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Free Ideal Rings and Localization in General Rings

Proving that a polynomial ring in one variable over a field is a principal ideal domain
can be done by means of the Euclidean algorithm, but this does not extend to more
variables. However, if the variables are not allowed to commute, giving a free
associative algebra, then there is a generalization, the weak algorithm, which can be
used to prove that all one-sided ideals are free.

This book presents the theory of free ideal rings (firs) in detail. Particular emphasis
is placed on rings with a weak algorithm, exemplified by free associative algebras.
There is also a full account of localization, which is treated for general rings, but the
features arising in firs are given special attention. Each section has a number of
exercises, including some open problems, and each chapter ends in a historical note.

paul cohn is Emeritus Professor of Mathematics at the University of London and
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Béla Bollobás
William Fulton
Frances Kirwan
Peter Sarnak
Barry Simon

For information about Cambridge University Press mathematics publications visit
http://publishing.cambridge.org/stm/mathematics

Already published in New Mathematical Monographs:

Representation Theory of Finite Reductive Groups
Marc Cabanes, Michel Enguehard

Harmonic Measure
John B. Garnett, Donald E. Marshall

Heights in Diophantine Geometry

Enrico Bombieri, Walter Gubler



Free Ideal Rings and Localization
in General Rings

P. M. COHN
Department of Mathematics
University College London



  
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge  , UK

First published in print format

- ----

- ----

© Cambridge University Press 2006

2006

Information on this title: www.cambridge.org/9780521853378

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

- ---

- ---

Cambridge University Press has no responsibility for the persistence or accuracy of s
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (NetLibrary)

eBook (NetLibrary)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521853378


To my granddaughters Chasya and Ayala





Contents

Preface page xi
Note to the reader xiv
Terminology, notation and conventions used xvi
List of special notation xx

0 Generalities on rings and modules 1
0.1 Rank conditions on free modules 1
0.2 Matrix rings and the matrix reduction functor 7
0.3 Projective modules 12
0.4 Hermite rings 19
0.5 The matrix of definition of a module 25
0.6 Eigenrings and centralizers 33
0.7 Rings of fractions 37
0.8 Modules over Ore domains 47
0.9 Factorization in commutative integral domains 52

Notes and comments on Chapter 0 58

1 Principal ideal domains 60
1.1 Skew polynomial rings 60
1.2 The division algorithm 66
1.3 Principal ideal domains 73
1.4 Modules over principal ideal domains 77
1.5 Skew Laurent polynomials and Laurent series 86
1.6 Iterated skew polynomial rings 98

Notes and comments on Chapter 1 105

2 Firs, semifirs and the weak algorithm 107
2.1 Hereditary rings 107

vii



viii Contents

2.2 Firs and α-firs 110
2.3 Semifirs and n-firs 113
2.4 The weak algorithm 124
2.5 Monomial K-bases in filtered rings

and free algebras 131
2.6 The Hilbert series of a filtered ring 141
2.7 Generators and relations for G E2(R) 145
2.8 The 2-term weak algorithm 153
2.9 The inverse weak algorithm 156
2.10 The transfinite weak algorithm 171
2.11 Estimate of the dependence number 176

Notes and comments on Chapter 2 183

3 Factorization in semifirs 186
3.1 Similarity in semifirs 186
3.2 Factorization in matrix rings over semifirs 192
3.3 Rigid factorizations 199
3.4 Factorization in semifirs: a closer look 207
3.5 Analogues of the primary decomposition 214

Notes and comments on Chapter 3 223

4 Rings with a distributive factor lattice 225
4.1 Distributive modules 225
4.2 Distributive factor lattices 231
4.3 Conditions for a distributive factor lattice 237
4.4 Finite distributive lattices 243
4.5 More on the factor lattice 247
4.6 Eigenrings 251

Notes and comments on Chapter 4 261

5 Modules over firs and semifirs 263
5.1 Bound and unbound modules 264
5.2 Duality 269
5.3 Positive and negative modules over semifirs 272
5.4 The ranks of matrices 281
5.5 Sylvester domains 290
5.6 Pseudo-Sylvester domains 300
5.7 The factorization of matrices over semifirs 304
5.8 A normal form for matrices over a free algebra 311
5.9 Ascending chain conditions 320



Contents ix

5.10 The intersection theorem for firs 326
Notes and comments on Chapter 5 329

6 Centralizers and subalgebras 331
6.1 Commutative subrings and central elements in 2-firs 331
6.2 Bounded elements in 2-firs 340
6.3 2-Firs with prescribed centre 351
6.4 The centre of a fir 355
6.5 Free monoids 357
6.6 Subalgebras and ideals of free algebras 367
6.7 Centralizers in power series rings and in free algebras 374
6.8 Invariants in free algebras 379
6.9 Galois theory of free algebras 387
6.10 Automorphisms of free algebras 396

Notes and comments on Chapter 6 407

7 Skew fields of fractions 410
7.1 The rational closure of a homomorphism 411
7.2 The category of R-fields and specializations 418
7.3 Matrix ideals 428
7.4 Constructing the localization 437
7.5 Fields of fractions 444
7.6 Numerators and denominators 455
7.7 The depth 466
7.8 Free fields and the specialization lemma 474
7.9 Centralizers in the universal field of fractions of a fir 482
7.10 Determinants and valuations 491
7.11 Localization of firs and semifirs 500
7.12 Reversible rings 511

Notes and comments on Chapter 7 515

Appendix 519
A. Lattice theory 519
B. Categories and homological algebra 524
C. Ultrafilters and the ultraproduct theorem 538
Bibliography and author index 540
Subject index 566





Preface

It is not your duty to complete the work,
But neither are you free to desist from it.

R. Tarphon, Sayings of the Fathers.

One of the questions that intrigued me in the 1950s was to find conditions
for an embedding of a non-commutative ring in a skew field to be possible.
I felt that such an embedding should exist for a free product of skew fields,
but there seemed no obvious route. My search eventually led to the notion
of a free ideal ring, fir for short, and I was able to prove (i) the free product
of skew fields (amalgamating a skew subfield) is a fir and (ii) every fir is
embeddable in a skew field. Firs may be regarded as the natural generalization
(in the non-commutative case) of principal domains, to which they reduce when
commutativity is imposed. The proof of (i) involved an algorithm, which when
stated in simple terms, resembled the Euclidean algorithm but depended on a
condition of linear dependence. In this form it could be used to characterize
free associative algebras, and this ‘weak’ algorithm enables one to develop a
theory of free algebras similar to that of a polynomial ring in one variable. Of
course free algebras are a special case of firs, and other facts about firs came to
light, which were set forth in my book Free Rings and their Relations (a pun
and a paradox). It appeared in 1971 and in a second edition in 1985. A Russian
translation appeared in 1975.

More recently there has been a surprising increase of interest, in many fields
of mathematics, in non-commutative theories. In functional analysis there has
been a greater emphasis on non-commutative function algebras and quantum
groups have been introduced in the study of non-commutative geometry, while
quantum physics uses non-commutative probability theory, in which even free
associative algebras have made their appearance. The localization developed
in Free Rings has also found a use by topologists. All this, and the fact that

xi



xii Preface

many proofs have been simplified, has encouraged me to write a book based
on the earlier work, but addressed to a wider audience. Since skew fields play
a prominent role, the prefix ‘skew’ will often be left out, so fields are generally
assumed to be not necessarily commutative.

The central part is Chapter 7, in which non-commutative localization is
studied. For any ring R the various homomorphisms into fields are described
by their singular kernels, the matrices with a singular image, which form a
resemblance to prime ideals and so are called prime matrix ideals. Various
classes of rings, such as firs and semifirs, are shown to be embeddable in fields,
and an explicit criterion is given for such an embedding of a general ring to be
possible, as well as conditions for a universal field of fractions to exist. This is
the case for firs, while for free algebras the universal field of fractions can be
shown to be ‘free’. The existence of the localization now has a simpler and more
direct proof, which is described in Sections 7.1–7.4. It makes only occasional
reference to earlier chapters (mainly parts of Chapter 0) and so can be read at
any stage.

In the remaining chapters the theory of firs is developed. Their similarity
to principal ideal domains is stressed; the theory of the latter is recalled in
Chapter 1, while Chapter 0 brings essential facts about presentations of modules
over general rings, particularly projective modules, facts that are perhaps not as
well known as they should be. Chapter 2 introduces firs and semifirs and deals
with the most important example, a ring possessing a generalized form of the
division algorithm called the weak algorithm. The unique factorization property
of principal ideal domains has an analogue in firs, which applies to square
matrices as well; this result and its consequences for modules are discussed in
Chapter 3. It turns out that the factors of any element form a modular lattice
(as in principal ideal domains), which in the case of free algebras is even
distributive; this result is the subject of Chapter 4. In Chapter 5 the module
theory of firs and semifirs is studied; this leads to a wider class of rings, the
Sylvester domains (characterized by Sylvester’s law of nullity), which share
with semifirs the property of possessing a universal field of fractions. Chapter 6
examines centres, centralizers and subalgebras of firs and semifirs.

Results from lattice theory, homological algebra and logic that are used in the
book are recalled in an Appendix. Thus the only prerequisites needed are a basic
knowledge of algebra: rings and fields, up to about degree level. Although much
of the work already occurs in Free Rings, the whole text has been reorganized to
form a better motivated introduction and there have been many improvements
that allow a smoother development. On the other hand, the theory of skew field
extensions has been omitted as a fuller account is now available in my book
on skew fields (SF; see p. xv). The rather technical section on the work of



Preface xiii

Gerasimov, leading to information on the localization of n-firs, has also been
omitted.

I have had the help of many correspondents in improving this edition, and
would like to express my appreciation. Foremost among them is G. M. Bergman,
who in 1999–2000 ran a seminar at the University of California at Berkeley
on the second edition of Free Rings, and provided me with over 300 pages
of comments, correcting mistakes, outlining further developments and raising
interesting questions. As a result the text has been greatly improved. I am also
indebted to V. O. Ferreira for his comments on Free Rings.

My thanks go also to the staff of the Cambridge University Press for the
efficient way they have carried out their task.

University College London
October 2005 P. M. Cohn



Note to the reader

Chapter 0 consists of background material from ring theory that may not be
entirely standard, whereas the Appendix gives a summary of results from lattice
theory, homological algebra and logic, with reference to proofs, or in many
cases, sketch proofs. Chapter 1 deals with principal ideal domains, and so may
well be familiar to the reader, but it is included as a preparation for what is
to follow. The main subject matter of the book is introduced in Chapter 2 and
the reader may wish to start here, referring back to Chapters 1 or 0 only when
necessary. In any case Chapter 2 as well as Chapter 3 are used throughout the
book (at least the earlier parts, Sections 2.1–2.7 and 3.1–3.4), as is Chapter 5,
while Chapters 4 and 6 are largely independent of the rest. The first half of
Chapter 7 (Sections 7.1–7.5) is quite independent of the preceding chapters,
except for some applications in Section 7.5, and it can also be read at any
stage.

All theorems, propositions, lemmas and corollaries are numbered consec-
utively in a single series in each section, thus Theorem 4.2.5 is followed by
Corollary 4.2.6, and this is followed by Lemma 4.2.7, in Section 4.2, and in
that section they are referred to as Theorem 2.5, Corollary 2.6, Lemma 2.7
(except in the enunciation). The end or absence of a proof is indicated by �.
A few theorems are quoted without proof. They are distinguished by letters,
e.g. Theorem 7.8.A. There are exercises at the end of each section; the harder
ones are marked ∗ and open-ended (or open) problems are marked ◦, though
sometimes this may refer only to the last part; the meaning will usually be
clear.

References to the bibliography are by author’s name and the year of publica-
tion, though 19 is omitted for publications between 1920 and 1999. Publications
by the same author in a given year are distinguished by letters. The follow-
ing books by the author, which are frequently referred to, are indicated by
abbreviations:

xiv
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Terminology, notation and conventions used

For any set X , the number of its elements, or more generally, its cardinality is
denoted by |X |. If a condition holds for all elements of X except a finite number,
we say that the condition holds for almost all members of X .

All rings occurring are associative, but not generally commutative (in fact,
much of the book reduces to well-known facts in the commutative case). Every
ring has a unit-element or one, denoted by 1, which is inherited by subrings,
preserved by homomorphisms and acts as the identity operator on modules.
The same convention applies to monoids (i.e. semigroups with one). A ring
may consist of 0 alone; this is so precisely when 1 = 0 and R is then called the
zero ring. Given any ring R, the opposite ring Ro is defined as having the same
additive group as R and multiplication a.b = ba (a, b ∈ R). With any property
of a ring we associate its left–right dual, which is the corresponding property of
the opposite ring. Left–right duals of theorems, etc. will not usually be stated
explicitly.

We shall adopt the convention of writing (as far as practicable) homomor-
phisms of left modules on the right and vice versa. Mappings will be composed
accordingly, although we shall usually give preference to writing mappings on
the right, so that f g means ‘first f , then g’. If R is any ring, then for any left
R-module M , its dual is M∗ = HomR(M, R), a right R-module; similarly on
the other side. The space of m × n matrices over M is written mMn , and we
shall also write mM for mM1 (column vectors) and Mn for 1Mn (row vectors).
A similar notation is used for rings.

In any ring R the set of non-zero elements is denoted by R×, but this notation
is mostly used for integral domains, where R× contains 1 and is closed under
multiplication. Thus an integral domain need not be commutative. If R× is a
group under multiplication, R is called a field; occasionally the prefix ‘skew’ is
used, to emphasize the fact that our fields need not be commutative. An element
u in a ring or monoid is invertible or a unit if it has an inverse u−1 satisfying

xvi



Terminology, notation and conventions used xvii

uu−1 = u−1u = 1. Such an inverse is unique if it exists at all. The units of
a ring (or monoid) R form a group, denoted by U (R). The ring of all n × n
matrices over R is written Mn(R) or Rn . The set of all square matrices over
R is denoted by M(R). Instead of U (Rn) we also write GLn(R), the general
linear group. The matrix with (i, j)-entry 1 and the rest zero is denoted by
ei j and is called a matrix unit (see Section 0.2). An elementary matrix is a
matrix of the form Bi j (a) = I + aei j , where i �= j ; these matrices generate a
subgroup En(R) of GLn(R), the elementary group. By a permutation matrix we
understand the matrix obtained by applying a permutation to the columns of the
unit matrix. It is a member of the extended elementary group E∗

n (R), the group
generated by En(R) and the matrix I − 2e11. If in a permutation matrix the
sign of one column is changed whenever the permutation applied was odd, we
obtain a signed permutation matrix; these matrices generate a subgroup Pn(R)
of En(R).

An element u of a ring is called a left zero-divisor if u �= 0 and uv = 0 for
somev �= 0; of u is neither 0 nor a left zero-divisor, it is called right regular. Thus
u is right regular whenever uv = 0 implies v = 0. Corresponding definitions
hold with left and right interchanged. A left or right zero-divisor is called a
zero-divisor, and an element that is neither 0 nor a zero-divisor is called regular.
These terms are also used for matrices, not necessarily square. Over a field a
square matrix that is a zero-divisor or 0 is also called singular, but this term
will not be used for general rings.

An element u of a monoid is called regular if it can be cancelled, i.e. if
ua = ub or au = bu implies a = b. If every element of a monoid S can be
cancelled, S is called a cancellation monoid. A monoid is called conical if
ab = 1 implies a = 1 (and so also b = 1).

An element of a ring is called an atom if it is a regular non-unit and cannot
be written as a product of two non-units. A factorization is called proper if
all its factors are non-units; if all its factors are atoms, it is called a complete
factorization. An integral domain is said to be atomic if every element other than
zero or a unit has a complete factorization. If a, b are elements of a commutative
monoid, we say that a divides b and write a|b if b = ac for some element c.

The maximum condition or ascending chain condition on a module or the left
or right ideals of a ring or a monoid is abbreviated as ACC. If a module satisfies
ACC on submodules on at most n generators, we shall say that it satisfies ACCn .
In particular, left (right) ACCn for a ring R is the ACC on a n-generator left
(right) ideals of R. A module (or ring) satisfying ACCn for all n is said to satisfy
pan-ACC. Similar definitions apply to the minimum condition or descending
chain condition. DCC for short.



xviii Terminology, notation and conventions used

Two elements a, b of a ring (or monoid) R (or matrices) are associated if a =
ubv for some u, v ∈ U (R). If u = 1 (v = 1), they are right (left) associated; if
u = v−1, they are conjugate under U (R). A polynomial in one variable (over any
ring) is said to be monic if the coefficient of the highest power is 1. Two elements
a, b of a ring R are left coprime if they have no common left factor apart from
units; they are right comaximal if a R + bR = R. Clearly two right comaximal
elements are left coprime, but not necessarily conversely. Two elements a, b
are said to be right commensurable if there exist a′, b′ such that ab′ = ba′ �= 0.
Again, corresponding definitions apply on the other side. A row (a1, . . . , an) of
elements in R is said to be unimodular if the right ideal generated by the ai is
R; thus a pair is unimodular precisely when it is right comaximal. Similarly, a
column is unimodular if the left ideal generated by its components is R.

Let A be a commutative ring; by an A-algebra we understand a ring R
which is an A-module such that the multiplication is bilinear. Sometimes we
shall want a non-commutative coefficient ring A; this means that our ring R is
an A-bimodule such that x(yz) = (xy)z for any x, y, z from R or A; this will
be called an A-ring. To rephrase the definitions, a A-ring is a ring R with a
homomorphism α �→ α.1 of A into R, while an A-algebra is a ring R with a
homomorphism of A into the centre of R. Moreover, the use of the term ‘A-
algebra’ implies that A is commutative. Frequently our coefficient ring will be
a skew field, usually written K , or also k when it is assumed to be commutative.

Let R be an A-ring. A family (ui ) of elements of R is right linearly dependent
over A or right A-dependent if there exist λi ∈ A almost all but not all zero, such
that

∑
uiλi = 0. In the contrary case (ui ) is right A-independent. Occasionally

we speak of a set being linearly dependent; this is to be understood as a family
indexed by itself. For example, two elements of an integral domain R are right
commensurable if and only if they are right linearly R-dependent and both
non-zero.

If A, B are matrices, we write

(
A 0
0 B

)
as A ⊕ B or diag(A, B). We shall

also sometimes write columns as rows, with a superscript T to indicate trans-
position (reflexion in the main diagonal). In such cases the blocks are to be

transposed as a whole, thus (A, B)T means

(
A
B

)
, not

(
AT

BT

)
. For any m × n

matrix A its index i(A) is defined as n − m, and m × n, or n in case m = n, is
described as its size or order.

The letters N, N>0, Z, Fp, Q, R, C stand as usual for the set (respectively
ring) of non-negative integers, all positive integers, all integers, all integers mod
p, rational, real and complex numbers, respectively. If T ⊆ S, the complement
of T in S is written S\T .



Terminology, notation and conventions used xix

In a few places in Chapter 7 and the Appendix some terms from logic are
used. We recall that a formula is a statement involving elements of a ring or
group. Formulae can be combined by forming a conjunction P∧Q (P and Q),
a disjunction P∨Q (P or Q) or a negation ¬P (not P). A formula that is not
formed by conjunction, disjunction or negation from others is called atomic.
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(Notation that is either standard or only used locally has not always been
included.)
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0

Generalities on rings and modules

This chapter collects some facts on rings and modules, which form neither

part of our subject proper, nor part of the general background (described in

the Appendix). By its nature the content is rather mixed, and the reader may

well wish to begin with Chapter 1 or even Chapter 2, and only turn back when

necessary.

In Section 0.1 we describe the conditions usually imposed on the ranks of

free modules. The formation of matrix rings is discussed in Section 0.2; Section

0.3 is devoted to projective modules and the special class of Hermite rings is

considered in Section 0.4.

Section 0.5 deals with the relation between a module and its defining matrix,

and in particular the condition for two matrices to define isomorphic modules.

This and the results on eigenrings and centralizers in Section 0.6 are mainly

used in Chapters 4 and 6.

The Ore construction of rings of fractions is behind much of the later devel-

opment, even when this does not appear explicitly. In Section 0.7 we recall the

details and apply it in Section 0.8 to modules over Ore domains; it turns out

that the (left or right) Ore condition has some unexpected consequences. In

Section 0.9 we recall some well-known facts on factorization in commutative

rings, often stated in terms of monoids, in a form needed later.

0.1 Rank conditions on free modules

Let R be any ring, M an R-module and I a set. The direct power of M with

index set I is denoted by M I , while the direct sum is written M (I ). When I
is finite, with n elements, these two modules agree and are written as Mn , as

usual. More precisely, Mn denotes the set of rows and nM the set of columns of

length n.

1



2 Generalities on rings and modules

With every left R-module M we can associate its dual

M∗ = HomR(M,R R),

consisting of all linear functionals on M with the natural right R-module struc-

ture defined by (αc, x) = (α, cx), where x ∈ M , α ∈ M∗ and c ∈ R. Similarly,

every right R-module N has as dual the left R-module N ∗ = HomR(N , RR).

In particular, (Rn)∗ ∼= nR, (nR)∗ ∼= Rn; more generally, if P is a finitely gen-

erated projective left R-module, then P∗ is a finitely generated projective

right R-module and P∗∗ ∼= P . For if P ⊕ Q ∼= Rn , then P∗ ⊕ Q∗ ∼= nR and

P∗∗ ⊕ Q∗∗ ∼= Rn . Now the obvious map δP : P → P∗∗, which maps x ∈ P to

x̂ : f �→ 〈 f, x〉 is an isomorphism, because δP ⊕ δQ = 1.

Let R be any ring and M a left R-module with a minimal generating set X.

If X is infinite, then any generating set of M has at least |X | elements, and

in particular, any two minimal generating sets of M have the same cardinality.

However, when X is finite, this need not be so, thus a free module on a finite free

generating set may have minimal generating sets of different sizes. We shall

say that Rn has unique rank if it is not isomorphic to Rm for any m 
= n. Using

the pairing provided by ∗ we see that Rn has unique rank if and only if nR has

unique rank. For any free module F of unique rank n we write n = rk(F).

A ring R is said to have the invariant basis property or invariant basis
number (IBN) if every free R-module has unique rank. Most rings commonly

encountered have IBN, but we shall meet examples of non-zero rings where

this property fails to hold.

Occasionally we shall need stronger properties than IBN. A ring R is said

to have unbounded generating number (UGN) if for every n there is a finitely

generated R-module that cannot be generated by n elements. Since any n-

generator module is a homomorphic image of a free module of rank n, it follows

that in a ring with UGN a free module of rank n cannot be generated by fewer

than n elements, and this condition characterizes rings with UGN. It also shows

that UGN implies IBN.

A ring R is said to be weakly n-finite if every generating set of n elements

in Rn is free; if this holds for all n, R is called weakly finite (WF). Weakly

1-finite rings are sometimes called ‘directly finite’, ‘von Neumann finite’ or

‘inverse symmetric’. As an example of weakly finite rings we have projective-

free rings, where a ring is called projective-free if every finitely generated

projective module is free, of unique rank.

Let R be any non-zero ring and suppose that Rn has a generating set of m
elements, for some m, n ≥ 1. Then we have a surjection Rm → Rn , giving rise

to an exact sequence

0 → K → Rm → Rn → 0.
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Since Rn is free, the sequence splits and so Rm ∼= Rn ⊕ K . This shows that the

three properties defined here may be stated as follows:

IBN. For all m, n, Rm ∼= Rn implies m = n.

UGN. For all m, n, Rm ∼= Rn ⊕ K implies m ≥ n.

WF. For all n, Rn ∼= Rn ⊕ K implies K = 0.

By describing the change of basis, we can express these conditions in matrix

form:

IBN. For any A ∈ mRn,B ∈ nRm, if AB = Im, B A = In, then m = n.

UGN. For any A ∈ mRn,B ∈ nRm, if AB = Im, then n ≥ m.

WF. For any A, B ∈ Rn, if AB = I , then B A = I .

We see that a ring has IBN if and only if every invertible matrix has index zero; it

has UGN if and only if every matrix with a right inverse has non-negative index,

and it is weakly finite if and only if all inverses of square matrices are two-sided.

The UGN condition can also be defined in terms of the rank of a matrix, which

over general rings is defined as follows. Given any matrix A, of the different

ways of writing A as a product, A = PQ, we choose one for which the number

of rows of Q is least. This number is called the inner rank of A, written ρ(A)

or ρ A, and the corresponding factorization of A is called a rank factorization.

For matrices over a field this notion of rank reduces to the familiar rank; now

we observe that a ring has UGN if and only if the inner rank of any n × n unit

matrix is n. Such a matrix is said to be full. Thus a matrix is full if and only if it

is square, say n × n, and cannot be written as a product of an n × r by an r × n
matrix, where r < n. We note that every non-zero element (in any ring) is full

as a 1 × 1 matrix, and the unit matrix of every size is full precisely if the ring

has UGN. Over a field the full matrices are just the regular matrices (see Section

5.4), but in general there is no relation between full and regular matrices.

Either set of the above conditions makes it clear that the zero ring is weakly

finite, but has neither IBN nor UGN. For a non-zero ring,

WF ⇒ UGN ⇒ IBN,

and if a ring R has any of these properties, then so does its opposite R◦. Moreover,

if R → S is a homomorphism and S has IBN or UGN, then so does R. Clearly

any field (even skew) has all properties; more generally this holds for any

Noetherian ring (see BA, theorem 4.6.7 or Exercise 5 below), as well as any

subring of a field. Using determinants, we see that every non-zero commutative

ring also has all three properties. Examples of rings having IBN but not UGN,

and rings having UGN but not weakly finite, may be found in Cohn [66a] or in

SF, Section 5.7 (see also Exercise 2 and Section 2.11).
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For a non-zero ring without IBN there exist positive integers h, k such that

Rh ∼= Rh+k, h, k ≥ 1. (1)

The first such pair (h, k) in the lexicographic ordering is called the type of the

ring R. We observe that for a ring R of type (h, k) Rm ∼= Rn holds if and only if

m = n or m, n ≥ h and m ≡ n(mod k) (see, e.g. UA, Theorem X.3.2, p. 340).

Proposition 0.1.1. Let f : R → S be a homomorphism between non-zero
rings. If R does not have IBN and its type is (h, k), then S does not have
IBN and if its type is (h′, k ′), then h′ ≤ h, k ′|k.

Here it is important to bear in mind that all our rings have a unit element, which

is preserved by homomorphisms and inherited by subrings.

Proof. By hypothesis (1) holds, hence there exist A ∈ mRn, B ∈ nRm sat-

isfying AB = I, B A = I, with m = h, n = h + k. Applying f we get such

matrices over S, whence it follows that Sh ∼= Sh+k , so S cannot have IBN and

h′ ≤ h, k ′|k. �

The next result elucidates the connexion between weak finiteness and UGN.

Proposition 0.1.2. A ring R has UGN if and only if some non-zero homomor-
phic image of R is weakly finite.

Proof. If a non-zero homomorphic image S of R is weakly finite, then S
has UGN, hence so does R. Conversely, assume that the zero ring is the only

weakly finite homomorphic image of R. By adjoining the relations Y X = I,

for all pairs of square matrices X, Y satisfying XY = I, we obtain a weakly

finite ring S. For suppose that I − AB = �r
1Ui (I − Yi Xi )Vi , where Xi Yi =

I. By taking X = X1 ⊕ · · · ⊕ Xr , Y = Y1 ⊕ · · · ⊕ Yr , U = (U1, . . . , Ur ), V =
(V1, . . . , Vr )T, we can write this as

I − AB = U (I − Y X )V, (2)

and XY = I. If A, B are n × n and X, Y are m × m, then U is n × m and V is

m × n. Suppose that n ≥ m; on replacing X, Y by X ⊕ I, Y ⊕ I, respectively,

where I is the unit matrix of order n − m, and completing U, V to square

matrices by adding columns, respectively rows of zeros, we obtain an equation

(2), where all matrices are square of order n. Similarly, if n ≤ m, we can achieve

the same result by taking diagonal sums of A, B with I. Writing Z = AX +
U (I − Y X ), W = Y B + (I − Y X )V , we have Z W = I and ZY = A, X W =
B, hence I − B A = X (I − W Z )Y . Therefore S is weakly finite and so must

be the zero ring. It follows that R becomes zero by adjoining a finite number

of such matrix equations, and by taking diagonal sums we obtain a single pair
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X, Y , each s × s, say, for which this happens. Thus XY = I, while the ideal

generated by the entries of I − Y X is the whole ring. Replacing each of X, Y
by a diagonal sum of an appropriate number of copies, we may assume that

there exist p ∈ Rs, q ∈ sR such that p(I − Y X )q = 1. Therefore we have

Is+1 =
(

X
p(I − Y X )

)
(Y (I − Y X )q),

and this equation shows that UGN fails for R. �

For another characterization of weak finiteness we shall need to refine the

notion of inner rank. Given a non-zero ring R, let A be any matrix over R
and consider A ⊕ Ir , the diagonal sum of A and the r × r unit matrix. Since

any factorization of A can also be used to factorize A ⊕ Ir , it follows that

ρ(A ⊕ Ir ) ≤ ρ(A) + r . Therefore we have

ρ(A) ≥ ρ(A ⊕ I1) − 1 ≥ ρ(A ⊕ I2) − 2 ≥ . . . (3)

If this sequence has a finite limit, we denote it by ρ∗(A) and call it the stable
rank of A. An n × n matrix of stable rank n is said to be stably full. Thus a

square matrix A is stably full if and only if A ⊕ Ir is full for all r ≥ 1. Hence

every stably full matrix is full, but the converse need not hold.

For a ring without UGN the unit matrix of some size is not full, say the

n × n unit matrix In has rank n − 1. Then the sequence (3) is unbounded below

and we formally put ρ∗(A) = −∞ for every matrix A. If R has UGN, we have

ρ(A ⊕ Ir ) ≥ r , so in this case the sequence (3) is bounded below by 0 and hence

has a limit; thus in any ring with UGN the stable rank of every matrix exists as a

non-negative integer. Conversely, if the stable rank exists for some matrix A, say

ρ∗(A) = r , then for some n and all s ≥ n, ρ(A ⊕ Is) = r + s. Hence for any

t ≥ 0, r + s + t = ρ(A ⊕ Is ⊕ It ) ≤ ρ(A ⊕ Is) + ρ(It ) = r + s + ρ(It ). Thus

ρ(It ) ≥ t and this proves that R has UGN. We now have the following connexion

with weak finiteness.

Proposition 0.1.3. For any non-zero ring R the following are equivalent:

(a) R is weakly finite,
(b) every non-zero matrix over R has a stable rank, which is positive,
(c) every non-zero idempotent matrix over R has a stable rank, which is positive.

Proof. We note that in each case the stable rank is finite. Now let A be any

m × n matrix over R, of stable rank t, say; then for some s ≥ 0, ρ(A ⊕ Is) =
t + s = r , say. So we can write(

A 0

0 Is

)
=

(
B
B ′

)
(C C ′) , (4)
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where B ∈ m Rr , B ′ ∈ s Rr , C ∈ r Rn, C ′ ∈ r Rs . Thus we have B ′C ′ =
I, BC ′ = 0 = B ′C, BC = A.

To prove (a) ⇒ (b), assume that ρ∗(A) = 0; then r = s, so by weak finiteness,

C ′ B ′ = I, hence B = 0 = C and therefore A = BC = 0.

(b) ⇒ (c) is clear; to prove (c) ⇒ (a), assume that R is not weakly finite.

Then there exist B ′, C ′ ∈ Rs with B ′C ′ = I, C ′ B ′ 
= I, so (4) holds with m =
n = r = s, A = B = C = I − C ′ B ′, and this is a non-zero idempotent matrix

of zero stable rank. �

In conclusion we note another consequence of weak finiteness.

Proposition 0.1.4. Let R be a weakly n-finite ring and let A ∈ r Rn, A′ ∈
n Rr , B ∈ n Rs, B ′ ∈ s Rn be such that AB = 0, AA′ = Ir , B ′ B = Is , where r +
s = n. Then there exists P ∈ GLn(R) such that

A = (Ir 0)P, B = P−1

(
0

Is

)
.

Proof. These equations just state that A constitutes the first r rows of P,

while B forms the last s columns of P−1. To prove this result, we have by

hypothesis (
A
B ′

)
(A′ B) =

(
Ir 0

B ′ A′ Is

)
,

where all the matrices are n × n. By subtracting B ′ A′ times the first r rows

from the last s we reduce the right-hand side to I, so the result follows by taking

P = (A, B ′E)T, P−1 = (A′, B), where E = I − A′ A. �

Exercises 0.1

1. Show that over a ring of type (h, k)(k ≥ 1) every finitely generated module can

be generated by h elements. Find a bound for the least number of elements in a

basis of a finitely generated free module.

2. If K is a non-zero ring and I an infinite set, show that R = End(K (I )) does not

have IBN and determine its type.

3. If every finitely generated R-module is cyclic, show that R cannot be an integral

domain; in particular, obtain this conclusion for a ring of type (1, k).

4. A ring R is said to have bounded decomposition type (BDT), if there is a function

r (n) such that Rn can be written as a direct sum of at most r (n) terms. Show that

any ring with BDT is weakly finite.

5. Show that a ring with left ACCn for some n ≥ 1 is weakly n-finite. Deduce that a

left (or right) Noetherian ring, or more generally, a ring with left (or right) pan-

ACC is weakly finite. (Recall that ‘pan-ACC’ stands for ‘ACCn for all n’.) Obtain

the same conclusion for DCCn . (Hint: See Exercise 7.10.)
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6. Let R be a non-zero ring without IBN and for fixed m, n(m 
= n) consider pairs

of mutually inverse matrices A ∈ m Rn, B ∈ n Rm . Show that if A′, B ′ is another

such pair, then P = A′ B is an invertible matrix such that P A = A′, BP−1 = B ′.
What is P−1?

7. Let R be a weakly n-finite ring. Given maps α : Rr → Rn and β : Rn → Rs(r +
s = n) such that αβ = 0, α has a right inverse and β has a left inverse, then

there exists an automorphism μ of Rn such that αμ : Rr → Rn is the natural

inclusion and μπ = β, where π : Rn → Rs is the natural projection. Show that

conversely, every ring with this property is weakly n-finite. (Hint: Imitate the proof

of Proposition 1.4.)

8. Show that a ring R is weakly n-finite if and only if (F): Every surjective endomor-
phism of Rn is an automorphism. If a non-zero ring R has the property (F), show

that every free homomorphic image of Rn has rank at most n. Deduce that every

non-zero weakly finite ring has UGN.

9∗. Which of IBN, UGN, weak finiteness (if any) are Morita invariants?

10◦. Characterize the rings all of whose homomorphic images are weakly finite.

11. (Leavitt [57]) Show that if a ring R has a non-zero free module F with no infinite

linearly independent subset, then F has unique rank.

12∗. (Montgomery [83]) Let A be an algebra over the real numbers with generators

a0, a1, b0, b1 and defining relations a0b0 − a1b1 = 1, a1b0 + a0b1 = 0. Show (by

using a normal form for the elements of A) that A is an integral domain, hence

weakly 1-finite, but not weakly 2-finite. Show also that A ⊗R C is not weakly

1-finite (see also Exercise 2.11.8).

13◦. Is the tensor product of two weakly finite k-algebras again weakly finite?

14◦. Is every weakly 1-finite von Neumann regular ring weakly finite?

15. Let Vm,n be a k-algebra with 2mn generators, arranged as an m × n matrix A and

an n × m matrix B and defining relations (in matrix form) AB = I, B A = I (the

‘canonical non-IBN ring’ for m 
= n). Show that V1,n is a simple ring for n > 1;

what is V1,1?

16. (M. Kirezci) If Vm,n is defined as in Exercise 15 and m < n, show that

there is a homomorphism Vm,n+r (n−m) → Vm,n , for any r > 0. [Hint: If

in Vm,n, A = (A1, A2), B = (B1, B2)T, where A1, B1 are square, verify that

(Ar
1, Ar−1

1 A2, . . . , A2) and (Br
1 , B2 Br−1

1 , . . . , B2)T are mutually inverse.] Deduce

that V1,n , for n > 1, can be embedded in V1,2.

0.2 Matrix rings and the matrix reduction functor

Given a ring R, consider a left R-module which is expressed as a direct sum of

certain submodules:

M = U1 ⊕ · · · ⊕ Un. (1)

Let πi : M → Ui be the canonical projections and μi : Ui → M the

canonical injections, for i = 1, . . . , n. Thus (x1, . . . , xn)πi = xi , xμi =
(0, . . . , x, . . . , 0) with x in the ith place and 0 elsewhere. Clearly we have

μiπ j = δi j , (2)
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where δ is the Kronecker delta: δi j = 1 if i = j and 0 otherwise. Further,∑
πiμi = 1. (3)

With each endomorphism f of M we can associate a matrix ( fi j ), where fi j :

Ui → U j is defined by

fi j = μi f π j . (4)

Similarly, any family of homomorphisms fi j : Ui → U j gives rise to an endo-

morphism f of M defined by

f =
∑

πi fi jμ j . (5)

These two processes are easily seen to be mutually inverse and if we add

and multiply two families ( fi j ) and (gi j ) ‘matrix fashion’: ( f + g)i j = fi j +
gi j , ( f g)ik = � fi j g jk , the correspondence is an isomorphism, so that we have

Theorem 0.2.1. Let R be any ring. If M is a left R-module, expressed
as a direct sum as in (1), then each element f of EndR(M) can be writ-
ten as a matrix ( fi j ) where fi j : Ui → U j , is obtained by (4) and in turn
gives rise to an endomorphism of M by (5), and this correspondence is an
isomorphism. �

In the particular case where all summands are isomorphic, we have M ∼= U n

and so we find

Corollary 0.2.2. Let A be a ring, U a left A-module and R = EndA(U ). Then
for any n ≥ 1 we have

EndA(U n) ∼= Mn(R). � (6)

The matrix ring Mn(R) in (6) is also denoted by Rn . Let us consider it more

closely. Writing ei j = πiμ j , we obtain from (2) and (3) the equations

ei j ekl = δ jkeil , �eii = 1. (7)

The ei j are just the matrix units and the matrix ring Rn may be defined as the ring

generated by R and n2 elements ei j (i, j = 1, . . . , n) satisfying the conditions

(7) and aei j = ei j a for all a ∈ R. The general element of Rn is then uniquely

expressible as
∑

ai j ei j (ai j ∈ R). In fact matrix rings are characterized by (7),

which gives a decomposition of 1 in R into n idempotents: 1 = e11 + · · · +
enn .

Theorem 0.2.3. Let S be any ring with n2 elements ei j satisfying the equations
(7). Then S ∼= Mn(R), where R is the centralizer of all the ei j .
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Proof. For each a ∈ S we define ai j = ∑
ν eνi ae jν ; then it is easily checked

that ai j ∈ R and a = ∑
i j ai j ei j . Now the correspondence a ↔ (ai j ) is seen to

be an isomorphism: S ∼= Rn . �

Using the language of categories, we can say that the process of forming

the n × n matrix ring is a functor from Rg, the category of rings, to Rgn , the

category of n × n matrix rings: to each ring R corresponds the matrix ring Rn and

to each ring homomorphism f : R → S there corresponds the homomorphism

from Rn to Sn obtained by applying f to the separate matrix entries; conversely,

any homomorphism Rn → Sn arises in this way from a homomorphism R → S,

because R is characterized within Rn as the centralizer of the ei j . Moreover,

every object T in Rgn is of the form Mn(C), where C is the centralizer of the ei j

in T. This shows the functor Mn to be a category equivalence (BA, Proposition

3.3.1 or Appendix B below). Thus we have proved

Theorem 0.2.4. The matrix functor Mn establishes an equivalence between
the categories Rg and Rgn, for any n ≥ 1. �

Of course this is just an instance of the well-known Morita equivalence (see

Appendix B). Given a left A-module U with endomorphism ring R = EndA(U ),

when we considered U n as an A-module, its endomorphism ring turned out to be

Rn . But we can also consider U n as an An-module; in that case its endomorphism

ring, i.e. the centralizer of An in End(U n), is the centralizer of the matrix basis

{ei j } in Rn , i.e. R itself. Thus we have

EndAu (U n) ∼= R. (8)

In the two cases (6) and (8), U n may be visualized as consisting of row vectors

and column vectors, respectively, over U. We shall distinguish these cases by

writing the set of column vectors as nU and the set of row vectors as U n . More

generally, we denote by mU n the set of all m × n matrices with entries in U,

and omit reference to either of m or n equal to 1. For a ring R, Rn is just nRn ,

considered as a ring. We shall also allow m or n to be 0. Thus 0U n is the set

of matrices with no rows and n columns; there is one such matrix for each n
(including n = 0). Similarly for mU 0; of course R0 is the zero ring. The unique

0 × 0 matrix over R will be written 10, and an m × n matrix where mn = 0 will

be called a null matrix.
If M is an (R, S)-bimodule, then mMn is an (Rm, Sn)-bimodule in a natural

way. As an example, take R itself, considered as an R-bimodule; the set of

row vectors Rn has a natural (R, Rn)-bimodule structure and the set of column

vectors n R a natural (Rn, R)-bimodule structure. Writing RR, R R for R as

right, respectively left R-module and ρa : x �→ xa, λa : x �→ ax for the right,
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respectively left multiplication by a, we have EndR(R R) ∼= R via the map a �→
ρa and EndR(RR) ∼= Ro via the map a �→ λa , where the opposite ring Ro means

that the R-endomorphisms of RR form a ring anti-isomorphic to R (because

λab = λbλa). In this case equations (6) and (8) become

EndR(Rn) ∼= Rn, EndRn (Rn) ∼= Ro. (9)

The row vectors e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . and the corre-

sponding column vectors eT
i form bases for Rn, nR respectively, as R-modules,

called the standard bases.

Returning to the case of a general R-module M, we can summarize the

relation between M and nM as follows.

Theorem 0.2.5. Let R be a ring and M a left R-module with endomorphism
ring E. Then nM may be regarded as an Rn-module in a natural way, with
endomorphism ring E, and there is a lattice-isomorphism between the lattice
of R-submodules of M and the lattice of Rn-submodules of nM, in which (R,
E)-bimodules correspond to (Rn, E)-bimodules.

Proof. The first part is just a restatement of (8). To establish the isomorphism

we recall that n M consists of columns of vectors over M; any submodule N of

M corresponds to a submodule nN of nM and the correspondence

N �→ nN (10)

is order-preserving. Conversely, if P is an Rn-submodule of nM , then the n
projections πi : P → M (i = 1, . . . , n) all have the same image and associate

with P a submodule of M. The correspondence P �→ Pπ1 easily seen to be

an order-preserving map inverse to (10), hence (10) is an order-isomorphism

between lattices, and so a lattice-isomorphism. The rest follows because the

E-action on M and on nM is compatible with the R-action. �

The equivalence between R and Rn may be used to reduce any categori-

cal question concerning a finitely generated module to a question for a cyclic

module, over an appropriate ring. For, given M, generated as left R-module by

u1, . . . , un , say, we apply the functor

M �→ nM = HomR(nR, M) = nR ⊗R M, (11)

and pass to the left Rn-module nM , which is generated by the single element

(u1, . . . , un)T.

Thus we have proved

Theorem 0.2.6. Any R-module M with an n-element generating set corre-
sponds to a cyclic Rn-module under the equivalence (11). �
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For example, if R is a principal ideal ring, then as is well known (see Proposition

1.4.5 for the case of a principal ideal domain), any submodule of an n-generator

module over R can be generated by n elements. Applying Theorem 2.6 we see

that any submodule of a cyclic Rn-module is cyclic, in particular, Rn is again a

principal ideal ring. In the other direction, if Rn is a principal ideal ring, then any

submodule of a cyclic Rn-module is cyclic, whence it follows that any submod-

ule of an n-generator R-module can be generated by n elements. This can happen

for some n > 1 in rings that are not principal ideal rings (see Webber [70]).

Another functor of importance in what follows is the matrix reduction func-
tor Wn , which is defined as the left adjoint of the n × n matrix functor. We note

the rule for its construction: given any ring R or more generally, a K-algebra

for some base ring K, we form a ring Fn(R; K ) by adjoining a set of matrix

units ei j to R that centralize K. Since this ring contains a set of matrix units, it

has, by Theorem 2.3, the form Sn , where S is the centralizer of the ei j . Now S
is the n-matrix reduction of R, as K-algebra. When R = K , Sn becomes Kn; in

general, this ring S contains, for each a ∈ R, n2 elements ai j and these elements

centralize K and the ei j in Fn(R; K ). In other words, we take the elements of

R and interpret them as n × n matrices, with the elements of K as scalars. In

terms of the coproduct ∗ the definitions of Fn and of Wn may be written

Fn(R; K ) = R∗
K Mn(K ) ∼= Wn(R; K ) ⊗K Mn(K ). (12)

Examples:

1. R = k[x], the polynomial ring in x over a field k. To obtain Wn(R; k), we

write x as an n × n matrix, thus we have the free algebra on n2 indeterminates

(see Section 2.5).

2. R is the k-algebra generated by a, b with defining relation ab = 1. Here

Wn(R; k) is the algebra on 2n2 generators ai j , bi j with defining relations in

matrix form AB = I , where A = (ai j ), B = (bi j ). Thus we obtain the universal

ring that is not weakly n-finite.

3. R is the k-algebra generated by a, b with defining relation ab = 0. Now

Wn(R; k) again has generators as in example 2, with defining relation (in matrix

form) AB = 0. Whereas R has zero-divisors, Wn(R; k) is an integral domain

for n > 1 (see Section 2.11 or SF, theorem 5.7.6).

Exercises 0.2

1. (Palmer [94]) Let R be any ring; if there exist e, w ∈ R satisfying ewi−1e = δi1e
(Kronecker delta), �n

1 wi−1ew1−i = wn = 1, then R = Mn(S), where S is the cen-

tralizer of e, w in R. (Hint: Calculate wi−1ew1− j .)
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2. If R satisfies left ACCn , show that Rr satisfies left ACCk , where k = [n/r ] is the

greatest integer below n/r .

3. If every left ideal of a ring R can be generated by r elements, show that for any n-

generator left R-module M, every submodule of M can be generated by nr elements.

4. Show that if R satisfies left pan-ACC, then so does every finitely generated free left

R-module.

5. If a ring R is injective, as left R-module over itself, show that Rn (n > 1) has the

same property.

6. For any ring R, show that R and Rn (n > 1) have isomorphic centres. Prove this

fact by characterizing the centre of R as the set of all natural transformations of the

identity functor on RMod.

7. Let R = Kn be a full matrix ring and f : R → S any ring homomorphism. Show that

S is a full n × n matrix ring, say S = Ln and there is a homomorphism φ : K → L
inducing f.

8. (G. M. Bergman) Let n ≥ 1 be an integer and R a ring in which every right ideal

that is not finitely generated has a finitely generated direct summand that cannot be

generated by n elements. Show that R satisfies right ACCn .

9. (Jacobson [50]) Let R be a non-zero ring that is not weakly 1-finite, say ab = 1 
= ba.

Writing ei j = bi−1a j−1 − bi a j , show that the ei j satisfy the first set of equations (7)

for matrix units and the universal weakly 1-finite image of R is R/e, where e is the

ideal generated by e11.

10. Let R be a projective-free ring. Show that the only rings Morita-equivalent to R are

the full matrix rings Rn (n = 1, 2, . . .).

0.3 Projective modules

Let R be any ring; if P is a finitely generated projective left R-module, generated

by n elements, say, then we have P ⊕ P ′ ∼= Rn for some projective R-module

P ′. The projection of Rn on P is given by an idempotent n × n matrix E and

we may write P = RnE ; in fact, P is the left R-module generated by the rows

of E. We record conditions for two idempotent matrices to define isomorphic

projective modules.

Proposition 0.3.1. Let R be any ring and let E ∈ Rn, F ∈ Rr be idempotent
matrices. Then the following conditions are equivalent:

(a) E = XY, F = Y X for some X ∈ nRr , Y ∈ rRn;
(b) E = AB, F = B A, for some A ∈ nRr , B ∈ rRn, where E A = AF =

A, F B = B E = B;
(c) the projective left R-modules defined by E and F are isomorphic: Rn.E ∼=

Rr .F;
(d) the projective right R-modules defined by E and F are isomorphic: E .n R ∼=

F.rR.



0.3 Projective modules 13

Proof. (a) ⇒ (b). Assume (a) and put A = XY X, B = Y XY ; then (b) follows

by the idempotence of XY and Y X . (b) ⇒ (c). Let P, Q be the left R-modules

generated by the rows of E, F , respectively. Since E A = A = AF , the right

multiplication by A maps E to F; similarly right multiplication by B maps F
to E, and these maps are mutually inverse, because E AB = E, F B A = F .

(c) ⇒ (a). Let θ : RnE → RrF be an isomorphism and suppose that θ maps E
to X while θ−1 maps F to Y. Since X ∈ RrF , we have X F = X ; hence E =
Eθθ−1 = Xθ−1 = (X F)θ−1 = X (Fθ−1) = XY . Thus E = XY , and similarly,

F = Y X . Thus (a), (b), (c) are equivalent; by the symmetry of (a) they are also

equivalent to (d). �

Two idempotent matrices E, F that are related as in Proposition 3.1 are

said to be isomorphic. They will be called conjugate if there is an invert-

ible matrix U such that F = U−1 EU . When R has IBN, this is only pos-

sible when E and F are of the same order, but we shall not make this

restriction. If P and Q are the projective modules defined by E ∈ Rn, F ∈
Rr , respectively, and P ⊕ P ′ ∼= Rn, Q ⊕ Q′ ∼= Rr , then conjugacy of E and

F just means that P ∼= Q and P ′ ∼= Q′. The following is a condition for

conjugacy:

Proposition 0.3.2. Let R be a ring and E, F idempotent matrices over R.
Then E and F are conjugate if and only if E is isomorphic to F and I − E is
isomorphic to I − F.

Proof. If E, F are conjugate, say F = U−1 EU , then we can take X =
EU, Y = U−1 E ; it follows that XY = E, Y X = F , so E and F are iso-

morphic. Since we also have I − F = U−1(I − E)U, I − E and I − F are

also isomorphic. Conversely, when the isomorphism holds, we have E =
AB, F = B A, E AF = A, F B E = B and I − E = A′ B ′, I − F = B ′ A′, (I −
E)A′(I − F) = A′, (I − F)B ′(I − E) = B ′. Let us put X = A + A′, Y = B +
B ′; then B ′(I − E) = B ′, hence B ′E = 0 and similarly E A′ = 0; hence

Y E X = B E A + B ′E A + B E A′ + B ′E A′ = B E A = F . For the same rea-

son, Y (I − E)X = I − F , hence Y X = I. By symmetry, XY = I, and it follows

that E and F are conjugate. �

We also note the following result, relating E to the number of generators of

P .

Lemma 0.3.3. For any ring R, let P be a projective R-module defined by an
idempotent n × n matrix, P = RnE. Then the minimal number of generators
of P is the inner rank of E; thus if E has inner rank r, then P can be generated
by r but no fewer elements.
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Proof. Given any factorization

E = XY, where X is n × r and Y is r × n, (1)

the matrix F = Y XY X is an idempotent isomorphic to E and so defines a

module isomorphic to P; since F is r × r , it follows that P can be generated

by r elements. Conversely, if P can be generated by r elements, then it can be

represented as the image of an idempotent r × r matrix F, hence E = X FY
and ρE ≤ r . Thus the minimal number of generators of P equals the least value

of r in (1), i.e. ρE . �

For any ring R denote by Rproj (projR) the category of all finitely generated

projective left (right) R-modules and all homomorphisms between them. We

have seen in Section 0.1 that the correspondence P �→ P∗ defines a duality (i.e.

anti-equivalence) between Rproj and projR such that P∗∗ ∼= P .

We shall denote by S(R) the monoid whose elements are the isomorphism

classes of objects in Rproj; thus each P ∈ Rproj defines an element [P] ofS(R),

where [P] = [P ′] if and only if P ∼= P ′. The operation on S(R) is given by

[P] + [Q] = [P ⊕ Q].

Clearly this is well-defined, i.e. the right-hand side depends only on [P], [Q]

and not on P, Q themselves. We see that S(R) is a commutative monoid, in

which we may regard [R] as a distinguished element. It is conical, i.e. α +
β = 0 implies α = 0 and hence β = 0. Its universal group (see Section 0.7),

often called the Grothendieck group, is the projective module group Ko(R) (see

e.g. Milnor [71]). By the duality between Rproj and projR we have S(Ro) ∼=
S(R), Ko(Ro) ∼= Ko(R). The element of Ko(R) corresponding to P may be

written (P), so the general element has the form (P) − (Q) and we have (P) =
(P ′) in Ko(R) if and only if P ⊕ S ∼= P ′ ⊕ S for some S ∈ Rproj. Here S may

be taken to be free of finite rank, so we have

(P) = (P ′) in Ko if and only if P ⊕ Rn ∼= P ′ ⊕ Rn for some n ≥ 0. (2)

We can equally well define S(R) in terms of idempotent matrices. For any

ring R a finitely generated projective left R-module is generated by the rows of

an idempotent matrix; thus if P is generated by n elements, it has the form Rn E ,

where E is an idempotent n × n matrix. By Proposition 3.1, two projective R-

modules RnE and RmF are isomorphic if and only if there exist matrices X (n ×
m), Y (m × n), such that the matrices XY = E and Y X = F are idempotent.

Moreover, if E corresponds to P and F to Q, then the diagonal sum E ⊕ F
corresponds to the direct sum P ⊕ Q, so S(R) may be defined as the set of

isomorphism classes of idempotent matrices with the operation E ⊕ F .
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The structure of S(R) is closely related to certain properties of the ring R,

while Ko(R) reflects the corresponding stable properties. This is illustrated in

the next result, where by a stably free module we understand a module P such

that P ⊕ Rm ∼= Rn , for some integers m, n ≥ 0.

Proposition 0.3.4. Let R be any ring and denote by λ : Z → Ko(R) the homo-
morphism mapping 1 to (R). Then (i) R has IBN if and only if λ is injective and
(ii) every finitely generated projective module is stably free if and only if λ is
surjective.

Further, R is projective-free if and only if the natural homomorphism N →
S(R), is an isomorphism.

Proof. Clearly λ fails to be injective if and only if n(R) = 0 in Ko(R) for

some n 
= 0, say n > 0. Then Rn ⊕ P ∼= P for some P, and if P ⊕ P ′ ∼= Rr ,

then Rn+r ∼= Rr , so either r = 0 and R is the zero ring, or r > 0 and IBN fails

in R. The converse is clear.

If every finitely generated projective module P is stably free, then for any P
there are integers m, n such that P ⊕ Rm ∼= Rn , hence [P] = n[R] − m[R] =
(n − m)[R] = λ(n − m), and conversely, if [P] = λ(r ), then P ⊕ Rm ∼= Rm+r

for some m ≥ 0 and P is stably free. The final assertion follows because R is

projective-free if and only if every P satisfies [P] = n[R] in S(R), for a unique

n ∈ N, depending on P . �

It will be useful to relate the monoid S(R) to S(R/a), where a is an ideal

contained in J (R), the Jacobson radical of R. We recall that J (R) is defined as

the intersection of all maximal left (or equivalently, all maximal right) ideals

of R (equivalently, the set of all a ∈ R such that 1 − xa is a unit, for all x ∈ R,

see BA, Section 5.3).

We shall be particularly concerned with rings R for which R/J (R) is a field.

They are the local rings, characterized in

Proposition 0.3.5. For any non-zero ring R the following conditions are equiv-
alent:

(a) R is a local ring, i.e. R/J (R) is a (skew) field,
(b) the non-units in R form an ideal,
(c) for any a ∈ R, either a or 1 − a has a one-sided (at least) inverse, not

necessarily on the same side.

Proof. (a) ⇒ (b). Put J = J (R). If R/J is a field, then J is the unique maximal

ideal and hence consists of non-units. For u /∈ J we have uv ≡ vu ≡ 1 (mod
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J) for some v ∈ R, hence uv = 1 + t (t ∈ J ) is a unit, so u has a right inverse

that is two-sided, by symmetry. Thus J is the set of all non-units.

(b) ⇒ (c) is clear. To prove (c) ⇒ (a), we first note that an idempotent e 
= 1

cannot have even a one-sided inverse, for if eu = 1, then e = e2u = eu = 1.

Thus when (c) holds, R has no idempotents 
= 0, 1. Next, if ab = 1, then ba is

a non-zero idempotent, hence ba = 1, so all one-sided inverses are two-sided.

Now let u ∈ R; if u has no inverse, then neither does ux, for any x ∈ R,

hence 1 − ux always has an inverse, so u ∈ J . Thus all non-units are in J and

(a) follows. �

Here (a) or (b) is the usual form of the definition of a local ring, while (c) is

the easiest to verify.

Let R be a ring with an ideal a ⊆ J (R); write R̄ = R/a and for any left R-

module M, put M̄ = M/aM . Then M̄ is an R̄-module in a natural way and if M
is finitely generated non-zero, then M/J M 
= 0 by Nakayama’s lemma, hence

M̄ 
= 0, because a ⊆ J . Suppose now that f : R → S is a surjective homo-

morphism. The next result gives conditions for ker f to be contained in J (R).

Here a ring homomorphism is called local if it maps non-units to non-units.

Lemma 0.3.6. Let f : R → S be a surjective ring homomorphism. Then the
following conditions are equivalent:

(a) ker f ⊆ J (R),
(b) the homomorphism induced by f on n × n matrix rings (for any n ≥ 1) is

local,
(c) f is a local homomorphism.

Proof. (a) ⇒ (b) Let A be a matrix over R and suppose that A f is a unit,

say A f B = I. Take B0 over R such that B f
0 = B; then AB0 = I + C , where

C f = 0 and so C has entries in J (R). It is easily checked that J (Rn) = J (R)n;

so it follows that I + C is a unit, hence AB0(I + C)−1 = I. Thus A has a right

inverse; by symmetry it has a left inverse, and so is a unit. Now (b) ⇒ (c) is

clear, and to prove (c) ⇒ (a), let a ∈ ker f . Then a f = 0, hence (1 + ax) f = 1,

so 1 + ax has an inverse for all x ∈ R and it follows that a ∈ J (R), thus (a)

holds. �

Any ring homomorphism f : R → S induces a monoid homomorphism

S( f ) :S(R) → S(S) that preserves the distinguished element: S( f )[P] =
[S ⊗R P]. This homomorphism need be neither injective nor surjective, even

when f is, but we have

Theorem 0.3.7. Let R, S be any rings and ϕ : R → S a homomorphism that
is surjective and local; in particular S may be R/J (R), with the natural map ϕ.
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Then the induced homomorphism S(ϕ) : S(R) → S(S) is an embedding. Thus
if S is projective-free, then so is R. If S has IBN, UGN or is weakly finite, then
the same is true of R.

Proof. Write R̄ = R/ker ϕ and M̄ = M/(ker ϕ)M . Given any finitely gen-

erated projective R-modules P, Q such that P̄ ∼= Q̄, we have the following

diagram, where f is an isomorphism:

P

g f

Q

P

Q

0

0

The map g to make the diagram commutative exists since P is projective.

If coker g = L then L̄ = 0 implies L = 0, by Nakayama’s lemma, hence g
is surjective. Therefore Q splits P, i.e. P ∼= Q ⊕ M , where M = ker g. By

the diagram, M̄ = 0, hence M = 0 and this proves g to be an isomorphism,

as claimed. Further, when R/ker ϕ is projective-free, then S(S) ∼= N and the

natural homomorphism preserves the generator of N, whence S(R) ∼= N. The

assertions for IBN and UGN are evident; for weak finiteness we take square

matrices A, B over R and suppose that AB = I; then their images in S are

mutually inverse, hence B A = I + C , where C has entries in J (R) and so I + C
is invertible. This shows that A is invertible. By Lemma 3.6 all these results

hold when S = R/J (R). �

Of course the embedding obtained here will not in general be an isomor-

phism. We remark that the result also follows by considering the corresponding

idempotent matrices (see the remarks before Proposition 3.1). Since every field

is projective-free, and any projective-free ring is clearly weakly finite, we obtain

from Theorem 3.7,

Corollary 0.3.8. Every local ring is projective-free and hence weakly
finite. �

Sometimes a more general notion of local ring is needed. Let us call R a

matrix local ring if R/J (R) is simple Artinian. By Wedderburn’s theorem this

means that R/J (R) ∼= Kn , where K is a field and n ≥ 1; n is sometimes called

the capacity of R. When n = 1, we are back in the case of a local ring. By

contrast this is sometimes called a scalar local ring, but we generally omit the

qualifier, so ‘local ring’ will mean as usual ‘scalar local ring’.
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We conclude with some conditions for a ring to be projective-free.

Theorem 0.3.9. Let R be a non-zero ring such that the set of all full matrices
admits diagonal sums. Then R is projective-free.

Proof. Since R 
= 0, the 1 × 1 unit matrix is full, hence the unit matrix of

any order is full, so R has IBN (it even has UGN). It remains to prove that

every finitely generated projective R-module P is free. Let n be the minimal

number of generators of P and choose Q such that P ⊕ Q = Rn . We have

P = RnE , where E is idempotent and full, by Lemma 3.3; similarly, if the

minimal number of generators for Q is m, then Q = RmF for some idempotent

m × m matrix F, where F is again full. By hypothesis, E ⊕ F is again full, and

its image is P ⊕ Q ∼= Rn; by fullness, m + n = n. Hence m = 0, Q = 0 and

P ∼= Rn . �

Theorem 0.3.10. Let R be a ring. If for every n ≥ 1 the product of two full
n × n matrices is again full, then every finitely generated projective module is
stably free.

Proof. Suppose there is a finitely generated projective module that is not

stably free; we choose such a module P with the least number of generators, n
say. We have P = Rn E , where E is an idempotent matrix, which must be full,

by Lemma 3.3 and the minimality of n. The module Q = Rn(I − E) is such

that P ⊕ Q = Rn , and since E(I − E) = 0, I − E cannot be full, so Q can be

generated by fewer than n elements and hence is stably free. Thus Q ⊕ Rs ∼= Rr

and so P ⊕ Rr ∼= P ⊕ Q ⊕ Rs ∼= Rn+s , which shows P to be stably free. �

If the hypothesis of Theorem 3.10 holds and in addition every full matrix is

stably full, i.e., whenever a matrix A is full, then so is A ⊕ 1, then each projective

is actually free, as we can see by verifying the hypothesis of Theorem 3.9. Thus

let A, B be full matrices; then A ⊕ I, I ⊕ B are full (for unit matrices of any

size), hence so is their product A ⊕ B. Moreover, since I is full, R has IBN.

This proves

Corollary 0.3.11. Let R be a ring. If the product of any two full matrices
of the same size is full and any full matrix is stably full, then R is projective-
free. �

Exercises 0.3

1. Verify the equivalence of the two definitions of S(R), in terms of projective

modules and idempotent matrices.
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2. Let R be a ring and J = J (R). By considering the kernel of the homomor-

phism Rn → (R/J )n induced by the natural homomorphism R → R/J , show

that J (Rn) ∼= Jn .

3◦. Show that if R is a matrix local ring and n > 1, then so is Rn . Does the converse

hold?

4. For any ring R, show that R/J (R) is weakly finite if and only if R is weakly finite.

Deduce that any matrix local ring is weakly finite. Show that if R has IBN or

UGN, then so does R/J (R).

5. Let K be a field and R a subring such that for any x ∈ K , either x or x−1 lies in

R. Show that for any non-unit a ∈ R, a(1 − a)−1 ∈ R; deduce that R is a local

ring.

6. In any local ring show that the additive order of 1 is 0 or a prime power.

7. Let R be a local ring with residue-class field K = R/J (R). If M is a finitely

generated left R-module such that K ⊗ M = 0, show that M = 0.

8. Show that any Artinian matrix local ring is a full matrix ring over a scalar local

ring. (Hint: Recall that in an Artinian ring idempotents can be lifted from R/J (R)

to R, see e.g. FA, Lemma 4.3.2.)

9. Let R be the ring of rational quaternions with denominator prime to p, an odd prime.

Show that the Jacobson radical of R is pR and R/pR is the ring of quaternions

over Fp . Deduce that R is a matrix local ring which is not a matrix ring over a

scalar local ring.

10. Show that for any ring R the following are equivalent (see Lorimer [92]):

(a) R is local and any finitely generated left ideal is principal,

(b) the principal left ideals of R are totally ordered by inclusion,

(c) all left ideals of R are totally ordered by inclusion.

11. (Beck [72]) Let P be a finitely generated projective left R-module. If P/JP is free

over R/J , where J is the Jacobson radical of R, show that P is free over R. (This

holds even if P is not finitely generated, see Beck [72].)

12∗. (Kaplansky [58]) Let P be a projective module over a local ring. Show that any

element of P can be embedded in a free direct summand of P; deduce that every
projective module over a local ring is free.

0.4 Hermite rings

The conditions of IBN, UGN and weak finiteness discussed in Section 0.1 hold

in most rings normally encountered, and counter-examples belong to the pathol-

ogy of the subject. By contrast, the property defined below forms a significant

restriction on the ring.

Clearly any stably free module is finitely generated projective. If P ⊕ Rm

is free but not finitely generated, then P is necessarily free (see Exercise 9). In

any case we shall mainly be concerned with finitely generated modules.

A ring R is called an Hermite ring if it has IBN and any stably free module

is free. More specifically, if n-generator free modules have unique rank and any

left R-module P is free whenever P ⊕ Rr ∼= Rm(r ≤ m ≤ n), then R is called
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an n-Hermite-ring. Thus, denoting by H(Hn) the class of all (n-)Hermite rings,

we have

H1 ⊇ H2 ⊇ . . . and ∩ Hn = H. (1)

From results in Section 2.11 (or also SF, 5.7) it follows that all the inclusions

in (1) are proper. The class of Hermite rings clearly includes all projective-free

rings, and is contained in the class of all weakly finite rings. More generally, it

is easily seen that every n-Hermite ring is weakly n-finite.

To describe Hermite rings in terms of matrices, let us call an m × n matrix

A over a ring R completable in R, if either m = n and A is invertible, or A can

be completed to an invertible matrix by adjoining n − m rows, if m < n, or

m − n columns, if m > n. We note that in a non-zero ring, if a matrix with a

right inverse is completable, then its index must be non-negative. For suppose

that AB = I, where A is m × n and m > n. Since A is completable, there is an

m × m − n matrix A′ such that (A, A′) is invertible. Let (C, C ′)T be the inverse;

then we have (
C
C ′

)
(A A′) = I.

Hence C A = I, which together with AB = I shows that C = B. Further, C A′ =
0, C ′ A′ = I, but C is the inverse of A, hence A′ = 0, which contradicts the fact

that C ′ A′ = I. So this case cannot occur.

We now have the following description of Hermite rings in terms of matrices,

where a unimodular row is defined as a 1 × n matrix with a right inverse.

Theorem 0.4.1. For any non-zero ring R and any n ≥ 1 the following condi-
tions are equivalent:

(a) R is n-Hermite.
(b) Every r × m matrix over R, where r, m ≤ n, with a right inverse is com-

pletable, more precisely, if AB = I , where A ∈ rRm, r ≤ m ≤ n, then there
is an invertible matrix with A as its first r rows, whose inverse has B for the
first r columns.

(c) Every unimodular row over R of length at most n is completable.
Moreover, R is n-Hermite if and only if its opposite R◦ is.

Proof. (a) ⇒ (b). Let R be n-Hermite and take A ∈ rRm, B ∈ mRr such that

AB = 1. Interpreting A, B as mappings α, β between Rr and Rm , we have a

split exact sequence

0 → Rr α−→ Rm β ′
−→ P → 0, (2)
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where P = coker α. It follows that Rm ∼= Rr ⊕ P; thus P is stably free and hence

free: P ∼= Rs , where s = m − r . Since the sequence (2) is split, β ′ has a left

inverse α′ : Rs → Rm and if A′, B ′ are the matrices corresponding to α′, β ′,
then AB = I, A′ B ′ = I, AB ′ = 0, and so(

A
A′

)
(B B ′) =

(
I 0

A′ B I

)
.

The matrix on the right is invertible and multiplying by its inverse on the left,

we obtain

I =
(

I 0
−A′ B I

) (
A
A′

)
(B B ′) =

(
A

A′(I − B A)

)
. (B B ′),

and since the ring R, being n-Hermite, is weakly n-finite, the matrices on the

right are inverses of each other and are of the required form.

(b) ⇒ (c) is clear. To prove (c) ⇒ (a) we must show that when (c) holds,

then P ⊕ Rr ∼= Rm implies P ∼= Rm−r ; consider first the case r = 1. Thus let

P ⊕ R ∼= Rm . Then we have again a split exact sequence

0 → R
α−→ Rm β ′

−→ P → 0.

Let a be the 1 × m matrix corresponding to α; since the sequence is split,

there is a map β : Rm → R such that αβ = 1. If β is represented by b, then

ab = I . By hypothesis, there exists A′ ∈ m−1 Rm such that (a, A′)T is invertible.

Let the inverse, correspondingly partitioned, be (c, C ′); then β ′ : Rm → P is

represented by C ′, hence P ∼= Rm−1. Suppose now that P ⊕ Rr ∼= Rm ; we

claim that r ≤ m, for if r > m, then by successively cancelling R we obtain

P ⊕ Rr−m = 0, a contradiction, since R 
= 0. Taking P = 0, we also see that

R has IBN up to rank n. Thus r ≤ m, and by successive cancelling we find

that P ∼= Rm−r ; in particular, when r = m, it follows that P = 0. Hence R is

n-Hermite. Now the rest follows from (a) by duality. �

The proof shows that we have the following characterizations of Hermite

rings:

Corollary 0.4.2. For any non-zero ring the following conditions are equiva-
lent:

(a) R is an Hermite ring,
(b) if P ⊕ R ∼= Rm, then P ∼= Rm−1,
(c) if P ⊕ Rr ∼= Rm, then r ≤ m and P ∼= Rm−r . �

For 2-Hermite rings there is a simple criterion that is sometimes useful:

Proposition 0.4.3. An integral domain R is 2-Hermite if and only if, for any
right comaximal pair a, b, a R ∩ bR is principal.
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Proof. If a, b are right comaximal, then the mapping μ : (x, y)T �→ ax − by
is a surjective homomorphism of right R-modules 2 R → R, giving rise to the

exact sequence

0 → P −→ 2 R
μ−→ R → 0 . (3)

where P = ker μ. Thus any right comaximal pair a, b leads to a sequence

(3), and such a sequence always splits to give R ⊕ P ∼= 2R. Conversely, if

R ⊕ P ∼= 2R, we have a split exact sequence (3), and if (a, −b) is the matrix

of μ, then a, b are right comaximal. Now (x, y)T ∈ P if and only if ax = by ∈
a R ∩ bR; thus P ∼= a R ∩ bR and P is free if and only if a R ∩ bR is principal.

�

The following characterization of Hermite rings in terms of the notion of

rank is also of interest. We recall from the definitions, that whenever the stable

rank ρ∗(A) is defined, then for any matrix A we have

ρ(A) ≥ ρ∗(A). (4)

Proposition 0.4.4. A non-zero ring is Hermite if and only if the stable rank
of every matrix exists and equals its inner rank.

Proof. We shall use Proposition 1.3 and the factorization of A ⊕ Is given

there. Suppose that R is Hermite, hence with UGN, and let A be a matrix with

the factorization (
A 0

0 Is

)
=

(
B
B ′

)
(C C ′) ,

where as before, B ′ is s × r . Then r ≥ s and if r = s, then A = 0 by Proposition

1.3, so we may assume that r > s. Since B ′C ′ = I, there exist (by Theorem 4.1)

B ′′ ∈ r−sRr , C ′′ ∈ rRr−s such that (B ′, B ′′)T and (C ′, C ′′) are mutually inverse.

Hence

B = B(C ′ C ′′)
(

B ′

B ′′

)
= BC ′′ B ′′,

because BC ′ = 0. It follows that A = BC = BC ′′.B ′′C , hence ρ(A) ≤ r − s ≤
ρ∗(A), and so by (4) we have equality of ranks. Conversely, if the stable rank

equals the inner rank, then by Proposition 1.3, R is weakly finite. To show that

R is Hermite it is enough, by Theorem 4.1, to show that every unimodular row

is completable. Let a be a unimodular row of length n, say ab = 1, and put

F = I − ba. Then F2 = F, Fb = 0 = aF , a set of equations summed up in(
F 0

0 I

)
=

(
F
a

)
(F b).



0.4 Hermite rings 23

This shows that ρ∗(F) = r < n, so ρ(F) = r , say F = B ′ A′, where B ′ is n × r
and A′ is r × n. We now have (B ′, b)(A′, a)T = I; since I is full, r + 1 = n and

by weak finiteness these matrices are mutually inverse, so R is Hermite. �

Over an Hermite ring we have the following stability property of matrix

factorizations.

Proposition 0.4.5. Let R be an (n + r)-Hermite ring, C ∈ Rn and suppose
that there is a factorization into matrices (not necessarily square)

C ⊕ Ir = P1 · · · Pt .

Then there are invertible matrices Ui (i = 0, 1, . . . , t), U0 = Ut = I , such that

U−1
i−1 PiUi = P ′

i ⊕ I and C = P ′
1 . . . P ′

t .

Proof. By induction it will be enough to treat the case of two factors; thus

we have (
C 0

0 I

)
= AB =

(
A′

A′′

)
(B ′ B ′′),

with an appropriate block decomposition. We have A′′ B ′′ = I, and since R is

(n + r )-Hermite, A′′ forms the last r rows of an invertible matrix P say, and

B ′′ the last r columns of the inverse, i.e. A′′ = (0, I)P, B ′′ = P−1(0, I)T. If we

replace A, B by AP−1, P B, we obtain(
C 0

0 I

)
=

(
A1 A2

0 I

) (
B1 0

B2 I

)
.

On multiplying out, we find that A2 = 0, B2 = 0, C = A1 B1 and now the con-

clusion follows by induction. �

A square matrix C will be called a stable matrix atom if C ⊕ Ir is an atom

for all r ≥ 1. From Proposition 4.5 we obtain

Corollary 0.4.6. Over an Hermite ring every matrix atom is stable. �

We can specialize our ring still further. A ring R is called cancellable if for

any projective modules P, Q, P ⊕ R ∼= Q ⊕ R implies P ∼= Q. It is clear that

every projective-free ring is cancellable and every cancellable ring is Hermite.

Thus for non-zero rings the following classes of rings become smaller as we go

down the list:

1. Rings with invariant basis number.

2. Rings with unbounded generating number.

3. Weakly finite rings.
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4. Hermite rings.

5. Cancellable rings.

6. Projective-free rings.

We have seen in Section 0.3 that a finitely generated projective left R-module

P is given by an idempotent matrix E, representing the projection of Rn on P.

Further, by Proposition 3.1, P is free, of rank r say, if and only if P ∼= Rr , i.e.

if E = AB, where A is n × r and B is r × n such that B A = I . An idempotent

matrix with this property is said to be split. Thus we obtain the following

criterion for a ring to be projective-free:

Proposition 0.4.7. A ring is projective-free if and only if it has IBN and each
idempotent matrix is split. �

Unlike some of the other properties, projective-freeness is not a Morita

invariant. We therefore define a ring R to be projective-trivial if there exists a

projective left R-module P, called the minimal projective of R, such that every

finitely generated projective left R-module M has the form Pn , for an integer

n that is uniquely determined by M. Clearly being projective-trivial is a Morita

invariant, and a projective-trivial ring R is projective-free precisely when its

minimal projective is R. The precise relationship between these two concepts

is elucidated in

Theorem 0.4.8. For any ring R the following properties are equivalent:

(a) R is a full matrix ring over a projective-free ring,
(b) there exists n such that for every finitely generated projective module P, Pn

is free of unique rank,
(c) R is Morita equivalent to a projective-free ring,
(d) R is projective-trivial.

(ao)−(do) the corresponding properties for the opposite ring.

Proof. Clearly (a) ⇒ (b) ⇒ (c) ⇒ (d). Now assume (d): R is projective-trivial,

with minimal projective P, say. Since R is finitely generated projective, we have

R ∼= Pn, (5)

for some positive integer n. Write E = EndR(P); then by Corollary 2.2 we find,

on taking endomorphism rings in (5), that R ∼= En . Here E is again projective-

trivial, and (5) shows that its minimal projective is EndR(P) = E , hence E is

projective-free, i.e. (a) holds. Now the final assertion follows by the obvious

symmetry of (a). �
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Exercises 0.4

1. Show that a 1-Hermite ring is the same as a weakly 1-finite ring.

2. Let A, B be matrices whose indices have the same sign. Show that A ⊕ B is com-

pletable whenever A and B are. Prove the converse when R is Hermite.

3. Which of the properties 1.–6. are Morita invariant? For the others describe the rings

that are Morita invariant to them.

4. If in an Hermite ring, AB = I and B is completed to an invertible matrix (B, B ′),
show that for suitably chosen A′, (A, A′)T has the inverse (B, B ′ − B AB ′).

5. Given A ∈ mRn, B ∈ nRm , where m < n, over any ring R, such that AB = Im , show

that A is completable if and only if A:0 = {x ∈ nR|Ax = 0} is free of rank n − m
(Kazimirskii and Lunik [72]).

6. Define an n-projective-free ring as a ring over which every n-generator projective

module is free of unique rank. State and prove an analogue of Theorem 4.1 for such

rings.

7◦. Find examples of Hermite rings that are not cancellable.

8. If R is any commutative ring and P ⊕ Rn−1 ∼= Rn , show that P ∼= R. [Hint: In the

exterior algebra on P show that 
k P = 0 for k > 1 and calculate 
n(P ⊕ Rn−1).]

9∗. (M. R. Gabel, see Lam [78]) If P is not finitely generated but P ⊕ Rm = F , where

F is free, show (by writing this as a split exact sequence with F as middle term)

that F = F0 ⊕ F1, where each Fi is free, F0 is finitely generated and F = P +
F0, F0

∼= (P ∩ F0) ⊕ Rm . Deduce that P/(P ∩ F0) ∼= F1 and hence show that P is

free.

10. (Lam [76]) Let R be any ring and P a projective module that has R as a direct

summand. If P ⊕ Rm ∼= Rn , where n > m, show that Pm+1 is free. (Hint: If P ∼=
Q ⊕ R, compute Pm+1 and use Rm to ‘liberate’ P and the resulting Rn to ‘liberate’

Qm .)

11. (Ojanguren and Sridharan [71]). Show that the polynomial ring D[x, y] over a

non-commutative field D is not 2-Hermite, by verifying that for suitable a, b ∈ D,

the pair (x + a, y + b) is a unimodular row, but is not completable. (Hint: Choose

non-commuting a and b; for the last part apply Proposition 4.3. See also Exercise

1.1.11.)

12. Show that a ring is Hermite if and only if it has IBN and for every idempotent matrix

E that splits, I − E also splits.

0.5 The matrix of definition of a module

Given a ring R, we have, for any R-module M, a presentation

G → F → M → 0,

where F, G are free. If F may be taken of finite rank, M is finitely generated; this

holds even if F is merely projective (and finitely generated), for on replacing

F, G by F ⊕ P, G ⊕ P for a suitable finitely generated projective P, we obtain

a free module F ⊕ P of finite rank mapping onto M. If G may be taken to be
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of finite rank, M is finitely related, and if both F and G can be taken to be of

finite rank, M is finitely presented. Thus a finitely presented left R-module M
has a presentation

Rm α−→ Rn −→ M −→ 0. (1)

Here M is determined up to isomorphism by a presenting matrix for α. Con-

versely, every m × n matrix A defines a finitely presented left R-module M in

this way, as M = coker α, where α is the mapping from Rm to Rn described by

A. We note the following property of modules that are finitely related but not

finitely generated.

Proposition 0.5.1. Over an arbitrary ring R, any finitely related R-module is
the direct sum of a finitely presented module and a free module.

Proof. We have M = F/G, where G is finitely generated. Write F = F ′ +
F ′′, where F ′ is free on the generators occurring in elements of G and F ′′ is

free on the remaining generators of F. Then G ⊆ F ′, hence M ∼= (F ′/G) ⊕ F ′′,
which is the required decomposition. �

Returning to (1), we see that α is injective if and only if A is left regular. In

that case M has a ‘finite free resolution’ of length 1:

0 → Rm α−→ Rn −→ M −→ 0, (2)

and we define the characteristicχ (M) of M as the index of the presenting matrix,

thus χ (M) = n − m. In a ring with IBN this is well-defined and independent

of the choice of presentation, by Schanuel’s lemma (Appendix Lemma B.5, or

also Theorem 0.5.3 below).

It should be observed that for general rings, modules with a finite free reso-

lution of length at most 1 are very special; however, for the rings discussed in

later chapters they include all finitely presented modules, which is why we treat

them in more detail. In particular, we can show that for such modules, short

exact sequences correspond to matrix equations.

Proposition 0.5.2. Let R be a ring with IBN. Given any left R-modules M,
M ′, M ′′ with finite free resolutions of length 1 and a left regular matrix C
presenting M, there exists a short exact sequence

0 → M ′ → M → M ′ → 0 (3)

if and only if there exists a factorization

C = AB, (4)
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where A, B are left regular matrices presenting M ′, M ′′, respectively, and

χ (M) = χ (M ′) + χ (M ′′). (5)

Conversely, any equation (4) between left regular matrices corresponds to a
short exact sequence (3).

Proof. Given (3) with the stated properties, there exists a free module F
mapping onto M, with free kernel H, both of finite rank. We also have a surjection

F → M ′′, and if the kernel is denoted by K, then K ⊇ H and we have the

commutative diagram with exact rows and columns:

H

A C

B

H0

0

0

0

0

00

1

0 0

0

0

K F M′′

M′′MM ′

Since M ′′ has a finite free resolution of length 1, there are free modules

F1 ⊇ K1 of finite rank such that M ′′ ∼= F1/K1. By Schanuel’s lemma we have

K ⊕ F1
∼= K1 ⊕ F , therefore on replacing F by F ⊕ F1, K by K ⊕ F1 and H

by H ⊕ F1 we can ensure that K is also free. If the matrices defining M ′, M ′′, M
are A, B, C , respectively, then by the commutativity of the diagram, C = AB.

Now χ (M) = rk F − rk H, χ (M ′) = rk K − rk H, χ (M ′′) = rk F − rk K ,

and (5) follows. Conversely, given left regular matrices A, B, C satisfying

(4), we obtain the first two columns of the above diagram, hence the third

follows by the dual of the 3 × 3 lemma (see Mac Lane [63], p. 49, or Appendix

Lemma B.3). �

We shall call two matrices over R left similar if the left modules they define

are isomorphic; right similar matrices are defined correspondingly, and two
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matrices are called similar if they are left and right similar. Thus in an integral

domain R two elements a and b are similar if and only if R/a R ∼= R/bR, or

equivalently, R/Ra ∼= R/Rb.

The precise relationship between similar matrices was found by Fitting [36].

This relation can be simplified by restricting attention to matrices that are left

regular, corresponding to the case where α in (1) is injective. We shall give an

explicit description of similarity in this case; in essence this is just a formulation

of Schanuel’s lemma (Mac Lane [63], p. 101, or also below).

Two maps between R-modules, α : Q → P, α′ : Q′ → P ′ are said to be

associated if there is a commutative square

P

P′α′

α
Q

Q′

where the vertical maps are isomorphisms. If there are two R-modules S, T
such that α ⊕ 1S is associated to 1T ⊕ α′, then α and α′ are said to be stably
associated. The next result and its corollary describe similarity of matrices in

terms of stable association.

Theorem 0.5.3. Let R be any ring and let α : Q → P and α′ : Q′ → P ′

be two homomorphisms of left R-modules. Then the following conditions are
equivalent:

(a) there is an isomorphism μ : Q ⊕ P ′ → P ⊕ Q′ of the form

μ =
(

α β

γ δ

)
with inverse μ−1 =

(
δ′ β ′

γ ′ α′

)
,

(b) α is stably associated to α′.

Further, these conditions imply

(c) coker α ∼= coker α′,

and if P, P′ are projective modules and α, α′ are injections, then the converse
holds, so (a), (b), (c) are then equivalent.
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Proof. (a) ⇒ (b). If we take S = P ′, T = P , we obtain the commutative

square

P ⊕ P′
α ⊕ 1P′

1P ⊕  α′

Q ⊕ P′

P ⊕ Q′ P ⊕ P′

m n

with the vertical isomorphisms

μ =
(

α β

γ δ

)
and ν =

(
1 0

γ 1

) (
1 −β ′

0 1

)
.

This result is also proved more simply by the equation(
α β

0 1

)
=

(
1 0

γ ′ α′

) (
α β

γ δ

)
. (6)

(b) ⇒ (a). If α is stably associated to α′, we have a commutative square, which

is expressed by an equation(
α 0

0 1

) (
p q
r s

)
=

(
x y
z t

) (
1 0

0 α′

)
,

where (
p q
r s

)−1

=
(

s ′ q ′

r ′ p′

)
,

(
x y
z t

)−1

=
(

t ′ y′

z′ x ′

)
.

Now (a) follows with

μ =
(

α y
−r ′ p′t

)
, μ−1 =

(
pt ′ −q
z′ α′

)
,

as is easily checked.

(b) ⇒ (c) is clear. Now let P, P ′ be projective, α, α′ injective and assume

(c). Then there exist maps γ : P ′ → P and β ′ : P → P ′ making the following

diagram commutative, and γ induces −γ ′ : Q′ → Q, while β ′ induces −β :

Q → Q′.
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Q
a

a′

−b b′ g ≅−g ′

Q′

P
f

f′
P′

0 0

00 coker a′

coker a

Further, (1P − β ′γ )φ = 0, whence 1 − β ′γ = δ′α for some δ′ : P → Q,

because P is projective. Likewise (1 − γβ ′)φ′ = 0, whence 1 − γβ ′ = δα′ for

some δ : P ′ → Q′. Now it is easily verified that

(
α β

γ δ

)
: Q ⊕ P ′ → P ⊕ Q′

has inverse

(
δ′ β ′

γ ′ α′

)
: P ⊕ Q′ → Q ⊕ P ′, which proves (a). �

The implication (c) ⇒ (a) (under the given conditions) is just the assertion

of Schanuel’s lemma. The proof of the equivalence (a) ⇔ (b) shows that the

definition of stable association can be made a little more precise.

Corollary 0.5.4. If α : Q → P is stably associated to α′ : Q′ → P ′, then
α ⊕ 1P ′ is associated to 1P ⊕ α′. Hence two matrices A ∈ rRm and A′ ∈ sRn

are stably associated, qua maps, if and only if A ⊕ In is associated to
Im ⊕ A′. �

In terms of matrices we obtain the following criteria by taking P, P ′, Q, Q′

to be free.

Corollary 0.5.5. Let A ∈ rRm, A′ ∈ sRn be any two matrices. Then of the
following, (a) and (b) are equivalent and imply (c):

(a) there exists an (r + n) × (s + m) matrix
(

A ∗
∗ ∗

)
with an inverse of the

form
(∗ ∗

∗ A′

)
,

(b) A and A′ are stably associated,
(c) A and A′ are left similar.

If A, A′ are left regular, all three conditions are equivalent. Moreover, two
regular matrices are left similar if and only if they are right similar.

Proof. The equivalence follows from Theorem 5.3, while the left–right sym-

metry is a consequence of the evident symmetry of (a) or (b). �
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Two matrices A, A′ standing in the relation (a) are said to be GL-related. By

Corollary 5.5 this means the same as ‘stably associated’. We also note that an

invertible (square) matrix is stably associated to the unique 0 × 0 matrix 10.

From (a) we see that if two matrices A, A′ over R are stably associated,

then their images under any ring homomorphism are again stably associated.

In particular, if A maps to a unit under some homomorphism, then so does

A′. We further note that for any ring with IBN any two GL-related matrices

have the same index, which is also the characteristic of the corresponding left

R-modules, assuming the matrices to be left regular.

Over a weakly finite ring the notion of similarity of matrices can still be

simplified. Consider a relation

AB ′ = B A′ (7)

between matrices. This can also be written

(A B)

(−B ′

A′

)
= 0.

We shall call A, B right comaximal if the matrix (A B) has a right inverse,

and A′, B ′ left comaximal if (A′ B ′)T has a left inverse. Now (7) is called

a comaximal relation if A, B are right comaximal and A′, B ′ left comaximal.

We shall find that in a weakly finite ring stable association can be described in

terms of comaximal relations.

Proposition 0.5.6. Let R be any ring and let A ∈ rRm, A′ ∈ sRn. Then the
following two relations are equivalent:

(a) A, A′ satisfy a comaximal relation (7),
(b) there is an (r + n) × (s + m) matrix with first row block (A B), with a

right inverse whose last column block has the form (−B ′ A′)T .

In particular, (a) and (b) hold whenever

(c) A and A′ are stably associated,

and in a weakly finite ring (a)–(c) are equivalent for two matrices of the same
index.

Proof. Suppose that A, A′ satisfy a comaximal relation (7), say

AD′ − BC ′ = I, D A′ − C B ′ = I. (8)

Then on writing

M =
(

A B
C D

)
and N =

(
D′ −B ′

−C ′ A′

)
, (9)
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we have M N =
(

I 0

P I

)
, where P = C D′ − DC ′. Hence M has the right

inverse (
D′ −B ′

−C ′ A′

) (
I 0

−P I

)
=

(∗ −B ′
∗ A′

)
,

and (b) follows. Conversely, if N in (9) is a right inverse of M, then (7) and (8)

hold, hence (7) is then a comaximal relation. This shows that (a) ⇔ (b).

Now (c) ⇒ (b) by Corollary 5.5, and (b) ⇒ (c) under the given conditions,

because when m − r = n − s, then r + n = s + m, and for a square matrix

over a weakly finite ring any right inverse is an inverse. �

For later use we note the explicit form of the relation of stable association

between A and A′:(
A 0

0 I

) (
D′ −B ′

−C ′ A′

)
=

(
I + BC ′ −B

−C ′ I

) (
I 0

0 A′

)
; (10)

another form of such a relation is given by (6). We also restate the criterion for

stable association derived in Proposition 5.6.

Proposition 0.5.7. In a weakly finite ring R, two matrices A and A′ are stably
associated if and only if they have the same index and satisfy a comaximal
relation AB ′ = B A′. �

Finally we note a remark on the invertibility of endomorphisms that will be

useful later.

Lemma 0.5.8. Given modules M, N over any ring, let s : M → N , t : N → M
be module homomorphisms, so that st, ts are endomorphisms of M, N, respec-
tively; further denote the identity mappings on M, N by e, f, respectively. Then
e − st is an automorphism of M if and only if f − ts is an automorphism of N
and the inverses are related by the equations

( f − ts)−1 = f + t(e − st)−1s, (11)

(e − st)−1 = e + s( f − ts)−1t. (12)

Proof. Assume that e − st is invertible. Then

( f − ts)( f + t(e − st)−1s) = f − ts + t(e − st)−1s − tst(e − st)−1s

= f − ts + t(e − st)(e − st)−1s

= f.
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Thus f − ts has the right inverse given by (11); a similar calculation shows

that this is also a left inverse, so f − ts is an automorphism of N. The reverse

implication follows by symmetry. �

Exercises 0.5

1. Show that a matrix is stably associated to I if and only if it is a unit; if it is stably

associated to an m × n zero matrix, where m, n > 0, then it is a zero-divisor.

2. Let A be a matrix over any ring R. Show that the left R-module presented by A is

zero if and only if A has a right inverse.

3. Let R be a ring and A ∈ mRn, B ∈ nRm . Show that I + AB is stably associated to

I + B A. Deduce that I + AB is a unit if and only if I + BA is; prove this directly

by evaluating I − B(I + AB)−1 A.

4◦. Under what circumstances is AB stably associated to BA?

5. Let R be a ring with UGN. If A, A′ satisfy a comaximal relation (7), show that

i(A) ≥ i(A′). Deduce that if A, A′ satisfy a comaximal relation and A′, A likewise,

then A and A′ are stably associated.

6. Show that the condition on the index cannot be omitted from Proposition 5.7.

Hence find examples of pairs of matrices (over a weakly finite ring, say) that satisfy

a comaximal relation but are not stably associated.

7∗. Let R be a non-zero ring and S = EndR(R(N)). Show that S2
∼= S; is it the case that

any two stably associated 1 × 1 matrices are associated?

8∗. Since the relation of stable association is clearly transtitive, it follows by Corollary

5.5 that being GL-related is transitive. Give a direct proof of this fact. (Hint: Take

the case of elements first.)

0.6 Eigenrings and centralizers

Let R be a ring, M a left R-module and N a submodule of M. We define the

idealizer of N in M over R as the set

I (N ) = {β ∈ EndR(M)|Nβ ⊆ N }.
Clearly I (N ) is a subring of EndR(M) and if we put a = HomR(M, N ), then

a is a left ideal in EndR(M) and a two-sided ideal in I (N ). The quotient ring

E(N ) = I (N )/a is called the eigenring of N in M over R. Writing Q = M/N ,

we have a natural ring homomorphism I (N ) → EndR(Q); the kernel is easily

seen to be a, so we obtain an injection

E(N ) → EndR(Q). (1)

Suppose now that M is projective. Then any endomorphism φ of Q can be lifted

to an endomorphism β of M such that Nβ ⊆ N ; this shows the map (1) to be

surjective, and so an isomorphism. We state the result as
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Proposition 0.6.1. Given any ring R, if P is a projective left R-module and N
a submodule of P with eigenring E(N), then there is a natural isomorphism

E(N ) ∼= EndR(P/N ). �

In particular, if P = R, then a is a left ideal of R and we have I (a) = {x ∈
R|ax ⊆ a} and E(a) = I (a)/a ∼= EndR(R/a).

Now let A ∈ mRn and let α : Rm → Rn be the corresponding map. Tak-

ing P = Rn, N = im α, we have EndR(Rn) ∼= Rn , hence I (N ) = {β ∈ Rn|Nβ

⊆ N } and a = HomR(Rn, N ) ∼= nN , as left Rn-module. We define the left ide-
alizer of a matrix A over R as the corresponding set of matrices

I (A) = {B ∈ Rn|AB = B ′ A for some B ′ ∈ Rm},
and the left eigenring of A as the quotient ring E(A) = I (A)/(n Rm)A. By

Proposition 6.1, E(A) ∼= EndR(M), where M is the left R-module defined by

A. The right eigenring of A is defined similarly, and it is clear that for a regular

matrix A the left and right eigenrings are isomorphic, the isomorphism being

induced by the mapping

B �→ B ′, where AB = B ′ A.

In the particular case where m = n = 1, the matrix becomes an element a of R
and we have E(a) = I (a)/Ra ∼= EndR(R/Ra).

Given any matrices A, B over R, if M, N are the left R-modules defined

by them, then each R-homomorphism f : M → N is completely specified by a

matrix P over R such that

AP = P ′ B (2)

for some matrix P ′. If I (A, B) denotes the set of all such P and b is the left

R-module spanned by the rows of B, then as before,

I (A, B)/b ∼= HomR (M, N ) (3)

is an isomorphism of (E(A), E(B))-bimodules.

For later use we record the effect of a change of base field on HomR(M, N ):

Proposition 0.6.2. Let R be a k-algebra, where k is a commutative field. Given
a field extension E/k, write RE = R ⊗k E and for any R-module M denote the
extension M ⊗k E by ME . If M, N are R-modules such that HomR(M, N ) is
finite-dimensional over k, then

HomR(M, N ) ⊗k E ∼= HomRE (ME , NE ). (4)
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Proof. There is a natural map from the left- to the right-hand side in (4),

which is clearly injective, so it will be enough to show that both sides have the

same dimension.

Let (ei ), ( fλ) be bases for M, N as k-spaces (possibly infinite-dimensional);

then the action of R is given by

ei x =
∑

ρi j (x)e j , fλx =
∑

σλμ(x) fμ (x ∈ R),

and HomR(M, N ) is the space of all solutions α over k of the system∑
j

ρi j (x)α jμ =
∑

λ

αiλσλμ(x). (5)

Let V = Homk(M, N ) as k-space and C be the subspace of solutions (αiλ) of (5).

Then V = C ⊕ D for some k-space D and by hypothesis C is finite-dimensional,

say dimk C = n. Let p1, . . . , pn be linearly independent functionals on V such

that ∩kerpν = D. Then (5) together with

pν(α) = 0 (ν = 1, . . . , n),

has only the trivial solution over k and the same holds over E. It follows that

the solution of (5) is again n-dimensional over E, and so (4) holds. �

The eigenring of a ring element is closely related to its centralizer and to

some extent both may be treated by the same method, by the device of adjoining

an indeterminate. The basic result is:

Theorem 0.6.3. Let R be a ring and S = R[t] the ring obtained by adjoin-
ing a central indeterminate t to R. Given a, b ∈ R, write C = C(a, b) = {x ∈
R|ax = xb}. Then there is a natural isomorphism of abelian groups:

C(a, b) ∼= HomS(S/S(t − a), S/S(t − b)).

Proof. Let Ra denote R viewed as left S-module with t acting by right mul-

tiplication by a. By mapping t �→ a we define a left S-module homomorphism

S → Ra with kernel S(t − a), and so

HomS(S/S(t − a), S/S(t − b)) ∼= Hom S(Ra, Rb).

For any f : Ra → Rb we have a(1 f ) = a f = (t1) f = t(1 f ) = (1 f )b; there-

fore the rule f �→ 1 f defines a homomorphism from HomS(Ra, Rb) to C(a, b).

Conversely, for any x ∈ C(a, b), right multiplication by x defines a left S-linear

map Ra → Rb; so we obtain a homomorphism C(a, b) → HomS(Ra, Rb),

clearly inverse to the previous map. �

By putting b = a we can express the centralizer of a as an eigenring:
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Corollary 0.6.4. The centralizer of an element a ∈ R is isomorphic to the
eigenring of t − a in the polynomial ring R[t]. �

The following result is well known in the special case of matrix rings over

a field, where it is used to obtain the canonical form of a matrix (see CA,

p. 355).

Proposition 0.6.5. Let R be a ring and t a central indeterminate. Then two
elements a, b of R are conjugate under U (R) if and only if t − a and t − b
satisfy a comaximal relation

f.(t − a) = (t − b).g (6)

in R[t], and in any such comaximal relation (6), f and g can be found to lie in
U (R).

Proof. If a, b are conjugate, say ua = bu, where u ∈ U (R), then clearly

u(t − a) = (t − b)u is a comaximal relation. Conversely, assume a comaximal

relation (6). By subtracting an expression (t − b)h(t − a) from both sides, we

obtain the equation

u(t − a) = (t − b)v, (7)

where u = f − (t − b)h, v = g − h(t − a). Here we may choose h so that u
has degree 0 in t, i.e. u ∈ R. Then on comparing degrees in (7) we find that

v ∈ R, while a comparison of highest terms shows that v = u and so

ua = bu. (8)

Further, since u ≡ f ( mod (t − b)R[t]), u and t − b are still right comaximal,

say

up + (t − b)q = 1, where p, q ∈ R[t]. (9)

Replacing p by p − (t − a)k for suitable k ∈ R[t] and using (7), we can reduce

(9) to the case where p has degree 0. Then q = 0, by comparing degrees, and

now (9) shows p to be a right inverse to u. By the symmetry of (8), u also

has a left inverse and so is a unit. Now (8) shows a and b to be conjugate, as

claimed. �

Exercises 0.6

1. In any ring R, if ab′ = ba′, show that a′b lies in the idealizer of Rb′b and that of

a′a R.
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2. Let R be a ring and t a central indeterminate. Given a, b ∈ R×, show that the

elements anb(n = 0, 1, . . .) are right linearly dependent over R if and only if t − a
and b are right commensurable in R[t].

3. In any ring R, show that HomR(R/a R, R/bR) ∼= R/d R where d is the largest

element (in terms of divisibility) similar to a left factor of a and a right factor of b.

4. Let A be a matrix with eigenring E. Show that A ⊕ · · · ⊕ A (r terms A) has eigenring

Er .

5. Show that a unit has zero eigenring and conversely, an element with zero eigenring

over an integral domain is a unit.

6. Let R be a ring and t a central indeterminate. If t − a and h ∈ R[t] satisfy a comaxi-

mal relation f.(t − a) = h.g, show that g can be taken to lie in R, but not in general

f. (Hint: Use a nilpotent element of R to construct f as an invertible element of

degree 2.)

7∗. (Robson [72]) (a) In a ring R, let a = m1 ∩ . . . ∩ mk , where the mi are maximal

left ideals (such an a is called semimaximal). If B = {b ∈ R|ab ⊆ m1} and A is the

idealizer of a, show that B/m1 is a simple left A-module.

(b) If a and A are as before, show that any simple left R-module is either simple

as left A-module or is a homomorphic image of R/a.

(c) With the notation as before, let M be a simple left R-module. Then M is

simple as left A-module, unless for some i, M ∼= R/mi and aR 
⊂ mi . In that case

M has a unique composition series R ⊃ A + mi ⊃ mi .

8∗. (G. M. Bergman) Prove Proposition 6.2 under the hypothesis that M is finitely

generated, as R-module.

9. Given two left R-modules with finite free resolutions of length 1, U =
Rn/RmX, V = Rs/Rr Y , show that Ext 1

R(V, U ) = rRn/(Y s Rn + rRm X ). Simi-

larly if W = hR/Z (k R) is a right R-module, show that Tor R
1 (W, V ) = (Zk Rs ∩

hRr Y )/Zk Rr Y .

10. Let R be any ring and A an m × n matrix over R, which is not right full. Given

B ∈ I (A), if B represents zero in E(A), show that B is not full.

0.7 Rings of fractions

As is well known, a commutative ring has a field of fractions if and only if

it is an integral domain. In the general case this condition is still necessary,

but not sufficient, as Malcev [37] has shown. Malcev then gave a set of nec-

essary and sufficient conditions for a semigroup to be embeddable in a group

(Malcev [39],[40]; see also UA, p. 268), but for rings the problem of finding an

embeddability criterion remained open until 1971 (see Cohn [71a] and Chapter 7

below). However, a simpler set of sufficient conditions was found by Ore [31]

and after some generalities we briefly recall the details.

Let R, R′ be any rings and S a subset of R. A homomorphism f : R → R′ is

said to be S-inverting if f maps S into U (R′). It is clear that there always exists

a universal S-inverting ring RS , obtained by adjoining for each x ∈ S a new
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element x ′ and adding the relations xx ′ = x ′x = 1. The construction shows

that the natural map λ : R → RS is an S-inverting homomorphism and it is

easily checked that any S-inverting homomorphism can be factored uniquely

by λ (see FA, Section 7.1). However, it is not easy to decide when λ is injective,

or indeed when it is non-zero. The same construction can be used to find, for

a given monoid M with a subset S, a universal S-inverting monoid MS with a

natural homomorphism λ : M → MS . In particular, taking S = M , we obtain

a group G(M), with a homomorphism M → G(M), which is universal for all

homomorphisms from M to a group. G(M) is known as the universal group of

M, also called Grothendieck group, see Section 0.3.

Ore’s construction asks under what conditions the elements of the universal

S-inverting ring RS can be written in the form as −1, where s ∈ S. Clearly it

is necessary for s−1a to be expressible in this form, say s−1a = a1s−1
1 . On

multiplying up, we find the condition as1 = sa1; this may also be stated as

O.1 For any a ∈ R, s ∈ S, aS ∩ s R 
= ∅.

In addition we shall also need a cancellation condition:

O.2 For each a ∈ R, s ∈ S, if sa = 0, then at = 0 for some t ∈ S, and 0 /∈ S.

Further, it is convenient to assume S to be multiplicative, i.e. to contain 1 and

be closed under multiplication. A multiplicative subset of a ring satisfying O.1

and O.2 will be called a right Ore set. If R has such a subset, then by 0.2 and

multiplicativity, 1 
= 0, so R must be non-zero. In the expression as −1 of an

element, a is called the numerator and s the denominator. Now the basic result

may be stated as

Theorem 0.7.1. Let R be a ring and S a right Ore set in R. Then all the elements
of the universal S-inverting ring RS can be expressed in the form as−1, where
a ∈ R, s ∈ S. When the right Ore set S consists of regular elements, then the
natural map λ : R → RS into the universal S-inverting ring is an embedding.
Conversely, when RS−1 = {as−1|a ∈ R, s ∈ S} is a ring, then S is a right Ore
set.

Proof. We shall give a sketch of the proof, referring to FA, 7.1 for the details.

Define a relation on R × S by setting (a1, s1) ∼ (a2, s2) whenever there exist

t1, t2 ∈ R such that s1t1 = s2t2 ∈ S and a1t1 = a2t2; this is easily verified to be

an equivalence. Denoting the equivalence class of (a, s) by a/s, where a is the

numerator and s the denominator, we observe first that any pair of elements

can be brought to a common denominator: if ai ∈ R, si ∈ S are given and

ti ∈ R is chosen as before (by the Ore condition), so that s1t1 = s2t2 ∈ S, then

a1/s1 = a1t1/s1t1, a2/s2 = a2t2/s2t2 and s1t1 = s2t2. To define addition, we first

bring the elements to a common denominator and then put a1/s + a2/s =
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(a1 + a2)/s. To multiply a1/s1 and a2/s2, we determine a3 ∈ R, s3 ∈ S such

that s1a3 = a2s3 and then put a1/s1.a2/s2 = (a1a3)/(s2s3). Of course it needs

to be checked that the results do not depend on the choice of a1, s1 and a2, s2

within their equivalence classes. This is a routine verification that may be left

to the reader, as well as the verification of the ring laws. The mapping a �→ a/1

is easily seen to be a homomorphism from R to RS , which is injective when S
consists of regular elements. The converse is also a straightforward verification.

�

The ring RS is also called the localization of R at S; when S consists of

regular elements, so that λ is injective, RS is called the ring of fractions of R by

S. When R is an integral domain and S = R×, R is called a right Ore domain;

its localization RR× is the field of fractions of R. The condition for an integral

domain R to be right Ore is therefore

a R ∩ bR 
= 0 for all a, b ∈ R×. (1)

Corresponding definitions apply on the left and we speak of an Ore domain
when the side is not specified (rather in the way one speaks of a module).

For a right Ore domain R the localization at R× is also called the field of

right fractions of R. By symmetry every left Ore domain can be embedded in

a field of left fractions, and for a two-sided Ore domain the fields of left and

of right fractions coincide, by the uniqueness of the latter (see below). We also

note that every commutative integral domain is both a left and right Ore domain.

As a special case of Theorem 7.1 we obtain

Corollary 0.7.2. Any right (or left) Ore domain can be embedded in a field,
and the least such field, unique up to isomorphism, is the universal R×-inverting
ring. Hence any (left or right) Ore domain is weakly finite.

Proof. To establish the uniqueness, suppose that there exist two embeddings

into fields R → K , R → K ′. The identity map on R can be extended to elements

ab −1 and this shows K , K ′ to be isomorphic. Suppose there are two embeddings

of R in the field of fractions K; then we have an automorphism of K, which

reduces to the identity on R. For if ab−1 ↔ a′b′−1, we can find a common

denominator and so obtain cd −1 ↔ c′d−1; multiplying by d we find that c = c′

and so the automorphism reduces to the identity on R, as claimed. The last

statement is clear, since R is a subring of a field. �

In general, when λ is not injective, its kernel has the form

ker λ = {a ∈ R|at = 0 for some t ∈ S}. (2)



40 Generalities on rings and modules

We remark that any finite set of elements of RS may be brought to a common

denominator, which is a right multiple of the given denominators. The case of

two elements was dealt with in the proof of Theorem 7.1; now let c1, . . . , cn ∈
RS and use induction on n. We first bring c1, c2 to a common denominator b and

then bring b−1, c3, . . . , cn to a common denominator b′. This is a right multiple

of the denominators of b−1, c3, . . . , cn , hence also of that of c1, c2 and so it is

the desired common denominator. Thus we have

Proposition 0.7.3. Let R be a ring and S a right Ore set in R. Then any finite
set of elements of the localization RS can be brought to a common denominator,
which is a right multiple of the denominators of all the given elements. �

To find Ore sets in a ring one looks for its ‘large’ elements. An element c of

an integral domain R is said to be right large if cR ∩ a R 
= 0 for all a ∈ R×. The

set L of all right large elements is always multiplicative. For clearly 1 ∈ L and

if a, b ∈ L and c ∈ R×, then there exist x, y ∈ R× such that ax = cy and there

exist u, v ∈ R× such that bu = xv, hence abu = axv = cyv and this shows

that ab ∈ L . Further, if a R ∩ bR 
= 0 implies ab′ = ba′ with either a′ or b′

in L, then it follows that L is a right Ore set. For if a ∈ L and b ∈ R×, then

a R ∩ bR 
= 0, say ab′ = ba′ 
= 0. If a′ ∈ L , then a R ∩ bL 
= ∅, as claimed;

otherwise b′ ∈ L and then ab′ ∈ L , hence ba′ ∈ L . Now for any c ∈ R× there

exist x, y ∈ R× with ba′x = bcy, hence a′x = cy and this shows again that

a′ ∈ L . Thus we have proved

Proposition 0.7.4. In any integral domain R the set L of right large elements
is a submonoid. If a R ∩ bR 
= 0 for a, b ∈ L implies that ab′ = ba′, where
either a′ or b′ is right large, then the set L of all right large elements in R is a
right Ore set and the natural map R → RS is an embedding. �

If R is a ring and T is a right Ore set in R, then any T-inverting homomorphism

to a ring S, f : R → S extends in a unique fashion to a homomorphism of RT

into S, by the universal property of RT . Sometimes we shall need this result for

R-subrings of RT ; the proof is quite similar to that of Theorem 7.1, though it

does not actually follow as a special case.

Proposition 0.7.5. Let R, S be rings and f : R → S an injective homomor-
phism. If T is a right Ore set in R such that Tf is regular and R′ is an R-subring
of RT such that

a ∈ R′b (a ∈ R, b ∈ T ) implies a f ∈ S.b f, (3)

then f extends to a unique homomorphism f ′ : R′ → S and f ′ is again injective.
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Proof. Given r ∈ R′, we can write r = ab−1(a ∈ R, b ∈ T ), thus a = rb and

so a f = s.b f for some s ∈ S, by (3). We define r f ′ = s and note that if instead

of a, b we had used au, bu, where bu ∈ T , then (au) f = s.(bu) f with the same

s, so any expression r = au.(bu)−1 leads to the same value of r f ′. Since any two

representations of r can be brought to a common denominator, they lead to the

same value for r f ′ and this shows f ′ to be well-defined. The homomorphism

property and injectivity follow as in the proof of Theorem 7.1. �

An integral domain R that is not a right Ore domain must contain two non-

zero elements a, b that are right incommensurable: a R ∩ bR = 0. It follows

that the right ideal a R + bR is a free right R-module of rank 2. Moreover, the

elements anb(n = 0, 1, 2, . . .) are right linearly independent; for if
∑

ai bci =
0(ci ∈ R, not all 0), then by cancelling on the left as many factors a as possible,

we can write this equation as

bc0 + abc1 + · · · + ar bcr = 0 (c0 
= 0),

hence bc0 ∈ a R ∩ bR, a contradiction. This proves

Proposition 0.7.6. An integral domain that is not a right Ore domain contains
free right ideals of any finite or countable rank. �

Since a free right ideal of countable rank is not finitely generated, we obtain

Corollary 0.7.7. Any right Noetherian domain is a right Ore domain. �

Examples of non-Ore domains are free associative algebras of rank at least

2 (to be defined in Section 2.5).

Let R, A, B be any rings,α : R → A, β : R → B two homomorphisms and M
an (A, B)-bimodule. Then an (α, β)-derivation from R to M is a map δ : R → M
that is additive and satisfies

(xy)δ = xα yδ + xδ yβ. (4)

In particular, if A = R and α = 1, we speak of a (right) β-derivation. Putting

x = y = 1 in (4) and observing that 1α = 1β = 1, we see that any (α, β)-

derivation δ satisfies 1δ = 0. It is easily verified that ker δ is a subring of

R, called the ring of constants (with respect to δ). Moreover, any element of

ker δ that is invertible in R is also invertible in ker δ, as follows by the formula

(itself easily checked):

(x−1)δ = −(x−1)α.xδ.(x−1)β.

We list some examples of derivations.
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1. Let M = R = A = B = k(t) be the field of rational functions in t over

some field k, and let f ′ be the usual derivative of f. Then on taking α = β = 1,

we obtain the familiar formula

( f g)′ = f g′ + f ′g,

as a special case of (4).

2. Let M = R = A = B and let α be any automorphism of R. Then f δ =
f α − f is a right α-derivation. In particular, when R = k[t] and α : f (t) �→
f (t + 1), then δ is the differencing operator f (t) → f (t + 1) − f (t).

3. For any R, A, B, M take m ∈ M and define δm : R → M by the rule

δm : x �→ xαm − mxβ. (5)

This is easily seen to be an (α, β)-derivation; it is called the inner (α, β)-

derivation induced by m. Thus the differencing operator in example 2 is the

inner α-derivation induced by 1, where α is the translation operator. A derivation

that is not inner is called outer.

With any (A, B)-module M we can associate the ring

(
A M
0 B

)
consisting

of all matrices (
a m
0 b

)
(a ∈ A, b ∈ B, m ∈ M),

with the usual matrix addition and multiplication. The (A, B)-bimodule prop-

erty just ensures that we get a ring in this way:(
a m
0 b

) (
a′ m ′

0 b′

)
=

(
aa′ am ′ + mb′

0 bb′

)
.

Given maps α : R → A, β : R → B, δ : R → M , we can define a map from R to(
A M
0 B

)
by the rule

x �→
(

xα xδ

0 xβ

)
, (6)

and it is easily checked that this is a ring homomorphism if and only if α, β

are homomorphisms and δ is an (α, β)-derivation. This alternative method of

defining derivations is often useful, for example in proving

Theorem 0.7.8. Let R, A, B be rings, T a right Ore set in R and M an
(A, B)-bimodule. Then any T-inverting homomorphism α : R → A extends to
a unique homomorphism α′ : RT → A, and given T-inverting homomorphisms
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α : R → A, β : R → B, any (α, β)-derivation δ : R → M extends to an (α′, β ′)-
derivation δ′ of RT into M.

Proof. The existence and uniqueness of α′ follow because RT is universal T -

inverting. Now δ defines a homomorphism (6) from R to

(
A M
0 B

)
, which is T -

inverting and therefore extends to a homomorphism of RT : x �→
(

xα′
xδ′

0 xβ ′

)
.

It follows that δ′ is an (α′, β ′)-derivation. �

We conclude this section by briefly discussing a special class of monoids

that are embeddable in groups. Let S be a cancellation monoid; an element c of

S is said to be rigid (sometimes called equidivisible), if

ab′ = ba′ = c (7)

implies a = bu or b = au, for some u ∈ S. Thus c is rigid if the left factors of c
form a chain under the ordering by divisibility. When (7) holds, and a = bu, then

bub′ = ba′, hence a′ = ub′; this shows the condition to be left–right symmetric.

A monoid is said to be rigid if it admits cancellation and all its elements are

rigid. Thus S is rigid if it is a cancellation monoid such that

aS ∩ bS 
= ∅ ⇒ aS ⊆ bS or bS ⊆ aS. (8)

Theorem 0.7.9. Every rigid monoid is embeddable in a group.

Proof. Let S be a rigid monoid and for a, b ∈ S denote by {a.b} the set of

all elements of the form a′b′′, where a = a′a′′, b = b′b′′. We first establish the

following assertions:

(α) u ∈ {ac.b}, u /∈ {a.b} ⇒ u ∈ aS,

(β) uc ∈ {a.bc} ⇒ u ∈ {a.b}.
To prove (α) we have by definition, u = pq, ac = px, b = yq. By rigidity,

a ∈ pS or p ∈ aS. In the first case u ∈ {a.b}, which is excluded, so p ∈ aS
and hence u ∈ aS. To prove (β), let uc = pq, a = px, bc = yq. Now either

p = uz; then a = uzx and so u ∈ {a.b}, or u = pz; then q = zc, b = yz and

again u ∈ {a.b}. Thus (α) and (β) are established.

We next consider the set of all expressions

p = a0b−1
1 a1b−1

2 . . . an−1b−1
n an, where ai , bi ∈ S. (9)

The expression (9) is said to have length n; it is said to be reduced if

ai /∈ {bi .bi+1} (i = 1, . . . , n − 1), bi /∈ {ai .ai−1} (i = 1, . . . , n). (10)
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Clearly if (9) is reduced, none of the a’s or b’s except possibly a0 or an

can be 1. We define the following elementary transformations on (9), for any

x ∈ S:

Ri : ai−1b−1
i �→ ai−1x(bi x)−1 (i = 1, . . . , n),

Li : b−1
i ai �→ (xbi )

−1xai (i = 1, . . . , n).

Two expressions are called equivalent if we can pass from one to the other by a

finite chain of elementary transformations and their inverses; clearly this is an

equivalence. We note in particular that every element of S forms an expression

of length 0, which is reduced and admits no elementary transformations.

We claim that a reduced expression stays reduced under elementary trans-

formation. Consider the effect of R j on (9) and the first condition (10). It is

clear that this will not be affected unless j = i or i + 1. We take these cases in

turn.

Ri . Suppose that ai ∈ {bi x .bi+1}. Since ai /∈ {bi .bi+1}, we have ai ∈ bi S by

(α), but this contradicts the fact that bi /∈ {ai .ai−1}.
Ri+1. Since ai /∈ {bi .bi+1}, we have ai x /∈ {bi .bi+1x} by (β).

R−1
i . Let ai−1 = a′

i−1x, bi = b′
i x ; if ai ∈ {b′

i .bi+1}, then ai ∈ {b′
i x .bi+1} =

{bi .bi+1}, a contradiction.

R−1
i+1. Let ai = a′

i x, bi+1 = b′
i+1x and a′

i ∈ {bi .b′
i+1}; then ai = a′

i x ∈
{bi .b′

i+1x} = {bi .bi+1}, which is again a contradiction.

By symmetry L j leaves the first condition (10) unaffected, and we can deal

similarly with the second condition (10) by considering the formal inverse of

(9).

Thus the conditions (10) are unaffected by elementary transformations, so

for any reduced expression (9) the length is an invariant of the equivalence class.

In particular, two expressions of length 0 are equivalent if and only if they are

equal, as elements of S.

We now define G(S) as a group of permutations on the set of equivalence

classes of reduced expressions and verify that S acts faithfully; this will show

that S is embedded in G(S). Given c ∈ S and a reduced expression p as in (9),

we define

pc =
{

a0b−1
1 a1 . . . an−1b−1

n anc if bn /∈ {anc.an−1},
a0b−1

1 a1 . . . b−1
n−1a′c′′ if c = c′c′′, an−1 = a′a′′, bn = anc′a′′.

(11)

Clearly the first form is reduced; when it does not apply, we have

bn ∈ {anc.an−1}, but bn /∈ {an.an−1}, hence by (α), bn = anu and so anu ∈
{anc.an−1}. By the left–right dual of (β), u ∈ {c.an−1}, so c = c′c′′, an−1 =
a′a′′, u = c′a′′ and bn = anc′a′′, which is the second alternative in (11). It is



0.7 Rings of fractions 45

reduced, for if bn−1 ∈ {a′c′′.an−2}, then since bn−1 /∈ {an−1.an−2}, we have

bn−1 /∈ {a′.an−2} and so by (α), bn−1 = a′v, but then an−1 ∈ {a′v.anc′a′′},
which contradicts the condition an−1 /∈ {bn−1.bn}.

A routine verification shows that this action is compatible with the elemen-

tary transformations Ri , Li and their inverses, so that (11) defines an action on

the equivalence classes. Next we define for c ∈ S and p as in (9),

pc−1 =
⎧⎨
⎩

a0b−1
1 a1 . . . b−1

n anc−11 if c /∈ {1.an} and an /∈ {bn.c},
a0b−1

1 a1 . . . b−1
n u if an = uc,

a0b−1
1 a1 . . . b−1

n−1an−1(c′b′′)−11 if an = b′c′′, bn = b′b′′, c = c′c′′.
(12)

In the case n = 0, the centre line applies, but a0 is then omitted, i.e. pc−1 = u.

The first form is clearly reduced. If it does not hold, suppose that c ∈ {1.an},
say an = uc. By hypothesis, bn /∈ {an.an−1} = {uc.an−1}, hence bn /∈ {u.an−1}
and this shows the second form to be reduced. Finally, if c /∈ {1.an} but

an ∈ {bn.c}, let c = c′c′′, bn = b′b′′, an = b′c′′; then we are in the third case

and it will be reduced, provided that an−1 /∈ {bn−1.c′b′′}. So suppose that

an−1 ∈ {bn−1.c′b′′}; since an−1 /∈ {bn−1.bn}, we have an−1 ∈ Sb′′ by the left–

right dual of (α), say an−1 = vb′′; but then bn ∈ {an.an−1}, which is a contra-

diction. Again it is straightforward to show that the action is compatible with

Li , Ri .

To verify that we have a representation, we shall use ∼ to indicate equiva-

lence.

(i) cc−1 = 1. If pc has the first form (11), it is clear that pcc−1 = p. For the

second form we have

pcc−1 =
{

a0b−1
1 a1 . . . b−1

n−1a′c′−11,

∼ a0b−1
1 a1 . . . b−1

n−1an−1(c′a′′)−11 ∼ p.

(ii) c−1c = 1. If pc−1 has the first form (12), all is clear. If the second applies,

we have

pc−1c = a0b−1
1 a1 . . . b−1

n uc ∼ p,

and for the third,

pc−1c = a0b−1
1 . . . b−1

n−1an−1(c′b′′)−1c

∼ a0b−1
1 . . . b−1

n−1an−1b
′′−1c′′ ∼ p.

(iii) (pc)d = p(cd). If p(cd) has the first form (11), then bn /∈ {ancd.an−1},
hence bn /∈ {anc.an−1}, and so

(pc)d = a0b−1
1 . . . b−1

n ancd = p(cd).
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If p(cd) has the second form (11) and bn−1 /∈ {a′c′′d.an−2}, then

(pc)d = a0b−1
1 . . . b−1

n−1a′c′′d = p(cd).

If bn−1 ∈ {a′c′′d.an−2}, say a′c′′d = e′e′′, an−2 = f ′ f ′′, bn−1 = e′ f ′′, then

(pc)d = a0b−1
1 · · · b−1

n−2 f ′e′′ = p(cd).

It is clear that p1 = p, so we have a representation of S by permutations of the

classes of reduced expressions (9). Further, for any x, y ∈ S, if x and y have the

same action, then x = 1.x = 1.y = y; this shows that S acts faithfully, so S is

embedded in G(S), as claimed. �

Exercises 0.7

1. In a monoid S, if aba is invertible, show that a and b are both invertible. Show

also that it is not enough for ab to be invertible. What is the generalization to n
elements?

2. Let R be any ring; show that any R×-inverting homomorphism into a non-zero

ring must be injective.

3. Verify the formula (2) for the kernel of λ.

4. Let R be an integral domain. Show that any Ore subring of R is contained in a

maximal Ore subring.

5. Show that a direct limit of Ore domains is again an Ore domain.

6. Let R be a ring and T a left and right Ore set in R. If R is (left or right) Ore,

Noetherian or Artinian, show that the same is true of RT .

7. In any ring show that any left factor of a right large element is again right large.

In an integral domain, is the same true of any right factor?

8. Let R be a right Ore domain with right ACC1 and a an ideal of R that is princi-

pal as left ideal. If R/a is an integral domain, show that it is again a right Ore

domain.

9. If R is an ordered ring that is a right Ore domain, show that the ordering can be

extended in a unique way to the field of fractions of R.

10∗. Let R be an integral domain that is not right Ore and let n ≥ 1. Show that nR can

be embedded in R as a right ideal, and if nR does not have unique rank, show

that nR contains a strictly descending chain of direct summands that are free of

rank n. Deduce that if an integral domain satisfies right pan-ACC then R has

IBN.

11. Let R be a right Ore domain and K its field of fractions. If A ∈ Rn is right regular

in Rn show that it is right regular in Kn and hence invertible, with an inverse of

the form Bd−1, B ∈ Rn, d ∈ R×. Deduce that every right zero-divisor in Rn is a

left zero-divisor. Does the reverse implication hold generally?

12. Let E ⊃ F be a skew field extension of finite right dimension. Show that in

the polynomial ring E[x] the monic polynomials with coefficients in F form a
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right Ore set. (Hint: In the relation au′ = ua′, where a, a′ ∈ E[x], u, u′ ∈ F[x], u
monic, equate coefficients and eliminate the coefficients of a′.)

13. (L. G. Makar-Limanov) Let S be a cancellation monoid. Given a, b ∈ S, denote

by T the submonoid generated by a, b. Show that if aT ∩ bT = ∅, then T is free

on a, b. Deduce that a cancellation monoid containing no free submonoid on more

than one element can be embedded in a group.

14. Let R be a ring with IBN and S a right Ore set; show that the localization RS need

not have IBN. (Hint: Take a ring generated by the entries of rectangular matrices

A, B with defining relations AB = λI, B A = λI , where λ is another generator,

which is central.)

15∗. Let R be an Hermite ring and T a right Ore set; show that the localization RT need

not be Hermite. (Hint: See Exercise 14; use the completion with respect to the

powers of λ.)

16◦. Let R be a right hereditary right Ore domain. Can every right ideal be generated

by two elements? (This is true in the commutative case, but as we shall see later,

false in the non-Ore case.)

17∗. (S. Rosset) Let G be a group and A a torsion-free abelian normal subgroup of G.

Show that in the group algebra kG (over a field k) the set (k A)× is a left and right

Ore set consisting of regular elements.

18. Show that the kernel of a derivation acting on a local ring is again a local ring.

19. Prove Leibniz’s formula for derivations:

(ab)δn =
∑

i

(
n
i

)
(aδi )(bδn−i ).

More generally, if δ is an α-derivation, show that

(ab)δn =
∑

i
aδi .b f n

i (α, δ),

where f n
i (α, δ) is the coefficient of t i in the formal expansion of (tα + δ)n .

20. If δ is a derivation on an integral domain of prime characteristic p, show that δ p

is again a derivation.

21. If δ is a nilpotent derivation of exponent r on an integral domain K (i.e. δr = 0 
=
δr−1) and r > 1, show that K has prime characteristic p and r = pt . (Hint: Apply

δr to ab, where bδ 
= 0 = bδ2 and use Leibniz’s formula to show that p|r ; now

repeat the argument with δ replaced by δ p .)

22. Let D be a skew field with centre F and let R be the F-algebra generated by all

multiplicative commutators in D : R = FD′. Show that R is a (left and right) Ore

domain with field of fractions D.

0.8 Modules over Ore domains

Many results on modules over commutative integral domains hold more gen-

erally either for right modules or for left modules over right Ore domains. For

convenience we shall deal with left modules over left or right Ore domains in

this section and leave the reader to make the necessary modifications.
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Let R be an integral domain and M a left R-module. An element x ∈ M
is called a torsion element if ax = 0 for some a ∈ R×. When R is a left Ore

domain, the set Mt of all torsion elements of M is easily seen to be a submodule.

If Mt = 0, we say that M is torsion-free; if Mt = M , one calls M a torsion
module. This definition is the customary one, at least over Ore domains; later, in

Sections 3.2 and 5.3 we shall use this term in a different sense, so we shall reserve

the term for later and call Mt the submodule of torsion elements. It is clear that

for any module M over an Ore domain, Mt is a module of torsion elements and

M/Mt is torsion-free; moreover, these two properties serve to determine Mt .

Let R be a ring and T a left Ore set in R; then the localization RT may be

expressed as a direct limit

RT = lim→ {t−1 R|t ∈ T } .

For, given t1, t2 ∈ T , there exists t ∈ T t1 ∩ Rt2 and so t−1
1 R ∪ t−1

2 R ⊆ t−1 R.

This process can be applied to modules as well as rings; for simplicity we state

the result only for Ore domains, the case of principal interest:

Proposition 0.8.1. Let R be a left Ore domain, K its field of fractions and M a
left R-module. Then K ⊗R M can be described as the set of all formal products
b−1x(x ∈ M, b ∈ R×) subject to the relations: b−1x = b′−1x ′ if and only if
there exist u, v ∈ R× such that ux = vx ′, ub = vb′. Moreover, the kernel of the
canonical map

M → K ⊗ M (1)

is Mt , so (1) is an embedding if and only if M is torsion-free.

Proof. Any element of K ⊗ M has the form x = ∑
b−1

i ai ⊗ xi . If b is a

common left multiple for the bi :ci bi = b, then

x =
∑

b−1ci ai ⊗ xi = b−1
(∑

ci ai xi

)
.

Thus every element of K ⊗ M has the form b−1x, x ∈ M, b ∈ R×. Given

p = b−1x and p′ = b′−1x ′, there exist u, v ∈ R× such that ub = vb′ = c, and

we have cp = ux, cp′ = vx ′. If p = p′, then cp = cp′, i.e. ux = vx ′ in M; con-

versely, if cp = cp′, then ux = vx ′ and so p = c−1.cp = c−1.cp′ = p′. Now it

follows that b−1x = 0 if and only if ux = 0 for some u ∈ R×, i.e. precisely if

x ∈ Mt . Hence the kernel of (1) is Mt and the rest is clear. �

For a right R-module there is no such convenient description, but in that case

there are two ways of describing the linear functionals on M, using the dual

M∗ = HomR(M, R).
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Proposition 0.8.2. Let R be a right Ore domain with field of fractions K and
let M be a finitely generated left R-module. Then there is a natural isomorphism
of right K-modules

M∗ ⊗R K ∼= HomK (K ⊗ M, K ). (2)

Proof. By adjoint associativity, applied to (K K R, R M,KK ), we have

HomK (K ⊗R M, K ) ∼= HomR(M, K )

∼= HomR(M, lim→ Rb−1).

Since M is finitely generated, we can find a common denominator for the

images of elements of M, so we can replace lim→ Rb−1 by Rb−1 for any given

homomorphism; thus we have

HomR(M, lim→ Rb−1) ∼= lim→ HomR(M, R)b−1 ∼= M∗ ⊗R K .

�

We have seen that the field of fractions K of a left Ore domain R has the

form K = lim→ b−1 R; here each b−1 R is a free right R-module. Let us call a

module semifree* if every finite subset is contained in a finitely generated free

submodule. Then we can say that K is semifree as right R-module, hence flat,

therefore, if a family of elements in a left R-module M is linearly independent,

then so is its image in K ⊗ M . Hence the dimension of K ⊗ M as a vector

space over K equals the cardinality of a maximal linearly independent subset

of M. This number is an invariant of M, which we shall call the rank of M and

denote by rk M. In particular, rk M = 0 precisely when M consists of torsion

elements. On free modules the rank clearly agrees with our previous definition

of rank, and since tensoring preserves exactness, we have

Proposition 0.8.3. Let R be a left Ore domain. If 0 → M ′ → M → M ′′ → 0

is an exact sequence of left R-modules, then

rk M = rk M ′ + rk M ′′.

In particular, if N is a submodule or a homomorphic image of M, then rk N ≤
rk M. �

The last assertion, relating to homomorphic images, holds (under an appro-

priate definition of rank) for a large class of rings, including all that can be

* This is sometimes called ‘locally free’, but we shall avoid that term, as it has quite a different
meaning in commutative algebra.
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embedded in fields, and hence most of the rings considered later. However,

apart from this, none of the other assertions holds with ‘right’ in place of ‘left’

Ore domain. Thus let R be any right Ore domain (or indeed, any integral domain)

that is not left Ore and let x, y ∈ R× be such that Rx ∩ Ry = 0; then R contains

the left ideal Rx + Ry, which is isomorphic to R2; this shows that the first part

of Proposition 8.3 cannot be extended to such rings. For an example showing

that K need not be semifree as right R-module, take x and y as before; then

the submodule x−1 R + y−1 R of the right R-module K contains a, b 
= 0 such

that ax = by (namely x−1 and y−1), but such elements do not exist in R and

hence do not exist in general domains; however, it remains true for right Bezout

domains (see Proposition 2.3.19).

The following property of right Ore domains is not in general shared by left

Ore domains (see Exercise 3).

Proposition 0.8.4. Let R be a right Ore domain and K its field of fractions.
Then any left K-module, considered as left R-module, is semifree, and in par-
ticular, torsion-free.

Proof. Let M be a finitely generated R-submodule of a left K-module, which

may without loss of generality be taken to be K n , for some n. We can choose a

common right denominator c ∈ R× for the components of the finite generating

set of M. Then M ⊆ Rn.c−1 and the latter is a free R-module. �

By combining this result with Proposition 8.1, we obtain

Corollary 0.8.5. If R is a left and right Ore domain, then every finitely gen-
erated torsion-free R-module is embeddable in a free R-module. �

Finally we note that the flatness of the ring of fractions, well known in the

commutative case, continues to hold in the Ore case.

Proposition 0.8.6. Let R be a ring and T a right Ore set in R. Then RT is left
R-flat. If R is any integral domain, then RR× is non-zero and left R-flat if and
only if R is a right Ore domain.

Proof. We have RT = lim→ Rc−1(c ∈ T ), therefore RT is a direct limit of free

left R-modules Rc−1 and hence is flat, in particular, K = RR× is so when R is

right Ore.

Conversely, if RR× is left R-flat and non-zero, take a, b ∈ R×; then

a.a−1 − b.b−1 = 0, hence there exist ui ∈ K , pi , qi ∈ R such that a−1 =∑
pi ui , b−1 = ∑

qi ui , api − bqi = 0. Not all the pi , qi can vanish, say

p1, q1 
= 0; then ap1 = bq1 is the desired right multiple. �
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The last part of this proposition shows in effect that if R is a right Ore domain

with field of fractions K, then K is left R-flat but not right R-flat unless R is also

left Ore.

Exercises 0.8

1. Let K be a field and E a commutative field with a subring A isomorphic to a subring

of K. Show that K ⊗A E is an Ore domain, provided that it is an integral domain.

(Hint: Note that every element of K ⊗A E has a right multiple of the form a ⊗ 1,

where a ∈ K .)

2. Let F be a commutative field, E an algebraic commutative field extension and A
an F-algebra that is a right Ore domain with field of fractions K. If A ⊗F E is an

integral domain, show that it is a right Ore domain with field of fractions K ⊗F E .

3. Let R be a left but not right Ore domain and K its field of fractions. Show that K, as

left R-module, has rank 1 but is not semifree (see Exercise 5.1.7).

4. (Gentile [60]) Let R be a subring of a field. If every finitely generated torsion-free

left R-module can be embedded in a free left R-module, show that R is right Ore.

Note that this is a converse to Corollary 8.5. Investigate the truth of other possible

converses.

5◦ Does Exercise 4 remain true when R is merely assumed to be an integral domain,

not necessarily contained in a skew field?

6. Show that a projective left ideal a of a left Ore domain is finitely generated.

(Hint: Use a projective coordinate system to show that a is invertible or 0, see

BA, Proposition 10.5.1.) Deduce that every projective left R-module that is uni-

form (i.e. any two non-zero submodules have a non-zero intersection) is finitely

generated.

7∗. Let R be a right Ore domain, K its field of fractions and a any non-zero right ideal of

R. Show that a ⊗R K ∼= K (as right R-modules). Show that in K ⊗R K any element

s ∈ K satisfies 1 ⊗ s = s ⊗ 1 and deduce that K ⊗R K ∼= K . [This is equivalent

to the assertion that the embedding R → K is an epimorphism in the category of

rings (see Theorem 7.2.1); this equivalence actually holds for any ring R with a

homomorphism to a field K (Corollary 7.2.2).]

8. (Bergman [67]) Let R be a right Ore domain and K its field of fractions.

Prove that the following conditions on a finitely generated left R-module M are

equivalent:

(a) the canonical map M → K ⊗ M is an embedding,

(b) M is embeddable in a K-module (qua left R-module),

(c) M is embeddable in a free left R-module,

(d) HomR(M, R) distinguishes elements of M,

(e) HomR(M, K ) distinguishes elements of M.

9◦. Find the relations between (a)–(e) of Exercise 8 when (i) K is a field and R a subring

generating K as a field, (ii) K is any ring and R a subring. Find conditions on the

finitely generated R-module M for (a)–(e) to be equivalent.

10. Show that for any finitely generated left R-module M over a (left and right) Ore

domain R with field of fractions K , K ⊗ M ∼= K ⊗ M∗∗.



52 Generalities on rings and modules

0.9 Factorization in commutative integral domains

As is well known, a commutative integral domain is called a unique factorization
domain (UFD for short) if every element not zero or a unit can be expressed

as a product of atoms and any such expression is unique except for the order

of the factors and up to associates. This definition makes it clear that unique

factorization is a property of the multiplicative monoid of the ring, even though

other aspects of the ring are usually needed to establish it. We therefore restate

the definition in terms of monoids.

Any commutative monoid S has a preordering by divisibility:

a|b if and only if b = ac for some c ∈ S. (1)

If a|b and b|a in a cancellation monoid S, then

a = bu for some unit u ∈ S , (2)

i.e. a and b are associated. We recall that a monoid is called conical if xy = 1

implies x = y = 1; for a cancellation monoid this just means that 1 is the only

unit. Clearly (1) is a partial ordering of S precisely when S is conical. With every

commutative cancellation monoid S, having a group of units U, we can associate

a conical monoid S/U whose elements are the classes of associated elements

of S. Since the relation (2) between a and b clearly defines a congruence on S,

the set of these classes forms a monoid in a natural way.

A commutative cancellation monoid S will be called a UF-monoid if the

associated conical quotient monoid S/U is free commutative. With this defi-

nition it is clear that a commutative ring R is a UFD if and only if R× forms a

UF-monoid under multiplication. In studying unique factorization in commu-

tative rings we can therefore limit ourselves to UF-monoids.

To state the conditions for unique factorization in monoids succinctly, let us

define a prime in a commutative monoid S as an element p of S that is a non-unit

and such that

for any a, b ∈ S, p|ab implies p|a or p|b.

Clearly any associate of a prime is again a prime. Further, a prime in a cancella-

tion monoid is necessarily an atom. For any prime p is a non-unit and if p = ab,

then p|a or p|b, say a = pq; hence p = ab = pqb and by cancelling p we have

qb = 1, so b is a unit. The converse is false: an atom need not be prime, e.g.

consider the monoid generated by a, b with the defining relation a2 = b2; here

a is an atom but not prime. In fact for a commutative cancellation monoid, the

converse, together with a finiteness condition, is easily seen to ensure that we

have a UF-monoid.
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For later applications it is useful to consider a slightly more general case.

An element c of a monoid S (not necessarily commutative) is said to be right
invariant, if c is regular and for any x ∈ S there exists x ′ ∈ S such that xc = cx ′.
Since c is regular, x ′ is uniquely determined by x. Left invariant elements are

defined similarly and c is called invariant if it is left and right invariant, i.e. c
is regular and

cS = Sc.

Lemma 0.9.1. In any monoid S the set Inv(S) of all invariant elements is a sub-
monoid containing all units of S. More generally, if two elements of the equation

c = ab

are invariant, then so is the third.

Proof. Clearly every unit of S is invariant. If c = ab, where a, b are invariant

and cx = cy, then abx = aby, hence bx = by and so x = y, which shows

c to be right regular; left regularity follows similarly. Further, cS = abS =
aSb = Sab = Sc, hence c is invariant. Suppose now that a and c are invariant.

If bx = by, then cx = abx = aby = cy, and it follows that x = y, therefore

b is right regular. Suppose next that xb = yb and let ax = x1a, ay = y1a;

then x1c = x1ab = axb = ayb = y1ab = y1c; hence x1 = y1, so ax = x1a =
y1a = ay, and hence x = y. This shows b to be left regular. Now abS = cS =
Sc = Sab = aSb, and it follows that bS = Sb, so b is invariant. Similarly, when

b and c are invariant, then so is a. �

If every element of S is invariant, we say that S is invariant. Since every

element is then regular, an invariant monoid always has cancellation. Moreover,

in any invariant monoid S, xy = 1 implies yx = 1. For if xy = 1, then y′x =
1 for some y′ ∈ S, hence y′ = y′xy = y, so y is a two-sided inverse of x,

as claimed. Invariant monoids clearly include all commutative cancellation

monoids and they share with the latter the property that right associates are

the same as left associates; more generally, the preordering by left divisibility

(which is defined in any monoid) and that by right divisibility coincide. For

if a = bc, then also a = cb′ and a = c′b for some b′, c′ ∈ S; thus the relation

a|b is unambiguous in an invariant monoid. Further we can define primes as

in commutative monoids and we can again associate a conical monoid S/U
with S, whose elements are the classes of associated elements. An invariant

monoid S with group of units U will be called a UF-monoid if its associated

conical quotient monoid S/U is free commutative. This clearly generalizes the

previous definition.
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Let S be a commutative cancellation monoid; for any finite family (ai ) we

define the highest common factor (HCF for short; also called GCD = greatest

common divisor) as an element d such that d|ai for all i and any d ′ with the

same property divides d. Similarly the least common multiple (LCM for short)

is defined as an element m such that ai |m for all i and any m ′ with the same

property is a multiple of m. We note that the HCF and LCM are each defined

only up to a unit factor but they are unique elements of S/U . Since left and right

divisibility in an invariant monoid coincide, it is clear that the notions of HCF

and LCM can also be defined in that case. By contrast, in a general monoid (or

ring) we need to speak of highest common left (or right) factor and least common

right (or left) multiple, a case that will be considered later (in Section 2.8).

The relation between HCF and LCM is elucidated in

Proposition 0.9.2. In any invariant monoid S two elements a and b have an
HCF whenever they have an LCM, and the HCF d and LCM m are then related
(in a localization of S) by the equations

m = bd−1a, d = am−1b. (3)

Moreover, if in a commutative integral domain a and b have an HCF of the
form d = au + bv, then they have an LCM m and (3) holds.

Proof. Suppose that a, b have an LCM m. Then a|m, hence ba|bm, so

bam−1|b. Thus b = bam−1c for some c; by cancellation am−1c = 1, hence

cam−1 = 1, and so cam−1b = b, i.e. am−1b|b. By symmetry, am−1b|a and it

follows that am−1b is a common factor of a and b. Now suppose that u|a, u|b;

then bu−1a is divisible by a and b, hence also by m, so we have bu−1a = f m
for some f . Thus bu−1am−1b = f b = b f ′ for some f ′, and so am−1b = u f ′.
This shows that u|am−1b and it shows am−1b to be an HCF of a, b. Writing

am−1b = d, we clearly have m = bd−1a and (3) holds.

Suppose now that a, b in a commutative integral domain have an HCF d
such that d = au + bv and put m = bd−1a. Clearly a, b|m; if n ∈ S is such

that a, b|n, say n = rb = sa, then b|nu + sbv = s(au + bv) = sd, and so

bd−1a|sa = n. It follows that m = bd−1a is indeed the LCM of a and b and

(3) is satisfied. �

The relation d = au + bv is known as Bezout’s relation. As Exercise 6

shows, without it the LCM may not exist.

For the study of factorizations ACC1 is particularly important. Thus let S
be a cancellation monoid with left and right ACC1 and take any c ∈ S. Then

cS 
= S if and only if c is a non-unit and in that case, by right ACC1, there is

a maximal principal right ideal p1S such that cS ⊆ p1S ⊂ S. This means that
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c = p1c1 and p1 is an atom. Repeating the procedure on c1 we see that unless

it is a unit, we can write c1 = p2c2, where p2 is an atom. Continuing in this

fashion, we get a strictly ascending sequence of principal left ideals

Sc ⊂ Sc1 ⊂ Sc2 ⊂ . . . ,

which must terminate by left ACC1. It follows that every non-zero element of

S is either a unit or a product of atoms. A cancellation monoid (or an integral

domain) with this property is said to be atomic, and what we have proved can

be stated as

Proposition 0.9.3. Any cancellation monoid, in particular any integral
domain, with left and right ACC1 is atomic. �

It is clear that in an invariant monoid left and right ACC1 coincide, and as

we have just seen, such a monoid is atomic, but the converse is not generally

true, even for commutative integral domains (see Grams [74], Zaks [82] and

Exercise 9 below). We have

Theorem 0.9.4. In any invariant monoid S the following conditions are equiv-
alent:

(a) S is a UF-monoid, i.e. S/U is free commutative, where U is the group of
units,

(b) S satisfies ACC1 and any two elements have an HCF,
(c) S satisfies ACC1 and any two elements have an LCM,
(d) S satisfies ACC1 and the intersection of any two principal ideals is

principal,
(e) S is atomic and every atom of S is prime.

Here the assertion obtained by replacing the intersection in (d) by the union (or

even by the sum) is not equivalent to the others.

Proof. None of the conditions is affected if we pass to the associated con-

ical quotient monoid T = S/U , and 1 is the only unit in T. It is clear that a

free commutative monoid is conical and satisfies (b), so (a) ⇒ (b). To prove

(b) ⇒ (c), assume (b). Given a, b ∈ T , there is a common multiple, namely ab.

Let m be a common multiple of a, b for which mS is maximal; if m ′ is another

common multiple of a, b, we claim that m|m ′; for otherwise the HCF, d say,

of m and m ′ is again a common multiple and has the property that mT ⊂ dT .

Thus m is in fact the least common multiple, as claimed.

It is clear that (c) ⇔ (d), because two elements a, b have an LCM m if and

only if aT ∩ bT = mT . To prove (c) ⇒ (e), let a, b ∈ T and let p be an atom

such that p|ab. Denote the LCM of p and a by m; then m = ap1 = pa1 say, and
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since ap is a common multiple, we have ap = md = ap1d, say. Thus p = p1d,

but p is an atom, so either (i) d = 1 and p = p1 or (ii) p1 = 1 and d = p
(because 1 is the only unit). Case (i): m = ap is an LCM; since p|ab, a|ab, we

have ab = me = ape for some e ∈ T , therefore b = pe, p|b. Case (ii): m = a
is an LCM, hence p|a. Thus p is prime and T is atomic, by ACC1, so (e) holds.

Finally, to prove (e) ⇒ (a), take distinct atoms a, b and let ab = ba1, say.

Then a|ba1 but a does not divide b. Since a is prime by (e), it follows that

a|a1, say a1 = au. Thus ab = bau; by symmetry ba = abv = bauv, hence

uv = 1 and so u = v = 1 and ab = ba. This shows that the monoid generated

by the atoms is commutative, but this is the whole of T, since T is atomic. This

also shows T = S/U to be commutative. Now the uniqueness proof follows a

well-known pattern. If

c = pα1

1 . . . pαn
n = pβ1

1 . . . pβn
n , (4)

where the pi are distinct atoms and 0 ≤ α1 < β1 say, then p1 divides c but not

pα2

2 . . . pαn
n , hence p1|pα1

1 , therefore α1 > 0. So we can cancel p1 in (4) and use

induction on
∑

αi to obtain (a). �

This result shows in particular that in a UF-monoid the number of prime fac-

tors in a complete factorization of an element c is the same for all factorizations;

it will be denoted by l(c) and called the length of c.

Frequently one needs to know the effect of localizing on unique factorization.

Again we begin by setting out the problem in terms of monoids. If S is an

invariant monoid, then any submonoid T is a right Ore set and we can form the

localization ST . The following criterion for S to be a UF-monoid generalizes a

theorem of Nagata [57].

Theorem 0.9.5. Let S be an invariant monoid and T a submonoid generated
by certain primes of S. Further, assume that S is atomic and that the localization
ST is a UF-monoid. Then S is itself a UF-monoid.

Proof. By Theorem 9.4 we need only verify that every atom of S is prime.

Denote the canonical map S → ST by x �→ x ′ and let p be an atom of S. We

claim that p′ is an atom or a unit; for if p′ is a product of non-units, say, then

p′ = a f −1bg−1, where a, b are non-units and f, g ∈ T are products of primes.

Each such prime divides either a or b and cancelling them in turn, we find that

p = a1b1, where a1 or b1 must be a unit and it follows that p′ is an atom or a

unit. We treat these two cases separately.

