R-modules?

8. Show that the property of being a coherent Ore Sylvester domain is preserved by
localization.



300 Modules over firs and semifirs

9°. Let R be a Sylvester domain whose centre C is not a field and let k£ be the field
of fractions of C. What can be said about R ®¢ k£? Under what conditions is it a
semifir?

10. Show that if R is a persistent semifir, then R[x] is a Sylvester domain (see
Cohn [82c]). Show that any coherent Sylvester domain is a strictly positive
left module, i.e. x(a) > 0 for any finitely presented left ideal a of R (see
Cohn [82d]).

11*. Show that if R, S are semifirs, both k-algebras, their tensor product R ®; S need
not be a Sylvester domain (see Cohn [97a]).

12. Fill in the details of the following proof that every Sylvester domain has UGN. Let
I, = P Q be arank factorization, where Q has n — 1 rows. If P, denotes the first
n — 1 rows of P and Q, the last n — 1 columns of Q, show that Py, O, are full and
p(PyQ1) = n — 2; hence obtain a contradiction.

5.6 Pseudo-Sylvester domains

Sylvester domains share at least some of the good properties of semifirs, the
main one being that they have a universal field of fractions, to be described in
Chapter 7. It turns out that this property holds for an even wider class of rings,
the pseudo-Sylvester domains, whose definition resembles that of Sylvester
domains, but with the inner rank replaced by the stable rank, defined in Section
0.1. Moreover, these rings arise naturally in the study of localizations; we shall
therefore briefly discuss them here.

We recall that in any ring R the stable rank p* A of a matrix A, defined as the
limit of p(A @ I,,) — n, is finite precisely when R has UGN and it then satisfies
the inequality

0 <p*A < pA. (D
Further, when the stable rank exists in R, then
p*(A®L)=p*A+r, forallr >0, 2)
while
PFADTL)=p(A®]1,) forallsufficiently larger. 3)

Thus by taking the diagonal sum of A with a unit matrix of sufficiently high
order we can stabilize the rank, i.e. make the stable rank equal to the inner rank.
We shall call A stabilized if p*A = pA.

Definition. (i) An S-ring is a ring for which the stable rank is defined and
satisfies the law of nullity. (ii) A pseudo-Sylvester domain is a weakly finite
S-ring.
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We recall from Proposition 0.1.3 that every non-zero matrix over aring R has
positive stable rank if and only if R is weakly finite. Thus in a Sylvester domain
p*a = 1for any a # 0, and so the law of nullity shows that a pseudo-Sylvester
domain is indeed an integral domain. It also follows that every Sylvester domain
is a pseudo-Sylvester domain, as the terminology suggests. More precisely we
have

Proposition 5.6.1. A ring is a Sylvester domain if and only if it is an S-ring
and an Hermite ring.

Proof.  Any Sylvester domain is clearly an S-ring, and being projective-free
(Corollary 5.7), it is Hermite. Conversely, if R is an S-ring and Hermite, then
by Proposition 0.4.4 the stable rank exists and agrees with the inner rank, so
we have a Sylvester domain. [ ]

Since an Hermite ring is weakly finite, a Sylvester domain is certainly a
pseudo-Sylvester domain, but examples will soon show that the latter form a
wider class. We shall find that much of the theory of Sylvester domains has a
parallel for pseudo-Sylvester domains. We first note

Proposition 5.6.2. Over a pseudo-Sylvester domain every finitely generated
projective module is stably free.

Proof.  Let P be afinitely generated projective left R-module, defined as coker-
nel of the idempotent matrix £; then P @ R™ @ 0" is given by the cokernel of the
idempotent matrix F = E ¢ 0,, ® [,andwehave| - F =(1—-E)® L, ®0,.
By taking m, n large enough we can ensure that F and I — F are stabilized. If F
iS NXxN,pF =r,p0—F)=s,thenr+s <N. Let F=AB;,I-F =
A, B> be rank factorizations; then

I= (A, A (2) ,

and weak finiteness shows that N <7 + s, and A = (A}, A,), B = (B;, By)"
are mutually inverse; therefore BiA; = I and P & R™ is free. [ |

In order to describe pseudo-Sylvester domains more closely we shall prove
an analogue of Theorem 4.9, which requires the next lemma. Here a matrix A
is called stably left full if A @ 1, is left full for all » > 1; similarly for stably
right full. An n x n matrix A is called stably full if A @ 1, is full for all » > 0
or equivalently, p*A = n.

Lemma 5.6.3. Let R be a ring with UGN in which the product of stably full
matrices (Where defined) is stably full. Suppose that C is a stably left full r x n



302 Modules over firs and semifirs

matrix over R such that the matrix consisting of the last s columns, where
s <r <n, has stable rank s. Then C has a stably full r x r submatrix that
includes the last s columns.

Proof.  We shall use induction on n —s. When s = n, C is stably full and
there is nothing to prove, so we may assume that n > s. Let C = (Cy, C"),
where C; is the first column of C. If C’ is stably left full, then by the induction
hypothesis it has a submatrix with the desired property. Otherwise we can find
t > 1suchthat C’ @ I, is not left full, but of course, C & 1, is left full. Hence, by
Lemma 4.8, wehave C @1, = D(1 @ E), where D is stably full and E is stably
left full. Clearly the submatrix of E consisting of any subset of its columns has
stable rank at least equal to that of the corresponding submatrix of C @ I,; in
particular the submatrix consisting of the last s + ¢ columns is stably full. Now
Ehas(n—1)4+t columns and (n —1)+¢t)—(s+t)=n—s—1<n-—s,
so we can apply induction to find a stably full submatrix M of E of order
(n — 1) + ¢ that contains the last s 4 ¢ columns of E. Then 1 @ M is a stably
full submatrix of 1 @ E containing the last s + ¢ columns, so D(1 & M) is a
submatrix of columns of C @ I, containing the last s 4+ ¢ columns, and it is
stably full, by our hypothesis on products. If we omit the last # columns and the
corresponding rows (which after the removal of those columns consist of zeros),
we get a stably full submatrix of columns of C including the last s columns, as
required. |

We can now prove the analogue of Theorem 4.9.

Proposition 5.6.4. Let R be a ring with UGN in which the product of stably
full matrices over R (where defined) is stably full. Then the stable rank of a
matrix over R is the maximum of the orders of its stably full submatrices.

Proof. Let A be a matrix over R of stable rank r and suppose the rank is
stabilized by I; thus we can write A @ Iy = BC, where B is stably right full
and C is stably left full, both of rank r 4+ s. Now the matrices consisting of
the last s rows of B and the last s columns of C have stable rank s, because
their product is I;. By applying Lemma 6.3 to C and its left—right dual to B,
we get stably full submatrices consisting of » + s columns of C including the
last s columns and r + s rows of B including the last s rows. Their product is a
submatrix of A @ I of order r + s including I; by the hypothesis on products
its stable rank is 7 + s, soitis of the form N & I;, where N isanr x r submatrix
of A, which is of stable rank r, as required. |

We shall also need an analogue of Lemma 5.3.
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Lemma 5.6.5. Let R be an S-ring. Then

(i) for any matrices A, B over R, p*(A @ B) = p*A + p*B,
(ii) IfA, B, C have the same number of rows and p*(A, B) = p*(A,C) = p*A,
then

0 (ABC) = p*A.

Proof. (i) Write A’ = A& 1,,, B’ = B & 1,,, where m, n are chosen so large
that A’, B’, A’ @ B’ are all stabilized. Now the proof of Lemma 5.3 shows
that p(A’ @ B’) = pA’ + pB’, hence p*(A ® B) = p*A + p*B, as claimed.
Similarly, in (ii) we replace A by A’ = A @ I, with n chosen so large that
A, (A, B"), (A, C") are all stabilized, where B’ = (B, 0)T,C’ = (C,0)". =

By Proposition 6.2, over a pseudo-Sylvester domain every finitely generated
projective module is stably free; further, it can be shown that any pseudo-
Sylvester domain R satisfies w.gl.dim.R < 2, and for Ore domains this condition
is sufficient as well as necessary for R to be a pseudo-Sylvester domain (see
Cohn and Schofield [82]). Thus for any field D, even skew, the polynomial ring
Dlx, y] in two central indeterminates is a pseudo-Sylvester domain, likewise
the first Weyl algebra A (k) over any commutative field k. Neither of these rings
is a Sylvester domain, unless D is commutative.

Exercises 5.6

1. Prove Sylvester’s law of nullity for the stable rank in a pseudo-Sylvester domain,
in the form of Corollary 5.2.

2. Show that if for any matrix A over a ring R, p* A, defined as lim[p(A & 1,)) — n],
is not identically —oo, then it is non-negative and this is so precisely when R has
UGN.

3. Verify that the Weyl algebra A, (k) is a pseudo-Sylvester domain but not a Sylvester
domain.

4. Use Lemma 6.5 to show that I = {a € R|p*a < 0} is an ideal and use Proposition
0.1.3 to deduce that for any ring R, R/I is the maximal weakly finite homomorphic
image. Hence obtain another proof of Proposition 0.1.2.

5. Let R be the k-algebra generated by a, b with the defining relation ba = 1. Show
that R has UGN but is not weakly finite. Verify that p*(1 — ab) = 0.

6°. Does the law of nullity hold for the stable rank in the ring R of Exercise 5? (An
affirmative answer would provide an example of an S-ring that is not a pseudo-
Sylvester domain).

7. (G. M. Bergman) Suppose that R is a weakly semihereditary ring with UGN. Show
that R is (a) a Sylvester domain if and only if every finitely generated projective
R-module is free (hence if and only if R is a semifir); (b) a pseudo-Sylvester domain
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if and only if every finitely generated projective module is stably free; (c) an S-ring
if and only if for every finitely generated projective R-module P, there exists a
finitely generated R-module Q such that Q @& R" = R" for some n > 1, for which
P @ Q is stably free.

8°. (G. M. Bergman) Do the results of Exercise 7 (without the remark on semifirs in
(a)) hold under weaker conditions than being weakly semihereditary?

5.7 The factorization of matrices over semifirs

In Section 3.2 we described the factorization of full matrices over semifirs and
we saw there that with the appropriate finiteness assumptions matrix rings over
semifirs behave very much like UFDs. By contrast the factorization of non-
full or rectangular matrices is less well explored and no complete analogue of
Theorem 3.2.7 is known. We begin our study with a closer analysis of comaximal
relations.

Proposition 5.7.1. Let R be a ring with UGN. Given a comaximal relation
PO=0, Pe'R",Q¢e’"R’, (1)
we have
r+s<n 2)

and there exist an n x r matrix P' and an s x n matrix Q" such that

P , (1 0
(Q,>(P Q)—(0 1)’ (3)

Proof.  Since (1) is comaximal, there exist matrices Py, Q such that P P; =
I, 010 =1, putting P’ = P;, Q' = Q1 — Q1 P, P, we obtain (3), and now (2)
follows by UGN of R. ]

If the relation (1) is balanced, we have equality in (2), so that the matrices
on the left of (3) are square. If moreover, R is weakly finite, the matrices on the
left of (3) are mutually inverse. In this case we have

P'P+0Q0Q =1 )

If we take our relation in the form AB’ — BA’ = 0, this leads to the following
result:

Proposition 5.7.2. Let R be a weakly finite ring. In any balanced comaximal
relation

C = AB' = BA/, )
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C is a least common right multiple of A, B and a least common left multiple of
A, B'.

Proof.  Writing P = (A, B), Q = (—B’, A))T, we have a balanced comaxi-
mal relation of the form (1), hence by Proposition 7.1 there exist P’, Q' such that
(3) holds. Since the relation is balanced, we have r 4+ s = n, and by weak finite-
ness (4) now follows. Suppose now that PS = 0; then S = (P'P + QQ")S =
Q(Q’S).Henceif T is acommon right multiple of A and B,say AS; = BS, =T,
then PS = 0, where S = (—S1, S»), so S is indeed a right multiple of Q. The
rest follows by symmetry. [ ]

Suppose now that (1) is not balanced and assume further that R is an Hermite
ring. Then the matrices on the left of (3) can be completed to be mutually
inverse.

Proposition 5.7.3. Let R be an Hermite ring. Given a comaximal relation
C=AB'=BA', A€ 'R",Be'R" A€ "R*,B' € "R", (6)

if this is not balanced, then we can add columns to A’ and B’ to obtain a
comaximal relation, i.e. there exist A” € "R', B” € "R' ,C" € "R, where r +
s+t =m++ n, such that

(€ C"Y=A®B' B")=B(A A",

and the right-hand equation is a balanced comaximal relation. Dually, we can
add rows to A and B to obtain an (r + t) x s matrix with two factorizations
forming a balanced comaximal relation, or more generally, add t' rows to A, B
and t” columns (t' +t" =t)to A’, B’ to obtain an (r +t') x (s + t") matrix
with two factorizations forming a comaximal relation. [ ]

In asemifir any relation may be expressed in terms of acomaximal relation. In
order to do this we need a normal form for matrices in terms of the column rank
p.. We observe that the result gives nothing new when the given matrix is right
full, or more generally, right regular. We recall that an inessential modification of
aproduct AB is the replacement of A, Bby AU, U ' B, where U is an invertible
matrix; if in a factorization only inessential modifications are possible, it is
essentially unique.

Proposition 5.7.4. Let R be a semifir and A € "R™ a matrix of column rank
t. Thent < m and A may be written as

A=PA', whereP € 'R", A" € 'R", @)
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P is right regular and A’ is right invertible, and subject to these conditions this
factorization is essentially unique. Moreover, there is a balanced comaximal
relation

A/B// — 0’
where B" is left invertible, such that for any matrix B with m rows, AB = 0 if
and only if
B = B”C for some C. ()

Proof.  Given A as stated, we can find T € GL,,(R) such that AT has its first
t columns right linearly independent and the rest 0. By suitably partitioning 7,
we have

AT, T)=(P 0,

where P € 'R’ is right regular, and if T~! = (U, V)T, then A = (P, 0)T ! =
PU. Thus we obtain (7), and U is right invertible because UT; = L. If we also
have A = QW, where Q is right regular and W is right invertible, denote by
U’, W’ right inverses for U, W, then Q = PUW’ = PE, say; similarly P =
QWU’' = QF, hence P = QF = PEF, so EF =1 and similarly FE =1,
hence (7) is essentially unique.

Since A’ is right invertible, there exist A”, B/, B” such that (A’, A”)T and
(B’, B”) are square and mutually inverse. Hence A’B” = 0is a balanced comax-
imal relation. Moreover, if AB = 0,then PA’B = 0, hence A’B = 0, therefore
B = (B’,B")(A’, A”YYB = B"A"B, so that (8) holds with C = A”B. |

We can now prove the basic lemma for the analysis of relations in a semifir:
Lemma 5.7.5. Let R be a semifir. Given a relation
AB'=BA', A€ 'R",Be'R" A€ "R*,B € "R", ©)]
suppose that (A, B) has column rank t and (B, A" has row rank u. Then
t4+u<m-+n, (10)
and there exist P € "R', Ay € 'R™, By € 'R" such that P is right regular and
(A B)=P(A; Bj). (11)

Further, there is a balanced comaximal relation A|B; = B, A! , with A}, B}
depending only on A, B and not on A’, B’, such that B' = B{Q, A’ = A Q, for
some Q.

Proof.  This is an immediate consequence of Proposition 7.4, by writing (9)
as (A, B)(—B’, AT = 0, while (10) follows by the law of nullity. [ |
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We note that the assertion of Lemma 7.5 is asymmetric; the formulation of
the left-hand analogue is left to the reader.

In factorizing a rectangular matrix the role of an atom is taken over by
an unfactorable matrix; to define this concept we shall take a closer look at
factorizations.

Let R be a semifir as before. A factorization of a matrix C over R:

C = AB (12)

is said to be proper if A has no right inverse and B has no left inverse. Clearly
any matrix having a proper factorization cannot be invertible.

A factorization (12) is called regular if A is right and B is left regular. Such
a factorization is proper if and only if neither of A, B is a unit. For if A or B
is a unit, (12) is not proper. Conversely, if (12) is not proper, say A has a right
inverse: AA’ =1, then A(A’A — 1) = 0; since A is right regular, A’A = 1,50 A
has the inverse A’; similarly if B has a left inverse.

Given any factorization (12) of C over a semifir, we can always ensure by an
inessential modification that A becomes (A, 0), where A is right regular. If B
becomes (B, B,)T, then C = AB = A B,, where now A; has fewer columns
than A unless A itself was right regular. If we now repeat this operation on B
we obtain a regular factorization (12) of C. We note that the operations carried
out on A, namely multiplying on the right by an invertible matrix and omitting
some columns, do not affect the property of having a right inverse, while if B
has no left inverse, this remains true, so a proper factorization remains proper.
This shows the truth of

Proposition 5.7.6. Let R be a semifir and C any matrix over R. Then any
factorization (12) can, by an inessential modification and omitting some zero
columns of A and the corresponding rows of B, followed by an inessential
modification and omitting some zero rows of B and the corresponding columns
of A, be brought to the form of a regular factorization

C = AB,. (13)
Moreover, if (12) was proper, then so is (13). [ |

Definition. A matrix C over a ring R is said to be unfactorable if it is a regular
non-unit that cannot be written as a product of two regular non-units.

It is clear that this property is preserved by stable association. We also note
that since a one-sided unit is always a zero-divisor, an unfactorable matrix,
being regular, has neither a left nor a right inverse. By Proposition 7.6, over
a semifir R a matrix C is unfactorable if it is a regular non-unit and in any
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factorization C = AB, either A has a right inverse or B has a left inverse, i.e.
C has no proper factorization. Moreover, given any matrix C over a semifir R,
we can always find a left invertible matrix P, a right invertible matrix Q and a
regular matrix C such that

C=PCoQ,

by applying Proposition 7.4 and its left-right dual. It is easily seen that a finitely
presented module over a semifir is minimal bound if and only if its matrix is
unfactorable.

We can now prove a refinement of the analysis of relations in Lemma 7.5,
for use with unfactorable matrices.

Lemma 5.7.7. Let R be a semifir and C a regular matrix over R. Given two
factorizations of C:

C = AB' = BA/, (14)

where A is unfactorable and BA' is a proper factorization, either there is a
balanced comaximal relation

AB; = BA,, whereA' =A,0,B =B,0, (15)

or after inessential modifications and omitting the zero rows of A’ and the
corresponding columns of B, there is a matrix U suchthat B = AU, B’ = UA'.

Proof. ByLemma7.5wehave (A, B) = P(Ay, By), (B', A)T = (B;, A))"Q
and AgB; = BpA; is balanced comaximal. Now because A is unfactorable,
either P is right invertible; then so is (A, B), because (Ag, By) is right invertible,
and we have a balanced comaximal relation AB; = B A, or Ay is leftinvertible.
In the latter case, by an inessential modification on the left of (14) we can take
A= P(I,0)7, hence P = (A, P’) for some P’, and by an inessential modifica-
tion on the right of (14), and omitting zero rows of A" and the corresponding
columns of B, we ensure that A’ is left regular. Writing By = (U, V)T, with a
partition corresponding to that of P, we have B = PBy = AU + P’V , hence
AB' = BA'= (AU 4+ P'V)A’, ie. ABB'—UA’)— P'VA" =0. By Lemma
7.5, P = (A, P’) is right regular, hence B = UA’, VA’ = 0. Since A’ is left
regular, V = 0and so B = PBy = AU as claimed. |

Corollary 5.7.8. Ifin (14) of Lemma 7.7 both factorizations are proper and
A, B are both unfactorable, then either (15) holds or we may take U to be a unit,
so that A, B are right associated. Thus either we have a balanced comaximal
relation AB; = BA|, where A’ = A Q, B’ = B, Q for some matrix Q or AB’
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and BA' can be reduced to the same form by inessential modification and

omitting zero rows of the right-hand factor and the corresponding columns
from the left-hand factor.

Proof. In this case, if there is no balanced comaximal relation (15), we have
B =AU, A =BT,hence A= BT = AUT andAisrightregular,henceUT =
I; similarly TU = I and so U is invertible. [ ]

We saw in Section 3.1 that a comaximal relation (1) is balanced if and only
if A and A" have the same index, and by Proposition 0.5.6, in any weakly finite
ring two matrices A, A’ are stably associated if and only if they occur in a
balanced comaximal relation (1). If the product AB’ occurs in a factorization
and we replace it by BA’, related to AB’ by a balanced comaximal relation
(1), we shall call this change a comaximal transposition. 1t is clear that for full
(square) matrices this reduces to the definition given in Section 3.2.

Let C be a regular matrix over a semifir R and consider a factorization

C=A1A...A. (16)

By inessential modification and omitting zero rows or columns and the corre-
sponding columns or rows from the other factor we may assume that Ay, ..., A,
are regular. If any A; is a unit, we combine it with either of its neighbours; thus
we may assume that all the A; are regular non-units. Any such factorization
of C corresponds to a chain of submodules with bound quotients; when R is a
fir, both chain conditions hold for such chains, by Theorem 2.3; hence there is
always a maximal refinement of such a chain. In terms of the factorization (16)
this means that the A; are unfactorable, since a matrix is unfactorable precisely
if the module defined by it is minimal bound. Thus we have

Theorem 5.7.9. Over a fir, any regular matrix has a factorization into unfac-
torable matrices. More generally, any factorization into regular non-units can
be refined to a factorization into unfactorable matrices. [ ]

This proves the existence of complete factorizations. In order to compare
two factorizations of a given matrix we apply Lemma 7.5; here a numerical
condition on the size of the matrices is needed, which unfortunately does not
always hold:

Lemma 5.7.10. Let R be a semifir and C a regular matrix over R which has
two factorizations:

C = AB' = BA/, (17)
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such that one of the following four equivalent conditions is fulfilled:

i(A) +i(B) =i(C), (18)
i(C) < i(A) +i(B"), 19)
i(A) < i(AD, (20)
i(B) < i(B"). 21

Then either A, B have a common left factor that is not right invertible, or A’,
B’ have a common right factor that is not left invertible, or (17) is a comaximal
transposition, in which case equality holds in (18)—(21).

Proof.  The equivalence of (18)—(21) is easily verified, using the fact that
i(A)+i(B)=i(C)=1i(B)+i(A"). Moreover, when (17) is comaximal, then
i(A)+i(B) = i(C), so in that case (18) is just the condition for (17) to be
balanced.

Suppose now that no common left or right factor exists in (17). Let C be
m x n and let (A, B) have column rank ¢. By Lemma 7.5 there exists P € "R’,
such that P is right regular and a common left factor of A and B. By hypothesis,
P Q =1 for some Q; thus P is right regular right invertible, hence a unit, and
so may be absorbed in A, B. By Lemma 7.5 there is now a balanced comaximal
relation AB; = BA; and A’ = A, Q, B’ = B Q for some Q. Further, i(Q) =
i(AB") —i(ABy) = i(C) — i(A) — i(B) > 0 by (18). By hypothesis, QO has a
left inverse, so by weak finiteness it is square and hence a unit. It follows that
(17) is indeed a comaximal transposition. [ |

This result suggests that we can compare two factorizations of C provided
that the left-hand factors are not too ‘skew’, i.e. they do not both have a large
index. As a typical example where a comparison is impossible (owing to the fail-
ure of (18)), consider the free k-algebra on eight generators a, b, ¢, d, p, q,r, s
and write X = (a Z) Y = (p q). Then by taking the first row of the

c ros
comaximal relation X.(I+ Y X) = (XY + I).X, we obtain the unbalanced rela-
tion
1 b+qd
(a b)( + pa +qc pb+q

a b
ra+ sc l+r‘b+sd>_(l+ap+br aq—}—bs)(c d>'

Exercises 5.7

1. Let AB’ = BA’ be a comaximal relation over a ring with UGN. Show that
i(A) <i(A),i(B") <i(B),i(A)+i(B") <i(AB’) < (A) + i(B), withequality in
one place (and hence in all) if and only if the relation is balanced.
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2. LetR be the n x n matrix ring over a 2n-fir and let a, b be elements of R with a full
common right multiple. Show that aR N bR and aR + bR are both principal.

3. Show that an unfactorable n x n matrix over any ring R is an atom in R,,. Does the
converse hold? Does it hold when R is commutative?

4. Prove the assertion made before Lemma 7.7, that a matrix over a semifir is unfac-
torable if and only if the module defined by it is minimal bound. Deduce that every
minimal bound module over a semifir is strictly positive.

5. Let R be a semifir and A € ™ R" an unfactorable matrix; show that the submodule
of R" generated by the rows of A is a direct summand of every finitely generated
proper submodule of R”" containing it. Does the converse hold?

6. Let A be an invertible matrix over a semifir and consider a block decomposition
A= (A, A”, A”)T with the corresponding decomposition A~! = (B, B”, B"). If
A’'B" =0, then A”B"” = A”B” is a comaximal relation, but not balanced, unless
A’, B” were vacuous.

7°. Develop a theory of unique factorization rings that allows for the factorization of
zero-divisors, taking e.g. the factorization of matrices over a principal ideal domain
as a model (see Section 1.3).

5.8 A normal form for matrices over a free algebra

In the polynomial ring k[x] over a commutative field k it is easy to write
down a normal form for polynomials under association: each non-zero poly-
nomial is associated to precisely one monic polynomial. In the free k-algebra
of rank greater than 1 the polynomials have a more complicated form, but
now it is more natural to permit matrices as well and ask for a normal form
under stable association. In particular, this allows us to take the matrix to be
linear in the variables. This is the process of ‘linearization by enlargement’,
also called Higman'’s trick (see Higman [40]). As a typical case let us take the
(m, n)-entry of an m x n matrix. If this has the form f + ab, then by taking
the diagonal sum with 1 and applying elementary transformations, we obtain

successively
f4+ab 0O f+ab a f a
< o )7 U o )7\ 1)

where only the last two entries of the last two rows are shown. By repeated
application this allows us to reduce any matrix over k(X) to one in which the
elements of X occur to at most the first degree. Such a matrix is called /inear;
taking X = {xy, ..., x4} for simplicity, we see that every linear m x n matrix
has the form

A=Ac+) T Axi. where Ao, A; € "k, (1
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A matrix is called right monic if it is linear of the form (1), where Ay, ..., Ay
are right comaximal (i.e. (A, ..., Ay) has a right inverse); a left monic matrix
is defined similarly and a monic matrix is one that is left and right monic. Thus
any (left or right) monic matrix is necessarily linear. Monic matrices have the
following good property:

Lemma 5.8.1. Let A be a right monic matrix over k(X). Then the homoge-
neous component of degree 1 in A is left regular; in particular, A is left regular
but not a unit.

Proof. Supposethat A = Ag+ > A;x;and Y CA;x; = 0;then ) C*A;x; =
0, where C* is the sum of the terms of highest degree in C. Equating left cofactors
of x; we obtain C*A; = 0,50 C*(Ay, ..., Ay) = 0and therefore C* = 0, since
the A; are right comaximal. This shows A = > A;x; to be left regular; it
follows that A itself is left regular but not a unit, for if CA = 0 or I, then
C*A* =0,hence C* =0andso C = 0. ]

On the other hand, it is not enough to assume Ag, Ay, ..., Ag to be right
comaximal, as the example (1, x; )T shows, which is left annihilated by (x1, —1).
The next result represents the weak algorithm for matrices:

Lemma 5.8.2. Let A be left monic and B right monic over R = k(X).If P, Q
are any matrices over R such that

PB = AQ, 2)
then there exists a matrix C over R such that
P=AC+P,, Q=CB-+Q,, 3)
where Py, Q¢ are matrices over k.

Proof. Letus write A = Ao+ >_ A;x;, B = By + Y_ B;x; and again denote
the matrix of highest terms in any matrix T by T*. On equating the highest
terms in (2), we obtain

ZP}"B,‘X,' = ZA,‘X,‘Q)\. (4)

By Lemma 8.1, B* is left regular and A” is right regular; hence P and Q have
the same degree. If deg Q = 0, then deg P = 0, so then there is nothing to
prove. We may therefore assume that deg Q > 1 and write Q* =Y Q;x;,
where Q; is over R. Equating left cofactors of x; in (4), we find P*B; = A*Q;,
hence

P*(By,...,By) = AYO., ..., 04).
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Let D be a right inverse of (B, ..., By); then D is over k. We put C =
(01, ..., 04D and obtain

P* = P*(By,..., By)D = A*C. )
Now by (2) we have
(P —AC)B = A(Q — CB).