(i) p′ is an atom and hence a prime in ST . If p|ab, say pc = ab, then

p′c′ = a′b′, hence p′|a′ or p′|b′, say the former. This means that

pe = ar, where e ∈ S, r ∈ T .
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No prime factor of r can be an associate of p, for otherwise p′ would be a

unit. Hence the prime factors of r divide e, and cancelling them one by one, we

obtain an equation pe1 = a, so p|a, which shows p to be a prime.

(ii) p′ is a unit in ST . Then pq = r , where r ∈ T and q ∈ S. Again we can

cancel the prime factors of r one by one, but this time we find that one of them

is associated to p, for otherwise p would be a unit. Hence p is a prime. �

Applied to rings, Theorem 9.5 yields

Theorem 0.9.6. In any ring R let T be a submonoid of Inv(R), the monoid of
all invariant elements in R. Further, assume that Inv(R) is generated by certain
elements that are primes in Inv(R). If Inv(R) is atomic and its image in the
localization RT is a UF-monoid, then Inv(R) is itself a UF-monoid. �

Taking R to be a commutative integral domain, we find that Inv(R) = R×

and we obtain the following slight generalization of Nagata’s theorem:

Corollary 0.9.7. Let R be a commutative atomic integral domain. If T is a
submonoid of R× generated by certain primes and the localization RT is a
UFD, then R is a UFD. �

Exercises 0.9

1. Show that every Noetherian integral domain is atomic.

2. Let k be a commutative field and R = k[x, y, z, t], a = (xt − yz)R. Show that

the ring R/a (the coordinate ring of a quadric) is an atomic integral domain, but

not a UFD.

3. If an invariant monoid S satisfies ACC1 and the join of any two principal ideals

is principal, show that S is a UF-monoid. Show that the converse is false, by

considering the multiplicative monoid of a suitable UFD.

4. If S is an invariant monoid and Q a normal submonoid, i.e. aQ = Qa for all a ∈ S,

define the quotient monoid S/Q and show that it is again invariant.

5. Show that any invariant element in a simple ring is a unit.

6. Let R be the subring of Z[x] consisting of all polynomials with even coefficient

of x. Show that two elements of R may have an HCF without having an LCM.

7∗. (Novikov [84]) Let S be an invariant monoid generated by two elements. Show

that the associated conical monoid S/U is commutative. What happens for more

than two generators?

8. Let S be a monoid (in multiplicative notation) and let kS be its monoid algebra

(over a commutative field k). Show that kS is atomic if and only if S is. Likewise

for ACC1.

9∗. (G. M. Bergman) Let α1, α2, . . . be a sequence of real numbers, linearly indepen-

dent over Q, such that 0 < αn < 1/n and denote by S the submonoid of the addi-

tive group of real numbers generated by all elements αn, 1/n − αn(n = 1, 2, . . .).

Verify that S contains all positive rational numbers and so does not satisfy ACC1.
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Show further that for any s ∈ S, if s 
= 0, then for some n ≥ 1, either s ≥ αn or

s ≥ 1/n − αn . Deduce that S is atomic.

10◦. Is every invariant conical monoid necessarily commutative?

Notes and comments on Chapter 0

Much of this material is part of the folklore and the citations given below are probably

far from exhaustive. The first thorough discussion of IBN (treated in Section 0.1) occurs

in Leavitt [57]; Shepherdson [51] gives an example of a ring that is weakly 1- but

not 2-finite. For a connected account of IBN, UGN and weak finiteness (showing that

these classes are distinct), see Cohn [66a]. Proposition 1.2 is proved for regular rings

by Goodearl [79], Theorem 18.3, and generally by Malcolmson [80a]. Proposition 1.3

is taken from Cohn and Schofield [82], where Lemma 3.3 is also proved. The notion

of inner rank was defined in Bergman [67], but goes back much further; almost any

pre-1914 book on matrix theory defines the rank of a matrix A as the least number of

terms in the expression of A as a sum of dyads, i.e. products of a column by a row,

which is a matrix of inner rank 1. Stephenson [66] has shown that the injective hull of a

non-Ore domain is a ring Q satisfying QN ∼= Q; see also O’Neill [91].

The matrix theory of Section 0.2 is fairly standard and occurred in FR.0.1, but is

not always stated in this explicit form. The matrix reduction functor was first used

in Bergman [74b] and Cohn [72c, 79]; for a fuller account see SF, 1.7. The projective

module group Ko(R), taken from K-theory, contains much of the ‘stabilized’ information

about the category Rproj, though for best results one needs to take the affine structure

into account; see an instructive study by Goodearl and Warfield [81]. The (unstabilized)

facts about S (R) are well known, e.g. Theorem 3.7 generalizes a result of Bass [68], p.

90. Lemma 3.6 is due to Bergman, who also helped with Theorems 3.9, 3.10.

The term Hermite-ring (or H-ring) was introduced by Lissner [65] (the term was

used earlier by Kaplansky [49] for a special type of Bezout ring). The symmetry of

the condition occurs repeatedly, e.g. in Drogomizhska [70] and Kazimirskii and Lunik

[72]; see also Lam [78] for the commutative case. Theorem 4.1 occurs in Lam [78]; the

present proof is based on Cohn [2000a], while Corollary 4.2 is new. Proposition 4.3 is

due to Ojanguren and Sridharan [71]. Proposition 4.4 is essentially Proposition 5.6.2 of

FR.2 and goes back to Cohn and Schofield [82]. The stability properties (Proposition

4.5, Corollary 4.6) were new in FR.2, while the notion ‘projective-free’ is defined (as

‘p-free’) in Cohn [66c], where Theorem 4.8 is also proved.

The notion of stable association and its connexion with the matrix of definition

of a module is implicit in Fitting’s work [36]; in the form given in Section 0.5 it is

developed from the factorization theory in Cohn [63a], see also Cohn [82a]. Lemma 5.8

was suggested by Bergman in connexion with Proposition 7.2.6 (see also Exercises 3

and 2.7.9 below). The concepts of idealizer and eigenring seem to have been first used

by Ore [32] (though also implicit in Levitzki’s work) in his papers on the formal theory

of differential equations. Proposition 6.1 (for the case P = R) is due to Fitting [35], and

special cases of Theorem 6.3 are well known (see e.g. Amitsur [58]); they are stated in

this form by Cohn [70a].

Since Ore’s original construction (Corollary 7.2; see Ore [31]) there have been innu-

merable papers dealing with extensions, analogues for monoids, etc. We have here
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concentrated on the cases used later in the book. For a comprehensive survey see Elizarov

[69]. Corollary 7.7 is due to Goldie [58]; this is an easy special case of his main theorem

(the customary proof actually gives Proposition 7.6). Theorem 7.9 is due to Doss [48],

who proves it by applying the Malcev conditions (itself a non-trivial verification). The

present proof, presented in FR.2, corrects an error in FR.1 (pointed out by L. A. Bokut).

The discussion in Section 0.8 is based on Bergman [67]; Proposition 8.2 occurs in Cohn

and Schofield [82] and Corollary 8.5 in Gentile [60].

The results of Section 0.9 are for the most part well known, though their formulation

for invariant (rather than commutative cancellation) monoids was new in Section 3.1 of

FR.2. Theorem 9.5 was proved by Nagata [57] for commutative Noetherian domains.
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Principal ideal domains

Since the main classes of rings considered in this work generalize principal ideal

domains, it seems reasonable to start by recalling the properties of the latter. We

begin in Section 1.1 by looking at examples that will be important to us later,

the skew polynomial rings, and in Section 1.2 discuss the division algorithm,

which forms a paradigm for later concepts. Sections 1.3 and 1.4 recall well-

known properties of principal ideal domains and their modules, while Section

1.5 describes the Malcev–Neumann construction of the ordered series field

of an ordered group, and the Bergman conjugacy theorem. The concluding

Section 1.6 deals with Jategaonkar’s iterated skew polynomial rings, leading to

one-sided PIDs with a transfinite-valued division algorithm. The later parts of

Sections 1.5 and 1.6 are not essential for an understanding of the rest and so

may be omitted on a first reading.

1.1 Skew polynomial rings

Polynomial rings are familiar to the reader as the rings obtained from commu-

tative rings by adjoining one or more indeterminates. Here we want to discuss a

generalization that is often useful in providing examples and counter-examples.

It differs from the usual polynomial ring k[x] in one indeterminate x over a field

k in that k need not be commutative, nor commute with x. However, it resembles

the classical case in that every element is unique of the form

f = a0 + xa1 + · · · + xnan, (1)

where the ai lie in the ground ring (which need not be a field). Thus let R
be any non-zero ring and consider a ring containing R as subring, as well as

an element x such that every element f of the subring A generated by R and

x is uniquely expressible in the form (1). If an �= 0, we define the degree of

60
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f as d( f ) = n, as in the commutative case. This function d has the following

properties:

D.1. For a ∈ A×, d(a) ∈ N, while d(0) = −∞,

D.2. d(a − b) ≤ max {d(a), d(b)}.
We shall assume further, that it satisfies

D.3. d(ab) = d(a) + d(b).

A function d on a non-zero ring A will be called a degree-function if it satisfies

D.1–D.3; it will be called trivial if it is 0 on all of A×.

For any degree-function we have, by D.3, d(1) = 0. By D.2 we have, as for

valuations, d(a) = d(−a) and

d(a + b) ≤ max{d(a), d(b)}, (2)

with equality holding whenever d(a) �= d(b) (‘every triangle is isosceles’). We

note that in our case the elements of degree zero are just the non-zero elements

of R, showing that R is an integral domain. More generally, as a consequence

of D.3, the set A× is closed under multiplication and contains 1, so A is also an

integral domain. Further, for any a ∈ R×, the product ax has degree 1 and so is

of the form

ax = xaα + aδ (a ∈ R×). (3)

In the first place we note that aα, aδ , are uniquely determined by a and moreover

α is injective; by comparing the expressions for (a + b)x and (ab)x we see that

α is an endomorphism, while δ is such that

(a + b)δ = aδ + bδ, (ab)δ = aδbα + abδ. (4)

Thus δ is an α-derivation, as defined in Section 0.7. We observe that the additive

structure of A is determined by (1), while the multiplicative structure follows

from (3): by the distributive law it is enough to know xma.xnb, and by (3) we

have

xma.xnb = xm+1aαxn−1b + xmaδxn−1b,

which allows us to compute xma.xnb in all cases, by induction on n. Thus A is

completely fixed when R, α, δ are given. We shall write

A = R[x ; α, δ], (5)

and call A the skew polynomial ring in x over R determined by α, δ. Instead

of R[x ; α, 0] one also writes R[x ; a] and R[x ; 1, 0] is just R[x], the usual

polynomial ring in a central indeterminate x.
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It remains to show that for any integral domain R with an injective endo-

morphism α and an α-derivation δ, there always exists a skew polynomial ring

R[x ; α, δ]. As in the commutative case we define it by its action on infinite

sequences. Consider the direct power M = RN as right R-module and define

an additive group endomorphism of M by the rule

x : (ai ) �→ (
aδ

i + aα
i−1

)
(a−1 = 0). (6)

Clearly right multiplication of M by an element of R× is injective, so we may

identify R with its image in End(M). Now the action of the endomorphism x
defined by (6) satisfies the rule

(ci )ax = (ci a)x = ((ci a)δ + (ci−1a)α)

= (
cδ

i aα + ci aδ + cα
i−1aα

)
= (

cδ
i + cα

i−1

)
aα + (ci )aδ

= (ci )(x .aα + aδ).

This proves that (3) holds and, moreover, that every element of the subring

of End(M) generated by R and x can be brought to the form (1). This form is

unique, because when f = a0 + xa1 + · · · + xnan is applied to (1, 0, 0, . . .),

it produces (a0, a1, . . . , an, 0, . . .). Further, the function d( f ), defined as the

subscript of the highest non-zero coefficient ai , is easily seen to satisfy D.1–

D.3, using the fact that R is an integral domain and α is injective. So the

polynomial ring is again an integral domain; in all we have proved

Theorem 1.1.1. Let R be an integral domain with an injective endomorphism
α and an α-derivation δ. Then there is a skew polynomial ring R[x ; α, δ] that
is an integral domain, and every skew polynomial ring arises in this way. �

The result is not left–right symmetric because in (3) the coefficients were written

on the right. One therefore sometimes introduces the left skew polynomial ring,

in which the coefficients are on the left and the commutation rule instead of

(3) is

xa = aαx + aδ. (7)

In general R[x ; α, δ] will not be a left skew polynomial ring, but when α is an

automorphism of R, with inverse β say, then on replacing a by aβ in (3) and

rearranging the terms, we obtain

xa = aβ x − aβδ. (8)

Thus we have
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Proposition 1.1.2. The ring R[x ; α, δ] is a left skew polynomial ring provided
that α is an automorphism. �

We have an analogue of the Hilbert basis theorem for skew polynomial rings,

with a similar proof, but we shall need to restrict α to be an automorphism, as

Exercise 3 below shows.

Proposition 1.1.3. Let R be a right Noetherian domain, α an automorphism
and δ an α-derivation of R. Then the skew polynomial ring A = R[x ; α, δ] is
again right Noetherian.

Proof. This is essentially as in the commutative case. Let us consider A as

a left skew polynomial ring, i.e. with coefficients on the left, as we may, by

Proposition 1.2, since α is an automorphism. If a is a right ideal of A, let

a0 = ∑k
1 ci R be the ideal of its leading coefficients and for i = 1, . . . , k take

a polynomial fi in a with leading coefficient ci . If n = max {d( fi )}, we can

reduce every element of a to a polynomial of degree less than n and a linear

combination of f1, . . . , fk . For each degree i < n there is a finite basis Bi for

the polynomials in a of degree i and the union of all the Bi and { f1, . . . , fk}
forms a finite basis for a. �

If K is any field, with an endomorphism α and an α-derivation δ, then

K [x ; α, δ] is a right Noetherian domain (it is even a principal right ideal

domain, as we shall see in Section 1.3), hence right Ore, by Corollary 0.7.7,

and so has a field of fractions, which we shall call the skew rational function
field and denote by K (x ; α, δ). More generally, let R be a right Ore domain

with field of fractions K. If α is an injective endomorphism of R and δ an

α-derivation, they can be extended to K, by Theorem 0.7.8, and we have the

inclusions

R[x ; α, δ] ⊆ K [x ; α, δ] ⊆ K (x ; α, δ).

Any element u of K (x ; α, δ) has the form f g−1, where f, g ∈ K [x ; α, δ].

On bringing the coefficients of f and g to a common right denominator we

can write f = f1c−1, g = g1c−1, where f1, g1 ∈ R[x ; α, δ] and c ∈ R×. Hence

u = f g−1 = f1g−1
1 and we have proved

Proposition 1.1.4. Any skew polynomial ring over a right Ore domain is again
a right Ore domain. �

Here we localized at the set of all non-zero polynomials; so we obtain by

Theorem 0.7.1,
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Corollary 1.1.5. If R is a right Ore domain with an injective endomorphism
α and an α-derivation δ, then the non-zero polynomials in R[x ; α, δ] form a
right Ore set. �

We now give some examples of skew polynomial rings, both as illustration and

for later use.

1. The complex-skew polynomial ring C[x ; ] consists of all polynomials

with complex coefficients and commutation rule

ax = xa, where a is the complex conjugate of a.

We observe that the centre of this ring is R[x2] , the ring of all real polynomials

in x2. The residue class ring mod x2 + 1 is the field of real quaternions.

2. Let k = F(t) be the rational function field in an indeterminate t over a

commutative field F. The usual derivative f �→ f ′ defines a derivation on k, and

this gives rise to a skew polynomial ring R = k[x ; 1, ′], the ring of differential

operators.

3. Let F be a commutative field of characteristic p �= 0 and E/F a separable

field extension of degree p, say E = F(ξ ), where ξ p − ξ ∈ F . The mapping

α : f (ξ ) �→ f (ξ + 1) defines an automorphism of order p and we have the skew

polynomial ring E[t ; α].

4. Let k be any field with an endomorphism α and let c ∈ k×. Then the map-

ping δ : α �→ ac − caα defines an α-derivation, called the inner α-derivation

determined by c. The skew polynomial ring R = k[x ; α, δ] can then be written

as k[y; α], where y = x − c, as is easily verified. Similarly, if α is an inner

automorphism, say aα = b−1ab, then the skew polynomial ring k[x ; α] can be

written as k[y], where y = xb−1.

5. Let K be any field and denote by A1(K ) the K-ring generated by x, y
centralizing K, with the defining relation xy − yx = 1. This ring A1(K ), called

the Weyl algebra on x, y over K, may also be defined as the skew polynomial

ring A[y; 1, ′], where A = K [x] and ′ is the derivation with respect to x (as in

Example 2). Example 2 above is obtained by localizing at the set of all monic

polynomials on x over k, and Example 3 by putting ξ = xy, t = y and then

localizing at the set of all monic polynomials in ξ over F.

The Weyl algebra is useful as an example of a finitely generated infinite-

dimensional algebra which in characteristic 0 is simple. For in any non-zero

ideal we can pick an element f (x, y) �= 0 of least possible x-degree. The ideal

still contains ∂ f/∂x = f y − y f , which is of lower degree and so must be zero.

Therefore f = f (y) is a polynomial in y alone. If its y-degree is minimal, then

∂ f/∂y = x f − f x = 0, hence f = c ∈ K ×; therefore the ideal contains a non-

zero element of the ground field and so must be the whole ring. This shows

A1(K ) to be simple. Further, A1(K ) is Noetherian, by Proposition 1.3.
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6. The k-algebra generated by x, y with the defining relation xy = y(x + 1)

may be defined as R = A[y; τ ], where A = k[x] is the polynomial ring with

the shift automorphism τ : x �→ x + 1; R is called the translation ring.

7. Let p be a prime, q = pn a prime power, Fq the field of q elements and T
the endomorphism f �→ f p of Fq [x]. If the operation of multiplying by a ∈ Fq

is simply denoted by a, then each polynomial
∑

ai T i defines an endomorphism

of Fq [x], and it is easily verified that (applying endomorphisms on the right) we

have aT = T a p; hence the endomorphisms of Fq [x] form a skew polynomial

ring Fq [T ; σ ], where σ : a �→ a p. (This has an application to finite fields; see

Ore [33]).

Exercises 1.1

1. Let R = K [x ; α, δ] be a skew polynomial ring over a field K. Show that K may be

regarded as a right R-module by letting each a ∈ K act by right multiplication by

a and letting x correspond to the action by δ. When is this representation faithful?

2. Let R = K [x ; α, δ] be a skew polynomial ring. If αδ = δα, show that α may be

extended to an endomorphism of R by taking xα = x ; what value could be assigned

to x δ in this case?

3. Let R = K [x ; α, δ] be a skew polynomial ring, where K is an integral domain and

α an endomorphism such that K αa ∩ K α = 0 for some a ∈ K ×. Show that R is not

left Ore. If K is a field, show that R is left Ore if and only if α is an automorphism.

4. (Bergman) Let A = k[ti | i ∈ Z] and α the shift automorphism ti �→ ti+1. Show that

in R = A[x ; α] the monic polynomials do not form a right Ore set. [Hint: Consider

the equation (x − 1) f = cg.]

5. Prove the existence of the skew polynomial ring (Theorem 1.1) by means of the

diamond lemma (see Bergman [78a] or FA, Lemma 1.4.1).

6. Let R be an integral domain with an injective endomorphism α. If S is a right

Ore set in R admitting α, show that S is also a right Ore set for R[x ; α] and

that the localization of R[x ; α] at S can be obtained by localizing R at S, i.e.

R[x ; α]S
∼= RS[x ; α].

7. (Ore [32]) Let R be a skew polynomial ring over a field K and let f, g be polynomials

of degrees m, n, respectively. Denote by K0 the centralizer in K of f, and let r be

the dimension of K as right K0-space. Show that HomR(R/ fR, R/gR) is a right

K0-space of dimension at most rm. [Hint: Use (3) of 0.6.]

8∗. (D. A. Jordan) Let k be a field, K = k(xi | i ∈ Z), E = k(xi |i > 0) and α the auto-

morphism xi �→ xi+1 of K. Let S be the set of all monic polynomials in a central

indeterminate t over E, put A = K [t]S and extend α to A by the rule tα = t . Show

that A[y; α] is right Noetherian and left Ore but not left Noetherian. [Hint: Use the

fact that if a ring is right (left) Ore or right (left) Noetherian, then its localization

at a right Ore set has the same property.]

9∗. (L. Lesieur) Let R be a right Noetherian domain and α an endomorphism of R.

Show that R[x ; α] is right Noetherian if and only if, for any sequence of right ideals

ai such that ai ⊆ ai+1, there exists n0 such that an+1 = aα
n R for all n ≥ n0.
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10. (Ince [27], Section 5.5) In the ring of differential polynomials R = k(x)[D; 1, ′]
show that P = D2 − 2x−2 and Q = D3 − D.3x−2 + 3x−3 commute but cannot be

written as polynomials in the same element of R. (Hint: Verify that P3 = Q2 and

note that P, Q are obtained by conjugating D2, D3, respectively, by D + x−1 in

the field of fractions of R.)

11. Let K be a non-commutative field and R = K [x, y] the polynomial ring in two

central indeterminates. If [a, b] = c �= 0 for a, b ∈ K , verify that [x + a, y + b] =
c; deduce that (x + a)R ∩ (y + b)R is isomorphic to a stably free but non-free right

ideal of R (thus R is not Hermite).

12. (Bergman and Dicks [78]) Let φ : R → S be a k-algebra homomorphism. The

multiplication mapping μ : S ⊗R S → S is given by x ⊗ y �→ xy(x, y ∈ S), and

its kernel is denoted by 
S/R , while the universal derivation of S relative to

R, d : S → 
S/R is defined by s �→ s ⊗ 1 − 1 ⊗ s (Eilenberg). Show that there

exists an exact sequence

0 → TorR
1 (S, S) → S ⊗R 
 ⊗R S

dφ−→ 
S/k → 
S/R → 0

(the mapping dφ is called the derivative of φ relative to the category of k-algebras).

Show further that (a)–(d) below are equivalent:

(a) dφ is injective,

(b) 
S/R = 0,

(c) S ⊗R S → S is surjective,

(d) φ is an epimorphism (in the category of k-algebras).

(See also Proposition 7.2.1).

13. Let A = k[t] and α : f (t) �→ f (t + 1). Show that for suitable elements a ∈ A, c ∈
R = A[x, x−1; α], a and c are right comaximal but caα /∈ a R; deduce that R is not

2-Hermite.

14. Let K be a right Noetherian domain and A = K [x ; α, δ] a skew polynomial ring

with an automorphism α. If c ∈ K is a non-unit such that
∑

cδi
.K = K , show that

cA ∩ x A is stably free but not free. Deduce that for any right Noetherian domain

K , A1(K ) has stably free right ideals that are not free. Conclude that the Weyl

algebra A1(k) is not 2-Hermite (see also Corollary 5.3 below).

1.2 The division algorithm

In the study of rings of algebraic integers as well as rings of polynomials

the division algorithm is an important tool, leading to the familiar Euclidean

algorithm. Here we make a general study, but much of this section is not essential

for later work.

A ring R is said to satisfy the division algorithm relative to a function δ on

R taking values in a well-ordered set, if

DA. Given a, b ∈ R, if a �= 0, then there exist q, r ∈ R such that

b = aq + r, where δ(r ) < δ(a). (1)
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Here q is the quotient and r the remainder. We note that if a is chosen in

R so as to minimize δ(a), we must have r = 0 in (1), so that b = aq. Since

this holds for all b ∈ R, a must then have a right inverse. This also shows

that δ(0) has the least value, usually taken to be 0, or also sometimes −1

or −∞. Strictly speaking, DA should be called the right division algorithm,

since it is not left–right symmetric, but we shall usually omit the qualifying

adjective.

It is often convenient to replace DA by the following condition, which

demands less, but is easily seen to be equivalent (see Exercise 1):

A. If a, b ∈ R and δ(a) ≤ δ(b), then there exists c ∈ R such that

δ(b − ac) < δ(b). (2)

We note that any condition such as DA or A is relative to a function δ, but to

investigate the existence of an algorithm we need not presuppose that δ is given.

For any ring R and subsets S, T of R let us put S + T = {s + t |s ∈ S, t ∈ T }
and define the derived set of S as

S′ = {x ∈ R|S + x R = R}. (3)

Thus S′ is the set of divisors for which we can always perform the division with

a remainder in S. Now define a sequence of subsets {Sn} of R recursively by

putting

S0 = {0}, Sn+1 = Sn ∪ S′
n. (4)

For example, S1 consists of 0 and all right invertible elements of R. These sets

form an ascending chain

{0} = S0 ⊆ S1 ⊆ . . . . (5)

If their union is the whole ring, ⋃
Sn = R, (6)

we shall say that R is Euclidean and define a function φ : R → N by

φ(x) = min{n|x ∈ Sn}. (7)

Thus Sn consists of all x ∈ R such that φ(x) ≤ n. The concepts of Euclidean

ring and division algorithm are related in the following way:

Theorem 1.2.1. If R is a Euclidean ring, then R satisfies the division algorithm
relative to the N-valued function φ on R defined by (7). Here

φ(0) = 0, φ(1) = 1, (8)
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and R is an integral domain if and only if

φ(ab) ≥ φ(a) for all a, b ∈ R×. (9)

Conversely, if R satisfies the division algorithm relative to a function δ : R →
N, then R is Euclidean and

φ(x) ≤ δ(x) for all x ∈ R.

Proof. Suppose that R is Euclidean; then it is clear that (8) holds. If a, b ∈
R, a �= 0, are given, say φ(a) = n > 0, then Sn−1 + a R = R, so there exist r ∈
Sn−1, c ∈ R such that r + ac = b, hence φ(b − ac) = φ(r ) ≤ n − 1 < φ(a);

this proves A and hence DA. If R is an integral domain, then for a, b ∈ R× we

have ab �= 0, so φ(ab) = n > 0 for some n ∈ N, hence R = Sn−1 + abR ⊆
Sn−1 + a R, therefore a ∈ Sn and φ(a) ≤ n = φ(ab), i.e. (9). Of course, when

(9) holds, then φ(ab) > 0 for a, b ∈ R× and by (8), 1 �= 0, so R is an integral

domain.

Conversely, assume that R satisfies the division algorithm relative to some

N-valued function δ. For n ∈ N, put Tn = {x ∈ R | δ(x) ≤ n}; we shall show

by induction on n that Tn ⊆ Sn for all n. For n = 0 this is clear, so assume that

n ≥ 0, Tn ⊆ Sn and consider a ∈ R such that δ(a) = n + 1. By DA, for each

b ∈ R there exists q ∈ R such that δ(b − aq) < δ(a) = n + 1, so b − aq ∈
Tn and b ∈ Tn + a R ⊆ Sn + a R. This holds for all b ∈ R, so Sn + a R = R
and a ∈ Sn+1. Hence Tn+1 ⊆ Sn+1 and by induction, Tn ⊆ Sn for all n. Since

∪Tn = R, we see that (6) holds, so R is Euclidean and φ(b) ≤ δ(b) for all

b ∈ R. �

If a ring satisfies the division algorithm relative to some N-valued function

δ on R, then by Theorem 2.1, φ (given by (7)) is defined and is the smallest

N-valued function for which the algorithm holds. By repeated application of

the division algorithm to a and b we obtain a series of equations, known as the

Euclidean algorithm, leading to the HCLF of a and b; this is certainly familiar

to the reader and we shall encounter it (in a generalized form) in Section 2.8.

Later, in Proposition 2.4, we shall see that for any a ∈ R, δ(a) is an upper bound

to the number of steps in the Euclidean algorithm for any pair a, b, so in a sense

φ gives the ‘fastest’ Euclidean algorithm.

Even when (6) fails, we can continue the sequence transfinitely, putting

Sα+1 = Sα ∪ S′
α, Sλ = ∪α<λSα at a limit ordinal λ. (10)

If Sτ = R for some ordinal τ , we say that R is transfinitely Euclidean and define

an ordinal function φ on R by

φ(x) = min{α | x ∈ Sα}. (11)
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We note that if x ∈ Sλ, where λ is a limit ordinal, then x ∈ Sα for some α < λ,

hence φ(x) is never a limit ordinal.

Clearly R is Euclidean if and only if we can take τ = ω. In any case, to

check whether R is transfinitely Euclidean, we need only consider ordinals not

exceeding |R|.
As before we have (with the same proof)

Theorem 1.2.2. If R is a transfinitely Euclidean ring, then R satisfies the
division algorithm relative to the ordinal-valued function φ defined on R by
(11). This function again satisfies (8), and (9) holds if and only if R is an
integral domain.

Conversely, if R satisfies the division algorithm relative to an ordinal-valued
function δ on R, then R is transfinitely Euclidean and δ(x) ≥ φ(x) for all x ∈ R.

�

In many Euclidean rings the remainder r in the division algorithm (1) is

uniquely determined and we record the conditions for this to happen.

Proposition 1.2.3. Let R be a Euclidean ring relative to the function δ. Then
the remainder in the division (1) is unique if and only if

(i) δ(a − b) ≤ max{δ(a), δ(b)} for all a, b ∈ R, and
(ii) δ(a) ≤ δ (ab) for all a, b ∈ R such that ab �= 0.

Proof. Suppose that remainders are unique. Given a, b ∈ R, put x = a, y =
a − b; then x = y.0 + a = y.1 + b, hence by uniqueness, δ(a) ≥ δ(y) or

δ(b) ≥ δ(y), i.e. (i). To establish (ii), if δ(ab) < δ(a) but ab �= 0, then 0 =
ab − ab = a.0 + 0, which contradicts uniqueness.

Conversely, when (i) and (ii) hold and x = yq1 + r = yq2 + s, where

δ(r ), δ(s) < δ(y), then on writing q = q2 − q1, if yq = r − s �= 0, we have

δ(yq) = δ(r − s) < δ(y) ≤ δ(yq), which is a contradiction, hence r = s. �

In fact, the uniqueness of the remainder ensures that we have the fastest

algorithm:

Proposition 1.2.4. Let R be a Euclidean ring relative to δ. If the remainder
in the division algorithm is unique and the values of δ and their limits form
an initial segment of the ordinals, then δ is the least function for which the
algorithm holds.

Proof. Let φ be the least function for which the algorithm holds. Then φ(x) ≤
δ(x) for all x ∈ R and we must show that equality holds. Assume the contrary;

then

φ(a) < δ(a) for some a ∈ R, (12)
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and we can choose a so that φ(a) is as small as possible. If we take b ∈ R
such that δ(b) = φ(a), then there is a unique element r = b − aq such that

δ(r ) < δ(a). In fact, since δ(b) < δ(a), we have r = b by uniqueness, and for any

q such that aq �= 0, δ(b − aq) ≥ δ(a) > φ(a). Now take c = b − aq such that

φ(c) < φ(a); then φ(c) < φ(a) < δ(a) ≤ δ(c), and this contradicts the choice

of a. Hence (12) cannot be satisfied and the result follows. �

Sometimes it is convenient to put φ(0) = −∞, φ(1) = 0. With this defini-

tion we can show that for Euclidean domains with unique remainder the least

function defining the algorithm is in fact a degree-function (satisfying D.1–D.3

of Section 1.1).

Proposition 1.2.5. Let R be a Euclidean domain and let φ be the least function
with values in N ∪{−∞} defining the algorithm. Then

φ(ab) ≥ φ(a) + φ(b) for a, b �= 0, (13)

with equality provided that remainders are unique.

Proof. By Theorem 2.1, φ(ab) ≥ φ(a). Now fix c �= 0; clearly φ(cx) still

has values in N ∪ {−∞}, as does δ(x) = φ(cx) − φ(c). We shall show that R is

Euclidean relative to the function δ(x). Given a, b ∈ R, where a �= 0, we have

ca �= 0 and by the division algorithm,

cb = ca.q + s, φ(s) < φ(ca). (14)

Here s = cr , where r = b − aq. We can now cancel c in (14) and obtain b =
aq + r , and by subtracting φ(c) from the inequality we have δ(r ) < δ(a). Thus

R is Euclidean relative to δ. By Theorem 2.1 we have δ(x) ≥ φ(x), which is

(13). If the remainders for φ are unique, then they are also unique for δ, so

δ = φ by Proposition 2.4, and it then follows that equality holds in (13). �

The principal applications of the division algorithm are to two classes of

rings:

(i) rings of algebraic integers,

(ii) polynomial rings over fields.

In (i) the role of δ is played by the norm; in (ii) one uses the degree of the

polynomial. Of these only the latter is a degree-function, and since we shall

mainly be concerned with generalizations of (ii), we shall concentrate on rings

satisfying the division algorithm relative to a degree-function.

Let R be any ring with a degree-function d. Then as we have seen in Section

1.1, R is an integral domain; moreover, any unit of R has degree 0, for if ab = 1,

then d(a) + d(b) = d(ab) = d(1) = 0, hence d(a) = d(b) = 0. In particular, if
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R is a field, then every non-zero element has degree 0, so d is trivial and the

division algorithm holds relative to d.

Next consider the polynomial ring in an indeterminate x over a field K. Of

course this satisfies the division algorithm relative to the usual degree-function,

and as we have seen in Section 1.1, this holds even for the skew polynomial ring

K [x ; α, δ] relative to an endomorphism α and an α-derivation δ. However, the

left division algorithm is not satisfied unless α is an automorphism of K.

We now show that the examples just given exhaust the rings with a right

division algorithm relative to a degree-function.

Theorem 1.2.6. Let R be a ring with a degree-function d : R → N ∪ {−∞}.
Then R satisfies the right division algorithm relative to d if and only if either (i) R
is a field or (ii) R is of the form K [x ; α, δ] for some field K, with endomorphism
α and α-derivation δ, where d(x) > 0.

Here d is trivial in (i), and in (ii) is a multiple of the usual degree.

Proof. Suppose that R satisfies condition A relative to d and write K =
{a ∈ R | d(a) ≤ 0}. By the properties of the degree-function, K is a subring

of R. Given a ∈ K ×, we have d(a) = 0, hence there exists b ∈ R such that

d(ab − 1) < d(a) = 0, so ab = 1, and d(b) = 0, i.e. b ∈ K ×. Thus every non-

zero element of K has a right inverse in K, whence it follows that K is a field.

If d is trivial then R has no elements of positive degree, so R = K and case (i)

follows. Otherwise we take an element x, say, of least positive degree in R and

assert that every element of R is of the form

a0 + xa1 + · · · + xnan, where ai ∈ K , n ≥ 0. (15)

For if this were not so, let b be an element of least degree that is not of the

form (15). By DA, there exists q ∈ R such that d(b − xq) < d(x) and by the

definition of x it follows that b − xq ∈ K . Thus for some a ∈ K we have

b = xq + a, (16)

and d(q) < d(x) + d(q) = d(xq) ≤ max{d(b), d(a)} = d(b). Therefore, by

the choice of b, q must have the form q = ∑
xi ai (ai ∈ K ). Inserting this expres-

sion in (16), we obtain

b =
∑

xi+1ai + a,

which contradicts the assumption that b is not of the form (15). Moreover,

the form (15) for any element of R is unique, for otherwise we should have a

relation

c0 + xc1 + · · · + xncn = 0,
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say, where cn �= 0. Hence

d(xn) = d(xncn) ≤ max{d(xi ci ) | i = 0, 1, . . . , n − 1},
i.e. nd(x) ≤ (n − 1)d(x), in contradiction to the assumption that d(x) > 0.

Finally we have, for any a ∈ K ,

ax = xa1 + a2,

where d(a2) < d(x) and d(a1) ≤ d(ax) − d(x) = 0, hence a1, a2 ∈ K . By the

uniqueness of the form (15) it follows as in Section 1.1 that a �→ a1 is an endo-

morphism α, say, of K and a �→ a2 is an α-derivation δ, thus R = K [x ; α, δ]

as asserted.

To prove the converse, take the skew polynomial ring K [x ; α, δ] with a

degree-function d. We have already seen that the elements of K × must have

degree 0, and by hypothesis, d(x) = λ > 0, hence the degrees d(xn) = nλ are

all different for different n. It follows that for cn �= 0,

d(c0 + xc1 + · · · + xncn) = max{d(xi ci ) | i = 0, 1, . . . , n} = nλ.

Thus all degrees are multiples of λ. We may therefore divide the degrees by λ

and so obtain the usual degree-function on K [x ; α, δ]. As we saw earlier, the

right division algorithm holds for this degree-function. �

Exercises 1.2

1. Show, by induction on δ(b − ac), that condition A is equivalent to DA.

2. Show that if a ring R has a division algorithm relative to a function that is constant

on R×, then R is a field.

3. Show that the ring of integral quaternions over Z (the rational integers) is Euclidean

relative to the norm function [q is called integral if it is a linear combination of

1, i, j, k and (1 + i + j + k)/2)]. Does this still hold for the ring of quaternions

with integer coefficients? (Recall that every commutative principal ideal domain is

integrally closed in its field of fractions. See BA, 9.4)

4. (Sanov [67]) Let R be a commutative Euclidean domain relative to an N-valued

function φ and on the matrix ring Rn define |A| = φ(det A). Show that for any

A, B ∈ Rn with |A| �= 0, there exist P, Q ∈ Rn such that

B = AQ + P, 0 < |P| < |A| or P = 0.

Use this result to obtain a reduction to triangular form for matrices over R.

5◦. (P. Samuel) Determine all Euclidean rings in which the number of atomic factors

in the complete factorization of an element serves as a value function.

6. Let R be a Euclidean domain with a fastest algorithm given by φ. Given a ∈ R×,

show that φ(xa) = φ(x) for some x ∈ R× if and only if a is a unit.
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7. If R is a Euclidean domain and T is a right Ore set in R, show that the localization

RT is again Euclidean.

8∗. (Lenstra [74]) Show that for a commutative ring R with unique remainder algorithm,

U (R) ∪ {0} = k is a field. Deduce that a commutative ring has a unique remainder

algorithm relative to a function δ if and only if δ is a degree-function or R =
F2 × F2.

9. (Lemmlein [54]) Let R be an integral domain with an N-valued unbounded function

φ such that φ(0) = 0, φ(x) > 0 for x �= 0, and there exists n0 such that for any x ∈ R
satisfying φ(x) > n0 there exists y ∈ R such that φ(y − qx) ≥ φ(x) for all q ∈ R.

Show that R is not Euclidean.

10. (S. Singh) Find an integral domain that is Euclidean and whose least value function

does not satisfy D.3 of Section 1.1.

1.3 Principal ideal domains

The reader will be familiar with the notion of a principal ideal domain, as

an integral domain, usually commutative, in which every ideal is principal,
i.e. it can be generated by a single element. Here we shall be interested in

the non-commutative case, where one has to distinguish between left and right

ideals. Thus a principal right ideal domain is an integral domain in which every

right ideal is principal, and a principal left ideal domain has a corresponding

definition, while a domain that is both left and right principal will be called a

principal ideal domain, often abbreviated to PID; a principal right ideal domain

is briefly referred to as a right PID and similarly for a left PID. An integral

domain in which every finitely generated right ideal is principal is called a

right Bezout domain; left Bezout domains are defined similarly, and when both

conditions hold we speak of a Bezout domain.

Suppose R is a ring with a division algorithm relative to a degree-function d;

we claim that R is then a right PID. The degree-function shows it to be an integral

domain; now let a be any right ideal of R; we have to show that a is principal.

When a = 0, there is nothing to prove, so assume that a �= 0 and let a ∈ a be

a non-zero element of least degree. We claim that a = a R; for clearly a R ⊆ a

and if b ∈ a, then b = aq + r , where d(r ) < d(a). Hence r = b − aq ∈ a; by

the minimality of d(a), r = 0 and this shows that b ∈ a R. Thus a is indeed a

principal right ideal, and we obtain

Proposition 1.3.1. Let R be any ring with a degree-function d satisfying the
division algorithm DA. Then R is a principal right ideal domain. �

As an example consider a skew polynomial ring R = K [x ; α, δ], where K is

a field with an endomorphism α and α-derivation δ. Given f = xma + . . . , g =
xnb + . . . ∈ R, where only the leading terms are indicated, if d( f ) ≤ d(g), then
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m ≤ n and so g − f a−1xn−mb has degree less than n and this shows that the

division algorithm holds in R. It follows that R is a right PID. When α is an

automorphism, R also satisfies the left-hand analogue of DA and it follows that

R is a PID. So we have proved

Theorem 1.3.2. Let K be any skew field with an endomorphism α and an α-
derivation δ. Then the skew polynomial ring K [x ; α, δ] is a principal right ideal
domain; it is a principal ideal domain whenever α is an automorphism. �

Sometimes a slight refinement of this result is useful:

Proposition 1.3.3. Let A be any principal right ideal domain with an endo-
morphism α mapping A× into U(A) and an α-derivation δ. Then the skew
polynomial ring A[x ; α, δ] is again a principal right ideal domain.

Proof. The ring R = A[x ; α, δ] may no longer satisfy DA, but under the

given condition we can proceed as follows. Given a non-zero right ideal a in R,

let m be the least degree of elements of a, and consider the leading coefficients

of elements of degree m in a. Together with 0 they clearly form a right ideal in

A; let a be a generator of this right ideal and f = xma + . . . a polynomial with

this leading coefficient. We claim that a = f R; in one direction this inclusion

is again clear, so let g ∈ a, say g = xnb + . . . . By the definition of m we have

n ≥ m; if n = m, then b ∈ a A, say b = ac and so d(g − f c) < d(g). Otherwise

n > m and now f x = xm+1aα + . . . has a unit as leading coefficient and so fxa′

is monic for some a′ ∈ A; now d(g − f xa′xn−m−1b) < d(g). Thus we have in

all cases found an h such that g − fh has degree less than n = d(g), so it follows

as before that a = f R, as claimed. �

In the commutative theory an important result states that every commutative

PID is a unique factorization domain. For general PIDs there is a corresponding

result, though inevitably rather more complicated. In any ring we recall that an

atom is a non-unit that cannot be written as a product of two non-units. If every

element other than 0 or a unit is a product of atoms, the ring is said to be

atomic. Two elements a, b are said to be associated if there exist units u, v such

that a = ubv. In Section 0.5 two elements a, b of an integral domain R were

called similar if R/a R ∼= R/bR or equivalently, if a, b are stably associated;

in particular, two associated (regular) elements are always similar. Given two

non-zero elements a, b of an integral domain R, consider any factorizations of

a and b:

a = u1u2 · · · ur , (1)

b = v1v2 · · · vs . (2)
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The number of atomic factors of a is called its length, thus l(a) = r . These

factorizations of a and b are said to be isomorphic if r = s and there is a

permutation σ of (1, . . . , r ) such that ui is similar to viσ . Our first observation

is that similar elements have isomorphic factorizations.

Proposition 1.3.4. Let R be an integral domain and let a, b be non-zero
elements of R that are similar. Then any factorization of a gives rise to an
isomorphic factorization of b.

Proof. Any factorization of a may be regarded as a chain of cyclic submodules

from R to aR, and by the isomorphism R/a R ∼= R/bR we obtain a chain from

R to bR in which corresponding factors are isomorphic. �

Here the permutation involved in the isomorphism is the identity, but we shall

soon meet cases where this is not so. Let us define a unique factorization domain
(UFD) as an atomic integral domain R such that any two complete factorizations

of a given element are isomorphic. It is easily seen that this reduces to the usual

definition in the commutative case; the following result provides a source of

non-commutative UFDs.

Theorem 1.3.5. Every principal ideal domain is a unique factorization
domain.

Proof. Let R be a PID; then left and right ACC1 holds in R, and as in Section 0.9

we see that every element of R, not zero or a unit, has a complete factorization.

Suppose a ∈ R has the complete factorization (1). This corresponds to a chain

of submodules

R ⊃ u1 R ⊃ u1u2 R ⊃ . . . ⊃ u1 . . . ur R = a R. (3)

Let a = v1v2 . . . vs be a second factorization of a into atoms and consider the

corresponding chain

R ⊃ v1 R ⊃ . . . ⊃ v1 . . . vs R = a R. (4)

Since R is a PID, every right ideal containing aR has the form cR, where c is a left

factor of a, and (3), (4) are actually composition series from R to aR, because the

ui and v j are atoms. So we can apply the Jordan–Hölder theorem to conclude

that r = s and for some permutation σ of (1, . . . , r ), R/ui R ∼= R/viσ R, i.e. ui

is similar to viσ . �

Later, in Section 3.2, we shall find a far-reaching generalization of this result.

Let us now take a general ring R and look at cyclic modules R/a, where a is a

right ideal of R, and examine when two such modules are isomorphic. We shall
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say that two right ideals a, a′ of a ring R are similar if

R/a ∼= R/a′. (5)

When these right ideals are principal, say a = a R, a′ = a′ R, this reduces to

the notion defined in Section 0.5. The following criterion for similarity is often

useful:

Proposition 1.3.6. In any ring R, two right ideals a, a′ are similar if and only
if there exists c ∈ R such that (i) a + cR = R and (ii) {x ∈ R|cx ∈ a} = a′.

In an abbreviated notation, (ii) may be expressed as a′ = c−1a.

Proof. Suppose that a is similar to a′ and let 1 (mod a′) correspond to c (mod

a) in the isomorphism (5). Then c generates R (mod a), so (i) holds. Further x
(mod a′) corresponds to cx (mod a), so cx ∈ a if and only if x ∈ a′, which is (ii).

Conversely, when (i) and (ii) hold, then R/a ∼= (a + cR)/a ∼= cR/(a ∩ cR) ∼=
R/a′. �

Note that whereas the relation of similarity is clearly symmetric, the criterion

of Proposition 3.6 is not, so there are two ways of applying the result, once as it

stands and once with a and a′ interchanged. If c ∈ R is right regular, (ii) takes

on the form

a ∩ cR = ca′. (6)

In particular, when R is an integral domain and a is a proper right ideal, then

c �= 0 by (i), so (ii) can then be put in the form (6).

We also see from (ii) that a′ is determined in terms of a and c. For example,

if a is a maximal right ideal, then (i) holds provided that c �∈ a and it follows

that the right ideal a′ determined by (ii) is also maximal, because of (5). The

result may be stated as

Corollary 1.3.7. If a is a maximal (proper) right ideal of a ring R and c ∈ R\a,
then the set c−1a = {x ∈ R | cx ∈ a} is a right ideal similar to a and hence is
also maximal. �

Exercises 1.3

1. Let R be a commutative Bezout domain and F its field of fractions. Show that

every element of F can be written in the form a/b, where a and b are coprime (i.e.

without a common factor). To what extent is this representation unique?

2. Show that a principal ideal domain R is primitive if and only if it has an unbounded

atom (i.e. it has an atom a such that Ra contains no non-zero ideal).
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3. Show that a Bezout domain with right ACC1 is right principal.

4. Let R be an integral domain that is weakly finite. Show that if R has an infinite

centre, then the polynomial ring R[t] is again weakly finite.

5. What happens in Exercise 4 when the centre of R is finite?

6◦. (A. Hausknecht) Let R be a principal ideal domain; if the units together with 0

form a field k, is R necessarily a polynomial ring over k?

7. Let R be an integral domain in which every right ideal generated by two elements

is principal. Show that R is a right Bezout domain.

8. (Hasse [28]) Show that a commutative integral domain R is a principal ideal domain

if and only if there is an N-valued function φ on R× such that (i) a|b imples φ(a) ≤
φ(b), with equality if and only if a R = bR and (ii) if neither of a, b divides the

other, then there exist p, q, r ∈ R such that pa + qb = r, φ(r ) < min{φ(a), φ(b)}.
9◦. Generalize Exercise 8 to obtain a characterization of Bezout domains.

10◦. Investigate rings with a positive real-valued function satisfying the conditions (i)

and (ii) of Exercise 8.

11. Show that over the field of real quaternions the equation x2 + 1 = 0 has

infinitely many roots. (Hint: Observe that any conjugate of a root is again a

root.)

12∗. Show that Bezout domains form an elementary class (i.e. they can be defined by

elementary sentences; the class of PIDs is not closed under ultraproducts and so

cannot be elementary). (Hint: Use Exercise 7.)

13∗. Show that a PID may be characterized as a Bezout domain such that (a) every

non-unit ( �= 0) has an atomic left factor, and (b) left ACC1 holds. Deduce that

any right PID that is elementarily equivalent to a PID is itself a PID. [Hint: (a) is

elementary, but not (b); see Cohn [87a].]

14∗. Let K be a field with an automorphism α, no power of which is an inner automor-

phism of K, and let δ be an α-derivation. Show that in the skew polynomial ring

R = K [x ; α, δ] the monic right invariant elements form a monoid M and either

(i) M is generated by a single element d �= 1 and all ideals of R are of the form

dν R(ν = 0, 1, . . .), or (ii) M = {1} and R is simple (Cohn [77a]). [Hint: Choose

a monic element u of least degree subject to the condition cu = uc′ for all c ∈ K ,

and apply the division algorithm.]

15. Let R = K [x ; α, δ] be as in Exercise 14. Show that in case (i) M is a right Ore

set and RM is a simple PID while in case (ii) R is a simple right PID that is left

principal if and only if α is an automorphism of K.

1.4 Modules over principal ideal domains

Let R be a principal ideal domain; then R is in particular a (left and right)

Ore domain, so every R-module M has a submodule Mt of torsion elements

with the torsion-free quotient M/Mt (see Section 0.8). Suppose now that M is

finitely generated torsion-free left R-module and let K be the field of fractions

of R. Then M can be embedded in K ⊗ M by Proposition 0.8.1 and the latter is
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semifree as left R-module (Proposition 0.8.4); this shows that M is free and we

obtain

Proposition 1.4.1. Let R be a principal ideal domain. Then any finitely gen-
erated torsion-free left (or right) R-module is free. �

This result still holds for left modules over right PIDs (even over right Bezout

domains, see Proposition 2.3.19), though not for left modules over left PIDs,

as the remark after Proposition 0.8.3 shows. In that case a stronger hypothesis

is needed to ensure freeness (see the remark after Corollary 2.1.3).

Let R be a PID or more generally, a Bezout domain; then R clearly has IBN

(in fact it is weakly finite, but this is not needed yet). Any finitely generated

projective module is clearly torsion-free and hence free; thus R is projective-free

and we obtain

Corollary 1.4.2. Every Bezout domain, in particular, every principal ideal
domain is projective-free, hence it is an Hermite ring. �

We shall also need a description of Ore sets in PIDs; as long as 0 is excluded,

the set will be regular, so we need not worry about property O.2 of Section 0.7.

More generally we shall consider right PIDs:

Proposition 1.4.3. Let R be a principal right ideal domain and S a submonoid
of R× such that (i) ab ∈ S implies b ∈ S, and (ii) if a ∈ S, then any element
similar to a is in S. Then S is a right Ore set in R.

Proof. Given a ∈ R, u ∈ S, we have to show that aS ∩ u R �= ∅. For a = 0

this is clear, so let a �= 0; then a R + u R = d R, say a = da1, u = du1. Here

u1 ∈ S by (i) and (a1, u1) is unimodular, hence there is an invertible matrix P
such that (a1, u1)P = (1, 0). Moreover, we have a relation a1u′ = u1a′ �= 0. If

P−1(u′, −a′)T = (v, −b)T, (1)

then 0 = (a1, u1)(u′, −a′)T = (1, 0)(v, −b)T = v; hence P(0, −b)T =
(u′, −a′)T and this shows that b is a common right factor of u′ and a′, say

u′ = u′′b, a′ = a′′b. By cancelling b and equating the last components in (1)

we find that u′′ and a′′ are left comaximal. Now a1u′′ = u1a′′ is a comaximal

relation, so by Corollary 0.5.5 and Proposition 0.5.6, u′′ is similar to u1 and by

(ii), u′′ ∈ S. �

Let us return to an arbitrary finitely generated module M over a PID R. Then

M/Mt is finitely generated torsion-free, hence free, and so it can be lifted to a

free submodule F of M complementing Mt ; since F ∼= M/Mt , it is unique up

to isomorphism and we have
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Corollary 1.4.4. Let R be a principal ideal domain. For any finitely generated
R-module M there exists a free submodule F such that

M = Mt ⊕ F.

Here Mt is uniquely determined as the submodule of torsion elements of M,
while F is unique up to isomorphism. �

The principal ideal property also translates to a property of the modules:

Proposition 1.4.5. Let R be a principal ideal domain and n ∈ N. Given an
n-generator left R-module M, any submodule of M has an n-element generating
set. If moreover, M is free, then so is the submodule.

Proof. By writing M = F/L , where F is free of rank n, we see that it is enough

to prove the result for free modules. So take F to be free of rank n and N any

submodule. Let π be the projection of F on the first coordinate; then Nπ is a

left ideal of R and so is principal. Hence we have the exact sequence

0 → N ∩ ker π → N → Nπ → 0.

Clearly ker π is free of rank n − 1, hence by induction N ∩ ker π can be

generated by n − 1 elements, while Nπ is generated by a single element. It

follows that N can be generated by n elements. When M is free, N is torsion-

free and hence free by Corollary 4.4. �

Now every module over a PID R has a finite free resolution of length at most

1, so it has a characteristic, as defined in Section 0.5, and by Proposition 4.5

this is non-negative for any finitely generated R-module. In Chapter 2 we shall

meet a class of rings, over which every finitely presented module has a finite

free resolution of length at most 1, but where the characteristic can assume any

integer values, negative as well as positive.

Proposition 4.5 also shows that over a PID, every finitely generated mod-

ule is finitely presented. Let M be a finitely generated left R-module with the

presentation

Rm α−→ Rn −→ M → 0, (2)

and let A be the m × n matrix over R that represents the homomorphism

α : Rm → Rn relative to the standard bases in Rm, Rn . Then M is completely

specified by A, and if we change the bases in Rm and Rn , this amounts to replac-

ing A by P AQ−1, where P ∈ GLm(R), Q ∈ GLn(R). Thus our next task will

be to find a normal form for matrices under association. To state the result, we

need another definition. In an integral domain, an element a is said to be a total
divisor of b, written a‖b, if there exists an invariant element c such that a|c|b.
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We observe that an element is not generally a total divisor of itself; in fact a‖a
if and only if a is invariant. The invariant element of shortest length divisible

by a is also called its bound; clearly it is unique up to associates. If the ring R is

simple, it has no non-unit invariant elements and a‖b implies that either a is a

unit or b is 0. In a PID the invariant elements serve as the generators of ideals.

Proposition 1.4.6. (i) In any ring R, an element c is invariant if and only if c
is regular and the left and right ideals of R generated by c coincide.

(ii) If R is an integral domain, then any non-zero ideal that is principal both
as left and as right ideal has an invariant generator.

Proof. (i) is clear, since cR = Rc for any invariant element c. For (ii) take

a R = Ra′ and let a = ua′, a′ = av; then a = uav. Now ua ∈ a R, say ua =
aw, so a = awv, hence wv = 1. In an integral domain this shows v to be a

unit, similarly for u, and so a R = Ra. �

The notation diag(a1, . . . , ar ) for a matrix with a1, . . . , ar on the main diag-

onal and 0s elsewhere will be used here even for matrices that are not square; the

exact size will be indicated explicitly, unless it is clear from the context, as in (3)

below. For any matrix the maximum number of left linearly independent rows

is called its row rank; column rank is defined similarly as the maximum number

of right linearly independent columns. We now have the following reduction

for matrices over a PID, known (in the commutative case) as the Smith normal
form.

Theorem 1.4.7. Let R be a principal ideal domain and A ∈ mRn. Then the
row and column rank of A are the same; denoting the common value by r, we
can find P ∈ GLm(R), Q ∈ GLn(R) such that

P AQ−1 = diag(e1, . . . , er , 0, . . . , 0), ei‖ei+1, er �= 0. (3)

Proof. We have the following four types of operations on the columns of A,

of which the first three are the well-known elementary operations:

(i) interchange two columns and change the sign of one,

(ii) add a right multiple of one column to another,

(iii) multiply a column on the right by a unit factor,

(iv) multiply two columns on the right by an invertible 2 × 2 matrix.

As is well known, (i) and (ii) correspond to right multiplication by an ele-

mentary matrix, while (iii) corresponds to multiplying by a diagonal matrix.

The object of using (iv) is to replace the first two elements in the columns by

their highest common left factor and 0, respectively. Thus if these elements are
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a, b, not both zero, we have a R + bR = k R, say a = ka1, b = kb1. This means

that (a1, b1) has a right inverse, and (since a PID is evidently an Hermite ring),

it can be completed to an invertible 2 × 2 matrix C say. Hence (k, 0)C = (a, b)

and (a, b)C−1 = (k, 0), as required. Corresponding operations can of course be

carried out on the rows, acting on the left.

We can now proceed with the reduction. If A = 0, there is nothing to prove;

otherwise we bring a non-zero element to the (1, 1)-position in A, by permut-

ing rows and permuting columns, using (i). Next we use (iv) to replace a11

successively by the HCLF of a11 and a12, then by the HCLF of the new a11

and a13, etc. After n − 1 steps we have transformed A to a form where the first

row is zero except for a11. By symmetry the same process can be applied to

the first column of A; in this reduction the first row of A may again become

non-zero, but this can happen only if the length (i.e. the number of factors)

of a11 is reduced; therefore by induction on the length of a11 we transform

A to P0 AQ−1
0 = a11 ⊕ A1. By another induction, on max(m, n), we reach the

form

P1 AQ−1
1 = diag(a1, a2, . . . , ar , 0, . . . , 0),

where P1, Q1 are invertible matrices and the ai are non-zero. Here r , the number

of non-zero ai is the row rank and the column rank. Consider a1 and a2; for any

d ∈ R we have (
1 d
0 1

) (
a1 0

0 a2

)
=

(
a1 da2

0 a2

)
,

and now we can again diminish the length of a1 unless a1 is a left factor of

da2 for all d ∈ R, i.e. unless a1 R ⊇ Ra2. But in that case a1 R ⊇ Ra2 R ⊇ Ra2;

thus a1|c|a2, where c is the invariant generator of the ideal Ra2 R. Hence a1‖a2,

and by repeating the argument we obtain the form

P AQ−1 = diag(e1, e2, . . . , er , 0, . . . , 0), where

P, Q are invertible, ei‖ei+1and er �= 0.

We see that this matrix has row and column rank r. Clearly A and P AQ−1 have

the same column rank; similarly for the row rank and so the assertion follows.

�

We remark that if R is a Euclidean domain (hence a PID), we can instead

of (iv) use the Euclidean algorithm, with an induction on the degree instead of

the length, to accomplish the reduction in Theorem 4.7. Most of the PIDs we

encounter will in fact be Euclidean.

We record two consequences of Theorem 4.7.
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Corollary 1.4.8. Let R be a principal ideal domain that is simple. Then any
matrix over R is associated to I ⊕ a ⊕ 0, and hence stably associated to a ⊕ 0,
where a ∈ R.

Proof. If a||b, then either b = 0 or a is a unit. Now any unit can be transformed

to 1 by applying (iii), so there can be only one diagonal element not 0 or 1. �

In the case of a field every non-zero element is a unit, so in this case every

matrix A is associated to Ir ⊕ 0, where r is the rank of A, a fact well known

from linear algebra (see CA, Section 4.7).

As a further application of Theorem 4.7 we describe the rank of a matrix

over K (t), where K is a field. We recall that a polynomial of degree n in t over

a commutative field k cannot have more than n zeros in k. Over a skew field

this is no longer true, as the example of t2 + 1 over the quaternions shows (see

Exercise 3.11, also SF, Section 3.4). However, a polynomial of degree n over

a skew field K has at most n zeros in the centre of K; this follows as in the

commutative case:

Lemma 1.4.9. Let K be a field with infinite centre C and consider the poly-
nomial ring K[t], in a central indeterminate t, with field of fractions K(t). If
A = A(t) is a matrix over K[t], then the rank of A over K(t) is the supremum of
the ranks of A(α), α ∈ C. In fact this supremum is assumed for all but a finite
number of values of α.

Proof. By Theorem 4.7 we can find invertible matrices P, Q over K [t] such

that

P AQ−1 = diag( f1, . . . , fr , 0, . . . , 0), where fi ∈ K [t]. (4)

The product of the non-zero diagonal terms on the right gives us a polynomial

f whose zeros in C are the only points of C at which A = A(t) falls short of its

maximum rank, and the number of these cannot exceed deg f. �

We now come to the application of Theorem 4.7 to describe modules over a

PID, in a result that generalizes the fundamental theorem of abelian groups.

Theorem 1.4.10. Let R be a principal ideal domain. Then any finitely gener-
ated left R-module M is a direct sum of cyclic modules

M ∼= R/Re1 ⊕ · · · ⊕ R/Rer ⊕ Rn−r , (5)

where ei‖ei+1, and this condition determines the ei up to similarity.

Proof. Let M be defined by a presentation (2) with matrix A. By Theorem

4.7, A is associated to diag(e1, . . . , er , 0, . . . , 0) with ei‖ei+1, and since this
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change does not affect the module, we obtain (5). It only remains to prove the

uniqueness.

We begin with the remark that modules of finite length can be cancelled.

Thus if

M ⊕ N ∼= M ⊕ N ′, (6)

where M, N , N ′ are of finite length, then N ∼= N ′. This follows from the Krull–

Schmidt theorem (see FA, Section 4.1 or IRT, Chapter 2).

Now let us write R/Ra1 ⊕ · · · ⊕ R/Rar as [a1, . . . , ar ] for short. Then

[a] ∼= [b] if and only if a is similar to b, and by what has been said above,

[a, b1, . . . , br ] ∼= [a, c1, . . . , cs] implies [b1, . . . , br ] ∼= [c1, . . . , cs]. We take

two representations of M as direct sums of cyclic modules:

M ∼= [d1, . . . , dr ] ∼= [e1, . . . , er ], di‖di+1, ei‖ei+1. (7)

It is no loss of generality to assume the same number of summands on both

sides, since we can always add zero summands, represented by unit factors:

R/R = 0. Further we may suppose that the torsion-free part has been split off,

so that the di , ei are all different from 0. If r = 1, the result is clear, by what has

been said, so let r > 1 and use induction on r. We shall write l(a) for the length

of a and assume that l(d1) ≥ l(e1); further, let d1|c|d2, where c is invariant. If

N is any left R-module, cN is a submodule; more specifically, if N = R/Ra
and c is invariant, then N/cN ∼= R/(Ra + Rc). Now consider M/cM ; writing

Rei + Rc = R fi , we have by (7),

M/cM ∼= [d1, c, . . . , c] ∼= [ f1, f2, . . . , fr ], (8)

and l( fi ) ≤ l(c)(i = 1, . . . , r ), l( f1) ≤ l(e1) ≤ l(d1). Comparing lengths in (8)

(which must be equal, as the length of a composition series for M/cM), we

find that l(d1) + (r − 1)l(c) = ∑
l( fi ), i.e.

l(d1) − l( f1) +
∑r

2
(l(c) − l( fi )) = 0.

Since each term is non-negative, all are zero and l( f1) = l(e1) = l(d1), l( fi ) =
l(c). It follows that [ f1] ∼= [e1], [ fi ] ∼= [c](i > 1), and now (8) reads

[d1, c, . . . , c] ∼= [e1, c, . . . , c].

By cancellation we find that e1 is similar to d1; so we may cancel the first term

on both sides of (7) and obtain [d2, . . . , dr ] ∼= [e2, . . . , er ]. Now an induction

on r gives the result. �

If M consists of torsion elements, the last term in (5) is absent. If moreover,

R is simple, then there are no non-unit invariant elements, so at most one of the
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ei in (5) can be a non-unit. But units can in any case be omitted, so (5) reduces

to a single term; hence over a simple PID any finitely generated module of

torsion elements is cyclic. In Proposition 4.12 below we shall obtain this result

in a somewhat more general context.

Theorem 4.10 shows that the ei in Theorem 4.7 are determined up to similar-

ity; we shall generally omit the units among them, since they do not contribute

to M. The ei are called the invariant factors of the matrix A or also of the mod-

ule M. The condition imposed on the ei (that each ei be a total divisor of the

next) ensures that (5) is a decomposition of M into cyclic modules with as few
terms as possible. At the other extreme we have a decomposition into as many
terms as possible, i.e. a complete direct decomposition into indecomposable

modules. The indecomposable parts must then be cyclic, by Theorem 4.10 and

they are unique up to order and isomorphism, by the Krull–Schmidt theorem.

The factors in this case are called the elementary divisors of the module (or

the matrix). For example, over the integers, M = [3, 15, 750] has the invariant

factors 3, 15, 750 and the elementary divisors 3; 3, 5; 2, 3, 53.

It is of interest to extend the decomposition of Theorem 4.10 beyond the

principal case. Here the following lemma is useful:

Lemma 1.4.11. Let R be a non-Artinian simple ring. Then any R-module of
finite length is cyclic.

Proof. Let M be a left R-module of finite length and suppose first that M has

a simple submodule that is a direct summand:

M = M ′ ⊕ S, where S is simple. (9)

By induction on the length, M ′ is cyclic, say M ′ = Ru. We denote by a the

left annihilator of u in R; it is a left ideal and since R is non-Artinian, a �= 0. If

aS = 0, then S = RS = aRS = 0, a contradiction, so there exists v ∈ S such

that a �⊂ Ann(v). It is clear that v �= 0, so Rv = S by simplicity; we claim that

u + v generates M. Consider Ann(u + v); if x(u + v) = 0, then xu = xv = 0

by (9), so x ∈ a ∩ Ann(v). Thus the map x �→ x(u + v) gives an isomorphism

R/(a ∩ Ann(v)) ∼= R(u + v).

On the left we have a module of length > l(M ′), hence of length l(M), so

R(u + v) = M and M is cyclic, as claimed.

There remains the case when no simple submodule is a direct summand.

Of course, M has a simple submodule (unless M = 0), S say. By induction

hypothesis, M/S is cyclic, generated by u + S, say. Hence M = Ru + S and by

hypothesis, Ru ∩ S �= 0, so Ru ⊇ S by the simplicity of S, therefore Ru = M
and M is cyclic. �
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As a consequence we have

Proposition 1.4.12. Let R be an atomic simple principal left ideal domain,
not a field. Then any finitely generated left R-module of torsion elements is
cyclic.

Proof. Since R is non-Artinian simple, we need only verify that a finitely

generated left R-module of torsion elements is of finite length. By induction

it is enough to check this for cyclic modules and this clearly holds by unique

factorization and the fact that all left ideals are principal. �

This result then shows that over an atomic simple principal left ideal domain

(e.g. any simple PID) R, every regular matrix A is stably associated to an element

of R.

Exercises 1.4

1. Show that (iv) is not needed in the proof of Theorem 4.7 if every invertible matrix is

a product of elementary and diagonal matrices. What simplifications are possible

when R is commutative? Prove the uniqueness in this case (Theorem 4.10).

2. Verify that the bound of an element, if it exists, is unique up to associates.

3◦. What kind of reduction theorem can be proved for R when R is (i) an atomic

principal left ideal domain or (ii) a Bezout domain?

4. (Kaplansky [49]) By an elementary divisor ring is meant a ring over which every

matrix admits a diagonal reduction as in Theorem 4.7. Show that a ring over which

every m × n matrix, where m, n ≤ 2, admits a diagonal reduction is an elementary

divisor ring.

5. (Kaplansky [49]) Show that an elementary divisor ring that is an integral domain

is weakly finite.

6◦. Is every commutative Bezout domain an elementary divisor ring?

7. Let R be a finitely generated module over a PID R. Given a decomposition (5)

into cyclic modules that are as ‘short’ as possible, show directly that the ei can be

numbered so that each is a total divisor of the next.

8∗. Let R be a PID and M a finitely generated R-module. Prove directly that the bounds

of the elementary divisors of M are independent of the choice of decomposition

of M.

9. Use Lemma 4.11 to prove that any left or right ideal in a simple Noetherian domain

can be generated by two elements.

10. A ring R is called semi-Euclidean (D. Goldschmidt) if there is a function φ :

R× → N such that for any a, b ∈ R× either a = bq + r, φ(r ) < φ(b), or φ(a) =
φ(b) and b = aq + r, φ(r ) < φ(a). Prove a triangular reduction of matrices over

semi-Euclidean rings. Show that every valuation ring is semi-Euclidean.

11. Let A be a right Bezout domain and K its field of fractions. Show that every finitely

generated right A-submodule of K is cyclic. (Hint: Use Proposition 0.7.3.)

12◦. Which of the results of this section go over to principal left ideal domains, or to

Bezout domains?
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1.5 Skew Laurent polynomials and Laurent series

Let A be an integral domain and α an automorphism of A, and consider the

skew polynomial ring A[x ; α]. We can localize this ring at the powers of x;

the resulting ring is denoted by A[x, x−1; α] and is called the skew Laurent
polynomial ring; it reduces to the Laurent polynomial ring A[x, x−1] when

α = 1. The latter may be thought of as the group algebra of the infinite cyclic

group and many of the concepts introduced apply to general group algebras.

This is true particularly of derivations.

Thus let G be any group, kG its group algebra over a field k and ε :kG → k
the augmentation mapping, defined as a k-linear mapping such that gε = 1 for

all g ∈ G. The (ε, 1)-derivations of kF, where F is the free group, are called the

Fox derivatives (Fox [53]). We shall have no more to say on this topic, except to

remark that if F is free on X = {xi }, each mapping d : X → k F defines a unique

Fox derivative. Each such d can be written as a linear combination of the di ,

where di maps x j to δi j . For if u ∈ k F has the form u = uε + ∑
(xi − 1)di u,

and d is any Fox derivative, then d f = ∑
dxi .di f .

Rings of skew (Laurent) polynomials are often useful in constructing

counter-examples; as an illustration we shall obtain conditions for such a ring to

be non-Hermite. We shall need a lemma on Ore sets in skew polynomial rings.

Lemma 1.5.1. Let A be a right Noetherian domain with an automorphism
α, an α-derivation δ and put R = A[x ; α, δ]. Then the set S of all monic
polynomials in R is a right Ore set.

Proof. By Proposition 1.3, R is again right Noetherian. Now take f ∈ S, g ∈
R× and put deg f = d . Then R/ f R is a free right A-module of rank d and hence

Noetherian. Therefore the submodule generated by the images of g, gx, gx2, . . .

is finitely generated over A, say gxn ≡ ∑
gxi hi (mod fR); hence gu = f v for

some u ∈ S, v ∈ R, as we had to show. �

Proposition 1.5.2. Let A be a right Noetherian domain, α an automor-
phism and δ an α-derivation of A and write (i)R = A[x ; α, δ] or (ii) R =
A[x, x−1; α]. If a, c ∈ A are such that a is a non-unit and a, x + c are right
comaximal in R, and in case (ii) caα �∈ a A, then a R ∩ (x + c)R is stably free
but non-principal, hence R is not 2-Hermite.

Proof. By Proposition 0.4.3 it is enough to show that a R ∩ (x + c)R is not

principal. In case (i) every element of R is a polynomial in x, while in case

(ii) every element is associated to a polynomial. By Lemma 5.1 the monic

polynomials form a right Ore set, so there exists a monic polynomial f such

that a f = (x + c)u.
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Secondly, we have

ax = xaα + aδ = (x + c)aα + (aδ − caα), (1)

where δ is taken to be 0 in case (ii). By hypothesis there exist a1, a2 ∈ A, a1 �= 0,

such that (aδ − caα)a1 = aa2, hence on multiplying (1) by a1 on the right and

simplifying, we find

a(xa1 − a2) = (x + c)aαa1.

We put g = xa1 − a2. If a R ∩ (x + c)R were principal, equal to ahR for some

polynomial h say, then g ∈ h R, so d(h) ≤ 1. Thus h (after multiplication by

a suitable unit in case (ii)) has the form h = xb1 + b2, where bi ∈ A. Since

ah ∈ (x + c)R, d(ah) ≥ 1, so d(h) ≥ 1 and b1 �= 0. Now f ∈ h R, say f = hd;

comparing highest terms and bearing in mind that f is monic, of degree r, say,

we find xr = xb1xr−1d1. Since α is an automorphism, this shows b1 to be a

unit, and dividing h by b1 we may take it to be of the form h = x + b (b ∈ A).

By the definition of h we have a(x + b) = (x + c)k, i.e.

a(x + b) = xaα + aδ + ab = (x + c)k for some k ∈ R. (2)

It follows that k = aα, ck = ab + aδ , and so

caα = ab + aδ. (3)

In case (ii) aδ = 0 and so (3) is excluded by hypothesis. When (i) holds, we have

(x + c)p + aq = 1, for some p, q ∈ R. (4)

If we write q = (x + b)q1 + r , where q1 ∈ R, r ∈ A, then by (2),

aq = a(x + b)q1 + ar = (x + c)kq1 + ar , and so

1 = (x + c)(p + kq1) + ar.

A comparison of degrees shows that p + kq1 = 0, ar = 1, which contradicts

the fact that a is a non-unit. Thus a R ∩ (x + c)R is not principal, even though

it is stably free, as we see by considering the short exact sequence

0 → a R ∩ (x + c)R → R2 → R → 0. �

As an example consider the Weyl algebra; this may be written A[x ; 1, ′],
where A = k[y] and ′ is d/dy. Here y is a non-unit and x, y are comaximal;

this answers Exercise 1.1.14.

Corollary 1.5.3. The Weyl algebra A1(k) is not a 2-Hermite ring. �

Explicitly this means that R = A1(k) contains a non-principal right ideal a

such that a ⊕ R ∼= R2. Moreover, the precise form of a is given by Proposition
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5.2 (see also Exercise 1.11). In fact, every finitely generated projecive module

over a Weyl algebra is stably free (see Stafford [77]).

Besides polynomial rings we shall also need formal power series rings.

Taking first the case of a zero derivation, we can describe the formal power
series ring in x over A with endomorphism α, denoted by R = A[[x ; α]], as

the ring of all infinite series

f = a0 + xa1 + x2a2 + . . . , (5)

with componentwise addition and multiplication based on the commutation

rule ax = xaα . With each power series f we associate its order o( f ), defined as

the suffix of the first non-zero coefficient in (5). When A is an integral domain

and α is injective, this satisfies the conditions for an order-function analogous

to D.1–D.3:

O.1. for a ∈ A×, o(a) = 0, while o(0) = ∞,

O.2. o(a − b) ≥ min{o(a), o(b)},
O.3. o(ab) = o(a) + o(b).

We can localize this ring at the set of all positive powers of x and so obtain the

ring of formal Laurent series

f =
∞∑

n= −k

xnan. (6)

We shall examine this ring more closely in the case where A = K is a field. To

express the multiplication we shall at first assume that α is an automorphism;

putting β = α−1, we can write the commutation rule in the form

ax−1 = x−1aβ.

Now it is an easy matter to show that the set of all series of the form (6) forms

a field. If o( f ) = −k, so that a−k �= 0, then we can write f = x−ka−k(1 − g),

where o(g) > 0, and so f has the inverse f −1 = (
∑

gi )a−1
−k xk . The resulting

field is denoted by K ((x ; α)) and may be obtained from the power series ring

K [[x ; α]] by formally inverting x. Since K [x ; α] is embedded in the power

series ring, it is also embedded in K ((x ; α)), therefore, by the uniqueness of

the field of fractions, so is K (x ; α).

From O.3 above we see that o( f ) will not be an order-function unless δ = 0,

so when δ �= 0, the above method cannot be used, essentially because left mul-

tiplication by non-zero elements of K is not continuous in the x-adic topology,

as the equation

ax = xaα + aδ (7)
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shows. To overcome this difficulty we introduce y = x−1 and rewrite the com-

mutation formula (7) in terms of y as

ay−1 = y−1aα + aδ; (8)

multiplying up, we obtain

ya = aα y + yaδ y. (9)

In operator form (9) may be written as L y = αRy + δL y Ry , where L y (Ry)

stands for left (right) multiplication by y. Solving this equation for L y , we obtain

ya = aα y + aδα y2 + aδ2α y3 + . . . . (10)

The result may be summed up as

Proposition 1.5.4. Let K be a field with endomorphism α and α-derivation δ.
Then the skew function field K (x ; α, δ) may be embedded in the field of skew
Laurent series in y = x−1 with commutation rules (8), (9). �

When α is an automorphism, we can write every Laurent series in the form∑
yi ai , but this is no longer possible if α is merely an endomorphism. However,

the same normal form can be achieved as follows. In any caseα must be injective,

as a field homomorphism, so we have an isomorphism between K and its image

K α . Let us write Kn for the image of K under αn (n ≥ 0); since αn , like α,

is injective, it provides an isomorphism between K = K0 and Kn . For each

m = 1, 2, . . . we take an isomorphic copy K−m of K and embed K−m in K−m−1

by identifying K−m with the image of K−m−1 under α. In this way we obtain a

filtration

. . . Kn ⊂ Kn−1 ⊂ . . . ⊂ K1 ⊂ K0 ⊂ K−1 ⊂ . . . ,

whose union is again a field, which we shall write as K [α]. Since α : Kn → Kn+1

is an isomorphism for all n ∈ Z, α is an automorphism of K [α].

We remark that K [α] may also be obtained more directly as follows. In the

skew function field K (x ; α) we have the inner automorphism induced by x,

which agrees with α on K (because aα = x−1ax for all a ∈ K ); hence K−m =
xm K x−m and K [α] = ∪ xm K x−m . So in order to form Laurent series when α

is not surjective (and δ = 0), we may take K [α]((x ; α)).

When α is not surjective and δ �= 0, we can still form K [α] but now δ will

not be defined on all of K [α] and there is no natural way of doing so unless we

have a commutation relation between α and δ, such as αδ = δα.

The power series representation is often useful for rational functions, e.g.

for determining the centre of a rational function field. For simplicity we assume

that δ = 0.
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Proposition 1.5.5. Let K be a field and α an endomorphism of K, no positive
power of which is inner. If C is the centre of K and C0 the subfield of C fixed by
α, then the centre of K (x ; α) is C0.

Proof. If α−r is inner, then so is αr , hence no power αi (i �= 0) is inner.

Consider a power series f = ∑
xi ai ; if this centralizes K (x ; α), then b f = f b

for all b ∈ K , hence
∑

xi (bαi
ai − ai b) = 0, so ai b = bαi

ai , but αi is not inner

for i �= 0; hence ai = 0 for i �= 0 and so f = a0 ∈ C . Further we have f x = x f
and it follows that aα

0 = a0, i.e. f ∈ C0. �

Sometimes it is useful to have a criterion for the rationality of a power series.

Such a criterion is familiar for complex series, and this carries over to the general

case, to provide the following rationality criterion:

Theorem 1.5.6. A power series
∑

xi ai ∈ K ((x ; α)) is a rational function of
x if and only if there exist integers r, n0 and elements c1, . . . , cr ∈ K such that

an = aα
n−1c1 + aα2

n−2c2 + · · · + aαr

n−r cr for all n > n0. (11)

Proof. This is just the condition that

(∑
xi ai

) (
1 −

r∑
I

x j c j

)

should be a polynomial, except for a factor x−k . �

As an illustration of this result we have

Corollary 1.5.7. Let K ⊆ L be fields and α an automorphism of L mapping
K into itself. Then

K ((x ; α)) ∩ L(x ; α) = K (x ; α). (12)

Proof. Clearly the field on the right is contained in the left-hand side. Con-

versely, any element of L(x ; α) may be written uniquely as a Laurent series

f = ∑
xi ai with coefficients ai in L, and if it is a Laurent series over K, it

follows that ai ∈ K . If f belongs to the left-hand side of (12), it is rational over

L and so its coefficients satisfy the above criterion. Thus the equations (11) have

a solution for the ci in L. They are linear equations with coefficients in K and

hence have a solution in K. This means that f ∈ K (x ; α) and the equality (12)

is established. �

In the commutation relation for a formal power series ring over K we may

from the beginning allow all higher powers; the most general relation is then

of the form

ax = xaδ0 + x2aδ1 + x3aδ2 + . . . , (13)
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where δ0, δ1, δ2, . . . is a sequence of mappings of K into itself. As in the case

of skew polynomial rings (Section 1.1) we can show that the δs are additive

and δ0 preserves 1, while δi for i > 0 maps 1 to 0. Moreover, δ0 must be an

endomorphism of K, while the δs satisfy

(ab)δn =
n∑

i=0

a�n
i bδi , (14)

where�n
i is the coefficient of tn+1 in (

∑
t k+1δk)i+1. Such a sequence (δ0, δ1, . . .)

with δ0 = α is sometimes called a higher α-derivation. We shall not need a

special notation for the ring defined by such a higher derivation.

As an example of a ring with a commutation formula (13) let us again take

a skew polynomial ring K [x ; α, δ], where K is a field. In the skew function

field K [x ; α, δ] consider the subring generated by K and x−1; here it will be

convenient to write the coefficients on the left. Writing y = x−1, we have as

before, ya = aα y + yaδ y, or in operator form, L y = αRy + δL y Ry , we again

obtain (10), and this is indeed of the form (13), with δn = δnα, except for a

change of sides. In particular, if δ is nilpotent, say δr+1 = 0, then (10) reduces

to the polynomial formula

ya = aα y + aδα y2 + · · · + aδr α yr+1. (15)

Of course not every higher α-derivation is of the special form δn = δnα, but

it is a remarkable result, due to T. H. M. Smits [67], that if in (13) δi = 0 for

i > r , then (with another mild restriction) we do indeed have δn = δnα. The

rest of this section will not be needed later and so can be omitted without loss

of continuity.

Theorem 1.5.8. Let A be the ring of polynomials in an indeterminate y with
coefficients in a field K, with the normal form

f = a0 + a1 y + · · · + an yn (ai ∈ K ), (16)

such that o( f ) = min{i |ai �= 0} is an order-function, and for any a ∈ K ,

ya = aα y + aδ1 y2 + · · · + aδr yr+1. (17)

Assume further that (i) r is independent of a, (ii) α is an automorphism of K
and (iii) α, δ1, . . . , δr are right linearly independent over K, in the sense that
for all b1, . . . , br+1 and all a ∈ K ,

aαb1 + aδ1 b2 + · · · + aδr br+1 = 0 implies b1 = b2 = . . . = br+1 = 0.

Then A is obtained from a skew polynomial ring R = K [x ; α, δ], where δ is
a nilpotent α-derivation: δr+1 = 0, by adjoining y = x−1 and passing to the
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subring generated over K by y. Conversely, every skew polynomial ring with a
nilpotent α-derivation δ leads to a ring satisfying (15), with δi = δiα.

Proof. The converse has already been established. To prove the direct part,

we have from (17), by induction on n,

yna = ann yn + ann+1 yn+1 + · · · + ank yk, (18)

where k may depend on n, but not on a. We shall write (18) as

yna =
∑

ani yi , (19)

where the summation is over all i and ani = 0 for i < n or i > k. Clearly

a �→ (ani ) is a matrix representation of K over itself. From (17) we find, by

induction on n,

ann = aαn
. (20)

For n = 1 we have from (19),

y(ab) =
∑

(ab)1i yi ,

(ya)b =
(∑

a1i yi
)

b =
∑

a1i bi j y j .

Hence for j > r + 1, ∑
a1i bi j = 0 ( j = r + 2, . . .).

Now a11 = aα, a1i = aδi−1 , and all these elements are right linearly independent

over K, by (iii) above, so we obtain

bi j = 0 for i = 1, . . . , r + 1; j = r + 2, . . . .

Thus (18) takes the form

yi a = aii yi + aii+1 yi+1 + · · · + air+1 yr+1. (21)

In particular, taking i = r + 1 and remembering (20), we find

yr+1a = aαr+1

yr+1. (22)

Similarly, for i = r , (21) becomes

yr a = aαr
yr + arr+1 yr+1.

Let us put α−1 = β and write aγ for arr+1; using (22), we may write this relation

formally as

y−1a = yr aβr+1

y−r−1 = aβ y−1 + aβr+1γ .
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If we define δ by setting aδ = −aβr γ , this relation takes on the form

y−1a = aβ y−1 − aβδ. (23)

We now replace aβ by a and recall that β−1 = α, y−1 = x , and obtain

xaα = ax − aδ,

which by rearrangement yields

ax = xaα + aδ.

Thus A is obtained from the skew polynomial ring K [x ; α, δ] by taking the

subring generated by K and y = x−1. To find the relation between δ and the δi

in (17) we apply y−1 to (17) and use (23):

a = y−1(aα y + aδ1 y2 + · · · + aδr yr+1)

= a + aδ1β y + · · · + aδr β yr − aδ y − aδ1βδ y2 − · · · − aδr βδ yr+1.

Equating coefficients, we find that δ1β = δ, δiβ = δi−1βδ, δrβδ = 0, hence by

induction, δiβ = δi , and so we obtain the desired relations

δi = δiα, i = 1, . . . , r, δr+1 = 0. �

The power series ring and the Laurent series ring are special cases of the

following construction, which allows the group algebra of any ordered group

to be embedded in a field.

Let M be an ordered monoid, i.e. a monoid with a total ordering ‘<’ such

that ai < bi (i = 1, 2) implies a1a2 < b1b2. By a convex submonoid we shall

understand a submonoid S such that a, b ∈ S and a ≤ x ≤ b implies x ∈ S. Let

K be any ring and consider the direct power K M , regarded as a K-module. With

each f ∈ K M we associate its support, defined as

D( f ) = {a ∈ M | f (a) �= 0}.
The elements of finite support may be written as finite sums

∑
f (a)a and just

constitute the monoid ring K M of M over K, with the multiplication rule

f g = h, where h(c) =
∑
ab=c

f (a)g(b). (24)

When M is a group, the latter sum may also be written
∑

f (x)g(x−1c). Now

let R = K ((M)) be the set of elements of K M with well-ordered support; here

the definition (24) for the product still makes sense, for if the terms f (a)g(b)

are ordered so that a1 < a2 < . . . for the arguments of f, then for c = ai bi we

have b1 > b2 > . . . and this must break off, by the well-ordering of D(g). Thus

each h(c) is defined; let us show further that h again has well-ordered support
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and that R is in fact a ring. Clearly we may suppose that the supports of f and

g are both infinite. If cn ∈ D(h), say cn = anbn , consider a sequence

c1 > c2 > . . . .

By the well-ordering of D( f ) the sequence (an) has a subsequence that is

increasing, hence the corresponding subsequence of b’s is decreasing and so

must terminate. Thus D(h) is well-ordered and this shows that h = f g ∈ R;

clearly f + g ∈ R and it is easily checked that R is a K-ring. We shall call

R = K ((M)) the ordered series ring of M over K. We remark that R has an

order function defined on it, with values in M, by

o( f ) = min{a ∈ M | f (a) �= 0}.
If o( f ) = a, then the term f (a)a is called the leading term of f. We claim

that f is invertible if and only if the leading term of f is invertible. For this

condition is clearly necessary for invertibility. Conversely, assume that it holds,

let f = f0a0 + . . ., and write g = a−1
0 f −1

0 f ; then g has the form 1 − h, where

h = ∑
h(x)x has support consisting entirely of elements > 1. Formally we can

write

p = 1 + h + h2 + . . . . (25)

If we can show that p ∈ R, then it is clear that p is indeed an inverse of g, and

this will prove f to be invertible.

We shall show that D(p) is well-ordered; for if not, then we would have an

infinite descending chain

z1 = u11 . . . u1n1
> . . . > zi = ui1 . . . uini > . . . , (26)

where ui j ∈ D(h). By omitting some of the zk we may assume that n1 ≤ n2 ≤
. . . . Let vi be the least of ui1, . . . , uini ; then v1 > v2 > . . . , and this contradicts

the fact that D(h) is well-ordered. The same argument shows that any element

of M occurs in at most a finite number of the D(hn). For otherwise we would

have an infinite chain as in (26), but with equality signs; now the same argument

as before shows that the chain breaks off. Thus p is well-defined and we have

proved

Theorem 1.5.9. Let K be a ring and M an ordered monoid. Then the set K((M))
of power series with well-ordered support is a ring, the ordered series ring of
M over K, and an element of this ring is invertible if and only if its leading term
is invertible. �

When M is a group and K is a field, every non-zero element of K ((M)) has

an inverse and we obtain the Malcev–Neumann construction:
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Corollary 1.5.10. Let K be a field and G an ordered group. Then the ordered
series ring K((G)) is a field. �

We shall want to apply this result to free groups, so we shall need to prove

that every free group G can be totally ordered. This follows for example, by

writing the elements of G as infinite power products of basic commutators and

taking the lexicographic ordering of the exponents (see Hall [59], Chapter 11,

or also Exercise 10).

We conclude this section with an interesting result due to G. M. Bergman,

on normal forms under conjugation in ordered series rings.

Theorem 1.5.11. Let K be a commutative ring and M an ordered monoid,
and let f be an element of K((M)) with invertible leading term fu .u. Then there
exists an element q in K((M)) with leading term 1 such that q−1 f q has support
entirely in the centralizer of u in M.

Further, q may be chosen so that no element of its support except the leading
term 1 commutes with u. Under this hypothesis q is unique.

Proof. If u = 1, there is nothing to prove, so we may assume that u �= 1 and

on replacing f by f −1 if necessary (bearing in mind that f is invertible, by

Theorem 5.9), we may suppose that u > 1. Further, we may assume without

loss of generality that fu = 1.

We shall denote the centralizer of u in M by Cu . Our aim will be to show

that any term αt of f such that t �∈ Cu can be got rid of by conjugating by an

element (1 + αtu−1) or (1 − αu−1t), at the expense of adding higher terms.

The process is then repeated on the new leading term. We shall need to set up

some machinery to show that the construction of q can be made to ‘converge’.

We shall use the customary notation [u, v], [u, v), etc. for closed, half-open,

etc. intervals in M and let ∞ be such that s < ∞ for all s ∈ M . This will allow

us to use the phrase: ‘the leading term of f is αt’, even when f = 0, in which

case t is taken to be ∞ and α undefined. If u, s ∈ M , where u is invertible, we

put s/u = max{su−1, u−1s}; it is easy to verify that x < y ⇒ x/u < y/u.

Let X be the set of triples (t, g, p), where t ∈ (u, ∞], g, p ∈ K ((M)) and

g has leading term u and support in Cu ∩ [u, t), while p has leading term

1 and support in [1, t/u) such that pgp−1 − f has a leading term of form

αt . By our convention this means that pgp−1 = f if and only if t = ∞. We

partially order X by writing (t, g, p) ≤ (t ′, g′, p′) if t ≤ t ′, D(g′ − g) ⊆ [t, t ′)
and D(p′ − p) ⊆ [t/u, t ′/u); these conventions just mean that the series g′ and

p′ ‘extend’ g and p, respectively.

If the leading term of f − u is αt , then (t, u, 1) ∈ X ; this shows that X �= ∅.

Our aim is to show that X is inductive, so that Zorn’s lemma can be applied.
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Suppose then that we have a chain {(tλ, gλ, pλ) | λ ∈ I } in X. We can ‘piece

together’ the gλ to get a common extension g, with support in ∪λ[u, tλ), and

similarly from the pλ form a common extension p with support in ∪λ[1, (tλ/u)).

It is clear that g and p again have well-ordered supports; we also see that

pgp−1 − f will have support in [u, ∞)\ ∪λ [u, tλ). If we write the leading

term of pgp−1 − f as αt , we see that (t, g, p) majorizes the given chain; hence

X is inductive and so by Zorn’s lemma, X has a maximal element. To complete

the proof we show that if (t, g, p) ∈ X and t < ∞, then we can construct

(t ′, g′, p′) > (t, g, p). It will follow that a maximal element of X must have the

form (∞, h, q), so that qhq−1 − f = 0, i.e. h = q−1 f q, as claimed.

Let the leading term of pgp−1 − f be αt , say. We shall find an element

g′ extending g and having support in [u, t] (recall that D(g) ⊆ [u, t)) and p′

extending p with support in [1, t/u], and show that D(p′g′ p′−1 − f ) ⊆ (t, ∞).

Hence if αt ′ is the leading term of p′g′ p′−1 − f , then (t, g, p) < (t ′, g′, p′) ∈
X . We distinguish three cases.

(i) tu−1 > u−1t . Then t/u = tu−1 and we write p′ = p − αtu−1; since p
has leading term 1, we see that p′−1 = p−1 + αtu−1 + higher terms. Take

g′ = g; on multiplying out p′g′ p′−1 we find that the new terms introduced are

(−αtu−1).u.1 = −αt, 1.u.(αtu−1) = αutu−1, and higher terms. Since tu−1 >

u−1t , we have utu−1 > t , so the lowest term introduced is −αt ; this cancels the

leading term αt of pgp−1 − f , hence D(p′g′ p′−1 − f ) ⊆ (t, ∞) as claimed.

(ii) tu−1 < u−1t . Now t/u = u−1t ; we put p′ = p + αu−1t and again

take g′ = g. The lowest terms introduced are (αu−1t).u.1 = αu−1tu and

1.u.(−αu−1t) = −αt . Here the latter is the lower and again this cancels the

leading term αt of pgp−1 − f .

(iii) tu−1 = u−1t . Now t commutes with u; in this case the terms arising

under (i), (ii) would cancel and so be of no help in eliminating the leading

term of pgp−1 − f . So we set p′ = p and g′ = g − αt , which is permissible

because t ∈ Cu . Now the lowest term by which pgp−1 − f has changed is

1.(−αt).1 = −αt , so here too, p′g′ p′−1 − f has support in (t, ∞).

This then proves the existence of q; since in the above construction we never

added a term from Cu to our p’s, we can clearly take q so that

D(q) ∩ Cu = {1}. (27)

Let q be so chosen and suppose that q ′ �= q is another element with leading

term 1 such that D(q ′−1 f q ′) ⊆ Cu . Write q ′ = q(1 + h), g = q−1 f q, so that

g′ = q ′−1 f q ′ = (1 + h)−1g(1 + h). If αt is the leading term of h, suppose that

t �∈ Cu ; then g′ would have a term ut or tu (whichever is the smaller), but by

hypothesis, D(g′) ⊆ Cu , so t ∈ Cu . This means that q ′ = q(1 + h) will have in
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its support a term t �= 1, which commutes with u, a contradiction. Hence q is

the unique element with the desired property and satisfying (27). �

We note that the assertion of Theorem 5.11 is strongest when the centralizer

Cu is small. In particular, in a free group the centralizer of any element �= 1 is

a cyclic group. It follows that every element f with leading term αu, u �= 1, is

conjugate to a series in a single variable, and this even holds when the leading

term is α, by applying the argument to f − α. Thus we obtain

Corollary 1.5.12. Let G be a free group and k a commutative field. In the
ordered series ring k((G)) every element is conjugate to a Laurent series in a
single variable. �

Exercises 1.5

1. Show that if R is weakly finite, then so is R[x]. What happens for R[x ; α, δ] or

R[[x]]?

2◦. Obtain an analogue of Proposition 5.4 when δ �= 0 and α is not surjective (try the

cases αδ = ±δα first).

3◦. To what extent are the conditions (i)–(iii) of Theorem 5.8 necessary?

4. (P. Samuel) If R is a Euclidean domain, show that R[[x]][x−1] is also Euclidean.

[Hint: Define φ(
∑

xi ai ) = φ(as), where s = min{i |ai �= 0}.]
5. (Dress [71]) Let R be an integral domain. If R[[x]][x−1] is a Euclidean domain

relative to a function φ, show that R is Euclidean relative to φR , where φR(a) =
min{φ( f ) | d( f ) ∈ Ra}, where d( f ) is the coefficient of the least power occurring

in f.
6. Show that in an ordered group G any inner automorphism is order-preserving.

Deduce that an element f of k((G)) commutes with u ∈ G if and only if the

support of f lies in the centralizer of u.

7∗. (L. G. Makar–Limanov) Show that for any commutator [a, b] = ab − ba in an

ordered series ring k((G)) the coefficient of 1 is 0. Deduce that [[a, b], b] = 0

implies [a, b] = 0.

8. In the ordered series ring k((F)) of a free group F over a field k show: if f commutes

with
∑

λi ui �∈ k(u ∈ F), then f commutes with u. Deduce that two elements of

k((F)) commuting with the same element of k((F))\k commute with each other,

i.e. commutativity is transitive on k((F))\k. (Hint: Use the fact that commutativity

is transitive on F\{1}.)
9. Let M be an ordered monoid for which commutativity is transitive on M\{1}. Show

that f commutes with a conjugate of g if and only if the leading term of f commutes

with a conjugate of the leading term of g.

10. Let F be a free group and Fn the nth term of the lower central series (defined as the

subgroup generated by all repeated commutators of weight n). Given that Fn/Fn+1

is free abelian and ∩Fn = 1, show that F can be ordered.

11∗. (G. M. Bergman) Let R〈〈X〉〉 be the free power series ring over the real numbers.

Verify that if |X | = r , the elements 1 − x(x ∈ X ) with inverses
∑

xn form the free
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generators of a free group of rank r. Show that R〈〈X〉〉 and hence the free group can

be totally ordered by taking any ordering on X, extending it to the lexicographic

ordering of the free monoid on X and then ordering R〈〈X〉〉 by the sign of its lowest

term.

12. Let R be a principal ideal domain with endomorphism α and α-derivation δ and let

S = R[x, x−1; α, δ] be the skew Laurent polynomial ring over R. Writing y = x−1,

show that the y-adic completion of S is again a principal ideal domain (see Cohn

[87a]). What can be said when R is only left or right principal?

13◦. A group is called right-ordered if it has a total ordering such that a < b ⇒ ac < bc.

Given a right-ordered group G, is its group algebra embeddable in a field?

1.6 Iterated skew polynomial rings

From any ring R with an automorphism α we can form the skew polynomial

ring R[x ; α], but this will not be a principal ideal domain unless R was a field.

However, when α is only required to be an endomorphism, we get a PID under

wider conditions, as we saw in Proposition 3.3. The exact class was determined

by Jategaonkar [69a], who used it to give an ingenious construction of ‘iterated

skew polynomial rings’, which form a useful source of counter-examples. We

shall here follow Lenstra’s presentation in showing more generally that the

iterated skew polynomial rings of Jategaonkar type (‘J-rings’) form the precise

class of integral domains with a unique remainder algorithm.

Let R be a ring, α an endomorphism and δ an α-derivation of R. Then the

skew polynomial ring R[x ; α, δ] is called a J-skew polynomial ring over R or

simply a J-ring if α is injective and maps R× into U (R).

Given a ring R, a subring K and an ordinal number τ , we shall say that R is

an iterated skew polynomial ring of type τ over K if R contains an ascending

chain of K-rings Rλ(λ ≤ τ ), such that

J.1. R0 = K ,

J.2. Rλ+1 is a skew polynomial ring over Rλ(λ < τ ),

J.3. Rμ = ∪λ<μ Rλ for any limit ordinal μ ≤ τ ,

J.4. Rτ = R.

From the definition it is clear that every element of R can be written uniquely

as

∑
xλ1

. . . xλr aλ1...λr , aλ1...λr ∈ K , λ1 ≥ . . . ≥ λr . (1)

If K is a field and each Rλ+1 is a J-skew polynomial ring over Rλ, R will be

called a J-ring of type τ over K .
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From Proposition 1.4 we know that any skew polynomial ring over a right Ore

domain (with an injective endomorphism) is again right Ore. Jategaonkar’s basic

observation was that a J-skew polynomial ring over a right PID is again right

principal (Proposition 3.3). We now show that a J-ring over a Euclidean domain

is again Euclidean. In a Euclidean ring we shall denote the function giving the

least algorithm by θ , where θ (0) = −∞. We also recall the multiplication of

ordinals (see BA, Section 1.2): 2.ω = ω, ω.2 = ω + ω.

Proposition 1.6.1. Let R be an integral domain with unique remainder algo-
rithm, defined by θR and suppose that S = R[x ; α, δ] is a J-ring. Then S has
again a unique remainder algorithm, with the function

θ

(
n∑
0

xi ai

)
= λ.n + θR(an) (an �= 0), (2)

for some ordinal λ.

Proof. Let a = ∑n
0 xi ai , b = ∑m

0 xi bi (an, bm �= 0), and note that θ = θR on

R. If θ (a) ≥ θ (b), then n ≥ m. Either n > m; then a′ = a − bx(bα
m)−1xn−m−1an

has degree < n and so θ (a′) < θ (a); or n = m, θ (an) ≥ θ (bn) and so by the

algorithm in R, θ (an − bnc) < θ (an) for suitable c ∈ R, hence θ (a − bc) <

θ (a). This shows S to be Euclidean; now the conditions of Proposition 2.3 are

easily checked, so we have a unique remainder algorithm on S. �

Since any field has a unique remainder algorithm, we obtain by transfinite

induction

Corollary 1.6.2. For any ordinal τ , a J-ring of type τ over a field is an integral
domain with a unique remainder algorithm. �

It is of interest to note that the converse also holds:

Theorem 1.6.3. A ring R is a J-ring of type τ over a field (for some ordinal
τ ) if and only if R is an integral domain with unique remainder algorithm.

Proof. The direct part was proved in Corollary 6.2. For the converse, let R
be an integral domain with unique remainder algorithm θ = θR ; by Proposition

2.5, θ is a degree-function. Take an ordinal τ bounding θ and define � as the

set of ordinals λ ≤ τ in the range of θ such that

λ > 0 and β, γ < λ ⇒ β + γ < λ. (3)

We claim

λ ∈ �, β < λ ⇒ β + λ = λ. (4)
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For the unique solution γ of β + γ = λ cannot be < λ by (3), but clearly γ ≤ λ,

hence γ = λ.

We index � by an initial segment of the ordinals such that λβ < λγ ⇒ β

< γ , and define

Rβ = {a ∈ R | θ (a) < λβ} (β < τ ).

Since θ is a degree-function, Rβ is a subring of R. Now λ0 = 1, so R0 =
{a ∈ R | θ (a) ≤ 0}, and this is a field, K say. For any limit ordinal γ we have

λγ = limβ<γ λβ and hence

Rγ =
⋃
β<γ

Rβ,

while Rτ = R, so it only remains to show that for any β < τ, Rβ+1 is a J-skew

polynomial ring over Rβ . Choose x ∈ R such that θ (x) = λβ and denote by

Rβ[x] the set of all polynomials f = ∑
xi ai (ai ∈ Rβ). We claim that Rβ[x] is

a J-skew polynomial ring. Given f ∈ Rβ[x] of degree n with leading coefficient

an , we have θ ( f ) = λβ.n + θ (an), hence f �= 0 and the expression for it is

unique. Given a ∈ R×
β , we have ax = xaα + aδ for unique aα, aδ ∈ R and

θ (aδ) < θ (x) = λβ , so aδ ∈ Rβ . Next we have θ (ax) = θ (a) + θ (x) = θ (x) by

(4), so θ (xaα) = θ (x), whence θ (aα) = 0 and it follows that aα ∈ R0 ⊂ Rβ .

Therefore α, δ map Rβ into itself (if we define 0α = 0δ = 0) and Rβ[x] is

indeed a J-skew polynomial ring.

To establish the equality Rβ+1 = Rβ[x] we note that λ = λβ.ω is the smallest

ordinal of � that is > λβ , hence λβ+1 = λβ.ω. We take f ∈ Rβ+1\Rβ[x] such

that θ ( f ) has its least value. By the Euclidean algorithm, f = xa + b with

b ∈ Rβ . As before, θ ( f ) = θ (x) + θ (a) = λβ + θ (a), since a �= 0. But θ ( f ) <

λβ+1, so we have θ ( f ) = λβ.n + γ with γ < λβ and 1 ≤ n < ω. Hence θ (a) =
λβ(n − 1) + γ < λβn ≤ θ ( f ), therefore a ∈ Rβ[x], by the minimality of θ ( f ),

and so f = xa + b ∈ Rβ[x], a contradiction. This shows that Rβ+1 = Rβ[x],

as claimed. �

There remains the problem of constructing J-rings of a given type over a field.

The J-rings of type 0 are fields, J-rings of type 1 are the usual skew polynomial

rings over fields, J-rings of type 2 may be obtained by an ad hoc construction

(see Exercise 8), but beyond that it is no easier to construct a J-ring of finite

type than one of arbitrary type. In particular it is not possible to give a recursive

construction, because the set K × must contain an isomorphic copy of R×, so

that K depends very much on τ . To construct K we shall use the field containing

a free group, constructed in Section 1.5.
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Let X = {xα}(α < τ ) be a sequence of indeterminates and denote by E the

ordered series field constructed from the free group on X over k by Corollary

5.10. Denote by K the subfield generated over k by the elements

uβα1...αr = (xα1
. . . xαr )−1xβ xα1

. . . xαr , α1 ≥ . . . ≥ αr , α1 > β, r ≥ 1. (5)

Lemma 1.6.4. In the field K defined above, the centralizer of xγ , for any γ is
k.

Proof. Let F be the free group on X and G the subgroup of F generated

by the right-hand sides of (5). Each of these generators has odd length in the

x’s, and in any expression of an element of G as a power product of the u’s,

cancellation cannot affect the central factor of any u. It follows that each such

expression must begin with a factor x−1
α and end in a factor xβ , even after all

the cancellations have been made, for this is true of the u’s and their inverses.

In particular it follows that G does not contain xn
γ , for any n �= 0.

Consider any a ∈ K ; this is a power series: a = ∑
auu, where u runs over

G.

Conjugation by xγ maps G into itself; explicitly we have

x−1
γ uβα1...αr xγ = u−1

αr γ
. . . u−1

αi γ
uβα1...αi−1γ uαi γ . . . uαr γ ,

where i is such that αi−1 ≥ γ > αi .

Since xγ commutes only with the powers xn
γ , it follows that conjugation

by xγ fixes only 1 ∈ G and moves all other elements in infinite orbits; to be

precise, the elements in each orbit arise from the positive powers of xγ , since G
admits conjugation by xγ , but not by x−1

γ . Hence x−1
γ axγ = a is possible only

if au = 0 for u �= 1, i.e. a = a1 ∈ k. �

To prove the existence of a J-ring of given type, let G be as before and denote

by φγ the endomorphism of G induced by conjugation with xγ ; this can clearly

be extended to an endomorphism of K, again denoted by φγ . Thus we have

axγ = xγ aφγ (a ∈ K ). (6)

Let E again be the ordered series ring on G over K and R the subring of E
generated by K and the xβ (β < τ ). By (6), each element of R can be written

as a finite sum ∑
xα1

. . . xαr aα1...ar , where aα1...ar ∈ K . (7)

Fix any term in (7) and let αi be the last suffix such that αi < αi+1 ≥ · · · ≥ αr .

Then we can use (5) to pull xαi through to the right; this will only change the

coefficient. Repeating the process if necessary we can ensure that α1 ≥ · · · ≥ αr

in each term of (7). We assert that under this condition the expression (7) is
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unique. Thus assume that the expression (7) vanishes, where now α1 ≥ · · · ≥
αr , and assume that not all coefficients are 0. Let α be the highest suffix such

that xα occurs in (7); then we have the equation∑
xi

αci = 0,

where each ci is a polynomial in the xβ (β < α), with right coefficients in K,

and not all ci vanishing. On conjugating by xα we get∑
xi

αcφα

i = 0,

where the coefficients now lie in K; hence xα is right algebraic over K. If

we take a monic equation of least degree satisfied by xα and conjugate with

xα , we get another monic equation, which must equal the first, by unique-

ness. By Lemma 6.4 it follows that the coefficients lie in k, so xα is algebraic

over k, which is a contradiction. This proves the uniqueness of (7), so we

obtain

Theorem 1.6.5. Let k be any field and τ an ordinal. Then there exists a J-ring
of type τ over k (with zero derivation). �

By Corollary 6.2 the resulting J-ring has a Euclidean algorithm and hence is a

principal right ideal domain. However, it is not atomic if τ > 1, for then we have

x2 = x1x2u−1
12 = xn

1 x2u−n
12 ,

so x2 has factorizations of arbitrary length.

A closely related class of rings has been studied by Brungs [69b], namely

rings in which the set of all right ideals is well-ordered by inclusion, i.e. they

are totally ordered and every set has a greatest member. Actually it is enough to

take the set of all principal right ideals. Such a ring contains a unique maximal

principal proper right ideal that is clearly also the unique maximal proper right

ideal and hence is the Jacobson radical J = J (R) of R. Hence J is two-sided

and R/J is a field, because it has no non-trivial right ideals. Thus R is a local

ring and we have the following structure theorem:

Theorem 1.6.6. Let R be a ring in which the set of all principal right ideals
is well-ordered by inclusion. Then all right ideals of R are principal and are in
fact two-sided; thus all regular elements of R are right invariant.

Proof. Let a be a non-zero right ideal, bR the maximal principal right ideal

properly contained in a and c ∈ a\bR. Then cR ⊆ a but cR �⊂ bR, hence bR ⊂
cR ⊆ a, and so cR = a. Thus all right ideals are principal. Further, R is right

invariant, for otherwise take a maximal right but not left ideal aR; there exists

b ∈ R such that ba R ⊃ a R, hence a = bac, where c is a non-unit and so lies
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in J. But baR is two-sided, by the maximality of aR, so b.ba = ba.b′, hence

ba = b.bac = bab′c. This shows that ba(1 − b′c) = 0, where c ∈ J , and so

1 − b′c is a unit. It follows that ba = 0, which is a contradiction, and this

shows each right ideal of R to be two-sided. �

In order to examine these rings more closely, we note that they have the

following property:

Lemma 1.6.7. Let R be a ring as in Theorem 6.6, and a, b, c ∈ R. If ab ∈
cR, b �∈ cR, then an ∈ cR for some n ≥ 1.

Proof. If ∩an R = d R, then ad R = d R, hence d = adu for some u ∈ R.

Now if bR ⊆ d R, say b = dv, then b = dv = aduv = advu′ = abu′ ∈ cR,

which contradicts the hypothesis; thus d R ⊂ bR, whence an R ⊆ bR for some

n, and so an+1 ∈ abR ⊆ cR. �

We now define elements pα(α ≥ 0) of R as follows: p0 R is the maximal

right ideal of R, and for any α > 0, pα is defined (up to a right unit factor) by

pα R =

⎧⎪⎨
⎪⎩

⋂
β<α

pβ R if α is a limit ordinal,

∩pn
α−1 R otherwise.

Clearly, if α > β, then pα R ⊂ pβ R; moreover, pβ pα R ⊆ pα R, and by defini-

tion of pα, pα = pβc for some non-unit c. Since pn
β �∈ pα R for all n, we have

c ∈ pα R, so pα ∈ pβ pα R, and therefore pα R = pβ pα R, i.e.

pβ pα = pαuαβ for β < α, where uαβ ∈ U (R). (8)

We claim that each a ∈ R× is expressible uniquely as

a = pα1
. . . pαr u, where u ∈ U (R), α1 ≥ · · · ≥ αr . (9)

For let α be the least ordinal such that a �∈ pα R; then α cannot be a limit ordinal,

say α = α′ + 1 and a ∈ pn
α′R for some n. Taking n as large as possible, we have

a = pn′
α′a′, where a′ �∈ pα′ R.

By repeating this process on a′ we find by induction that a has the form (9) as

claimed, and this expression is unique, from the way it was found.

We denote by σ the order type of the sequence of right ideals of R and express

σ in the form

σ = ωτ1 n1 + ωτ2 n2 + · · · + ωnk−1 + nk + 1, (10)

where τ1 > τ2 > · · · > τk−2 > 1. Then the pα are indexed by all α < τ1, and
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(10) corresponds to the relation

pn1
τ1

pn2
τ2

. . . pnk−1

1 pnk
0 = 0. (11)

It only remains to construct a ring with these properties. To do this we take

a J-ring of type τ1 over any field and localize at the set of all polynomials

with non-zero constant term, using Proposition 4.3. Now add the relations (11),

where the pα correspond to the xα .

Exercises 1.6

1◦. Show in Proposition 3.3 that the sufficient condition is also necessary when δ = 0.

What happens in general?

2. Show that a left Ore domain whose right ideals are well-ordered (under inclusion)

is a principal ideal domain.

3. (Jategaonkar [69a]) Let P be the localization of a J-ring of type τ at the set of all

polynomials with non-zero constant term. Show that the Jacobson radical of P is

J = x1 P . If transfinite powers of J are defined by the equations J α+1 = J α J and

J α = ∩β<α J β at a limit ordinal α, show that J α ⊇ xα P . Deduce that J α �= 0 if and

only if α < τ . Show also that J α is a two-sided ideal.

4. (Jategaonkar [69a]) Let R be a J-ring of type τ . Show that the elements 1 +
xα (α < τ ) are left linearly independent over R. If τ is a limit ordinal, show

that every non-zero right ideal contains an ideal of the form xα R. Show also that

a = ∑
R(1 + xα) is a proper left ideal and that no maximal left ideal containing

a can contain a non-zero ideal. Deduce that in this case R is left but not right

primitive.

5. By a strong prime ideal in a ring R is meant an ideal p such that R/p is

an integral domain. Determine the strong prime ideals in a J-ring of given

type.

6. Show that a reduced ring (i.e. without non-zero nilpotent elements), whose right

ideals are well-ordered is an integral domain.

7. (Brungs [69b]) Let R be a ring whose right ideals are well-ordered of type σ . Show

that R is an integral domain if and only if σ = ωτ , and R is left Noetherian if and

only if σ ≤ ω.

8∗. Let k be a commutative field with an endomorphism α such that k contains an

element t transcendental over kα and denote by K the subring of k(y) consisting of

all fractions f.(1 + yg)−1, where f, g ∈ k[y]. Show that α can be extended to K
by letting y �→ t and verify that the resulting endomorphism maps K × into U (K ).

Show that the power series ring R = K [[x ; α]] is a principal right ideal domain in

which the right ideals are well-ordered, and determine the order type of its chain

of right ideals (see Cohn [67]).

9. Let R be a principal right ideal domain that is also left Ore. If all atoms of R are

right associated to a single one, p say, show that J (R) = pR; deduce that R is a

right principal valuation ring.
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10. Let F be the free group on x, y, with the ordering as defined in the text, and let S
be the monoid of elements ≥ 1. Show that S is conical and rigid, but not atomic;

deduce that S is locally free, i.e. every finitely generated submonoid is contained

in a free submonoid of S.

Notes and comments on Chapter 1

Skew polynomial rings were first studied systematically by Ore [33a]. The proof of

Proposition 1.3 is modelled on the commutative case and Proposition 1.4 is due to

Curtis [52]; the analogue for power series does not hold, see Kerr [82].

The familiar Euclidean algorithm occurs in Euclid, Book VII, Propositions 1 and

2, as a method of finding the highest common factor of two integers. The extension

to polynomials was not undertaken until the 16th century, when Simon Stevin in his

Arithmetic (1585), Book II, Problem LIII, uses it to find the HCF of two polynomials.

He remarks that this application is probably new, since Pedro Nuñez, writing only a

few years earlier (Libro de Algebra, 1567) attempts to treat the same problem, but does

not get beyond a few generalities; this was possibly because he considered polynomials

with integer coefficients, which present a harder problem.

There is a very extensive literature dealing with the Euclidean algorithm in algebraic

number fields; most of this does not concern us, but Motzkin [49], who determines the

imaginary quadratic extensions admitting a Euclidean algorithm with respect to any

function, introduces the notion of derived set and proves most of Theorem 2.1. As in

FR.2 we have followed Samuel’s ([71]) definition of derived set, see also Rodosski [80].

Propositions 2.3–2.5, giving conditions for the algorithm to be defined by a degree-

function, are taken from Lenstra [74], who also determines all rings with a transfinite

unique remainder algorithm; see also Section 1.6. The first commutative examples of a

(genuinely) transfinite Euclidean algorithm were found by Hiblot [75]. Theorem 2.6 is

due to Jacobson [34] and was found again (independently) by Cohn [61a].

An interesting generalization of the Euclidean algorithm is considered by Leutbecher

[78], who defines a ring R to be quasi-Euclidean if there is a function of two arguments

θ : R2 → N such that for (a, b) ∈ R × R× there exists q ∈ R such that θ (−b, a − bq) <

θ (a, b). He shows that this is sufficient to derive many of the usual consequences of the

Euclidean algorithm and in particular he proves that a ring R is quasi-Euclidean if and

only if R is a GE2-ring and every matrix A ∈ R2 is right associated to a matrix with

(1, 2)-entry 0.

The first non-commutative UFD to have been studied is the ring K [D;

1, ′] of linear differential operators. It is discussed at some length by Schlesinger [1897],

who proves that it is an integral domain. Landau [1902] shows that all complete factor-

izations of a given operator have the same length, and corresponding irreducible factors

have the same order (= degree in D). Loewy [1903] shows that corresponding factors

are ‘equivalent’ operators, in a sense introduced by Poincaré, and this turns out to corre-

spond to the notion of similarity. A large number of papers on the subject appeared at this

time. The first abstract account of this ring was given by Ore [32], who also introduced

the notion of ‘eigenring’. A further generalization, to PIDs, is undertaken by Asano

[38]. This and much other work is summarized in chapter 3 of Jacobson [43], where the

criterion of Proposition 3.6 is proved for PIDs. Proposition 3.3 is due to Jategaonkar
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[69a]. The general notion of non-commutative UFD is defined in Cohn [63a], where it

is shown to include a wider class of rings, which will be considered in Chapter 3.

The general results on PIDs, 4.1–4.6, are part of the folklore. Theorem 4.7 was

proved in a weak form, for (non-commutative) Euclidean domains, by Wedderburn

[32], and the full form by Jacobson [37]. This was generalized to PIDs by Teichmüller

[37] and a uniqueness statement added by Nakayama [38]. A final touch, describing

exact conditions for the equivalence of two reductions, was given by Guralnick, Levy

and Odenthal [88]. If elements a, b in an integral domain R satisfy a R ⊇ cR ⊇ bR for a

right invariant element c, a is called a total right divisor of b. Now Theorem 4.7 can be

generalized to right principal Bezout domains but with ‘total divisor’ replaced by ‘total

right divisor’; this is proved in Cohn [87a]. In fact the result holds for right principal Ore

domains, for as we shall see in Section 2.2, such a ring is a semifir, and being Ore, has to

be Bezout. Our account in Section 1.4 follows Jacobson [43] with some simplifications

(see Amitsur [63]). For a general study of elementary divisor rings see Kaplansky [49].

An example of a PID for which the non-elementary operation (iv) is needed is the ring

of integers in Q(
√ − 19), which is therefore not Euclidean, though principal, see Cohn

[66b]. Lemma 4.11 appears to be folklore, communicated to the author by Stafford, who

also (in Stafford [85]) provided the source for Proposition 5.2.

Polynomial rings with the commutation rule (15) have been studied by Smits [68a],

to whom Theorem 5.8 is due. The use of generalized Laurent series has a long history;

infinite series with support other than N were considered by Levi-Civita [1892] and

skew Laurent series were used by Hilbert [1899] to construct an ordered field that is

not commutative. Proposition 5.4 is implicit in Schur [1904]: Hahn [1907] showed that

every totally ordered abelian group � can be embedded in a (lexicographically ordered)

ordinal power of R, and in the same paper introduced the ring R((�)). Theorem 5.9

(for groups) was proved independently by Malcev [48] and Neumann [49]; our proof

follows the former source, but is stated for monoids. Another proof, based on properties

of algebras with a divisibility ordering was given by Higman [52]. Theorem 5.11 and

Corollary 5.12 are due to Bergman [78b].

The notion of unique remainder algorithm is described by Lenstra [74], to whom

Proposition 6.1 is due. Jategaonkar [69a] constructed his J-rings by transfinite induction;

the more direct proof given here was new in FR.1. Theorem 6.3 was proved by Lenstra

[74]; see also Korotkov [76]. Theorem 6.6 (for rings with well-ordered set of right ideals)

is due to Brungs [69b], who also describes their structure.
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Firs, semifirs and the weak algorithm

After a brief preamble on hereditary rings (Section 2.1), this chapter introduces
our main topic, free ideal rings (firs) which form a generalization of principal
ideal domains (Section 2.2 and 2.3); frequently they satisfy a weak algorithm
relative to a filtration (Section 2.4), which generalizes the division algorithm
(relative to a degree-function), to which it reduces in the commutative case. The
most important example is the free associative algebra over a field k, character-
ized as a filtered k-algebra with weak algorithm in Section 2.5, while a useful
invariant, the Hilbert series, is described in Section 2.6. Some consequences of
the weak algorithm are traced out in Section 2.7 and 2.8; the inverse weak algo-
rithm, using a generalization of the order-function, is used to describe power
series rings in Section 2.9 and a transfinite form of the weak algorithm is applied
in Section 2.10 to construct one-sided examples. In Section 2.11 a method is
described which in many cases allows one to read off from the presentation of
a ring whether the n-term weak algorithm holds. This enables one to construct
quite naturally n-firs that are not (n + 1)-firs.

2.1 Hereditary rings

Homological algebra classifies rings according to their global dimension, i.e.
the length of projective resolutions of modules. The case of zero dimension
(semisimple rings) is fairly well known, and we shall mainly be concerned with
the next case; a ring has global dimension 1 precisely when all submodules
of projective modules are projective but the ring is not semisimple. As is well
known, this holds for left modules, say, if all left ideals are projective. By taking
a little care in the proof it is possible to derive a more precise result, which will
be needed later. Given a cardinal α (finite or infinite), a module is said to be
α-generated or an α-generator module if it has a generating set of cardinal not
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exceeding α. A ring R is called left α-hereditary if every α-generated left ideal
is projective. Thus to say that R is left |R|-hereditary is to say that every left
ideal of R is projective, i.e. R is left hereditary. A ring is left semihereditary if it
is left n-hereditary for all natural numbers n. Corresponding definitions apply
on the right.

Theorem 2.1.1. Let α, κ be any cardinals and let R be a left α-hereditary
ring. If F is a free left R-module of rank κ , then every α-generated submodule N
of F is isomorphic to a direct sum of at most κ left ideals of R, each α-generated
projective. More precisely, this direct sum has finitely many terms if α is finite
and at most min(α, κ) terms for infinite α.

Proof. We shall identify cardinals with their least ordinals. Let {eι|ι < κ}
be a basis of F, put Fλ = ∑

ι<λ Reι and for each ι < κ write pι : F → R for
the ιth coordinate projection. If N ∩ Fι+1 is α-generated, then so is its pro-
jection on R via pι, hence projective; now ker(pι|N ∩ Fι+1) = N ∩ Fι, so we
have

N ∩ Fι+1 = (N ∩ Fι) ⊕ Pι+1 , (1)

where Pι+1
∼= (N ∩ Fι+1)pι. If this holds for all ι < κ , it follows that N =

⊕ι<κ Pι+1 as claimed; it remains to show that N ∩ Fι+1 is α-generated for all
ι < κ , and for infinite α there are no more than α terms. There are two cases.

(i) α is finite. Then N lies in a submodule of F generated by finitely many e’s,
so we may assume κ = k finite. Then F = Fk+1, N ∩ Fk+1 = N is α-generated
and by (1) for ι + 1 = k, N ∩ Fk is α-generated. Now a downward induction
on k shows that each N ∩ Fi is α-generated, as we had to prove.

(ii) α is infinite. Take a generating set {nβ |β < α} for N and for β < α

denote by Nβ the submodule of N generated by all nγ (γ < β). Then N ∩
Fι+1 = ∪β<α(Nβ ∩ Fι+1) is a union of α submodules, each β-generated (by
induction over α) and hence α-generated; since α2 = α, it is α-generated, as
claimed. �

We note the special cases of hereditary and semihereditary rings; when R is
hereditary, α = |R| and we can omit the hypothesis on the submodule.

Corollary 2.1.2. Let R be a left hereditary ring. If F is a free left R-module
of rank κ , then every max(|R|, κ)-generated submodule of F is isomorphic to
a direct sum of at most κ left ideals. �

Corollary 2.1.3. Let R be a left semihereditary ring and n a natural number.
If F is a free left R-module of infinite rank, then every n-generator submodule
of F is isomorphic to a direct sum of finitely many n-generator left ideals. �
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Corollary 1.2 shows again that every submodule of a free module of rank
n over a PID is free of rank at most n (Proposition 1.4.5). Secondly, if R is an
integral domain in which every finitely generated left ideal is principal, i.e. R is
a left Bezout domain, then by Corollary 1.3, every finitely generated submodule
of a free left R-module of rank n is again free of rank at most n.

We also note a symmetric form of Corollary 1.3 due to Bergman, which
will be used later. To state it, we define a ring to be weakly semihereditary
if, given maps α : P0 → P1, β : P1 → P2 between finitely generated projec-
tive modules, such that αβ = 0, there is a direct summand Q of P1 such that
im α ⊆ Q ⊆ ker β. In terms of matrices, R is weakly semihereditary if for any
r × n matrix A and n × s matrix B over R such that AB = 0, there exists an
idempotent matrix E such that AE = A, E B = 0.

By applying the duality ∗ (or replacing E by I − E in the matrix condition)
we see that this condition is left–right symmetric. In a left semihereditary ring,
if α, β are as above, then im β is a projective module, by Corollary 1.3, hence
P1 splits over im β, P1

∼= im β ⊕ ker β and im α ⊆ ker β, so the ring is weakly
semihereditary; by symmetry the same holds for right semihereditary rings.
Using a theorem of Kaplansky, we can now prove

Theorem 2.1.4. Over a weakly semihereditary ring every projective module
is a direct sum of finitely generated modules.

Proof. Let P be a projective module, say P ⊕ Q = F is free, and let A be a
finite subset of P. We first show that A is contained in a finitely generated direct
summand of P.

The elements of A involve only finitely many coordinates in F, hence A lies
in a finitely generated free direct summand F0 of F. Let |A| = n and take α :
Rn → F0 as the homomorphism mapping a standard basis to A; if the projection
F → Q, restricted to F0 is denoted by β, then αβ = 0, hence F0 = P ′ ⊕ P ′′,
where im α ⊆ P ′ ⊆ ker β = P ∩ F0. Thus P ′ is a direct summand in F0 and
contained in P, hence it is a direct summand of P and P ′ ⊇ im α ⊇ A, as we
wished to show.

When P is countably generated, by e1, e2, . . . say, we can complete the proof
as follows. Suppose we already have a direct decomposition P = Pn ⊕ P ′

n ,
where Pn contains e1, . . . , en and is finitely generated. By the first part there
is a decomposition P = P ′ ⊕ P ′′, where P ′ is finitely generated and contains
en+1 and a generating set for Pn . Then Pn is contained in P ′ and is a direct
summand in P , hence it is a direct summand in P ′ (see the Appendix, Lemma
A.2), so on setting Pn+1 = P ′, we have P = Pn+1 ⊕ Q′, where Pn+1 contains
e1, . . . , en+1 and is finitely generated. By induction on n, P has a submodule of
such a direct sum containing all the e’s, but this set generates P, so P is a direct
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sum of finitely generated modules. Now the conclusion follows by applying
Kaplansky’s theorem, that every projective module is a direct sum of countably
generated modules (Kaplansky [58]). �

Exercises 2.1

1. Let R be a right semihereditary ring and let A ∈ m Rn . Show that the right annihilator
of A in Rn has the form E Rn , where E is an idempotent n × n matrix.

2. (Kaplansky [58]) Let M be a countably generated module over a ring R. Assume that
each direct summand N of M is such that any x ∈ N can be embedded in a finitely
generated direct summand of N; show that M is a direct sum of finitely generated
modules.

3. Show that a ring R is weakly semihereditary if and only if for any finitely generated
projective left R-module P �= 0, a finite subset A of P and a finite subset B of P∗ such
that AB = 0, there exists a direct decomposition P = P ′ ⊕ P ′′ such that A ⊆ P ′

and P ′ B = 0.
4. Show that any right Noetherian weakly semihereditary ring is right hereditary.
5. (Bergman [72a]) Show that if in the definition in Exercise 3 of ‘weakly semihereditary

ring’ we delete the condition that B resp. A be finite, then we obtain a characterization
of left resp. right semihereditary rings.

6. If R is weakly semihereditary and M1 ⊆ M2 ⊆ . . . is an ascending chain of finitely
generated modules whose union M is projective, show that there is a cofinal chain
P1 ⊆ P2 ⊆ . . . such that each Pi is a direct summand of M (the Pi and M j are cofinal
in M if each M j is contained in some Pj ′ and each Pi is contained in some Mi ′ ).

2.2 Firs and α-firs

Within the class of hereditary rings the projective modules occurring can still
be very varied, and to take a simple case we shall assume that all projective
modules are free. To exclude pathologies we also assume IBN for our ring.

Thus we are led to define a free right ideal ring, or right fir for short, as a ring
in which all right ideals are free of unique rank. Left firs are defined similarly
and a fir is just a left and right fir. We note that a right (or left) fir necessarily
has IBN, since it is either right Ore or contains free right ideals of any rank, by
Proposition 0.7.6.

Our first observation is that by Corollary 1.2, in a fir submodules of free mod-
ules are free; however, it need no longer be true that the rank of the submodule is
bounded by the rank of the free module; this follows from the previous remark
about right ideals.

The property of being a fir is preserved by localization, as the next result
shows.
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Proposition 2.2.1. Let R be a right fir and T a right Ore set in R. Then the
localization RT is again a right fir.

Proof. Let a be a right ideal of RT ; then a ∩ R is a right ideal of R, and hence
is free, with a basis (vβ)β<α . It is clear that the vβ generate a as right ideal of RT ;
for vβ ∈ a and if x ∈ a, then xd ∈ a ∩ R for some d ∈ T , so xd = ∑

vβaβ and
hence x = ∑

vβaβd−1. We claim that the vβ are right linearly independent over
RT ; for if not, let

∑
vβbβ = 0(bβ ∈ RT ) be a non-trivial relation, where almost

all but not all the bβ are 0. Then we can bring the b′s to a common denominator,
and multiplying up, we obtain a relation

∑
vβcβ = 0(cβ ∈ R), where cβ �= 0 if

and only if bβ �= 0. But this contradicts the linear independence of the vβ over
R, hence they form a free generating set of a. Moreover, if a is finitely generated,
then it has a finite basis, and since every basis arises from one of a ∩ R over R,
all have the same number of elements, so RT is indeed a right fir. �

We next investigate the presence of chain conditions in firs. It is easy to see
that a fir is not Noetherian except in the rather special case of a PID. Nevertheless
there is a chain condition that holds in all firs, namely the ACC on n-generator
right (or left) ideals. We begin by treating the Ore case:

Proposition 2.2.2. For any ring R the following conditions are equivalent:

(a) R is a right fir and a right Ore domain,
(b) R is a principal right ideal domain,
(c) R is a right Noetherian right fir,
(d) R is a right Bezout domain with ACC on principal right ideals.

Proof. (a) ⇒ (b) follows because a right Ore domain cannot have a right
ideal that is free of rank > 1. (b) ⇒ (c) is clear; (c) ⇒ (a) follows by Corollary
0.7.7. Now it is clear that (b) ⇒ (d), and (d) ⇒ (c), because (d) implies ACC
on finitely generated right ideals, so the ring is right Noetherian. �

This result shows in particular that a commutative fir is just a PID. In treating
the general case it is useful to cast our net a little wider. Let us define a right
α-fir, for any cardinal α, as a ring in which all α-generated right ideals are free,
of unique rank, and similarly for left α-firs. As in the case of firs, Theorem 1.1
shows that in a right α-fir every α-generated submodule of a free module is free.

To investigate chain conditions, let us say that a ring has right ACCn , if
it satisfies ACC on n-generator right ideals; following Bonang [89], we shall
say that a ring with right ACCn for all n has right pan-ACC. Similarly, a right
module with ACCn is a module with ACC on n-generator submodules and a
right module with ACCn for all n is called a module with pan-ACC.
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We note that an α-fir is a β-fir, for any β < α, so for the strongest results on
α-firs we take a hypothesis with α as small as possible. We shall come to the
case of finite α in the next section; when α is infinite, the results are then best
stated for ℵ0-firs.

Theorem 2.2.3. Let R be a right ℵ0-fir. Then any finitely related right R-
module has pan-ACC, in particular R has right pan-ACC.

Proof. Suppose first that F is a free right R-module; given any infinite strictly
ascending chain

N1 ⊂ N2 ⊂ . . . , (1)

of n-generator submodules of F, their union F0 = ∪Ni is countably but not
finitely generated, and hence is free of countable rank. Take a basis u1, u2, . . .

and for a fixed n let P be the submodule generated by u1, . . . , un+1. Then P ⊆ Ni

for some i and P is a direct summand of F0, hence of Ni by the Appendix, Lemma
A.2. But Ni is free of rank at most n, and so cannot have a direct summand
of rank n + 1, which is a contradiction. This proves the assertion for free right
R-modules.

Now let M = F/L be finitely related, where F is free and L is m-generated,
say. Then for any ascending chain (1) in M we can write Ni = Fi/L . If in (1)
each Ni is n-generated, then Fi is (n + m)-generated; by the first part of the
proof the sequence (Fi ) becomes stationary, hence so does (1). �

Theorem 2.3 can also be used to factorize matrices over ℵ0-firs if they have
no zero-divisors as factors. This will be done in Chapter 3 in a more general
context, where this rather cumbersome condition on the factors is expressed in
a different form.

Exercises 2.2

1. Give a direct proof that every principal right ideal domain is a right fir.
2. If R is an ℵ0-fir and a right Ore domain, show that R is a principal right ideal domain.
3. A non-zero ring without IBN in which all right ideals are free is called a right

metafir; if all finitely generated right ideals are free, we have a metasemifir. Which
results of this section carry over to metafirs or to metasemifirs?

4. In a (two-sided) fir, let a be a two-sided ideal and b a right ideal. Examine the
possible relations between the ranks of a + b and b.

5∗. (A. H. Schofield) Let R be a right ℵ0-hereditary ring such that for any infinite
sequence P1, P2, . . . of non-zero finitely generated projective right R-modules the
number of generators of P1 ⊕ · · · ⊕ Pn is unbounded as n → ∞. Show that any
projective right R-module has pan-ACC.

6◦. Show that a right ideal c in a fir is join-irreducible if and only if c is principal and
the ring is local. Investigate meet-irreducible right ideals in firs.
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2.3 Semifirs and n-firs

We now turn to α-firs, where α is finite. When α = n, we speak of an n-fir,
while a ring which is an n-fir for all natural numbers n is called a semifir. Here
we need not distinguish between left and right, as we shall see in Theorem 3.1.
In spite of evident similarities with firs there are significant differences, which
we shall discuss here.

In the study of semifirs we shall need to consider relations of the form

x .y = x1 y1 + · · · + xn yn = 0. (1)

Such a relation is said to be trivial, if for each i = 1, . . . , n, either xi = 0
or yi = 0. Of course every non-zero ring has non-trivial relations (1), e.g. x =
(a, ab), y = (bc, −c)T, for any a, b, c ∈ R, yields a relation which is non-trivial
unless a = 0, c = 0 or ab = bc = 0. Let us say that the n-term relation (1) is
trivialized by the invertible matrix P if the relation x P−1.Py = 0 is trivial; the
passage to this relation is called an inessential modification and a relation is
called trivializable if an invertible matrix trivializing it exists. It turns out that
the rings in which all relations are trivializable are just the semifirs.

Theorem 2.3.1. For any non-zero ring R and any natural number n, the
following conditions are equivalent:

(a) every m-term relation
∑m

i=1 xi yi = 0 where m ≤ n, can be trivialized by a
square matrix,

(b) given x1, . . . , xm ∈ R(m ≤ n) which are right linearly dependent, there
exist m × m matrices P, Q over R such that PQ = I and the vector
(x1, . . . , xm)P has zero as its first component,

(c) any right ideal of R generated by m ≤ n right linearly dependent elements
has a generating family of fewer than m elements,

(d) any right ideal on at most n generators is free, of unique rank, i.e. R is an
n-fir,

(e) if ϕ is a map of mR into a free right R-module (m ≤ n), then for some
r ≤ m there is an automorphism μ of mR which induces an isomorphism
ν : im ϕ → rR and whose restriction to ker ϕ provides an isomorphism with
s R, where s = m − r . Thus we have the following commutative diagram:

ker ϕ −→m R −→ im ϕ

↓ μ|ker ϕ ↓ μ ↓ ν (2)
sR −→s R ⊕ rR −→rR.

Here the maps in the bottom line are the natural inclusion and projection.
Moreover, these conditions are equivalent to their left–right duals.
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The existence of a commutative exact diagram (2) with isomorphisms μ, ν is
expressed by saying that the two rows of the diagram are isomorphic; in that
case μ|ker ϕ is clearly also an isomorphism.

Proof. We shall prove (a) ⇒ (b) ⇒ . . . ⇒ (e) ⇒ (a). Since (a) is left–right
symmetric, the conditions must then be equivalent to their left–right duals. The
implication (a) ⇒ (b) is evident.

(b) ⇒ (c). Let a be a right ideal, generated by x1, . . . , xm and suppose that the
x’s are right linearly dependent. By (b) there exist P, Q ∈ Rm such that P Q = I,
and if x ′ = x P , where x = (x1, . . . , xm), then x ′

1 = 0. Clearly x ′
2, . . . , x ′

m ∈ a

and since x = x PQ = x ′ Q, a is generated by x ′
2, . . . , x ′

m .
(c) ⇒ (d). If a is an n-generator right ideal, (c) allows us to reduce the number

of generators until we get a linearly independent set; so a will be free on at most
n generators. Let m ≤ n be the least integer such that a ∼= m R and suppose that
m R ∼= m+k R for some k > 0. Then a has a surjective endomorphism ϕ with
kernel k R. If we take a set of m generators of a, their images under ϕ will again
generate a but will be linearly dependent, because ker ϕ �= 0. Hence by the
previous argument, a will be free on m ′ < m generators, a contradiction, which
proves that a has unique rank.

(d) ⇒ (e). Given ϕ as in (e), an induction shows that im ϕ is free, say
im ϕ ∼= rR. Then the exact sequence

0 → ker ϕ → m R → im ϕ → 0 (3)

splits; so ker ϕ is a direct summand of mR, hence also free, say ker ϕ ∼= s R.
Thus (3) is isomorphic to the bottom line in (2); since m R has unique rank, it
follows that r + s = m.

(e) ⇒ (a). Given an m-term relation x .y = 0, where y �= 0, let ϕ : m R → R
be the mapping v �→ v.y. By (e) im ϕ ∼= rR, where r > 0, hence ker ϕ ∼= sR,
where s = m − r < m; thus since x ∈ ker ϕ, then for some invertible matrix
P, x P has a zero component. If the relation x P . Py−1 = 0 is non-trivial, we can
repeat the process; after at most n steps the relation has been trivialized. �

Of the above conditions we shall find (a) and (e) the most useful tools, while
(b) is the easiest to verify. Conditions (c) and (d) are weaker in appearance than
the others, since they do not explicitly assume anything about the modules Rn .

We note a useful consequence of Theorem 3.1. If we have a relation XY = 0,
where X is an r × n matrix and Y an n × s matrix, the relation is called trivial
if for each i = 1, . . . , n either the ith column of X or the ith row of Y is 0; now
the notion of trivialization can be defined as before. The following result is an
easy consequence of Theorem 3.1; in fact the given condition is sufficient as
well as necessary.
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Corollary 2.3.2. In a semifir any matrix relation XY = 0 can be trivialized;
moreover, for any X ∈ rRn there exists an invertible n × n matrix P such that
the non-zero columns of XP are right linearly independent; likewise there exists
an invertible r × r matrix Q such that the non-zero rows of QX are left linearly
independent. Hence in a semifir any full matrix is regular. �

For non-zero expressions the trivializability condition of Theorem 3.1(a)
takes the following form:

Corollary 2.3.3. Given an expression c = ab in a semifir R, where a =
(a1, . . . , an), b = (b1, . . . , bn)T , there exists P ∈ GLn(R) such that a P =
(0, a′, a′′), P−1b = (b′′, b′, 0)T , where the row a′ is right regular and the col-
umn b′ is left regular. �

Proof. We first transform a to the form (0, a∗), where a∗ is right regular; if
b takes the form (b′′, b∗)T, with a corresponding subdivision, we transform a∗

and b∗T to the form (a′, a′′) and (b′, 0)T, where b′ is left regular, and of course
a′ is still right regular. �

It is clear that an n-fir either has IBN or is of type (h, k), where h > n (see
Section 0.1). Hence by Theorem 3.1(e), every n-generator projective module is
free; a ring with this property is called n-projective-free. Thus we obtain

Corollary 2.3.4. Any semifir is projective-free and hence an Hermite ring.
More specifically, any n-fir is n-projective-free and so is n-Hermite. �

From Theorem 3.1(d) we also obtain the following characterization of semi-
firs:

Corollary 2.3.5. A ring R is a semifir if and only if R has invariant basis
number and every finitely generated right (or equivalently, left) ideal is
free. �

Of the chain of n-fir conditions, the case n = 1 is really too general to be
of interest, since a 1-fir is just an integral domain. On the other hand, 2-firs
form an important class, e.g. in the commutative case they already comprise
all semifirs, and so form the class of Bezout domains. By convention a 0-fir
is understood to be a non-zero ring. Since every n-fir is also an n′-fir for all
n′ ≤ n, we shall generally choose n as small as possible in our hypotheses and
as large as possible in our conclusions.

The following rank formula is often useful:

Proposition 2.3.6. Let R be an n-fir and A, B any submodules of a free R-
module such that A ⊕ B is n-generated. Then there is a split exact sequence

0 → A ∩ B → A ⊕ B → A + B → 0, (4)
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all modules occurring are free and

rk(A + B) + rk(A ∩ B) = rk A + rk B. (5)

Proof. We map A ⊕ B to A + B by the rule (a, b) �→ a − b; clearly the
kernel is A ∩ B and we obtain the result by applying Theorem 3.1(e). �

By Theorem 3.1(c), a 2-fir can be characterized as an integral domain in
which any two right linearly dependent elements generate a principal right
ideal: the case m = 1 of (c) asserts that R is an integral domain; m = 2 is the
above ideal condition, which is also reformulated in the next result. For any
integral domain R and c ∈ R× we shall denote by L(cR, R) the set of principal
right ideals containing cR; similarly for L(Rc, R).

Theorem 2.3.7. For any integral domain the following conditions are equiv-
alent:

(a) R is a 2-fir,
(b) for any a, b ∈ R× we have a R ∩ bR = m R for some m ∈ R, while a R +

bR is principal if and only if m �= 0,
(c) in the lattice LatR(RR) of all right ideals of R, the set L(cR, R) of principal

right ideals of R containing a given c ∈ R× forms a sublattice,
(d) any two principal right ideals that intersect non-zero have a principal sum,

(ao)−(do) the left-right duals of (a)−(d).

Proof. (a) ⇒ (b). Let a, b ∈ R×; by Proposition 3.6, a R + bR and a R ∩ bR
are free and have ranks adding up to rk(a R) + rk(bR) = 2. Clearly rk(a R +
bR) ≥ 1, so rk(a R ∩ bR) ≤ 1, i.e. a R ∩ bR = m R for some m ∈ R. Moreover,
m �= 0 if and only if rk(a R + bR) = 1, i.e. when a R + bR is principal.

The implications (b) ⇒ (c) ⇒ (d) are clear. To prove (d) ⇒ (a), assume (d):
then any two elements that are right linearly dependent generate a principal
right ideal, hence R is a 2-fir, by Theorem 3.1(c). Finally the symmetry is clear
from (a). �

Since any totally ordered set is a lattice, we have, by condition (d):

Corollary 2.3.8. Any rigid domain is a 2-fir. �

In a commutative 2-fir, i.e. a commutative Bezout domain, L(cR, R) is a
sublattice of the lattice of all fractional principal ideals, a lattice-ordered group
and hence distributive (see Birkhoff [67], p. 294). In Chapter 4 we shall investi-
gate 2-firs in which L(cR, R) is distributive; of course for any 2-fir R, L(cR, R)
is modular, as sublattice of LatR(RR).
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In any integral domain R, two non-zero elements a, b are said to have a least
common right multiple (LCRM) m if a R ∩ bR = m R �= 0; clearly such m, if it
exists, is unique up to a unit right factor and it reduces to the usual LCM when
R is commutative. A corresponding definition applies to the least common left
multiple (LCLM). Suppose now that R is a 2-fir; from Theorem 3.7(b) it is clear
that any two right commensurable elements in R have an LCRM. In particular,
this holds for right comaximal elements.

Corollary 2.3.9. In a 2-fir any two non-zero right comaximal elements are
right commensurable and hence have an LCRM.

Proof. Given a, b ∈ R×, if a R + bR = R, then a R ∩ bR = m R �= 0 by
Theorem 3.7(b). �

These results may be used to derive a normal form for fractions over a 2-fir:

Proposition 2.3.10. Let a, b be left commensurable elements of a 2-fir R and
assume that R is a subring of a ring S in which every factor of b is invert-
ible. Then the element s = ab−1 of S can be written in the form a′b′−1, where
a′, b′ are left comaximal in R, and if also s = pq−1, where p, q ∈ R, then
(p, q)T ∈ (a′, b′)T R. In particular, if p, q are left comaximal, then (p, q)T is
right associated to (a′, b′)T .

Proof. By Theorem 3.7(d), Ra + Rb = Rd for some d ∈ R×, say a =
a′d, b = b′d. Then Ra′ + Rb′ = R, so a′ and b′ are left comaximal in R
and b′, d are invertible in S, hence s = ab−1 = a′dd−1b′−1 = a′b′−1. Further,
Ra′ ∩ Rb′ = Rm �= 0, hence m = b0a′ = a0b′; it follows that a0 = b0s and
clearly b0 R ∩ a0 R = m R. Thus if we have s = pq−1, where p, q ∈ R, then
a0q = b0 p = mr = b0a′r = a0b′r , so (p, q)T = (a′, b′)Tr , as claimed. �

Occasionally we shall want to impose a stronger condition on our rings. Let
Gn be a subgroup of the general linear group GLn(R) such that Gn+1 contains
all the n + 1 natural images of Gn; if the ring R is such that for any m ≤ n, every
m-term relation in R can be trivialized by a member of Gm, R will be called a
strong Gn-ring; if this holds for all integers n, R is called a strong G-ring. For
example, a strong GL-ring is just a semifir, by Theorem 3.1(a). These terms
will be used in particular for Gn = En(R), the group generated by all n × n
elementary matrices, differing from the unit matrix only in one off-diagonal
place. We note that a strong En-ring is the same as a strong G En-ring, where
G En(R) is the group generated by En(R) and the diagonal invertible matrices.
By a Gn-ring we shall mean a ring R such that GLn(R) = Gn(R); if this holds
for all n, we speak of a G-ring. We note that a strong GE-ring is a GE-ring, but
a strong E-ring need not be an E-ring.
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We also note the following homological characterization of semifirs:

Theorem 2.3.11. A ring R is a semifir if and only if it is weakly semihereditary
and projective-free. In this case every projective (left or right) R-module is
free; in particular, every projective left (or right) ideal is free. For a semifir R
moreover, any finitely generated submodule of a free R-module is free, of unique
rank.

Proof. If R is a semifir, then it is right semihereditary, hence weakly semi-
hereditary; further it is projective-free and every finitely generated projective
module, as a submodule of a free module, is itself free.

Conversely, assume that R is weakly semihereditary and projective-free,
and consider a relation (1) in R. Using it we can define a map f : Rn → R
by (a1, . . . , an) �→ ∑

ai yi ; then x = (x1, . . . , xn) ∈ ker f by hypothesis, and
since R is weakly semihereditary, there is a decomposition Rn = P ⊕ Q such
that x ∈ P and Py = 0. Since R is projective-free, P and Q are free, with bases
u1, . . . , ur for P and ur+1, . . . , un for Q. The matrix U = (u1, . . . , un)T is
invertible and since x ∈ P, x = x ′

1u1 + · · · + x ′
r ur = (x ′

1, . . . , x ′
r , 0, . . . , 0)U ,

while U y = (0, . . . , 0, ur+1 y, . . . , un y)T. Thus U trivializes the relation xy =
0 and this shows R to be a semifir. By Theorem 1.4 every projective R-module
is a direct sum of finitely generated projective modules, which are free because
R is projective-free.

To prove the final assertion we note that a semifir is semihereditary and by
Corollary 1.2, every finitely generated submodule of a free left R-module is a
direct sum of finitely generated left ideals, which are projective and hence free.

�

For example, using Theorem 3.11, we see that any local ring that is weakly
semihereditary is a semifir, by Corollary 0.3.8. Moreover, by Theorem 1.1 we
have

Corollary 2.3.12. A ring is a right (α-)fir if and only if it is right (α-)hereditary
and projective-free. �

In any ring R, a family a1, . . . , an ∈ R is right linearly dependent if there is
a relation

a1b1 + · · · + anbn = 0, bi ∈ R, (6)

which is non-trivial, i.e. where the bi are not all 0. If one of the ai is linearly
dependent on the rest, this means that there is a relation (6) in which some bi is
a unit. In that case a1, . . . , an will be called right unit-linearly dependent. With
these definitions we have



2.3 Semifirs and n-firs 119

Theorem 2.3.13. Let R be a ring. Then R is a local ring and a semifir if and
only if R is an integral domain and every right linearly dependent family in R
is right unit-linearly dependent.

Proof. Assume that R is a local ring and a semifir. Then R is non-zero, and for
any non-trivial relation (6) there is an invertible matrix P = (pi j ) trivializing
(6), by Theorem 3.1; thus

∑
ai pi j = 0 for some j. Since P is invertible over

the local ring R, each column contains a unit, so for any given j, there exists i
such that pi j is a unit, hence the ai are right unit-linearly dependent.

Conversely, assume that R satisfies the given conditions. Then in any right
linearly dependent family one element can be written as a linear combination
of the rest and an induction on the number of elements shows R to be a semifir.
To verify that R is a local ring, assume the contrary. Then there exist non-units
a, b ∈ R such that a + b = 1. So a, b �= 0, 1 and ab = (1 − b)b = b(1 − b),
hence a, b are right linearly dependent, and by hypothesis, unit-linearly, so one
must be linearly dependent on the other, say b = au. Therefore a(1 + u) = 1,
but this would mean that a is a unit, a contradiction, which shows R to be a
local ring (Proposition 0.3.5). �

Since being weakly semihereditary is a categorical property, we can apply
Theorem 0.4.8 to obtain the following Morita-invariant description of semifirs:

Theorem 2.3.14. For any ring R the following conditions are equivalent:

(a) R is a full matrix ring over a semifir,
(b) R is Morita-equivalent to a semifir,
(c) R is weakly semihereditary and projective-trivial. �

The trivialization procedure of Theorem 3.1 may also be applied to matrix
products in which there is merely a block of zeros:

Lemma 2.3.15. (Partition lemma) Let R be an n-fir and let A ∈ r Rn, B ∈
n Rs such that AB has an r ′ × s ′′ block of zeros as shown:

AB =
(

C ′ 0
C C ′′

)
r ′

r ′′

s ′ s ′′

where r ′, r ′′, s ′, s ′′ indicate the numbers of rows and columns, respectively. Then
there exists T ∈ GLn(R) such that

AT −1 =
(

A1 0
A3 A4

)
, TB =

(
B1 0
B3 B4

)
, (7)

where A1 has r ′ rows and B4 has s ′′ columns.
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Proof. Partition A, B as A = (A′, A′′)T, B = (B ′, B ′′), where A′, A′′ have
r ′, r ′′ rows respectively and B ′, B ′′ have s ′, s ′′ columns respectively. Then
A′ B ′′ = 0, hence by Theorem 3.1 there exists T ∈ GLn(R) such that the first n′

rows in T B ′′ are 0 and all columns after the first n′ in A′′T −1 are 0, so AT −1, TB
have the form shown in (7). �

Let R be a semifir and M a left R-module, with presentation

0 → K → F → M → 0 ,

where F is free and K is a submodule of F. If M is finitely presented, then F, K
may be taken to be finitely generated and K is then free, so the characteristic of
M is given by

χ (M) = rk F − rk K .

If M is finitely generated but not finitely related, we put χ (M) = −∞, while
for M not finitely generated we put χ (M) = ∞. This defines the characteristic
of M in all cases, although care is needed in adding characteristics, since both
∞ and −∞ can occur.

The following reduction, familiar from field theory, is also of interest.

Proposition 2.3.16. Let R be an n-fir. Then any nilpotent n × n matrix A
over R has a conjugate that is strictly upper triangular with zeros on the main
diagonal, and in particular, An = 0.

Proof. We may assume without loss of generality that A �= 0. Let m be the
least integer such that Am+1 = 0 and write Am = B. Then B �= 0 and AB = 0;
thus the columns of A are right linearly dependent. Hence, by Corollary 3.2
there exists U ∈ GLn(R) such that the first column of AU is 0, and so the first
column of U−1 AU is also 0. Deleting the first row and column from U−1 AU
we obtain an (n − 1) × (n − 1) matrix that is again nilpotent; by induction on
n it is conjugate to a matrix that is strictly upper triangular; hence so is A. Now
the last part follows easily. �

Let us see what becomes of our definitions in the commutative case. More
generally, let us take a right Ore domain R: in R any two elements are right
linearly dependent, therefore any free right ideal has rank at most 1. Hence
if a right Ore domain is a 2-fir, Theorem 3.1(c) shows that any two elements
generate a principal right ideal; hence every finitely generated right ideal is
principal, i.e. we have a right Bezout domain. For Bezout domains we have the
following analogue of Proposition 2.2.
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Proposition 2.3.17. For any ring R the following conditions are equivalent:

(a) R is a semifir and a right Ore domain,
(b) R is a 2-fir and a right Ore domain,
(c) R is a right Bezout domain,
(d) R is an integral domain in which every 2-generator right ideal is principal.

Proof. (a) ⇒ (b) and (c) ⇒ (d) are clear and (b) ⇒ (c) follows from earlier
remarks. To prove (d) ⇒ (a), if (d) holds, an easy induction shows that R
is a semifir, and if a, b �= 0 but a R ∩ bR = 0, then a R + bR is free and not
principal, which contradicts (d); hence R is also right Ore and (a) follows. �

The commutative case yields

Corollary 2.3.18. Every commutative 2-fir is a Bezout domain. �

Thus for right (or left) Ore domains our chain of conditions from 2-fir to semifir
collapses to a single condition. By contrast, in the general case there are n-firs
that are not (n + 1)-firs, for each n, as examples in Section 2.11 will show.

The remark after Corollary 1.3 showed that for a left Bezout domain R,
every finitely generated submodule of Rn is free (of rank at most n). There is no
corresponding result for finitely generated left R-modules over a right Bezout
domain, but we have the following partial analogue:

Proposition 2.3.19. Let R be a right Bezout domain. Then any finitely gener-
ated torsion-free left R-module is free.

Proof. Let M be torsion-free and generated by u1, . . . , un , where n is minimal.
Suppose that

∑
ai ui = 0, where not all the ai vanish; then

∑
ai R = d R �= 0

for some d ∈ R, say ai = da1i , and
∑

a1i R = R. Since a right Bezout domain
is Hermite, the row (a11, . . . , a1n) can be completed to an invertible n × n
matrix A = (ai j ). It follows that M is also generated by v1, . . . , vn , where
vi = ∑

ai j u j . But dv1 = ∑
da1i ui = ∑

ai ui = 0, and since M is torsion-free,
v1 = 0, so M is generated by v2, . . . , vn , which contradicts the minimality of
n. �

When we come to chain conditions, it is clear that there can be no such
conditions for a general semifir, since there are none even in the commutative
case. However, imposing one chain condition will entail others; thus we note

Proposition 2.3.20. A semifir with right ACCn satisfies ACCn on free right
modules.

Proof. This clearly holds for a right Ore domain R, for R will then be right
Bezout, hence right principal (see Exercise 1.3.3). Otherwise an ascending chain
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of n-generated submodules of a free module is contained in a free module of
countable rank, and this is isomorphic to a right ideal of R, by Proposition 0.7.6,
and here ACCn holds by hypothesis. �

Over a semifir we have the following description of flat modules:

Proposition 2.3.21. Let R be a semifir and U a right R-module. Then U is flat
if and only if every finitely generated submodule of U is free, i.e. U is semifree.

Proof. Clearly U is flat whenever all its finitely generated submodules are flat;
this is so when the latter are free, so the condition is sufficient. To show its neces-
sity suppose that U is flat and let V be a finitely generated submodule. We have to
show that V is free, so let us take a generating set v1, . . . , vn of V, where n is mini-
mal. The conclusion will follow if the vi are linearly independent, so assume that
there is a non-trivial dependence relation vx = 0, where v = (v1, . . . , vn) ∈ Vn

and 0 �= x ∈ n R. By Corollary 3.2 there exists P ∈ GLn(R) such that the non-
zero entries of Px are left linearly independent. Replacing x by Px and v by
vP−1 and renumbering the components if necessary, we may assume that for
some r, 1 ≤ r ≤ n, x1, . . . , xr are left linearly independent, while x j = 0 for
j > r . It follows that the map from Rr to R given by (z1, . . . , zr ) �→ ∑r

1 zi xi

is injective. Since U is flat, the induced map U ⊗ Rr → U ⊗ R ∼= U is again
injective; this maps (u1, . . . , ur ) to

∑r
1 ui xi from Ur to U. But (v1, . . . , vr ) is

in the kernel, so vi = 0 for i = 1, . . . , r ; this contradicts the minimality of n
and it shows that V is free on v1, . . . , vn , as claimed. �

It is clear that a semifir R is coherent (Appendix B.(xi)), hence by Theorem
B.10, RI for any set I is flat and by Proposition 3.19 we obtain a strengthening
of Corollary 3.4 (see also the remarks after Theorem 5.1.5 for the corresponding
statement for n-firs):

Corollary 2.3.22. Let R be a semifir and I any set. Then every finitely gener-
ated submodule of RI is free, i.e. RI is semifree. �

If in the proof of Proposition 3.21, R is a right Bezout domain, then r = 1
and we can weaken the hypothesis by assuming U to be torsion-free instead of
flat:

Corollary 2.3.23. Over a right Bezout domain R a left module is semifree and
hence flat if and only if it is torsion-free. �

We conclude this section with a result on what may be called ‘α-complete’
direct limits of α-firs. A partially ordered set will be called α-directed if every
subset of cardinality at most α has an upper bound. A directed system over an
α-directed set is also called an α-directed system.
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Proposition 2.3.24. Let α be any cardinal greater than 1. Then the direct
limit of any α-directed system of α-firs is again an α-fir.

Proof. Let {Ri } be the given system of α-firs, with maps fi j : Ri → R j , and
put R = lim→ Ri . When α = n is finite, the assertion is simply that the direct

limit of any directed system of n-firs is an n-fir; this follows easily from the
characterization of n-firs given in Theorem 3.1(a). Thus we may take α to be
infinite. Further, by the finite case, R will be a semifir, so it remains to show that
given any set X ⊆ R, of cardinality at most α, R X = {∑ ai xi |ai ∈ R, xi ∈ X}
will be a free left ideal of R.

Since our system is α-directed we can find a ring Ri ′ such that each x ∈ X
has an inverse image x ′ in Ri ′ . Write X ′ for the set of all these x ′. For each
finite subset Y of X ′ and each i ≥ i ′ consider the rank of the left ideal Ri (Y fi ′i ).
For fixed Y this rank is non-increasing in i, so it ultimately equals a minimum,
which it attains for some i depending on Y. Since there are no more than α

finite subsets Y of X ′, we can find i ′′ ≥ i ′ such that all the ranks rk(Ri Y fi ′i )
have their minimum value for i ≥ i ′′. Put X ′′ = X ′ fi ′i ′′ and let B be a basis for
the left ideal Ri ′′ X ′′ of the α-fir Ri ′′ . We claim that for all i ≥ i ′′ and each finite
C ⊆ B, C fi ′′i is left linearly independent in Ri . It will follow that the image of
C in R is left linearly independent, hence the image of B will be left linearly
independent, and so will form a basis of RX.

Thus assume that C fi ′′i is linearly dependent. Pick a finite subset Y of X ′′

such that C ⊆ Ri ′′Y ; then Ri ′′C , being a direct summand in Ri ′′ B ⊇ Ri ′′Y , will
be a direct summand in Ri ′′Y . Hence C can be extended to a basis C ′ of Ri ′′Y .
But C fi ′′i is linearly dependent, so rk(Ri ′′Y fi ′′i ) < |C ′| = rk(Ri ′′Y ), and this
contradicts the choice of i ′′. �

Exercises 2.3

1. For each n ≥ 1, determine which of the following are n-firs: k, k[x], k[x, y] (k a
commutative field), Z, Z[x].

2. For which n is it true that every subring of an n-fir is an n-fir? Give an example of
an integral domain which cannot be embedded in a semifir.

3. For any n ≥ 1, show that a direct limit of n-firs is an n-fir. Does this result extend
to semifirs?

4. Is the inverse limit of a system of semifirs always a semifir? (Hint: Note that the
intersection of any directed system of subrings may be written as an inverse limit.)

5. Give a proof of Proposition 1.4.1 using Theorem 3.1.
6. Let R be an n-fir and S a subring that is also a homomorphic image of R, under

a homomorphism fixing S (i.e. S is a retract of R). Show that S is again an
n-fir.
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7∗. (G. M. Bergman) Let R be an n-fir and S a set of R-linear automorphisms of Rn .
Show that the set of fixed elements is free and is a direct summand of Rn .

8. Let R be an n-fir. Given a relation x1 y1 + · · · + xn yn = 0 in R, show that
rk(

∑
xi R) + rk(

∑
Ryi ) ≤ n. Does this remain true if xi ∈ r R, yi ∈ Rs?

9. Show that a semifir is a right fir if and only if it is right hereditary. (Hint: Use
Theorem 1.4.)

10∗. Let R = Z + xQ[x] be the ring of all polynomials in an indeterminate x with
rational coefficients and integral constant term. Show that R is a Bezout domain,
but not principal, although all maximal ideals are finitely generated.

11∗. Give an example of a semifir R, not a left fir, in which all maximal left ideals are
finitely generated. (Hint: Try the ring in Exercise 10.)

12. Show that for any n-fir and any R-module P, Pm ∼= Rm , where 1 ≤ m ≤ n, implies
P ∼= R.

13. Let R be a right Bezout domain with left ACC2. Show that if every finitely generated
torsion-free right R-module is free, then R is left and right Bezout.

14. Let R be a semifir and F a free R-module. Show that the intersection of two finitely
generated submodules of F is finitely generated. (Hint: Remember Proposition
3.6.)

15. Show that every strong G En-ring is a strong En-ring.
16∗. (G. M. Bergman) Let R be a ring for which Rn has unique rank. If every n-term

relation in R can be trivialized, show that R is an n-fir. (Without the uniqueness of
the rank of Rn it can be shown that R is weakly semihereditary, all finitely generated
projective modules are free and if R has type (h, k), then n = i + jk, 2h − 1 ≤
i < h + k, j ≥ 1.)

17. For any local ring R define Gn(R) as the group of all invertible matrices whose
entries below the main diagonal lie in the maximal ideal. If R is a commutative
discrete valuation ring, show that it is a strong G-ring. If R is a local ring, what can
be said about the form of R when R is a strong G-ring?

18. Show that a left (or right) Ore domain is a strong G-ring if and only if it is a strong
G2-ring.

19◦. Let R be a semifir, K a subfield of R and α an automorphism of R such that for each
n �= 0, the fixed ring of αn is K. Find conditions for K [x, x−1; α] to be a semifir.

20◦. Is every weakly semihereditary local ring a semifir?
21◦. Is every non-Ore right fir semiprimitive (i.e. with zero Jacobson radical)? Can a

non-Ore fir be simple?
22. Show that if every relation in a ring R can be trivialized, then every finitely generated

right ideal of R is free and R has IBN, i.e. R is a semifir (thus the condition in
Theorem 3.1(a) that the matrices are square is not needed. Hint: Take a minimal
generating set of the right ideal).

2.4 The weak algorithm

As we have seen in Section 2.2, firs may in a sense be regarded as a natu-
ral generalization of principal ideal domains, and it now remains to find some
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examples. Just as a ring can often be recognized as a principal ideal domain by
means of the division algorithm (see Section 1.2), so we shall find a character-
istic property generalizing the division algorithm and possessed by many firs;
this is the weak algorithm, to which we now turn.

Any generalization of the division algorithm will necessarily depend on the
form of the value function. We shall not make the most general choice, but take
our function to be a filtration. This means that we have a mapping from R to
N ∪ {−∞} with the properties:

V.1. v(x) ≥ 0 for all x �= 0, v(0) = −∞,
V.2. v(x − y) ≤ max{v(x), v(y)},
V.3. v(xy) ≤ v(x) + v(y),
V.4. v(1) = 0.

These rules essentially state that −v(x) is a pseudo-valuation, though we shall
not use that term. If equality holds in V.3, we have a degree-function, as defined
in Section 1.1; then −v(x) is a valuation, as usually defined. This will mostly
be the case, so we shall also call v(x) the degree of x.

Given any filtration on R, let us write R(h) for the set of elements of degree
at most h; the R(h) are subgroups of the additive group of R such that

(i) 0 = R(−∞) ⊆ R(0) ⊆ R(1) ⊆ . . . ,

(ii) ∪R(h) = R,
(iii) R(i) R( j) ⊆ R(i+ j),
(iv) 1 ∈ R(0).

Conversely, any series of subgroups R(h) of the additive group of R satisfying
(i)–(iv) leads to a filtration v, given by v(x) = min{h|x ∈ R(h)}, as is easily
seen. We remark that every ring has the trivial filtration

v(x) =
{

0 if x �= 0,

−∞ if x = 0.

Let R be a filtered ring, with filtration v. Given an element a of R and a
family (ai ) (i ∈ I ) of elements, a is said to be right v-dependent on the family
(ai ) if a = 0 or if there exist bi ∈ R, almost all 0, such that

v(a −
∑

ai bi ) < v(a) and v(ai ) + v(bi ) ≤ v(a) for all i. (1)

In the contrary case a is said to be right v-independent of the (ai ). We note that
dependence on a family is unaffected by adjoining 0 to or removing 0 from the
family.
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A family (ai ) in R is said to be right v-dependent if there exist elements
bi ∈ R, almost all 0, such that

v
(∑

ai bi

)
< max{v(ai ) + v(bi )}, (2)

or if some ai = 0; otherwise the family is right v-independent. We note that
any right v-independent family will be right linearly independent over R. Of
course the converse need not hold; in fact linear dependence is just the special
case of v-dependence obtained by taking v to be the trivial filtration.

If an element of a family (ai ) is right v-dependent on the rest, the family is
clearly v-dependent. Let us call a finite family (a1, . . . , am) strongly right v-
dependent if, given an ordering such that v(a1) ≤ . . . ≤ v(am), some ai is right
v-dependent on a1, . . . , ai−1; a general family is strongly right v-dependent, if
this is true of some finite subfamily. It follows that a strongly right v-dependent
family is right v-dependent, but the converse is not generally true; in fact the
converse constitutes the ‘weak algorithm’, as expressed in the following

Definition A ring R with a filtration v is said to satisfy the n-term weak
algorithm relative to v (for a positive integer n), if R is non-trivial and any right
v-dependent family of at most n members of R is strongly right v-dependent.
If R satisfies the n-term weak algorithm for all n, we shall say that R satisfies
the weak algorithm for v.

We note that if a is right v-dependent on a family (ai ), then by (1), bi = 0
whenever v(ai ) > v(a), hence a is right v-dependent on the ai of degree at most
v(a). If moreover, every element of degree zero is a unit (which will normally
be the case), then a family (ai ) is strongly right v-dependent precisely when
some ai is right v-dependent on the rest.

For example, the 1-term weak algorithm for R states that v(ab) < v(a) +
v(b) implies that a = 0 or b = 0, in other words, v(ab) = v(a) + v(b) for all
a, b �= 0, i.e. v is a degree-function, and so R is an integral domain. When the
2-term weak algorithm holds in R, v is a degree-function and for any right
v-dependent a, b ∈ R such that v(a) ≥ v(b), there exists c ∈ R such that v(a −
bc) < v(a). In other words, the division algorithm holds for any pair of right
v-dependent elements. Suppose further, that v(a) = 0; the family (a, 1) is right
v-dependent, since a.1 − 1.a = 0 and v(a) = v(1), hence v(1 − ab) < 0, for
some b ∈ R, i.e. ab = 1. Since R is an integral domain, it follows that a is a
unit; so when the 2-term weak algorithm holds, every element of degree zero
is a unit.

At first sight it looks as if the weak algorithm refers to the right-hand side,
but in fact the notion is left–right symmetric, as we shall now show.
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Proposition 2.4.1. A filtered ring satisfies the n-term weak algorithm if and
only if the opposite ring does.

Proof. Let R be a filtered ring with n-term weak algorithm. Given two families
of non-zero elements a1, . . . , am, b1, . . . , bm(m ≤ n) such that

v
(∑

ai bi

)
< max{v(ai ) + v(bi )},

we have to show that the bi are strongly left v-dependent. For m = 1 there is
nothing to prove, so we may assume that m > 1. If max{v(ai ) + v(bi )} = k, we
may omit any terms ai , bi for which v(ai ) + v(bi ) < k, and so we may assume
that

v(ai ) + v(bi ) = k for i = 1, . . . , m. (3)

Further, the terms may be renumbered so that

v(a1) ≤ . . . ≤ v(am), and hence v(b1) ≥ . . . ≥ v(bm).

We shall use a double induction, on m and k. By the weak algorithm some
ai is right v-dependent on the preceding a’s, say for i = m, without loss of
generality; using j as an index running from 1 to m − 1, we have

v
(

am −
∑

a j c j

)
< v(am), v(a j ) + v(c j ) ≤ v(am). (4)

Write a′
m = am − ∑

a j c j ; then∑
ai bi =

∑
a j b j +

(
a′

m +
∑

a j c j

)
bm =

∑
a j (b j + c j bm) + a′

mbm . (5)

Now by (4), v(a′
m) < v(am), and so v(a′

m) + v(bm) < k. Further, v(c j bm) ≤
v(c j ) + v(bm) ≤ v(am) − v(a j ) + v(bm) = k − v(a j ) = v(b j ), by (4) and (3).
Hence v(b j + c j bm) ≤ v(b j ) and so

max j {v(a j ) + v(b j + c j bm)} ≤ k. (6)

If equality holds in (6), we can omit the last term on the right of (5) and
use induction on m, while for strict inequality in (6) we can use induction
on k. In either case we find that for some j, say j = 1, b1 + c1bm is left v-
dependent on the rest, hence b1 is left v-dependent on b2, . . . , bm as we wished to
show. �

We note that for any n′ ≤ n, the n-term weak algorithm entails the n′-term
weak algorithm. Thus in any filtered ring R we shall be able to prove more
about R, the larger n is. Let us define the dependence number of R relative to
the filtration v, written λv(R), as the greatest integer n for which the n-term
weak algorithm holds, or ∞ if it holds for all n. Thus λv(R) = ∞ means that
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the weak algorithm holds for v in R, while λv(R) ≥ 1 means that the 1-term
weak algorithm holds, i.e. v is a degree-function. In particular, such a ring will
be an integral domain. For this reason the notion of dependence as defined here
is of no interest for rings other than integral domains. In fact, we shall almost
exclusively be concerned with integral domains in this book.

In any filtered ring R, the set R(0) = {a ∈ R|v(a) ≤ 0} is clearly a subring.
If moreover, λv(R) ≥ 2, then as we saw, every element of degree 0 is a unit. It
follows that R(0) is a field whenever R satisfies the 2-term weak algorithm for
v. For this reason, in considering filtered rings, we shall usually confine our
attention to rings where R(0) is a field (not necessarily commutative).

To illustrate the notion of dependence let us consider the commutative case
or, a little more generally, the case of Ore domains. In a right Ore domain any
set of more than one element is clearly right v-dependent. Hence, if λv(R) ≥ 2,
the familiar division algorithm holds, in the form A of Section 1.2. Conversely,
if the classical division algorithm holds in R, then any element of R is right
v-dependent on any non-zero element not of higher degree, and this in turn
shows that λv(R) = ∞. These results are summed up in

Proposition 2.4.2. For any filtered right Ore domain R there are exactly three
possibilities:

(i) λv(R) = 0 : v is not a degree-function,
(ii) λv(R) = 1 : v is a degree-function, but the division algorithm does not

hold,
(iii) λv(R) = ∞ : v is a degree-function and the division algorithm holds in R.

�

In contrast to this result, for non-Ore domains λv can have any positive integer
value, by the results of Section 2.11 or also SF, Section 5.7. All this is of course
in strict parallel with the n-fir condition (see Proposition 2.2).

In order to describe the connexion between the weak algorithm and semifirs
we shall need a general result on filtered rings:

Lemma 2.4.3. Let R be a filtered ring. Then any n-term row vector over R can
be reduced by a member of En(R) acting on the right, to a row whose non-zero
components are not strongly right v-dependent.

Proof. Let u ∈ Rn and suppose its non-zero components are strongly right
v-dependent; thus a non-zero term is right v-dependent on the rest. Then by
adding to it an appropriate right linear combination of the remaining terms,
we can reduce its degree without affecting the degrees of the other terms.
Clearly this operation corresponds to a right action by a member of En(R). We
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repeat the process until no such terms remain; it must terminate since the set of
values of v is well-ordered: −∞, 0, 1, 2, . . . and so is the sequence of degrees
(v(u1), . . . , v(un)) in the lexicographic ordering. �

Now let R be a ring satisfying the n-term weak algorithm relative to a filtration
v. Then for m ≤ n, any m-tuple can be reduced by a member of Em(R) to one
in which the non-zero terms are not strongly right v-dependent, hence right
v-independent and so linearly independent. This establishes

Theorem 2.4.4. If R is a filtered ring satisfying the n-term weak algorithm,
then R is a strong En-ring, and in particular an n-fir. Moreover, any filtered
ring with weak algorithm is a semifir and a strong E-ring. �

In fact a filtered ring with weak algorithm is a fir, as we shall see in a moment
(Theorem 4.6). As a further consequence of Lemma 4.3 we have

Corollary 2.4.5. Let R be a filtered ring with weak algorithm. Given an expres-
sion

c =
n∑

i=1

ai bi , (7)

where a1, . . . , an are right linearly independent and b1, . . . , bn are left linearly
independent, there exists a matrix P = (pi j ) ∈ En(R) such that on writing
a′

j = ∑
ai pi j , bi = ∑

pi j b′
j , we have v(a′

i ) + v(b′
i ) ≤ v(c).

Proof. By elementary transformations we obtain a′
j = ∑

ai pi j such that
a′

1, . . . , a′
n are right v-independent, but this just means that (2) cannot hold, i.e.

v(a′
i ) + v(b′

i ) ≤ v(c), as claimed. �

Let us consider more closely the structure of a right ideal a in a filtered ring
R, where R(0) is a field. A family B of elements of a will be called a weak v-basis
for a if (i) all elements of a are right v-dependent on B, and (ii) B is not strongly
right v-dependent. It is easily seen, using the well-ordering of the range of v,
that a weak v-basis of a generates a as a right ideal; but in a general filtered
ring it need be neither v-independent nor a minimal generating set.

When R(0) is a field K, every right ideal a of R has a weak v-basis, which
may be constructed as follows. For any integer h ≥ 0, a(h) = a ∩ R(h) is clearly
a right K-space; moreover, the set a′

(h) of all elements of a(h) that are right v-
dependent on a(h−1) is also a right K-space. For evidently a′

(h) is closed under
right multiplication by elements of K; closure under addition is clear if the sum
has degree h, while if it does not, the sum lies in a(h−1). Now for each h ≥ 0,
choose a minimal set B(h) spanning a(h) over a′

(h), i.e. representatives for a K-
basis of a(h)/a

′
(h), and put B = ∪B(h). By induction on h it follows that every
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member of a(h) is right v-dependent on B, for all h. However, B itself is not
strongly v-dependent, by the minimality condition in our choice of B(h); thus B
is a weak v-basis for a.

Conversely, every weak v-basis of a must have the property that its elements
of degree h form a right K-basis of a(h) (mod a′

(h)). Hence any two weak v-bases
of a given right ideal a have the same number of elements in each degree h,
viz. dimK (a(h)/a

′
(h)). This number will be called the number of v-generators in

degree h and denoted by rh(a). It is clear that when the weak v-basis of a is
right v-independent, then a is free of rank

∑
rh(a).

If a and b are two right ideals of R such that a ⊃ b and s is the least degree for
which a(h) �= b(h), then rh(a) = rh(b) for h < s, while rs(a) > rs(b), provided
that rs(b) is finite.

Although every right ideal in a filtered K-ring R has a weak v-basis, this
basis need not be right v-independent. But if a happens to have a v-independent
generating set B say, then B must be a weak v-basis. For, given a ∈ a, where
a = ∑

bi ci (bi ∈ B, ci ∈ R), we have v(a) = max{v(bi ) + v(ci )} by the v-
independence of the bi ; it follows that v(a − ∑

bi ci ) = −∞ is a relation of
v-dependence of a on B. Hence all the elements of a are v-dependent on B,
while B is not strongly v-dependent, by definition.

So far R was any filtered ring in which R(0) is a field. We now strengthen
this assumption by imposing the weak algorithm. Then any weak v-basis of a
right ideal a is right v-independent, so a is free, with any weak v-basis as free
generating set. We claim thatahas a unique rank; for the proof it is enough to take
the case where a is finitely generated (see BA, Proposition 4.6.4). Consider any
basis of a, not necessarily a weak v-basis. By treating in turn the basis elements
of degrees 0, 1, 2, . . . we find that this basis can always be transformed to a
weak v-basis by a sequence of elementary transformations, and so it has the
same number of elements as the latter. Thus a has unique rank; by Proposition
4.1 the same holds for all left ideals and so we have proved

Theorem 2.4.6. Every filtered ring with weak algorithm is a fir, and each left
or right ideal has a v-independent basis. �

We note that the IBN for rings with a weak algorithm also follows from
Theorem 4.4. Of course, as we saw in Proposition 1.3.1, a ring with a right
division algorithm is a right PID; here we do not have a two-sided conclusion,
owing to the asymmetry of the division algorithm.

Next we turn to the case of a ring with n-term weak algorithm. As in Theorem
4.4 we find again that this is an n-fir, but in addition we shall see that it also
satisfies left and right ACCn . The result will follow from a general property of
weak v-bases in filtered rings:
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Lemma 2.4.7. Let R be a filtered ring such that R(0) is a field. Then R satisfies
(left and right) pan-ACC.

Proof. Let a be a right ideal which is generated by a family of at most n
elements. Then a has a weak v-basis a1, . . . , am(m ≤ n). We associate with
a the n-tuple (v(a1), . . . , v(am), ∞, . . . ,∞) (with (n − m)∞’s) as ‘indicator’.
Clearly this indicator is independent of the choice of weak v-basis. If a ⊃ b,
the indicator of a will be smaller, in the lexicographic ordering, than that of
b. Since the set of these indicators is well-ordered, the ideals satisfy ACC. By
symmetry this also holds for left ideals. �

For rings with n-term weak algorithm, where n ≥ 2, R(0) is a field, as we
have seen, so this leads to the following result:

Proposition 2.4.8. Let R be a filtered ring with n-term weak algorithm, where
n ≥ 2. Then R is an n-fir and satisfies left and right pan-ACC. This conclusion
still holds for n = 1, provided that R(0) is a field. �

Exercises 2.4

1. Verify that a ring R has a filtration v such that λv(R) ≥ 1 if and only if R is an
integral domain.

2. Show that for any filtered ring with 2-term weak algorithm R(0) is a field. Give an
example of a ring with 1-term weak algorithm but not satisfying left or right ACC1.
(Hint: Use Lemma 4.7.)

3. Define filtered modules over a filtered ring R and introduce the notion of weak algo-
rithm for filtered modules. Show that every module satisfying the weak algorithm
is free; what does the existence of a module ( �= 0) with weak algorithm imply about
R?

4. Investigate rings satisfying the weak algorithm relative to the trivial filtration.
5. Show that the weak algorithm holds in a filtered ring R if and only if (i) in every

right v-dependent family one member is right v-dependent on the rest, and (ii) every
element of degree 0 is a unit.

6◦. Generalize Hasse’s characterization of PIDs (see Exercise 1.3.8) to firs.
7◦. Investigate the notion of a weak algorithm relative to a function φ more general

than a filtration.
8. Extend Corollary 4.5 to the case where the a’s and b’s are not necessarily linearly

independent.

2.5 Monomial K-bases in filtered rings and free algebras

In this section we shall prove an analogue of Theorem 1.2.6, which will describe
the rings with a weak algorithm. For any filtered ring R we define the ‘formal
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degree’ of an expression
∑

i ai1 . . . aini as

max i {v(ai1) + · · · + v(aini )}.

Clearly the actual degree of an element of R never exceeds the formal degree
of any expression for it. We also note that the definition of v-independence of
a family states that the degree of elements represented by certain expressions
should equal the formal degree of these expressions.

Let R be a filtered ring for which R(0) is a field K. A family X of elements
of R is called a monomial right K-basis if the monomials in X span R as right
K-space and are not strongly right v-dependent. A corresponding definition
applies to a monomial left K-basis. It is clear that any element of a monomial
right K-basis has a strictly positive degree. Such a family X may be constructed
recursively as follows.

For each h > 0 denote by R′
(h) the right K-subspace of R(h) spanned by the

products ab, where a, b ∈ R(h−1) and v(a) + v(b) ≤ h. Now choose a minimal
family Xh spanning R(h) (mod R′

(h)) over K, i.e. a family of representatives for a
right K-basis of R(h)/R′

(h) and put X = ∪Xh . To show that X has the properties
stated above, suppose that X is strongly right v-dependent, say

x ≡
∑

x j b j
(
mod R(h−1)

)
, (1)

where v(x j ) + v(b j ) ≤ v(x) = h. Any terms x j b j with v(x j ) < h lie in R′
(h),

so (1) takes the form x ≡ ∑
x jβ j (mod R(h)

′), where β j ∈ K and v(x j ) = h
whenever β j �= 0. But this contradicts the construction of X; so no element
of X is right v-dependent on the rest, i.e. X is not strongly right v-dependent.
Now an easy induction on the degree shows that the monomials in X span R
as right K-space; more precisely, the monomials of formal degree at most h
span R(h). Thus we see that every filtered ring R for which K = R(0) is a field
has a monomial right K-basis. As in the case of weak v-bases of right ideals,
we see that the cardinality of a monomial right K-basis (and more precisely,
the number of elements of a given degree) is independent of the choice of
basis. Correspondingly a monomial left K-basis can be constructed for R, by
symmetry.

We now show that the monomial right K-basis is v-independent precisely
when the weak algorithm holds. Given any family X of elements in a K-ring
R, if R is spanned as right K-space by the monomials in X, we can define a
filtration on R by assigning to each x ∈ X a positive integer as degree and to
each element a of R the minimum of the formal degrees of the right K-linear
expressions in X representing a. We shall denote by xI = x1x2 . . . xn a monomial
in X.
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Theorem 2.5.1. Let R be a filtered ring such that R(0) is a field K, and let X be
a monomial right K-basis for R. Then the following conditions are equivalent:

(a) R satisfies the weak algorithm,
(b) X is right v-independent,
(c) the degree of any expression

∑
xI aI (aI ∈ K ) is equal to its formal degree.

When these conditions are satisfied, the monomials in X form a right K-basis
for R.

Proof. (a) ⇒ (b). If R satisfies the weak algorithm, then any monomial right
K-basis X of R is clearly rightv-independent and each x ∈ X has positive degree.

(b) ⇒ (c). Since R(0) = K , X has no elements of degree 0. If (c) does not
hold, then the monomials in X are right K-linearly dependent, say

∑
xI aI = 0.

By splitting off the left-hand factor from X in each xI we can write this as∑
xax + α = 0 (x ∈ X, ax ∈ R, α ∈ K )α.

By the v-independence of X, each ax = 0 and so α = 0. Now an induction on
the formal degree shows that the given relation was trivial. Thus the monomials
in X are right K-linearly independent; hence they form a right K-basis for R and
(c) holds.

To prove (c) ⇒ (a) we show that R satisfies the left-hand analogue of the
weak algorithm, which by Proposition 4.1 is equivalent to the weak algo-
rithm itself. Let us consider how monomial terms, i.e. scalar multiples of
monomials multiply in R. The product (x1 . . . xiα)(y1 . . . y jβ) can be written
(x1 . . . xi )(αy1 . . . y jβ). If we write the second factor as a right K-linear com-
bination of monomials, little can be said about the terms that will occur, except
that we know their degrees. However, in the product all terms will clearly have
x1 . . . xi as a left factor.

Let us fix a monomial x1 . . . xh of degree r and define the right transduction
for this monomial as the right K-linear map a �→ a∗ of R into itself which sends
any monomial of the form x1 . . . xhb to b and all other monomials to 0. Thus
a∗ is the ‘right cofactor’ of x1 . . . xh in the canonical expression for a. For any
a ∈ R we have v(a∗) ≤ v(a) − r , because the degree of a equals its formal
degree. Further, if a, b ∈ R, and v(b) = s, then

(ab)∗ ≡ a∗b
(
mod R(s−1)

)
. (2)

This is clear if a is a monomial of degree at least r; in fact we then have equality.
If a is a monomial of degree less than r, the right-hand side of (2) is 0 and so
(2) holds as a congruence. If a = wα, where w is a monomial and α ∈ K ×,
then (ab)∗ = (wαb)∗ = (w(αb))∗ ≡ w∗(αb) = (wα)∗b, by the case previously
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proved, and the congruence is mod R(s−1), where s = v(b) = v(αb). Now (2)
follows by linearity.

Assume now that b1, . . . , bn is a left v-dependent family, i.e.

v
(∑

ai bi

)
< d = max{v(ai ) + v(bi )}. (3)

We have to show that the bi are strongly left v-dependent, i.e. taking the bi

ordered so that v(b1) ≥ · · · ≥ v(bn), we must show that some bi is left v-
dependent on those that follow. By omitting terms if necessary we may assume
that v(ai ) + v(bi ) = d for all i, hence v(a1) ≤ · · · ≤ v(an).

Let x1 . . . xh be a product of maximal degree r = v(a1) occurring in a1 with
non-zero coefficient α and denote the right transduction for x1 . . . xh by ∗. In
the expression

∑
ai

∗bi the ith term differs from (ai bi )∗ by a term of degree
< v(bi ) ≤ v(b1). Hence the sum will differ by a term of degree less than v(b1)
from (

∑
ai bi )∗, which has degree ≤ v(

∑
ai bi ) − r < d − r = v(b1). There-

fore v(
∑

ai
∗bi ) < v(b1), and this gives a relation of left v-dependence of b1 on

the remaining bi , since a1
∗ = α ∈ K ×. �

More generally, let K be a field and V a K-bimodule and define its tensor
powers

Fn = V n = V ⊗ · · · ⊗ V (n terms for n > 0, F0 = K ). (4)

We define the direct sum F = F0 ⊕ F1 ⊕ . . . as a K-ring with multiplication
induced by the natural isomorphism Fm ⊗ Fn ∼= Fm+n(m, n = 0, 1, . . .); the
ring F so obtained will be called the tensor K-ring on V and we write F = K [V ].
If X is a right K-basis for V , then the free monoid on X, denoted by X∗, is a
right K-basis for F, with the products of n factors from X as a basis for Fn .
Taking X to be indexed: X = {xi }, we can write the general element of X∗ as

xI = xi1 xi2 . . . xin , (5)

where I = (i1, . . . , in) runs over all finite sequences of subscripts (including
the empty sequence, to represent 1). Clearly each element of F is uniquely
expressible in the form

f =
∑

xI αI (αI ∈ K , almost all 0). (6)

This ring F is called the tensor K-ring over X (with base field k) and is denoted
by Kk〈X〉.

By the natural filtration on K [V ] we understand the filtration obtained by
assigning the degree 1 to the elements of X and using the induced formal degree.
By definition it then follows from Theorem 5.1 that K [V ] satisfies the weak
algorithm. Bearing in mind Theorem 4.6, we obtain
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Corollary 2.5.2. Let K be a field and V a K-bimodule. Then the tensor K-ring
on V, K [V ], satisfies the weak algorithm relative to the natural filtration; hence
it is a fir. �

An important example is obtained by taking V as the K-space with basis
X = {x1, . . . , xd} and left K-action defined by cxi = xi c(c ∈ K ). The ring thus
obtained is denoted by K 〈X〉 or K 〈x1, . . . , xd〉 and is called the free K-ring on
X, or in case K is commutative, the free K-algebra on X. By Corollary 5.2 the
free K-ring satisfies the weak algorithm; in particular, for the free algebra we
obtain a characterization in this way:

Theorem 2.5.3. Let R be an algebra over a commutative field k, with a filtra-
tion v such that R(0) = k. Then R is the free associative k-algebra on a set X with
the formal degree induced from ν : X → N if and only if the weak algorithm
holds in R for v.

Proof. By hypothesis, k is contained in the centre of R and when the weak
algorithm holds, the form of the elements described in Theorem 5.1 shows R
to be the free k-algebra on X. The converse has already been noted above. �

Let K be a field and R, S any K-rings; then we can define the coproduct
P = R∗K S of R and S over K as the pushout of the maps K → R, K → S (see
Appendix B(ii)). In fact it is not necessary for K to be a field, for the coproduct
to be defined, but when we do have a field K, then the coproduct is faithful and
separating, i.e. R, S are embedded in P and their intersection is K. This follows
by taking any right K-bases X of R\K and Y of S\K and noting that the formal
products

m = w1 . . . wn (7)

with factors from X ∪ Y ∪ {1} form a right K-basis of P. If moreover, R and S
are both filtered with R(0) = S(0) = K , then P has a natural filtration obtained
by taking P(n) to be spanned by products from monomial right K-bases of R and
S of total degree n. Now we have the following result whose proof generalizes
that of Theorem 5.1:

Theorem 2.5.4. Let R, S be filtered K-rings with weak algorithm, where R(0)
∼=

S(0)
∼= K . Then their coproduct R∗K S with the natural filtration also satisfies

the weak algorithm.

Proof. The coproduct P = R∗K S has the right K-basis (7); so every ele-
ment of P is a sum of monomial terms w1 . . . wnα, where the wi are taken
from monomial right K-bases in R and S and α ∈ K , and any product
(w1 . . . wnα)(w′

1 . . . w′
mβ) can be written (w1 . . . wn)(αw′

1 . . . w′
mβ). Thus for
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any product m = w1 . . . wn of degree r we can define again the right transduc-
tion as the right K-linear map a �→ a∗ of P into itself that sends any monomial
w1 . . . wnb to b and all other monomials to 0. Now exactly the same proof as
for Theorem 5.1 (c) ⇒ (a) shows that P satisfies the weak algorithm. �

By taking the free K-ring as one of the factors we obtain the following
consequence:

Corollary 2.5.5. Let R be a ring with weak algorithm, where R(0) = K . Then
for any set X the free R-ring RK 〈X〉 satisfies the weak algorithm and hence is
a fir. �

In particular, if D is any field and K a subfield, then the free D-ring DK 〈X〉 is
a ring satisfying the weak algorithm.

In connexion with Theorem 5.1 we note that, given a field K and a K-ring R
with a subset X such that the monomials in X form a right K-basis for R, if we
assign arbitrary degrees to members of X and give elements of R their formal
degrees when expressed in terms of this basis, this will not necessarily define
a filtered ring structure on R. The main reason is that for α ∈ K , x ∈ X , the
element αx , when expressed as a right linear combination of monomials in X,
may not have the same formal degree as x. When the weak algorithm holds, as
in the above example of free associative algebras, or even in the case of tensor
rings on X, this cannot happen. But in general it may not be possible to assign
a suitable filtration; e.g. we may have αx = x2 + y (α ∈ K , x, y ∈ X ). In the
proof of Theorem 5.1 essential use was made of the fact that v was given as a
filtration on R.

The tensor ring K [V ] is an example of an augmented K-ring, that is a K-
ring R of the form R = K ⊕ I , for an ideal I, the augmentation ideal. This
augmentation ideal I is a K-bimodule and has all the properties of a ring, except
that it lacks a unit element, but the standard procedure for adjoining a unit
element yields the ring R. Given R, we recover I as follows. The unit element
1 of R is uniquely determined, and now K is the set of all scalar multiples of 1.
So we can form the quotient K-bimodule R/K , which is I. This argument can
be used to show that V is determined up to isomorphism by K [V ]:

Theorem 2.5.6. Let K be a field and V a K-bimodule. Then the tensor ring
K [V ] determines V up to K-bimodule isomorphism.

Proof. Suppose that U, V are K-bimodules such that there is a K-ring
isomorphism K [U ] ∼= K [V ]. We can write K [U ] = K ⊕ I , where I = U ⊕
U 2 ⊕ . . . ; similarly K [V ] = K ⊕ J , where J = V ⊕ V 2 ⊕ . . . . Then J ∼=
K [V ]/K ∼= K [U ]/K ∼= I ; hence U ∼= I/I 2 ∼= J/J 2 ∼= V . �
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In the case of a tensor K-ring over X we have V = (K ◦ ⊗ k K )(X ), and this
shows the cardinality of X to be determined by V , hence we have

Corollary 2.5.7. For any field K with subfield k and any set X, the cardinality
of X is determined by the tensor K-ring Kk〈X〉. �

The cardinality of X is called the rank of Kk〈X〉. Since the tensor ring K [V ]
is a graded ring, we also have an order-function, where the order of an element
f ∈ K [V ] is defined as the lowest degree of any terms occurring in f. With
the help of this function we can form the completion of K [V ], denoted by
K [[V ]] = ∏∞

n=0 V n and called the power series K-ring over V . Its elements
are infinite series f = f0 + f1 + · · · ( fn ∈ V n). For a family X we shall denote
the completion of Kk〈X〉 by Kk〈〈X〉〉. In the case where X is infinite, it is
sometimes advantageous to assign degrees to the elements of X in such a way
that only finitely many are of degree < n, for any integer n. The ring so obtained
will be larger than the completion where all elements of X have degree 1.

The description in Theorem 5.1 of rings with a weak algorithm is not very
explicit, for although it enables us to write down many examples, it does not
provide a method for constructing all rings with a weak algorithm. We shall
now describe such a method, but in order to do so we need another concept.

By a truncated filtered ring of height h (briefly, h-truncated ring), R(h), we
shall mean a finite chain of abelian groups

0 = R(−∞) ⊆ R(0) ⊆ R(1) ⊆ . . . ⊆ R(h) ,

with a function called multiplication defined on ∪{R(i) × R( j)|i + j ≤ h} such
that:

T.1. For i + j ≤ h, multiplication restricted to R(i) × R( j) is a biadditive func-
tion with values in R(i+ j),

T.2. For i + j + k ≤ h, multiplication is associative on R(i) × R( j) × R(k),
T.3. R(0) contains the neutral element for multiplication, 1.

Here we have used the same symbol, R(h), for the last term of the defining chain
and the total structure.

By a morphism f : R(h) → S(k) of truncated filtered rings we mean a map f
respecting addition, multiplication and unit element, such that R(i) f ⊆ S(i); in
particular, h ≤ k.

Let R(h) be a truncated filtered ring and let a ∈ R(h). We define the degree,
v(a), of a as the least i such that a ∈ R(i). From the definition of multiplication
in R(h) we see that ab is defined precisely when v(a) + v(b) ≤ h.

With every filtered ring and every integer h there is associated a truncated
filtered ring of height h, obtained by ‘forgetting the terms of degree > h’.
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This ‘truncation’ functor has a left adjoint, associating with every h-truncated
ring R(h) the universal filtered ring U (R(h)) generated by R(h). More gener-
ally, for every h-truncated ring and each k ≥ h there is a universal k-truncated
ring.

It is clear how to define ‘v-dependence’ and ‘strong v-dependence’ for a
family of elements of a truncated filtered ring, exactly as for ordinary filtered
rings. Of course the value of maxi {v(ai ) + v(bi )} in the relations considered
must not exceed h. If every v-dependent family is strongly v-dependent, the
ring is said to satisfy the weak algorithm. Theorem 5.1 is then easily seen to
go through in this context; in particular, for any monomial right K-basis of a
truncated filtered K-ring with weak algorithm the degree of any element is equal
to its formal degree in X.

Given a truncated filtered ring R(h) satisfying the weak algorithm, let us
denote the field R(0) by K and construct X as in the discussion preceding The-
orem 5.1. We denote by R′

(h+1) the right K-space having as right K-basis the
monomials in X of formal degree ≤ h + 1 and for degree-function the formal
degree obtained by expressing elements in terms of this basis, using the degrees
in R(h) of the elements of X. We claim that R′

(h+1) is the universal truncated
filtered ring of height h + 1 for R(h).

Indeed, the space R′
(h+1) will clearly have the desired universal property if it

can be given a truncated filtered ring structure extending that of R(h). It is clear
how we must define addition, right multiplication by elements of K and left
multiplication by elements of X to obtain this structure, so it remains to define
left multiplication of monomials in X by elements of K, i.e. to give a left K-space
structure to R′

(h+1). Since we are given this structure on R(h), it suffices to define
products αu, where α ∈ K and u is a monomial of degree h + 1 in X. Such a
monomial can be written as u = xw, where x ∈ X and w is a monomial of lower
degree. In R(h) we have αx = ∑

xI βI , where v(xI ) ≤ v(x) and for each I we
have βI w = ∑

xJ γJ I , v(xJ ) ≤ v(w). We then put αu = αxw = ∑
xI xJ γJ I .

To show that this leads to an (h + 1)-truncated filtered ring structure on R′
(h+1)

we need to verify the associative law. By linearity this only needs to be checked
for triple products of monomial terms. We consider four cases, where α, β, γ ∈
K , u �= 1 is a monomial and p, q are arbitrary elements of R′

(h+1) of degrees
such that products below are defined.

(1) (up)q = u(pq). Here the left multiplication by u is just the formal product
of monomials.

(2) (αu)p = α(up). If u = xu′, where x ∈ X is of degree r, and αx = ∑
yiδi ,

then (αu)p = (αxu′)p = (
∑

yiδi u′)p, which equals α(up) by associativity
in R(h+1−r ).
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(3) (αβ)u = α(βu). If u = xu′, where x ∈ X is of degree r, then (αβ)x =
α(βx) by associativity in R(r ) and now the result follows by associativity
in R(h+1−r ).

(4) Finally (αβ)γ = α(βγ ) by associativity in K.

Using these four cases we can now verify the associativity of triple products of
monomial terms without difficulty.

By Theorem 5.1 (in its extended form, for truncated filtered rings), R′
(h+1)

now satisfies the weak algorithm and its h-truncation will be R(h). Our aim is
to find the most general form for an (h + 1)-truncated ring R(h+1) with weak
algorithm, having R(h) as its h-truncation. If R(h+1) is such a ring, it is clear
from the method of proof of Theorem 5.1 that the family X constructed for R(h)

can be enlarged to a corresponding family X ′ for R(h+1). Since the monomials
in X ′ must be right K-linearly independent, R(h+1) will have R′

(h+1) embedded
in it, i.e. the map given by the universal property will be injective.

We shall take for R(h+1) any K-bimodule containing R′
(h+1) as subbimodule

and extend v to it by setting it equal to h + 1 outside R(h). In this way R(h+1)

becomes a truncated filtered ring of height h + 1. For the only multiplications
that need to be defined on the elements of degree h + 1 are their products with
members of R(0) = K , and the conditions T.1–T.3 that they must satisfy are just
the conditions for a K-bimodule. Further, R(h+1), as a truncated filtered ring,
will satisfy the weak algorithm because on enlarging X by adjoining a minimal
generating set for the right K-space R(h+1) (mod R′

(h+1)) we obtain a generating
set for R(h+1) satisfying Theorem 5.1.

Since any filtered ring R with a weak algorithm can be written in a unique way
as ∪R(h), where each R(h) is an h-truncated ring satisfying the weak algorithm,
and equal to the h-truncation of R(h+1), it follows that R may be constructed in
this way. Thus we have proved

Theorem 2.5.8. Any filtered ring with weak algorithm can be constructed by
the following steps:

(0) choose an arbitrary field K to be R(0),
. . .

(h) given R(h−1), form the universal extension R′
(h) as above, let R(h) be any

K-bimodule containing R′
(h) as subbimodule and consider R(h) as truncated

filtered ring,
. . .

(∞) define R = ∪R(h) as the required ring. �

We note that at step (1) we have R′
(1) = R(0), so this step is simply: choose a

K-bimodule containing K. Of course the structure of K-bimodules over a field K
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is itself a non-trivial topic, for K-bimodules are effectively (K ◦ ⊗Z K )-modules
and a ring of the form (K ◦ ⊗Z K ) can have a highly complicated structure.

Exercises 2.5

1. Give a direct proof that the centre of a non-Ore filtered integral domain with a
weak algorithm is a field (see also Section 6.4).

2. If R is a ring with weak algorithm, show that R(0) is complemented by a right ideal.
Give examples to show that R(0) may not have a complement that is a two-sided
ideal. (Hint: Try skew polynomial rings.)

3. Let R be a K-ring with a subset X whose monomials form a right K-basis for R.
Given a filtration on R such that R(0) ⊆ K , show that X is right v-independent if
and only if every element of positive degree in R is v-dependent on X. Deduce
that R satisfies the weak algorithm relative to this filtration.

4. Define a filtration on the free algebra R = k〈X〉 for which the weak algorithm
does not hold (Hint: Regard R as the universal associative envelope of the free Lie
algebra on X.)

5. In Z〈X〉 define the content c( f ) of f by c(0) = 0, while for f �= 0 c( f ) is the HCF
of all the coefficients. Prove Gauss’s lemma in the form c( f g) = c( f )c(g) (Hint:
Imitate the proof in the commutative case.)

6. State and prove an analogue of Theorem 5.1 for truncated filtered rings.
7. For any filtered ring R write Th R for the h-truncation obtained from it, and for

an h-truncated filtered ring R(h) denote by UR(h) the universal filtered ring. Given
an h-truncated filtered ring R(h), show that the canonical map R(h) → ThU R(h) is
surjective but not necessarily injective.

8. Let F be Q or Fp (p prime). Show that every F-bimodule is a direct sum of copies
of F as F-bimodule. Deduce that every filtered F-ring R with weak algorithm such
that R(0) = F is a free algebra.

9. Show that the Jacobson radical of a tensor K-ring R = K [U ] is zero. Let I be the
augmentation ideal of K [U ]; show that ∩I n = 0, and when R = K 〈X〉, find an
ideal not contained in I with the same property (see also Section 5.10).

10. Let kF be the group algebra (over a commutative field k) of a free group F. Show
how to compute the rank of F in terms of kF.

11. Given a commutative field k and two disjoint sets X and Y, the mixed free k-
algebra on X, Y, Y −1 is defined as the k-algebra k〈X, Y, Y −1〉 generated by X, Y
and the inverses of elements of Y, which is universal for Y-inverting maps of
X ∪ Y into k-algebras. Prove that the numbers of invertible and of non-invertible
free generators in a mixed free algebra are independent of the choice of free
generators.

12. Let R = k〈x1, . . . , xr 〉 be the free k-algebra, di the derivation mapping x j to δi j

and D = ∑
xi di the derivation that is the identity on the xi . Show that for any

element a = ∑
an of R, where an is homogeneous of degree n, aD = ∑

nan .
(This result generalizes Euler’s theorem on homogeneous functions.)

13. (Jategaonkar [69c]; Koshevoi [70]) Let R be an integral domain that is not right
Ore. If x R ∩ y R = 0 (x, y �= 0), show that x and y generate a free algebra (over
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Z or Fp); deduce that an integral domain contains a free algebra on two free
generators unless it is a left and right Ore domain.

Given a left but not right Ore domain, obtain an embedding of the free algebra
of rank 2 in a field.

14. In R = k〈x, y〉 show that the elements xyr (r = 0, 1, . . .) form a free generating
set of the subalgebra k + x R, and deduce that the free algebra of countable rank
can be embedded in the free algebra of rank 2.

15. In a free algebra R = k〈X〉 show that every non-zero Lie element, i.e. sum of
repeated commutators, is an atom. (Hint: Let L be the free Lie algebra on X, with
a k-basis B which may be taken totally ordered and note that by the Birkhoff–Witt
theorem, k〈X〉 is isomorphic to the universal associative enveloping algebra UL

of L, with a basis formed by all ascending monomials in B. Now observe that an
elements of R is in L if and only if it is linear in B.)

16. Find the centralizer of X in QZ〈X〉. What happens in the general case Kk〈X〉?
(See Dicks [77], p. 575.)

17. Let R = k〈x, y, y−1〉 be the mixed free algebra. Show that the elements xi =
y−i xyi (i ∈ Z) form a free set. Denoting by A the subalgebra generated by these
elements and by α the automorphism defined on A by a �→ y−1ay, show that
R ∼= A[y, y−1; α].

18. Let R = k〈x, y〉 and write [ab(1)] = ab − ba, [ab(r+1)] = [[ab(r )]b]. Show that
the subalgebra S generated by the elements [yx (r )](r = 0, 1, . . .) is freely gener-
ated by these elements. If δ is the derivation on S defined by a �→ [ax (1)], show
that R ∼= S[x ; 1, δ].

19∗. (McLeod [58]) Let k be a commutative field of characteristic zero. Show that
the subalgebra (without 1) of k〈x, y〉 generated by all commutators is an ideal.
Show also that this fails to hold in finite characteristic or for more than two free
generators.

20. (Andrunakievich and Ryabukhin [79]) For any word w in X = {x1, x2, . . .} define
its length l(w) as the number of its factors xi and the weight p(w) as the largest
suffix of any xi occurring. A word w is light if p(w) < l(w) and heavy if no
subword is light. If I is the ideal generated by all light words, show that k〈X〉/I has
a basis consisting of all heavy words and this algebra is prime but locally nilpotent.

21. Let D be a field which is a k-algebra, with subalgebras A, B that are isomorphic via a
k-linear isomorphismϕ. Define D as an A-bimodule with the usual right multiplica-
tion and with left multiplication a.u = (aϕ)u (u ∈ D, a ∈ A). Show that the tensor
D-ring D[M], where M = D ⊗A D, has an element t �= 0 such that at = t(aϕ)
for all a ∈ A. (This is an example of the HNN-construction, see SF, Section 5.6.)

2.6 The Hilbert series of a filtered ring

In Section 2.4 we met the notion of a filtered ring; we shall also need to consider
graded rings and we briefly recall the definition. A graded ring is a ring H
expressible as a direct sum of abelian groups: H = H0 ⊕ H1 ⊕ H2 ⊕ . . . such
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that the multiplication maps Hi × Hj into Hi+ j . It follows that H0 is a subring
and each Hi is a H0-bimodule.

If R is a filtered ring, where R(0) is a field K, we consider the associated
graded ring grR = {grn R}, where grn R = R(n)/R(n−1). If each grn R is finite-
dimensional as right K-space, say dimK (R(n)/R(n−1)) = αn , then we can form
the formal power series

H (R : K ) =
∑

αntn. (1)

It is called the Hilbert series of R. Using Theorem 5.1, we can calculate the
Hilbert series of any filtered ring with weak algorithm:

Proposition 2.6.1. Let R be a filtered ring with weak algorithm, where
R(0) = K . Given a monomial right K-basis X = ∪Xn for R, define λn = |Xn| =
dimK (R(n)/R′

(n)) in the notation of Section 2.5; further, put H (X ) = ∑
λntn.

Then

H (R : K ) = (1 − H (X ))−1 . (2)

Proof. We saw that a right K-basis of R(n)/R(n−1) is formed by the set of all
monomials xI of degree n. Each sequence (n1, . . . , nr ) such that n1 + · · · +
nr = n gives rise to λn1 . . . λnr monomials of degree n, hence

αn =
∑

λn1 . . . λnr ,

where the summation is over all ordered partitions of n. It follows that

H (R : K ) =
∑

λn1 tn1 . . . λnr tnr ,

i.e. (2). �

In a moment we shall give another proof of (2). Meanwhile we note the
special case of free algebras:

Corollary 2.6.2. Let R be the free k-algebra of rank r, R = k〈x1, . . . , xr 〉
where all the xi have degree 1. Then H (X ) = r t and therefore H (R : k) =
(1 − r t)−1. �

We return to a filtered K-ring R and consider the Hilbert series of a right ideal.
Given any right ideal a of R, let βn = rn(a) = dim(a(n)/a

′
(n)) (See Section 2.4)

and γn = dimK (a(n)/a(n−1)). We note that βn and γn are bounded by dim(R(n)) =
αn , hence we may define the Hilbert series

H (a : R) =
∑

βntn, H (a : K ) =
∑

γntn.

If R satisfies the weak algorithm, these series are related by the formula

H (a : K ) = H (a : R)H (R : K ). (3)
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For if (eλ) is a weak right K-basis of a, then a right K-basis of a(n)/a(n−1) is
given by the family of all eλxI of degree n. Hence we have γn = ∑

βiαn−i and
(3) follows.

We can use (3) to give another proof of (2). We note that (2) is essentially
a statement about grR, so we may assume R to be a graded ring. Then XR is
the augmentation ideal, so that we have R = K ⊕ XR as right K-spaces, and
H (X R : R) = H (X ), H (R : K ) = 1 + H (X R : K ). Inserting these values in
(3) (for a = X R), we obtain H (R : K ) = 1 + H (X ).H (R : K ), from which (2)
follows.

We now turn to modules over filtered rings with a weak algorithm and derive
a presentation that in some cases provides information about the characteristic
of the module. We recall that for any ring R and any set B, the free right R-
module on B is written R(B); more explicitly, if gb denotes the generator indexed
by b ∈ B, its elements have the form of a finite sum

∑
gbrb(rb ∈ R, b ∈ B).

Theorem 2.6.3. Let R be a filtered ring with weak algorithm, where R(0) = K ,
and let M be a right R-module. If {gb|b ∈ B} is the basis of R(B) corresponding
to a right K-basis B of M and X is a monomial right K-basis of R, then there is
an exact sequence

0 → R(B×X ) β−→ R(B) α−→ M → 0, (4)

where α : gb �→ b (b ∈ B) and β : (b, x) �→ gbx − ∑
gcλc,x if bx = ∑

cλc,x

in M (λc,x ∈ K , b, c ∈ B).

Proof. We have βα = 0 by the definition of α and β. The cokernel of β is
the right R-module with generators gb and defining relations gbx = ∑

gcλc,x ,

hence the right K-space spanned by the gb is already an R-module and so is
all of coker β. Thus the natural surjection coker β → M is an isomorphism.
So far we have only used the facts that B is a right K-basis of M and that the
monomials in X span R.

It remains to show that β is injective. The module R(B×X ) has a basis ub,x (b ∈
B, x ∈ X ) and the general non-zero element has the form

s =
∑

ub,y x1 . . . xmλb,yx1... xm .

Put

n = max{v(yx1 . . . xm)|λb,yx1...xm �= 0 for some b},
and consider sβ. By the definition of β we have ub,xβ = gbx+ terms of lower
degree, hence the terms of highest degree (viz. n) in sβ are∑

gb yx1 . . . xmλb,y,x1...xm ,
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summed over all terms with v(yx1 . . . xm) = n. This is non-zero, hence sβ �= 0
and so β is injective. �

If X and B are finite, the characteristic of M as R-module is, by (4),

χR(M) = (1 − |X |) dimK (M) . (5)

For example, if R = k〈x1, . . . , xr 〉, a is a right ideal of finite rank d as right R-
module and dimK (R/a) = m, then taking M = R/a, we have χR(M) = 1 − d
and (5) becomes

d − 1 = (r − 1)m. (6)

This formula, due to Lewin, and known as the Schreier–Lewin formula, is a
precise analogue of Schreier’s formula for free groups. It tells us that in a free
algebra of finite rank, any right ideal a of finite codimension is finitely generated.
This result holds in fact more generally.

Thus let R be any k-algebra, generated by r elements over k, and write F
for the free k-algebra of rank r, so that R ∼= F/n for some ideal n of F. Any
right ideal a of R corresponds to a right ideal A of F containing n such that
R/a ∼= F/A as right k-spaces. In particular, if a is of finite codimension m
over k, then so is A and by (6), A is then free as right F-module, of rank
d = (r − 1)m + 1. Hence a = A/n can be generated by d elements; moreover,
if R is infinite-dimensional over k and c is any regular element of R, then cR is
infinite-dimensional and so meets a non-trivially. Thus we obtain

Corollary 2.6.4. Let R be a k-algebra generated by r elements over the com-
mutative field k. Then any right ideal a of finite codimension m in R over k can be
generated by (r − 1)m + 1 elements. Further, if [R : k] = ∞, then cR ∩ a �= 0
for any regular element c in R. In particular, in a free algebra of finite rank
every right ideal of finite codimension is right large and finitely generated. �

Exercises 2.6

1. Let R, S be filtered algebras over a commutative field k and T = R ⊗ S their tensor
product over k. Show that if the Hilbert series of R, S are defined, then so is that of
T and H (T : k) = H (R : k)H (S : k).

2. Let R be a filtered ring, where R(0) is a field K. Show that if H (R : K ) is defined, then
it has an inverse 1 − L(R : K ), where L(R : K ) is a power series in t with integer
coefficients and zero constant term. Verify that L(K [x] : K ) = t . If R, S are filtered
rings such that H (R : K ) and H (S : K ) are both defined, and P is their coproduct
over K, show that H (P : K ) is also defined and L(P : K ) = L(R : K ) + L(S : K ).

3∗. Let M = C ⊗R C where C is an R-ring and consider the tensor C-ring T = C[M].
Show that T is the coproduct of an ordinary polynomial ring over C and a
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complex-skew polynomial ring over C. How does this generalize to finite Galois
extensions?

4. (Lewin [69]) Show that any two-sided ideal in a free algebra R has the same rank
as left and as right R-module.

5. Let R = k〈x1, . . . , xr 〉 be a free algebra and a a non-zero principal right ideal. Then
the formula (6) gives

dimk(R/a) = (1 − r )−1(1 − 1) = 0.

Explain this paradox.
6. Examine the relation (3) between Hilbert series when R = K [x ; α, δ] is a skew

polynomial ring. Do the same for the Hilbert series of the opposite ring when α is
not surjective.

7. Define the notion of a filtered module M (over a filtered ring R) satisfying the weak
algorithm. Show that any submodule M ′ with the induced filtration again satisfies
the weak algorithm. Under suitable hypotheses define a Hilbert series H (M : R) and
show that H (M : R(0)) = H (M : R)H (R : R(0)). If M ′′ = M/M ′ has the induced
filtration, show that

H (M ′′ : R(0)) = [H (M : R) − H (M ′ : R)].H (R : R(0)).

8∗. For any K-ring R the universal derivation bimodule 
R/K may be defined as the
kernel of the multiplication map x ⊗ y �→ xy in R so that we have an exact sequence

0 → 
R/K −→ R ⊗K R −→ R → 0,

(See FA, Section 2.7 or Exercise 1.1.12), where λ : dx �→ x ⊗ 1 − 1 ⊗ x . When
R = K 〈X, Y, Y −1〉 is the mixed free algebra, verify that 
R/K = R(X∪Y ) and hence
obtain the exact sequence

0 → (M ⊗K R)(X∪Y ) → M ⊗K R → M → 0.

When G is the free group on Y and X = ∅, then R = K G is the group algebra. Let
H be any subgroup of G and put M = K [H\G], where H\G = ∪gH is the coset
decomposition. Deduce Schreier’s formula in the form 1 − rkH = (G : H )(1 −
rk G).

9∗. Let R be a K-ring with a subset X of r elements such that the monomials in X
span R as right K-space. Show that for any right R-module M there is a sequence
(4), exact except possibly at R(B×X ). If M is s-generated as right R-module, deduce
that M ∼= Rs/N , where N is (mr + s)-generated. If a is a right ideal of finite
codimension m in R over K, show that a can be generated by (mr + 1) elements.

2.7 Generators and relations for G E2(R)

Our next objective is to treat the analogue of the Euclidean algorithm that exists
in rings with 2-term weak algorithm. One of the main consequences is that such
a ring is always a strong E2-ring (see Section 2.3 and Theorem 4.4); moreover,
there is a convenient normal form for the elements of G E2(R), which leads
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to a presentation of GL2(R). Since many of the formulae are valid in quite
general rings, we shall digress in this section to discuss generators and relations
in G E2(R) for general rings.

For brevity let us write

T (x) =
(

1 0
x 1

)
, Q =

(
0 1

−1 0

)
, [α, β] =

(
α 0
0 β

)
,

E(x) = QT (x) =
(

x 1
−1 0

)
,

and put D(α) = [α, α−1]. We note the following relations between these matri-
ces, valid over any ring R, for any x, y ∈ R, α, β ∈ U (R):

T (x + y) = T (x)T (y), E(x + y) = −E(x)E(0)E(y), E(0) = Q, (1)

D(α) = −E(α)E(α−1)E(α), (2)

E(x)[α, β] = [β, α]E(β−1xα), [α, β][α′, β ′] = [αα′, ββ ′]. (3)

We also observe that Q = T (−1)T (1)TT (−1) ∈ E2(R) (where the super-
script T indicates the transpose) and conversely, T (x) = Q−1 E(x), T (x)T =
E(−x)Q−1. Thus G E2(R) is generated by E2(R) and all [α, β]. Further we
note the following consequences of (1)–(3):

Q2 = −I, E(1)3 = −I, E(−1)3 = I, (4)

E(x)−1 = QE(−x)Q, (5)

E(x)E(y)−1 = E(x − y)Q−1 = −E(x − y)Q, (6)

E(x)E(y)−1 E(z) = E(x − y + z), (7)

E(x)E(α)E(y) = E(x − α−1)D(α)E(y − α−1) , (8)

where x, y, z ∈ R and α ∈ U (R). Using (3) and (5), we can bring any element
A of G E2(R) to the form

A = [α, β]E(a1) . . . E(an). (9)

If ai = 0 for some i �= 1, n, this relation can be shortened by (1), while if
ai ∈ U (R) for i �= 1, n, it can be shortened using (8) and then (3) to bring D(α)
to the left. Thus in any ring R we can express any matrix A in G E2(R) in the
form (9), where α, β ∈ U (R), ai ∈ R and such that for 1 < i < n, ai is not 0
or a unit. Such an expression for A will be called a standard form for A. In the
next section we shall see that in any ring R with 2-term weak algorithm there is
a unique standard form for each A ∈ G E2(R); this will be shown to hold more
generally in any ring R with a degree function such that R(0) is a field.
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If R is a ring with unique standard form for G E2, then in any relation in this
group the left-hand side can be brought to standard form and by uniqueness this
must be I, i.e. any relation can be transformed to the trivial relation I = I using
only (1)–(3). This proves

Proposition 2.7.1. In any ring R with unique standard form for G E2 the
relations (1)–(3) form a complete set of defining relations for G E2(R). �

The sufficient condition given here is not necessary, since it does not hold for
the ring of integers Z, which however satisfies the conclusion (see Exercise 3).

The expression (9) can also be used to describe comaximal relations; for this
purpose it is more convenient to replace E(x) by the matrix P(x), given by

P(x) =
(

x 1
1 0

)
.

This matrix is no longer in E2(R), since its determinant is −1, but it belongs
to E∗

2 (R), the extended elementary group, defined as the group generated by
E2(R) and 1 ⊕ −1. The reader should have no difficulty in writing out the
analogues of (1)–(3) for P(x) instead of E(x), and in this way we obtain for
each A ∈ G E2(R) the standard form

A = [α, β]P(a1) . . . P(an), ai ∈ R, α, β ∈ U (R), ai �= 0 for 1 < i < n.

(10)
We observe that A ∈ E∗

2 (R) if it is given by (10) with β = ±α−1. To obtain
explicit formulae for the product in (10) we shall define a sequence of polyno-
mials pn in non-commuting indeterminates t1, t2, . . . with integer coefficients.
The pn are defined by the recursion formulae:

p−1 = 0, p0 = 1, (11)

pn(t1, . . . , tn) = pn−1(t1, . . . , tn−1)tn + pn−2(t1, . . . , tn−2) . (12)

For n ≥ 0, the subscript of pn indicates the number of arguments, and so may
be omitted when the arguments are given explicitly. We shall do so in what
follows and write the subscript only when the arguments are omitted. We assert
that

P(t1) . . . P(tn) =
(

p(t1, . . . , tn) p(t1, . . . , tn−1)
p(t2, . . . , tn) p(t2, . . . , tn−1)

)
. (13)

This is clear for n = 1; the general case follows by induction, since on writing
pi = p(t1, . . . , ti ), p′

i = p(t2, . . . , ti+1), we have(
pn−1 pn−2

p′
n−2 p′

n−3

) (
tn 1
1 0

)
=

(
pn pn−1

p′
n−1 p′

n−2

)
.
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From the symmetry of (13) it is clear that the p’s may also be defined by (11)
and

pn(t1, . . . , tn) = t1 pn−1(t2, . . . , tn) + pn−2(t3, . . . , tn) . (14)

Either definition shows that pn may be described as the sum of t1t2 . . . tn and
all terms obtained by omitting one or more pairs of adjacent factors ti ti+1. This
mode of forming the pn might be called the leapfrog construction; the number
of terms in pn is fn , the nth Fibonacci number. The first few polynomials are

p1 = t1, p2 = t1t2 + 1, p3 = t1t2t3 + t1 + t3,

p4 = t1t2t3t4 + t1t2 + t1t4 + t3t4 + 1 .

Equivalently, pn may be described as the polynomial part of the formal product
(when expanded):

(t1 + t−1
2 )(t2 + t−1

3 ) . . . (tn−1 + t−1
n )tn . (15)

From (12) it easily follows that

pn(0, t2, . . . , tn) = pn−2(t3, . . . , tn),

pn(1, t2, . . . , tn) = pn−1(t2 + 1, t3, . . . , tn) , (16)

while (14) yields

pn(t1, . . . , tn−1, 0) = pn−2(t1, . . . , tn−2),

pn(t1, . . . , tn−1, 1) = pn−1(t1, . . . , tn−2, tn−1 + 1) . (17)

When the t’s are allowed to commute, the p’s just reduce to the continuant
polynomials, used in the study of continued fractions, and we shall use the term
continuant (polynomial) also to describe the p’s in the general case.

It is easily verified that the inverse of P(x) is given by P(x)−1 =
P(0)P(−x)P(0); hence the inverse of P(t1) . . . P(tn) is given by

P(0)P(−tn) . . . P(−t1)P(0)

=
(

0 1
1 0

) (
p(−tn, . . . ,−t1) p(−tn, . . . , −t2)

p(−tn−1, . . . ,−t1) p(−tn−1, . . . , −t2)

) (
0 1
1 0

)
. (18)

It is clear that

p(−t1, . . . ,−tn) = (−1)n p(t1, . . . , tn) , (19)

hence (18) reduces to

[P(t1) . . . P(tn)]−1 = (−1)n
(

p(tn−1, . . . , t2) −p(tn−1, . . . , t1)
−p(tn, . . . , t2) p(tn, . . . , t1)

)
. (20)

Comparing this formula with (13), we obtain
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Lemma 2.7.2. The continuant polynomials satisfy

(i) p(t1, . . . , tn)p(tn−1, . . . , t2) − p(t1, . . . , tn−1)p(tn, . . . , t2) = (−1)n and
(ii) p(t1, . . . , tn)p(tn−1, . . . , t1) − p(t1, . . . , tn−1)p(tn, . . . , t1) = 0. �

Of course this lemma can also be proved directly by induction; it corresponds
to the well-known relations between successive convergents to a continued
fraction.

We shall now use these formulae to analyse comaximal relations in G E2-
rings. We recall that in any ring R a relation

ab′ = ba′

is called comaximal if there exist c, d, c′, d ′ ∈ R such that da′ − cb′ = ad ′ −
bc′ = 1. Suppose now that R is weakly 2-finite. Then by Proposition 0.5.6, there
exists A ∈ GL2(R) such that

A =
(

a b
∗ ∗

)
, A−1 =

( ∗ −b′
∗ a′

)
, (21)

where the asterisks denote unspecified elements. Similarly, if R is a 2-Hermite
ring, then every relation of comaximality ad ′ − bc′ = 1 arises, by Proposition
0.5.6, from a pair of mutually inverse matrices

A =
(

a b
∗ ∗

)
, A−1 =

(
d ′ ∗

−c′ ∗

)
. (22)

This leads to the following explicit formulae for comaximal relations in a G E2-
ring:

Proposition 2.7.3. Let R be any ring and use x1, . . . , xn, y, z to denote ele-
ments of R and α, β units in R.

(i) If R is a weakly 2-finite G E2-ring, then every comaximal relation in R has
the form

αp(x1, . . . , xn)p(xn−1, . . . , x1)β = αp(x1, . . . , xn−1)p(xn, . . . , x1)β ; (23)

(ii) if R is a 2-Hermite G E2-ring, then every equation of comaximality can be
written as

αp(x1, . . . , xn)p(xn−1, . . . , x2)α−1(−1)n

−αp(x1, . . . , xn−1)p(xn, . . . , x2)α−1(−1)n = 1 ; (24)

(iii) if R is a strong E2-ring, then every equation rs = uv, where r, s are not
both 0 and u, v are not both 0, can be written

yp(x1, . . . , xn)p(xn−1, . . . , x1)z = yp(x1, . . . , xn−1)p(xn, . . . , x1)z . (25)
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Proof. (i) In a weakly 2-finite ring every comaximal relation ab′ = ba′ arises
from a pair of mutually inverse matrices (21). Since R is a G E2-ring, we can
write A in the form (10):

A = [α, β−1]P(x1) . . . P(xn) , (26)

A−1 = P(0)P(−xn) . . . P(−x1)P(0)[α−1, β] , (27)

and now (23) follows on combining (26) and (27).
(ii) This follows similarly from (26), (27) and the form (22) for matrices

arising from a relation of comaximality.
(iii) Since a strong E2-ring is a 2-fir, every relation rs = uv is obtained from

a comaximal relation ab′ = ba′, in the form ya.b′z = yb.a′z. The result now
follows by applying (i) and remembering that 2-firs are weakly 2-finite. �

The significance of this proposition becomes clearer if we make the following
definitions. We recall from Section 0.5 that two elements a, a′ in any ring R are
said to be GL-related if there exists A ∈ GL2(R) such that A has a as (1,1)-entry
and A−1 has a′ as (2,2)-entry. If such A can be found in G E2(R) we say that
a, a′ are GE-related. Thirdly, if A can be found in E2(R), then a, a′ are said to
be E-related. This means that A has the form

A = D(α)E(a1) . . . E(an) .

Clearly E-related elements are GE-related and GE-related elements are GL-
related. Moreover, by (13) and (20) a, a′ are E-related if and only if there exist
x1, . . . , xn ∈ R, α ∈ U (R) such that a = αp(x1, . . . , xn), a′ = p(xn, . . . , x1)α.
By Corollary 0.5.5 we see that a, a′ are GL-related if and only if they are stably
associated. In G E2-rings we further have

Proposition 2.7.4. In a G E2-ring R, for any two elements a, a′ ∈ R, the
following assertions are equivalent:

(a) a is GL-related to a′,
(b) a is GE-related to a′,
(c) a is E-related to an associate of a′.

Proof. The equivalence of (a) and (b) is immediate. When (b) holds, then by
(10), a = αp(x1, . . . , xn), a′ = p(xn, . . . , x1)β−1, whence (c) follows, and the
converse is clear. �

In order to compare E-related elements we make use of the following
formulae, which follow from the leapfrog construction of continuants.
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Let x1, . . . , xn be any elements of a ring and α a unit. Then we have for odd
n,

p(x1α, α−1x2, x3α, . . . , α−1xn−1, xnα) = p(x1, . . . , xn)α, (28)

p(αx1, x2α
−1, αx3, . . . , xn−1α

−1, αxn) = αp(x1, . . . , xn), (29)

while if n is even,

p(x1α, α−1x2, x3α, . . . , xn−1α, α−1xn) = p(x1, . . . , xn), (30)

p(αx1, x2α
−1, αx3, . . . , αxn−1, xnα

−1) = αp(x1, . . . , xn)α−1. (31)

Further, an easy calculation shows that for any n:

pn(x1, . . . , xn) = pn+1(x1, . . . , xn−1, xn − 1, 1) . (32)

This formula allows us to change the parity of n in any representation of an
element by a continuant, as in the proof of the next result:

Proposition 2.7.5. In any ring R, if a is E-related to a′ and α is a unit, then
(i) aα is E-related to a′α, (ii) αa is E-related to αa′ and (iii) a is E-related to
α−1a′α; hence αa is E-related to a′α.

Proof. Let a = p(x1, . . . , xn), a′ = p(xn, . . . , x1). Then (i) follows by (28)
if n is odd; if n is even, we can replace it by n + 1, using (32) for a and the
left-hand analogue of (32) for a′, and then applying the preceding argument.
Similarly, (ii) follows from (29). To prove (iii) we first ensure that n is even
(using (32)) and then apply (30) and (31). Now the last part follows because
αa is E-related to α.α−1a′α = a′α, by (i) and (ii). �

We note that this proposition may be used to give another proof of Proposition
7.4. In the case of a free algebra there is a bound on the length of continuant
polynomials for a given pair of E-related elements, which may be stated as
follows:

Proposition 2.7.6. Let a, a′ be two E-related elements in the free algebra
k〈X〉. Then a, a′ have the same degree d, say, and these elements can be written
in the form

a = αp(a1, . . . , ar ), a′ = αp(ar , . . . , a1), ai ∈ k〈X〉, α ∈ k ,

where r ≤ d + 2.

Proof. The normal form (24) or equivalently, (9) shows that ai may be taken
to be neither 0 nor a unit for 1 < i < r . It follows that the degree of a (and that
of a′) is d ≥ r − 2, whence r ≤ d + 2. �
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Exercises 2.7

1. Prove that pn(x1, . . . , xn) = pr (x1, . . . , xr )pn−r (xr+1, . . . , xn) + pr−1(x1, . . . ,

xr−1)pn−r−1(xr+2, . . . , xn), for any n and 1 ≤ r ≤ n.
2. Derive the formulae for P(x) corresponding to (4)–(8), with Q replaced by P =

e12 + e21 and D(α) replaced by C(α) = [α, −α−1].
3. Verify that (1)–(3) is a complete set of defining relations for G E2(Z), but show that

the standard form (9) is not unique, by finding an expression for E(2)E(−2)E(2)
in terms of E(2) and E(3).

4. (After Brenner [55]; see also Farbman [95]) Show that the matrices T (α) and
T (β)T generate a free group if α, β are any real numbers such that αβ ≥ 4.

5. By considering characteristic polynomials find all pairs of complex numbers u, v

such that (P(u)P(v))n = 1.

6∗. Show that in k〈x, y, z, t〉 the matrix

(
x y
z t

)
cannot be written as a product of

elementary and diagonal matrices.
7∗. Let R = A1(k) be the Weyl algebra on x and y over a field k of characteristic

not 2. Show that the matrix

(
yx x2

y2 xy

)
is invertible but not in G E2(R). (Hint:

Compute the inverse in k(y)[x ; 1,′ ] and use the filtration by degree for the last
part.)

8. (Helm [83]) Show that (1)–(3) is a complete set of defining relations for G E2(R)
provided that for any two non-units a, b in R there exists a unit α such that a + α

and b + α−1 are units.
9. In any ring R, prove the identity E(x)E(y)[1, 1 − yx] = [1 − xy, 1]

× E(0)E(y)E(x)E(0)−1, for any x, y ∈ R such that at least one of 1 − xy, 1 − yx
is a unit in R.

10. Show that any local ring R is a GE-ring and that there is a relation of the form
[α, β]P(a)P(b)P(c)P(d) = I , where b, c are neither zero nor units, unless R is
a field.

11. Let R be a totally ordered ring (i.e. a ring with a total ordering compatible with
addition and multiplication by positive elements). Given a1, . . . , an ∈ R such that
ai > 0 for 1 ≤ i ≤ n, show that p(a1, . . . , ar ) > 0. Show that this still holds if
a1 ≥ 0 and ai > 0 for 2 ≤ i ≤ n, provided that n ≥ 2.

12∗. Let R be a totally ordered ring such that a > 0 implies a ≥ 1. Show that R has
a unique standard form (26) for G E2 (see Cohn, [66b]), subject to x1 ≥ 0, xi >

0 (1 < i < n) and when n = 2, x1, x2 are not both zero.
13∗. Let D be a field with a central subfield k and put R = Dk〈x〉. Find all elements

E-related to x. Under what conditions is an element p of k[x] an atom in R? (Hint:
Note that xp = px and use the natural homomorphism Dk〈x〉 → D[x] to show
that x cannot be comaximal with any non-unit factor of p.)

14∗. By using Exercise 13, show that for any a ∈ k[x], if in Dk〈x〉, a = bc, then for
some α ∈ D×bα, α−1c ∈ k[x].

15◦. (Bergman [67]) In a free algebra, is every element that is E-related to a square
itself a square? (See Exercise 4.3.10.)

16∗. In a free algebra R, show that GL-related elements are E ′
2-related, where E ′

2 is the
derived group of E2(R) (see Cohn [66b], Theorem 9.3).
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17◦. (G. M. Bergman) The continuant polynomials may be regarded as providing a
general solution for the equation ab′ = ba′. Find a general solution to the equation
in r + s unknowns a1, . . . , ar , b1, . . . , bs : p(a1, . . . , ar ) = p(b1, . . . , bs).

18. (H. Minkowski) Show that any matrix A in SL2(Z) has the form (10) with [α, β] =
I.

19. The Fibonacci series is defined by f0 = f1 = 1, fn+1 = fn + fn−1. Express the
entries of P(1)n in terms of the fν .

2.8 The 2-term weak algorithm

We shall now develop the usual Euclidean algorithm, using the 2-term weak
algorithm. In particular, everything that is said will apply to classical Euclidean
domains in which the algorithm is defined relative to a degree-function, as well
as to free algebras, which possess a weak algorithm by Theorem 5.3.

Let R be any filtered ring with 2-term weak algorithm. Given an equation

ab′ = ba′ �= 0 (1)

in R, if we choose q1 ∈ R such that v(a − bq1) is minimal, we find by an easy
induction (as in Section 1.2) that v(a − bq1) < v(b). Thus

a = bq1 + r1, v(r1) < v(b), (2)

where q1, r1 are unique, by Proposition 1.2.3. Substituting from (2) into (1),
we find r1b = (a − bq1)b′ = b(a′ − q1b′). If we put r ′

1 = a′ − q1b′, this may
be written

r1b′ = br ′
1 . (3)

By (3) and (2), v(b) + v(r ′
1) = v(r1) + v(b′) < v(b) + v(b′), hence v(r ′

1) <

v(b′), so there is complete symmetry (as we know there must be, by Propo-
sition 4.1). It may happen that r1 = 0, but by (3) this is so if and only if r ′

1 = 0.
If this is not the case, we can apply the same reasoning to (3) and so obtain
the familiar chain of equations of the Euclidean algorithm. More precisely, we
obtain two such chains, one for left and one for right division:

a = bq1 + r1, a′ = q1b′ + r ′
1, r1b′ = br ′

1

b = r1q2 + r2, b′ = q2r ′
1 + r ′

2, r2r ′
1 = r1r ′

2,

r1 = r2q3 + r3, r ′
1 = q3r ′

2 + r ′
3, r3r ′

2 = r2r ′
3,

. . . . . . . . .

(4)

Note that whereas the remainders ri , r ′
i on the two sides are in general dis-

tinct, the quotients qi are the same. The degrees of the remainders decrease



154 Firs, semifirs and the weak algorithm

strictly:

v(b) > v(r1) > v(r2) > . . . , v(b′) > v(r ′
1) > v(r ′

2) > . . . , (5)

so the remainders must vanish eventually. Let n be the least integer such that
rn+1 = 0. Since rn+1r ′

n = rnr ′
n+1, it follows that r ′

n+1 = 0; if we had r ′
k = 0

for some k ≤ n, then by symmetry rk = 0, which contradicts the definition
of n. Hence both chains in (4) end at the same step, i.e. r ′

n+1 is the first
vanishing remainder of the right-hand division, and the last two rows of
(4) read

rn−2 = rn−1qn + rn r ′
n−2 = qnr ′

n−1 + r ′
n, rnr ′

n−1 = rn−1r ′
n,

rn−1 = rnqn+1, r ′
n−1 = qn+1r ′

n, rn+1 = r ′
n+1 = 0 .

(6)

From (4), (6) and the inequalities (5) we see that v(qi ) > 0 for 2 ≤ i ≤ n + 1,
while v(q1) > 0 if and only if v(a) > v(b).

Let us again write P(x) =
(

x 1
1 0

)
, for any x ∈ R. Then we can express

equations (4) and (6) as follows:

(a b) = (rn 0)P(qn+1)P(qn) . . . P(q1),

(7)
(

a′

b′

)
= P(q1)P(q2) . . . P(qn+1)

(
r ′

n

0

)
.

These equations make it evident that rn is a common left factor of a and b and
since the P’s are invertible, it is actually a highest common left factor (HCLF).
Likewise r ′

n is a highest common right factor (HCRF) of a′ and b′. In particular
it follows that R is a strong G E2-ring.

In the algorithm (4) the remainders, and hence the quotients are unique,
subject to the inequalities (5), and these inequalities will certainly hold if we
perform the algorithm in the fewest possible number of steps. In this case,
moreover, q2, . . . , qn+1 have positive degree and when v(a) > v(b), then q1

also has positive degree. On changing notation and bearing in mind (13) of 2.7,
we thus obtain

Proposition 2.8.1. Let R be a filtered ring with 2-term weak algorithm. If a,
b are right commensurable elements of R, then there are expressions

a = up(x1, . . . , xn), b = up(x1, . . . , xn−1), u, x1, . . . , xn ∈ R , (8)

and if n is chosen minimal, then x1, . . . , xn−1 are non-zero non-units and the
expressions (8) for a, b are unique. Moreover, xn is non-zero if and only if
v(a) ≥ v(b), with equality if and only if xn is a unit.
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Proof. We need only observe that n can be reduced if xi for some i in the
range 1 ≤ i < n is 0 or a unit; the uniqueness now follows by the uniqueness
of the remainders. �

Let us return to the case of a dependence relation (1) between a and b. If (8)
holds, we have of course

a′ = p(xn, . . . , x1)v, b′ = p(xn−1, . . . , x1)v for some v ∈ R× ,

so the relation (1) takes the form of (23) of 2.7, with α, β replaced by u, v.
We remark that when q2, . . . , qn+1 are all of positive degree in the algorithm

(4), then the degrees of the remainders must be strictly decreasing. Thus the
expression (8) will also be unique if instead of prescribing n to be minimal we
require x1, . . . , xn−1 to be non-zero non-units. Thus in every invertible 2 × 2
matrix A we can reduce the first row by (7) and so write A uniquely as(

α 0
u β

)
P(x1) . . . P(xn), where x1, . . . , xn−1 ∈ R×\U (R) ,

and where α, β ∈ U (R) because A is invertible. Now(
α 0
u β

)
= [α, β]P(0)P(β−1u) ,

hence

A = [α, β]P(0)P(β−1u)P(x1) . . . P(xn),

and this form is unique, with the proviso that the first two P’s are to be
omitted if u = 0, or transformed by the relation P(x)P(α)P(y) = P(x +
α−1)C(α)P(y + α−1) (corresponding to (8) of Section 2.7) if u is a unit. Sum-
ming up, we have

Proposition 2.8.2. Any filtered ring R with 2-term weak algorithm is a strong
E2-ring and the standard form for G E2(R) is unique. �

Exercises 2.8

1. Let R = k〈x1, x2, . . .〉 be the free algebra of finite or countable rank. Show that
GL2(R) ∼= GL2(k[x]). (Hint: Find a k-linear map that preserves the defining rela-
tions, see Cohn [66b].)

2. Given two right comaximal elements a, b in a 2-fir R, show that the equation ax −
by = f has a solution (x, y) for any f ∈ R. More precisely, prove the existence of
a′, b′, c′, d ′ ∈ R such that ab′ = ba′, ad ′ − bc′ = 1 and the general solution (x, y)
has the form x = d ′ f + b′g, y = c′ f + a′g, where g is arbitrary in R.
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3. Let F be a free group. Show that the group algebra kF is a strong E-ring. (Hint: If
F is free on X, show that every matrix over kF is stably associated to a matrix over
k〈X〉, see Section 5.8.)

4∗. (Bergman [71a]) Let R be a filtered ring with 2-term weak algorithm and S any
monoid of (ring-)endomorphisms of R. Show that the set of fixed points under the
action of S is a strong E2-ring (see Proposition 6.8.1).

5. In R = k〈x, y〉 show that (1 − xy)R ∩ (1 − yx)R = 0. Does the same hold for
k〈x, x−1, y, y−1〉?

6. In the ring R = k〈x, y, u, u−1, v〉 find non-zero elements a, b such that
au−1x = xu−1b. (Hint: Put t1 = x, t2 = y + v, t3 = u and examine the continuant
polynomials.)

7. (C. Reutenauer) In R = Z〈X〉 show that p(a1, . . . , an) and p(an, . . . , a1) have the
same content, as defined in Exercise 5.5. (Hint: Use Exercise 5.5 and apply induction
on n to Proposition 7.3.)

8∗. (G. M. Bergman) Show that in a free algebra k〈X〉 the number of elements E-
related to a given element is finite. [Hint: If a ∈ k〈X〉 has degree d, it is enough
to show that there are only finitely many ways of writing a as p(a1, . . . , ar ) with
r ≤ d + 2. If not, then the infinitely many distinct sets (α, a1, . . . , ar ) such that
αp(a1, . . . , ar ) = a form an algebraic subset of a finite-dimensional k-space. Since
its image under the map to αp(ar , . . . , a1) is infinite, it contains an algebraic curve
mapping to a curve under that map. Let L be the function field of this curve; some
coefficient of αp(ar , . . . , a1) must be transcendental over k and so have a pole. This
means that there is a valuation on L taking a negative value at this coefficient. Now
apply Exercise 7.]

2.9 The inverse weak algorithm

The classical division algorithm, as described for the polynomial ring k[x] in
Section 1.2, depended essentially on the degree-function d(a) defined in this
ring. If instead we use the order-function o(a) defined in Section 1.5, we have
an analogous statement, with the opposite inequality:

Given a, b ∈ k[x] such that o(b) ≤ o(a) < ∞, there exist q and a1 such that

a = bq + a1, o(a1) > o(α) . (1)

The process can be repeated, but since N has no maximal element, there
is no reason why the process should terminate. However, we can pass to the
completion of the ring k[x], namely the formal power series ring k[[x]]. Here
a repetition of the step (1) leads to a convergent process, and in fact one can
make deductions about divisibility in k[[x]] that are quite similar to (and often
stronger than) the consequences of the classical division algorithm. Indeed,
the ring k[[x]] displays such simple divisibility behaviour that its connexion
with the algorithm (1) is usually forgotten. In the non-commutative case we do,
however, obtain non-trivial results from the ‘inverse algorithm’.
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By an inverse filtration on a ring R we shall mean a function v such that:

I.1. v(x) ∈ N for x ∈ R×, v(0) = ∞,
I.2. v(x − y) ≥ min{v(x), v(y)},
I.3. v(xy) ≥ v(x) + v(y).

If equality holds in I.3, we have an order-function as defined in Section 1.5.
Writing R[n] = {x ∈ R|v(x) ≥ n}, we find that the inverse filtration takes

the form

R = R[0] ⊇ R[1] ⊇ R[2] ⊇ . . . , R[i] R[ j] ⊆ R[i+ j], ∩R[n] = 0 ; (2)

we can again form the associated graded ring grR = {grn R}, where grn R =
R[n]/R[n+1](n = 0, 1, . . .). To give an example, let R be a ring with an ideal
a such that ∩an = 0; then (2) holds with R[n] = an; this is called the a−adic
filtration on R.

In an inversely filtered ring the notions of (strong) v-dependence and (n-
term) weak algorithm can be defined just as in an ordinary filtered ring, bearing
in mind that all the inequalities have to be reversed; we shall refer to it as
the (n-term) inverse weak algorithm. As before, the inverse weak algorithm is
left–right symmetric.

For an inversely filtered ring R we define the inverse dependence number
μv(R) as the greatest integer n for which the n-term weak algorithm holds, or
∞ if it holds for all n.

Given a ∈ R×, if v(a) = n, we write ā = a + R[n+1] ∈ grn R; 0̄ is not
defined. If R satisfies the 2-term inverse weak algorithm, then gr0 R = R/R[1] is
a field (and hence R[1] is a maximal ideal). This means that the following gen-
eral principle applies to such rings; in the case of the ordinary weak algorithm
there is a corresponding principle, which we were able to use without stating it
formally, because in that case our ring actually contained a field:

Lemma 2.9.1. (Exchange principle) Let R be an inversely filtered ring such
that R/R[1] is a field. Given a, a′ ∈ R and A ⊆ R, if v(a) ≤ v(a′) and a is right
v-dependent on A ∪ {a′}, then either a is right v-dependent on A or a′ is right
v-dependent on A ∪ {a}.
Proof. For a = 0 this holds trivially; when a �= 0, there exist by hypothesis,
ai ∈ A ∪ {a′}, bi ∈ R such that

ā =
n∑
1

āi b̄i in gr R;

thus v(ai ) + v(bi ) = v(a). If no ai equals a′, this shows a to be right v-dependent
on A. Otherwise let a′ = a1, say; since v(a) ≤ v(a′), we have equality here and
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so v(b1) = 0, b̄1 ∈ gr0 R and by hypothesis b̄1 is a unit, say b̄1c̄ = 1. It follows
that

ā1 = ā1b̄1c̄ = āc̄ −
n∑
z

āi b̄i c̄ ,

and so a′ = a1 is right v-dependent on A ∪ {a}. �

The earlier remarks show that this principle holds whenever μv(R) ≥ 2. By
assuming it explicitly we shall find that some of our results can be extended to
arbitrary inversely filtered rings.

Let R be an inversely filtered ring. The chain (2) may be taken as the neigh-
bourhood base at 0 for a topology on R, and we can form the completion of
R, denoted by R̂. Explicitly we have R̂ = C/N, where C is the ring of all
Cauchy-sequences in R and N the ideal of sequences converging to 0 (see BA,
Section 9.2, p. 314). The ring R̂ again has an inverse filtration and there is a
natural embedding R → R̂ respecting the filtration; we shall usually take this
embedding to be an inclusion. If this inclusion is an isomorphism, R is said
to be complete; for example, R̂ is always complete. In any case, the induced
mapping of graded rings gr R → gr R̂ is easily seen to be an isomorphism,
hence μv(R̂) = μv(R); thus R satisfies the n-term weak algorithm if and only
if R̂ does.

Frequently R̂ is a local ring; we record a sufficient condition for this to
happen:

Proposition 2.9.2. Let R be a complete inversely filtered ring. Then any x ∈ R
is invertible if and only if its image in R/R[1] is invertible, hence R is a local
ring if and only if R/R[1] is. In particular, R is a local ring whenever R/R[1] is
a field.

Proof. Clearly any unit in R maps to a unit in R/R[1]; conversely, if ā has
a right inverse b̄, then ab = 1 − c, where c ∈ R[1], so cn ∈ R[n] and

∑
cn is

convergent. Now ab(
∑

cn) = 1, so every element not in R[1] has a right inverse.
Let au = 1; then u /∈ R[1] and so ua′ = 1 for some a′, and a′ = aua′ = a, which
shows that a has the inverse u. If R is a local ring with maximal ideal m, then
m ⊇ R[1] and so R/R[1] is a local ring with maximal ideal m/R[1]. Conversely,
if R/R[1] is a local ring, then any element outside the maximal ideal has an
inverse (modR[1]) and so by the first part, it has an inverse in R, showing R to
be a local ring. Now the last part is clear. �

Before we can apply the inverse weak algorithm we still need two general
reduction lemmas. To obtain the best results we shall take our rings complete:
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Lemma 2.9.3. Let R be a complete inversely filtered ring and a, a1, . . . , an any
elements of R. Then there exist b1, . . . , bn ∈ R such that v(ai ) + v(bi ) ≥ v(a)
and a − ∑

ai bi is either 0 or right v-independent of a1, . . . , an.

Proof. Assume that we can find bi,k such that v(bi,k) ≥ v(ai ) − v(a) and

v
(

a −
∑

ai bi,k

)
≥ v(a) + k .

If a − ∑
ai bi,k is right v-independent of the ai , the result follows; otherwise

we can subtract a right linear combination of the ai of formal order ≥ v(a) + k
to get an element a − ∑

ai bi,k+1 of order ≥ v(a) + k + 1. If this holds for all
k, then bi,k converges to an element bi by completeness and a = ∑

ai bi . �

We can now obtain an analogue of Lemma 4.3, but in a much stronger
form. We recall that Pn(R) is the subgroup of GLn(R) consisting of all signed
permutation matrices, and write T rn(R) for the subgroup of upper unitriangular
matrices, i.e. matrices having 1’s on the main diagonal and 0’s below it. Clearly
T rn(R), like Pn(R), is a subgroup of En(R).

Lemma 2.9.4. Let R be a complete inversely filtered ring such that R/R[1]

is a field, and let a1, . . . , an ∈ R. Then there exists P ∈ Pn(R)T rn(R) such
that (a1, . . . , an)P = (a′

1, . . . , a′
r , 0, . . . , 0), where the a′

i are not strongly right
v-dependent.

Proof. Let a′
1 = ai be any element of least value. Applying Lemma 9.3, we

can modify the a j ( j �= i) by right multiples of a′
1 so as to make them 0 or right

v-independent of a′
1. This can only increase their values, so v(a′

1) will still be
minimal. Let a′

2 be of least value among the resulting elements other than a′
1;

by another application of Lemma 9.3 we can make all the elements other than
a′

1, a′
2 zero or right v-independent of a′

1, a′
2. Continuing this process, we get

a sequence a′
1, a′

2, . . . , a′
n that will clearly be the image under a unitriangular

matrix of a certain ordering of a1, . . . , an . Since

v(a′
1) ≤ v(a′

2) ≤ . . . ≤ v(a′
n) ,

by construction, all zeros will occur at the end. Now suppose that some a′
i is

right v-dependent on the remaining a′
j . By the exchange principle we conclude

that some a′
j is right v-dependent on those preceding it, but this contradicts

the construction. Hence no a′
i is right v-dependent on the rest, i.e. they are not

strongly right v-dependent. �

We now impose the inverse weak algorithm to obtain an analogue of
Theorem 4.4.
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Theorem 2.9.5. Let R be a complete inversely filtered ring with n-term inverse
weak algorithm, where n ≥ 1. Then R is a local ring, a strong En-ring and an
n-fir. In particular, if the inverse weak algorithm holds in R, then R is a local
ring, a strong E-ring and a semifir.

Proof. This is clear when n = 1. For n > 1 it follows from Lemma 9.4, by
using the n-term inverse weak algorithm. �

Weak v-bases for right ideals of inversely filtered rings can be defined as
before (see Section 2.4) and constructed similarly; the definition, the construc-
tion and Lemma 4.7 can all be stated in gr R, using the right ideal of leading
terms of members of the right ideal a under construction. If R is complete and
B is a finite weak v-basis of a, then B is a generating set for a; in the general
case it is no longer true that B generates a but the right ideal generated is merely
dense in a. As in Proposition 4.8 we obtain

Proposition 2.9.6. Let R be a complete inversely filtered ring with n-term
inverse weak algorithm, for some natural number n, and in case n = 1 assume
also that R/R[1] is a field. Then R has left and right ACCn. �

In Section 2.4 we saw that a filtered ring with weak algorithm is a fir (Theorem
4.6). This is not to be expected here; for a ring with inverse weak algorithm we
find instead that it is a kind of ‘topological fir’:

Proposition 2.9.7. Let R be a complete inversely filtered ring with inverse
weak algorithm. Then any right ideal a of R contains a right v-independent set
B such that BR is dense in a.

Proof. Let B be a weak v-basis for a. By the inverse weak algorithm it is right
v-independent and any a ∈ a is right v-dependent on B. It follows that for any
b ∈ B and any natural number k there exist elements cb,k ∈ R such that

v
(

a −
∑

bcb,k

)
> k ,

where b runs over B and the sum is finite for any given k. As k → ∞, cb,k

converges to cb, say, and we obtain a = ∑
bcb in the completion of R. The sum

here may be infinite, but it is convergent in the sense that only finitely many
terms of value ≤ k occur for any k; this just means that BR is dense in a. �

The construction of the monomial right K-basis in the remarks preceding
Theorem 5.1 was essentially carried out in grR and so can be repeated here. But
instead of finite sums we must now allow infinite convergent series of monomial
terms, with coefficients chosen from a set of representatives of R/R[1].

From Proposition 9.7 we have (as in Section 2.5)
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Theorem 2.9.8. Let R be an inversely filtered ring. Then R satisfies the inverse
weak algorithm if and only if R/R[1] is a field K and R has a right v-independent
weak v-basis for R[1], as right ideal. In this case, if K̄ is a set of representatives of
K in R (with 0 represented by itself, for simplicity), and X = {xi } is a monomial
right K -basis for R[1], then any element in the completion R̂ can be uniquely
expressed as a convergent series

∑
xI αI , where αI ∈ K̄ , (3)

and where I = (i1, . . . , in) runs over all finite suffix-sets and xI = xiI . . . xin .
Conversely, all such expressions represent elements of R̂. �

Here the sum (3) is understood to be convergent if for each integer k, the set
{I |v(xI ) ≤ k and αI �= 0} is finite. We remark that the finite sums (3) form a
dense subgroup of R̂.

The most important example of a ring with inverse weak algorithm is the
power series ring in a number of non-commuting indeterminates over a field. We
shall indicate briefly how the inverse weak algorithm can be used to characterize
such rings.

Let R be an inversely filtered K-ring, where K is a field. Then R/R[1] is a
K-ring in a natural way; if it is equal to K, we shall call R a connected inversely
filtered K-ring. This just means that R = K ⊕ R[1].

For simplicity let us take a commutative field k, form the free k-algebra
R = k〈X〉 on a set X and denote by v the usual order-function on R, given by
the terms of least degree. This defines an inverse filtration on R, for which R is
a connected k-algebra. More generally, we may assign different degrees to the
various elements of X; thus we take X = ∪Xi itself to be graded, Xi being the
set of elements of degree i (before we had the special case X = X1). This is
particularly useful when X is infinite and each Xi is chosen to be finite. When
X is graded in any way, we have a function v : X → N>0 and the resulting
completion k〈〈X〉〉 is the power series ring in the graded set X over k.

The power series ring over a field has the following characterization, analo-
gous to the characterization of free algebras in Section 2.5.

Proposition 2.9.9. If k is a commutative field and R a complete inversely
filtered connected k-algebra, then R is a power series ring in a graded set X
over k if and only if R satisfies the inverse weak algorithm.

Proof. If R = k〈〈X〉〉 has an inverse filtration as defined above, then gr R =
k〈X〉 and this ring satisfies the inverse weak algorithm; hence the same holds
for R.
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Conversely, if R satisfies the inverse weak algorithm, then by Theorem 9.8,
R[1] has a right v-independent weak v-basis X; hence the k-algebra generated
by X is free on X and is dense in R. Therefore R is equal to its completion k〈〈X〉〉.

�

Corollary 2.9.10. In a power series ring k〈〈X〉〉 in a graded set X over k, any
closed subalgebra satisfying the inverse weak algorithm is again a power series
ring in a graded set over k. �

Here ‘closed’ refers of course to the topology: every convergent series of
terms in the subalgebra has a sum in the subalgebra.

Corollary 2.9.11. Let R be a complete inversely filtered connected k-algebra,
where k is a commutative field. Then R is a power series ring in a single variable
over k if and only if R �= k and for any a, b ∈ R× such that v(a) ≥ v(b), a is
right v-dependent on b.

Proof. Any ring R satisfying the hypotheses has inverse weak algorithm and
so, by Proposition 9.9 is of the form k〈〈X〉〉 for some X �= ∅. If X contains more
than one element, say x, y ∈ X, x �= y, then neither of x, y is right v-dependent
on the other. This contradicts the hypothesis, hence |X | = 1. Conversely, k[[x]]
clearly satisfies the hypothesis. �

The rings in Corollary 9.11 turned out to be commutative. If we consider
general commutative inversely filtered rings (or even Ore domains), we again
find that the weak algorithm already follows from the 2-term weak algorithm.
Let us define a right principal valuation ring, PVR for short, as an integral
domain R with a non-unit p such that every non-zero element of R has the form
pr u(r ≥ 0, u ∈ U (R)).When R is commutative, this just reduces to the usual
definition of a PVR as a discrete rank 1 valuation ring. In general these rings
need not be commutative, so that we may have a right (or left) PVR. These
rings arise when the 2-term inverse weak algorithm holds in Ore domains:

Proposition 2.9.12. Let R be a complete inversely filtered right Ore domain.
Then the 2-term inverse weak algorithm holds in R if and only if R is either a
field or a right principal valuation ring.

Proof. Clearly the 2-term inverse weak algorithm holds in any right PVR,
and it remains to prove the converse. If R[1] = 0, then R = gr0 R is a field.
Otherwise take p ∈ R[1] such that v(p) has the least value. Given a ∈ R, a and
p are right linearly dependent by hypothesis, hence they are right v-dependent
and so by Lemma 9.3, either a = pc or p = ac, for some c ∈ R. If a is a non-
unit, then v(a) ≥ v(p), thus in the second case v(c) = v(p) − v(a) ≤ 0, hence
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c is then a unit, so we have in any case a ∈ pR whenever a is a non-unit. If we
have

a = pr u , (4)

then v(a) ≥ rv(p), hence r is bounded and if we choose it maximal in (4), then
u must be a unit. Thus R is a right PVR and this clearly satisfies the inverse
weak algorithm. �

A second important case (which actually includes the case of power series
rings in a finite ungraded set) arises from rings with an a-adic filtration. Given
a ring R and an ideal a of R, let us write

K = gr0 R = R/a, Mn = grn R = an/an+1, (5)

so that K is a ring and Mn is a K-bimodule. We first give a general condition
for gr R to be a tensor ring:

Theorem 2.9.13. Let R be a ring and a an ideal in R. If in the notation (5),
M = M1 is free as right K-module and

a ⊗R a ∼= a2, (6)

then the graded ring associated with the a-adic filtration, grR = ⊕Mn, is a
tensor ring:

grR ∼= K [M].

Proof. Since M = M1 = a/a2 is free as right K-module, we can take a K-
basis and lift it back to a subset Y of a. This gives a map f : R(Y ) → a, defined
by (ay) �→ ∑

yay , such that the induced map f ⊗R K : K (Y ) → M1 is an iso-
morphism. For each n we have the induced homomorphism

f ⊗R R/an : (R/an)(Y ) → a/an+1, (7)

which we shall show by induction to be an isomorphism, for all n. This holds
for n = 1, so assume that n ≥ 1 and that (7) is an isomorphism. Applying ⊗Ra

to (7), we obtain an isomorphism

f ⊗ a/an+1 : (a/an+1)(Y ) → a ⊗ a/an+1 ∼= a ⊗ a ⊗ R/an

∼= a2 ⊗ R/an ∼= a2/an+2,

where all tensor products are taken over R and (6) has been used in the last but
one step. We thus have an exact commutative diagram

0 → (a/an+1)(Y ) → (R/an+1)(Y ) → (R/a)(Y ) → 0
↓ ↓ ↓

0 → a2/an+2 → a/an+2 → a/a2 → 0
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We have just seen that the first column is an isomorphism, the third column
is an isomorphism by the case n = 1 of (7), hence the middle column is an
isomorphism. So (7) holds with n replaced by n + 1, and hence for all n.

Thus a/an+1 is free as right R/an-module, and so the sequence

0 → an−1/an → R/an

remains exact under the operation a/an+1 ⊗R/an − ∼= a ⊗R −. Hence we have
an embedding

a ⊗R an−1/an → a/an+1 . (8)

Here the image is Mn = an/an+1, so we have an isomorphism a ⊗R Mn−1
∼=

Mn . Since a ⊗R − ∼= a/a2 ⊗R/a − ∼= M ⊗K −, it follows that M ⊗K Mn−1
∼=

Mn; therefore by induction, Mn ∼= M⊗n and the result follows. �

It is easy to derive conditions for the a-adic filtration to satisfy the inverse
weak algorithm:

Corollary 2.9.14. Let R be a ring with an ideal a such that (i) R/a is a field,
(ii) ∩an = 0 and (iii) a ⊗R a ∼= a2. Then R satisfies the inverse weak algorithm
relative to the a-adic filtration. In particular this holds for a semifir that is a
local ring with a maximal ideal m, finitely generated as right ideal, such that
∩mn = 0.

Proof. By Theorem 9.13, grR ∼= K [M], where K = R/a is a field. Hence
gr R satisfies the inverse weak algorithm, by Theorem 9.8, and clearly the same
holds for R itself. When R is a semifir and a local ring, whose maximal ideal m

is finitely generated as right ideal, then m has a right linearly independent gen-
erating set u1, . . . , un , say. Now the mapping m ⊗R m → m2 can be described
as

∑
ui ⊗ ai �→ ∑

ui ai , where ai ∈ m, and this is an isomorphism by the lin-
ear independence of the u’s. Thus (iii) holds as well as (i), (ii) and the result
follows. �

By Corollary B.8 of the Appendix the relation a ⊗R a ∼= a2 holds, for exam-
ple, if a is flat as right (or left) R-module. In Section 5.10 we shall see that in
a fir R any proper ideal a satisfies ∩an = 0, and a, being free, is then flat, so
Corollary 9.14 applies to a fir whenever (i) is satisfied.

We note a second case in which the conditions may be applied.

Corollary 2.9.15. Let R be an augmented k-algebra, with augmentation ideal
a, and let V be the complement of a2 in a as k-space. If a ⊗R a ∼= a2, then the
natural map f : k[V ] → R is injective.
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Proof. Write S = k[V ] and denote the augmentation ideal in S by b. We
have ∩bn = 0, so if f is not injective, then there exists c ∈ bn, c /∈ bn+1 for
some n and c f = 0. Hence cf maps to 0 in an/an+1, but the induced map
bn/bn+1 → an/an+1 decomposes into a sequence of isomorphisms

bn/bn+1 ∼= V ⊗n ∼= (a/a2)⊗n ∼= an/an+1 ,

which is a contradiction, because c �= 0 in bn/bn+1. �

We now come to an important relation between a free algebra and its comple-
tion, but some preparation is necessary. We need to deal with row and column
vectors from a ring. The components of such a vector will generally be denoted
by a Latin suffix, thus a has the components ai and aλ has the components aλi .
The precise range will be indicated in brackets when it is not clear from the
context. We shall also continue to use the notation ab for the product of a row
a and a column b, thus ab = ∑

ai bi .
Let R ⊆ S be a pair of rings. Given a ∈ Sn, b ∈ n S, the product ab = ∑

ai bi

is said to lie trivially in R, if for each i = 1, . . . , n, either ai and bi lie in R or
ai = 0 or bi = 0. Further, the subring R of S is said to be totally n-inert in S if
for all m ≤ n and any families (aλ) of rows in Sm and of columns (bμ) in mS
such that aλbμ ∈ R for all λ, μ, there exists U ∈ GLm(S) such that on writing
a′

λ = aλU, b′
μ = U−1bμ, each product a′

λb′
μ lies trivially in R. If R is totally

n-inert in S for all n ≥ 1, we say that R is totally inert in S.

Theorem 2.9.16. (Inertia theorem) Any free algebra k〈X〉over a commutative
field k is totally inert in its power series completion k〈〈X〉〉.
Proof. Let us put R = k〈X〉, R̂ = k〈〈X〉〉; these rings are inversely filtered by
the order-function v and satisfy the inverse weak algorithm. We now define

R[1] = { f ∈ R|v( f ) > 0}, R̂[1] = { f ∈ R̂|v( f ) > 0} ,

so that R̂[1] is the closure of R[1] in R̂. By the inverse weak algorithm we
have R/R[1]

∼= R̂/R̂[1]
∼= k. The set X is a weak v-basis of R[1] as right ideal,

moreover R[1] is free as right ideal, with X as basis. Clearly X is also a weak v-
basis of R̂[1], so each element f ∈ R̂[1] can be written uniquely as a convergent
series

f =
∑

x fx , where fx ∈ R̂ . (9)

We note that v( f ) > min{v( fx )| fx �= 0, x ∈ X} and f ∈ R[1] if and only if all
the fx lie in R and are almost all zero.

Let A ⊆ R̂n, B ⊆ nR̂ be such that AB ⊆ R; we may enlarge A, B to be
maximal in the sense that each consists of all the rows (resp. columns) mapped
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into R by multiplication with the other. Then A is a left R-submodule of R̂n

and B a right R-submodule of n R̂. Further, the image Ā of A in (R̂/R̂[1])n = kn

is a left K-space of dimension s, where s ≤ n. By R̂-column operations on A
(and the corresponding row operations on B) we may assume that A contains
e1, . . . , es, part of the standard basis for row vectors, while any component after
the first s in any element of A is a non-unit in R̂, i.e. has positive order.

Consider the case s < n. We claim that for all a = (a1, . . . , an) ∈ A, an = 0.
For if not, let us choose a ∈ A so as to minimize v(an). By adding left R-
multiples of e1, . . . , es to a we may suppose that each ai has positive order.
Hence we can write

a =
∑

xax , where ax ∈ R̂n. (10)

We claim that all the ax lie in A. For, given b ∈ B, we have
∑

xax b = ab ∈ R,
hence ax b ∈ R and by the maximality of A we find that ax ∈ A. By (10) the nth
component of ax must have lower order than an . This contradicts the minimality
of v(an), so an = 0 for all a ∈ A. We can now omit the final component in A, B
and reach the desired conclusion by induction on n.

There remains the case s = n. Then Rn ⊆ A ⊆ R̂n , hence B ⊆ n R. By sym-
metry we may also assume that the image B̄ of B in n(R̂/R̂[1]) = n(R/R[1]) has
dimension n, and so is all of n(R/R[1]). If b ∈ B has image b̄ = 0, then in terms
of a left weak v-basis Y of R1 we have b = ∑

by y, where by ∈ nR and the by

are almost all 0. As before we find that by ∈ B, hence

n(R/R[1]) = B̄ = B/B R[1]
∼= B ⊗R R/R[1] . (11)

Now R = k〈X〉 is a fir, so B is a free right R-module, of rank n, by (11). If we
take any right R-basis of B, we have n columns forming an n × n matrix P over
R. By (11) the columns of P (mod R[1]) form a k-basis of nk(∼= n(R/R[1])), i.e.
P is invertible (mod R[1]) and hence invertible over R̂. Now B = P(n R), so
P−1 B = n R and hence AP = Rn , as we wished to show. �

We remark that this result holds also for the tensor ring Kk〈X〉 and its
completion. If R is a local semihereditary ring and its maximal ideal m is finitely
generated as right ideal, with basis x1, . . . , xr , then R satisfies the inverse weak
algorithm relative to the m-adic filtration and R̂ is the power series ring on
x1, . . . , xr . Thus we obtain

Corollary 2.9.17. Let R be a local semihereditary ring with a maximal ideal
m and suppose that m is finitely generated as right ideal. Then R satisfies the
inverse weak algorithm relative to the m-adic filtration if and only if ∩mn = 0;
moreover its completion R̂ is a power series ring in which R is embedded as a
totally inert subring. �
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There are other subalgebras of k〈〈X〉〉 that we may sometimes wish to con-
sider, in particular the algebra of all rational, and that of all algebraic power
series.

The least subalgebra of k〈〈X〉〉 containing X and closed under taking inverses
when they exist in k〈〈X〉〉 is denoted by k〈〈X〉〉rat and is called the algebra of
rational power series. It is clear that every element with non-zero constant
term has an inverse, hence k〈〈X〉〉rat is a local ring. In Chapter 7 we shall
see that k〈〈X〉〉rat consists of the components of the solutions u of the matrix
equation

u = Bu + b, B ∈ Mn(k〈X〉), b ∈ nk〈X〉 , (12)

where B has zero constant term.
An element f of k〈〈X〉〉 is said to be algebraic over k〈X〉 if it is of the form

f = α + u1, where α ∈ k and u1 is a component of the solution u of a system
of equations

ui = φi (u1, . . . , un, x1, . . . , xr ), i = 1, . . . , n , (13)

where φi is a (non-commutative) polynomial in the u’s and x’s without constant
terms or terms of degree 1 in the u’s. The set of all algebraic elements of k〈〈X〉〉
will be denoted by k〈〈X〉〉alg. We remark that for commutative rings this reduces
to the usual definition, e.g. k[[x]]alg is the relative algebraic closure of k[x] in
k[[x]] (see Exercise 18). The set k〈〈X〉〉alg may be described in the following
terms.

Theorem 2.9.18. In the free power series ring k〈〈X〉〉, any system (13), where
each φi is a polynomial without constant term or terms of degree 1 in the u’s,
has a unique solution with components of positive order, and the set k〈〈X〉〉alg

is a subalgebra of k〈〈X〉〉; it is a local ring, the non-units being the elements of
positive order.

Proof. Denote by uiν the component of ui of degree ν in the x’s. Then by
equating homogeneous components in (13) we find uiν = φiν(u, x). Here φiν

is the sum of the terms of degree ν; by hypothesis, for any term u jμ occurring
in φiμ we have μ < ν, therefore the components uiν are uniquely determined
in terms of the u jμ with μ < ν, while ui0 = 0, by hypothesis. Thus (13) has a
unique solution satisfying o(ui ) > 0.

If ui = φi (u, x)(i = 1, . . . , m), v j = ψ j (v, x)( j = 1, . . . , n) are two such
systems, then to show that u1 + v1, u1v1 are algebraic, we combine the above
systems of equations for ui , v j withw = φ1 + ϕ1, w = φ1ϕ1, respectively. Thus
we have indeed a subalgebra. Further, the system w = φ1 + u1w shows that
(1 − u1)−1 − 1 is algebraic, hence so is (1 − ui )−1 and it follows that we have
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a local ring. For the last assertion take an element f of order 0 in k〈〈X〉〉alg, say
f = α + u, α ∈ k×; then f = α(1 + α−1u), hence f −1 = α−1(1 + α−1u)−1

and this shows f to be a unit in k〈〈X〉〉alg. �

We have the inclusions

k〈X〉 ⊂ k〈〈X〉〉rat ⊂ 〈〈X〉〉alg ⊂ k〈〈X〉〉 .

It is not hard to see that all these inclusions are strict; this is already clear when
|X | = 1.

In Section 2.5 we defined the notion of transduction for k〈X〉 and it is clear
how this extends to k〈〈X〉〉. Let us show that both k〈〈X〉〉rat and k〈〈X〉〉alg admit
all transductions. It will be enough to examine the (left or right) cofactor of a
generator x since the cofactor of a monomial can then by obtained by iteration.

Let u1 be a component of a solution of (12), where B has zero constant
term, and for a given x ∈ X let p �→ p′ be the transduction ‘left cofactor of x’.
Clearly the constant term α of u equals that of b, as we see by putting u = α in
(12). Now if u = α + v, where v has zero constant term, then v again satisfies
an equation of the form (12), namely v = Bv + b1, where b1 = b − α + Bα.
Thus we may assume that we have a system (12) in which u has zero constant
term. If we now apply ′ we find

u′ = [Bu + b]′ = Bu′ + b′ ,

hence u′ satisfies a system of the form (12) and so is again rational, but of lower
degree than u, so the result follows by induction on the degree.

Next consider the algebraic case. Thus we take u = (ui ) to be a solution of
(13), where φi contains no constant terms or terms of degree 1 in the u’s. We
modify u by subtracting its linear terms, so that it contains no terms of degree
less than 2. Further we may assume the alphabet X to be finite. Each ui now
has the form ui = ∑

uix x , where the uix have no constant terms, and we can
write φi = ∑

φi j u j + ∑
φi x x . The equations (13) now take the form

uix =
∑

φi j u j x + φi x .

If we express φi j , φi x in terms of the x and uix we obtain a system as before,
except that some of the φi x may have constant terms. But this would lead to
constant terms in the uix and hence linear terms in the ui , contradicting the fact
that there are no such terms. So we have indeed a system of the form (13) for
the uix , showing that the uix are again algebraic. This result may be applied as
follows:
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Proposition 2.9.19. Any subring of k〈〈X〉〉 containing k and admitting inverses
for all elements of zero order and all X-transductions is a semifir. In particular,
k〈〈X〉〉rat and k〈〈X〉〉alg are semifirs.

Proof. Let R be a subring satisfying the conditions and consider a relation in
R: ∑

ai bi = 0, where ai , bi ∈ R . (14)

If some ai has a non-zero constant term, it is a unit in R and we can trivialize
(14). Otherwise let p be a monomial of shortest length occurring in any ai , say
in a1 and let f �→ f ′ be the transduction ‘right cofactor of p’. Then we have∑

a′
i bi = 0, and here a′

1 has a non-zero constant term α, say, where α is the
coefficient of p in a1; moreover, a′

i ∈ R by hypothesis. So a′
1 is a unit and this

allows b1 to be expressed as a right linear combination of b1, . . . , br , therefore
(14) can be trivialized. The rest is clear since, as we have seen, both k〈〈X〉〉rat

and k〈〈X〉〉alg admit transductions. �

In Chapter 7 we shall see that k〈〈X〉〉rat is actually a fir; by contrast k〈〈X〉〉alg

is not a fir when |X | > 1 (see Proposition 5.9.9).

Exercises 2.9

1. State and prove an analogue of Proposition 4.2 for the inverse dependence number.
2. Investigate rings satisfying the inverse weak algorithm relative to the trivial inverse

filtration.
3. Find an extension of Lemma 9.4 to the case of an infinite family (ai ).
4. Investigate a converse for the exchange principle (Lemma 9.1).
5. Verify the inverse weak algorithm for the following rings and their completions:

(i) Z with v = vp , the p-adic valuation for a prime p,
(ii) k〈X〉, where k is a field and v is the degree of the least non-zero terms.

6. Show that every complete inversely filtered connected K-ring with an inverse
division algorithm (1) is a power series ring in one indeterminate x, with the
commutation rule

ax = xaα + x2aδ1 + x3aδ2 + . . . ,

where α is an endomorphism of K and (δ1, δ2, . . .) is a higher α-derivation.
7∗. Let A be the group algebra over k of the free group on X and define an order-

function with values in Z ∪ {∞} in terms of the total degree:

d(xε1
1 . . . xεn

n ) =
∑

εi .

Show that A has a completion Â relative to this function and that k〈〈X〉〉 can be
embedded in Â.



170 Firs, semifirs and the weak algorithm

8. Let R be a complete inversely filtered ring with μv(R) ≥ 2. Show that R× is a
rigid monoid.

9. Let R be as in Exercise 8. If a, b, a′ ∈ R× are such that v(a) ≥ 0 and ab = ba′,
find u, v ∈ R and r ≥ 0 such that a = uv, a′ = vu, b = ar u = ua

′r . Show that
for any b ∈ R× there is an order-preserving mapping of the set of left ideals of the
eigenring E(b) into the set of left ideals of R of the form Ra′, where ab = ba′.
Deduce that in a power series ring the eigenring of a non-zero element is an
Artinian local ring.

10. If X is a finite set, the elements of k〈〈X〉〉 can be described as formal infinite sums∑
xI aI , where xI ranges over all monomials in X. Show that for infinite X this

is no longer true, but when X is countable, there is a ring whose elements are all
formal power series in X, and which is obtained as the completion of k〈X〉, when
suitable degrees have been assigned to the elements of X. (To extend this result to
arbitrary sets X one would need transfinite degrees.)

11. (Jooste [71]) Let R be a complete inversely filtered ring with inverse weak algo-
rithm and let d be any derivation of R with kernel N. Show that any family of
elements of N left linearly dependent over R is also left linearly dependent over N.
Deduce that for any family (yi ) of elements of N , N ∩ ∑

Ryi = ∑
N yi . Hence

show that N is a semifir and that R is flat as an N-module.
12∗. (Jooste [71]) Show that in any complete inversely filtered ring R with n-term

inverse weak algorithm the kernel N of any derivation of R is an n-fir. (Hint: Use
Exercise 11.)

13. Show that k〈〈X〉〉 is faithfully flat over k〈〈X〉〉rat and k〈〈X〉〉alg. (Recall that a ring R
is left faithfully flat over a subring S if and only if R/S is flat as left S-module; see
Bourbaki [72].)

14. Show that in a semifir any finitely generated left or right ideal satisfies (6).
15. Let R = k〈〈X〉〉 be the power series ring on a countable set X = {x1, x2, . . .}.

Show that the set a[n] of all elements of order ≥ n is an ideal in R and that
R = a[0] ⊃ a[1] ⊃ . . . . Show also that a[i]a[ j] ⊂ a[i+ j] (Hint: For example, for
i = j = 1 show that

∑
xn+1

n lies in a[2] but not in a2
[1].)

16◦. In Theorem 9.13, can the condition on M1 (to be free) be omitted, or replaced by
the condition that M1 be projective?

17◦. Investigate inversely filtered k-algebras with inverse weak algorithm which are
not connected.

18. For any commutative field k, show that k[[x]]rat is the rational function field k(x)
and k[[x]]alg is the relative algebraic closure of k[x] in k[[x]].

19∗. (G. M. Bergman) In k〈〈x, y〉〉 consider the subalgebra S generated by x, y and
z = ∑

xn yn . Show that the augmentation ideal of S has a 2-element weak v-
basis, even though it is free of rank 3. (Hint: To show that x, y, z are right
linearly independent, take a relation and apply a transduction with respect
to x.)

20∗. (G. M. Bergman) In k〈〈x, y〉〉 define z as in Exercise 19, let T be the subalge-
bra generated by x, y, xz and T̂ be its completion. Show that T is not 1-inert
in T̂ .

21◦. (G. M. Bergman) Let R be a free algebra and R̂ its power series completion. If an
element of R is a square in R̂, is it associated (in R̂) to the square of an element
of R?
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22◦. (G. M. Bergman) Let A = R[t] and put a = (t2 + 1)A. Show that the a-adic
completion is C[[x]], where x = t2 − 1. What is the completion of R〈s, t〉, when
a is the kernel of the homomorphism to the quaternions, mapping s to i and t to j?

2.10 The transfinite weak algorithm

In Section 1.2 we saw that the classical division algorithm can be defined for any
ring R with a function from R to N, or more generally, for any ordinal-valued
function. However, in defining the weak algorithm we used the additivity of
the values v(x) in an essential way, and so were limited to N. Nevertheless,
the definition of the weak algorithm can be modified so as to apply to ordinal-
valued functions. The resulting notion is not left–right symmetric (in contrast to
the ordinary weak algorithm); this makes it suited for studying rings that lack
left–right symmetry in some respect. Instead of filtrations we need to study
more general functions whose precise form is suggested by Theorem 1.2.2.

Let R be a ring with a function w defined on it, satisfying the following
conditions:

T.1. w maps R× to a section of the ordinals, w(1) = 0, w(0) = −1,
T.2. w(a − b) ≤ max{w(a), w(b)},
T.3. w(ab) ≥ w(a) for any b ∈ R×.

From T.3 it follows that R must be an integral domain. Moreover, Proposition
1.2.3 shows that when a division algorithm of the form a = bq + r, with w(r ) <

w(b) exists, then the remainder r is unique.
We shall refer to a function w satisfying T.1–T.3 as a transfinite right degree

function on R and call w(a) the degree of a. Given such a function w on R, we
shall say that a family {ai } of elements of R is right w-dependent if some ai is
0 or if there exist elements bi ∈ R, almost all 0, such that

w
(∑

ai bi

)
< maxi {w(ai bi )}.

Otherwise the family {ai } is called right w-independent. An element a ∈ R is
said to be right w-dependent on a family {ai } if a = 0 or if there exist bi ∈ R,
almost all 0, such that

w
(

a −
∑

ai bi

)
< w(a), w(ai bi ) ≤ w(a) for all i . (1)

Otherwise a is right w-independent of the ai . If in (1), b j �= 0, then w(a j ) ≤
w(a j b j ) ≤ w(a); hence in any dependence (1), a is already right w-dependent
on the ai of degree ≤ w(a). We also note that a is right w-dependent on the
empty set if and only if a = 0.
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Now strong right w-dependence is defined as for degree-functions. Again
we see that any strongly right w-dependent family is right w-dependent and we
have the:

Definition. A ring with a transfinite right degree w is said to satisfy the
transfinite right weak algorithm if any right w-dependent family is strongly
right w-dependent.

We emphasize that in contrast to the case considered in Section 2.4, the
transfinite weak algorithm does not possess left–right symmetry. In what follows
we shall only be concerned with right w-dependence and so we often omit the
qualifying adjective.

Let R be a ring with a transfinite right degree w satisfying the transfinite
weak algorithm; it follows as before that the set K = {x ∈ R | w(x) ≤ 0} is
a field. Given a right ideal a of R, let us well-order the elements of a in any
way so that elements of smaller degree precede those of larger degree and omit
any element right w-dependent on earlier ones. The resulting set B is a right
w-independent basis of a, for it is clearly a generating set, and if w(

∑n
1 ai bi ) <

maxi {w(ai bi )} where ai ∈ B and the ai occur in the order a1, . . . , an , so that
w(a1) ≤ . . . ≤ w(an), then by the transfinite weak algorithm, for some i,

ai =
i−1∑

1

a j c j + a′
i , where w(a′

i ) < w(ai ) . (2)

Hence ai is right w-dependent on earlier elements, contradicting the fact that
ai ∈ B. Thus B is right w-independent, and a fortiori right R-linearly indepen-
dent, hence a basis of a. To show that R has IBN, suppose that a is generated
by a1, . . . , an , where w(a1) ≤ . . . ≤ w(an) say, and that these elements are lin-
early dependent. Then (2) holds for some i and we can replace ai by a′

i . By
induction on the n-tuple (w(a1), . . . , w(an)) we find that a can be generated by
fewer than n elements, hence by Theorem 3.1, a has unique rank and so R has
IBN. Remembering Theorem 2.3, we obtain

Theorem 2.10.1. Any ring with a transfinite right degree function w satisfying
the transfinite right weak algorithm is a right fir, and hence has right pan-ACC.
Moreover, every right ideal has a right w-independent basis. �

To obtain examples of this construction we shall take certain monoid rings
and we begin by looking at the monoids that we shall need. Let S be a conical
rigid monoid with right ACC1. On S we can define a partial preordering by left
divisibility:

u ≤ v if and only if v = us for some s ∈ S. (3)
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Since S has cancellation and is conical, this is in fact a partial ordering and it
satisfies the DCC by the right ACC1 on S. Moreover, for any s ∈ S, the lower
segment determined by s, i.e. {x ∈ S | x ≤ s} is totally ordered, by rigidity,
and hence by ACC1 is well-ordered and so is order-isomorphic to an ordinal
number, which we shall denote by w(s) and call the transfinite degree (defined
by left divisibility). From the definition it is clear that we have

w(u) ≤ w(v) implies w(cu) ≤ w(cv), for u, v, c ∈ S , (4)

w(b) ≤ w(c) implies w(bu) ≤ w(cu), for b, c, u ∈ S . (5)

Now consider the monoid ring R = kS; we extend w to R by putting

w
(∑

λss
)

= max{w(s)|λs �= 0}.
As usual, by a leading term of a ∈ kS we mean a term of highest degree. Then it
is easily seen that (4), (5) still hold for b, c ∈ kS, u, v ∈ S. Moreover, it is clear
that T.1 and T.2 hold, and T.3 also follows, for if a = ∑

λi ui , b = ∑
μ jv j and

w(ab) < w(a), let u1 be a leading term of a. Then w(ab) < w(u1) ≤ w(u1v j )
for all j; thus each term u1v j must be cancelled by a sum of other terms uivk .
Choose j so that v j is not a right factor of any vk ; we have u1v j = uivk , where by
the choice of u1 (and rigidity) u1 = ui s, s �= 1, hence vk = sv j , a contradiction.
Thus we have indeed a transfinite degree function. We claim that it satisfies the
right transfinite weak algorithm.

Let a1, . . . , an be a right w-dependent family; thus

w
(∑

ai bi

)
< maxi {w(ai bi )} . (6)

If one of the ai is 0, there is nothing to prove, so we may exclude that case. We
again suppose the ai numbered so that

w(a1) ≤ . . . ≤ w(an) . (7)

We shall show that some ai is right w-dependent on a1, . . . , ai−1. By omitting
superfluous terms we may suppose that

w(a1b1) = . . . = w(anbn) = α .

Since cancellation holds in S, the left cofactor of an element u in a product vu is
well-defined, and for a given u ∈ S we can define the left transduction a �→ a∗

in R, where for any a ∈ R, a∗ is the left cofactor of u, i.e. a = a∗u + . . . , where
dots denote products not ending in u.

We shall need two properties of transductions.

Lemma 2.10.2. Let S be a conical rigid monoid with right ACC1 and let
R = kS be the monoid algebra with the transfinite degree function w defined
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by left divisibility. Given u ∈ S, u �= 1, let ∗ denote the left transduction with
respect to u. Then

(i) for any a, b ∈ R,

(ab)∗ = ab∗ + terms of degree < w(a) , (8)

(ii) if a, b, c ∈ R, where c includes u among its leading terms, and w(a) <

w(bc), then w(a∗) < w((bc)∗).

Proof. (i) By linearity we need only check this claim when b ∈ S. If b = tu
for some t ∈ S, then ab = atu and so (ab)∗ = at = ab∗, hence (8) holds then.
Otherwise we have u = tb, for some t ∈ S, t �= 1, by rigidity. Now write a =
a1 + a2, where a1 is the sum of all terms λss occurring in a such that sb has u as
a right factor. Then a1b = cu = ctb for some c ∈ R. Hence (ab)∗ = (a1b)∗ +
(a2b)∗ = c, b∗ = 0 and w(c) < w(a1) ≤ w(a), so (8) is again satisfied.

(ii) Write a = a1u + a2, where no term in a2 has u as a right factor. Then a∗ =
a1, (bc)∗ = b+ lower terms and w(a1u) ≤ w(a) < w(bc) = w(bu), where we
have used (4). Hence by (5) w(a∗) = w(a1) < w(b) = w((bc)∗), as claimed in
(ii). �

We shall apply the lemma to (6), where (7) is assumed to hold. Among the
leading terms of bn pick one, u say, which is not a right factor of any other
leading term of bn; it is clear that u cannot be a right factor of any non-leading
term of bn . Denote the coefficient of u in bn by λ. If ∗ is the left transduction
with respect to u, then by (8) we have

∑
ai b∗

i =
(∑

ai bi

)∗
+ terms of degree < w(an) . (9)

Since w(
∑

ai bi ) < w(anbn) and (anbn)∗ = λan+ terms of lower degree, it
follows by (ii) of Lemma 10.2 that w((

∑
ai bi )∗) < w(an), and with (9) this

shows that w(
∑

ai b∗
i ) < w(an); since b∗

n = λ �= 0, this shows an to be right
w-dependent on a1, . . . , an−1, and so we obtain

Theorem 2.10.3. Let S be a conical rigid monoid with right ACC1. Then the
monoid algebra kS satisfies the right transfinite weak algorithm relative to the
partial ordering by left divisibility, and hence is a right fir. �

As an example to illustrate Theorem 10.3 consider the monoid S generated
by y, xi (i ∈ Z) subject to the relations

yxi = xi−1 (i ∈ Z) . (10)
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It is easily checked that the elements of S can be uniquely expressed in the form

xi1 . . . xir ym, where iρ ∈ Z, r, m ≥ 0 . (11)

Clearly S is conical, the form (11) of its elements shows that it is rigid and we
have

xi1 . . . xir ym S ⊃ x ji . . . x js yn S

if and only if r ≤ s, iρ = jρ(ρ = 1, . . . , r ), m ≤ n; this shows that right ACC1

holds in S. Therefore Theorem 10.3 can be applied to show that the monoid
algebra R = kS is a right fir, but it is not a left fir, because the left ACC1 does
not hold in R:

Rx0 ⊂ Rx1 ⊂ Rx2 ⊂ . . . .

We note that y is right large in R, in fact we have Ry ⊆ y R, i.e. y is right
invariant in R.

Exercises 2.10

1. Show that in a ring with right transfinite weak algorithm any element of degree 0
is a unit and any element of degree 1 is an atom.

2. Let F be the free group on x and y and let T be the submonoid generated by y and
all elements y−n x(n = 0, 1, 2, . . .). Verify that T is isomorphic to the monoid S
defined after Theorem 10.3. Carry out the proof that this monoid has right ACC1.

3. Let R be a ring with right transfinite weak algorithm. If p ∈ R is an element of degree
1 and a is a proper right ideal containing p, show that a has a right w-independent
basis including p.

4. Prove an analogue of Lemma 4.7 for the transfinite degree function.
5. Show that the only non-trivial monoid with right cancellation in which (3) is a

well-ordering is N. What are the monoids with this property but instead of right
cancellation having left cancellation? (See Cohn [61a]).

6◦. (Samuel [68]) Let R be a commutative ring with transfinite algorithm. Does R
necessarily have an integer-valued algorithm? What is the answer if the residue-
class field (mod p), for every atom p, is known to be finite?

7. Let R be the ring defined at the end of Section 2.10 (with the defining relations
(10)). Show that the cyclic left R-module R/Rx0 is Artinian but not Noetherian
(see Cohn [97b]).

8∗. Let S be the monoid on xi , yi , z(i ∈ Z) with defining relations xi = zxi−1, yi =
zyi−1. Show that the monoid ring R = kS is a right fir, but that the lattice of
principal right ideals containing x1 R is not complete.

9. (Cedó [88]) Let M be the monoid generated by x, y subject to the relation yxy = x .
Show that M is conical and rigid, but that the monoid algebra kM is not a semifir.
(Hint: Use the relation (1 − x)(1 − y) = (1 − y)(1 + xy) in kM.) Does left or right
ACC1 hold in kM?
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2.11 Estimate of the dependence number

Many situations require counter-examples in the form of an n-fir that is not
an (n + 1)-fir. Usually it is easy to see that the proposed example is not
an (n + 1)-fir, but it is less easy to prove that it is an n-fir and our aim in
this section is to derive a result that in certain cases allows the dependence
number to be estimated and hence shows the given ring to be an n-fir for
appropriate n.

For example, to construct a ring that is weakly n-finite but not weakly (n + 1)-
finite, one would take a k-algebra R on 2(n + 1)2 generators ai j , bi j (i, j =
1, . . . , n + 1) and form matrices of order n + 1, A = (ai j ), B = (bi j ) with
defining relations

AB = I . (1)

Theorem 11.2 below shows R to be an n-fir and hence weakly n-finite. If it
were an (n + 1)-fir, it would be weakly (n + 1)-finite, but that is not so, since
in R we have

B A �= I . (2)

Intuitively it is clear that the relation (1) does not entail the relation B A = I, and
this can be made into a rigorous proof using a normal form argument. Another
method is to interpret A, B as endomorphisms of a free left R-module V of
infinite rank. We take a basis {uνi } of V indexed by N × {n + 1} and define
linear mappings α, β of V into itself:

uνiα =
∑

ai j uν+1 j , uνiβ =
{∑

j bi j uν−1 j if ν > 0 ,

0 if ν = 0 .

Then it is easily verified that αβ = 1, βα �= 1; since R can be represented in
End(V ) by mapping A �→ α, B �→ β, it follows that B A �= I .

Let R be a k-algebra (k a commutative field), generated by a set U; thus if
F = k〈U 〉, we have R ∼= F/a, where a is the ideal of relations holding in R. On
F we have the usual degree-function d( f ). Let us write a �→ a for the natural
homomorphism F → R and define a filtration v on R by

v(r ) = inf{d(a)|a = r}.
Given r, s ∈ R, choose a, b ∈ F such that a = r, b = s and v(r ) = d(a), v(s) =
d(b). Then

v(r + s) ≤ d(a + b) ≤ max{d(a), d(b)},
v(rs) ≤ d(ab) = d(a) + d(b).
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Hence we obtain

v(r + s) ≤ max{v(r ), v(s)}, v(rs) ≤ v(r ) + v(s);

clearly v(1) = 0, so v is indeed a filtration on R. For any a ∈ F we define
v(a) = v(a). Then it is easily seen that v is also a filtration on F.

Consider a set of defining relations for R. If one of them is linear, say∑
αi ui + β = 0 (ui ∈ U, αi , β ∈ k), then we can use it to eliminate one of the

generators ui , because k is a field. Thus we may assume that there are no linear
relations. We shall take the generating set U to be of the form U = X ∪ Y ,
where X is indexed by N × I : X = {xνi }; the elements of X have degree 1,
while those of Y have degree δ, where δ is a small positive number whose exact
size will be fixed later. The defining relations of R are all taken to be of the form

n∑
0

xνi xν j = bi j , (3)

where bi j is an expression in the members of Y. The relation (3) is assigned the
index (i, j). Now δ is chosen so small that the total degree of bi j is less than 2.

Each element f ∈ F = k〈U 〉 is a polynomial in U. It is said to be in reduced
form for the suffix 0, briefly 0-reduced, if no term in f contains a factor x0i x0 j ,
for any of the defining relations (3). Any f ∈ F can be brought to 0-reduced
form by applying the moves

x0i x0 j �→ bi j −
∑
ν �=0

xνi xν j (4)

arising from (3), whenever possible. It is clear that for any f a 0-reduced form
is reached in a finite number of moves. In general there may be more than one
such reduced form for a given f ; if for each f ∈ F there is just one 0-reduced
form, we shall call it the normal form of f (for the suffix 0), and we also say that
a normal form for the suffix 0 exists. Similarly, for each suffix μ = 1, 2, . . . , n
a μ-reduced form and a normal form may be defined, using instead of (4) the
moves

xμi xμj �→ bi j −
∑
ν �=μ

xνi xν j . (4μ)

The normal form of f for μ, when it exists, will be denoted by [ f ]μ.
We can now give conditions on a presentation for the n-term weak algorithm

to exist:

Theorem 2.11.1. Let R be a k-algebra generated by a set U = X ∪ Y , where
X = {xνi }(i ∈ I, ν = 0, 1, . . . , n), with a set of defining relations indexed by
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some subset of I 2:
n∑

ν=0

xνi xν j = bi j ,

where bi j is an expression in the elements of Y. Further, assume that a normal
form exists for each n = 0, 1, . . . , n satisfying Nν: For any u, v, w ∈ U, if uv

is ν-reduced, then the terms of highest value in u[vw]ν are in normal form
for ν.

Then λν(R) ≥ n; thus R satisfies the n-term weak algorithm and hence is an
n-fir.

Proof. Let us write

Hr = { f ∈ R|v( f ) ≤ r}.
We have to prove that the n-term weak algorithm holds; thus if

f1g1 + . . . + fm gm ≡ 0 (mod Hr−1), v( fα) + v(gα) = r, (5)

where m ≤ n, we have to show that some gα is left v-dependent on the g’s of
value not exceeding v(gα).

In order to reduce (5) we shall work with the normal form for the suffix 0
and therefore write [ f ] for [ f ]0 in what follows. We shall also need to make use
of transductions: given f ∈ R and u ∈ U , we shall denote the right cofactor of
u in the expression [ f ] by (u f ).

We note that under the given hypotheses Nν actually holds for any u, v, w ∈
R. By linearity we need verify this only when u, v, w are products of generators.
Now the reducibility of a product f.g, where g is a reduced monomial with
leftmost factor xμi depends only on μ (whether μ = ν) and on j (whether there
is a relation (i, j) such that f has a rightmost factor xμj ), but (4μ) shows that
the terms of highest value resulting from a reduction have the same ‘left-hand
data’ as the original word.

Now return to (5): if v( fα) = 0 for some α, then fα is a unit and the result is
clear; so we may assume that v( fα) > 0 for all α. We take the terms of highest
value in fα and gα in normal form; put v( fα) = s and let

fα ≡
∑

u

u(u fα) (mod H s−1) (u ∈ U ) (6)

be the expression of fα in normal form (mod terms of lower value than v( fα)).
Inserting this expression in (5), we obtain a congruence that may be written as∑

u

u[(u fα)gα] ≡ 0 (mod Hr−1). (7)
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If v( fα) > 1 for all α, then the left-hand side of (7) has all its terms of highest
value in normal form, for there can be no reduction in u[(u fα)gα] unless this
was already possible in fα , by N0. From the uniqueness of the normal form it
now follows that the coefficient of each u in (7) must vanish, and going back to
the original form of this coefficient we find that∑

α

(u fα)gα ≡ 0
(
mod Hr−v(u)−1). (8)

Now the result follows by induction on r.
There remains the case where for some α, say α = 1, v( f1) = 1 and f1g1 is

not 0-reduced. This means that for some i ∈ I , say i = 1, f1 contains a term
x01 and x01g1 is not 0-reduced. Let us write

fα = x01
(x01 fα

) + f ′
α, (9)

and

gα =
∑

j

x0 j
(x0 j gα

) + g′
α. (10)

Substituting from (9) and (10) into (5), we obtain

∑
α

(
x01

(x01 fα
) + f ′

α

) (∑
j

x0 j
(x0 j gα

) + g′
α

)
≡ 0 (mod Hr−1) .