This is an equation of the same form as (2), but P — AC has lower degree than
P, by (5) and deg (Q — CB) < deg(Q), so the result follows by induction on
the degree of Q. [ ]

We can now establish the existence of a normal form for matrices over k(X ).

Theorem 5.8.3. Let R = k(X) be afree k-algebra. Any matrix over R is stably
associated to a matrix A ® 0, where A is monic (and 0 need not be square).
In particular, any (left) regular matrix is stably associated to a (right) monic
matrix. Moreover, if A ® 0, A’ ® 0 are two matrices that are stably associated
and such that A, A" are monic, then the number of rows of A, A" agree, as
do those of A ® 0, A’ ® 0, likewise for the columns and there exist invertible
matrices P, Q over k such that PA' = AQ.

Proof. By the linearization process described earlier we reach a linear matrix,
which can be chosen so as to have the form A @ 0, where A has the linear form (1)
and is m x n, with m, n minimal. We claim that A is monic. Forif (A, ..., Ay)
has no right inverse say, then this m x nd matrix over k has rank less than m
and so by elementary row operations the last row can be reduced to 0. If now
the last row of Ay is also 0, we can reduce m by 1, contradicting the minimality
(this amounts to writing A as B @ N, where N is the 1 x 0 matrix). So the last
row of Ay is not 0, and by column operations over k and further row operations
over R we find that A is associated to A’ @ I, where A’ is again linear. So A
is stably associated to A’, but this again contradicts the minimality of m + n.
Hence A is right monic; by symmetry it is also left monic. Thus the existence
of the form (1) is established. If the original matrix was left regular, then so is
A & 0 and it follows that 0 is a matrix of O rows, so A & 0 is right monic. We
remark that if A is invertible, it is stably associated to the (0 x 0) null matrix.

Suppose now that A and A’ are both monic and A ® 0, A’ @ 0 are stably
associated; then F @ 0 and F’ @ O are associated, where F = A 1., F' =
A’ @ I, for suitable r and s. Thus there exist invertible matrices U, V over R
such that for appropriate partitioning

Ui U\ (F 0\ _(F 0\ (Vi W ©
v usJ\o o) \o o/\vs vi)
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It follows that Us F = 0 = F’V,.Now A, A’ are regular, hence so are F, F’ and
therefore Us =0 = V,.LetFbem x n, F'm’ x n"and F @ 0, F' @ Obotht x
u.ThenUist x t, Usis(t — m’) x m,sobyProposition3.1.2,t —m' +m < ¢,
ie.m < m'.Similarly Visu x uand V,isn’ x (u — n),son’ +u —n < u,and
hence n’ < n. By symmetry, i.e. multiplying both sides of (6) by U ~! on the left
and V! on the right, we have m’ < m, n < n’ and so F, F’ are both m x n. It
follows that Uy, Uy, V1, V4 are all square and so are invertible, since this is true
of U, V. Moreover U F = F'Vy, so F, F’ are associated and A, A’ are stably
associated. We thus have a comaximal relation AB’ = BA’, by Proposition
0.5.7. Hence there exist matrices C, D, C’, D’ over R such that

A B D" —B’
(C D) and (—C’ A ) (7
are mutually inverse. Further, by Lemma 8.2 there exists P such that

B=AP+B,, B =PA +B),

s . I —-P
where By, By are over k. Hence on multiplying the matrices (7) by ( 0 I )

. I P . . .
on the right and ( 0 1 ) on the left, respectively, we obtain a pair of mutually

A B, D, -B,
(C Dl) and (—C’ A’)'

We also have A’C = C’A, so by another application of Lemma 8.2 we obtain
a pair of inverse matrices

A By D, —B!
d 2 0
<C 0 Dz) o (—C o A > ’

where Cy, C 6 are over k. Thus we have the equation

inverse matrices

AD) — ByC) =1.

Equating highest terms we find }_ A;x;(D,")* = 0. By Lemma 8.2, A* is right
regular; we conclude that (D5)* = 0, hence D = 0 and so —BoC{, = 1. Thus
By has a right inverse over k and by symmetry B has a left inverse. Hence
i(B) > 0> i(B'); since A, A are stably associated, they have the same index,
hence so do B, B’ and therefore i(By) = i(B() = 0. It follows that By, B|, are
invertible over k and we have AB{ = BoA’, as claimed. [ |

The uniqueness result proved here should be compared with the assertion of
Proposition 0.6.5. The proof of Theorem 8.3 shows that once we have reached
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a linear form for our matrix, if the latter is left regular, we can achieve a right
monic form by elementary column operations over k and row operations over
R, and similarly on the other side. Thus we have

Corollary 5.8.4. IfAisaleft regular linear matrix over R = k(X), then there
exist invertible matrices P over R and U over k such that PAU = B @ I, where
B isright monic. Here the coefficients of P, U can be chosen to lie in the subfield
of k generated by the coefficients of A. [ ]

We can now give the extension of Proposition 4.6.12 promised in Section
4.6 by proving that the eigenring of a regular matrix over a free k-algebra is
finite-dimensional over k. Equivalently, we shall show that the endomorphism
ring of a finitely presented bound module is finite-dimensional; this will appear
as consequence of a more general result:

Theorem 5.8.5. Let R = k(X) be afree k-algebra and let M, N be finitely pre-
sented R-modules of which M is bound. Then Homg (M, N) is finite-dimensional
over k.

Proof.  As in Proposition 4.6.12 we may take R to be of finite rank. Let M,
N be left R-modules with defining matrices A, B, where A may be taken to be
monic, by Theorem 8.3, and A is regular (because M is bound), while B is left
regular right monic. A homomorphism f : M — N corresponds to a pair of
matrices P, Q such that

AQ = PB, 3

and conversely, such a pair of matrices defines a homomorphism, while
P, Q and P’, Q' define the same homomorphism if and only if P — P’ =
AC, Q — Q' = CB (see Section 0.6). By Lemma 8.2, if (8) holds, we can
write Q = CB + Qq, P = AC + Py, where Py, Q¢ are over k. Thus the given
homomorphism may be represented by Py, Q. But the space of these matrices
is a finite-dimensional k-space, hence Homg(M, N) is finite-dimensional, as
claimed. [ ]

To obtain an estimate for the dimension, let Abe m x nand B r x s. As we
saw in Section 0.6, we have

Homg(M, N) = I(A, B)/b, ©)

where I(A, B) = {Q € "R*|AQ = PB for some P € "R"} and b is the left
R-module spanned by the rows of B. Now Theorem 8.5 shows that

bSI(A,B)Sb+"%;
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hence
I(A,B)/b C (b+"k%)/b ="k /("k* N b),
and so
dim Homz(M, N) < dim"k* = ns. (10)

‘We also note that the condition that M be bound cannot be omitted, since for
example, Homg (R, N) = N, but a finitely presented module, even bound, need
not be finite-dimensional over k. For example, if R = k(x, y), then R/Rx is
bound but has the k-basis 1, y, xy, xzy, e

Taking N = M in Theorem 8.5, we obtain the desired generalization of
Proposition 4.6.12:

Corollary 5.8.6. Let M be a finitely presented bound module over R = k(X).
Then Endg (M) is finite-dimensional over k. |

The monic normal form can also be used to describe factorizations of full
matrices over k(X ). First we need a bound on the degree of the factors, where
the degree of a matrix P = (p;;) is defined as d(P) = max{d(p;;)}.

Lemma 5.8.7. Let R = k(X) be the free k-algebra on X = {x, ..., x4} and
let C be an m x n matrix over R with a rank factorization

C = AB. (11)
Then there is an invertible matrix P such that d(AP) < d(C), d(P~'B) < d(C).

Proof.  Consider the free k-algebra S on xi, ..., X4, Y1, -« Yms Z1s - - s Zn}
there is an embedding of R in S, defined by x; > x;, which is honest, since
R is a retract of S. We extend the degree on R to S by putting d(y;) =
d(z;) = 1.

In S we have, on writing y = (y1,..., ).z =(21,...,2,) ,yCz =
(yA)(Bz). Since (11) is a rank factorization, A is right regular and B is left
regular, therefore, by Corollary 2.4.5 there is an invertible matrix P such that
on writing AP = (aj;), P~'B = (b};), we have

d (Z y,—a&) +d (Z b’,ﬂk) <d (yicijzj), (12)

where C = (¢;;). If we denote by «; the degree of the jth column of A’ and by 8;
the degree of the jthrow of B’, then (12) becomesa; + 1+ 8; +1 < d(C) + 2,
hence «; < d(C), and taking the maximum over j, we find that d(A") < d(C);
similarly d(B’) < d(C). [ |
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We remark that if in this lemma C is full, then any factorization into square
matrices is a rank factorization. We can now describe the possible factorizations
of a full linear matrix over k(X).

Theorem 5.8.8. Let R = k(X) and let C € R,, be a monic matrix that is full.
Then C is not an atom if and only if either n =0 or n > 1 and there exist
P,QeGL,(k)andr,s > 0 such thatr +s = n and

A 0

P = A€eR,,BeR;,De’R". 1
CQ (D B)’ € T € AR € ( 3)

Proof.  If (13) holds, then

rea=(2 (5 O 5)

and A, B are again monic, hence (by Lemma 8.1) not invertible. We therefore
have a non-trivial factorization of PCQ and hence of C.

Suppose conversely that C = F G is a factorization of C. Any square factor
of C is again full, and if it is a non-unit, its degree is positive; moreover, by
Lemma 8.7 we may take F' to be of degree 1. Being full, F' is regular, so by
Corollary 8.4 there exist P € GL,(k),U € GL,(R)suchthat PFU = A& 1,
where A is monic r X r; since F is a non-unit, we have r > 0 and since G is a

A O G’
-3 9(0)

Now PC is linear, hence G” is linear and G’ has degree 0, again by the regularity
of A* (Lemma 8.1). Further, G’ has r rows and since each factor in (14) is full,
G’ has rank r, so there exists Q € GL,(k) such that G'Q = (I,, 0). It follows

that
A O\/I 0 A 0
PCQ:(O 1)(1) B):<D B)’

and this is of the required form. [ ]

non-unit, » < n. Hence

This result also provides a bound on the length of factorizations in terms
of n. We remark that if in a linear matrix A the cofactor of some x; is the unit
matrix, then A is monic, by definition; it is also full, for if I is the cofactor
of xy, say and we specialize x», ..., x4 to 0, A becomes Ag + Lx;. If we now
specialize x; to an element of k(¢), an infinite field containing &, which is not
an eigenvalue of — A, we obtain a non-singular matrix, hence A was full. For
such a matrix the criterion of Theorem 8.8 takes the following form:
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Corollary 5.8.9. Let R = k(X) andlet A = Ay + Y _ A;x; be alinear n x n
matrix over R such that A; = I for some i > 0. Then A is an atom if and only
if Ay, ..., Ag actirreducibly on k".

Proof. Clearly A is monic and full, so by Theorem 8.8 it is not an atom if and
only if there exist P, O € G L, (k) such that

B; 0
PA;Q = ! i =0,1,...,d. 1
IQ <Dl Cl> ’ l 05 ’ k] d ( 5)
By hypothesis A; = I for some i > 0, so in particular PQ has the block rectan-
gular form (15), and hence so does PA;P~ ' = PA; o(P Q)’l. Now the result
follows by (15). ]

This result makes it easy to construct matrix atoms; we record one important
case:

Corollary 5.8.10. Let R = k(X) be a free algebra of rank at least N = n>
and let Ay, ..., Ay be a k-basis of M, (k). Then A =" A;x;, where the x;
are distinct elements of X, is an absolute matrix atom, in fact it remains an
atom under all commutative field extensions of k.

Proof.  Since the A; form a basis, we have I, = )_ «; A; for suitable o; € &,
where a; # 0, say. If we make a linear change of generators in R by writing y; =
> aix;, y; = x;(j # 1), then A satisfies the hypothesis of Corollary 8.9 relative
to the y’s and hence is an atom; clearly it remains one under any extension of
the ground field. ]

Let us return to eigenrings for a moment. We have seen that eigenrings of
regular matrices (over free algebras) are finite-dimensional over k (Theorem
8.5), a matrix atom has as eigenring a field (Proposition 3.2.4) and for a non-
zero element the eigenring is commutative (Proposition 4.6.15). The latter no
longer holds for matrices, for we shall see that any finite-dimensional k-algebra
can occur as eigenring of a regular matrix, and any skew field finite-dimensional
over k can occur as eigenring of a matrix atom.

Theorem 5.8.11. Let k be a commutative field and F a finite-dimensional k-
algebra. Then there exists a torsion module M over a free k-algebra R of finite
rank, such that Endr (M) = F. Moreover, if F is a field, then M can be taken to
be Tor-simple.

Proof. Let[F : k] = n and embed F in E = End;(F) = k, by letting F act
on itself by left multiplications. We denote the image of F in E by F’ and its
centralizer in E by G. Since F acts bicentrally on itself, the centralizer of G
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is F’. Now G is finitely generated as k-algebra, by Ag, Ay, ..., A, € k,, say,
where we may take A,, = I without loss of generality. Let R = k(xy, ..., Xp)
andput A = Ag+ > A;x; € Ry; itis clear that A is full and monic. By (9) and
(10), if M is the module presented by A, we have

Endy(M) =1(A)Nk, ={P € k,|PA; = A;Q,i =0,1,..., mand some Q}.
(16)
Since A,, =1, we have Q = P on the right of (16); therefore Endz (M) is the
centralizer of the A;, hence of G, and so Endz(M) = F.
Suppose now that F is a field, finite-dimensional over k. If k is a finite field,
F is acommutative field extension of k (by Wedderburn’s theorem), and we can
write F = k(«) for some o € F. If the minimal polynomial of « over £ is p,
then F is the endomorphism ring of the simple torsion module R/ p(x)R, where
R = k[x].
There remains the case when k is infinite. Let [F : k] = n; take a k-basis

fi, ..., fn of F and with n distinct elements A, ..., A, of k define matrices
AOa Al € Fﬂ by
Ao = diag(Ay, ..., Ay), A= Zfieii + Zeil + Z€1j~
i>1 i>1

We claim that Ay, A; generate F, as k-algebra. Since the A; are distinct, the
subalgebra generated by A contains all diagonal matrices over k, in particular
it contains each e;;; hence the subalgebra generated by Ap, A; also contains
e;1 = e¢;;Ajeq; and e = €1|A1€jj, and so also ejj = ej1eyj. Thus it contains
ky; it also contains f;e;; = e;; Aje;; and so contains all of F),.

Now F), has just one simple left F,,-module, S say, up to isomorphism, and
[S : k] = n®. Consider the embedding F, — End(S) = 9M,.(k); since F,, acts
irreducibly on S, Ag and A, act irreducibly on 90,2(k) and if their images in
M2 (k) are Aj, A} then P = Aj, + x; A} + x»/ is a matrix atom, by Corollary
8.9. Moreover, the centralizer of A, A] is the centralizer of F), acting in End;(S)
and so is isomorphic to F’; hence if M is the module over R = k(x, x,) defined
by P, then M is Tor-simple and

Endg(M) = I[(P) N k,.

As before this is the centralizer of Aj, A/l, i.e. F, as we had to show. [ ]

Exercises 5.8

1. Verify that the proof of Theorem 8.3 shows every linear matrix over k(X) to be
associated to a matrix of the form A @& 0 @ I, where A is monic.
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2°. Extend Lemma 8.2 to matrices over K;(X) (Hint: Try the form A = Ao+
> A;jxiu;, where the {u;} form a left k-basis of K.)

3. (M.L.Roberts) Let R = K (X) be atensor K-ring. Show that every full matrix over
R is stably associated to a matrix C + Y_ A, x; B;, where the A; are right comaximal,
the B; are left comaximal and in each term A;x; B; the columns of A; are linearly
independent over &, and likewise the rows of B;.

4. Find a monic matrix over k(X that is not full. (Hint: Try a hollow matrix.)

5. (G. M. Bergman) Find a full linear matrix of the form (1) such that no k-linear
combination of A, ..., A, is a regular element of &, (Hint: Linearize an element
of k(X) that maps to 0 under every homomorphism k(X) — k.)

6. (G. M. Bergman) Let R = K(X), where K is an infinite-dimensional persistent
division algebra (e.g. a commutative infinite algebraic field extension). Show that
Endg(R/x R)isinfinite-dimensional over k, even though R /x R is a finitely presented
bound module.

7. Use Theorem 8.11 to find a matrix over R(X) with C as eigenring, and a matrix
with the quaternions as eigenring.

8. (Cohn [76b]) Let K be a field that is a k-algebra. Show that two square matrices A,
B over K are conjugate over £ if and only if xI — A is stably associated to xI — B
over K;(X). Deduce that if a matrix P is stably associated to xI — A, then A is
determined by P up to conjugation by a matrix over k.

5.9 Ascending chain conditions

In Section 3.2 we saw that any 2n-fir with left and right ACC,, is n-atomic. To
prove a corresponding result in Section 5.7 we needed to assume that R is a
fir; but merely assuming left ACC, will enable us to split off a ‘maximal’ left
factor from any matrix of inner rank »:

Proposition 5.9.1. Let R be a 2m-fir and A an m x n matrix with a rank
factorization

A=PA', whereP € "R",A' ¢ "R", (1)

and where A’ is left prime. Then for any other rank factorization A = P’'A”
there is an r X r matrix V such that A” =V A’, P = P'V. An expression (1)
with A’ left prime exists whenever R has left ACC,, or is r-atomic.

Proof. Let A= PA = P’'A”, where P, P’ have r columns and A’ is left
prime. Then

/7

A//

(A Yo (A
(P —P) =0, hencep(P —P)+p A <2,

by the law of nullity, but each summand is at least r, so p(A’, A”)T = r and we
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have

/
<:2,,> = <6)C, whereU,V € R,,C € "R".
Since A’ is left prime, U is a unit and so may be absorbed in C. Thus
C=AA"=VA,A=P A" =P VA = PA' Since A’ is left full, it is left
regular and so P = P’V as claimed.

Now assume left ACC,, and write A = PyAg, where Py € "R", Ag € "R"
and Ay is left full. Since r < m, we can choose a maximal r-generator submod-
ule of R" containing R" Ap; this is of the form R" A’, where the rows of A’ are
the generators. The equation (1) follows, and A’ is left prime by the maximality
of R"A’.

When R is r-atomic, we write A = P;A;, where P; is m xr and A; is
r x n; then Ay is left full. Let A’l be a full » x r submatrix of Ay; then in any
factorization A; = P»A,, where P, € R,, Ay € "R", P, is a left factor of A
and so the number of terms in a complete factorization of P, is bounded by
the corresponding number for A}. Thus we can ensure that A, is left prime by
taking P, with a maximal number of factors. ]

By restating the result in terms of modules we see that for the rings considered
every finitely presented module has a largest positive quotient, and dually,
a largest negative submodule; this was proved for the special case of firs in
Theorem 3.5.

Theorem 5.9.2. Let R be a 2m-fir that has left ACC,, or is m-atomic, and
let M be an m-generator submodule of a free left R-module F. Denote by r
the least integer for which there is an r-generator submodule between M and
F, thus r < m. Then there is a greatest r-generator submodule N between M
and F. [ ]

Here ‘greatest’ is understood in the sense that N contains every r-generator
submodule of F containing M. Thus N /M is the greatest negative submodule
of F/M. A dual argument shows that every finitely presented right R-module
has a largest positive quotient. Thus we have

Corollary 5.9.3. Let R be a 2m-fir that has left and right ACC,, or is m-
atomic, and let F be a free R-module of rank at most m with an m-generator
submodule M. Then F /M has a largest positive quotient and a largest negative
submodule. [ ]

We now consider another chain condition that entails pan-ACC and holds
in all firs. A module M (over any ring R) is said to satisfy ACCgepse if every
ascending chain of finitely generated submodules of M with bound quotients
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(or equivalently: dense inclusions) must break off. If a ring R satisfies ACCepge
as left (or right) module over itself, we shall say that R satisfies left (or right)
ACCdense-

To clarify the relation between ACCgepse and ACC,, we shall need a result on
chains with bound quotients. In a partially ordered set, two subsets of elements
will be called cofinal if each element of either is majorized by some element of
the other set.

Lemma 5.9.4. [n an n-fir R, let M be a module with a sequence
My CSM,C... (@)

of submodules, each free of rank at most n, and assume that (2) is not cofinal
with any sequence of submodules all free of rank less than n. Then M; /M;_, is
bound for all sufficiently large i.

Proof. Any M;/M;_, that is not bound will have R as a direct summand, by
Corollary 1.4, and its complement corresponds to a submodule M; of smaller
rank than M;, so of rank less than n, such that M;_; C M; C M;.If this happens
for infinitely many i/, then the sequence M is cofinal, but of rank less than n.
Hence the conclusion follows. |

Suppose now that R is an n-fir with left ACCepse. Given an ascending chain
of n-generator left ideals of R, let m < n be the least integer for which our chain
is cofinal with a chain of left ideals that are free of rank at most m. Applying
Lemma 9.4 to this chain, we see that ultimately it has bound quotients and so
becomes constant. This proves

Corollary 5.9.5. For any n-fir, left ACC jens. implies left ACC,,. In particular,
a semifir with left ACC gonse satisfies left pan-ACC. |

The next result elucidates the role of ACCygepse in modules over semifirs:

Proposition 5.9.6. Let R be any ring and M an R-module. If every countably
generated submodule of M is free, then M satisfies ACC jense. Conversely, if R
is a semifir and M an R-module satisfying ACC yons. and such that all finitely
generated submodules of M are free, then every countably generated submodule
of M is free.

Proof. LetM be aleft R-module all of whose countably generated submodules
are free and consider a chain

M, C M, C...
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of dense inclusions of finitely generated submodules in M. Their union M’ is
countably generated and hence free. Since M| is a finitely generated submodule
of M’, it involves only finitely many members of a basis of M’, and so is
contained in a free direct summand of finite rank, N, of M',say M’ = N @& N’,
where N’ is also free. Let p : M’ — N’ be the projection onto N’. For any
linear functional o on N’, p« is a linear functional on M’, zero on M, hence by
density zero on each M;, and so zero on M’. It follows that N' = 0,so M’ = N
is finitely generated and our chain must terminate.

Conversely, assume that R is a semifir, M satisfies ACCgense, and all its
finitely generated submodules are free. Let N be a submodule generated by
countably many elements u;, u,, ... . Put Ny =0 and for each i > 0 let us
recursively construct N;;; as a maximal finitely generated submodule of N in
which N; 4+ Ru;; is dense; this is possible by ACCgyepse. We claim that each
N; is a direct summand in N;4;. Indeed, let N/ be a direct summand of N,
containing N; that is free of least possible rank. Any linear functional o on N/
that is zero on N; will have for kernel a direct summand of N/ (and hence of
Ni11), which contains N; and is free of smaller rank than N; (by Theorem 2.2.1
(e)), unless = 0. But N/ was of minimal rank, hence & = 0 and N; is dense
in N/. By construction of N; we therefore have N/ = N;.

We thus have N;y; = N; @ P;1, say, where P; |, being finitely generated,
is free. Hence N = UN; = P ® P, ® P, ... is also free. [ ]

Bearing in mind Theorem 1.5, we can state the result as

Corollary 5.9.7. Let R be a semifir. Then a countably generated R-module is
free if it has ACC gense and is n-unbound for all n. Moreover, a semifir is a right
Ro-fir if and only if it satisfies ACC gense- [ ]

The first part also provides a sharpening of Theorem 2.2.3.

Corollary 5.9.8. If R is a left Ro-fir, then any free left R-module satisfies
ACC jense and hence pan-ACC. |

As a consequence we can show that k((X)) is not an Ry-fir; we saw in
Exercise 3.3.9 that it is not a fir.

Proposition 5.9.9. [f X is a set with more than one element, then k{(X)) is
not an Ro-fir; likewise the subring k{({X))au, of algebraic power series is not
an Ro-fir .

This is in contrast to k({X))a, Which will be shown to be a fir in Theorem
7.11.7.
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Proof. Let x, y be distinct elements of X and consider the element v =
Yo xyxy'. It is clear that v satisfies the equation

vV = XVy + yX, 3)

and moreover, (3) determines v uniquely as an algebraic power series. Let
a, be the left ideal of k((X)) generated by x, xy, xyz, B o vy”“. These
elements are left linearly independent, for if ) a,vxyi + bvy”Jr1 =0, then q;
must vanish as left cofactor of xyi(i < n), so also b = 0. Hence a, is free on
these elements as basis. Now a,,/a,_1 is bound, for if A is any linear functional
that vanishes on xy(i < n) and vy”, then

0= (YA = (xvy"™ + yxy"Ha = x(y") + y(xy"a,

therefore vy"*'A = xy"A = 0, and so A = 0. On the other hand, xy" ¢ a,_,
s0 a,_; C a,. This shows that k({X)) does not satisfy ACCgense and so by
Corollary 9.8 it is not a left Ro-fir.

Now consider R; = k{{X))ag; here the argument is the same: we
have a semifir, and again obtain a sequence of left ideals violating left
ACCdense- n

Thus, the power series ring is an example of a semifir satisfying pan-ACC
but not ACCgepse. By contrast, in Bezout domains ACCgepse can be replaced by
pan-ACC:

Proposition 5.9.10. Over a right Bezout domain R, any torsion-free (= I-
unbound) left R-module with pan-ACC has ACC jons.. Hence a right Bezout
domain with left pan-ACC is a left Ro-fir.

Proof.  Let M be a torsion-free left R-module and take a chain
My CM,C... “)

of finitely generated submodules with dense inclusions. By Proposition 2.3.19,
any finitely generated torsion-free left R-module is free. If for some i > 1,
rk M;_; < rk M;, then the induced map K ® M;_; — K ® M; is not surjec-
tive, where K is the field of fractions of R; hence there is a non-zero K-linear
functional on K ® M; that vanishes on K ® M;_;. By right multiplication with
an appropriate element of R we may assume that the induced map takes M;
into R. Thus we have a linear functional on M; that is zero on M;_; with-
out vanishing, and this contradicts the fact that M;/M;_; is bound. Thus all
the ranks in (4) must be equal, to n say, and so the sequence terminates by
ACC,,. |
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Proposition 9.10 cannot be simplified by taking ACC,, for a fixed n only, since
even over Z the conditions ACC,(n = 1, 2, .. .) are independent (see Exercise
9). If we combine the first part of Proposition 9.10 with Corollary 9.7, we obtain
a somewhat surprising conclusion:

Corollary 5.9.11. Let R be a right Bezout domain with left pan-ACC. Then
any countably generated left R-module embedded in a direct power R' is

free.

This shows, for example, that every countably generated subgroup of Z/ is
free, although of course 7! is not free, unless [ is finite (by Lemma 3.3.13).

3%

9*.

Exercises 5.9

. (Continuation of Exercise 1.10) If R is a semifir and € the class of R-modules

that are n-unbound for all » and have ACCgepge, Show that € is closed under the
operations listed in (i) but not, in general, (ii). Show that R must have left ACCyepe
for € to be non-trivial. If R is right Bezout, show that € = N€, and hence in this
case € admits (ii) too.

Let R be a right Ore domain. Show that if a torsion-free left R-module satisfies
ACC on submodules of rank at most n, for all n, then it also satisfies ACCgense-
(Hint: Imitate the proof of Proposition 9.10).

(Bergman [67]) Let R be an integral domain that is not a right Ore domain. Show
that RY as left R-module does not have ACClense. (Hint: Let a, b € R be right
linearly independent and define ¢;, f; € RN by e;m; = §;;, fim; = a’~'b, where
a” =0 for r <0 and 7; is the projection on the jth factor. Verify that Rf; is
dense in Re; + Rf;;; and deduce that the M; = Re; + --- + Re; + Rf; form
a strictly ascending chain of dense inclusions.)