Now reduce the terms of the first sum and equate the terms of value r with x01

as left-hand factor. We may assume the fα so numbered that (x01 fα) has value
0 for α = 1, . . . , s and positive value for α > s. Then, since

x01x0 j = −
∑

ν

xν1xν j + b1 j ,

we have

−
s∑

β=1

n∑
ν=1

∑
j

(x01 fβ
)(

xν1xν j
(x0 j gβ

) + b0 j
(x0 j gβ

)) +
s∑

β=1

x01
(x01 fβ

)
g′

β

+
m∑

γ=s+1

x01
(x01 fγ

)
gγ +

m∑
α=1

f ′
αgα ≡ 0 (mod Hr−1).

Equating cofactors of x01 we find
s∑

β=1

(x01 fβ
)
g′

β +
m∑

γ=s+1

(x01 fγ )gγ ≡ 0 (mod Hr−2). (11)

Now by hypothesis (x01 f1) is a non-zero scalar, λ say; write

g∗
1 = g1 + 1/λ

(
s∑

β=2

(x01 fβ
)
gβ +

m∑
γ=s+1

(x01 fγ
)
gγ

)
, (12)
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so by (11), on putting λ−1(x01 fβ)(x0 j gβ) = h jβ , we find

g∗
1 =

∑
β j

x0 j h jβ + terms of lower value. (13)

Now (12) represents an elementary transformation of the g’s that does not
affect gα for α �= 1. Hence if f1g1 is not 0-reduced, we can by an elementary
transformation bring g1 to the form g∗

1 given by (13) without disturbing the
other g’s. Since the x0 j are all distinct, f1g1 is now μ-reduced for any suffix
μ �= 0. Next take μ = 1; as before there is a term fαgα that is not 1-reduced.
By what has been said, α �= 1 and after suitable renumbering of the f ’s and g’s
we may take α = 2. The same argument now shows that there is an elementary
transformation bringing g2 to the form g∗

2 = ∑
x1 j h jβ+ terms of lower value,

without disturbing the other g’s. By induction on t we may therefore suppose
that gβ is replaced by

g∗
β =

∑
xβ−1 j h

β

jγ + lower terms (β = 1, . . . , t − 1). (14)

Now some fαgα is not reduced. This means that α �= 1, . . . , t − 1 and by renum-
bering the f ’s and g’s we may take α = t . As before we can bring gt to a form g∗

t
given by (14) without affecting the gβ(β �= t). This applies for t = 1, 2, . . . , m
and since m ≤ n, we eventually reach a contradiction. So we are reduced to the
first case and the result follows. �

The hypotheses of Theorem 11.1, although rather cumbersome to state, are
quite natural ones holding in many cases, and when they do hold they are
usually easy to verify. We shall do so in one important case, that of matrix
reduction, which was discussed in Section 0.2. We recall that Wn(R) is obtained
by regarding the elements of R as n × n matrices.

Theorem 2.11.2. Let R be a non-zero k-algebra (k a commutative field). Then
Wn+1(R) has a filtration v for which the n-term weak algorithm holds.

Proof. It is clear that there is a natural homomorphism λ : R → Fn+1(R) =
R∗

k Mn+1(k). The elements of R will be denoted by a, b, etc. and their images
aλ, bλ (which are matrices) by (aμν), (bμν), etc. Our task is to establish the n-
term weak algorithm on Wn+1(R) relative to a suitable filtration. The defining
relations of R may be taken in the form ab = c. As a matrix equation this reads∑

ν

arνbνs = crs

and this is of the form (3). If we regard the moves (4) as a ‘straightening
process’, we see that every expression can be 0-reduced, by an induction on the
number of ‘bad’ factors ar0b0s . To show that we actually get a normal form we
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have to check that for any expression containing two ‘bad’ factors the results
of the two ways of reducing them can themselves be reduced to a common
value, and here it is clearly enough to consider the case where the two factors
in question overlap (this is in effect an application of the diamond lemma, see
Bergman [78a] or FA, Section 1.4). Thus we have to examine products of the
form ar0b00c0s . If we add certain (uniquely reducible) terms, we obtain∑

arμbμνcνs ,

and here we can reduce either the first pair of factors and get
∑

ν(ab)rνcνs , which
by a further reduction gives (abc)rs ; or reducing the second pair first we get∑

μ arμ(bc)μs , which again reduces to (abc)rs . Thus we get equality (essentially
by the associative law) and this establishes the existence of a normal form for
the index 0; the same argument holds for μ = 1, . . . , n.

It remains to verify Nν ; again we need only consider N0. Thus uv is 0-
reduced, so a typical term will be aλμbνρ , where μ, ν are not both 0 if ab occurs
in a defining relation. If vw is not reduced, then ρ = 0 and w will have the form
c0σ , so [bν0c0σ ] = (bc)νσ − ∑

κ �=0 bνκcκσ and when we multiply on the left by
aλμ it remains 0-reduced because μ, ν are not both 0. Thus all the conditions of
Theorem 11.1 are satisfied and so the n-term weak algorithm holds in Wn+1(R).

�

Instead of interpreting the elements of R as square matrices of order n + 1
we can also take them to be rectangular matrices. Thus if each generator u
is interpreted as an nu × mu matrix, where the numbers n, m are such that the
defining relations, as matrix expressions, make sense, and if further, mu, nu > n,
then the resulting ring again has n-term weak algorithm. The proof is essentially
the same and so is left to the reader.

It is clear from Theorem 11.2 that the ring described at the beginning of this
section (with matrices A, B of order n + 1 satisfying (1) and (2)) is an n-fir.
In the same way we can construct a ring over which every finitely generated
module can be generated by n elements, but where n cannot be replaced by
n − 1. We need only take an (n + 1) × n matrix A and an n × (n + 1) matrix
B with the relation

AB = I. (16)

By Theorem 11.2 the resulting ring Un,n+1 is an (n − 1)-fir, hence weakly
(n − 1)-finite, but from Section 0.1 we know that on writing R = Un,n+1, we
have Rn ∼= Rn+1 ⊕ P for some R-module P, hence RN ∼= RN+1 ⊕ P for all
N ≥ n and it follows that every finitely generated R-module is n-generated.
However, Rn cannot be generated by fewer than n elements, because R is weakly



182 Firs, semifirs and the weak algorithm

(n − 1)-finite. Here the remark (on rectangular matrices) following Theorem
11.2 is not needed since the relation (16) can be written Ai B j = δi j , where Ai

is the ith row of A and B j is the jth column of B. However, this remark is needed
for the next example.

Let A be m × n and B be n × m and consider the ring R = Vm,n with gen-
erators aiλ, bλi satisfying

AB = I, B A = I.

If m < n, R is an (m − 1)-fir but does not have IBN; in fact it may be shown
to be of type (m, n − m) (see Exercise 2 below).

Exercises 2.11

1. Prove Theorem 11.2 when the generators are interpreted as rectangular matrices.
2. If Vm,n (as defined in the text) is of type (h, k), show that m ≥ h, n ≡ m (mod k).

Use the fact that Vm,n is an (m − 1)-fir to show that m = h. (The fact that k = n − m
can be shown by a trace argument, see Cohn [66a] or Corner [69].)

3. (Bowtell [67a]). Let A be n × m and B be m × n, where n > m > 2. Consider the
ring R with the entries of A, B as generators and defining relations (AB)i j = 0 for
i �= j, i, j = 1, . . . , n. Show that R is an (m − 1)-fir but is not embeddable in a
field. (Note that Theorem 11.2 does not apply as it stands.)

4. (Klein [69]) Let A be n × n and consider the ring R generated by the entries of
A with defining relation An+1 = 0. Show that An �= 0 and that R is an (n − 1)-fir.
Apply Theorem 3.16 to deduce that R cannot be embedded in an n-fir.

5. Let Aν, Bν(ν = 1, 2, . . .) be n × n matrices and consider the ring generated by
their entries with defining relations

Aν−1 = Aν Bν(ν = 1, 2, . . .).

Show that R is a semifir and that each Aν is non-invertible. Moreover, show that
λν(R) ≥ n − 1 and deduce that R satisfies right ACCn−1 but not ACCn .

6. Let A be n × n and consider the ring R generated by the entries of A with defining
relation A2 = A. Show that R is an (n − 1)-fir but that there is an n-generator
projective module that is not free.

7. Construct an (n − 1)-fir with an n-generator module that is stably free but not free.
8. (Montgomery [83]) Let k be a commutative field and E = k(α) a simple commuta-

tive extension of degree n + 1, with minimal equation xn+1 + a1xn + . . . + an+1 =
0 for α (ai ∈ k). Let R be the k-algebra generated by x0, x1, . . . , xn, y0, . . . , yn with
defining relations obtained by equating the powers of α in (

∑
xiα

i )(
∑

y jα
j ) = 1.

Show that R is weakly n-finite but that R ⊗k E is not weakly 1-finite.
9. (Malcev [37]) Let A, B be 2 × 2 matrices and consider the ring R generated by

their entries with defining relations AB = e12. Show that R is an integral domain
but is not embeddable in a field. Show that R is not embeddable in a 2-fir. (Hint:
Use the partition lemma.)
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10. (M. Kireczi) Use Exercises 2 and 0.1.16 to show that there is no homomorphism
V1,r → Vm,n when r > 1, 1 < m < n.

Notes and comments on Chapter 2

The generalities on hereditary rings were for the most part well known. Thus Corollaries
1.2 and 1.3 (without reference to κ) occur in Cartan and Eilenberg [56], p. 13, see also
Guazzone [62]; the proof of Theorem 1.1 is modelled on these cases. Kaplansky [58]
proved that for any ring, every projective module can be written as a direct sum of
countably generated modules, and he deduced a commutative form of Lemma 4.7: over
a commutative semihereditary ring every projective module is isomorphic to a direct sum
of finitely generated ideals. This was proved for left modules over a left semihereditary
ring by Albrecht [61] and over a right semihereditary ring by Bass [64]. Both results are
included in Theorem 1.4, which is taken from Bergman [72b].

Firs, i.e. free ideal rings, and semifirs (originally called ‘local firs’) were introduced in
Cohn [64b]; the account in Sections 2.2 and 2.3 is based on that source and on Bergman
[67]. The partition lemma 3.15 is taken from Cohn [82a]; it is used mainly in Chapter 7.
The notion of n-fir arose out of an idea in Cohn [66a], which leads to a general method
of constructing n-firs that are not (n + 1)-firs, see Cohn [69c], Bergman [74b] and SF,
Section 5.7. The generalization to α-firs is due to Bergman [67], who proved Proposition
3.20, generalizing the fact (proved by Cohn [67]) that any left fir has left pan-ACC. The
fact that free modules over firs satisfy pan-ACC can be viewed as a result in universal
algebra (see Baumslag and Baumslag [71]). The characterization of local rings that
are semifirs (Theorem 3.13) is taken from Cohn [92a]. Theorem 3.14 first occurs in
Cohn [66c]. We remark that the hypotheses of Theorem 3.14 are symmetric and show
incidentally that for a projective-trivial ring, ‘left semihereditary’ is equivalent to ‘right
semihereditary’. For general rings this is no longer so, as an example in Chase [61]
shows. Klein [69] has proved that for any integral domain R over which every nilpotent
n × n matrix A satisfies An = 0, the monoid R× can be embedded in a group. Thus
Proposition 3.16 can be used to prove that the monoid of non-zero elements in any semifir
is embeddable in a group. This holds more generally for any 2-fir (see Gerasimov [82]).
For an application of Proposition 3.21 see Jensen [69]. Prest [83] has shown that for any
existentially complete prime ring R, every non-zero finitely generated projective module
is isomorphic to R; thus such a ring is a ‘metasemifir’ of type (1,1) (see Exercise 1.9).

2-Firs were defined (under the name ‘weak Bezout rings’) and studied in Cohn
[63a]; the present (weaker) form of their definition is due (independently) to Bergman
[67], Bowtell [67a] (see Exercise 3.1.5), Williams [68a] and for right Bezout rings (i.e.
rings in which every 2-generator right ideal is principal), Lunik [70]. This observation is
essentially Theorem 3.7 (a) ⇒ first part of (b). Commutative Bezout domains are studied
(under the name ‘anneau de Bezout’) by Jaffard [60] and Bourbaki [72], Chapter 7; the
name is intended to convey that any two coprime elements a, b satisfy the ‘Bezout
relation’ au − bv = 1.

The notion of a weak algorithm was introduced by Cohn [61a, 63b] as a simplified
and abstract version of what was observed to hold in the free product of fields (Cohn
[60]). It was rediscovered by Bergman [67] and later greatly generalized in the coprod-
uct theorems of Bergman [74a] (see SF, Chapter 5). Our presentation is based on all



184 Firs, semifirs and the weak algorithm

these sources; in particular the original definitions have been modified as suggested by
Bergman [67] so as to be closer to the usual notion of dependence; the term ‘strong
dependence’ is new (it was first used in IRT). The n-term weak algorithm was intro-
duced by Cohn [66a, 69b], where Proposition 4.9 was proved. The proof in the text,
using weak v-bases, is due to Bergman [67]. For a right ideal in a free algebra, a weak
v-basis is always a Gröbner basis (see e.g. Fröberg [97]), though the converse need not
hold.

The dependence number as defined in Section 2.4 seems more natural than the notion
defined in FR.1 which was larger by one. For any ring R the dependence number λ(R)
may be defined independently of any filtration as the supremum of the λv(R) as v runs
over all filtrations of R. This is a positive integer or ∞, defined for any ring; e.g. λ(R) ≥ 1
if and only if R is an integral domain. Bergman [67] gives examples of rings R such that
λv(R) is finite but unbounded, as v ranges over the filtrations on R; thus λ(R) = ∞, but
R has no filtration for which the weak algorithm holds.

The results of Section 2.5, characterizing free algebras by the weak algorithm, are
due to Cohn [61a], though the presentation in Results 5.1–3 largely follows Bergman
[67]. This proof uses transductions, whose use in the study of rational and algebraic
power series goes back to Nivat [68] and Fliess [70a]. Theorem 5.4, showing that the
weak algorithm in filtered K-rings extends to the coproduct, was first proved by Bergman
[67], p. 211; see also Williams [69b]. The problem of constructing all rings with a weak
algorithm was raised by Cohn [63b] and solved by Bergman [67], whose presentation we
follow in Section 2.5. The analogue of Schreier’s formula in Section 2.6 was obtained by
Lewin [69] as a corollary of the theorem that submodules of free modules are free, which
Lewin proves for free algebras by a Schreier-type argument; it was also found by D. R.
Lane (unpublished). Its extension to rings with a weak algorithm first appeared in FR.1;
the present version owes simplifications to Bergman and Dicks (see also Dicks [74]).
Hilbert series (sometimes called Poincaré series, also (following M. Lazard) gocha,
in FR.1) have been studied intensively for commutative graded rings in the 1980s,
particularly the cases of rationality (see Roos [81]). On Corollary 2.4 see also Rosenmann
and Rosset [94].

The Euclidean algorithm in a (non-commutative) integral domain with a division
algorithm was treated by Wedderburn [32]; the presentation in Section 2.8, valid for any
ring with 2-term weak algorithm, follows Cohn [63b], and the description of G E2(R)
in 2.7 is taken from Cohn [66b]. Proposition 7.1 is improved by Menal [79], who shows
that R has unique standard form for G E2 if and only if R is ‘universal’ for G E2 (i.e. the
conclusion of Proposition 7.1 holds) and the subring generated by U (R) is a field.

The inverse weak algorithm (Section 2.9) was introduced by Cohn [62a], where
Results 9.7–12 are proved; 9.13–14 are taken from Cohn [70c], but the present version
of 9.13, with the present simple proof, is due to Dicks [74]. The exchange principle
(Lemma 9.1) and Results 9.3–6 are due to Bergman [67], who also proves the inertia
theorem (9.16) for free algebras in the case of 1-inertia. The case of total inertia was
new in FR.1, though with some gaps in the proof, which were filled in FR.2, following
Cohn and Dicks [76]. A special case of Theorem 9.16 was proved by Tarasov [67], who
showed that an atom (without constant term) in the free algebra remains one in the power
series ring. For an application of the inertia theorem to represent a free radical ring by
power series see Cohn [73b]. Corollary 9.17 is taken from Cohn [92b]. Theorem 9.18
answers a question raised by Fliess (in correspondence) and first appeared in FR.2.
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The transfinite weak algorithm is taken from Cohn [69b] and was suggested by a
method of Skornyakov [65], used there to construct one-sided firs. The construction in
the text is based on that by Skornyakov. In FR.1 the right transfinite weak algorithm
in the example was checked directly; the proof of Theorem 10.3, applying to a whole
class of monoid rings, was new in FR.2. More generally, Kozhukhov [82] has shown
that the monoid algebra kS is a right fir if S is a rigid monoid with right ACC1 such that
the subgroup of units in S is a free group and for any unit u and non-unit a, au ∈ Sa
implies that u = 1. Kozhukhov shown further that these conditions on S are necessary
as well as sufficient for kS to be a right fir.

The HNN-construction (Higman, Neumann and Neumann [49]) starts from a group
G with two isomorphic subgroups A, B via an isomorphism φ : a �→ aφ and constructs
a group G1 containing G and an element t such that at = t.aφ(a ∈ A); G1 is obtained
by freely adjoining t to G subject to these relations. Of course it has to be proved that G
is embedded in G1. The analogue for rings mentioned in Exercise 5.21 was introduced
and used by Macintyre [79]; for the field analogue see Cohn [71a] and SF, Section 5.5
(see also Exercise 7.5.18).

A ‘ringoid’, i.e. a small preadditive category, may be regarded as a ring with several
objects, and many of the results on general rings, appropriately modified, still hold for
ringoids (see Mitchell [72]). By analogy, left free ideal ringoids (‘left firoids’) may
be defined and many of the results of this chapter proved in this context. Thus Faizov
[81] obtains analogues of Theorem 3.1 and constructs firoids by a form of the weak
algorithm. Wong [78] defines, for any small category C and any ring R, the category
ring RC (analogous to the group ring). By a bridge category Wong understands the
free category freely generated by an oriented graph with arrow set A and inverses for a
certain subset B of A. For the moment let us call a category a delta if all its morphisms
are isomorphisms and its only endomorphisms are the identities. Now Wong [78] proves
that if R is any ring and C a small category, then RC is a firoid if and only if either (i)
C is a delta and R is a fir, or (ii) C is a bridge category and R is a field. Thus for any
free monoid M �= 1, the monoid ring RM is a fir if and only if R is a field. In a similar
vein, Dicks and Menal [79] have shown that for any non-trivial group G and any ring
R, the group ring RG is a semifir if and only if R is a field and G is locally free. More
generally, Menal [81] has shown that for any monoid M �= 1, finitely generated over its
unit group, and any ring R, the monoid ring RM is a semifir if and only if R is a field
and M is the free product of a free monoid and a locally free group. It will follow from
Corollary 7.11.8 that the group algebra of a free group is a fir.

Theorem 11.1 was proved in Cohn [69c], generalizing a particular case from Cohn
[66a]. Theorem 11.2 is a special case of results in Bergman [74b]. The k-algebra with
matrices A, B of order n + 1 satisfying AB = B A = I is an n-fir, by Theorem 11.2, in
fact it is a fir, by results in Bergman [74b], see also SF, Section 5.7.
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Factorization in semifirs

For the study of non-commutative unique factorization domains we begin by
looking at the lattice of factors and the notion of similarity for matrices in
Section 3.1. The resulting concept of non-commutative UFD, in Section 3.2,
is mainly of interest for the factorization of full n × n matrices over 2n-firs;
thus it can be applied to study factorization in free algebras. Another class,
the rigid UFDs, forming the subject of Section 3.3, generalizes valuation rings
and is exemplified by free power series rings. We also examine various direct
decomposition theorems (Sections 3.4 and 3.5), but throughout this chapter we
only consider square (full) matrices, corresponding to torsion modules over
semifirs. The factorization of rectangular matrices, which is much less well
developed, will be taken up in Chapter 5.

3.1 Similarity in semifirs

To study factorizations in non-commutative integral domains it is necessary to
consider modules of the form R/a R. We recall from Section 1.3 that two right
ideals a, a′ of a ring R are similar if R/a ∼= R/a′. In the case of principal ideals
the similarity of aR and a′ R (for regular elements a and a′) just corresponds to
the similarity of the elements a and a′ as defined in Section 0.5 (see Proposition
0.5.2 and the preceding discussion, as well as Section 1.3).

In a semifir it is possible to simplify this condition still further. Let R be any
ring and A ∈ mRn; the matrix A is said to be left full if for any factorization
A = PQ, where P ∈ mRr , Q ∈ rRn , we necessarily have r ≥ m. Clearly this
can only hold when m ≤ n. Right full matrices are defined similarly and a left
and right full matrix is just a full matrix, as defined in Section 0.1. Over a semifir
we have the following relation between full and regular matrices:

186
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Lemma 3.1.1. Over a semifir every right full matrix is right regular.

Proof. Let R be a semifir and suppose that A ∈ mRn satisfies AB = 0 for
some B �= 0. Then there is a T ∈ GLn(R) such that AT = (A′, 0), where A′ is
n × n − 1. But then A = A′(In−1, 0)T −1, showing that A is not right full. �

We note that this argument holds more generally for an m × n matrix in any
n-fir. We also note

Proposition 3.1.2. An m × n matrix (over any ring) with an r × s block of
zeros cannot be right full unless r + s ≤ m. In particular, an n × n matrix with
an r × s block of zeros, where r + s > n, cannot be full.

Proof. Let A be m × n, with an r × s block of zeros in the north-east corner,
say. Then

A =
(

T 0
U V

)
=

(
T 0
0 I

) (
I 0

U V

)
,

where T is r × (n − s) and V is (m − r ) × s. This expresses A as a product of
an m × (m + n − r − s) by an (m + n − r − s) × n matrix, so if A is right full,
then m + n − r − s ≥ n, i.e. r + s ≤ m. �

It is clear that the conclusion still holds if the zeros do not occur in a single
block but are distributed over r rows and s columns, not necessarily consecutive.
An n × n matrix with an r × s block of zeros, where r + s > n, is called hollow.

An m × n matrix A over any ring R is called left prime if in any equation

A = PQ, where P ∈ Rm, Q ∈ mRn, (1)

P necessarily has a right inverse; right prime matrices are defined correspond-
ingly. Any right invertible matrix is left prime, for if A = PQ and AB = I, then
P.Q B = I, so P is right invertible. For a square matrix the converse holds: a
square matrix that is left prime is right invertible, as we see by taking Q = I
in (1). Thus, over a weakly finite ring any square matrix that is left prime is a
unit. Any left prime matrix over a weakly finite ring is left full, for if not, say
A ∈ mRn has the form A = P1 Q1, where P1 ∈ mRr , r < m, then we can write
A = PQ, where P = (P1, 0) ∈ Rm and since P has a column of zeros, it is not
a unit in Rm and so has no right inverse. This shows that A cannot be left prime.
So for a matrix over a weakly finite ring we have the implications

right invertible ⇒ left prime ⇒ left full. (2)

A matrix relation

PQ = 0, where P ∈ rRn, Q ∈ nRs (3)
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is called right comaximal if P has a right inverse, left coprime if P is left prime
and left full if P is left full, with similar definitions on the other side. A full
relation is a relation that is left and right full. By (2) we have, for any matrix
relation (3), the implications

right comaximal ⇒ left coprime ⇒ left full.

This terminology also applies to relations of the form

AB ′ = B A′, (4)

where A is r × n′, B is r × n′′, A′ is n′′ × s and B ′ is n′ × s, since this may be
brought to the form (3) by writing it as

(A B)

(−B ′

A′

)
= 0.

If in (3), (4) we have r + s = n = n′ + n′′, the relation is said to be balanced. In
any relation (4) the indices satisfy i(A) − i(A′) = i(B) − i(B ′) (= n − r − s);
so this relation is balanced if and only if either A, A′ or equivalently, B, B ′ have
the same index.

Proposition 3.1.3. Let R be an n-fir and P ∈ rRn, Q ∈ n Rs such that (3)
holds as a full relation. Then

r + s ≤ n, (5)

and when (3) is balanced, so that equality holds in (5), then by cancelling
full matrices from the left and right in (3) we get a coprime relation, which
is also comaximal. In terms of a matrix relation (4) this states that if (4) is a
full relation, then i(A′) ≤ i(A), i(B ′) ≤ i(B), and (4) is balanced if and only if
either inequality becomes an equality.

Proof. By Corollary 2.3.2, (3) may be trivialized; after modifying P and Q
we may assume that P = (P ′, 0), Q = (Q′, Q′′)T, where P ′ is a right regular
r × t matrix, Q′ is a t × s matrix and Q′′ an (n − t) × s matrix. Now (3)
becomes P ′ Q′ = 0 and so Q′ = 0, because P ′ is right regular. By hypothesis,
P is left full, hence so is P ′ and it follows that r ≤ t . By symmetry Q′′ is
right full, hence s ≤ n − t , and (5) follows. When equality holds in (5), then
r = t, s = n − t , hence P ′, Q′′ are then square and so are full. Cancelling them,
we obtain the relation (I, 0)(0, I )T = 0, which is clearly comaximal. Hence the
original relation (3) becomes comaximal after cancelling full factors on the left
and right. When our relation has the form (4), the inequality (5) can be restated
in terms of the indices. �
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The inequality (5) is a special case of the law of nullity, which we shall
meet again in Section 5.5. The condition on the index is necessary, since over
k〈x, y, z, t〉 we have

(x y)

(
z
t

)
= (x y)

(
z
t

)
,

a coprime relation that is not comaximal and of course (x, y) is not stably
associated to (z, t)T.

As we shall see later (Section 5.9), if R satisfies left ACCr and right ACCs

then we can cancel full matrices on the left and right of (3) so as to obtain a
coprime relation. Proposition 1.3 shows that for a balanced relation (3) over an
n-fir we do not need ACC. As an easy consequence we have

Corollary 3.1.4. Over any ring R a comaximal matrix relation (4) is coprime.
When R is a semifir, then conversely, any balanced coprime relation is comax-
imal. If R is an n-fir and (4) is a relation between n × n matrices that is left
coprime and right full, then A, B are stably associated to left factors of A′,B ′

respectively.

Proof. The first part is clear from Proposition 1.3. To prove the last part,
we have a balanced full relation; by Proposition 1.3 we obtain a comaximal
relation by cancelling a full matrix C on the right. If the result is AB0 = B A0,
then A′ = A0C, B ′ = B0C and by Proposition 0.5.6, A, B are stably associated
to A0, B0 respectively, which gives the desired conclusion. �

Sometimes two elements a and a′ of a ring R are called ‘similar’ if the
right ideals aR and a′ R are similar; as we have seen, for regular elements this
condition is left–right symmetric. We then have three names: ‘stably associated’,
‘GL-related’ and ‘similar’, which for regular elements of a ring (or for regular
square matrices) mean the same thing. Nevertheless it is convenient to use
them all, depending on the context. Thus ‘stably associated’ is mainly used
for matrices, ‘similar’ for regular elements, while ‘GL-related’ is used in the
context of relations in GL2(R), as in Section 2.7.

Another consequence of Proposition 1.3 is the fact that the product of full
matrices over a semifir is full. We shall prove a slightly more general result:

Proposition 3.1.5. Over a semifir R any product of left full matrices is left
full.

Proof. Let A ∈ rRm and B ∈ mRn be left full and suppose that

AB = PC, where P ∈ rRs, C ∈ sRn,
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and s < r . We write (B, C)T = (B ′, C ′)T Q, where B ′ ∈ mRt , C ′ ∈ sRt , Q ∈
t Rn; if this factorization is chosen so that t is minimal, then (B ′, C ′)T is right full,
hence the relation AB ′ = PC ′ is full, because A is left full. Hence by Proposition
1.3, r + t ≤ m + s, so m − t ≥ r − s > 0, i.e. t < m, but this contradicts the
fact that B is left full. �

A further consequence of Proposition 1.3 is most easily proved by looking
at modules.

Proposition 3.1.6. Let R be a semifir, A ∈ mRn a right prime matrix and
A′ ∈ m ′

Rn′
a left full matrix. Then

{(B, B ′)|AB ′ = B A′} = {(AN , N A′)|N ∈ n R m ′ }. (6)

Proof. If M and M ′ are the left R-modules presented by A and A′ respectively,
then the homomorphisms M → M ′ correspond to the pairs B, B ′ on the left
of (6). By the hypotheses, A is right prime, hence right full and A′ is left full.
Hence M is a module such that all its quotients have negative characteristic,
whereas M ′ has positive characteristic; the only such homomorphism is the
zero map, hence (6) follows. �

Exercises 3.1

1. Show that Proposition 1.4.3 holds for any 2-fir and any submonoid S consisting
of right large elements.

2. (a) Let a, b be two right ideals in a ring R such that a + b = R. Verify that the
sequence

0 → a ∩ b
λ−→ a ⊕ b

μ−→ R → 0

is split exact, where λ(x) = (x, x), μ(x, y) = x − y.
(b) Let a, a′ be similar right ideals of R and assume that a′ = {x ∈ R|cx ∈ a},

where c is regular (see Proposition 1.3.6). Show that

a ⊕ R ∼= a′ ⊕ R.

(c) Give an example of a ring containing similar right ideals for which there
is no such isomorphism and give examples of similar right ideals that are not
isomorphic.

3. Show that in a 2-fir any right ideal similar to a principal right ideal is itself
principal. More generally, show that this holds in any 2-Hermite domain. (Hint:
Use Proposition 0.3.2.)

4. The permanent of a square matrix A is obtained by changing all the minus signs in
the determinant expansion to +. Show that the permanent of A with non-negative
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real entries is zero if and only if A is hollow, possibly after permuting its rows and
its columns (Frobenius–König theorem, see Minc [78], p. 31).

5. (Bowtell [67a]) If

(
a b
c d

)
and

(
d ′ −b′

−c′ a′

)
are two mutually inverse matrices,

show that a R ∩ bR = ad ′bR + bc′a R. Deduce that if R is an integral domain
in which the sum of any two principal right ideals with non-zero intersection is
principal (i.e. R is a 2-fir), then this intersection is again principal.

6. Show that any element GL-related to a zero-divisor is itself a zero-divisor, and
that any element GL-related to a unit is a unit. Explicitly, if a, a′ occur in mutually
inverse matrices as in Exercise 5, and a is a unit, then a′−1 = d − ca−1b.

7. In a weakly 1-finite ring, show that any element GL-related to 0 is 0. Is there a
converse?

8. In a 2-fir let c = ab. Given c′ similar to c, find a′ similar to a and b′ similar to b
such that c′ = a′b′. Does this hold in more general rings?

9. In any ring, if AB ′ = B A′ is a full relation, show that i(A) = −i(B ′) ≥ 0 ≥
i(A′) = −i(B).

10. Show that for any finitely generated right ideal a in a semifir R and any c ∈
R, rk(a ∩ cR) ≤ rk(a), with equality if and only if a + cR is principal.

11. Let R be a ring and R∞ the ring of infinite matrices over R that differ from a scalar
matrix only in a finite square. Show that any two regular matrices in R∞ that are
similar are associated.

12∗. (Fitting [36]) Let R be any ring and a, b ∈ R. Show that aR and bR are similar

if and only if the matrices A =
(

a 0 0 0
0 1 0 0

)
and B =

(
b 0 0 0
0 1 0 0

)
are

associated.
13. Let k be a commutative field of characteristic 2 and α the endomorphism that

sends each element to its square. Show that in the skew polynomial ring k[x ; α]
there are just two similarity classes of elements linear in x. Generalize to the case
of characteristic p > 2.

14◦. Examine similarity classes of polynomials of higher degree in the ring of Exercise
13; also the case of more general skew polynomial rings.

15. Show that in any skew polynomial ring, similar elements have the same degree.
16. In a free algebra, show that if two homogeneous elements are similar, then they

are associated.
17. (G. M. Bergman) In the complex-skew polynomial ring C[x ; −], show that x4 + 1

can be written as a product of two atomic factors in infinitely many different ways.
By considering the factors, deduce the existence of a similarity class of elements
that contains infinitely many elements that are pairwise non-associated (see also
Williams [68b]).

18. In a 2-fir R, if au − bv = c and a, c are right comaximal, show that ua′ − b′w = c′,
where a′ is similar to a, b′ to b and c′ to c. (Hint: Take a comaximal relation
ac′ = ca′, multiply the given equation by a′ on the right and use the fact that
a R ∩ bR is principal as a right ideal.)

19. Show that over a commutative ring the determinant of any non-full matrix is zero.
Does the converse hold? (Hint: Try Z[x, y]; see also Section 5.5.)

20. Show that in any ring the intersection of all maximal right ideals similar to a given
one is a two-sided ideal. (Hint: Recall Corollary 1.3.7.)
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3.2 Factorization in matrix rings over semifirs

We saw in Section 1.3 that to study factorization in a principal ideal domain
R it is convenient, in considering an element c ∈ R×, to look at the module
R/cR. This is a module of finite composition length and the Jordan–Hölder
theorem immediately yields the fact that R is a UFD, at least in the commutative
case, but it continues to hold for non-commutative PIDs with the appropriate
definition of UFD, as in Section 1.3. Since every square matrix over a PID
is associated to a diagonal matrix, by Theorem 1.4.7, the notion of unique
factorization even extends to matrices in that case. However, for firs this is no
longer so and we shall need to consider, together with the ring R, the n × n matrix
ring Rn .

Let R be a semifir; an R-module M is said to be a torsion module if it is finitely
generated, such that χ (M) = 0 and every submodule M ′ satisfies χ (M ′) ≥ 0,
or equivalently, χ (M/M ′) ≤ 0. As explained in Section 0.8, we shall only use
the term ‘torsion module’ in this sense, while the usual sort will be called a
‘module of torsion elements’. Any n-generator torsion module M over a semifir
R has a presentation

0 → Rn → Rn → M → 0, (1)

and we shall also call a torsion module with this presentation an n-torsion
module.

Given any other presentation of M (by a free module of rank n)

0 → Q → Rn → M → 0,

we have, by Schanuel’s lemma, Rn ⊕ Q ∼= R2n , and since R is an Hermite ring,
Q ∼= Rn . An alternative description of torsion modules is given in

Proposition 3.2.1. Let R be a semifir. Then

(i) Any finitely presented left R-module M has a presentation

0 → Rm → Rn → M → 0,

and M is a torsion module if and only if m = n and the presenting matrix
is full.

(ii) Given any short exact sequence of R-modules,

0 → M ′ → M → M ′′ → 0, (2)

if any two modules are torsion, then so is the third.
(iii) In any homomorphism f between torsion modules, ker f and coker f are

again torsion modules.
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Proof. (i) Let M be presented by the matrix A. If M is torsion, then χ (M) = 0,
so A is square, say n × n. In any factorization A = PQ, P corresponds to a
submodule M ′ of M with quotient defined by Q, and since χ (M ′) ≥ 0, P has
non-negative index, therefore A is full. Conversely, a full matrix A ensures that
χ (M) = 0 and χ (M ′) ≥ 0, so M is torsion.

(ii) Given an exact sequence (2), we have χ (M ′) − χ (M) + χ (M ′′) = 0,
hence if two of these numbers are zero, so is the third. Suppose now that M ′

and M ′′ are torsion modules and let N be a submodule of M. Then

χ (N ) = χ (N ∩ M ′) + χ (N/(N ∩ M ′)). (3)

Since N ∩ M ′ ⊆ M ′, the first term on the right is non-negative, and so is the
second, because N/N ∩ M ′ ∼= (N + M ′)/M ′ and the right-hand side is a sub-
module of M/M ′ ∼= M ′′. It follows that M is a torsion module.

Next suppose that M in (2) is a torsion module. Any submodule N of M ′ is
also a submodule of M, hence χ (N ) ≥ 0 and if M ′′ is torsion, this shows M ′ to
be torsion. Now any quotient module Q of M ′′ is also a quotient of M, hence
χ (Q) ≤ 0, and when M ′ is torsion, this shows M ′′ to be torsion.

(iii) Consider a homomorphism between torsion modules, f : M → N . This
gives rise to an exact sequence

0 → ker f → M → N → coker f → 0.

The alternating sum of the characteristics is 0 and χ (M) = χ (N ) = 0, hence

χ (ker f ) = χ (coker f ).

Here the left is ≥ 0 and the right is ≤ 0, so both sides are 0. Further, any submod-
ule of ker f is a submodule of M and so has non-negative characteristic, while
any quotient of coker f is a quotient of N and so has non-positive characteristic,
therefore ker f and coker f are both torsion, as claimed. �

We observe that for n-torsion modules this holds more generally over any
n-fir.

For any semifir R we shall denote the category of all right torsion modules
and all homomorphisms between them by TorR ; similarly we write RTor for
the category of left torsion modules. Since every full matrix over R is regular,
there is a correspondence between TorR and RTor in which the right module
defined by A corresponds to the left module defined by A. This correspondence
is actually a duality (see also Section 5.3).

Theorem 3.2.2. Let R be a semifir. Then TorR and RTor are dual categories,
i.e. there are contravariant functors F :TorR → RTor and G : RTor → TorR
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such that FG and GF are each naturally isomorphic to the identity functors on
TorR, RTor respectively.

Proof. Let M be a right R-module, presented by a full matrix A. If A is n × n
and S = Rn , we have M = S/AS and its dual is F M = S/S A. Given an R-
homomorphism f : M → N between right R-modules, we can choose n so that
M = S/AS, N = S/BS for full matrices A, B over R. Then f is determined by
a matrix C such that for some matrix C ′ we have

C A = BC ′. (4)

Conversely, any pair (C, C ′) satisfying (4) defines a homomorphism M → N
by the rule

x(mod AS) �→ Cx(mod BS),

where x is a column vector. Now C is determined by f up to an element of BS;
thus if C1 = C + B Z , then by (4), C1 A = CA + BZA = B(C ′ + Z A). This
shows C ′ to be determined by f up to an element of SA, and so it defines a
unique R-homomorphism

F( f ) = S/SB → S/S A.

Clearly we have F( f g) = F(g)F( f ) and F(1S/AS) = 1S/S A; thus F is a con-
travariant functor. In particular, if f is an isomorphism, then so is F( f ), hence
F(S/AS) depends only on the isomorphism class of S/AS, not on A itself. Now
G : RTor → TorR is defined by symmetry and a routine verification shows that
FG ∼= 1, G F ∼= 1. �

We again note that Theorem 2.2 holds more generally for n-torsion modules
over n-firs. The following is a more general interpretation of the result: given a
factorization of a full matrix C over a semifir R,

C = A1 . . . Ar ,

we associate with (5) the series of right ideals of the matrix ring S (containing
C) over R

S ⊇ A1S ⊇ A1 A2S ⊇ . . . ⊇ A1 . . . Ar S = C S,

and the corresponding series of torsion quotient modules

S/A1S, A1S/A1 A2S ∼= S/A2S, . . . , S/Ar S.

We also have the series of left ideals

S ⊇ S Ar ⊇ S Ar−1 Ar ⊇ . . . ⊇ S A1 . . . Ar = SC,
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and torsion quotients

S/S Ar , . . . , S/S A1.

In discussing a factorization (5) we can for most purposes use either of these
series and Theorem 2.2 is a general way of expressing this symmetry. It will be
described as the factorial duality. For the case of elements (1 × 1 matrices) we
see that it holds in any integral domain (= 1-fir).

Theorem 3.2.3. For any semifir R, the category TorR of torsion modules
is closed under sums and intersections, in fact it is an abelian category.
Further, a torsion submodule of an n-torsion module is again an n-torsion
module.

Proof. Given f : M → N in TorR, ker f and coker f are in TorR by Proposition
2.1, and im f = M/ker f is also in TorR . Further TorR admits direct sums, again
by Proposition 2.1. Now if N , N ′ are torsion submodules of a torsion module
M, then N + N ′ is a submodule of M and a quotient of N ⊕ N ′, hence N + N ′

is a torsion module; further, by Proposition 2.1, (N + N ′)/N ′ ∼= N/(N ∩ N ′)
is torsion, and so is N ∩ N ′. Hence TorR as full subcategory of ModR is abelian,
by Appendix Proposition B.1. For the last part let M be an n-torsion module
with a torsion submodule M′. If M is presented by an n × n matrix C, then there
is a factorization C = AB, where A is a matrix presenting M ′. If A is n × r ,
then r ≥ n, because M is torsion and so C is full; we have r = n, since M ′ is
torsion, so M ′ is also n-torsion. �

This result has numerous applications. In the first place we can derive an
analogue of Schur’s lemma, using the notion of a simple object in TorR . A
torsion module M is said to be Tor-simple if it is a simple object in TorR , i.e. if
M �= 0 and no submodule of M, apart from 0 and M, lies in TorR . For example,
if R = k〈x, y〉 is a free algebra, then R/x R is Tor-simple, though of course far
from simple as R-module. If we write down the factorization corresponding to
a chain of submodules in TorR , we see that over a semifir R, a torsion module
defined by a matrix A is Tor-simple if and only if A is a matrix atom, i.e. it is a
full matrix that cannot be written as a product of two square non-unit matrices.
Schur’s lemma now takes the following form:

Proposition 3.2.4. Let R be a semifir. Then for any matrix atom A over R, the
eigenring of A is a field.

Proof. We have seen that A is a matrix atom precisely if the module M defined
by it is Tor-simple. Any non-zero endomorphism f of M must have kernel and
cokernel 0, by Proposition 2.1, hence f must be an automorphism. �
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This result holds more generally for an n × n matrix atom over a 2n-fir. In
some cases a more precise statement is possible. Thus let R be a semifir that is an
algebra over a commutative field k. Then the eigenring of any matrix over R is
again an algebra over k. Let A be a matrix atom, so that its eigenring E is a field
over k. If λ is any element of E that is transcendental over k, then the elements
(λ − β)−1 for β ∈ k all lie in E and are linearly independent over k. This shows
that the dimension of E over k is at least |k|. If the dimension of R over k is less
than |k|, this cannot happen (at least when k is infinite), so we obtain

Proposition 3.2.5. If R is a semifir that is an algebra over a commutative field
k, of dimension less than |k|, then the eigenring of any matrix atom is algebraic
over k.

Proof. For infinite k this follows from the above remarks; when k is finite,
the conclusion follows directly. �

As an immediate consequence we have

Corollary 3.2.6. If R is a semifir that is an algebra of at most countable
dimension over an uncountable commutative field k that is algebraically closed,
then the eigenring of any matrix atom is k itself. �

Proposition 2.5 and Corollary 2.6 again hold for n × n matrix atoms over
2n-firs. Over a semifir with left and right ACCn every ascending chain of m-
generator submodules of Rn , for any fixed m ≤ n, becomes stationary, by Propo-
sition 2.3.20, and the same is true for descending chains, by duality. Hence every
torsion module in TorR has finite length, and by the Jordan–Hölder theorem,
any two composition series are isomorphic. In terms of matrices a composition
series corresponds to a complete factorization, i.e. a factorization into atomic
factors, so this result may be stated as

Theorem 3.2.7. Over a semifir with left and right ACCn every full n × n matrix
admits a complete factorization into matrix atoms, and any two such complete
factorizations are isomorphic. �

Here we can again replace the class of semifirs by the wider class of 2n-firs;
moreover, for ℵ0-firs and in particular, for firs, the result holds without assuming
chain conditions. A semifir in which every full matrix admits a factorization
into matrix atoms will be called fully atomic; a 2n-fir in which every full m × m
matrix for m ≤ n admits a factorization into matrix atoms will be called n-
atomic.

In the applications of this theorem the following entirely elementary result
will be of use. We recall that an elementary matrix is a matrix differing from
the unit matrix in just one off-diagonal entry.
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Proposition 3.2.8. Any upper (or lower) triangular matrix (over any ring) is
a product of diagonal matrices and elementary matrices.

Proof. This is an almost trivial verification, which is best illustrated by the
3 × 3 case:⎛

⎝a a′ a′′

0 b b′

0 0 c

⎞
⎠ =

⎛
⎝1 0 0

0 1 0
0 0 c

⎞
⎠

⎛
⎝1 0 a′′

0 1 b′

0 0 1

⎞
⎠

⎛
⎝1 0 0

0 b 0
0 0 1

⎞
⎠

⎛
⎝1 a′ 0

0 1 0
0 0 1

⎞
⎠

⎛
⎝a 0 0

0 1 0
0 0 1

⎞
⎠ .

�

Given a fully atomic semifir R, let us consider the different factorizations
of an element in more detail. Given c ∈ R×, if we have two complete
factorizations of c, we pass from one to the other by a series of steps in each
of which one side in a parallelogram of the factor lattice L(cR, R) is replaced
by the opposite side (as in the usual proof of the Jordan–Hölder theorem). In
detail, we have a comaximal relation ab′ = ba′, where a, b, a′, b′ are atoms,
and a R + bR = R, a R ∩ bR = m R, and in one factorization

a b

m

1

we replace an occurrence of ab′ by ba′.
We shall call this passage from ab′ to ba′ a comaximal transposition and say

that a, b′ (in that order) are comaximally transposable if there exist elements
a′, b such that ab′ = ba′ is a balanced comaximal relation. More generally,
these terms will be used when a, b, a′, b′ are full matrices. The above discussion
may be summed up as follows.

Proposition 3.2.9. Every fir is fully atomic. In a fully atomic semifir every
full matrix C has a complete factorization into a product of matrix atoms, and
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given any two complete factorizations of C, we can pass from one to the other
by a series of comaximal transpositions. �

Exercises 3.2

1. Show that in any integral domain the following are equivalent: (a) right ACC1, (b)
ACC on principal right ideals generated by left factors of a fixed non-zero element
and (c) DCC on principal left ideals generated by right factors of a fixed non-zero
element.

2. Show that in a 2-fir with left ACC1 any family of elements, not all 0, have a highest
common left factor.

3◦. Let R be a k-algebra with generators (in matrix form) ci = (ci1, . . . , cin) ∈ Rn and
Ai = (a(i)

rs ) ∈ Rn and defining relations ci−1 = ci Ai (i = 1, 2, . . .). Show that R is
a semifir (by expressing it as a direct union of free algebras). If ai denotes the right
ideal generated by the components of ci , show that a1 ⊂ a2 ⊂ . . . and deduce that
R does not satisfy right ACCn . Is it true that every full n × n matrix over R is a
product of matrix atoms?

4. Let R be an integral domain that is a k-algebra, a ∈ R× and let c be an element
of the eigenring of a that is algebraic over k, thus ca = ac′, f (c) = ab for some
monic polynomial f over k and b ∈ R. Prove that f (c′) = ba and c′b = bc.

5. Let R be a 2-fir and M = R/cR a 1-torsion module. Show that every finitely
generated submodule of M is a torsion module if and only if c is right large. Show
also that the qualifier ‘finitely generated’ can be omitted if R is atomic.

6. Show that any element stably associated to a right large element of a 2-fir is again
right large.

7. Over a 2-fir R, show that R/cR is simple as R-module if and only if c is a right
large atom.

8. In any ring R, given a, b ∈ R, show that there is an automorphism of R as right
R-module that maps aR to bR if and only if a is left associated to b.

9. Show that for a principal ideal domain the notion of torsion module as defined in
Section 3.2 agrees with the definition of a module of torsion elements in Section
0.8. Show that over a simple principal ideal domain the class of 1-torsion modules
admits direct sums.

10◦. Find a class of 2-firs for which the class of 1-torsion modules admits direct
sums.

11. Let R be a 2-fir. Show that HomR(R/Ra, R/Rb) �= 0 if and only if there is a
non-unit right factor of a similar to a left factor of b.

12∗. Let A be the group algebra of the free group on x, y, z over a commutative field k
and let R be the subalgebra generated by z−n x, z−n y, z(n = 1, 2, . . .). Show that R
is a right fir but not a left fir. Show also that the pair {x, y} has no highest common
left factor.

13. Let R be an atomic 2-fir in which every principal right ideal is an intersection of
maximal principal right ideals. Show that every 1-torsion module is a direct sum of
Tor-simple 1-torsion modules. Show also that in general there are infinitely many
pairwise non-associated elements stably associated to a given atom.
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14. Show that any atomic right Bezout domain is a principal right ideal domain. Deduce
that a ring is a principal ideal domain if and only if it is an atomic left and right
Bezout domain.

15. In the Weyl algebra A1(k) on x and y, where char(k) = 0, verify that 1 + xy is
an atom and is stably associated to xy. Deduce that xyx + x has two complete
factorizations of different lengths.

16. Show that Z〈x, y〉 is not a UFD, by considering factorizations of xyx + 2x . What
forms can the eigenring of an atom take?

17. Show that any permutation of 1, 2, . . . , n can be written as a product of at most
n(n − 1)/2 transpositions of neighbouring numbers. Deduce that in an atomic 2-fir,
given any non-zero non-unit c, we can pass from any one complete factorization
of c to any other by a series of at most n(n − 1)/2 comaximal transpositions.

18◦. Verify that in the free algebra k〈x, y〉, x and yx + 1 are comaximally transposable.
Find an element in k〈X〉 with two factorizations of length n ≥ 3, where n(n − 1)/2
comaximal transpositions are needed to pass from one to the other.

19∗. Let R be a semifir with an involution ∗. Show that by combining it with transposition
it can be extended to an involution on the n × n matrix ring over R. Let A be a
symmetric matrix over R (i.e. A∗ = A). Show that if A is not full, of inner rank
r, then it has the form A = PUV∗ P∗, where P is n × r, U and V are r × r and
U V ∗ = V U ∗ is a balanced comaximal relation.

3.3 Rigid factorizations

Let us return to the definition of a UFD and consider more closely in what
respects it differs from the definition in the commutative case. As we saw,
given two complete factorizations,

c = a1 . . . ar and c = b1 . . . br (1)

of an element c, necessarily of the same length, there is a permutation i �→ i ′

of 1, . . . , r such that

R/ai R ∼= R/bi ′ R. (2)

However, we note that

(i) ai and bi ′ are not necessarily associated and
(ii) in general we do not obtain c by writing the b’s in the order b1′b2′ . . . br ′ .

To this extent, unique factorization in non-commutative domains, as here
defined, is a more complicated phenomenon than in the commutative case,
but there is a more restrictive concept that is sometimes useful.

Let R be an integral domain. We recall from Section 0.7 that an element
c ∈ R× is called rigid if c = ab′ = ba′ implies a R ⊆ bR or bR ⊆ a R. In other
words, c is rigid if the lattice L(cR, R) is a chain. If every non-zero element of
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R is rigid, R is called a rigid domain. In that case R× is a rigid monoid in the
sense of Section 0.7 and by Theorem 0.7.9 we have

Proposition 3.3.1. Let R be a rigid domain. Then R× can be embedded in a
group. �

We observe that a rigid domain is necessarily a 2-fir, by Corollary 2.3.8.
Now a rigid UFD is defined as an atomic rigid domain. For example, in the
commutative case a rigid domain is just a valuation ring and a rigid UFD is a
principal valuation ring. More generally, a rigid domain is right Ore if and only
if all the principal right ideals form a chain; such a ring is called a right chain
ring. However, a non-commutative rigid domain can be much more general
than a chain ring.

Our main source of rigid UFDs stems from the following result.

Theorem 3.3.2. Any complete inversely filtered ring with 2-term inverse weak
algorithm is a rigid UFD.

Proof. Let R be a ring satisfying the hypothesis. By Theorem 2.9.5, R is a
2-fir; if ab′ = ba′ �= 0 and v(a) ≤ v(b) say, then a, b are right v-dependent and
so, by the same theorem, a R ⊇ bR, hence R is rigid. By Proposition 2.9.6 it
has left and right ACC1 and so is atomic. Thus R is a rigid UFD. �

An obvious example of a rigid UFD (other than a valuation ring) is a formal
power series ring k〈〈X〉〉 in any number of variables.

We go on to describe rigid domains in more detail; for this we need the
following lemma, which is also useful elsewhere.

Lemma 3.3.3. Let R be an Hermite ring. Two matrices A ∈ mRr , B ∈ rRn are
comaximally transposable if and only if there exist matrices X ∈ rRm, Y ∈ nRr

such that

X A − BY = I. (3)

Proof. Suppose we have a balanced comaximal relation

AB = B ′ A′. (4)

By Proposition 0.5.6 there exist mutually inverse matrices P =(
A B ′

Y T

)
, P−1 =

(
X −B
Z A′

)
, hence X A − BY = I , i.e. (3). Conversely,

given (3), since R is an Hermite ring, the matrix (X, −B) is completable, so

we obtain Q =
(

X −B
∗ ∗

)
with inverse Q−1 =

(
A ∗
∗ ∗

)
and equating the
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(1, 2)-entries in the equation Q−1 Q = I we obtain (4); by construction this
relation is comaximal. �

As a first consequence we characterize the Jacobson radical J of a semifir,
or more generally, of a matrix ring over an Hermite ring.

Theorem 3.3.4. Let R be a total matrix ring over an Hermite ring. Then J (R)
consists of those elements of R that cannot be comaximally transposed with any
non-unit.

Proof. Suppose that c ∈ R cannot be comaximally transposed with any non-
unit. For any x ∈ R we have the proper comaximal relation

c(xc + 1) = (cx + 1)c, (5)

hence cx + 1 is a unit for all x ∈ R and this shows that c ∈ J (R). Conversely,
suppose that c ∈ J (R) and that b, c can be comaximally transposed. Then by
Lemma 3.3, cx + yb = 1 for some x, y ∈ R; by the choice of c, yb = 1 − cx
is a unit, and since R is weakly finite, b must be a unit. A similar argument holds
if c, b can be comaximally transposed. �

Corollary 3.3.5. Let R be an atomic 2-fir. Then a right large element of R lies
in J (R) if and only if it has every atom of R as a left factor.

Proof. If c ∈ R is right large and has every atom as a left factor, then in any
equation (5) cx + 1 must be a unit, for otherwise it would have an atomic left
factor p; by hypothesis this is also a left factor of c, and hence of 1, which is
a contradiction. Thus we see as before that c ∈ J (R). Conversely, if c ∈ J (R),
let p be an atom that is not a left factor of c. Since c is right large, we have
cR ∩ pR �= 0; by Theorem 2.3.7 this intersection is principal, so we have a
coprime relation cp′ = pc′. By Corollary 1.4 this is comaximal, so p′ is a
non-unit and c, p′ are comaximally transposable, which contradicts Theorem
3.4. �

We remark that in a principal right ideal domain this result applies to every
non-zero element.

Secondly we shall obtain sufficient conditions for an element (or matrix) in
a semifir to be rigid.

Proposition 3.3.6. Let R be an n × n matrix ring over a 2n-fir and let c be a
full matrix in R such that any two neighbouring non-unit factors occurring in
a factorization of c generate a proper ideal of R. Then c is rigid. If c has an
atomic factorization, then it is enough to check a single complete factorization
of c; there will only be one complete factorization when c is rigid.
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Proof. If c is not rigid, then c = ab′ = ba′, where neither of a, b is a left
factor of the other. By Proposition 1.3, we obtain a comaximal relation a1b2 =
b1a2 by cancelling full matrices on the left and right. Thus a = da1, b = db1,
where a1, b1 are right comaximal non-units; moreover, m = a1b2 = b1a2 is
an LCRM of a1 and b1. It follows that a′ = a2e, b′ = b2e and a1b2 = b1a2 is a
comaximal transposition occurring in c = da1b2e. By Lemma 3.3, xa1 − b2 y =
1 for appropriate x, y ∈ R, so the ideal generated by a1 and b2 is improper, a
contradiction. In the atomic case we can pass from any complete factorization
to any other by a series of comaximal transpositions, by Proposition 2.9; since
no comaximal transpositions can occur when c is rigid, there will only be one
such factorization. �

Now rigid domains are described by

Theorem 3.3.7. An integral domain is rigid if and only if it is a 2-fir and a
local ring.

Proof. We have seen (Corollary 2.3.8) that any rigid domain is a 2-fir, and
clearly no two non-units are comaximally transposable, hence by Theorem 3.4,
J (R) includes all non-units, i.e. R is a local ring. Conversely, in a 2-fir that is a
local ring, any two non-units generate a proper ideal, hence by Proposition 3.6,
every non-zero element is rigid. �

Adding atomicity, we obtain

Corollary 3.3.8. A ring is a rigid UFD if and only if it is an atomic 2-fir and
a local ring. �

The description of commutative rigid UFDs, namely as principal valuation
rings, can be extended to right Ore domains. It is easily verified that any right
principal valuation ring is a rigid UFD and conversely, a rigid UFD is a right
principal valuation ring if and only if any two atoms are right associated. The
next theorem gives conditions for this to happen.

Theorem 3.3.9. Let R be a rigid UFD. Then R is a right principal valuation
ring if and only if it contains a non-unit c such that cR ∩ pR �= 0 for every
atom p. In particular, this holds when R contains a right large non-unit.

Proof. Suppose the rigid UFD R contains an element c satisfying the given
conditions. For any atom p of R we have cR ∩ pR �= 0, hence either cR ⊆ pR
or pR ⊆ cR. Since c is a non-unit, the second alternative would mean that
cR = pR, so in any case cR ⊆ pR, i.e. c has every atom as left factor. By
rigidity this means that all atoms are right associated. Given any atom p, every
a ∈ R× can be written as a = pku and by choosing k maximal we ensure that
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u is a unit. Therefore R is a right PVR. Conversely, in a right PVR the unique
atom is a right large non-unit. �

From the normal form of the elements it is clear that in a right PVR every
right ideal is two-sided. By symmetry we obtain

Corollary 3.3.10. If R is a rigid UFD with a left and right large non-unit,
then R has a unique atom p (up to unit factors) and every left or right ideal of
R is two-sided, of the form pnR = Rpn. �

For matrices over local semifirs the factorization is no longer rigid, but we
can say a little more than in the general case. We begin with a general lemma.
We shall say that a matrix A is in an ideal a if all its entries lie in a.

Lemma 3.3.11. (i) Let R be a ring and a a proper ideal of R such that R/a

is weakly finite. If a matrix A over R is in a, then A is not stably associated to a
matrix of smaller size.

(ii) If R is a weakly finite ring and

AB ′ = B A′ (6)

is a comaximal relation, where A, A′ ∈ rRm, and A or A′ is in J (R), then B, B ′

are invertible and hence A, A′ are associated.

Proof. (i) Let A ∈ rRm, A′ ∈ sRn and denote the images in R̄ = R/a by bars.
If A, A′ are stably associated, then so are Ā, Ā′. We shall interpret these matrices
as homomorphisms between free left R-modules. By hypothesis, Ā = 0, hence
coker Ā ∼= R̄m , therefore coker Ā′ ∼= R̄m and so R̄n splits over coker Ā′ : R̄n ∼=
R̄m ⊕ im Ā′. This shows that m ≤ n and a dual argument shows that r ≤ s.

(ii) R̄ = R/J (R) is again weakly finite, for if X̄ Ȳ = I, then XY = I + C is
invertible, with inverse D, say; then DXY = I, hence YDX = I, but D̄ = D̄ X̄ Ȳ =
I, therefore Ȳ X̄ = I and it follows that R̄ is weakly finite. Suppose that A is
in J (R). Over R̄ we have a comaximal relation Ā B̄ ′ = B̄ Ā′ and Ā = 0, so by
comaximality B̄ is a unit, hence Ā′ = 0 and B̄ ′ is also a unit. But any matrix
invertible mod J (R) is invertible over R, hence B, B ′ are invertible and so A, A′

are associated. �

Let R be a local ring; it is clear that R is weakly finite, for if XY = I, then
X̄ Ȳ = I, hence Ȳ X̄ = I, so YX is invertible and it follows that YX = I. Therefore
the index of a matrix is preserved by stable association. In particular, any matrix
stably associated to a square matrix is itself square. For a square matrix A we
define the level as the least value of the order of any matrix stably associated to
A. For example, A has level 0 if and only if it is a unit.
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Proposition 3.3.12. Let R be a local ring with maximal ideal m and let A ∈
m Rn have the image Ā over R/m of rank r. Then A is stably associated to an
(m − r ) × (n − r ) matrix A′ in m, but to no matrix of smaller size than A′. In
particular, if A is n × n, then its level is n − r .

Proof. Since Ā has rank r, it is stably associated to the (m − r ) × (n − r )
zero matrix, but to no matrix of smaller size. Thus we have

U
(

A 0
0 I

)
V ≡

(
0 0
0 I

)
( mod m ),

where U, V are invertible (mod m). It follows that U, V are invertible over R
and we have

U
(

A 0
0 I

)
V =

(
P1 P2

P3 P4

)
,

where P1, P2, P3 are in m and P4 ≡ I (mod m); hence P4 is invertible over R. By
row and column operations we can reduce P4 to I and P2, P3 to 0 and thus find
that A ⊕ I is associated to A′ ⊕ I, where A′ is in m. Thus A is stably associated
to an (m − r ) × (n − r ) matrix A′ in m, but clearly to no matrix of smaller size,
by Lemma 3.11(i).

In particular, if A is n × n, then the level of A is n − rk Ā. �

We conclude this section by another example of a one-sided fir; this depends
on the following lemma that uses an idea of Chase [62].

Lemma 3.3.13. Let R be an integral domain with UGN and an element p �= 0
such that ∩pn R = 0. Then RN, as left R-module, is not projective.

Proof. Let us write A(i) ∼= R, A = ∏∞
i=1 A(i), Ar = ∏∞

r+1 A(i), so that RN =
A ∼= Ar for all r. If A were projective, there would be a left R-module B such
that

A ⊕ B ∼= ⊕I Cα, where Cα
∼= R and α runs over a set I. (7)

Let us denote by fα : A → Cα the projection from A on the summand Cα . We
first show that there exists r ≥ 1 such that

Ar fα = 0 for almost all α. (8)

For suppose this is not so; then for each r, Ar fα �= 0 for infinitely many α. We
shall construct an increasing sequence {ni } of positive integers and sequences
{αi }, {xi } such that αi ∈ I, xi ∈ pni−1 Ai and

xk fαi = 0 for k < i, xi fαi /∈ pni Cαi . (9)
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Choose α1 ∈ I such that A1 fα1 �= 0 and set n0 = 0; then A1 fα1 ⊆/ Pn1 Cα1 for
some n1 ≥ 0, hence there exists x1 ∈ pn0 A1 such that x1 fα1 /∈ pn1 Cα1 and (9)
holds for i = 1.

Suppose now that xk, αk, nk have been constructed for k < i to satisfy (9).
Since x1, . . . , xi−1 lie in the sum of a finite subfamily of the Cα , there exist
β1, . . . , βr ∈ I such that xk fα = 0 for α �= β1, . . . , βr and for all k < i . So
we may choose αi �= β1, . . . , βr such that Ai fαi �= 0, hence Ai fαi ⊆/ pmCαi

for some m. Let us put ni = ni−1 + m; then there exists xi ∈ pni−1 Ai such
that xi fαi /∈ pni Cαi . Now the sequences xk, αk, nk for k ≤ i satisfy (9), so the
construction is complete.

Let us write xk = (x (i)
k ), where x (i)

k ∈ A(i). Since xk ∈ pnk−1 Ak , it follows that
x (i)

k = 0 for k > i , so x (i) = ∑∞
k=1 x (i)

k is a well-defined element of A(i). Further,
since n0 ≤ n1 ≤ . . . , there exists y(i)

r ∈ A(i) such that x (i) = x (i)
1 + · · · + x (i)

r +
pnr y(i)

r , so on writing x = (x (i)), yr = (y(i)
r ), we have

x = x1 + x2 + · · · + xr + pnr yr for all r ≥ 1. (10)

From (9) it is clear that the αi are all distinct, hence there exists αr such that
x fαr = 0. Writing x in the form (10) and applying fαr , we find that

xr fαr = −pnr (yr fαr ) ∈ pnr Cαr ,

but this contradicts (9) and so (8) is established.
Suppose now that Ar fα = 0 except for α = β1, . . . , βn; then on writing

C ′ = Cβ1 ⊕ · · · ⊕ Cβn , C ′′ = ⊕ Cα,

we have Ar ⊆ C ′. Now (7) may be written as

A(1) ⊕ · · · ⊕ A(r ) ⊕ Ar ⊕ B ∼= C ′ ⊕ C ′′.

Since Ar ⊆ C ′, it follows that Ar is complemented in C ′, i.e. there exists D
such that Ar ⊕ D ∼= C ′. Now C ′ ∼= Rn is finitely generated, whereas Ar ∼= RN

is not, because R has UGN. So we have reached a contradiction and this shows
that RN cannot be projective. �

We shall use this result to construct a one-sided fir as follows. Let K be a
field with an endomorphism α that is not surjective and consider the skew power
series ring R = K [[x ; α]]. This is a right principal valuation ring with maximal
ideal xR. Moreover, R is atomic and so is a rigid UFD; clearly R also has UGN.

To show that R is not a left fir it will be enough to find a left ideal that is not
free. In fact we shall find a left ideal isomorphic to RN; the result then follows by
Lemma 3.13 (with p = x). To obtain such a left ideal we only need a sequence
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(un) tending to 0 (in the filtration topology), which is left v-independent. For
then

∑
fnun ∈ R for all ( fn) ∈ RN, and by the v-independence the map

( fn) �→
∑

fnun

is an isomorphism from RN to a left ideal of R. For any c ∈ K\K α the sequence
(xcxn) has the required properties. Clearly it tends to 0, and if

∑
fn xcxn = 0,

then by cancelling a power of x on the right, if possible, we may assume
that f0 �= 0. If we extend α to an endomorphism of R by putting xα = x ,
then ∑

xn+1 f αn+1

n cαn = 0,

and so x f α
0 c ∈ Rα , whereas not all the coefficients of x f α

o c lie in K α . This
contradiction shows that the xcxn are left v-independent, and so we have
proved

Theorem 3.3.14. Let K be a field with a non-surjective endomorphism α.
Then the skew power series ring K [[x ; α]] is a right fir (in fact a right principal
valuation ring), but not a left fir. �

Exercises 3.3

1. Show that a direct limit of rigid UFDs is again rigid, but not necessarily a UFD.
2∗. Let R = k[x ; α], where k is a commutative field of characteristic p and α is the

pth power map. Find all elements of low degree that are rigid.
3. Let R be a rigid domain with right ACC1 and a left and right large non-unit. Show

that R is a principal valuation ring.
4. Let R be a semifir and consider a matrix relation P A′ = AP ′, where P, A are left

coprime and A, A′ are square. Show that if A′ is full and P is in J (R), then A is
invertible. Let ab = pc, where b �= 0 and p is an atom of R contained in J (R).
Show that if a is a non-unit, then a ∈ pR.

5. Show that in a rigid UFD any relation ca = ac′ between non-zero non-units holds
if and only if c = a0b, c′ = ba0, a = cr a0 = a0c′r for some r ≥ 1.

6. Show that Lemma 3.3 and Theorem 3.4 hold for 2n-firs and for matrices of the
appropriate size.

7. (Koshevoi [66]) An ideal p in a ring R is called strongly prime if R/p is an integral
domain. Let R be an atomic 2-fir and p a strong prime ideal in R. Show that p

contains, with any atom a, all atoms similar to a. Let c ∈ R have the complete
factorizations c = a1 . . . ar = b1 . . . br ; show that if factors not in p are omitted,
then the same number of factors remain in each product and corresponding terms
are similar.

8. Let R be a right hereditary local ring but not a valuation ring. Show that its centre
is a field (Cohn [66d], see also Section 6.4).
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9. Show that when |X | > 1, then R = k〈〈X〉〉 has left ideals isomorphic to RN and
hence is not a fir.

10. Let R be an integral domain with UGN and let p ∈ R× be such that ∩pn R = 0.
Write P = RN and S for the submodule of P with almost all components zero.
Show that P/S is not projective.

11. Show that every homogeneous Lie element in the free algebra k〈X〉 is an atom.
(Hint: Use a basis of the universal associative envelope of the free Lie algebra
consisting of ascending monomials.)

12◦. Can the multiplicative monoid of every UFD be embedded in a group?
13◦. Investigate firs with finitely many atoms, and those with finitely many matrix

atoms.
14∗. (G. M. Bergman) Consider the formal power series ring S =

k〈〈x11, x12, x21, x22, y1, y2〉〉 with the homomorphism f defined in matrix
form X �→ X, y �→ X y. Let R be the direct limit of repeated iterations of
this homomorphism (i.e. take a countable family S(n) of copies of S with
f : S(n) → S(n+1) and put R = lim

→
S(−n)) and show that R is a local ring and a

semifir. Verify that the intersection of the powers of the maximal ideal is non-zero,
even though R is atomic and hence a UFD. (Hint: Show that Sf is inert in S, and
deduce that S is inert in R. See also Sections 1.6 and 5.10).

3.4 Factorization in semifirs: a closer look

We shall now examine the relation between different factorizations of an element
of a 2-fir, or more generally, a full n × n matrix over a 2n-fir. For ease of notation
we shall take R to be the n × n matrix ring over a 2n-fir S and consider an element
c of R that is a full matrix over S. A study of the factorizations of c is essentially
a study of the factor lattice L(cR, R), but we shall usually express the result
directly in terms of factorizations. In speaking of the ‘left factors’ of an element
we shall tacitly understand the equivalence classes under right multiplication
by units. In this way the left factors of an element c correspond to the principal
right ideals containing cR:

c = ab (for some b ∈ R) if and only if cR ⊆ a R.

Similarly, a chain of principal right ideals from cR to R corresponds to a fac-
torization of c that is determined up to unit factors; we shall call the two fac-
torizations

c = a1a2 . . . ar and c = b1b2 . . . br ,

essentially the same, if bi = u−1
i−1ai ui , where ui is a unit and uo = ur = 1 and

essentially distinct otherwise.
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With these conventions a rigid UFD may be described as an integral domain
in which each element has essentially only one atomic factorization. In a general
UFD the atomic factorizations of a given element are of course by no means
unique, but neither can the factors be interchanged at will. Let us compare the
different factorizations of a full n × n matrix over a 2n-fir. The isomorphism of
two factorizations of a given full matrix is defined as in Section 1.3 for elements.
A factorization

c = a1 . . . ar (1)

is said to be a refinement of another,

c = b1 . . . bs, (2)

if (2) can be obtained from (1) by bracketing some of the a’s together; in other
words, if (1) arises from (2) by factorizing the b’s further. The factors of c
correspond to the torsion factor-modules of R/cR; by Theorem 2.3 they admit
+ and ∩ and so form a modular lattice. By the Schreier refinement theorem for
modular lattices (Appendix Theorem A.2) we obtain

Theorem 3.4.1. Over a 2n-fir, any two factorizations of a full n × n matrix
have isomorphic refinements. �

Looking at the proof of the lattice-theoretic result quoted here, we find that
we can pass from the refinement of one chain to that of the other by a series of
steps, which each change the chain at a single point, from

. . . ≥ x ∨ y ≥ x ≥ x ∧ y ≥ . . . to . . . ≥ x ∨ y ≥ y ≥ x ∧ y ≥ . . . .

This corresponds to a change in the factorizations of the form

a1 . . . ai ai+1 . . . ar → a1 . . . ai−1a′
i+1a′

i ai+2 . . . ar , (3)

where ai ai+1 = a′
i+1a′

i is a comaximal relation; thus (3) is a comaximal trans-
position, as defined in Section 3.2. In this way we obtain the following more
precise form of Theorem 4.1, which is also a slight generalization of Proposition
2.9.

Theorem 3.4.2. Over a 2n-fir, any two factorizations of a full n × n matrix
have refinements that can be obtained from one another by a series of comaximal
transpositions of terms. �

As an illustration, let c = pq = rs be two factorizations of an n × n matrix
over a 2n-fir R and write pR + r R = u R, p = ua, r = ub, so that a R + bR =
R, and similarly Rq + Rs = Rv, q = b′v, s = a′v. Then our factorizations
become (ua)(b′v) = (ub)(a′v), where ab′ = ba′ is a comaximal transposition.
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In a general ring R a factorization c = ab of a regular element c need not
induce a corresponding factorization in a similar element c′ – the submodule of
R/cR corresponding to a R/cR will again be cyclic, but need not have a cyclic
inverse image in R. However, in the n × n matrix ring over a 2n-fir, the principal
right ideals between cR and R are characterized by the fact that they give rise
to n-torsion submodules of R/cR; now an application of the parallelogram law
for modular lattices gives

Proposition 3.4.3. In the n × n matrix ring R over a 2n-fir, let c and c′ be full
matrices that are stably associated. Then the lattices L(cR, R) and L(c′ R, R)
are isomorphic and the right ideals corresponding to each other under this
isomorphism are similar.

Proof. The first assertion is clear; the second follows because corresponding
right ideals are endpoints of perspective intervals. �

The isomorphism in Proposition 4.3 can be described explicitly as follows:
if cb′ = bc′ is a comaximal relation for c and c′, then to each left factor d of
c corresponds the left factor d ′ of c′ given by d R ∩ bR = bd ′ R and to each
left factor d ′ of c′ corresponds the left factor d of c given by d R = cR + bd ′ R.
These maps are inverse to one another and induce an isomorphism between the
lattices of left factors of c and c′.

cR

dR
bR

bd′R

cb′R = bc′R

R

Figure 3.1

However, we note that the actual lattice-isomorphism we get may depend
on our choice of comaximal relation – or, equivalently, on our choice of the
isomorphism between R/cR and R/c′ R. For example, take the ring C[x ; −]
of complex-skew polynomials; this is a principal ideal domain and hence a fir.
The automorphism of the lattice of factors of x2 − 1 induced by the comaximal
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relation (x2 − 1)x = x(x2 − 1) interchanges the factorizations (x + i)(x + i)
and (x − i)(x − i) and leaves the factorization (x + 1)(x − 1) fixed. The auto-
morphism induced by the relation

(x2 − 1)1 = 1(x2 − 1)

is of course the identity, while the automorphism induced by

(x2 − 1)i = i(x2 − 1)

interchanges the factorizations (x + 1)(x − 1) and (x − 1)(x + 1).
Over any semifir the factorizations of a given full matrix are closely related

to those of its factors; this is best understood by looking first at the situation
in lattices. In any lattice L, a link or minimal interval is an interval [a, b] in
L consisting of just two elements, namely its end-points, and no others, thus
a < b and no x ∈ L satisfies a < x < b.

In any modular lattice L of finite length there are only finitely many projec-
tivity classes of links, and the homomorphic images of L that are subdirectly
irreducible are obtained by collapsing all but one equivalence class of links;
these are in fact the simple homomorphic images of L. Here we count two homo-
morphic images as the same if and only if there is an isomorphism between
them, forming a commuting triangle with the homomorphisms from L. If the
distinct images are L1, . . . , Lr , we have a representation of L as a subdirect
product of L1, . . . , Lr . In a distributive lattice of finite length, no two links
in any chain are projective, as we shall see in Section 4.4, so the only simple
homomorphic image is the two-element lattice [0, 1], also written 2. Hence, by
the Birkhoff representation theorem (Appendix Theorem A.8) we obtain

Theorem 3.4.4. (i) Any modular lattice L of finite length can be expressed as
a subdirect product of a finite number of simple modular lattices, viz. the simple
homomorphic images of L.

(ii) Any distributive lattice L of finite length is a subdirect power of 2; more
precisely, if L has length n, it is a sublattice of 2n. �

There is another representation of modular lattices, to some extent dual to
that of Theorem 4.4, that is of use in studying factorizations.

Theorem 3.4.5. Let L be a modular lattice. Given a, b ∈ L, there is a lattice-
embedding [a ∧ b, a] × [a, a ∨ b] → L given by

(x, y) �→ x ∨ (b ∧ y) = (x ∨ b) ∧ y. (4)

Proof. Since y �→ b ∧ y is an isomorphism, it follows that (x, y) �→ x ∨
(b ∧ y) preserves joins and similarly (x, y) �→ (x ∨ b) ∧ y preserves meets.
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b

a ∨ b

b ∨ x

(x ∨ b) ∧ y
y

a

x

a ∧ b

b ∧ y

Figure 3.2

Thus (4) is a lattice homomorphism. It is injective because we can recover x
and y from the right-hand side: x ∨ (b ∧ y) ∨ a = (b ∧ y) ∨ a = y ∧ (b ∨ a) =
y, (x ∨ b) ∧ y ∧ a = (x ∨ b) ∧ a = x ∨ (b ∧ a) = x . �

Let L be a lattice and for any a ∈ L put (a] = {x ∈ L|x ≤ a}, [a) = {y ∈
L|a ≤ y}. The proof of Theorem 4.5 suggests that we consider the map L →
(a] × [a) defined by

z �→ (z ∧ a, z ∨ a). (5)

Of course, in general this is not a lattice-homomorphism, but it clearly is one
when L is distributive; further it is then injective, because two elements with
the same image are relative complements of a in the same interval, and so must
coincide. If moreover, a has a complement, b say, then (a] = [a ∧ b, a], [a) =
[a, a ∨ b] and if we now invoke Theorem 4.5, we obtain

Proposition 3.4.6. Let L be a distributive lattice and a ∈ L. Then there is an
embedding L → (a] × [a) given by (5), and when a has a complement in L,
this is an isomorphism. �

The translation of these results into factorizations reads as follows:

Proposition 3.4.7. Let R be the n × n matrix ring over a 2n-fir and let c be a
full matrix in R. Then any comaximal relation

c = ab′ = ba′ (6)

gives rise to an embedding of L(a R, R) × L(bR, R) into L(cR, R). If L(cR, R)
is distributive, this is an isomorphism. �

This result gives us a powerful tool relating the factorizations of a and b to those
of c. For example, suppose that we have a comaximal relation (6) in which a
has a factorization xyz and b has a factorization uv. This gives us chains of
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lengths 3 and 2 in the lattice of left factors of a, b respectively, and by applying
Proposition 4.7 we find that the lattice of left factors of c will have a sublattice
of the form shown in Fig. 3.3. Here intervals are marked with the factor of c to
which they correspond.

Factorizations are given by paths from the top to the bottom of this diagram;
every parallelogram corresponds to a comaximal relation, not only minimal
parallelograms, giving relations such as yu′′ = u′y′, but also larger ones, such
as (y′z′)v′′′ = v′(y′′z′′). Thus, in these various factorizations of c, any factor
from a and any factor from b are comaximally transposed.

R

bR

cR

aR

x

y

z

u

u′

v′

x′

y′u′′

v′′
y′′

z′′
u′′′

v′′′

x′′

z′

v

Figure 3.3

Further, if, say x and y are comaximally transposed, xy = y′x ′, giving the
subdiagram of left factors shown in Fig. 3.4, then from Proposition 4.7 we
get a corresponding expanded diagram of factors of c, including comaximal
parallelograms like xy = y′x ′.

R
x

y

z x′

y′

Figure 3.4

However, when L(cR, R) is not distributive, the embedding of Proposition
4.7 need not be an isomorphism. In terms of factorizations this means that some
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factors of a and b may be comaximally transposed in more ways than the one
induced by the comaximal relation (6). For example, in Fig 3.3 some of the
parallelograms may be replaced by the diagram of Fig. 3.5. An example of
such behaviour occurs in the complex-skew polynomial ring. Here x2 − 1 =
(x + 1)(x − 1) = (x − 1)(x + 1) is a comaximal relation in which each factor
is an atom, yet its full diagram of factorizations is of the form of Fig 3.5, because
x2 − 1 = (x + u)(x − ū) for any u on the complex unit circle.

Figure 3.5

Of course this cannot happen when L(cR, R) is distributive; as we have
seen, it is then a subdirect power of 2. This case will be studied in more detail
in Section 4.4.

Exercises 3.4

1. Show that the group algebra (over k) of the additive group of rational numbers
(written multiplicatively) is a non-atomic Bezout domain. (Hint: Write the elements
as

∑
cαxα, α ∈ Q, and express the ring as a directed union of polynomial rings.)

2. Show that the ring of power series
∑

cαxα(α ∈ Q, α ≥ 0) with well-ordered sup-
port is an atomless Bezout domain.

3. (A. H. Schofield) Let X = {x1, x2, . . .} and consider the free power series ring P =
k〈〈X〉〉, where each xi has degree 1. Verify that the endomorphism θ : xi �→ x1xi+1

on P maps non-units to non-units and that every non-unit in im θ has x1 as a proper
left factor. Deduce that the direct limit of the system (P, θ n) is an atomless semifir,
which is neither left nor right Ore.

4. In a 2-fir, if an element c can be written as a product of two atoms in at least three
different ways, show that all the atomic factors of c are similar. Generalize the result
to n factors.

5. Over a 2-fir R consider the equation p ⊕ q = AB, where p, q are dissimilar atoms
and A, B are non-invertible matrices. Show that this factorization is equivalent to
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either (p ⊕ 1)(1 ⊕ q) or (1 ⊕ q)(p ⊕ 1). What are the possibilities when p is similar
to q?

6◦. Develop a theory of UFDs that are not necessarily 2-firs (see Brungs [69a]; Cohn,
[70a, 73c]).

7. Over a fully atomic semifir, if A is a full matrix that is stably associated to AU, show
that U is a unit (without atomicity this need not hold, see Section 1.6).

8◦. Investigate non-commutative 2-firs in which any two elements with no common
similar factors can be comaximally transposed.

3.5 Analogues of the primary decomposition

Besides the multiplicative decomposition of elements there is the primary
decomposition of ideals, which plays a role for commutative Noetherian rings.
Much of this can be formulated in terms of lattices and by applying it to TorR

we obtain various types of decomposition for full matrices over semifirs.
In a weakly 1-finite ring R, an element c is said to be decomposable if it has

two proper factorizations (i.e. factorizations into non-unit factors)

c = ab′ = ba′, (1)

which are left and right coprime; if c is not decomposable and a non-unit, it is
said to be indecomposable. This term (to be distinguished from ‘factorizable
into a product of non-unit factors’) recalls the fact that for any (in)decomposable
element c the module R/cR, equivalently, R/Rc, is (in)decomposable.

If c has two proper factorizations (1) that are left (right) coprime, c is said to
be left (right) decomposable; if not, and c is a non-unit, it is left (right) indecom-
posable. Clearly any decomposable element is both left and right decomposable;
hence any element that is either left or right indecomposable is indecompos-
able. For example, in an atomic 2-fir a non-unit c is right indecomposable if and
only if every complete factorization ends in the same right factor (see Propo-
sition 5.9). It is clear that a left and right decomposable element need not be
decomposable (see Exercise 4). We also note that a 2-fir that is a local ring is
rigid, by Theorem 3.7, hence in such a ring every element not 0 or a unit is
indecomposable.

If R is the n × n matrix ring over a 2n-fir, the definitions may be rephrased
as follows:

(i) a full matrix c in R is right decomposable if and only if there exist a, b ∈ R
such that

cR = a R ∩ bR, where cR �= a R, bR, (2)
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(ii) a full matrix c in R is decomposable if and only if there exist a, b ∈ R such
that

cR = a R ∩ bR and a R + bR = R, where cR �= a R, bR. (3)

When c is invertible, we have cR = R; this case will usually be excluded. We
observe that the definitions depend only on the module type of R/cR, as the
following result shows.

Proposition 3.5.1. Let R be the n × n matrix ring over a semifir and let c be
a full non-invertible matrix in R. Then

(i) c is right decomposable if and only if R/cR is an irredundant subdirect
sum of two torsion modules,

(ii) c is left decomposable if and only if R/cR is a sum of two torsion modules,
(iii) c is decomposable if and only if R/cR is a direct sum of two torsion

modules.

In particular, if c is (left, right) decomposable, then so is any matrix similar to
it.

Proof. (i) Let c be right decomposable, say (2) holds. Then there is a
monomorphism

R/cR → R/a R ⊕ R/bR. (4)

The result of composing this with the projection onto either of the summands
is surjective, but neither is injective; hence R/cR is an irredundant subdirect
sum of R/a R and R/bR. Conversely, given any subdirect sum representation
of R/cR, the kernels of the projection modules are again torsion modules, say
R/a R, R/bR, which will satisfy (2).

(ii) If c is left decomposable, we have a relation (1), where a, b are left
coprime. Hence we have

R/cR = (a R + bR)/cR = a R/cR + bR/cR ∼= R/b′ R + R/a′ R; (5)

thus R/cR is a sum of two torsion submodules. Conversely, when R/cR is a
sum of two torsion modules, say R/a′ R and R/b′ R, then (5) read from right to
left, shows that (1) holds with a and b left coprime.

(iii) In particular, when c is decomposable, then the sum in (5) is direct,
because a R ∩ bR = cR. The converse is clear. �

We now consider the representations of an element or matrix that correspond
to subdirect sum decompositions and direct decompositions of a module, with
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more than two terms. Let R be the n × n matrix ring over a 2n-fir and c a full
matrix in R; suppose that we have an irredundant representation

cR = a1 R ∩ . . . ∩ ar R, (6)

where each ai is right indecomposable. Such an equation means that the natural
map

R/cR → ⊕R/ai R (7)

obtained by combining the maps R/cR → R/ai R(i = 1, . . . , r ) is injective.
Thus we have a subdirect sum representation of R/cR. Such a representation
certainly exists if R is atomic. The irredundancy of (6) means that no term on the
right of (7) can be omitted, while the right indecomposability of the ai shows
that each module R/ai R is subdirectly irreducible, by Proposition 5.1. If we
now apply the Kurosh–Ore theorem for modular lattices (Appendix Theorem
A.7), we obtain

Theorem 3.5.2. Let R be the n × n matrix ring over a fully atomic semifir.
Then for each full non-invertible matrix c in R, cR has an irredundant rep-
resentation (6), where each ai is right indecomposable, and if a second such
decomposition of cR is given, cR = b1 R ∩ . . . ∩ bs R, then r = s and the b j R
may be exchanged against the ai R, i.e. after suitably renumbering the b’s we
have for i = 1, . . . , r ,

cR = a1 R ∩ . . . ∩ ai R ∩ bi+1 R ∩ . . . ∩ br R. �

Similarly, cR has a representation (6), where each ai is indecomposable and
such that

ai R �= R, ai R +
(⋂

i �= j

a j R

)
= R, (i = 1, . . . r ). (8)

Let us call a representation (6) satisfying these conditions a complete direct
decomposition of cR. When (8) holds, the map (7) is an isomorphism, so that a
complete direct decomposition of cR corresponds to a direct sum representation

R/cR ∼= R/a1 R ⊕ · · · ⊕ R/ar R. (9)

The first condition in (8) shows that each term on the right is non-zero, while the
fact that each ai is indecomposable means (by Proposition 5.1) that each module
R/ai R is indecomposable in the category TorR . We shall express this by saying
that each R/ai R is Tor-indecomposable; thus R/cR is Tor-indecomposable (by
Proposition 5.1) precisely when c is indecomposable. Since the terms in any
direct sum decomposition are always torsion modules (Theorem 2.3), this is
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equivalent to R/cR being indecomposable as module. If we now apply the
Krull–Schmidt theorem for modular lattices (Appendix Theorem A.6) to the
lattice of principal right ideals containing cR, we obtain

Theorem 3.5.3. Let R be the n × n matrix ring over a fully atomic semi-
fir. Then for each full non-invertible matrix c in R, cR has a complete direct
decomposition (6) (i.e. satisfying (8)) and if a second such decomposition
cR = b1 R ∩ . . . ∩ bs R is given, then r = s and the b’s may be exchanged against
the a’s. Moreover, the a’s and b’s are similar in pairs; thus after suitably renum-
bering the b’s we have a set of coprime relations

uai = bi ui , (10)

where u corresponds to a unit in the eigenring E(cR).

Proof. All except the last part follows from the preceding remarks. Now let
u ∈ I (cR) correspond to the automorphism of R/cR transforming the isomor-
phism (9) into the corresponding relation with the b’s. Then there is a coprime
relation uc = cu′, say, and if c = bi b′

i = ai a′
i , then we have uai a′

i = bi b′
i u

′;
since u, c are right comaximal, so are u, bi for i = 1, . . . , r . If the b’s are now
renumbered so that R/ai R → R/bi R in the automorphism, then we have the
coprime relations (10), for some ui ∈ R. �

We note that Theorems 5.1–5.3 hold more generally for the n × n matrix ring
over an n-atomic 2n-fir. We also note that since any left or right indecomposable
element is indecomposable, it follows that any complete direct decomposition
(6) can be refined to an irredundant decomposition. Therefore the decomposition
of Theorem 5.3 can have at most as many terms as that of Theorem 5.2.

The Krull–Schmidt theorem for modules can be proved either by lattice
theory, as above, or by Fitting’s lemma, which states that for an indecomposable
R-module M of finite length the endomorphism ring EndR(M) is completely
primary, i.e. a local ring in which the maximal ideal is nilpotent (see FA, lemma
4.1.1 or IRT, p. 80). Using Proposition 0.6.1, we can restate Fitting’s lemma in
the following form:

Proposition 3.5.4. Let R be the n × n matrix ring over a fully atomic semifir.
Then the eigenring of an indecomposable full matrix is completely primary. �

Thus if c is indecomposable and a, a′ ∈ R are such that ac = ca′, then either
a, c are right comaximal or there exists b ∈ R and r ≥ 0 such that ar = cb.
When a is assumed to be an atom, we thus find
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Corollary 3.5.5. Let R be as in Proposition 5.4 and let c be an indecomposable
full matrix, with idealizer I(cR). If I(cR) contains an atom p, then either p is
right comaximal with c or c is right associated to pr , for some r ≥ 0.

Proof. The remarks made earlier show that if c is not right comaximal with
p, then cb = pr for some b ∈ R and some r ≥ 0. Thus p defines a nilpotent
endomorphism of E(cR) and

R ⊃ cR + pR ⊃ . . . ⊃ cR + pr−1 R ⊃ cR ⊇ pr R.

Successive quotients (cR + piR)/cR form a strictly decreasing sequence of
torsion submodules of R/cR whose quotients have no torsion submodules
(because p is an atom); thus cR = prR and so c is right associated to
pr . �

Of course in general the atomic factors of an indecomposable element need
not all be similar, e.g. take xy in the free algebra k〈x, y〉; any atom in the
idealizer of xy, such as 1 + xy, is comaximal with xy. This example also
shows that a factor of a member of I(cR) need not be a member of I(cR),
so an idealizer can contain composite elements without containing their atomic
factors.

We note the special case of a rigid UFD:

Corollary 3.5.6. In a rigid UFD, the eigenring of any non-zero non-unit is
completely primary.

Proof. By Corollary 3.8, such a ring R is an atomic 2-fir and a local ring. By
the remark at the beginning of this section, any non-unit in R is indecomposable,
so the result follows from Proposition 5.4. �

For cyclic modules there is a criterion for direct decomposability that actually
holds quite generally.

Lemma 3.5.7. Let R be any ring and a, b ∈ R, where a is right regular.
Then

R/bR ∼= a R/abR, (11)

and this is a direct summand of R/abR if and only if there exist c, d ∈ R such
that

da − bc = 1. (12)

Moreover, in that case we have

R/abR ∼= R/bR ⊕ R/a R. (13)
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Proof. Write M = R/abR and suppose that

M = N1 ⊕ N2, where N1
∼= a R/abR.

Denote by u the image of 1 in M; then u = v1 + v2, where vi ∈ Ni , further, N1
∼=

R/bR by (11), which follows because a is right regular. Now Ni = vi R and we
have v2x = 0 ⇔ ux ∈ N1 ⇔ x ∈ a R; hence N2

∼= R/a R and (13) follows.
To establish (12), we have v1 ∈ ua R, say v1 = uad; hence u = uad + v2

and so v2 = u(1 − ad). Now u(1 − ad)a = 0, so (1 − ad)a = −abc for some
c ∈ R, and hence a(1 − da + bc) = 0. Since a is right regular, we have da −
bc = 1, i.e. (12).

Conversely, given (12), we put r = 1 − ad, u = uad + u(1 − ad), and
so M = uad R + ur R. If uax = ury, then ax − r y = abz; hence ax − y +
ady = abz, so y ∈ a R. Now ra = (1 − ad)a = a(1 − da) = −abc. It follows
that ura = 0, hence ur y = 0 and so ua R ∩ ur R = 0, as claimed. �

To apply the result to 2n-firs, we note that if S is a 2n-fir, then an n-generator
torsion module over S corresponds under the Morita equivalence (Theorem
0.2.4) to a cyclic Sn-module. We thus have

Proposition 3.5.8. Let R be the n×n matrix ring over a 2n-fir and let M, N
be cyclic right R-modules defined by full matrices. Then M ⊕ N is cyclic if
and only if there is a left comaximal pair of full matrices a, b in R such that
M ∼= R/a R, N ∼= R/bR.

Proof. If M ⊕ N is cyclic, where M = R/a R, N = R/bR, then (12) holds;
hence a, b are comaximally transposable, say ab = b′a′. But then a is similar
to a′ and a′, b are left comaximal.

Conversely, if a, b are left comaximal, let a1b = b1a be a comaximal rela-
tion; then a1 is similar to a and a1, b are comaximally transposable; hence by
the lemma, R/a1 R ⊕ R/bR is cyclic. �

We also note the following condition for one-sided decomposability:

Proposition 3.5.9. Let R be the n × n matrix ring over a 2n-fir and c a full
matrix in R. Then the following conditions are equivalent:

(a) c is right indecomposable with an atomic right factor,
(b) the lattice L(cR, R) has a unique minimal element covering cR,
(c) the lattice L(Rc, R) has a unique maximal element covered by R,
(d) c has an atomic right factor, unique up to left associates.

Proof. This follows easily from what went before; the details may be left to
the reader. �
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Using (c) we obtain

Corollary 3.5.10. If R and c are as in Proposition 5.9 and c is right indecom-
posable, then so is any right factor of c. �

Of course this result holds more generally in any integral domain; in fact it is
true for any cancellation monoid.

Another type of decomposition, sometimes of interest, exists for certain
full matrices over semifirs, namely those whose associated torsion module is
completely reducible (or semisimple). A full matrix c in the n × n matrix ring
R over a semifir is said to be fully reducible if

cR = ∩pi R, (14)

where the pi are matrix atoms. By passing to the corresponding torsion module
we see that c is fully reducible if and only if R/cR is a subdirect product of Tor-
simple modules. Thus being fully reducible is again a property of the module
type R/cR. If moreover, R is atomic (e.g. if the ground ring is fully atomic),
then it is enough to take finitely many atoms on the right of (14). Taking the
number of terms to be minimal, we obtain R/cR as a subdirect sum of the
R/pi R, and by minimality the sum is actually direct:

R/cR ∼= R/p1 R ⊕ · · · ⊕ R/pr R. (15)

By the factorial duality, being fully reducible in R is a left–right symmetric
property. Further, any factor of a fully reducible element is again fully reducible,
as the representation (15) shows. More generally, the decomposition (15) holds
for an n × n matrix c over an n-atomic 2n-fir.

In order to relate full reducibility to factorizations we need another concept,
which is most easily stated for cancellation monoids. In any cancellation monoid
the notion of full reducibility can be defined in analogy to (14). Now let S be a
cancellation monoid. Given a factorization of a non-unit c in S into non-units:

c = ab, (16)

if every left factor of c is either a left factor of a or a right multiple of a, then a is
called a left block of c, while c is said to be cleft. Dually, b is then a right block
of c and (16) is called a block factorization or cleavage of c. An element is said
to be uncleft if it is a non-unit with no cleavage into more than one non-unit.

It is clear that block factorizations are ‘rigid’ in the sense that, given two
block factorizations of c, say c = ab′ = ba′, we have a = bu or b = au for
some u ∈ S. Let c ∈ S be fully reducible; a given factorization of c:

c = a1 . . . ar (17)
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is called a cleavage if, for k = 2, 3, . . . , r − 1, every left factor a1 . . . ak is a
left block or equivalently, every right factor ak . . . ar is a right block. In the case
of two factors this just reduces to the earlier notion.

If c with a cleavage (17) also has an atomic factorization, this can always be
obtained by refining (17) without reordering the terms. It follows that the set of
left blocks is finite and by taking a cleavage (17) of c with a maximal number
of factors the ai are uncleft, because otherwise we could increase the number
of factors by taking a cleavage of ai . We note the following uniqueness result:

Lemma 3.5.11. Let S be a cancellation monoid and c ∈ S an element of finite
length, i.e. with a complete factorization. Then the set of its left blocks is finite,
yielding a cleavage (17) that is maximal with respect to refinement. The factors
ai are uncleft, and they are the only maximal uncleft factors of c.

Proof. Suppose that c has an atomic factorization of length n. Then there are
at most n left blocks, ordered by left divisibility, and this leads to a cleavage
(17) maximal with respect to refinement. Here the factors ai are uncleft, since
a cleavage of ai would induce a cleavage of c that is a proper refinement of
(17). We claim that a1, . . . , ar are the only maximal uncleft factors of c. For if
c = uvw, where v is uncleft, then a comparison with (17) shows that v must be
a factor of some ai ; for if v had a left factor in ai and a right factor in ai+1, this
would lead to a cleavage of v, against the hypothesis. If v is a proper factor of
ai , then it is not a maximal uncleft factor, so the maximal uncleft factors are,
up to associates, the a’s themselves, as claimed. �

To give an example, let us take R = Z, or more generally, any commutative
principal ideal domain. If p is an atom such that p + 1 is a non-unit, then the
element p2(p + 1) is uncleft, but it has the cleft factor p2. Let us call an element
totally uncleft if all its factors are uncleft; thus in a commutative PID the totally
uncleft elements are just the ‘squarefree’ elements. The connexion with fully
reducible elements is given by

Proposition 3.5.12. Let R be the n × n matrix ring over a semifir. For any
full matrix c in R admitting a complete factorization, the following conditions
on c are equivalent:

(a) c is totally uncleft,
(b) c is fully reducible,
(c) any two neighbouring factors in a complete factorization of c can be comax-

imally transposed.

Proof. (a) ⇒ (b). Let c be totally uncleft; then not every complete factor-
ization of c ends in the same atom, say c = c1 p1 = c2 p2, where Rp1 �= Rp2.
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Then cR = c1 R ∩ c2 R; now c1, c2 as factors of c are again totally uncleft and
by induction on the length of c, each ci is fully reducible, say ci R = ∩ j pi j R.
Hence cR = ∩i j pi j R, which shows the truth of (b).

(b) ⇒ (c). Assume c fully reducible, take a complete factorization c =
a1 . . . ar and fix i in the range 2 ≤ i ≤ r . Then ai−1ai is fully reducible, as
factor of c, hence there is a comaximal relation ai−1ai = a′

i a
′′
i .

(c) ⇒ (a). This follows because any cleavage of any factor of c, on being
refined to a complete factorization, leads to a pair of neighbouring atomic factors
that cannot be comaximally transposed. �

In a rigid UFD any factorization is clearly a cleavage. Generally let us say that
a factorization of a certain type, e.g. into maximal uncleft factors, is essentially
unique if it is unique up to inessential modification (i.e. by unit factors). Now
Lemma 5.11 shows the truth of

Theorem 3.5.13. Let R be the n × n matrix ring over a semifir. Then every
full matrix c in R of finite length has a factorization

c = a1..ar (18)

into maximal uncleft factors, and this is essentially unique. �

The factorization (18) is always a cleavage; if the factors are atoms, this
means that no two neighbours are comaximally transposable. In terms of lattices
this means that L(cR, R) is a chain. Thus we have

Corollary 3.5.14. A full matrix c of finite length in the n × n matrix ring R
over a semifir has a cleavage into atomic factors if and only if L(cR, R) is a
chain, or equivalently, if c is rigid. �

Here (as in Proposition 5.12 and Theorem 5.13) the ring can again be taken to
be a 2n-fir.

Exercises 3.5

1. In the complex-skew polynomial ring R = C[x ; −], find all possible irredundant
representations (6) of (x2 − 1)R.

2. Show that in any commutative principal ideal domain that is not a local ring there are
elements that have no essentially unique factorization into maximal totally uncleft
factors.

3. Show that in a commutative UFD every factor of an indecomposable element is
again indecomposable, and find a counter-example in the ring k[x2, x3]. Show also
that in k〈x, y, z〉 the element zx(yx + 1)z is indecomposable (even left and right
indecomposable), but has a decomposable factor.
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4. Find an element in k〈x, y, z〉 that is indecomposable but not left or right indecom-
posable.

5. Show that in an atomic 2-fir any factor of a fully reducible element is fully reducible.
6. An element c of a ring R is called primary if cR = ∩pi R, where the pi are pairwise

similar atoms. Show that in the n × n matrix ring over an n-atomic 2n-fir every full
matrix that is fully reducible can be written uniquely as LCRM of primary matrices.

7. Let S be a cancellation monoid and let a = a1 . . . ar be a factorization into maximal
uncleft factors. If b is a left factor of a, with factorization b = b1 . . . bs into maximal
uncleft factors, then for some i ≤ min(r, s), a1 . . . ai S = b1 . . . bi S, bi+1 . . . bs S ⊇
ai+1 S.

8◦. Investigate atomic 2-firs (other than principal valuation rings) in which any two
atoms are similar (see Faith [73], p. 362).

9. (Beauregard and Johnson [70]) For i = 1, . . . , n let pi be the ith prime in N. Verify
that the subring Ri of Q[x] consisting of all polynomials f such that f (i) has a
denominator prime to pi is a Bezout domain. (Hint: Replace x by x − i). Show
further that R = ∩Ri is a Bezout domain. Show that R contains elements that are
pi -prime but not a product of atoms.

Notes and comments on Chapter 3

The notion of full matrix (Section 3.1) was introduced by Cohn [71a]; for left full,
left prime, etc. see Cohn [82a], where results 1.3–1.5 are also proved. Much of Section
3.2 follows Cohn [63a,69a,70a], though the strictly cyclic (= cyclic torsion) modules of
FR.1 were replaced by torsion modules in FR.2. This corresponds to taking factorizations
of full matrices rather than elements, and most of the subsequent results are stated in
this more general form, which is usually no harder to prove. Many of the results are just
consequences of the fact (Theorem 2.3) that the torsion modules over a semifir form an
abelian category. Factorizations of unbounded length have been studied by Beauregard
[69], Beauregard and Johnson [70], Brungs [78] and Paul [73]. The proof of Proposition
2.5, based on the linear independence of the (λ − β)−1, where λ is transcendental, is
Amitsur’s well-known trick (which he apparently noticed while lecturing on complex
function theory).

An interesting generalization of UFD, to include the case of Z〈X〉, has been proposed
by Brungs [69a]; for another approach see Cohn [70a] and for a survey, Cohn [73c]. A
detailed study of similarity, foreshadowing a form of Schanuel’s lemma, was undertaken
by Fitting [36]; the parts relevant for us are contained in Sections 0.5 and 3.1 (see
also Cohn [82a]). For Section 3.3 see Cohn [62a] and Bowtell [67a]. Proposition 3.6
generalizes a result by Koshevoi [66] for free algebras, and Proposition 3.12 is taken
from Cohn [85a]. Lemma 3.13 is the special case for integral domains with UGN of a
result of Chase [62]; for the application made here, see Cohn [66d].

Section 3.4 is due to Bergman [67] (see also an unpublished manuscript by
Bergman, dating from 1969), while Section 3.5 generalizes earlier results of Ore [33a];
see also Feller [60], Johnson [65] and Cohn [69a, 70a, 73c]. For another approach
to primary decomposition in non-commutative rings, see Barbilian [56], Chapter 2.
Lemma 5.7 generalizes a result proved in FR.1 and is taken from Dieudonné [73],
p. 164.
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Cozzens and Faith [75] define a V-ring as a ring in which every simple right module

is injective (e.g. the commutative V-rings are just the von Neumann regular rings). It

can be shown that a right PID is a V-ring if and only if every non-zero element is fully

reducible. Every V-ring is a TC-ring, defined as follows: a test module for a ring R is

a module T such that, for any R-module M, HomR(M, T ) = 0 implies M = 0; if every

test module is a cogenerator (i.e. HomR(−, T ) is a faithful functor of T), then R is called

a TC-ring. Let R be a TC-ring and S a simple R-module with injective hull E(S); then

EndR(E(S)) is a local ring and a semifir (see Vamos [76]).
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Rings with a distributive factor lattice

This chapter examines more closely those 2-firs in which the lattice of factors of
any non-zero element is distributive. After some generalities in Section 4.1 and
their consequences for factor lattices in Section 4.2 it is shown in Section 4.3
that this holds for free algebras and the consequences are traced out in Sections
4.4 and 4.5 while Section 4.6 describes the form taken by eigenrings in this case.

4.1 Distributive modules

Given any ring R, a full subcategory A of RMod, the category of all left R-
modules, is said to be admissible if any kernel or cokernel (taken in RMod) of
a map of A is again in A. In general A may not admit direct sums; if it does,
we have an abelian category, by Appendix Proposition B.1. A module in A will
be called an A-module; likewise we shall speak of A-submodules, A-quotients,
etc., but the reference to A will sometimes be omitted when it is clear that
we are dealing with A-modules. For example, the category of torsion modules
over a semifir is admissible and admits direct sums, as well as sums of torsion
submodules.

Since an admissible category A admits kernels and cokernels, it also admits
images and coimages and it follows that the set LatA(M) of A-submodules of

any R-module M is a lattice, necessarily modular. If LatA(M) is distributive,

the module M is said to be A-distributive, or simply distributive, if the meaning
is clear (see Appendix A). The following are some examples of occurrences of
distributive modules:

(i) A =RMod, where R is a commutative Bezout domain (or more generally,
a Prüfer domain). Any cyclic R-module is distributive (Jensen [63]).
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(ii) A =RMod, where R is semisimple Artinian. An R-module M is distributive
if and only if each simple module type occurs at most once in M. If each
simple module type occurs exactly once, then M is faithful. For this reason
R is called distributively representable by Behrens [65].

(iii) In every right Artinian algebra of finite representation type the lattice of
all two-sided ideals is distributive, see Pierce ([82], p. 104).

(iv) In Section 4.3 we shall see that any 1-torsion module M over a free algebra
R = k〈X〉 is Tor-distributive. Here it is essential to consider M as an object
of RTor1 rather than RMod.

In the rest of this section we shall examine the structure of a distributive
module, in preparation for what follows. If M is a distributive module, then
clearly any submodule and any quotient of M is again distributive. We begin
with a simple characterization of distributive modules, which is often useful.
Let M be a module and suppose that M = M1 ⊕ M2. With any homomorphism
α : M1 → M2 we associate a submodule of M, the graph of α:

�(α) = {(x, xα)|x ∈ M1}. (1)

It is clear that �(α) ∩ M2 = 0, �(α) + M2 = M ; thus �(α) is a complement
of M2 in M, and it is easily seen that any complement of M2 in M defines a
homomorphism M1 → M2 in this way. Since in a distributive module comple-
ments are unique, there can then only be one such map, necessarily the zero
map. Thus we obtain

Proposition 4.1.1. Given an admissible module category A, let M1, M2 be
any A-modules and put M = M1 ⊕ M2. Then each homomorphism α : M1 →
M2 determines a graph �(α) given by (1), which is a complement of M2 and
conversely, each complement of M2 is the graph of a homomorphism M1 → M2.
Moreover, when M is distributive, then Hom(M1, M2) = 0. �

This result shows in particular that a distributive module cannot be of the form
N 2, i.e. the square of a non-zero module. Let us call M square-free if it has no
factor module isomorphic to such a square. This yields the following criteria
for distributivity:

Theorem 4.1.2. For any module M in an admissible category the following
conditions are equivalent:

(a) M is distributive,
(b) Hom(P/(P ∩ Q), Q/(P ∩ Q)) = 0 for all submodules P, Q of M,
(c) M is square-free.

Proof. (a) ⇒ (b). If M is distributive, then so is (P + Q)/(P ∩ Q) ∼= P/(P ∩
Q) ⊕ Q/(P ∩ Q), and now (b) follows by Proposition 1.1.



4.1 Distributive modules 227

(b) ⇒ (c). If (c) is false, then M ⊇ A ⊃ B, where A/B is a square;
this means that there exist P, Q ⊃ B such that P + Q = A, P ∩ Q = B and
P/B ∼= Q/B, but this contradicts (b).

(c) ⇒ (a). Suppose M is not distributive. Then Lat(M), being modular, has a
five-element sublattice of length 2, by Appendix Proposition A.5, i.e. there exist
Pi (i = 1, 2, 3) such that Pi + Pj = A, Pi ∩ Pj = B for i �= j ; hence A/Pi ∼=
Pj/B, and so A/B is a square. �

Let M be any module, A, B submodules of M and α a homomorphism of
some module into M. Then we clearly always have

Aα−1 + Bα−1 ⊆ (A + B)α−1,

but equality need not hold. It is easily seen that we have equality when A or B
lies in the image of α. Dually, we have, for a homomorphism β from M into
some module,

(A ∩ B)β ⊆ Aβ ∩ Bβ,

and here we have equality if A or B contains ker β, but not generally. In fact,
equality (in either case) characterizes the distributivity of M:

Proposition 4.1.3. For any module M in an admissible category the following
conditions are equivalent:

(a) M is distributive,
(b) for any module P and homomorphism α : P → M,

(A + B)α−1 = Aα−1 + Bα−1 for all submodules A, B of M,

(c) for any module Q and homomorphism β : M → Q,

(A ∩ B)β = Aβ ∩ Bβ for all submodules A, B of M.

Proof. (a) ⇔ (b). For any submodule S of P containing ker α the corre-
spondence S �→ Sα is a bijection between the set of submodules of P con-
taining ker α and the set of all submodules of Pα, with inverse A �→ Aα−1,
where A is a submodule of Pα. Hence (b) holds if and only if (A + B)α−1α =
Aα−1α + Bα−1α. Since Aα−1α = A ∩ Pα, this is just (A + B) ∩ Pα = A ∩
Pα + B ∩ Pα, which is distributivity.

(a) ⇔ (c). Let K = ker β; then Aββ−1 = A + K , and so x ∈ (Aβ ∩ Bβ)β−1

if and only if x ∈ (A + K ) ∩ (B + K ). Thus (c) holds if and only if (A ∩ B) +
K = (A + K ) ∩ (B + K ), which is (a). �

We shall need another technical result on homomorphisms between distribu-
tive modules.
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Lemma 4.1.4. Let P, Q be any modules in an admissible category and α, β ∈
Hom(P, Q).
(i) If Q is distributive and X is a submodule of P, then

(a) P = (im α)β−1 + (im β)α−1, (b) X = (X ∩ Xαβ−1) + (X ∩ Xβα−1),
(ii) if P is distributive and Y is a submodule of Q, then

(a) 0 = (ker α)β ∩ (ker β)α, (b) Y = (Y + Yα−1β) ∩ (Y + Yβ−1α).

Proof. (i) We have im(α + β) ⊆ im α + im β, hence by Proposition 1.3,

P = (im α + im β)(α + β)−1 = (im α)(α + β)−1 + (im β)(α + β)−1

= (im α)β−1 + (im β)α−1.

Now (b) follows by setting ν for the inclusion map of X in P and applying (a) to
να, νβ, thus: X = Xα(νβ)−1 + Xβ(να)−1 = (X ∩ Xαβ−1) + (X ∩ Xβα−1).

(ii) follows similarly from Proposition 1.3. �

A module M is said to be meta-Artinian if every non-zero factor of M has a
simple submodule; dually, if every non-zero factor of M has a simple quotient, M
is called meta-Noetherian. Clearly these properties are inherited by submodules
and quotients. When M is taken from an admissible category A, it is understood
that only submodules and quotients in A are understood.

For modules satisfying these hypotheses Lemma 1.4 can be extended as
follows:

Proposition 4.1.5. Let A be an admissible module category admitting sums
of submodules. Given A-modules P, Q and α, β ∈ Hom(P, Q),

(i) if P is meta-Artinian and Q is distributive, then ker α ⊆ kerβ implies
im β ⊆ im α,

(ii) if Q is meta-Noetherian and P is distributive, then im β ⊆ im α implies
ker α ⊆ kerβ.

Proof. Suppose that ker α ⊆ ker β but im β �⊂ im α, and define

A =
∑

{B ⊆ P|Bβ ⊆ Bα}.
Clearly A is the largest submodule of P such that Aβ ⊆ Aα. In particular it
follows that ker α ⊆ ker β ⊆ A. Since im β �⊂ im α, we have A �= P . By
hypothesis there exists X ⊆ P such that A ⊂ X and X/A is simple. But
A ⊆ Aαβ−1 ⊆ Xαβ−1 and A ⊆ X ∩ Xαβ−1 ⊆ X . Since Xβ �⊂ Xα and X/A
is simple, we find that A = X ∩ Xαβ−1. By Lemma 1.4 (i)(b),

X = (X ∩ Xαβ−1) + (X ∩ Xβα−1) = A + (X ∩ Xβα−1)
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and so Xα = Aα + (X ∩ Xβα−1)α = Aα + (Xα ∩ Xβ) = Aα + (Xαβ−1 ∩
X )β = Aα + Aβ = Aα. Since ker α ⊆ A, we find that X = A, a contradiction;
hence im β ⊆ im α. This proves (i); now (ii) follows similarly, by applying dual
arguments. �

We recall that a submodule of a module M is called fully invariant if it is
mapped into itself by all endomorphisms of M. We shall see that under suitable
finiteness conditions distributive modules have an even stronger property:

Corollary 4.1.6. Let A be an admissible module category admitting sums of
submodules. (i) If M is a meta-Artinian distributive A-module and N a submod-
ule of M with a homomorphism α : N → M, then Nα ⊆ N. In particular, M is
fully invariant and any two isomorphic submodules of M are equal.

(ii) If M is a meta-Noetherian distributive module with a submodule N and
a homomorphism β : M → M/N, then ker β ⊇ N, so that β is induced by
an endomorphism of M/N. In particular, distinct submodules of M determine
non-isomorphic quotients. Moreover, M is fully invariant.

Proof. (i) is an immediate consequence of Proposition 1.5, putting α = β

there and taking α in (i) to be the inclusion map. Now the first part of (ii)
follows similarly; to show that M is fully invariant, let N be a submodule and
ν : N → M/N the natural map. By the first part, we have xν = 0 ⇒ xβν = 0
for any x ∈ M and it follows that Nβ ⊆ N . �

In Section 4.6 we shall need a further result. We begin with a lemma.

Lemma 4.1.7. Let A be an admissible module category admitting sums of
submodules. Given an A-module M with submodules U, V, suppose that neither
is contained in the other and that U, V each have a unique maximal submodule
U ′, V ′ respectively. Then

(U + V )/(U ′ + V ′) ∼= U/U ′ ⊕ V/V ′. (2)

Proof. The natural maps U/U ′ → (U + V )/(U ′ + V ′) and V/V ′ → (U +
V )/(U ′ + V ′) give rise to a map U/U ′ ⊕ V/V ′ → (U + V )/(U ′ + V ′), which
is clearly surjective; we have to show that it is injective. Suppose that ([x], [y]) is
in its kernel, where square brackets denote the residue-classes mod U′ and mod
V′; this means that x + y ∈ U ′ + V ′, hence x + y = u + v, where u ∈ U ′, v ∈
V ′. It follows that x − u = v − y, where x − u ∈ U, v − y ∈ V ; hence their
common value lies in U ∩ V . By hypothesis the latter is a proper submodule of U
and of V, and so by the maximality of U′,V′ it must lie in U ′ ∩ V ′. Therefore x =
(x − u) + u ∈ U ′ and so [x] = 0; similarly [y] = 0 and our map is injective,
hence an isomorphism. �
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Proposition 4.1.8. Let A be an admissible module category admitting sums
of submodules, and let M be an A-module with a unique maximal submodule
M ′. Then for any two homomorphisms α, β : M → N, where N is a distributive
module, one of Mα, Mβ is contained in the other.

Proof. We may assume that α, β �= 0; then ker α is a proper submodule of M,
hence ker α ⊆ M ′, Mα ∼= M/ker α, and it follows that Mα has a unique maxi-
mal submodule, namely M ′α. Similarly Mβ has the unique maximal submodule
M ′β and if Mα, Mβ are incomparable, then by Lemma 1.7,

(Mα + Mβ)/(M ′α + M ′β) ∼= Mα/M ′α ⊕ Mβ/M ′β ∼= (M/M ′)2;

this contradicts the fact that N is square-free and the conclusion follows. �

To end this section let us note a useful result on the endomorphism ring of
a distributive module that is a direct sum.

Theorem 4.1.9. Let A be an admissible module category admitting sums of
submodules, and let M be a distributive A-module such that

M = M1 ⊕ · · · ⊕ Mn. (3)

Then

End(M) ∼=
n∏

i=1

End(Mi ). (4)

Proof. Any endomorphism α of M is represented by a matrix (αi j ), where
αi j ∈ Hom(Mi , M j ), and by Theorem 1.2, αi j = 0 for i �= j . �

If M is indecomposable of finite length, then End(M) is completely primary,
by Fitting’s lemma, and the Jacobson radical of End(M) may be described as
follows:

Corollary 4.1.10. Let A be an admissible module category admitting sums of
submodules, and let M be a distributive A-module of finite length, with a direct
decomposition (3) into indecomposable submodules Mi . Then each End(Mi )
in (4) is completely primary and the Jacobson radical J (End(M)) is nilpotent,
given by

J (End(M)) ∼=
n∏

i=1

J(End(Mi )). (5)

Proof. It is clear from (4) that J(End(M)) has the form (5); since each
J (End(Mi )) is nilpotent, the same holds for J(End(M)). �
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Exercises 4.1

1. Show that a finitely generated Z-module is distributive if and only if it is cyclic.
2. (Jensen [63]) Let M be a distributive R-module. If a, b ∈ M , show that either

Ra ⊆ Rb or Rxb ⊆ Ra for some x ∈ R such that 1 − x is a non-unit. Deduce that
if R is a local ring, then Lat(M) is totally ordered.

3. Let M be a distributive module. Show that if a perspectivity between two chains of
modules exchanges two simple factors P, Q, then P and Q cannot be isomorphic.

4. Let M be a distributive module of finite length. By the Jordan–Hölder theorem, any
two composition series of M are projective, in the sense that we can pass from one
to the other by a series of perspectivities. Use Exercise 3 to show that any such
projectivity preserves the order of the factors of a given isomorphism type.

5∗. (G. M. Bergman) Given a module M, if any homomorphism of a submodule N of M
into M maps N into itself, is M necessarily distributive? [Hint: For a counter-example
try a three-dimensional vector space over a field k, regarded as left R-module, where

R consists of all matrices

⎛
⎝ a 0 0

0 a 0
b c a

⎞
⎠, where a, b, c ∈ k.]

6. Let M be a distributive module of finite length. If A1, . . . , An are the simple factors
(with their multiplicities) occurring in a composition series of M, show that every
endomorphism of M maps each term of a composition series into itself. Deduce that
there is a homomorphism End(M) → ∏n

i=1 End(Ai ), whose kernel is the radical of
End(M) and that this radical is nilpotent.

7∗. (Vamos [78]) (i) If M = Ra + Rb is distributive, show that Ra ∩ Rb + R(a + b)
contains Ra and Rb; deduce that M = Ra ∩ Rb + R(a + b). (ii) Show that any
finitely generated Artinian distributive module is cyclic. [Hint: Let A be minimal
finitely generated non-cyclic and B minimal of the form Ra ∩ Rb, where A =
Ra + Rb. Use (i) to show that A = R(a + b) + B0, where B0 is a cyclic submodule
of B, and that B0 ∩ R(a + b) ⊆ B; deduce that B0 = B ⊆ R(a + b) and obtain a
contradiction.]

8. (Stephenson [74]) Let A = k[x, y], K = k(x, y), denote by R, S the subrings
of K obtained from A by localizing at all elements prime to x, y respectively,
and let α : R → S be the k-isomorphism interchanging x and y. Show that T ={(

a u
0 aα

)
|a ∈ R, u ∈ K

}
is a ring whose left as well as right ideals are totally

ordered, hence T is distributive as left or right T-module, but neither left nor right
invariant (T is left invariant if cT ⊆ T c for all c ∈ T ).

9. (Camillo [75]) Let k be a commutative field and α an endomorphism such that 1 <

[k; kα] < ∞. Show that the ring R =
{(

x y
0 xα

)
|x, y ∈ k

}
has only R, J (R)

and 0 as left ideals, hence LatR(R) is distributive, and R is left but not right invariant.

4.2 Distributive factor lattices

From Theorem 2.3.7 we see that a 2-fir may be defined as an integral domain
R such that for any c ∈ R× the set L(cR, R) is a sublattice of the lattice of all
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right ideals of R. In the commutative case this condition simply states that the
principal ideals form a sublattice of the lattice of all ideals. In that case we can
go over to the field of fractions and consider the principal fractional ideals; by
what has been said they form a modular lattice with respect to the ordering by
inclusion. Clearly they also form a group under multiplication, and the group
operations respect the ordering. Thus we have a lattice-ordered group; such a
group is always distributive, as a lattice (Birkhoff [67], p. 294). This suggests
that we single out 2-firs with the corresponding property, and we make the
following

Definition. An integral domain R is said to have a distributive factor lattice,
DFL for short, if for each c ∈ R×, the set L(cR, R) is a distributive sublattice
of the lattice of all right ideals of R.

From the definition (and Theorem 2.3.7) it is clear that a ring with distribu-
tive factor lattice is a 2-fir. Moreover, since L(cR, R) is anti-isomorphic
to L(Rc, R), by the factorial duality (Theorem 3.2.2), the notion defined
here is left–right symmetric. We shall reformulate this condition below in a
number of ways, in terms of 1-torsion modules. We begin with a technical
lemma.

Lemma 4.2.1. Let R be a 2-fir and a ∈ R×. Then

(i) a is right comaximal with an element similar to a if and only if a is right
comaximal with ba, for some b ∈ R,

(ii) there exist two elements similar to a and right comaximal if and
only if there is an equation xa1 y + ua2v = 1, where a1, a2 are similar
to a.

Proof. (i) The similarity of a and a′ can be expressed by the existence of two
mutually inverse matrices

A =
(

a b
c d

)
, A−1 =

(
d ′ −b′

−c′ a′

)
.

Let us replace these matrices by T A, A−1T −1, where for some t ∈ R to be
determined later,

T =
(

1 0
t 1

)
;

then the equation of comaximality obtained by equating the (1, 1)-entry in
T A.A−1T −1 is

a(d ′ + b′t) − b(c′ + a′t) = 1. (1)
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By hypothesis a and a′ are right comaximal, say

au − a′v = 1; (2)

hence a′vc′ + c′ = auc′, and taking t = vc′ in (1), we find

a(d ′ + b′vc′) − bauc′ = 1, (3)

which shows a and ba to be right comaximal. Conversely, if a and ba are right
comaximal, say ad ′ − bac′ = 1, then by Lemma 3.3.3, taking this relation in
the form a.d ′ − b.ac′ = 1 we have a comaximal relation ac′.a = a1v, where
a1 ∼ a. Hence a is right comaximal with a1 and (i) follows.

(ii) For any p, q ∈ R the comaximal relation (1 + pq)p = p(1 + qp)
shows that 1 + pq ∼ 1 + qp. Now if xa1 y + ua2v = 1, then 1 − xa1 y = ua2v,
hence 1 − a1 yx ∼ ua2v, say 1 − a1 yx = u′a3v

′ (see Exercise 3.1.8), where
a3 ∼ a2 ∼ a; thus 1 − u′a3v

′ = a1 yx , and repeating the process, we have
1 − a3v

′u′ = a4z, where a4 ∼ a. Thus the elements a3, a4 similar to a are right
comaximal. Conversely, if a1, a2 are similar to a and right comaximal, then
a1 R + a2 R = R. �

We now list some conditions for the distributivity of L(cR, R); it turns out
to be more convenient to list the negations, i.e. conditions for non-distributivity:

Proposition 4.2.2. Let R be a 2-fir and c ∈ R×. Then the following conditions
are equivalent:

(a) the lattice L(cR, R) is not distributive,
(b) c = amb, where R/m R ∼= M2 �= 0 for some 1-torsion module M,
(c) c = amb, where m = a1a2 = a3a4 is a comaximal relation in which

a1, . . . , a4 are all similar non-units,

(ao)−(co) the left–right analogues of (a)–(c).

Proof. By Proposition 1.1, L(cR, R) fails to be distributive precisely if it is
not square-free, i.e. (b), or contains a five-element sublattice of length 2, i.e.
(c). Now the symmetry holds by the form of (c). �

Next we have the following conditions for global distributivity:

Theorem 4.2.3. Let R be a 2-fir. Then the condition

(a) for any similar a, a′ and any b ∈ R, ba R ∩ a′ R �= 0 ⇒ ba ∈ a′ R, implies
(b) for any similar a, a′ ∈ R, a R ∩ a′ R �= 0 ⇒ a R = a′ R,

and this implies the following conditions, which are equivalent among them-
selves and to their left–right analogues:

(c) for each c ∈ R×, the lattice L(cR, R) is distributive,
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(d) there is no comaximal relation a1a2 = a3a4, where a1, . . . , a4 are all similar
non-units,

(e) if a is a non-unit, (R/a R)2 is not cyclic,
(f) if a, a′ are similar non-units, there is no equation xay + ua′v = 1,
(g) for any non-unit a, there is no equation ax + uav = 1.

Moreover, when R satisfies right ACC1, then all the conditions (a)–(g) are
equivalent.

We see that DFL is the condition (c); a 2-fir satisfying (a) is sometimes said
to possess the right strong DFL property. Left strong DFL is defined similarly
and strong DFL means ‘left and right strong DFL′.

Proof. (a) ⇒ (b) ⇒ (c). Taking b = 1 in (a) we find that when a R ∩ a′ R �= 0,
then a R ⊆ a′ R and by symmetry, a R = a′ R, i.e. (b). Now (b) asserts that
isomorphic 1-torsion quotient modules of a 1-torsion module have the same
kernel; if L(cR, R) is not distributive, it has a five-element sublattice of length
2, hence we can find isomorphic quotient modules with distinct kernels, i.e.
non-(c) ⇒ non-(b) and so (b) ⇒ (c).

To prove (c) ⇒ (a) when right ACC1 holds for R, consider the assertion (a),
say bac = a′u for c, u ∈ R×. We observe that R/a′ R is isomorphic to R/a R,
which is a quotient of R/acR; since bac ∈ a′ R, left multiplication by b defines
a homomorphism R/acR → R/a′ R, while the conclusion of (a) states that left
multiplication by b defines a homomorphism R/a R → R/a′ R. If we combine
left multiplication by b with the isomorphism R/a′ R ∼= R/a R, we see that (a)
asserts that any homomorphism R/ba R → R/a R is induced by an endomor-
phism of R/a R. So when (c) holds, then (a) follows by Corollary 1.6 (ii). Now
(c) ⇔ (d) ⇔ (e) by Proposition 2.2 and (d) ⇔ (f) ⇔ (g) by Lemma 2.1. �

As an application this yields another criterion for distributivity:

Corollary 4.2.4. If R is a 2-fir such that the polynomial ring R[t] is 2-Hermite,
then R has a distributive factor lattice.

Proof. To prove the result we shall verify (g) of Theorem 2.3. Thus let ax −
yaz = 1 in R. Then we have in R[t],

a(t z + x) − (t + y)az = 1. (4)

Since R[t] is 2-Hermite, the row (a, t + y) and the column (t z + x, −az)T can
be completed to mutually inverse matrices:

A =
(

a t + y
p g

)
, A−1 =

(
t z + x − f
−az q

)
, f, g, p, q ∈ R[t].
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By equating entries in AA−1 = A−1 A = I we find that aza = qp, hence p, q
are of degree 0 in t. Further we have

a f = (t + y)q, p(t z + x) = gaz. (5)

By comparing degrees we find that f, g are linear in t; thus we may put f =
f1t + f0, g = g1t + g0, where fi , gi ∈ R. By equating coefficients of t in (5)
we find a f1 = q, p = g1a, so(

a t + y
p g

)
=

(
1 t + y

g1 g

) (
a 0
0 1

)
.

This shows a to be a unit and (g) follows. �

We observe that every commutative 2-fir, and in particular, every commuta-
tive principal ideal domain, satisfies (a) of Theorem 2.3 and hence also (b)–(g).
The implication (c) ⇒ (a) does not hold without chain conditions (see Exercise
15). Some consequences of (a) are listed in the exercises; here we shall con-
sider 2-firs for which (b) fails to hold and show that whenever an element has
two similar atomic right factors that are not left associated, then it has (gener-
ally) infinitely many. More precisely, we give a lower bound to the number of
similarity classes.

Let R be a 2-fir, c ∈ R× and let c = ab. Then M = R/Rc has the submodule
N = Rb/Rab ∼= R/Ra. If c = a′b′ is another factorization of c, in which a′ ∼
a, then N ′ = Rb′/Ra′b′ ∼= R/Ra′ is a submodule of M that is isomorphic
to N, and N = N ′ if and only if Rb = Rb′, or equivalently, a R = a′ R, i.e.
a and a′ are right associated. Suppose now that N �= N ′, say N ′ �⊆ N . Since
N , N ′ are isomorphic cyclic modules, they have generators u, u′ respectively,
which correspond under this isomorphism. Given any α ∈ End(N ), uα + u′

generates a submodule Nα of M that is a homomorphic image of N, for the map
fα : xu �→ x(uα + u′) clearly defines a homomorphism. We note that fα �= 0,
for if fα = 0, then uα = −u′, hence N ′ = Nα ⊆ N , which is not the case.

Assume now that N ∩ N ′ = 0; this means that Rb ∩ Rb′ = Rc or equiv-
alently, a R + a′ R = R, i.e. a and a′ are right comaximal. In that case the
submodules Nα defined by the different endomorphisms of N are distinct,
for if Nα = Nβ , then uα + u′ = x(uβ + u′), i.e. (1 − x)u′ ∈ N ∩ N ′ = 0, so
u′ = xu′, hence u = xu and uα = xuβ = uβ, therefore α = β. So there are at
least as many different submodules Nα as there are elements in End(N), and
each corresponds to a left factor of c similar to a right factor of a. The result
may be stated as

Theorem 4.2.5. Let R be a 2-fir and suppose that c ∈ R× has two left factors
a, a′ that are similar and right comaximal. Then the number of non-right-
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associated left factors of c that are similar to a right factor of a is at least
|E(Ra)|. In particular, if a is an atom in R, then the number of non-right-
associated left factors of c similar to a is 0, 1 or at least |E(Ra)|. �

If R is an algebra over an infinite commutative field k, any eigenring is an
algebra over k and hence infinite. Thus we obtain

Corollary 4.2.6. Let R be a 2-fir that is also a k-algebra, where k is an infinite
commutative field. Then the number of non-right-associated left factors of any
c ∈ R× similar to a given atom is 0, 1 or infinite. �

Finally we specialize to the case of principal ideal domains. In this case
there is a simple criterion for the distributivity of factor lattices. We first describe
similar right invariant elements (recall that c ∈ R is right invariant if c is regular
and Rc ⊆ cR).

Lemma 4.2.7. In any ring, two right invariant elements that are similar are
right associated.

Proof. Let c be right invariant in R. Then Rc ⊆ cR, so cR annihilates the
module R/cR. In fact, cR is the precise annihilator, for if a annihilates cR, then
Ra ⊆ cR and so a ∈ cR.

Now let c ∼ c′ and assume that both c, c′ are right invariant. Then R/cR ∼=
R/c′ R and equating annihilators, we find that cR = c′ R, hence c = c′u, c′ =
cv, so c = c′u = cvu. Since c is right regular, vu = 1; similarly uv = 1, there-
fore c′ is right associated to c. �

Theorem 4.2.8. A principal right ideal domain has a distributive factor lattice
if and only if every non-zero element is right invariant.

Proof. Let R be a right PID whose non-zero elements are all right invariant.
Then any two similar elements are right associated, by Lemma 2.7, and so by
Theorem 2.3, R has a distributive factor lattice.

Conversely, if R has DFL, then its lattice of right ideals is distributive and
any homomorphism α : R → R/cR is such that ker α ⊇ cR, by Corollary 1.6;
taking α to be the map x �→ ax + cR, we therefore have ac ∈ cR. This holds
for all a ∈ R, hence Rc ⊆ cR and so c is right invariant. �

Exercises 4.2

1. Let R be an atomic 2-fir in which no two similar non-units are right comaximal.
Show that R has DFL.

2. Show that a right invariant ring always satisfies condition (a) of Theorem 2.3.
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3. Show that an atomic 2-fir in which any two atoms are either right associated or
comaximally transposable is right invariant and hence has DFL.

4. If c is a right invariant element of finite length in a 2-fir, show that any element
similar to c is right associated to c and hence is again right invariant. Can the
condition on the length of c be omitted?

5. Show that a skew polynomial ring over a field has DFL if and only if it is commu-
tative.

6. Let R be a 2-fir with DFL. If S is a subring that is a 2-fir containing all the units of
R, show that S has DFL.

7. Let R be an atomic 2-fir with DFL. Show that if all atoms in R are similar, then
R is a local ring. Show that the ‘atomic’ hypothesis can be omitted if we assume
instead that ‘any two non-units have a similar non-unit factor’ (in the terminology
of Section 6.4, no two non-units are totally coprime).

8. Let R be a 2-fir with right strong DFL. Show that for any a, b ∈ R×, I (abR) ⊆
I (a R).

9∗. Show that a 2-fir with right strong DFL and with a right large non-unit has a right
invariant element and hence is a right Ore domain. Show that the conclusion does
not hold for every 2-fir with DFL.

10◦. In a 2-fir, if xay + ua′v = 1, where a ∼ a′, is a necessarily right comaximal with
an element similar to a?

11◦. When the conditions of Proposition 2.2 hold, does it follow that xc − cy = 1 for
some x, y ∈ R?

12∗. Show that every 2-fir with right strong DFL has elements that are not fully reducible.
13◦. Determine the structure of non-commutative invariant principal ideal domains.
14. (Bergman [67]) Let K/k be a Galois extension with group G = Gal(K/k) and let M

be any K-bimodule satisfying λx = xλ(x ∈ M, λ ∈ k). Show that M = ⊕Mσ (σ ∈
G), where Mσ = {x ∈ M |xα = ασx]. Let R be a k-algebra containing K, but not in
its centre. Define Rσ as above and show that for any x ∈ Rσ x(x − α) = (x − ασ )x
is a comaximal relation. Deduce that if R is a 2-fir with right strong DFL, then for
any x ∈ Rσ (σ �= 1), 1 − x is a unit. (Hint: For the last part replace x by xα.)

15. (Brungs and Törner [81]) Let k be a commutative field and let σ be the k-
automorphism of the rational function field k(x, y) interchanging x and y. Denoting
by (x) the effect of localizing at the set of all elements prime to x, show that the
ring R = k[x, y](x) + tk(x, y)[[t ; σ ]] is a principal ideal domain and a chain ring,
and hence has DFL. Verify that y ∈ U (R) and yt R ⊂ t R, so R satisfies (c), but
neither (a) nor (b) of Theorem 2.3.

4.3 Conditions for a distributive factor lattice

In order to find general conditions for an atomic 2-fir R to have a distributive
factor lattice we recall from Theorem 2.3 (b) that this is equivalent to requiring
that if an element c has two factorizations

c = ab = a1b1, (1)
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with similar right factors b, b1, then these factors must be left associated. More-
over, if an equation (1) holds in a 2-fir R with b, b1 similar atoms that are not
left associated, then in case R is an algebra over an infinite field, there must
be infinitely many right factors similar to b, but pairwise not left associated,
by Corollary 2.6. Thus in a sense we have a one-parameter family of factor-
izations of c; this idea may be formalized by adjoining an indeterminate t to k
and showing that (1) leads to a factorization of c in R ⊗ k(t) that does not arise
from a factorization in R (so that c is not inert in R ⊗ k(t)). Suppose however
that R is 1-inert in R ⊗ k(t); this holds, for example, if R is a free algebra. Then
this situation cannot occur and we conclude that similar right factors are nec-
essarily left associated. We shall see how this property can be used to provide
us with many examples of rings with a distributive factor lattice. Throughout
this section, k is a commutative field, and all tensor products are understood to
be over k.

Definition Let R be a k-algebra; any property X of R is said to be absolute
(over k) if it holds for R ⊗ E, where E is any algebraic field extension of k; X
is said to be persistent (over k) if it holds for R ⊗ k(t), where t is a central
indeterminate.

For example, the free k-algebra k〈X〉 is a persistent and absolute fir over k; if
E is a commutative field extension of k, then the tensor ring Ek〈X〉 (defined
in Section 2.4) for X �= ∅ is an absolute fir if and only if E is a regular field
extension of k (recall that E/k is a regular extension if E ⊗k F is an integral
domain for all commutative field extensions F/k), and a persistent fir if and
only if E is algebraic over k.

Proposition 4.3.1. Let R be a k-algebra, which is an absolute integral domain
over k. Then R is 1-inert in R ⊗ k(t). If further, R is a persistent 2-Hermite ring
over k, then R[t] is 2-Hermite.

Proof. Consider an equation

c = ab, (2)

where c ∈ R, a, b ∈ R[t]. Since R is an integral domain, it follows that a, b ∈ R,
so that R is 1-inert in R[t]. Now the first assertion will follow if we show that
R[t] is 1-inert in R ⊗ k(t), so suppose that c ∈ R[t] has a factorization (2),
where now a, b ∈ R ⊗ k(t). If we multiply (2) by the denominators of a and b,
we obtain an equation of the form

f c = a′b′, f ∈ k[t]×, a′, b′ ∈ R[t]. (3)
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Here we may assume that a′, b′ have no non-unit factors in k[t], since any such
factor could be cancelled against f. If f has positive degree, let α be a zero of
f in ka , the algebraic closure of k and form R ⊗ ka . By hypothesis this is an
integral domain and we have a′(α)b′(α) = 0, hence either a′ or b′ is divisible
by t − α, which is a contradiction. Therefore f has degree zero; so it lies in k
and may be absorbed in a′.

Suppose now that R is also a persistent 2-Hermite ring. Then R ⊗ k(t) is
2-Hermite, hence weakly 2-finite, and so is R[t], as a subring. It remains to
show that every 1 × 2 matrix over R[t] with a right inverse is completable. Let
a ∈ R[t]2 be right invertible over R[t], say ab = 1 for some b ∈ 2R[t]. Then
we can complete a, b to a pair of mutually inverse matrices over R ⊗ k(t), and
clearing denominators, we obtain a relation

(
a
a′

)
(b b′) =

(
1 0
0 f

)
, f ∈ k[t]×, a′ ∈ R[t]2, b′ ∈ 2R[t].

If f has degree 0, this shows a to be completable over R[t]; otherwise we have
by weak 2-finiteness,

(b b′ f −1)

(
a
a′

)
= I,

and so f ba + b′a′ = f .I. Therefore, if α is any zero of f in ka , we have
b′(α)a′(α) = 0. Here the column b′ is multiplied by the row a′, so we have
a set of four equations; since R ⊗ ka is an integral domain, either a′(α) = 0 or
b′(α) = 0. If b′(α) = 0, then b′ is divisible by an irreducible factor of f and by
cancelling it we can decrease the degree of f. If a′(α) = 0, then a′ is divisible by
an irreducible factor f1 say, of f, and we can replace a′, b′ by a′ f −1

1 , b′ f1. Now
we can again reduce the degree of f and so complete the proof by induction on
the degree of f. �

Before we come to the main result, we need another lemma. For any element
a ∈ R[t] we shall indicate the value of a obtained by specializing t to 0 by a
subscript: a0 = a(0).

Lemma 4.3.2. Let R be a 2-fir that is a k-algebra and let

ab = cd (4)

be an equation holding in R[t] such that b, d are left comaximal in R ⊗
k(t), b0, d0 are not both 0 and a0, c0 are right comaximal in R. Then b0, d0

are left comaximal in R.
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Proof. Since a0, c0 are right comaximal and a0b0 = c0d0, this product is the
least common left multiple of b0 and d0 in R (it was only to get this conclusion
that we had to assume R to be a 2-fir).

Now b, d are left comaximal in R ⊗ k(t); therefore we have an equation

pb − qd = f, p, q ∈ R[t], f ∈ k[t]×. (5)

If f0 = 0, then p0b0 = q0d0 and this is a left multiple of a0b0 = c0d0. Hence by
subtracting a suitable left multiple of (4) from (5) we can modify p, q so that both
become divisible by t. We can then divide p, q, f all by t and obtain an equation
of the same form as (5), but with f of lower degree. In this way we reduce
the degree of f, and continuing this process we eventually reach a case where
f0 �= 0. Taking the constant term of f as 1, we then find that p0b0 − q0d0 = 1,
which shows b0, d0 to be left comaximal. �

We now come to the main result of this section, giving conditions for DFL.

Theorem 4.3.3. Let R be a k-algebra that is an absolute integral domain and
a persistent 2-fir. Then R has the strong DFL property.

Proof. We have to verify condition (a) of Theorem 2.3. Suppose that R satisfies
the hypotheses and that ba′ R ∩ a R �= 0, where a ∼ a′; we have a relation

ba′c = ad �= 0,

which is right coprime and so c, d are left comaximal. Further, let au′ = ua′ be
a comaximal relation between a and a′. Then in R[t] we have

a(dt + u′c) = (bt + u)a′c. (6)

Now any common right factor of dt + u′c and a′c in R ⊗ k(t) can by 1-inertia
be taken in R (Proposition 3.1). Hence it must right-divide d, u′c and a′c, i.e.
generate a left ideal containing Rd + Ru′c + Ra′c = Rd + Rc = R. Thus (6)
is in fact left comaximal in R ⊗ k(t); further, the constant terms of the right
factors are not both 0 and those of the left factors are right comaximal in R. Hence
by Lemma 3.2, u′c and a′c are left comaximal, i.e. c is a unit and ba′ ∈ a R, so
condition (a) of Theorem 2.3 holds, as well as its left–right dual, by symmetry,
ensuring strong DFL. �

The free k-algebra k〈X〉 is clearly an absolute and persistent fir over k; hence
we obtain

Corollary 4.3.4. The free k-algebra k〈X〉 has the strong DFL property. �
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For non-commutative fields this no longer holds, for even when |X | = 1, we
have in the principal ideal domain K [x] over the skew field K, for ab �= ba an
equation

(x − a)bc − b(x − a)c = 1, where c = −(ab − ba)−1,

so by Theorem 2.3 (g), K [x] does not even have DFL. By combining the above
result with Theorem 2.8, we obtain

Corollary 4.3.5. Let R be a k-algebra that is a principal ideal domain. If R is
an absolute integral domain and a persistent 2-fir over k, then it is an invariant
ring. �

Of course the converse does not hold, since a commutative PID need not be
absolute or persistent, as we shall see in Section 4.6. But there is a partial
converse to Theorem 3.3.

Proposition 4.3.6. Let R be a 2-fir with DFL that is an algebra over an infinite
field k. Then R is 1-inert in R ⊗ k(t).

Proof. Let c ∈ R have a factorization over R ⊗ k(t); by clearing denominators
we can write this in the form

f c = ab, a, b ∈ R[t], f ∈ k[t]. (7)

We shall denote the degrees of a, b, f by p, q, r respectively; further we may
assume without loss of generality that a has no non-unit left factor in R and b
has no non-unit right factor in R.

Let a be the right ideal generated by the coefficients of a = a(t), considered
as a polynomial in t. Then for any p + 1 distinct elements α0, . . . , αp ∈ k we can
express all the coefficients of a(t) as k-linear combinations of a(α0), . . . , a(αp);
hence these p + 1 elements generate a as a right ideal. If we choose p + 1 such
values so as to avoid the zeros of f in k (at most r in number), then the a(αi ) are
left factors of c; hence

∑
a(αi )R = a is principal and by the assumption on a

it must be R itself. Similarly, the intersection of q + 1 of the right ideals a(α)R
is a right ideal containing cR, say eR; we assert that eR = R.

If eR �= R, then the principal right ideals between eR and R form a distribu-
tive lattice �= 0, and hence (Appendix A) there is a homomorphism of this lattice
onto the two-element lattice 2 = [0, 1] such that eR �→ 0, R �→ 1. Suppose that
a(α)R maps to 0 for more than p + r values of α. Then we can find p + 1
values of α, avoiding the r zeros of f, for which a(α)R maps to 0, but as we
have seen, their sum maps to 1. This contradiction shows that a(α)R maps to
0 for at most p + r values of α. Similarly, if a(α)R maps to 1 for more than
q + r values of α, then by choosing q + 1 values avoiding the zeros of f, we
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find that their intersection eR maps to 0, again a contradiction. But every a(α)R
maps to 0 or 1, so there cannot be more than p + q + 2r ; this contradicts the
fact that k is infinite, and it follows that eR = R. Thus e is a unit and it follows
that a(α) is a unit for any α not a zero of f. Now if f is divisible by t, then either
a or b must be divisible by t and we can cancel a power t; so we may assume
that f (0) = 1. It follows that a(0) is a unit; a similar argument shows that b(0)
is a unit, and so c = a(0)b(0) is a unit. Hence a and b are units in R ⊗ k(t), as
is f, and c = a f −1.b = a f −1b.b−1b = c.1. �

We note, however, that in the situation of this proposition R need not be a
persistent 2-fir, e.g. take R = E[x], where E is a commutative field extension
of k that is not algebraic over k.

Exercises 4.3

1. Let R be a k-algebra that is an absolute integral domain, a persistent 2-
fir and a right Ore domain. Show that any two similar elements are right
associated.

2. Let R be a k-algebra that is an absolute integral domain and a persistent 2-fir. Show
that if two elements of R are similar in R ⊗ k(t), then they are similar in R.

3. Let R be a k-algebra that is an integral domain. Show that an atom in R remains an
atom in R ⊗ k(t).

4∗. Let R be an n-fir over an algebraically closed field k. Show that every n × n matrix
over R[t] is inert in R ⊗ k(t). [Hint: The transforming matrix can be taken to lie in
the subgroup generated by GLn(R) and the diagonal matrices over k(t).] Deduce
that R is totally n-inert in R[t].

5∗. Let R be a k-algebra that is an absolute n-fir and a persistent 2n-fir. Given a
full matrix c in Rn such that any factor of c in R[t]n can be reduced to one
in Rn on multiplying by an element of GLn(R[t]), show that the corresponding
module Rn/cRn is distributive. Taking n = 2 and p, q dissimilar atoms in R, show
that c = p ⊕ q satisfies the above hypotheses, but not p ⊕ p. Verify that when
c = p ⊕ p, R2/cR2 is not distributive.

6. In the complex-skew polynomial ring R = C[x ; −] show that x2 − 1 has the fac-
torizations x2 − 1 = (x − u)(x + ū), where u ranges over the unit circle. Obtain
the corresponding factorizations over C(t)[x ; −] with u = (t + i)(t − i)−1 and
show that these cannot be pulled back to R.

7. Let R be a k-algebra, M an R-module, P a submodule of M with inclusion map
i : P → M and f : P → M a homomorphism. Assume that the image of the
homomorphism i + t f of P ⊗ k(t) into M ⊗ k(t) is of the form N ⊗ k(t) for
some N ⊆ M . Show that P f ⊆ P and hence obtain another proof of Theorem
3.3.

8◦. Investigate Proposition 3.6 when the field k is finite.
9. (Beauregard [80]) Let E be a commutative field with an automorphism α

and F a subfield mapped into a proper subfield of itself by α. Write R =
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E[[x ; α]], P = { f ∈ R| f (0) ∈ F}. Verify that R is a local ring and a principal
ideal domain; hence show that P is an Ore domain that is right invariant but not left
invariant.

10. In a free algebra, if ab = bc2, show that a is a square (see Exercise 2.7.15).
11. Show that in a 2-fir with DFL, for any atom c and any n ≥ 1, cn is indecomposable.

12◦. Investigate atomic 2-firs in which the length of indecomposable elements is
bounded.

13. Let R be an atomic 2-fir with DFL. Show that if R is a matrix local ring, then its
capacity must be 1, i.e. it is a scalar local ring.

14. Show that if R is a persistent 2-Hermite ring over k, then any equation ax + uav = 1
implies that a is a unit (see Theorem 2.3 (g)).

15∗. In a ring R with DFL, show that if a, b, c ∈ R are such that any two of a R, bR, cR
have a non-zero intersection, then a R ∩ bR ∩ cR �= 0. Show also that a R ∩ bR �=
0, a R ∩ cR �= 0 is not enough. (Hint: Take b = au + 1, c = av + 1 for suitable
u, v.) Find a generalization to n terms.

4.4 Finite distributive lattices

In an atomic 2-fir with distributive factor lattice, the left factors of a given non-
zero element form a distributive lattice of finite length. For a closer study of
this lattice we shall in this section describe its structure in terms of partially
ordered sets.

Let us denote by Pos the category of finite partially ordered sets, with isotone
(i.e. order-preserving) maps as morphisms. By DLf(0, 1), or DL for short, we
shall denote the category of all distributive lattices of finite length, with lattice
homomorphisms, i.e. maps preserving meet, join, 0, 1, as morphisms. In each of
these categories 2 = {0, 1} denotes the chain of length 1. We begin by defining
two functors between these categories.

Take P ∈ Pos and consider P∗ = HomPos (P, 2); this set P∗ may be
regarded as a finite distributive lattice, namely a sublattice of 2P . The ele-
ments of P∗ – isotone maps from P to 2 – may also be described by the subsets
of P mapped to 1. They are precisely the upper segments of P, i.e. subsets X
with the property

a ∈ X, b ≥ a implies b ∈ X.

An upper segment of the form μa = {x ∈ P | x ≥ a} is said to be principal.
We observe that the partially ordered set of all principal upper segments of P
is isomorphic to P, as member of Pos.

Clearly each α ∈ P∗ is completely determined by the upper segment mapped
to 1, and every upper segment defines such a map. Hence P∗ may be identified
with the set of all upper segments of P.
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Next take L ∈ DL and write L∗ = HomDL(L , 2). Here we can regard L∗

as a partially ordered set, writing f ≤ g if and only if x f ≤ xg for all x ∈ L .
The elements of L∗ may be characterized by the subsets they map to 1. Given
f ∈ L∗, let a ∈ L be the meet of all x satisfying x f = 1. Then a f = 1 and a is
the unique minimal element with this property. Clearly a > 0 and if a = x∨y,
then 1 = x f ∨y f , hence x f = 1 or y f = 1, i.e. x ≥ a or y ≥ a; thus a is join-
irreducible:

a �= 0 and a = x∨y implies x = a or y = a.

Conversely, any join-irreducible element a gives rise to an f ∈ L∗, defined by
the rule: x f = 1 if and only if x ≥ a. We may thus identify L∗ with the partially
ordered set of the join-irreducible elements of L.

Our object will be to show that * establishes a duality between DL and Pas.
Before coming to the main result we need a lemma on objects in DL, but this
is just as easily proved in a more general setting:

Lemma 4.4.1. In any lattice with minimum condition, each element is the join
of the join-irreducible elements below it.

Proof. Let L be a lattice with minimum condition and suppose it does not
satisfy the conclusion. Then we can find a ∈ L such that a is not the join of
join-irreducible elements. If we take a to be minimal with this property, then a
cannot be join-irreducible and a �= 0, because 0 is the join of the empty family.
Hence a = b∨c, where b < a, c < a. By the minimality of a, both b and c are
joins of join-irreducible elements, hence so is a = b∨c. �

Theorem 4.4.2. The categories Pos and DL are dual to each other, via the
contravariant functors

P �→ P∗ = lattice of upper segments of P,
L �→ L∗ = set of join-irreducible elements of L.

Moreover, if P and L correspond, then ∩, ∪ on upper segments of P correspond
to∨, ∧ in L and the length of L equals |P| + 1.

Proof. It is clear that two contravariant functors are defined between these
categories by means of Hom(−, 2); it only remains to show that P∗∗ ∼= P, L∗∗ ∼=
L .

Let P ∈ Pos; then P∗ consists of all upper segments of P. If α ∈ P∗ and
a1, . . . , ar are the different minimal elements of the upper segment α, then x ∈ α

if and only if x ≥ a1 or . . . or x ≥ ar . Hence α = μa1 ∨. . .∨μar , where μc is the
principal upper segment defined by c. This shows α to be join-irreducible if and
only if it is principal, and so P∗∗, the set of join-irreducible upper segments of
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P, is just the set of principal upper segments of P, which we saw is isomorphic
to P.

Next, given L ∈ DL, consider L∗, the partially ordered set of its join-
irreducible elements. This set determines L, by Lemma 4.1: each a ∈ L can
be represented by the set of all join-irreducible elements ≥ a, and the set of
join-irreducible elements occurring are just the upper segments, thus L∗∗ ∼= L .

Let L and P correspond under this duality and suppose that P has n elements.
Then we can form a chain in L by picking a maximal element a1 ∈ P , next a
maximal element a2 in P\{a1}, etc. It follows that every chain in L has n + 1
elements. �

It is clear that every P∗ is finite, as subset of 2P , hence we obtain

Corollary 4.4.3. Any distributive lattice of finite length n is finite, with at most
2n−1 elements. �

The interest in the duality described in Theorem 4.2 resides in the fact that
for any L ∈ DL and P ∈ Pos that correspond under the duality, P is usually
much simpler than L. For example, a Boolean algebra corresponds to a totally
unordered set (see Exercise 2), the lattice on the left corresponds to the set on
the right,

and the free distributive lattice on three generators, a lattice of length 6 with 18
elements (see Grätzer [78], p. 38) corresponds to the three-peak crown:

There is another way of describing the correspondence of Theorem 4.2 that
is of importance for us in what follows.

In a distributive lattice of finite length, every link is projective to exactly one
link with join-irreducible upper end-point. For let L = P∗; any link in P∗ has the
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form [S, S ∪ {x}], for an upper segment S and an element x such that all elements
> x lie in S. Any link perspective to it has the form [S′, S′ ∪ {x}] with the same
x and the set of all these links clearly has a lowest member, namely [T, T ∪ {x}],
where T is the set of all elements > x ; clearly T ∪ {x} is join-irreducible.

It follows that the join-irreducible elements correspond to the projectivity
classes of links. If our lattice has length n, then there are just n join-irreducible
elements and hence n projectivity classes of links. Since each class has a rep-
resentative in each chain (by the Jordan–Hölder theorem), there is exactly one
representative from each class in each chain. Thus we have proved most of

Proposition 4.4.4. Let L be a distributive lattice of length n. Then the links of
L fall into exactly n projectivity classes and each chain in L contains exactly one
link from each class. Moreover, each projectivity class contains a unique lowest
link, and its upper end-point is join-irreducible. If we partially order the set of
projectivity classes of links using the partial ordering of the corresponding join-
irreducible elements, the resulting partially ordered set is order-isomorphic to
L∗. Given projectivity classes of links α and β, we have α < β if and only if
the link from α occurs below the link from β in every chain.

Proof. Only the last assertion remains to be proved. Let a, b ∈ P and let α, β

be the projectivity classes of links corresponding to a, b respectively. If a, b are
incomparable in P, then we can form chains in P∗ in which the representative
of α lies lower than that of β, and chains in which it lies higher, depending on
whether we choose a before b or b before a in forming the chain. But if a < b in
P, then we must choose a before b and hence in every chain the representative
of α lies lower than that of β. �

Exercises 4.4

1. Show that a modular lattice has finite length if and only if every chain in it is finite.
Give examples of (i) an infinite modular lattice of finite length and (ii) a general
lattice, all of whose chains are finite, but their lengths are unbounded.

2. Show that a finite distributive lattice is complemented if and only if the corresponding
partially ordered set is totally unordered. (Hint: In a Boolean algebra, the join-
irreducible elements are precisely the minimal non-zero elements.)

3. Show that a finite distributive lattice is indecomposable (as a direct product) if and
only if the corresponding partially ordered set is connected (i.e. any two elements
can be joined by a chain of comparable elements).

4. Examine how the correspondence of Theorem 4.2 is affected if we take (i) lower
instead of upper segments, (ii) meet- instead of join-irreducible elements and (iii)
make both these changes.
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5. Let L be a modular lattice of finite length in which any two projective intervals
are perspective. Show that L must be distributive. Determine all such lattices, using
Theorem 4.2.

6. Show (using Proposition 4.4) that in a 2-fir with DFL an element of length n has at
most n! essentially distinct factorizations (see Section 3.4).

4.5 More on the factor lattice

Let R be an atomic 2-fir with a distributive factor lattice. For each c ∈ R×, Lc =
L(cR, R) is a distributive lattice of finite length. We shall write Pc for the
corresponding partially ordered set L∗

c . Each complete factorization of c:

c = p1 p2 . . . pn (1)

corresponds to a chain in Lc; if c = q1 . . . qn is another atomic factorization
of c, then pi is said to be equivalent to q j if we can pass from the link
[p1 . . . pi R, p1 . . . pi−1 R] to the link [q1 . . . q j R, q1 . . . q j−1 R] by a series of
comaximal transpositions. Here pi refers not to an element of R but to its occur-
rence in the factorization (1) of c; thus in xyx (in a free algebra) the two factors x
are inequivalent. Since comaximal transpositions correspond to perspectivities
in Lc, the equivalence classes of (occurrences of) atomic factors correspond to
projectivity classes of links in Lc, and thus to elements of Pc. We shall refer to
an equivalence class of atomic factors of c as an abstract atomic factor of c; thus
Pc may be thought of as the set of abstract atomic factors of c. By Proposition
4.4, each abstract atomic factor has just one representation in each complete
factorization of c, and of two abstract atomic factors, p and q say, p precedes
q, p < q, if p occurs on the left of q in every complete factorization of c. On
the other hand, when p, q are incomparable, then they may be comaximally
transposed whenever they occur next to each other in a complete factorization.
Every complete factorization is completely determined by the order in which
the abstract factors occur; in particular, an element with n factors cannot have
more than n! complete factorizations.

Any expression of c as a product c = ab corresponds to a decomposition of
Pc into a lower and a complementary upper segment, which may be identified
with Pa, Pb respectively. Given two factorizations

c = ab′ = ba′, (2)

we see that the highest common left factor and the least common right multiple
of a, b will correspond to the intersection and union respectively, of Pa, Pb. In
particular, a comaximal relation (2) for c corresponds to an expression of Pc as
a union of two disjoint lower segments, which means a partition of its diagram
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into two disconnected components. We note also that in this case Lc ∼= La × Lb,
in agreement with Proposition 3.4.6.

Recalling that projective links in Lc correspond to similar factors, we see
that with every element of Pc = L∗

c we can associate a similarity class of atoms
in R. Abstract factors corresponding to the same similarity class must be com-
parable in Pc because similar atoms cannot be comaximally transposed in R (by
Theorem 2.3), hence every similarity class forms a chain within Pc. It follows
that the only automorphism of Pc preserving similarity classes is the identity;
hence the same holds for Lc. Thus for any similar elements c and c′ the isomor-
phism between Lc and Lc′ (and between Pc and Pc′ ) is unique. We state this
conclusion as

Proposition 4.5.1. Let R be an atomic 2-fir with a distributive factor lattice.
Then for any two similar elements c, c’ of R there is a unique isomorphism Lc →
Lc′ between the factor lattices preserving the similarity classes associated with
the links in Lc, Lc′ . �

If f : R → R′ is a homomorphism of atomic 2-firs with DFL, then for any
c ∈ R such that c /∈ ker f , we get a lattice homomorphism from Lc to Lcf :
the obvious map preserves HCLFs because it preserves comaximality and it
preserves LCRMs by the factorial duality. By Theorem 4.2, a homomorphism
in the opposite direction is induced from Pcf to Pc.

In a commutative principal ideal domain, or indeed in any commutative UFD,
two atoms are coprimely transposable if and only if they are non-associated. It
follows that the only possible structures for the sets Pc in this case are disjoint
unions of finite chains. For example, in Z, 720 = 24.32.5, hence P720 consists
of three chains, of lengths 4, 2 and 1. By contrast, in the non-commutative case
all possible structures for Pc can be realized:

Theorem 4.5.2. Let An = k < x1, . . . , xn > be the free k-algebra of rank n.
Given any partially ordered set P of n elements, there exists c ∈ An with Pc ∼= P.

Proof. The case n = 0 is clear, so assume that n > 0 and let α be any element
of P. By induction on the number of atomic factors in α we may assume that
we have found c′ ∈ An−1 such that Pc′ ∼= P ′ = P\{α}.

Write P ′ = U ∪ V ∪ W , where U is the set of elements < α in P, V the set of
elements incomparable with α and W the set of elements > α. Clearly U, U ∪ V
and U ∪ V ∪ W are lower segments of P′; they correspond to left factors a, ab
and abd = c′ of c′. We put c = a(bxn + 1)bd and claim that Pc ∼= P .

In the first place bxn + 1 is an atom, since it is linear in xn and in any
factorization the term independent of xn must divide 1. We now identify Pc with
P by letting the factors of a, b and d correspond as in the identification of Pc′ and
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P ′, and letting the abstract atomic factor to which bxn + 1 belongs correspond
to α. It remains to check that the partial ordering of Pc agrees with that of P.

Since ab is a left factor of c and bd is a right factor, the orderings on the
corresponding subsets of Pc will agree with those on Pab and Pbd , as required.
The new abstract factor is incomparable with the factors of b, because of the
comaximal relation (bxn + 1)b = b(xnb + 1). Now the partial ordering will be
completely determined if we show that the factor corresponding to bxn + 1 lies
above all factors of a and below all factors of d. By symmetry it suffices to
prove the first statement.

Suppose the contrary; then for some non-unit right factor e of a, we would
have a comaximal relation e(bxn + 1) = f e′. Now we obtain a ring homomor-
phism An → An−1 by putting xn = 0; this will preserve comaximal relations
and hence it maps f to an element similar to b.0 + 1 = 1, i.e. a unit. However f
itself is similar to the non-unit bxn + 1 in An and so must involve xn . But then
the product e(bxn + 1) = f e′ will involve monomial terms in which xn occurs,
but is not the last factor (since e′ is a non-unit). This is a contradiction, and it
shows that every factor of a lies below bxn + 1. �

In fact all these partially ordered sets may already be realized in A2. We
shall prove this by showing that An (for any n ≥ 1) can be embedded as a
1-inert subring in A2:

Theorem 4.5.3. The free algebra of countable rank can be embedded 1-inertly
in the free algebra of rank 2.

Proof. Let F = k〈Z〉, where Z = {z0, z1, . . .}. Since F is free on Z, the map-
ping δ : zi �→ zi+1(i = 0, 1, . . .) extends to a unique derivation of F. We form
the skew polynomial ring H = F[x ; 1, δ]; from the commutation rule

ax = xa + aδ (a ∈ F) (3)

and the definition of δ we find that

zi+1 = zi
δ = zi x − xzi = [zi , x]. (4)

We claim that H is the free k-algebra on x, z0. For it is clearly generated by
x and z0 over k; to show that x, z0 are free generators, we establish a homomor-
phism β : H → G = k〈x, y〉 such that x �→ x, z0 �→ y. We begin by defining
β : Z → G by

β : zn �→ [. . . [y, x], . . . , x] with n factors x .

Since F is free on Z, this map extends to a homomorphism β ′ : F → G. More-
over, we have zn

δβ ′ = zn+1β
′ = [. . . [y, x], . . . , x] = [znβ

′, x] (where there
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are n + 1 factors x). Hence if δx is the inner derivation defined by x in G, we
have δβ ′ = β ′δx . Now the defining relations of H in terms of F are just the
equations (3), which may be written δ = δx . Hence on H we have δxβ

′ = β ′δx ;
thus the defining relations of H are preserved by β ′ and so β ′ may be extended
to a homomorphism β of H into G. Since G is free on x, y, this shows H to be
free on x, z0 as claimed. Moreover, we see that β is surjective, hence it is an
isomorphism between H and G.

It remains to show that the inclusion F → H is 1-inert. Given c ∈ F , suppose
that in H we have c = ab, a, b ∈ H . We can write a = xr a0 + . . . , b = xsb0 +
. . . , where a0, b0 ∈ F and dots denote terms of lower degree in x. Then c =
ab = xr+sa0b0 + . . .; by uniqueness, r + s = 0, hence r = s = 0 and a, b ∈ F
and it follows that c is inert in H . �

In Chapter 7, when we come to construct a universal field of fractions for
every free algebra, we shall find that the above embedding of F in H extends to
an embedding of their universal fields of fractions (Theorem 7.5.19).

Exercises 4.5

1. Let R be an atomic 2-fir with DFL. Show that any factorization c = a1 . . . an cor-
responds to an isotone map of Pc into the ordered set of n + 1 elements.

2. A subset X of a partially ordered set is called convex if x, y ∈ X, x < a < y implies
a ∈ X . If R is an atomic 2-fir with DFL and for c ∈ R, Pc denotes the set of simi-
larity classes of atomic factors as before, show that a subset X of Pc is convex if and
only if c has a factorization c = aub, where Pu = X ; if c = a′u′b′ is another fac-
torization with Pu′ = X , show that u′ is obtainable from u by a series of comaximal
transpositions.

3. Let R be an atomic 2-fir with DFL. Given two factorizations c = ab = a′b′ of an
element c of R, if each similarity class contributes at least as many terms to a
factorization of a as it does to a factorization of a′, show that a ∈ a′ R.

4. Find elements in k〈x, y〉 with factor lattices corresponding to the following partially
ordered sets:

5∗. Find an element in the free algebra k〈x, y, z〉 whose factor lattice is the free dis-
tributive lattice (with 0 and 1) on three free generators.

6∗. (M. L. Roberts) Let ∗ be the anti-automorphism of R = k〈x, y〉 interchanging x and

y, and for matrices it is combined with transposition. Show that if P =
(

y xy2

x yx2

)
,

then P∗ P is an atom of C, where C is the subalgebra of R generated by u + u∗(u ∈
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R). Deduce that P∗ P is not inert in R. Show also that the embedding of C in

R does not preserve full matrices (i.e. is not honest).

[
Hint: Use Q∗ Q, where

Q =
(

y xy2 xyxy2

x yx2 yxyx2

)
.

]

4.6 Eigenrings

We have seen in Section 0.6 that the eigenring of a matrix is just the endomor-
phism ring of the module defined by the matrix. In the case of a fir we shall
find that the eigenrings are as a rule small, only exceptionally are they large.
So one can expect two kinds of results on eigenrings: (a) eigenrings are nearly
always small and (b) under suitable conditions eigenrings are large. Thirdly,
in the case of a ring with DFL we have (c) the consequences of distributivity
for the eigenring. Our results will mainly be under headings (a) and (c). Thus
when A is a regular matrix over R, we shall show that (i) when R is a persistent
semifir over k, then the eigenring of A is algebraic over k (Theorem 6.9) and (ii)
when R is a free k-algebra, then the eigenring of A is finite-dimensional over
k. This will be proved in a special case (column matrices) in Proposition 6.12,
the general case being reserved for Chapter 5.

As before, all our rings will be algebras over a commutative field k; hence
the eigenring of an element or a matrix will also be a k-algebra. If the eigenring
of a matrix A is k itself, we shall say that A has a scalar eigenring.

From Corollary 1.10 we obtain the following result on the structure of eigen-
rings:

Proposition 4.6.1. Let R be an atomic 2-fir with distributive factor lattice.
Then the eigenring of any c ∈ R× is a direct product of a finite number of
completely primary rings. �

Beyond this rather general fact it seems difficult to apply the results on distribu-
tive modules to the study of arbitrary rings with DFL. In what follows we shall
therefore put further restrictions on the ring; most of these will be satisfied by
free algebras.

Let R be a k-algebra; we recall that R is said to be algebraic over k, if every
element of R satisfies a polynomial equation over k. If the matrix ring Rn is
algebraic over k, for all n ≥ 1, then R will be called matrix algebraic over k. Of
course for commutative R this is the same as ‘algebraic’. When R is a skew field,
this condition can be expressed in terms of the rational function field R(t), as
we shall see in Proposition 6.7, but no examples are known of algebraic fields
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that are not matrix algebraic. However, for eigenrings we shall be able to reduce
one condition to the other by means of the following lemma:

Lemma 4.6.2. Let R be a ring and A ∈ mRn any matrix with left eigenring
E; then the diagonal sum C = A ⊕ · · · ⊕ A (r terms) has left eigenring Er .

Proof. E is the endomorphism ring of the left R-module M = Rn/(Rm)A,
while C = A ⊕ · · · ⊕ A defines the left R-module Rrn/(Rrm)C ∼= Mr ; this
clearly has endomorphism ring Er . �

A matrix A over a k-algebra R is called algebraic over k if it satisfies a polyno-
mial equation over k; A is transcendental over k if for every non-zero polynomial
f over k, the matrix f (A) is regular; this term will mainly be used when R itself is
a field. In general a matrix is neither transcendental nor algebraic, but we always
have a decomposition; to derive it we need a result known as the see-saw lemma:

Lemma 4.6.3. Let R, S be k-algebras and M an (R, S)-bimodule. Given a ∈
R, b ∈ S, assume that there is a polynomial f over k such that f(a) is a unit,
while f (b) = 0. Then for any m ∈ M, the equation

ax − xb = m (1)

has a unique solution x ∈ M.

Proof. In Endk(M) write λa : x �→ ax, ρb : x �→ xb; then (1) may be written

x(λa − ρb) = m. (2)

By hypothesis f (λa) is a unit, f (ρb) = 0 and λa, ρb commute. Hence if we
define φ(s, t) in commuting variables s, t by

φ(s, t) = f (s) − f (t)
s − t

,

then φ(λa, ρb)(λa − ρb) = (λa − ρb)φ(λa, ρb) = f (λa) − f (ρb) = f (λa), and
this is a unit, hence (2) and with it (1) has a unique solution in M. �

The result may be restated in matrix form. Consider the matrix ring(
R M
0 S

)
; given a matrix in this ring:(

a u
0 b

)
, (3)

where f (a) is a unit and f (b) = 0, we can find a conjugate of (3) in diagonal
form. For if we transform (3) by I + xe12, we obtain(

a u + ax − xb
0 b

)

and by the lemma, the north-east block is 0 for a suitable choice of x.
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Proposition 4.6.4. Let K be a skew field that is a k-algebra. Then every square
matrix over K is conjugate to a diagonal sum of an algebraic and a transcen-
dental matrix.

Proof. Let A ∈ Kn and consider V = nK as a (K , k[t])-bimodule, in which
the action of t for a given K-basis u1, . . . , un is given by

ui t = �ai j u j , A = (ai j ). (4)

Since K ⊗ k[t] = K [t] is a principal ideal domain, V has a unique submodule
V0 of torsion elements with torsion-free quotient, which, being finitely gener-
ated, is free. Let V1 be a complement of V0, so that

V = V0 ⊕ V1. (5)

Using a basis adapted to the decomposition (5), we find that A takes the form(
A0 A′

0 A1

)
,

where A0 is algebraic and A1 transcendental. By Lemma 6.3 and the remark
following it we can reduce A′ to 0 and so obtain the desired conclusion. �

Let us consider the following special case of (4):

ui t = ui+1 (i = 1, . . . , n − 1), un = u1a1 + · · · + unan, where ai ∈ K .

The corresponding matrix has the form

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0
0 0 1 0 . . . 0

. . . . . .

0 0 . . . . . . 0 1
a1 a2 . . . . . . an−1 an

⎞
⎟⎟⎟⎟⎟⎠

. (6)

This matrix is called the companion matrix of the polynomial

f = tn − a1 − ta2 − . . . − tn−1an . (7)

As is easily verified, tI − A is stably associated to f, and it follows that f (A) = 0
and A has the invariant factors 1, 1, . . . , 1, f .

To find a criterion for algebraicity we shall use the normal form obtained in
Theorem 1.4.7. As we have seen there, if A ∈ Kn , then tI − A is associated to
diag(λ1, . . . , λn), where λ1, . . . , λn are the invariant factors of A and λi−1||λi .
When k is the precise centre of K, this leads to a criterion for A to be algebraic
or transcendental. An element c of a PID is said to be bounded, if it divides
an invariant element. If c has no bounded factor apart from units, it is said to
be totally unbounded. Given a monic polynomial f = tr + a1tr−1 . . . + ar in
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K [t], suppose that f is invariant; then b f = f b′ for any b′ ∈ K , a comparison
of degrees shows that b′ ∈ K and by comparing coefficients of tr we see that
b′ = b. Since b was arbitrary in K, it follows that the coefficients of f lie in
the centre of K. Since every non-zero polynomial is associated to a monic
polynomial, it follows that every invariant polynomial is associated to a monic
polynomial over the centre of K.

Theorem 4.6.5. Let K be a field with centre k and let A ∈ Kn have invariant
factors λ1, . . . λn. Then

(i) A is algebraic over k if and only if λn is bounded, equivalently, λn divides
a polynomial with coefficients in k,

(ii) A is transcendental over k if and only if λn is totally unbounded, and then
λ1 = . . . = λn−1 = 1.

Proof. (i) Since K [t] is a principal ideal domain, we can apply Theorem 1.4.7
to obtain the relation

P(tI − A)Q−1 = diag(λ1, . . . , λn) (λi−1||λi ), (8)

where P, Q are invertible matrices. Since tI − A is regular, the diagonal elements
on the right of (8) are all non-zero. Suppose that λn is bounded, say λn | f ,
where f is an invariant polynomial. By the above remarks f may be taken to be
a monic polynomial with coefficients in k. Since each λi divides λn and hence
divides f, there is a diagonal matrix D such that D P(tI − A)Q−1 = f I, hence
D P(tI − A) = f Q. Dividing f I by tI − A, we find

f I = H (tI − A) + L , (9)

where H, L are polynomials in A with coefficients in k[t], k respectively. Here
we can put t = A and so obtain L = f (A). Thus we have Q−1 D P(tI − A) =
f I = H (tI − A) + f (A), whence

f (A) = (Q−1 D P − H )(tI − A).

If Q−1 D P �= H , the right-hand side will contain terms in t, whereas the left-
hand side does not; hence Q−1 D P − H = 0 and we conclude that f (A) = 0.
Conversely, if f is a polynomial over k satisfied by A, then f I = H (tI − A) for
some polynomial H and it follows that f is a bound for λn .

(ii) Suppose that λn is not totally unbounded, say it has a bounded factor
p, with bound p∗. Then the module V defined by A has a non-zero element
annihilated by p and so also by p∗. Now p∗ is invariant, hence with coefficients
in k and p∗(A) is singular, so A cannot be transcendental. Conversely, if A is
not transcendental, then V has a non-zero element annihilated by an invariant
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polynomial, so some invariant factor λi has a non-unit factor that is bounded,
hence λn then has a bounded factor. Thus A is transcendental if and only if λn is
totally unbounded, and then no other λi can be a non-unit, because this would
give rise to a non-unit invariant element dividing λn . �

Corollary 4.6.6. A skew field K that is a k-algebra is matrix algebraic over k
if and only if its centre is algebraic over k and every non-zero polynomial over
K is bounded.

Proof. Let C be the centre of K. If K is matrix algebraic over k, then K is
algebraic over k, and so is C. Further, any polynomial f �= 0 is the sole invariant
factor �= 1 of its companion matrix B f . By hypothesis B f is algebraic, hence
by Theorem 6.5, f is bounded. Conversely, when these conditions hold, take
any square matrix over K; all its invariant factors are bounded, so A is algebraic
over C and hence also over k. �

We note another condition for a field K to be matrix algebraic, in terms of
the rational function field K (t), which is sometimes useful.

Proposition 4.6.7. Let K be a skew field that is a k-algebra. Then K is matrix
algebraic over k if and only if K (t) = K ⊗k k(t).

Proof. Clearly we have the inclusion

K ⊗k k(t) ⊆ K (t); (10)

we have to find when equality holds. Suppose first that k is the exact centre
of K. By Corollary 6.6, K is matrix algebraic if and only if every non-zero
polynomial is bounded. But this just means that every element of K (t) can be
written as a fraction with denominator in k[t]×, which is precisely the condition
for equality in (10).

Now let C be the centre of K. Then C ⊇ k and by what we have shown, K
is matrix algebraic over C if and only if K ⊗C C(t) = K (t). Assume that K is
matrix algebraic over k. Then K is matrix algebraic over C and C is algebraic
over k; hence every polynomial over K divides a polynomial over C, which in
turn divides a polynomial over k, and so equality holds in (10). Conversely, when
equality holds in (10), then K ⊗ C(t) = K (t). Hence K is matrix algebraic over
C, and (10) also shows that every polynomial over C divides a polynomial over
k; applying this result to t − α(α ∈ C), we see that C is algebraic over k, and it
follows that K is matrix algebraic over k, as we had to show. �

We can now return to the study of eigenrings. For our first main result we
need a form of the inertia lemma:
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Lemma 4.6.8. Let S be a ring containing a central regular element t such that
∩ tn S = 0, and such that R = S/t S is a semifir. If the induced map GLn(S) →
GLn(R) is surjective for all n ≥ 1, then every matrix over S is inert in S[t−1].

Here S[t−1] denotes of course the ring obtained from S by adjoining an inverse
of t; since t is central and regular, S is embedded in S[t−1].

Proof. Write x �→ x0 for the natural homomorphism S → S/t S = R; this
amounts to putting t = 0. We take A ∈ m Sn and suppose that over S[t−1]:

A = P Q, where P is m × r and Q is r × n. (11)

If P or Q is 0, there is nothing to prove, so we may assume P, Q �= 0. Now
every non-zero matrix B over S[t−1] can be written in the form tν B ′, where
ν ∈ Z, B ′ has entries in S and B ′

0 �= 0. Hence on changing notation, we can
rewrite (11) as

A = t−ν P Q, where P ∈ m Sr , Q ∈ r Sn, P0, Q0 �= 0. (12)

We have to show that ν can be taken to be ≤ 0, so suppose that ν > 0; we
shall show how to replace ν by ν − 1 in (12). If ν > 0, then P0 Q0 = 0; since
R is a semifir, we can find a matrix U1 ∈ GLr (R) trivializing this relation,
and by hypothesis we can lift U1 to U ∈ GLr (S). Hence on replacing P, Q by
PU, U−1 Q we find that for some s ≥ 1 all the columns in P0 after the first s
are 0, while the first s rows of Q0 are 0. We now multiply P on the right by
V = tIs ⊕ Ir−s and Q on the left by V −1; then P becomes divisible by t, while
Q still has entries in S. In this way we can, by cancelling t, replace ν by ν − 1
in (12) and after ν steps we obtain the same equation with ν = 0; this shows A
to be inert in S[t−1]. �

We note that the condition ‘GLn(S) → GLn(R) is surjective’ is satisfied
under any of the following assumptions:

(i) R = S/t S is a retract of S, i.e. there is a homomorphism R → S such that
the composition with the natural homomorphism R → S → S/t S is the
identity,

(ii) R is a G En-ring: GLn(R) is generated by elementary and diagonal matri-
ces, or

(iii) t lies in the Jacobson radical of S.

The verification is straightforward and may be left to the reader.
To illustrate the lemma, let R be any semifir, R[[t]] the ring of formal power

series in a central indeterminate t and R((t)) the ring of formal Laurent series.
Then by the lemma, every matrix over R[[t]] is inert in R((t)). Secondly, let R
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be a semifir that is a k-algebra, and denote by R[t](t) the localization of R[t] at
the set of all polynomials in t over k with non-zero constant term. Then every
matrix over R[t](t) is inert in R ⊗ k(t).

We can now prove our first main result on algebraic eigenrings:

Theorem 4.6.9. Let R be a k-algebra that is a persistent semifir over k. Then
the eigenring of any regular matrix over R is matrix algebraic over k.

Proof. If A ∈ m Rn is regular, then B = A ⊕ · · · ⊕ A (r terms) is again regular,
and to show that A has a matrix algebraic eigenring we must show, by Lemma
6.2, that the eigenring of B is algebraic, for all r ≥ 1. So it is enough to show
that the eigenring of A is algebraic and then apply the result to B.

Take P ∈ Rn, P ′ ∈ Rm such that AP = P ′ A. Then in R ⊗ k(t) we have

A(I − t P) = (I − t P ′)A. (13)

Let us show that A and I − t P ′ are left coprime. If Q is a square common left
factor, we have

(A, I − t P ′) = Q(S, T ) over R ⊗ k(t). (14)

By Lemma 6.8 and the remark following it we obtain such a factorization over
R[t](t), and by moving any denominators from (S, T ) to Q we may assume that
S has entries in R[t]. If we now put t = 0 in (14), we obtain Q0T0 = I . Since R
is weakly finite, Q0 is invertible over R, hence Q is invertible over R[[t]]. Over
this ring we can therefore rewrite the equation A = QS as S = Q−1 A. But S
has entries in R[t] and A is regular over R; it follows that Q−1 involves only
finitely many powers of t, and so has entries in R[t] ⊆ R ⊗ k(t). This shows
that Q is invertible over R ⊗ k(t) and so A and I − t P ′ are left coprime.

By symmetry A and I − t P are right coprime; thus (13) is a coprime relation
and hence comaximal (Corollary 3.1.4). Replacing t by u = t−1, we obtain a
relation

A(uI − P) = (uI − P ′)A,

still comaximal in R ⊗ k(t) = R ⊗ k(u). Writing down a relation of left comax-
imality and clearing denominators in u, we obtain

C A + D(uI − P) = f I, C ∈ nR[u]m, D ∈ R[u]n, f ∈ k[u]× . (15)

We now write all powers of u on the right of the coefficients and substitute P for u.
This is permissible since the substitution u �→ P respects right multiplication
by matrix polynomials whose coefficients are matrices commuting with P.
If C = �Ci ui , then the first term in (15) is �Ci APi = �Ci P ′i A, while the
second term vanishes. Thus (15) reduces to G A = f (P) (where G = �Ci P ′i ),
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which means that P satisfies an equation mod Rm A, and this holds for all P, P ′

satisfying (13), hence the eigenring E(A) is algebraic over k. By the initial
remark, E(A) is also matrix algebraic, as we had to show. �

Corollary 4.6.10. Let R be a persistent semifir over an algebraically closed
field k. Then every matrix atom of R has a scalar eigenring.

Proof. We know that the eigenring of a matrix atom is a field, by Schur’s
lemma (Proposition 3.2.4), and the only algebraic skew field extension of k is
k itself. �

For a two-sided ideal a the eigenring is just the residue-class ring modulo a;
thus we obtain

Corollary 4.6.11. Let R be a persistent semifir over k and a a two-sided ideal
of R, non-zero and finitely generated as left ideal. Then R/a is matrix algebraic
over k.

Proof. Let u1, . . . , ur be a basis of a as free left R-module; then the col-
umn u = (u1, . . . , ur )T is regular, and by Theorem 6.9 its eigenring is matrix
algebraic over k. �

Theorem 6.9 can be applied to free algebras but, as already mentioned, there
is a stronger result in this case.

Proposition 4.6.12. Let R = k〈X〉 be the free k-algebra on a set X. If a is a
non-zero left ideal and b is a finitely generated left ideal, then Hom R(R/a, R/b)
is finite-dimensional over k.

Proof. Let H = HomR(R/a, R/b); as we have seen in Section 0.6, H = I/b,
where I = {x ∈ R|ax ⊆ b} . We shall enlarge I by choosing a non-zero element
c in a and defining I ′ = {x ∈ R|cx ∈ b} clearly it will be enough to show that
I ′/b is finite-dimensional over k. Let u1, . . . , ur be a basis of b; then y ∈ I ′

precisely if

cy =
∑

yi ui for some yi ∈ R . (16)

Clearly the ui involve only finitely many of the free generators; we write X =
X ′ ∪ X ′′, where X ′ is the finite subset of generators occurring in the u’s and
X ′′ is its complement in X. We assign the degree 1 to each member of X ′ and
let d be the maximum of the degrees of u1, . . . , ur in X ′; further we assign
the degree d + 1 to each member of X ′′. Then it is clear that the space F of
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elements of R of degree at most d is finite-dimensional. By (16) and the weak
algorithm we have, for each y ∈ I ′,

y = � fi ui + y′, deg y′ < d . (17)

This shows that I ′ ⊆ b + F , and it follows that

H = HomR(R/a, R/b) = I/b ⊆ I ′/b ⊆ (b + F)/b ∼= F/(F ∩ b) .

Hence H is finite-dimensional, because this is true of F. �

In particular, taking b = a, we obtain

Corollary 4.6.13. If R is a free k-algebra and a is a finitely generated non-zero
left ideal, then EndR(R/a) is finite-dimensional over k. �

This result shows in particular that the eigenring of any non-zero element in a
free algebra is finite-dimensional; this will be proved for any regular matrices
in Section 5.8. The same reasoning yields a converse to Corollary 2.6.4:

Corollary 4.6.14. Let R be a free k-algebra. Then every finitely generated left
ideal that is left large has finite codimension over k.

Proof. Let a be a left ideal in R satisfying the hypothesis, and let u1, . . . , ur

be a basis of a. Given any y ∈ R×, we have Ry ∩ a �= 0, hence we again have
an equation (16) for some c �= 0. Now it follows as before that R/a is finite-
dimensional, as we had to show. �

In general the endomorphism ring of a distributive module need not be
commutative; it may not even be invariant, as we saw in Exercise 1.8.
However this is true for free algebras; in fact it holds under slightly wider
hypotheses.

Proposition 4.6.15. Let R be a k-algebra that is an atomic 2-fir with a distribu-
tive factor lattice. If each atom of R has a scalar eigenring, then the eigenring
of every non-zero element of R is commutative.

Proof. Let M = R/Rc, where c ∈ R×. We have to show that E(Rc) ∼=
EndR(M) is commutative; this holds by hypothesis when c is an atom, so we
may use induction on the length of c. Every α ∈ E(Rc) maps each 1-torsion
submodule of M into itself, so if M is the sum of its proper submodules, we can
embed E(Rc) into the direct product of the corresponding endomorphism rings,
hence E(Rc) is then commutative. The alternative is that the sum of all proper
submodules of M is a unique maximal submodule M ′, say. By hypothesis, every
endomorphism of M/M ′ is induced by multiplication by an element of k, hence
every endomorphism of M is of the form λ + α, where λ ∈ k and Mα ⊆ M ′. It



260 Rings with a distributive factor lattice

is therefore enough to show that any two non-surjective endomorphisms of M
commute. Let us take such endomorphisms α, β of M. By Proposition 1.8, one
of Mα, Mβ is contained in the other, say Mα ⊆ Mβ ⊆ M ′.

Now α maps M into Mβ ∼= M/kerβ, hence by Corollary 1.6 (ii), α is induced
by an endomorphism α′ of Mβ, i.e. α = βα′. Let β1 be the restriction of β to
Mβ; then we have

βα = ββα′ = ββ1α
′ ,

but on Mβ all endomorphisms commute, by the induction hypothesis. Hence
ββ1α

′ = βα′β1 = αβ1 = αβ, and so αβ = βα, as claimed. �

Corollary 4.6.16. Let R be a k-algebra that is an atomic 2-fir and remains
one under arbitrary field extension. Then the eigenring of any non-zero element
is commutative.

Proof. Let k ′ be an algebraically closed field extension of cardinality greater
than dimk R. Then all atoms in R ⊗ k ′ have scalar eigenrings (Corollary 3.2.6)
and R ⊗ k ′ has DFL, by Theorem 3.3, hence we can apply the result just proved
(and the change-of-rings formula, Proposition 0.6.2) to reach the conclusion. �

This corollary shows that in a free k-algebra all eigenrings of non-zero
elements are commutative. Hence the result also holds for matrices that are
stably associated to elements, but it does not extend to general matrices (see
Exercise 8).

For examples of non-commutative eigenrings let us take the complex-skew
polynomial ring C[x ; −] and consider the elements x2 + 1 and x2 − 1. Both are
invariant (even central), hence their eigenrings are quotients of the whole ring
by the ideals they generate. The element x2 + 1 is an atom, so the quotient is a
field (Proposition 3.2.4); this is easily seen to be the field of quaternions. The
element x2 − 1 is a product of two atoms, neither of them invariant, hence the
eigenring is a 2 × 2 matrix ring over C. For the algebra Z〈x, y〉 the eigenrings
can be very different, as Exercise 3.2.16 shows.

Exercises 4.6

1. In an atomic 2-fir characterize the elements whose eigenring has zero radical.
2. (Cohn [69a]) Show that in the free algebra R〈x, y〉 the element a = xy2x +

xy + yx + x2 + 1 is an atom, but does not remain one under extension to C.
Deduce that the eigenring of a is C. Find an element in the idealizer mapping
to i .

3. (Roberts [82]) Let k = F3(t), and in k〈x, y〉 examine c = x2 yxyxyx2 +
x2 yxyx + x2 y2x2 + xyxyx2 + t x3 + x2 y + xyx + yx2 + 1. Verify that c is an
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atom but splits on adjoining a cube root of t. In Q〈x, y〉 consider the element
obtained from c by replacing t by 2; show that it is an atom but splits on adjoining
a cube root of 2.

4◦. (Ikeda [69]) In a free algebra of finite rank, is every ideal that is maximal as left ideal
finitely generated as left ideal? (By Corollaries 6.14 and 2.6.4 this is equivalent to
the question: is every skew field that is finitely generated as k-algebra necessarily
finite-dimensional over k?)

5∗. (H. Bass) Let R be a commutative principal ideal domain containing a field k.
Show that R is a persistent PID if and only if every prime ideal in R[t] that is
not minimal among the non-zero primes (i.e. of height > 1) meets k[t]×. Deduce
that the condition that R/p be algebraic over k for any non-zero prime ideal p is
sufficient as well as necessary for R ⊗ k(t) to be a principal ideal domain.

6. Apply Exercise 5 to test whether R is a persistent PID in the following cases: (i)
R = k(x)[y], (ii) R is a PID whose residue-class fields are algebraic over k and
(iii) R = k[[t]].

7. (G. M. Bergman) In the ring of integral quaternions show that the eigenring of
each atom is commutative, but that this need no longer hold for general (non-zero)
elements.

8. Let p be an atom in a free algebra. Show that the eigenring of the matrix diag (p, p)
is not commutative.

9. Let R be a persistent semifir over k and a �= 0 an ideal containing an invariant
element. Show that R/a is matrix algebraic over k.

10◦. Consider fields that are k-algebras, where k is a commutative field. Find a field
that is algebraic but not matrix algebraic over k.

Notes and comments on Chapter 4

Most of the results in this chapter are due to Bergman and the author, and were first
published in FR.1. In particular, Theorem 2.3 was obtained by the author in 1964 (unpub-
lished) and he conjectured that it applied to free algebras. This conjecture was proved
by Bergman in 1966. Much of the chapter is contained in Bergman [67], especially the
later version, and Sections 4.4 and 4.5 follow this source (and other unpublished work
of Bergman in the 1960s) rather closely. In 1966 Bergman proved that the tensor ring
Ek〈X〉 has a distributive factor lattice whenever E/k is a purely inseparable commutative
field extension, where the inseparability cannot be omitted. This result was never pub-
lished, but in 1981 the author, using results from Bergman [74a], found a shorter proof
(see Cohn [89a]). The results of Section 4.4, of course, go back further, e.g. Birkhoff
[67], though our presentation follows Bergman [67]. The latter also contains Theorem
5.2, while Theorem 5.3 is taken from another unpublished manuscript of Bergman (ca.
1968), with a new proof, taken from Cohn [90].

The material of Section 4.1 went through several versions and was improved as a
result of discussions with Bergman and Stephenson; FR.2 followed Camillo [75] and
Stephenson [74] in presenting properties of distributive modules. In this work the order
has been changed, putting the criterion for distributivity (based on results of Roos [67])
at the beginning (Results 5.1 and 5.2). Further, ‘semi-Artinian’ has been replaced by
the stronger notion ‘meta-Artinian’ (likewise for Noetherian) to correct an error and
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give a smoother presentation. Corollary 2.4 is taken from Cohn [82c] and Theorem 2.5
generalizes (and simplifies) a result of Noether and Schmeidler (1920).

A 2-fir such that two similar right commensurable elements are right associated was
called ‘uniform’ in FR.1, but this term is used in other senses now and has therefore
been discarded. A 2-fir R was called ‘conservative’ if R and R ⊗ k(t) are 2-firs and R is
1-inert in R ⊗ k(t); the place of this term has now been taken by the terms ‘absolute’ and
‘persistent’ as in the text. Thus Theorem 3.3, the main result of Section 4.3, originally
stated that a conservative 2-fir is uniform.

From the results of Section 4.4 it follows that every distributive lattice (not neces-
sarily finite) is isomorphic to a ring of sets, i.e. a lattice of subsets of a set under the
operations ∩, ∪. For since a finite distributive lattice is finite, any distributive lattice
can be represented as the inverse limit of the sets representing its finite subsets (the
Birkhoff–Stone representation theorem, see Grätzer [78], p. 64).

In Theorem 5.3 the construction has been changed from FR.2, which leads to a shorter

proof (and an application in Section 7.5, see Cohn [90]). The see-saw lemma and its

consequences (Results 6.3–6.6) previously formed part of Section 8.5. Theorem 6.9 was

first proved for elements in commutative PIDs by H. Bass (in a letter to the author in

1964). FR.1 contained a version for elements of a persistent 2-fir; the present version

is taken from Cohn [85b]. Theorem 6.12 has a new shorter proof communicated by

Bergman. Proposition 6.15 is also due to Bergman, dating back to ca. 1968 (unpublished),

while Corollary 6.14 was proved by Rosenmann and Rosset [91].
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Modules over firs and semifirs

Just as firs form a natural generalization of principal ideal domains, so there
is a class of modules over firs that generalizes the finitely generated modules
over principal ideal domains. They are the positive modules studied in Section
5.3; they admit a decomposition into indecomposables, with a Krull–Schmidt
theorem (in fact this holds quite generally for finitely presented modules over
firs), but it is no longer true that the indecomposables are cyclic. On the other
hand, there is a dual class, the negative modules, and we shall see how the
general finitely presented module is built up from free modules, positive and
negative modules. A basic notion is that of a bound module; this and the duality,
essentially the transpose, also used in the representation theory of algebras, are
developed in Sections 5.1 and 5.2 in the more general context of hereditary
rings. In the special case of free algebras, the endomorphism rings of finitely
presented bound modules are shown to be finite-dimensional over the ground
field. This result, first proved by J. Lewin, is obtained here by means of a normal
form for matrices over a free algebra, due to M. L. Roberts, and his work is
described in Section 5.8.

A second topic is the rank of matrices. Several notions of rank are defined,
of which the most important, the inner rank, is studied more closely in Section
5.4. Over a semifir the inner rank obeys Sylvester’s law of nullity. This leads to
a natural generalization of semifirs: the Sylvester domains, first defined by W.
Dicks and E. Sontag. They and some variants form the subject of Section 5.5
and 5.6.

In Section 5.7 we compare the different factorizations of a rectangular matrix
over a semifir. Here the results are less complete, although in some ways parallel
to the square case. There is an analysis of factorizations, which throws some
light on the limitations to be expected.

The remainder deals with various chain conditions in Section 5.9 and the
intersection theorem for ideals in firs in Section 5.10.

263
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5.1 Bound and unbound modules

Let R be any ring and T, F two classes of left R-modules such that

(i) X ∈ T if and only if HomR(X, Y ) = 0 for all Y ∈ F,
(ii) Y ∈ F if and only if HomR(X, Y ) = 0 for all X ∈ T.

If we view Hom as a bifunctor (i.e. a functor in two arguments) on the cate-
gory of modules, (i) and (ii) express the fact that T and F are annihilators of
each other, and we shall sometimes write T = ⊥F, F = T⊥. There is a certain
parallel here with the concept of orthogonality in a metric linear space, but by
contrast to that case, Hom is not symmetric in its two arguments. Any T and
F satisfying (i) and (ii) are called a torsion class and its associated torsion-free
class respectively, and the pair (T, F) is called a torsion theory. Given any class
C of R-modules, we obtain a torsion theory by setting F = C⊥

, T = ⊥F; this is
called the torsion theory generated by C; thus T is the smallest torsion class
containing C. Analogously the torsion theory cogenerated by C is formed by
setting T = ⊥ C, F = T⊥; here F is the smallest torsion-free class containing
C. We shall be particularly interested in the torsion theory cogenerated by R.

Thus we define an R-module M to be bound if

M∗ = HomR(M, R) = 0 .

This means that there are no linear functionals on M apart from 0. The modules
in the corresponding torsion-free class are said to be unbound. An unbound
module can also be defined as a module with no non-zero bound submodule.
For if N satisfies this condition and M is any bound module, then so is any
homomorphic image of M, hence HomR(M, N ) = 0, and so N is unbound.
Conversely, if N has a bound submodule N ′ �= 0, then HomR(N ′, N ) �= 0.

In every torsion theory the classes T, F admit certain operations; for the
bound and unbound modules this is easily verified directly:

Proposition 5.1.1. Over any ring R, the class of bound modules is closed
under the formation of homomorphic images, module extensions, direct limits
and hence direct sums. �

Proposition 5.1.2. Over any ring R, the class of unbound modules contains
all free modules and is closed under the formation of submodules and arbitrary
direct products (hence under inverse limits and direct sums), and under module
extensions. �

Let M be any R-module; by Proposition. 1.1, M has a unique maximal bound
submodule Mb, viz. the sum of all bound submodules of M, and M/Mb has no
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non-zero bound submodules. Dually, Mb may also be characterized as the least
submodule of M with unbound quotient.

To give an example, over Z (or more generally, any principal ideal domain),
Mb is just the submodule of all torsion elements of M. Moreover, for a finitely
generated Z-module M we have a decomposition

M = Mb ⊕ F, where F is free. (1)

Such a decomposition exists in fact over any semifir:

Theorem 5.1.3. Let R be a semifir and M a finitely generated R-module. Then
M has a decomposition (1), where Mb is the maximal bound submodule and F
is free; here Mb is unique and F is unique up to isomorphism. Moreover, M∗ is
free and rk M∗ = rk F.

Proof. Let us write M = M0 ⊕ F , where F is a free summand of maximal
rank. This is possible because the rank of F is bounded by the number of
generators of M. If M0 is not bound, there is a non-zero homomorphism f :
M0 → R, and since R is a semifir, im f is free. Thus we can split off a free
module from M0 but this contradicts the maximality of rk F. Hence M0 is
bound and M/M0

∼= F is unbound, therefore M0 = Mb is the maximal bound
submodule, and (1) is established. The uniqueness is clear, and dualizing (1)
we find that M∗ ∼= F∗, hence M∗ is free and rk M∗ = rk F∗ = rk F . �

The unique submodule Mb in (1) is called the bound component of M.
It is clear that a corresponding result holds for n-generator modules over

n-firs. In particular, this leads to a condition for a module to be bound:

Corollary 5.1.4. A module over a fir (or a finitely generated module over a
semifir, or an n-generator module over an n-fir) R is bound if and only if it does
not contain R as a direct summand. �

In the same situation a finitely generated module is unbound if and only if
it is free. More generally, a module over a fir is unbound if and only if it is a
direct limit of free modules; thus the class of unbound modules over a fir R may
be described as the closure of {R}, i.e. the class of modules obtained from R by
taking submodules, extensions and direct products.

For the moment let us write B, U for the classes of bound and unbound
modules, respectively (over any ring R). Sometimes we wish to consider a
wider class than U (and a corresponding narrower class than B). Given n ≥ 1,
if every bound n-generator submodule of a module N is zero, N is said to be
n-unbound, and the class of all such N is written Un . It is clear that

U1 ⊇ U2 ⊇ . . . ⊇ U .
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The class Bn =⊥ Un consists of all modules all of whose non-zero quotients
have a non-zero bound n-generator submodule, and it is easily verified that
B⊥

n = Un . Thus (Bn, Un) is a torsion theory and

B1 ⊆ B2 ⊆ . . . ⊆ B.

It follows that Proposition 1.1 also holds for Bn and Proposition 1.2 for Un .
Over an integral domain the 1-unbound modules are just the modules with-

out non-zero torsion elements (i.e. torsion-free in the classical sense). This
follows from the next result, which describes the n-unbound modules over
n-firs:

Theorem 5.1.5. Let R be an n-fir. Then an R-module M is n-unbound if and
only if every n-generator submodule of M is free.

Proof. Let M be n-unbound, n > 0 and assume the result for integers less
than n. Any submodule N of M generated by n elements is a homomorphic
image of Rn , say N = (Rn) f . Let g : N → R be a non-zero homomorphism;
then f g : Rn → R is non-zero and by Theorem 2.2.1 (e), im(fg) is free of some
rank r > 0; thus im( f g) = Rr and applying an appropriate automorphism to
Rn we find maps

Rr ⊕ Rn−r → N → Rr ,

such that the first map is still surjective, while the composition is the projection
onto Rr . Thus we obtain the decomposition N = Rr ⊕ (Rn−r ) f . If r = n, f is
an isomorphism; otherwise by induction (Rn−r ) f is free and hence so is N. The
converse is clear from the definition of n-unbound. �

Of particular interest for our purpose is the fact that by Proposition 1.2 for
Un , all direct powers RI are n-unbound, so that, by Theorem 1.5, when R is
an n-fir, any n-generator submodule of RI is free. This generalizes Corollary
2.3.22.

Bound modules satisfy chain conditions under fairly mild restrictions. To
state them we recall that a left (or right) hereditary ring is certainly weakly
semihereditary, so we can apply Theorem 2.1.4 to conclude that any projec-
tive module over a left hereditary ring is a direct sum of finitely generated
modules.

Theorem 5.1.6. Let R be a left hereditary ring, and let M be a finitely related
left R-module. Then each submodule of M is a direct sum of a finitely presented
module and a projective module.
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Proof. By hypothesis, M = F/N , where F is free and N is finitely generated.
Every submodule of M has the form P/N, where N ⊆ P ⊆ F and here P is
projective, because R is left hereditary. By Theorem 2.1.4, P is a direct sum of
finitely generated modules and so it contains a finitely generated direct summand
P ′ containing N (because N was finitely generated). Writing P = P ′ ⊕ P ′′, we
have the exact sequence

0 → P ′/N → P/N → P/P ′ ∼= P ′′ → 0.

Since P ′′ is projective, this sequence splits and P ′, N are both finitely generated,
hence P ′/N is finitely presented. �

Clearly a bound module contains no non-zero projective submodule as a
direct summand; so we find

Corollary 5.1.7. Over a left hereditary ring any bound submodule of a finitely
related left module M is finitely presented, hence M satisfies ACC on bound
submodules. �

Taking the module itself to be bound, we obtain

Corollary 5.1.8. Over a left hereditary ring every finitely related bound left
module is finitely presented. �

Exercises 5.1

1. Show that for any ring R and any left ideal a of R, R/a is bound if and only if the
right annihilator of a is zero. Deduce that for a matrix defining a left R-module
M the matrix must be left regular; M is bound if and only if the matrix is right
regular.

2. Show that a finitely related bound module over any ring is finitely presented.
Deduce that a projective module P is finitely generated provided that it has a
finitely generated submodule N such that P/N is bound.

3. Show that the class of bound left R-modules admits submodules if and only if the
injective hull of R (as left module) is unbound. (Hint: Recall that the injective hull
is the maximal essential extension.)

4. Let R be a left hereditary ring and M a finitely related left R-module. Show that
the projective submodules of M form an inductive system (i.e. admitting unions of
ascending chains).

5∗. Let R be an integral domain and M an R-module. Show that a homomorphism
M → R annihilates all torsion elements; deduce that any module consisting
entirely of torsion elements is bound. Show that every finitely generated bound
R-module consists of torsion elements if and only if R is both left and right
Ore.



268 Modules over firs and semifirs

6◦. (G. M. Bergman) Characterize integral domains over which every bound left mod-
ule is generated by torsion elements.

7. Let K be a field and R a subring containing two right R-linearly independent
elements a, b. Verify that the submodule Ra−1 + Rb−1 of K is bound, as left
R-module. Deduce that K is not semifree as left R-module (see also Exercise
0.8.3).

8. Show that over a left Bezout domain R, a finitely generated left R-module without
non-zero torsion elements (i.e. torsion-free) need not be free. (Hint: Use Exercise
7.)

9. Find an example of a module that is n-unbound for all n ≥ 1, yet not unbound.
(Hint: Over a semifir this requires a module M whose finitely generated submodules
are free, while M∗ = 0.)

10. Let R be an n-fir and Cn the class of all n-unbound left R-modules with ACCn .
Show that R must have left ACCn for Cn to be non-trivial. When R has left ACCn

show that Cn contains all free modules and is closed under (i) the formation of
submodules, extensions and unions of ascending sequences with quotients of suc-
cessive terms in Cn (and hence direct sums) and (ii) inverse limits (and hence direct
products).

11. (Bergman [67]) (i) Let k be a field with an endomorphism α that is not surjective
and define R′ = k[y; α]. Show that y R′ is a two-sided ideal that is free as left ideal;
further, show that if (ui ) is a left basis for k over kα , then (yui ) is a left basis for
y R′ over R′.

(ii) Let R = kα + y R′ be the subring of polynomials with constant term in kα .
Verify that R is a right Ore domain with the same field K of fractions as R′, but R
is not left Ore (note that even R′ is not left Ore).

(iii) Take x ∈ k\kα and let f : R
′2 → R′ be the linear functional (a, b) �→

axy − by. Then f also defines a linear functional fR(by restriction) on R2. Show
that ker fR = y R′(1, x) = �R′ yui (1, x) and deduce that a submodule of an R-
module of rank 1 can have infinite rank (for a suitable choice of k and α). Take a
particular subscript i = 1 say, and put M = R2/R′ yu1(1, x). Verify that fR induces
a map fM : M → R and by showing that ker fM is embeddable in R2, verify that
M is unbound. Show also that K ⊗ M = K 2/K (1, x) and hence that M, although
unbound, is not embeddable in K ⊗ M . Conclude that M is also not embeddable
in RI for any set I.

12. Let R be a right Ore domain, M and N left R-modules and f : M → N a homo-
morphism. If N is finitely generated and coker f is bound, verify that rk N ≤ rk M .
Does this remain true without the condition that N be finitely generated? (Hint:
Try N = K .)

13. Show that for any finitely generated modules M, N over a semifir R, if M ⊕ R ∼=
N ⊕ R, then M ∼= N .

14∗. (G. M. Bergman) Let A be the subgroup of QN consisting of all sequences (xn)
such that nxn ∈ Z for all n and xn ∈ Z for almost all n, while the sum over all the
non-integral xn is integral. Verify that A is unbound, but cannot be embedded in
any direct power of Z.

15◦. (G. M. Bergman) Characterize the rings R such that every finitely generated
unbound R-module can be embedded in a direct power of R.

16◦. Can the hypothesis on R (to be left hereditary) in Theorem 1.6 be omitted? (See
also Proposition 0.5.1).
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5.2 Duality

We shall now establish a duality for bound modules over hereditary rings, from
which it will follow that any finitely presented bound module satisfies DCC as
well as ACC on bound submodules. We shall present the actual results so as to
apply to arbitrary rings and only specialize at the end.

Let us call a module M over any ring R special if it is finitely presented and
of projective dimension at most 1. Thus a special R-module M is a module with
a resolution

0 → Q → P → M → 0,

where P, Q are finitely generated projective R-modules. Over a semifir the
special modules are just the finitely presented modules. If we dualize the above
exact sequence, taking M to be a left R-module, we get the exact sequence of
right R-modules

0 → M∗ → P∗ → Q∗ → Ext(M, R) → 0,

bearing in mind that Ext (P, R) = 0, because P is projective. Let us assume that
M is bound, so that M∗ = 0. Dualizing once more and defining the transpose as
Tr(M) = Ext(M, R), we obtain the following commutative diagram with exact
rows:

0

0 0

0Q

a b g

Q** P** Tr2(M)Tr(M)*

P M

Here α and β are isomorphisms, because P and Q are finitely generated projec-
tive. This allows us to define γ and to show that it is an isomorphism too (by
the 5-lemma); likewise we conclude that Tr(M)∗ = 0. These remarks suggest
the truth of

Proposition 5.2.1. For any ring R there is a duality Tr between the categories
of special bound left R-modules and special bound right R-modules, such that if
M = coker (Q → P), where P, Q are finitely generated projective and Q ⊆ P,
then T r (M) = coker (P∗ → Q∗).

Proof. Consider a mapping f : M → M ′ between two special bound left
R-modules, given by presentations of the above form
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00

0 0

Q
i

h g f

j

i ′ j ′

MP

Q ′ P ′ M ′

By the projectivity of P, jf lifts to a map g : P → P ′ and h = g|Q maps into Q′.
The map f is completely determined by the pair (g, h), for any such pair of maps
induces a map of the cokernels. Moreover, two such pairs (g, h) and (g1, h1)
give the same map f if and only if there exists e : P → Q′ such that g1 − g =
ei ′, h1 − h = ie (thus (g, h) and (g1, h1) are ‘homotopic’). Hence the category
of special bound left R-modules is equivalent to the category of maps Q →
P , which are injective with injective duals under homotopy-equivalence and
whose morphisms are homotopy-classes of commuting squares. This category
is clearly dual to the corresponding category of maps between projective right
R-modules, and hence to the category of special bound right R-modules. �

Here, as in every duality, monomorphisms correspond to epimorphisms; since
we are dealing with module categories, this means that injective maps corre-
spond to surjective maps under this duality and vice versa.

We observe that the duality of Proposition 2.1 is given explicitly by the
functor Ext(−, R). In the special case R = Z it is just the familiar duality of
abelian groups given by A �→ Hom (A, Q/Z). We indicate briefly the conditions
under which this simplification can be made.

A module M will be called strongly bound if M and all its submodules are
bound. For any ring R, let E be the injective hull of R, as left R-module and put
T = coker (R → E), so that we have the exact sequence

0 → R → E → T → 0. (1)

It is easily verified that M is strongly bound if and only if Hom (M, E) = 0
(using the fact that R is an essential submodule of E). By (1) we have, since E
is injective, the exact sequence

0 → Hom(M, R) → Hom(M, E) → Hom(M, T ) → Ext(M, R) → 0. (2)

However, when M is strongly bound, then Hom (M, E) = 0 and so we have

Proposition 5.2.2. Let R be any ring and define E, T as above. Then for any
strongly bound module M,

Ext(M, R) ∼= Hom(M, T ). � (3)
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Over a principal ideal domain (commutative or not) every finitely generated
bound module is strongly bound and we can therefore use Proposition 2.2 to
express the duality in terms of Hom. Moreover, in this case E is just the field
of fractions of R. This is an R-bimodule, hence T is then also an R-bimodule
and it follows that (for a left R-module M) (3) is actually a right R-module
isomorphism. When R is a left fir but not left principal, there will always be
finitely generated modules that are bound but not strongly bound. Even then
we can use the exact sequence (2) to describe Ext(M, R) as the cokernel of the
mapping Hom (M, E) → Hom(M, T ). However, we cannot in general expect
to write Ext(M, R) in the form Hom(M, I) for some I, i.e. the functor Ext(−, R)
is not representable, because Ext(−, R) is not left exact, unless we restrict the
class of bound modules further.

Returning to Proposition 2.1, let us apply the result to hereditary rings. In
the first place, every finitely presented module is now special. Moreover, by
Corollary 1.7, every finitely related bound module satisfies ACC on bound
submodules (necessarily finitely presented by Corollary 1.8), and applying the
above duality, we find that the module satisfies DCC for bound submodules.
Thus we obtain

Theorem 5.2.3. Let R be a left hereditary ring. Then any finitely related bound
left R-module satisfies ACC and any finitely presented bound right R-module
satisfies DCC on bound submodules. In particular any finitely related bound
module over a left and right hereditary ring satisfies both chain conditions for
bound submodules. �

Exercises 5.2

1. What becomes of the duality of Proposition 2.1 in the case where R is left self-
injective, i.e. injective as left R-module?

2. For this exercise only, let us call a module M extra-special if it has a presentation
0 → P → P → M → 0, where P is finitely generated projective. Show that in
the duality of Proposition 2.1, extra-special bound modules correspond to extra-
special bound modules.

3. Let R be a left fir. If every bound left R-module is strongly bound, show that R
is left principal. Is it enough to assume the condition for finitely generated bound
modules?

4. Let R be a left Ore domain and K its field of fractions. Show that K is the injective
hull of R. Does this remain true for more general rings that are embeddable in
fields?

5∗. Let R be a two-sided fir and E its injective hull as left R-module. Describe the
R-bimodule structure of E and compare it with the injective hull of R as right
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R-module. (Hint: Observe that right multiplication by a ∈ R is an endomorphism
that extends to an endomorphism of E by injectivity.)

6. Let R be a left hereditary ring and M a finitely related left R-module. Show that if
P is a maximal projective submodule of M, then M/P is strongly bound. Deduce
that for every finitely related module M there is an exact sequence

0 → P → M → Q → 0,

where P is projective and Q is finitely generated and strongly bound.
7. Give an example of a strongly bound module over k〈x, y〉 that is not finite-

dimensional over k.
8. Let R be an integral domain and a a left ideal. Show that R/a is strongly bound if

and only if R is an essential extension of a.
9. Let R be an integral domain and E its injective hull as left R-module. Show that

for any left R-module M there exists a subset X of M such that every map X → E
extends to a unique homomorphism M → E ; thus the natural embedding XR → E
extends to a homomorphism M → E .

10∗. Does Theorem 2.3 hold for fully atomic semifirs? (Hint: See Proposition 9.6
below.)

11. (A. H. Schofield) Show that for bound left R-modules M, N over a hereditary ring R,
HomR(M, N ) ∼= TorR

1 (Tr M, N). (Hint: Resolve M and note that HomR(P, N ) ∼=
P∗ ⊗ N for finitely generated projective P.)

5.3 Positive and negative modules over semifirs

We have already met torsion modules in Section 3.2, where we saw that over
a principal ideal domain they reduce to finitely generated modules of torsion
elements, while many of the properties of the latter carry over to torsion modules
over semifirs. In this section we apply the results of Sections 5.1 and 5.2 to study
two classes of finitely presented modules over semifirs: the positive modules,
which over principal ideal domains correspond to finitely generated modules,
and their duals, the negative modules, which have no analogue in the classical
case.

Throughout this section all modules occurring will be finitely presented
modules over semifirs; in that case the characteristic of a module, as defined in
Section 0.6, is an integer, positive, negative or zero, and by Proposition 0.5.2,
the characteristics are additive on short exact sequences. Moreover, for any
semifir R, the category of all finitely presented left R-modules is an abelian
subcategory of RMod, by Appendix Theorem B.12.

Definition. Let R be a semifir and M an R-module.

(i) If M is finitely presented and χ (M ′) ≥ 0 for all submodules M ′ of M, then
M is said to be positive.
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(ii) If M is finitely presented and χ (M ′′) ≤ 0 for all quotients M ′′ of M, then
M is said to be negative.

(iii) If M is positive and χ (M ′) > 0 for all non-zero submodules M ′, then M
is called strictly positive; if M is negative and χ (M ′′) < 0 for all non-zero
quotients M ′′, then M is said to be strictly negative.

Any submodule of characteristic 0 of a positive module is a torsion module
and the same holds for any quotient of characteristic 0 of a negative module.
Therefore a strictly positive module may also be defined as a positive module
without non-zero torsion submodules and a strictly negative module is a negative
module with no non-zero torsion quotients. We note further that a torsion module
is just a module that is both positive and negative. Writing RPos, RNeg, RTor
for the categories of positive, negative and torsion left R-modules, we thus have

RTor = RPos ∩ RNeg.

Over a principal ideal domain any finitely generated module is positive and there
are no negative modules apart from torsion modules, because the characteristic
does not assume negative values in this case (see Section 2.3). By contrast, a
semifir that is not an Ore domain will always have modules of arbitrary negative
characteristic, by Proposition 0.7.6.

We have seen that torsion modules (over semifirs) are presented by full
matrices, and we now examine the presenting matrices of positive and negative
modules. Let M be a left module presented by the m × n matrix C, which can
be taken to be left regular; it is clear that M is bound if and only if C is also right
regular. Let M ′ be a submodule with quotient M ′′ = M/M ′; then M ′, M ′′ may
be presented by matrices A,B such that C = AB (Proposition 0.5.2). Recalling
the definitions of left (right) full and prime matrices, from Section 3.1, we
obtain

Proposition 5.3.1. Let R be a semifir and M a finitely presented left R-module,
with presenting matrix C. Then C is left regular, and it is also right regular if and
only if M is bound. Further, M is positive if and only if C is left full, and negative
if and only if C is right full. Finally, M is strictly positive (resp. negative) if and
only if C is left (resp. right) prime. �

These results suggest that there should be a duality between positive and
negative modules, and this is in fact the case, provided that we restrict ourselves
to bound modules. We note that in the decomposition of a module,

M = Mb ⊕ Rn, (1)
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if M is positive, then so is Mb, the bound component. Of course, a negative
module is always bound, by definition, since R has no non-zero submodules of
characteristic ≤ 0.

Theorem 5.3.2. Let R be a semifir. Then Tr = Ext(−, R) provides a duality
between the category of bound positive left R-modules and the category of
negative right R-modules.

Proof. The result follows by a straightforward application of Proposition 2.1.
�

In order to establish chain conditions we shall assume that R is a fir. Then
we can apply Theorem 2.3 to obtain

Theorem 5.3.3. Let R be a left fir. Then any positive bound left R-module sat-
isfies ACC on bound submodules and a negative right R-module satisfies DCC
on bound submodules. In particular, over a two-sided fir any positive bound
or negative module satisfies both chain conditions on bound submodules. �

Later, in Section 5.9, we shall meet other chain conditions valid over certain
semifirs.

Proposition 5.3.4. Let R be a semifir. Then Pos, Neg and the class of bound
modules all admit extensions and hence finite direct sums. Further, Pos admits
submodules and Neg admits quotients within the category of all finitely pre-
sented R-modules.

Proof. In the short exact sequence

0 → M ′ → M → M ′′ → 0, (2)

assume that M ′, M ′′ are positive and N ⊆ M . Then χ (N ∩ M ′) ≥ 0 and

N/(N ∩ M ′) ∼= (N + M ′)/M ′ ⊆ M/M ′ ∼= M ′′,

hence χ (N/N ∩ M ′) ≥ 0, therefore χ (N ) = χ (N/N ∩ M ′) + χ (N ∩ M ′) ≥
0. This shows M to be positive. Now assume M ′, M ′′ to be bound and let
f : M → R be a homomorphism. Then f | M ′ = 0, hence f is induced by a
homomorphism f̄ : M ′′ → R, which must be 0, so f = 0 and M is bound.
Thus Pos and the class of bound modules both admit extensions; by duality the
same holds for Neg. The remaining assertions are clear from the definitions. �

Let us consider a finitely presented bound module M over a fir R; by Theo-
rem 2.3, any chain of bound submodules in M is finite. Moreover, any bound
submodule of M is finitely presented, by Corollary 1.8 applied to (2), and so has
finite characteristic. Let M1 be a submodule of least characteristic, χ (M1) = h,
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say. Then M1 is negative, for any submodule N of M1 satisfies χ (N ) ≥ h, hence
χ (M1/N ) ≤ 0. Since the set of negative submodules of M satisfies both chain
conditions and admits sums, there is a unique maximal negative submodule M−

of M. Any submodule N of M satisfies χ (N ) ≥ χ (M−), so if N ⊇ M−, then
χ (N/M−) ≥ 0, with strict inequality unless N = M−; this shows M/M− to
be strictly positive.

Dually we can find a least submodule M+ with bound positive quotient
M/M+, and M+ is strictly negative; therefore M+ ⊆ M−. Of course M−/M+

is both positive and negative and so is a torsion module. Thus we have

Theorem 5.3.5. Let M be a finitely presented bound module over a fir R. Then
there is a chain

0 ⊆ M+ ⊆ M− ⊆ M, (3)

where M− is the greatest negative submodule of M and M+ the least submodule
with positive quotient M/M+. Moreover, M/M− is strictly positive, M+ is
strictly negative and M−/M+ is a torsion module. �

This result has an interpretation in terms of matrices, which we shall meet in
Proposition 4.7.

If we now impose the left Ore condition, we have a principal left ideal
domain, and here the positive modules admit quotients as well as submodules.
However, negative modules are absent; more precisely, they reduce to modules
of torsion elements, as do bound positive modules. Thus in the Ore case we
obtain

Proposition 5.3.6. The left torsion modules over a left Bezout domain are
precisely the finitely presented modules generated by torsion elements, and all
their elements are torsion. Moreover, in an exact sequence (2), if M is a torsion
module and M ′ is finitely generated, then M ′, M ′′ are torsion modules.

Proof. Over a left Bezout domain the characteristic is non-negative, by the
remarks after Corollary 2.1.3. Now a torsion module M is certainly finitely
presented and χ (M) = 0; if x ∈ M is torsion-free, then χ (Rx) = 1 and so
χ (M/Rx) = −1, which is a contradiction, so all elements of M are torsion.
Conversely, if M is finitely presented and consists of torsion elements, its rank is
0 and so is its characteristic. This remark also shows that χ (M ′) = χ (M ′′) = 0
in (2), and when M ′ is finitely generated, then both M ′ and M ′′ are finitely
presented. �
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Corollary 5.3.7. Over a left or right Bezout domain, every n-generator torsion
module has a chain of torsion submodules of length n, whose quotients are cyclic
torsion modules.

Proof. Clearly an n-generator module over any ring has a chain of submodules
of length n with cyclic quotients. When R is left Bezout and M is torsion, these
quotients are torsion by the proposition; for right Bezout domains the result
follows by duality. �

Over a principal ideal domain a more precise decomposition can be obtained,
as we saw in Section 1.4.

So far we have confined our attention to finitely generated modules, as that
is the most interesting case (for us). However, it is also possible to extend the
notions defined here. Let us briefly mention the result for torsion modules; the
extension to positive and negative modules is entirely similar.

For any semifir R we define the category RTor↑ of general torsion modules
as consisting of those left R-modules M in which every finite subset is contained
in a finitely generated torsion submodule. Then RTor↑ (as a full subcategory
of RMod) is again an abelian category; moreover it has exact direct limits and
a generator, i.e. it is a Grothendieck category (see Cohn [70b] for proofs) and
may be obtained as the completion of RTor. Dually one defines the category of
protorsion modules RTor↓ to consist of all inverse limits of finitely generated
torsion modules and all continuous homomorphisms (relative to the natural
topology on the inverse limit). Now the functor Tr = Ext (−, R) establishes a
duality between the categories RTor↑ and TorR

↓ (see Cohn [70b]).
In Section 3.5 we saw that the Krull–Schmidt theorem applies to torsion

modules over semifirs. This amounts to considering the factorization of (square)
full matrices. When we come to consider rectangular matrices, we find that a
similar result holds; we shall state it as a Krull–Schmidt theorem for finitely
presented modules (Theorem 3.9). Our first task is to prove a form of Fitting’s
lemma.

Lemma 5.3.8. Let M be a finitely presented bound indecomposable module
over a fir R. Then EndR(M) is a completely primary ring.

Proof. We have to show that every endomorphism of M is either nilpotent
or invertible. So let α be an endomorphism of M that is not an automorphism;
then Mα is a bound submodule of M and we have the descending chain

M ⊇ Mα ⊇ Mα2 ⊇ . . . .
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By Theorem 3.3 this chain becomes stationary, say Mαn = Mαn+1 = . . . . On
Mαn, αr is a surjective endomorphism for any r ≥ 0, and we have the exact
sequence

0 −→ ker αr ∩ Mαn −→ Mαn αr−→ Mαn −→ 0. (4)

Put Nr = ker αr ∩ Mαn; then by (4), χ (Nr ) = 0 and clearly,

N1 ⊆ N2 ⊆ . . . . (5)

If we take the bound components only, we get an ascending chain, by Theorem
1.3, which again becomes stationary, by Theorem 3.3, say (Nm)b = (Nm+1)b =
. . . . Since χ (Nm) = 0, we have

Nm ∼= (Nm)b ⊕ Rk, where k = −χ ((Nm)b),

and in M/(Nm)b we have the ascending chain of modules Nμ/(Nm)b, each
isomorphic to Rk . But M/(Nm)b satisfies ACCk , by Theorem 2.2.2, so this
chain also becomes stationary, say Np = Np+1 = . . . . Now the rest of the
proof follows along the usual lines:

Let r = max(n, p); then for any x ∈ M, xαr ∈ Mα2r , say xαr = yα2r ,
hence x = yαr + z, where z ∈ ker αr , so we have

M = Mαr + ker αr . (6)

If x ∈ Mαr ∩ ker αr , then x = yαr and yα2r = xαr = 0, so y ∈ ker α2r =
ker αr , hence x = yαr = 0. This shows the sum (6) to be direct, and by
the indecomposability of M, either Mαr = 0 and α is nilpotent, or
ker αr = 0, Mαr = M and α is an automorphism. �

We recall that any R-module M is indecomposable if and only if EndR(M)
contains no idempotents �= 0, 1. In particular, when R is an integral domain,
then EndR(R) ∼= R contains no idempotents �= 0, 1 and so R is indecomposable
as left or right R-module. The Krull–Schmidt theorem for firs now takes the
following form:

Theorem 5.3.9. Let M be a finitely presented module over a fir R. Then there
exists a decomposition

M ∼= M1 ⊕ · · · ⊕ Mr ⊕ Rh, (7)

where each Mi is bound indecomposable, and R is indecomposable. Given a
second such decomposition of M:

M ∼= M ′
1 ⊕ · · · ⊕ M ′

s ⊕ Rk,
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we have h = k, r = s and there is a permutation i �→ iσ of 1, . . . , r such that
M ′

i ∼= Miσ .

Proof. We have M = Mb ⊕ Rk , and here k is uniquely determined as the rank
of M/Mb (or also of M∗) because R has IBN. Thus we need only decompose
Mb; by Theorem 3.3 there exists a complete decomposition, and since each
component has a local endomorphism ring, by Lemma 3.8, the conclusion fol-
lows by Azumaya’s form of the Krull–Schmidt theorem (see e.g. FA, Theorem
4.1.6 or IRT, Theorem 2.31). �

We also note an analogue of Schur’s lemma. Let us call an R-module M
minimal bound if M is non-zero bound, but no proper non-zero submodule is
bound; over a semifir this means by Theorem 1.3 that every finitely generated
proper submodule is free. Now we have the following form of Schur’s lemma:

Proposition 5.3.10. Let R be a semifir and M a finitely presented minimal
bound R-module. Then EndR(M) is a field.

Proof. Consider an endomorphism α : M → M ; its image is again bound,
hence it is 0 or M. Suppose that α �= 0; then im α = M and we have an exact
sequence

0 −→ ker α −→ M
α−→ M −→ 0. (8)

Now ker α �= M ; hence it is free and by comparing characteristics in (8), it has
rank 0; therefore ker α = 0 and thus α is an automorphism. �

We conclude this section with an application of the above results (due to
Bergman [2002]), namely the embedding of any fir in a field. This question will
be taken up again later, in Chapter 7, in a more general context, but the proof
given here is more direct.

We have seen in Section 3.3 that the endomorphism ring of a simple torsion
module is a field. For strictly positive or negative modules this need not hold;
for example, if M is any strictly positive module, then so is M ⊕ M , but its
endomorphism ring has nilpotent elements. However, we have the following
result:

Proposition 5.3.11. Let R be a semifir and M, N any strictly positive R-
modules, such that χ (M) = 1. Then any non-zero homomorphism f : M → N
is injective.

Proof. We have an exact sequence

0 −→ ker f −→ M
f−→ N −→ coker f −→ 0.
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If ker f �= 0, then χ ( ker f ) > 0, hence χ (im f ) = 1 − χ (ker f ) ≤ 0, and so
im f = 0. �

In particular, taking N = M , we obtain

Corollary 5.3.12. Let R be a semifir and M a strictly positive R-module of
characteristic 1. Then EndR(M) is an integral domain. �

Here EndR(M) need not be a field, since, for example, R itself is strictly positive
of characteristic 1, but the endomorphism ring is a field for bound left R-modules
over a semifir with right pan-ACC, under the conditions of Corollary 3.12 (see
Exercise 10 below).

Now let R be a fir; by a pointed R-module we shall understand a pair (M, c)
consisting of an R-module M and a non-zero element c ∈ M . We consider the
category L of all pointed strictly positive left R-modules of characteristic 1. For
example, (R, 1) is a pointed module in L. The morphisms (M, c) → (M ′, c′)
of L are the homomorphisms f : M → M ′ such that c f = c′. We observe that
between any two modules M, M ′ of L there is at most one morphism; for if
f ′ is another, then f − f ′ : M → M ′ is a homomorphism vanishing on c and
hence zero, by Proposition 3.11. Thus L is a preordering, with (R, 1) as least
element.

Lemma 5.3.13. The category L is a directed preordering.

Proof. Let (T, a) → (M, b), (T, a) → (N , c) in L be given and consider M ⊕
N . This is again strictly positive and it contains the submodule T1 = {(x, −x) |
x ∈ T }, which is isomorphic to T, hence of characteristic 1. Let S be a maximal
submodule of characteristic 1 containing T1 and write P = (M ⊕ N )/S. Then
we see (as in the proof of Theorem 3.5) that P has characteristic 1 and is strictly
positive, with distinguished element (b, 0) ≡ (0, c) (mod S); moreover it is the
unique largest quotient of M ⊕ N with this property, by the maximality of S;
therefore it is the pushout (in the category L). This shows L to be directed. �

MT

N P

We now form the direct limit U of this directed system L of pointed modules,
identifying the distinguished elements. We observe that U is a left R-module
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containing R as submodule, for given any member (M, c) of L, there is a unique
embedding (R, 1) → (M, c). Now fix any non-zero element u of U; there is a
strictly positive submodule of characteristic 1 containing u and the submodule
generated by u is free: Ru ∼= R. Now U can also be obtained as the direct limit of
all the pointed strictly positive modules of characteristic 1, with (R, 1) replaced
by (R, u). This means that U has an automorphism mapping 1 to u. Since u
was any non-zero element of U, we see that E = EndR(M) is transitive on the
non-zero elements of U and it contains R as a subring. Moreover, if f, g ∈ E
and 1 f = 1g, then f − g is not injective and hence vanishes, by Proposition
3.11. Thus each f ∈ E is determined by its effect on 1 ∈ R. Given f ∈ E×,
there exists g ∈ E with 1. f g = 1, hence f g = 1 and this shows E to be a field.
Thus we obtain

Theorem 5.3.14. Every fir can be embedded in a field. �

Here the finiteness conditions holding in a fir were needed in the proof. In
Chapter 7 we shall see that every semifir R can be embedded in a field; moreover,
there is a universal field of fractions for R, having any other field containing R
as a specialization.

Exercises 5.3

1. Let R be a semifir and n ≥ 1. Taking the minimal projective over Rn to have
rank 1/n, show that any finitely presented module over Rn has a characteristic of
the form r/n, r ∈ Z. How are the characteristics of modules over R and over Rn

related, which correspond under the category-equivalence?
2. Show that over a semifir, every torsion submodule of an n-torsion module can be

generated by n elements. Deduce that a torsion module over a fully atomic semifir
satisfies ACC for torsion submodules.

3. Let M be an n-generator module over a semifir and M ′ any submodule. Show
that M ′ can be generated by n − χ (M/M ′) elements. (Hint: Use the diagram of
Proposition 0.5.2).

4. Let R be a principal ideal domain and c ∈ R×. A non-unit left factor b of c will
be called inessential if c has a non-unit left factor left coprime to b, otherwise it is
essential. Show that the cyclic left torsion modules defined by two elements c, c′

have isomorphic injective hulls if and only if c and c′ have an essential left factor
(up to similarity) in common.

5◦. Does the result of Exercise 4 hold when R is a fir?
6. Let R be a principal ideal domain and c ∈ R×. Show that the injective hull of

R/Rc can be expressed as a limit of cyclic modules. Give an example in k〈x, y〉
where this fails.

7. Let R = k〈x, y, z〉 and consider the torsion modules M = R/Rxz, N = R/Ryz.
Verify that both have R/Rz as quotient, and denote the pullback by T. Show that
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T is not a torsion module, but that it has a unique largest torsion submodule.
Show that the lattice of torsion submodules of T is finite and isomorphic to that
of R/R(xy + 1)xz.

8. Let R be a semifir, a, b ∈ R× and A = R/Ra, B = R/Rb. Show that
Ext1(B, A) ∼= Tr (B) ⊗ A ∼= R/(Ra + bR). Deduce that every extension of A
by B splits if and only if Ra + bR = R.

If R = k〈x, y〉, take a = x, b = y and find the non-split extensions apart from
the cyclic one.

9. Let R be a semifir, a, c ∈ R×, A = R/Ra, C = R/cR. Show that Tor1(C, A) ∼=
(cR ∩ Ra)/cRa.

10. Let R be a semifir with right ACCn . Show that if M is a bound strictly positive left
R-module generated by n elements, such that χ (M) = 1, then EndR(M) is a field.

11◦. (Bergman [67]). A module is said to be polycyclic, if it has a finite chain of
submodules with cyclic factors. Does there exist a semifir, not left or right Bezout,
over which every torsion module is polycyclic?

12◦. (Bergman [67]). Determine the class of semifirs over which every polycyclic
torsion module can be written as a direct sum of cyclic torsion modules (observe
that this includes all principal ideal domains, by Theorem 1.4.10).

13. Let M, N be strictly negative modules over a semifir R such that χ (N ) = −1.
Show that any non-zero homomorphism from M to N is injective.

14∗. Let M, N be non-zero bound modules over a semifir R. If for all non-zero bound
submodules M ′ ⊆ M, N ′ ⊆ N we have χ (M ′) + χ (N ′) > χ (M), show that the
kernel of any non-zero homomorphism from M to N is free. Deduce that if P
is a finitely presented non-zero R-module such that for every finitely generated
non-zero proper submodule P ′ of P, 2χ (P ′) > χ (P), then EndR(P) is an integral
domain. Hence obtain another proof of Corollary 3.12.

15. Let R be a semifir and RF the full subcategory of RMod whose objects are the
finitely presented modules. Use the characteristic to give a direct proof that RF is
an abelian subcategory of RMod.

16. Let R be a semifir that is right Bezout. Show that every finitely generated bound
left R-module is negative.

17. Let R be a semifir. Show that if every left torsion R-module has finite length (in
the lattice of all submodules), then R is a principal left ideal domain.

18◦. Investigate (i) firs for which there are only finitely many simple torsion modules
(up to isomorphism) and (ii) firs over which the indecomposable torsion modules
have finite length (within the category Tor).

5.4 The ranks of matrices

The rank of a matrix is a numerical invariant that is certainly familiar to the
reader, at least for matrices over a commutative ring. We shall need an analogue
for matrices over more general rings; there is then more than one invariant that
can lay claim to generalize the usual rank. This is not surprising, since even
in the commutative case one defines row and column rank separately and then
proves them equal. We shall introduce three different notions of rank, the row
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rank, column rank and inner rank. Of these, the last, already encountered in
Section 0.1, will mainly be used, but the others are sometimes of interest, and
our first task is to describe their relationship to each other. For a smoother devel-
opment we begin with some remarks on the decomposition of free modules over
n-firs.

Let M be a module over any ring R and N a submodule of M. Then we define
the closure N̄ in M as the intersection of the kernels of all the linear functionals
on M that vanish on N . If N̄ = M , we say that N is dense in M; this is the case
precisely when M/N is bound, in the sense of Section 5.1. If N̄ = N , we say
that N is closed; this is so if and only if N is the kernel of a mapping into a
direct power of R. Hence if N is closed in M, then M/N is unbound.

If R is an n-fir, then the submodules of Rn that are annihilators of finite
families of linear functionals are direct summands of Rn , by Theorem 2.3.1
(e). Moreover, any given direct sum decomposition of Rn has the form Rn ∼=
Rr ⊕ Rs , for a unique pair of integers r, s satisfying r + s = n. It follows that
any chain of direct summands of Rn is finite, of length at most n; but any closed
submodule of Rnis the intersection of a descending chain of direct summands,
and so is itself a direct summand. This proves

Proposition 5.4.1. Let n be a positive integer. For any n-fir R, the closed
submodules of Rn are precisely the direct summands. They form a lattice in
which every maximal chain has length n, and the height of any member of this
lattice is its rank as a free module. Moreover, if M is any closed submodule
of Rn, then the linear functionals vanishing on M form a free module of rank
n − rk M. �

We now give two examples to show that the relation between the ranks of a
module and its closure is not very close in general; other examples will appear
in the exercises.

Let R be any integral domain; if x1, . . . , xm are left linearly independent ele-
ments of R, then the elements (x1, 0, . . . , 0), . . . , (xm, 0, . . . , 0) of Rn generate
a free submodule of rank m, but its closure (R, 0, . . . , 0) has rank 1. Secondly,
let y1, . . . , yn be right linearly independent; then it is clear that no non-zero
linear functional of Rn vanishes on (y1, . . . , yn), so the submodule generated
by this element is dense in Rn . Here we have a submodule of rank 1 whose
closure has rank n.

Let us now turn to matrices. An m × n matrix A = (ai j ) over a ring R may
be interpreted in different ways, as

(a) a right R-module homomorphism of columns n R →mR,
(b) a left R-module homomorphism of rows Rm → Rn ,
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B C

A
Figure 5.1

B C

A
Figure 5.2

(c) an element of the (Rm, Rn)-bimodule mR ⊗ Rn ,
(d) an (R, R)-bilinear mapping Rm ×n R → R.

Each interpretation leads to a notion of rank, of which some coincide when the
ring is suitably specialized.

Proposition 5.4.2. Let R be an n-fir and A ∈ mRn. Then the following numbers
are equal and do not exceed n:

(i) the rank of the submodule of mR spanned by the n columns of A, i.e.
rk im A under interpretation (a),

(ii) n − rk ker A under interpretation (a),
(iii) the rank of the closed submodule generated by the rows of A under inter-

pretation (b).

Proof. The equality of (i) and (ii) is clear, as well as the fact that the common
value cannot exceed n. To prove the equality of (i) and (iii), suppose that the
closure of the image of the map A : Rm → Rn has rank r, the number described
in (iii). Then we can factor A as in Fig. 5.1 above. Here B has dense image
(its target is the closure of its image); this means that as a matrix it is right
regular, while C is the inclusion in a direct summand. Dualizing, we obtain
maps represented by the same matrices and still factoring A, as shown in Fig.
5.2, where C is the projection onto a summand and B, being right regular, defines
an injective mapping. Hence the image of A in m R is isomorphic to r R, where
r is the number defined in (i). �

The common value of these numbers is called the column rank of A. This
definition makes it clear that the column rank of the matrix representing a given
linear transformation is independent of the choice of bases. In particular, we
see that the column rank is unchanged by elementary operations. However, we
have had to restrict the class of rings (to n-firs) to ensure that the image is a free
module. Sometimes one defines the column nullity of A as rk ker A; unlike the
column rank this is invariant under stable association.
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Over an m-fir we can similarly define the row rank of A. Now case (i) of
Proposition 4.2 (and its left–right dual) relates these numbers to the usual row
and column ranks of matrices, over a commutative integral domain, say. In the
case of an m × n matrix A over a max(m, n)-fir we have both kinds of ranks and
in general they will be unrelated. This is clear from the examples given earlier,
if we note that the row rank of A equals the rank of Rm .A, while the column
rank equals the closure thereof. Denoting the row and column ranks by ρr , ρc,
respectively, we have for a product of matrices:

ρr (AB) ≤ ρr (A), ρc(AB) ≤ ρc(B).

It is also possible to formulate characterizations of these two types of rank in
terms of interpretations (c) and (d) of the matrix A and the reader may wish to
do this, but they are less simple. Various versions of the definitions of row and
column rank may also be formulated for matrices over rings other than n-firs, but
they are not in general equivalent. However, the inner rank, defined in Section
0.1, is naturally defined over any ring. Moreover, it is left–right symmetric
and will be of importance later. Our next result gives some equivalent ways of
describing it:

Proposition 5.4.3. Let R be any ring and A ∈ mRn. Then the following four
numbers are equal and do not exceed min(m,n):

(i) the least r such that the map A (under interpretation (a) or (b)) can be
factored through Rr ,

(ii) the least r such that A can be written
∑r

1 bi ⊗ ci , under interpretation (c),
(iii) the least r such that the image of A in Rn is contained in a submodule

generated by r elements (interpretation (b)) and
(iv) the least r such that the image of A in m R is contained in a submodule

generated by r elements (interpretation (a)).

Further, this number does not exceed ρr (A) in an m-fir and does not exceed
ρc(A) in an n-fir.

Proof. This is a straightforward consequence of the definitions, details of
which may be left to the reader. �

From (ii) we see that the number described in this proposition is just
the inner rank ρ(A). It is most conveniently determined as the least r such
that

A = BC, where B ∈ mRr , C ∈ rRn. (1)
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Any factorization of A as in (1) with r = ρ(A) is a rank factorization of A, as
defined earlier. Using rank factorizations, we can verify the following inequal-
ities without difficulty:

ρ(A ⊕ B) ≤ ρ A + ρB, (2)

ρ(AB) ≤ min{ρ A, ρB}, (3)

ρ((A′ A′′)) ≥ max{ρ A′, ρ A′′}. (4)

We also note that for any a ∈ R, ρa = 0 if and only if a = 0, for then (and only
then) can a be written as a product of a 1 × 0 by a 0 × 1 matrix. For any a �= 0
in R we have of course ρa = 1. From (4) and its transpose we see that the inner
rank of any matrix is at least the rank of any submatrix. Like other ranks, the
inner rank is unchanged when the matrix is multiplied on the left or right by an
invertible matrix. Over any field it reduces to the usual rank; more generally,
we have

Proposition 5.4.4. Over a left Bezout domain the inner rank of any matrix
equals its row rank.

Proof. We know that in any case ρ A ≤ ρr A; we have to prove equality here.
Let ρ A = r ; using interpretation (b), we can factor A by Rr . The image in Rr

is a finitely generated submodule of Rr , hence by Proposition 0.8.3 and the
sentence that precedes it, of rank at most r, therefore the image in Rn also has
rank at most r, i.e. ρr A ≤ r . �

In a two-sided Bezout domain, by symmetry, the row rank, column rank and
inner rank of any matrix are all equal. Recalling the definition of a left full
matrix from Section 3.1, we conclude from Proposition 4.4,

Corollary 5.4.5. A matrix over a left Bezout domain is left regular if and only
if it is left full. �

This result will be generalized in Section 5.5, where the precise class of rings
satisfying the conclusion of this corollary will be determined, at least in the
commutative case.

We note that over any ring, the full matrices are just the n × n matrices of
inner rank n, for all n = 1, 2, . . . . Over a ring with UGN, every invertible matrix
is full. For weakly finite rings we have the following more general result:

Proposition 5.4.6. Let R be a weakly finite ring and consider a partitioned
matrix over R:

M =
(

A B
C D

)
, where A ∈ Rr .
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If A is invertible, then ρM ≥ r , with equality if and only if C A−1 B = D.

Proof. The inequality is an immediate consequence of (4) and the remark fol-
lowing it. Now by passing to associates, which leaves the inner rank unchanged,
we have

M →
(

I A−1 B
C D

)
→

(
I A−1 B
0 D − C A−1 B

)
→

(
I 0
0 D − C A−1 B

)
.

If ρM = s, so that s ≥ r , this matrix can be written

P Q =
(

P ′

P ′′

)
(Q′ Q′′),

where P′ is r × s and Q′ is s × r . Thus I = P ′ Q′; if r = s, then Q′ P ′ =
I , by weak finiteness, but P ′ Q′′ = 0, so Q′′ = 0; similarly P ′′ = 0 and so
D − C A−1 B = P ′′ Q′′ = 0. The converse is clear. �

We also note the following restatement of Theorem 3.5 in terms of matrices:

Proposition 5.4.7. Let A be a regular matrix of inner rank r over a fir R. Then
there is a factorization

A = P A0 Q,

where A0 ∈ Rr is full, P is right prime and Q is left prime. Moreover, if A = P ′ Q′

is any rank factorization of A, then P ′ = PU, Q′ = V Q, A0 = U V , for some
matrices U, V ∈ Rr .

Proof. This is a straightforward translation, which may be left to the reader.
�

Sometimes it is possible to describe the inner rank in terms of full matrices
alone. This will be useful for us later; we shall need the following lemma:

Lemma 5.4.8. Let R be any ring.

(i) Given a matrix A over R, suppose that A is left full but does not remain left
full when the first column is omitted. Then there is a factorization

A = B
(

1 0
0 C

)
,

where B is (square) full and C is left full, with one less row and column
than A.

(ii) If every full matrix over R is regular, then every left full matrix is left regular
and every right full matrix is right regular
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Proof. (i) Let A be m × n and write A = (a, A′), where a is m × 1, A′ is
m × (n − 1) and A′ is not left full. Then we can write A′ = DC , where D is
m × (m − 1) and C is (m − 1) × (n − 1); now

A = (a A′) = (a D)

(
1 0
0 C

)

is the desired factorization. Clearly if B = (a, D) is not full or C is not left full,
then A cannot be left full.

(ii) Let A ∈ mRn be left full; we shall use induction on n. If A remains left
full when the first column is omitted, the result follows by induction. Otherwise,
by (i), there is a factorization A = B(1 ⊕ C), where B is full and C is left full.
Suppose that x A = 0 for some row x. Then x B(1 ⊕ C) = 0, hence x B = 0,
again by induction, and so x = 0, as claimed. Similarly every right full matrix
is right regular. �

Theorem 5.4.9. Let R be a ring such that the set of all full matrices over R is
closed under products (where defined) and diagonal sums. Then the inner rank
of a matrix over R is the maximum of the orders of its full submatrices.

Proof. We may take R to be non-zero, since otherwise there is nothing to prove.
Let A be an m × n matrix of inner rank r, with a rank factorization A = BC .
We shall show by induction on m + n that A has a full r × r submatrix (clearly
the largest possible). Since the product of two full matrices, where defined, is
again full, by assumption, we need only show that B and C each have a full
r × r submatrix, and by symmetry it suffices to consider C. Now C is left full;
if it remains left full when the first column is omitted, then by induction the
truncated matrix, hence C itself, has a full r × r submatrix. So we may assume
that C does not remain full when the first column is omitted. By Lemma 4.8
(i) there is a factorization C = D(1 ⊕ E), where D is full and E is left full. By
the induction hypothesis E has a full (r − 1) × (r − 1) submatrix, and since the
full matrices admit diagonal sums, 1 ⊕ E has a full r × r submatrix, and its
product with D is the desired full r × r submatrix of C. �

A ring homomorphism is said to be honest if it keeps full matrices full. With
this definition we have

Corollary 5.4.10. Every honest homomorphism of a ring into a field preserves
the inner rank.

Proof. The hypothesis ensures that the class of all full matrices over R is closed
under products and diagonal sums; moreover, a non-full matrix necessarily maps
to a non-full matrix, so the result follows by applying Theorem 4.9. �
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There is a criterion for projective-freeness in terms of full matrices that is
often useful:

Proposition 5.4.11. Let R be a non-zero ring such that every full matrix over
R is regular. Then R is projective-free.

Proof. The conclusion will follow by Proposition 0.4.7 if we can show that R
has IBN and that all idempotent matrices split. Let E be an idempotent matrix
over R and take a rank factorization E = AB. Since this is a rank factorization,
A is right full and B is left full. By hypothesis (and Lemma 4.8) it follows that
A is right regular and B is left regular. Now E is idempotent, so AB AB = AB;
cancelling A on the left and B on the right, we obtain B A = I , which shows
that E splits.

It remains to show that R has IBN. If this is not so, suppose that Rn ∼= Rn+k

and that n is the least value for which this is true for some k > 0. Then there is
an n × (n + k) matrix P and an (n + k)× n matrix Q that are mutually inverse.
Let us write

P = (U V ), Q =
(

X
Y

)
,

where U, X are n × n, V is n × k and Y is k × n. Thus XU = I, Y V = I, X V =
0, YU = 0; therefore U is not full. We take a rank factorization U = AB, where
A is n × r, B is r × n and r < n. We have X AB = XU = In, B X AB = B, and
cancelling B on the right, we find B X A = Ir . It follows that Rn ∼= Rr , which
contradicts the hypothesis on n; hence R has IBN and so is projective-free. �

The converse of Proposition 4.11 is false, as an example in Section 5.5 will
show. However, the hypothesis is satisfied for all semifirs, as we saw in Section
3.1.

Exercises 5.4

1. Let R be any ring with a field of fractions K (i.e. a field containing R as a subring
and generated by R as a field). Define the K-rank rkK M of any right R-module K
as the dimension over K of M ⊗ K . If R is a left Ore domain with field of fractions
K and M is a finitely generated right K-module, show that rkK M = rkK M∗, and
that rkK M is the maximum length of chains of closed submodules in M.

2. (Klein [72a]) Let n ≥ 1 and let R be a ring such that any chain of closed sub-
modules of Rn has length at most n; show that any nilpotent n × n matrix A
over R satisfies An = 0. If R is an integral domain, prove the converse (see also
Proposition 2.3.16).
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3. Let R be a ring such that R = ∑n
1 xi R; show that (x1, . . . , xn) generates a direct

summand of Rn and hence a closed submodule that is free of rank 1.
4. Let R be a non-zero ring. Show that there is a universal bound for the inner rank

of matrices over R if and only if R does not satisfy UGN.
5. (Bergman [67]) Let R be an integral domain and x, y two right linearly independent

elements of R. Show that each of (x, y, 1), (0, 0, 1) generates a closed submodule
of R3, but their sum is dense in R3. Show that if R is any non-Ore 3-fir, then the
lattice of closed submodules of R3 is not modular.

6. (Bergman [67]) Given rings R ⊆ S and an R-module M, a submodule M ′ is said
to be S-closed if it is the zero-set of a family of maps M → S; thus ‘R-closed’ is
the same as ‘closed’. Show that every closed submodule of M is S-closed. If R is a
right Ore domain and K its field of fractions, show that every K-closed submodule
of a finitely generated left R-module is closed; further, if M is a finitely generated
right R-module, show that there is a natural bijection between the set of K-closed
submodules of M and the K-submodules of M ⊗ K . Deduce that if R is a left and
right Ore domain with field of fractions K and M is a finitely generated right R-
module, then the lattice of closed submodules of M is isomorphic to LatK (M ⊗ K ),
and hence is modular.

7. Let R be a semifir and M a left R-module with generators e1, . . . , en and defining
relations

∑
aνi ei = 0, where A = (aνi ) is a given matrix. Show that M is bound

if and only if ρc(A) = n. When R = k〈x, y〉, give an example of a bound module
with positive characteristic.

8∗. Show that a ring R is projective-free if and only if, for any n × n idempotent
matrix E of inner rank r, ρ(I − E) ≤ n − r . Show also that a non-zero ring R is
Hermite if and only if, for any A ∈ rRn, B ∈ nRr such that AB is invertible, and
any C ∈ nRm, AC = 0 implies ρC ≤ n − r .

9∗. Give a proof of Proposition 4.11 by proving directly that every finitely generated
projective module is free, of unique rank. (Hint: Use Lemma 0.3.3).

10o. Give an example of a projective-free ring that is not an integral domain. (This
would provide a counter-example to the converse of Proposition 4.11. For another
counter-example, see Section 5.5.)

11. Find all rings over which every full matrix is invertible.
12. Show that over a semifir any matrix stably associated to a full matrix is again

full.

13. Let R be an n-fir. If ρ

(
A C
0 B

)
≤ n, show that ρ

(
A C
0 B

)
≥ ρ A + ρB. Show

also that if (A, B, C) is any matrix over R such that ρ(A, B) + ρ(A, C) ≤ n, then
ρ(A, B, C) ≤ ρ(A, B) + ρ(A, C) − ρ(A).

14. Let R be a left Ore domain. Show that any r × s matrix over R, where r > s,
annihilates a non-zero row. Defining the row rank, resp. column rank, of a matrix
as the maximum number of linearly independent rows, resp. columns, show that
over a two-sided Ore domain, the row and column ranks of an r × s matrix are
equal (their common value may be called the outer rank).

15. Show that a commutative integral domain for which the inner and outer ranks
coincide has the property: a|b1b2 ⇒ a = a1a2, where ai |bi . (Hint: Consider 2 × 2
matrices; rings with the stated property are called primal.)
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16. (McAdam and Rush [78]) Let R be a commutative integral domain with field of
fractions K. Show that the mapping R → K preserves the inner rank of 2 × 2
matrices if and only if the inverse of every finitely generated fractional ideal of
R is semicyclic (i.e. every finitely generated submodule is contained in a cyclic
module), or equivalently, R is primal.

17. Let f : R → S be a ring homomorphism and fn : Rn → Sn the induced homo-
morphism of matrix rings. Show that if f preserves the inner rank, then so does
fn .

18∗. Let R be a fir that is not right principal and let a be a two-sided ideal whose rank
as right ideal is finite, equal to r > 1. If u = (u1 . . . ur ) is a basis of a, verify that
the map ρ : R → Rr defined by au = u.ρ(a) is a homomorphism. Show that this
map is never honest.

5.5 Sylvester domains

In Section 5.4 we saw that the various ranks defined there coincide for Bezout
domains and this raises the problem of determining the precise class of rings
for which this holds. Even in the commutative case this includes more than just
Bezout domains, since the ranks agree, for example, for the polynomial ring
k[x, y], as will follow from Corollary 5.5. However, it fails for k[x, y, z], as is
shown by the matrix ⎛

⎝ 0 z −y
−z 0 x
y −x 0

⎞
⎠ , (1)

which is full, yet a (left and right) zero-divisor (see the remarks after (8) below
and Exercise 4).

In this section we shall introduce a class of rings, following Dicks and Sontag
[78], which in the commutative case gives a complete answer to these questions.
We begin by recalling part of Proposition 3.1.3, which we shall formulate as
follows:

Proposition 5.5.1. (Law of nullity) Let R be an n-fir and P ∈ rRn, Q ∈ nRs.
If

P Q = 0, (2)

then

ρ P + ρQ ≤ n. (3)

Proof. Let P = P ′ A and Q = B Q′ be rank factorizations for P, Q; then P ′ is
right full and hence right regular, by Lemma 3.1.1. Similarly, Q′ is left regular,
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and so (2) implies the full relation AB = 0. Hence by applying Proposition 3.1.3,
we obtain (3). �

This result suggests the following:

Definition. A non-zero ring R is called a Sylvester domain if for any P ∈
rRn, Q ∈ nRs such that P Q = 0, it follows that ρ P + ρQ ≤ n.

As an immediate consequence of this definition we obtain Sylvester’s law of
nullity for the inner rank:

Corollary 5.5.2. Let R be a Sylvester domain and A ∈ rRn, B ∈ nRs. Then

ρ A + ρB ≤ n + ρ(AB). (4)

Hence the product of two full matrices (of the same order) is full.

Proof. If AB = P Q is a rank factorization, so that Q has ρ(AB) rows, then

(A P)

(
B

−Q

)
= 0,

hence by Proposition 5.1, since (A P) has n + ρ(AB) columns,

n + ρ(AB) ≥ ρ(A P) + ρ

(
B

−Q

)
≥ ρ A + ρB.

This proves (4) and now the last part clearly follows. �

Taking n = r = s = 1, we see that there are no zero-divisors, so a Sylvester
domain is indeed an integral domain. By Proposition 5.1, every semifir is a
Sylvester domain, though again the converse does not hold. We begin by deriv-
ing some consequences of the law of nullity:

Lemma 5.5.3. Let R be a Sylvester domain. Then R is projective-free and for
any matrices A, B over R,

ρ(A ⊕ B) = ρ A + ρB. (5)

Further, if A, B, C are any matrices over R with the same number of rows
and if ρ(A, B) = ρ(A, C) = ρ A, then

ρ(A B C) = ρ A. (6)

Proof. The definition shows that every full matrix over R is regular, hence
R is projective-free, by Proposition 4.11. To prove (5) we have, by suitably
partitioning a rank factorization of A ⊕ B,(

A 0
0 B

)
=

(
P
P ′

)
(Q Q′),
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where P has the same number of rows as A and its number of columns is
ρ(A ⊕ B). Since P Q′ = 0, we have by (3),

ρ(A ⊕ B) ≥ ρ P + ρQ′ ≥ ρ(P Q) + ρ(P ′ Q′) = ρ A + ρB ≥ ρ(A ⊕ B),

where the last step follows by (2) of Section 5.4, and this proves (5). To
establish (6) we partition rank factorizations of (A, B), (A, C) as (A, B) =
D(E, E ′), (A, C) = F(G, G ′); by hypothesis, A = DE = FG are also rank
factorizations of A. Thus the number of columns of (D, F) is 2ρ A and since

(D F)

(−E
G

)
= 0,

we have, by (3),

2ρ A ≥ ρ(D F) + ρ

(−E
G

)
≥ ρD + ρG ≥ ρ(DE) + ρ(FG)

= ρ A + ρ A.

Thus equality holds throughout; in particular, ρ A = ρ(D, F). Clearly, ρ A ≤
ρ(A, B, C), and since

(A B C) = (D F)

(
E E ′ 0
0 0 G ′

)
,

we have ρ(A, B, C) ≤ ρ(D, F) = ρ A. �

We now come to a result providing a source of Sylvester domains that are
not semifirs:

Theorem 5.5.4. Let A be a commutative principal ideal domain and X any
set. Then A〈X〉 is a Sylvester domain.

Proof. Writing K for the field of fractions of A, we have a homomorphism
A〈X〉 → K 〈X〉 and it will be enough to show that this map is inner rank pre-
serving, for then the law of nullity will hold in A〈X〉.

To prove that the inner rank is preserved it suffices to show that every matrix
over A〈X〉 is inert in K 〈X〉, and since K = ∪A[c−1], where c ranges over A×,
we need only verify inertia for A[c−1]〈X〉. Writing c as a product of atoms
and using induction, we need to show that every matrix over A〈X〉 is inert in
A[p−1]〈X〉, where p is an atom in A. We put S = A〈X〉; p is a central atom
in S and S/pS = k〈X〉, where k = A/p A is a field. Hence R = S/pS is a
fir, and it is a GE-ring, even an E-ring, by Theorem 2.4.4, so we can apply
the inertia lemma (Lemma 4.6.8) to conclude that every matrix of S is inert
in S[p−1]. �
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If in this theorem we take X = {x} and A = k[y], where k is a commutative
field, we find that A〈X〉 = k[x, y], and we obtain

Corollary 5.5.5. The polynomial ring in two variables over any commutative
field is a Sylvester domain. �

For three variables this is no longer true, as is shown by the fact that the matrix
in (1) is full, yet a zero-divisor (see the remarks after (8)). A source of Sylvester
domains is the result of Dicks and Sontag [78], which states that the coproduct of
any family of Sylvester domains over a skew field is again a Sylvester domain;
this is also a consequence of lemma 5.7.5 of SF. By applying this result to
Corollary 5.5 above we see that the k-algebra generated by x1, . . . , x4 with
defining relations x1x2 = x2x1, x3x4 = x4x3 is a Sylvester domain. As another
result of Dicks and Sontag [78], we have

Theorem 5.5.A. For any positive integers m, r, n let R(m, r, n) be the k-algebra
on r (m + n) generators written as an m × r matrix X = (xi j ) and an r × n
matrix Y = (y jk) with defining relations in matrix form XY = 0. Then

(i) every full matrix over R(m, r, n) is left regular if and only if r > n,

(ii) every full matrix over R(m, r, n) is regular if and only if r > max(m, n),
(iii) R(m, r, n) is a Sylvester domain if and only if r ≥ m + n. �

We omit the proof, which uses Bergman’s coproduct theorems, and merely
observe that the ring R(m, r, n) is an (r − 1)-fir, but not an r-fir, by a slight
modification of Theorem 2.11.2, or also SF, theorem 5.7.6.

In order to study Sylvester domains, we shall for a moment consider a
somewhat wider class: the rings whose full matrices are left regular. This is a
one-sided class; if we impose the corresponding right-hand condition as well,
by requiring full matrices to be regular, we obtain projective-free rings, by
Proposition 4.11, but this class is still larger than the class of Sylvester domains.
Some further definitions will be needed. For any ring R, an R-module will be
called spatial if for every n ≥ 1, any set of n R-linearly dependent elements
lies in a submodule generated by n − 1 elements. An easy induction shows
that in a spatial module every finite subset is contained in a free submodule,
i.e. every spatial module is semifree; in particular, a spatial module is always
flat. We shall define the local rank of any R-module M as the least integer n
such that every finite subset of M lies in an n-generator submodule; of course
M may very well not have a local rank. To give an example, the rational field
Q as Z-module has local rank 1, while the real field R has no local rank, and
for a finitely generated Z-module the local rank is just the minimal generating
number.
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Theorem 5.5.6. In any ring R the following conditions are equivalent:

(a) every full matrix is left regular,
(b) every left full matrix is left regular,
(c) every flat left R-module is spatial,
(d) every free left R-module is spatial,
(e) the right annihilator of any non-zero m × n matrix has local rank < n,
(f) the right annihilator of any non-zero vector in Rn has local rank < n.

When these conditions hold, then the kernel of any homomorphism between
spatial right R-modules is again spatial.

Proof. We shall prove (a) ⇒ (b) ⇒ (e) ⇒ (f) ⇒ (a) and (b) ⇒ (c) ⇒ (d) ⇒
(b). (a) ⇒ (b) follows as in the proof of Lemma 4.8 (ii). (b) ⇒ (e): Let A �= 0
be an m × n matrix. Any finite set of columns in the right annihilator of A can
be written as a matrix B such that AB = 0. Now for any rank factorization
B = C D, D is left full and so is left regular by (b), hence AC = 0. Again by
(b), C is not left full, but it is right full, by definition, therefore it has at most
n − 1 columns. Now the columns of B = C D lie in the submodule of the right
annihilator of A generated by the columns of C, which shows that the right
annihilator of A has local rank at most n − 1.

(e) ⇒ (f) is clear, and (f) ⇒ (a): Let A be an n × n matrix and suppose that
X A = 0 for some non-zero X ∈ Rn . Then the columns of A lie in the right
annihilator of X, which by (f) has local rank less than n. Thus the columns of A
lie in an (n − 1)-generator submodule of n R, so A is not full.

(b) ⇒ (c). Let M be a flat left R-module and take any finite linearly dependent
subset of M, arranged as a column X ∈ nM , say. By hypothesis there is a non-
zero A ∈ Rn such that AX = 0. Since M is flat, this comes from an R-relation,
say X = BY , where B ∈ n Rm, Y ∈ m M and AB = 0. Thus B is not left regu-
lar and by (b) cannot be left full, say B = C D, where C ∈ nRn−1, D ∈n−1 Rm .
Then X = BY = C(DY ), so the components of X lie in the (n − 1)-generator
submodule of M generated by the entries of DY, and this shows M to be
spatial.

(c) ⇒ (d) is obvious, and (d) ⇒ (b) by the following chain of statements,
each of which implies the next. (1) Every free left R-module is spatial. (2) For
all m, n ≥ 1, any set of m left R-linearly dependent elements of Rn lies in an
(m − 1)-generator submodule. (3) For all m, n ≥ 1, any m × n matrix that is
not left regular is the product of an m × (m − 1) by an (m − 1) × n matrix. (4)
Every matrix that is not left regular is not left full. (5) Every left full matrix is
left regular.
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Assume now that (a)–(f) hold and that α : M → N is a homomorphism
between spatial right R-modules. Any finite linearly dependent subset of
ker α can be written as a row, say X ∈ (ker α)m . We write X = Y A, where
Y ∈ Mr , A ∈ rRm and A, Y are chosen so that r is minimal. Then A has inner
rank r, i.e. it is left full and so left regular. Since M is spatial, we have r < m and
the elements of Y are linearly independent. Now α(Y ) ∈ Nr and there is again
a factorization α(Y ) = Z B, where the elements of Z are linearly independent,
thus Z is right regular. We have

0 = α(X ) = α(Y A) = α(Y )A = Z B A;

since Z is right regular and A is left regular, it follows that B = 0, so α(Y ) = 0.
Hence Y ∈ (ker α)r and this shows ker α to be spatial. �

Thus for the rings of this theorem, spatial, flat and semifree left modules are
the same. We note that the class of rings described here is wider than the class
of Sylvester domains, since (a) is satisfied in any Sylvester domain. Of course
the conclusions of Theorem 5.6 are not left–right symmetric, i.e. there exists a
ring R such that R satisfies the conditions but R◦ does not, and Theorem 5.A
provides examples of rings satisfying these conditions but not their left–right
duals. The relation with Sylvester domains is more closely described by

Corollary 5.5.7. Every Sylvester domain has weak global dimension at most
2 and is projective-free, and every flat module is spatial, hence semifree.

Proof. Over a Sylvester domain R, every full matrix is regular, so the con-
ditions of Theorem 5.6 and their left–right duals hold. It follows that every
flat R-module is spatial, hence semifree, and the kernel of any homomorphism
between flat modules is flat; hence w.gl.dim.R ≤ 2. Further, R is projective-free
by Proposition 4.11. �

It is not known whether conversely, the conditions of Theorem 5.6 (and
its left–right dual) will ensure that R is a Sylvester domain, but the ring will
be projective-free, by Proposition 4.11. If R is projective-free of weak global
dimension at most 1, and moreover right coherent, then every finitely generated
right ideal is finitely related and flat, hence projective, and so is free, of unique
rank. So we have

Corollary 5.5.8. Every projective-free ring that is right coherent of weak
global dimension at most 1 is a semifir. �

For Ore domains there is a converse to Theorem 5.6 and Corollary 5.7. In
that case the class of rings described in Theorem 5.6 coincides with the class
of Sylvester domains.
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Theorem 5.5.9. For any two-sided Ore domain R with field of fractions K,
the following conditions are equivalent:

(a) R is a Sylvester domain,
(b) w.gl.dim.R ≤ 2 and every flat R-module is semifree,
(c) the right annihilator of any matrix is semifree,
(d) the right annihilator of any row vector is semifree,
(e) every full matrix is left regular,
(f) the embedding R → K preserves the inner rank.

(a◦)−( f ◦) The left–right duals (a)–(f).

Proof. For any ring R we clearly have (a)⇒(b) ⇒ (c) ⇒ (d).
(d) ⇒ (e) for any right Ore domain R with field of fractions K: Let

X ∈ Rn, X �= 0; if the right annihilator N of X contains n left R-linearly indepen-
dent elements, then they are left K-linearly independent, but this is impossible
because X �= 0. By (d), N is semifree, so it has local rank at most n − 1 and
now (e) follows by Theorem 5.6.

(e) ⇒ (f) for any left Ore domain R with field of fractions K: Any full matrix
over R is left regular over R and remains so over K, hence it has a left inverse
over K. By Corollary 4.10 the embedding R → K preserves the inner rank, so
(f) holds.

(f) ⇒ (a). Sylvester’s law of nullity holds in K, therefore it holds in R, so R
is a Sylvester domain. Now (a◦)–(f◦) follow by the evident symmetry of (a). �

Let R be an Ore Sylvester domain. Then for any Ore subset S the localization
RS is again Sylvester, by the same reasoning as for (e) ⇒ (f) above. Hence we
obtain

Corollary 5.5.10. The localization of any Ore Sylvester domain at an Ore set
is again a Sylvester domain. �

To illustrate the result of Theorem 5.9, let R be any ring and M a left R-
module, with a finite free resolution

. . . −→ F2
α1−→ F1

α0−→ F0 −→ M → 0,

where Fi is free of rank ni . If the matrix representing α1 can be written as

A = BC, (7)

where B is right regular and C is left regular, then the rows of C generate the left
annihilator of α0 and are left R-linearly independent, hence ker α0 is then free
and so pd(M) ≤ 2. Thus for any finitely generated module (over a Noetherian
ring, say) of homological dimension at least 3 we obtain a matrix A that cannot
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be expressed as in (7). For example, if R = k[x, y, z], where k is a commutative
field, then there is a minimal resolution for k (Koszul resolution)

0 → R
A2−→ R3 A1−→ R3 A0−→ R −→ k → 0, (8)

with presenting matrices

A2 = (x y z), A1 =
⎛
⎝ 0 z −y

−z 0 x
y −x 0

⎞
⎠ , A0 =

⎛
⎝x

y
z

⎞
⎠ .

If A1 were not full, a minimal factorization as in (7) would allow us to replace
(8) by a shorter sequence, in contradiction to the fact that pd R k = 3. Thus
A1 is full, but clearly it is neither left nor right regular. Since k[x, y, z] is
projective-free (the Quillen–Suslin proof of Serre’s conjecture, that polynomial
rings over a field are projective-free see e.g. Lam [78]), this shows the converse
of Proposition 4.11 to be false.

Sometimes we shall want to consider the nullity condition used to define
Sylvester domains for infinite matrices; here the inner rank of a matrix with
infinitely many rows or columns (or both) is again defined in terms of rank fac-
torizations. Thus we consider the following condition. For all natural numbers
r, n and all sets I,

if A ∈ rRn, B ∈ n RI and AB = 0, then ρ A + ρB ≤ n. (9)

Taking I finite, we see that any non-zero ring satisfying (9) is a Sylvester domain.
Moreover, if ρB = t , say, we have a rank factorization B = C D, where C is n ×
t and D is t × I . Applying (9) to the relation AC.D = 0 and remembering that
ρD = t , we find that AC = 0. This shows R to be right coherent. Conversely,
if R is a right coherent Sylvester domain and AB = 0 as in (9), then B = C D,
where C is n × t , for some t, and AC = 0. Hence we have ρ A + ρB ≤ ρ A +
ρC ≤ n, which shows that (9) holds in R. We thus obtain

Proposition 5.5.11. The class of non-zero rings satisfying (9) consists of all
right coherent Sylvester domains. �

In order to describe coherent Sylvester domains we shall need the following
characterization of rings of weak global dimension at most 2:

Lemma 5.5.12. A ring R has weak global dimension at most 2 if and only if
the dual of every finitely presented left R-module is flat.

Proof. Let M be a finitely presented left R-module, say

F1
α−→ F0 −→ M −→ 0, (10)
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where F0, F1 are free of finite rank. Then by dualizing we obtain the exact
sequence

0 −→ M∗ −→ F∗
0

α∗−→ F∗
1 , (11)

for the dual M∗. If w.gl.dim.R ≤ 2, then M∗ is flat, as kernel of α∗. Conversely,
if the condition of the lemma holds, then the right annihilator of every matrix
is flat. To reach the conclusion it suffices to show that any homomorphism
F1 → F0 of free right R-modules has a flat kernel K. Since flatness is a local
condition, it is enough to verify that any finite subset X of K lies in a flat
submodule of K. Now X lies in a finitely generated free submodule F ′

1 of F1

and the image of F ′
1 lies in a finitely generated free submodule F ′

0 of F0. Thus
the kernel of the map F ′

1 → F ′
0 is the right annihilator of a matrix, hence it is

flat, and as a submodule of K containing X it has the requisite properties. �

Since any Sylvester domain has weak global dimension at most 2 (by Corol-
lary 5.7), the conditions of the next result hold in any right coherent Sylvester
domain.

Proposition 5.5.13. For any ring R the following conditions are equivalent:

(a) R is right coherent and has weak global dimension at most 2,
(b) the dual of every finitely presented left R-module is finitely generated pro-

jective,
(c) the dual of every right R-module is flat.

Proof. (a) ⇔ (b). R is right coherent if and only if the dual of every finitely
presented left R-module is finitely presented (see Appendix Theorem B.9).
Using Lemma 5.12, we see that (a) is equivalent to the dual of every finitely
presented left R-module being finitely presented and flat, hence projective, i.e.
(b).

(a) ⇒ (c). Here we shall use the characterization of right coherent rings as
rings for which the dual of every free right module is flat. For any right R-
module M there is a presentation (10), where F0, F1 are free right R-modules.
Dualizing gives M∗ as the kernel of a homomorphism between flat modules
(as in (11)), hence M∗ is flat, because the weak global dimension is at most
2. Now (c) ⇒ (a) follows because coherence is clear from the characterization
just used, while the condition on the weak global dimension follows from the
left–right dual of Lemma 5.12. �

By adding right coherence we obtain a consequence of Theorem 5.9.

Theorem 5.5.14. For any two-sided Ore domain R the following conditions
are equivalent:
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(a) R is a right coherent Sylvester domain,
(b) the dual of every right R-module is semifree,
(c) R is projective-free, w.gl.dim.R ≤ 2 and R is right coherent,
(d) the dual of every finitely presented left R-module is free,
(e) the right annihilator of every matrix is free,
(f) the right annihilator of every row vector is free.

Proof. (a) ⇒ (b). When (a) holds, R has weak global dimension at most 2, so
by Proposition 5.13 the dual of every right R-module is flat, and by Theorem
5.9, semifree.

(b) ⇒ (c) ⇒ (d) is clear from Proposition 5.13, and (d) ⇒ (e) ⇒ (f) follows
directly.

(f) ⇒ (a). If the right annihilator of every row vector is free, then R is a
Sylvester domain by Theorem 5.9, and it is right coherent, because over a right
Ore domain a free submodule of a free right module of finite rank again has
finite rank. �

As for Corollary 5.10 we see that any localization of a right coherent Ore
Sylvester domain is again a right coherent Ore Sylvester domain.

Exercises 5.5

1. Show that, for any free group F and any commutative PID A, the group ring AF is
a Sylvester domain.

2. Let R be a ring. Show that any non-zero matrix A ∈ mRn has a right annihilator
that is free of rank < n and a left annihilator free of rank < m if and only if R is
left and right coherent and every full matrix is regular.

3. (Dicks and Sontag [78]) Show that every Sylvester domain of weak global dimen-
sion at most one is a semifir.

4. Give a direct proof that the matrix A1 in (8) is full. (Hint: Examine the 2 × 2
submatrices of the factors in a rank factorization of A1.) Show also that A1 ⊕ x is
not full. Further, show that the result of multiplying the last column of A1 by z is
not full.

5. In any Sylvester domain, prove Frobenius’ inequality: if AB and BC are defined,
then ρ(AB) + ρ(BC) ≤ ρ(ABC) + ρB. (Hint: Take rank factorizations B = FG
and ABC = P Q and consider the relation AF.GC − P.Q = 0.)

6. Let R be a right coherent Sylvester domain and a a non-zero finitely generated right
ideal. Show that χ (a) > 0; deduce that any negative right R-module is bound.

7◦. Let R be a right coherent Sylvester domain. Which finitely generated right R-
modules of positive characteristic and homological dimension 1 can be embedded
as right ideals in R? Which can be embedded as submodules in free R-modules?

8. Show that the property of being a coherent Ore Sylvester domain is preserved by
localization.
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9◦. Let R be a Sylvester domain whose centre C is not a field and let k be the field
of fractions of C. What can be said about R ⊗C k? Under what conditions is it a
semifir?

10. Show that if R is a persistent semifir, then R[x] is a Sylvester domain (see
Cohn [82c]). Show that any coherent Sylvester domain is a strictly positive
left module, i.e. χ (a) > 0 for any finitely presented left ideal a of R (see
Cohn [82d]).

11∗. Show that if R, S are semifirs, both k-algebras, their tensor product R ⊗k S need
not be a Sylvester domain (see Cohn [97a]).

12. Fill in the details of the following proof that every Sylvester domain has UGN. Let
In = P Q be a rank factorization, where Q has n − 1 rows. If P0 denotes the first
n − 1 rows of P and Q1 the last n − 1 columns of Q, show that P0, Q1 are full and
ρ(P0 Q1) = n − 2; hence obtain a contradiction.

5.6 Pseudo-Sylvester domains

Sylvester domains share at least some of the good properties of semifirs, the
main one being that they have a universal field of fractions, to be described in
Chapter 7. It turns out that this property holds for an even wider class of rings,
the pseudo-Sylvester domains, whose definition resembles that of Sylvester
domains, but with the inner rank replaced by the stable rank, defined in Section
0.1. Moreover, these rings arise naturally in the study of localizations; we shall
therefore briefly discuss them here.

We recall that in any ring R the stable rank ρ∗ A of a matrix A, defined as the
limit of ρ(A ⊕ In) − n, is finite precisely when R has UGN and it then satisfies
the inequality

0 ≤ ρ∗ A ≤ ρ A. (1)

Further, when the stable rank exists in R, then

ρ∗(A ⊕ Ir ) = ρ∗ A + r, for all r ≥ 0, (2)

while

ρ∗(A ⊕ Ir ) = ρ(A ⊕ Ir ) for all sufficiently large r. (3)

Thus by taking the diagonal sum of A with a unit matrix of sufficiently high
order we can stabilize the rank, i.e. make the stable rank equal to the inner rank.
We shall call A stabilized if ρ∗ A = ρ A.

Definition. (i) An S-ring is a ring for which the stable rank is defined and
satisfies the law of nullity. (ii) A pseudo-Sylvester domain is a weakly finite
S-ring.
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We recall from Proposition 0.1.3 that every non-zero matrix over a ring R has
positive stable rank if and only if R is weakly finite. Thus in a Sylvester domain
ρ∗a = 1 for any a �= 0, and so the law of nullity shows that a pseudo-Sylvester
domain is indeed an integral domain. It also follows that every Sylvester domain
is a pseudo-Sylvester domain, as the terminology suggests. More precisely we
have

Proposition 5.6.1. A ring is a Sylvester domain if and only if it is an S-ring
and an Hermite ring.

Proof. Any Sylvester domain is clearly an S-ring, and being projective-free
(Corollary 5.7), it is Hermite. Conversely, if R is an S-ring and Hermite, then
by Proposition 0.4.4 the stable rank exists and agrees with the inner rank, so
we have a Sylvester domain. �

Since an Hermite ring is weakly finite, a Sylvester domain is certainly a
pseudo-Sylvester domain, but examples will soon show that the latter form a
wider class. We shall find that much of the theory of Sylvester domains has a
parallel for pseudo-Sylvester domains. We first note

Proposition 5.6.2. Over a pseudo-Sylvester domain every finitely generated
projective module is stably free.

Proof. Let P be a finitely generated projective left R-module, defined as coker-
nel of the idempotent matrix E; then P ⊕ Rm ⊕ 0n is given by the cokernel of the
idempotent matrix F = E ⊕ 0m ⊕ In and we have I − F = (I − E) ⊕ Im ⊕ 0n .
By taking m, n large enough we can ensure that F and I − F are stabilized. If F
is N × N , ρF = r, ρ(I − F) = s, then r + s ≤ N . Let F = A1 B1, I − F =
A2 B2 be rank factorizations; then

I = (A1 A2)

(
B1

B2

)
,

and weak finiteness shows that N ≤ r + s, and A = (A1, A2), B = (B1, B2)T

are mutually inverse; therefore B1 A1 = I and P ⊕ Rm is free. �

In order to describe pseudo-Sylvester domains more closely we shall prove
an analogue of Theorem 4.9, which requires the next lemma. Here a matrix A
is called stably left full if A ⊕ Ir is left full for all r ≥ 1; similarly for stably
right full. An n × n matrix A is called stably full if A ⊕ Ir is full for all r ≥ 0
or equivalently, ρ∗ A = n.

Lemma 5.6.3. Let R be a ring with UGN in which the product of stably full
matrices (where defined) is stably full. Suppose that C is a stably left full r × n
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matrix over R such that the matrix consisting of the last s columns, where
s ≤ r ≤ n, has stable rank s. Then C has a stably full r × r submatrix that
includes the last s columns.

Proof. We shall use induction on n − s. When s = n, C is stably full and
there is nothing to prove, so we may assume that n > s. Let C = (C1, C ′),
where C1 is the first column of C. If C ′ is stably left full, then by the induction
hypothesis it has a submatrix with the desired property. Otherwise we can find
t ≥ 1 such that C ′ ⊕ It is not left full, but of course, C ⊕ It is left full. Hence, by
Lemma 4.8, we have C ⊕ It = D(1 ⊕ E), where D is stably full and E is stably
left full. Clearly the submatrix of E consisting of any subset of its columns has
stable rank at least equal to that of the corresponding submatrix of C ⊕ It ; in
particular the submatrix consisting of the last s + t columns is stably full. Now
E has (n − 1) + t columns and ((n − 1) + t) − (s + t) = n − s − 1 < n − s,
so we can apply induction to find a stably full submatrix M of E of order
(n − 1) + t that contains the last s + t columns of E. Then 1 ⊕ M is a stably
full submatrix of 1 ⊕ E containing the last s + t columns, so D(1 ⊕ M) is a
submatrix of columns of C ⊕ It containing the last s + t columns, and it is
stably full, by our hypothesis on products. If we omit the last t columns and the
corresponding rows (which after the removal of those columns consist of zeros),
we get a stably full submatrix of columns of C including the last s columns, as
required. �

We can now prove the analogue of Theorem 4.9.

Proposition 5.6.4. Let R be a ring with UGN in which the product of stably
full matrices over R (where defined) is stably full. Then the stable rank of a
matrix over R is the maximum of the orders of its stably full submatrices.

Proof. Let A be a matrix over R of stable rank r and suppose the rank is
stabilized by Is ; thus we can write A ⊕ Is = BC , where B is stably right full
and C is stably left full, both of rank r + s. Now the matrices consisting of
the last s rows of B and the last s columns of C have stable rank s, because
their product is Is . By applying Lemma 6.3 to C and its left–right dual to B,
we get stably full submatrices consisting of r + s columns of C including the
last s columns and r + s rows of B including the last s rows. Their product is a
submatrix of A ⊕ Is of order r + s including Is ; by the hypothesis on products
its stable rank is r + s, so it is of the form N ⊕ Is , where N is an r × r submatrix
of A, which is of stable rank r, as required. �

We shall also need an analogue of Lemma 5.3.
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Lemma 5.6.5. Let R be an S-ring. Then

(i) for any matrices A, B over R, ρ∗(A ⊕ B) = ρ∗ A + ρ∗ B,
(ii) If A, B, C have the same number of rows and ρ∗(A, B) = ρ∗(A, C) = ρ∗ A,

then

ρ∗(ABC) = ρ∗ A.

Proof. (i) Write A′ = A ⊕ Im, B ′ = B ⊕ In , where m, n are chosen so large
that A′, B ′, A′ ⊕ B ′ are all stabilized. Now the proof of Lemma 5.3 shows
that ρ(A′ ⊕ B ′) = ρ A′ + ρB ′, hence ρ∗(A ⊕ B) = ρ∗ A + ρ∗ B, as claimed.
Similarly, in (ii) we replace A by A′ = A ⊕ In with n chosen so large that
A′, (A′, B ′), (A′, C ′) are all stabilized, where B ′ = (B, 0)T, C ′ = (C, 0)T. �

By Proposition 6.2, over a pseudo-Sylvester domain every finitely generated
projective module is stably free; further, it can be shown that any pseudo-
Sylvester domain R satisfies w.gl.dim.R ≤ 2, and for Ore domains this condition
is sufficient as well as necessary for R to be a pseudo-Sylvester domain (see
Cohn and Schofield [82]). Thus for any field D, even skew, the polynomial ring
D[x, y] in two central indeterminates is a pseudo-Sylvester domain, likewise
the first Weyl algebra A1(k) over any commutative field k. Neither of these rings
is a Sylvester domain, unless D is commutative.

Exercises 5.6

1. Prove Sylvester’s law of nullity for the stable rank in a pseudo-Sylvester domain,
in the form of Corollary 5.2.

2. Show that if for any matrix A over a ring R, ρ∗ A, defined as lim[ρ(A ⊕ In) − n],
is not identically −∞, then it is non-negative and this is so precisely when R has
UGN.

3. Verify that the Weyl algebra A1(k) is a pseudo-Sylvester domain but not a Sylvester
domain.

4. Use Lemma 6.5 to show that I = {a ∈ R|ρ∗a ≤ 0} is an ideal and use Proposition
0.1.3 to deduce that for any ring R, R/I is the maximal weakly finite homomorphic
image. Hence obtain another proof of Proposition 0.1.2.

5. Let R be the k-algebra generated by a, b with the defining relation ba = 1. Show
that R has UGN but is not weakly finite. Verify that ρ∗(1 − ab) = 0.

6◦. Does the law of nullity hold for the stable rank in the ring R of Exercise 5? (An
affirmative answer would provide an example of an S-ring that is not a pseudo-
Sylvester domain).

7. (G. M. Bergman) Suppose that R is a weakly semihereditary ring with UGN. Show
that R is (a) a Sylvester domain if and only if every finitely generated projective
R-module is free (hence if and only if R is a semifir); (b) a pseudo-Sylvester domain
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if and only if every finitely generated projective module is stably free; (c) an S-ring
if and only if for every finitely generated projective R-module P, there exists a
finitely generated R-module Q such that Q ⊕ Rn ∼= Rn for some n ≥ 1, for which
P ⊕ Q is stably free.

8◦. (G. M. Bergman) Do the results of Exercise 7 (without the remark on semifirs in
(a)) hold under weaker conditions than being weakly semihereditary?

5.7 The factorization of matrices over semifirs

In Section 3.2 we described the factorization of full matrices over semifirs and
we saw there that with the appropriate finiteness assumptions matrix rings over
semifirs behave very much like UFDs. By contrast the factorization of non-
full or rectangular matrices is less well explored and no complete analogue of
Theorem 3.2.7 is known. We begin our study with a closer analysis of comaximal
relations.

Proposition 5.7.1. Let R be a ring with UGN. Given a comaximal relation

P Q = 0, P ∈ rRn, Q ∈ nRs, (1)

we have

r + s ≤ n (2)

and there exist an n × r matrix P ′ and an s × n matrix Q′ such that(
P
Q′

)
(P ′ Q) =

(
I 0
0 I

)
, (3)

Proof. Since (1) is comaximal, there exist matrices P1, Q1 such that P P1 =
I, Q1 Q = I; putting P ′ = P1, Q′ = Q1 − Q1 P1 P , we obtain (3), and now (2)
follows by UGN of R. �

If the relation (1) is balanced, we have equality in (2), so that the matrices
on the left of (3) are square. If moreover, R is weakly finite, the matrices on the
left of (3) are mutually inverse. In this case we have

P ′ P + Q Q′ = I. (4)

If we take our relation in the form AB ′ − B A′ = 0, this leads to the following
result:

Proposition 5.7.2. Let R be a weakly finite ring. In any balanced comaximal
relation

C = AB ′ = B A′, (5)
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C is a least common right multiple of A, B and a least common left multiple of
A′, B ′.

Proof. Writing P = (A, B), Q = (−B ′, A′)T, we have a balanced comaxi-
mal relation of the form (1), hence by Proposition 7.1 there exist P ′, Q′ such that
(3) holds. Since the relation is balanced, we have r + s = n, and by weak finite-
ness (4) now follows. Suppose now that P S = 0; then S = (P ′ P + Q Q′)S =
Q(Q′S). Hence if T is a common right multiple of A and B, say AS1 = BS2 = T ,
then P S = 0, where S = (−S1, S2), so S is indeed a right multiple of Q. The
rest follows by symmetry. �

Suppose now that (1) is not balanced and assume further that R is an Hermite
ring. Then the matrices on the left of (3) can be completed to be mutually
inverse.

Proposition 5.7.3. Let R be an Hermite ring. Given a comaximal relation

C = AB ′ = B A′, A ∈ rRm, B ∈ rRn, A′ ∈ nRs, B ′ ∈ mRs, (6)

if this is not balanced, then we can add columns to A′ and B ′ to obtain a
comaximal relation, i.e. there exist A′′ ∈ nRt , B ′′ ∈ mRt , C ′′ ∈ rRt , where r +
s + t = m + n, such that

(C C ′′) = A(B ′ B ′′) = B(A′ A′′),

and the right-hand equation is a balanced comaximal relation. Dually, we can
add rows to A and B to obtain an (r + t) × s matrix with two factorizations
forming a balanced comaximal relation, or more generally, add t ′ rows to A, B
and t ′′ columns (t ′ + t ′′ = t) to A′, B ′ to obtain an (r + t ′) × (s + t ′′) matrix
with two factorizations forming a comaximal relation. �

In a semifir any relation may be expressed in terms of a comaximal relation. In
order to do this we need a normal form for matrices in terms of the column rank
ρc. We observe that the result gives nothing new when the given matrix is right
full, or more generally, right regular. We recall that an inessential modification of
a product AB is the replacement of A, B by AU, U−1 B, where U is an invertible
matrix; if in a factorization only inessential modifications are possible, it is
essentially unique.

Proposition 5.7.4. Let R be a semifir and A ∈ rRm a matrix of column rank
t. Then t ≤ m and A may be written as

A = P A′, where P ∈ rRt , A′ ∈ tRm, (7)
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P is right regular and A′ is right invertible, and subject to these conditions this
factorization is essentially unique. Moreover, there is a balanced comaximal
relation

A′ B ′′ = 0,

where B ′′ is left invertible, such that for any matrix B with m rows, AB = 0 if
and only if

B = B ′′C for some C. (8)

Proof. Given A as stated, we can find T ∈ GLm(R) such that AT has its first
t columns right linearly independent and the rest 0. By suitably partitioning T,
we have

A(T1 T2) = (P 0),

where P ∈ rRt is right regular, and if T −1 = (U, V )T, then A = (P, 0)T −1 =
PU . Thus we obtain (7), and U is right invertible because U T1 = I. If we also
have A = QW , where Q is right regular and W is right invertible, denote by
U ′, W ′ right inverses for U, W; then Q = PU W ′ = P E , say; similarly P =
QWU ′ = Q F , hence P = QF = P E F , so E F = I and similarly F E = I;
hence (7) is essentially unique.

Since A′ is right invertible, there exist A′′, B ′, B ′′ such that (A′, A′′)T and
(B ′, B ′′) are square and mutually inverse. Hence A′ B ′′ = 0 is a balanced comax-
imal relation. Moreover, if AB = 0, then P A′ B = 0, hence A′ B = 0, therefore
B = (B ′, B ′′)(A′, A′′)T B = B ′′ A′′ B, so that (8) holds with C = A′′ B. �

We can now prove the basic lemma for the analysis of relations in a semifir:

Lemma 5.7.5. Let R be a semifir. Given a relation

AB ′ = B A′, A ∈ rRm, B ∈ rRn, A′ ∈ nRs, B ′ ∈ mRs, (9)

suppose that (A, B) has column rank t and (B ′, A′)T has row rank u. Then

t + u ≤ m + n, (10)

and there exist P ∈ rRt , A1 ∈ tRm, B1 ∈ tRn such that P is right regular and

(A B) = P(A1 B1). (11)

Further, there is a balanced comaximal relation A1 B ′
1 = B1 A′

1 , with A′
1, B ′

1

depending only on A, B and not on A′, B ′, such that B ′ = B ′
1 Q, A′ = A′

1 Q, for
some Q.

Proof. This is an immediate consequence of Proposition 7.4, by writing (9)
as (A, B)(−B ′, A′)T = 0, while (10) follows by the law of nullity. �
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We note that the assertion of Lemma 7.5 is asymmetric; the formulation of
the left-hand analogue is left to the reader.

In factorizing a rectangular matrix the role of an atom is taken over by
an unfactorable matrix; to define this concept we shall take a closer look at
factorizations.

Let R be a semifir as before. A factorization of a matrix C over R:

C = AB (12)

is said to be proper if A has no right inverse and B has no left inverse. Clearly
any matrix having a proper factorization cannot be invertible.

A factorization (12) is called regular if A is right and B is left regular. Such
a factorization is proper if and only if neither of A, B is a unit. For if A or B
is a unit, (12) is not proper. Conversely, if (12) is not proper, say A has a right
inverse: AA′ = I, then A(A′ A − I) = 0; since A is right regular, A′ A = I, so A
has the inverse A′; similarly if B has a left inverse.

Given any factorization (12) of C over a semifir, we can always ensure by an
inessential modification that A becomes (A1, 0), where A1 is right regular. If B
becomes (B1, B2)T, then C = AB = A1 B1, where now A1 has fewer columns
than A unless A itself was right regular. If we now repeat this operation on B
we obtain a regular factorization (12) of C. We note that the operations carried
out on A, namely multiplying on the right by an invertible matrix and omitting
some columns, do not affect the property of having a right inverse, while if B
has no left inverse, this remains true, so a proper factorization remains proper.
This shows the truth of

Proposition 5.7.6. Let R be a semifir and C any matrix over R. Then any
factorization (12) can, by an inessential modification and omitting some zero
columns of A and the corresponding rows of B, followed by an inessential
modification and omitting some zero rows of B and the corresponding columns
of A, be brought to the form of a regular factorization

C = A1 B1. (13)

Moreover, if (12) was proper, then so is (13). �

Definition. A matrix C over a ring R is said to be unfactorable if it is a regular
non-unit that cannot be written as a product of two regular non-units.

It is clear that this property is preserved by stable association. We also note
that since a one-sided unit is always a zero-divisor, an unfactorable matrix,
being regular, has neither a left nor a right inverse. By Proposition 7.6, over
a semifir R a matrix C is unfactorable if it is a regular non-unit and in any
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factorization C = AB, either A has a right inverse or B has a left inverse, i.e.
C has no proper factorization. Moreover, given any matrix C over a semifir R,
we can always find a left invertible matrix P, a right invertible matrix Q and a
regular matrix C0 such that

C = PC0 Q,

by applying Proposition 7.4 and its left–right dual. It is easily seen that a finitely
presented module over a semifir is minimal bound if and only if its matrix is
unfactorable.

We can now prove a refinement of the analysis of relations in Lemma 7.5,
for use with unfactorable matrices.

Lemma 5.7.7. Let R be a semifir and C a regular matrix over R. Given two
factorizations of C:

C = AB ′ = B A′, (14)

where A is unfactorable and B A′ is a proper factorization, either there is a
balanced comaximal relation

AB1 = B A1, where A′ = A1 Q, B ′ = B1 Q, (15)

or after inessential modifications and omitting the zero rows of A′ and the
corresponding columns of B, there is a matrix U such that B = AU, B ′ = U A′.

Proof. By Lemma 7.5 we have (A, B) = P(A0, B0), (B ′, A′)T = (B1, A1)T Q
and A0 B1 = B0 A1 is balanced comaximal. Now because A is unfactorable,
either P is right invertible; then so is (A, B), because (A0, B0) is right invertible,
and we have a balanced comaximal relation AB1 = B A1, or A0 is left invertible.
In the latter case, by an inessential modification on the left of (14) we can take
A = P(I, 0)T, hence P = (A, P ′) for some P ′, and by an inessential modifica-
tion on the right of (14), and omitting zero rows of A′ and the corresponding
columns of B, we ensure that A′ is left regular. Writing B0 = (U, V )T, with a
partition corresponding to that of P, we have B = P B0 = AU + P ′V , hence
AB ′ = B A′ = (AU + P ′V )A′, i.e. A(B ′ − U A′) − P ′V A′ = 0. By Lemma
7.5, P = (A, P ′) is right regular, hence B ′ = U A′, V A′ = 0. Since A′ is left
regular, V = 0 and so B = P B0 = AU as claimed. �

Corollary 5.7.8. If in (14) of Lemma 7.7 both factorizations are proper and
A, B are both unfactorable, then either (15) holds or we may take U to be a unit,
so that A, B are right associated. Thus either we have a balanced comaximal
relation AB1 = B A1, where A′ = A1 Q, B ′ = B1 Q for some matrix Q or AB ′
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and B A′ can be reduced to the same form by inessential modification and
omitting zero rows of the right-hand factor and the corresponding columns
from the left-hand factor.

Proof. In this case, if there is no balanced comaximal relation (15), we have
B = AU, A = BT , hence A = BT = AU T and A is right regular, henceU T =
I; similarly T U = I and so U is invertible. �

We saw in Section 3.1 that a comaximal relation (1) is balanced if and only
if A and A′ have the same index, and by Proposition 0.5.6, in any weakly finite
ring two matrices A, A′ are stably associated if and only if they occur in a
balanced comaximal relation (1). If the product AB ′ occurs in a factorization
and we replace it by B A′, related to AB ′ by a balanced comaximal relation
(1), we shall call this change a comaximal transposition. It is clear that for full
(square) matrices this reduces to the definition given in Section 3.2.