Verify that the first part of Proposition 9.1 holds for Sylvester domains.

Let R be a semifir and a = Ua;, where g; is a finitely generated left ideal properly
containing a;_; as a dense submodule. Show that a is countably generated but not
free.

Let kF be the group algebra over k of the free group F on x, y, z and let R be the
subalgebra generated by zand all z7"x, z7"y(n = 1, 2, .. .). Show that R is a right
but not left fir (see Theorem 2.10.3). Show also that (X, y) cannot be written as
u(x', y"), where (x’, y’) is left prime (see Cohn [82a]).

Using Exercise 1.2, show that any left hereditary integral domain has left ACC;.
Prove the following converse of Proposition 9.10: If R is a semifir over which
each torsion-free left R-module with pan-ACC satisfies ACCense, then R is right
Bezout.

(Bergman [67]) (i) For any prime number p denote by Z, the ring of p-adic
integers and by Q, = Z,[ p~'its field of fractions (the p-adic numbers), so that
ZIp~'1N Z,="7.Let 1,xi,...,x, be any Z-linearly independent elements of
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Z, and define a subgroup G of Q’l’,“ by the equation

G ="+ xi,....x)Q)NZ[p~' "

Verify that any finitely generated subgroup of G can be generated by n + 1 ele-

ments. Show further that for any 4 > 0 there exists a = (1,ay, ..., a,) € Z'"!
such that p~"a € G and deduce that G is not finitely generated. Hence show that
G does not satisfy ACC,,;.

(ii) Let G be defined as in (i) and suppose that C is a union of n-generator
subgroups in G. Show that C is annihilated by a non-zero Q-linear functional A
with coefficients in Z. Show further that C is contained in p~"Z"*+!, where p” is the
highest power of p dividing A((1, xy, ..., x,)). Deduce that C is finitely generated
and that G has ACC,,. This shows that the conditions ACC,(n = 1, 2, ...) form a
strictly increasing sequence, even over Z.

10°. Find an ACC (of the type ACClense) Such that every semifir satisfying this condition
on the left is a left fir, but such that not every semifir satisfying the condition is a
left PID.

11°. Find an example of a left fir that is elementarily equivalent to a fir, but is not
two-sided.

12°. For a left Ore domain, does left ACC, for some 7, or left ACCyense imply the
corresponding condition for free modules?

13. In Proposition 9.4, show that the M;/M,_, are torsion modules for all large i.

14. An involution of a ring R is an anti-automorphism whose square is the identity.
If R is any ring with an involution *, verify that the map A — AY, where the
entries of A” are aﬁ = a};(A = (a;))), is an involution of R,,. Let R be a semifir
with involution * and let A € R, satisfy AY = A. Show that if pA =r, then
A= PA,P", where P € "R" and A = A,. If moreover R is a fir, show that P
may be taken to be right prime.

15°. Does the conclusion of Corollary 9.11 hold for left Ry-firs?

5.10 The intersection theorem for firs

In this section we shall apply the ACC for bound submodules of finitely related
modules over a fir to show that the intersection of the powers of a proper ideal
in a fir is zero. In fact we shall prove a slightly more general result that will be
needed in Chapter 6.

We begin by considering an arbitrary ring R. If a;, ap, ... is any sequence
of (left, right or two-sided) ideals of R, we define

Haizﬂalaz...an.

i>1 n>1

Clearly the left-hand side is a (left, right, two-sided) ideal whenever all the a;
are.
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Lemma 5.10.1. Ler a; be a right ideal and let ay, a3, ... be a sequence of
two-sided ideals of a ring R, and assume that a, is free as right R-module, with
basis (ey). Then any a € Tla; can be written as

a= E e dy, wherea,\el_[a,-. (1)
i>2
Proof.  Given n > 0, we have a € a0, ... a,, by hypothesis, so there is an
expressiona = > u;jU;; . .. Uin, where u;, € a,;inparticular there is an expres-
siona = )_ e;a; with

a, € ay...a,. 2)

Since the e, are right linearly independent, the a; are independent of n, and (2)
holds for all n, which is the assertion. [ ]

We next give a condition for a homomorphic image of a non-zero bound
module to be non-zero.

Lemma 5.10.2. Let R be a ring and E € "R", B € "R" such that EB is left
regular and R" /R™E is a non-zero bound module. Then R "B /R™ EB is also a
non-zero bound module.

Proof. R"B/R™EB is a homomorphic image of R"/R™E and so is also
bound. If it were 0, we would have B = C E B for some C € "R™. Hence EB =
ECEB and since EB is left regular, it follows that EC = I, therefore R"E is a
direct summand in R", so R”/R"™E is projective, contradicting the assumption
that it is non-zero and bound. [ |

We shall want to apply this result in the following form:

Corollary 5.10.3. Let R be a ring and a a proper non-zero free right ideal
of R, with basis (ey). Given ay, ..., a, € a, left and right linearly independent
over R, write

a; = Zelxbm 3)
Then)_ Rb;;/ Y Ra; is a non-zero bound module.

Proof. In Lemma 10.2 we shall take for E the row vector whose entries
are some of the e, including all those occurring with a non-zero coefficient
in (3), and let B be the r x n matrix formed by the 4’s in (3). The left linear
independence of the a’s means that EB is left regular; hence E is also left
regular. Since the a; are right linearly independent, E is also right regular;
hence R”/R™E is bound. Moreover, since a is a proper right ideal, £ has no
right inverse; by regularity it has no left inverse and so R" /R™ E # 0. It follows
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by Lemma 10.2 that R" B/R™E B # 0, and it is bound, as homomorphic image
of R"/R"™E. ]

We can now prove a general form of the intersection theorem:

Theorem 5.10.4. Let R be a left fir and a;, a, . .. a sequence of proper two-
sided ideals that are free as right ideals. Then [ ], a; = 0.

Proof.  Suppose that [ [ a; # 0 and let ¢; be a finitely generated non-zero left
ideal contained in [ [ a;. Let ay, . .., a, be a basis of ¢; and (e;) a basis of a; as
right ideal, and write a; = ) _ €;b;;. Then b;; € I1;>,a; by Lemma 10.1, hence
¢ = ) Rby; € I1j>,a; and by Lemma 10.3, ¢, /¢; is bound and non-zero. By
induction we obtain a sequence of finitely generated left ideals ¢, such that
¢, C I1;>,a; and we have the strictly ascending chain

¢ CepC...

with bound quotients. Thus we have an infinite ascending sequence of bound
submodules of R /¢, which contradicts Corollary 1.7. |

In particular, taking R to be a two-sided fir, we find that the conclusion
holds for any sequence of proper two-sided ideals. Taking all ideals equal, we
obtain

Corollary 5.10.5. In a two-sided fir the intersection of the powers of any
proper two-sided ideal is zero. |

Exercises 5.10

1. Give a direct proof of Corollary 10.5 for principal ideal domains.

2. Let R be an integral domain with left ACC,. Show that any proper two-sided ideal
a that is principal as right ideal satisfies Na” = 0.

3. Let a be a finitely generated ideal in a commutative ring R. If a®> = a, show that
a = eR for an idempotent e.

4°. Find a generalization of Exercise 3 to the non-commutative case.

5. Show that in a left fir R, if ab C a’b for two-sided ideals a, a’ and a left ideal b,
then a C o (see also Section 6.6).

6. Show that the conclusion of Corollary 10.5 does not hold for the one-sided fir
constructed in Section 2.10.

7. LetF be afree group and kF the group algebra of F over k. If a is the augmentation
ideal (induced by the kernel of the homomorphism F — 1), show that Na” = 0.
Define the lower central series of F recursively by y1F = F, y,. 1 F = [y, F, F]
(commutator subgroup), and show that for any u € y,F, u = 1(moda"); deduce
that Ny, F = 1 (Magnus’ theorem).
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8. (G. M. Bergman) Show that in the situation of Lemma 10.3, for the free algebra the
modules R" /R™E and R" B/R" E B need not be isomorphic (Hint: If R = k(x, y),
take E = (x, y), B = (1,0)T.)

Notes and comments on Chapter 5

Sections 5.1 and 5.2, based on Cohn [73d, 77a], describe the background on modules in
the more general setting of hereditary rings. The notion of torsion class used in Section
5.11s basic in the study of torsion theories (see e.g. Stenstrom [75]), but we need only the
most elementary properties; in any case the usual treatment deals mainly with hereditary
torsion theories (in which the torsion class admits subobjects), and so does not apply
here. The transpose Tr(M) = Ext}e (M, R) has also been used by M. Auslander in the
study of Artin algebras.

Torsion modules over firs were first described in Cohn [67] and in FR.1 formed the
basis of the factorization of full matrices. The positive and negative modules (correspond-
ing to left and right full matrices) are studied in Cohn [77a, 82a]. The Krull-Schmidt
theorem for finitely presented modules over firs (Theorem 3.9) was new in FR.2; it
has also been obtained independently by Schofield (unpublished). The application in
Theorem 3.14, giving a conceptual proof of the embedding of a fir in a field, is due to
Bergman [2002].

The treatment in 5.4 essentially follows Bergman [67], but Theorem 4.9 (which is
used in Section 5.5) is taken from Cohn [74b], and Proposition 4.11 is new (Proposition
4.11 of FR.2 has become Lemma 0.3.3). Sylvester domains were introduced by Dicks
and Sontag [78], and Section 5.5 is based on this source, but the presentation has been
modified here so as to be independent of the results of Chapter 7. The law of nullity first
occurs (for the case of fields) in Sylvester [1884]; in the case of semifirs it first appeared
in FR.1. In studying localization (Chapter 7) we shall need to consider pseudo-Sylvester
domains; their properties, described in Section 5.6 are taken from Cohn and Schofield
[82]. Lemma 6.3 is due to Bergman, and is used here in the proof of Proposition 6.4.
Some of the results from Section 5.6 of FR.2 are now to be found in Sections 0.1 and
0.4. The analysis of matrix relations and factorization in Section 5.7 was mostly new in
FR.2; see also Cohn [82d].

The normal form that is the subject of Section 5.8 is due to Roberts [84] and all
the results of this section are taken from this source, except for Lemma 8.1, which is
implicit in Roberts [82], where a more general form of Exercise 8.3 also occurs. The
uniqueness of Theorem 8.2 was proved in a special case in Cohn [76b]. Lemma 8.7 on
the factorization of matrices over a free algebra, and Corollary 8.6 on which it depends,
are due to Schofield, who is also responsible for the elegant proof of Theorem 8.11
(replacing an earlier proof by Roberts that required a larger rank in (ii)).

The study of ascending chain conditions in Section 5.9 is taken from Bergman [67],
with results 9.1-9.3 added from Cohn [82a]. Proposition 9.6 was previously stated for
ideals in R-firs, while Proposition 9.9 was an exercise in FR.1. Corollary 9.7 generalizes
Pontryagin’s theorem: A countably generated torsion-free abelian group with pan-ACC
is free (Pontryagin [39], p. 168). In the case of Z, related results have been obtained
by Specker [50], who shows, for example, that in the subgroup B of Z' consisting of
all bounded sequences, every subgroup of cardinal at most 8, is free. Dubois [66] and
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independently Nobeling [68] have shown that B itself is free, and more recently Bergman
[72a] has given a very brief proof of this fact. The intersection theorem in Section 5.10
was first proved in the case where all the a; are equal, by Cohn [70c], and this appeared
in FR.1. It was greatly generalized by Bergman [72b,73]; a special case of his results
yields Theorem 10.4 as well as a slight simplification of the proofs. Lemma 10.2 was
suggested by G. M. Bergman, as a way of proving Corollary 10.3. Proposition 5.10.12
of FR.2 on «-directed systems of a-firs, has now become Proposition 2.3.24.

The specialization lemma that occupied Section 5.9 in FR.2 is now part of Section
7.8.



6

Centralizers and subalgebras

The first topic of this chapter is commutativity in firs. We shall find that any
maximal commutative subring of a 2-fir with strong DFL is integrally closed
(Corollary 1.2), and the same method allows us to describe the centres of 2-
firs as integrally closed rings and make a study of invariant elements in 2-firs
and their factors in Sections 6.1 and 6.2. The well-known result that a simple
proper homomorphic image of a principal ideal domain is a matrix ring over a
skew field is generalized here to atomic 2-firs (Theorem 2.4). In Section 6.3 the
centres of principal ideal domains are characterized as Krull domains. Further,
the centre of a non-principal fir is shown to be a field in Section 6.4.

Secondly we look at subalgebras and ideals of free algebras in Section 6.6;
by way of preparation submonoids of free monoids are treated in Section 6.5. A
brief excursion into coding theory shows how the Kraft-McMillan inequality
can be used to find free subalgebras, and the fir property of free algebras is
again derived (Theorem 6.7). Section 6.7 is devoted to a fundamental theorem
on free algebras: Bergman’s centralizer theorem (Theorem 7.7).

Section 6.8 deals with invariants under automorphisms of free algebras, and
Section 6.9 treats the Galois correspondence between automorphism groups and
free subalgebras, as described by Kharchenko. The final section, 6.10, brings a
result on the structure of Aut(k(x, y)), showing all these automorphisms to be
tame (Czerniakiewicz—Makar-Limanov theorem), by exhibiting this group as
a free product with amalgamation.

6.1 Commutative subrings and central elements in 2-firs

Just as commutative 2-firs have a rather special form, so it is possible to say
more about commutative subrings of 2-firs. Assuming strong DFL, we shall
show that maximal commutative subrings are integrally closed. We recall that

331
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if A C A’ are commutative integral domains, then an element y € A’ is integral
over A if there is a monic equation for y with coefficients in A : y" 4+ a;y" ™' +
-+ 4 a, = 0(a; € A).Equivalently, the A-module generated by the powers of y
is finitely generated over A. The set of all elements of A’ integral over A forms a
subring A of A’, the integral closure of Ain A’, and A is integrally closed in A’ if
A = A. By afinite integral extension of A in A’ we understand a ring B between
A and A’ that is finitely generated as A-module. Clearly it then follows that all
elements of B are integral over A. Suppose that B is a finite integral extension of
A in its field of fractions k. Then we can write B = Z'f Au;, where u; € k, or
equivalently, B = )_ u; A. The u; may be brought to a common denominator,
say u; = a;d~'(a;,d € A); then B = Z Aa;d~', and so Bd C A. This means
that the conductor of A in B, defined as

f={aeAlBac A,

is different from 0. We note that f may also be described as the largest ideal in
A that is also an ideal in B.

We begin with a result extending embeddings of commutative rings to inte-
gral extensions.

Proposition 6.1.1. Ler R be a 2-fir, A a commutative subring of R and B
a finite integral extension of A in its field of fractions. Then there exists an
injection f : B — R and e € R, such that

ex =xf.e forallx € A. 1

If moreover, R has right strong DFL (baR Na'R # 0, where a, a’ are similar,
implies ba € a’'R), then e can be taken to be 1.

Proof.  Since B is finite integral over A, there exists c € A such that Bc C A.
Put ¢ = Bc; this is a finitely generated non-zero ideal of A (and of B). Any two
non-zero elements of ¢ have a non-zero common multiple in A, hence in R; since
R is a 2-fir, it follows that Rc¢ is principal, say Rc = Re for some e € R*. We
haveeA C RcA = Rc = Re;hence there is ahomomorphism fj : A — R such
that

ea = afy.e foralla € A.
Clearly fj is injective; moreover, if a € Bb (a, b € A), then
afo.e = ea € Rea = Rca C RcBb C Rch = Reb = Rbfy.e,

hence afy € R.bfy. By Proposition 0.7.5 there exists an injective homomor-
phism f : B — R extending fy, and this proves (1).
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Suppose now that R has right strong DFL. Let g € B,sayq =ad~',a,d €
A.Thena = gd, soaf = qf.df, hence

qf.ed = qf.df.e =af.e =ea € eR.
By right strong DFL, gf.e € eR, say qf.e = e.r. So we have
erd =qf.ed = ea,

therefore rd = a. Thus a = gd implies a = rd for some r € R, and so by
Proposition 0.7.5 (with f = identity) we find that ¢ — r is a well-defined homo-
morphism f : B — R suchthataf = a forall a € A, as claimed. [ ]

Corollary 6.1.2. In a 2-fir with right strong DFL every maximal commutative
subring is integrally closed in its field of fractions.

Proof. LetR be a 2-fir with right strong DFL, A a maximal commutative sub-
ring and B a finite integral extension of A in its field of fractions. By Proposition
1.1, there is an injection f : B — R that reduces to the identity on A. But B is
commutative, so we have B = A, by the maximality of A. [ ]

Corollary 6.1.3. The centre of a 2-fir is integrally closed in its field of frac-
tions.

Proof. Let R be a 2-fir, denote its centre by C and suppose that B is a finite
integral extension of C in its field of fractions. By Proposition 1.1 there exists
an embedding f : B — R such that af = a for all a € C (because C is the
centre), so we may assume that C € B C R.Letb € B,saya = cb(a, c € C);
then for any r € R,

cbr =ar =ra=rcb=crb,

hence br =rb, so b € C. This shows that C = B, which establishes the
result. [ ]

To obtain further information on the centres of atomic 2-firs we consider the
set Inv(R) of invariant elements of R, i.e. regular elements ¢ such that cR = Rc.
We recall from Proposition 1.4.6 that in any ring R a regular element c is
invariant if and only if the left and right ideals of R generated by ¢ are both
two-sided; moreover, if R is an integral domain and aR = Rd’, then the proof
of Proposition 1.4.6 shows that a’ is associated to a. Such an ideal will be called
an invariant principal ideal. In a 2-fir we have

Proposition 6.1.4. In any 2-fir the invariant principal ideals form a sublattice
of the lattice of all ideals.



334 Centralizers and subalgebras

Proof. LetaR = Ra,bR = Rb be two invariant principal ideals in a 2-fir
R. Then 0 # ab € aR N bR, hence aR + bR = dR = Ra + Rb = Rd’, and
aRNbR =mR = RaN Rb = Rm'. By Proposition 1.4.6, dR = Rd,mR =
Rm and so d and m are invariant, as claimed. [ ]

This result shows that in any 2-fir R the monoid Inv(R) of invariant elements
is lattice-ordered by divisibility. Thus any two invariant elements have an HCF
and this is the same whether calculated in Inv(R) or in R; similarly for the LCM.

We now add atomicity to our assumptions; we recall that a prime element is
an invariant non-unit p such that

plab implies pla or p|b;

this has a meaning since left and right divisibility by p coincide, by invariance.
Further we define an Inv-atom as an invariant element that is an atom within
Inv(R). Thus an invariant atom will always be an Inv-atom, but not conversely.
The ring R is said to have unique factorization of invariant elements if Inv(R) is
a UF-monoid, as defined in Section 0.9. By applying Theorem 0.9.4 we obtain
the following description of UF-monoids:

Theorem 6.1.5. For any ring R the following conditions are equivalent:

(a) R is a ring with unique factorization of invariant elements,

(b) R satisfies ACC on invariant principal ideals and any two invariant elements
have an HCF in Inv(R),

(c) R satisfies ACC on invariant principal ideals and any two invariant elements
have an LCM in Inv(R),

(d) Inv(R) is atomic and every Inv-atom is prime. |

We note that e.g. the second part of (b) certainly holds if any two invariant
elements have an HCF in R and this HCF is invariant. If we merely know that
a,b € Inv(R) have a (left or right) HCF d in R, we cannot assert that d is
invariant, though there is an important case in which this holds, namely when
R is a 2-fir, as Proposition 1.4 shows. If we apply Theorem 1.5 in this case, we
obtain a factorization theorem for invariant elements:

Theorem 6.1.6. Every atomic 2-fir has unique factorization of invariant ele-
ments: thus every non-unit invariant element ¢ can be written as a product of
Inv-atoms

c=aj...a, 2)
and if
c=b...bs (3)
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is any other factorization of ¢ into Inv-atoms, then s = r and there is a permu-
tationi — i’ of 1, ...,r such that blf is associated to a;. Moreover, any order
of the factors in (2) can be realized. [ ]

In terms of ideals Theorem 1.6 states that in an atomic 2-fir the ideals with
invariant generator form a free commutative monoid under ideal multiplication.
Of course this is merely a reflection of the fact that a lattice-ordered group with
descending chain condition (on the positive elements) is necessarily free abelian
(Birkhoft [67], p. 298).

In certain cases the last result can be extended to matrix rings. Let us call an
n x n matrix C over a ring R right invariant if it is right invariant as element
of R,, thus C is regular and for each X € R, there exists X' € R, such that
XC = CX’'. We remark that over any Sylvester domain a right invariant matrix
must be full. For if C = PQ is a rank factorization, where P is n x r and
Q is r x n, suppose that » < n. Then by Theorem 5.4.9, P contains a full
r X r submatrix, say in the first 7 rows, so there exists P’ € "R"™" such that
Py = (P, P')isfull and so right regular. Put Q| = (Q, 0)";thenC = P;Q, and
since C is right invariant, there exists P, € R, suchthat P,C = CP, = P, Q| P>,
hence C = Q| P,. But Q is not left regular, so neither is C, a contradiction.
This shows that C must be full.

To describe the form of right invariant matrices, we shall use the following
two lemmas:

Lemma6.1.7. LetRbearing,y € RandU € GL,(R).Ify isrightinvariant
in R, then yU is right invariant in R,,.

Proof.  Suppose that y is right invariant. For any x € R we have xy = yx’,
foraunique x’ € R; hence there is forany X € R,, a unique X’ € R, satisfying
Xy = y X’ and it follows that XyU = yX'U = yU.U"'X'U. [ |

Lemma 6.1.8. For any ring R and any n > 1 the following conditions are
equivalent:

(a) there exists C € R, that is right invariant but cannot be written in the form
C = yU, where y € R isright invariant and U € GL,(R),
(b) there exists a projective left R-module P such that
(b.i) P is not free of rank 1,
(b.ii) P" = R", and
(b.iii) P contains a regular element p such that for every r € R there is a
unique endomorphism of P mapping p to rp,
(c) R has a two-sided ideal I with zero left annihilator, such that [" = R", as
right R-modules, but I is not free of rank 1.
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Proof. (a) = (b). Let C € R, be right invariant; then XC = CX’, where
X + X’ is an endomorphism of R,, injective since C is regular. Applied to the
matrix units e;; this yields a set of matrices elfj that again satisfy the relations for
matrix units. Writing P = R,e{,, we obtain the isomorphism R" = P". Thus
P satisfies (b.ii).

If we now apply therelatione;;C = Ce}, totherow vectore; = (1,0, ..., 0)
and write p = ¢;C, we obtain p = pe/,, hence p € P. We next apply the
relation re;;C = C(rey;) (for any r € R) to ¢; and find that rp = p(rey,),
which is (b.iii), and it remains to prove (b.i). Suppose then that P is free of rank
1,say P = Rq;. Thenthe above p can be written as y ¢; for some y € R. Writing
qi = qre1;’i =2,...,n),weseethat Rg; = P and qy, .. ., g, are left linearly
independent and hence form a basis of P = R". If the matrix mapping e¢; to ¢;
is U, this is invertible and we find that C = y U, where the right invariance of
C in R, implies the right invariance of y in R. This contradicts (a) and it shows
that (b.i) holds.

(b) < (c) by the duality of projective modules. For the left module map
¥ : R — P given by r > rp in (b) dualizes to a map of right modules * :
P* — R;the uniqueness in (b.iii) means that v has a dense image and it follows
that v * is injective, so that we may regard P* as arightideal / of R. The existence
part in (b.iii) corresponds to the condition that / is mapped into itself by left
multiplication by all » € R, i.e. that ] is a two-sided ideal and the regularity of
p in (b.iii) amounts to saying that ¥ is injective, i.e. [ has zero left annihilator.
Of course (b.i) and (b.ii) translate to the corresponding conditions in (c) on the
right R-module structures of / and I”.

(b)= (a). Assume (b) and write

R"§P1®-"€BPW (4)

where the P; are pairwise isomorphic modules satisfying (b.i)—(b.iii). Let p; €
P have the properties of p in (b.iii), let p; € P;(i =2, ..., n) be the element
of P; corresponding to p; under the given isomorphism and denote the matrix
mapping each e; to p; by C. Since each p; has zero annihilator, it follows
that C is left regular. By (b.iii) (and the isomorphism P; = P;) it follows that
for each X € R, there exists a unique X’ € R, such that XC = CX’, and the
uniqueness of X’ shows that C is also right regular. Thus C has been shown to
be right invariant. If e;;C = Cey,’, then ey’ is the projection of (4) on P;. If we
had C = yU, where y is right invariant, then Y = U ~'e;;U would satisfy the
equation ¢;;C = CY, by which we just characterized the projection onto P;.
Hence we would have P; = Re U, a free module on e¢;U, which contradicts
(b.i). Therefore C cannot have the form U and (a) follows. |



6.1 Commutative subrings and central elements in 2-firs 337

Suppose that R is a projective-free ring; then (c) holds neither in R nor its
opposite R°; hence we obtain

Corollary 6.1.9. Let R be a projective-free ring. Then any right invariant
matrix C over R has the form

C=vyU, &)

where y is a right invariant element of R and U € GL,(R). If moreover, C is
invariant, then it has the form (5), where vy is invariant. [ ]

Combining this result with Theorem 1.6, we obtain

Theorem 6.1.10. Over a fir R every invariant matrix can be written as a
product of Inv-atoms in R and an invertible matrix over R, and the factorization
is unique up to associates and the order of the factors. [ ]

Let us return to the case of elements (Theorem 1.6). In order to apply this
result to study the centre of a 2-fir we need to recall some facts on valuations.
Let A be a commutative integral domain and « its field of fractions; any homo-
morphism v : A* — I's into the positive cone of a totally ordered additive
group I' (with the convention v(0) = 00), such that

v(a — b) > min{v(a), v(b)},

is called a general valuation. Such a valuation can always be extended in just
one way to a valuation of k, again written v, and the set k, = {x € k | v(x) > 0}
is a local Bezout domain containing A; k, is called the valuation ring of v. Now
the ring A° = N k,, where v ranges over all general valuations on A, consists
precisely of all elements of k that are integral over A; thus A€ is just the integral
closure of A in k, in fact A is integrally closed if and only if A° = A (see e.g.
BA, Section 9.4).

There is a related construction that we shall need here. This arises if instead
of general valuations we limit ourselves to Z-valued valuations. Let A be a
commutative integral domain and £ its field of fractions, as before. If there is
a family V of Z-valued valuations on k such that (i) for any x € A*, v(x) > 0
for all v € V, with equality for almost all v and (ii) A = N k,, then A is said
to be a Krull domain. More generally, suppose that there is a family V of Z-
valued valuations on A satisfying (i); then A* = N k, is clearly a Krull domain
containing A.

From our earlier remarks it is clear that every Krull domain is integrally
closed. Every commutative UFD is a Krull domain: we take V' to be the family
of valuations associated with the atoms of A. Likewise every Noetherian inte-
grally closed domain is a Krull domain; here V is the class of all valuations
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associated with the minimal prime ideals of A (see Bourbaki [72], Chapter 7, §1,
No. 3).
We now have the following sharpening of a special case of Corollary 1.3.

Theorem 6.1.11. The centre of an atomic 2-fir is a Krull domain.

Proof.  Let R be an atomic 2-fir, C its centre and & the field of fractions of C.
By Theorem 1.6, each @ € C* has a decomposition into Inv-atoms

a=ul]p" @eUR.a,>0).

Fix the Inv-atom p and consider the function v, defined on C by

vp(a) = ap.

Clearly this is Z-valued, in fact it is non-negative on C, and v, (a) = 0 for almost
all p. Hence C* = N k, is a Krull domain containing C; we claim that C* = C.
Letd € C*,sayd = ab~!,wherea = u [ p*,b = v ][] pP»,u, v € U(R)and
a, > B,.Sincea = db,wehaveu [| p* = dv[] pPr;if B, > 0, we can cancel
p, replacing o, by a, — 1 and B, by 8, — 1. After finitely many steps we find
u [] p"‘ﬂ‘ﬂf’ = dv;, where i1, v; are units, possibly different from u, v because
the p’s are merely invariant and not central. It follows that d € R; now we find
as in the proof of Corollary 1.3 thatd € C,i.e. C* =C. |

As we shall see in Section 6.3, this theorem is best possible, in the sense
that any Krull domain can occur as the centre of an atomic 2-fir. It follows in
particular that any fir has a Krull domain as centre, but in Section 6.4 we shall
see that the centres of non-Ore firs are much more restricted.

Exercises 6.1

1. Given integral domains A € B, an element y € B is called left integral over A
if the left A-module generated by the powers of y is finitely generated over A.
Show that this is so if and only if y satisfies a monic polynomial equation with
left coefficients in A.

2°. Ifevery element of aring B is left integral over a subring A, B is called left integral
over A. Is the notion of left integral extension transitive?

3. Let A be a right Ore domain with field of fractions K, and let B be an A-subring
of K, with conductor f of B in A. Show that f # O if and only if B is finite
right integral over A, and that f is the largest ideal in A that is also a left ideal
in B.

4. Let B = k(x, y) and denote by A the subalgebra generated by x> and y?. Find the
set A° of elements of B left integral over A. Is this set closed under addition or
multiplication? Is £ Aa’ a subring for every a € A?
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Let R be an atomic 2-fir with DFL. Show that if A is a (left and right) Ore subring
of R and B a finite left integral extension of A in its field of fractions, then there
is an embedding of B in R whose restriction to A is the identity map. Deduce that
a maximal Ore subring of R is integrally closed.

Let /, be the set of all right invariant elements in an integral domain R and S
the set of all left factors (in R) of elements of /.. Show that S is a right Ore
setin R.

Let o be an automorphism of a field K such that no positive power of « is inner.
Show that the monic invariant elements of the skew polynomial ring K [x; «t] are
the powers of x. If &" (r > 0) is inner, but no lower power, find all monic invariant
elements.

. Show that a principal ideal domain is simple if and only if it has no non-unit

invariant element.

Let K be a field of characteristic 0 and D an outer derivation of K. Show that
K[x; 1, D] is simple and hence has no non-unit invariant element.

Let R be a 2-fir and ¢ € R an invariant element. Find the condition on ¢ for R/cR
to be (i) simple and (ii) semisimple.

Let R be an atomic 2-firand ¢ € R anon-unit invariant element. Show that the ring
A = R/cR is Artinian and is such that every left (or right) ideal is the annihilator
of its annihilator in A (i.e. A is a quasi-Frobenius ring).

Is every Artinian principal ideal ring a quasi-Frobenius ring?

Let K be a field and R a subring that is a 2-fir; show that the elements ab~Y(a,b e
R,b #0) satisfying axb = bxa for all x € R form an integrally closed
subring.

Find a ring in which the multiplication of invariant principal ideals is non-
commutative. (Hint: Use a non-commutative analogue of Exercise 2.3.10).
Show that any right invariant element of a right principal Bezout domain is invari-
ant and has a complete factorization.

Show that in a 2-fir with right ACC, every left invariant element has a complete
factorization.

(G. M. Bergman) Let R be the R-algebra of functions on the real line generated
by the functions sin x and cos x, and let S be the subalgebra generated by sin 2x
and cos 2x. Show that the matrix

. ( cosx  sinx )
sin x .
—sinx cosx

in R, lies in fact in S, and is an invariant element of that ring, but cannot be written
asyU fory € Sand U € GL,(S).

(G. M. Bergman) Given a Dedekind domain D whose ideal class group has an
element of order n > 1, show that D, has an invariant element that is not of the
form yU, fory € Dand U € GL,(D).

(G. M. Bergman) Let k be a commutative field of characteristic zero, K = k(y)
the rational function field in an indeterminate y over k, § the derivation over k
such that y§ = 1 (differentiation with respect to y) and R = K[x; 1, §] the ring of
differential operators. Writing p = xy? + y, show that the centralizer of p in R is
k[p]. Show that k[p?, p?] is contained in R = {u € R|xu € Rx}, even though

P &.R.
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6.2 Bounded elements in 2-firs

We have seen that in an atomic 2-fir the decompositions into Inv-atoms play
an important role. In general there is no reason to suppose that Inv-atoms will
be atoms, but at least we can factorize them into atoms, and this suggests that
we look more closely at the factors of invariant elements. Such factors and
the cyclic modules they define are called bounded (to be distinguished from
‘bound’ modules, see Exercise 1). It will be convenient to begin with a general
definition and specialize later.

Definition. A right module M over a ring R is said to be bounded if there is a
regular element ¢ € R such that Mc = 0.

An equivalent definition is to require the annihilator Ann(M) of M, an ideal
in R, to contain a regular element. We note that the direct sum of bounded
modules is again bounded; for if Mc = Nd = 0, where c, d are regular, then
cd is regular and (M @ N)cd = Ncd € Nd = 0. An element a € R is said to
be right bounded if R /aR is bounded. Thus an element @ in an integral domain
R is right bounded if and only if @R contains a non-zero two-sided ideal. We
remark that any right bounded element is right large, for if a is right bounded,
say Rd C aR,and b € R* is given, then bd € aR,so bR NaR # 0.

Suppose now that R is an integral domain. To describe the right bound of
a € R* more closely, let a = bc; then for any d € Ann(R/aR) we have Rd €
aR = bcR; in particular, bd € bcR, so d € cR. The same is true if instead of
a we take any element similar to a. Thus

Ann(R/aR) € N{cR | c is aright factor of an element similar to a}. (1)
This inclusion can also be rewritten as
Ann(R/aR) C N {cR | c is similar to a right factor of a}. 2)
When R is a 2-fir, we can prove that equality holds in (2):
Theorem 6.2.1. Let R be a 2-fir and for any a € R, define the right ideal
I = N{cR|c is similar to a right factor of a}. 3)
Then

(i) 1 is the annihilator of the set of all torsion elements of R/aR; hence
(ii) if a is right large (so that all elements of R/aR are torsion), then I =
Ann(R/aR).
(iii) The following conditions are equivalent (and so imply the conclusion of

(it)):
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(a) ais right bounded,
(b) 1is a non-zero two-sided ideal,
(c) I contains a non-zero two-sided ideal.

(iv) I isclosedunder left multiplication by all units of R. Hence if R is generated
by its units (e.g. if R is a group algebra over a field), then (b) (and hence
(a) and (c)), holds whenever I # 0.

Proof. 'We have seen that (2) holds for any right bounded element a; if a is not
right bounded, then the left-hand side of (2) is zero, so (2) holds for all a € R.
Now let x be a torsion element in R /aR and choose u in the right-hand side of
(2). We have xR NaR # 0, hence there is a right coprime relation xa’ = ax’,
and here @’ is similar to a right factor of a, therefore u = a’u; for some u; € R.
Hence xu = xa'u; = ax'u; € aR, so u annihilates x(mod aR), and since x was
any torsion element of R/aR, (i) follows. When a is right large, (ii) follows.
Turning to (iii), we see that (a) = (b) by (ii); clearly (b) = (c) and when (c)
holds, then since I C aR, (a) follows. Finally (iv) follows because similarity
classes are closed under taking associates. [ ]

Suppose now that R is an atomic 2-fir and that a is right bounded. Then all
the cR on the right of (3) contain a fixed non-zero element, d say, where d €
Ann(R/aR), and since the lattice L(dR, R) has finite length, it is complete
and the intersection on the right of (3) is principal, say Ann(R/aR) = bR. The
element b, unique up to right associates, is called the right bound of a.

Corollary 6.2.2. In any integral domain, any left factor of a right invariant
element is right bounded. In an atomic 2-fir, conversely, every bounded element
a is a left factor of a right invariant element.

Proof. 1fd = ab for aright invariant element d, then Rd € dR < aR, hence
d € Ann(R/aR), i.e. a is right bounded, with bound d'R 2 dR. Conversely,
for a right bounded element a of an atomic 2-fir R, Ann(R/aR) = dR. Here
Rd C dR, sod is right invariant, and d € aR. [ ]

An element ¢ in an integral domain R is said to be bounded if it is a factor
of an invariant element: ¢ = dab; it is then also a right factor, for we have
¢b =b'c =b'dab, hence ¢ = b'da. By symmetry it is also a left factor of c.
Any bounded element is clearly left and right bounded, and for a bounded
element a in an atomic 2-fir R, we have by Proposition 1.4,

Ann(R/aR) = Ann(R/Ra) . 4)

Conversely, if in an atomic 2-fir, a is left and right bounded and (4) holds,
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then Ann(R/aR) = dR = Rc, hence by Proposition 1.4.6, Ann(R /aR) has an
invariant generator and a is then bounded.

Let R be an atomic 2-fir and let @ € R be bounded; the invariant generator
of Ann(R/aR) is then unique up to associates; it will be called the bound of
a and denoted by a*. Clearly a* depends only on the similarity class of a. By
Theorem 2.1, @* can also be defined by

a*R = N {cR | c is similar to a right factor of a}. (5)

The right-hand side can be taken to be a finite intersection, by the DCC in
R/a*R, and if we take it to be irredundant, we obtain a subdirect sum repre-
sentation of R/a*R, qua right R-module, by the modules R/cR. This shows
that every atomic factor of a* is similar to a factor of a. By Theorem 2.1 this
characterizes the atomic factors of a* as the atoms similar to factors of a.

Let a € R be bounded; if @ = bcd, then c is again bounded, with bound
dividing a*. This follows by observing that R /cR is a quotient of a submodule
of R/aR. Likewise the product of any bounded elements is bounded. These
facts may be expressed by saying that the modules R /a R, where a is bounded,
form the objects of a dense subcategory of the category Tork of cyclic torsion
modules.

The quotient of a 2-fir by an ideal with invariant generator has a rather special
form, which is described in

Theorem 6.2.3. Let R be a 2-fir and ¢ a non-unit right invariant element. Then
cR is an ideal in R and R/cR is a ring (not necessarily a domain) in which
every finitely generated right ideal is principal; it is a field precisely when c is
an atom in R.

Further, R /cR is Artinian if and only if ¢ is a product of atoms. When these
conditions hold, then R /cR = M, (K) for a field K and some n > 1 if and only
if cR is maximal among ideals with a right invariant generator.

Proof.  Since c is right large and R is a 2-fir, every finitely generated right
ideal containing cR is principal, hence of the form dR, where d is a left factor
of c. It follows that R/cR is right Bezout and it is a field precisely if ¢ is an
atom. This also shows that R/cR is Artinian precisely when c is a product of
atoms.

Now let cR be (proper) maximal among ideals with right invariant generator
c; write § = R/cR and let a be a minimal right ideal of S. Then Sa is two-sided,
hence of the form d R /cR, where dR is two-sided, so d is right invariant and by
the maximality of cR we have dR = R, i.e. Sa = §. Thus S is a sum of copies
of the simple right S-module a, hence a direct sum, say S = A”, where A = a
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as right S-module, and so
S = Endg(A") = M, (K),
where K = Endg(A) is a field, by Schur’s lemma (Proposition 3.2.4). |

We now examine the case of invariant elements in 2-firs; here we have a
more precise statement; some of the next results can be deduced from Theorem
2.3, but in view of its importance we give a separate proof.

Theorem 6.2.4. Let R be an atomic 2-fir.

(i) If c is an invariant element of R, then the quotient ring R/cR is simple if
and only if c is an Inv-atom.
(ii) Every Inv-atom is a product of similar bounded atoms.
(iii) If p is a bounded atom, then its bound p* is an Inv-atom whose atomic
factors are precisely all the atoms similar to p. Moreover, the eigenring K
of pR is a field and

R/p*R =M,(K), wheren =1(p*). 6)

Proof. 'We shall prove the parts in reverse order, beginning with (iii). Let p have
bound p* = a*b*, where a*, b* are non-unit invariant elements. Then p divides
either a* or b* and so has a smaller bound, a contradiction; thus p* is an Inv-
atom. By Theorem 2.1, p*R = Np’R, where p’ runs over all elements similar
to p, and here we can take a finite intersection. Thus R/p*R is a submodule of
(R/pR)N for some N > 1 (in fact p* is fully reducible by Proposition 3.5.12),
and since R/ pR is Tor-simple, every torsion submodule has the form (R/pR)"
for some n < N. Hence

R/p*R = (R/pR)", 0

asright R-modules. By comparing the lengths of composition series within Torg
we see that n = [(p*), and comparing endomorphism rings in (7), we obtain
the isomorphism (6), where K, the eigenring of pR, is a field by Schur’s lemma.

To prove (ii) let p* be an Inv-atom and let p be an atom dividing p*. Then p*
is the bound of p and as (5) shows, an atom divides p* precisely if it is similar
to p.

Finally, to prove (i), we see from (6) that for an Inv-atom ¢, R /cR is simple.
Conversely, if ¢ is invariant but not an Inv-atom, then R/cR has non-trivial
quotients and so cannot be simple. ]

We next look at the direct decompositions of R /a R, where a is bounded. Our
first task is to separate out the bounded components in such a decomposition;
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for this we need a definition and a lemma. Let us call two elements a, b of a
2-fir R totally coprime if no non-unit factor of a is similar to a factor of b, i.c.
if R/aR and R /bR have no isomorphic factor modules apart from 0.

Lemma 6.2.5. A bounded element in a 2-fir R can be comaximally transposed
with any element totally coprime to it.

Proof. Leta, b € R be totally coprime and suppose that a is bounded, with
bound ¢* = a,a,say. Thena™* and b are left coprime and hence right comaximal:
a*u — bv = 1. It follows that u’a* — bv = 1 for some u’ € R, thus v'aja —
bv =1, and so by Lemma 3.3.3, a, b are comaximally transposable. By the
symmetry of the situation, b, a are also comaximally transposable. |

Let a be any non-zero element in an atomic 2-fir R and take a complete
factorization

a=pipr...pr. (8)

Suppose that a bounded atom occurs in this factorization, say p;,, ..., p; are
all bounded similar atoms, while the remaining atoms in (8) are not similar to
pi,- By repeated application of Lemma 2.5 we can write a as

o ’o ’
a=pj,....ppPj---Pj>

where the p! but not the p} are similar to p;,. Bracketing the first k factors
together, and the last /#, we have a = bc, where b, ¢ are totally coprime and b,
like p;,, is bounded. Applying Lemma 2.5 again, we can write this asa = ¢'b/,
where b’ is similar to b and ¢’ similar to ¢. Therefore a = bc = ¢’b’ leads to a
direct decomposition of a (see Section 3.5):

aR =bRNR, R=»hR+R.

We now repeat this process with a replaced by ¢’ and eventually reach a direct
decomposition of a into products of pairwise similar bounded atoms and a
term containing no bounded non-unit factors. We shall call an element totally
unbounded if it has no bounded factor apart from units. So our result may be
stated as

Theorem 6.2.6. Any element a # 0 of an atomic 2-fir R has a direct decom-
position

aR=q¢;:RN...NqtRNuR, 9

where each q; is a product of similar bounded atoms, while atoms in different
q’s are dissimilar and u is totally unbounded. Moreover, the q; and u are unique
up to similarity, while uR is absent if and only if a is right bounded.
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Proof.  The existence of such a decomposition follows from what has just
been shown; only the uniqueness still remains to be proved. Now (9) gives rise
to a direct decomposition

R/aR=R/q1R®---®R/qiR ® R/uR.

Here the R/q;R are uniquely determined as the homogeneous components
corresponding to a given Tor-simple bounded isomorphism type, while R /uR
contains all Tor-simple submodules of unbounded isomorphism type. Moreover,
gi R is unique as the intersection of all pR 2 aR, where p runs over all atoms
bounded by g;. Clearly R/aR is bounded precisely when the last term R /uR
is absent. |

We note that neither u nor the ¢; are in general indecomposable in the sense
defined in Section 3.5. In the case of principal ideal domains this result, applied
to the terms of the decomposition in Theorem 1.4.10, leads to a strengthening
of that result:

Proposition 6.2.7. Let R be a principal ideal domain and M a finitely gener-
ated right R-module consisting of torsion elements. Then

M=R/q:1R®---®R/qR & R/uR,

where each q; is a product of pairwise similar bounded atoms, while u is totally
unbounded. The last term R/uR may be absent, this is so if and only if M is
bounded. [ ]

Let R again be an atomic 2-fir and consider an element ¢ € Inv(R). We
shall be interested in the decompositions of R/cR. Let us call ¢ € Inv(R) Inv-
decomposable if it has a factorization

¢ =ab, (10)

into non-unit invariant elements a, b that are left (hence also right) coprime;
otherwise c is Inv-indecomposable. Clearly c is Inv-indecomposable if and only
if cR = Rc is meet-irreducible, and when this is so, ¢ is a product of similar
atoms, by Theorem 2.6. For a bound element we have the following relationship
between its bound and that of its atomic factors.

Lemma6.2.8. LetR be anatomic 2-firandletq € R be bound with a complete
factorization g = py - - - p,, where all the p; are atoms similar to p. Then q* is
associated to p*", where r < n, with equality if and only if q is rigid.

Proof. The module R/gR has a submodule lattice that is modular of length
n. The action by p* reduces the length by at least 1, and by exactly 1 precisely
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when there is only one maximal submodule. By induction the action with p*”
reduces it to zero, hence ¢g|p*", and so ¢*|p*"; thus ¢* is associated to p*"
where r < n, and equality holds precisely when the submodules of R /¢ R form
a chain, i.e. when ¢ is rigid. [ ]

There is a simple relationship between Inv-indecomposable elements and
bounded elements that are indecomposable as defined in Section 3.5.

Proposition 6.2.9. Let R be an atomic 2-fir. Then

(i) an invariant element is Inv-indecomposable if and only if it is associated
to a power of an Inv-atom;

(ii) if ¢ € R is bounded and indecomposable, then its bound is Inv-
indecomposable, hence q is then a product of similar atoms.

Proof. (i) follows by Theorem 1.6. To prove (ii) let ¢ be bounded. By Theorem
2.6, g is a product of similar atoms, say ¢ = p; ... p,, where the p; are all
similar; they all have the same bound p*, say. By Lemma 2.8, ¢* = p*", where
r < n; this shows ¢* to be Inv-indecomposable. ]

Of course an unbounded indecomposable element need not be a product of
similar atoms, as the example xy in the free algebra k(x, y) shows. Further,
the converse of Proposition 2.9 (ii) is false, i.e. the bound of a decomposable
bounded element need not be Inv-decomposable; thus in Proposition 2.9 (ii),
q* itself may well be decomposable (see Exercise 4).

Let g be a bounded indecomposable element in an atomic 2-fir R; by Propo-
sition 2.9, its bound ¢* is Inv-indecomposable, say ¢* = p**,[(p*) = h. By
Theorem 2.4, R/p*R = K, where the field K is the eigenring of an atomic
factor of p*. Now R/p*R = Q/J(Q), where Q = R/q*R and J(Q) is the
Jacobson radical of Q. Since Q is Artinian (Theorem 2.3), we can lift the matrix
basis from R/p*R to R/q* R (see e.g. FA, Section 4.3), whence Q = L, where
L/J(L) = K, ie. Q is an Artinian matrix local ring over the scalar local ring
L. Note that L, like Q, is Artinian, hence it is completely primary (i.e. all its
non-units are nilpotent).

Now take a complete direct decomposition of R/q*R as right R-module.
The summands are necessarily cyclic; thus

R/ R=R/¢1\R®---® R/qR. 11

Since R/q*R = L; has a complete direct decomposition into /. isomorphic
right ideals, we see that k = A and all the R/g; R are isomorphic to R/qR.
Thus R/q*R = (R/qR)", as right R-modules. Since /(g*) = eh = hi(q), we
see that /(g) = e. The result may be summed up as
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Theorem 6.2.10. Inanatomic 2-fir R,letq € R be bounded indecomposable.
Express its bound q* as a power of an Inv-atom, say q¢* = p**. Then l(q) = e,
and if [(p*) = h, then

R/q*R = (R/qR)", (12)

as right R-modules, while as a ring, R/q*R is a full matrix ring over a com-
pletely primary ring:

R/q*R =M, (L), where L = Endgr(R/qR). m (13)

If ¢, ¢* are as in Theorem 2.10, then ¢*R is determined by the similarity
class of g as the annihilator of R /g R, while R/gR is determined by ¢* R as an
indecomposable part of R/¢*R. Hence we have

Corollary 6.2.11. In an atomic 2-fir, two bounded indecomposable elements
have the same bound if and only if they are similar. [ ]

Next we turn to the question of deciding when a given product of similar
bounded atoms is indecomposable. Let p* be an Inv-atom of length 4; for any
integer e > 0 we have by Theorem 2.10, on decomposing p*’,

R/p* R = (R/q.R)",

for some indecomposable element ¢, of length e. Thus ¢, is a product of e
atomic factors that are all similar. Conversely, if p is a bounded atom and p; is
similar to p fori =1,...,e,then g = p; ... p, is bounded by p*®, and if its
exact bound is p*¢, then ¢ is indecomposable. For if ¢ could be decomposed,
it would have a smaller bound, as we see by acting on R/gqR with p*. This
proves

Proposition 6.2.12. In an atomic 2-fir R, each bounded indecomposable ele-
ment is a product of similar atoms. If p € R is a bounded atom, then a product
q = pi1--.Ppe of atoms similar to p is indecomposable if and only if p*° is the
exact bound of q. Moreover, for any integer e > 1, a bounded indecomposable
element q, of length e exists such that

R/p*R = (R/q.R)", where h =1(p*). m (14)

The relation (14) yields the following result for factors of powers of an
Inv-atom:

Corollary 6.2.13. In an atomic 2-fir, if a has the bound p*¢, where p* is an
Inv-atom, then a direct decomposition of a has at most [(p™*) terms. [ ]
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If an element a has the bound p** and b has the bound p*/, then ab is
bounded by p*¢*/. Applying this remark to a product of similar bounded atoms,
we obtain

Corollary 6.2.14. In an atomic 2-fir, any factor of a bounded indecomposable
element is again bounded indecomposable. |

Now a product of atoms p; p; is indecomposable if and only if they cannot be
comaximally transposed. Hence any product ¢ = p; ... p, of bounded atoms
has no decomposable factors if and only if no pair of adjacent factors can be
comaximally transposed, i.e. if ¢ is rigid. By Proposition 2.12, two similar atoms
p, p’ with acommon bound p* are comaximally transposable if and only if pp’
does not divide p*. Thus we obtain

Corollary 6.2.15. Let R be an atomic 2-firandq = py ... p. a bounded prod-
uct of atoms. Then q is rigid if and only if all the p; have a common bound p*
and p;_1 p; does not divide p* fori = 2, ..., e. In particular, since p” is rigid,
p? does not divide p*. [ |

There remains the problem of finding which elements are bounded. We
shall confine ourselves to the case of an atomic 2-fir R. If p is an atom in
R, then K = Endg(R/pR) is a field and each element a of R defines a K-
endomorphism of R/pR by right multiplication. If the natural mapping R —
R/pRiswrittenx — X,thenthe K-endomorphismdefinedbyais p, : X — Xa.
We want to find an upper bound for the K-dimension of ker p,. Clearly,
ifa=ay...a, then p, = p4, ...ps and by Sylvester’s law of nullity for
fields,

dim ker p, < dim ker p,, + ...+ dim ker p,, . (15)

We claim that p, is injective when a has no factor similar to p. Thus assume
that Kerp, # 0; then there exists x ¢ pR such that xa € pR, say

xa=py (x¢pR). (16)

Since p is an atom, (16) is left coprime, hence a = p’a’, where p’ is similar to
p. This shows that p, is injective when a has no factor similar to p.

Suppose now that ¢ is similar to p; then any element x’ € R satisfying x'c =
py forsome y’ € R, while x’ ¢ pR, defines an isomorphism R/cR — R/pR,
and any two such isomorphisms differ by an endomorphism of R/pR, i.e. an
element of K; hence ker p, is one-dimensional in this case. Going back to (15),
we see that ker p, has a dimension at most equal to the number of factors of a
that are similar to p. Thus we obtain
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Theorem 6.2.16. Let R be an atomic 2-fir, p an atom in R and K =
Endgr(R/pR). Then for any a € R, the mapping p,:X +— Xa is a K-
endomorphism of R/pR and

dimg kerp, < m, a7

where m is the number of factors in a complete factorization of a that are similar
top. |

Suppose now that p is a right large atom of R. Then for any x ¢ pR there is
a comaximal relation
X p/ =p )C/ :
hence there exists p’ similar to p and annihilating ¥. Conversely, as we have
seen, any p’ similar to p annihilates some ¥, hence when p is right large and ¢
is any atom, then p, is injective if and only if g is not similar to p. We derive
the following consequence.

Let p be a right bounded atom of R, with right bound p* of length m. Then
p is certainly right large, and by (17),

dimg(R/pR) < m. (18)

If this inequality were strict, we could find a product of fewer than m factors
similar to p which annihilates R/pR, and hence by Theorem 2.1,

aR C N{p'R|p’ is similar to p} = p*R.

Thusa € p*R,but this contradicts the fact that/(a) < m = I(p*). Hence equal-
ity holds in (18). This shows that for a right bounded atom p, R/pR is finite-
dimensional (and, of course, p is right large). Conversely, if p is right large and
R/pR finite-dimensional over K, then p, is not injective for p’ similar to p
and by induction we can find ¢ € R* annihilating R/pR, hence p is then right
bounded. We thus obtain

Corollary 6.2.17. Let R be an atomic 2-fir. Then an atom p in R with eigenring
K is right bounded if and only if p is right large and dimg(R/pR) is finite.
Moreover, in this case we have

dimg (R/pR) = I(p*). "

Exercises 6.2

1°. Let R be an integral domain. Show that every bounded R-module is bound, but in
general the converse is false. For which class of domains does the converse hold
(for finitely generated modules)?
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10.

11.

12.

14.
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Let R be a principal right ideal domain and ¢ € R*. If N"dR # 0, where d runs
over all elements similar to right factors of ¢, show that ¢ is bounded. Show that
this no longer holds for firs, by taking R = k(x, y), c = x.

. (G. M. Bergman) If R = k(x, y), show that by taking @ = x in Theorem 2.1,

we have I = xR, while for a = xy + 1, = 0. (This example shows that the
hypothesis on a, to be right large, cannot be omitted.)

(Jacobson [43]) Let K be a field of finite dimension over its centre and « an
automorphism of K such that «” is inner for some » > 1. Show that every non-
zero element of the skew polynomial ring K [x; o] is bounded; illustrate this fact
in the complex-skew polynomial ring C[x; —]. Give an example of a product of
similar bounded atoms that is decomposable in the sense of Section 3.5.

. Show that for a bounded element in an atomic 2-fir R, ‘left indecomposable’ =

‘indecomposable’ (see Section 3.5). If ¢ is such an element, show that ¢ is rigid.
Find an integral domain with an element a that is left and right bounded but not
bounded.

(Beauregard [74]) Let & be a field with an endomorphism « that is not surjective;
denote by F' = k[[x; «]] the skew power series ring with coefficients on the right
and cx = xc® (asusual) and G = F[[y; a]] the power series ring with coefficients
on the left and yc = ¢*y. Verify that xy is in the centre of G, and show that any
two elements in G have a LCRM and LCLM, but G is not a 2-fir. Show that x and
y are bounded and find their right bounds. Show also that (4) does not hold for
a=ux.

Let R be any ring and ¢ an invariant element of R. Show that for any @ € R the
following are equivalent: (i) a is left bounded and a left factor of ¢, (ii) a is right
bounded and a right factor of ¢, (iii) a is a left and a right factor of c.

. Let R be an atomic semifir and m, n > 1. If p is a bounded atom in R,,, show that

its bound p* is an Inv-atom of R whose atomic factors in R,, are precisely the
atoms of R, stably associated to p. Show that the eigenring of p is a field K, say,
and R,/p*R, = K,,, where r = [(p*). Deduce that every bounded atom of R, is
stably associated to an element of R.

Let R be a fir with infinite centre and put S = R,,. Show that any atom p in S with
eigenring K is right bounded if and only if S/pS is simple as right S-module and
dimg (S/pS) is finite.