Let C be a regular matrix over a semifir R and consider a factorization

C = A1 A2 . . . Ar . (16)

By inessential modification and omitting zero rows or columns and the corre-
sponding columns or rows from the other factor we may assume that A1, . . . , Ar

are regular. If any Ai is a unit, we combine it with either of its neighbours; thus
we may assume that all the Ai are regular non-units. Any such factorization
of C corresponds to a chain of submodules with bound quotients; when R is a
fir, both chain conditions hold for such chains, by Theorem 2.3; hence there is
always a maximal refinement of such a chain. In terms of the factorization (16)
this means that the Ai are unfactorable, since a matrix is unfactorable precisely
if the module defined by it is minimal bound. Thus we have

Theorem 5.7.9. Over a fir, any regular matrix has a factorization into unfac-
torable matrices. More generally, any factorization into regular non-units can
be refined to a factorization into unfactorable matrices. �

This proves the existence of complete factorizations. In order to compare
two factorizations of a given matrix we apply Lemma 7.5; here a numerical
condition on the size of the matrices is needed, which unfortunately does not
always hold:

Lemma 5.7.10. Let R be a semifir and C a regular matrix over R which has
two factorizations:

C = AB ′ = B A′, (17)
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such that one of the following four equivalent conditions is fulfilled:

i(A) + i(B) ≤ i(C), (18)

i(C) ≤ i(A′) + i(B ′), (19)

i(A) ≤ i(A′), (20)

i(B) ≤ i(B ′). (21)

Then either A, B have a common left factor that is not right invertible, or A′,
B ′ have a common right factor that is not left invertible, or (17) is a comaximal
transposition, in which case equality holds in (18)–(21).

Proof. The equivalence of (18)–(21) is easily verified, using the fact that
i(A) + i(B ′) = i(C) = i(B) + i(A′). Moreover, when (17) is comaximal, then
i(A) + i(B) ≥ i(C), so in that case (18) is just the condition for (17) to be
balanced.

Suppose now that no common left or right factor exists in (17). Let C be
m × n and let (A, B) have column rank t. By Lemma 7.5 there exists P ∈ mRt ,
such that P is right regular and a common left factor of A and B. By hypothesis,
P Q = I for some Q; thus P is right regular right invertible, hence a unit, and
so may be absorbed in A, B. By Lemma 7.5 there is now a balanced comaximal
relation AB1 = B A1 and A′ = A1 Q, B ′ = B1 Q for some Q. Further, i(Q) =
i(AB ′) − i(AB1) = i(C) − i(A) − i(B) ≥ 0 by (18). By hypothesis, Q has a
left inverse, so by weak finiteness it is square and hence a unit. It follows that
(17) is indeed a comaximal transposition. �

This result suggests that we can compare two factorizations of C provided
that the left-hand factors are not too ‘skew’, i.e. they do not both have a large
index. As a typical example where a comparison is impossible (owing to the fail-
ure of (18)), consider the free k-algebra on eight generators a, b, c, d, p, q, r, s

and write X =
(

a b
c d

)
, Y =

(
p q
r s

)
. Then by taking the first row of the

comaximal relation X.(I + Y X ) = (XY + I).X , we obtain the unbalanced rela-
tion

(a b)

(
1 + pa + qc pb + qd

ra + sc 1 + rb + sd

)
= (1 + ap + br aq + bs)

(
a b
c d

)
.

Exercises 5.7

1. Let AB ′ = B A′ be a comaximal relation over a ring with UGN. Show that
i(A′) ≤ i(A), i(B ′) ≤ i(B), i(A′) + i(B ′) ≤ i(AB ′) ≤ (A) + i(B), with equality in
one place (and hence in all) if and only if the relation is balanced.
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2. Let R be the n × n matrix ring over a 2n-fir and let a, b be elements of R with a full
common right multiple. Show that a R ∩ bR and a R + bR are both principal.

3. Show that an unfactorable n × n matrix over any ring R is an atom in Rn . Does the
converse hold? Does it hold when R is commutative?

4. Prove the assertion made before Lemma 7.7, that a matrix over a semifir is unfac-
torable if and only if the module defined by it is minimal bound. Deduce that every
minimal bound module over a semifir is strictly positive.

5. Let R be a semifir and A ∈ m Rn an unfactorable matrix; show that the submodule
of Rn generated by the rows of A is a direct summand of every finitely generated
proper submodule of Rn containing it. Does the converse hold?

6. Let A be an invertible matrix over a semifir and consider a block decomposition
A = (A′, A′′, A′′′)T with the corresponding decomposition A−1 = (B ′, B ′′, B ′′′). If
A′ B ′′′ = 0, then A′′ B ′′ = A′′ B ′′ is a comaximal relation, but not balanced, unless
A′, B ′′′ were vacuous.

7◦. Develop a theory of unique factorization rings that allows for the factorization of
zero-divisors, taking e.g. the factorization of matrices over a principal ideal domain
as a model (see Section 1.3).

5.8 A normal form for matrices over a free algebra

In the polynomial ring k[x] over a commutative field k it is easy to write
down a normal form for polynomials under association: each non-zero poly-
nomial is associated to precisely one monic polynomial. In the free k-algebra
of rank greater than 1 the polynomials have a more complicated form, but
now it is more natural to permit matrices as well and ask for a normal form
under stable association. In particular, this allows us to take the matrix to be
linear in the variables. This is the process of ‘linearization by enlargement’,
also called Higman’s trick (see Higman [40]). As a typical case let us take the
(m, n)-entry of an m × n matrix. If this has the form f + ab, then by taking
the diagonal sum with 1 and applying elementary transformations, we obtain
successively

(
f + ab 0

0 1

)
→

(
f + ab a

0 1

)
→

(
f a

−b 1

)
,

where only the last two entries of the last two rows are shown. By repeated
application this allows us to reduce any matrix over k〈X〉 to one in which the
elements of X occur to at most the first degree. Such a matrix is called linear;
taking X = {x1, . . . , xd} for simplicity, we see that every linear m × n matrix
has the form

A = A0 +
∑d

1
Ai xi , where A0, Ai ∈ mkn. (1)
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A matrix is called right monic if it is linear of the form (1), where A1, . . . , Ad

are right comaximal (i.e. (A1, . . . , Ad ) has a right inverse); a left monic matrix
is defined similarly and a monic matrix is one that is left and right monic. Thus
any (left or right) monic matrix is necessarily linear. Monic matrices have the
following good property:

Lemma 5.8.1. Let A be a right monic matrix over k〈X〉. Then the homoge-
neous component of degree 1 in A is left regular; in particular, A is left regular
but not a unit.

Proof. Suppose that A = A0 + ∑
Ai xi and

∑
C Ai xi = 0; then

∑
Cλ Ai xi =

0, where Cλ is the sum of the terms of highest degree in C. Equating left cofactors
of xi we obtain Cλ Ai = 0, so Cλ(A1, . . . , Ad ) = 0 and therefore Cλ = 0, since
the Ai are right comaximal. This shows Aλ = ∑

Ai xi to be left regular; it
follows that A itself is left regular but not a unit, for if C A = 0 or I, then
Cλ Aλ = 0, hence Cλ = 0 and so C = 0. �

On the other hand, it is not enough to assume A0, A1, . . . , Ad to be right
comaximal, as the example (1, x1)T shows, which is left annihilated by (x1, −1).

The next result represents the weak algorithm for matrices:

Lemma 5.8.2. Let A be left monic and B right monic over R = k〈X〉. If P, Q
are any matrices over R such that

P B = AQ, (2)

then there exists a matrix C over R such that

P = AC + P0, Q = C B + Q0, (3)

where P0, Q0 are matrices over k.

Proof. Let us write A = A0 + ∑
Ai xi , B = B0 + ∑

Bi xi and again denote
the matrix of highest terms in any matrix T by T λ. On equating the highest
terms in (2), we obtain ∑

Pλ Bi xi =
∑

Ai xi Qλ. (4)

By Lemma 8.1, Bλ is left regular and Aλ is right regular; hence P and Q have
the same degree. If deg Q = 0, then deg P = 0, so then there is nothing to
prove. We may therefore assume that deg Q ≥ 1 and write Qλ = ∑

Qi xi ,
where Qi is over R. Equating left cofactors of xi in (4), we find Pλ Bi = Aλ Qi ,
hence

Pλ(B1, . . . , Bd ) = Aλ(Q1, . . . , Qd ).
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Let D be a right inverse of (B1, . . . , Bd ); then D is over k. We put C =
(Q1, . . . , Qd )D and obtain

Pλ = Pλ(B1, . . . , Bd )D = AλC. (5)

Now by (2) we have

(P − AC)B = A(Q − C B).

This is an equation of the same form as (2), but P − AC has lower degree than
P, by (5) and deg (Q − C B) < deg(Q), so the result follows by induction on
the degree of Q. �

We can now establish the existence of a normal form for matrices over k〈X〉.
Theorem 5.8.3. Let R = k〈X〉 be a free k-algebra. Any matrix over R is stably
associated to a matrix A ⊕ 0, where A is monic (and 0 need not be square).
In particular, any (left) regular matrix is stably associated to a (right) monic
matrix. Moreover, if A ⊕ 0, A′ ⊕ 0 are two matrices that are stably associated
and such that A, A′ are monic, then the number of rows of A, A′ agree, as
do those of A ⊕ 0, A′ ⊕ 0; likewise for the columns and there exist invertible
matrices P, Q over k such that P A′ = AQ.

Proof. By the linearization process described earlier we reach a linear matrix,
which can be chosen so as to have the form A ⊕ 0, where A has the linear form (1)
and is m × n, with m, n minimal. We claim that A is monic. For if (A1, . . . , Ad )
has no right inverse say, then this m × nd matrix over k has rank less than m
and so by elementary row operations the last row can be reduced to 0. If now
the last row of A0 is also 0, we can reduce m by 1, contradicting the minimality
(this amounts to writing A as B ⊕ N , where N is the 1 × 0 matrix). So the last
row of A0 is not 0, and by column operations over k and further row operations
over R we find that A is associated to A′ ⊕ I, where A′ is again linear. So A
is stably associated to A′, but this again contradicts the minimality of m + n.
Hence A is right monic; by symmetry it is also left monic. Thus the existence
of the form (1) is established. If the original matrix was left regular, then so is
A ⊕ 0 and it follows that 0 is a matrix of 0 rows, so A ⊕ 0 is right monic. We
remark that if A is invertible, it is stably associated to the (0 × 0) null matrix.

Suppose now that A and A′ are both monic and A ⊕ 0, A′ ⊕ 0 are stably
associated; then F ⊕ 0 and F ′ ⊕ 0 are associated, where F = A ⊕ Ir , F ′ =
A′ ⊕ Is , for suitable r and s. Thus there exist invertible matrices U, V over R
such that for appropriate partitioning(

U1 U2

U3 U4

) (
F 0
0 0

)
=

(
F ′ 0
0 0

) (
V1 V2

V3 V4

)
. (6)
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It follows that U3 F = 0 = F ′V2. Now A, A′ are regular, hence so are F, F ′ and
therefore U3 = 0 = V2. Let F be m × n, F ′m ′ × n′ and F ⊕ 0, F ′ ⊕ 0 both t ×
u. Then U is t × t, U3 is (t − m ′) × m, so by Proposition 3.1.2, t − m ′ + m ≤ t ,
i.e. m ≤ m ′. Similarly V is u × u and V2 is n′ × (u − n), so n′ + u − n ≤ u, and
hence n′ ≤ n. By symmetry, i.e. multiplying both sides of (6) by U−1 on the left
and V −1 on the right, we have m ′ ≤ m, n ≤ n′ and so F, F ′ are both m × n. It
follows that U1, U4, V1, V4 are all square and so are invertible, since this is true
of U, V. Moreover U1 F = F ′V1, so F, F ′ are associated and A, A′ are stably
associated. We thus have a comaximal relation AB ′ = B A′, by Proposition
0.5.7. Hence there exist matrices C, D, C ′, D′ over R such that(

A B
C D

)
and

(
D′ −B ′

−C ′ A′

)
(7)

are mutually inverse. Further, by Lemma 8.2 there exists P such that

B = AP + B0, B ′ = P A′ + B ′
0,

where B0, B0
′ are over k. Hence on multiplying the matrices (7) by

(
I −P
0 I

)

on the right and

(
I P
0 I

)
on the left, respectively, we obtain a pair of mutually

inverse matrices (
A B0

C D1

)
and

(
D′

1 −B ′
0

−C ′ A′

)
.

We also have A′C = C ′ A, so by another application of Lemma 8.2 we obtain
a pair of inverse matrices(

A B0

C0 D2

)
and

(
D′

2 −B ′
0

−C ′
0 A′

)
,

where C0, C ′
0 are over k. Thus we have the equation

AD′
2 − B0C ′

0 = I.

Equating highest terms we find
∑

Ai xi (D2
′)λ = 0. By Lemma 8.2, Aλ is right

regular; we conclude that (D′
2)λ = 0, hence D′

2 = 0 and so −B0C ′
0 = I. Thus

B0 has a right inverse over k and by symmetry B ′
0 has a left inverse. Hence

i(B) ≥ 0 ≥ i(B ′); since A, A′ are stably associated, they have the same index,
hence so do B, B ′ and therefore i(B0) = i(B ′

0) = 0. It follows that B0, B ′
0 are

invertible over k and we have AB ′
0 = B0 A′, as claimed. �

The uniqueness result proved here should be compared with the assertion of
Proposition 0.6.5. The proof of Theorem 8.3 shows that once we have reached
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a linear form for our matrix, if the latter is left regular, we can achieve a right
monic form by elementary column operations over k and row operations over
R, and similarly on the other side. Thus we have

Corollary 5.8.4. If A is a left regular linear matrix over R = k〈X〉, then there
exist invertible matrices P over R and U over k such that PAU = B ⊕ I , where
B is right monic. Here the coefficients of P, U can be chosen to lie in the subfield
of k generated by the coefficients of A. �

We can now give the extension of Proposition 4.6.12 promised in Section
4.6 by proving that the eigenring of a regular matrix over a free k-algebra is
finite-dimensional over k. Equivalently, we shall show that the endomorphism
ring of a finitely presented bound module is finite-dimensional; this will appear
as consequence of a more general result:

Theorem 5.8.5. Let R = k〈X〉 be a free k-algebra and let M, N be finitely pre-
sented R-modules of which M is bound. Then HomR(M, N) is finite-dimensional
over k.

Proof. As in Proposition 4.6.12 we may take R to be of finite rank. Let M,
N be left R-modules with defining matrices A, B, where A may be taken to be
monic, by Theorem 8.3, and A is regular (because M is bound), while B is left
regular right monic. A homomorphism f : M → N corresponds to a pair of
matrices P, Q such that

AQ = P B, (8)

and conversely, such a pair of matrices defines a homomorphism, while
P, Q and P ′, Q′ define the same homomorphism if and only if P − P ′ =
AC, Q − Q′ = C B (see Section 0.6). By Lemma 8.2, if (8) holds, we can
write Q = C B + Q0, P = AC + P0, where P0, Q0 are over k. Thus the given
homomorphism may be represented by P0, Q0. But the space of these matrices
is a finite-dimensional k-space, hence HomR(M, N) is finite-dimensional, as
claimed. �

To obtain an estimate for the dimension, let A be m × n and B r × s. As we
saw in Section 0.6, we have

HomR(M, N ) ∼= I(A, B)/b, (9)

where I(A, B) = {Q ∈ nRs |AQ = P B for some P ∈ mRr } and b is the left
R-module spanned by the rows of B. Now Theorem 8.5 shows that

b ⊆ I (A, B) ⊆ b + nks ;
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hence

I (A, B)/b ⊆ (b + nks)/b ∼= nks/(nks ∩ b),

and so

dim HomR(M, N ) ≤ dim nks = ns. (10)

We also note that the condition that M be bound cannot be omitted, since for
example, HomR(R, N ) ∼= N , but a finitely presented module, even bound, need
not be finite-dimensional over k. For example, if R = k〈x, y〉, then R/Rx is
bound but has the k-basis 1, y, xy, x2 y, . . . .

Taking N = M in Theorem 8.5, we obtain the desired generalization of
Proposition 4.6.12:

Corollary 5.8.6. Let M be a finitely presented bound module over R = k〈X〉.
Then EndR (M) is finite-dimensional over k. �

The monic normal form can also be used to describe factorizations of full
matrices over k〈X〉. First we need a bound on the degree of the factors, where
the degree of a matrix P = (pi j ) is defined as d(P) = max{d(pi j )}.
Lemma 5.8.7. Let R = k〈X〉 be the free k-algebra on X = {x1, . . . , xd} and
let C be an m × n matrix over R with a rank factorization

C = AB. (11)

Then there is an invertible matrix P such that d(AP) ≤ d(C), d(P−1 B) ≤ d(C).

Proof. Consider the free k-algebra S on x1, . . . , xd , y1, . . . , ym, z1, . . . , zn;
there is an embedding of R in S, defined by xi �→ xi , which is honest, since
R is a retract of S. We extend the degree on R to S by putting d(yi ) =
d(zi ) = 1.

In S we have, on writing y = (y1, . . . , ym), z = (z1, . . . , zn)T, yCz =
(y A)(Bz). Since (11) is a rank factorization, A is right regular and B is left
regular, therefore, by Corollary 2.4.5 there is an invertible matrix P such that
on writing AP = (a′

i j ), P−1 B = (b′
i j ), we have

d
(∑

yi a′
i j

)
+ d

(∑
b′

jk zk

)
≤ d

(
yi ci j z j

)
, (12)

where C = (ci j ). If we denote by α j the degree of the jth column of A′ and by β j

the degree of the jth row of B’, then (12) becomes α j + 1 + β j + 1 ≤ d(C) + 2,
hence α j ≤ d(C), and taking the maximum over j, we find that d(A′) ≤ d(C);
similarly d(B ′) ≤ d(C). �
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We remark that if in this lemma C is full, then any factorization into square
matrices is a rank factorization. We can now describe the possible factorizations
of a full linear matrix over k〈X〉.
Theorem 5.8.8. Let R = k〈X〉 and let C ∈ Rn be a monic matrix that is full.
Then C is not an atom if and only if either n = 0 or n > 1 and there exist
P, Q ∈ GLn(k) and r, s > 0 such that r + s = n and

PC Q =
(

A 0
D B

)
, A ∈ Rr , B ∈ Rs, D ∈ sRr . (13)

Proof. If (13) holds, then

PC Q =
(

A 0
0 I

) (
I 0
D I

) (
I 0
0 B

)
,

and A, B are again monic, hence (by Lemma 8.1) not invertible. We therefore
have a non-trivial factorization of PCQ and hence of C.

Suppose conversely that C = FG is a factorization of C. Any square factor
of C is again full, and if it is a non-unit, its degree is positive; moreover, by
Lemma 8.7 we may take F to be of degree 1. Being full, F is regular, so by
Corollary 8.4 there exist P ∈ GLn(k), U ∈ GLn(R) such that P FU = A ⊕ I ,
where A is monic r × r ; since F is a non-unit, we have r > 0 and since G is a
non-unit, r < n. Hence

PC =
(

A 0
0 I

) (
G ′

G ′′

)
. (14)

Now PC is linear, hence G ′′ is linear and G ′ has degree 0, again by the regularity
of Aλ (Lemma 8.1). Further, G ′ has r rows and since each factor in (14) is full,
G ′ has rank r, so there exists Q ∈ GLn(k) such that G ′ Q = (Ir , 0). It follows
that

PC Q =
(

A 0
0 I

) (
I 0
D B

)
=

(
A 0
D B

)
,

and this is of the required form. �

This result also provides a bound on the length of factorizations in terms
of n. We remark that if in a linear matrix A the cofactor of some xi is the unit
matrix, then A is monic, by definition; it is also full, for if I is the cofactor
of x1, say and we specialize x2, . . . , xd to 0, A becomes A0 + Ix1. If we now
specialize x1 to an element of k(t), an infinite field containing k, which is not
an eigenvalue of −A0, we obtain a non-singular matrix, hence A was full. For
such a matrix the criterion of Theorem 8.8 takes the following form:
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Corollary 5.8.9. Let R = k〈X〉 and let A = A0 + ∑
Ai xi be a linear n × n

matrix over R such that Ai = I for some i ≥ 0. Then A is an atom if and only
if A0, . . . , Ad act irreducibly on kn.

Proof. Clearly A is monic and full, so by Theorem 8.8 it is not an atom if and
only if there exist P, Q ∈ GLn(k) such that

P Ai Q =
(

Bi 0
Di Ci

)
, i = 0, 1, . . . , d. (15)

By hypothesis Ai = I for some i ≥ 0, so in particular PQ has the block rectan-
gular form (15), and hence so does P Ai P−1 = P Ai Q(P Q)−1. Now the result
follows by (15). �

This result makes it easy to construct matrix atoms; we record one important
case:

Corollary 5.8.10. Let R = k〈X〉 be a free algebra of rank at least N = n2

and let A1, . . . , AN be a k-basis of Mn(k). Then A = ∑
Ai xi , where the xi

are distinct elements of X, is an absolute matrix atom; in fact it remains an
atom under all commutative field extensions of k.

Proof. Since the Ai form a basis, we have In = ∑
αi Ai for suitable αi ∈ k,

where α1 �= 0, say. If we make a linear change of generators in R by writing y1 =∑
αi xi , y j = x j ( j �= 1), then A satisfies the hypothesis of Corollary 8.9 relative

to the y’s and hence is an atom; clearly it remains one under any extension of
the ground field. �

Let us return to eigenrings for a moment. We have seen that eigenrings of
regular matrices (over free algebras) are finite-dimensional over k (Theorem
8.5), a matrix atom has as eigenring a field (Proposition 3.2.4) and for a non-
zero element the eigenring is commutative (Proposition 4.6.15). The latter no
longer holds for matrices, for we shall see that any finite-dimensional k-algebra
can occur as eigenring of a regular matrix, and any skew field finite-dimensional
over k can occur as eigenring of a matrix atom.

Theorem 5.8.11. Let k be a commutative field and F a finite-dimensional k-
algebra. Then there exists a torsion module M over a free k-algebra R of finite
rank, such that EndR(M) ∼= F. Moreover, if F is a field, then M can be taken to
be Tor-simple.

Proof. Let [F : k] = n and embed F in E = Endk(F) ∼= kn by letting F act
on itself by left multiplications. We denote the image of F in E by F ′ and its
centralizer in E by G. Since F acts bicentrally on itself, the centralizer of G
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is F ′. Now G is finitely generated as k-algebra, by A0, A1, . . . , Am ∈ kn , say,
where we may take Am = I without loss of generality. Let R = k〈x1, . . . , xm〉
and put A = A0 + ∑

Ai xi ∈ Rn; it is clear that A is full and monic. By (9) and
(10), if M is the module presented by A, we have

EndR(M) ∼= I(A) ∩ kn = {P ∈ kn|P Ai = Ai Q, i = 0, 1, . . . , m and some Q}.
(16)

Since Am = I, we have Q = P on the right of (16); therefore EndR(M) is the
centralizer of the Ai , hence of G, and so EndR(M) ∼= F .

Suppose now that F is a field, finite-dimensional over k. If k is a finite field,
F is a commutative field extension of k (by Wedderburn’s theorem), and we can
write F = k(α) for some α ∈ F . If the minimal polynomial of α over k is p,
then F is the endomorphism ring of the simple torsion module R/p(x)R, where
R = k[x].

There remains the case when k is infinite. Let [F : k] = n; take a k-basis
f1, . . . , fn of F and with n distinct elements λ1, . . . , λn of k define matrices
A0, A1 ∈ Fn by

A0 = diag(λ1, . . . , λn), A1 =
∑

fi eii +
∑
i>1

ei1 +
∑
j>1

e1 j .

We claim that A0, A1 generate Fn as k-algebra. Since the λi are distinct, the
subalgebra generated by A0 contains all diagonal matrices over k, in particular
it contains each eii ; hence the subalgebra generated by A0, A1 also contains
ei1 = eii A1e11 and e1 j = e11 A1e j j , and so also ei j = ei1e1 j . Thus it contains
kn; it also contains fi eii = eii A1eii and so contains all of Fn .

Now Fn has just one simple left Fn-module, S say, up to isomorphism, and
[S : k] = n2. Consider the embedding Fn → Endk(S) ∼= Mn2 (k); since Fn acts
irreducibly on S, A0 and A1 act irreducibly on Mn2 (k) and if their images in
Mn2 (k) are A′

0, A′
1 then P = A′

0 + x1 A′
1 + x2 I is a matrix atom, by Corollary

8.9. Moreover, the centralizer of A′
0, A′

1 is the centralizer of Fn acting in Endk(S)
and so is isomorphic to F; hence if M is the module over R = k〈x1, x2〉 defined
by P, then M is Tor-simple and

EndR(M) ∼= I(P) ∩ kn.

As before this is the centralizer of A′
0, A′

1, i.e. F, as we had to show. �

Exercises 5.8

1. Verify that the proof of Theorem 8.3 shows every linear matrix over k〈X〉 to be
associated to a matrix of the form A ⊕ 0 ⊕ I, where A is monic.
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2◦. Extend Lemma 8.2 to matrices over Kk〈X〉 (Hint: Try the form A = A0 +∑
Ai j xi u j , where the {u j } form a left k-basis of K.)

3. (M. L. Roberts) Let R = Kk〈X〉 be a tensor K-ring. Show that every full matrix over
R is stably associated to a matrix C + ∑

Ai xi Bi , where the Ai are right comaximal,
the Bi are left comaximal and in each term Ai xi Bi the columns of Ai are linearly
independent over k, and likewise the rows of Bi .

4. Find a monic matrix over k〈X〉 that is not full. (Hint: Try a hollow matrix.)
5. (G. M. Bergman) Find a full linear matrix of the form (1) such that no k-linear

combination of A1, . . . , Ad is a regular element of kn (Hint: Linearize an element
of k〈X〉 that maps to 0 under every homomorphism k〈X〉 → k.)

6. (G. M. Bergman) Let R = K 〈X〉, where K is an infinite-dimensional persistent
division algebra (e.g. a commutative infinite algebraic field extension). Show that
EndR(R/x R) is infinite-dimensional over k, even though R/x R is a finitely presented
bound module.

7. Use Theorem 8.11 to find a matrix over R〈X〉 with C as eigenring, and a matrix
with the quaternions as eigenring.

8. (Cohn [76b]) Let K be a field that is a k-algebra. Show that two square matrices A,
B over K are conjugate over k if and only if xI − A is stably associated to xI − B
over Kk〈X〉. Deduce that if a matrix P is stably associated to xI − A, then A is
determined by P up to conjugation by a matrix over k.

5.9 Ascending chain conditions

In Section 3.2 we saw that any 2n-fir with left and right ACCn is n-atomic. To
prove a corresponding result in Section 5.7 we needed to assume that R is a
fir; but merely assuming left ACCn will enable us to split off a ‘maximal’ left
factor from any matrix of inner rank n:

Proposition 5.9.1. Let R be a 2m-fir and A an m × n matrix with a rank
factorization

A = P A′, where P ∈ m Rr , A′ ∈ r Rn, (1)

and where A′ is left prime. Then for any other rank factorization A = P ′ A′′

there is an r × r matrix V such that A′′ = V A′, P = P ′V . An expression (1)
with A′ left prime exists whenever R has left ACCm or is r-atomic.

Proof. Let A = P A′ = P ′ A′′, where P, P ′ have r columns and A′ is left
prime. Then

(P − P ′)
(

A′

A′′

)
= 0, hence ρ(P − P ′) + ρ

(
A′

A′′

)
≤ 2r,

by the law of nullity, but each summand is at least r, so ρ(A′, A′′)T = r and we



5.9 Ascending chain conditions 321

have (
A′

A′′

)
=

(
U
V

)
C, where U, V ∈ Rr , C ∈ r Rn.

Since A′ is left prime, U is a unit and so may be absorbed in C. Thus
C = A′, A′′ = V A′, A = P ′ A′′ = P ′V A′ = P A′. Since A′ is left full, it is left
regular and so P = P ′V , as claimed.

Now assume left ACCm and write A = P0 A0, where P0 ∈ m Rr , A0 ∈ r Rn

and A0 is left full. Since r ≤ m, we can choose a maximal r-generator submod-
ule of Rn containing Rr A0; this is of the form Rr A′, where the rows of A′ are
the generators. The equation (1) follows, and A′ is left prime by the maximality
of Rr A′.

When R is r-atomic, we write A = P1 A1, where P1 is m × r and A1 is
r × n; then A1 is left full. Let A′

1 be a full r × r submatrix of A1; then in any
factorization A1 = P2 A2, where P2 ∈ Rr , A2 ∈ rRn, P2 is a left factor of A′

1

and so the number of terms in a complete factorization of P2 is bounded by
the corresponding number for A′

1. Thus we can ensure that A2 is left prime by
taking P2 with a maximal number of factors. �

By restating the result in terms of modules we see that for the rings considered
every finitely presented module has a largest positive quotient, and dually,
a largest negative submodule; this was proved for the special case of firs in
Theorem 3.5.

Theorem 5.9.2. Let R be a 2m-fir that has left ACCm or is m-atomic, and
let M be an m-generator submodule of a free left R-module F. Denote by r
the least integer for which there is an r-generator submodule between M and
F, thus r ≤ m. Then there is a greatest r-generator submodule N between M
and F. �

Here ‘greatest’ is understood in the sense that N contains every r-generator
submodule of F containing M. Thus N/M is the greatest negative submodule
of F/M . A dual argument shows that every finitely presented right R-module
has a largest positive quotient. Thus we have

Corollary 5.9.3. Let R be a 2m-fir that has left and right ACCm or is m-
atomic, and let F be a free R-module of rank at most m with an m-generator
submodule M. Then F/M has a largest positive quotient and a largest negative
submodule. �

We now consider another chain condition that entails pan-ACC and holds
in all firs. A module M (over any ring R) is said to satisfy ACCdense if every
ascending chain of finitely generated submodules of M with bound quotients
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(or equivalently: dense inclusions) must break off. If a ring R satisfies ACCdense

as left (or right) module over itself, we shall say that R satisfies left (or right)
ACCdense.

To clarify the relation between ACCdense and ACCn we shall need a result on
chains with bound quotients. In a partially ordered set, two subsets of elements
will be called cofinal if each element of either is majorized by some element of
the other set.

Lemma 5.9.4. In an n-fir R, let M be a module with a sequence

M1 ⊆ M2 ⊆ . . . (2)

of submodules, each free of rank at most n, and assume that (2) is not cofinal
with any sequence of submodules all free of rank less than n. Then Mi/Mi−1 is
bound for all sufficiently large i.

Proof. Any Mi/Mi−1 that is not bound will have R as a direct summand, by
Corollary 1.4, and its complement corresponds to a submodule M ′

i of smaller
rank than Mi , so of rank less than n, such that Mi−1 ⊂ M ′

i ⊂ Mi . If this happens
for infinitely many i, then the sequence M ′

i is cofinal, but of rank less than n.
Hence the conclusion follows. �

Suppose now that R is an n-fir with left ACCdense. Given an ascending chain
of n-generator left ideals of R, let m ≤ n be the least integer for which our chain
is cofinal with a chain of left ideals that are free of rank at most m. Applying
Lemma 9.4 to this chain, we see that ultimately it has bound quotients and so
becomes constant. This proves

Corollary 5.9.5. For any n-fir, left ACCdense implies left ACCn. In particular,
a semifir with left ACCdense satisfies left pan-ACC. �

The next result elucidates the role of ACCdense in modules over semifirs:

Proposition 5.9.6. Let R be any ring and M an R-module. If every countably
generated submodule of M is free, then M satisfies ACCdense. Conversely, if R
is a semifir and M an R-module satisfying ACCdense and such that all finitely
generated submodules of M are free, then every countably generated submodule
of M is free.

Proof. Let M be a left R-module all of whose countably generated submodules
are free and consider a chain

M1 ⊆ M2 ⊆ . . .
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of dense inclusions of finitely generated submodules in M. Their union M ′ is
countably generated and hence free. Since M1 is a finitely generated submodule
of M ′, it involves only finitely many members of a basis of M ′, and so is
contained in a free direct summand of finite rank, N, of M ′, say M ′ = N ⊕ N ′,
where N ′ is also free. Let p : M ′ → N ′ be the projection onto N ′. For any
linear functional α on N ′, pα is a linear functional on M ′, zero on M1, hence by
density zero on each Mi , and so zero on M ′. It follows that N ′ = 0, so M ′ = N
is finitely generated and our chain must terminate.

Conversely, assume that R is a semifir, M satisfies ACCdense, and all its
finitely generated submodules are free. Let N be a submodule generated by
countably many elements u1, u2, . . . . Put N0 = 0 and for each i ≥ 0 let us
recursively construct Ni+1 as a maximal finitely generated submodule of N in
which Ni + Rui+1 is dense; this is possible by ACCdense. We claim that each
Ni is a direct summand in Ni+1. Indeed, let N ′

i be a direct summand of Ni+1

containing Ni that is free of least possible rank. Any linear functional α on N ′
i

that is zero on Ni will have for kernel a direct summand of N ′
i (and hence of

Ni+1), which contains Ni and is free of smaller rank than N ′
i (by Theorem 2.2.1

(e)), unless α = 0. But N ′
i was of minimal rank, hence α = 0 and Ni is dense

in N ′
i . By construction of Ni we therefore have N ′

i = Ni .
We thus have Ni+1 = Ni ⊕ Pi+1, say, where Pi+1, being finitely generated,

is free. Hence N = ∪Ni = P1 ⊕ P2 ⊕ P2 . . . is also free. �

Bearing in mind Theorem 1.5, we can state the result as

Corollary 5.9.7. Let R be a semifir. Then a countably generated R-module is
free if it has ACCdense and is n-unbound for all n. Moreover, a semifir is a right
ℵ0-fir if and only if it satisfies ACCdense. �

The first part also provides a sharpening of Theorem 2.2.3.

Corollary 5.9.8. If R is a left ℵ0-fir, then any free left R-module satisfies
ACCdense and hence pan-ACC. �

As a consequence we can show that k〈〈X〉〉 is not an ℵ0-fir; we saw in
Exercise 3.3.9 that it is not a fir.

Proposition 5.9.9. If X is a set with more than one element, then k〈〈X〉〉 is
not an ℵ0-fir; likewise the subring k〈〈X〉〉alg of algebraic power series is not
an ℵ0-fir .

This is in contrast to k〈〈X〉〉rat, which will be shown to be a fir in Theorem
7.11.7.



324 Modules over firs and semifirs

Proof. Let x, y be distinct elements of X and consider the element v =∑∞
0 xi yxyi . It is clear that v satisfies the equation

v = xvy + yx, (3)

and moreover, (3) determines v uniquely as an algebraic power series. Let
an be the left ideal of k〈〈X〉〉 generated by x, xy, xy2, . . . , xyn, vyn+1. These
elements are left linearly independent, for if

∑
ai xyi + bvyn+1 = 0, then ai

must vanish as left cofactor of xyi (i ≤ n), so also b = 0. Hence an is free on
these elements as basis. Now an/an−1 is bound, for if λ is any linear functional
that vanishes on xyi (i < n) and vyn , then

0 = (vyn)λ = (xvyn+1 + yxyn)λ = x(vyn+1λ) + y(xyn)λ,

therefore vyn+1λ = xynλ = 0, and so λ = 0. On the other hand, xyn /∈ an−1,
so an−1 ⊂ an . This shows that k〈〈X〉〉 does not satisfy ACCdense and so by
Corollary 9.8 it is not a left ℵ0-fir.

Now consider R1 = k〈〈X〉〉alg; here the argument is the same: we
have a semifir, and again obtain a sequence of left ideals violating left
ACCdense. �

Thus, the power series ring is an example of a semifir satisfying pan-ACC
but not ACCdense. By contrast, in Bezout domains ACCdense can be replaced by
pan-ACC:

Proposition 5.9.10. Over a right Bezout domain R, any torsion-free (= 1-
unbound) left R-module with pan-ACC has ACCdense. Hence a right Bezout
domain with left pan-ACC is a left ℵ0-fir.

Proof. Let M be a torsion-free left R-module and take a chain

M1 ⊆ M2 ⊆ . . . (4)

of finitely generated submodules with dense inclusions. By Proposition 2.3.19,
any finitely generated torsion-free left R-module is free. If for some i > 1,

rk Mi−1 < rk Mi , then the induced map K ⊗ Mi−1 → K ⊗ Mi is not surjec-
tive, where K is the field of fractions of R; hence there is a non-zero K-linear
functional on K ⊗ Mi that vanishes on K ⊗ Mi−1. By right multiplication with
an appropriate element of R we may assume that the induced map takes Mi

into R. Thus we have a linear functional on Mi that is zero on Mi−1 with-
out vanishing, and this contradicts the fact that Mi/Mi−1 is bound. Thus all
the ranks in (4) must be equal, to n say, and so the sequence terminates by
ACCn . �
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Proposition 9.10 cannot be simplified by taking ACCn for a fixed n only, since
even over Z the conditions ACCn(n = 1, 2, . . .) are independent (see Exercise
9). If we combine the first part of Proposition 9.10 with Corollary 9.7, we obtain
a somewhat surprising conclusion:

Corollary 5.9.11. Let R be a right Bezout domain with left pan-ACC. Then
any countably generated left R-module embedded in a direct power RI is
free. �

This shows, for example, that every countably generated subgroup of ZI is
free, although of course ZI is not free, unless I is finite (by Lemma 3.3.13).

Exercises 5.9

1. (Continuation of Exercise 1.10) If R is a semifir and C the class of R-modules
that are n-unbound for all n and have ACCdense, show that C is closed under the
operations listed in (i) but not, in general, (ii). Show that R must have left ACCdense

for C to be non-trivial. If R is right Bezout, show that C = ∩Cn and hence in this
case C admits (ii) too.

2. Let R be a right Ore domain. Show that if a torsion-free left R-module satisfies
ACC on submodules of rank at most n, for all n, then it also satisfies ACCdense.
(Hint: Imitate the proof of Proposition 9.10).

3∗. (Bergman [67]) Let R be an integral domain that is not a right Ore domain. Show
that RN as left R-module does not have ACCdense. (Hint: Let a, b ∈ R be right
linearly independent and define ei , fi ∈ RN by eiπ j = δi j , fiπ j = a j−i b, where
ar = 0 for r < 0 and π j is the projection on the jth factor. Verify that R fi is
dense in Rei + R fi+1 and deduce that the Mi = Re1 + · · · + Rei + R fi+1 form
a strictly ascending chain of dense inclusions.)

4. Verify that the first part of Proposition 9.1 holds for Sylvester domains.
5. Let R be a semifir and a = ∪ai , where ai is a finitely generated left ideal properly

containing ai−1 as a dense submodule. Show that a is countably generated but not
free.

6. Let kF be the group algebra over k of the free group F on x, y, z and let R be the
subalgebra generated by z and all z−n x, z−n y(n = 1, 2, . . .). Show that R is a right
but not left fir (see Theorem 2.10.3). Show also that (x, y) cannot be written as
u(x ′, y′), where (x ′, y′) is left prime (see Cohn [82a]).

7. Using Exercise 1.2, show that any left hereditary integral domain has left ACC1.
8. Prove the following converse of Proposition 9.10: If R is a semifir over which

each torsion-free left R-module with pan-ACC satisfies ACCdense, then R is right
Bezout.

9∗. (Bergman [67]) (i) For any prime number p denote by Zp the ring of p-adic
integers and by Qp = Zp[p−1] its field of fractions (the p-adic numbers), so that
Z[p−1] ∩ Zp = Z. Let 1, x1, . . . , xn be any Z-linearly independent elements of
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Zp and define a subgroup G of Qn+1
p by the equation

G = (Zn+1
p + (1, x1, . . . , xn)Qp) ∩ Z[p−1]n+1.

Verify that any finitely generated subgroup of G can be generated by n + 1 ele-
ments. Show further that for any h > 0 there exists a = (1, a1, . . . , an) ∈ Zn+1

such that p−ha ∈ G and deduce that G is not finitely generated. Hence show that
G does not satisfy ACCn+1.

(ii) Let G be defined as in (i) and suppose that C is a union of n-generator
subgroups in G. Show that C is annihilated by a non-zero Q-linear functional λ

with coefficients in Z. Show further that C is contained in p−hZn+1, where ph is the
highest power of p dividing λ((1, x1, . . . , xn)). Deduce that C is finitely generated
and that G has ACCn . This shows that the conditions ACCn(n = 1, 2, . . .) form a
strictly increasing sequence, even over Z.

10◦. Find an ACC (of the type ACCdense) such that every semifir satisfying this condition
on the left is a left fir, but such that not every semifir satisfying the condition is a
left PID.

11◦. Find an example of a left fir that is elementarily equivalent to a fir, but is not
two-sided.

12◦. For a left Ore domain, does left ACCn for some n, or left ACCdense imply the
corresponding condition for free modules?

13. In Proposition 9.4, show that the Mi/Mi−1 are torsion modules for all large i.
14. An involution of a ring R is an anti-automorphism whose square is the identity.

If R is any ring with an involution ∗, verify that the map A �→ AH, where the
entries of AH are aH

i j = a∗
j i (A = (ai j )), is an involution of Rn . Let R be a semifir

with involution ∗ and let A ∈ Rn satisfy AH = A. Show that if ρ A = r , then
A = P A1 P H , where P ∈ nRr and AH

1 = A1. If moreover R is a fir, show that P
may be taken to be right prime.

15◦. Does the conclusion of Corollary 9.11 hold for left ℵ0-firs?

5.10 The intersection theorem for firs

In this section we shall apply the ACC for bound submodules of finitely related
modules over a fir to show that the intersection of the powers of a proper ideal
in a fir is zero. In fact we shall prove a slightly more general result that will be
needed in Chapter 6.

We begin by considering an arbitrary ring R. If a1, a2, . . . is any sequence
of (left, right or two-sided) ideals of R, we define

∏
i≥1

ai =
⋂
n≥1

a1a2 . . . an.

Clearly the left-hand side is a (left, right, two-sided) ideal whenever all the ai

are.
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Lemma 5.10.1. Let a1 be a right ideal and let a2, a3, . . . be a sequence of
two-sided ideals of a ring R, and assume that a1 is free as right R-module, with
basis (eλ). Then any a ∈ 
ai can be written as

a =
∑

eλaλ, where aλ ∈
∏
i≥2

ai . (1)

Proof. Given n > 0, we have a ∈ a1a2 . . . an , by hypothesis, so there is an
expression a = ∑

ui1ui2 . . . uin , where uir ∈ ar ; in particular there is an expres-
sion a = ∑

eλaλ with

aλ ∈ a2 . . . an. (2)

Since the eλ are right linearly independent, the aλ are independent of n, and (2)
holds for all n, which is the assertion. �

We next give a condition for a homomorphic image of a non-zero bound
module to be non-zero.

Lemma 5.10.2. Let R be a ring and E ∈ mRr , B ∈ rRn such that EB is left
regular and Rr/Rm E is a non-zero bound module. Then R rB/Rm EB is also a
non-zero bound module.

Proof. Rr B/Rm E B is a homomorphic image of Rr/Rm E and so is also
bound. If it were 0, we would have B = C E B for some C ∈ rRm . Hence EB =
ECEB and since EB is left regular, it follows that EC = I, therefore Rm E is a
direct summand in Rr , so Rr/RmE is projective, contradicting the assumption
that it is non-zero and bound. �

We shall want to apply this result in the following form:

Corollary 5.10.3. Let R be a ring and a a proper non-zero free right ideal
of R, with basis (eλ). Given a1, . . . , ar ∈ a, left and right linearly independent
over R, write

ai =
∑

eλbλi . (3)

Then
∑

Rbλi/
∑

Ra j is a non-zero bound module.

Proof. In Lemma 10.2 we shall take for E the row vector whose entries
are some of the eλ including all those occurring with a non-zero coefficient
in (3), and let B be the r × n matrix formed by the b’s in (3). The left linear
independence of the a’s means that EB is left regular; hence E is also left
regular. Since the ai are right linearly independent, E is also right regular;
hence Rr/Rm E is bound. Moreover, since a is a proper right ideal, E has no
right inverse; by regularity it has no left inverse and so Rr/Rm E �= 0. It follows
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by Lemma 10.2 that Rr B/Rm E B �= 0, and it is bound, as homomorphic image
of Rr/Rm E . �

We can now prove a general form of the intersection theorem:

Theorem 5.10.4. Let R be a left fir and a1, a2 . . . a sequence of proper two-
sided ideals that are free as right ideals. Then

∏
i≥1 ai = 0.

Proof. Suppose that
∏

ai �= 0 and let c1 be a finitely generated non-zero left
ideal contained in

∏
ai . Let a1, . . . , ar be a basis of c1 and (eλ) a basis of a1 as

right ideal, and write ai = ∑
eλbλi . Then bλi ∈ 
 j≥2a j by Lemma 10.1, hence

c2 = ∑
Rbλi ⊆ 
 j≥2a j and by Lemma 10.3, c2/c1 is bound and non-zero. By

induction we obtain a sequence of finitely generated left ideals cn such that
cn ⊆ 
i≥nai and we have the strictly ascending chain

c1 ⊂ c2 ⊂ . . .

with bound quotients. Thus we have an infinite ascending sequence of bound
submodules of R/c1, which contradicts Corollary 1.7. �

In particular, taking R to be a two-sided fir, we find that the conclusion
holds for any sequence of proper two-sided ideals. Taking all ideals equal, we
obtain

Corollary 5.10.5. In a two-sided fir the intersection of the powers of any
proper two-sided ideal is zero. �

Exercises 5.10

1. Give a direct proof of Corollary 10.5 for principal ideal domains.
2. Let R be an integral domain with left ACC1. Show that any proper two-sided ideal

a that is principal as right ideal satisfies ∩an = 0.

3. Let a be a finitely generated ideal in a commutative ring R. If a2 = a, show that
a = eR for an idempotent e.

4◦. Find a generalization of Exercise 3 to the non-commutative case.
5. Show that in a left fir R, if ab ⊆ a′b for two-sided ideals a, a′ and a left ideal b,

then a ⊆ a′ (see also Section 6.6).
6. Show that the conclusion of Corollary 10.5 does not hold for the one-sided fir

constructed in Section 2.10.
7. Let F be a free group and kF the group algebra of F over k. If a is the augmentation

ideal (induced by the kernel of the homomorphism F → 1), show that ∩an = 0.
Define the lower central series of F recursively by γ1 F = F, γn+1 F = [γn F, F]
(commutator subgroup), and show that for any u ∈ γn F, u ≡ 1(modan); deduce
that ∩γn F = 1 (Magnus’ theorem).
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8. (G. M. Bergman) Show that in the situation of Lemma 10.3, for the free algebra the
modules Rr/Rm E and Rr B/Rm E B need not be isomorphic (Hint: If R = k〈x, y〉,
take E = (x, y), B = (1, 0)T.)

Notes and comments on Chapter 5

Sections 5.1 and 5.2, based on Cohn [73d, 77a], describe the background on modules in
the more general setting of hereditary rings. The notion of torsion class used in Section
5.1 is basic in the study of torsion theories (see e.g. Stenström [75]), but we need only the
most elementary properties; in any case the usual treatment deals mainly with hereditary
torsion theories (in which the torsion class admits subobjects), and so does not apply
here. The transpose Tr(M) = Ext1

R(M, R) has also been used by M. Auslander in the
study of Artin algebras.

Torsion modules over firs were first described in Cohn [67] and in FR.1 formed the
basis of the factorization of full matrices. The positive and negative modules (correspond-
ing to left and right full matrices) are studied in Cohn [77a, 82a]. The Krull–Schmidt
theorem for finitely presented modules over firs (Theorem 3.9) was new in FR.2; it
has also been obtained independently by Schofield (unpublished). The application in
Theorem 3.14, giving a conceptual proof of the embedding of a fir in a field, is due to
Bergman [2002].

The treatment in 5.4 essentially follows Bergman [67], but Theorem 4.9 (which is
used in Section 5.5) is taken from Cohn [74b], and Proposition 4.11 is new (Proposition
4.11 of FR.2 has become Lemma 0.3.3). Sylvester domains were introduced by Dicks
and Sontag [78], and Section 5.5 is based on this source, but the presentation has been
modified here so as to be independent of the results of Chapter 7. The law of nullity first
occurs (for the case of fields) in Sylvester [1884]; in the case of semifirs it first appeared
in FR.1. In studying localization (Chapter 7) we shall need to consider pseudo-Sylvester
domains; their properties, described in Section 5.6 are taken from Cohn and Schofield
[82]. Lemma 6.3 is due to Bergman, and is used here in the proof of Proposition 6.4.
Some of the results from Section 5.6 of FR.2 are now to be found in Sections 0.1 and
0.4. The analysis of matrix relations and factorization in Section 5.7 was mostly new in
FR.2; see also Cohn [82d].

The normal form that is the subject of Section 5.8 is due to Roberts [84] and all
the results of this section are taken from this source, except for Lemma 8.1, which is
implicit in Roberts [82], where a more general form of Exercise 8.3 also occurs. The
uniqueness of Theorem 8.2 was proved in a special case in Cohn [76b]. Lemma 8.7 on
the factorization of matrices over a free algebra, and Corollary 8.6 on which it depends,
are due to Schofield, who is also responsible for the elegant proof of Theorem 8.11
(replacing an earlier proof by Roberts that required a larger rank in (ii)).

The study of ascending chain conditions in Section 5.9 is taken from Bergman [67],
with results 9.1–9.3 added from Cohn [82a]. Proposition 9.6 was previously stated for
ideals in ℵ0-firs, while Proposition 9.9 was an exercise in FR.1. Corollary 9.7 generalizes
Pontryagin’s theorem: A countably generated torsion-free abelian group with pan-ACC
is free (Pontryagin [39], p. 168). In the case of Z, related results have been obtained
by Specker [50], who shows, for example, that in the subgroup B of ZI consisting of
all bounded sequences, every subgroup of cardinal at most ℵ1 is free. Dubois [66] and
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independently Nöbeling [68] have shown that B itself is free, and more recently Bergman
[72a] has given a very brief proof of this fact. The intersection theorem in Section 5.10
was first proved in the case where all the ai are equal, by Cohn [70c], and this appeared
in FR.1. It was greatly generalized by Bergman [72b,73]; a special case of his results
yields Theorem 10.4 as well as a slight simplification of the proofs. Lemma 10.2 was
suggested by G. M. Bergman, as a way of proving Corollary 10.3. Proposition 5.10.12
of FR.2 on α-directed systems of α-firs, has now become Proposition 2.3.24.

The specialization lemma that occupied Section 5.9 in FR.2 is now part of Section
7.8.



6

Centralizers and subalgebras

The first topic of this chapter is commutativity in firs. We shall find that any
maximal commutative subring of a 2-fir with strong DFL is integrally closed
(Corollary 1.2), and the same method allows us to describe the centres of 2-
firs as integrally closed rings and make a study of invariant elements in 2-firs
and their factors in Sections 6.1 and 6.2. The well-known result that a simple
proper homomorphic image of a principal ideal domain is a matrix ring over a
skew field is generalized here to atomic 2-firs (Theorem 2.4). In Section 6.3 the
centres of principal ideal domains are characterized as Krull domains. Further,
the centre of a non-principal fir is shown to be a field in Section 6.4.

Secondly we look at subalgebras and ideals of free algebras in Section 6.6;
by way of preparation submonoids of free monoids are treated in Section 6.5. A
brief excursion into coding theory shows how the Kraft–McMillan inequality
can be used to find free subalgebras, and the fir property of free algebras is
again derived (Theorem 6.7). Section 6.7 is devoted to a fundamental theorem
on free algebras: Bergman’s centralizer theorem (Theorem 7.7).

Section 6.8 deals with invariants under automorphisms of free algebras, and
Section 6.9 treats the Galois correspondence between automorphism groups and
free subalgebras, as described by Kharchenko. The final section, 6.10, brings a
result on the structure of Aut(k〈x, y〉), showing all these automorphisms to be
tame (Czerniakiewicz–Makar–Limanov theorem), by exhibiting this group as
a free product with amalgamation.

6.1 Commutative subrings and central elements in 2-firs

Just as commutative 2-firs have a rather special form, so it is possible to say
more about commutative subrings of 2-firs. Assuming strong DFL, we shall
show that maximal commutative subrings are integrally closed. We recall that

331



332 Centralizers and subalgebras

if A ⊆ A′ are commutative integral domains, then an element y ∈ A′ is integral
over A if there is a monic equation for y with coefficients in A : yn + a1 yn−1 +
· · · + an = 0 (ai ∈ A). Equivalently, the A-module generated by the powers of y
is finitely generated over A. The set of all elements of A′ integral over A forms a
subring Ā of A′, the integral closure of A in A′, and A is integrally closed in A′ if
Ā = A. By a finite integral extension of A in A′ we understand a ring B between
A and A′ that is finitely generated as A-module. Clearly it then follows that all
elements of B are integral over A. Suppose that B is a finite integral extension of
A in its field of fractions k. Then we can write B = ∑n

1 Aui , where ui ∈ k, or
equivalently, B = ∑

ui A. The ui may be brought to a common denominator,
say ui = ai d−1(ai , d ∈ A); then B = � Aai d−1, and so Bd ⊆ A. This means
that the conductor of A in B, defined as

f = {a ∈ A|Ba ⊆ A},
is different from 0. We note that f may also be described as the largest ideal in
A that is also an ideal in B.

We begin with a result extending embeddings of commutative rings to inte-
gral extensions.

Proposition 6.1.1. Let R be a 2-fir, A a commutative subring of R and B
a finite integral extension of A in its field of fractions. Then there exists an
injection f : B → R and e ∈ R×, such that

ex = x f.e for all x ∈ A. (1)

If moreover, R has right strong DFL (ba R ∩ a′ R 	= 0, where a, a′ are similar,
implies ba ∈ a′ R), then e can be taken to be 1.

Proof. Since B is finite integral over A, there exists c ∈ A× such that Bc ⊆ A.
Put c = Bc; this is a finitely generated non-zero ideal of A (and of B). Any two
non-zero elements of c have a non-zero common multiple in A, hence in R; since
R is a 2-fir, it follows that Rc is principal, say Rc = Re for some e ∈ R×. We
have eA ⊆ RcA = Rc = Re; hence there is a homomorphism f0 : A → R such
that

ea = a f0.e for all a ∈ A.

Clearly f0 is injective; moreover, if a ∈ Bb (a, b ∈ A), then

a f0.e = ea ∈ Rea = Rca ⊆ RcBb ⊆ Rcb = Reb = Rbf0.e,

hence a f0 ∈ R.b f0. By Proposition 0.7.5 there exists an injective homomor-
phism f : B → R extending f0, and this proves (1).



6.1 Commutative subrings and central elements in 2-firs 333

Suppose now that R has right strong DFL. Let q ∈ B, say q = ad−1, a, d ∈
A. Then a = qd, so a f = q f.d f , hence

q f.ed = q f.d f.e = a f.e = ea ∈ eR.

By right strong DFL, q f.e ∈ eR, say q f.e = e.r . So we have

erd = q f.ed = ea,

therefore rd = a. Thus a = qd implies a = rd for some r ∈ R, and so by
Proposition 0.7.5 (with f = identity) we find that q 
→ r is a well-defined homo-
morphism f : B → R such that a f = a for all a ∈ A, as claimed. �

Corollary 6.1.2. In a 2-fir with right strong DFL every maximal commutative
subring is integrally closed in its field of fractions.

Proof. Let R be a 2-fir with right strong DFL, A a maximal commutative sub-
ring and B a finite integral extension of A in its field of fractions. By Proposition
1.1, there is an injection f : B → R that reduces to the identity on A. But B is
commutative, so we have B = A, by the maximality of A. �

Corollary 6.1.3. The centre of a 2-fir is integrally closed in its field of frac-
tions.

Proof. Let R be a 2-fir, denote its centre by C and suppose that B is a finite
integral extension of C in its field of fractions. By Proposition 1.1 there exists
an embedding f : B → R such that a f = a for all a ∈ C (because C is the
centre), so we may assume that C ⊆ B ⊆ R. Let b ∈ B, say a = cb(a, c ∈ C);
then for any r ∈ R,

cbr = ar = ra = rcb = crb,

hence br = rb, so b ∈ C . This shows that C = B, which establishes the
result. �

To obtain further information on the centres of atomic 2-firs we consider the
set Inv(R) of invariant elements of R, i.e. regular elements c such that cR = Rc.
We recall from Proposition 1.4.6 that in any ring R a regular element c is
invariant if and only if the left and right ideals of R generated by c are both
two-sided; moreover, if R is an integral domain and a R = Ra′, then the proof
of Proposition 1.4.6 shows that a′ is associated to a. Such an ideal will be called
an invariant principal ideal. In a 2-fir we have

Proposition 6.1.4. In any 2-fir the invariant principal ideals form a sublattice
of the lattice of all ideals.
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Proof. Let a R = Ra, bR = Rb be two invariant principal ideals in a 2-fir
R. Then 0 	= ab ∈ a R ∩ bR, hence a R + bR = d R = Ra + Rb = Rd ′, and
a R ∩ bR = m R = Ra ∩ Rb = Rm ′. By Proposition 1.4.6, d R = Rd, m R =
Rm and so d and m are invariant, as claimed. �

This result shows that in any 2-fir R the monoid Inv(R) of invariant elements
is lattice-ordered by divisibility. Thus any two invariant elements have an HCF
and this is the same whether calculated in Inv(R) or in R; similarly for the LCM.

We now add atomicity to our assumptions; we recall that a prime element is
an invariant non-unit p such that

p|ab implies p|a or p|b;

this has a meaning since left and right divisibility by p coincide, by invariance.
Further we define an Inv-atom as an invariant element that is an atom within
Inv(R). Thus an invariant atom will always be an Inv-atom, but not conversely.
The ring R is said to have unique factorization of invariant elements if Inv(R) is
a UF-monoid, as defined in Section 0.9. By applying Theorem 0.9.4 we obtain
the following description of UF-monoids:

Theorem 6.1.5. For any ring R the following conditions are equivalent:

(a) R is a ring with unique factorization of invariant elements,
(b) R satisfies ACC on invariant principal ideals and any two invariant elements

have an HCF in Inv(R),
(c) R satisfies ACC on invariant principal ideals and any two invariant elements

have an LCM in Inv(R),
(d) Inv(R) is atomic and every Inv-atom is prime. �

We note that e.g. the second part of (b) certainly holds if any two invariant
elements have an HCF in R and this HCF is invariant. If we merely know that
a, b ∈ Inv(R) have a (left or right) HCF d in R, we cannot assert that d is
invariant, though there is an important case in which this holds, namely when
R is a 2-fir, as Proposition 1.4 shows. If we apply Theorem 1.5 in this case, we
obtain a factorization theorem for invariant elements:

Theorem 6.1.6. Every atomic 2-fir has unique factorization of invariant ele-
ments: thus every non-unit invariant element c can be written as a product of
Inv-atoms

c = a1 . . . ar (2)

and if

c = b1 . . . bs (3)
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is any other factorization of c into Inv-atoms, then s = r and there is a permu-
tation i 
→ i ′ of 1, . . . , r such that b′

i is associated to ai . Moreover, any order
of the factors in (2) can be realized. �

In terms of ideals Theorem 1.6 states that in an atomic 2-fir the ideals with
invariant generator form a free commutative monoid under ideal multiplication.
Of course this is merely a reflection of the fact that a lattice-ordered group with
descending chain condition (on the positive elements) is necessarily free abelian
(Birkhoff [67], p. 298).

In certain cases the last result can be extended to matrix rings. Let us call an
n × n matrix C over a ring R right invariant if it is right invariant as element
of Rn , thus C is regular and for each X ∈ Rn there exists X ′ ∈ Rn such that
XC = C X ′. We remark that over any Sylvester domain a right invariant matrix
must be full. For if C = P Q is a rank factorization, where P is n × r and
Q is r × n, suppose that r < n. Then by Theorem 5.4.9, P contains a full
r × r submatrix, say in the first r rows, so there exists P ′ ∈ n Rn−r such that
P1 = (P, P ′) is full and so right regular. Put Q1 = (Q, 0)T; then C = P1 Q1 and
since C is right invariant, there exists P2 ∈ Rn such that P1C = CP2 = P1 Q1 P2,
hence C = Q1 P2. But Q1 is not left regular, so neither is C, a contradiction.
This shows that C must be full.

To describe the form of right invariant matrices, we shall use the following
two lemmas:

Lemma 6.1.7. Let R be a ring, γ ∈ R and U ∈ GLn(R). If γ is right invariant
in R, then γU is right invariant in Rn.

Proof. Suppose that γ is right invariant. For any x ∈ R we have xγ = γ x ′,
for a unique x ′ ∈ R; hence there is for any X ∈ Rn , a unique X ′ ∈ Rn satisfying
Xγ = γ X ′ and it follows that XγU = γ X ′U = γU.U−1 X ′U . �

Lemma 6.1.8. For any ring R and any n > 1 the following conditions are
equivalent:

(a) there exists C ∈ Rn that is right invariant but cannot be written in the form
C = γU, where γ ∈ R is right invariant and U ∈ GLn(R),

(b) there exists a projective left R-module P such that
(b.i) P is not free of rank 1,

(b.ii) Pn ∼= Rn, and
(b.iii) P contains a regular element p such that for every r ∈ R there is a

unique endomorphism of P mapping p to rp,
(c) R has a two-sided ideal I with zero left annihilator, such that I n ∼= Rn, as

right R-modules, but I is not free of rank 1.
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Proof. (a) ⇒ (b). Let C ∈ Rn be right invariant; then XC = C X ′, where
X 
→ X ′ is an endomorphism of Rn , injective since C is regular. Applied to the
matrix units ei j this yields a set of matrices e′

i j that again satisfy the relations for
matrix units. Writing P = Rne′

11, we obtain the isomorphism Rn ∼= Pn . Thus
P satisfies (b.ii).

If we now apply the relation e11C = Ce′
11 to the row vector e1 = (1, 0, . . . , 0)

and write p = e1C , we obtain p = pe′
11, hence p ∈ P . We next apply the

relation re11C = C(re11)′ (for any r ∈ R) to e1 and find that r p = p(re11)′,
which is (b.iii), and it remains to prove (b.i). Suppose then that P is free of rank
1, say P = Rq1. Then the above p can be written as γ q1 for some γ ∈ R. Writing
qi = q1e1i

′(i = 2, . . . , n), we see that Rqi ∼= P and q1, . . . , qn are left linearly
independent and hence form a basis of Pn ∼= Rn . If the matrix mapping ei to qi

is U, this is invertible and we find that C = γU , where the right invariance of
C in Rn implies the right invariance of γ in R. This contradicts (a) and it shows
that (b.i) holds.

(b) ⇔ (c) by the duality of projective modules. For the left module map
ψ : R → P given by r 
→ r p in (b) dualizes to a map of right modules ψ∗ :
P∗ → R; the uniqueness in (b.iii) means that ψ has a dense image and it follows
that ψ∗ is injective, so that we may regard P∗ as a right ideal I of R. The existence
part in (b.iii) corresponds to the condition that I is mapped into itself by left
multiplication by all r ∈ R, i.e. that I is a two-sided ideal and the regularity of
p in (b.iii) amounts to saying that ψ is injective, i.e. I has zero left annihilator.
Of course (b.i) and (b.ii) translate to the corresponding conditions in (c) on the
right R-module structures of I and I n .

(b)⇒ (a). Assume (b) and write

Rn ∼= P1 ⊕ · · · ⊕ Pn, (4)

where the Pi are pairwise isomorphic modules satisfying (b.i)–(b.iii). Let p1 ∈
P1 have the properties of p in (b.iii), let pi ∈ Pi (i = 2, . . . , n) be the element
of Pi corresponding to p1 under the given isomorphism and denote the matrix
mapping each ei to pi by C. Since each pi has zero annihilator, it follows
that C is left regular. By (b.iii) (and the isomorphism Pi ∼= Pj ) it follows that
for each X ∈ Rn there exists a unique X ′ ∈ Rn such that XC = C X ′, and the
uniqueness of X ′ shows that C is also right regular. Thus C has been shown to
be right invariant. If e11C = Ce11

′, then e11
′ is the projection of (4) on P1. If we

had C = γU , where γ is right invariant, then Y = U−1e11U would satisfy the
equation e11C = CY , by which we just characterized the projection onto P1.
Hence we would have P1 = Re1U , a free module on e1U , which contradicts
(b.i). Therefore C cannot have the form γU and (a) follows. �
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Suppose that R is a projective-free ring; then (c) holds neither in R nor its
opposite R◦; hence we obtain

Corollary 6.1.9. Let R be a projective-free ring. Then any right invariant
matrix C over R has the form

C = γU, (5)

where γ is a right invariant element of R and U ∈ GLn(R). If moreover, C is
invariant, then it has the form (5), where γ is invariant. �

Combining this result with Theorem 1.6, we obtain

Theorem 6.1.10. Over a fir R every invariant matrix can be written as a
product of Inv-atoms in R and an invertible matrix over R, and the factorization
is unique up to associates and the order of the factors. �

Let us return to the case of elements (Theorem 1.6). In order to apply this
result to study the centre of a 2-fir we need to recall some facts on valuations.
Let A be a commutative integral domain and k its field of fractions; any homo-
morphism v : A× → �≥0 into the positive cone of a totally ordered additive
group � (with the convention v(0) = ∞), such that

v(a − b) ≥ min{v(a), v(b)},
is called a general valuation. Such a valuation can always be extended in just
one way to a valuation of k, again written v, and the set kv = {x ∈ k | v(x) ≥ 0}
is a local Bezout domain containing A; kv is called the valuation ring of v. Now
the ring Ac = ∩ kv , where v ranges over all general valuations on A, consists
precisely of all elements of k that are integral over A; thus Ac is just the integral
closure of A in k, in fact A is integrally closed if and only if Ac = A (see e.g.
BA, Section 9.4).

There is a related construction that we shall need here. This arises if instead
of general valuations we limit ourselves to Z-valued valuations. Let A be a
commutative integral domain and k its field of fractions, as before. If there is
a family V of Z-valued valuations on k such that (i) for any x ∈ A×, v(x) ≥ 0
for all v ∈ V , with equality for almost all v and (ii) A = ∩ kv , then A is said
to be a Krull domain. More generally, suppose that there is a family V of Z-
valued valuations on A satisfying (i); then A∗ = ∩ kv is clearly a Krull domain
containing A.

From our earlier remarks it is clear that every Krull domain is integrally
closed. Every commutative UFD is a Krull domain: we take V to be the family
of valuations associated with the atoms of A. Likewise every Noetherian inte-
grally closed domain is a Krull domain; here V is the class of all valuations
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associated with the minimal prime ideals of A (see Bourbaki [72], Chapter 7, §1,
No. 3).

We now have the following sharpening of a special case of Corollary 1.3.

Theorem 6.1.11. The centre of an atomic 2-fir is a Krull domain.

Proof. Let R be an atomic 2-fir, C its centre and k the field of fractions of C.
By Theorem 1.6, each a ∈ C× has a decomposition into Inv-atoms

a = u
∏

pαp (u ∈ U (R), αp ≥ 0).

Fix the Inv-atom p and consider the function vp defined on C by

vp(a) = αp.

Clearly this is Z-valued, in fact it is non-negative on C, and vp(a) = 0 for almost
all p. Hence C∗ = ∩ kv is a Krull domain containing C; we claim that C∗ = C .
Let d ∈ C∗, say d = ab−1, where a = u

∏
pαp , b = v

∏
pβp , u, v ∈ U (R) and

αp ≥ βp. Since a = db, we have u
∏

pαp = dv
∏

pβp ; ifβp > 0, we can cancel
p, replacing αp by αp − 1 and βp by βp − 1. After finitely many steps we find
u1

∏
pαp−βp = dv1, where u1, v1 are units, possibly different from u, v because

the p′s are merely invariant and not central. It follows that d ∈ R; now we find
as in the proof of Corollary 1.3 that d ∈ C , i.e. C∗ = C . �

As we shall see in Section 6.3, this theorem is best possible, in the sense
that any Krull domain can occur as the centre of an atomic 2-fir. It follows in
particular that any fir has a Krull domain as centre, but in Section 6.4 we shall
see that the centres of non-Ore firs are much more restricted.

Exercises 6.1

1. Given integral domains A ⊆ B, an element y ∈ B is called left integral over A
if the left A-module generated by the powers of y is finitely generated over A.
Show that this is so if and only if y satisfies a monic polynomial equation with
left coefficients in A.

2◦. If every element of a ring B is left integral over a subring A, B is called left integral
over A. Is the notion of left integral extension transitive?

3. Let A be a right Ore domain with field of fractions K, and let B be an A-subring
of K, with conductor f of B in A. Show that f 	= 0 if and only if B is finite
right integral over A, and that f is the largest ideal in A that is also a left ideal
in B.

4. Let B = k〈x, y〉 and denote by A the subalgebra generated by x2 and y2. Find the
set Ac of elements of B left integral over A. Is this set closed under addition or
multiplication? Is � Aai a subring for every a ∈ Ac?
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5. Let R be an atomic 2-fir with DFL. Show that if A is a (left and right) Ore subring
of R and B a finite left integral extension of A in its field of fractions, then there
is an embedding of B in R whose restriction to A is the identity map. Deduce that
a maximal Ore subring of R is integrally closed.

6. Let Ir be the set of all right invariant elements in an integral domain R and S
the set of all left factors (in R) of elements of Ir . Show that S is a right Ore
set in R.

7. Let α be an automorphism of a field K such that no positive power of α is inner.
Show that the monic invariant elements of the skew polynomial ring K [x ; α] are
the powers of x. If αr (r > 0) is inner, but no lower power, find all monic invariant
elements.

8. Show that a principal ideal domain is simple if and only if it has no non-unit
invariant element.

9. Let K be a field of characteristic 0 and D an outer derivation of K. Show that
K [x ; 1, D] is simple and hence has no non-unit invariant element.

10. Let R be a 2-fir and c ∈ R an invariant element. Find the condition on c for R/cR
to be (i) simple and (ii) semisimple.

11. Let R be an atomic 2-fir and c ∈ R a non-unit invariant element. Show that the ring
A = R/cR is Artinian and is such that every left (or right) ideal is the annihilator
of its annihilator in A (i.e. A is a quasi-Frobenius ring).

12◦. Is every Artinian principal ideal ring a quasi-Frobenius ring?
13. Let K be a field and R a subring that is a 2-fir; show that the elements ab−1(a, b ∈

R, b 	= 0) satisfying axb = bxa for all x ∈ R form an integrally closed
subring.

14∗. Find a ring in which the multiplication of invariant principal ideals is non-
commutative. (Hint: Use a non-commutative analogue of Exercise 2.3.10).

15. Show that any right invariant element of a right principal Bezout domain is invari-
ant and has a complete factorization.

16. Show that in a 2-fir with right ACC1 every left invariant element has a complete
factorization.

17. (G. M. Bergman) Let R be the R-algebra of functions on the real line generated
by the functions sin x and cos x, and let S be the subalgebra generated by sin 2x
and cos 2x . Show that the matrix

sin x
(

cos x sin x
− sin x cos x

)

in R2 lies in fact in S2 and is an invariant element of that ring, but cannot be written
as γU for γ ∈ S and U ∈ GL2(S).

18. (G. M. Bergman) Given a Dedekind domain D whose ideal class group has an
element of order n > 1, show that Dn has an invariant element that is not of the
form γU , for γ ∈ D and U ∈ GLn(D).

19∗. (G. M. Bergman) Let k be a commutative field of characteristic zero, K = k(y)
the rational function field in an indeterminate y over k, δ the derivation over k
such that yδ = 1 (differentiation with respect to y) and R = K [x ; 1, δ] the ring of
differential operators. Writing p = xy2 + y, show that the centralizer of p in R is
k[p]. Show that k[p2, p3] is contained in x R = {u ∈ R|xu ∈ Rx}, even though
p /∈ xR.
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6.2 Bounded elements in 2-firs

We have seen that in an atomic 2-fir the decompositions into Inv-atoms play
an important role. In general there is no reason to suppose that Inv-atoms will
be atoms, but at least we can factorize them into atoms, and this suggests that
we look more closely at the factors of invariant elements. Such factors and
the cyclic modules they define are called bounded (to be distinguished from
‘bound’ modules, see Exercise 1). It will be convenient to begin with a general
definition and specialize later.

Definition. A right module M over a ring R is said to be bounded if there is a
regular element c ∈ R such that Mc = 0.

An equivalent definition is to require the annihilator Ann(M) of M, an ideal
in R, to contain a regular element. We note that the direct sum of bounded
modules is again bounded; for if Mc = Nd = 0, where c, d are regular, then
cd is regular and (M ⊕ N )cd = Ncd ⊆ Nd = 0. An element a ∈ R is said to
be right bounded if R/a R is bounded. Thus an element a in an integral domain
R is right bounded if and only if aR contains a non-zero two-sided ideal. We
remark that any right bounded element is right large, for if a is right bounded,
say Rd ⊆ a R, and b ∈ R× is given, then bd ∈ a R, so bR ∩ a R 	= 0.

Suppose now that R is an integral domain. To describe the right bound of
a ∈ R× more closely, let a = bc; then for any d ∈ Ann(R/a R) we have Rd ⊆
a R = bcR; in particular, bd ∈ bcR, so d ∈ cR. The same is true if instead of
a we take any element similar to a. Thus

Ann(R/a R) ⊆ ∩{cR | c is a right factor of an element similar to a}. (1)

This inclusion can also be rewritten as

Ann(R/a R) ⊆ ∩ {cR | c is similar to a right factor of a}. (2)

When R is a 2-fir, we can prove that equality holds in (2):

Theorem 6.2.1. Let R be a 2-fir and for any a ∈ R, define the right ideal

I = ∩{cR|c is similar to a right factor of a}. (3)

Then

(i) I is the annihilator of the set of all torsion elements of R/a R; hence
(ii) if a is right large (so that all elements of R/a R are torsion), then I =

Ann(R/a R).
(iii) The following conditions are equivalent (and so imply the conclusion of

(ii)):
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(a) a is right bounded,
(b) I is a non-zero two-sided ideal,
(c) I contains a non-zero two-sided ideal.

(iv) I is closed under left multiplication by all units of R. Hence if R is generated
by its units (e.g. if R is a group algebra over a field), then (b) (and hence
(a) and (c)), holds whenever I 	= 0.

Proof. We have seen that (2) holds for any right bounded element a; if a is not
right bounded, then the left-hand side of (2) is zero, so (2) holds for all a ∈ R.
Now let x be a torsion element in R/a R and choose u in the right-hand side of
(2). We have x R ∩ a R 	= 0, hence there is a right coprime relation xa′ = ax ′,
and here a′ is similar to a right factor of a, therefore u = a′u1 for some u1 ∈ R.
Hence xu = xa′u1 = ax ′u1 ∈ a R, so u annihilates x(mod aR), and since x was
any torsion element of R/a R, (i) follows. When a is right large, (ii) follows.
Turning to (iii), we see that (a) ⇒ (b) by (ii); clearly (b) ⇒ (c) and when (c)
holds, then since I ⊆ a R, (a) follows. Finally (iv) follows because similarity
classes are closed under taking associates. �

Suppose now that R is an atomic 2-fir and that a is right bounded. Then all
the cR on the right of (3) contain a fixed non-zero element, d say, where d ∈
Ann(R/a R), and since the lattice L(d R, R) has finite length, it is complete
and the intersection on the right of (3) is principal, say Ann(R/a R) = bR. The
element b, unique up to right associates, is called the right bound of a.

Corollary 6.2.2. In any integral domain, any left factor of a right invariant
element is right bounded. In an atomic 2-fir, conversely, every bounded element
a is a left factor of a right invariant element.

Proof. If d = ab for a right invariant element d, then Rd ⊆ d R ⊆ a R, hence
d ∈ Ann(R/a R), i.e. a is right bounded, with bound d ′ R ⊇ d R. Conversely,
for a right bounded element a of an atomic 2-fir R, Ann(R/a R) = d R. Here
Rd ⊆ d R, so d is right invariant, and d ∈ a R. �

An element a in an integral domain R is said to be bounded if it is a factor
of an invariant element: c = dab; it is then also a right factor, for we have
cb = b′c = b′dab, hence c = b′da. By symmetry it is also a left factor of c.
Any bounded element is clearly left and right bounded, and for a bounded
element a in an atomic 2-fir R, we have by Proposition 1.4,

Ann(R/a R) = Ann(R/Ra) . (4)

Conversely, if in an atomic 2-fir, a is left and right bounded and (4) holds,
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then Ann(R/a R) = d R = Rc, hence by Proposition 1.4.6, Ann(R/a R) has an
invariant generator and a is then bounded.

Let R be an atomic 2-fir and let a ∈ R be bounded; the invariant generator
of Ann(R/a R) is then unique up to associates; it will be called the bound of
a and denoted by a∗. Clearly a∗ depends only on the similarity class of a. By
Theorem 2.1, a∗ can also be defined by

a∗ R = ∩ {cR | c is similar to a right factor of a}. (5)

The right-hand side can be taken to be a finite intersection, by the DCC in
R/a∗ R, and if we take it to be irredundant, we obtain a subdirect sum repre-
sentation of R/a∗ R, qua right R-module, by the modules R/cR. This shows
that every atomic factor of a∗ is similar to a factor of a. By Theorem 2.1 this
characterizes the atomic factors of a∗ as the atoms similar to factors of a.

Let a ∈ R be bounded; if a = bcd, then c is again bounded, with bound
dividing a∗. This follows by observing that R/cR is a quotient of a submodule
of R/a R. Likewise the product of any bounded elements is bounded. These
facts may be expressed by saying that the modules R/a R, where a is bounded,
form the objects of a dense subcategory of the category Tor1

R of cyclic torsion
modules.

The quotient of a 2-fir by an ideal with invariant generator has a rather special
form, which is described in

Theorem 6.2.3. Let R be a 2-fir and c a non-unit right invariant element. Then
cR is an ideal in R and R/cR is a ring (not necessarily a domain) in which
every finitely generated right ideal is principal; it is a field precisely when c is
an atom in R.

Further, R/cR is Artinian if and only if c is a product of atoms. When these
conditions hold, then R/cR ∼= Mn(K ) for a field K and some n ≥ 1 if and only
if cR is maximal among ideals with a right invariant generator.

Proof. Since c is right large and R is a 2-fir, every finitely generated right
ideal containing cR is principal, hence of the form dR, where d is a left factor
of c. It follows that R/cR is right Bezout and it is a field precisely if c is an
atom. This also shows that R/cR is Artinian precisely when c is a product of
atoms.

Now let cR be (proper) maximal among ideals with right invariant generator
c; write S = R/cR and let a be a minimal right ideal of S. Then Sa is two-sided,
hence of the form d R/cR, where dR is two-sided, so d is right invariant and by
the maximality of cR we have d R = R, i.e. Sa = S. Thus S is a sum of copies
of the simple right S-module a, hence a direct sum, say S ∼= An , where A ∼= a
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as right S-module, and so

S ∼= EndS(An) ∼= Mn(K ),

where K = EndS(A) is a field, by Schur’s lemma (Proposition 3.2.4). �

We now examine the case of invariant elements in 2-firs; here we have a
more precise statement; some of the next results can be deduced from Theorem
2.3, but in view of its importance we give a separate proof.

Theorem 6.2.4. Let R be an atomic 2-fir.

(i) If c is an invariant element of R, then the quotient ring R/cR is simple if
and only if c is an Inv-atom.

(ii) Every Inv-atom is a product of similar bounded atoms.
(iii) If p is a bounded atom, then its bound p∗ is an Inv-atom whose atomic

factors are precisely all the atoms similar to p. Moreover, the eigenring K
of pR is a field and

R/p∗ R ∼= Mn(K ), where n = l(p∗). (6)

Proof. We shall prove the parts in reverse order, beginning with (iii). Let p have
bound p∗ = a∗b∗, where a∗, b∗ are non-unit invariant elements. Then p divides
either a∗ or b∗ and so has a smaller bound, a contradiction; thus p∗ is an Inv-
atom. By Theorem 2.1, p∗ R = ∩p′ R, where p′ runs over all elements similar
to p, and here we can take a finite intersection. Thus R/p∗ R is a submodule of
(R/pR)N for some N ≥ 1 (in fact p∗ is fully reducible by Proposition 3.5.12),
and since R/pR is Tor-simple, every torsion submodule has the form (R/pR)n

for some n ≤ N . Hence

R/p∗ R ∼= (R/pR)n, (7)

as right R-modules. By comparing the lengths of composition series within TorR

we see that n = l(p∗), and comparing endomorphism rings in (7), we obtain
the isomorphism (6), where K, the eigenring of pR, is a field by Schur’s lemma.

To prove (ii) let p∗ be an Inv-atom and let p be an atom dividing p∗. Then p∗

is the bound of p and as (5) shows, an atom divides p∗ precisely if it is similar
to p.

Finally, to prove (i), we see from (6) that for an Inv-atom c, R/cR is simple.
Conversely, if c is invariant but not an Inv-atom, then R/cR has non-trivial
quotients and so cannot be simple. �

We next look at the direct decompositions of R/a R, where a is bounded. Our
first task is to separate out the bounded components in such a decomposition;
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for this we need a definition and a lemma. Let us call two elements a, b of a
2-fir R totally coprime if no non-unit factor of a is similar to a factor of b, i.e.
if R/a R and R/bR have no isomorphic factor modules apart from 0.

Lemma 6.2.5. A bounded element in a 2-fir R can be comaximally transposed
with any element totally coprime to it.

Proof. Let a, b ∈ R be totally coprime and suppose that a is bounded, with
bound a∗ = a1a, say. Then a∗ and b are left coprime and hence right comaximal:
a∗u − bv = 1. It follows that u′a∗ − bv = 1 for some u′ ∈ R, thus u′a1a −
bv = 1, and so by Lemma 3.3.3, a, b are comaximally transposable. By the
symmetry of the situation, b, a are also comaximally transposable. �

Let a be any non-zero element in an atomic 2-fir R and take a complete
factorization

a = p1 p2 . . . pr . (8)

Suppose that a bounded atom occurs in this factorization, say pi1 , . . . , pik are
all bounded similar atoms, while the remaining atoms in (8) are not similar to
pi1 . By repeated application of Lemma 2.5 we can write a as

a = p′
i1
, . . . , p′

ik
p′

j1 . . . p′
jh ,

where the p′
i but not the p′

j are similar to pi1 . Bracketing the first k factors
together, and the last h, we have a = bc, where b, c are totally coprime and b,
like pi1 , is bounded. Applying Lemma 2.5 again, we can write this as a = c′b′,
where b′ is similar to b and c′ similar to c. Therefore a = bc = c′b′ leads to a
direct decomposition of a (see Section 3.5):

a R = bR ∩ c′ R, R = bR + c′ R.

We now repeat this process with a replaced by c′ and eventually reach a direct
decomposition of a into products of pairwise similar bounded atoms and a
term containing no bounded non-unit factors. We shall call an element totally
unbounded if it has no bounded factor apart from units. So our result may be
stated as

Theorem 6.2.6. Any element a 	= 0 of an atomic 2-fir R has a direct decom-
position

a R = q1 R ∩ . . . ∩ qk R ∩ u R, (9)

where each qi is a product of similar bounded atoms, while atoms in different
q’s are dissimilar and u is totally unbounded. Moreover, the qi and u are unique
up to similarity, while uR is absent if and only if a is right bounded.
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Proof. The existence of such a decomposition follows from what has just
been shown; only the uniqueness still remains to be proved. Now (9) gives rise
to a direct decomposition

R/a R ∼= R/q1 R ⊕ · · · ⊕ R/qk R ⊕ R/u R.

Here the R/qi R are uniquely determined as the homogeneous components
corresponding to a given Tor-simple bounded isomorphism type, while R/u R
contains all Tor-simple submodules of unbounded isomorphism type. Moreover,
qi R is unique as the intersection of all pR ⊇ a R, where p runs over all atoms
bounded by qi . Clearly R/a R is bounded precisely when the last term R/u R
is absent. �

We note that neither u nor the qi are in general indecomposable in the sense
defined in Section 3.5. In the case of principal ideal domains this result, applied
to the terms of the decomposition in Theorem 1.4.10, leads to a strengthening
of that result:

Proposition 6.2.7. Let R be a principal ideal domain and M a finitely gener-
ated right R-module consisting of torsion elements. Then

M ∼= R/q1 R ⊕ · · · ⊕ R/qk R ⊕ R/u R,

where each qi is a product of pairwise similar bounded atoms, while u is totally
unbounded. The last term R/u R may be absent; this is so if and only if M is
bounded. �

Let R again be an atomic 2-fir and consider an element c ∈ Inv(R). We
shall be interested in the decompositions of R/cR. Let us call c ∈ Inv(R) Inv-
decomposable if it has a factorization

c = ab, (10)

into non-unit invariant elements a, b that are left (hence also right) coprime;
otherwise c is Inv-indecomposable. Clearly c is Inv-indecomposable if and only
if cR = Rc is meet-irreducible, and when this is so, c is a product of similar
atoms, by Theorem 2.6. For a bound element we have the following relationship
between its bound and that of its atomic factors.

Lemma 6.2.8. Let R be an atomic 2-fir and let q ∈ R be bound with a complete
factorization q = p1 · · · pn, where all the pi are atoms similar to p. Then q∗ is
associated to p∗r , where r ≤ n, with equality if and only if q is rigid.

Proof. The module R/q R has a submodule lattice that is modular of length
n. The action by p∗ reduces the length by at least 1, and by exactly 1 precisely
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when there is only one maximal submodule. By induction the action with p∗n

reduces it to zero, hence q|p∗n , and so q∗|p∗n; thus q∗ is associated to p∗r

where r ≤ n, and equality holds precisely when the submodules of R/q R form
a chain, i.e. when q is rigid. �

There is a simple relationship between Inv-indecomposable elements and
bounded elements that are indecomposable as defined in Section 3.5.

Proposition 6.2.9. Let R be an atomic 2-fir. Then

(i) an invariant element is Inv-indecomposable if and only if it is associated
to a power of an Inv-atom;

(ii) if q ∈ R is bounded and indecomposable, then its bound is Inv-
indecomposable, hence q is then a product of similar atoms.

Proof. (i) follows by Theorem 1.6. To prove (ii) let q be bounded. By Theorem
2.6, q is a product of similar atoms, say q = p1 . . . pn , where the pi are all
similar; they all have the same bound p∗, say. By Lemma 2.8, q∗ = p∗r , where
r ≤ n; this shows q∗ to be Inv-indecomposable. �

Of course an unbounded indecomposable element need not be a product of
similar atoms, as the example xy in the free algebra k〈x, y〉 shows. Further,
the converse of Proposition 2.9 (ii) is false, i.e. the bound of a decomposable
bounded element need not be Inv-decomposable; thus in Proposition 2.9 (ii),
q∗ itself may well be decomposable (see Exercise 4).

Let q be a bounded indecomposable element in an atomic 2-fir R; by Propo-
sition 2.9, its bound q∗ is Inv-indecomposable, say q∗ = p∗e, l(p∗) = h. By
Theorem 2.4, R/p∗ R ∼= Kh , where the field K is the eigenring of an atomic
factor of p∗. Now R/p∗ R ∼= Q/J (Q), where Q = R/q∗ R and J (Q) is the
Jacobson radical of Q. Since Q is Artinian (Theorem 2.3), we can lift the matrix
basis from R/p∗ R to R/q∗ R (see e.g. FA, Section 4.3), whence Q ∼= Lh , where
L/J (L) ∼= K , i.e. Q is an Artinian matrix local ring over the scalar local ring
L. Note that L, like Q, is Artinian, hence it is completely primary (i.e. all its
non-units are nilpotent).

Now take a complete direct decomposition of R/q∗ R as right R-module.
The summands are necessarily cyclic; thus

R/q∗ R ∼= R/q1 R ⊕ · · · ⊕ R/qk R. (11)

Since R/q∗ R ∼= Lh has a complete direct decomposition into h isomorphic
right ideals, we see that k = h and all the R/qi R are isomorphic to R/q R.
Thus R/q∗ R ∼= (R/q R)h , as right R-modules. Since l(q∗) = eh = hl(q), we
see that l(q) = e. The result may be summed up as
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Theorem 6.2.10. In an atomic 2-fir R, let q ∈ R be bounded indecomposable.
Express its bound q∗ as a power of an Inv-atom, say q∗ = p∗e. Then l(q) = e,
and if l(p∗) = h, then

R/q∗ R ∼= (R/q R)h, (12)

as right R-modules, while as a ring, R/q∗ R is a full matrix ring over a com-
pletely primary ring:

R/q∗ R ∼= Mh(L), where L = EndR(R/q R). � (13)

If q, q∗ are as in Theorem 2.10, then q∗ R is determined by the similarity
class of q as the annihilator of R/q R, while R/q R is determined by q∗ R as an
indecomposable part of R/q∗ R. Hence we have

Corollary 6.2.11. In an atomic 2-fir, two bounded indecomposable elements
have the same bound if and only if they are similar. �

Next we turn to the question of deciding when a given product of similar
bounded atoms is indecomposable. Let p∗ be an Inv-atom of length h; for any
integer e ≥ 0 we have by Theorem 2.10, on decomposing p∗e,

R/p∗e R ∼= (R/qe R)h,

for some indecomposable element qe of length e. Thus qe is a product of e
atomic factors that are all similar. Conversely, if p is a bounded atom and pi is
similar to p for i = 1, . . . , e, then q = p1 . . . pe is bounded by p∗e, and if its
exact bound is p∗e, then q is indecomposable. For if q could be decomposed,
it would have a smaller bound, as we see by acting on R/q R with p∗. This
proves

Proposition 6.2.12. In an atomic 2-fir R, each bounded indecomposable ele-
ment is a product of similar atoms. If p ∈ R is a bounded atom, then a product
q = p1 . . . pe of atoms similar to p is indecomposable if and only if p∗e is the
exact bound of q. Moreover, for any integer e ≥ 1, a bounded indecomposable
element qe of length e exists such that

R/p∗e R ∼= (R/qe R)h, where h = l(p∗). � (14)

The relation (14) yields the following result for factors of powers of an
Inv-atom:

Corollary 6.2.13. In an atomic 2-fir, if a has the bound p∗e, where p∗ is an
Inv-atom, then a direct decomposition of a has at most l(p∗) terms. �
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If an element a has the bound p∗e and b has the bound p∗ f , then ab is
bounded by p∗e+ f . Applying this remark to a product of similar bounded atoms,
we obtain

Corollary 6.2.14. In an atomic 2-fir, any factor of a bounded indecomposable
element is again bounded indecomposable. �

Now a product of atoms p1 p2 is indecomposable if and only if they cannot be
comaximally transposed. Hence any product q = p1 . . . pn of bounded atoms
has no decomposable factors if and only if no pair of adjacent factors can be
comaximally transposed, i.e. if q is rigid. By Proposition 2.12, two similar atoms
p, p′ with a common bound p∗ are comaximally transposable if and only if pp′

does not divide p∗. Thus we obtain

Corollary 6.2.15. Let R be an atomic 2-fir and q = p1 . . . pe a bounded prod-
uct of atoms. Then q is rigid if and only if all the pi have a common bound p∗

and pi−1 pi does not divide p∗ for i = 2, . . . , e. In particular, since pr is rigid,
p2 does not divide p∗. �

There remains the problem of finding which elements are bounded. We
shall confine ourselves to the case of an atomic 2-fir R. If p is an atom in
R, then K = EndR(R/pR) is a field and each element a of R defines a K-
endomorphism of R/pR by right multiplication. If the natural mapping R →
R/pR is written x 
→ x̄ , then the K-endomorphism defined by a isρa : x̄ 
→ x̄a.
We want to find an upper bound for the K-dimension of ker ρa . Clearly,
if a = a1 . . . ar , then ρa = ρa1 . . . ρar and by Sylvester’s law of nullity for
fields,

dim ker ρa ≤ dim ker ρa1 + . . . + dim ker ρar . (15)

We claim that ρa is injective when a has no factor similar to p. Thus assume
that Kerρa 	= 0; then there exists x /∈ pR such that xa ∈ pR, say

xa = py (x /∈ pR). (16)

Since p is an atom, (16) is left coprime, hence a = p′a′, where p′ is similar to
p. This shows that ρa is injective when a has no factor similar to p.

Suppose now that c is similar to p; then any element x ′ ∈ R satisfying x ′c =
py′ for some y′ ∈ R, while x ′ /∈ pR, defines an isomorphism R/cR → R/pR,
and any two such isomorphisms differ by an endomorphism of R/pR, i.e. an
element of K; hence ker ρc is one-dimensional in this case. Going back to (15),
we see that ker ρa has a dimension at most equal to the number of factors of a
that are similar to p. Thus we obtain
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Theorem 6.2.16. Let R be an atomic 2-fir, p an atom in R and K =
EndR(R/pR). Then for any a ∈ R, the mapping ρa : x̄ 
→ x̄a is a K-
endomorphism of R/pR and

dimK kerρa ≤ m, (17)

where m is the number of factors in a complete factorization of a that are similar
to p. �

Suppose now that p is a right large atom of R. Then for any x /∈ pR there is
a comaximal relation

xp′ = px ′;

hence there exists p′ similar to p and annihilating x̄ . Conversely, as we have
seen, any p′ similar to p annihilates some x̄ , hence when p is right large and q
is any atom, then ρq is injective if and only if q is not similar to p. We derive
the following consequence.

Let p be a right bounded atom of R, with right bound p∗ of length m. Then
p is certainly right large, and by (17),

dimK (R/pR) ≤ m. (18)

If this inequality were strict, we could find a product of fewer than m factors
similar to p which annihilates R/pR, and hence by Theorem 2.1,

a R ⊆ ∩{p′ R|p′ is similar to p} = p∗ R.

Thus a ∈ p∗ R, but this contradicts the fact that l(a) < m = l(p∗). Hence equal-
ity holds in (18). This shows that for a right bounded atom p, R/pR is finite-
dimensional (and, of course, p is right large). Conversely, if p is right large and
R/pR finite-dimensional over K, then ρp′ is not injective for p′ similar to p
and by induction we can find c ∈ R× annihilating R/pR, hence p is then right
bounded. We thus obtain

Corollary 6.2.17. Let R be an atomic 2-fir. Then an atom p in R with eigenring
K is right bounded if and only if p is right large and dimK (R/pR) is finite.
Moreover, in this case we have

dimK (R/pR) = l(p∗). �

Exercises 6.2

1◦. Let R be an integral domain. Show that every bounded R-module is bound, but in
general the converse is false. For which class of domains does the converse hold
(for finitely generated modules)?



350 Centralizers and subalgebras

2. Let R be a principal right ideal domain and c ∈ R×. If ∩d R 	= 0, where d runs
over all elements similar to right factors of c, show that c is bounded. Show that
this no longer holds for firs, by taking R = k〈x, y〉, c = x .

3. (G. M. Bergman) If R = k〈x, y〉, show that by taking a = x in Theorem 2.1,
we have I = x R, while for a = xy + 1, I = 0. (This example shows that the
hypothesis on a, to be right large, cannot be omitted.)

4. (Jacobson [43]) Let K be a field of finite dimension over its centre and α an
automorphism of K such that αr is inner for some r ≥ 1. Show that every non-
zero element of the skew polynomial ring K [x ; α] is bounded; illustrate this fact
in the complex-skew polynomial ring C[x ; −]. Give an example of a product of
similar bounded atoms that is decomposable in the sense of Section 3.5.

5. Show that for a bounded element in an atomic 2-fir R, ‘left indecomposable’ =
‘indecomposable’ (see Section 3.5). If q is such an element, show that q is rigid.

6◦. Find an integral domain with an element a that is left and right bounded but not
bounded.

7. (Beauregard [74]) Let k be a field with an endomorphism α that is not surjective;
denote by F = k[[x ; α]] the skew power series ring with coefficients on the right
and cx = xcα (as usual) and G = F[[y; α]] the power series ring with coefficients
on the left and yc = cα y. Verify that xy is in the centre of G, and show that any
two elements in G have a LCRM and LCLM, but G is not a 2-fir. Show that x and
y are bounded and find their right bounds. Show also that (4) does not hold for
a = x .

8. Let R be any ring and c an invariant element of R. Show that for any a ∈ R the
following are equivalent: (i) a is left bounded and a left factor of c, (ii) a is right
bounded and a right factor of c, (iii) a is a left and a right factor of c.

9. Let R be an atomic semifir and m, n ≥ 1. If p is a bounded atom in Rn , show that
its bound p∗ is an Inv-atom of R whose atomic factors in Rm are precisely the
atoms of Rm stably associated to p. Show that the eigenring of p is a field K, say,
and Rn/p∗ Rn

∼= Krn , where r = l(p∗). Deduce that every bounded atom of Rn is
stably associated to an element of R.

10. Let R be a fir with infinite centre and put S = Rn . Show that any atom p in S with
eigenring K is right bounded if and only if S/pS is simple as right S-module and
dimK (S/pS) is finite.

11. Let R be an atomic 2-fir and c an invariant element of R. Show that R/cR is
semisimple if and only if c is not divisible by the square of any Inv-atom.

12. Let R be a ring and for any R-module M define the tertiary radical (of 0 in M)
as the set of all x ∈ R that annihilate a large submodule of M. If R is an atomic
2-fir and c is bounded in R, find conditions for R/cR to have a tertiary radical
of the form bR ⊇ cR. If c is indecomposable, show that b = p∗, where p∗ is the
Inv-atom corresponding to c.

13. Let R be a non-simple principal ideal domain. Show that the quotient by any
maximal ideal is simple Artinian.

14. (Jategaonkar [69a]) For any commutative field k let F = k(tm,n), where m ≤
n, m, n = 1, 2, . . . with the automorphism α : tm,n 
→ tm+1,n if m < n, and tn,n 
→
t1,n . Show that the skew polynomial ring F[x ; α] has Inv-atoms of all pos-
itive degrees and hence has homomorphic images of the form Mn(C) for
all n ≥ 1.
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15∗. (G. M. Bergman) Let R be an n-fir and M a finitely related bounded R-module on
fewer than n generators. Show that M is a torsion module. (Hint: Use Theorem
2.3).

6.3 2-Firs with prescribed centre

This section is devoted to proving the converses of Corollary 1.3 and Theorem
1.11, in the following strong form: every integrally closed domain (resp. Krull
domain) occurs as the centre of some Bezout domain (resp. principal ideal
domain). Since every Bezout domain is a 2-fir, and every principal ideal domain
is an atomic 2-fir, this, with Theorem 1.11, completely characterizes the centres
of (atomic) 2-firs.

The proof proceeds in two stages.
(i) Given a commutative integrally closed domain C, we construct a com-

mutative Bezout domain A with an automorphism of infinite order whose fixed
ring is C; further, when C is a Krull domain, A can actually be chosen to be a
principal ideal domain.

(ii) Given a commutative Bezout domain A with an automorphism α of
infinite order, we construct a Bezout domain containing A, whose centre is
precisely the fixed ring of α. Moreover, when A is a principal ideal domain, the
ring containing it can be chosen to be principal.

It is convenient to begin with (ii). The two cases considered require rather
different treatment, and we therefore take them separately.

Proposition 6.3.1. Let A be a commutative Bezout domain with field of frac-
tions K and an automorphism α of infinite order and denote by C the fixed
ring of α acting on A. Then the ring R = A + x K [x ; α] is a Bezout domain
containing A, with centre C.

Proof. The automorphism α of A extends in a unique way to an automorphism
of K, again denoted by α (see Theorem 0.7.8). Now form the skew polynomial
ring S = K [x ; α] and let R be the subring of all polynomials with constant term
in A, thus R = A + x S. That R is a subring is clear; we claim that it has the
desired properties. In the first place, if f = ∑

xi ai lies in the centre, then for any
b ∈ A, f b = b f , and on equating coefficients we find that ai b = ai bαi

. Now
for each i > 0 there exists b ∈ A such that bαi 	= b, hence ai = 0 for i > 0 and
f = a0. Further, the equation f x = x f shows that aα

0 = a0, so f = a0 ∈ C , as
claimed.

It remains to show that R is Bezout. Let f, g ∈ R; we must show that f R +
gR is principal, and here we may assume that f and g have no common left
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factor of positive degree in x, for if f = d f1, g = dg1 in S, then on multiplying
f1, g1 by a common left denominator of their constant terms, say e ∈ A and
right multiplying d by e−1, we have reduced the situation to the case where
f1, g1 ∈ R. Now if f1 R + g1 R = h R has been established, then f R + gR =
dh R. By looking at the highest common left factor of f, g in K [x ; α] we find
polynomials u, v in the latter ring such that f u − gv = 1. On multiplying up
by a suitable element of A we obtain an equation

f u − gv = γ, where u, v ∈ R, γ ∈ A×. (1)

If the constant terms of f, g are λ, μ respectively, say f = λ + f0, g = μ + g0,
where f0, g0 have zero constant term, then λ = f − γ (γ −1 f0) ∈ f R + gR by
(1), and similarly μ ∈ f R + gR. Since A is Bezout, λA + μA = δA for some
δ ∈ A. Now f0 and g0, having zero constant term, are left divisible by δ, hence
f, g ∈ δR. On the other hand, δ ∈ λA + μA ⊆ f R + gR; hence f R + gR =
δR. Thus the right ideal of R generated by any two of its elements is principal;
by symmetry so is the left ideal generated by them, and it follows that R is a
Bezout domain. �

By combining this result with Corollary 1.3 we get

Corollary 6.3.2. The fixed ring of an automorphism of infinite order acting
on a commutative Bezout domain is integrally closed. �

Of course this result can also be proved directly (see Exercise 1).

Proposition 6.3.3. Let A be a commutative principal ideal domain with an
automorphism α of infinite order, and denote by C the fixed ring of α acting
on A. Then the ring of skew formal Laurent series R = A((x ; α)) is a principal
ideal domain containing A, with centre C.

Proof. We form the ring R = A((x ; α)) of formal Laurent series f = ∑
xi ai ,

where ai ∈ A and ai = 0 for i less than some k depending on f, with the com-
mutation rule ax = xaα . The verification that the centre of R is C is as before:
the equations f b = b f show that f = a0 and now f x = x f shows that a0 ∈ C .
It remains to show that R is a principal ideal domain.

Given a right ideal a of R, the leading coefficients of elements of a will form
a right ideal a∗ of A that must be principal, so we can choose f ∈ a such that
the leading coefficient of f generates a∗. Let K be the field of fractions of A;
then K ((x ; α)) is a field in which f −1a is a right R-submodule that contains 1,
hence

f −1a ⊇ R, (2)
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and the leading coefficients of all members of f −1a lie in A. We claim that
equality holds in (2); for if not, then f −1a would contain an element with a
coefficient not in A. By subtracting an appropriate member of R, we would obtain
a member of f −1a with leading coefficient not in A, which is a contradiction.
Thus equality holds in (2) and so a = f R. �

We remark that we have to assume that A is principal even to show that R
is Bezout. In fact, if we perform the construction with a Bezout domain A, we
do not generally get a Bezout domain. Using Theorem 1.11, we again have a
corollary (which, as before, can be proved directly).

Corollary 6.3.4. The fixed ring of an automorphism of infinite order acting
on a commutative principal ideal domain is a Krull domain. �

We now come to step (i) of our programme. This is in effect the converse of
Corollaries 3.2 and 3.4.

Proposition 6.3.5. Every integrally closed commutative integral domain
occurs as the fixed ring of an automorphism of infinite order acting on a com-
mutative Bezout domain.

Proof. We first give the basic construction that will in characteristic 0 produce
the required ring, and then show how to modify it to get the full result.

Let C be the given domain and K its field of fractions. By hypothesis, C =
∩Kv , where v ranges over the family V of all general valuations defined on C.
We form the polynomial ring K [t] in an indeterminate t. Each v ∈ V can be
extended to K [t] by putting

v
(∑

t i ai

)
= mini {v(ai )}.

We assert that this is again a valuation. The rule v(a − b) ≥ min{v(a), v(b)}
is clear; to show that v is multiplicative, let a = ∑

t i ai , b = ∑
t j b j and let

ar , bs be the first coefficient attaining the minimum v(a), v(b) respectively. The
product c = ab has coefficients ck = ∑

ai bk−i and v(ck) ≥ v(ar ) + v(bs), with
equality holding for k = r + s, as is easily verified. Thus v is a valuation on
K [t] and in fact can be extended to a valuation, again denoted by v, of the field
of fractions K (t). We now define

A = ∩K (t)v, where v ranges over V .

Thus A consists of all fractions f/g, f, g ∈ C[t], such that v( f ) ≥ v(g)(v ∈ V ).
A is sometimes called the Kronecker function ring.

We claim that A is a Bezout domain: given two elements of A, on multiplying
by a common denominator, we may take them to be f, g ∈ C[t]. Now take
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any n greater than the degree of f in t and form h = f + tng. Then clearly
v(h) ≤ v( f ), v(g), hence f/h, g/h ∈ A and so f A + g A = h A.

Consider the map α of K [t] defined by f (t) 
→ f (t + 1). This is an auto-
morphism, clearly v( f (t + 1)) ≥ v( f (t)) for any v ∈ V , and by writing down
the same inequality with −1 in place of 1, we see that v( f α) = v( f ), hence α

extends to an automorphism of A. We observe that α is of infinite order precisely
when K has characteristic 0. In that case the fixed field of α acting on K (t) is
K, hence the fixed ring of α acting on A is K ∩ A = C , as required.

For a proof that works in all cases, we modify our construction by starting, not
with K [t], but with K [. . . , t−1, t0, t1, . . .] with countably many indeterminates.
As before, we get a Bezout domain, and for our automorphism α we use instead
of the translation t 
→ t + 1 the substitution tn 
→ tn+1. Clearly this is of infinite
order and the fixed ring in the action on K (. . . , t−1, t0, t1, . . .) is K, hence the
fixed ring of A is C. Thus A is a Bezout domain with an automorphism of infinite
order whose fixed ring is C. �

Suppose now that C is a Krull domain. Let K be its field of fractions and V
the family of valuations defining C. We form A as in the proof of Proposition
3.5, using the family V instead of the family of all valuations. Then it follows
as before that A is a Bezout domain with fixed ring C. We claim that now A is
in fact a principal ideal domain. Given a ∈ A×, it is clear that v(a) 	= 0 for only
finitely many v, say v1, . . . , vr . Now for any factor b of a, 0 ≤ v(b) ≤ v(a) for
all v ∈ V , and if b′ ∈ A is such that v(b) = v(b′) for all v ∈ V , then b and b′ are
associated. Hence there are only finitely many classes of factors of a, therefore
A is atomic and so is a principal ideal domain. This proves

Proposition 6.3.6. Every Krull domain occurs as the fixed ring of an automor-
phism of infinite order acting on a commutative principal ideal domain. �

Putting all the results of this section together, we obtain

Theorem 6.3.7. Every integrally closed integral domain occurs as the centre
of a Bezout domain; every Krull domain occurs as the centre of a principal
ideal domain. �

Exercises 6.3

1. Give a direct proof (e.g. by valuation theory) that the fixed ring of an automorphism
acting on a commutative Bezout domain R is integrally closed, and is a Krull domain
when R is a principal ideal domain.

2∗. Does Proposition 3.1 still hold when the automorphism has finite order?
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3. Examine why the proof of Proposition 3.1 fails for principal ideal domains and that
of Proposition 3.3 fails for Bezout domains.

4. In the proof of Proposition 3.5, if K has finite characteristic, complete the argument
by taking in place of K [t] the ring K [t, t1/2, t1/4, . . .] with automorphism t 
→ t2.
Alternatively, use the ring K [s, t, s−1, t−1] with automorphism s 
→ t, t 
→ st .

5. Verify that for any commutative field k, the polynomial ring in countably many
indeterminates k[x1, x2, . . .] is a Krull domain, but not Noetherian. Deduce the
existence of a Noetherian domain with a non-Noetherian centre.

6. Show that the centre of a 2-fir with right ACC1 is a Krull domain.
7◦. Which commutative rings occur as the centres of Sylvester domains? (In view

of Theorem 3.7 this asks whether the centre of a Sylvester domain is necessarily
integrally closed.)

6.4 The centre of a fir

The results of Section 6.3 give a complete description of the possible centres
of principal ideal domains or Bezout domains, as well as some information on
the centres of 2-firs, but they leave open the question whether, for example, any
Krull domain can occur as the centre of a genuine, i.e. non-Ore, fir. As we shall
see, once we assume that our rings are non-Ore, the centre is very much more
restricted. Thus the centre of a non-Ore fir is necessarily a field. More generally,
this conclusion will hold for any non-Ore 2-fir with right ACC2.

For the proof of the main result we shall need a technical lemma.

Lemma 6.4.1. Let S be a simple Artinian ring. Then

(i) every right ideal of S is principal, with an idempotent generator,
(ii) if aS = bS(a, b ∈ S), then a and b are right associated,

(iii) if a, b ∈ S are right comaximal, then a + by is a unit for some y ∈ S,
(iv) given a, b ∈ S, there exist d , a1, b1 ∈ S such that a = da1, b = db1 and

a1, b1 are right comaximal.

Proof. (i) and (ii) are an easy consequence of the fact that S is semisimple.
It follows that every element is right associated to an idempotent. Thus to
prove (iii) we may assume that b2 = b. Suppose that as + bt = 1; we have a =
(1 − b)a + ba, hence on substituting, we find that (1 − b)as + bas + bt = 1,
i.e.

b(as + t) + (1 − b)as = 1 = b + (1 − b).

Since bS ∩ (1 − b)S = 0, it follows that (1 − b)as = 1 − b; hence

(1 − b)S = (1 − b)asS ⊆ (1 − b)aS ⊆ (1 − b)S,
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and so (1 − b)S = (1 − b)aS. By (ii), (1 − b)a = (1 − b)u for a unit u;
therefore u = (1 − b)u + bu = (1 − b)a + bu = a + b(u − a), which is the
required form.

(iv) By (i), aS + bS = eS, where e2 = e. Now aS + bS + (1 − e)S = eS +
(1 − e)S = S, so by (iii), a + bx + (1 − e)y is a unit for some x, y ∈ S. Put
a1 = a + (1 − e)y, b1 = b; then a1 + b1x is a unit and a = ea1, b = eb1. �

We can now prove the main result of this section.

Theorem 6.4.2. Let R be an atomic 2-fir with right ACC2 that is not right
Ore. Then every invariant element of R is a unit; in particular, the centre of R
is a field.

Proof. Suppose that R satisfies the hypotheses and contains a non-unit invari-
ant element c. If we choose c such that cR is maximal (by right ACC2), then
S = R/cR is simple Artinian, by Theorem 2.3. Further, R contains a maximal
ideal of rank 2, say x R ⊕ y R. If the elements of S corresponding to x, y are
written x̄, ȳ, then by Proposition 4.1 (iv) there exist e, a, b ∈ S such that a, b
are right comaximal and x̄ = ea, ȳ = eb. By (iii) a + bz = u is a unit for some
z ∈ S, hence

(ea eb)

(
1 0
z 1

)
= (eu eb), (eu eb)

(
1 −u−1b
0 1

)
= (eu 0). (1)

The elementary matrices written lift to elementary matrices over R, so there
exists P ∈ E2(R) such that (x, y)P = (v, w), where w̄ = 0, so that w ∈ cR =
Rc, say w = sc. Now

x R ⊕ y R = vR ⊕ wR = vR ⊕ scR ⊆ vR + s R;

here vR + s R has rank 2, for otherwise we would have vp = sq 	= 0 and so
v(pc) = sqc = scq ′ = wq ′ 	= 0, which contradicts the fact that vR ∩ wR =
0. So vR + s R has rank 2, and vR + s R ⊇ x R + y R by (1), so vR + s R =
x R + y R, by the maximality of the latter. Therefore s ∈ vR + scR, say s =
vm + scn; it follows that

s(1 − cn) = zm ∈ s R ∩ vR = 0,

hence 1 − cn = 0, and this shows that c is a unit. Now the rest follows easily.
�

This result applies in particular to firs that are not right Ore, or equivalently,
not right principal, so we obtain

Corollary 6.4.3. Let R be a fir that is not a principal right ideal domain. Then
every invariant element of R is a unit, in particular the centre of R is a field. �
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Finally we record, for later use, the form taken by the centre of the field of
fractions of a principal ideal domain.

Proposition 6.4.4. Let R be a principal ideal domain, K its field of fractions
and C the centre of K. Then C consists of all elements of the form ab−1, a,
b ∈ R, such that b 	= 0 and

axb = bxa for all x ∈ R. (2)

Proof. If ab−1 ∈ C , then ab−1 y = yab−1 for all y ∈ K , hence on writing
y = bx we obtain (2). Conversely, when (2) holds, then ab = ba, hence in
K , ab−1 = b−1a centralizes R and so also K. �

Exercises 6.4

1. Let R be any ring, a a right ideal maximal among non-finitely generated right ideals
of R and let c be an invariant element not in a. Show that a ∩ cR = ac.

2. (Goursaud and Valette, [75]). Show that if R is right hereditary and c an invariant
element of R, then R/cR is right Noetherian. (Hint: Use a dual basis.)

3. Let R be a right hereditary integral domain, but not right Ore. Show that R has no
non-unit invariant elements.

4. Show that the subring of Q〈x, y〉 consisting of all elements in which the constant
term has odd denominator is a non-Ore semifir with non-unit central elements.

5◦. Determine the possible centres of 2-firs with right ACC1.
6. Show that the subalgebra of k〈x, y, y−1〉 generated by x, y, y−n x is a non-Ore right

fir with the right invariant non-unit y (see section 2.10).
7. Let K be a field with a non-surjective endomorphism α. Show that K [x ; α] is a fir

that is not left Ore and has the right invariant element x.
8. Show that the subalgebra of k〈x, y, y−1〉 generated by y and y−m xy−n(m, n ≥

0) is a semifir, neither left nor right Ore, and with the non-unit invariant
element y.

9◦. Does there exist a left fir that is not right Ore, with a non-unit right invariant element?
Consider the same question for a fir that is not left or right Ore.

6.5 Free monoids

Before discussing subalgebras of free algebras it is helpful to look at free
monoids, where we shall meet the same problems, but in a simplified form, since
there is only one operation. It is particularly instructive to see what becomes of
the weak algorithm in monoids; as we saw in Section 2.5, the weak algorithm
may be used to characterize free algebras, and below we obtain a corresponding
result for free monoids.
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The free monoid on a set X is denoted by X∗. Each element of X∗ may
be written as a finite sequence of elements of X – with the empty sequence
representing 1 – and multiplication consists of juxtaposition. Clearly this repre-
sentation of elements is a normal form; moreover, 1 is the only unit in X∗, and
since it has cancellation, it is conical (see Section 0.9). We shall see in a moment
that X∗ is rigid, i.e. it has cancellation and ab′ = ba′ implies that a ∈ bX∗ or
b ∈ aX∗. Further, X is the precise set of atoms in X∗; thus the generating set
X is uniquely determined in terms of the monoid structure on X∗. It is this fact
that accounts for the simplicity of the theory.

Theorem 6.5.1. A monoid S is free on the set X of its atoms if and only if it is
generated by X and is conical and rigid.

Proof. Let S be free on X; clearly S is generated by X, it is
conical and has cancellation. If ab′ = ba′, express a, b, a′, b′ in terms
of X, say a = x1 . . . xr , b = y1 . . . ys, a′ = ys+1 . . . yn, b′ = xr+1 . . . xm ; then
x1 . . . xm = y1 . . . yn and since S is free on X, we have m = n and yi = xi , so if
r ≤ s say, then b = ac, where c = xr+1 . . . xs ; thus S is rigid.

Conversely, assume that the conditions hold. It will be enough to show that
any element of S can be written in just one way as a product of elements of X.
For any a ∈ S there is at least one way of so expressing a; suppose that

a = x1 . . . xm = y1 . . . yn, xi , y j ∈ X. (1)

By rigidity, x1 = y1b or y1 = x1b for some b ∈ S, say the former holds. Since
x1, y1 are atoms, b must be a unit and so b = 1, i.e. x1 = y1. Cancelling the
factor x1 and applying induction on max(m, n), we find that the two expressions
for a in (1) agree, so S is indeed free on X. �

Here the length of a, i.e. the number of factors in a complete factorization of
a, is usually denoted by |a|. We see that when |a| ≥ |b|, then ab′ = ba′ implies
that a = bc for some c ∈ S.

Theorem 5.1 may be used to give criteria for a submonoid of a free monoid to
be free. Consider, for example, the free monoid on one free generator x (the free
cyclic monoid). The submonoid generated by x2 and x3 is commutative; if it
were free, it would be cyclic, which is clearly not the case. Below we shall obtain
a result that makes it easy to find other examples of non-free submonoids of free
monoids. In any monoid we define an ideal as a subset T such that aT ∪ T a ⊆ T
for all a (as for rings) and an anti-ideal (also called a stable subset) as a subset
T such that a ∈ T whenever ab, ca ∈ T for some b, c ∈ T , thus

T T −1 ∩ T −1T ⊆ T . (2)
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We first record some conditions for a submonoid to be an anti-ideal:

Proposition 6.5.2. For any monoid S and submonoid T the following condi-
tions are equivalent:

(a) T is an anti-ideal in S,
(b) for all a ∈ S\T, aT ∩ T a ∩ T = ∅.
(c) for all a ∈ S, b ∈ T , if ab, ba ∈ T , then a ∈ T .

Proof. (a) ⇒ (b). If T is an anti-ideal and a ∈ S\T , then either aT ∩ T = ∅ or
T a ∩ T = ∅, hence (b) holds. Next assume (b) and suppose that b, ab, ba ∈ T .
Then ab2a ∈ aT ∩ T a ∩ T ; hence this set is non-empty and by (b), a ∈ T ,
which proves (c). Now (c) ⇒ (a) is clear. �

We also note the following property of anti-ideals:

Corollary 6.5.3. Let S be a monoid and T a proper anti-ideal in S. Then T
contains no ideal of S.

Proof. Let a be an ideal of S. If a ⊆ T , take a ∈ a and b ∈ S\T ; then ab, ba ∈
T , hence b ∈ T , which is a contradiction. �

Now the following result provides a supply of non-free submonoids in free
monoids:

Theorem 6.5.4. Let S be a conical rigid monoid. Then for any submonoid T
of S the following three conditions are equivalent:

(a) T is rigid;
(b) T is an anti-ideal in S;
(c) given a, b, b′ ∈ T , if ab′ = ba, then a = bc or b = ac for some c ∈ T .

Moreover, if S is generated by its atoms, it is free and these conditions are
equivalent to

(d) T is free.

Proof. (a) ⇔ (b). Let as = b, sa′ = b′, where a, a′, b, b′ ∈ T ; then asa′ =
ba′ = ab′, hence by (a), a = bc or b = ac for some c ∈ T . If a = bc, then
a = asc and so s = c = 1. If b = ac, then as = ac and so s = c. In either case
s ∈ T , and (b) follows. Now assume (b) and let ab′ = ba′. By rigidity of S,
one of a, b is a right multiple of the other, say a = bc, a′ = cb′, where c ∈ S.
Hence c ∈ T T −1 ∩ T −1T , and so c ∈ T by (b), showing T to be rigid, i.e. (a)
holds.

(a) ⇔ (c). Clearly (a) ⇒ (c); conversely, let ab′ = ba′; then b′a.b′b =
b′b.a′b, so by (c), either b′a = b′bc or b′b = b′ac for some c ∈ T , and by
cancelling b′ we obtain (a).
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(d) ⇔ (a) Clearly (d) ⇒ (a). If S is generated by its atoms, it is free by
Theorem 5.1; now T is also generated by its atoms and so if (a) holds, then it is
free, i.e. (d) holds. �

We note that whereas (b) refers to S, (a) and (c) are intrinsic in T. In a
free monoid, let us associate with every element u 	= 1 the shortest element
of which it is a power (the ‘least repeating segment’) and call this the root of
u. For example, xyxyxy has the root xy. Every element u 	= 1 has a unique
root, which may also be characterized as an element of the shortest positive
length commuting with u. From the criteria of Theorem 5.4 we easily obtain
the following result, whereby a free subset of a monoid we understand a free
generating set of the submonoid generated. A corresponding definition applies
to free subsets of an algebra.

Corollary 6.5.5. In a free monoid S the following conditions on a pair of
distinct elements a, b different from 1 are equivalent:

(a) {a, b} is a free subset of S,
(b) ab 	= ba,
(c) a, b have distinct roots.

Proof. If (c) fails, we have a = ur , b = us , hence ab = ba and (b) fails. If
(b) fails, so does (a) and finally, if a, b are not free, then there is a non-trivial
relation that after cancelling common left factors reduces to

av = bw, (3)

where v, w are words in a, b. Suppose that |b| ≤ |a|; then by rigidity, a = bc
for some c ∈ S. Since a 	= b, we have c 	= 1 and (3) can be replaced by cv = w

and v, w are words in b, c. This relation is still non-trivial; by induction on
|a| + |b| it follows that b, c have the same root, hence so do a, b. �

This result shows that commutativity is an equivalence relation on the set of
elements different from 1 in a free monoid, and each equivalence class, with 1
adjoined, is a free cyclic monoid.

In Section 2.4 we saw that the free algebra k〈X〉 may also be defined as the
monoid algebra of the free monoid on X, k X∗. The weak algorithm holding in
the free algebra may be regarded as the analogue of rigidity and it is clear that
any free submonoid T generates a free subalgebra kT, though of course, not
every free subalgebra of k〈X〉 is of this special form. We shall briefly consider
free generating sets of free submonoids; this is part of the theory of codes, an
interesting recent application of semigroup theory, but an extended treatment
would go beyond the framework of this book (see FA, Chapter 10; also Lothaire
[97], Berstel and Perrin [85], Lallement [79]).



6.5 Free monoids 361

Let X be a finite set; as before, we denote the free monoid on X by X∗ and we
put X+ = X∗\{1}. A subset Y of X+ is called a code if it is a free generating set
of the submonoid it generates. For example, if X = {x, y}, then {x, xy, xy2} is
a code, as is {y, yx, y2x}, but {x, xy, yx} is not, because x .yx = xy.x . It is also
clear why 1 has to be excluded from a code. Suppose that Y is a subset of X+

that is not a code; then we have an equation between two distinct words in the
elements of Y and by cancellation we may take this to be of the form yu = y′v,
where y, y′ ∈ Y, y 	= y′. By the rigidity of X∗ we have y = y′z or y′ = yz for
some z ∈ X∗, say the former holds. Then we say that y′ is a prefix of y. A subset
Y of X∗ is called a prefix set if no element of Y is prefix of another, and what
has been said shows the truth of

Proposition 6.5.6. Every prefix set 	= {1} in a free monoid is a code. �

For this reason a prefix set 	= {1} in a free monoid is also called a prefix
code. Suffix sets are defined by left–right symmetry; apart from {1} they are
again codes, e.g. {x, xy, xy2} is a suffix set, but not a prefix set. Prefix codes
are of particular interest in coding theory since any ‘message’ in a prefix code
can be deciphered reading letter-by-letter from left to right (this is also known
as a ‘zero-delay code’). By contrast, if a code is not prefix, one may have to
read arbitrarily far to decipher a message, e.g. {xy, yx, z, zx} is a suffix set, but
to decipher a message of the form zxyxyxy . . . one has to read to the end, to
see if it ends in xy or yx.

Let X be a set of r elements; then X∗ contains rn words of length n. We shall
again write |u| for the length of u, and for any subset Y of X+ define its weight
(possibly ∞) as

μ(Y ) =
∑
y∈Y

r−|y|. (4)

Writing Xn for the set of all words of length n in X∗, we see that μ(Y ∩ Xn) may
be regarded as the ‘weight’ of Y ∩ Xn as a fraction of μ(Xn) = 1; in particular,
μ(Y ∩ Xn) ≤ 1.

If Y is finite and 1 /∈ Y , then

μ(Y ) ≤ max{|y||y ∈ Y }, (5)

for if the right-hand side has the value N, then Y ⊆ X ∪ X2 ∪ . . . ∪ X N .
For any two subsets Y, Z of X+ let Y Z = {yz|y ∈ Y, z ∈ Z}; then

μ(Y Z ) ≤ μ(Y )μ(Z ), (6)

and when the right-hand side is finite, equality holds if and only if each member
of YZ factorizes uniquely as yz, where y ∈ Y, z ∈ Z . In particular, for a code Y
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we have

μ(Y n) = μ(Y )n, n = 1, 2, . . . (7)

We can now state a necessary condition for a subset of X+ to be a code:

Theorem 6.5.7. Let X be a finite set. If Y is a code in the free monoid X∗, then

μ(Y ) ≤ 1. (8)

Proof. Suppose first that Y is finite, say max{|y||y ∈ Y } = N . Then by (7)
and (5),

μ(Y )n = μ(Y n) ≤ nN , for all n ≥ 1.

Hence μ(Y ) ≤ (nN )1/n and letting n → ∞, we obtain (8). Since any subset of
a code is again a code, the result follows for all finite subsets of a code, and by
passing to the limit we see that it holds generally. �

Remarks. 1. If Y = {y1, y2, . . .}, where |yi | = ni , then (8) takes the form (Kraft–
McMillan inequality): ∑

r−n j ≤ 1. (9)

This necessary condition is not sufficient for Y to be a code, but when it holds, we
can always find a prefix code with elements of lengths n1, n2, . . . (see Exercise
16).

2. A maximal code is a code that is not a proper subset of any code. By
Theorem 5.7 we see that any code Y such that μ(Y ) = 1 is necessarily maximal,
e.g. if X = {x, y}, then {x, xy, xy2, y3} or {x, xy, xy2, . . .} are maximal codes.

Theorem 5.7 has an analogue for free algebras, which we shall now derive.
For any subset Y of k〈X〉\k let us define the weight as

μ(Y ) =
∑
y∈Y

r− deg y .

To get a measure for the elements of degree n, we need to take a basis (rather
than the set of all elements); so to obtain an analogue of (7) we shall assume
that Y ∪ {1} is k-linearly independent. Then (7) also holds for Y; further, we
have

μ(Y ) ≤ max{deg y|y ∈ Y }. (10)

For suppose the right-hand side of (10) is N and take the set of all monomials to
be lexicographically ordered. If y, y′ ∈ Y have the same monomial as leading
term, we can replace y′ by y′ − αy, with α ∈ k chosen so that y′ − αy has
smaller leading term than y′. By repeating this process if necessary, we can
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bring Y to a form where no two elements have the same monomial as leading
term, and the process cannot decrease μ(Y ); moreover, the linear independence
of Y ∪ {1} is preserved. Thus

μ(Y ) =
∑

r− deg y ≤
N∑
r

r ir−i = N ,

and this proves (10). With these preparations we can state

Theorem 6.5.8. If Y is a free subset of k〈X〉, then μ(Y ) ≤ 1.

Proof. As in Theorem 5.7 it is enough to consider the case where Y is finite,
say max{deg y|y ∈ Y } = N . Since Y satisfies (7), we have μ(Y n) = μ(Y )n and
by (10), μ(Y n) ≤ nN , so as before we find μ(Y ) ≤ 1. �

We conclude this section by considering another monoid associated with
rings. In any ring R the two-sided ideals form a monoid under the usual multi-
plication

ab =
{∑

ai bi |ai ∈ a, bi ∈ b

}
.

It is easy to verify that for principal ideal domains this monoid is free abelian
(Exercise 17). We shall show that for a fir it is a free monoid in most other
cases.

Theorem 6.5.9. Let R be a fir that has no non-unit right invariant elements
or no non-unit left invariant elements. Then the ideals of R form a free monoid.

If, as seems plausible, every fir with a non-unit right invariant element is
right principal, the conclusion of Theorem 5.9 holds for all firs that are not left
and right principal, but it is not known whether this is the case (see Exercise
4.9).

Proof. We have to verify the conditions of Theorem 5.1, and we shall pro-
ceed in a number of steps. Some of the properties actually hold under weaker
assumptions.

(i) If R is a right fir, a a non-zero right ideal and b, b′ any left ideals, then

ab = ab
′ ⇒ b = b′.

Proof. If we write a = ⊕ai R, then the equation ab = ab
′ becomes ⊕aib =

⊕aib
′; equating cofactors of a1 we find b = b′. �

(ii) Let R be a right fir and a, b ideals of R satisfying a + b = R, ab = ba.
Then either a or b is principal as right ideal of R. Hence if R has no non-unit
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invariant elements, then

a + b = R, ab = ba ⇒ a = R or b = R. (11)

Proof. If a = R or b = R, there is nothing to prove, so assume the contrary.
We have a ∩ b = (a ∩ b)(a + b) ⊆ ab + ba ⊆ a ∩ b, hence a ∩ b = ab, and by
the second isomorphism theorem,

R/b ∼= (a + b)/b ∼= a/ab. (12)

Now a is free as right R-module, say a = ⊕I ai R; hence a/ab ∼= ⊕I R/b. Since
the left-hand side of (12) is finitely generated, the right-hand side must be so
too, hence I is finite, i.e. a is finitely generated. By symmetry the same holds
for b. Let a, b have ranks p, q respectively; then by comparing characteristics
in (12) we find 1 − q = p(1 − q), hence (p − 1)(q − 1) = 0 and so p = 1 or
q = 1, i.e. either a or b is principal.

Now the second assertion follows because any ideal that is principal as right
ideal has a right invariant generator. �

(iii) Let R be a fir that has no non-unit right invariant elements or no non-unit
left invariant elements. Then the monoid of non-zero ideals of R is rigid.

Proof. Assume that R has no non-unit right invariant elements, say. Let
a, b, a′, b′ be non-zero ideals such that

ab
′ = ba

′. (13)

We have to find an ideal c such that a = bc or b = ac. Suppose first that a + b =
R and a′ + b′ = R. Then

b′ = ab
′ + bb

′ = ba
′ + bb

′ = b,

and similarly a′ = a. Hence ab = ba and since R has no non-unit right invariant
elements, it follows by (ii) that a = R or b = R. Note that in (13) we only had
to assume that a, b are right ideals and a′, b′ left ideals, since this together with
the equalities a = a′, b = b′ is enough to make them two-sided.

Next assume merely that a + b = R and let a′ + b′ = ⊕I Rei . Pick i ′ ∈ I
and let π : ⊕I Rei → R be the left linear functional ‘left cofactor of ei ′ .’ Then
a′π + b′π = R and a.b′π = b.a′π , where a′π, b′π are not both 0, hence neither
is 0. By the previous case we can find an ideal c such that a = bc or b = ac.

Finally the general case can be reduced to the case just considered by putting
a + b = ⊕I f j R. �

(iv) Let us write a ≺ b to mean a = cb, where c 	= R. Every left fir satisfies
ACC for two-sided ideals, with respect to ‘≺’.
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Proof. Suppose that we have a strictly ascending chain

0 	= b0 ≺ b1 ≺ b2 ≺ . . . , (14)

say bi−1 = aibi . Then b0 = a1b1 = a1a2b2 = . . . , hence

b0 ⊆ ∩a1 . . . an,

but the intersection on the right is 0, by Theorem 5.10.4, whereas b0 	= 0. This
contradiction shows that (14) must break off. �

(v) In any fir, every non-zero ideal is a product of atoms (in the monoid of
non-zero ideals).

Proof. By the left–right analogue of (iv) any proper ideal a has a maximal left
factor p1 : a = p1a1 say. If a1 is proper, it has a maximal left factor p2, giving
a = p1p2a2, and by (iv) this process must terminate; when it does, we have the
desired expression of a as a product of atoms. �

This completes the proof of (v) and with it, of Theorem 5.9. �

Exercises 6.5

1. Show that any retract of a free monoid is free.
2. Use Theorem 5.4 to find a procedure for reducing a finite subset Y of a free monoid

to a set Y ′ such that (i) Y and Y ′ generate the same submonoid T and (ii) if T is
free, then Y ′ is a code.

3. Let S = {0, 1, x} with multiplication x2 = 0. Show that S is generated by {x} and
is conical and rigid (save for cancellation) but not free.

4. Let F be the free group on a finite set X and let X∗ be the submonoid generated
by X. Classify the submonoids between X∗ and F. Does this set of submonoids
satisfy ACC? (Hint: Consider Sn = {x, x−n y}∗, n = 0, 1, . . . .)

5. Show that every submonoid of a free monoid has a unique minimal generating
set, consisting of its atoms.

6. Show that in a free monoid, the set of palindromes (i.e. fixed elements under the
order-reversing anti-automorphism) of even length generates a free submonoid,
with a prefix code as generating set. What about the set of all palindromes of
length nk (n = 1, 2, . . .) for a fixed k?

7. Show that the intersection of any family of free submonoids of a free monoid
is free. Show more generally that in any conical cancellation monoid, any non-
empty intersection of rigid submonoids is rigid, but that neither of the conditions
‘conical’ or ‘cancellation’ can be omitted.

8. Prove the following generalization of Theorem 5.1: Let G be a group, F a free
monoid and S = G∗F their coproduct (= pushout). Show that (i) given units
u, v ∈ S, if uc = cv for a non-unit c, then u = v = 1; (ii) for any c ∈ S the
number of non-unit factors in a factorization of c is bounded; (iii) S is rigid.
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Conversely, show that a monoid satisfying (i)–(iii) is of the form G∗F , where the
group G is unique as the group of units while the monoid F is free and unique up to
isomorphism.

9∗. Let A∗ be the free monoid on a set A, and for any subset X define the free hull
of X as the intersection of all free monoids containing X. Given any finite subset
X of A+ and its free hull Y ∗, the submonoid freely generated by its unique free
generating set Y, consider the mapping α : X → Y defined as follows: for x ∈
X, xα is the unique word y ∈ Y such that x ∈ yY ∗. Show that α is well-defined
(using the fact that Y is a code) and surjective (take z ∈ Y\Xα and show that
Z = (Y\z)z∗ is a smaller code than Y). Show that if α is injective, then X is
a code, and deduce the Defect Theorem: the free hull Y ∗ with free generating
set Y of a finite subset X of A∗, not a code, satisfies card(Y ) < card(X ) (see
Lothaire [97], p. 6).

10. Let S be a monoid in which the relation ‘a ≤ b if and only if ax = b for some
x ∈ S’ is a well-ordering. If S also has right cancellation (xz = yz ⇒ x = y),
show that S either consists of one element or is isomorphic to N.

11∗. Let S be a monoid that is well-ordered under the relation in Exercise 10
and has left cancellation. Show that S has a presentation with generators
xα(α < τ ) for some cardinal τ and defining relations xαxβ = xβ if α < β

(Cohn [61a]).
12. Let X be a set and take the monomials in X to be totally ordered in some way, so

as to respect left and right multiplication. Show that in k〈X〉 the homogeneous
elements with leading coefficient 1 form a free monoid.

13. Show that a subset of k〈X〉 is right d-independent whenever its leading terms form
a prefix code. Does the converse hold?

14. For any set X and any n ≥ 1, show that Xn is a maximal code.
15. Give an example of a subset of X∗\{1} which fails to be a code, yet sat-

isfies the Kraft–McMillan inequality. (Hint: Consider the effect of enlarging
X.)

16. Let X = {0, 1, . . . , r − 1} and let 1 ≤ n1 ≤ n2 ≤ . . . be a sequence of integers
satisfying

∑
i r−ni ≤ 1. Define si as the partial sum: s1 = 0, si+1 = si + r−ni and

put pi = r si si . Verify that pi is an integer satisfying 0 ≤ pi < rni . Let yi ∈ X∗

be pi in the r-adic scale (i.e. to base r). Verify that yi has at most ni digits (so by
prefixing 0s it can be taken to have exactly ni digits), and that {y1, y2, . . .} is a
prefix code.

17. Let R be a principal ideal domain. Show that each non-zero ideal of R is generated
by an invariant element. Deduce that ab = ba for all ideals a, b. (Hint: Recall
Theorem 0.9.4 and Proposition 1.4.6). Then conclude that the monoid of non-
zero ideals of R is free commutative.

18◦. Let R be a principal right ideal domain. Is the monoid of its non-zero ideals
necessarily commutative?

19◦. Let R be a fir. If R has a non-unit right invariant element, is it necessarily right
principal?

20∗. (C. Reutenauer) Show that the intersection of free power series subrings of k〈〈X〉〉
is a free power series ring. Deduce an analogue of the defect theorem: any finite
subset Y of k〈〈X〉〉 is either free or is contained in a free power series ring of rank
< card(Y).
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6.6 Subalgebras and ideals of free algebras

A subalgebra of a free associative algebra is not necessarily free. This is already
clear from the commutative case, by considering the subalgebra of the polyno-
mial ring k[x] generated by x2 and x3. In the case of the polynomial ring there
is a simple criterion for a subalgebra to be free. The proof uses some ideas from
valuation theory (see e.g. BA, chapter 9). In particular we note that all valuation
subrings of k(y) except one contain y, and the intersection of these subrings is
just k[y].

Proposition 6.6.1. A subalgebra R of a polynomial ring k[x] is free if and
only if it is integrally closed (in its field of fractions).

Proof. Assume that R is a free subalgebra; then either R = k or R = k[y] for
some y transcendental over k. In either case R is integrally closed.

Conversely, let R be integrally closed and denote its field of fractions by
K. Since k ⊆ R, we have k ⊆ K ⊆ k(x). If K = k, then R = k and the result
follows. Otherwise, by Lüroth’s theorem (see e.g. BA, theorem 11.3.4), K is a
simple purely transcendental extension of k. Since R is integrally closed, it is an
intersection of valuation rings of K (see Section 6.1). Now any valuation ring
of K is of the form op ∩ K , where op is a valuation ring of k(x) (see e.g. BA,
Section 9.4). If x is finite at p, then op ⊇ k[x] ⊇ R, whence R ⊆ op ∩ K . Thus
R is contained in all valuation rings of K over k, except at most one, namely
the one obtained from the pole of x, and for this place the residue-class field
is k. Since R 	= k, R is not contained in all the valuation rings; if oq is the
exceptional one, we can choose a generator y of K such that q is a pole of y, for
if not, say if y maps to a ∈ k, then we can replace y by (y − a)−1. Now R is the
intersection of all the other valuation rings of K = k(y) over k, so it follows
that R = k[y]. �

For free algebras on more than one generator no such convenient criterion is
known. We can of course use the characterization in terms of the weak algorithm
given in Section 2.5. Applied to subalgebras, this yields

Proposition 6.6.2. Let F = k〈X〉 be a free k-algebra. Then a subalgebra R
of F is free if and only if there is a filtration on R over k for which R satisfies
the weak algorithm. �

The difficulty in applying this criterion lies in the fact that the different
degree-functions in a free algebra are not related in any obvious way. If F is a
free algebra and R a subalgebra, then any degree-function on F will define a
degree on R, and if R satisfies the weak algorithm for this function, then it must
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be free. However, this sufficient condition is not necessary; thus if R is a free
subalgebra of F, then there is always a degree-function on R for which the weak
algorithm holds (Proposition 6.2), but this function need not be defined on all
of F. Let us call a subalgebra R of F regularly embedded if there is a degree-
function on F for which both F and R satisfy the weak algorithm. Examples of
irregularly embedded free subalgebras are given in Exercises 2 and 3.

There is one case where more information is available, namely when F =
k[x] is free of rank 1. We already know a simple test for a subalgebra to be free
(Proposition 6.1) and, as we shall see, there is also a simple criterion in terms
of the algorithm. For in this case (and only here) the only automorphisms are
the affine transformations x 
→ ax + b(a, b ∈ k, a 	= 0), therefore the degree-
function on F is unique up to a scalar factor. We thus obtain

Proposition 6.6.3. A subalgebra of k[x] is free if and only if it has the division
algorithm relative to the x-degree. �

Sometimes it is possible to obtain conditions for a homogeneous subalgebra
to be free. We recall that a homogeneous subalgebra is a subalgebra generated
by homogeneous elements (not necessarily all of the same degree). Thus, using
Corollary 2.9.15, we have

Theorem 6.6.4. Let F = k〈X〉 be a free algebra and R a homogeneous subal-
gebra, with augmentation ideal a. Then the following conditions are equivalent:

(a) For every homogeneous subspace V of R such that a = V ⊕ a2, the natural
homomorphism ψ : k〈V 〉 → R is an isomorphism,

(b) R is free on a homogeneous set of free generators,
(c) R is free k-algebra,
(d) R is right hereditary,
(e) a is flat as right R-module,
(f) the natural map a ⊗R a → a2 is an isomorphism.

Proof. (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) are clear ((e) ⇒ (f) follows
by Appendix Proposition B.8). To prove (f) ⇒ (a) we need only show, by
Corollary 2.9.15, that ψ is surjective. By hypothesis, a = V + a2, hence an =
(V + a2)n ⊆ V n + an+1, and so we have

an = V n + an+1 for all n ≥ 1. (1)

It follows, on setting R′ = im ψ , that

R = R′ + an for all n ≥ 1. (2)

For this holds when n = 1, and since V ⊆ R′, it follows generally by induction,
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using (1). Now let u be a homogeneous element of R, take n > deg u and write
u = r ′ + a, where r ′ ∈ R′, a ∈ an . Since V is homogeneous, so is R′ and hence
u = r ′ ∈ R′, a = 0. Thus R′ = R and ψ is surjective, as claimed. �

There is another characterization of homogeneous subalgebras that is often
useful:

Theorem 6.6.5. Let F = k〈X〉 be a free k-algebra and R a homogeneous
subalgebra. Then the following conditions are equivalent:

(a) R is free, with a homogeneous free generating set Y which is right F-linearly
independent ,

(b) F is free as left R-module,
(c) F is flat as left R-module.

Proof. (a) ⇒ (b). Assume (a) and let W be the k-space spanned by Y, so
that W ⊗k F = Y F, R = k〈W 〉. Choose a homogeneous k-space V such that
F = V ⊕ Y F ; then

F ∼= V ⊕ (W ⊗ F) ∼= V ⊕ (W ⊗ V ) ⊕ (W ⊗ W ⊗ F)
∼= (k ⊕ W ⊕ (W ⊗ W ) ⊕ . . .) ⊗ V
∼= R ⊗ V,

and this shows V to be spanned over k by a left R-basis of F.
Thus F is free over R, i.e. (b). (b) ⇒ (c) is clear, and to prove (c) ⇒ (a),

assume that F is flat as left R-module. We take a resolution of k:

0 → f → F → k → 0,

where f is the augmentation ideal of F. Similarly, if a is the augmentation ideal
of R, we have an exact sequence

0 → a → R → k → 0.

Since R is free as R-module, we obtain an exact sequence (by the extended
Schanuel lemma, Appendix Lemma B.5):

0 → a → f ⊕ R → F → 0.

Here F, R, f are left R-flat, hence so is a. Now Theorem 6.4 (e) shows that R is
free, with homogeneous generating set Y. Hence Y is a right R-basis of a. But
the embedding

0 → R(Y ) = a → R

remains exact under the operation ⊗R F (because F is left flat), therefore Y is
right F-linearly independent and (a) follows. �
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We now turn to examine right ideals in a free algebra. If F = k〈X〉 is a free
k-algebra and r a right ideal in F, then F/r is a right F-module; hence it is a
k-space and we shall find that it has a basis derived from a prefix code in X. This
will lead to another proof that r is free as right F-module, but some preparations
are necessary.

In every partially ordered set S with DCC there is a natural bijection between
lower segments (i.e. complements of upper segments) and antichains (i.e. sets of
pairwise incomparable elements): with every lower segment L we associate the
set LO of minimal elements of the complement S\L , clearly an antichain, and
with every antichain A we associate AO, the complement of the upper segment
generated by A. It is easily checked that these mappings are mutually inverse.

Let X be a finite set and X∗ the free monoid on X, partially ordered by left
divisibility:

a ≤ b if and only if b = ac for some c ∈ X∗. (3)

It is clear that X∗ satisfies DCC for this partial ordering. A lower segment in
this partial ordering is called a Schreier set; such a set is characterized by the
fact that with any word it contains all its left factors (prefixes). An antichain in
X∗ is just a prefix set; thus we have a natural bijection between the prefix sets
and the Schreier sets. Starting from a prefix set P, the corresponding Schreier
set PO consists of all words with no prefix in P, while for a Schreier set C the
corresponding antichain CO consists of all words not in C but with every proper
prefix in C. We note that the prefix set {1} corresponds to the empty Schreier
set; thus the prefix codes correspond to the non-empty Schreier sets. A prefix
code and its Schreier set lead to a useful factorization of the free monoid:

Proposition 6.6.6. Let X be any non-empty set. Then the construction
described above for the free monoid X∗ yields a natural bijection between
the prefix codes and the non-empty Schreier sets on X∗, and if P, C correspond
in this way, then every element of X∗ can be written uniquely as the product of
a string of members of P and a member of C:

X∗ = P∗C, (4)

while P and C are given by

C = X∗\P X∗, (5)

P = C X\C. (6)

Moreover for any c ∈ C and any w ∈ X∗ of length h, the product cw is either
in C or of the form pw′, where p ∈ P and w′ ∈ X∗ is of length < h.
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Proof. It is clear that (5) and (6) lead to the bijection that has already been
described. To establish (4), let w ∈ X∗ and write w = ab, where a is the longest
left factor of w in P∗; then clearly b ∈ C and (4) follows. The final assertion is
easily verified. �

We can now give another proof of the right fir property of rings with a weak
algorithm in an explicit form.

Theorem 6.6.7. Let R be a filtered ring with a weak algorithm, R0 = K a
field. Then any right ideal r of R is free. More precisely, there is a Schreier set
C that is a left K-basis of R (mod r); if P = Co is the corresponding prefix set,
then for each p ∈ P there exist unique elements αp,c ∈ K (c ∈ C), almost all
zero, such that

p −
∑

αp,cc ∈ r (c ∈ C),

and the elements yp = p − ∑
αp,c c form a basis of r as free right R-module.

Proof. Let X be a monomial left K-basis of R, constructed as in Section 2.5.
Any element of X∗ with a prefix in r is itself in r, so let us take the subset Z of X∗

consisting of all elements with no prefix in r. We now build up a Schreier set by
induction on the length as follows: at the first stage we choose 1; next we take
a subset C1 of Z consisting of 1 and of elements of length 1 that together with 1
are left K-linearly independent (mod r). Thus C1is a Schreier set. When Chhas
been chosen as a Schreier set, to contain Ch−1 and left linearly independent
(mod r), we add elements of length h + 1 to preserve these properties to form
Ch+1, as long as this is possible. This process can only stop when we have a
left K-basis of R (mod r), and this is the desired Schreier set C. Let P be the
corresponding prefix set; for each p ∈ P, C ∪ {p} is still a Schreier set, but is
left linearly dependent (mod r), by the maximality of C; thus we have

p −
∑

αp,cc ∈ r (c ∈ C, αp,c ∈ K ). (7)

Writing yp = p − ∑
αp,cc, we claim that any element r of R can be written in

the form

r =
∑

ypgp +
∑

βcc, where gp ∈ R, βc ∈ K . (8)

By linearity it is enough to prove this when r is a monomial w, and we may
further assume that w /∈ C . By Proposition 6.6 we can then write w = pu for
some p ∈ P . Using (7) and the definition of yp, we find

w = ypu +
∑

αp,ccu.
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Now for any c ∈ C , either cu ∈ C or cu = p1u1, where |c| < |p1|, |u1| < |u|.
In the first case we have achieved the form (8), in the second case we can apply
induction on |u| to express p1u1 in the same form, and (8) follows.

Now take r ∈ r and apply the natural homomorphism R → R/r. Writing
the image of a ∈ R as ā, we have, by (8),

0 = r̄ =
∑

βcc̄,

but by hypothesis the c̄ are left linearly K-independent, hence βc = 0 in this
case and so r = ∑

ypgp. This shows that the yp generate r. To prove their
linear independence over R, assume that

∑
ypgp = 0, where the gp are not all

0. Then by (7) ∑
pgp =

∑
αp,ccgp. (9)

Let w be a word of maximum length occurring in the gp, say in gp′ . Since P is
a prefix code, p′w occurs with a non-zero coefficient, λ say, on the left of (9).
Hence we have

λ =
∑

αp,cμp,c,

where μp,c is the coefficient of p′w in cgp. Now p′w = cu can only hold when
c is a proper left factor of p′, hence |c| < |p′|, |u| > |w|, and this contradicts the
definition of w. Hence the yp form a free generating set of r, as claimed. �

In particular, this result shows again that each right ideal in R (and, by
symmetry, each left ideal) is free (Corollary 2.5.3). The uniqueness of the rank
is clear since R has a homomorphism to K and so has IBN.