Let R be an atomic 2-fir and ¢ an invariant element of R. Show that R/cR is
semisimple if and only if ¢ is not divisible by the square of any Inv-atom.

Let R be a ring and for any R-module M define the tertiary radical (of 0 in M)
as the set of all x € R that annihilate a large submodule of M. If R is an atomic
2-fir and c¢ is bounded in R, find conditions for R/cR to have a tertiary radical
of the form bR D cR. If ¢ is indecomposable, show that b = p*, where p* is the
Inv-atom corresponding to c.

. Let R be a non-simple principal ideal domain. Show that the quotient by any

maximal ideal is simple Artinian.

(Jategaonkar [69a]) For any commutative field k let F = k(%,,,), where m <
n,m,n =1,2, ... withthe automorphism« : t,, , = tyy1,ifm < n,andt,, —
t1.,. Show that the skew polynomial ring F[x;«] has Inv-atoms of all pos-
itive degrees and hence has homomorphic images of the form 91,(C) for
alln > 1.
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15*. (G. M. Bergman) Let R be an n-fir and M a finitely related bounded R-module on
fewer than n generators. Show that M is a torsion module. (Hint: Use Theorem
2.3).

6.3 2-Firs with prescribed centre

This section is devoted to proving the converses of Corollary 1.3 and Theorem
1.11, in the following strong form: every integrally closed domain (resp. Krull
domain) occurs as the centre of some Bezout domain (resp. principal ideal
domain). Since every Bezout domain is a 2-fir, and every principal ideal domain
is an atomic 2-fir, this, with Theorem 1.11, completely characterizes the centres
of (atomic) 2-firs.

The proof proceeds in two stages.

(i) Given a commutative integrally closed domain C, we construct a com-
mutative Bezout domain A with an automorphism of infinite order whose fixed
ring is C; further, when C is a Krull domain, A can actually be chosen to be a
principal ideal domain.

(i) Given a commutative Bezout domain A with an automorphism « of
infinite order, we construct a Bezout domain containing A, whose centre is
precisely the fixed ring of «. Moreover, when A is a principal ideal domain, the
ring containing it can be chosen to be principal.

It is convenient to begin with (ii). The two cases considered require rather
different treatment, and we therefore take them separately.

Proposition 6.3.1. Let A be a commutative Bezout domain with field of frac-
tions K and an automorphism o of infinite order and denote by C the fixed
ring of o acting on A. Then the ring R = A + xK[x; ] is a Bezout domain
containing A, with centre C.

Proof. The automorphism « of A extends in a unique way to an automorphism
of K, again denoted by « (see Theorem 0.7.8). Now form the skew polynomial
ring S = K [x; «] and let R be the subring of all polynomials with constant term
in A, thus R = A 4 xS. That R is a subring is clear; we claim that it has the
desired properties. In the first place, if f = " x'q; lies in the centre, then for any
be A, fb = bf, and on equating coefficients we find that a;b = a,»b"‘i. Now
foreachi > O there exists b € A such that b* # b, hence a; = 0 fori > 0 and
f = ao. Further, the equation fx = xf shows thataj = ag,so f =ap € C, as
claimed.

It remains to show that R is Bezout. Let f, ¢ € R; we must show that fR +
gR is principal, and here we may assume that f and g have no common left
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factor of positive degree in x, for if f = df;, g = dg; in S, then on multiplying
f1, g1 by a common left denominator of their constant terms, say e € A and
right multiplying d by e~!, we have reduced the situation to the case where
f1, 81 € R.Now if fiR + giR = hR has been established, then fR + gR =
dhR. By looking at the highest common left factor of f, g in K [x; o] we find
polynomials u, v in the latter ring such that fu — gv = 1. On multiplying up
by a suitable element of A we obtain an equation

fu—gv=y, whereu,veR,yecA™. (1)

If the constant terms of f, g are A, u respectively, say f = A + fo, ¢ = 1 + go,
where fy, go have zero constant term, then A = f — y(y ' fo) € fR + gR by
(1), and similarly 4 € fR + gR. Since A is Bezout, ALA + nA = §A for some
8 € A.Now fj and go, having zero constant term, are left divisible by §, hence
f> & € 8R. On the other hand, § e AA 4+ A € fR + gR;hence fR+ gR =
SR. Thus the right ideal of R generated by any two of its elements is principal;
by symmetry so is the left ideal generated by them, and it follows that R is a
Bezout domain. |

By combining this result with Corollary 1.3 we get

Corollary 6.3.2. The fixed ring of an automorphism of infinite order acting
on a commutative Bezout domain is integrally closed. |

Of course this result can also be proved directly (see Exercise 1).

Proposition 6.3.3. Let A be a commutative principal ideal domain with an
automorphism a of infinite order, and denote by C the fixed ring of a acting
on A. Then the ring of skew formal Laurent series R = A((x; a)) is a principal
ideal domain containing A, with centre C.

Proof. Weform thering R = A((x; «)) of formal Laurent series f = Y x'a;,
where a; € A and a; = O for i less than some k depending on f, with the com-
mutation rule ax = xa®. The verification that the centre of R is C is as before:
the equations fb = bf show that f = ap andnow fx = xf showsthatay € C.
It remains to show that R is a principal ideal domain.

Given aright ideal a of R, the leading coefficients of elements of a will form
a right ideal a* of A that must be principal, so we can choose f € a such that
the leading coefficient of f generates a*. Let K be the field of fractions of A;
then K ((x; @)) is a field in which f~'a is a right R-submodule that contains 1,
hence

fla2R, )
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and the leading coefficients of all members of f~'a lie in A. We claim that
equality holds in (2); for if not, then f~'a would contain an element with a
coefficientnotin A. By subtracting an appropriate member of R, we would obtain
a member of f~'a with leading coefficient not in A, which is a contradiction.
Thus equality holds in (2) and so a = fR. [ ]

We remark that we have to assume that A is principal even to show that R
is Bezout. In fact, if we perform the construction with a Bezout domain A, we
do not generally get a Bezout domain. Using Theorem 1.11, we again have a
corollary (which, as before, can be proved directly).

Corollary 6.3.4. The fixed ring of an automorphism of infinite order acting
on a commutative principal ideal domain is a Krull domain. [ ]

We now come to step (i) of our programme. This is in effect the converse of
Corollaries 3.2 and 3.4.

Proposition 6.3.5. Every integrally closed commutative integral domain
occurs as the fixed ring of an automorphism of infinite order acting on a com-
mutative Bezout domain.

Proof. We first give the basic construction that will in characteristic 0 produce
the required ring, and then show how to modify it to get the full result.

Let C be the given domain and KX its field of fractions. By hypothesis, C =
NK,, where v ranges over the family V of all general valuations defined on C.
We form the polynomial ring K [¢] in an indeterminate 7. Each v € V can be
extended to K [¢] by putting

v (Z tiai) = min; {v(a;)}.

We assert that this is again a valuation. The rule v(a — b) > min{v(a), v(b)}
is clear; to show that v is multiplicative, let a = " t'a;,b =Y t/b; and let
a,, by be the first coefficient attaining the minimum v(a), v(b) respectively. The
product ¢ = ab has coefficients ¢y = Y_ a;br—; and v(cy) > v(a,) + v(by), with
equality holding for k = r + s, as is easily verified. Thus v is a valuation on
K [¢] and in fact can be extended to a valuation, again denoted by v, of the field
of fractions K (). We now define

A =NK(t),, where v rangesover V.

Thus A consists of all fractions f/g, f, g € C[t],suchthatv(f) > v(g)(v € V).
A is sometimes called the Kronecker function ring.

We claim that A is a Bezout domain: given two elements of A, on multiplying
by a common denominator, we may take them to be f, g € C[¢]. Now take
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any n greater than the degree of f in ¢ and form 7 = f + t"g. Then clearly
v(h) < v(f),v(g), hence f/h,g/h € Aandso fA+ gA = hA.

Consider the map « of K[¢] defined by f(¢) — f(¢ + 1). This is an auto-
morphism, clearly v(f (¢t + 1)) > v(f(¢)) for any v € V, and by writing down
the same inequality with —1 in place of 1, we see that v(f*) = v(f), hence «
extends to an automorphism of A. We observe that « is of infinite order precisely
when K has characteristic 0. In that case the fixed field of « acting on K (¢) is
K, hence the fixed ring of « actingon A is K N A = C, as required.

For a proof that works in all cases, we modify our construction by starting, not
with K [t], but with K[...,7_1, t, t1, . . .] with countably many indeterminates.
As before, we get a Bezout domain, and for our automorphism o we use instead
of the translation ¢ + ¢ + 1 the substitution ¢, — t,,. Clearly this is of infinite
order and the fixed ring in the action on K (..., 7_y, o, t1, . ..) is K, hence the
fixed ring of A is C. Thus A is a Bezout domain with an automorphism of infinite
order whose fixed ring is C. |

Suppose now that C is a Krull domain. Let K be its field of fractions and V
the family of valuations defining C. We form A as in the proof of Proposition
3.5, using the family V instead of the family of all valuations. Then it follows
as before that A is a Bezout domain with fixed ring C. We claim that now A is
in fact a principal ideal domain. Givena € A, itis clear that v(a) # O for only
finitely many v, say vy, ..., v,. Now for any factor b of a, 0 < v(b) < v(a) for
allv € V,andif b’ € Ais such that v(b) = v(b’) forall v € V, then b and b’ are
associated. Hence there are only finitely many classes of factors of a, therefore
A is atomic and so is a principal ideal domain. This proves

Proposition 6.3.6. Every Krull domain occurs as the fixed ring of an automor-
phism of infinite order acting on a commutative principal ideal domain. |

Putting all the results of this section together, we obtain

Theorem 6.3.7. Every integrally closed integral domain occurs as the centre
of a Bezout domain; every Krull domain occurs as the centre of a principal
ideal domain. |

Exercises 6.3

1. Give adirect proof (e.g. by valuation theory) that the fixed ring of an automorphism
acting on acommutative Bezout domain R is integrally closed, and is a Krull domain
when R is a principal ideal domain.

2*. Does Proposition 3.1 still hold when the automorphism has finite order?
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3. Examine why the proof of Proposition 3.1 fails for principal ideal domains and that
of Proposition 3.3 fails for Bezout domains.

4. Inthe proof of Proposition 3.5, if K has finite characteristic, complete the argument
by taking in place of K [¢] the ring K [¢, t'/?, t'/*, .. ] with automorphism ¢ > 2.
Alternatively, use the ring K [s, £, s~!, t~!] with automorphism s > ¢, t > st.

5. Verify that for any commutative field k, the polynomial ring in countably many
indeterminates k[xp, xp, ...] is a Krull domain, but not Noetherian. Deduce the
existence of a Noetherian domain with a non-Noetherian centre.

6. Show that the centre of a 2-fir with right ACC, is a Krull domain.

7°. Which commutative rings occur as the centres of Sylvester domains? (In view
of Theorem 3.7 this asks whether the centre of a Sylvester domain is necessarily
integrally closed.)

6.4 The centre of a fir

The results of Section 6.3 give a complete description of the possible centres
of principal ideal domains or Bezout domains, as well as some information on
the centres of 2-firs, but they leave open the question whether, for example, any
Krull domain can occur as the centre of a genuine, i.e. non-Ore, fir. As we shall
see, once we assume that our rings are non-Ore, the centre is very much more
restricted. Thus the centre of a non-Ore fir is necessarily a field. More generally,
this conclusion will hold for any non-Ore 2-fir with right ACC,.
For the proof of the main result we shall need a technical lemma.

Lemma 6.4.1. Let S be a simple Artinian ring. Then

(i) every right ideal of S is principal, with an idempotent generator,
(ii) ifaS = bS(a, b € S), then a and b are right associated,
(iii) if a, b € S are right comaximal, then a + by is a unit for some y € S,
(iv) given a, b € S, there exist d , ay, by € S such that a = da,, b = db; and
ay, by are right comaximal.

Proof. (i) and (ii) are an easy consequence of the fact that S is semisimple.
It follows that every element is right associated to an idempotent. Thus to
prove (iii) we may assume that 5> = b. Suppose thatas + bt = 1; we have a =
(1 — b)a + ba, hence on substituting, we find that (1 — b)as + bas + bt =1,
i.e.

blas+1t)+ (1 —bas=1=b+ (1 —b).
Since bS N (1 — b)S = 0, it follows that (1 — b)as = 1 — b; hence

1-=b0)S=0-=>b)asS <1 —->b)aS < (-0>)S,
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and so (1 —b)S =(1 —b)aS. By (ii), (1 —b)a = (1 —b)u for a unit u;
therefore u = (1 — b)u + bu = (1 — b)a + bu = a + b(u — a), which is the
required form.

(iv) By (i),aS + bS = eS,where > = e.Now aS + bS + (1 — e)S = eS +
(1—e)S =S, so by (iii), a + bx + (1 — e)y is a unit for some x,y € S. Put
ai=a+ (1 —e)y,by =b;thena; + bixisaunitand a = ea;,b = eb;. N

We can now prove the main result of this section.

Theorem 6.4.2. Let R be an atomic 2-fir with right ACC, that is not right
Ore. Then every invariant element of R is a unit, in particular, the centre of R
is a field.

Proof.  Suppose that R satisfies the hypotheses and contains a non-unit invari-
ant element c. If we choose ¢ such that cR is maximal (by right ACC,), then
S = R/cR is simple Artinian, by Theorem 2.3. Further, R contains a maximal
ideal of rank 2, say xR @ yR. If the elements of S corresponding to x, y are
written X, y, then by Proposition 4.1 (iv) there exist e, a, b € S such that a, b
are right comaximal and X = ea, y = eb. By (iii) a + bz = u is a unit for some
z € S, hence

—u~'p

(ea eb) (; (1)> = (eu eb), (eu eb) <(1) |

):(eu 0). (1)

The elementary matrices written lift to elementary matrices over R, so there
exists P € E»(R) such that (x, y)P = (v, w), where w = 0, sothat w € cR =
Rc, say w = sc. Now

XR®yR=vR®wR =vR ®scR CvR + sR;

here vR + sR has rank 2, for otherwise we would have vp = sq # 0 and so
v(pc) = sqc = scq’ = wq’ # 0, which contradicts the fact that vR N wR =
0. So vR + sR has rank 2, and vR +sR 2 xR + yR by (1), so vR + sR =
XR + yR, by the maximality of the latter. Therefore s € vR + scR, say s =
vm + scn; it follows that

s(1 —cn)=zm e sRNvR =0,

hence 1 — c¢n = 0, and this shows that ¢ is a unit. Now the rest follows easily.
|

This result applies in particular to firs that are not right Ore, or equivalently,
not right principal, so we obtain

Corollary 6.4.3. LetR be afir that is not a principal right ideal domain. Then
every invariant element of R is a unit, in particular the centre of R is a field. R
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Finally we record, for later use, the form taken by the centre of the field of
fractions of a principal ideal domain.

Proposition 6.4.4. Let R be a principal ideal domain, K its field of fractions
and C the centre of K. Then C consists of all elements of the form ab™', a,
b € R, such that b #~ 0 and

axb = bxa forallx € R. 2)

Proof. If ab™! € C, then ab™'y = yab~! for all y € K, hence on writing
y = bx we obtain (2). Conversely, when (2) holds, then ab = ba, hence in
K,ab~!' = b~'q centralizes R and so also K. [ ]

Exercises 6.4

1. LetR be any ring, a a right ideal maximal among non-finitely generated right ideals
of R and let ¢ be an invariant element not in a. Show that a N cR = ac.

2. (Goursaud and Valette, [75]). Show that if R is right hereditary and ¢ an invariant
element of R, then R /cR is right Noetherian. (Hint: Use a dual basis.)

3. Let R be a right hereditary integral domain, but not right Ore. Show that R has no
non-unit invariant elements.

4. Show that the subring of Q(x, y) consisting of all elements in which the constant
term has odd denominator is a non-Ore semifir with non-unit central elements.

5°. Determine the possible centres of 2-firs with right ACC,.

6. Show that the subalgebra of k(x, y, y~!) generated by x, y, y~"x is a non-Ore right
fir with the right invariant non-unit y (see section 2.10).

7. Let K be a field with a non-surjective endomorphism «. Show that K [x; «] is a fir
that is not left Ore and has the right invariant element x.

8. Show that the subalgebra of k(x, y, y~') generated by y and y"xy™"(m,n >
0) is a semifir, neither left nor right Ore, and with the non-unit invariant
element y.

9°. Does there exist a left fir that is not right Ore, with a non-unit right invariant element?
Consider the same question for a fir that is not left or right Ore.

6.5 Free monoids

Before discussing subalgebras of free algebras it is helpful to look at free
monoids, where we shall meet the same problems, but in a simplified form, since
there is only one operation. It is particularly instructive to see what becomes of
the weak algorithm in monoids; as we saw in Section 2.5, the weak algorithm
may be used to characterize free algebras, and below we obtain a corresponding
result for free monoids.
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The free monoid on a set X is denoted by X*. Each element of X* may
be written as a finite sequence of elements of X — with the empty sequence
representing 1 —and multiplication consists of juxtaposition. Clearly this repre-
sentation of elements is a normal form; moreover, 1 is the only unit in X*, and
since it has cancellation, it is conical (see Section 0.9). We shall see in a moment
that X* is rigid, i.e. it has cancellation and ab’ = ba’ implies that @ € bX* or
b € aX*. Further, X is the precise set of atoms in X*; thus the generating set
X is uniquely determined in terms of the monoid structure on X*. It is this fact
that accounts for the simplicity of the theory.

Theorem 6.5.1. A monoid S is free on the set X of its atoms if and only if it is
generated by X and is conical and rigid.

Proof. Let S be free on X; clearly S is generated by X, it is
conical and has cancellation. If ab’ = ba’, express a,b,a’,b’ in terms
of X,say a=x1...x.,b=y,...¥,d = Ysq1... Y, b’ = Xp11...Xp; then
X{...Xm = Y1 ...y, and since S is free on X, we have m = n and y; = x;, so if
r < s say, then b = ac, where ¢ = x, 1 ... x,; thus S is rigid.

Conversely, assume that the conditions hold. It will be enough to show that
any element of S can be written in just one way as a product of elements of X.
For any a € S there is at least one way of so expressing a; suppose that

a=Xx{...Xp=Y1...Yn, Xi,yj€X. (D)

By rigidity, x; = y;b or y; = x;b for some b € S, say the former holds. Since
X1, y; are atoms, b must be a unit and so b = 1, i.e. x; = y;. Cancelling the
factor x; and applying induction on max(m, n), we find that the two expressions
for a in (1) agree, so S is indeed free on X. [ ]

Here the length of a, i.e. the number of factors in a complete factorization of
a, is usually denoted by |a|. We see that when |a| > |b|, then ab’ = ba’ implies
that @ = bc for some ¢ € S.

Theorem 5.1 may be used to give criteria for a submonoid of a free monoid to
be free. Consider, for example, the free monoid on one free generator x (the free
cyclic monoid). The submonoid generated by x? and x* is commutative; if it
were free, it would be cyclic, which is clearly not the case. Below we shall obtain
aresult that makes it easy to find other examples of non-free submonoids of free
monoids. In any monoid we define anideal as asubset T suchthataT UTa C T
for all a (as for rings) and an anti-ideal (also called a stable subset) as a subset
T such that a € T whenever ab, ca € T for some b, ¢ € T, thus

TT'NnT'T CT. ()
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We first record some conditions for a submonoid to be an anti-ideal:

Proposition 6.5.2. For any monoid S and submonoid T the following condi-
tions are equivalent:

(a) T is an anti-ideal in S,
(b) foralla € S\T,aT NTaNT = @.
(c) foralla € S,b e T,ifab,ba € T,thena €T.

Proof. (a)= (b).IfT isananti-idealanda € S\T,theneitheraT NT = Jor
TaNT = @,hence (b) holds. Next assume (b) and suppose thatb, ab, ba € T.
Then ab?a € aT N Ta N T; hence this set is non-empty and by (b), a € T,
which proves (c). Now (c) = (a) is clear. [ |

We also note the following property of anti-ideals:

Corollary 6.5.3. Let S be a monoid and T a proper anti-ideal in S. Then T
contains no ideal of S.

Proof. Letabeanidealof S.Ifa C T,takea € aandb € S\T; thenab, ba €
T ,hence b € T, which is a contradiction. [ ]

Now the following result provides a supply of non-free submonoids in free
monoids:

Theorem 6.5.4. Let S be a conical rigid monoid. Then for any submonoid T
of S the following three conditions are equivalent:

(a) T is rigid;

(b) T is an anti-ideal in S;

(c) given a,b, b’ € T, if ab’ = ba, then a = bc or b = ac for some c € T.
Moreover, if S is generated by its atoms, it is free and these conditions are
equivalent to

(d) T is free.

Proof. (a) < (b). Letas = b,sa’ = b', where a,a’, b, b’ € T; then asa’ =
ba’ = ab’, hence by (a), a = bc or b = ac for some ¢ € T. If a = bc, then
a=ascandsos =c = 1.If b = ac,thenas = ac and so s = c. In either case
s € T, and (b) follows. Now assume (b) and let ab’ = ba’. By rigidity of S,
one of a, b is a right multiple of the other, say a = bc, a’ = cb’, where ¢ € S.
Hence c e TT~' NT~!T, and so ¢ € T by (b), showing T to be rigid, i.e. (a)
holds.

(a) & (c¢). Clearly (a) = (c); conversely, let ab’ = ba’; then b'a.b’'b =
b'b.a’b, so by (c), either b’a = b’'bc or b'b = b'ac for some ¢ € T, and by
cancelling b’ we obtain (a).
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(d) & (a) Clearly (d) = (a). If S is generated by its atoms, it is free by
Theorem 5.1; now T is also generated by its atoms and so if (a) holds, then it is
free, i.e. (d) holds. [ |

We note that whereas (b) refers to S, (a) and (c) are intrinsic in 7. In a
free monoid, let us associate with every element u ## 1 the shortest element
of which it is a power (the ‘least repeating segment’) and call this the root of
u. For example, xyxyxy has the root xy. Every element u # 1 has a unique
root, which may also be characterized as an element of the shortest positive
length commuting with u#. From the criteria of Theorem 5.4 we easily obtain
the following result, whereby a free subset of a monoid we understand a free
generating set of the submonoid generated. A corresponding definition applies
to free subsets of an algebra.

Corollary 6.5.5. In a free monoid S the following conditions on a pair of
distinct elements a, b different from I are equivalent:

(a) {a, b} is a free subset of S,
(b) ab # ba,
(c) a, b have distinct roots.

Proof.  If (c) fails, we have a = u", b = u’, hence ab = ba and (b) fails. If
(b) fails, so does (a) and finally, if a, b are not free, then there is a non-trivial
relation that after cancelling common left factors reduces to

av = bw, 3

where v, w are words in @, b. Suppose that |b| < |a|; then by rigidity, a = bc
for some ¢ € S. Since a # b, we have ¢ # 1 and (3) can be replaced by cv = w
and v, w are words in b, c. This relation is still non-trivial; by induction on
|a| + |b| it follows that b, ¢ have the same root, hence so do a, b. [ |

This result shows that commutativity is an equivalence relation on the set of
elements different from 1 in a free monoid, and each equivalence class, with 1
adjoined, is a free cyclic monoid.

In Section 2.4 we saw that the free algebra k(X) may also be defined as the
monoid algebra of the free monoid on X, kX *. The weak algorithm holding in
the free algebra may be regarded as the analogue of rigidity and it is clear that
any free submonoid T generates a free subalgebra kT, though of course, not
every free subalgebra of k(X)) is of this special form. We shall briefly consider
free generating sets of free submonoids; this is part of the theory of codes, an
interesting recent application of semigroup theory, but an extended treatment
would go beyond the framework of this book (see FA, Chapter 10; also Lothaire
[97], Berstel and Perrin [85], Lallement [79]).
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Let X be a finite set; as before, we denote the free monoid on X by X* and we
put X = X*\{1}. A subset Y of X is called a code if it is a free generating set
of the submonoid it generates. For example, if X = {x, y}, then {x, xy, xy2} is
acode, asis {y, yx, yzx}, but {x, xy, yx}isnot, because x.yx = xy.x. Itis also
clear why 1 has to be excluded from a code. Suppose that Y is a subset of X ™
that is not a code; then we have an equation between two distinct words in the
elements of Y and by cancellation we may take this to be of the form yu = y'v,
where y, ¥y’ € Y, y # y'. By the rigidity of X* we have y = y’z or y’ = yz for
some z € X*, say the former holds. Then we say that y’ is a prefix of y. A subset
Y of X* is called a prefix set if no element of Y is prefix of another, and what
has been said shows the truth of

Proposition 6.5.6. Every prefix set # {1} in a free monoid is a code. [ |

For this reason a prefix set # {1} in a free monoid is also called a prefix
code. Suffix sets are defined by left-right symmetry; apart from {1} they are
again codes, e.g. {x, xy, xy?} is a suffix set, but not a prefix set. Prefix codes
are of particular interest in coding theory since any ‘message’ in a prefix code
can be deciphered reading letter-by-letter from left to right (this is also known
as a ‘zero-delay code’). By contrast, if a code is not prefix, one may have to
read arbitrarily far to decipher a message, e.g. {xy, yx, z, zx} is a suffix set, but
to decipher a message of the form zxyxyxy ... one has to read to the end, to
see if it ends in xy or yx.

Let X be a set of r elements; then X * contains r” words of length n. We shall
again write |u| for the length of u, and for any subset Y of X define its weight
(possibly 00) as

p(y=73 r. @
yeY

Writing X" for the set of all words of length nin X*, we see that (Y N X") may
be regarded as the ‘weight’ of Y N X" as a fraction of u(X") = 1; in particular,
pn NX" <l

If Y is finite and 1 ¢ Y, then

pn(¥) < max{ly|ly € Y}, &)

for if the right-hand side has the value N, thenY € X U X2U...uUxN.
For any two subsets ¥, Z of Xt let YZ = {yz|y € Y, z € Z}; then

nY Z) < u(¥Y)u(2), 6)

and when the right-hand side is finite, equality holds if and only if each member
of YZ factorizes uniquely as yz, where y € Y, z € Z. In particular, for a code Y
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we have

p¥" =pn¥), n=12... )
We can now state a necessary condition for a subset of X to be a code:

Theorem 6.5.7. Let X be a finite set. If Y is a code in the free monoid X*, then
w) < 1. 3)

Proof.  Suppose first that Y is finite, say max{|y||y € Y} = N. Then by (7)
and (5),

w¥)Y' =u@" <nN, foralln>1.

Hence u(Y) < (nN)"/" and letting n — oo, we obtain (8). Since any subset of
a code is again a code, the result follows for all finite subsets of a code, and by
passing to the limit we see that it holds generally. |

Remarks. 1.IfY = {y1, y2, ...}, where |y;| = n;, then (8) takes the form (Kraft—
McMillan inequality):
Yol ©)

This necessary condition is not sufficient for Y to be a code, but when it holds, we
can always find a prefix code with elements of lengths 71, n,, . .. (see Exercise
16).

2. A maximal code is a code that is not a proper subset of any code. By
Theorem 5.7 we see that any code Y such that u(Y') = 1 is necessarily maximal,
e.g.if X = {x, y},then {x, xy, xy2, y3} or {x, xy, xy?, ...} are maximal codes.

Theorem 5.7 has an analogue for free algebras, which we shall now derive.
For any subset Y of k(X )\k let us define the weight as

—deg vy
p(ry =y rotey,
yeY
To get a measure for the elements of degree 1, we need to take a basis (rather
than the set of all elements); so to obtain an analogue of (7) we shall assume

that Y U {1} is k-linearly independent. Then (7) also holds for Y; further, we
have

u(Y) < max{deg yly € ). (10)

For suppose the right-hand side of (10) is V and take the set of all monomials to
be lexicographically ordered. If y, y' € Y have the same monomial as leading
term, we can replace y’ by y' — ay, with @ € k chosen so that y’ — @y has
smaller leading term than y’. By repeating this process if necessary, we can
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bring Y to a form where no two elements have the same monomial as leading
term, and the process cannot decrease (Y '); moreover, the linear independence
of Y U {1} is preserved. Thus

N
w@) = Zr‘degy < Zrir_i =N,

and this proves (10). With these preparations we can state
Theorem 6.5.8. IfY is a free subset of k(X), then u(Y) < 1.

Proof.  Asin Theorem 5.7 it is enough to consider the case where Y is finite,
say max{deg y|y € Y} = N. Since Y satisfies (7), we have u(¥Y") = u(¥Y)" and
by (10), u(Y") < nN, so as before we find u(¥Y) < 1. [ ]

We conclude this section by considering another monoid associated with
rings. In any ring R the two-sided ideals form a monoid under the usual multi-
plication

ab = [Za,-bim,- cabc b}.

It is easy to verify that for principal ideal domains this monoid is free abelian
(Exercise 17). We shall show that for a fir it is a free monoid in most other
cases.

Theorem 6.5.9. Let R be a fir that has no non-unit right invariant elements
or no non-unit left invariant elements. Then the ideals of R form a free monoid.

If, as seems plausible, every fir with a non-unit right invariant element is
right principal, the conclusion of Theorem 5.9 holds for all firs that are not left
and right principal, but it is not known whether this is the case (see Exercise
4.9).

Proof. 'We have to verify the conditions of Theorem 5.1, and we shall pro-
ceed in a number of steps. Some of the properties actually hold under weaker
assumptions.

(1) If R is a right fir, a a non-zero right ideal and b, b’ any left ideals, then
ab=ab' = b="0"

Proof. If we write a = @a; R, then the equation ab = ab’ becomes ®a;b =
@a;b’; equating cofactors of a; we find b = b'. ]

(i1) Let R be a right fir and a, b ideals of R satisfying a + b = R, ab = ba.
Then either a or b is principal as right ideal of R. Hence if R has no non-unit
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invariant elements, then
a+b=R,ab=ba=a=Rorb=R. (11)

Proof. If a = R or b = R, there is nothing to prove, so assume the contrary.
WehaveaNb = (aNb)(a+b) € ab+ ba S anb,henceaNb = ab, and by
the second isomorphism theorem,

R/b=(a+b)/b = a/ab. (12)

Now a is free as right R-module, say a = @;a; R; hence a/ab = @; R /b. Since
the left-hand side of (12) is finitely generated, the right-hand side must be so
too, hence I is finite, i.e. a is finitely generated. By symmetry the same holds
for b. Let a, b have ranks p, g respectively; then by comparing characteristics
in(12) wefind 1 —g = p(1 —¢g), hence (p — 1)(g — 1) =0andso p=1or
q = 1, i.e. either a or b is principal.

Now the second assertion follows because any ideal that is principal as right
ideal has a right invariant generator. |

(iii) Let R be a fir that has no non-unit right invariant elements or no non-unit
left invariant elements. Then the monoid of non-zero ideals of R is rigid.

Proof.  Assume that R has no non-unit right invariant elements, say. Let
a, b, a/, b’ be non-zero ideals such that

ab’ = ba'. 13)

We have to find an ideal ¢ such that a = bc or b = ac. Suppose firstthata + b =
R and o’ + b" = R. Then

b’ =ab' +bb' =ba +bb' =b,

and similarly a’ = a. Hence ab = ba and since R has no non-unit right invariant
elements, it follows by (ii) that a = R or b = R. Note that in (13) we only had
to assume that a, b are right ideals and o', b’ left ideals, since this together with
the equalities a = o/, b = b’ is enough to make them two-sided.

Next assume merely that a +b = R and let ' + b’ = ®;Re;. Pick i’ € I
and let 7 : @;Re; — R be the left linear functional ‘left cofactor of ¢;;.” Then
adm 4+ b6'r = Randa.b/wr = b.a'w, where a’7r, b’7 are not both 0, hence neither
is 0. By the previous case we can find an ideal ¢ such that a = bc or b = ac.

Finally the general case can be reduced to the case just considered by putting
at+b=@&;fR. |

(iv) Let us write a < b to mean a = cb, where ¢ # R. Every left fir satisfies
ACC for two-sided ideals, with respect to ‘<’.
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Proof.  Suppose that we have a strictly ascending chain
0#byg<by <by<..., (14)
say b;_; = a;0;. Then bg = a;b; = ajaxb, = ..., hence
bp CNay...aq,,

but the intersection on the right is 0, by Theorem 5.10.4, whereas by # 0. This
contradiction shows that (14) must break off. [ ]

(v) In any fir, every non-zero ideal is a product of atoms (in the monoid of
non-zero ideals).

Proof. By the left-right analogue of (iv) any proper ideal a has a maximal left
factor p; : a = p;a; say. If a; is proper, it has a maximal left factor p,, giving
a = pipoay, and by (iv) this process must terminate; when it does, we have the
desired expression of a as a product of atoms. |

This completes the proof of (v) and with it, of Theorem 5.9. |

Exercises 6.5

1. Show that any retract of a free monoid is free.

2. Use Theorem 5.4 to find a procedure for reducing a finite subset Y of a free monoid
to a set Y’ such that (i) Y and Y’ generate the same submonoid T and (ii) if T is
free, then Y’ is a code.

3. LetS = {0, 1, x} with multiplication x> = 0. Show that S is generated by {x} and
is conical and rigid (save for cancellation) but not free.

4. Let F be the free group on a finite set X and let X* be the submonoid generated
by X. Classify the submonoids between X* and F. Does this set of submonoids
satisfy ACC? (Hint: Consider S, = {x,x"y}*,n =0,1,....)

5. Show that every submonoid of a free monoid has a unique minimal generating
set, consisting of its atoms.

6. Show that in a free monoid, the set of palindromes (i.e. fixed elements under the
order-reversing anti-automorphism) of even length generates a free submonoid,
with a prefix code as generating set. What about the set of all palindromes of
length nk (n = 1,2, ...) for a fixed k?

7. Show that the intersection of any family of free submonoids of a free monoid
is free. Show more generally that in any conical cancellation monoid, any non-
empty intersection of rigid submonoids is rigid, but that neither of the conditions
‘conical’ or ‘cancellation’ can be omitted.

8. Prove the following generalization of Theorem 5.1: Let G be a group, F a free
monoid and S = G*F their coproduct (= pushout). Show that (i) given units
u,v €S, if uc = cv for a non-unit ¢, then u = v = 1; (ii) for any ¢ € S the
number of non-unit factors in a factorization of ¢ is bounded; (iii) S is rigid.
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Conversely, show that a monoid satisfying (i)—(iii) is of the form G*F, where the
group G is unique as the group of units while the monoid F is free and unique up to
isomorphism.

Let A* be the free monoid on a set A, and for any subset X define the free hull
of X as the intersection of all free monoids containing X. Given any finite subset
X of AT and its free hull Y*, the submonoid freely generated by its unique free
generating set Y, consider the mapping « : X — Y defined as follows: for x €
X, x“ is the unique word y € Y such that x € yY*. Show that « is well-defined
(using the fact that Y is a code) and surjective (take z € Y\X* and show that
Z = (Y\z)z* is a smaller code than Y). Show that if « is injective, then X is
a code, and deduce the Defect Theorem: the free hull Y* with free generating
set Y of a finite subset X of A*, not a code, satisfies card(Y) < card(X) (see
Lothaire [97], p. 6).

Let S be a monoid in which the relation ‘a < b if and only if ax = b for some
x € §’ is a well-ordering. If S also has right cancellation (xz = yz = x = y),
show that S either consists of one element or is isomorphic to N.

Let S be a monoid that is well-ordered under the relation in Exercise 10
and has left cancellation. Show that S has a presentation with generators
Xo(o < 7) for some cardinal T and defining relations x,xg = xp if o < f
(Cohn [61a]).

Let X be a set and take the monomials in X to be totally ordered in some way, so
as to respect left and right multiplication. Show that in £(X) the homogeneous
elements with leading coefficient 1 form a free monoid.

Show that a subset of k (X) is right d-independent whenever its leading terms form
a prefix code. Does the converse hold?

For any set X and any n > 1, show that X" is a maximal code.

Give an example of a subset of X*\{1} which fails to be a code, yet sat-
isfies the Kraft—-McMillan inequality. (Hint: Consider the effect of enlarging
X.)

Let X ={0,1,...,r —1} and let 1 <n; <n, <...be a sequence of integers
satisfying ) . r =" < 1. Define s; as the partial sum: s; = 0, 5,11 = 5; +r " and
put p; = rs;. Verify that p; is an integer satisfying 0 < p; < r"i. Let y; € X*
be p; in the r-adic scale (i.e. to base r). Verify that y; has at most #; digits (so by
prefixing Os it can be taken to have exactly n; digits), and that {y;, y,,...} is a
prefix code.

Let R be a principal ideal domain. Show that each non-zero ideal of R is generated
by an invariant element. Deduce that ab = ba for all ideals a, b. (Hint: Recall
Theorem 0.9.4 and Proposition 1.4.6). Then conclude that the monoid of non-
zero ideals of R is free commutative.

Let R be a principal right ideal domain. Is the monoid of its non-zero ideals
necessarily commutative?

Let R be a fir. If R has a non-unit right invariant element, is it necessarily right
principal?

(C. Reutenauer) Show that the intersection of free power series subrings of k£ {(X))
is a free power series ring. Deduce an analogue of the defect theorem: any finite
subset Y of k(X)) is either free or is contained in a free power series ring of rank
< card(Y).
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6.6 Subalgebras and ideals of free algebras

A subalgebra of a free associative algebra is not necessarily free. This is already
clear from the commutative case, by considering the subalgebra of the polyno-
mial ring k[x] generated by x and x>. In the case of the polynomial ring there
is a simple criterion for a subalgebra to be free. The proof uses some ideas from
valuation theory (see e.g. BA, chapter 9). In particular we note that all valuation
subrings of k(y) except one contain y, and the intersection of these subrings is
just k[y].

Proposition 6.6.1. A subalgebra R of a polynomial ring k[x] is free if and
only if it is integrally closed (in its field of fractions).

Proof.  Assume that R is a free subalgebra; then either R = k or R = k[y] for
some y transcendental over k. In either case R is integrally closed.

Conversely, let R be integrally closed and denote its field of fractions by
K. Since k € R, we have k € K C k(x). If K =k, then R = k and the result
follows. Otherwise, by Liiroth’s theorem (see e.g. BA, theorem 11.3.4), K is a
simple purely transcendental extension of k. Since R is integrally closed, it is an
intersection of valuation rings of K (see Section 6.1). Now any valuation ring
of K is of the form 0, N K, where 0, is a valuation ring of k(x) (see e.g. BA,
Section 9.4). If x is finite at p, then 0, 2 k[x] 2 R, whence R € 0, N K. Thus
R is contained in all valuation rings of K over k, except at most one, namely
the one obtained from the pole of x, and for this place the residue-class field
is k. Since R # k, R is not contained in all the valuation rings; if o, is the
exceptional one, we can choose a generator y of K such that ¢ is a pole of y, for
if not, say if y maps to a € k, then we can replace y by (y — a)~!. Now R is the
intersection of all the other valuation rings of K = k(y) over £, so it follows
that R = k[y]. [ ]

For free algebras on more than one generator no such convenient criterion is
known. We can of course use the characterization in terms of the weak algorithm
given in Section 2.5. Applied to subalgebras, this yields

Proposition 6.6.2. Let F = k(X) be a free k-algebra. Then a subalgebra R
of F is free if and only if there is a filtration on R over k for which R satisfies
the weak algorithm. [ ]

The difficulty in applying this criterion lies in the fact that the different
degree-functions in a free algebra are not related in any obvious way. If F is a
free algebra and R a subalgebra, then any degree-function on F will define a
degree on R, and if R satisfies the weak algorithm for this function, then it must
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be free. However, this sufficient condition is not necessary; thus if R is a free
subalgebra of F, then there is always a degree-function on R for which the weak
algorithm holds (Proposition 6.2), but this function need not be defined on all
of F. Let us call a subalgebra R of F regularly embedded if there is a degree-
function on F for which both F and R satisfy the weak algorithm. Examples of
irregularly embedded free subalgebras are given in Exercises 2 and 3.

There is one case where more information is available, namely when F =
k[x] is free of rank 1. We already know a simple test for a subalgebra to be free
(Proposition 6.1) and, as we shall see, there is also a simple criterion in terms
of the algorithm. For in this case (and only here) the only automorphisms are
the affine transformations x +— ax + b(a, b € k, a # 0), therefore the degree-
function on F is unique up to a scalar factor. We thus obtain

Proposition 6.6.3. A subalgebra of k[x] is free if and only if it has the division
algorithm relative to the x-degree. |

Sometimes it is possible to obtain conditions for a homogeneous subalgebra
to be free. We recall that a homogeneous subalgebra is a subalgebra generated
by homogeneous elements (not necessarily all of the same degree). Thus, using
Corollary 2.9.15, we have

Theorem 6.6.4. Let F = k(X) be afree algebra and R a homogeneous subal-
gebra, with augmentation ideal a. Then the following conditions are equivalent:

(a) For every homogeneous subspace V of R such that a =V & a?, the natural
homomorphism  : k(V) — R is an isomorphism,

(b) R is free on a homogeneous set of free generators,

(c) R is free k-algebra,

(d) R is right hereditary,

(e) aisflat as right R-module,

(f) the natural map a @ a — o>

is an isomorphism.

Proof. (a) = (b) = (¢) = (d) = (e) = (f) are clear ((e) = (f) follows
by Appendix Proposition B.8). To prove (f) = (a) we need only show, by
Corollary 2.9.15, that ¥ is surjective. By hypothesis, a = V + a2, hence a" =
(V 4+ a?)" C V" 4+ a"t!, and so we have

a"=V"+a" foralln > 1. (1)
It follows, on setting R’ = im v/, that
R=R+da" foralln>1. 2)

For this holds when n = 1, and since V' C R/, it follows generally by induction,
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using (1). Now let u be a homogeneous element of R, take n > deg u and write
u=r"+a,wherer’ € R',a € a". Since V is homogeneous, so is R’ and hence
u=r"€R',a=0.Thus R' = R and v is surjective, as claimed. [ ]

There is another characterization of homogeneous subalgebras that is often
useful:

Theorem 6.6.5. Let F = k(X) be a free k-algebra and R a homogeneous
subalgebra. Then the following conditions are equivalent:

(a) Risfree, with a homogeneous free generating set Y which is right F-linearly
independent ,

(b) F is free as left R-module,

(c) F is flat as left R-module.

Proof. (a) = (b). Assume (a) and let W be the k-space spanned by Y, so
that W @, F =Y F, R = k(W). Choose a homogeneous k-space V such that
F =V ®@YF;then
FEVOWRFZVeWRV)®W W ®F)
=ZSkeWOWRIW)D..)QV
=RQ®YV,
and this shows V to be spanned over k by a left R-basis of F.

Thus F is free over R, i.e. (b). (b) = (c) is clear, and to prove (¢) = (a),
assume that F is flat as left R-module. We take a resolution of &:

0—>f—>F—>k—0,

where f is the augmentation ideal of F. Similarly, if a is the augmentation ideal
of R, we have an exact sequence

0—->a— R—>k—0.

Since R is free as R-module, we obtain an exact sequence (by the extended
Schanuel lemma, Appendix Lemma B.5):

0>a—>f®dR—>F —0.

Here F, R, f are left R-flat, hence so is a. Now Theorem 6.4 (e) shows that R is
free, with homogeneous generating set Y. Hence Y is a right R-basis of a. But
the embedding

0—RY=a—R

remains exact under the operation ®g F' (because F is left flat), therefore Y is
right F-linearly independent and (a) follows. [ ]
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We now turn to examine right ideals in a free algebra. If F' = k(X)) is a free
k-algebra and v a right ideal in F, then F/t is a right F-module; hence it is a
k-space and we shall find that it has a basis derived from a prefix code in X. This
will lead to another proof that ¢ is free as right F-module, but some preparations
are necessary.

In every partially ordered set S with DCC there is a natural bijection between
lower segments (i.e. complements of upper segments) and antichains (i.e. sets of
pairwise incomparable elements): with every lower segment L we associate the
set LO of minimal elements of the complement S\ L, clearly an antichain, and
with every antichain A we associate A°, the complement of the upper segment
generated by A. It is easily checked that these mappings are mutually inverse.

Let X be a finite set and X* the free monoid on X, partially ordered by left
divisibility:

a < bif and only ifb = ac for some c € X*. 3)

It is clear that X* satisfies DCC for this partial ordering. A lower segment in
this partial ordering is called a Schreier set; such a set is characterized by the
fact that with any word it contains all its left factors (prefixes). An antichain in
X* is just a prefix set; thus we have a natural bijection between the prefix sets
and the Schreier sets. Starting from a prefix set P, the corresponding Schreier
set PO consists of all words with no prefix in P, while for a Schreier set C the
corresponding antichain C© consists of all words not in C but with every proper
prefix in C. We note that the prefix set {1} corresponds to the empty Schreier
set; thus the prefix codes correspond to the non-empty Schreier sets. A prefix
code and its Schreier set lead to a useful factorization of the free monoid:

Proposition 6.6.6. Let X be any non-empty set. Then the construction
described above for the free monoid X* yields a natural bijection between
the prefix codes and the non-empty Schreier sets on X*, and if P, C correspond
in this way, then every element of X* can be written uniquely as the product of
a string of members of P and a member of C:

X* = P*C, 4)

while P and C are given by
C = X*\PX*, (5)
P =CX\C. (6)

Moreover for any ¢ € C and any w € X* of length h, the product cw is either
in C or of the form pw', where p € P and w' € X* is of length < h.
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Proof. Tt is clear that (5) and (6) lead to the bijection that has already been
described. To establish (4), let w € X* and write w = ab, where a is the longest
left factor of w in P*; then clearly b € C and (4) follows. The final assertion is
easily verified. [ ]

We can now give another proof of the right fir property of rings with a weak
algorithm in an explicit form.

Theorem 6.6.7. Let R be a filtered ring with a weak algorithm, Ry = K a
field. Then any right ideal v of R is free. More precisely, there is a Schreier set
C that is a left K-basis of R (mod ), if P = C° is the corresponding prefix set,
then for each p € P there exist unique elements o, . € K(c € C), almost all
zero, such that

p— Z“Pvcc cr(cel),
and the elements y, = p — ) _a, . ¢ form a basis of ¢ as free right R-module.

Proof. Let X be a monomial left K-basis of R, constructed as in Section 2.5.
Any element of X * with a prefix in vis itself in t, so let us take the subset Z of X *
consisting of all elements with no prefix in t. We now build up a Schreier set by
induction on the length as follows: at the first stage we choose 1; next we take
asubset C; of Z consisting of 1 and of elements of length 1 that together with 1
are left K-linearly independent (mod t). Thus Cis a Schreier set. When Cj,has
been chosen as a Schreier set, to contain Cj_; and left linearly independent
(mod t), we add elements of length /2 + 1 to preserve these properties to form
Ch+1, as long as this is possible. This process can only stop when we have a
left K-basis of R (mod t), and this is the desired Schreier set C. Let P be the
corresponding prefix set; for each p € P, C U {p} is still a Schreier set, but is
left linearly dependent (mod t), by the maximality of C; thus we have

p=Y apcer (ceC.ap.€Kk). @)

Writing y, = p — >a p,cC, we claim that any element r of R can be written in
the form

r=> Y&+ Y Bec. whereg, €R, B €K. )

By linearity it is enough to prove this when r is a monomial w, and we may
further assume that w ¢ C. By Proposition 6.6 we can then write w = pu for
some p € P. Using (7) and the definition of y,, we find

w =yl + E op cCU.
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Now for any ¢ € C, either cu € C or cu = pjuy, where |c| < |p1], |u1] < |ul.
In the first case we have achieved the form (8), in the second case we can apply
induction on |u| to express pju in the same form, and (8) follows.

Now take r € v and apply the natural homomorphism R — R/t. Writing
the image of a € R as a, we have, by (8),

0=Fr=) A

but by hypothesis the ¢ are left linearly K-independent, hence B, = O in this
case and so 7 = ) y,g,. This shows that the y, generate . To prove their
linear independence over R, assume that ) y,g, = 0, where the g, are not all

0. Then by (7)
Z P8p = Z Ap,cC8p- &)

Let w be a word of maximum length occurring in the g, say in g,. Since P is
a prefix code, p’w occurs with a non-zero coefficient, A say, on the left of (9).

Hence we have
A= E UpcMp,cs

where p1,, . is the coefficient of p’w in cg,. Now p’w = cu can only hold when
cis aproper left factor of p’, hence |c| < |p|, |u| > |w]|, and this contradicts the
definition of w. Hence the y, form a free generating set of t, as claimed. M

In particular, this result shows again that each right ideal in R (and, by
symmetry, each left ideal) is free (Corollary 2.5.3). The uniqueness of the rank
is clear since R has a homomorphism to K and so has IBN.

We can also use these results to obtain another derivation of the Schreier—
Lewin formula (see Section 2.6). To do this we observe that for free algebras,
(4) of Proposition 6.6 translates to the relation

(1—2){) 1=<1—ZP> e

in F = Z{X)). On multiplying out, we find

(1-210):(7(1-2){). (10)
Thus if F' /v has finite dimension r over k and X has finite cardinality d, then the
right-hand side of (10) will lie in Z(X), hence so will the left-hand side, which
shows P to be finite too. By Theorem 6.7 this tells us that ¢ has finite rank, n

say, as right F-module. If we map Z(X) to Z by mapping each x € X to 1, (10)
takes the form of the Schreier—Lewin formula:

1—n=r(-4d). (11)
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Free subalgebras of a free algebra F have the property that they contain no
non-zero ideal of F’; this follows because they are anti-ideals. We shall need a
result providing us with a supply of anti-ideals. A subring S of a ring R is said
to be unit-closed in R if every unit of R that lies in S is also a unit in S.

Lemma 6.6.8. Let R be an integral domain and S a subring. If S is a 2-fir,
unit-closed in R, then S is an anti-ideal.

Proof. Leta € R andsupposethath, c € §* are suchthatab, ca € S. Thenin
S we have c.ab = ca.b,hence ¢S + caS is principal, say dS, where d € S. Now
dR = cR 4+ caR = cR,soc = du,whereuisaunitinR. Wehavedu = c € dS
and sou € S; since S is unit-closed, #isaunitin S. Now ca € dS = duS = ¢S,
therefore a € S, showing S to be an anti-ideal. ]

In a free k-algebra the units all lie in k£ and so are contained in every subal-
gebra; hence we obtain

Theorem 6.6.9. [n a free algebra, every subalgebra that is a 2-fir (in partic-
ular every free subalgebra) is an anti-ideal. [ ]

Exercises 6.6

1. Let F = k{x, y); show that the subalgebra R generated by x + y? and y? is free
on these generators but does not satisfy the weak algorithm relative to the (x, y)-
degree. By a suitable change of degree-function show that R is regularly embedded
inF.

2. (D.R.Lane)Let F = k(x, y); show that the subalgebra generated by u = (xy)* +
y(xy)? and v = (xy)? is free, but not regularly embedded. (Hint: Show that k (u, v)
isregularly embedded in k(y, yx), whichis regularly embedded in F. Alternatively
verify that any degree-function d satisfies d([u, v]) < d(uv) = d(vu) and use
Corollary 7.4 below.)

3*. (W.Dicks) Let F = k(x, y); show that the subalgebrau = xyx — y, v = uyx and
w = uxy is free on these generators but is not regularly embedded in F.

4. (R.E.Williams) In a free algebra F, let R be the subalgebra generated by by, . .., b,
such that deg (b)) = ... = deg(b,), and this is the minimum degree of non-zero
elements in R. Show that if the elements b, ... b, are linearly independent, they
form a free generating set.

5. Let F, = k(xy,...,x,) be the free k-algebra of rank n. Show that if there is a
surjective homomorphism ¢ : F,, — F,, then m < n, with equality if and only if
@ is an isomorphism (Hint: Look at the terms of low degree.)

6°. (V. Drensky) Assume that k(X) C k(Y) C k(X U Z), as augmented k-algebras.
Is k(Y') free on a set X U T for some T?

7°. (W. E. Clark) Is every retract of a free algebra of rank n free? (For n = 1, 2 see
Section 6.7).
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10.

11.

12.

13*.

14.

15.

16°.

Centralizers and subalgebras

(G. M. Bergman) In {x, y}* consider the submonoid generated by u = xy, v =
yx,z = x* and y. Verify that it satisfies the relations yz"'u = vz"y(n = 1,2, ...),
but that none of these equations is implied by earlier ones. Deduce the existence
of a finitely generated subalgebra of k(x, y) that is not finitely presented.
(Kolotov [78]) Show that in any integral domain, the family of anti-ideals is closed
under intersections, unions of chains, and if C is an anti-ideal in B and B in A,
then C is an anti-ideal in A. Show also that an anti-ideal of R contains with any
right ideal of R its idealizer in R.

(G. M. Bergman) Let A be a commutative integral domain and F its field of
fractions. Show that a subring of A is an anti-ideal if and only if it is the intersection
of A with a subfield of F.

Show that in Theorem 6.7, for a right ideal of finite codimension the prefix set P
is a maximal code.

(W. Dicks) Let F = k(x, y, z) and let R be the subalgebra generated by a =
xy,b=xyz+x+z,c=zyx+x+z,d=yx. Verify that R is an anti-ideal;
moreover, for any s € F\R,sR N R = 0, but that R is not a 2-fir. (Hint: Verify
that @ 4+ 1 and b are right comaximal in F and examine the homomorphism of the
subalgebra generated by a, d, x, z mapping a, d to —1 and x, z to 0.)

(Bergman [a]) Let F = k(x, y1, y2,y3,z), G| the subalgebra generated by
X, Y1, V3, Y22, z and G, the subalgebra generated by x, xy;, y1y» — y3, Y2, z. Ver-
ify that G, and G, are each free on the given generating sets, but that G; N G,
is not a 3-fir, hence not free. (Hint: Verify that the relation x.(y;y, — y3)z +
xy1.(—y22) + xy3.z = 0 can be trivialized in G| and in G, but not in G; N G,.)
(Bergman [a]) Show that in a free k-algebra the intersection of any family of free
k-subalgebras is a 2-fir, but need not be free.

A prefix code on X* is called complete if the right ideal generated by it meets
every non-empty right ideal of X*. Show that in the correspondence between
prefix codes and Schreier sets, the finite non-empty Schreier sets correspond to
the complete finite prefix codes.

Prove an analogue of Theorem 6.7 for group algebras of free groups and more
generally for mixed algebras. Is there an extension for firs that are augmented
k-algebras or for rings with weak algorithm?

6.7 Centralizers in power series rings and in free algebras

In a free algebra, few elements commute with each other, and one would expect
the centralizer of a non-scalar element to be small. This expectation is borne
out, as we shall see in Theorem 7.7 below. A similar question can be raised for
the free power series ring, and as this is rather easier to answer, we begin with

it.

Theorem 6.7.1. Let R be an inversely filtered ring that satisfies a 2-term
inverse weak algorithm and is complete. Then the centralizer C of any a € R,
not zero or a unit, is a complete principal valuation ring.
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If moreover, R is a connected k-algebra, then the centralizer of any non-
scalar element of R is a formal power series ring in one variable over k and so
is commutative.

Proof. Let x, y € R be right linearly dependent and v(x) > v(y), say; then
x — yz and y are right v-dependent for any z € R, hence by Lemma 2.9.3,
x = yz forsome z € R,so xR C yR.

If a is as stated in the theorem, then v(a) > 0; given x, y € C, we have
xa" = a"x for any n > 0, hence for sufficiently large n, "R € xR anda"R C
yR. Thus xR N yR # 0, and so, if v(x) > v(y), thenx = yz.Clearlyz € C, so
xC C yC,i.e. C is aright chain ring. Since R is atomic, by Proposition 2.9.6,
and any non-unit of C remains a non-unit in R, it follows that C is atomic and
therefore a rigid UFD, by Theorem 3.3.2. It contains a large non-unit, namely a,
hence it is a right (and by symmetry left) principal valuation ring, by Theorem
3.3.9, and it is complete because R is.