We can also use these results to obtain another derivation of the Schreier–
Lewin formula (see Section 2.6). To do this we observe that for free algebras,
(4) of Proposition 6.6 translates to the relation(

1 −
∑

X
)−1

=
(

1 −
∑

P
)−1

C

in F = Z〈〈X〉〉. On multiplying out, we find(
1 −

∑
P

)
= C

(
1 −

∑
X

)
. (10)

Thus if F/r has finite dimension r over k and X has finite cardinality d, then the
right-hand side of (10) will lie in Z〈X〉, hence so will the left-hand side, which
shows P to be finite too. By Theorem 6.7 this tells us that r has finite rank, n
say, as right F-module. If we map Z〈X〉 to Z by mapping each x ∈ X to 1, (10)
takes the form of the Schreier–Lewin formula:

1 − n = r (1 − d). (11)
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Free subalgebras of a free algebra F have the property that they contain no
non-zero ideal of F; this follows because they are anti-ideals. We shall need a
result providing us with a supply of anti-ideals. A subring S of a ring R is said
to be unit-closed in R if every unit of R that lies in S is also a unit in S.

Lemma 6.6.8. Let R be an integral domain and S a subring. If S is a 2-fir,
unit-closed in R, then S is an anti-ideal.

Proof. Let a ∈ R and suppose that b, c ∈ S× are such that ab, ca ∈ S. Then in
S we have c.ab = ca.b, hence cS + caS is principal, say dS, where d ∈ S. Now
d R = cR + ca R = cR, so c = du, where u is a unit in R. We have du = c ∈ d S
and so u ∈ S; since S is unit-closed, u is a unit in S. Now ca ∈ d S = duS = cS,
therefore a ∈ S, showing S to be an anti-ideal. �

In a free k-algebra the units all lie in k and so are contained in every subal-
gebra; hence we obtain

Theorem 6.6.9. In a free algebra, every subalgebra that is a 2-fir (in partic-
ular every free subalgebra) is an anti-ideal. �

Exercises 6.6

1. Let F = k〈x, y〉; show that the subalgebra R generated by x + y2 and y3 is free
on these generators but does not satisfy the weak algorithm relative to the (x, y)-
degree. By a suitable change of degree-function show that R is regularly embedded
in F.

2. (D. R. Lane) Let F = k〈x, y〉; show that the subalgebra generated by u = (xy)4 +
y(xy)2 and v = (xy)3 is free, but not regularly embedded. (Hint: Show that k〈u, v〉
is regularly embedded in k〈y, yx〉, which is regularly embedded in F. Alternatively
verify that any degree-function d satisfies d([u, v]) < d(uv) = d(vu) and use
Corollary 7.4 below.)

3∗. (W. Dicks) Let F = k〈x, y〉; show that the subalgebra u = xyx − y, v = uyx and
w = uxy is free on these generators but is not regularly embedded in F.

4. (R. E. Williams) In a free algebra F, let R be the subalgebra generated by b1, . . . , bn

such that deg (b1) = . . . = deg (bn), and this is the minimum degree of non-zero
elements in R. Show that if the elements b1 . . . bn are linearly independent, they
form a free generating set.

5. Let Fn = k〈x1, . . . , xn〉 be the free k-algebra of rank n. Show that if there is a
surjective homomorphism ϕ : Fn → Fm , then m ≤ n, with equality if and only if
ϕ is an isomorphism (Hint: Look at the terms of low degree.)

6◦. (V. Drensky) Assume that k〈X〉 ⊂ k〈Y 〉 ⊂ k〈X ∪ Z〉, as augmented k-algebras.
Is k〈Y 〉 free on a set X ∪ T for some T?

7◦. (W. E. Clark) Is every retract of a free algebra of rank n free? (For n = 1, 2 see
Section 6.7).
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8. (G. M. Bergman) In {x, y}∗ consider the submonoid generated by u = xy, v =
yx, z = x2 and y. Verify that it satisfies the relations yznu = vzn y(n = 1, 2, . . .),
but that none of these equations is implied by earlier ones. Deduce the existence
of a finitely generated subalgebra of k〈x, y〉 that is not finitely presented.

9. (Kolotov [78]) Show that in any integral domain, the family of anti-ideals is closed
under intersections, unions of chains, and if C is an anti-ideal in B and B in A,
then C is an anti-ideal in A. Show also that an anti-ideal of R contains with any
right ideal of R its idealizer in R.

10. (G. M. Bergman) Let A be a commutative integral domain and F its field of
fractions. Show that a subring of A is an anti-ideal if and only if it is the intersection
of A with a subfield of F.

11. Show that in Theorem 6.7, for a right ideal of finite codimension the prefix set P
is a maximal code.

12. (W. Dicks) Let F = k〈x, y, z〉 and let R be the subalgebra generated by a =
xy, b = xyz + x + z, c = zyx + x + z, d = yx . Verify that R is an anti-ideal;
moreover, for any s ∈ F\R, s R ∩ R = 0, but that R is not a 2-fir. (Hint: Verify
that a + 1 and b are right comaximal in F and examine the homomorphism of the
subalgebra generated by a, d, x, z mapping a, d to −1 and x, z to 0.)

13∗. (Bergman [a]) Let F = k〈x, y1, y2, y3, z〉, G1 the subalgebra generated by
x, y1, y3, y2z, z and G2 the subalgebra generated by x, xy1, y1 y2 − y3, y2, z. Ver-
ify that G1 and G2 are each free on the given generating sets, but that G1 ∩ G2

is not a 3-fir, hence not free. (Hint: Verify that the relation x .(y1 y2 − y3)z +
xy1.(−y2z) + xy3.z = 0 can be trivialized in G1 and in G2 but not in G1 ∩ G2.)

14. (Bergman [a]) Show that in a free k-algebra the intersection of any family of free
k-subalgebras is a 2-fir, but need not be free.

15. A prefix code on X∗ is called complete if the right ideal generated by it meets
every non-empty right ideal of X∗. Show that in the correspondence between
prefix codes and Schreier sets, the finite non-empty Schreier sets correspond to
the complete finite prefix codes.

16◦. Prove an analogue of Theorem 6.7 for group algebras of free groups and more
generally for mixed algebras. Is there an extension for firs that are augmented
k-algebras or for rings with weak algorithm?

6.7 Centralizers in power series rings and in free algebras

In a free algebra, few elements commute with each other, and one would expect
the centralizer of a non-scalar element to be small. This expectation is borne
out, as we shall see in Theorem 7.7 below. A similar question can be raised for
the free power series ring, and as this is rather easier to answer, we begin with
it.

Theorem 6.7.1. Let R be an inversely filtered ring that satisfies a 2-term
inverse weak algorithm and is complete. Then the centralizer C of any a ∈ R,
not zero or a unit, is a complete principal valuation ring.
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If moreover, R is a connected k-algebra, then the centralizer of any non-
scalar element of R is a formal power series ring in one variable over k and so
is commutative.

Proof. Let x, y ∈ R be right linearly dependent and v(x) ≥ v(y), say; then
x − yz and y are right v-dependent for any z ∈ R, hence by Lemma 2.9.3,
x = yz for some z ∈ R, so x R ⊆ y R.

If a is as stated in the theorem, then v(a) > 0; given x, y ∈ C , we have
xan = an x for any n ≥ 0, hence for sufficiently large n, an R ⊆ x R and an R ⊆
y R. Thus x R ∩ y R 	= 0, and so, if v(x) ≥ v(y), then x = yz. Clearly z ∈ C , so
xC ⊆ yC , i.e. C is a right chain ring. Since R is atomic, by Proposition 2.9.6,
and any non-unit of C remains a non-unit in R, it follows that C is atomic and
therefore a rigid UFD, by Theorem 3.3.2. It contains a large non-unit, namely a,
hence it is a right (and by symmetry left) principal valuation ring, by Theorem
3.3.9, and it is complete because R is.

Now assume that R is connected and let x be an element of least positive
degree in C, so that every ideal in C has the form Cxn = xnC . Then every
element of C has the form xnv, where n ≥ 0 and v is a unit. The additional
hypothesis allows us to write v = α + xrv′(α ∈ k, r ≥ 0, v′ a unit), and an
induction argument, using the completeness, shows that C = k[[x]]. �

In particular, the free power series ring satisfies all the hypotheses and we
have

Corollary 6.7.2. The centralizer of a non-scalar element in the free power
series ring k〈〈X〉〉 is of the form k[[c]] for some element c of positive order. �

We know from Corollary 2.9.11 that any non-scalar element in a free power
series ring generates a free power series ring in one variable. Two elements may
not generate a free power series algebra, e.g. the complete algebra generated
by x2 and x3 is not free; here and in the proof below we shall use the term ‘free
subset’ in the abstract sense, i.e. ignoring the filtration. We have the following
analogue for part of Corollary 5.5:

Proposition 6.7.3. Let R be a complete inversely filtered ring with 2-term
inverse weak algorithm, which is a connected k-algebra. If x, y are two
non-commuting elements of R, say x = α + x1, y = β + y1, where α, β ∈
k, x1, y1 ∈ R[1], then the complete algebra generated by x, y is the free power
series ring k〈〈x1, y1〉〉.
Proof. By hypothesis xy − yx 	= 0, hence v(xy − yx) is a positive integer n;
we shall use induction on n. Since xy − yx = x1 y1 − y1x1, we may replace x, y
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by x1, y1 respectively; for simplicity of notation we shall drop the subscript,
thus we may assume that v(x), v(y) > 0.

If x, y are not free, we have a relation

x f + yg + λ = 0, (1)

where f, g ∈ k〈〈x, y〉〉 and λ ∈ k. Equating constant terms in (1) we find that
λ = 0, so x, y are right linearly dependent. If v(x) ≥ v(y), then

x = yz, (2)

for some z ∈ R. Let z = γ + z1(γ ∈ k, z1 ∈ R[1]); if we can show that y, z1 are
free, then so are x, y by (2), for the elements y, yz are clearly free in k〈〈y, z1〉〉.
Now

0 	= xy − yx = yzy − yyz = y(zy − yz),

hence yz − zy 	= 0 and v(yz − zy) < v(xy − yx). So the result follows by
induction. �

The result may be expressed more strikingly by saying: x and y are free if
and only if they do not commute. In particular, since any free algebra can be
embedded in a power series ring, we have

Corollary 6.7.4. Any two non-commuting elements of a free k-algebra form
a free set. �

We now go on to consider centralizers in a free algebra F = k〈X〉. Let
a ∈ F\k and denote by C the centralizer of a in F . The embedding of F
in k〈〈X〉〉 shows that C is commutative, by Corollary 7.2; moreover, C is
finitely generated, as module over k[a] or as algebra. For if d(a) = n say,
we choose for each integer ν = 0, 1, . . . , n − 1 such that an element of degree
≡ ν(mod n) occurs in C, an element of least degree ≡ ν(mod n) in C. Call-
ing these elements c0, . . . , cr (r ≤ n − 1), we see that every element in C has
the same leading term as some ci a j (i = 0, . . . , r, j = 0, 1, . . .), by Corollary
7.2; hence the ci a j span C over k[a], and together with a they generate C as
k-algebra.

Our aim is to show that C is a polynomial ring over k. In order to establish
this fact we shall study homomorphisms of C into polynomial rings. If we look
at the leading terms of elements of C we note that all are powers of a given one
(essentially by an application of Corollary 5.5), and it turns out that in order to
achieve a homomorphism of C into a polynomial ring we need a preordering of
the free monoid that lists each word together with all its powers. This is done
by introducing ‘infinite’ words.
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Let X be a totally ordered set and W the set of all right infinite words in X,
i.e. infinite sequences of letters from X. Given u ∈ X+, we denote by u∞ the
word obtained by repeating u indefinitely: u∞ = uuu . . . ∈ W . Thus we have
a mapping u 
→ u∞ from X+ to W that identifies two words if and only if they
have the same root* We shall take W to be ordered lexicographically.

Lemma 6.7.5. Given u, v ∈ X+, if u∞ > v∞, then

u∞ > (uv)∞ > (vu)∞ > v∞, (3)

and similarly with > replaced by < or = throughout.

Proof. Suppose that (uv)∞ > (vu)∞; then

(vu)∞ = v(uv)∞ > v(vu)∞ = v2(uv)∞ > v2(vu)∞ = . . . → v∞,

since the lexicographic order is ‘continuous’. Similarly we find that (uv)∞ <

u∞; therefore (3) follows whenever (uv)∞ > (vu)∞. Likewise (uv)∞ < (vu)∞

implies

u∞ < (uv)∞ < (vu)∞ < v∞, (4)

while (uv)∞ = (vu)∞ implies

u∞ = (uv)∞ = (vu)∞ = v∞. (5)

Now for any u, v exactly one of (3), (4), (5) holds and the assertion follows. �

The monoid algebra k X∗ is just the free algebra F = k〈X〉. Given any peri-
odic word z in W, i.e. an infinite power of a word in X, let us define Az as the
k-subspace of F spanned by the words u satisfying u = 1 or u∞ ≤ z, and let
Iz be the k-subspace spanned by the words u such that u 	= 1 and u∞ < z. By
Lemma 7.5, Az is a subalgebra of F in which Iz is a two-sided ideal.

The set of words u in X such that u∞ = z, together with 1, form the set of
non-negative powers of an element v that we shall call again the root of z. It
follows that Az/Iz ∼= k[v].

Proposition 6.7.6. Let C be a finitely generated subalgebra of a free k-algebra
F. If C 	= k, then there is a homomorphism f of C into the polynomial ring in
one variable over k such that C f 	= k.

Proof. Let F = k〈X〉, where X is totally ordered. Take a finite generating
set Y for C and let z be the maximum of u∞ as u ranges over all monomials

* For example, can and cancan.
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	= 1 occurring with non-zero coefficient in members of Y. Then Y ⊆ Az , hence
C ⊆ Az and the quotient map f : Az → Az/Iz ∼= k[v] is non-trivial on C. �

When C is not finitely generated, the result need no longer hold (see Exercise 5).
Consider now the free algebra F = k〈X〉. Given a non-scalar element a, its

centralizer C is a finitely generated commutative k-algebra, as we have seen.
Therefore it can be mapped non-trivially into a polynomial algebra; now C
as finite extension of k[a] has transcendence degree 1 over k and so it must
be embedded in the polynomial algebra. Being integrally closed (by Corollary
1.2), it must be free (Proposition 6.1), so we have proved Bergman’s centralizer
theorem:

Theorem 6.7.7. Let F = k〈X〉 be the free k-algebra on X. Then the centralizer
of any non-scalar element of F is a polynomial ring in one variable over k. �

Exercises 6.7

1. (Bergman [67]) Let F = k〈x, y〉 and let C be the centralizer of an element a ∈
F\k. Using the remarks following Corollary 7.4, show that the valuation on k[a]
given by the degree in a is totally ramified on C (i.e. it extends to a unique valuation
on C with the same residue-class field).

2. (Schur [1904]) Let R be the ring k[x ; 1, ′] of differential operators, where k =
F(t) is a rational function field (over a field F of characteristic 0) and ′ denotes
differentiation with respect to t. Show that the centralizer of any element outside
F is commutative. (Hint: Apply Theorem 7.1 to the completion of R by negative
powers of x.)

3. (Bergman [67]) Let X∗ be the free monoid on X = {x1, . . . , xn−1} and W the set of
infinite words in X. With each u = a1a2 . . . in W associate the ‘decimal expansion’
λ(u) = ∑

ai n−i and obtain a formula for λ(u∞) in terms of λ(u) and the length
of u. Hence express λ(uv) as a convex linear combination of λ(u∞) and λ(v∞).

4. With every ring R we can associate another ring Rab, the ring R made abelian,
which is obtained by dividing R by the ideal generated by all the commutators.
Thus the natural mapping R → Rab is universal for homomorphisms of R into
commutative rings. Given any ring R, denote by S the subring generated by the
kernel of the natural mapping R → Rab (i.e. the commutator ideal). For any
a, b ∈ R write c = [a, b] = ab − ba and establish the identity

c[ac, bc] = ca[c, bc] + cb[ac, c] + c4.

Deduce that if R = k〈X〉(|X | > 1), then Sab has nilpotent elements other than 0
(and so cannot be a free algebra or a polynomial ring).

5. Show that Sab in Exercise 4 admits no homomorphism onto a non-scalar subal-
gebra of a polynomial ring. Use this fact to show that the hypothesis that C be
finitely generated in Proposition 7.6 cannot be omitted.
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6. In a free algebra over a field of characteristic 0, show that if ab + ba = 0, then
either a or b is 0 (this follows from Theorem 7.7, but give a direct proof).

7. Show that the commutation relation on F\k is transitive, and hence an equivalence.
(Hint: Use Theorem 7.7 and Corollary 7.4.)

8. (G. M. Bergman; Kolotov [78]) Let F = k〈X〉 be a free algebra. Show that any
subalgebra generated by two elements y, z of F is either free on y, z or is contained
in a 1-generator subalgebra. If F = k〈x, y, z〉, then the elements u = xyxz +
xy, u′ = zxyx + yx, v = xyx satisfy the relation uv = vu′, but there is no 2-
generator subalgebra containing u, u′, v. (Hint: If there is such a subalgebra B,
say, it must be a 2-fir, hence an anti-ideal. Use the given relation to show that
xy, yx ∈ B and deduce in turn that x, y, z ∈ B.)

9◦. (Bergman [67]) Let F be a free k-algebra and F̂ its completion by power series.
Given a ∈ F , denote by C, C ′ its centralizers in F, F̂ respectively. Is C ′ the closure
of C in F̂?

10. (G. M. Bergman) Given a, b ∈ k〈X〉, different from zero, show that for any mono-
mial u in the support of a, some right multiple of u is in the support of ab. (Hint:
Take a longest right multiple of u in supp(a) and multiply it by a longest monomial
in supp(b).)

11. (Koshevoi [71]) Let R be a k-algebra; a subalgebra is called pure if it contains
u ∈ R, whenever it contains a non-scalar polynomial in u. Show that the subalgebra
of k〈x, y, z〉 generated by x, xy, z, yz is a pure subalgebra, but is not a 2-fir. (Hint:
Use Exercise 10.)

12∗. (Dicks [74]) Let b be any element in a free k-algebra F. Show that the idealizer
I (bF) is pure, and hence has the centralizer property of Theorem 7.7.

13◦. (G. M. Bergman) Given X 	= ∅, which submonoids S of X∗ have the property
that kS is pure in k〈X〉?

14◦. (G. M. Bergman) Which monoids S (not necessarily embeddable in a free monoid)
have the property that the centralizers in the monoid ring kS of non-scalar elements
all have the form k[c]?

15. Let G be the free group on si (i ∈ I ) and consider the map f : kG → k〈〈xi |i ∈ I 〉〉
given by si 
→ 1 + xi . Show that any multiplicative commutator q maps to a series
1 + q̄ + . . . , where q̄ is the corresponding additive commutator and dots indicate
terms of higher order. Deduce that f is injective, and hence show that any two
elements of kG either commute or generate a free subalgebra.

6.8 Invariants in free algebras

Let R be a k-algebra and G a group of k-algebra automorphisms of R. An element
r of R is said to be an invariant of G if r g = r for all g ∈ G; if r g = λgr (λg ∈ k)
for all g ∈ G, r is called a relative invariant. Thus r is a relative invariant
precisely when G stabilizes kr.

The set of all invariants of G is a k-subalgebra of R, denoted by RG and called
the fixed ring, or algebra of invariants of G. The set of relative invariants is not
an algebra, but we shall sometimes refer to the subalgebra generated by this set
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as the algebra of relative invariants. It is conjectured that if R is a free algebra
and G a group of k-algebra automorphisms of R, then both these subalgebras
are free. We shall deal with some special cases of these conjectures here. We
recall that in any filtered ring the filtration will generally be denoted by v or d.
To begin with we shall show that the algebra of invariants is a 2-fir; this holds
under rather wider conditions:

Proposition 6.8.1. Let R be a filtered ring with 2-term weak algorithm and let
G be a set of endomorphisms of R. Then the fixed ring RG is a strong E2-ring,
and hence a 2-fir.

Proof. Let a, b ∈ RG be right commensurable and v(a) ≥ v(b), say. By
Proposition 2.8.1 there exists a unique sequence x0, x1, . . . , xn ∈ R (for some
n ≥ 1) such that

a = x0 p(x1, . . . , xn), b = x0 p(x1, . . . , xn−1), (1)

where the p’s are the continuant polynomials defined in Section 2.7. For any
α ∈ G we have

a = aα = xα
0 p(xα

1 , . . . , xα
n ), b = bα = xα

0 p(xα
1 , . . . , xα

n−1);

by uniqueness, x0 = xα
0 , . . . , xn = xα

n , hence xi ∈ RG(i = 0, 1, . . .). Moreover,
by Section 2.7 there exists U ∈ E2(RG) such that

(a, b)U = (x0, 0), (2)

hence RG is a strong E2-ring, and (2) shows that any 2-generator right ideal is
free, of rank 2, 1 or 0, i.e. R is a 2-fir. �

This result does not hold for all 2-firs, or even for all firs, as the following
example shows. The ring C[eit ] is a principal ideal domain, hence so is its local-
ization C[eit , e−i t ]; under complex conjugation its fixed ring is C[cos t, sin t],
a Dedekind domain that is not principal (see also Exercise 12). On the other
hand, the result shows that for any free algebra R = k〈X〉 and any group G of
automorphisms of R, the fixed algebra RG is a strong E2-ring. One would like
to assert that RG satisfies the weak algorithm, but to establish this claim we
shall need to assume that the automorphisms respect the grading.

Consider a graded ring A = ⊕grn A; any element a ∈ gri A is said to have the
degree d(a) = i . Since the gri A only meet in 0, the degree is uniquely defined,
except for 0, which has all degrees. The graded ring A is said to have the n-term
weak algorithm if any right linearly dependent set of at most n elements is
strongly right linearly dependent, i.e.
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Given any right linearly dependent sequence a1, . . . , am(m ≤ n), num-
bered so that d(a1) ≤ . . . ≤ d(am), some ai is a right linear combination of
a1, . . . , ai−1.

If this condition holds for all n, A is said to have the weak algorithm. With
any filtered ring R = ∪R(h) we can associate the graded ring A with compo-
nents gri A = R(i)/R(i−1), and it is easily verified that R has the (n-term) weak
algorithm if and only if the associated graded ring does. For graded rings the
expected result is easily obtained:

Proposition 6.8.2. Let A = ⊕gri A be a graded ring with n-term weak
algorithm (n ≥ 1), and G a group of homogeneous automorphisms of A, i.e.
(gri A)G = gri A for all i. Then the fixed ring AG = ⊕ (gri A)G is a graded
ring with n-term weak algorithm.

Proof. Clearly AG = ⊕ (gri A)G is a graded ring; now consider a homoge-
neous relation in AG :

a1b1 + . . . + ambm = 0,

where m ≤ n, arranged so that v(a1) ≤ . . . ≤ v(am), where v is the degree-
function, and of course, v(a j ) + v(b j ) is independent of j. By the n-term weak
algorithm in A there exists j, 1 ≤ j ≤ m, such that a j is right linearly dependent
on a1, . . . , a j−1:

a j = a1c1 + . . . + a j−1c j−1 (ch ∈ A).

If we choose the least such j, then a1, . . . , a j−1 are right A- linearly independent.
For any g ∈ G we have ag

ν = aν(ν = 1, . . . , n), hence

a1(c1 − cg
1 ) + . . . + a j−1(c j−1 − cg

j−1) = 0.

By the independence of a1, . . . , a j−1 we find that cg
ν = cν , so cν ∈ AG(ν =

1, . . . , j − 1), and this establishes the n-term weak algorithm for AG . �

In particular, we may take A = k〈X〉, where X is graded in any way, and apply
Proposition 2.5.3, to obtain a result of Kharchenko [78] and (independently)
Lane [76]:

Theorem 6.8.3. Let R = k〈X〉 be a free k-algebra and G a group of k-
automorphisms of R. If G is homogeneous with respect to the grading on R
induced by some function d : X → N>0, then the algebra of invariants of G is
free, on a set that is homogeneous with respect to d. �

As a special case we have the standard grading: d(x) = 1 for all x ∈ X .
The same argument will show for any group G of ring automorphisms of R =
k〈X〉, RG is a free kG-algebra.
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Let us next look at an example of relative invariants, and calculate the alge-
bra of relative invariants of the group of all linear automorphisms of R = k〈X〉,
where X = {x1, . . . , xr } and char k = 0. Regarding R as a graded algebra, we
have R = ⊕grn R where grn R is the homogeneous component of degree n, and
G = GLr (k), viewed as the group of all linear automorphisms of R. Denote by
R′ the algebra generated by the relative invariants. For each n ≥ 1, the symmet-
ric group Symn and G both act on grn R, where for σ ∈ Sym n, y1, . . . , yn ∈ X
we define

(y1 y2 . . . yn)σ = y1σ y2σ . . . ynσ ,

and extend this action by linearity; we shall also say that Symn acts by place-
permutations on grn R. It is easy to see that the actions of Sym n and G commute,
so grn R is a G × Sym n- module, while R′ is a Sym n-module. Now consider
the standard alternating polynomial of degree r (see e.g. FA, Section 7.5):

δ = S(x1 , . . . , xr ) =
∑

σ∈Symr

sgn σ x1σ . . . xrσ ∈ Ar . (3)

For each g ∈ G, δg = det g.δ, so δ is a relative invariant of G. Therefore R′

contains the set

∪n{δnσ |σ ∈ Symn}. (4)

It is easy to see that this set is closed under multiplication; hence the space
spanned by it is a subalgebra of R′. By the representation theory of the symmetric
group (see e.g. James and Kerber [81], Chapter 3) this is all of R′, at least when
k = Q. To find a k-basis, we restrict the σ s in (4) to range over the standard
Young tableaux with r rows, all of depth n. By the Frame–Robinson–Thrall
formula the number of these tableaux is

(nr)!
r∏

i=1

n∏
j=1

(i + j − 1)

.

In fact R′ is a free algebra, by Theorem 8.3, as the fixed ring of SLr (k). To obtain
a free generating set we restrict σ in (4) further by deleting the standard Young
tableaux constructed by juxtaposing Young tableaux with fewer columns, e.g.
where σ fixes jr, for some j < n. For example, when r = 2, then δ = c =
[x1, x2] and the free generating set has the Hilbert series

∑
n≥0

1
n+1

(
2n
n

)
t2n+2 = 1

2

(
1 −

√
1 − 4t2

) = t2 + t4 + 2t6 + . . . .

So there is one generator of degree 2, viz. c, one of degree 4, x1cx2 − x2cx1,
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etc. (for r > 2 the series is probably not algebraic). By applying Proposition
2.6.1 we thus find the Hilbert series 2/(1 + √

1 − 4t2) for the algebra.
The results obtained so far do not indicate when RG is finitely generated,

but for finite groups of linear automorphisms (i.e. automorphisms induced by
a linear transformation of the free generators), we have a precise result:

Theorem 6.8.4. Let G be a finite group of linear automorphisms of a free
algebra of finite rank, R = k〈x1, . . . , xr 〉. Then RG is finitely generated as a
k-algebra if and only if G consists of scalar transformations. In this case G is
cyclic, generated by an automorphism

xi 
→ ζ xi , (i = 1, . . . , r ), (5)

for some primitive mth root of 1, ζ , and RG is generated by the rm monomials
of length m.

Proof. Assume that G is scalar; it is isomorphic to a finite subgroup of k×,
hence cyclic of order m, say, with generator given by (5). It is clear that RG is
freely generated by the rm monomials of length m.

Conversely, assume that RG is finitely generated and let g ∈ G; we have to
show that G is scalar. For r = 1 there is nothing to prove, so we may take r ≥ 2.
Let k alg be an algebraic closure of k and define R alg = R ⊗k k alg ; then G ⊆
GLr (k alg ) and since k alg has a k-basis, it follows that (R alg )G = RG ⊗ k alg and
this is finitely generated as k-algebra. We may therefore take k to be algebraically
closed. Further we note that R(n) admits G, since the latter acts linearly, so that
RG

(n) has a meaning.
On conjugating G by a suitable U ∈ GLr (k) we may take g to be in Jordan

normal form, say

(λ1x1 + ε1x2, λ2x2 + ε2x3, . . . , λr−1xr−1 + εr−1xr , λr xr ), (6)

where λi ∈ k× and for 1 ≤ i ≤ r − 1, either εi = 0, or εi = 1 and λi = λi+1.
Let R = ∪R(n) be filtered by degree, so that RG = ∪RG

(n). Since RG is finitely
generated, it must be generated by RG

(N ) for some N, and on increasing N if
necessary, we may assume that |G| divides N.

Denote by A the set of all monomials 	= 1 that occur in the supports of
elements of RG

(N ). Then RG
(N ) lies in the k-space spanned by A ∪ {1}, hence RG

lies in the k-algebra generated by A. Taking δ = S(x1, . . . , xr ) again to be the
standard polynomial as in (3) and σ ∈ Sym Nr to act by place-permutations,
we find that δN σ is fixed by G, because for any h ∈ GLr (k),

(δN σ )h = ( det h)N δN σ ;
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thus when h ∈ G, ( det h)N = 1, by the choice of N, so that δN σ ∈ RG . This
shows that every monomial occurring in the support of δN σ is a product of
elements of A, and these elements are of length at most N. Since σ was arbitrary
in Sym Nr , it follows that every place-permutation of (x1x2 . . . xr )N is a product
of elements of A, of length at most N, therefore every monomial of length N
has a left factor in A. By considering x N

1 we see that

xm
1 ∈ A for some m ≥ 1. (7)

Moreover,

there is a monomial w such that wx1, . . . , wxr all lie in A; (8)

for if this were not so, then we could for every n ≥ 1 construct a monomial of
length n with no left factor in A, which is a contradiction.

By (7) there exists an element u of RG whose support contains xm
1 , and we

can take u to be homogeneous and the coefficient of xm
1 to be 1. Thus for some

μ ∈ k we have

u − xm
1 − μxm−1

1 x2 ∈ V,

where V is the k-space spanned by all monomials of length m, other than
xm

1 , xm−1
1 x2. From the form (6) of g it follows that V g ⊆ V , and so

u = ug ∈ (λ1x1 + ε1x2)m + μ(λ1x1 + ε1x2)m−1(λ2x2 + ε2x3) + V,

= λm
1 xm

1 + λm−1
1 ε1xm−1

1 x2 + μλm−1
1 λ2xm−1

1 x2 + V .

It follows that λm
1 = 1, so μ = λm−1

1 ε1 + μλm−1
1 λ2, hence λ1μ = ε1 +

μλ2, ε1 = μ(λ1 − λ2). But we saw that ε1 = 0 unless λ1 = λ2, so ε1 = 0 in
all cases. Since the order of the Jordan block was arbitrary, g must be diagonal,
say g = (λ1x1, . . . , λr xr ). Hence RG is spanned by A.

If u ∈ RG , then u is fixed by g. Consider a monomial w as in (8) and suppose
that wg = λw(λ ∈ k×); then (wxi )g = wxi because wxi ∈ A. But we have
(wxi )g = λλiwxi , hence λi = λ−1 for i = 1, . . . , r , and so g is a scalar. �

We can also describe the Hilbert series of the fixed algebra RG :

Proposition 6.8.5. Let G be a finite group of linear automorphisms of R =
k〈x1, . . . , xr 〉 over a commutative field k of characteristic 0 (or at least prime
to |G|). Then the Hilbert series of the fixed ring RG is given by

H (RG : k) = 1

|G|
∑
g∈G

(1 − Tr(g)t)−1,

where T r : GLr (k) → k is the trace map.
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Proof. Let R = ⊕grn R be graded by total degree in the xs. Each gr n R is a
kG-module and the Hilbert series of RG is

H (RG : k) =
∑

dim k( grn R)G · tn.

The element e = |G|−1�g ∈ kG is an idempotent such that RG = Re; therefore
dimk( grn R)G = Tr(e : grn R → grn R). Now grn R = ( gr1 R)⊗n , where ⊗n
denotes the nth tensor power and g acts on grn R as g⊗n , while Tr(g⊗n) =
(Tr g)n . Therefore

Tr(e : grn R → grn R) = 1
|G|

∑
g∈G

Tr(g : grn R → grn R)

= 1
|G|

∑
g∈G

(Tr g)n.

Hence

H (RG : k) =
∑

n

dimk(grn R)G · tn

=
∑

n

1
|G|

∑
g∈G

(Tr g)n · tn

= 1
|G|

∑
g∈G

(1 − Tr(g)t)−1.

�

Corollary 6.8.6. If a subgroup G of Sym r acts on R = k〈x1, . . . , xr 〉 by
permutations of the variables, then

H (RG : k) = 1
|G|

∑
m

βm
1−mt ,

where βm is the number of elements of G fixing exactly m of the xi .

Proof. G acts by permuting the monomials of R, so the dimension of (gr n R)G

does not depend on the characteristic of k. In fact a basis of (gr n R)G is given
by the elements �{wg|g ∈ G}, where w runs over all monomials of length n.
We may therefore take char k to be 0. By Proposition 8.5,

H (RG : k) = 1
|G|

∑
(1 − Tr(g)t)−1,

and here Tr(g) is just the number of xs fixed by g, so there are βm summands
(1 − mt)−1, for m = 0, 1, . . . , hence the result. �

We remark that by Theorem 8.3 the fixed algebra is free, and a free generating
set may be written down explicitly.
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Exercises 6.8

1. Find all the invariants and relative invariants of k[x] under the group of all auto-
morphisms.

2. Let A be a graded ring with weak algorithm and G a group of homogeneous
automorphisms of R. Find all the relative invariants of R.

3. Let R = k〈X〉 be a free algebra of finite rank and G a finite group acting on X.
Show that R has a basis of elements

∑{wg|g ∈ G}, where w ranges over all
monomials that (relative to the lexicographical ordering) are maximal in their
orbits. Calling these monomials G-maximal, show that the set of all G-maximal
monomials is a free monoid, and the indecomposable ones form a prefix code,
which is a free generating set of RG .

4∗. (Bergman and Cohn [69]) Let R = k〈X〉 and let G be a group acting on X with
finite orbits and without fixed points. Show that RG is a free algebra. If |X | = r and
G is precisely doubly transitive on X, so that |G| = r (r − 1) and each element of
G other than 1 fixes at most one point of X, show that the number of orbits of length
n in X∗ is (r − 1)n−2(n ≥ 2), while there is one orbit of length 1. Show also that if
γn denotes the number of generators of length n, then γn = (r − 2)(γn−1 + γn−2).

5∗. (Dicks and Formanek [82]) For R and G as in Exercise 4 find H (RG : k) when
|G| = p = char k.

6∗. (P. Webb) For R and G as in Exercise 4 find H (RG : k) when |G| = pn, p = char
k.

7◦. Is H (RG : k) always rational, for G ⊆ GLd (k)? (From the text and Exercise 6
this is so when char k = 0 or when char k = p 	= 0 and G is a p-group.)

8. (Almkvist, Dicks and Formanek [85]) Show that H (RG : k) is rational whenever
G has a cyclic Sylow p-subgroup, where p = char k.

9. (Almkvist, Dicks and Formanek [85]) Let G be a compact subgroup of GLd (C).
Show that if R = C〈x1, . . . , xd〉, then

H (RG : C) =
∫

G
(1 − t.T r )−1 for |t | < d−1,

where
∫

G is the normalized Haar measure.
10. (D. R. Lane) Let R = k〈x1, x2〉 and let G be the cyclic group generated by an

automorphism of the form (x1 + p, x2), where p ∈ k[x2]×. Show that c = pax1 −
x1ap ∈ RG for all a ∈ RG and that RG is the smallest k-algebra with this property
containing k〈c, x2〉. Find a free generating set for RG .

11. (G. M. Bergman) Let R be a ring, S a subring of R and X a subset of S such that the
right ideal XR is R-projective, with dual R-basis {αx : X R → R|x ∈ X}. Show that
if there is an S-bimodule map π : R → S fixing S, then {αxπ : X S → S|x ∈ X}
is a dual S-basis for the right ideal XS. Deduce that if S is a subring of a ring R
and is a direct summand of R as S-bimodule, then if R is right (semi-)hereditary,
so is S.

12. (G. M. Bergman) Let R be a ring and G a group of automorphisms of R such that
the orbit rG of any r ∈ R is finite, of order invertible in R. Show that the averaging
map π : R → RG given by rπ = |rG|−1

∑
rg is an RG-bimodule map fixing RG .

Deduce that if R is right (semi-)hereditary, then so is RG .
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13. (A. H. Schofield) Let R = k〈x1 , x2〉, where char k = 0. If u = (x1 + p, x2 +
α), where p ∈ k[x2]×, α ∈ k×, show that there exists q ∈ k[x2] such that q(x) −
q(x + α) = p(x) and deduce that u is conjugate to (x1, x2 + α).

14◦. Show that for any group of automorphisms of the free algebra k〈X〉, the ring of
all invariants is free.

15◦. Does the analogue of Proposition 8.1 hold with ‘2-term weak algorithm’ replaced
by ‘n-term weak algorithm’ and ‘2-fir’ replaced by ‘n-fir’, e.g. for n = 3?

16◦. Find an analogue of Proposition 8.5 when |G| is divisible by char k.

6.9 Galois theory of free algebras

Our aim in this section is to establish a Galois correspondence for free algebras.
However, it will be instructive to prove the result in a more general setting, to
bring out more clearly what special properties of k〈X〉 are needed.

Throughout this section R will be an integral domain and End(R) the ring of
all endomorphisms of R, as abelian group, and these endomorphisms will be
thought of as maps of R, written on the right, with composition x .y. We recall
that with operators on the right, in any operator equation an injective operator is
left regular and a surjective operator is right regular. For each r ∈ R we identify
r with the element of End(R) given by right multiplication by r and thus view
R as a subring of End(R). Similarly we regard the opposite ring Ro as a subring
of End(R) by identifying the element ro corresponding to r ∈ R with the map
consisting of left multiplication by r. Thus for r, s ∈ R we have

r.s = rs, ro.so = (sr )o, r.so = so.r, rso = sr. (1)

Moreover, r = ro if and only if r lies in the centre of R. The group Aut(R) of
ring automorphisms is a subgroup of U ( End (R)), and it will now be convenient
to denote the effect of g ∈ End (R) on R by rg rather than r g and the expression
rsg will mean r (sg), not (rs)g. We shall be concerned with elements of the form

f =
∑

gi .ao
i .bi , where gi ∈ Aut(R), ai , bi ∈ R.

Such an element will be called an R-trace form; its effect on R is

r f =
∑

ai (rgi )bi .

We also note the rules

r.g = g.rg, ro.g = g.(rg)o (r ∈ R, g ∈ Aut(R)),

which follow from the formulae (sr )g = (sg)(rg), (rs)g = (rg)(sg).
An element g of Aut(R) is said to X-inner on a subring S of R, after

Kharchenko (= Harqenko) if there exist a, b ∈ R× such that a.g.bo − ao.b
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vanishes on S, i.e.

b(sg)(ag) = asb for all s ∈ S. (2)

For s = 1 this reduces to b.ag = ab; this yields ag and now (2) shows sg to be
determined entirely by a and b. Hence if T is an extension ring of R containing
u = a−1b and u−1 = b−1a, we have sg = u−1su in T, so that g is actually
induced by an inner automorphism of a certain extension ring T (in fact the
Martindale ring of quotients, see Montgomery and Passman [84]); however,
the definition does not presuppose the existence of T. If g is X-inner on all of
R, we call it X-inner. From b.ag = ab we obtain bo.ao = (ag)o.bo, and by (1)
and the subsequent observations, we have

(ag)o.b.bo = bo.ao.b = bo.a.g.bo = bo.g.ag.bo.

Since R is a domain, we can cancel bo on the right, and writing a = a′g−1, we
obtain

bo.g.a′ = a′o.b, where a′, b ∈ R×.

This shows that the property of being X-inner is left–right symmetric.
Moreover, since R is closed under conjugation by ab−1, R contains a′ =
(ab−1)−1a(ab−1) = bab−1, whence ba = a′b, and further, ab−1 = b−1a′. With
the help of this relation it is easily seen that the set of X-inner automorphisms
is closed under composition. An automorphism that is not X-inner is called X-
outer, and a subgroup G of Aut(R) is called X-outer if the only X-inner element
of G is 1.

We shall recall the results of Kharchenko’s Galois theory, essentially follow-
ing Montgomery and Passman [84]. We remark that most of these results were
actually proved for semiprime rings by Kharchenko [77] and for prime rings
by Montgomery and Passman [84]; the restriction to integral domains (which
is all we shall need) simplifies many of the arguments.

We leave to the reader the verification that the X-inner automorphisms form
a subgroup of Aut(R). Our first object is an analogue of Dedekind’s lemma on
the independence of automorphisms; this is prefaced by two lemmas.

Lemma 6.9.1. Let R be an integral domain and S a subring; further, let
α = ∑

gi .ao
i .bi be an R-trace form and β an element of R.α.S, say β =∑m

j=1 r j .α.s j (r j ∈ R, s j ∈ S) Then we have Rβ ⊆ (Rα)S and

β =
∑

gi .ao
i .ci where ci =

∑
m
j=1(r j gi )bi s j .

Proof. We have Rβ ⊆ R(R.α.S) ⊆ (Rα)S; now the rest is straight-
forward. �
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Lemma 6.9.2. Let R be an integral domain and S a subring such that
RaS ∩ S 	= 0 for all a ∈ R×. Suppose that there is an R-trace form
α = ∑

gi .ao
i .bi in which not all the bi are zero. Then there exists a trace form

β =
∑

gi .ao
i .ci ∈ R.α.S,

such that not all the ci are zero, and for all i, j such that ci , c j 	= 0, the auto-
morphism g−1

j gi is X-inner on S.

Proof. Using Lemma 9.1 and the fact that Rb1S ∩ S 	= 0, we may replace α

by an element of R.α.S, chosen so as to ensure that b1 ∈ S×. Fix s ∈ S×; then
we have

α.sb1 − (b1s)g1
−1.α =

∑
gi .ao

i .ci ,

where ci = bi sb1 − ((b1s)g−1
1 gi )bi , by Lemma 9.1 with a minimal number of

terms. We have c1 = 0, and so ci = 0 for all i, i.e. bo
i .b1 − bo

1.g
−1
1 gi .bi vanishes

on S; hence g−1
1 gi is X-inner on S, and so is g−1

j gi = (g−1
1 g j )−1g−1

1 gi . �

We shall apply these results as follows.

Proposition 6.9.3. Let R be an integral domain, G an X-outer subgroup of
Aut(R) and let α = ∑n

1 gi .ao
i .bi (ai , bi ∈ R, gi ∈ G) be an R-trace form. Then

(i) R.α.R contains an element of the form g.(�ao
i .ci ), where the ci are not all

0 and the sum is over those i for which gi = g,
(ii) if α = 0 and g1.ao

1, . . . , gn.ao
n is a minimal right R-dependent family, then

all the gi are equal, and
(iii) if the gi are distinct and the ai , bi are non-zero, then a.α 	= 0 for all

a ∈ R×.

Proof. We may assume that the sum for α is non-empty and all the bi are
non-zero. By Lemma 9.1 (with S = R), any β ∈ R.α.R is of the form β =∑

gi .ao
i .ci . If we choose a β with the least positive number of non-zero ci and

apply Lemma 9.2, we find that β has the form required in (i), because G is
X-outer.

If α = 0, then β = 0 and (ii) follows by minimality. Finally, suppose
that g1, . . . , gn are distinct and the ai are non-zero. By (ii) a minimal right
R-dependent subfamily of g1.ao

1, . . . , gn.ao
n must consist of a single ele-

ment, but gi .ao
i .bi 	= 0 if bi 	= 0, so any one-element subfamily is right R-

independent. It follows that g1.ao
1, . . . , gn.ao

n are right R-independent, hence
for any a, b1, . . . , bn ∈ R×,

a.α = �gi .ao
i .(agi bi ) 	= 0.

�
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For a better understanding of the relation between X-inner automorphisms
and the ring elements that determine them, we make the following observation.

Lemma 6.9.4. Let R be an integral domain and g ∈ Aut(R).

(i) For a, b, c, d ∈ R×, consider the following four conditions:
(a) ao.b = g.co.d, i.e.

arb = c rg d for all r ∈ R, (3)

(b) ao.c = a.g.co, i.e.

arc = c rg ag for all r ∈ R, (4)

(c) b.do = bo.g.d, i.e.

drb = bg rg d for all r ∈ R, (5)
(d)

ab = cd. (6)

Then (a) ⇔ ((b)&(d)) ⇔ ((c)&(d)). In particular (a) implies that g is X-inner.

(ii) For any p, q, w ∈ R×, the following conditions are equivalent:
(e) The elements a = p, c = q satisfy (b), i.e.

prq = q rg pg for all r ∈ R, (7)

(f) The elements a = wp, c = wq satisfy (b), i.e.

wprwq = wqrg(wp)g for all r ∈ R, (8)

(g) The elements a = pw, c = qwg satisfy (b), i.e.

pwrqwg = q wg rg(pw)g for all r ∈ R. (9)

Proof. (i) Assume that (a) holds. Then (d) follows by taking r = 1. If we now
apply (a) to the product arab, first replacing r by ra, and then replacing ab by
cd, we obtain c(ra)gd = arcd . Cancelling d, we have arc = c(rg)(ag), i.e.
(b). For the converse, we assume (b) and note that (a) is trivial for r = 0, while
for r 	= 0, we have the equivalences

arb = c rg d

⇔ arbc = c rg dc ( right multiply by c)

⇔ c rg bg ag = c rg dc ( by(b))

⇔ bg ag = dc. ( left cancel crg)

For r = 1 the first line reduces to (d), so assuming (b), (d), the last line, which
is independent of r, holds. Hence the first line holds for all r, and (a) follows.
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The equivalence (a) ⇔ (c) & (d) follows by symmetry.
(ii) Assume (e), i.e. prq = q rg pg. Hence wprq = wq rg dg. This is of

the form (a) and applying (a) ⇒ (b) we get (f). Conversely, assuming (f):
wp rwq = wq rg(wp)g, we cancel w on the left to obtain prwq = q rg(wp)g;
applying (a) ⇒ (b), we find that prq = q rg pg, which is (e). Now (e) ⇒ (b) is
proved similarly, using right instead of left multiplication and cancellation. �

Proposition 6.9.5. Let R be an integral domain, G a finite X-outer subgroup
of Aut(R) and a ∈ R×. Then RGa R and Ra RG contain non-zero ideals of R
and every non-zero ideal of R meets RG non-trivially.

Proof. Put α = ∑
g; then Rα ⊆ RG, because αh = α for all h ∈ G. By

Proposition 9.3 (i), R.(α.a).R contains an element of the form β = g.c for
some c ∈ R×; therefore

Rc = (Rg)c = Rβ ⊆ (Rα)a R ⊆ RGa R. (10)

It follows that RcR ⊆ RGa R is a non-zero ideal of R contained in RGa R. For
any non-zero ideal I choose

0 	= b ∈
⋂
g∈G

Ig,

e.g. b = (cg1) . . . (cgn), where G = {g1, . . . , gn}; then for all g ∈ G, bg ∈ I ⊆
RGa R. By Proposition 9.3 (iii), b.α 	= 0, hence

0 	= Rb.α ⊆ RG ∩
∑

Rbg ⊆ RG ∩ I.

Thus I meets RG; by symmetry the same result holds for Ra RG. �

We shall want to know under what circumstances an X-inner map reduces to
the identity; it is convenient to state the conditions more generally for inclusion
maps.

Lemma 6.9.6. Let R be an integral domain, G a finite X-outer subgroup of
Aut(R), S an RG-subring of R and σ : S → R an RG-ring homomorphism. If
there exist a, b, c, d ∈ R× such that

asb = c(sσ )d for all s ∈ S, (11)

then σ is the inclusion map. In particular, the fixed ring of an X-inner auto-
morphism 	= 1 of R cannot contain the fixed ring of a finite group of X-outer
automorphisms.

Proof. Given r ∈ R, we have s = ∑
rg ∈ RG ⊆ S, so we have sσ = s,

because σ fixes RG , and hence asb = csd . Thus for all r ∈ R,
∑

a(rg)b =
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∑
c(rg)d, i.e. ∑

(g.ao.b − g.co.d) = 0.

By Proposition 9.3 (ii), g.ao and g.co are right R-dependent, for some g ∈ G,
say

g.ao.e = g.co. f, where e, f ∈ R×.

This is of the form (3) of Lemma 9.5, with g = 1 and b, d replaced by e, f. Hence
it implies Equation (4) of Lemma 9.4 (with g = 1), i.e. arc = cra. Moreover,
on putting s = 1 in (11), we obtain ab = cd, i.e. (6), and so, by Lemma 9.4, we
have (3) (with g = 1), hence for s ∈ S, asb = csd; therefore sσ = s, which
shows σ to be induced by the inclusion map. Since g is a unit in End(R), we
have ao.e = co. f , and so

b.ao.e = b.co. f

= co.b f = co.ae

= co.a.e.

Cancelling e, we obtain b.ao = co.a. Hence, for all s ∈ S, we have c(sσ )d =
asb = csa. Putting s = 1 we find that a = d and on cancelling a, σ = 1, so σ

is reduced to the inclusion map. To prove the final assertion we take S = R, let
σ be an X-inner automorphism and for the given equation take an equation of
the form (4) defining σ . �

These results may be used to derive analogues of the fundamental theorem
of Galois theory for fields; we shall limit ourselves here to what is actually
needed later.

Proposition 6.9.7. Let R be an integral domain, G a finite X-outer subgroup
of Aut(R) and S an RG-subring of R.

(i) If H is the subgroup of G fixing S elementwise, so that

RG ⊆ S ⊆ RH ,

then S contains a non-zero ideal of RH .
(ii) Any injective RG-homomorphism σ : S → R is the restriction to S of an

element of G (unique up to left multiplication by an element of H).

Proof. Let g1, . . . , gn be a left transversal of H in G, so that G is the disjoint
union of the cosets gi H . Put α = ∑

gi , β = ∑
h∈H h; then α.β = ∑

g. For
any i 	= j, g−

i 1g j /∈ H , so g−1
i g j does not restrict to the inclusion map on S, by

the choice of H, and by Lemma 9.6, g−1
i g j is not X-inner on S. We now apply
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Lemma 9.2 (with the help of Proposition 9.5) to conclude that R.α.S. contains
an element∑

r j .α.s j = g.c, where c ∈ R× and g = gi for some i.

Since RcS ∩ S 	= 0, we may assume that c ∈ S×, and on replacing α by g−1α,
we may take g = 1. By Proposition 9.3(iii), c.β 	= 0 and β centralizes RH and
(RH )o, i.e. it is a homomorphism of RH -bimodules, so

0 	= c.β =
∑

r j .α.s j .β

=
∑

r j .αβ.s j , (12)

therefore

0 	= R(c.β) ⊆ (R(αβ))S ⊆ RG S ⊆ RH .

Since c.β is a left RH -module homomorphism, R(c.β) is a non-zero left ideal
of RH contained in S. By symmetry S also contains a non-zero right ideal φR
and so S ⊇ R(β.c)φR, i.e. S contains a non-zero ideal of RH and (i) is proved.

Let σ : S → R be an RG-ring monomorphism. Since the R-trace form
described in (12) takes values in S, we may multiply (12) on the right by s.σ ,
for any s ∈ S; this and the fact that c.β = β.c, yields

β.c.s.σ = c.β.s.σ

=
∑

r j .αβ.s j .sσ

=
∑

r j .αβσ.s j .sσ

=
∑

r j .αβ.(s jσ ).(sσ ),

because R(αβ) ⊆ RG and σ fixes RG elementwise. Since αβ = ∑
g, we have

β.c.s.σ =
∑

g.bg.sσ, (13)

where bg = ∑
(r j g)(s jσ ) is independent of s. Since β 	= 0 and σ is injective,

the expression (13) is non-zero, hence bg′ 	= 0 for some g′ ∈ G. Replacing s by
sc, we see that ∑

g.bg.(sc)σ = β.c.sc.σ = cs.β.c.σ

= cs.
∑

g.bg =
∑

g.(cs)g.bg.

By Proposition 9.3(iii), applied to the difference between the initial and final
summations above, we obtain bg(sc)σ = (cs)gbg for all g ∈ G. Applying g′−1,
we find

(bg′ g′−1)(sσg′−1)(cσg′−1) = cs(bg′ g′−1).
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By Lemma 9.6, σg′−1 is the inclusion map on S, and this means that σ extends
to g′. �

We can now describe Kharchenko’s form of the Galois correspondence
between groups and rings.

Theorem 6.9.8. Let R be an integral domain and G a finite X-outer subgroup
of Aut(R). Then the following conditions on an RG-subring S of R are equivalent:

(a) S = RH , where H is the subgroup of G fixing S elementwise,
(b) S is an anti-ideal of R,
(c) for all a ∈ S×, r ∈ R, if ar ∈ S, then r ∈ S,
(d) for any subring T of R, such that S ⊂ T ⊆ R, S contains no non-zero ideal

of T.

Moreover, each RG-automorphism of S extends to an element of G, and there
is a natural bijection between the subgroups H of G and the RG-subrings of R
that are anti-ideals in R, given by

H ↔ RH . (14)

Proof. We begin by proving the last part. Let H be a subgroup of G. Given
r ∈ R, if ar ∈ RH for some non-zero a ∈ RH , then for all h ∈ H, ar = (ar )h =
a(rh), so rh = r and r ∈ RH . This shows RH to be an anti-ideal in R (in
fact, it satisfies a stronger, one-sided condition). If H, K are subgroups of
G and RH = RK , then each h ∈ H fixes RK , so by Proposition 9.7(ii) (with
S = R, G = K ) h extends to an element of K, i.e. h ∈ K , and thus H ⊆ K ; by
symmetry, H = K , so the correspondence (14) is injective.

Now consider any RG-subring S of R that is an anti-ideal in R. Let H be
the subgroup of G fixing S elementwise, so that S ⊆ RH ; we shall prove that
equality holds. By Proposition 9.7(i), S contains a non-zero ideal I of RH , but
no proper subring does, by Corollary 5.3. Hence RH = S, as claimed. This
establishes the bijection and the rest follows by Proposition 9.7(ii). Now the
equivalence of (a)–(d) follows from what has been said and the properties of
anti-ideals. �

To apply this result we need to determine the X-outer automorphisms and
anti-ideals in 2-firs. We first show how to get a supply of X-outer automorphisms.

Lemma 6.9.9. If R is a 2-fir all of whose invariant elements are central, then
Aut(R) is X-outer.

Proof. Suppose that g ∈ Aut(R) is X-inner, say

ao.b = a.g.bo = g.ag.bo. (15)
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We must show that g = 1. Applying this relation to 1, we get 0 	= ab = b(ag) ∈
a R ∩ bR, hence

a R + bR = d R, a = da1, b = db1.

Now (15) becomes ao
1 .d

o.d.b1 = g.(da1)g.bo
1.d

o, i.e.

da1.r.db1 = db1.rg.(da1)g; (16)

by Lemma 9.4 (f) ⇒ (e) it follows that we may take d = 1, hence ao
1 .b1 = a1.g.bo

1.
We now have a R + bR = R and hence

Rb = a Rb + bRb = b(Rg)(ag) + bRb = bR(ag) + bRb

= b(R(ag) + Rb) = bR.

by Lemma 9.4, (g) ⇒ (e) we can get rid of any common right factors and so
find that 1 ∈ R(ag) + Rb. Thus b is invariant, and so by hypothesis, bo = b;
by symmetry, ao = a. Cancelling b from (15), we have a = ao = a.g, hence
g = 1, as claimed. �

We recall from Section 6.6 that if S is a 2-fir, unit-closed in R (i.e.U (R) ∩ S =
U (S)), then S is an anti-ideal (Lemma 6.8). As a consequence we obtain

Theorem 6.9.10. Let R be a filtered K-ring with 2-term weak algorithm, where
K = R(o), and whose invariant elements are central. If G is a finite group of
K-automorphisms of R, then there is a natural bijection between subgroups of
G and RG-subrings of R that are 2-firs.

Proof. By Lemma 9.9, G is X-outer; the above remark shows that each K-
subring of R that is a 2-fir is an anti-ideal and by Proposition 8.1 each fixed ring
is a 2-fir. �

For free algebras we deduce the following result:

Theorem 6.9.11. Let R be a free k-algebra and G a finite group of k-algebra
automorphisms of R that are homogeneous with respect to some grading of R
for which the weak algorithm holds (e.g. linear automorphisms). Then there is
a natural bijection between the subgroups of G and the free subalgebras of R
containing RG.

Proof. This is an immediate consequence of Theorems 9.10 and 8.3. �

Exercises 6.9

1. Prove the results of this section for prime rings.
2. Show that for an integral domain R the X-inner automorphisms form a normal

subgroup of Aut(R).
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3. (G. M. Bergman) Let R be an integral domain, a, b, c, d ∈ R×, and g a permutation
of R fixing 1. Show that if g satisfies the condition of Lemma 9.4 (a), then it
is an automorphism of the additive group of R such that (rs)g = rg.sg for all
r ∈ Ra, s ∈ R. Are there similar statements involving b, c, d? (Hint: Put r = ta,
transform atasb in two ways and cancel d on the right.)

4. (G. M. Bergman) Continuing Exercise 3, deduce (still assuming Lemma 9.4 (a)),
that if Ra and Rc are comparable, as well as bR and dR, then g is a ring automorphism
of R.

5◦. (G. M. Bergman) With R, a, b, c, d, g as in Exercise 3, how much of Lemma 9.4
remains true under these more general conditions?

6∗. (G. M. Bergman) Find an example of an integral domain R, a, c ∈ R× and a per-
mutation g of R satisfying 1g = 1 and the identities arc = crg ag = c(ra)g, such
that g is not a ring automorphism of R. (Hint: Let S be the mixed free monoid on
x, y, z, z−1 and M a submonoid of S containing no non-zero power of z. On M
define a binary operation ∗ by putting p ∗ q = pq unless p = axzi , q = z j xb, in
which case p ∗ q = pq̄ , where q̄ = z− j xb. Verify that this operation is associative
and has the ‘unique product property’, i.e. for any finite subsets U, V of M there
exists an element that can be written as u ∗ v for just one u ∈ U and one v ∈ V .
Deduce that the monoid algebra kM is an integral domain and take g to be conju-
gation by z (an automorphism of M but not of (M,∗)). Verify the desired identities
with a = yz, c = y, but show that (x ∗ x)g 	= xg ∗ xg.)

6.10 Automorphisms of free algebras

We now turn to examine the structure of the automorphism group of the free
algebra. So far the only satisfactory results have been found in rank 2; thus we
shall be studying the automorphisms of k〈x, y〉. The case of rank 1 is of course
well known (and rather trivial): the only automorphisms of k[x] are the affine
transformations x 
→ ax + b, where a, b ∈ k, a 	= 0.

More generally, we consider the algebra R = k〈X〉, where k is a field and
X is any finite set, and define some types of automorphisms that are frequently
encountered.

1. The mapping

τa : x 
→ x + ax , where x ∈ X, ax ∈ k, (1)

defines an automorphism of R, called a translation. The group of translations
will be denoted by T.

2. Any automorphism of the k-space kX with basis X uniquely defines an
automorphism of R:

α : x 
→ �αxy y, where αxy ∈ k, (αxy) invertible . (2)

These are just the automorphisms leaving kX invariant and are called linear.
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3. An automorphism leaving k + k X invariant (and leaving k fixed) is called
affine; such an automorphism has the form

x 
→
∑

αxy y + βx , where αxy, βx ∈ k, (αxy) invertible . (3)

The group of all affine automorphisms of R will be denoted by A in this section.
4. Let x0 be a specified element of X and write X0 = X\{x0}. For any f ∈

k〈X0〉 there is an automorphism of R sending x0 to x0 + f and fixing X0; it
is called an x0-based shear. More generally, an automorphism of R leaving
k〈X0〉 fixed is called a triangular automorphism; in such an automorphism
x0 
→ λx0 + f , where λ ∈ k×, f ∈ k〈X0〉. The group of these automorphisms
will be denoted by �.

We remark that all of these types can equally well be defined for the polyno-
mial ring k[X ]; here the triangular automorphisms are known as de Jonquières
automorphisms.

Let

α : x 
→ fx (x ∈ X ) (4)

be any endomorphism of R (i.e. a k-linear ring endomorphism). If fx (0) = 0
for all x ∈ X , then α is called centred or augmentation preserving; in fact it
preserves the augmentation ideal XR. If α is given by (4) and τa is the translation
defined by (1), then

τaα : x 
→ fx + ax ,

and for a suitable choice of a ∈ k X , viz. ax = − fx (0), we can ensure that
τaα is centred. This remark is sometimes used to effect a reduction to centred
automorphisms, as in the proof of our first result:

Proposition 6.10.1. Any surjective endomorphism of k〈X〉, where X is finite,
is an automorphism.

Proof. Let φ be a surjective endomorphism; by composing it with a transla-
tion we may take it to be centred. Suppose that φ is not injective and let 0 	=
w ∈ ker φ. Put d = d(w) and denote by n the set of all elements of R = k〈X〉
of order greater than d. Clearly n is an ideal and nφ ⊆ n, because φ is cen-
tred. Therefore φ induces an endomorphism φ1 : R/n → R/n, which like φ is
surjective. Since X is finite, R/n is finite-dimensional over k, and soφ1 is an auto-
morphism, but wφ1 = wφ = 0, a contradiction; hence φ is injective and so is an
automorphism. �

A corresponding result holds for k[X ]. We remark that since abelianization
is a functor, the natural mapping

Aut k〈X〉 → Aut k[X ]
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is a homomorphism. In fact it can be shown that for |X | ≤ 2 it is an
isomorphism.

The following definition is basic for much of what follows. An automorphism
of k〈X〉 or k[X ] is called tame if it can be obtained by composing affine auto-
morphisms and shears; all other automorphisms are called wild. The following
are some examples of automorphisms not known to be tame. The automorphism
x 
→ fx will also be written { fx }.

1. (D. J. Anick) Let X = {x, y, z}: for any p ∈ k〈X〉 the endomorphism
{x + yp, y, z + py} fixes xy − yz. So for p = xy − yz we get an automor-
phism with inverse {x − yp, y, z − py}.

2. The automorphism of 1. has tame image in k[X ], but the following example
(due to Nagata) is not known to be tame. Let X = {x, y, z}; for any p ∈ k[X ], the
endomorphism (x + zp, y + 2xp + zp2, z) fixes x2 − yz, so for p = x2 − yz
we get an automorphism with inverse (x − zp, y − 2xp + zp2, z).

3. (M. Nagata, D. J. Anick) X = {w, x, y, z}, R = k〈X〉 or k[X ]. For any
p ∈ R, the endomorphism (w, x + pz, y + wp, z) fixes wx − yz, so it is an
automorphism for p = wx − yz. If we replace k by k[w, z], then the same
formula gives wild automorphisms of k[w, z]〈x, y〉 and k[w, x, y, z].

Our main objective will be to show that every automorphism of k〈x, y〉 is
tame; we shall do this by presenting the automorphism group of k〈x, y〉 as the
free product of A and �, amalgamating their intersection. As a preparation we
recall the definition of a free product with amalgamation. Let G1 and G2 be two
groups with subgroups Fi of Gi (i = 1, 2) that are isomorphic, say F is a group
with isomorphisms ϕi : F → Fi . The group generated by the elements of G1

and G2 with all the defining relations in G1 and G2 as well as the relations
xϕ1 = xϕ2(x ∈ F), is called the free product of G1 and G2 amalgamating F1

with F2, and is denoted by G1∗F G2. We remark that F may be 1; this is
simply called the free product. At the other extreme, if F1 = G1 then the free
product reduces to G2; this case (and the case F2 = G2) is usually excluded. For
simplicity we shall identify F with the subgroups F1 and F2. Then the elements
of the free product can be expressed in the form

au1 . . . un, (5)

where a ∈ F and the ui are alternately from G1\F and G2\F .
Let us put P for this free product; its structure may be described as follows,

using the letters E and E∗. For each element (5) we form a set XY, where X = E
if u1 ∈ G1 and X = E∗ if u1 ∈ G2, and similarly Y = E if un ∈ G1 and Y = E∗

if un ∈ G2. Thus we have a partition of P into five sets: E E, E E∗, E∗E, E∗E∗

as well as F (in case the ui are absent). The following properties are easily
verified, where X, Y, . . . denote E or E∗ and X∗∗ = X, . . .
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B.1 F is a subgroup of P,
B.2 If f ∈ F, g ∈ XY , then f g ∈ XY ,
B.3 If g ∈ XY , then g−1 ∈ Y X ,
B.4 If g ∈ XY, h ∈ Y ∗ Z , then gh ∈ X Z ,
B.5 For each g ∈ P there is an integer N (g) such that for any representation

g = g1 . . . gn(gi ∈ X∗ X ) we have n ≤ N (g),
B.6 E E∗ 	= ∅.

Given any group G, a partition of G into five disjoint sets
F, E E, E E∗, E∗E, E∗E∗ satisfying B.1–B.6 is called a bipolar structure and
F is its core. Thus any free product has a bipolar structure; conversely, a group
with a bipolar structure is either a free product with amalgamation or an HNN-
extension. The latter does not concern us here, but see Exercise 6.

In any group G with a bipolar structure an element g ∈ G is called reducible
if g /∈ F and g = hk, where h ∈ X Z , k ∈ Z∗Y . Otherwise g is irreducible,
thus an irreducible element is in F ∪ XY and not of the form g = hk, where
h ∈ X Z , k ∈ Z∗Y . We observe from B.5 that G is generated by its irreducible
elements. In a free product with amalgamation the irreducible elements are
the products of the form au, where a ∈ F and u ∈ Gi\F, i = 1 or 2; then E E∗

contains no irreducible elements, for an element of E E∗ has the form au1 . . . un

where u1 and un belong to different factors. Conversely, we shall now show
that any group with a bipolar structure such that E E∗ contains no irreducible
elements is a free product.

Theorem 6.10.2. Let G be a group with a bipolar structure such that E E∗

contains no irreducible elements. Then G is a free product with the core as
amalgamated subgroup.

Proof. Let g, h ∈ G and suppose that g ∈ X Z , h ∈ ZY . If g is irreducible,
then gh ∈ F ∪ W Y for some W, for if gh ∈ W Y ∗, then h−1 ∈ Y Z by B.3 and
so g = gh.h−1 ∈ W Z , contradicting the fact that g is irreducible. Similarly if
h is irreducible then gh ∈ F ∪ X W for some W.

Next we claim that if g ∈ X Z , h ∈ ZY are both irreducible, then gh is an
irreducible element of F ∪ XY . For gh ∈ F ∪ XY , by what has been shown.
If gh is reducible, then gh ∈ XY and gh = uv, where u ∈ X V and v ∈ V ∗Y .
Now h−1 ∈ Y Z and is irreducible, so we have vh−1 ∈ F ∪ V ∗W , but since g =
u(vh−1) is irreducible, it follows that vh−1 ∈ F ; so by B. 2, g = u(vh−1) ∈ X V .
Further, h−1 = v−1(vh−1), so h−1 ∈ Y V ∗ by B.3 and B.2, hence h ∈ V ∗Y ,
but this contradicts the fact that g ∈ X Z and h ∈ ZY . This shows gh to be
irreducible.
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Suppose now that f ∈ F, g ∈ XY and g is irreducible. Then f g ∈ XY by
B.2; we claim that fg is irreducible. For if not, then f g = uv, where u ∈ X V
and v ∈ V ∗Y for some V. Then g = ( f −1u)v, where f −1u ∈ X V and v ∈ V ∗Y ,
contradicting the fact that g is irreducible. Hence fg is irreducible; by a similar
argument and B.3, f −1g−1 is an irreducible element of YX, so it follows that gf
is an irreducible element of XY.

Now define

G1 = F ∪ {x |x is an irreducible element of E E},
G2 = F ∪ {x |x is an irreducible element of E∗E∗}.

We claim that G1 and G2 are subgroups of G. By B.1, B.2, G1 admits inverses;
consider a product hk. If h, k are both in F, then hk ∈ F . If h, k are both
irreducible elements of EE, then hk ∈ F or hk is an irreducible element of EE,
by what has been proved. If just one of h, k is in F, then hk is an irreducible
element of EE. This shows G1 to be a subgroup of G and the same argument
applies to G2. Clearly G1 ∩ G2 = F and it remains to show that G is a free
product amalgamating F.

By hypothesis E E∗ contains no irreducible elements, hence E∗E which
contains their inverses, also has no irreducible elements. Thus G1 ∪ G2 includes
all irreducible elements and so forms a generating set for G, so we can write
every element of G in the form g = g1 . . . gn , where the gi ∈ G1 ∩ G2. If gi ∈ F ,
where i < n, then gi gi+1 is irreducible; similarly if i = n, we can use gn−1gn .
If g1, g2 both lie in G1 then g1g2 is again irreducible and is in G1, so we can
replace g1g2 by a single element. In this way we obtain representation

g = g1 . . . gn, (6)

where the gi are alternately in G1 and G2, and either n = 1 and g1 ∈ F or each
g lies in G1\F or G2\F . Since E E∗ 	= ∅ by B.6, F is a proper subgroup of G1

and G2 and the element (6) is not 1 unless n = 1 and g1 is the unit element of
F. Hence G is the free product of G1 and G2 amalgamating F. �

To apply this result we shall need a normal form for the elements of
GL2(k〈x, y〉). It will be no harder to do this for a general ring, so let R be
any ring, denote its group of units by U and write U0 = U ∪ {0}. It will be
convenient to have a compact notation for matrices, so let us put (as in Section
2.7), for any a ∈ R, α, β ∈ U ,

E(a) =
(

a 1
−1 0

)
, [α, β] =

(
α 0
0 β

)
, D(α) = [α, α−1]. (7)

These matrices are all invertible and as we saw in Section 2.7, they generate
the group G E2(R). In Section 2.7 it was shown that every A ∈ G E2(R) can be
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expressed in the form

A = [α, β]E(a1) . . . E(an), ai ∈ R, α, β ∈ U, (8)

where ai /∈ U0 for 1 < i < n and when n = 2, a1, a2 are not both 0. This expres-
sion for A will be called the standard form. In the special case of a free algebra
such a form exists for all matrices in GL2(R) and is unique, by Proposition
2.8.2. For the case of one indeterminate this is of course well known, and by a
theorem of Nagao [59] one has the free product representation

GL2(k[x]) = T2(k[x]) ∗ T GL2(k), (9)

where T2(k[x]) is the group of upper triangular invertible 2 × 2 matrices over
k[x] and T = T2(k) = T2(k[x]) ∩ GL2(k). This can be proved by defining a
bipolar structure on GL2(k[x]), though a direct proof is quicker. In the same
way we have, as an easy consequence of the uniqueness of the expression (8),

Theorem 6.10.3. For any free algebra k〈X〉 over a field k,

GL2(k〈X〉) = T2(k〈X〉) ∗ T GL2(k). (10)

Proof. From (8) we know that the left-hand side is generated by T2(k〈X〉)
and GL2(k), since (

a 1
−1 0

)
=

(
1 −a
0 1

) (
0 1

−1 0

)
,

and the uniqueness of (8) yields the free product representation (10); the details
may be left to the reader. �

We shall also need the following reduction.

Lemma 6.10.4. Let P = G∗F H be a free product with amalgamated sub-
group and consider an extension E of P by a group T. Then E = G ′∗

F H ′, where
G ′, H ′, F ′ are extensions of G, H, F respectively by T.

Proof. Consider the following diagram, where the bottom line is the given
extension and the last vertical arrow is an isomorphism:

T

T E P 1

1G′∗F ′H′ G∗FH1

1

Here G′∗F
′ H ′ is the pullback of E → P and G∗

F H → P; this follows by form-
ing the pullback with G∗

F H replaced by G, H, F in turn. As in an additive



402 Centralizers and subalgebras

category we find that the map G ′∗
F H ′ → G∗

F H has the kernel T and now we can
complete the diagram as shown. By the short five-lemma the middle vertical
arrow is an isomorphism and so the result follows. �

Our main objective is a proof of the theorem of Czerniakiewicz and Makar-
Limanov, that every automorphism of k〈x, y〉 is tame; we shall prove this by
showing that Aut(k〈x, y〉) is a free product.

Theorem 6.10.5. The automorphism group of k〈x, y〉 is the free product of the
group A of affine automorphisms and the group � of triangular automorphisms
amalgamating their intersection.

Proof. Let us write R = k〈x, y〉, denote the group of all centred automor-
phisms of R by C and the group of all translations by T. It is clear that T is
normal in Aut(R) with quotient C; thus Aut(R) is a semidirect product that is
described by the exact sequence

1 → T → Aut(R) → C → 1. (11)

Suppose now that we have a free product representation of C. Then by applying
Lemma 10.4 to the exact sequence (11) we obtain a free product representation
of Aut(R), so to complete the proof we need only show that

C = �0∗S L , (12)

where L = A ∩ C is the group of linear automorphisms, �0 = � ∩ L is the
group of centred triangular automorphisms and S = �0 ∩ L is the group of
linear triangular automorphisms (generalized shears). For the proof of (12)
we shall describe a bipolar structure on C, to which Theorem 10.2 can be
applied.

Any element p of R = k〈x, y〉 can be written in the form p = p1x + p2 y +
λ, where p1, p2 are uniquely determined elements of R and λ ∈ k is likewise
unique. Hence every centred automorphism g of R can be expressed in the
form

xg = ax + by,

(a, b, c, d ∈ R). (13)

yg = cx + dy,

Writing u =
(

x
y

)
, Tg =

(
a b
c d

)
, we can express this in matrix form as

ug = Tgu.
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It follows that

Tghu = ugh = (Tgu)h = T h
g Thu,

where T h
g is the matrix obtained by letting h act on Tg . Therefore we have

Tgh = T h
g Th . (14)

Further, T1 = I , and so each Tg is invertible, with inverse

T −1
g = T g

g−1 . (15)

It follows that T ∈ GL2(R), so that we have a mapping C → GL2(R),
which however is not a homomorphism, but a crossed homomorphism,
by (14).

By (8) we have the unique form

Tg = [α, β]E(a1) . . . E(an), (16)

where αβ 	= 0, ai /∈ k for 1 < i < n and when n = 2, a1, a2 are not both zero.
In particular, the matrices of �0 have the form

Tg = [α, β]E(a)E(0), (17)

where g ∈ S if and only if a ∈ k, and the matrices of L have the form

Tg = [α, β]E(λ) or [α, β]E(λ)E(μ), where α, β, λ, μ ∈, k,

αβ 	= 0. (18)

Here g ∈ S if and only if the second form applies and μ = 0.
Let us now construct a bipolar form for C. We put F = S; given g ∈ C ,

assume that g /∈ S and that T has the form (16). We take g ∈ XY , where X = E
if a1 ∈ k and X = E∗ if a1 /∈ k, while Y = E if an 	= 0 and Y = E∗ if an = 0.
It only remains to verify B.1–B.6.

B.1 is clear. To prove B.2, let f ∈ F, g ∈ XY , say T f = [α′, β ′]E(λ)E(0)
and Tg is given by (16). Then T g

f = T f because α′, β ′, λ are fixed under g.
Using (2) and (1) of 2.7, we find

T f g = T f Tg = [α′, β ′][α, β]E(α−1λβ)E(0)E(a1) . . . E(an)

= [−α′α, −β ′β]E(a1 + α−1λβ)E(a2) . . . E(an).

Now a1 + α−1λβ ∈ k if and only if a1 ∈ k, so it follows that f g ∈ XY .
B.3. If T is given by (16), then

T −1
g = [α′, β ′]E(0)E(a′

n) . . . E(a′
1)E(0),

where α′, β ′ are α, β in some order and a′
i is associated to ai . Moreover, Tg−1 =
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(T −1
g )g−1

and a′′
i = (a′

i )
g−1

lies in k if and only if ai does. Thus

Tg
−1 = [α′, β ′]E(0)E(a′′

n ) . . . E(a′′
1 )E(0). (19)

We have g ∈ X E∗ ⇔ an = 0 ⇔ a′′
n = 0, and this is so if and only if the coef-

ficient of the first factor E(.) in the reduced form of (19) is not in k. Thus g ∈
X E∗ ⇔ g−1 ∈ E∗ X ; taking complements we find that g ∈ X E ⇔ g−1 ∈ E X ;
combining these cases with those obtained by interchanging g and g−1 we find
that g ∈ XY if and only if g−1 ∈ Y X .

B.4. We take g in the standard form (16) and

Th = [γ, δ]E(b1) . . . E(bp).

Then

Tgh = T h
g Th = [λ, μ]E(a′′

1 ) . . . E(a′′
n )E(b1) . . . E(bp), (20)

where λ, μ ∈ k, λμ 	=, a′′
i = (a′

i )
h and a′

i is an associate of ai . Here (20) may
not be in standard form, but we can reach a standard form by applying the
formulae (1), (8) and (3) of Section 2.7 a finite number of times. Any terms b j

that remain are unaffected by these changes, while the a′′
i that remain are only

changed at most by a unit factor. Thus if a′′
1 and bp are still present after this

reduction, then for g ∈ XU, h ∈ V Z we have gh ∈ X Z . In particular, this will
be the case if in the expression (20) for Tgh not all the factors E(.) stemming
from g, nor all those stemming from h cancel.

We shall now show that if g ∈ XY, h ∈ Y ∗ Z , then there is no cancellation
at all. For suppose that some cancellation takes place in (20) and write gh = k.
Then k 	= 1, because g, h cannot be mutually inverse, by B.3. Hence not all of
g and h is cancelled, say not all of g. Write g = kh−1; then in the expression
for Tkh−1 not all the factors E(.) from k nor all those from h−1 are cancelled. By
B.3, h−1 ∈ ZY ∗, so if k ∈ U V , then by what has been shown, g ∈ UY ∗, which
contradicts the fact that g ∈ XY . This proves that no cancellation takes place
and B.4 follows.

To verify B.5, take Tg in the form (16) and put g = g1 . . . gr , where gi ∈
X∗

i−1 Xi ; then when Tg is expressed as a product corresponding to the gi , no
cancellation takes place. Therefore r ≤ n and so B.5 holds with N (g) = n.

Finally B.6 is clear, since E(λ)E(a)E(0) ∈ E E∗ when λ ∈ k, a /∈ k. Thus
B.1–B.6 hold.

Further, any element of E E∗ has the form g, where

Tg = [α, β]E(λ)E(a1) . . . E(an)E(0),

and n ≥ 1 because g /∈ S. We put g = hk, where

Th = [α, β]E(λ), Tk = E(a1) . . . E(an)E(0).
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Here h ∈ E E, k ∈ E∗E∗; this shows that E E∗ contains no irreducible elements,
and so the conclusion follows by Theorem 10.2. �

In the proof of this result the commutativity of k has not been used, so the
conclusion holds even if k is non-commutative, but of course it is necessary for
the variables to centralize k; this fact was used in deriving (13).

As we remarked earlier, there is a natural homomorphism

ϕ : Aut k〈X〉 → Aut k[X ].

By a theorem of H. W. E. Jung [42], every automorphism of k[x, y] is also tame,
so it follows that ϕ is surjective when |X | ≤ 2. In fact Czerniakiewicz [71,72]
and Makar-Limanov [70a] show that ϕ is an isomorphism. As a consequence
the group Aut(k[x, y]) is the free product of its affine and triangular subgroups,
amalgamating their intersection.

For every endomorphism α = ( f1, f2) of the polynomial ring k[x1, x2] we
can define the Jacobian matrix J (α) = (∂ f/∂x), and it is easily seen that J (1) =
I and J (αβ) = J (α)β J (β). It follows that for an automorphism α, J (α) is invert-
ible, hence det (J (α)) is then an element of k×. This suggests the following
question:

Jacobian problem. Let α be an endomorphism of k[x1, x2], where k is a field
of characteristic 0, such that det (J (α)) 	= 0; is α necessarily an automorphism?

This was solved only recently, by S. Pinchuk [94], who found a counter-
example of degree 25 (in his paper the degree was given as 35, due to an
oversight). Some partial results were found by Bass, Connell and Wright [82].
Of course in finite characteristic p there is a simple negative answer, as we see
by considering the mapping (x1, x2) 
→ (x1 + x p

1 , x2).
As a corollary of the above results we can obtain a conjugacy result for finite

subgroups.

Theorem 6.10.6. Every finite subgroup of Aut(k〈x, y〉) of order invertible in
k has a conjugate in L, the subgroup of linear automorphisms.

Proof. Let G be a finite subgroup of Aut(R); from the representation in The-
orem 10.5 it follows that G has a conjugate in � or A. For let g ∈ G have the
normal form

g = ag1 . . . gn,

and call n the length of g. Since g has finite order, g1 and gn lie in the same
factor and we can decrease the length by passing to a conjugate; in fact g will
have a conjugate of length 1 and so lie in one of �, A, say in A. If g was chosen
of maximal length in G, then it follows that for any h ∈ G the same conjugate
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also lies in A, because gh is again of finite order. Thus G has a conjugate in �

or A. We shall treat these cases in turn.
(i) G ⊆ � Here the action of G leaves the subspaces kx + k[y] and k[y]

invariant, so by Maschke’s theorem we can choose a G-invariant complement
kx′ of k[y] in kx + k[y]. This provides an automorphism α : (x, y) 
→ (x ′, y)
such that α−1Gα ⊆ T .

Explicitly we can write for each g ∈ G,

g : (x, y) 
→ (λgx + fg(y), μg y + νg).

Put f (y) = n−1 ∑
g λ−1

g fg(y), where n = |G| and define α : (x, y) 
→ (x −
f (y), y). By comparing the expressions for xgh we have λgh = λgλh, fgh =
λg fh(y) + fg(μh y + νh), so for any h ∈ G,

n f (y) =
∑

g

λ−1
gh fgh(y) = nλ−1

h fh(y) + nλ−1
h f (μy + ν).

It follows that α−1hα : (x, y) 
→ (λx, μx + ν), so α−1Gα ⊆ T , and this
reduces the problem to the case where G ⊆ A.

(ii) G ⊆ A. Now G acts on the space kx + ky + k with invariant subspace
k. Again we can find a complement kx ′ + ky′ of k in kx + ky + k; now α :
(x, y) 
→ (x ′, y′) is an automorphism such that α−1Gα ⊆ L . Explicitly we write
for g ∈ G,

g : (x, y) 
→ (λgx + μg y + νg, λ
′
gx + μ′

g y + ν ′
g)

and define α : (x, y) 
→ (x + ν, y + ν ′), where ν = n−1 ∑
νg, ν

′ = n−1 ∑
ν ′

g .
Then nν = ∑

g νhg = ∑
g(λhνg + μhν

′
g + νh) = n(λhν + μhν

′ + νh) and sim-
ilarly for ν ′, therefore α−1h α : (x, y) 
→ (λh x + μh y, λ′

h x + μ′
h y) and this

shows that α−1Gα ⊆ L , as required. �

By invoking Theorem 6.8.3, we obtain

Corollary 6.10.7. For any finite group G of automorphisms of k〈x, y〉 of
order invertible in k, the fixed algebra k〈x, y〉G of G is free. �

In these results the hypothesis that |G| is prime to char k cannot be omitted.
For example, if k is finite, then A is a finite subgroup of Aut(R), but no conjugate
of A lies in L, a proper subgroup of A.

Exercises 6.10

1. Let X be a set, x0 ∈ X and X0 = X\{x0}. Show that every automorphism of k〈X〉
fixing k〈X0〉 (or even just leaving it invariant) maps x0 to λx0 + f , where λ ∈ k×, f ∈
k〈X0〉.
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2. Show that for any automorphism α of k〈x, y〉, [xα, yα] = λα[x, y], where λα ∈ k×

and [x, y] = xy − yx . Verify that α 
→ λα is a homomorphism from Aut(k〈x, y〉)
to k. Its kernel will be denoted by SAut(k〈x, y〉), whose elements are called special
automorphisms.

3. Show that SAut(k〈x, y〉) ∼= S� ∗ S A, where S� = � ∩ S Aut , S A = A ∩ S Aut
and the amalgamation is over their intersection.

4. (Russell [80]) Show that for any finite set X, any surjective k-algebra endomorphism
of k[X ] is an automorphism.

5. In k〈x, y〉 put p = [c, x]y − [c, y]x , where c ∈ k〈x, y〉. Show that the stabilizer
of kp is the group of all linear automorphisms. Find the stabilizer of kq, where
q = [c, y].

6. Let G be a group with two subgroups F1, F2 that are isomorphic. Define G∗ as the
group presented by the elements and relations of G, as well as a new element t and
the relations f1t = t f2, where fi ranges over Fi and f1 
→ f2 in the isomorphism.
Verify that G is embedded in G∗ and that f1 and f2 are conjugate (G∗ is called an
HNN-extension, see Higman Neumann and Neumann [49]). Show that the elements
of G∗ have as normal form a product of elements of G and t, t−1. Define a bipolar
structure on G∗.

Notes and comments on Chapter 6

Bergman’s centralizer theorem (Theorem 7.7, see Bergman [67, 69]) was one of the main
results of his thesis. It had been conjectured by the author in the early 1960s (see Cohn
[62a] for special cases of Theorem 7.1 and Cohn [63b] for the fact that the centralizer is
commutative). The proof of the centralizer theorem depends on the results in Section 6.1
on the integral closure of commutative subrings. These results are proved by Bergman
for Ore subrings; this form (also given in FR.1) is outlined in the exercises.

The notions of bounded and invariant element are treated for principal ideal domains
by Jacobson [43]; our account in Section 6.1 and 6.2 follows Bowtell and Cohn [71];
for Theorem 2.16 see Carcanague [71]. Corollary 1.9 and Theorem 1.10 were new in
FR.2; Theorem 1.11 as well as Corollary 3.2 and the developments in Section 6.3, are
taken from Bergman and Cohn [71], with simplified proofs. Ischebeck [71] has extended
Theorem 1.11 by showing that the centre of a directly indecomposable hereditary ring
is a Krull ring. The conclusion of Theorem 4.2 (every invariant element is a unit) has
been established for non-Ore 2-firs with right ACC2 by M. L. Roberts [89], who also
proves Lemma 4.1, but there are examples showing it to be false for 2-firs with right
ACC1 (Bergman and Cohn [71]); see also Exercise 4.3. Theorem 4.2 also ceases to hold
when we require c to be merely right invariant (Exercise 4.6) or left invariant (Exercise
4.7). The main problem that remains is whether a non-Ore fir can have non-unit right
invariant elements (Exercise 4.9o); its solution could simplify the statement of Theorem
5.9.

Codes, i.e. free subsets of free monoids (also called ‘comma-free codes’) form a
flourishing subject in their own right, see Lothaire [97], Berstel and Perrin [85]. Theo-
rem 5.1 occurs essentially in Levi [44], see also Dubreil-Jacotin [47]; part (b) of The-
orem 5.4 was obtained by Schützenberger [59], the rest was proved by Cohn [62b].
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The presentation of Section 6.5 and 6.6 follows Cohn [62b], but Results 5.5 and 5.6
were added in FR.2. The Kraft–McMillan inequality was shown by Kraft [49] to be
necessary and sufficient for a prefix code to exist; McMillan [56] proved that it holds
for every code. The analogue for free algebras, Theorem 5.8, is due to Kolotov [78].
Theorem 5.9 is due to Bergman and Lewin [75]. Proposition 6.1 first appeared in Cohn
[64a]; Theorem 6.4 (and Corollary 2.9.15, on which it is based) is taken from Knus
[68]; the proof given here is due to Dicks. The part (c) ⇒ (a) of Theorem 6.5 is in
Moran [73], part (a) ⇒ (b) was proved by Dicks (unpublished). Theorem 6.7 goes
back to Lewin [69]; the present proof, with Proposition 6.6, is due to Berstel and
Reutenauer [88]. The notion of anti-ideal was introduced by Kolotov [78], who also
proved that free subalgebras of free algebras are anti-ideals (Theorem 6.9), generalizing
a result in FR.1, that the subalgebra generated by a non-trivial ideal is not free. The
more general form in Lemma 6.8 is due to Bergman (unpublished). Proposition 7.3
appeared originally in FR.1 (it was proved by the author in response to a question by
G. Baumslag).

Sections 6.8 and 6.9 were new in FR.2 (as Section 6.10 and 6.11 there) and follow
Dicks’ exposition in the Bedford College study group 1982–84. Proposition 8.1 is due
to Bergman [71a], Theorem 8.3 was proved by Kharchenko [78] [91], chapter 6; it was
proved independently by Lane [76]. Results 8.4, 8.5 and 8.6 are taken from Dicks and
Formanek [82], but Theorem 8.4 was also found by Kharchenko [84], on whose proof the
one in the text is based (with simplifications by Dicks). This type of argument is used in
the theory of reductive algebraic groups, see Springer [77]. S. Donkin (unpublished) has
shown that the results of the example after Theorem 8.3 still hold for any infinite field. For
a finite field k, GLr (k) is a finite group and there are many relative invariants, e.g.

∑
vn

may not lie in the subalgebra generated by δ and its transforms by place-permutations
(take k = F2, n = 3, r = 2).

It may be of interest to compare the algebra of invariants of a finite group G of linear
automorphisms of k〈x1, . . . , xr 〉 with that of k[x1, . . . , xr ]. We list the results without
proof and refer for details (and references) to Stanley [79]:

1. T. E. Molien [1897] showed that in characteristic 0, the Hilbert series is given by

H (k[x1, . . . , xr ]G : k) = |G|−1
∑

( det (I − gt))−1.

(Note that det(I − gt) = 1 − t.Tr g + · · · ± tn .)
2. In 1916, E. Noether proved that k[x1, . . . , xr ]G is finitely generated; this holds

even if G is not linear (but still finite).
3. Coxeter, Shephard and Todd (1954), Chevalley (1955) and Serre (1958) showed

that if k[x1, . . . , xr ]G is a polynomial ring, then G can be generated by pseudo-reflexions,
i.e. transformations g such that g − 1 has rank 1. The converse holds if char k does
not divide the order of G, but not in general; see also Nakajima [83]. For example,
in G = Symd ⊆ GLd (k) the transpositions are pseudo-reflexions, they generate G and
k[x1, . . . , xd ]G is a polynomial ring, in any characteristic (by the fundamental theorem
of symmetric functions).

Galois theory underwent several generalizations (see Jacobson [64]). Kharchenko
[84,91] presented a version for prime rings; we follow the trace-form presentation
of this theory by Montgomery and Passman [84], adapted here to integral domains.
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Kharchenko’s key result is Theorem 9.8; the application to free algebras, Theorem 9.11,
appears in Kharchenko [78]. Lemma 9.9 was proved for free algebras by Kharchenko
[78] and independently by Martindale and Montgomery [83]; the present form is taken
from Bergman and Lewin [75]. Some of the proofs have been simplified here by Lemma
9.4, which was suggested by Bergman.

The fact that all automorphisms of k〈x, y〉 are tame was proved by Makar-Limanov
[70a] and independently by Czerniakiewicz [71]. The free product representation in
Theorem 10.3 is due to Cohn [2002] and is based on the work of Stallings [68], following
the exposition in Lyndon and Schupp [77].



7

Skew fields of fractions

This chapter studies ways of embedding rings in fields and more generally, the
homomorphisms of rings into fields. For a commutative ring such homomor-
phisms can be described completely in terms of prime ideals, and we shall see
that a similar, but less obvious, description applies to quite general rings.

After some generalities on the rings of fractions obtained by inverting matri-
ces (Section 7.1) and on R-fields and their specializations (Section 7.2), we
introduce in Section 7.3 the notion of a matrix ideal. This corresponds to the
concept of an ideal in a commutative ring, but has no direct interpretation. The
analogue of a prime ideal, the prime matrix ideal, has properties corresponding
closely to those of prime ideals, and in Section 7.4 we shall see that the prime
matrix ideals can be used to describe homomorphisms of general rings into
fields, just as prime ideals are used in the commutative case. This follows from
Theorem 4.3, which characterizes prime matrix ideals as ‘singular kernels’, i.e.
the sets of matrices that become singular under a homomorphism into some
field.

This characterization is applied in Section 7.5 to derive criteria for a general
ring to be embeddable in a field, or to have a universal field of fractions. These
results are used to show that every Sylvester domain (in particular every semifir)
has a universal field of fractions.

In the rest of this chapter these ideas are used to describe free fields and give
another existence proof using the specialization lemma (Section 7.8), obtain
localization theorems (Section 7.11), a description of centralizers (Section 7.9)
and of the multiplicative group of the universal field of fractions of a semifir
(Section 7.10). This requires a comparison of the different representations of a
given element of this field (Section 7.6) and it involves a numerical invariant,
the depth (Section 7.7), which has no counterpart in the commutative case.
Finally, in Section 7.12 we examine a special class of rings, the fully reversible
rings, for which the embedding theorems take on a particularly simple form.

410
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7.1 The rational closure of a homomorphism

Let R be a ring; our basic problem will be to study the possible ways of embed-
ding R in a field. Of course there may be no such embedding, and it is more
natural to treat the wider problem of finding homomorphisms of R into a field.
Even this problem may have no solution, e.g. if R = An is a full matrix ring
over a non-zero ring A, where n > 1, then any image of R is again an n × n
matrix ring and so cannot be a subring of a field.

As a step towards the solution of the basic problem we may take a subset
M of R and consider homomorphisms mapping all elements of M to invertible
elements, i.e. M-inverting homomorphisms. In the commutative case, once we
have an R×-inverting homomorphism to a non-zero ring, we have achieved the
embedding in a field, but in general this need not be the case, since elements
such as ab−1 + cd−1 may not be invertible in an R×-inverting homomorphism.
Thus for a general non-commutative ring the M-inverting homomorphisms are
not very good approximations to homomorphisms into a field. We shall remedy
this defect by inverting, instead of a set of elements, a set of square matrices.
For a commutative ring this gives nothing new, since we can invert any square
matrix A simply by adjoining an inverse of det A. In the general case this is
no longer possible, for even the Dieudonné determinant turns out, on closer
examination, to be a rational function of the matrix entries (see Section 7.10
below).

Let R be a ring and � a set of matrices over R. A homomorphism f : R → S
to another ring S is said to be �-inverting if every matrix in � is mapped
by f to an invertible matrix over S. The matrices in � need not be square;
however, since we are mainly concerned with homomorphisms into fields, we
shall usually restrict the matrices to be square. The set of all square matrices
over R will be denoted by M(R). Given any set � ⊆ M(R) and any �-inverting
homomorphism f : R → S, we define the �-rational closure of R in S as the
set R�(S) of all entries of inverses of matrices in � f , the image of � under f ;
the elements of R�(S) are also said to be �-rational over R. When � is the set
of all matrices whose images under f have an inverse in S, we also write R f (S)
instead of R�(S) and speak of the f-rational or simply the rational closure.

As we shall see, the f -rational closure of a ring R under a homomorphism
f is always a subring containing im f. For general sets � the �- rational clo-
sure need not be a subring, as we know from the commutative case. If M is
a multiplicative subset of a commutative ring R, then as we have seen in Sec-
tion 0.7, the localization RM is a ring. Let us call a set � of matrices upper

multiplicative if 1 ∈ �, and whenever A, B ∈ �, then

(
A C
0 B

)
∈ � for any
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matrix C of appropriate size; lower multiplicative sets are defined similarly
(with C in the lower corner). If � is upper multiplicative and any matrix in
� still lies in � after any permutation of rows and the same permutation of
columns, then � is said to be multiplicative; clearly such a set is also lower
multiplicative.

We first check that the set of all matrices inverted in a homomorphism is
multiplicative:

Proposition 7.1.1. Given any homomorphism of rings, f : R → S, the set
of all matrices over R whose image under f is invertible over S is multiplicative.

Proof. Clearly 1 f is invertible, and if A, B are invertible matrices over S, then
for any matrix C of suitable size,(

A C
0 B

)
has the inverse

(
A−1 −A−1CB−1

0 B−1

)
,

and invertibility is unaffected by permuting rows and columns. �

The �-rational closure can be characterized in various ways. As before, we
shall use the notation ei for the column vector (of length determined by the
context) with 1 in the ith place and 0s elsewhere, and eT

i for the corresponding
row vector.

Theorem 7.1.2. Let R, S be rings and � an upper multiplicative set of matrices
over R. Given any �-inverting homomorphism f : R → S, the �-rational
closure R� (S) is a subring of S containing im f, and for any x ∈ S the following
conditions are equivalent:

(a) x ∈ R�(S),
(b) x is a component of the solution u of a matrix equation

Au − e j = 0, where A ∈ � f , (1)

(c) x is a component of the solution u of a matrix equation

Au − a = 0, where A ∈ � f , (2)

and a is a column with entries in im f,
(d) x = bA−1c, where A ∈ � f , b is a row and c is a column with entries in

im f.

Proof. We first prove the equivalence of the four conditions. (a) ⇒ (b). By
definition R�(S) consists of the entries of the inverses of matrices in � f . If
x occurs as (i, j)-entry of A−1, then it is the ith component of the solution of
(1), so (b) holds. (b) ⇒ (c) is clear and (c) ⇒ (d) because when (2) holds, then
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ui = eT
i A−1a. To show (d) ⇒ (a), let x = bA−1c; then we have

⎛
⎝1 b 0

0 A c
0 0 1

⎞
⎠

−1

=
⎛
⎝1 −bA−1 bA−1c

0 A−1 −A−1c
0 0 1

⎞
⎠ ,

where the matrix whose inverse is taken is again in � f.
To prove that the �-rational closure R�(S) is a ring containing im f we shall

use property (c). Let a ∈ im f ; then a satisfies the equation 1.u − a = 0, which
is of the form (2), hence R�(S) ⊇ im f. Now if ui is the ith component of the
solution of (2) and v j the jth component of the solution of Bv − b = 0, then
ui − v j is the ith component of the solution of(

A C
0 B

)
w −

(
a
b

)
= 0 ,

where C has for its jth column the ith column of A and the rest 0. Next, if v j = 0,
then uiv j = 0; otherwise uiv j is the ith component of the solution of(

A C
0 B

)
w −

(
0
b

)
= 0 ,

where C has as its jth column -a and the rest 0. This shows that R�(S) is closed
under subtraction and multiplication, and we have already seen that it contains
1, therefore it is a subring, as claimed. �

Let R be a ring, � a multiplicative set of matrices over R and f : R → S a
�-inverting homomorphism. Then for any p ∈ R�(S) we define the left depth
dl(p) as the least n for which there is an n × n matrix A in � f and a column
c ∈ n(R f ) such that p occurs among the entries of the column A−1c; the right
depth dr(p) is defined similarly, using rows of bA−1. It is also possible to define
an upper depth d̄(p), using matrices A−1 and a lower depth d(p) using elements
bA−1c, but they will not be needed in what follows. It is easily seen that

d(p) ≤ dl(p) ≤ d̄(p), d(p) ≤ dr(p) ≤ d̄(p) , (3)

and dl, dr cannot differ by more than 1 from each other and the other depths.
This follows from the proof of Theorem 1.2 (or also from that of Proposition 1.4
below) and may be left to the reader to verify. An element of right depth 1 has
the form ab−1; this expression will be called a right fraction, reduced if a and b
are right coprime. Similarly, an expression b−1a is called a left fraction, again
reduced if a, b are left coprime. In particular, if an element p in the universal
field of fractions of a semifir can be written as a right fraction ab−1 and as
a left fraction, b′−1a′, then a′b = b′a and this expression may be taken to be
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comaximal, by Proposition 3.1.3; hence p can then be expressed as a reduced
right fraction and as a reduced left fraction.

Often it is convenient to use a different notation for the system (2), by taking
as our basic matrix the augmented matrix (a, A). Thus, omitting the reference
to f, for simplicity, which amounts to letting R act on S via f, we shall write our
system as

Au = 0, A ∈ mRm+1, (4)

where u is a vector with first component 1. The columns of A will be indicated
by subscripts, thus

A = (A0, A1, . . . , Am) = (A0, A•, A∞),

where A∞ = Am is the last column and A• = (A1, . . . , Am−1) represents the
remaining columns. We shall call (4) an admissible system in S and A an admis-
sible matrix over S of order o(A) = m for the element p if (4) has a unique
solution u ∈ m+1S, normalized by the condition u0 = 1, where um = p. Thus a
sufficient condition for an m × m + 1 matrix A over R to be admissible is that the
image of the matrix formed by the last m columns is invertible over S; when S is
a field, this sufficient condition is also necessary. The last m columns, (A•, A∞)
form the denominator, the first m columns, (A0, A•) form the numerator, A• is
called the core of p in the representation (4) and we write u = (1, u•, p)T. Of
course these matrices depend not merely on p, but on the choice of A in (4).

We note that matrices over the �-rational closure can be obtained as solutions
of matrix equations in exactly the same way:

Proposition 7.1.3. Let R be a ring, � a lower multiplicative set of matri-
ces over R and f : R → S a �-inverting homomorphism. Then for any
m × n matrix P over R�(S) there exists r ≥ 0 and A ∈ r+m(im f )n+r+m, u =
(I, U, P)T ∈n+r+m Sn such that

Au = 0, A = (A0, A•, A∞), (A•, A∞) ∈ � f , (5)

where A0 is (r + m) × n, A• is (r + m) × r and A∞ is (r + m) × m.

Proof. We have to show that every matrix P is determined by an equation
(5). Suppose that P ′, P ′′ are determined by matrices A′, A′′ respectively; then
P = P ′ + P ′′ is determined by the system

(
A′

0 A′
• A′

∞ 0 0
A′′

0 0 −A′′
∞ A′′

• A′′
∞

)
⎛
⎜⎜⎜⎜⎜⎝

I
U ′

P ′

U ′′

P

⎞
⎟⎟⎟⎟⎟⎠

= 0 .
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Hence it is enough (by induction on the order of A) to consider a matrix P with

a single non-zero entry, say P =
(

p 0
0 0

)
. If Cu = 0 is an admissible system

for p, then we have

(
C0 0 C• C∞ 0
0 0 0 0 Im−1

)
⎛
⎜⎜⎜⎜⎜⎝

1 0
0 In−1

u• 0
p 0
0 0

⎞
⎟⎟⎟⎟⎟⎠

= 0 .

�

The admissible system (4) is more accurately described as a left admissible
system; it follows by symmetry that the elements of R�(S) can equally well
be determined in terms of a right admissible system vB = 0, where B is a
matrix of index −1. The next result describes the relation between these two
types.

Proposition 7.1.4. In the situation of Proposition 1.3, let P be an m × n
matrix with a left admissible (r + m) × (n + r + m) matrix A. Then the (m +
(m + r ) + n) × (n + r + m) matrix⎛

⎝ 0 0 −I
A0 A• A∞
I 0 0

⎞
⎠

is right admissible for P.

Proof. By hypothesis we have an equation

(A0 A• A∞)

⎛
⎝ I

U
P

⎞
⎠ = 0 . (6)

Hence we have

(
A0 A• A∞
In 0 0

) ⎛
⎝In

U
P

⎞
⎠ =

(
0
I

)
.

The matrix on the left is square, and it has an inverse over S; this means
that

(
A0 A• A∞
I 0 0

)−1

=
⎛
⎝0 I

Y U
Z P

⎞
⎠ , say,
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where the NW-block on the right is clearly 0. Therefore

(Im Z P)

⎛
⎝ 0 0 −Im

A0 A• A∞
I 0 0

⎞
⎠ = 0 ,

and this is an equation of the required form. �

The form (d) of Theorem 1.2 is also used sometimes; more generally, we
may consider an element u of the form

u = d − bA−1c, (7)

where d ∈ im f and A, b, c are as in Theorem 1.2(d). We shall say that u is
represented by r = d − (b, A, c), or also by the display block, or simply, the
display: (

A c
b d

)
. (8)

When A is invertible, then the matrix (8) is stably associated to d − bA−1c, as
the following reduction shows:(

A c
b d

)
→

(
1 c

bA−1 d

)
→

(
1 0

bA−1 d − bA−1c

)
→

(
1 0
0 d − bA−1c

)
.

The matrix A will be called the pivot matrix of the display, its order the dimension
and d its scalar term. The display is called pure if its scalar term is 0.

We note the following relation between an admissible matrix A and the
element p determined by it:

Proposition 7.1.5. (Cramer’s Rule) Let f : R → S be a homomorphism
of rings. Given p ∈ S, if A is a matrix over im f admissible over S for p,
then

(A• − A0) = (A• A∞)

(
I u•
0 p

)
; (9)

thus over S, p is stably associated to the numerator of the system (4). More
generally, this holds when p is a matrix over S. If S is weakly finite, then p = 0,
or in case of a matrix, p is not full whenever its numerator is not full over S.

Proof. The first part is immediate, since (A•, A∞) is invertible over S and
the left-hand side of (4) is associated to the numerator, or using (6) when p is a
matrix. The second part follows because a non-zero element has positive stable
rank over S, by Proposition 0.1.3. �
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For reference we note that if A, B are admissible matrices for p, q respectively,
then (A∞, A•, A0) is an admissible matrix for p−1, (A0 − A∞, A•, A∞) is an
admissible matrix for p + 1, and

(
B0 B• B∞ 0 0
A0 0 A∞ A• A∞

)
and

(
B0 B• B∞ 0 0
0 0 A0 A• A∞

)
(10)

are admissible matrices for p − q and pq, respectively. As we see by looking
at the denominators in (10), with the present conventions we need to take our
matrices to be lower multiplicative. We also note that any two elements can be
brought to a common denominator; more generally we have

Proposition 7.1.6. Let R be any ring and � a subset of M(R) closed under
diagonal sums. Then any finite set of elements of the localization R� can be
brought to a common denominator.

Proof. By induction it is enough to prove the result for two elements. Let
p, q ∈ R� , with admissible matrices A = (A0, A•, A∞), B = (B0, B•, B∞)
and consider the matrix

(
A0 A• A∞ 0 0
B0 0 0 B• B∞

)
. (11)

From (11) we obtain admissible matrices for p and q by putting B0, resp. A0 = 0,
hence each has an admissible matrix whose denominator is the diagonal sum
of the denominators in A and B. �

Exercises 7.1

1. Let R be a commutative ring and M a subset of R. Find conditions on M for the set
{a f (s f )−1|a ∈ R, s ∈ M}, under any M-inverting homomorphism f, to be a subring.

2. Show that the transpose of every invertible matrix is invertible.
3. For any ring homomorphism f : R → S define the unit-closure of R in S as

the least subring of S containing im f and closed under forming inverses of ele-
ments, when they exist in S. Show that the unit-closure is contained in the ratio-
nal closure and give examples to show that in general these two closures are
distinct.

4. Prove the inequalities (3) for the depths of an element.
5. Let R be a ring, � a multiplicative set of matrices over R and f : R → S a �-inverting

homomorphism. Show that for any p, q ∈ R�(S) and a ∈ im f, a �= 0, d(p − q) ≤
d(p) + d(q), d(pq) ≤ d(p) + d(q), d(a) = 1, d(pa) ≤ d(p), d(ap) ≤ d(p) + 1,
where d is the left depth. What are the corresponding inequalities for the right
depth?
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6. Show that for any �-localization R → R� and any subset I of R the set of solutions
of admissible equations with matrices A = (A0, A•, A∞), where the entries of A0

are in I, forms a left ideal of R� .
7. Given a homomorphism f : R → S, if every square matrix from R maps either

to a left and right zero-divisor (or 0) or to an invertible matrix over S, show that
R f (S) is such that every non-zero element is either a left and right zero-divisor or
invertible in S. If, further, S is an integral domain, deduce that the rational closure
of R in S is a field. Show that under a homomorphism of R into a field, the rational
closure is a subfield.

8. Given a homomorphism f : R → S, where S is weakly finite, let � be the
set of all matrices inverted under f. Show that for any square matrices A, B

over R, if

(
A C
0 B

)
∈ � for some C, then A, B ∈ �. Why is weak finiteness

necessary?
9. Let R and S be algebras over an infinite field. Given a homomorphism f : R → S,

show that for any finite set of elements in the rational closure there exist a matrix A
and columns c1, . . . , cr such that the given elements are the last components of the
solutions of equations Ax − ci = 0, i = 1, . . . , r .

10. Show that in a local ring S, the unit-closure of any subring R is equal to its rational
closure. (Hint: Verify that a matrix over S is invertible if and only if its image in
the residue-class field is invertible.) In particular, the unit-closure and the rational
closure of k〈X〉 in k〈〈X〉〉 are the same.

7.2 The category of R-fields and specializations

Given a ring R, we recall that an R-ring is a ring L with a homomorphism
R → L . For fixed R, the R-rings form a category in which the morphisms are
the ring homomorphisms L → L ′ such that the triangle shown is commutative.
In particular a field that is an R-ring will be called an R-field.

R

L L′
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We shall be concerned with R-fields that as fields are generated by the image
of R. Such fields are epimorphic in the sense that the map from R is an epimor-
phism; we digress briefly to explain the connexion.

A ring homomorphism f : R → S is called an epimorphism (in the category
of rings) if for any homomorphisms g, g′ from S to some ring T, f g = f g′ ⇒
g = g′. Some equivalent descriptions are given in

Proposition 7.2.1. For any ring homomorphism f : R → S the following
conditions are equivalent:

(a) f is an epimorphism,
(b) in the S-bimodule S ⊗R S we have x ⊗ 1 = 1 ⊗ x for all x ∈ S,
(c) the multiplication map S ⊗R S → S, x ⊗ y �→ xy, is an isomorphism.

Proof. (a) ⇒ (b). Consider the split null extension M = S ⊕ (S ⊗R S) with
the multiplication (x, u)(y, v) = (xy, xv + uy). The two maps S → M sending
x to (x, 1 ⊗ x) and (x, x ⊗ 1) are easily seen to be ring homomorphisms that
agree on R, so by (a) they are equal, i.e. x ⊗ 1 = 1 ⊗ x for all x ∈ S. To prove
(b) ⇒ (c), we note that the multiplication homomorphism maps

∑
xi ⊗ yi to∑

xi yi ; when (b) holds, then
∑

xi ⊗ yi = ∑
xi yi ⊗ 1 = 1 ⊗ ∑

xi yi and so
(c) follows. The converse is clear.

(b) ⇒ (a). When (b) holds and g, g′ : S → T are two homomorphisms
such that f g = f g′, then the map S ⊗ S → T given by x ⊗ y �→ xg · yg′ is
well-defined, because f g = f g′ and maps x ⊗ 1 to xg and 1 ⊗ x to xg′, but
1 ⊗ x = x ⊗ 1, hence g = g′ as we had to show. �

As a consequence we have

Corollary 7.2.2. A homomorphism f : R → K from a ring R to a field K is
an epimorphism if and only if K is the field generated by im f.

Proof. Suppose that the field generated by im f is a proper subfield
H of K and that {ui } is a right H-basis of K, where u1 = 1. Then
K ⊗H K = ∑

ui ⊗ K = K ⊕ ∑
i �=1 ui ⊗ K and this is not isomorphic

to K, so f is not an epimorphism. Conversely, if K is the field generated by im
f, then by Theorem 1.2, every element of K is the entry of a matrix B that is
the inverse of A f for some matrix A over R. Thus A f .B = B.A f = I, hence
for any homomorphisms g, g′ such that f g = f g′, A f g has the inverses Bg

and Bg′
, which must coincide, and it follows that g = g′. �

An R-field K for which the map R → K is an epimorphism will be called an
epic R-field. An epic R-field K for which the given map R → K is injective is
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called a field of fractions of R. Of course the elements of K will not generally be
left or right fractions, but have a more general form, as we saw in Section 7.1.

The only R-ring homomorphism possible between epic R-fields is an iso-
morphism. For any homomorphism between fields must be injective, and in
this case the image will be a field containing the image of R, hence we have
a surjection, and so an isomorphism. This shows the need to consider more
general maps. Let us define a subhomomorphism between R-fields K , L as an
R-ring homomorphism f : K f → L from an R-subring K f of K to L such that
any element of K f not in the kernel of f has an inverse in K f . This definition
shows that K f is a local ring with maximal ideal ker f, hence K f /ker f is a
field, isomorphic to a subfield of L, namely im f. The latter is a subfield of L
containing the image of R in L, hence if L is an epic R-field, then im f = L .
Thus we obtain

Lemma 7.2.3. For any ring R, any subhomomorphism to an epic R-field is
surjective. �

Two subhomomorphisms from an R-field K to another one, L, are considered
equivalent if they agree on an R-subring K0 of K and the common restriction to
K0 is again a subhomomorphism. It is clear that this is indeed an equivalence
relation and this suggests the following

Definition. Let K and L be two R-fields, where R is any ring. An equivalence
class of subhomomorphisms from K to L is called a specialization from K to
L .

We note that the set of all subhomomorphisms defining a given specializa-
tion φ has an intersection that is again a subhomomorphism defining φ; this
will be called a minimal subhomomorphism and we shall usually represent a
specialization by its minimal subhomomorphism, whose domain will be called
the minimal domain or simply the domain of the specialization.

The R-fields and specializations form a category denoted here by FR . Here
it is only necessary to check that the composition of maps is defined and is
associative. Given specializations f : K → L , g : L → M , let K0, L0 be the
domains of f and g respectively, and put K1 = {x ∈ K0|x f ∈ L0}, f1 = f |K1.
We assert that f1g : K1 → M is a subhomomorphism and so defines a spe-
cialization. Let us denote the canonical mapping R → K by μK ; then we have
μK f = μL , hence RμK ⊆ K1, so that K1 is an R-ring. Moreover, if x ∈ K1

and x f1g �= 0, then x f = x f1 �= 0, so x−1 ∈ K0 and (x−1) f = (x f )−1 ∈ L0,
hence x−1 ∈ K1. This shows that f1g defines in fact a specialization. To prove
associativity, consider subhomomorphisms f : K1 → K2, g : K2 → K3, h :
K3 → K4. The composites ( f g)h and f (gh) have the same domain, namely
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the subset of K1 mapped by f into the domain of g and by g into the domain
of h; clearly ( f g)h and f (gh) are both the composite of f, g and h and so they
agree on this common domain.

K L

R

M

R U

K

Let ER be the full subcategory of FR whose objects are the epic R-fields.
An initial object in ER is called a universal R-field. Explicitly a universal R-
field is an epic R-field U such that for any epic R-field K there is a unique
specialization U → K . Clearly a universal R-field, if it exists at all, is unique
up to isomorphism.

In general a ring R need not have a universal R-field, even when it has R-fields;
e.g. a commutative ring R has a universal R-field if and only if its nilradical is
prime, and we shall obtain an analogous condition for general rings in Theorem
5.2. Suppose that R has a universal R-field U; then R has a field of fractions if
and only if U is a field of fractions of R, as a glance at the above triangle shows.
In that case we call U the universal field of fractions of R.

Let us illustrate these definitions by taking R to be a commutative ring. Then
the epic R-fields correspond precisely to the prime ideals of R. Thus, given
any epic R-field K, the kernel of the canonical map μK : R → K is a prime
ideal and, conversely, if p is a prime ideal of R, then the mapping R → F(R/p),
where F(A) is the field of fractions of the domain A, gives us an epic R-field.
The category ER in this case is equivalent to the set of all prime ideals of R,
with inclusion maps as morphisms. There is a universal R-field if and only if
there is a least prime ideal, i.e. the nilradical is prime, and when this is 0 (i.e.
when R is an integral domain), we have a universal field of fractions. A similar
correspondence exists in the general case, and will be described in Section
7.5 below, once we have identified the objects to be used in place of prime
ideals.
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The situation can be described by a commutative diagram

R

K

mK

Rp

R/p

We can either pass to R/p, an integral domain, and obtain K as its field of
fractions, or we can localize at p to obtain a local ring Rp, whose residue-class
field will be isomorphic to K. In the general case the prime ideal p is no longer
sufficient to determine K, since a ring may have several non-isomorphic fields
of fractions (see Exercise 13).

Our aim will be to study the epic R-field K by means of the set of all
matrices inverted over K; before we can do so, we need the obvious but important
remark that for any set � of matrices there always exists a universal �-inverting
homomorphism: by this term we understand a homomorphism λ : R → R�

that is �-inverting and such that any �-inverting homomorphism f can be
factored uniquely by λ, i.e. given f : R → S such that � f consists of invertible
matrices, there is a unique homomorphism f̄ : R� → S such that f = λ f̄ . The
ring R� is clearly determined up to isomorphism by these conditions; it is called
the universal �-inverting ring or also a universal localization of R. Such a ring
always exists, for any choice of R and �, and it may be constructed as follows.
For each m × n matrix A = (ai j ) in � we take a set of mn symbols, arranged
as an n × m matrix A′ = (a′

j i ) and let R� be the ring generated by the elements
of R as well as all the a′

j i and as defining relations all the relations holding in
R, together with the relations, in matrix form,

AA′ = I, A′ A = I for each A ∈ �. (1)

The mapping taking each element of R to the corresponding element of R� is
clearly a homomorphism λ : R → R� , which is �-inverting, by construction.
If f : R → S is any �-inverting homomorphism, we define a homomorphism
f̄ : R� → S by putting x f̄ = x f for all x ∈ R and for any matrix A ∈ � defin-
ing f̄ on A′ by putting A′ f̄ = (A f )−1. This gives a well-defined homomorphism
f̄ , because any relation in R� is a consequence of the defining relations in R
and the relations (1), and all these relations also hold in S. Since we are mainly
concerned with embeddings in fields, our sets � will usually consist of square
matrices, but this is not essential in the general situation. We remark that a
localization R� in the context of Section 7.1 would be R�(R�), but unlike that
case, R� here is an absolute construction.



7.2 The category of R-fields and specializations 423

Of course the canonical homomorphism λ : R → R� need not be injective
and may, in fact, be zero, i.e. R� may be 0, e.g. if � contains a zero matrix. How-
ever, from the relation f = λ f̄ we already see that if there is a �-inverting homo-
morphism f that is injective, then λ must be injective. We sum up these results in

Theorem 7.2.4. Let R be a ring and � any set of matrices over R. Then
there is a ring R� , unique up to isomorphism, with a universal �-inverting
homomorphism

λ : R → R�. (2)

Moreover, λ is injective if and only if R can be embedded in a ring over which
all the matrices of � have inverses. �

The ring R� will be called the universal localization of R with respect to �.
Let us now consider, for an epic R-field K, in place of p = ker μK the set P

of all square matrices over R that become singular over K. This set P is called
the singular kernel of μK and is written Ker μK . There is no obvious way of
forming an analogue of R/p, viz. ‘the ring obtained by making the matrices in
P singular’, but we can form RP as the universal �-inverting ring R� , where

� is the complement of P in the set M(R) of all square matrices over R. By
abuse of notation we sometimes write this as RP, in analogy to the commutative

case. Our next result describes any epic R-field in terms of its singular kernel,
or rather, its complement in M(R).

Theorem 7.2.5. Let R be any ring. Then

(i) if � is a set of matrices over R such that the universal localization R� is a
local ring, then the residue-class field of R� is an epic R-field, and

(ii) if K is an epic R-field and � the set of all matrices over R whose images
in K are invertible, then � is multiplicative and R� is a local ring with
residue-class field isomorphic to K.

Proof. Let � be a set of matrices over R such that R� is a local ring, and
denote its residue-class field by K. By composing the natural mappings we
get a homomorphism R → R� → K , and K is generated by the entries of the
inverses of images of matrices in �, hence it is an epic R-field.

Conversely, let K be any epic R-field and � the set of all matrices over
R whose images in K are invertible. Then � is multiplicative, by Proposition
1.1. Further, by the definition of � and by Theorem 2.4, we have an R-ring
homomorphism α : R� → K , and it will be enough to prove that any element
of R� not in ker α is invertible.

Let p ∈ R� have the admissible system over R�, Au = 0, where (A•, A∞) ∈
�, and so, by Cramer’s rule (Proposition 1.5), p is stably associated to (A0, A•).
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If pα �= 0, then pα is invertible; hence so is (A0, A•)α . Therefore (A0, A•) ∈ �

and applying Cramer’s rule once more we find that p is invertible in R� ; thus
every element of R� not in ker α has an inverse. It follows that R� is a local ring
with maximal ideal ker α, and its residue-class field is therefore isomorphic to
K, as claimed. �

The sets � for which R� is a local ring may be described as follows, using
‘minor’ to mean the submatrix corresponding to a subdeterminant.

Proposition 7.2.6. Let R be a ring and � a multiplicative set of matrices.
Then R� is a local ring if and only if R� �= 0 and for A ∈ �, if the (1, 1)-minor
of A is not invertible over R� , then A − e11 is invertible over R� .

Proof. Suppose that R� is a local ring and denote its residue-class field by
K. Any matrix over R� is invertible if and only if its image is invertible over
K, so we need only show that if an invertible matrix A has a non-invertible
(1, 1)-minor, then A − e11 is invertible over K. For such an A some non-trivial
left linear combination of the rows of its (1, 1)-minor is zero. If we take the
corresponding left linear combination of the last n − 1 rows of A, we obtain
(c, 0, . . . , 0), where c �= 0, because A is non-singular. We now subtract from
the first row of A, c−1 times this combination of the other rows and obtain
the matrix A − e11, which is therefore invertible. Conversely, assume that this
condition holds and let u1 be the first component of the solution of

Au − e1 = 0. (3)

If u1 does not have a left inverse in R� , then by Cramer’s rule the numerator
of u1 in (3) cannot then be invertible over R� . This numerator, up to stable
association, is just the (1, 1)-minor of A, hence A − e11 is then invertible over
R� . We now apply Lemma 0.5.8 with M = Rn, N = R, s = u = A−1e1, t =
eT

1 . By hypothesis, In − A−1e1eT
1 = A−1(A − e11) is invertible, hence so is 1 −

eT
1 A−1e1 = 1 − u1. Thus for any x ∈ R� , either x has a left inverse or 1 − x

has an inverse, hence R� is a local ring, by Proposition 0.3.5. �

In Theorem 2.5 we saw that any epic R-field may be described entirely
in terms of matrices over R and their inverses; we now show how to express
specializations in terms of the sets of matrices inverted.

Theorem 7.2.7. Let R be any ring, K1, K2 any epic R-fields, �i the set of
all matrices over R inverted in Ki and Ri the universal localization R�i with
maximal ideal mi (i = 1, 2). Then the following conditions are equivalent:

(a) there is a specialization α : K1 → K2,
(b) �1 ⊇ �2,



7.2 The category of R-fields and specializations 425

(c) every rational relation over R satisfied in K1 is satisfied in K2,
(d) there is an R-ring homomorphism R2 → R1.

If there is a specialization from K1 to K2 and one from K2 to K1, then K1
∼= K2.

We note the reversal of direction in (d) compared with (a).

Proof. (a) ⇒ (b). Let μi : R → Ki be the canonical homomorphism. Take
A ∈ �2 and denote its image under μi by Ai . Then A2 has an inverse that is the
image of a matrix B over K1 (by Lemma 2.3): A2 Bα = I; hence A1 B = I + C ,
where Cα = 0. Since the domain of a subhomomorphism defining α is a local
ring, I +C has an inverse over R, therefore so does A1, i.e. A ∈ �1.

(b) ⇒ (c) is clear and so is (c) ⇒ (d), for when (c) holds, then λ1 : R → R1

is �2-inverting and so may be factored by λ2.
(d) ⇒ (a). Let R0 be the image of R2 in R1. Then the natural homomor-

phism R1 → K1 maps R0 to R′
0 = R0/(R0 ∩ m1). Now R0 is a local ring (as

homomorphic image of R2) and R0 ∩ m1 is a proper ideal, therefore the natural
homomorphism R2 → K2 can be taken via R′

0, giving a homomorphism from
a local subring (namely R′

0) of K1 onto K2; this is the required specialization.
Now the last point follows using (b). �

R

R1

R2

K2K1

R0

R′0

Corollary 7.2.8. Let R be any ring. Given a minimal subhomomorphism of
R-fields, φ : K1 → K2, if p ∈ K1 is an element with an admissible matrix, this
remains admissible over K2 if and only if p is in the domain of φ.

Proof. Let dom φ ⊆ K1 be the domain of φ, and let A be an admissible
matrix for p ∈ K1 that remains admissible over K2. Since the denominator of
A is invertible over the residue-class field of the local ring dom φ, it is invertible
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over dom φ itself, hence p ∈ dom φ. Now consider the set of all elements of
K1 that can be represented by admissible matrices that remain admissible over
K2; this is a subring of dom φ that contains the image of R and admits inverses
of elements whose image under φ is non-zero, hence it coincides with dom φ,
by the minimality of the latter. �

In Theorem 2.7 suppose that K2 is itself a universal localization; by Lemma
2.3 this means that m2 = 0 and R2 = K2. Then the homomorphism R2 → K1

is an isomorphism. Let us call a specialization of R-fields proper if it is not an
isomorphism. Then we can express the result as

Corollary 7.2.9. Let R be any ring. If an epic R-field K is itself a universal
localization, then K cannot be obtained by a proper specialization from another
R-field. �

In particular, this shows that if R has a universal R-field U, then U is the
only epic R-field that can be a universal localization. However, U may also be
a universal localization of other rings, as the next result shows:

Proposition 7.2.10. Let R be a ring with a universal R-field U and let � be
any set of matrices over R such that R� admits a homomorphism to a field.
Then U is a universal R�-field.

Proof. Since the members of � are inverted over some field, they are inverted
over U, so the homomorphism R → U can be taken via R� ; now any homo-
morphism from R� to a field K gives rise to a map R → K and since U is
universal for R, it is also universal for R� . �

To illustrate Corollary 2.9, we take the field of fractions of a commutative
integral domain R; this is a universal R-field (even a field of fractions) and a
universal localization of R. By contrast, if E and F are commutative fields, then
R = E × F has two epic R-fields E and F, but neither is a universal R-field. The
ring S = E[x]/(x2) has a unique epic S-field, viz. S/(x), so this is a universal
S-field, but not a universal localization of S (because S is itself a local ring).
The ring T = S × F also has E and F as epic T-fields, but only one of them,
namely F, is a universal localization and neither is a universal T-field. Other
examples are given in the exercises.

Exercises 7.2

1. Show that an epimorphic image of a commutative ring is again commutative.
Let R be a commutative ring and � a set of square matrices over R. Show that
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R�
∼= RS , where S is the set of all determinants of members of �. Deduce that

R� is commutative.
2. Let K = k(x, y) be a rational function field over a commutative field k and let

L be any commutative k-field. Given any a, b ∈ L , verify that there is a sub-
homomorphism from K to L that maps any rational function f (x, y)/g(x, y)
such that g(a, b) �= 0 to f (a, b)/g(a, b). If a, b ∈ k, show that this subhomo-
morphism can be extended to one whose domain includes u = (x − a)/(y − b),
which is mapped to an element c of L. Deduce the existence of a specializa-
tion defined for f (u, y)/g(u, y) whenever g(c, b) �= 0 and taking this element to
f (c, b)/g(c, b).

3. Show that if in a ring homomorphism f : R → S, S is the rational closure of
f, then f is epic (in the categorical sense). Show that the inclusion of k[x, y] in
k[x, y, xy−1, xy−2, . . .] is an epimorphism, but the former ring is rationally closed
in the latter.

4. (G. M. Bergman) Show that in M2(k〈x, y〉) the inclusion of the subring(
k V
0 k

)
, where V is the subspace spanned by 1, x, y, is an epimorphism,

even though the subring satisfies certain polynomial identities not holding in the
whole ring.

5. Show that a commutative ring R has a universal R-field if and only if R has
a unique least prime ideal (i.e. the nilradical of R is prime). What is the
corresponding condition for left Noetherian rings?

6. For which values of n does the ring Z/nZ of integers mod n have (i) a field of
fractions, (ii) a universal localization that is a field and (iii) a universal Z/nZ-
field?

7. In the diagram for the proof of Theorem 2.7 let R = Z, K1 = Q, K2 = Z/pZ,
where p is a prime. Describe the rings and maps in the diagram.

8. Show that the n × n upper triangular matrix ring R over a field K has n epic
R-fields isomorphic to K as fields, but distinct as R-fields. Deduce that for
n > 1, R has no universal R-field.

9. Show that if R is a left Bezout domain, then for any set � of square matrices over
R, R�

∼= RS for a suitable subset S of R. (Hint: Use Exercise 0.7.11.)
10∗. Let R be a ring, � the set of all full matrices over R and suppose that there exists

a �-inverting homomorphism into a non-zero weakly finite ring. Show that the
universal localization R� is a local ring.

11. Show that a homomorphism R → K of a ring into a field is an epimorphism (in
the category of rings) if and only if K is an epic R-field.

12. A set � of square matrices over a ring R is said to be saturated if any matrix
(not necessarily square) over R that becomes invertible in R� lies in �. Show
that any saturated set is multiplicative. Given any set � of matrices over R, let
�′ be the set of all matrices inverted in R� . Show that �′ is saturated and that
R�

∼= R�′ (�′ is called the saturation of �).
13∗. (Fisher [71]) Let k be a commutative field and K = k(t) the rational function

field in t over k with the endomorphism αn induced by t �→ tn . Show that if
n > 1, the k-subalgebra of K [x ; αn] generated by x and y = xt is free on x
and y. Hence obtain an embedding of the free algebra R = k〈x, y〉 in a field,
viz. K (x ; αn). Show that the fields so obtained are ‘minimal’ objects in the
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category of fields of fractions of R and are non-isomorphic, as R-fields, for
different n.

14∗. (G. M. Bergman) Let R be a ring with two non-isomorphic fields of fractions
K , L; say L is not a specialization of K. Denote by R̄ = R + t K [t] the subring
of K [t] consisting of all polynomials with constant term in R. Show that R̄ is an
Ore domain and so has a field of fractions, viz. K (t), but no universal R-field.

15∗. (A. H. Schofield) Show that if R is a ring with a universal R-field, then the
polynomial ring R[t] has a universal R[t]-field.

16◦. Let R be any ring. Given a local R-ring L, if L is the ring generated by R and the
inverses of elements not in the maximal ideal, show that it is an epic R-ring. Find
an example of an epic R-ring that is local but is not generated in this way.

17◦. For which specializations of R-fields is the domain a valuation ring?
18◦. Find conditions for the universal R-field to be a universal localization (see Section

7.6 below for a special case).

7.3 Matrix ideals

We have seen in Section 7.2 that just as the epic R-fields for a commutative ring
R can be described in terms of their kernels, so in general they are determined by
their singular kernels (Theorem 2.5 (ii)). Now the kernels in the commutative
case are well known as prime ideals, and it remains to elucidate the singular
kernels. This will be done in this section, where we shall describe them by a set
of axioms reminiscent of the axioms for prime ideals. The resulting concept of
a ‘prime matrix ideal’ is best studied as a special case of a matrix ideal; this is
a set of matrices with properties similar to those of an ideal in a ring. In order
to define it we need to describe the appropriate operations on matrices; instead
of the sum and product we have the determinantal sum and the diagonal sum.
The latter we have already met; we recall that for any two matrices A, B the
diagonal sum A ⊕ B is always defined, and if A, B are square of orders r, s,
respectively, then A ⊕ B is square of order r + s. We shall use notations such
as A1 ⊕ A2 ⊕ · · · Am for repeated diagonal sums; if in the last sum all the Ai

are equal to A, we also write ⊕m A.
We recall that a square matrix A is non-full if it can be written in the form

PQ, where P is n × r, Q is r × n and r < n. It follows that a non-full matrix
maps to a singular matrix under any homomorphism into a field. If A is non-full,
then its diagonal sum with any square matrix is again non-full. For if A = P Q
as above, then A ⊕ B = (P ⊕ B)(Q ⊕ I). On the other hand, if A is full, then
its diagonal sum with another full matrix need not be full. For example, as we
saw in Section 0.1, a ring fails to have UGN precisely if the unit matrix In of
some order is not full, even though 1 is full in any non-zero ring. We also note
that if A is a matrix (full or not) such that ⊕rA is not full, for some r, then ⊕rA
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and hence A itself maps to a singular matrix under any homomorphism into a
field.

The second operation to be described is defined only for certain pairs of
matrices. Let A and B be two n × n matrices that differ at most in the first
column, say A = (A1, A2, . . . , An), B = (B1, A2, . . . , An); then we define the
determinantal sum of A and B with respect to the first column as the matrix
C = (A1 + B1, A2, . . . , An). The determinantal sum with respect to another
column (or a row) is defined similarly, when it exists. We write

C = A∇ B, (1)

indicating, if necessary, in words the row or column whose elements are being
added.

When R is commutative, so that determinants are defined, we have det C =
det A + det B, whenever A, B, C are related as in 1. On the other hand, over a
field, even skew, if two of A, B, C are singular, then so is the third, as is easily
seen. Further, any ring homomorphism preserves determinantal sums, therefore
if two of A, B, C map to singular matrices under a homomorphism to a field,
then so does the third.

Repeated determinantal sums need to be used with care, since the operation
is not everywhere defined and a fortiori not associative. Thus to say that C is
a determinantal sum of matrices A1, . . . , Am means that we can replace a pair
of neighbouring matrices among A1, . . . , Am by their determinantal sum (with
respect to some row or column) and repeat this process on another neighbouring
pair in the resulting set, and so on until we are left with one matrix, namely C.
We shall indicate this by writing

C = A1∇ . . . ∇ Am, (2)

where it is understood that the sum has to be bracketed appropriately to be
evaluated. We also note the form of the distributive law:

(A∇ B) ⊕ P = (A ⊕ P)∇(B ⊕ P), (3)

which holds whenever A∇ B is defined.
Let R be a ring and M(R) the set of all square matrices over R. We define

a matrix pre-ideal in R as a subset A of M(R) satisfying the following three
conditions:

M.1. A includes all non-full matrices,
M.2. If A, B ∈ A and their determinantal sum C (with respect to some row or

column) exists, then C ∈ A,
M.3. If A ∈ A, then A ⊕ B ∈ A for all B ∈ M(R).
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If, further, we have

M.4. A ⊕ 1 ∈ A implies A ∈ A,

we call A a matrix ideal. A matrix pre-ideal is called proper if it is not M(R);
clearly a matrix ideal is proper if and only if it does not contain the element 1
or equivalently, I0.

We note the following consequences of the definitions, where A denotes any
matrix pre-ideal.

(a) A hollow matrix, i.e. n × n with an r × s block of zeros, where r + s > n,
is not full (Proposition 3.1.2), and hence is in A; clearly this still holds if the
zero block only arises after certain permutations of rows and of columns. In
particular, any square matrix with a zero row or column is hollow and so is in
A.

(b) In an equation C = A∇ B, if B is non-full, then A lies in A if and only if
C does. For we have B ∈ A, so if A ∈ A, then C ∈ A by M.2, while if C ∈ A,
we can bring B over to the other side, changing the sign of the row or column
to be added; clearly this leaves B non-full.

(c) Let A ∈ A. Then the result of adding any right multiple of one column
of A (or any left multiple of a row) to another again lies in A. Writing A =
(A1, A2, . . . , An), we have

(A1 + A2c, A2, . . . , An) = (A1, A2, . . . , An)∇(A2c, A2, . . . , An)

= A∇(A2, . . . , An)

(
c
0 In−1

)
;

on the right we have the determinantal sum (with respect to the first column)
of A and a non-full matrix, hence the result is in A. Similarly for rows.

(d) If A ∈ A, then the result of interchanging any two columns (or rows) of A
and changing the sign of one of them again lies in A. In particular, if A ⊕ B ∈ A,
then B ⊕ A ∈ A. This follows in familiar fashion from (c). Writing only the
two columns in question, we have, by repeated application of (c),

(A1, A2) → (A1 + A2, A2) → (A1 + A2, −A1) → (A2, −A1).

(e) Let A ∈ Rm, B ∈ Rn, C ∈ nRm . Then

(
A 0
C B

)
∈ A ⇔

(
A 0
0 B

)
∈ A. (4)

For given A, B, C let A1, C1 be the first columns of A, C respectively, and
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write A = (A1, A′), C = (C1, C ′). We have(
A 0
C B

)
=

(
A1 A′ 0
0 C ′ B

)
∇

(
0 A′ 0
C1 C ′ B

)
, (5)

where the determinantal sum is with respect to the first column. By (a) the
second matrix on the right is not full, hence by (b),(

A 0
C B

)
∈ A ⇔

(
A1 A′ 0
0 C ′ B

)
∈ A.

In a similar way we can vary the other columns of C and so prove the assertion.
An analogous argument, using B, shows that for any m × n matrix C,(

A C
0 B

)
∈ A ⇔

(
A 0
0 B

)
∈ A.

(f) If A is actually a matrix ideal, then for any two square matrices A, B of
the same order, AB ∈ A if and only if A ⊕ B ∈ A. Assume that A ⊕ B ∈ A;
using (e) and (c) several times, we obtain in turn(

A 0
0 B

)
→

(
A 0
I B

)
→

(
A −AB
I 0

)
→

(
AB A
0 I

)
→

(
AB 0
0 I

)
.

By applying M.4 we find that AB ∈ A. The converse follows by reversing our
steps.

(g) If A belongs to a matrix ideal A, then the result of permuting the rows
or the columns of A in any way again belongs to A. For we can achieve any
permutation by multiplying by an appropriate permutation matrix on the left or
right.

(h) Let f : R → S be a ring homomorphism and A a matrix ideal in S. Then
f −1A = {A ∈ M(R)|A f ∈ A} is a matrix ideal in R. This follows because any
homomorphism preserves non-full matrices and is compatible with determi-
nantal sums and diagonal sums.

There is an operation on matrix ideals analogous to residual division of ideals.
Let A be a matrix ideal and � a subset of M(R) that is directed: 1 ∈ � and if
P1, P2 ∈ �, then there exists P ∈ � that is conjugate by signed permutation
matrices, to P1 ⊕ P ′

1 and P2 ⊕ P ′
2, for suitable P ′

i . We shall define the residual
division of A by � as

A/� = {A ∈ M(R)|A ⊕ P ∈ A for some P ∈ �}. (6)

It is easily seen that A/� is again a matrix ideal; M.1 is clear and M.2 follows
by (3): if A ⊕ X, B ⊕ Y ∈ A, then A ⊕ Z , B ⊕ Z ∈ A, where Z is conjugate
to X ⊕ X ′, Y ⊕ Y ′, for some X ′, Y ′, and hence (A ⊕ Z )∇(B ⊕ Z ) ∈ A. Now
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M.3 follows by (d), and in the same way we can verify M.4, to show that A/�

is a matrix ideal. This is still true if A is merely a matrix pre-ideal but all the
unit matrices lie in �.

We observe that A/� ⊇ A, by the definition (6). Suppose that A is a proper
matrix ideal and that A ∩ � = ∅; we claim that A/� is then proper. For if
not, then 1 ⊕ A ∈ A for some A ∈ � hence A ∈ A, which is a contradiction.
Conversely, when A ∩ � �= ∅, then A/� is improper, as we see by reversing
the argument. Summing up, we have

Proposition 7.3.1. Let R be a ring, A a matrix ideal and � a directed subset
of M(R). Then the set A/� defined by (6) is a matrix ideal; this is still true if A

is a matrix pre-ideal and � contains all unit matrices. Further, A/� is proper
if and only if A ∩ � = ∅. �

Taking � to consist only of unit matrices, we obtain by the same argument

Corollary 7.3.2. Let A be any matrix pre-ideal in a ring R and let I be the set
of all unit matrices over R. Then A/I is the least matrix ideal containing A. �

Let (Aλ) be any family of matrix ideals. Then it is clear that A = ∩ Aλ is again
a matrix ideal. We can therefore speak of the ‘least’ matrix ideal containing a
given subset X of M(R). This least matrix ideal is also called the matrix ideal
generated by X. Similarly we can define the matrix pre-ideal generated by X.
Explicitly this is obtained by taking the set of all matrices X ⊕ A(X ∈ X, A ∈
M(R)) and non-full matrices and taking its closure under determinantal sums.
For this set is contained in any matrix pre-ideal containing X, and it satisfies
M.1 and M.2; let us show that it also satisfies M.3. If the set contains C, then
(for suitable bracketing)

C = B1∇ . . . ∇ Br (Bi = X ⊕ A or non-full), (7)

hence for any P ∈ M(R), by (3),

C ⊕ P = (B1 ⊕ P)∇ . . . ∇(Br ⊕ P),

with the same bracketing.
Thus the matrix pre-ideal generated by a set X consists precisely of all

determinantal sums (7). Together with Corollary 3.2 this shows the truth of

Proposition 7.3.3. The matrix ideal generated by a set X is proper if and
only if the unit matrix (of any size) cannot be expressed as a determinantal
sum of non-full matrices and matrices of the form X ⊕ A, where X ∈ X and
A ∈ M(R). �
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Let z0 be the matrix pre-ideal generated by the empty set. Clearly this is
the least matrix pre-ideal and it consists precisely of all determinantal sums of
non-full matrices. By Proposition 3.3 we obtain

Corollary 7.3.4. A given ring has proper matrix ideals if and only if no unit
matrix can be written as a determinantal sum of non-full matrices. �

For example, any ring without UGN (and a fortiori any ring without IBN)
has no proper matrix ideals, because the unit matrix of a certain size is actually
non-full.

We now come to the definition of prime matrix ideals, which stand in the
same relation to matrix ideals as do prime ideals to ideals. It will be convenient
to begin by defining a multiplication of matrix ideals; this is an associative and
commutative operation, like the multiplication of ideals in a commutative ring.

Definition Given two matrix ideals A1, A2 in a ring R, their product, denoted
by A1A2, is defined as the matrix ideal generated by all matrices A1 ⊕ A2 with
Ai ∈ Ai (i = 1, 2).

The following lemma is often useful in constructing products. In writing a
quotient set A/�, if � = {1, A, 1 ⊕ A}, we shall simply write A/A.

Lemma 7.3.5. In any ring R, let Xi ⊆ M(R)(i = 1, 2), let X be the set of
matrices A1 ⊕ A2(Ai ∈ Xi ) and A1, A2, A, the matrix ideals generated by
X1, X2, X, respectively. Then A = A1A2. In particular, writing (A) for the matrix
ideal generated by A, we have (A)(B) = (A ⊕ B), for any A, B ∈ M(R).

Proof. Clearly X ⊆ A1A2; hence A ⊆ A1A2. To establish equality, let Ai ∈
Xi ; then A1 ⊕ A2 ∈ A by definition, hence X1 ⊆ A/A2 and so A1 ⊆ A/A2. It
follows that B1 ⊕ A2 ∈ A for all B1 ∈ A1, so fixing B1 we have X2 ⊆ A/B1,
hence A2 ⊆ A/B1 and so B1 ⊕ B2 ∈ A for all Bi ∈ Ai , and it follows that
A1A2 ⊆ A. �

From this lemma it easily follows that the multiplication of matrix ideals
is associative. We write A1A2A3, etc. for repeated products, and abbreviate
AA, AAA, . . . as A2

, A3
, . . . . From property (g) it follows that the multiplication

is commutative, and by M.3 the product is contained in the intersection of the
factors:

A1A2 = A2A1 ⊆ A1 ∩ A2.

A matrix ideal P is said to be prime if it is proper and

A ⊕ B ∈ P ⇒ A ∈ P or B ∈ P.
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An alternative description is given in

Proposition 7.3.6. For any proper matrix ideal P in a ring R the following
three conditions are equivalent:

(a) P is prime,
(b) for any matrix ideals A1, A2 we have A1A2 ⊆ P ⇒ A1 ⊆ P or A2 ⊆ P,
(c) for any matrix ideals Ai ⊇ P(i = 1, 2) we have A1A2 ⊆ P ⇒ A1 = P or

A2 = P.

Proof. (a) ⇒ (b). Let P be prime and A1A2 ⊆ P but Ai �⊆ P(i = 1, 2). Then
there exists Ai ∈ Ai but Ai /∈ P. Since P is prime, A1 ⊕ A2 /∈ P, but A1 ⊕ A2 ∈
A1A2 ⊆ P, a contradiction.

(b) ⇒ (c) is clear; to prove (c) ⇒ (a), suppose that A1 ⊕ A2 ∈ P. Consider
the matrix ideal Pi generated by P and Ai ; for any Bi ∈ P ∪ {Ai }, B1 ⊕ B2 ∈ P,
hence A1A2 ⊆ P (by Lemma 3.5). By hypothesis, A1 or A2 must equal P, so
A1 or A2 lies in P, i.e. (a). �

For any matrix ideal A we define its radical as the set
√

A = {A ∈ M(R)| ⊕rA ∈ A for some r ≥ 1}.
This set is again a matrix ideal: M.1, M.3 and M.4 clearly hold, and to prove
M.2, we note that (by (3) of 7.3), ⊕n(A∇ B) is a determinantal sum of terms
C1 ⊕ · · · ⊕ Cn , where each Ci is A or B. Hence if ⊕r A and ⊕s B lie in A, then
⊕r+s−1(A∇ B) ∈ A; therefore

√
A also satisfies M.2 and so is a matrix ideal.

More generally, if A is a matrix pre-ideal, then the radical of the corresponding
matrix ideal A/I is given by

√
(A/I){A ∈ M(R)| ⊕rA ⊕ Is ∈ A for some r, s ≥ 1}.

A matrix ideal A will be called semiprime if
√

A = A; e.g.
√

A is always
semiprime, in fact it is the least semiprime matrix ideal containing A, as is easily
verified (see Exercise 15).

The usual method of constructing prime ideals also works for prime matrix
ideals:

Theorem 7.3.7. Let R be any ring, � a non-empty subset of M(R) closed
under diagonal sums and A any matrix ideal such that A ∩ � = ∅. Then
there exists a matrix ideal P which is maximal subject to the conditions
P ⊇ A, P ∩ � = ∅, and any such matrix ideal is prime.

Proof. The collection C of all matrix ideals containing A and disjoint from
� is clearly inductive, so by Zorn’s lemma it has a maximal member P, and
this satisfies the conditions of the theorem. Any such P is proper, because
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� �= ∅; now let Ai ⊇ P(i = 1, 2) be matrix ideals such that A1A2 ⊆ P. If
Ai �= P for i = 1, 2, then Ai ⊃ P, so by the maximality of P, Ai ∩ � �= ∅.
Take Ai ∈ Ai ∩ �; then A1 ⊕ A2 ∈ P ∩ �, which is a contradiction. Hence A1

or A2 equals P, and so P is prime, by Proposition 3.6. �

This theorem shows for example that every maximal proper matrix ideal
is prime; we need only take � = I = {In|n = 0, 1, . . .}. Of course, one of its
main uses in the commutative case is the representation of semiprime ideals
as the intersection of prime ideals; a corresponding result holds in the general
case.

Theorem 7.3.8. If R is any ring and A a matrix ideal in R, then
√

A = ∩{P|P prime ⊇ A}. (8)

Thus
√

A is the intersection of all prime matrix ideals containing A.

Proof. If P is a prime matrix ideal and P ⊇ A, then
√

A ⊆ √
P = P, hence√

A ⊆ ∩P, where the intersection is taken over all prime matrix ideals contain-
ing A. To establish equality, let A /∈ √

A be given and consider the set �A of all
diagonal sums of copies of A. By definition, �A ∩ A = ∅, hence by Theorem
3.7 there is a maximal matrix ideal P0 containing A and disjoint from �A, and
P0 is prime. Thus A /∈ ∩P and this proves equality in (8). �

Taking A to be semiprime, we obtain

Corollary 7.3.9. In any ring a matrix ideal is semiprime if and only if it is an
intersection of prime ideals. �

Exercises 7.3

1. Give an example to show that property (f) need not hold for matrix pre-
ideals.

2. Let a be an ideal in a commutative ring R. Show that the set a∗ of matrices A such
that det A ∈ a is a matrix ideal. More generally, define X

∗ as the set (X)∗, where
(X) is the ideal generated by X ⊆ M(R). If A is a matrix ideal of R, show that
the set A

� of elements det A, A ∈ A, if closed under addition, is an ideal. Verify
that a∗� = a, A

�∗ ⊇ A, and that equality holds here if R is Euclidean. What is the
relation between A

� and the 1 × 1 matrices in A ?
3. Show that a ring with a proper matrix ideal has UGN.
4. Show that a field has precisely one proper matrix ideal.
5. A matrix is called degenerate if two rows are left (or two columns are right)

linearly dependent. Show that if A is non-full, then A ⊕ I (for suitable I) is a
determinantal sum of hollow and degenerate matrices.