Now assume that R is connected and let x be an element of least positive
degree in C, so that every ideal in C has the form Cx" = x"C. Then every
element of C has the form x"v, where n > 0 and v is a unit. The additional
hypothesis allows us to write v =« + x"v'(a € k,r > 0, v’ a unit), and an
induction argument, using the completeness, shows that C = k[[x]]. [ ]

In particular, the free power series ring satisfies all the hypotheses and we
have

Corollary 6.7.2. The centralizer of a non-scalar element in the free power
series ring k(X)) is of the form k[[c]] for some element c of positive order. B

We know from Corollary 2.9.11 that any non-scalar element in a free power
series ring generates a free power series ring in one variable. Two elements may
not generate a free power series algebra, e.g. the complete algebra generated
by x2 and x? is not free; here and in the proof below we shall use the term ‘free
subset’ in the abstract sense, i.e. ignoring the filtration. We have the following
analogue for part of Corollary 5.5:

Proposition 6.7.3. Let R be a complete inversely filtered ring with 2-term
inverse weak algorithm, which is a connected k-algebra. If x, y are two
non-commuting elements of R, say x =a +x1,y = B+ y1, where o, B €
k,x1, y1 € Ry, then the complete algebra generated by x, y is the free power
series ring k{{x1, y1)).

Proof. By hypothesis xy — yx # 0, hence v(xy — yx) is a positive integer #;
we shall use induction on n. Since xy — yx = x;y; — y1X1, we may replace x, y
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by x1, y; respectively; for simplicity of notation we shall drop the subscript,
thus we may assume that v(x), v(y) > 0.
If x, y are not free, we have a relation

xf+yg+r=0, 1

where f, g € k{(x, y)) and A € k. Equating constant terms in (1) we find that
A =0, so x, y are right linearly dependent. If v(x) > v(y), then

X =yz, 2

forsomez € R.Letz =y +z;(y €k, z; € Ryy)); if we can show that y, z; are
free, then so are x, y by (2), for the elements y, yz are clearly free in k(y, z1)).
Now

0#xy—yx =yzy — yyz = y(zy — yz),

hence yz —zy # 0 and v(yz — zy) < v(xy — yx). So the result follows by
induction. |

The result may be expressed more strikingly by saying: x and y are free if
and only if they do not commute. In particular, since any free algebra can be
embedded in a power series ring, we have

Corollary 6.7.4. Any two non-commuting elements of a free k-algebra form
a free set. [ |

We now go on to consider centralizers in a free algebra F = k(X). Let
a € F\k and denote by C the centralizer of a in F. The embedding of F
in k(X)) shows that C is commutative, by Corollary 7.2; moreover, C is
finitely generated, as module over k[a] or as algebra. For if d(a) = n say,
we choose for each integer v = 0, 1, ..., n — 1 such that an element of degree
= v(mod n) occurs in C, an element of least degree = v(mod n) in C. Call-
ing these elements ¢y, ..., ¢, (r < n — 1), we see that every element in C has
the same leading term as some cali=0,...,r, j=0,1,...), by Corollary
7.2; hence the c;a’ span C over k[a], and together with a they generate C as
k-algebra.

Our aim is to show that C is a polynomial ring over £. In order to establish
this fact we shall study homomorphisms of C into polynomial rings. If we look
at the leading terms of elements of C we note that all are powers of a given one
(essentially by an application of Corollary 5.5), and it turns out that in order to
achieve a homomorphism of C into a polynomial ring we need a preordering of
the free monoid that lists each word together with all its powers. This is done
by introducing ‘infinite’ words.
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Let X be a totally ordered set and W the set of all right infinite words in X,
i.e. infinite sequences of letters from X. Given u € X, we denote by u™ the
word obtained by repeating u indefinitely: ¥ = uuu ... € W. Thus we have
amapping u > u® from X* to W that identifies two words if and only if they
have the same root” We shall take W to be ordered lexicographically.

Lemma 6.7.5. Givenu,v € X, ifu™® > v*>, then

u™® > wv)>® > (vu)>® > v*>°, 3)
and similarly with > replaced by < or = throughout.
Proof.  Suppose that (uv)™ > (vu)*°; then
W)™ = v(v)® > vvu)™® = V> v)® > V2u)® = ... - v™,

since the lexicographic order is ‘continuous’. Similarly we find that (uv)> <
u®; therefore (3) follows whenever (1v)*® > (vu)*°. Likewise (uv)>* < (vu)*®
implies

u® < Wv)® < (vu)>® < v™, “)
while (uv)* = (vu)> implies

u® = wv)* = (vu)> = v*>. 5)
Now for any u, v exactly one of (3), (4), (5) holds and the assertion follows. l

The monoid algebra kX * is just the free algebra F = k(X). Given any peri-
odic word z in W, i.e. an infinite power of a word in X, let us define A, as the
k-subspace of F spanned by the words u satisfying u = 1 or u® < z, and let
I, be the k-subspace spanned by the words u such that # % 1 and u*™ < z. By
Lemma 7.5, A, is a subalgebra of F' in which I, is a two-sided ideal.

The set of words u in X such that u* = z, together with 1, form the set of
non-negative powers of an element v that we shall call again the root of z. It
follows that A, /I, = k[v].

Proposition 6.7.6. Let C be a finitely generated subalgebra of a free k-algebra
F If C # k, then there is a homomorphism f of C into the polynomial ring in
one variable over k such that Cf # k.

Proof. Let F = k(X), where X is totally ordered. Take a finite generating
set Y for C and let z be the maximum of u#* as u ranges over all monomials

#
For example, can and cancan.
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# 1 occurring with non-zero coefficient in members of Y. Then Y € A., hence
C C A, and the quotient map f : A, — A./I, = k[v] is non-trivialon C. W

When C is not finitely generated, the result need no longer hold (see Exercise 5).

Consider now the free algebra F' = k(X). Given a non-scalar element a, its
centralizer C is a finitely generated commutative k-algebra, as we have seen.
Therefore it can be mapped non-trivially into a polynomial algebra; now C
as finite extension of k[a] has transcendence degree 1 over £ and so it must
be embedded in the polynomial algebra. Being integrally closed (by Corollary
1.2), it must be free (Proposition 6.1), so we have proved Bergman’s centralizer
theorem:

Theorem 6.7.7. Let F = k(X) be the free k-algebra on X. Then the centralizer
of any non-scalar element of F is a polynomial ring in one variable over k. W

Exercises 6.7

1. (Bergman [67]) Let F = k(x, y) and let C be the centralizer of an element a €
F\k. Using the remarks following Corollary 7.4, show that the valuation on k[a]
given by the degree in a is totally ramified on C (i.e. it extends to a unique valuation
on C with the same residue-class field).

2. (Schur [1904]) Let R be the ring k[x; 1, '] of differential operators, where k =
F () is a rational function field (over a field F' of characteristic 0) and " denotes
differentiation with respect to z. Show that the centralizer of any element outside
F is commutative. (Hint: Apply Theorem 7.1 to the completion of R by negative
powers of x.)

3. (Bergman [67]) Let X* be the free monoidon X = {xy, ..., x,_;} and W the set of
infinite words in X. Witheachu = a;a, . . . in W associate the ‘decimal expansion’
Mu) =Y a;n~" and obtain a formula for A(#*) in terms of A(«) and the length
of u. Hence express A(1v) as a convex linear combination of A(#>°) and A(v*>°).

4. With every ring R we can associate another ring R?”, the ring R made abelian,
which is obtained by dividing R by the ideal generated by all the commutators.
Thus the natural mapping R — R is universal for homomorphisms of R into
commutative rings. Given any ring R, denote by S the subring generated by the
kernel of the natural mapping R — R’ (i.e. the commutator ideal). For any
a, b € R write ¢ = [a, b] = ab — ba and establish the identity

clac, bel = cale, bel + cblac, ¢] + ¢*.

Deduce that if R = k(X)(|X| > 1), then S°* has nilpotent elements other than 0
(and so cannot be a free algebra or a polynomial ring).

5. Show that §*’ in Exercise 4 admits no homomorphism onto a non-scalar subal-
gebra of a polynomial ring. Use this fact to show that the hypothesis that C be
finitely generated in Proposition 7.6 cannot be omitted.
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6. In a free algebra over a field of characteristic 0, show that if ab 4+ ba = 0, then
either a or b is O (this follows from Theorem 7.7, but give a direct proof).

7. Show that the commutation relation on F'\k is transitive, and hence an equivalence.
(Hint: Use Theorem 7.7 and Corollary 7.4.)

8. (G. M. Bergman; Kolotov [78]) Let F = k{(X) be a free algebra. Show that any
subalgebra generated by two elements y, z of F is either free on y, z or is contained
in a 1-generator subalgebra. If F' = k(x, y, z), then the elements u = xyxz +
xy,u’ = zxyx + yx, v = xyx satisfy the relation uv = vu’, but there is no 2-
generator subalgebra containing u, u’, v. (Hint: If there is such a subalgebra B,
say, it must be a 2-fir, hence an anti-ideal. Use the given relation to show that
Xy, yx € B and deduce in turn that x, y, z € B.)

9°. (Bergman [67]) Let F be a free k-algebra and F its completion by power series.
Givena € F,denoteby C, C'its centralizers in F, F respectively.Is C' the closure
of Cin F?

10. (G.M. Bergman) Givena, b € k(X), different from zero, show that for any mono-
mial u in the support of @, some right multiple of  is in the support of ab. (Hint:
Take a longest right multiple of u in supp(a) and multiply it by a longest monomial
in supp(b).)

11. (Koshevoi [71]) Let R be a k-algebra; a subalgebra is called pure if it contains
u € R,whenever itcontains anon-scalar polynomial in u. Show that the subalgebra
of k(x, y, z) generated by x, xy, z, yz is a pure subalgebra, but is not a 2-fir. (Hint:
Use Exercise 10.)

12*. (Dicks [74]) Let b be any element in a free k-algebra F. Show that the idealizer
I(bF) is pure, and hence has the centralizer property of Theorem 7.7.

13°. (G. M. Bergman) Given X # &, which submonoids S of X* have the property
that &S is pure in k(X)?

14°. (G.M. Bergman) Which monoids S (not necessarily embeddable in a free monoid)
have the property that the centralizers in the monoid ring kS of non-scalar elements
all have the form k[c]?

15. Let G be the free group on s;(i € I) and consider the map f : kG — k{x;|i € 1))
given by s; — 1 4+ x;. Show that any multiplicative commutator ¢ maps to a series
14 g + ..., where g is the corresponding additive commutator and dots indicate
terms of higher order. Deduce that f is injective, and hence show that any two
elements of kG either commute or generate a free subalgebra.

6.8 Invariants in free algebras

Let R be a k-algebra and G a group of k-algebra automorphisms of R. An element
rof Ris said to be an invariant of Gif ré = r forall g € G;ifré = Agr(A, € k)
for all g € G, r is called a relative invariant. Thus r is a relative invariant
precisely when G stabilizes kr.

The set of all invariants of G is a k-subalgebra of R, denoted by R® and called
the fixed ring, or algebra of invariants of G. The set of relative invariants is not
an algebra, but we shall sometimes refer to the subalgebra generated by this set
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as the algebra of relative invariants. It is conjectured that if R is a free algebra
and G a group of k-algebra automorphisms of R, then both these subalgebras
are free. We shall deal with some special cases of these conjectures here. We
recall that in any filtered ring the filtration will generally be denoted by v or d.
To begin with we shall show that the algebra of invariants is a 2-fir; this holds
under rather wider conditions:

Proposition 6.8.1. Let R be a filtered ring with 2-term weak algorithm and let
G be a set of endomorphisms of R. Then the fixed ring R is a strong E,-ring,
and hence a 2-fir.

Proof. Let a,b € R® be right commensurable and v(a) > v(b), say. By
Proposition 2.8.1 there exists a unique sequence xg, X1, ..., X, € R (for some
n > 1) such that

az-x()p(-xla"-axn)a b=x()p(x17~--’xn—l)7 (1)

where the p’s are the continuant polynomials defined in Section 2.7. For any
a € G we have

a=a"=x{ p&y,....x)), b=b"=xypC&y, . ...x;0_ )

by uniqueness, xo = xg, ..., X, = X, ,hencex; € RO =0,1,...).Moreover,

by Section 2.7 there exists U € E»(R%) such that
(a, YU = (x0, 0), 2

hence RY is a strong E,-ring, and (2) shows that any 2-generator right ideal is
free, of rank 2, 1 or 0, i.e. R is a 2-fir. [ ]

This result does not hold for all 2-firs, or even for all firs, as the following
example shows. The ring C[e’] is a principal ideal domain, hence so is its local-
ization C[e'’, e~"]; under complex conjugation its fixed ring is C[cos ¢, sint],
a Dedekind domain that is not principal (see also Exercise 12). On the other
hand, the result shows that for any free algebra R = k(X ) and any group G of
automorphisms of R, the fixed algebra R is a strong E-ring. One would like
to assert that RO satisfies the weak algorithm, but to establish this claim we
shall need to assume that the automorphisms respect the grading.

Consider a gradedring A = @gr, A;any elementa € gr; A issaid to have the
degree d(a) = i. Since the gr; A only meet in 0, the degree is uniquely defined,
except for 0, which has all degrees. The graded ring A is said to have the n-term
weak algorithm if any right linearly dependent set of at most n elements is
strongly right linearly dependent, i.e.
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Given any right linearly dependent sequence ay, ...,a,(m <n), num-
bered so that d(ay) < ... < d(ay), some a; is a right linear combination of
ay,...,dj_1.

If this condition holds for all n, A is said to have the weak algorithm. With
any filtered ring R = UR(;) we can associate the graded ring A with compo-
nents gr; A = R)/R(—1), and it is easily verified that R has the (n-term) weak
algorithm if and only if the associated graded ring does. For graded rings the
expected result is easily obtained:

Proposition 6.8.2. Let A = @®gr; A be a graded ring with n-term weak
algorithm (n > 1), and G a group of homogeneous automorphisms of A, i.e.
(gri AYG = gr; A for all i. Then the fixed ring A° = @ (gr; A)° is a graded
ring with n-term weak algorithm.

Proof. Clearly A = @ (gr; A)Y is a graded ring; now consider a homoge-
neous relation in A%:

arb + ...+ aub, =0,

where m < n, arranged so that v(a;) <... < v(a,), where v is the degree-
function, and of course, v(a;) 4+ v(b;) is independent of j. By the n-term weak
algorithm in A there exists j, 1 < j < m,suchthata; is right linearly dependent
onai,...,dj_i:

aj=aci+...+aj_1cj (cp € A).

If we choose the least such j, thenay, . . ., a;j_; areright A- linearly independent.
For any ¢ € G we have as =a,(v=1,...,n), hence

a1(01 — (,ig) + ... ~|—Clj_1(Cj_1 — C?il) =0.

By the independence of aj, ..., a;—; we find that ¢§ = ¢,, so ¢, € AS(v =
1,...,j— 1), and this establishes the n-term weak algorithm for A¢. [ ]

Inparticular, we may take A = k(X ), where X is graded in any way, and apply
Proposition 2.5.3, to obtain a result of Kharchenko [78] and (independently)
Lane [76]:

Theorem 6.8.3. Let R = k(X) be a free k-algebra and G a group of k-
automorphisms of R. If G is homogeneous with respect to the grading on R
induced by some functiond : X — N, then the algebra of invariants of G is
free, on a set that is homogeneous with respect to d. |

As a special case we have the standard grading: d(x) =1 for all x € X.
The same argument will show for any group G of ring automorphisms of R =
k(X), RS is a free kC -algebra.
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Let us next look at an example of relative invariants, and calculate the alge-
bra of relative invariants of the group of all linear automorphisms of R = k(X),
where X = {x|, ..., x,} and char k = 0. Regarding R as a graded algebra, we
have R = ®gr, R where gr, R is the homogeneous component of degree n, and
G = GL,(k), viewed as the group of all linear automorphisms of R. Denote by
R’ the algebra generated by the relative invariants. For each n > 1, the symmet-
ric group Sym,, and G both act on gr,, R, where foro € Sym,, yi,...,y, € X
we define

y2.- Y00 = Y16Y26 + -+ Yno

and extend this action by linearity; we shall also say that Sym,, acts by place-
permutations on gr, R.Itis easy to see that the actions of Sym , and G commute,
so gr, Risa G x Sym ,- module, while R" is a Sym ,-module. Now consider
the standard alternating polynomial of degree r (see e.g. FA, Section 7.5):

§=8S&1,...,x) = Z SgNO X1y ... Xr0 € Ay, 3)

oeSym,

For each g € G, 8% = detg.é8, so § is a relative invariant of G. Therefore R’
contains the set

Up{8"o|o € Sym,}. 4

It is easy to see that this set is closed under multiplication; hence the space
spanned by itis a subalgebra of R’. By the representation theory of the symmetric
group (see e.g. James and Kerber [81], Chapter 3) this is all of R’, at least when
k = Q. To find a k-basis, we restrict the os in (4) to range over the standard
Young tableaux with r rows, all of depth n. By the Frame—Robinson—Thrall
formula the number of these tableaux is

(nr)!

l+j—1)

||:|:

it

In fact R’ is a free algebra, by Theorem 8.3, as the fixed ring of S L, (k). To obtain
a free generating set we restrict o in (4) further by deleting the standard Young
tableaux constructed by juxtaposing Young tableaux with fewer columns, e.g.
where o fixes jr, for some j < n. For example, when r = 2, then § = ¢ =
[x1, x2] and the free generating set has the Hilbert series

Z%H(in>tm+2 %(I_M):ﬁ+z4+2z6+....
n>0

So there is one generator of degree 2, viz. ¢, one of degree 4, xjcx, — xpcx1,
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etc. (for r > 2 the series is probably not algebraic). By applying Proposition
2.6.1 we thus find the Hilbert series 2/(1 + +/1 — 4¢2) for the algebra.

The results obtained so far do not indicate when RY is finitely generated,
but for finite groups of linear automorphisms (i.e. automorphisms induced by
a linear transformation of the free generators), we have a precise result:

Theorem 6.8.4. Let G be a finite group of linear automorphisms of a free
algebra of finite rank, R = k{x1, ..., x.). Then RC is finitely generated as a
k-algebra if and only if G consists of scalar transformations. In this case G is
cyclic, generated by an automorphism

xXi—>¢xi, (=1,...,r), (5)

for some primitive mth root of 1, ¢, and RC is generated by the r™ monomials
of length m.

Proof.  Assume that G is scalar; it is isomorphic to a finite subgroup of k>,
hence cyclic of order m, say, with generator given by (5). It is clear that R is
freely generated by the " monomials of length m.

Conversely, assume that R is finitely generated and let g € G; we have to
show that G is scalar. For r = 1 there is nothing to prove, so we may take r > 2.
Let k%2 be an algebraic closure of k and define R A2 = R @ k¥ then G C
GL,(k¥2)and since k ¢ has a k-basis, it follows that (R *2)¢ = R® ® k¢ and
this is finitely generated as k-algebra. We may therefore take & to be algebraically
closed. Further we note that R,y admits G, since the latter acts linearly, so that
R(% has a meaning.

On conjugating G by a suitable U € GL,(k) we may take g to be in Jordan
normal form, say

(Aixp + &1x2, Apxp + €2X3, ooy A1 Xt + &1 X, ArXy), (6)

where A; € k* and for 1 <i <r — 1, eitherg; =0,0re; =1 and A; = X;41.
Let R = UR,) be filtered by degree, so that R® = UR(GH). Since RY is finitely
generated, it must be generated by Rgv) for some N, and on increasing N if
necessary, we may assume that |G| divides N.

Denote by A the set of all monomials # 1 that occur in the supports of
elements of R((z;vy Then Rg\” lies in the k-space spanned by A U {1}, hence R¢
lies in the k-algebra generated by A. Taking 6 = S(xy, ..., x,) again to be the
standard polynomial as in (3) and 0 € Sym y, to act by place-permutations,
we find that 8V o is fixed by G, because for any 7 € GL,(k),

No)h = (deth)¥sVNo;
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thus when % € G, (deth)Y = 1, by the choice of N, so that §¥o € R®. This
shows that every monomial occurring in the support of Vo is a product of
elements of A, and these elements are of length at most N. Since o was arbitrary
in Sym y,, it follows that every place-permutation of (xx3 . . . x, YV is a product
of elements of A, of length at most N, therefore every monomial of length N
has a left factor in A. By considering x{v we see that

x{' € A for somem > 1. @)
Moreover,
there is a monomial w such that wxy, ..., wx, all lie in A; (8)

for if this were not so, then we could for every n > 1 construct a monomial of
length n with no left factor in A, which is a contradiction.

By (7) there exists an element u of R® whose support contains x{', and we
can take u to be homogeneous and the coefficient of x{" to be 1. Thus for some
W € k we have

m m—1
u—xy —ux; x eV,

where V is the k-space spanned by all monomials of length m, other than
X, x{”_lxz. From the form (6) of g it follows that Vg C V, and so

u=us € x4+ e1x2)" + pn(hxy + e12)"Oxa + £2x3) + V,

= ATxl + k’l”_lslx;"_lxz + ;M'{"l)»zxi"_lxz + V.

It follows that AT =1, so u = )Jlnflsl + M)\.}inil)\g, hence Ay =g +
UAy, &1 = w(A; — Ay). But we saw that &y = 0 unless A; = A;, so & =0 in
all cases. Since the order of the Jordan block was arbitrary, g must be diagonal,
say g = (M X1, ..., A-x,). Hence RC is spanned by A.

Ifu € RY,then uis fixed by g. Consider a monomial w as in (8) and suppose
that wg = Aw(X € k*); then (wx;)g = wx; because wx; € A. But we have
(wx;)g = A\jwx;, hence A; = A~ fori =1, ...,r, and so g is a scalar. [ ]

We can also describe the Hilbert series of the fixed algebra R¢:

Proposition 6.8.5. Let G be a finite group of linear automorphisms of R =
k{xy, ..., x,) over a commutative field k of characteristic 0 (or at least prime
to |G|). Then the Hilbert series of the fixed ring R is given by

1

H(RC k)=
( ) Gl

Y A =Trn ™,

geG

where Tr : GL, (k) — k is the trace map.
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Proof. Let R = @gr, R be graded by total degree in the xs. Each gr, R is a
kG-module and the Hilbert series of RCis

H(R® k) = Z dim (gr, R)C - "
Theelemente = |G|~ Zg € kG isanidempotent such that R® = Re; therefore
dimy (g, R)Y =Tr(e : gr, R — gr,R). Now gr, R = (gr; R)®", where ®n

denotes the nth tensor power and g acts on gr, R as g®", while Tr(g®") =
(Tr g)". Therefore

Tr(e : gr, R — gr, R) = Ié_\ ZTr(g :gr,R —gr, R)
geG

= ) (Trg)".

geG
Hence

H(RC k) =Y dimy(gr, R)® - 1"

n

Z ‘Fl| Z(Tr g)n "

n geG

= & 2(1 — Tr(g)t)~ .

geG

Corollary 6.8.6. If a subgroup G of Sym, acts on R = k(xy,...,x;) by
permutations of the variables, then

G.py_ 1 B
H(R .k)_ﬁ T

m

where B,, is the number of elements of G fixing exactly m of the x;.

Proof. G acts by permuting the monomials of R, so the dimension of (gr , R)®
does not depend on the characteristic of k. In fact a basis of (gr,, R)” is given
by the elements X{wg|g € G}, where w runs over all monomials of length 7.
We may therefore take char k to be 0. By Proposition 8.5,

H(RC k)= £ (1 = Tr(g)) ™",

and here Tr(g) is just the number of xs fixed by g, so there are ,, summands
(1 —mt)~!, form =0, 1, ..., hence the result. ]

We remark that by Theorem 8.3 the fixed algebra is free, and a free generating
set may be written down explicitly.
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Centralizers and subalgebras

Exercises 6.8

. Find all the invariants and relative invariants of k[x] under the group of all auto-

morphisms.

Let A be a graded ring with weak algorithm and G a group of homogeneous
automorphisms of R. Find all the relative invariants of R.

Let R = k(X) be a free algebra of finite rank and G a finite group acting on X.
Show that R has a basis of elements ) {wg|g € G}, where w ranges over all
monomials that (relative to the lexicographical ordering) are maximal in their
orbits. Calling these monomials G-maximal, show that the set of all G-maximal
monomials is a free monoid, and the indecomposable ones form a prefix code,
which is a free generating set of R¢.

(Bergman and Cohn [69]) Let R = k(X ) and let G be a group acting on X with
finite orbits and without fixed points. Show that R¢ is a free algebra. If | X | = r and
G is precisely doubly transitive on X, so that |G| = r(r — 1) and each element of
G other than 1 fixes at most one point of X, show that the number of orbits of length
nin X*is (r — 1)"~2(n > 2), while there is one orbit of length 1. Show also that if
¥, denotes the number of generators of length n, then y, = (r — 2)(Vu—1 + Vu—2)-
(Dicks and Formanek [82]) For R and G as in Exercise 4 find H(R® : k) when
|G| = p =char k.

(P. Webb) For R and G as in Exercise 4 find H(R® : k) when |G| = p", p = char
k.

Is H(RC : k) always rational, for G € GL;(k)? (From the text and Exercise 6
this is so when char k = 0 or when char k = p # 0 and G is a p-group.)
(Almkvist, Dicks and Formanek [85]) Show that H(RC : k) is rational whenever
G has a cyclic Sylow p-subgroup, where p = char £.

(Almkvist, Dicks and Formanek [85]) Let G be a compact subgroup of G L ,(C).
Show that if R = C(xy, ..., x4), then

H(RG:C)=/(1—t.Tr)" for|t| <d7!,
G

where [,  1s the normalized Haar measure.

(D. R. Lane) Let R = k(x;, x2) and let G be the cyclic group generated by an
automorphism of the form (x; + p, x,), where p € k[x,]*. Show thatc = pax, —
xjap € RO foralla € RS and that R is the smallest k-algebra with this property
containing k(c, x,). Find a free generating set for R®.

(G. M. Bergman) Let R be aring, S a subring of R and X a subset of S such that the
rightideal XR is R-projective, with dual R-basis {«, : XR — R|x € X}. Show that
if there is an S-bimodule map 7 : R — S fixing S, then {o, 7 : XS — S|x € X}
is a dual S-basis for the right ideal XS. Deduce that if S is a subring of a ring R
and is a direct summand of R as S-bimodule, then if R is right (semi-)hereditary,
sois S.

(G. M. Bergman) Let R be a ring and G a group of automorphisms of R such that
the orbit #G of any r € R is finite, of order invertible in R. Show that the averaging
mapw:R — R givenbyrm = |rG|™' Y rgisan R®-bimodule map fixing R°.
Deduce that if R is right (semi-)hereditary, then so is R¢.
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13. (A. H. Schofield) Let R = k(xy, x,), where char k = 0. If u = (x; + p, x, +

a), where p € k[x,]*, a € k*, show that there exists g € k[x,] such that ¢g(x) —
q(x + o) = p(x) and deduce that u is conjugate to (x;, X, + o).

14°. Show that for any group of automorphisms of the free algebra k(X), the ring of
all invariants is free.

15°. Does the analogue of Proposition 8.1 hold with ‘2-term weak algorithm’ replaced
by ‘n-term weak algorithm’ and ‘2-fir’ replaced by ‘n-fir’, e.g. for n = 3?

16°. Find an analogue of Proposition 8.5 when |G| is divisible by char .

6.9 Galois theory of free algebras

Our aim in this section is to establish a Galois correspondence for free algebras.
However, it will be instructive to prove the result in a more general setting, to
bring out more clearly what special properties of k(X) are needed.

Throughout this section R will be an integral domain and End(R) the ring of
all endomorphisms of R, as abelian group, and these endomorphisms will be
thought of as maps of R, written on the right, with composition x.y. We recall
that with operators on the right, in any operator equation an injective operator is
left regular and a surjective operator is right regular. For each r € R we identify
r with the element of End(R) given by right multiplication by r and thus view
R as a subring of End(R). Similarly we regard the opposite ring R° as a subring
of End(R) by identifying the element r° corresponding to r € R with the map
consisting of left multiplication by r. Thus for r, s € R we have

rs=rs, r°s®=(r), rs°=s°r, rs®=sr. (1

Moreover, r = r° if and only if r lies in the centre of R. The group Aut(R) of
ring automorphisms is a subgroup of U (End (R)), and it will now be convenient
to denote the effect of g € End (R) on R by rg rather than r¢ and the expression
rsg will mean r(sg), not (rs)g. We shall be concerned with elements of the form

f= Zg,—.a?.bl-, where g; € Aut(R), a;, b; € R.
Such an element will be called an R-trace form, its effect on R is
rf = Zai(rgi)bi~
We also note the rules
rg=grg, r°g=g.@(g° @ €R,ge Aut(R)),

which follow from the formulae (sr)g = (sg)(rg), (rs)g = (rg)(sg).
An element g of Aut(R) is said to X-inner on a subring S of R, after
Kharchenko (= Xapuenro) if there exist a, b € R* such that a.g.b® — a°.b
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vanishes on S, i.e.
b(sg)(ag) = asb for alls € S. 2)

For s = 1 this reduces to b.ag = ab; this yields ag and now (2) shows sg to be
determined entirely by a and b. Hence if T is an extension ring of R containing
u=a'band u=' = b 'a, we have sg = u~'su in T, so that g is actually
induced by an inner automorphism of a certain extension ring T (in fact the
Martindale ring of quotients, see Montgomery and Passman [84]); however,
the definition does not presuppose the existence of 7. If g is X-inner on all of
R, we call it X-inner. From b.ag = ab we obtain b°.a® = (ag)°.b°, and by (1)
and the subsequent observations, we have

(ag)°.b.b® =b°.a°.b = b°.a.g.b° = b°.g.ag.b°.

Since R is a domain, we can cancel b° on the right, and writing a = a/g_l, we

obtain
b°.g.a =a°b, wherea',be R*.

This shows that the property of being X-inner is left-right symmetric.
Moreover, since R is closed under conjugation by ab~', R contains a’ =
(@b~ Ya(ab™") = bab~", whence ba = a'b, and further, ab~' = b~'a’. With
the help of this relation it is easily seen that the set of X-inner automorphisms
is closed under composition. An automorphism that is not X-inner is called X-
outer, and a subgroup G of Aut(R) is called X-outer if the only X-inner element
of Gis 1.

We shall recall the results of Kharchenko’s Galois theory, essentially follow-
ing Montgomery and Passman [84]. We remark that most of these results were
actually proved for semiprime rings by Kharchenko [77] and for prime rings
by Montgomery and Passman [84]; the restriction to integral domains (which
is all we shall need) simplifies many of the arguments.

We leave to the reader the verification that the X-inner automorphisms form
a subgroup of Aut(R). Our first object is an analogue of Dedekind’s lemma on
the independence of automorphisms; this is prefaced by two lemmas.

Lemma 6.9.1. Let R be an integral domain and S a subring; further, let
o= g:.a).b; be an R-trace form and B an element of R.c.S, say B =
ZTZI ri.o.s;(rj € R,s; € §)Thenwe have R C (Ra)S and

B = Zgi.af.ci where ¢; = ZTzl(rjgi)b,-sj.

Proof. We have RB C R(R.«.S) € (Ra)S; now the rest is straight-
forward. u
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Lemma 6.9.2. Let R be an integral domain and S a subring such that
RaSNS #0 for all a € R*. Suppose that there is an R-trace form
a=>g .a?.b; in which not all the b; are zero. Then there exists a trace form

B = Zg,-.af’.c,- € R.a.S,

such that not all the c; are zero, and for all i, j such that c;, c; # 0, the auto-
morphism g;lgl- is X-inner on S.

Proof. Using Lemma 9.1 and the fact that Rb; S N S # 0, we may replace o
by an element of R.«.S, chosen so as to ensure that b; € §*. Fix s € §*; then
we have

a.sby — (by1s)g1 Lo = Zgi.alf’.c,-,

where ¢; = b;sby — ((bls)gl_lg,-)bi, by Lemma 9.1 with a minimal number of
terms. We have ¢; = 0,and so ¢; = Oforalli,i.e. bY.b; — b‘l’.gl_lgf.bf vanishes
on S; hence gl_lg,- is X-inner on S, and so is gj_lg,- = (gl_]gj)‘lgl_]g,-. [ ]

We shall apply these results as follows.

Proposition 6.9.3. Let R be an integral domain, G an X-outer subgroup of
Aut(R) and let a = Z'l’ gi.al.bi(ai, b; € R, g; € G) be an R-trace form. Then

(i) R.a.R contains an element of the form g.(Xa; .c;), where the c; are not all
0 and the sum is over those i for which g; = g,
(ii) ifa = 0and g1.a%, ..., gn.a, is a minimal right R-dependent family, then
all the g; are equal, and
(iii) if the g; are distinct and the a;, b; are non-zero, then a.a % 0 for all
a € R*.

Proof. 'We may assume that the sum for « is non-empty and all the b; are
non-zero. By Lemma 9.1 (with § = R), any € R.«.R is of the form 8 =
S g .a?.c;. If we choose a 8 with the least positive number of non-zero ¢; and
apply Lemma 9.2, we find that 8 has the form required in (i), because G is
X-outer.

If =0, then § =0 and (ii) follows by minimality. Finally, suppose

that gy, ..., g, are distinct and the a; are non-zero. By (ii) a minimal right
R-dependent subfamily of g;.af,..., g,.a, must consist of a single ele-
ment, but g;.a?.b; # 0 if b; # 0, so any one-element subfamily is right R-
independent. It follows that g;.a{, ..., g,.a; are right R-independent, hence

for any a, by, ..., b, € R*,

a.a = Xg;.a;.(agib;) # 0.
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For a better understanding of the relation between X-inner automorphisms
and the ring elements that determine them, we make the following observation.

Lemma 6.9.4. Let R be an integral domain and g € Aut(R).

(i) Fora,b,c,d € R*, consider the following four conditions:
(a) a®.b=g.c°4d, i.e.

arb=crgd for allr € R, 3)

(b) a®.c =a.g.c° i.e.
arc=crgag for allr € R, “)

(c) b.d®° =b°gd,i.e.
(d) drb =bgrgd for allr € R, o)
ab =cd. (6)

Then (a) < ((b)&(d)) < ((c¢)&(d)). In particular (a) implies that g is X-inner.
(ii) For any p,q,w € R*, the following conditions are equivalent:
(e) The elements a = p, c = q satisfy (b), i.e.
prq =qrgpg forallr € R, )
(f) The elements a = wp, ¢ = wq satisfy (b), i.e.
wprwqg = wqrg(wp)g forallr € R, ®)
(g) The elements a = pw, c = qwg satisfy (b), i.e.

pwrqwg = qwgrg(pw)g forallr € R. &)
Proof. (i) Assume that (a) holds. Then (d) follows by taking r = 1. If we now
apply (a) to the product arab, first replacing r by ra, and then replacing ab by
cd, we obtain c(ra)gd = arcd. Cancelling d, we have arc = c(rg)(ag), i.e.
(b). For the converse, we assume (b) and note that (a) is trivial for r = 0, while
for r # 0, we have the equivalences
arb=crgd

& arbc =crgdc (right multiply by ¢)

& crgbgag =crgdc (by(b))

& bgag =dc. (left cancel crg)

For r = 1 the first line reduces to (d), so assuming (b), (d), the last line, which
is independent of r, holds. Hence the first line holds for all r, and (a) follows.
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The equivalence (a) < (c) & (d) follows by symmetry.

(i) Assume (e), i.e. prq = grg pg. Hence wprq = wqgrgdg. This is of
the form (a) and applying (a) = (b) we get (f). Conversely, assuming (f):
wprwq = wqg rg(wp)g, we cancel w on the left to obtain prwqg = g rg(wp)g;
applying (a) = (b), we find that prq = g rg pg, which is (e). Now (e) = (b) is
proved similarly, using right instead of left multiplication and cancellation. W

Proposition 6.9.5. Let R be an integral domain, G a finite X-outer subgroup
of Aut(R) and a € R*. Then RSaR and RaRC® contain non-zero ideals of R
and every non-zero ideal of R meets R® non-trivially.

Proof. Puta =) g; then Ra C RO, because ah = « for all h € G. By
Proposition 9.3 (i), R.(@.a).R contains an element of the form 8 = g.c for
some ¢ € R*; therefore

Re = (Rg)c = RB < (Ra)aR < RSaR. (10)

It follows that RcR < RCaR is a non-zero ideal of R contained in RSaR. For
any non-zero ideal / choose

0#be()Is.
geG
e.g.b=1(cg)...(cg,),where G = {g1,...,g,};thenforallg € G,bg € I C
RSaR. By Proposition 9.3 (iii), b.a # 0, hence
0# Rba SR°NY Rbg SRONI.
Thus / meets RY; by symmetry the same result holds for RaRC. ]

We shall want to know under what circumstances an X-inner map reduces to
the identity; it is convenient to state the conditions more generally for inclusion
maps.

Lemma 6.9.6. Let R be an integral domain, G a finite X-outer subgroup of
Aut(R), S an RS-subring of R and o : S — R an RC-ring homomorphism. If
there exista, b, c,d € R* such that

asb =c(so)d foralls € S, (11

then o is the inclusion map. In particular, the fixed ring of an X-inner auto-
morphism # 1 of R cannot contain the fixed ring of a finite group of X-outer
automorphisms.

Proof. Given r € R, we have s =) rg € RC C S, so we have so =,
because o fixes RY, and hence asb = csd. Thus for all » € R, Y a(rg)b =
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> e(rg)d, ie.
Y (g.a°b—g.c°.d)=0.

By Proposition 9.3 (ii), g.a® and g.c° are right R-dependent, for some g € G,
say

g.a®e=g.c®.f, wheree, f € R™.

This is of the form (3) of Lemma 9.5, with ¢ = 1 and b, d replaced by e, f. Hence
it implies Equation (4) of Lemma 9.4 (with g = 1), i.e. arc = cra. Moreover,
on putting s = 1in (11), we obtain ab = cd, i.e. (6), and so, by Lemma 9.4, we
have (3) (with g = 1), hence for s € §, asb = csd; therefore so = s, which
shows o to be induced by the inclusion map. Since g is a unit in End(R), we
have a®.e = c°. f, and so

b.a®e=>b.cf
=c°.bf =c®.ae

=c%.a.e.

Cancelling e, we obtain b.a° = c°.a. Hence, for all s € S, we have c(so)d =
asb = csa. Putting s = 1 we find that @ = d and on cancelling a,0 = 1, s0 o
is reduced to the inclusion map. To prove the final assertion we take S = R, let
o be an X-inner automorphism and for the given equation take an equation of
the form (4) defining o. [ |

These results may be used to derive analogues of the fundamental theorem
of Galois theory for fields; we shall limit ourselves here to what is actually
needed later.

Proposition 6.9.7. Let R be an integral domain, G a finite X-outer subgroup
of Aut(R) and S an R -subring of R.

(i) If H is the subgroup of G fixing S elementwise, so that
R C S CRH,
then S contains a non-zero ideal of R .
(ii) Any injective RC-homomorphism o : S — R is the restriction to S of an
element of G (unique up to left multiplication by an element of H).
Proof. Letgy,..., g, bealefttransversal of H in G, so that G is the disjoint
union of the cosets g;H. Put o =) g;, B =),y h: then a.p =" g. For

anyi # j, g 1g; ¢ H,so gi_lgj does not restrict to the inclusion map on S, by
the choice of H, and by Lemma 9.6, g, ! g; is not X-inner on S. We now apply
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Lemma 9.2 (with the help of Proposition 9.5) to conclude that R.«.S. contains
an element

er.oz.sj =g.c, wherec € R* and g = g; for somei.
Since RcS N S # 0, we may assume that ¢ € S*, and on replacing « by g~ ',
we may take g = 1. By Proposition 9.3(iii), c.8 # 0 and 8 centralizes R and
(R, i.e. it is a homomorphism of R*/ -bimodules, so
0#£cp= er.a.sj.ﬂ
= ri.ap.sj. (12)

therefore
0% R(c.B) € (R(@p))S € RYS < R".

Since ¢.f is a left R* -module homomorphism, R(c.B) is a non-zero left ideal
of R contained in S. By symmetry S also contains a non-zero right ideal ¢ R
and so § D R(B.c)¢R, i.e. S contains a non-zero ideal of R and (i) is proved.

Let 6 : S — R be an RY-ring monomorphism. Since the R-trace form
described in (12) takes values in S, we may multiply (12) on the right by s.o,
for any s € S; this and the fact that c.8 = S.c, yields

B.c.s.o =c.p.s.0
= er.aﬂ.sj.sa
= er.aﬂo.sj.sa
= er.ozﬂ.(sjo).(sd)v

because R(ef) € RC and o fixes R® elementwise. Since o8 = Y g, we have

B.c.s.o = Zg.bg.so, (13)

where b, = > (r;¢)(s;0) is independent of s. Since 8 # 0 and o is injective,
the expression (13) is non-zero, hence b, # 0 for some g’ € G. Replacing s by
sc, we see that

Zg.bg.(sc)o = B.c.sc.o =cs.B.c.o

= cs. Zg.bg = Zg.(cs)g.bg.

By Proposition 9.3(iii), applied to the difference between the initial and final
summations above, we obtain by(sc)o = (cs)ghb, forall g € G. Applying g,
we find

(byg  N(sog Ncog™") = cs(byg' ™.
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By Lemma 9.6, o g/_‘ is the inclusion map on S, and this means that o extends
to g'. [ ]

We can now describe Kharchenko’s form of the Galois correspondence
between groups and rings.

Theorem 6.9.8. Let R be an integral domain and G a finite X-outer subgroup
of Aut(R). Then the following conditions on an RC -subring S of R are equivalent:

(a) S = R, where H is the subgroup of G fixing S elementwise,

(b) S is an anti-ideal of R,

(c) foralla € S*,r € R, ifar € S, thenr € S,

(d) for any subring T of R, such that S C T C R, S contains no non-zero ideal
of T.

Moreover, each R -automorphism of S extends to an element of G, and there
is a natural bijection between the subgroups H of G and the R -subrings of R
that are anti-ideals in R, given by

H < R, (14)

Proof.  'We begin by proving the last part. Let H be a subgroup of G. Given
r € R,ifar € RY forsomenon-zeroa € R thenforallh € H, ar = (ar)h =
a(rh), so rh =r and r € R”. This shows R to be an anti-ideal in R (in
fact, it satisfies a stronger, one-sided condition). If H, K are subgroups of
G and R = RX | then each h € H fixes RX, so by Proposition 9.7(ii) (with
S =R,G = K) hextends to an element of K, i.e. h € K, and thus H C K; by
symmetry, H = K, so the correspondence (14) is injective.

Now consider any RC-subring S of R that is an anti-ideal in R. Let H be
the subgroup of G fixing S elementwise, so that S € R; we shall prove that
equality holds. By Proposition 9.7(i), S contains a non-zero ideal / of R, but
no proper subring does, by Corollary 5.3. Hence R = S, as claimed. This
establishes the bijection and the rest follows by Proposition 9.7(ii). Now the
equivalence of (a)—(d) follows from what has been said and the properties of
anti-ideals. |

To apply this result we need to determine the X-outer automorphisms and
anti-ideals in 2-firs. We first show how to get a supply of X -outer automorphisms.

Lemma 6.9.9. [fR is a 2-fir all of whose invariant elements are central, then
Aut(R) is X-outer.

Proof.  Suppose that g € Aut(R) is X-inner, say

a®b=a.g.b°=g.ag.b°. (15)
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‘We must show that g = 1. Applying this relation to 1, we get 0 # ab = b(ag) €
aR N bR, hence

aR +bR =dR, a=da,b=db.
Now (15) becomes a.d°.d.b; = g.(da,)g.b}.d°, i.e.
day.r.db; = db;.rg.(day)g; (16)

by Lemma 9.4 (f) = (e) it follows that we may take d = 1, hence a{.b; = a;.g.b}.
We now have aR + bR = R and hence

Rb =aRb+ bRb = b(Rg)ag) + bRb =bR(ag) + bRb
= b(R(ag) + Rb) = bR.

by Lemma 9.4, (g) = (e) we can get rid of any common right factors and so
find that 1 € R(ag) + Rb. Thus b is invariant, and so by hypothesis, b° = b;
by symmetry, a® = a. Cancelling b from (15), we have ¢ = a° = a.g, hence
g = 1, as claimed. [ |

We recall from Section 6.6 thatif S is a 2-fir, unit-closedin R (i.e. U(R) N § =
U(S)), then S is an anti-ideal (Lemma 6.8). As a consequence we obtain

Theorem 6.9.10. Let R be afiltered K-ring with 2-term weak algorithm, where
K = R,), and whose invariant elements are central. If G is a finite group of
K-automorphisms of R, then there is a natural bijection between subgroups of
G and RC -subrings of R that are 2-firs.

Proof. By Lemma 9.9, G is X-outer; the above remark shows that each K-
subring of R that is a 2-fir is an anti-ideal and by Proposition 8.1 each fixed ring
is a 2-fir. u

For free algebras we deduce the following result:

Theorem 6.9.11. Let R be a free k-algebra and G a finite group of k-algebra
automorphisms of R that are homogeneous with respect to some grading of R
for which the weak algorithm holds (e.g. linear automorphisms). Then there is
a natural bijection between the subgroups of G and the free subalgebras of R
containing R°.

Proof.  This is an immediate consequence of Theorems 9.10 and 8.3. [ ]

Exercises 6.9

1. Prove the results of this section for prime rings.
2. Show that for an integral domain R the X-inner automorphisms form a normal
subgroup of Aut(R).
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3. (G. M. Bergman) Let R be an integral domain, @, b, ¢, d € R*, and g a permutation
of R fixing 1. Show that if g satisfies the condition of Lemma 9.4 (a), then it
is an automorphism of the additive group of R such that (rs)g =rg.sg for all
r € Ra, s € R. Are there similar statements involving b, ¢, d? (Hint: Put r = ta,
transform atasb in two ways and cancel d on the right.)

4. (G. M. Bergman) Continuing Exercise 3, deduce (still assuming Lemma 9.4 (a)),
thatif Ra and Rc are comparable, as well as bR and dR, then g is aring automorphism
of R.

5°. (G. M. Bergman) With R, a, b, ¢, d, g as in Exercise 3, how much of Lemma 9.4
remains true under these more general conditions?

6*. (G. M. Bergman) Find an example of an integral domain R, a, c € R* and a per-
mutation g of R satisfying 1¢g = 1 and the identities arc = crg ag = c(ra)g, such
that g is not a ring automorphism of R. (Hint: Let S be the mixed free monoid on
x,y,z,z " and M a submonoid of S containing no non-zero power of z. On M
define a binary operation * by putting p * ¢ = pq unless p = axz',q = z/xb, in
which case p * ¢ = pg, where § = z~/xb. Verify that this operation is associative
and has the ‘unique product property’, i.e. for any finite subsets U, V of M there
exists an element that can be written as u * v for just one # € U and one v € V.
Deduce that the monoid algebra kM is an integral domain and take g to be conju-
gation by z (an automorphism of M but not of (M,*)). Verify the desired identities
with @ = yz, ¢ = y, but show that (x * x)g # xg * xg.)

6.10 Automorphisms of free algebras

We now turn to examine the structure of the automorphism group of the free
algebra. So far the only satisfactory results have been found in rank 2; thus we
shall be studying the automorphisms of £ (x, y). The case of rank 1 is of course
well known (and rather trivial): the only automorphisms of k[x] are the affine
transformations x — ax + b, where a, b € k,a # 0.

More generally, we consider the algebra R = k(X), where £ is a field and
X is any finite set, and define some types of automorphisms that are frequently
encountered.

1. The mapping

T, : xX+—>x+a,, wherexe X,a, €k, )

defines an automorphism of R, called a translation. The group of translations
will be denoted by T.

2. Any automorphism of the k-space kX with basis X uniquely defines an
automorphism of R:

a x> Xayy, whereoy, €k, (ay,)invertible . 2)

These are just the automorphisms leaving kX invariant and are called linear.
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3. An automorphism leaving k£ + kX invariant (and leaving & fixed) is called
affine; such an automorphism has the form

x> Zaxy y+Be,  Wwherea,,, B €k, (ay,) invertible . 3)

The group of all affine automorphisms of R will be denoted by A in this section.

4. Let xo be a specified element of X and write Xo = X \{xo}. For any f €
k({Xy) there is an automorphism of R sending x to xo + f and fixing Xj; it
is called an xg-based shear. More generally, an automorphism of R leaving
k({Xo) fixed is called a triangular automorphism, in such an automorphism
Xo = Axo + f,where A € k>, f € k(Xy). The group of these automorphisms
will be denoted by A.

We remark that all of these types can equally well be defined for the polyno-
mial ring k[ X]; here the triangular automorphisms are known as de Jonquiéres
automorphisms.

Let

a:ix fi (xeX) 4

be any endomorphism of R (i.e. a k-linear ring endomorphism). If f.(0) =0
for all x € X, then « is called centred or augmentation preserving; in fact it
preserves the augmentation ideal XR. If « is given by (4) and t, is the translation
defined by (1), then

T, X fy+ay,

and for a suitable choice of a € k¥, viz. a, = — f+(0), we can ensure that
7, 1s centred. This remark is sometimes used to effect a reduction to centred
automorphisms, as in the proof of our first result:

Proposition 6.10.1. Any surjective endomorphism of k{X), where X is finite,
is an automorphism.

Proof.  Let ¢ be a surjective endomorphism; by composing it with a transla-
tion we may take it to be centred. Suppose that ¢ is not injective and let O #
w € ker ¢. Put d = d(w) and denote by n the set of all elements of R = k(X)
of order greater than d. Clearly n is an ideal and n¢ C n, because ¢ is cen-
tred. Therefore ¢ induces an endomorphism ¢; : R/n — R/n, which like ¢ is
surjective. Since X is finite, R /n is finite-dimensional over k, and so ¢, is an auto-
morphism, but w¢; = we¢ = 0, a contradiction; hence ¢ is injective and so is an
automorphism. [ |

A corresponding result holds for k[ X]. We remark that since abelianization
is a functor, the natural mapping

Autk(X) — Autk[X]
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is a homomorphism. In fact it can be shown that for |X| <2 it is an
isomorphism.

The following definition is basic for much of what follows. An automorphism
of k(X) or k[X] is called tame if it can be obtained by composing affine auto-
morphisms and shears; all other automorphisms are called wild. The following
are some examples of automorphisms not known to be tame. The automorphism
x — f, will also be written { f,}.

1. (D. J. Anick) Let X = {x, y, z}: for any p € k(X) the endomorphism
{x +yp,y,z+ py} fixes xy — yz. So for p = xy — yz we get an automor-
phism with inverse {x — yp, y, z — py}.

2. The automorphism of 1. has tame image in k[ X ], but the following example
(due to Nagata) isnotknowntobe tame. Let X = {x, y, z}; forany p € k[X],the
endomorphism (x + zp, y + 2xp + zp?, z) fixes x> — yz, so for p = x> — yz
we get an automorphism with inverse (x — zp, y — 2xp + zp?, 2).

3. (M. Nagata, D. J. Anick) X = {w, x, y, z}, R = k(X) or k[X]. For any
p € R, the endomorphism (w, x 4+ pz, y + wp, z) fixes wx — yz, so it is an
automorphism for p = wx — yz. If we replace k by k[w, z], then the same
formula gives wild automorphisms of k[w, z](x, y) and k[w, x, y, z].

Our main objective will be to show that every automorphism of k(x, y) is
tame; we shall do this by presenting the automorphism group of k{x, y) as the
free product of A and A, amalgamating their intersection. As a preparation we
recall the definition of a free product with amalgamation. Let G| and G, be two
groups with subgroups F; of G;(i = 1, 2) that are isomorphic, say F is a group
with isomorphisms ¢; : F — F;. The group generated by the elements of G
and G, with all the defining relations in G; and G, as well as the relations
xX@1 = x@a(x € F), is called the free product of G| and G, amalgamating F,
with F,, and is denoted by G *r G,. We remark that F may be 1; this is
simply called the free product. At the other extreme, if F| = G then the free
product reduces to G; this case (and the case F, = G;) is usually excluded. For
simplicity we shall identify F' with the subgroups F| and F,. Then the elements
of the free product can be expressed in the form

auy ...uy, ®)

where a € F and the u; are alternately from G|\ F and G\ F.

Let us put P for this free product; its structure may be described as follows,
using the letters E and E*. For each element (5) we form a set XY, where X = E
ifu; € Gyand X = E*ifu; € G,,andsimilarlyY = Eifu, € GyandY = E*
if u, € G,. Thus we have a partition of P into five sets: EE, EE*, E*E, E*E*
as well as F (in case the u; are absent). The following properties are easily
verified, where X, Y, ... denote Eor E* and X™* = X, ...
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B.1 F is a subgroup of P,

B2 If f e F,g € XY,then fg € XY,

B.3 If g € XY, then g’1 eYX,

B4 Ifge XY,heY*Z, thengh e XZ,

B.5 For each g € P there is an integer N(g) such that for any representation
g=2g1...-8:,(g € X*X)wehaven < N(g),

B.6 EE* # 0.

Given any group G, a partition of G into five disjoint sets
F,EE,EE* E*E, E*E* satisfying B.1-B.6 is called a bipolar structure and
F is its core. Thus any free product has a bipolar structure; conversely, a group
with a bipolar structure is either a free product with amalgamation or an HNN-
extension. The latter does not concern us here, but see Exercise 6.

In any group G with a bipolar structure an element g € G is called reducible
if g¢ F and g = hk, where h € XZ, k € Z*Y. Otherwise g is irreducible,
thus an irreducible element is in F U XY and not of the form g = hk, where
heXZ,k e Z*Y. We observe from B.5 that G is generated by its irreducible
elements. In a free product with amalgamation the irreducible elements are
the products of the form au, wherea € F andu € G;\F,i = 1 or2; then EE*
contains no irreducible elements, for an element of E E* has the formau, ... u,
where u; and u, belong to different factors. Conversely, we shall now show
that any group with a bipolar structure such that £ E* contains no irreducible
elements is a free product.

Theorem 6.10.2. Let G be a group with a bipolar structure such that EE*
contains no irreducible elements. Then G is a free product with the core as
amalgamated subgroup.

Proof. Let g, h € G and suppose that g € XZ,h € ZY . If g is irreducible,
then gh € F UWY for some W, for if gh € WY*, then h~! € YZ by B.3 and
so g = gh.h~! € WZ, contradicting the fact that g is irreducible. Similarly if
h is irreducible then gh € F U XW for some W.

Next we claim that if g € XZ, h € ZY are both irreducible, then gh is an
irreducible element of F U XY . For gh € F U XY, by what has been shown.
If gh is reducible, then gh € XY and gh = uv, where u € XV and v € V*Y.
Now h~! € Y Z and is irreducible, so we have vh~' € F U V*W, butsince g =
u(vh~")isirreducible, it follows that vh~! € F;sobyB.2,g = u(vh™') e XV.
Further, h~! = v~ '(vh™"), so h~! e YV* by B.3 and B.2, hence h € V*Y,
but this contradicts the fact that g € XZ and h € ZY. This shows gh to be
irreducible.



400 Centralizers and subalgebras

Suppose now that f € F, g € XY and g is irreducible. Then fg € XY by
B.2; we claim that fg is irreducible. For if not, then fg = uv, where u € XV
andv € V*Y forsome V.Then g = (f~'u)v, where f~'u € XV andv € V*Y,
contradicting the fact that g is irreducible. Hence fg is irreducible; by a similar
argument and B.3, f~!g~! is an irreducible element of YX, so it follows that gf
is an irreducible element of XY.

Now define

G| = F U {x|xis an irreducible element of EE},

G, = F U {x|xis an irreducible element of E*E*}.

We claim that G| and G, are subgroups of G. By B.1, B.2, G| admits inverses;
consider a product hk. If h, k are both in F, then hk € F. If h, k are both
irreducible el