6. Given any ring R, let A be a matrix ideal in R and X ⊆ M(R). Show that the set
A : X = {A ∈ M(R)|A ⊕ X ∈ A for all X ∈ X} is a matrix ideal, the quotient of
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A by X (not to be confused with A/X), and that it may be characterized as the
largest matrix ideal Q satisfying X ⊕ Q ∈ A for all X ∈ X, Q ∈ Q. If the matrix
ideal generated by X is denoted by (X), show that A : X = A : (X).

7. Show that if A, Al are matrix ideals and X ⊆ M(R), then A : X = ∩{A : {X}|X ∈
X}, (A1 : A2) : A3 = A1 : A2A3, (∩Aλ) : X = ∩(Aλ : X)

8. Let P be a minimal prime matrix ideal in a ring R. Show that for each A ∈ P there
exists a matrix C /∈ P and a positive integer r such that C ⊕r A is a determinantal
sum of non-full matrices.

9. A matrix ideal Q is said to be primary if it is proper and A ⊕ B ∈ Q, A /∈ Q implies
that ⊕r B ∈ Q for some r ≥ 1. Show that for any primary matrix ideal Q,

√
Q is

prime (in this case Q is also called
√

Q-primary). Give an example of a matrix
ideal Q such that

√
Q is prime but Q is not primary. Show that if Q is P-primary,

then for any X ⊆ M(R), Q : X is proper if and only if X �⊆ Q and when this is so,
it is P-primary.

10∗. Let A be a matrix ideal that has a primary decomposition, i.e. A = Q1 ∩ . . . ∩
Qr , where Qi is Pi -primary. Show that

√
A = P1 ∩ . . . ∩ Pr , and show that A

also has a primary decomposition in which the P1 are all different and no Qi
contains the intersection of all the others (such a primary decomposition is called
irredundant). Show that any two irredundant primary decompositions of A have
the same number of terms, and these can be numbered so that corresponding primes
are equal. If P1 . . . , Ps (for suitable numbering) are those of the Pi disjoint from a
given set X, show that the corresponding intersection Q1 ∩ . . . ∩ Qs is determined
entirely by A and X (independent of the particular decomposition), but this is not
necessarily true of each Qi . (Hint: For the last part localize at the complement of
P1 ∪ . . . ∪ Ps .)

11◦. Find conditions on a ring R under which every matrix ideal is a finite intersection
of primary matrix ideals (recall that in a commutative Noetherian ring every ideal
has a finite primary decomposition; see e.g. BA, Theorem 10.8.8).

12. Show that the union and intersection of any chain of prime matrix ideals are again
prime. Show that for any two prime matrix ideals A ⊂ B there exist prime matrix
ideals P1, P2 such that A ⊆ P1 ⊂ P2 ⊆ B, but there is no prime matrix ideal
between P1 and P2.

13. Find conditions on 2 × 2 matrices over a field for the determinantal sum of two
nilpotent matrices to be nilpotent.

14. If C = A∇ B, where the determinantal sum is with respect to a column, show that
PC = PA∇ PB, for any P of appropriate size, but that in general CP �= AP∇ BP .
However, show that CP = AP∇ B P when P is diagonal (or more generally, if the
determinantal sum is with respect to the first column and the first row of P after
the first element is zero).

15. Show that for any matrix ideal A in a ring R the following are equivalent: (a)
A is semiprime, (b) for any matrix ideal Q, Q

2 ⊆ A ⇒ Q ⊆ A and (c) for any
matrix ideal Q, Q ⊇ A ⊇ Q

2 ⇒ Q = A. Verify that for any matrix ideal A,
√

A is
semiprime and that

√√
A = √

A. Deduce that
√

A is the least semiprime matrix
ideal ⊇ A.

16◦. Investigate rings in which every matrix ideal is finitely generated (e.g. examine
the commutative case). Investigate rings in which every finitely generated matrix
ideal can be generated by a single matrix.
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17◦. Investigate the notion of a ‘sum’ or ‘join’ of matrix ideals; is the lattice of matrix
ideals modular? For what rings is the lattice of matrix ideals distributive?

18◦. Develop a theory of one-sided matrix ideals, admitting determinantal sums only
with respect to columns (or only rows), and find an application.

7.4 Constructing the localization

Given a ring R and a set � of matrices over R, we shall be interested in con-
structing the universal localization R� . The direct construction is of course
straightforward, as we saw in Section 7.2, but the main problem is to obtain
information about the kernel of the natural map λ : R → R� , in particular,
conditions for it to be injective. For this reason we shall take a somewhat less
direct route.

Since we are mainly concerned with the embedding of rings in fields, we
shall restrict the matrices to be inverted to be square. Thus � will be a sub-
set of M(R); we further assume that � is upper multiplicative and factor-
stable, by which is meant that if a product of square matrices PQ is in �, then
P, Q ∈ �.

We shall construct R� as the set of all displays a − (x, A, u), intended to
represent a − x A−1u, as defined in Section 7.1, modulo a certain equivalence.
Thus we consider the set B(�) of all displays

α =
(

A u
x a

)
, (1)

where a ∈ R, x, u are a row and column respectively over R and A ∈ �. The
expression a − x A−1u will be called its value. The special case where A, x, u
are absent just represents the element a of R; such a display is said to be scalar.
On each display we define the following elementary operations:

F.1. Replace u by u + A f and a by a + x f , where f is any column of appro-
priate size.

F.2. Replace A by AQ and x by x Q, where Q ∈ �.
F.3. Replace the display (1) by

⎛
⎝A 0 u

0 G 0
x p a

⎞
⎠ ,

where G ∈ � and p is a row over R.
The process F.3 will be called inserting a trivial block. The inverse of F.3,

removing a trivial block, also counts as an elementary operation; similarly for
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F.2 of course the inverse of F.1 is again of the same form. The application of F.1
yields a display with value a + x f − x A−1(u + A f ) = a − x A−1u; similarly
the result of F.2 is a − x Q(AQ)−1u = a − x A−1u, and from F.3 we have

a − (
x p

) (
A−1 0
0 G−1

) (
u
0

)
= a − x A−1u;

where the mapping λ is always understood; thus in each case the value is
unchanged.

In addition we have the operations F.1′–F.3′, where rows and columns are
interchanged, thus in F.1′ we add a left multiple of the row block containing A
to the last row, in F.2′ we multiply the first row block by a matrix from � on
the left and in F.3′ the trivial block has a zero row instead of a zero column.

Given two displays α, β, we shall write α ∼ β to mean that β is obtained
from α by a sequence of elementary operations. Clearly this relation is an
equivalence on B(�); the equivalence class containing α ∈ B(�) is written [α]
and the set of all such classes is denoted by M(�). We shall define two binary
operations on B(�), to represent addition and multiplication:

(
A u
x a

)
[+]

(
B v

y b

)
=

⎛
⎝A 0 u

0 B 0
x y a

⎞
⎠∇

⎛
⎝A 0 0

0 B v

x y b

⎞
⎠=

⎛
⎝A 0 u

0 B v

x y a + b

⎞
⎠ , (2)

(
A u
x a

)
⊗

(
B v

y b

)
=

⎛
⎝A 0 u

0 I 0
x 0 a

⎞
⎠

⎛
⎝I 0 0

0 B v

0 y b

⎞
⎠ =

⎛
⎝A uy ub

0 B v

x ay ab

⎞
⎠ . (3)

A small calculation (left to the reader) shows that (2) represents the sum and
(3) the product, of a − x A−1u and b − y B−1v. If we apply an elementary
operation to a display on the left-hand side of either of these equations, this
is equivalent to applying a corresponding operation of the same type to the
right-hand side, as is easily verified. This allows us to define these operations
on the equivalence classes, i.e. the elements of M(�). The class containing the
scalar display (0) is called the zero element of M(�) and is denoted by 0. A
condition for a display to represent zero is given by a form of Malcolmson’s
criterion:

Lemma 7.4.1. In any ring R, the display α given by (1) represents the zero
element of M(�) if and only if there exist F, G, P, Q ∈ �, rows f, p and columns
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g, q over R such that
⎛
⎜⎜⎝

A 0 0 u
0 F 0 0
0 0 G g
x f 0 a

⎞
⎟⎟⎠ =

(
P
p

) (
Q q

)
. (4)

Thus the display is non-full in this case.

Proof. We note that the matrix on the left of (4) can be factorized as

⎛
⎜⎜⎝

I 0 0 0
0 F 0 0
0 0 I 0
0 f 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A 0 0 u
0 I 0 0
0 0 I 0
x 0 0 a

⎞
⎟⎟⎠

⎛
⎜⎜⎝

I 0 0 0
0 I 0 0
0 0 G g
0 0 0 1

⎞
⎟⎟⎠ .

Suppose that α represents zero; then it can be reduced by elementary operations
to the form 0, a non-full display, so if the inverses of F.3, F.3′ are omitted, we
obtain a non-full display as in (4). Conversely, it is clear that the left-hand side
of (4) is equivalent to α given by (1), and for a display of the form (4), we apply
F.2, F.2′, F.1 and the inverse of F.3 to obtain

(
PQ Pq
pQ pq

)
→

(
P Pq
p pq

)
→

(
I q
p pq

)
→

(
I 0
p 0

)
→ (0) .

�

From the form of the definitions (2), (3) it is clear that both operations are
associative. The addition and multiplication formulae with a scalar display have
the forms(

A u
x a

)
[+](b) =

(
A u
x a + b

)
,

(
A u
x a

)
[×](b) =

(
A ub
x ab

)
;

it follows that 0 is the neutral element for addition and 1 is the neutral for
multiplication. Further, if we form the sum of a display and the same display
with the sign of the last column changed, we obtain

(
A u
x a

)
[+]

(
A −u
x −a

)
=

⎛
⎝A 0 u

0 A −u
x x 0

⎞
⎠ →

⎛
⎝A A 0

0 A −u
x x 0

⎞
⎠

→
⎛
⎝A 0 0

0 A −u
x 0 0

⎞
⎠ →

⎛
⎝A 0

0 I
x 0

⎞
⎠

⎛
⎝I 0 0

0 A −u

⎞
⎠ .
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This shows that each display has a negative and the classes form a group
under addition. To prove distributivity, in the form (α + β)γ = αγ + βγ ,
let

α =
(

A u
x a

)
, β =

(
B v

y b

)
, γ =

(
C w

z c

)
.

The display representing αγ + βγ is

⎛
⎝A uz uc

0 C w

x az ac

⎞
⎠ ⊕

⎛
⎝B vz vc

0 C w

y bz bw

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎝

A uz 0 0 uc
0 C 0 0 w

0 0 B vz vc
0 0 0 C w

x az y bz sc

⎞
⎟⎟⎟⎟⎟⎠

,

where s = a + b. On applying F.3, F.3′ and the inverse of F.3 in turn we obtain⎛
⎜⎜⎜⎜⎜⎝

A uz 0 0 uc
0 C 0 0 w

0 0 B vz vc
0 0 0 C w

x az y bz sc

⎞
⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎝

A uz 0 uz uc
0 C 0 C w

0 0 B vz vc
0 0 0 C w

x az y sz sc

⎞
⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎝

A uz 0 uz uc
0 C 0 0 0
0 0 B vz vc
0 0 0 C w

x az y sz sc

⎞
⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎝

A 0 uz uc
0 B vz vc
0 0 C w

x y sz sc

⎞
⎟⎟⎠ ,

and this represents (α + β)γ . The other distributive law follows similarly. Thus
we have shown that M(�) is a ring under the operations (2) and (3).

If we assume that our ring has UGN (to ensure that the unit matrices of all
orders are full), then M(�) �= 0; for the display consisting of a unit matrix,
representing 1, is full and so cannot satisfy an equation (4). Since the matrices
in � are to be inverted, we shall also assume these matrices to be full, to avoid
pathologies. Thus we have a mapping ϕ : M(�) → R� given by(

A u
x a

)
�→ a − x A−1u, (5)

which by our earlier remarks depends only on the equivalence class of the
display and from (2), (3) is easily verified to be a homomorphism. Further,

it is �-inverting, for if A ∈ �, then the display

(
A −eT

j

ei 0

)
represents the

(i, j)-entry of A−1, as we see from (5). Now the universality of R� shows that
ϕ has an inverse and so is an isomorphism.

We sum up the result as
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Theorem 7.4.2. Let R be a ring with unbounded generating number and � an
upper multiplicative factor-stable set of full matrices over R. Then the universal
localization R� is a non-zero ring. �

We can now achieve our aim of showing that each prime matrix ideal is the
singular kernel of a homomorphism to a field:

Theorem 7.4.3. Let R be any ring.

(i) If P is any prime matrix ideal of R, then the localization RP is a local ring

and the singular kernel of its residue class field is P.
(ii) If K is an epic R-field, with singular kernel P, then P is a prime matrix

ideal and the local ring RP has a residue-class field isomorphic to K.

Proof. (i) Since P is a prime matrix ideal, R has UGN; further, the complement
� of P in M(R) is multiplicative and we can form the localization R� = RP.

By Theorem 4.2 this is a non-zero ring.
To show that R� is a local ring, let A ∈ � and suppose that its (1, 1)-minor

is in P. Writing A = (A1, A′), we have

A − e11 = (A1, A′)∇(−e1, A′). (6)

The first matrix on the right is just A, while the second lies in P, because the
first column after the first entry is 0 and its (1, 1)-minor is in P. Hence the
left-hand side lies in �, and applying Proposition 2.6, we see that R� = RP
is a local ring, as claimed. Now the remaining assertion of (i) follows from the
construction of RP.

To prove (ii) let K be an epic R-field with singular kernel P. Its complement
is the set of all square matrices inverted over K, which is clearly multiplicative.
To verify M.1–M.4 for P, we take matrices in P and examine their images
in K. Any non-full matrix is singular, hence M.1 holds. Given two singular
matrices A, B whose determinantal sum C is defined, say A = (A1, A′), B =
(B1, A′), C = (A1 + B1, A′), where A1, B1 are columns and A′ is n × n − 1,
either the columns of A′ are right K-linearly dependent or A1, B1 are right
K-linear combinations of the columns of A′. In both cases it follows that C is
singular, and this proves M.2. Now M.3 is clear. For M.4 suppose that A ⊕ 1 is
a singular matrix over K; then A must be singular, and this proves M.4. Finally,
P is prime because its complement is clearly multiplicative. Thus P is a prime
matrix ideal and by (i), RP is a local ring; moreover any square matrix over R

lies in P if and only if its image in K is singular, and hence the residue-class
field is isomorphic to K. �
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Over an epic R-field K, any non-zero element has positive stable rank, hence
f = 0 if and only if its numerator, or also its display, is singular over K, or
equivalently, lies in the singular kernel. Thus we have

Corollary 7.4.4. Let R be any ring with an epic R-field K with singular kernel
P. Then an element of K is non-zero if and only if its numerator is not in P, or
equivalently, a display representing it is not in P. �

Theorem 4.3 tells us that for any ring R there is a natural bijection between
the (isomorphism classes of) epic R-fields and prime matrix ideals of R; more-
over, by Theorem 2.7, specialization of fields corresponds to inclusion of their
singular kernels. Thus the set X (R) of isomorphism classes of epic R-fields,
partially ordered by specialization, may also be thought of as the set of all prime
matrix ideals of R, partially ordered by inclusion. This way of looking at X (R)
also assures us that it may be regarded as a set.

Each square matrix A over R determines a subset of X (R), called its singu-
larity support:

D(A) = {x ∈ X (R)|A /∈ Px } , (7)

where Px is the prime matrix ideal corresponding to x. It is easily verified that

D(A ⊕ B) = D(A) ∩ D(B), D(I) = X (R).

Hence the collection of sets D(A) admits finite intersections, and so may be taken
as a base for the open sets of a topology on X (R). The topological space X (R)
so defined is called the field-spectrum of R. It is analogous to the usual prime
spectrum of a commutative ring, to which it reduces when R is taken to be com-
mutative. We shall not pursue this point of view but merely note that X (R) satis-
fies the conditions for a spectral space, which characterizes the prime spectrum
of a commutative ring (see Hochster [69], Cohn [72c], and Exercise 5 below).

We can also describe the behaviour of homomorphisms under localization.

Theorem 7.4.5. Let R, R′ be rings with prime matrix ideals P, P′, their com-
plements �, �′ and corresponding epic R-fields K , K ′ respectively and let
f : R → R′ be a homomorphism. Then

(i) f extends to a specialization if and only if f maps P into P′ and
(ii) f extends to a homomorphism K → K ′ if and only if f maps P to P′ and �

to �′.

Proof. (i) The set P′ f −1 = {A ∈ M(R)|A f ∈ P′} is a prime matrix ideal of
R and the condition P f ⊆ P′ of (i) is equivalent to P ⊆ P′ f −1, which is the
criterion for a specialization, by Theorem 2.7. This proves (i); for (ii) we have
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� f ⊆ �′, hence the denominators of elements of K remain invertible over K ′,
so we have a homomorphism, and again the condition is clearly necessary. �

Exercises 7.4

1. Give an example of a saturated set of matrices (see Exercise 2.12) whose comple-
ment is not a union of prime matrix ideals. (Hint: Consider the invertible matrices
in a general ring.)

2∗. (Gerasimov [79]) Let R be a ring, � ⊆ R and Z the least matrix ideal (generated by
the empty set). Show that the universal �-inverting map λ : R → R� is injective
if and only if Z/�̄ contains no 1 × 1 matrices other than 0, where �̄ denotes the
saturation of �.

3. A topological space is called irreducible if it is non-empty and cannot be written
as a union of two proper closed subsets. Show that for any ring R, a closed subset
of its field-spectrum X (R) is irreducible if and only if it is the closure of a single
point.

4. Show that the singularity support D(A) is compact, for any matrix A. (Hint:
Assume that D(A) = ∪D(Ai ) and denote by C the matrix ideal generated by the
Ai . Show that A ∈ √

C and deduce that A ∈ √
C0, where C0 is the matrix ideal

generated by a finite subfamily of the Ai ).
5∗. Let R be a ring and X = X (R) its field-spectrum. Verify that X satisfies Hochster’s

axioms for a spectral space (Hochster [69]):
(i) X is a T0-space, i.e. given x, y ∈ X, x �= y, there is an open subset containing

precisely one of x, y;
(ii) X is compact;

(iii) the compact open sets admit finite intersections and form a base for the open
sets, and

(iv) any irreducible closed subset is the closure of a single point.
6. Verify that the displays (2) and (3) represent the sum and product, respectively, as

stated in the text.
7. Show that a ring homomorphism f : R → S induces a continuous map f ∗ :

X (S) → X (R).
8◦. Describe the rings whose field-spectrum is a T1-space (i.e. every prime matrix

ideal is maximal).
9◦. Which rings have a Noetherian field-spectrum (i.e. ACC on prime matrix ideals)?

10◦. For a given ring (e.g. a semifir) find the localizations that are right Ore.
11∗. Given A ∈ M(R), define �A as the complement of ∪{P|P ∈ D(A)}, write R(A)

for the universal localization at �A and RA for the universal localization at A. Show
that there is a canonical homomorphism RA → R(A), which is an isomorphism
when R is commutative, but not in general. Show also that the canonical homomor-
phism φ : R → R(A) induces a homomorphism φ∗ : X (R(A)) → D(A). Given
A, B ∈ M(R), verify that D(A) ⊇ D(B) ⇒ �A ⊆ �B and hence obtain a homo-
morphism φAB : R(A) → R(B). Show that {R(A), φAB} is a presheaf of rings
over R (see e.g. Macdonald [68]). Verify that the corresponding sheaf R∗ has as
stalk over x ∈ X (R) the universal localization at Px (see Cohn [72c, 79]).
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12. Let R be a fir and P a prime matrix ideal of R. Show that Q = ∩nP
n is again prime.

Is Q always the least matrix ideal?
13◦. (W. Stephenson) If R is a commutative ring, the clopen (= closed and open) subsets

of X (R) correspond to idempotents (see Jacobson [89], p. 406). What corresponds
to a clopen subset of X (R) in the general case? Is there a commutative ring R such
that X (k〈X〉) ∼= X (R)?

14. Let R be a ring with UGN, but not weakly finite. Suppose further that the set � of
all full matrices is upper multiplicative and stable under products. Show that the
natural map R → R� is not an embedding.

15◦. Let R be any ring and P a prime matrix ideal, so that the localization RP is a local

ring (by Theorem 4.3). Find the conditions on P for RP to be a valuation ring (i.e.

R is the set of all elements of value ≥ 0 in a valuated field).

7.5 Fields of fractions

The results of the last section can be used to answer various questions about
the embeddability of rings in fields, or more generally, the existence of
R-fields.

Let R be a ring; clearly R-fields exist if and only if there exist epic R-fields, or
equivalently, by Theorem 4.3, prime matrix ideals. To find whether R has prime
matrix ideals we go back to the method of generating matrix ideals described
in Section 7.3. Let us again write Z0 for the set of all determinantal sums of
non-full matrices. Thus A ∈ Z0 precisely if A = C1∇ . . . ∇Cr , where each Ci

is non-full and the right-hand side is suitably bracketed. From the description in
Section 7.3 it is clear that Z0 is the least matrix pre-ideal of R. Let Z = Z0/I be
the matrix ideal generated by Z0 and put N = √

Z. We note that N has the two
properties (which actually characterize it): (i) for any matrix A, if ⊕m A ∈ N for
some m ≥ 1, then A ∈ N, (ii) if A ∈ N, then for some m, r ≥ 1, ⊕m A ⊕ Ir is a
determinantal sum of non-full matrices. It is thus the analogue of the nilradical,
and we shall call it the matrix nilradical. Clearly N is proper if and only if Z is
proper, and this will be the case precisely when the unit matrix (of any order)
cannot be written as a determinantal sum of non-full matrices. By Theorem 3.8,
N is the intersection of all prime matrix ideals in R, so N is proper if and only if
R has prime matrix ideals. By Theorem 4.3 this means that R has epic R-fields
if and only if N is proper. We therefore obtain the following criterion for the
existence of R-fields:

Theorem 7.5.1. Let R be any ring. Then there exists a homomorphism of
R into a field if and only if its matrix nilradical is proper; equivalently,
no unit matrix over R can be written as a determinantal sum of non-full
matrices. �
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This includes the well-known necessary condition: if a ring can be mapped
into a field, then the unit matrix (of any order) is full, i.e. R has UGN. If the
matrix nilradical of R is prime, it is the least prime matrix ideal of R, for any
prime matrix ideal P satisfies P ⊇ Z, hence P = √

P ⊇ √
Z = N. This makes it

clear that R has a least prime matrix ideal precisely when the matrix nilradical is
prime. By the correspondence of epic R-fields and prime matrix ideals described
in Section 7.4 we therefore have

Theorem 7.5.2. Let R be any ring. Then R has a universal R-field if and only
if the matrix nilradical of R is prime. �

Next we obtain a criterion for the invertibility of a matrix, which results from
the following more general formulation:

Theorem 7.5.3. Let R be a ring and P, Q any square matrices over R. Then
there is a homomorphism from R to a field mapping P to an invertible matrix
and Q to a singular matrix if and only if no diagonal sum I ⊕ (⊕r P) can be
written as a determinantal sum of non-full matrices and matrices Q ⊕ B, where
B ∈ M(R).

Proof. The condition for a homomorphism of the required sort to exist is that
there should be a prime matrix ideal containing Q but not P. Let (Q) denote the
matrix ideal generated by Q; there is a prime matrix ideal containing Q but not
P if and only if P /∈ √

(Q). So the required condition is that ⊕r P /∈ (Q), i.e.
there is no equation

I ⊕r P = C1∇ . . . ∇ Cs (Ci non-full or of the form Q ⊕ Bi ). (1)
�

In particular, taking Q = 0, we obtain

Corollary 7.5.4. For any square matrix P over a ring R there is an R-field
inverting P if and only if no diagonal sum I ⊕ (⊕r P) can be written as a
determinantal sum of non-full matrices. �

Secondly, take P = I; then we find

Corollary 7.5.5. For any square matrix Q over a ring R there is an R-field
over which Q becomes singular if and only if no unit matrix I can be written
as a determinantal sum of non-full matrices and matrices of the form Q ⊕ B,
where B is any square matrix. �

From these results it is easy to derive a criterion for the embeddability of a
ring in a field. We recall that an integral domain R is embeddable in a field if
and only if for each a ∈ R× there is an a-inverting homomorphism into a field
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(see Cohn [71b], SF, p. 13 or Exercise 7 below). By Corollary 5.4, this holds if
and only if there is no equation

I ⊕ aI = C1∇ . . . ∇ Ct (Ci non-full). (2)

In particular, aI cannot be expressed in this way. Conversely, if there is an
expression (2) with I of order r and aI of order s, we multiply both sides by
aIr ⊕ Is and observe that the determinantal sum is distributive with respect to
multiplication by diagonal matrices. Thus we obtain aI as a determinantal sum
of non-full matrices. This proves

Corollary 7.5.6. A ring R can be embedded in a field if and only if it is an
integral domain and no non-zero scalar matrix can be written as a determinantal
sum of non-full matrices. �

An alternative formulation is given in

Theorem 7.5.7. A ring R is embeddable in a field if and only if it is non-zero
and no diagonal matrix with all elements on the main diagonal non-zero can
be written as a determinantal sum of non-full matrices.

Proof. Clearly the conditions are necessary. Suppose they are satisfied and
a, b ∈ R× are such that ab = 0. Then(

a 0
0 b

)
=

(
a 0
1 b

)
∇

(
0 0
−1 b

)
=

(
a
1

)
(1 b)∇

(
0
1

)
(−1 b),

and here both matrices on the right are non-full. Thus the condition of Theorem
5.7 is sufficient to exclude zero-divisors, and by Corollary 5.6 it is sufficient for
embeddability in a field. �

It may be of interest to note that the conditions of Corollary 5.6, apart from
the absence of zero-divisors, are in the form of quasi-identities, as required by
general theory (see e.g. UA, p. 235 and Exercise 6 below).

We have already found a condition for the existence of a universal R-field:
it was that the matrix nilradical N should be prime (Theorem 5.2). Moreover,
there will be a universal field of fractions if and only if, further, N contains
no non-zero elements of R. But frequently we are interested in the special case
when there is a universal field of fractions in which every full matrix becomes
invertible. This is the maximal set that can be inverted, since no non-full matrix
can ever be inverted over a field.

We recall that a ring-homomorphism is called honest if it keeps all full
matrices full. In particular, a homomorphism to a field K is honest if and only
if it inverts all full matrices; this is possible only when the singular kernel of
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K consists precisely of the non-full matrices. The set of all full matrices over a
given ring R will be denoted by � = �(R), and an R-ring or a homomorphism
is called fully inverting if it is �-inverting. Any fully inverting homomorphism
f : R → S to a non-zero ring S must be injective, for every non-zero element
of R is full, as 1 × 1 matrix, and so maps to an invertible element of S. We shall
need to assume various conditions on the set of all full matrices; the next lemma
simplifies our task:

Lemma 7.5.8. Let R be any ring. If the set of all full matrices over R is lower
multiplicative, then the product of any two full matrices of the same order is
again full. The converse holds if every full matrix is stably full.

Proof. Let S, T be full matrices of the same order. Then we have the following
series of elementary transformations:(

S 0
I T

)
→

(
0 −ST
I T

)
→

(
0 −ST
I 0

)
→

(
ST 0
0 I

)
,

which shows that ST is full, as claimed. For the converse we note that the above
argument can be reversed when ST is stably full. �

We shall need a condition for a universal localization to be a field, rather
than just a local ring (Proposition 2.6). In fact we have two slightly different
situations with essentially the same proof.

A multiplicative set � of full matrices is said to be factor-inverting if for
any square matrices A, B such that AB ∈ �, A is invertible over R� . Clearly
every factor-stable multiplicative set of full matrices is factor-inverting (though
not conversely).

Proposition 7.5.9. Let R be a ring.

(i) If the set � of all full matrices over R is lower multiplicative and R� �= 0,

then R� is a field;
(ii) if � is a factor-inverting set of matrices over R and f : R → S is an hon-

est �-inverting homomorphism, so that f = λ f ′, where λ : R → R�, f ′ :
R� → S, then f ′ is injective.

Proof. In both cases we have to show that certain elements in a localization
are zero. In case (i) they are the non-units in R�, in case (ii) the elements of R�

in the kernel of f ′.
Let p be such an element of R�, R� respectively and let

Au = 0 (3)
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be an admissible system for p. In case (i), when p is a non-unit in R�, its
numerator (A0 A•) is not invertible over R� and hence is not full over R. In
case (ii), p f ′ = 0, hence the numerator (A0 A•) is not full over S, by Cramer’s
rule (since the right-hand factor in (9) of Proposition 1.5 has a zero row), and
because f is honest, (A0 A•) is not full over R.

Thus in both cases, (A0 A•) = P Q, where P ∈ n Rn−1, Q ∈ n−1 Rn and so

A = (A0 A• An) = (P Q An) = (P An)

(
Q 0
0 1

)
.

We claim that (P, An) is invertible over R�, R� respectively. For (P, An) is a
left factor of the denominator (A•, An) and in case (i) the latter is full over R,
hence so is (P, An) and so it is invertible over R�. In case (ii) the denominator
is in � and since � is factor-inverting, (P, An) becomes invertible over R� . We
can therefore in both cases cancel the left factor (P, An) in (3) and conclude
that p = 0. �

Let us take � = � in (ii) and note that � is necessarily factor-inverting.
This yields

Corollary 7.5.10. Let f : R → S be a fully inverting homomorphism of rings.
If either (i) S �= 0 and �(R) is multiplicative, or (ii) S has UGN, then f is injective
and R� is a field.

Proof. By combining (i) and (ii) of Proposition 5.9 we obtain (i); it remains
to prove (ii). By Proposition 5.9 (i), the set �′ of matrices inverted by f contains
�. If �′ �= �, a non-full matrix becomes invertible over S, so a unit matrix is
non-full and S cannot satisfy UGN. �

We shall use this result to derive a criterion for the universal localization R�

to be a field. The following lemma will be needed in the proof.

Lemma 7.5.11. (Magic Lemma) Let R be any ring and let A, B, C ∈ M(R)
such that B is non-full and C = A∇ B. Then A = ST, C = SU T , where S, T ∈
M(R) and U ∈ E(R). Hence C is full if and only if A is full whenever the full
matrices of any given order over R admit products, in particular, when the set
of all full matrices is lower multiplicative.

Proof. Suppose that in C = A∇ B, the determinantal sum is with respect to the
first column; by hypothesis, B is non-full, say B = PQ, where P is n × (n − 1)
and Q is (n − 1) × n. Write Q = (Q1, Q′), where Q1 is a column and Q′ is
square of order n − 1. Then

A = (A1 P Q′) = (A1 P)(1 ⊕ Q′). (4)
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Now C = (A1 + B1 P Q′) = (A1 + P Q1 P)(1 ⊕ Q′), hence

C = (A1 P)

(
1 0

Q1 I

) (
1 0
0 Q′

)
.

Thus we have A = ST, C = SU T , where S, T, U are square matrices over R
and U ∈ E(R).

If we assume that A is full, then S, T are full, hence so is SUT, by the
hypothesis and Lemma 5.8; this argument can be reversed to show that when
C is full, then so is A. �

This result allows us to give conditions for the universal localization to exist.

Theorem 7.5.12. Let R be a non-zero ring and � the set of all its full matrices.
Then there is an honest map to an epic R-field, which is necessarily the universal
localization R� if and only if � is lower multiplicative. In particular this holds
for every Sylvester domain.

Proof. The conclusion requires that the set of all non-full matrices should be
the unique least prime matrix ideal. This shows the condition to be necessary.
Conversely, when it is satisfied, then every unit matrix lies in �, so R has UGN;
further, the determinantal sum of any non-full matrices, when defined, is again
non-full, by Lemma 5.11 and it follows that the non-full matrices form a matrix
pre-ideal, Z say. In fact this is a matrix ideal, for if A ⊕ I ∈ Z, we know that
I /∈ Z by UGN, so A ∈ Z. The same argument (and the fact that 1 is full) shows
that Z is prime; clearly it is the least prime matrix ideal. Hence there is an honest
map to an epic R-field K, the residue-class field of R�. Now Corollary 5.10 (i)
shows that R�

∼= K . The last part follows by the law of nullity, which shows
� to be lower multiplicative. �

We observe that the condition given here generalizes the condition ‘no zero-
divisors’. To give an example of a ring with UGN where the condition fails, we
use the following construction due to Bergman. In the subring k[x2, x3] of k[x]
consider the matrices(

x2 x5

x3 x6

)
=

(
x2

x3

) (
1 x3) ,

(
x3 x5

x4 x6

)
=

(
x3

x4

) (
1 x2) . (5)

Both are non-full, but their determinantal sum with respect to the first column
is the matrix (

x2 + x3 x5

x3 + x4 x6

)
, (6)

which is easily seen to be full. However, the embedding of k[x2, x3] in k[x] is
not honest, since the matrix (6) is not full over k[x].

We remark that a non-zero ring is Hermite whenever the set of all full matrices
admits diagonal sums. By Proposition 0.4.4 this will follow if we show that the
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stable rank of any matrix exists and equals its inner rank. Let A be a matrix of
rank r; by Theorem 5.4.9 it has an r × r full submatrix, which by elementary
transformations may be taken to be in the top left-hand corner. Now the diagonal
sum A ⊕ 1 includes a full submatrix of order r + 1 and so has inner rank r + 1;
by induction the inner rank of A ⊕ Is is r + s, hence A has stable rank r as
claimed, and the result follows.

We now return to the situation of Theorem 5.12 and show that the class of
rings considered there can be characterized in different ways.

Theorem 7.5.13. For any non-zero ring R the following conditions are equiv-
alent:

(a) R is a Sylvester domain,
(b) the set of all full matrices over R is lower multiplicative,
(c) every full matrix over R is stably full and full matrices admit products,
(d) the set of all non-full matrices is a prime matrix ideal, the matrix nilradical,
(e) if � denotes the set of all full matrices, then R� is a field, necessarily the

universal field of fractions of R,
(f) R has an inner rank preserving homomorphism to the universal field of

fractions of R.

Proof. (a) ⇒ (b) In a Sylvester domain the set of all full matrices is lower
multiplicative, by the law of nullity. Now (b) ⇒ (c) follows by Lemma 5.8
and the above remark. (c) ⇒ (d): By Theorem 5.12 it will be enough to show
that the set of all full matrices is lower multiplicative. Given full matrices A, B
the matrices A ⊕ I, B ⊕ I are full because full matrices are stably full, so we
may take A, B to have the same order. By hypothesis AB is full, and so is
AB ⊕ I. By elementary transformations as in the proof of Lemma 5.8 we con-
clude that the set of full matrices is lower multiplicative. It follows as in the
proof of Theorem 5.12 that the set of all non-full matrices is a prime matrix
ideal. (d) ⇔ (e) follows from the proof of Theorem 5.2. (d, e) ⇒ (f): When
(d), (e) hold, then the homomorphism λ : R → R� is honest and R� is a
field, hence by Corollary 5.4.10, λ preserves the inner rank. By (d) the non-full
matrices form the least prime ideal, so R� is a universal field of fractions.
(f) ⇒ (a) follows because any field clearly satisfies Sylvester’s law of
nullity. �

This result tells us that Sylvester domains form the precise class of rings that
have a universal field of fractions over which every full matrix can be inverted.
In particular, since any semifir is a Sylvester domain, we have
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Corollary 7.5.14. Every semifir R has a universal field of fractions K, such
that every full matrix over R can be inverted over K. �

We note the following consequences of Theorem 5.13.

Corollary 7.5.15. Over any Sylvester domain the product of any two right
full matrices (if defined) is right full.

Proof. Since a matrix over R is right full if and only if it is right regular over
its universal field of fractions, the result follows. �

Any automorphism clearly preserves the set of full matrices; hence we obtain

Corollary 7.5.16. Any automorphism of a Sylvester domain extends to an
automorphism of the universal field of fractions. �

The same result can be proved for derivations:

Theorem 7.5.17. Any derivation of a Sylvester domain extends to a derivation
of its universal field of fractions.

Proof. Let R be a Sylvester domain with a derivation δ and let U be its universal
field of fractions. The derivation can be expressed as a homomorphism from R
to R2:

� : a �→
(

a aδ

0 a

)
; (7)

it induces a homomorphism �n : Rn → R2n such that every full matrix over R
maps to an invertible matrix over U. For if A is full over R, then it is invertible
over U and so(

A Aδ

0 A

)
has the inverse

(
A−1 −A−1 Aδ A−1

0 A−1

)
.

Hence � can be extended to a unique homomorphism from U to U2, again
denoted by �. Clearly this again has the form (7) and the (1, 2)-entry
is a derivation of U extending δ, unique because the extension of � was
unique. �

For pseudo-Sylvester domains we have the following analogue of Theorem
5.13. Let us call a homomorphism of rings stably honest if it keeps stably full
matrices stably full. Clearly every honest homomorphism is stably honest, but
the converse need not hold. It is easily verified that Proposition 5.9 (ii) remains
true if f is merely stably honest. For in Cramer’s rule for an element p �= 0,

(
A• −A0

) = (
A• A∞

) (
I u•
0 p

)
,
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the left-hand side is now stably full, hence so are the factors on the right and
it follows that p f ′ �= 0. We also note that the analogue for Theorem 5.12 for
stably honest maps, with the set �∗ of all stably full matrices instead of � holds,
with the same proof as before.

Theorem 7.5.18. For any ring R the following are equivalent:

(a) R is an S-ring.
(b) the set of all matrices that are not stably full is a prime matrix ideal,
(c) if �∗ is the set of all stably full matrices, then R�∗ is a field,
(d) R has a stable rank preserving homomorphism to a field K.

Moreover, the field K is a universal R-field; it is a field of fractions if and only
if R is weakly finite. Thus every pseudo-Sylvester domain has a universal field
of fractions.

Proof. (a) ⇒ (b) follows since the stably full matrices admit diagonal sums.
(b) ⇔ (c) follows from the analogue of Theorem 5.2. (b, c) ⇒ (d) follows by
the analogue of Corollary 5.4.10 and (d) ⇒ (a) follows since S-rings satisfy the
law of nullity for the stable rank.

Now K is a universal R-field because the matrices that are not stably full form
a prime matrix ideal, clearly the least such. If in addition R is weakly finite,
then the elements of stable rank 0 are 0, by Proposition 0.1.3, and conversely,
any subring of a field is weakly finite. �

We now return to the embedding of Theorem 4.5.3 to show that it extends
to the universal fields of fractions, i.e. it is honest:

Theorem 7.5.19. Let G, F be the free k-algebras of rank 2 and infinite rank
respectively. Then there is an honest embedding F → G.

Proof. As in the proof of Theorem 4.5.3 we take G = k〈x, y〉, F = k〈Z〉,
where Z = {z0, z1, . . .} and define the embedding by

β : zn �→ [. . . [y, x], . . . , x] with n factors x . (8)

We shall denote the universal fields of fractions of F, G by U, V respectively.
On G we have a derivation δ defined by xδ = 0, yδ = yx − xy. The restriction
of δ to F (via the embedding (8)) is the mapping defined by δ : zi �→ zi+1, and
the subalgebra of G generated by x and the image of F has the form F[x ; 1, δ].
Clearly β can be extended to a homomorphism mapping x to x, so the subalgebra
generated by x and z0 maps to the subalgebra generated by x, y, i.e. the whole
of G. Thus F[x ; 1, δ] ∼= G and we have an embedding

F[x ; 1, δ] → V . (9)
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Now δ extends to a derivation of U, again denoted by δ and we can form the
skew polynomial ring U [x ; 1, δ] with F[x ; 1, δ] as subalgebra. Any full matrix
over F becomes invertible over U and so remains full over F[x ; 1, δ]; thus
it maps to an invertible matrix over V and in this way we obtain an embed-
ding U [x ; 1, δ] → V . In particular we thus obtain the desired embedding of U
in V. �

The results of this section also allow us to give a short proof of a weak form
of the inertia theorem:

Theorem 7.5.20. Let D be a field, E a subfield and X a set. Then the inclusion
DE 〈X〉 → DE 〈〈X〉〉 is honest.

Proof. Suppose first that X is finite. Put R = DE 〈X〉, R′ = DE 〈〈X〉〉 and let
S = R[[t]] be the power series ring in a central indeterminate t. We have D-
linear homomorphisms R → R′ → S, where x �→ x �→ xt any x ∈ X . Any
matrix A = A(x) over R becomes A(xt) over S. If A is full it is invertible over
DE (〈X〉), hence A(xt) is invertible over the rational function field DE (〈X〉)(t)
and hence also over the formal Laurent series field DE (〈X〉)((t)). Hence it must
be full over S = DE 〈X〉[[t]] and a fortiori A is full over DE 〈〈X〉〉, as we had to
show. If X is infinite, the same proof still applies, since A can involve only a
finite part of X. �

Exercises 7.5

1. Let R be a ring with a fully inverting R-field K. Show that every honest endo-
morphism of R extends to a unique endomorphism of K. Show also that every
derivation of R extends to a unique derivation of K.

2. Let R = k〈x, y, z, t〉 and define an endomorphism α of R by the rules: x �→
xz, y �→ xt, z �→ yz, t �→ yt . Show that α is injective, but not honest.

3. Show that a ring R is embeddable in a direct product of fields if and only if no
non-zero scalar matrix can be written as a determinantal sum of non-full matrices.

4. Let R be an Ore domain with field of fractions K. Show that A ∈ Rn is invertible
over K if and only if Ac is full over R for all c ∈ R×.

5. Let R be a commutative ring. Show that for any A ∈ M(R), det A = 0 if and
only if A becomes singular over every R-field. Deduce that det A = 0 if and
only if ⊕r A, for some r ≥ 1, can be written as a determinantal sum of non-full
matrices.

6. A condition of the form A1 ∧ . . . ∧ Ar ⇒ A, where Ai , A are atomic formulae or
A is F, = false, is called a quasi-identity. The class of algebras defined by a set
of quasi-identities is called a quasi-variety; it may be characterized as a universal
class admitting direct products (see UA, p. 235). Verify that the following are
quasi-varieties: (i) the class of monoids embeddable in groups, (ii) the class T of
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subrings of strongly regular rings (i.e. rings such that for each c there exists x such
that c2x = c).

7. Show that any subring of a strongly regular ring that is an integral domain can be
embedded in a field. Verify that a direct product of fields is strongly regular and
deduce that a subring of a direct product of fields is embeddable in a field if and
only if it is an integral domain.

8. Show that any filtered ring with inverse weak algorithm has a universal field of
fractions. If U is the universal field of fractions of the free power series ring k〈〈X〉〉,
show that the subfield of U generated by k〈X〉 is the universal field of fractions
of the latter. (Hint: Use the inertia theorem 2.8.16.)

9. Let R = k〈x, y, z〉, denote its universal field of fractions by U and the subalgebra

generated by x, y, z and t = zx−1 y by S. Show that the matrix

(
x y
z t

)
is full

over S but not invertible over U.
10◦. Let R be a ring with a 2 × 2 matrix C satisfying Cn = 0 for some n ≥ 1. Show

that for any entry c of C2, and a suitable unit matrix I, cI is a determinantal sum
of non-full matrices. Find an explicit expression for cI when R is generated over
k by the entries of C with the relation C3 = 0.

11. Let R be a ring with a universal R-field U. If � ⊆ M(R) is such that R� admits
a homomorphism to a field, show that the map R → U factors through R� and
U is also the universal R�-field. Show also that a homomorphism f : R → S is
honest whenever fg, for some homomorphism g from S, is honest. Deduce that for
any Sylvester domain R and any set of matrices � for which there is an R�-field,
the map R → R� is honest.

12. Let F be the free group on a set X. Using Exercise 11, show that the natural
mapping k〈X〉 → k F is honest.

13. Let R be a semifir with centre k and with universal field of fractions U. If E is a
finite commutative extension field of k such that R ⊗k E is again a semifir, show
that U ⊗ E is a field and is the universal field of fractions of R ⊗ E .

14∗. (A. H. Schofield) Let R be any ring with an epic R-field K. Verify that K (t) is
an epic R[t]-field, and deduce that the embedding f : R → R[t] induces the
surjection f ∗ : X (R[t]) → X (R), where X (R) denotes the set of all epic R-fields
or equivalently, the set of all prime matrix ideals of R. Show that the inverse
image of K under f ∗ consists of the different K [t]-fields and deduce that if R has
a universal R-field U, then U (t) is a universal R[t]-field.

15◦. (Bergman and Dicks [78]). Let R be a ring with a universal field of fractions
U and let � be the set of all matrices inverted over U. Show that the natural
homomorphism R� → U is surjective, and find an example where it is not an
isomorphism.

16◦. Given n > 1, find a criterion for a ring to be embeddable in an n × n matrix ring
over a field (see Schofield [85], Theorem 7.4).

17◦. Let A be a square matrix over a free algebra. Verify that if A is invertible, the
matrix ideal generated by it is improper. Is the converse true?

18. (Cohn [71a]) Let D be a field with two subfields E, F that are isomorphic, via an
isomorphism f : E → F . Show, by taking the universal field of fractions of a
suitable HNN-construction (SF, p. 231, or also Exercise 21 of Section 2.5 above)
that D can be embedded in a field in which f is realized as an inner automorphism.
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(This process allows two elements transcendental over a central subfield k to be
made conjugate in an extension field. It can be shown to apply more generally to
square matrices; see Cohn [73a,77b], SF, Section 5.5).

19. Let G be a group whose group algebra kG is embeddable in a field K, and let F be
the free group on a set X. By considering K 〈X, X−1〉 show that the group algebra
of the direct product G × F can be embedded in a field.

20. Show that the determinantal sum of the matrices in (5) is non-full over k[x], but
full over k[x2, x3].

21. (Bergman [74b]). Let R be a k-algebra with 27 generators, arranged as three 3 × 3
matrices P, U, V with defining relations in matrix form: U V = V U = I, P2 =
P, U P = (I − P)U . Show that there are no R-fields and use Theorem 5.1 to
deduce that I can be written as a determinantal sum of non-full matrices. (Hint:
Observe that R can be realized by 2 × 2 matrices over a field, and deduce that R
has UGN. It follows from Theorem 2.11.2 that R is a 2-fir.)

22. Give an example to show that the set of all full matrices over k[x, y, z] is not
multiplicative.

23. Let R be a right Ore domain with field of fractions K. Show that a square matrix
A over R is invertible over K if and only if Ac is full over R for all c ∈ R×.

24◦. Let A be a full matrix over a semifir R. If c ∈ R and A is totally coprime to c (see
Section 6.2), is A still full (mod (c))?

25∗. Let R be a commutative ring. Show that for any A ∈ M(R), det A = 0 if and only
if A becomes singular in every R-field. Deduce that det A = 0 if and only if ⊕r A
for suitable r ≥ 1 can be written as a determinantal sum of non-full matrices.

7.6 Numerators and denominators

Given any ring R with an epic R-field K, our object here will be to compare
the different admissible systems for the same element or matrix over K. For
simplicity we shall only discuss elements of K; the only other case needed,
that of a square matrix, is then easily deduced. However, we shall allow the
admissible matrix A to have index other than 1, thus A will be r × (m + 1), say.
Then the system Au = 0 is said to have order m and we put o(A) = m; we shall
modify the definition given in Section 7.1 by calling the system admissible for p
if it has a unique normalized solution u (i.e. u0 = 1) and u∞ = p, even though
now m need not equal r. We shall see in Proposition 6.3 that in any case m ≤ r ;
thus an admissible matrix may have an index ≤ 1, while for index 1 we are in
the case considered in Section 7.1. As before, in an admissible matrix of order
m, the first m columns represent the numerator and the last m the denominator
of the system. If P is the singular kernel of the R-field K, we shall also call
A P-admissible, or K-admissible, but the reference to P or K is omitted when
there is no risk of confusion.

In order to compare different systems we shall describe some operations
which can be carried out on a system without changing its solution. Let A be
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an admissible matrix for p (over R); if u satisfies Au = 0, then it also satisfies
P Au = 0 for any matrix P for which the product is defined, and the two systems
are equivalent provided that P is right regular. On the other hand, the solutions
of Au = 0 and AQu = 0 are not generally the same, but we are only concerned
with the ratio of the first and last components of u, and this ratio is preserved
when Q is suitably restricted. Let us define a bordered matrix as a matrix Q∗,
not necessarily square, which agrees with the unit matrix in the first and last row.
We shall define the following two operations on an admissible matrix A for p.

λ. Replace A by PA such that PA is again admissible for p,
ρ. Replace A by AQ∗, where Q∗ is bordered, such that AQ∗ is again admis-

sible for p.

The inverse operations, cancelling a left or a bordered right factor from A so as
to obtain again an admissible matrix for p, are denoted by λ′, ρ ′, respectively,
and an operation is called trivial if the matrix P or Q∗ is invertible, and called
full if P or Q∗ is full. We shall say that A admits a certain operation if the result
of performing it on A is again admissible for the same element.

Just as matrices may be thought of as defining certain finitely presented mod-
ules, so admissible matrices, essentially matrices with distinguished first and
last column (and a rank condition) define left bipointed modules, i.e. modules
with a distinguished pair of elements. We shall need a notion of equivalence
for these matrices corresponding to stable association but preserving these two
columns.

Two matrices A, A′ are said to be biassociated (explicitly: associated as
maps of bipointed modules) if there exist invertible matrices U, V such that

AU = V A′, (1)

and U is bordered. The matrices A = (A0, A•, A∞), A′ = (A0
′, A•′, A∞′) are

stably biassociated if they satisfy a relation(
A 0
0 I

)
U = V

(
I 0
0 A′

)
, (2)

where U, V are invertible and U is bordered, with the unit rows corresponding
to the first and last columns of A. Over a weakly finite ring this condition can
again (as in Proposition 0.5.6) be restated in terms of comaximal relations.

Proposition 7.6.1. Let R be a weakly finite ring and let A, A′ be matrices
over R of the same index. Then A, A′ are stably biassociated if and only if there
is a comaximal relation

AB ′ = B A′, (3)

where B ′ is a bordered matrix.
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Proof. If A, A′ are stably biassociated, then by definition we have a relation
(2), where U, V are invertible, and this relation is balanced because i(A) = i(A′).
Moreover, U is obtained from a bordered matrix by certain row and column
permutations and (by formula (10) after Proposition 0.5.6) has the partitioned
form

U =
(

D′ −B ′

−C ′ A′

)
,

where −B ′ is bordered and D′ has first and last rows zero. If we partition V
correspondingly and call the (1, 2)-block B, then a comparison of (1, 2)-blocks
in (2) gives the comaximal relation (3) with bordered matrix −B ′. Conversely,
given a comaximal relation (3), then by Proposition 0.5.6 we obtain two mutu-
ally inverse matrices

V =
(

A B
C D

)
, V −1 =

(
D′ −B ′

−C ′ A′

)
. (4)

Since the first row of −B ′ is e1 = (1, 0, . . . , 0), we can subtract multiples of
the (r + 1)th column of V −1 from the first r columns so as to reduce the first
row of D′ to 0, and make the corresponding change in V. This will only affect
C and D, but not A or B, in V. Similarly, since the last row of −B ′ is em+1, we
can reduce the last row of D′ to zero (at the expense of further changes to C and
D). Since the relation V −1V = I has been preserved, we see that the first and
last rows of D are zero, while C is bordered. Now the argument of Proposition
0.5.6 shows that A and A′ are stably biassociated. �

From the proof we see that when A, A′ are stably biassociated, they occur
as blocks within pairs of inverse matrices, as in (4), with −B ′ bordered. If in
the expression (4) for V −1 we consider the cofactor of the (1, 1)-entry of B ′,
we again obtain a pair of mutually inverse matrices, but with the first column of
A, A′ omitted. This shows that the denominators of A, A′ are stably associated.
A similar argument, omitting the last row and column of B ′ in (4), shows that
the numerators of A, A′ are stably associated, as are the cores, and of course
here weak finiteness is not needed. Thus we obtain

Proposition 7.6.2. Over any ring R, if matrices A, A′ are stably biassociated,
then the denominators (obtained by omitting the first column), the numerators
(obtained by omitting the last column) and the cores (obtained by omitting the
first and last columns) are stably associated. �

Let us next record the conditions under which the operations λ, λ′, ρ, ρ ′

preserve admissibility. For simplicity we shall say that a matrix A ∈ m Rn is
‘left (right) regular over K’ to mean ‘its image in m K n is left (right) regular’.
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Proposition 7.6.3. Let R be a ring with epic R-field K, and let A ∈ r Rm+1.

(i) The matrix A is admissible over K if and only if (A•, Am) is right regular
over K but A is not; in particular this entails that r ≥ m.

(ii) Suppose that B = PA, where B ∈ sRm+1 and P ∈ s Rr . If A is admissible
for p ∈ K , then B is admissible for p if and only if P(A•, Am) is right
regular over K; this is so whenever P is right regular over K. If B is
admissible for p, then A is admissible for p if and only if A is not right
regular over K.

(iii) Suppose that B = AQ∗, where B ∈ r Rn+1 and Q∗ ∈ m+1 Rn+1 is bordered.
If A is admissible for p, then B is admissible for p if and only if Q∗ is right
regular over K but B is not; when this is so, m ≥ n. If B is admissible for p,
then A is admissible for p if and only if its denominator (A•, Am) is right
regular over K.

(iv) Let P be a matrix and Q∗ a bordered matrix over R, both right regular over
K. Then A is admissible ⇔ PA is admissible ⇔ AQ∗ is admissible.

Proof. We have already seen (i), and (ii) follows because A and PA are admis-
sible for the same element p (by uniqueness), if they are admissible at all, while
admissibility follows since the rank (over K) is non-increasing under multi-
plication. Similarly (iii) and (iv) follow because the product of right regular
matrices is right regular over K. �

We remark that when R is a Sylvester domain and K its universal field of
fractions, regularity over K can be replaced by fullness over R in this proposition.

We next examine conditions under which an admissible system can be sim-
plified by operations λ, λ′, ρ, ρ ′. For any matrix A over R and any R-field K the
rank of A over K will be called the K-rank of A, written ρK (A).

Lemma 7.6.4. Let R be a ring with epic R-field K, and let A ∈ rRm+1 be a
K-admissible matrix. Then the index of A is at most 1, i.e. o(A) = m ≤ r and
the following are equivalent:

(a) the index is exactly 1, i.e. o(A) = r ,
(b) A is left regular over K,
(c) the number of rows of A cannot be decreased by an operation λ.

Further, any K-admissible matrix can be transformed by an operation λ to a
K-admissible matrix which is left regular over K.

If R is a Sylvester domain and K its universal field of fractions, then (a)–(c)
are equivalent to:

(d) the number of rows of A cannot be decreased by an operation λ′,
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and moreover, any K-admissible matrix can be transformed by an operation λ′

to a K-admissible matrix that is left full, and every operation λ or λ′ admitted
by a left full matrix that does not increase the number of rows is full.

Proof. Since Au = 0 has the unique normalized solution u over K, the K-rank
of A is m, whence r ≥ m, with equality if and only if ρK (A) = r , i.e. A is left
regular over K; thus (a) ⇔ (b).

Next let us write

A′′ = EA, E ∈ m Rr , A′′ ∈ m Rm+1, (5)

where E consists of m rows of the r × r unit matrix, chosen so that the denom-
inator formed from A′′ is regular over K. Then A′′ is K-admissible; this shows
that (a) ⇔ (c), and that we can reach a matrix satisfying (a) by an operation λ.

When R is a Sylvester domain with universal field of fractions K, we note
that all full matrices become invertible over K and ρK is the inner rank. Since
ρ A = m, we can write A = P A′, where P is right full r × m and A′ is left full
m × (m + 1). Clearly A′ is not full, so by Proposition 6.3(ii), A′ is admissible;
moreover P is full precisely when r = m. This shows that (a) ⇔ (d) and it also
proves the last assertion. �

From now on we shall restrict attention to the case of a semifir R with
universal field of fractions U; by an admissible matrix we shall understand a
matrix that is U-admissible. As the homomorphism to U is fully inverting, this
will allow us to decide when an admissible matrix is left prime. We recall from
Section 3.1 that over a weakly finite ring any left prime admissible matrix is
left full and so has index 1. The next two lemmas hold for Sylvester domains
(except for the last sentence in each), but they will only be needed for semifirs.

Lemma 7.6.5. Let R be a semifir and let A ∈ r Rm+1 be an admissible matrix.
Then the following conditions are equivalent:

(a) A is left prime (hence the number of rows in A is o(A), i.e. r = m),
(b) every non-trivial operation λ′ admitted by A increases the number of rows.

Further, if R has left ACCr then any admissible matrix A ∈ r Rm+1 can be
transformed by an operation λ′ : A = PA′ to a left prime admissible matrix
A′ ∈ m Rm+1.

Proof. If (a) holds, A is left prime; then A is left full and no operation λ′ can
decrease the number of rows. Moreover, in any factorization of A,

A = P B, where P ∈ Rr , B ∈ r Rm+1, (6)
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P is a unit, so any non-trivial operation λ′ increases the number of rows, i.e.
(b) holds. Conversely, if (b) holds, then by Lemma 6.4, A is left full and in any
equation (6), P is a unit and hence A is left prime, i.e. (a) holds.

If A has left ACCr we can apply Proposition 5.9.1 to obtain an equation (6),
where B is left prime. �

To establish a corresponding result for the operations ρ, ρ ′, let us call an
admissible matrix A right ∗-prime if its core A• is right prime. By the core of
a bordered matrix we understand the submatrix obtained by omitting the first
and last rows and columns.

Lemma 7.6.6. Let R be a semifir and let A, A′ be admissible matrices. If A =
A′ Q∗, where Q∗ is bordered (and necessarily right full), then o(A) ≤ o(A′),
with equality if and only if Q∗ is full. For any admissible matrix A the following
are equivalent:

(a) A is right ∗-prime,
(b) every bordered square right factor of A is a unit,
(c) all full operations ρ ′ admitted by A are trivial.

Further, if R has right ACCm−1, then any admissible matrix A ∈ r Rm+1 can be
reduced by a full operation ρ ′ : A = A′ Q∗ to a matrix that is right ∗-prime.

Proof. If A, A′ are admissible, where

A = A′ Q∗, A ∈ rRm+1, A′ ∈ rRm ′+1, Q∗ ∈ m ′+1Rm+1, (7)

with a bordered matrix Q∗, then Q∗ is right full, by Proposition 6.3 (iii), hence
m ≤ m ′, with equality if and only if Q∗ is full.

Assume now that m ′ = m in (7); comparing cores in (7), we find that A• =
A′

• Q•, where Q• is the core of Q∗, and clearly Q∗ is a unit if and only if Q• is. It
follows that A• is right prime if and only if Q∗ is a unit in every factorization (7).
Thus (a) ⇔ (b), and (b) ⇔ (c) is clear because any full operation ρ ′ preserves
the order and so has a square matrix Q∗. Conversely, when Q∗ is square, ρ ′

preserves the order and so is full.
Finally, when R has right ACCm−1, we can by Proposition 5.9.1 write

A• = A′
• Q•, where A′

• ∈ rRm−1, Q• ∈ Rm−1,

where A′
• is right prime and Q• is full. Hence on writing A = A′ Q∗, where

A′ = (A0 A• A∞), Q∗ =
⎛
⎝1 0 0

0 Q• 0
0 0 1

⎞
⎠ ,

we find that Q∗ is full, whence A′ is admissible and right ∗-prime. �
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In the rest of this section our aim is to take a semifir R with universal field of
fractions U and describe the relation between the various admissible systems
for a given element of U. We begin with a basic result giving conditions under
which two admissible systems determine the same element of U. A matrix Q∗

is said to be strictly bordered if it has the form Q∗ = 1 ⊕ Q• ⊕ 1, and the
corresponding operation ρ is said to be strict. The equation

Q∗ =
⎛
⎝ 1 0 0

Q0 Q• Q∞
0 0 1

⎞
⎠ =

⎛
⎝ 1 0 0

Q0 I Q∞
0 0 1

⎞
⎠

⎛
⎝1 0 0

0 Q• 0
0 0 1

⎞
⎠

shows that every operation ρ consists of a trivial operation followed by a strict
operation.

Lemma 7.6.7. Let R be a semifir and U its universal field of fractions. Then
two admissible matrices A ∈ rRm+1 and B ∈ sRn+1 determine the same ele-
ment p ∈ U if and only if there exist matrices P, P ′, strictly bordered matrices
Q∗, Q′∗ and admissible matrices A′, B′ such that

A = P A′, B = B ′Q∗, (8)

P ′ A′ = B ′ Q′∗. (9)

Moreover, we can always take P to be right full, Q∗ to be full and A′ to be left
full.

Proof. Assume that (8), (9) hold; by (8), A and A′ determine the same element
p of U, and B, B′ determine the same element q. If A′u = 0, we apply (9);
Q′∗u has the form (1, v•, p)T, so if p �= q , then B ′Q′∗u �= 0 and we have a
contradiction. Thus p = q .

Conversely, assume that A and B determine the same element p. It follows
that (

A0 A• A∞ 0 A∞
B0 0 B∞ B• 0

)

is an admissible system for p − p = 0, so its numerator is not right full: its
matrix (

A0 A• A∞ 0
B0 0 B∞ B•

)

has inner rank k < m + n. Applying the partition lemma to a rank factoriza-
tion, we get(

A0 A• A∞ 0
B0 0 B∞ B•

)
=

(
P 0
P ′ B ′

•

) (
A′ 0

−Q′
• Q•

)
. (10)

Here the corner blocks of zeros on the right are r × n − 1 and m × n − 1.
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On equating blocks we find

A = (A0 A• A∞) = P A′, (11)

(B0 0 B∞) = P ′ A′ − B ′
• Q•, (12)

B• = B ′
• Q•. (13)

Here (11) is the first equation of (8) and (13) yields the second equation of (8),
if we set

B ′ = (
B0 B ′

• B∞
)
, Q∗ =

⎛
⎝1 0 0

0 Q• 0
0 0 1

⎞
⎠ .

Finally, we obtain (9) from (12) by taking Q′∗ to be the matrix Q′
• topped by

the first row and tailed by the last row of the unit matrix.
It remains to prove that P is right full, A′ is left full and Q∗ is full. This will

also show (by Proposition 6.3) that A′, B ′ are admissible.
We denote by t the number of columns of P, P ′ or, equivalently, the number

of rows of A′ (see (10)) and by t′ the number of columns of B ′
•, or equivalently,

the number of rows of Q′
•, Q•. Since (10) was a rank factorization, we have

t + t ′ = k < m + n. (14)

But t ≥ ρ P ≥ ρ A = m, by (11) and t ′ ≥ ρQ• ≥ ρB• = n − 1, by (13). A
comparison with (14) shows that t = ρ P = m and t ′ = ρQ• = n − 1. Hence
P is right full, A′ has index 1 and so is left full, by Lemma 6.4, and Q•, therefore
also Q∗, is full, as claimed. �

Note that although we proved P to be right full and Q∗ full, we have not
proved this for P′ and Q′∗. Hence the common value of the two sides of (9)
need not itself be an admissible matrix, and we have not obtained a chain of
operations λ, λ′, ρ, ρ ′ connecting A and B.

To study the case where Q′∗ = 1 ⊕ Q′
• ⊕ 1 may be non-full, we take a rank

factorization Q′
• = S•T• and write S∗ = 1 ⊕ S• ⊕ 1, T ∗ = 1 ⊕ T• ⊕ 1; then

Q′∗ = S∗T ∗, (15)

where S∗ is strictly bordered and right full and T ∗ is strictly bordered and left
full. By the first part of the above proof, A′u = 0; hence on combining this with
(9) and (15) we get

0 = P ′ A′u = B ′ Q′∗u = (B ′S∗)(T ∗u).

Since T ∗ is bordered, the vector T ∗u has first entry 1, therefore B ′S∗ is not
right full. But by Proposition 6.3(iii), B ′S∗ is admissible, because S∗ is right
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full. Thus B ′ �→ B ′S∗ is an operation ρ taking B′ to an admissible matrix, but
this does not lead to a ‘path’ from A to B unless T ∗ is full. However, we can
ensure that T ∗ is full by imposing a further condition on A and B.

An admissible matrix B is said to be m-blocked for m ≥ 1, if B cannot be
transformed by any full operation ρ ′, followed by any strict operation ρ, to an
admissible matrix of smaller order than m. If B is o(B)-blocked, it will be called
minimal admissible, or simply minimal.

Let B ′S∗ be of order h; if B is m-blocked, then since B �→ B ′ by a full
operation ρ ′ and B ′ �→ B ′S∗ by a strict operation ρ, it follows that

h = o(B ′S∗) ≥ m.

Now T ∗ is (h + 1) × (m + 1) and is left full, so h ≤ m, and hence h = m. It
follows that Q′∗ = S∗T ∗ is right full, and so P ′ A′ = B ′ Q′∗ is admissible, and
P ′ is right full. This proves

Corollary 7.6.8. In the situation of Lemma 6.7, if A is minimal admissible,
then the common value of the two sides of (9) is an admissible matrix. Hence
we can pass from A to B by a chain of four operations λ′, λ, ρ ′, ρ, in that order.
Here ρ is full, and if A is left full, then λ′ is full. �

In Lemma 6.7, if A is left prime, P must be a unit, and if B is right ∗-prime,
then Q∗ must be a unit. Let us call an admissible matrix A reduced if it is left
prime and right ∗-prime. Then we can state the result just proved as

Corollary 7.6.9. In the situation of Lemma 6.7, if A is left prime and B is
right ∗-prime, then there exist a matrix P and a bordered matrix Q∗ such that
P A = B Q∗. If, moreover, A, B are reduced, then they are stably biassociated.

Proof. All but the last part has been proved, and the last part follows because
under the given conditions the relation PA = BQ∗ is coprime, hence comaxi-
mal, by Proposition 3.1.4. �

We remark that if A is right ∗-prime, any full operation ρ ′ must be trivial;
hence a reduced matrix A that is not minimal admits a strict operation ρ : A �→
AQ∗ with a matrix Q∗ of negative index.

We now come to our main result, the comparison theorem for numerators
and denominators (although they are not mentioned explicitly).

Theorem 7.6.10. Let R be a semifir, U its universal field of fractions and
p ∈ U.

(i) We can pass between any two admissible matrices A, B for p by some
sequence of operations λ, λ′, ρ, ρ ′ (at most six in all).
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(ii) The minimal admissible matrices for p are just the admissible matrices of
least order for p, and we can pass from one minimal admissible matrix for
p to any other by four operations: λ′, λ, ρ ′, ρ, in that order, where ρ, ρ ′

are full.
(iii) If A and B are left full admissible matrices for p, then we can pass by a

full operation λ′ from A to an admissible matrix A′′ and by a full operation
ρ ′ from B to an admissible matrix B′′ such that A′′ and B′′ are stably
biassociated.

(iv) Any two reduced admissible matrices A, B for p are stably biassociated,
and if there exists a reduced admissible matrix for p, then there exists a
reduced minimal admissible matrix for p.

Proof. We begin with (ii); by Lemma 6.6 and an induction on the order we
see that every element has a minimal admissible matrix. If A, B are minimal
admissible for p, with o(A) ≤ o(B), say, then B is certainly o(A)-blocked, so
by Corollary 6.8, the two sides of (9) represent an admissible matrix and we
have a path from A to B by our four operations. By Lemma 6.7, P can be chosen
to be right full and Q∗ can be chosen to be full. Since B is minimal, Q′∗ must
be full. This proves the last part of (ii).

Since all minimal admissible matrices for p have the same order and since
from any admissible matrix A for p we can construct a minimal admissible
matrix by repeated operations ρ ′, ρ, λ′ that do not increase the order, it follows
that the common order of all minimal admissible matrices for p is the least order
of any admissible matrix for p; this proves the rest of (ii).

To prove (i) let B be any admissible matrix; we can always pass from B to
some minimal admissible matrix B′ by two operations. Now A will be o(B ′)-
blocked and we can pass from A to B′ by four operations ρ ′, ρ, λ′, λ. Hence,
we can pass between any two admissible matrices by a sequence of at most six
operations ρ ′, ρ, λ′, λ, ρ ′, ρ, so (i) holds.

Next let A, B be left full admissible matrices for p, as in (iii). By Lemma 6.7,
(8), we can transform A by a full operation λ′ to A′, and B by a full operation
ρ ′ to B′ such that

P ′ A′ = B ′ Q′∗, where Q′∗ is strictly bordered. (16)

Since B is left full and Q∗ in (8) is full, B′ is left full, hence the matrix
(P ′, B ′) is also left full. To show that (A′, Q′∗)T is right full, suppose that
(A′, Q′∗)Tx = 0 for some x ∈ mU . Since A′ is admissible for p, the vector x is
a right multiple of a vector u = (1, u•, p)T, so if x �= 0, its first entry cannot
vanish. But Q′∗x = 0, so by the bordered form of Q′∗, the first entry of x is 0.
This shows that x = 0, so (A′, Q′∗)T is right full. Further, A′ and B′, being left
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full admissible matrices, both have index 1, by Lemma 6.4, so by Proposition
3.1.3 we can cancel full left and right factors from the two sides of (16) so as
to obtain a comaximal relation.

It remains to show that these cancellations have the form of admissible
operations λ′ and ρ ′. The first of these conditions is immediate; to get the
second we note that any full right factor of Q′∗ can be taken to be bordered.
To achieve this we first conjugate Q′∗ by a permutation matrix to bring the first
two rows to the form (I2 0) and then apply the partition lemma to transform
the factorization to the form

Q′∗ =
(

s 0
S′ S′′

) (
t 0

T ′ T ′′

)
, (17)

where st = 1; we note that s is 2 × ν and t is ν × 2, for some ν ≥ 1. If Q′∗ is
(m + 2) × (m + 2), then the second factor has a ν × m block of zeros, and since
it must be full, we conclude by Proposition 3.1.2 that ν ≤ 2. Here equality must
hold because st = 1; hence s is a unit and we can by an inessential modification
reduce s, t to 1 in (17). Now we can cancel the bordered full right factor (and
undo the conjugation) and this corresponds to an operation ρ ′. The resulting
comaximal relation

P ′′ A′′ = B ′′ Q′′∗

shows that A′′ and B′′ are stably biassociated.
The first statement of (iv) now follows from (iii), by the definition of

‘reduced’. For the second assertion we apply the reduction in (iii) to a min-
imal admissible matrix A and a reduced matrix B. Of the resulting matrices A′′

and B′′, the first will again be minimal, because the operations applied to A were
full, while the second can be taken equal to B, because B admits no non-trivial
operations λ′ or ρ ′. Hence A′′, being stably biassociated to the reduced matrix
B, will be a minimal reduced admissible matrix for p. �

In Section 7.1 we defined the left depth of p as the least value of the order
of any admissible matrix for p. From Theorem 6.10 (ii) we see that it can
be obtained as the order of any minimal admissible matrix for p. We note
that whereas a minimal admissible matrix for a given p ∈ U always exists,
there may be no reduced matrix (in the absence of ACC). Moreover, a reduced

matrix for p need not be minimal, e.g. over k〈x, y〉 the matrix

(
x −1 0
0 1 y

)

is admissible for y−1x and is reduced, but not minimal. However, when there
is a reduced matrix, then there is also a minimal reduced matrix, by Theorem
6.10(iv).
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We remark that the analogues of these theorems hold when p is a matrix
over U. The simplest case is that of a square matrix, say ν × ν. This is most
easily handled by taking T to be a semifir with universal field of fractions V and
writing R = Tν, U = Vν . An m × n matrix over R is now an mν × nν matrix
over T; if its inner rank over T is r, then the rank of A over R may be defined
as r/ν. So the rank is now no longer an integer but a rational number with
denominator dividing ν. By a left full matrix we understand as before an m × n
matrix of rank m; clearly this will also be left full as matrix over T. Right full
and full matrices are defined correspondingly. The definitions of left and right
prime, maximal and reduced, and of the basic operations λ, ρ, λ′, ρ ′ are all as
before. An admissible system for p ∈ U can again be defined as a system with
right full denominator, of rank equal to the rank of the matrix. If this rank is m
and the numerator has rank s, then the rank of p over U is s − m + 1, a rational
number between 0 and 1.

With these conventions Theorem 6.10 and the lemmas leading up to it hold
as stated, but for matrix rings over semifirs. The proofs are similar to those
given here and will be left to the reader.

Exercises 7.6

1. Show that the conditions of Lemmas 6.4–6.6 are invariant under stable biassocia-
tion; interpret these conditions as conditions on the corresponding module with a
pair of distinguished elements.

2. If A is an admissible matrix for p, find an admissible matrix for p(1 + p)−1.
3. Show that all full (but no non-full) operations λ, λ′, ρ, ρ ′ preserve the conditions

of Lemma 6.4, all full operations ρ ′ but not all full operations ρ preserve the
conditions of Lemma 6.5, all full operations λ′ but not all full operations λ preserve
the conditions of Lemma 6.6.

4. Let A be an admissible matrix; if its core has an invertible ν × ν submatrix, show
that the order of A can be decreased by ν.

5. Let U be the universal field of fractions of the free algebra k〈x, y, z〉. Show that

A =
(

x −z 0
0 z y

)
is an admissible matrix for y−1zz−1x = y−1x . Verify that no

operation ρ will decrease the order of A, but that y−1x has left depth 1.
6. State and prove the matrix analogues of the results in this section.

7◦. Discuss the matrix equation Au = 0, where u in normalized form is not unique but
its last component is unique.

7.7 The depth

In the depth we have a numerical invariant for the elements of an epic R-field that
has no analogue in the commutative case; there we can write every element as
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ab−1 = b−1a and this has depth 1. By contrast we shall see that in the universal
field of fractions of a semifir the depth is generally unbounded. But first we
shall examine the case of elements of minimum depth. Given a ring R with
epic R-field K, if a matrix P ∈ mK n is given by an admissible system (in the
sense defined in Section 7.6) with null core (i.e. a core with 0 columns), then
the system has the form

(A B)

(
I

−P

)
= 0, A ∈ mRn, B ∈ Rm, (1)

where B is invertible over K, and hence

P = B−1 A, B invertible over K . (2)

Conversely, any matrix P of the form (2) is given by the admissible system (1).
Similarly, P has the form

P = AB−1, B invertible over K , (3)

precisely if it is given by a right admissible system (I − P)

(
A
B

)
= 0, or

equivalently (by the left–right dual of Proposition 1.5), by

(
0 A −I
−I B 0

) ⎛
⎝ I

B−1

P

⎞
⎠ = 0. (4)

We remark that the leftmost matrix in (4) has the right annihilator (B, I, A)T

in R, which is right regular over K. The general situation can be described as
follows.

Proposition 7.7.1. Let R be a ring and K an epic R-field. Given P ∈ mK n:

(i) P can be written in the form (2) if and only if it has a (left) admissible repre-
senting matrix A whose core is null (i.e. ν × 0 for some ν), or equivalently,
whose core is left annihilated by a matrix which is regular over K.

(ii) P can be written in the form (3) if and only if it has an admissible matrix
which is right annihilated by a matrix over R which is right regular over K.

Proof. (i) If P is given by (2), it has the admissible system (1) with null core,
and the latter is left annihilated by Im . Conversely, if A is an admissible matrix
for P, where C A• = 0 for a matrix C over R that is regular over K, then CA
is again admissible for P, by Proposition 6.3(iv), and its core is C A• = 0; if
this had a positive number of columns, the denominator of CA would not be
invertible over K, a contradiction; so CA and hence A itself, must have a null
core.



468 Skew fields of fractions

(ii) If P has the form (3), it has the admissible system (4) in which the
left factor is right-annihilated by (B, I, A)T, which is right regular over K.
Conversely, let P have the admissible matrix A that is right-annihilated by C,
right regular over K. By the uniqueness of the normalized solution U of (4) over
K, if C is a solution, then C − UC0 is a solution with top block zero, hence if
it were non-zero, we could add it to U, which would contradict the uniqueness
of the normalized solution. �

Let us restate the most important special case, where K is a fully inverting
field. For simplicity we shall limit ourselves to elements. In that case (2), (3)
just mean that the left depth dl(p), respectively the right depth dr (p) of p is 1.

Corollary 7.7.2. Let R be a ring with fully inverting field K. Given p ∈
K , dl(p) = 1 if and only if the core of one (and hence every) admissible matrix
for p is a zero-divisor in R, and dr (p) = 1 if and only if some (and hence every
reduced) admissible matrix for p is a zero-divisor in R.

Further, if R is a semifir, then it is left Bezout if and only if the left depth of
elements of K is bounded by 1, and correspondingly on the right.

Proof. The main result is clear from Proposition 7.1, while the last part follows
because a semifir is left Bezout if and only if it is left Ore, or equivalently, it
has a field of fractions in which every element has the form b−1a, in which case
that is its only field of fractions. �

Let R be a semifir and U its universal field of fractions. The various depths
of element of U satisfy certain inequalities, which were noted in Exercise 5 of
Section 7.1. To find when equality holds we can take admissible matrices A, B
for our elements p, q that are reduced minimal and ask whether the matrix

A.B =
(

B0 B• B∞ 0 0
0 0 A0 A• A∞

)
, (5)

which is admissible for pq, is reduced minimal. The following result, without
giving a complete answer, shows when this matrix is reduced.

Proposition 7.7.3. Let R be a semifir with a universal field of fractions U.
Given p, q ∈ U with admissible matrices A, B respectively, which are reduced,
if A.B is the matrix for pq given by (5), then

(i) A.B is left prime whenever the denominator of A and the numerator of B
have no non-unit similar left factors;

(ii) A.B is right ∗-prime whenever the numerator of A and the denominator of
B have no non-unit similar right factors.
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Proof. Let us write Np, Dp for the numerator and denominator, respectively,
of p, so that A = (Np, A∞) = (A0, Dp) and similarly for q. We have

A.B =
(

B0 B• B∞ 0 0
0 0 A0 A• A∞

)
=

(
Nq B∞ 0
0 A0 Dp

)
. (6)

To prove (i) we assume that Dp and Nq have no similar non-unit left factors and
that A.B is not left prime. We have a factorization that by the partition lemma
can be written (

Nq B∞ 0
0 A0 Dp

)
=

(
P ′ 0
P P ′′

) (
Q′ 0
Q∗ Q′′

)
, (7)

where the first factor on the right is square. Thus if A, B are of orders m, n,
respectively, then P′ is n × n, P ′′ and Q′′ are m × m, P is m × n, Q′ is n ×
(n + 1) and Q∗ is m × (n + 1). Thus B = P ′ Q′; since B is left prime, P ′ is a
unit and so may be taken to be I. It follows that Q′ = B. Further, we have

Dp = P ′′ Q′′, (0, A0) = P B + P ′′ Q∗. (8)

Write Q∗ = (Q, q), where Q is m × n and q is m × 1. The second equation (8)
shows that

A0 = PB∞ + P ′′q, PNq = −P ′′ Q. (9)

Now Nq and P ′′ are full and since A is left prime, the same is true of (P, P ′′),
hence by the second equation (9), P is similar to a left factor of Q and P ′′ is
similar to a left factor of Nq . But P ′′ is also a left factor of Dp, by (8), so it
must be a unit. Hence the first factor in (7) is a unit and this means that A.B is
left prime.

To prove (ii) we assume that Np and Dq have no similar non-unit right factor
and that A.B is not right ∗-prime. This means that the core of A.B has a non-unit
square right factor. Applying the partition lemma in two ways we obtain

(
B• B∞ 0
0 A0 A•

)
= n

m

(
P ′ 0
P P ′′

n m − 1

) (
Q′ 0
Q Q′′

n m − 1

)
n

m − 1

= n
m

(
S′ S
0 S′′

n − 1 m

) (
T ′ T
0 T ′′

n − 1 m

)
n − 1

m
, (10)

where the number of rows and columns is indicated. Now P ′′ Q′′ = A• and since
A is right ∗-prime, Q′′ must be a unit and so may be taken to be I. Similarly
B• = S′T ′ and it follows that T ′ is a unit and so may be taken to be I. Since
the two right factors in the products in (10) are associated, it follows that T ′′
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is similar to Q′, but P ′ Q′ = Dq , S′′T ′′ = Np; this means that Np and Dq have
similar factors, contradicting our assumption, so the result follows. �

Here the condition (on similar shared factors) cannot be omitted, as examples
show (see Exercise 8). The conclusion may be expressed symbolically by saying
that if D−1

p N q is in lowest terms, then A.B is left prime and if N p D−1
q is in

lowest terms, then A.B is right ∗-prime.
If R is a semifir and U its universal field of fractions, then for any matrix A

over R its rank over U, ρU A, equals ρ A, as we have seen in Section 7.5. Now
let K be any epic R-field; then the rank of A over K , ρK A, say, is the maximum
of the orders of square submatrices of A that are regular over K, i.e. which do
not lie in the singular kernel. Since this kernel is least for the universal field of
fractions, the rank is then greatest, so we have

ρK A ≤ ρU A.

This observation can be used to show that for fully atomic semifirs the depth
of an element cannot increase on specialization. We begin by proving a theorem
on ‘universal denominators’, which is of independent interest.

Theorem 7.7.4. Let R be a semifir and U its universal field of fractions. If an
element p of U can be defined by a reduced admissible matrix A over R and
there is a matrix for p which remains admissible over an epic R-field K, then A
is also K-admissible.

If, moreover, R is a fully atomic semifir, then every element of U can be
defined by a reduced admissible matrix.

Proof. Let p ∈ U and let A be a reduced admissible matrix over R defining p.
By hypothesis there is a U-admissible matrix B for p, of index 1, which is also
K-admissible. By Theorem 6.10(iii) we can pass by full operations λ′, ρ ′ from
A to A′′ and from B to B ′′ such that A′′ and B ′′ are stably biassociated. Since A
is left prime, λ′ is trivial and we may take A′′ = A; thus A is stably biassociated
to B ′′. Now B is K-admissible, so the system Bz = 0 has a unique normalized
solution and B = B ′′ Q∗, therefore B ′′y = 0 has a normalized solution y = Q∗z
in K. The denominator of B ′′ is invertible over K, because it is a left factor of
the denominator of B, which is known to be invertible over K. Thus B ′′ is
K-admissible, hence so is A.

If R is fully atomic, and p ∈ U is defined by an admissible matrix A, then A
can be transformed to a left prime matrix A′ by an operationλ′, using Proposition
5.9.1, and A′ can be transformed to a minimal reduced matrix by an operation
ρ ′, using the left–right dual of Proposition 5.9.1 and Theorem 6.10 (iv). �
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We can now prove the result on the behaviour of the depths over different
R-fields announced earlier.

Theorem 7.7.5. Let R be a fully atomic semifir, U its universal field of fractions
and K any epic R-field. Then for any element p of U in the minimal domain of
the specialization φ : U → K we have d(p) ≥ d(pφ), where d is any one of
the depths.

Proof. Consider the left depth, say; p may be defined by a minimal reduced
admissible m × (m + 1) matrix A, which by Theorem 7.4 is still admissible
for pφ over K. Now d(p) = m by definition, and since A is K-admissible,
d(pφ) ≤ m, as claimed. �

For more general rings the depth may increase on specialization, as Exercise
2 shows.

We now turn to compute some examples of depths. We recall from Exercise
1.5 the following inequalities for the left depth, where f : R → S is a �-
inverting homomorphism, a ∈ im f and p, q ∈ R�(s):

d(p − q), d(pq) ≤ (p) + d(q), d(pa) ≤ d(p) ≤ d(ap) ≤ d(p) + 1. (11)

The examples will show in particular that some of these inequalities are sharp
and in the free algebra and the free power series ring (on more than one free
generator) the depth assumes every positive integer value.

Let R be a semifir and U its universal field of fractions. First consider an
element of the form

p = b−1
n anb−1

n−1an−1 . . . b−1
1 a1, (12)

where no ai or bi is 0 or a unit. An admissible matrix for b−1 a is (a, −b), hence
by (5) of 7.1,

A =

⎛
⎜⎜⎝

a1 −b1 0 0 . . .

0 a2 −b2 0 . . .

. . . . . . . . .

0 0 0 0 . . . an −bn

⎞
⎟⎟⎠ (13)

is an admissible matrix for p. We shall need a condition for A to be left prime;
let us recall that two elements a, b of a ring are totally coprime if no non-unit
factor of a is similar to a factor of b.

Lemma 7.7.6. Let R be a semifir and ai , bi ∈ R(i = 1, . . . , n) not zero or
units. Then the matrix A in (13) is left prime provided that each ai is totally
coprime to each b j .
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Proof. Any n × n left factor P of A must also be a left factor of the numerator
and denominator of A, namely the square matrices

A1 =

⎛
⎜⎜⎝

a1 −b1

a2 −b2

· · ·
an

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝

−b1

a2 −b2

· · ·
an −bn

⎞
⎟⎟⎠ ,

obtained by omitting the last and first column, respectively, from A. Now A1

has a1, . . . , an down the main diagonal and 0 below it, hence by unique fac-
torization over R (Theorem 3.2.7) and Proposition 3.2.8, P must be a prod-
uct of factors similar to factors of a1 . . . an and therefore totally coprime to
b1 . . . bn . But A2 has (apart from sign) b1, . . . , bn down the main diagonal and
0 above it, so P is also a product of factors similar to factors of b1 . . . bn .
This is possible only when P is a unit, hence A is indeed left prime, as
claimed. �

We can now give sufficient conditions for the element (12) to have left depth
n:

Theorem 7.7.7. Let R be a semifir and U its universal field of fractions.
Consider the element p of U given by (12), where the ai , bi are in R and are
neither 0 nor units. If each ai is totally coprime to each b j and there exists a
proper ideal c of R containing all the ai , bi such that R/c is weakly finite, then
the left depth of p, as element of U, is n.

Proof. We know that the matrix A in (13) is admissible for p; if we can show
it to be minimal reduced, then it will follow that d1(p) = n. By Lemma 7.6,
A is left prime; its core A• is of the same form as A but transposed, and the
same argument shows A• to be right prime, thus A is right ∗-prime, and hence
reduced. By Lemma 3.3.11, A is not stably associated to a matrix of smaller
order, hence A is minimal and the result follows. �

To give an example, in the free algebra R = k〈x, y〉, x and y are dissimilar
atoms, and if c is the ideal generated by x, y, then R/c ∼= k, hence (y−1x)n has
depth n. The same holds in the free power series ring k〈〈x, y〉〉. As an example
not covered by Theorem 7.7, consider in k〈〈x, y, z〉〉 the element y−1zx−1 yz−1x .
This is determined by the admissible matrix⎛

⎝x −z 0 0
0 y −x 0
0 0 z −y

⎞
⎠ . (14)
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It can be shown by a direct argument that its depth is 3 (see Exercise 5).

As a second type of element consider

q = a−1
1 + a−1

2 + · · · + a−1
n , where ai ∈ R×. (15)

An admissible matrix for q is given by the n × (n + 1) matrix

B =

⎛
⎜⎜⎜⎜⎜⎝

1 −a1 −a1 · · · · · · −a1

1 a2 0 · · · · · · 0
1 0 a3 0 · · · 0

· · · · · · · · ·
1 0 0 · · · · · · an 0

⎞
⎟⎟⎟⎟⎟⎠

. (16)

By subtracting the last column from the others after the first, we see that B
is left prime, provided that any two of the a’s are totally coprime. Under this
condition it also follows that B is right ∗-prime, and if B is stably biassociated
to an m × (m + 1) matrix, then m ≥ n, provided that there exists a proper ideal
c containing all the ai such that R/c is weakly finite. Hence we obtain

Proposition 7.7.8. Let R be a semifir with universal field of fractions U. Given
a1, . . . , an ∈ R, each ai not 0 or a unit and such that any two are totally coprime
and if further, there exists a proper ideal c containing all the ai such that R/c

is weakly finite, then the element (15) has depth n. �

Exercises 7.7

1. In the universal field of fractions of k〈x, y, z〉 compute the left, right, upper and
lower depths of xy−1, y−1z, and xy−1z.

2. (G. M. Bergman) Let R be the k-algebra generated by x, y, z, w with defining
relation wx = yz and denote by U, V the universal fields of fractions of the
free algebras k〈x, y, z〉, k〈x, z〉, respectively. Verify that there is a homomor-
phism R → U with x, y, z, w �→ x, y, z, yzx−1 and a homomorphism R → V
with x, y, z, w �→ x, 0, z, 0. Show that U, V are epic R-fields with a specialization
U → V defined by x, y, z �→ x, 0, z. Show also that xz−1 has left depth 1 in U but
that its left depth in V is 2.

3. Let R be a semifir with universal field of fractions U. Given p ∈ U , let A, B be
two admissible matrices for p. By applying Theorem 6.10(iii), find an admissible
matrix C for p that is K-admissible, for any epic R-field K, whenever either A or B
is.

4. Obtain analogues of Lemma 7.6 and Theorem 7.7 when R is a full matrix ring over
a semifir.

5. Prove that the matrix (14) is reduced, by showing that it has no left factor similar to
x, y or z. (Hint: If the matrix is A, consider a comaximal relation u A = x A′, where
u ∈ R3 and use the fact that the eigenring of x is k.) Apply Lemma 3.3.11 to show
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that the matrix is not stably biassociated to a matrix of lower order and hence show
that dl (y−1zx−1 yz−1x) = 3.

6. Use the method of Exercise 5 to show that the left depth of xy−1x + x2 y−2x2 +
· · · + xn y−n xn in k〈〈x, y〉〉 is n + 1 (see Cohn [85a]).

7. Find the depth of xy−1x + x2 y−2x + · · · + xn y−n x and of xy−1x + x2 y−1x2 +
· · · + xn y−1xn in k〈x, y〉.

8∗. In a semifir R let a, b be non-zero non-units without a common left factor and
let c, d, e, a′, c′ ∈ R be such as to satisfy a comaximal relation c′a = a′c. Put
A = (a′d − c′b, −a′e), B = (a, −b) and suppose that d, e are such that A is left
prime. Show that A, B are both minimal reduced but that A.B is not left prime. Find
the similar factors of the denominator of A and the numerator of B.

9◦. Find a non-Ore domain R admitting a field of fractions in which every element can
be written as ba−1c for some a, b, c ∈ R. (For an example of a field construction
with an upper depth bounded by 2, see Bergman [83]).

7.8 Free fields and the specialization lemma

Let D be a field with a central subfield k and X a non-empty set. As we have seen
in Section 2.4, the tensor D-ring R = Dk〈X〉 is a fir and so, by Corollary 5.14, it
has a universal field of fractions, which we shall call the free D-field on X over k
and denote by Dk(〈X〉), or U in what follows. For each element u of U we have
the representation u = d − bA−1c introduced in Section 7.1 with the display(

A c
b d

)
. (1)

By Proposition 0.1.3, any non-zero element has positive stable rank, and as
we saw in Section 7.1, u is stably associated to the display (1), hence u = 0 if
and only if a display representing it is singular over U, or equivalently, non-full
over R. This holds more generally for every Sylvester domain, and it yields
another formulation of Malcolmson’s criterion (Lemma 4.1):

Proposition 7.8.1. Let R be a Sylvester domain and u ∈ U, its universal
field of fractions. Then u �= 0 if and only if any display representing it is full
over R. �

Although we are calling Dk(〈X〉) the ‘free’ field, we have not examined
whether it has a generating set that is ‘free’ in the usual sense; in other words,
given a rational relation in Dk(〈X〉), it is not clear whether it can be trivialized,
using only the algebraic operations and the fact that f −1 is the inverse of f for
every f �= 0. To answer this question, our first task is to formulate it precisely;
this is best put in a more general context. Let R be a ring with a universal field of
fractions U, with the natural embedding φ : R → U . Starting from R we define
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recursively pairs (R(n), f (n)), where R(n) is a ring and f (n) : R(n) → U a
homomorphism, as follows: we put (R(0), f (0)) = (R, φ), and if (R(n), f (n))
has been defined, where f (n) : R(n) → U is the given homomorphism and
ϕn : R(n − 1) → R(n) is a homomorphism such that f (n − 1) = ϕn f (n), then
R(n + 1) is obtained by adjoining to R(n) formal inverses of those elements
that do not lie in ker f (n), and ϕn+1 : R(n) → R(n + 1) is the natural map,
while f (n + 1) is the extension of f (n) to R(n + 1). The direct limit of the
(R(n), f (n)) will be written (R(∞), f (∞)) or (R(∞), f ). Here f = f (∞) is
a homomorphism of R(∞) into U, where every element of R(∞) not in ker f
is a unit and it follows that R(∞) is a local ring. The non-zero elements of ker
f may be regarded as the ‘non-trivial’ relations holding in the universal field of
fractions, and our aim is to show that there are no such relations.

Theorem 7.8.2. Let R be a Sylvester domain with a universal field of fractions
U and let (R(∞), f ) be defined as above. Then the canonical homomorphism
f : R(∞) → U is an isomorphism.

Proof. The definition of f shows it to be surjective, so to prove that it is an
isomorphism we must verify that for any rational expression u in R(∞), u f = 0
implies u = 0. For any u ∈ R(∞) we have a representation u = bA−1c and by
Proposition 8.1, u f = 0 if and only if the matrix(

A −c
b 0

)
(2)

is non-full. When this is so, u has stable rank 0 and so u = 0, by Proposi-
tion 0.1.3. �

This result shows in particular that the universal field of fractions of the
free algebra is really a ‘free field’ and it answers a question of Bergman [70a],
who asks whether each rational identity f = 0 in the free field is an algebraic
consequence of the fact that g−1 is the inverse of g, for each non-zero g of
the free field. This fact cannot be proved by using only the elements actually
inverted in f ; for we have the rational identity y(xy)−1x = 1 holding in any
field, but not in a ring with elements x, y such that xy = 1 but yx �= 1.

However, this and the corresponding matrix expression is the only exception,
as we shall now show. In U consider an expression f (x1, . . . , xr ) formed from
the variables x1, . . . , xr over the ground field by the four operations +, −, ×,−1.
When we substitute the values of R for x1, . . . , xr , the result may be undefined,
e.g. in a field, if (g − g)−1 occurs; if the result is either undefined or zero, f is
called an absolute rational identity. Of course every non-zero expression will
have an inverse when we have a universal field of fractions U at our disposal. If
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we represent f as a component of the normalized solution of a matrix equation
Au = 0, then to say that f is an absolute rational identity just means that either
the numerator or the denominator of A is not full. By a rational identity we
mean a rational expression that for any values of the variables in the ring is
either undefined or zero.

Theorem 7.8.3. Let D be a field that is a k-algebra and let R be a D-ring that
is a k-algebra. Then every absolute rational identity is a rational identity for R
if and only if R is weakly finite.

Proof. Suppose that R is weakly finite. Let f be an absolute rational identity
with the admissible matrix A = A(x). Since A(x) has a non-full numerator or
a non-full denominator, the same is true of A(a), where a = (ai ), for any map
xi �→ ai from Dk〈x1, . . . , xr 〉 to R. If the denominator of A(a) is not full, f (a)
is undefined, so assume that the denominator of A(a) is full, but its numerator
is not. In that case, by Cramer’s rule, f (a) ⊕ I is not full:

(
f (a) 0
0 I

)
=

(
p
P

)
(q Q),

where p is a row, q a column and P, Q are square. Hence P Q = I, pQ = 0 =
Pq, pq = f (a). Since R is weakly finite, Q P = I, so p = 0 = q and f (a) = 0,
as we wished to show.

Conversely, if R is not weakly finite, then there are square matrices P, Q
over R such that P Q = I, Q P �= I. Let P, Q be n × n, say; writing S, T for
n × n matrices with indeterminate entries, consider the matrix equation

T (ST )−1S − I = 0.

Written out in full, the left-hand side consists of n2 expressions in the entries of
S, T and (ST )−1; thus they are rational expressions that are defined and equal
to 0 in the free field Dk(〈X〉), and so are absolute rational identities, but not all
of them hold when we put S = P, T = Q, though all are defined. �

We shall now digress to give another proof of the existence of a fully inverting
field for a free algebra that is independent of the theory developed in this chapter
but makes use of the specialization lemma, a result of independent interest.
For the proof we shall need (i) a slight extension of Amitsur’s theorem on
generalized polynomial identities, (ii) the inertia theorem (Theorem 2.9.16)
and (iii) some auxiliary results to be described below, as well as a result on
polynomial rings (Lemma 1.4.9). The existence proof of U will also make use
of the ultraproduct theorem (Appendix C).
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We begin by stating the special case of Amitsur’s theorem needed here.
Let A be a k-algebra; we recall that an element of the free algebra A〈X〉 that
vanishes for all values of X in A is called a polynomial identity. By a generalized
polynomial identity (GPI) of A one understands a non-zero element p of the free
A-ring Ak〈X〉 that vanishes under all maps X → A. Thus the indeterminates
commute with the elements of k but not with those of A. Amitsur [65] proved
that a primitive k-algebra A satisfies a GPI if and only if it is a dense ring of
linear transformations of a (possibly infinite-dimensional) vector space over
a skew field of finite dimension over its centre, and A contains a non-zero
transformation of finite rank. We shall only need the case where A itself is a
skew field; in this case the existence of a non-zero transformation of finite rank
means that the vector space itself must be finite-dimensional and Amitsur’s
theorem takes the following form (see FA, theorem 7.8.4):

Theorem 7.8A A skew field satisfies a generalized polynomial identity if and
only if it is of finite dimension over its centre.

We shall want a generalization of this result in which the ground field, K
say, need not be central or even commutative, and the types of identities we
consider will be statements that an element p of AK 〈X〉 vanishes only for values
of the indeterminates in X ranging over the centralizer of K in A. The proof
we shall give is similar to that of Theorem 8.A; we shall follow Martindale’s
proof in Herstein [76], with simplifications due to Bergman. We shall denote
the centralizer of a subfield K of a field D by K ′. Clearly K ′ is again a subfield
and K ′′ ⊇ K ; if equality holds here, K is said to be bicentral in D. Given a field
D with a subfield K, we shall call an element f ∈ DK 〈X〉 left K-finite if the
values obtained by replacing the indeterminates in f by elements of K ′ all lie in
a finite-dimensional left K-subspace of D. If this holds when the indeterminates
take values in a subfield L of K ′, f will be called left (L, K)-finite. Thus ‘K-
finite’ is short for ‘(K ′, K )-finite’. Our aim will be to prove that certain classes
of skew fields satisfy no polynomial identities, but one difficulty is that when
polynomial identities do occur, the least degree of such an identity may be
quite large, which means that inductive arguments cannot be used. However, if
instead of demanding that a polynomial of degree greater than 1 be identically
zero, we require its values to lie in a finite-dimensional K-subspace, i.e. to be
K-finite, then there is another such polynomial of smaller degree. Specifically
we have

Theorem 7.8.4. Let D be a field with a bicentral subfield K and X an infinite
set such that some element f of DK 〈X〉 of positive degree is left K-finite. If
x ∈ X, then cx ∈ DK 〈X〉 is left K-finite for some c ∈ D×.
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Proof. Suppose that cx ∈ DK 〈X〉 is not left K-finite, for any c ∈ D×; we
have to show that the same holds for all polynomials of positive degree. Let
f ∈ DK 〈X〉be of positive degree and suppose that f is left K-finite. By lineariza-
tion, i.e. replacing f (. . . , xi , . . .) by f (. . . , xi + y, . . .) − f (. . . , xi , . . .) −
f (. . . , y, . . .) + f (. . . , 0, . . .), we may take f to be multilinear of least degree,
n say. In each term of f the n indeterminates will occur in some order. We shall
group these terms according to which indeterminate occurs last and assume
f chosen among left K-finite polynomials of degree n so as to minimize the
number m of distinct indeterminates that occur in last position.

Let x1 be one of the indeterminates occurring in last position and write

f =
∑h

1
gi x1bi +

∑k

1
p j x1q j , (3)

where gi , p j ∈ Dk〈X〉, bi ∈ D× and each q j is multilinear in some non-empty
subset of {x2 . . . xn}. Further, assume the element f and the expression (3) for
it chosen (among all GPIs of degree n in which only m indeterminates occur
in the last position, and all possible such expressions) so as to minimize the
number h + k of summands. Replacing f by f b−1

1 we may assume that b1 = 1.
Note that h �= 0, by our assumption that f has terms with x1 in last position. If
h = 1 and k = 0, then f = g1x1 is left K-finite. By induction on n, g1 is not
left K-finite, so we can specialize the indeterminates to give g1 a value c �= 0;
now cx1 is left K-finite, which contradicts the hypothesis. Thus either h > 1 or
k > 0. For any y ∈ X we have the left K-finite polynomial

f (x1, . . . , xn)y − f (x1 y, . . . , xn) =
∑h

2
gi x1(bi y − ybi )

+
∑k

1
p j x1(q j y − yq j ). (4)

Since h was chosen minimal in (3), 1, b2 . . . bn are left K-linearly indepen-
dent, in particular bi /∈ K for i > 1, and since K is bicentral in D, none of
the terms bi y − ybi in the first sum vanishes identically for y ∈ K ′. Choosing
y = c ∈ K ′ such that b2c �= cb2, we obtain a left K-finite polynomial with a
smaller h and the result follows by induction, unless h = 1, when the first sum
on the right of (4) is absent. In this case the second sum in (3) cannot be absent,
by what has been proved. If for some j, q j y − yq j vanishes identically for all
y ∈ K ′, then

q j ∈ K ′′ = K for all values of the x’s in K ′. (5)

We can choose the values of x3, . . . , xn so that the value of q j is r j �= 0, by
induction on n. If r j = ∑

ci x2di , then
∑

ci K ′di ⊆ K , by (5), so r j is left
K-finite and the result follows by induction on m.
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We may thus assume that the first sum on the right of (4) is absent and that
q j y − yq j does not vanish identically for any j; for suitable y = y0 ∈ K ′ the
left-hand side of (4) is then a left K-finite polynomial f1, again multilinear in
x1, . . . , xn with no term in which x1 is last. Moreover, each term in f1 has the
x’s in the same order as some term in f, so if xn does not come last in any term of
f, then the same is true for f1. We now apply the same reduction to x2, . . . , xn

in turn and finally get a left K-finite polynomial f ∗ in which no xν comes last.
This is impossible, so this case cannot occur. �

We note the special case of degree 1, which is often useful, with another
condition, which is easily verified.

Corollary 7.8.5. Let D be a field and K a bicentral subfield. Given
a1, . . . , ar ∈ D, which are right K-linearly independent and b1, . . . , br ∈ D×

such that
∑

ai xbi ∈ DK 〈x〉 is left K-finite; then there exists c ∈ D× such that
cx is left K-finite, or equivalently, the conjugate subfield cK ′c−1 spans a finite-
dimensional left K-subspace of D. �

The extension of Amitsur’s theorem follows as a special case of Theorem
8.4:

Corollary 7.8.6. Let D be a field and K a bicentral subfield such that cx is
not left K-finite for any c ∈ D×. Then every non-zero element of DK 〈X〉 has a
non-zero value for some choice of values for the elements of X in K ′. �

We can now state the main result of this section.

Lemma 7.8.7. (Specialization lemma) Let D be a field whose centre C is
infinite. Let H be a subfield of D containing C, with centralizer K such that cx
is not left (H, K)-finite for any c ∈ D×. Then any full matrix over DK 〈X〉 is
non-singular for some choice of values of X in H.

Proof. Let A = A(X ) be a full n × n matrix over DK 〈X〉; let r be the supre-
mum of its ranks as its arguments range over H and assume that r < n. By a
translation xi �→ xi + ai (ai ∈ H ) we may assume that the maximum rank is
attained at the point x = 0, and by elementary transformations we may take the
principal r × r minor of A(0) to be invertible. Thus if

A(X ) =
(

B1(X ) B2(X )
B3(X ) B4(X )

)
,

where B1 is r × r , then B1(0) is invertible. Given a ∈ H X and any c ∈ C ,
we have ρ A(ca) ≤ r , hence by Lemma 1.4.9 (since C is infinite), the rank of
A(ta) over the rational function field D(t) is at most r, and the same holds over
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the Laurent series field D((t)). Now B1(ta) is a polynomial in t with matrix
coefficients and constant term B1(0), a unit, hence B1(ta) is invertible over the
power series field D[[t]]. By Proposition 5.4.6, since r < n, the equation

B4(ta) = B3(ta)B1(ta)−1 B2(ta)

holds over D[[t]], for all a ∈ H X . This then means that the matrix

B4(t X ) − B3(t X )B1(t X )−1 B2(t X ) (6)

vanishes whenever X is replaced by any values in H. Now (6) is a power series
in t with coefficients that are matrices over DK 〈X〉; thus the coefficients are
generalized polynomial identities (or identically 0), so that by Corollary 8.6 the
expression (6) vanishes identically on H, as an element in the t-adic completion
of R = DK 〈X〉[t]. Hence the same equation holds in the (t, X )-adic comple-
tion, and also in the X-adic completion; for in each case the matrix B1(t X ) has
constant term B1(0) and so is invertible. Thus we may set t = 1 in (6) and find
that

B4(X ) = B3(X )B1(X )−1 B2(X ) in DK 〈〈X〉〉;
in other words, A(X ) is non-full over the power series ring unless r = n. By
Theorem 5.20, or also Theorem 2.9.16, A(X ) is non-full over DK 〈X〉, which
contradicts the hypothesis. So every full matrix A(X ) is non-singular for some
set of values of X in H. �

We note the special case where H = D and K is the centre of D:

Corollary 7.8.8. Let D be a field with infinite centre C and such that
[D : C] = ∞. Then any full matrix over DC 〈X〉 is non-singular for some set
of values of X in D. �

If [D : C] is finite, there are non-trivial identities over D, so this condition
cannot be omitted. Whether the hypothesis that C be infinite can be relaxed is
not known (see Exercise 4).

We can now prove the existence of a universal field of fractions for the tensor
D-ring. The proof uses the ultraproduct theorem, in the form stated in Appendix
C.

Theorem 7.8.9. Let D be a field with infinite centre C and K a bicentral
subfield with centralizer K′, such that cx is never left K-finite, for any c ∈ D×

and x ∈ X. Then DK 〈X〉 (for any set X) has a fully inverting field of fractions.

Proof. Consider the natural mapping

DK 〈X〉 → DK ′ X
, (7)
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where p ∈ DK 〈X〉 is mapped to (p f ) with p f = p(X f ) for any f ∈ K ′X .
With each square matrix A over DK 〈X〉 we associate the subset D(A) of K ′X

consisting of all f ∈ K ′X such that A(X f ) is non-singular and so invertible at
a point of K

′ X , the singularity support of A. Of course D(A) = ∅ unless A is
full, but by Lemma 8.7, D(A) �= ∅ whenever A is full. If A, B are invertible at
a point of K

′ X , then so is A ⊕ B, hence we have

D(A) ∩ D(B) = D(A ⊕ B) .

Hence the collection of subsets of K ′X containing some D(A), where A is full, is
a filter F, which is contained in an ultrafilter C say, and we have a homomorphism
into the ultrapower

DK 〈X〉 → DK
′ X

/C . (8)

By definition every full matrix A over DK 〈X〉 is invertible on the set D(A) of F

and is therefore invertible in the ultrapower. Now the subfield of the ultrapower
generated by the image of DK 〈X〉 is the desired field of fractions inverting all
full matrices over DK 〈X〉. �

The ultrapower on the right of (8) is again a field, V say, and from the
construction it is clear that the embedding of DK 〈X〉 in V induces an elementary
embedding of D in V, i.e. a mapping preserving all first-order sentences.

Taking K = C , we have K ′ = D and this yields

Corollary 7.8.10. Let D be a field with infinite centre C and such that
[D : C] = ∞. Then DC〈X〉, for any set X, has a fully inverting field of
fractions. �

Exercises 7.8

1. Verify the ‘if’ part of Theorem 8.A, i.e. show that any field finite-dimensional over
its centre satisfies a non-trivial GPI.

2. Let D be a field and Y any subset of D. Show that the centralizer Y ′ of Y is a subfield
of D, which is bicentral.

3. Let k be an infinite commutative field and let A be a full matrix over k〈X〉. Show
that there exists an integer n = n(A) such that for every central division k-algebra
D of finite dimension at least n, A is non-singular for some set of values of X in
D [Hint: Use Kaplansky’s theorem on polynomial identities (FA, theorem 8.3.6);
alternatively, assume the contrary and form an ultraproduct.]

4◦. Let K be an infinite field with finite centre, and let A be a square matrix over K.
Does there always exist α ∈ K such that A − αI is non-singular? (Note that for any
finite field F there is a matrix A such that A − xI is singular for all values of x in F.)

5. For any set I consider the Boolean algebra B of all subsets of I. Show that for any
proper ideal a of B, the set of all complements of members of a is a filter on I, and
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conversely, the set of complements of the members of any filter on I is an ideal of
B. Deduce that every filter is contained in a maximal filter, i.e. an ultrafilter. Verify
that an ultrafilter is characterized by the fact that for any subset J of I it contains
either J or its complement.

6. Let K be a field with centre C and X a set. Show that every matrix over
KC 〈X, X−1〉 is stably associated to a linear matrix B = A0 + ∑

Ai xi (xi ∈ X ).
If [K : C] = ∞, |C | = ∞, deduce that for any full matrix A over KC 〈X, X−1〉
there exist non-zero values of X in K for which A is non-singular. [Hint: Apply the
specialization lemma to B ⊕ diag(x1, . . . , xr ).]

7. (G. M. Bergman) Verify that in Theorem 8.9 the field obtained is an extension of D
by a generic X-tuple of K ′-valued indeterminates, i.e. a family of elements satisfying
the generalized rational identities holding for elements of K ′ in D, and only those.

8◦. (G. M. Bergman) Does Theorem 8.9 hold when the hypothesis ‘cx is never left
K-finite’ is weakened to ‘D is infinite-dimensional over K ′ (or even over its centre)’?

9◦. (G. M. Bergman) Show that in the homomorphism (8) the rational closure of
DK 〈X〉 is a field isomorphic to the field constructed in the proof.

10. State and prove a generalization of Theorem 8.9 in which K is replaced by a family
of subfields (Ki ), one for each xi ∈ X .

11. (G. M. Bergman) Let D be a field with subfields K and L such that L is contained
in a finite-dimensional left K-subspace of D. Are K and L necessarily contained
in a common subfield of D of finite left K-dimension? [Hint: In the field H of
real quaternions let i ′ = αi + β j , where α, β ∈ R satisfy α2 + β2 = 1 and are
transcendental over Q. Consider K = Q(i) and L = Q(i ′).]

7.9 Centralizers in the universal field of fractions of a fir

It is obvious that the centre of the free algebra k〈X〉, where X has more than one
element, is just k; that the centre of its universal field of fractions is also k is less
evident. This will follow from the results to be proved in this section, in which
we determine more generally the centre of the universal field of fractions of a
fir. We begin with a technical result on relations between elements of a semifir
and of its universal field of fractions.

Lemma 7.9.1. Let R be a semifir and U its universal field of fractions. Given
p, p′ ∈ U and c, c′ ∈ R such that

cp′ = pc′ , (1)

suppose further that there are reduced admissible matrices A ∈ mRm+1 for
p′, A′ ∈ nRn+1 for p′ (this is so, for example, when R is fully atomic). Then
there exist P ∈ mRn and Q∗ ∈ m+1 Rn+1 such that

P A′ = AQ∗, where Q∗ =
⎛
⎝ c′ 0 0

Q0 Q• Q∞
0 0 c

⎞
⎠ . (2)
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Moreover, given any one solution P0, Q∗
0 of (2), the general solution has the

form

P = P0 + A•N , Q∗ = Q∗
0 + N ∗ A′, where

A• is the core of A, N ∗ = (0 N 0)T, N ∈ m−1Rn . (3)

Proof. Since A is a reduced admissible matrix for p, it follows that AC, where

C =
⎛
⎝c′ 0 0

0 Im−1 0
0 0 c

⎞
⎠ ,

is an admissible matrix for p′. Now A is reduced, so AC is certainly ∗-prime
and we may write AC = P1 A1, where P1 ∈ Rm is full and A1 is left prime and
hence a reduced admissible matrix for p′. By Theorem 6.10 (iv), A1 and A′ are
stably biassociated, so there is a comaximal relation P0 A′ = A1 Q∗

1, where Q∗
1

is bordered. Hence P1 P0 A′ = ACQ∗
1; writing P = P1 P0 and Q∗ = CQ∗

1, we
obtain (2).

Suppose now that P1, Q∗
1 and P2, Q∗

2 both satisfy (2); then on writing P =
P1 − P2, Q∗ = Q∗

1 − Q∗
2, we have

PA′ = AQ∗, where Q∗ = (0 Q 0)T and Q ∈ m−1Rn+1 . (4)

From the form of Q∗ the right-hand side of (4) does not involve the first or last
column of A, so we can write it as

P A′ = A• Q . (5)

Since A is right ∗-prime, its core A• is right prime, and A′ is left full; by applying
Proposition 3.1.6, we find that P = A•N and Q = N A′ for some N ∈ m−1Rm .
It follows that Q∗ = N ∗ A′, where Q∗, N ∗ are obtained by topping and tailing
Q, N by rows of zeros. This shows that all solutions of (2) can be expressed
in terms of a given one as in (3), and it is clear that all the expressions (3) are
solutions of (2). �

It is clear that the same result holds, with the same proof, when p, p′, c, c′

are full matrices.
We shall use Lemma 9.1 with Corollary 7.2 to show that under suitable

conditions on c, c′ any p occurring in an equation cp = pc′ has depth at most
1, but two auxiliary results will be needed. In the first place we note a lemma
on coprime relations.

Lemma 7.9.2. In a 2-fir R consider a coprime relation

ab′ = ba′ . (6)
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Put p = b−1a = a′b′−1; if

cp = pc′, where c, c′ ∈ R× , (7)

then there exist d, d ′ ∈ R such that

bc = db, ac′ = da, ca′ = a′d ′, c′b′ = b′d ′ . (8)

Proof. By (7) and the form of p we have bca′ = ac′b′. Since (6) is an LCRM
of a, b, it follows that ca′ = a′d ′, c′b′ = b′d ′, where d ′ ∈ R; (6) is also an
LCLM of a′, b′, so we conclude that bc = db, ac′ = da for some d ∈ R. �

We shall also need an elementary result from linear algebra.

Lemma 7.9.3. Let K be a field and A ∈ nK p, B ∈ mK p. Then there exists
N ∈ mK n with at most one entry 1 in each row and all the rest 0, such that
ρ(B + NA) ≥ min(m, ρ A).

Proof. We assume that for some r, where 0 ≤ r ≤ min(m, ρ A) the first r rows
of N have been chosen as indicated so that the first r rows of B + NA are left
linearly independent. If r = min(m, ρ A), the conclusion follows by taking the
remaining rows of N to be zero, so we assume that r < min(m, ρ A) and use
induction on r. Let U be the space spanned by the first r rows of B + NA. If the
(r + 1)st row of B is not in U, we can take the (r + 1)st row of N to be zero to
get the inductive step; otherwise there is a row of A after the first r that is not in
U, say the ith; then we take the (r + 1, i)-entry of N equal to 1 and now B + NA
has an (r + 1)st row not in U. Now the result follows by induction. �

We can now accomplish the objective announced earlier.

Proposition 7.9.4. Let R be a fully atomic semifir and U its universal field
of fractions. Given p ∈ U, c, c′ ∈ R such that (7) above holds, assume further
that (i) c, c′ are not zero and not both units, or (ii) R is a persistent semifir over
a commutative field k and c, c′ are not both algebraic over k. Then p has left
and right depth at most 1, with left and right fractions

p = a′b′−1 = b−1a, where ab′ = ba′is coprime, (9)

and for any such representation (9) of p, there exists d ′ ∈ R such that

ca′ = a′d ′, c′b′ = b′d ′ . (10)

Moreover, in case (ii) there exist e ∈ R and a non-zero polynomial f over k such
that

p = f (c)−1e = e f (c′)−1, ce = ec′ . (11)
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Proof. Since R is fully atomic, there is a reduced admissible matrix A for p,
and by Lemma 9.1 there exist square matrices P, Q∗ satisfying

P A = AQ∗, where Q∗ is as in (2). (12)

Let us first take case (i). If A is m × (m + 1), then from (12) we have

P(A0 A•) = (A0 A•)

(
c′ 0
Q0 Q•

)
,

(13)

P(A• A∞) = (A• A∞)

(
Q• Q∞
0 c

)
.

The two equations (13) show that c and c′ have the same length, hence they
are both non-units. Let us assume that p has depth greater than 1; then A• is
regular over R, by Corollary 7.2. Moreover, given one solution P0, Q∗

0 of (2),
the general solution has the form

P = P0 + A•N , Q∗ = Q∗
0 + N ∗ A, where N ∗ = (0 N 0)T .

Thus we have

Q• = Q0• + NA•, where N ∈ m−1Rm . (14)

Now A• has rank m − 1, so to each row of Q0• we can add a linear combination
of the rows of A• so as to ensure that Q• has rank m − 1 over U, by Lemma 9.3
with m, ρ A replaced by m − 1. Thus for suitable choice of N in (14), Q• has
inner rank m − 1 over R and so is full. Since c, c′ �= 0, it follows that Q∗ is full,
therefore the two sides of each equation in (13) have rank m and it follows that

P is full. By unique factorization, P,

(
c′ 0
Q0 Q•

)
,

(
Q• Q∞
0 c

)
each

are products of similar factors, in particular they have the same length. Now A
is left prime, so (12) is left coprime, hence by Corollary 3.1.4, P is similar to a
left factor, P1 say, of Q∗; thus

Q∗ =
(

I 0
0 c

) ⎛
⎝ c′ 0 0

Q0 Q• Q∞
0 0 1

⎞
⎠ = P1 P2 , (15)

where P1 is similar to P and P2 is a highest common right factor of A and Q∗

(see (12)). It follows from this and (13) that P1 and

(
c′ 0
Q0 Q•

)
are products

of similar factors; by unique factorization applied to (15), P2 and c are products
of similar factors; in particular, P2 and c have the same length. Moreover, as we
saw, P2 is a right factor of A; thus A has a full right factor of length l(c). Now
cp = pc′ implies cn p = pc′n for all n ≥ 1. If we repeat the argument with c, c′
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replaced by cn, c′n , we find that A has a full right factor of length l(cn) = nl(c).
But the length of full right factors of A is bounded, by the left–right dual of
Proposition 5.9.1, so we have a contradiction. This shows the left depth of p to
be 1, and the same holds for the right depth, by symmetry.

We have p = ab−1 = b′−1a′, so d ′ to satisfy (10) exists by Lemma 9.2 and
this completes the proof of case (i).

Turning to case (ii), we have by (7), f (c)p = p f (c′) for any polynomial
f over k; hence if one of c, c′ is algebraic, both are, so in fact neither can be
algebraic. If p had depth greater than 1, the matrix A would be regular, hence its
eigenring would be algebraic over k, by Theorem 4.6.9. Then by (10) we can
find a non-zero polynomial f over k such that f (Q∗) = S A, where S ∈ m+1Rm .
Then the first row of f (Q∗) takes the form

( f (c′) 0 . . . 0) = s A

for some s ∈ Rm . Thus s(A•, A∞) = 0, but (A•, A∞) is full and so is regular,
hence s = 0 and it follows that f (c′) = 0. This contradicts the assumption that
c′ is not algebraic over k and it follows that the right depth of p is at most 1. By
symmetry the same is true of the left depth and we can prove (10) as before.

Now in (10), b′ �= 0, so by another application of Theorem 4.6.9, we can
find f ∈ k[x]× such that

f (c′) = b′d0,

where d0 �= 0 because c′ is not algebraic over k. Put e = a′d0; then p = a′b′−1 =
e f (c′)−1, but by (7), f (c)p = p( f (c′) = e, hence

p = f (c)−1e = e f (c′)−1.

Moreover, ce = c f (c)p = f (c)cp = f (c)pc′ = ec′, so (11) holds. �

In Proposition 9.4(i), if p has depth greater than 1, then c, c′ are 0 or units,
hence the elements of R whose conjugates under p again lie in R, form a subfield
of R:
Corollary 7.9.5. Let R be a fully atomic semifir with universal field of fractions
U. If p ∈ U has depth greater than 1, then pRp−1 ∩ R is a subfield of R. �

As a further application of Proposition 9.4 we can determine the centre of
U:

Theorem 7.9.6. Let R be a fully atomic semifir with universal field of fractions
U. Then the centre C of U coincides with the centre of R, unless R is a principal
ideal domain. In that case C consists of all elements ab−1 = b−1a(a, b ∈ R)
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for which an automorphism α of R exists such that ra = arα, rb = brα for all
r ∈ R.

Proof. If U = R, there is nothing to prove; otherwise we take a non-zero
non-unit c in R and p ∈ C ; then cp = pc, so p has depth 1, by Proposition
9.4, say p = ab−1. Now pb = bp, hence ab = ba and so p = b−1a. Since R
is atomic, we can take this left fraction to be reduced, and by Proposition 9.4
we have, for each r ∈ R an r ′ ∈ R such that ra = ar ′, rb = br ′. It is clear that
the map α : r �→ r ′ is an endomorphism; by symmetry it has an inverse and so
is an automorphism of R. If r ′ = r for all r ∈ R and a, b are units, then p ∈ R.

When this holds for all p ∈ C , then U and R have the same centre. Otherwise
R is a two-sided Ore domain, by Theorem 6.4.2, and hence a principal ideal
domain. Now the form of the centre of R is given by Proposition 6.4.4. �

The exception does in fact occur since, as we have seen in Section 6.3, every
Krull domain can occur as the centre of a principal ideal domain. To illustrate
these results, let D be a field that is a k-algebra and X a set. If |X | > 1, then
Dk〈X〉 is a non-principal fir with centre k; therefore its universal field of fractions
has centre k, by Theorem 9.6. We state the result as

Corollary 7.9.7. Let D be a field, k a subfield of its centre and let X be any
set. If either |X | > 1, or X �= ∅ and D �= k, then the universal field of fractions
of Dk〈X〉 has centre k. �

Next we look at centralizers in the universal field of fractions. To put the
result in context we recall that if D is any field with centre k and a ∈ D is
algebraic of degree n over k, then the centralizer Ca of a ∈ D is a subfield such
that [D : Ca] = n (see e.g. FA, Section 5.1). This may be expressed loosely
by saying that a has a ‘large’ centralizer; by contrast, in the universal field
of fractions of a semifir R, the elements of R have ‘small’ centralizers, as the
next result shows. We shall need to assume persistence; this holds e.g. for free
algebras.

Theorem 7.9.8. Let R be a fully atomic persistent semifir over k with universal
field of fractions U. Given c ∈ R, not algebraic over k,

(i) if the centralizer of c in R is C, then its centralizer in U is the localization
of C at k[c]×; moreover, C is an Ore domain and

(ii) if R contains the field of fractions k(c) and c is conjugate in U to an element
c′ of R, say cp = pc′, then p is a unit in R and R also contains k(c′).

Proof. (i) Let p ∈ C . By Proposition 9.4 there exist a ∈ R and f ∈ k[c]×

such that p = f (c)−1a = a f (c)−1 and ac = ca, therefore a ∈ C and the form
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of the centralizer follows. Now let p, q ∈ C, q �= 0; then q−1 p = a f (c)−1 for
some a ∈ C , by what has been proved, hence p f (c) = qa and this shows C to
be a right Ore domain; by symmetry it is also left Ore.

(ii) Again by Proposition 9.4 we have p = f (c)−1a, but now f (c)−1 ∈ R,
so p ∈ R. Applying the same proposition to p−1, we find that p−1 = bg(c)−1,
hence p−1 ∈ R and this shows p to be a unit in R; further R contains p−1k(c)p =
k(c′). �

Here the condition of persistence cannot be omitted, as is shown by the
example R = F〈X〉, where F is a commutative transcendental field extension
of k and |X | > 1. This is a fir, but the centralizer of any x ∈ X contains F(x)
and so is larger than F[x]k[x]× .

We recall from Section 0.6 that for any element c of a ring R, the left idealizer
is defined as Il(c) = {x ∈ R|cx ∈ Rc}; similarly Ir (c) = {x ∈ R | xc ∈ cR} is
the right idealizer. We note that Ir (c) ∼= Il(c) by means of the ‘inner’ auto-
morphism ι(c) defined by xι(c) = y if xc = cy. We also remark that a regular
element c is left invariant if and only if Il(c) = R and right invariant if and only
if Ir (c) = R. If K is a field with a subring R, then the right normalizer of R in
K is defined as the set of right R-invariant elements in K:

Nr = {u ∈ K × | Ru ⊆ u R}, (15)

and the elements of Nr are said to be right R-normalizing. Left normalizing
elements and the left normalizer Nl are defined similarly.

Proposition 7.9.9. Let R be a fully atomic semifir with universal field of
fractions U and let Nr be the right normalizer of R in U. Then any p ∈ Nr can
be written as ab−1, where a, b are non-zero right coprime elements of R. Given
any two non-zero right coprime elements a, b ∈ R, we have ab−1 ∈ Nr if and
only if

Ir (a) = R, Il(a) ⊆ Il(b) . (16)

Moreover, p−1xp = xι(a)ι(b)−1 for any x ∈ R.

Proof. In any subring R of a field U, if a, b ∈ R×, (16) is sufficient for
p = ab−1 ∈ U to right normalize R and conjugation by p will have the form
ι(a)ι(b)−1. It remains to prove the converse when R is a fully atomic semifir
with universal field of fractions U.

We may assume that R �= U , since otherwise the result holds trivially. Given
p ∈ Nr and a non-zero non-unit c, we have (7) for some c′ ∈ R, hence by
Proposition 9.4, p is a reduced right fraction, say p = ab−1, where a, b are right



7.9 Centralizers in the universal field of fractions of a fir 489

coprime elements of R. Now (7) holds for any c ∈ R and a suitable c′ ∈ R; by
Proposition 9.4 we get the relations (8), from which (16) follows. �

We next examine the relation between U (R), the set of units of R, and the
normalizers.

Proposition 7.9.10. Let R be a fully atomic semifir with universal field of
fractions U, normalizers Nr , Nl of R in U, and T = U (R). Then the following
conditions are equivalent:

(a) Nr ∪ Nl ⊆ R,

(br ) Nr = T,

(bl ) Nl = T,

(c) Any left or right invariant element of R is in T.

Proof. We shall prove (a) ⇒ (br) ⇒ (c) ⇒ (a); the equivalence with (bl) will
then follow by the symmetry of (a) (and of (c)). The first two implications hold
for any subring R of a field U.

(a) ⇒ (br). Clearly T ⊆ Nr. Conversely, if p ∈ Nr, then p−1 ∈ Nl; hence p
and p−1 both lie in R, by (a); so p is a unit of R and hence p ∈ T .

(br) ⇒(c). If a ∈ R\T is right invariant, then a ∈ Nr, but a /∈ T , in contra-
diction to (br). If a ∈ R\T is left invariant, then a−1 is right invariant and this
again contradicts (br).

(c) ⇒ (a). Let p ∈ Nr. By Proposition 9.9, p has the form p = ab−1, where
Ir(a) = R, Il(a) ⊆ Il(b). Thus a is right invariant and by (c) it is a unit in R;
hence it is also left invariant, i.e. Il(a) = R. It follows that Il(b) = R, i.e. b is
left invariant, so also a unit, and hence p ∈ R. The corresponding assertion for
p ∈ Nl follows by symmetry. �

With R and U as before, let p ∈ U be a right R-normalizing element with the
reduced right fraction p = ab−1. Then a′ = p−1ap ∈ R, and so ab−1 = b−1a′,
which is a left fraction for p, though not necessarily reduced. If b and a′ are
not left coprime, we can obtain a reduced left fraction by cancelling the highest
common left factor (which exists in an atomic semifir). In this case the lengths
of the numerator and denominator in the left fraction for p are less than those
in the right fraction.

Suppose now that p ∈ Nr ∩ Nl. Then we have reduced left and right frac-
tions for p : p = ab−1 = b′−1a′. By the above argument l(a) ≤ l(a′) ≤ l(a);
thus l(a′) = l(a) and similarly l(b′) = l(b). By the above reduction we can
write both reduced fractions with the same denominator: p = ab−1 = b−1a′.
Taking inverses, we obtain reduced fractions for the normalizing element p−1

having the same numerator, b. But by Proposition 9.9 the numerator of a right
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normalizing element is right invariant; by symmetry the numerator of a left nor-
malizing element is left invariant, hence b is an invariant element of R. Now b
was the denominator of the reduced right fraction for p; interchanging the roles
of p and p−1 again we see that the numerator a is also invariant. Thus we have

Proposition 7.9.11. Let R be a fully atomic semifir and U its universal field
of fractions. Then the (two-sided) normalizer N of R in U is the group of all
elements ab−1 where a, b are invariant elements of R such that ab = ba.

Each member of N can be written as a reduced right fraction ab−1, unique up
to right multiplication of a, b by a common unit, and as a reduced left fraction
b−1a, unique up to left multiplication of a, b by a common unit. �

This result shows in particular that U contains R-normalizing elements other
than units of R if and only if R contains non-unit invariant elements. When this
is so, then R is a principal ideal domain, by Theorem 6.4.2. So we obtain

Corollary 7.9.12. Let R be a fully atomic semifir and U its universal field of
fractions. If R is not a principal ideal domain, every R-normalizing element of
U is a unit in R. �

This result shows in particular that for a free algebra R of rank at least 2 the
universal field of fractions contains no R-normalizing elements other than the
units of R.

Exercises 7.9

1. Let R be a fully atomic semifir that is doubly persistent (i.e. R ⊗ k(t) is persistent),
with universal field of fractions U. Show that if x is any element of R, not algebraic
over k, then the centralizer of x in U is matrix algebraic over k.

2. (G. M. Bergman) Let S be a semifir that is a k-algebra (distinct from k). Show that
in the coproduct R = S∗

k k[x] any left or right invariant element is a unit. (Hint:
Verify that any element of R right comaximal with x has the form xa + u, where
u is a unit of S, and apply this to the comaximal relation xa′ = ax ′. Deduce that
the only elements similar to x are its associates uxv, and that this also holds for
1 + x in place of x.)

3. (W. Dicks) Let R = k〈X〉, U its universal field of fractions, and let k(s) be a purely
transcendental field extension of k. Show that U ⊗ k(s) is an integral domain and
remains one under all commutative field extensions of k(s). Deduce that U ⊗ k(s)
is 1-inert in U ⊗ k(s, t) and hence that U is not a doubly persistent integral domain.

4. Let c ∈ k〈X〉\k, so that the centralizer of c has the form k[p], by Bergman’s
centralizer theorem (Theorem 6.7.7). Show that the centralizer of c in the universal
field of fractions of k〈X〉 is k(p).

5. Let K be a field with a subring R, and let N be the (two-sided) normalizer of R in
K. Show that RN = N R.



7.10 Determinants and valuations 491

6. Show that the free power series ring R = k〈〈x, y〉〉 is a persistent semifir over k;
deduce that the normalizer of R in its universal field of fractions is contained in R.

7◦. For which semifirs R is it the case that the normalizer of R in its universal field of
fractions is contained in R? Are there any 1-atomic non-Ore semifirs for which
this statement is not true?

8*. Let R = k〈X〉 and U its universal field of fractions. Suppose that p ∈ U
is quadratic over R : p2 − ap − b = 0 (a, b ∈ R). If the companion matrix

Z =
(

0 1
b a

)
is algebraic over k, show that p ∈ R. (Hint: Consider first the

case that k is algebraically closed.) When Z is not algebraic over k and p has
left and right depth greater than 1, show that the admissible matrix for p has
algebraic eigenring and obtain a contradiction. Deduce that again p ∈ R, thus R
is ‘quadratically closed’ in U.

9◦. Show that k〈X〉 is ‘relatively algebraically closed’ in its universal field of fractions.
10. (Klein [72b]) Show that for any commutative field k there is a non-commutative

field with an involution, and with k as its centre.
11*. Let D be a field of characteristic not 2 and α an involution on D. Show that the

fixed set of α need not be a subring of D. (Hint: Consider the quaternions.)
12*. (G. M. Bergman) Let D be a field of characteristic not 2, with an involution

α whose fixed set is a field k. Show that either D = k or D is a commutative
quadratic extension of k, or k is central in D and [D : k] = 4. (Hint: Show first
that every element of D\k must be quadratic over k.)

7.10 Determinants and valuations

The determinant is an important scalar invariant associated with matrices over a
commutative ring. For general rings there is no satisfactory analogue, although
for skew fields one has the Dieudonné determinant, which in effect provides a
homomorphism from GLn(K ) to abelian groups. Our main object in this section
is to calculate the Dieudonné determinant for the universal field of fractions of a
fir, particularly for the free algebra k〈X〉. However, we shall look at this problem
in a more general setting, which will also allow us to describe valuations on
these fields in terms of the rings.

Let R be any ring, � a factor-stable multiplicative set of full matrices over
R and G an abelian group, written additively. By a G-value on R we understand
a mapping v : � → G such that

V.1. v(E) = 0 for any elementary matrix E,

V.2. v(A ⊕ I) = v(A) for A ∈ �, and
V.3. v(AB) = v(A) + v(B) whenever AB ∈ �.

If we write v(−1) = ε, then by V.1, V.3, 2ε = 0; thus if G is torsion-free, then
ε = 0, and so

V.4. v(−1) = 0.
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However, we shall not assume V.4 in what follows. We note the following
consequences of V.1–V.3:

V .5.v(I ⊕ A) = v(A) .

This follows from the equation(
I 0
0 A

)
=

(
0 I
I 0

) (
A 0
0 I

) (
0 I
I 0

)
,

by applying v and using V.1–V.3.

V .6.v

(
A C
0 B

)
= v(A) + v(B) = v

(
A 0
D B

)
.

The first equation follows by writing(
A C
0 B

)
=

(
I 0
0 B

) (
I C
0 I

) (
A 0
0 I

)
.

The right-hand side is v(I ⊕ B) + v(A ⊕ I), by V.1, V.3 and this reduces to
v(A) + v(B), by V.2, V.5. The second equation V.6 follows similarly.

By V.1–V.3, v(A) = v(B) whenever A is stably E-associated to B. In partic-
ular,

V.7. v(A) is unchanged if we interchange two columns of A and change the
sign of one of them.

Further, an application of the magic lemma (Lemma 5.11) shows that two
matrices ‘differing’ by a non-full matrix have the same value:

Lemma 7.10.1. Let R be a ring, � a factor-inverting multiplicative set of
square matrices over R and v a G-value on �. In any equation

C = A∇ B ,

if A ∈ � and B is non-full, then C ∈ � and we have v(A) = v(C).

Proof. By Lemma 5.11 we see that A = ST, C = SU T , where U is a prod-
uct of elementary matrices. Hence v(U ) = 0 and so v(A) = v(S) + v(T ) =
v(C). �

In the applications � will usually be �(R), the set of all full matrices;
moreover, �(R) will need to admit diagonal sums and products (when defined).
By Theorem 5.13, R is then a Sylvester domain. For these reasons we shall
assume from now on that R is a Sylvester domain; then R has a universal field
of fractions U, with a fully inverting homomorphism λ : R → U .



7.10 Determinants and valuations 493

Let v be a G-value on �(R); our object is to extend v to U. If p ∈ U× has
the admissible system Au = 0, our aim will be to define v by putting

v(p) = v(A0 A•) − v(−A∞ A•), where

A is an admissible matrix for p, (1)

but to do so we must show that the right-hand side of (1) is independent of the
choice of A. We shall first use v to define a function on admissible matrices.
Let A = (A0 A• A∞) be an admissible matrix for a non-zero element of U;
then (A0, A•) and (−A∞, A•) are both full and we put

V (A) = v(A0, A•) − v(−A∞, A•). (2)

If A is admissible for p and B is admissible for q, then the matrix

A.B =
(

B0 B• B∞ 0 0
0 0 A0 A• A∞

)
(3)

is admissible for pq, and we have

V (A.B) = v

(
B0 B• B∞ 0
0 0 A0 A•

)
− v

(
0 B• B∞ 0

−A∞ 0 A0 A•

)
.

Here the second term becomes, by a column interchange (and change of sign)

v

(−B∞ B• 0 0
−A0 0 −A∞ A•

)
;

hence we obtain (using V.6),

V (A.B) = v(B0 B•) + v(A0 A•) − v(−B∞ B•) − v(−A∞ A•)

= V (A) + V (B).

Further, (1, −1) is an admissible system for 1, and

V (1 − 1) = v(1) − v(1) = 0.

If S is the semigroup of admissible systems with the multiplication (3) (clearly
an associative operation), then V : S → G is a homomorphism, by what has
been shown; we still have to check that V has the same value on all admissible
matrices defining a given p ∈ U .

Let A = (A0, A•, A∞) be admissible for p; then Ā = (−A∞, A•, −A0) is
admissible for p−1 and hence A. Ā is admissible for pp−1 = 1. So if A, B are
any admissible matrices for the same p, then A.B̄ is admissible for pp−1 = 1,
and clearly V(B̄) = −V(B), hence

V(A.B̄) = V(A) + V(B̄) = V(A) − V(B).
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So to prove that v is well-defined we need only show that V(C) = 0 for any
admissible matrix C for 1.

Suppose then that C is admissible for 1; the condition for this is that (C0 +
C∞, C•) is non-full. Then

(C0 C•) = (C0 + C∞ C•)∇(−C∞ C•),

and by Lemma 10.1, V (C) = v(C0 C•) − v(−C∞ C•) = 0, as claimed.
Thus we have proved

Theorem 7.10.2. Let R be a Sylvester domain with universal field of fractions
U and a G-value v on �(R). Then v can be extended to a homomorphism of
U× into G by (1), where A is any admissible matrix for p. �

Let us see how this relates to the Dieudonné determinant. If K is any field
and n ≥ 1, then any matrix A ∈ GLn(K ) can be reduced to diagonal form by
elementary transformations; more precisely we have

A = (In−1 ⊕ α)U, where α ∈ K ×, U ∈ En(K ).

If A = (I ⊕ β)V is another such expression, then αβ−1 can be shown to belong
to K ×′, the derived group (commutator subgroup) of K ×. Hence the coset of
α in K ab = K ×/K ×′ is an invariant of the matrix A, called the Dieudonné
determinant (for the proof see Dieudonné [43], or also FA, Section 9.2). Let
us denote this coset by Det A; it is easily seen that the map A �→ Det A is
universal for homomorphisms into abelian groups; in fact it may be shown to
induce an isomorphism GLn(K )ab → K ab, with an exception noted below (see
Bass [68]). Thus for any field K and any n ≥ 1, except for K = F2 and n = 2,
there is an isomorphism

GLn(K )ab ∼= K ab. (4)

We can define matrix multiplication generally for square matrices of different
orders over any ring R by regarding A as A ⊕ I, for I of sufficiently high order.
In this way �(R) becomes a monoid for any Sylvester domain R and we shall
write �(R)ab for the universal abelian group of �(R). The same device allows
us to embed GLn(R) in GLn+1(R) and define the stable general linear group
GL(R) = lim→ GLn(R). In order to evaluate its abelianization we recall a lemma

from linear algebra:

Lemma 7.10.3. Let R be a weakly 1-finite ring and let n ≥ 3. Then every
elementary matrix of order n lies in the derived group GLn(R)′ and every
diagonal matrix of order n in which the product of the diagonal elements is 1
lies in GLn(R)′.
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Proof. We write Bi j (a) = I + aei j ; To express it as a commutator we have

((Bik(a), Bkj (1)) = Bik(−a)Bkj (−1)Bik(a)Bkj (1) = Bi j (a),

where i, j, k are any three distinct subscripts. Next consider a diagonal matrix,
in which the product of the diagonal entries is 1. It follows that all diagonal
entries are units; now a 2 × 2 matrix of this form can be written as a product of
elementary matrices:

c ⊕ c−1 = B21(c−1)B12(−c)B21(c−1)B21(−1)B12(1)B21(−1),

and any diagonal matrix with the product of the diagonal entries equal to 1 can
be written as a product of matrices of this form, with the diagonal topped and
tailed by 1s, since

diag(a1, a2, . . . , an) = diag(a1, a−1
1 , 1, . . . , 1).diag(1, a1a2, a3, . . . , an) = . . .

= diag(a1, a−1
1 , 1, . . . , 1)diag(1, a1a2, (a1a2)−1, 1, . . . , 1)

× . . . diag(1, . . . , 1, a1 . . . an−1, an);

hence it can be expressed as a product of elementary matrices, and so as a
product of commutators. �

For n = 2 the conclusion still holds, provided that x3 = x is not an identity
for R (see FA, Section 3.5 and Exercise 2 below).

Still taking R to be a Sylvester domain with universal field of fractions U,
we have the natural map �(R) → GL(U )ab, which yields a homomorphism

f : �(R)ab → GL(U )ab. (5)

We claim that the natural map �(R) → �(R)ab is a �(R)ab-value on �(R);
V.2 and V.3 are clear, while V.1 follows by Lemma 10.3. By Theorem 10.2 it
can be extended to a map U× → �(R)ab; combining it with the Dieudonné
determinant map we thus obtain a homomorphism from GL(U )ab to �(R)ab.
Now Cramer’s rule shows that p is stably associated to the numerator times the
inverse of the denominator and this shows the map to be inverse to (5); hence the
latter is an isomorphism. The abelianization GL(U )ab is called the Whitehead
group of U and is denoted by K1(U ). Thus we obtain

Theorem 7.10.4. Let R be a Sylvester domain, U its universal field of fractions
and �(R)ab the universal abelian group of the monoid �(R) of all full matrices
over R. Then there is a natural isomorphism with the Whitehead group of U:

�K1(U ) = �(R)ab. (6)
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To investigate the structure of this group more closely let us return to Theorem
10.2 and consider the case G = Z. By an N-value on R we understand a function
v on �(R) with values in N, satisfying V.1–V.3. Since N ⊆ Z, Theorem 10.2
shows that v can be extended to a Z-value on U×; here v(−1) = 0, because Z

is torsion-free.

Proposition 7.10.5. Let R be a Sylvester domain and v any N-value on R.
Then v(P) = 0 for P ∈ GL(R) and

v(A) = v(A′), (7)

whenever A and A′ are stably associated.

Proof. If P ∈ GL(R), then v(P) ≥ 0, v(P−1) ≥ 0, but v(P) + v(P−1) =
v(I) = 0, hence v(P) = 0. Now (7) is an immediate consequence. �

To give an example of N-values, let R be a fully atomic semifir and let us
define a matrix prime as an equivalence class of matrix atoms over R under
stable association. For each matrix prime pi we define an N-value vi as follows.
Given A ∈ �(R), we put vi (A) = r if pi occurs just r times in a complete
factorization of A. By unique factorization (Theorem 3.2.7), r is independent
of the factorization chosen and V.1–V.3 are easily checked. We shall call vi the
simple N-value associated with pi . More generally, if for each matrix prime
pi we pick an integer ni ≥ 0, then w = ∑

nivi is an N-value, for it is defined
on each full matrix A : w(A) = ∑

nivi (A), where the sum is finite because
vi (A) = 0 for almost all i. In fact every N-value arises in this way, for if w is
any N-value on R, take an atom Pi in the class pi and put ni = w(Pi ); then w
and

∑
nivi have the same value on each atom and hence on all of �(R). This

proves

Theorem 7.10.6. Let R be a fully atomic semifir and let (vi ) be the simple
N-values corresponding to the matrix primes of R. Then for any family (ni ) of
non-negative integers,

∑
nivi is an N-value and conversely, every N-value is

of this form. �

We remark that with every full matrix A there is associated an N-value
wA that is simple if and only if A is an atom, namely wA = ∑

nivi , where
ni = vi (A) and vi runs over the simple N-values. We can also use the N-values
to characterize fully atomic semifirs:

Proposition 7.10.7. Let R be a semifir. Then R is fully atomic if and only if
there is an N-value w on R such that w(A) = 0 precisely if A is a unit.
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Proof. If R is a fully atomic semifir and vi are the simple N-values corre-
sponding to the different matrix primes of R, then w = ∑

vi has the desired
property. Conversely, when w exists, take any full matrix A and factorize it into
non-units in any way:

A = P1 . . . Pr . (8)

Since w(Pi ) ≥ 1 by hypothesis, we have w(A) = ∑
w(Pi ) ≥ r , and this pro-

vides a bound for the number of factors in (8). Hence we obtain a complete
factorization of A by choosing r in (8) maximal. �

This result can be extended to fully atomic Sylvester domains if we
define a prime in this case as an equivalence class of matrix atoms, where
A, B are considered equivalent if v(A) = v(B) for each N-value v on R.
Such primes are of course unions of classes of stably associated atoms (by
Proposition 10.5), but in general they may include atoms that are not stably
associated.

Consider a fully atomic semifir R and let pi (i ∈ I ) be the family of all matrix
primes. For each matrix prime pi we have a homomorphism vi : �(R)ab → Z,
and combining all these maps, we have a homomorphism

�(R)ab → ZI .

But each full matrix maps to 0 in almost all factors of ZI , hence the image
lies in the weak direct power (direct sum) Z(I ). Let us write D(R) for the free
abelian group on the matrix primes pi , written additively, and call D(R) the
divisor group of R. We have a homomorphism λ : �(R)ab → D(R) and hence,
by Theorem 10.4, a homomorphism

μ : K1(U ) → D(R). (9)

The map λ is surjective, by construction, hence so is μ given by (9). We claim
that its kernel is GL(R)/(GL(R) ∩ E(U )).

Any A ∈ GL(R) satisfies vi (A) = 0 for all i, by Proposition 10.5, hence
A ∈ ker μ. Conversely, if ([A] − [B])μ = 0, then Aλ = Bλ, hence A and B have
the same atomic factors, up to order and stable association. Let A = P1 . . . Pr

be a complete factorization of A, and let B be the product (in some order) of
Q1, . . . , Qr , where Qi is similar to Pi . Replacing A, B by A ⊕ I, B ⊕ I, for I of
large enough order, we may assume Qi to be associated to Pi , say Pi = Ui Qi Vi ,
where Ui , Vi ∈ GL(R). Then on writing ∼ for equality up to the order of the
factors we have

A ∼ Q1 . . . QrU1 . . . Ur V1 . . . Vr ∼ B F,
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where F ∈ GL(R); hence in GL(U ) we have

A ≡ BF(mod GL(U )′),

and so [A] − [B] = [F] ∈ GL(R).GL(U )′. Here we may replace GL(U )′ by
E(U ), by Whitehead’s lemma (see Bass [68], p. 226; FA, lemma 9.2.1, p. 348
or Exercise 7 below), and find

ker μ = GL(R).E(U )/E(U ) ∼= GL(R)/(GL(R) ∩ E(U )).

Moreover, since D(R) is free abelian, μ is split by D(R) over its kernel and so
we obtain

Theorem 7.10.8. Let R be a fully atomic semifir with universal field of frac-
tions U and divisor group D(R). Then

K1(U ) ∼= U ab ∼= D(R) × [GL(R)/(GL(R) ∩ E(U ))]. � (10)

The divisor group inherits a partial ordering from R, defined by writing
p > 0 for p ∈ D(R) whenever p is positive on �(R). However, this condition
(of all positive divisors being given non-negative values) though necessary, is
not sufficient for an element of U to belong to R within U, as is shown by the
quotient of similar elements, for example (xy + 1)(yx + 1)−1 in k〈x, y〉 (see
also Exercise 3).

To illustrate Theorem 10.8, consider the free algebra R = k〈X〉. By Propo-
sition 2.5.3 and Theorem 2.4.4 we have GL(R) = E(R).k×, where c ∈ k is
mapped to c ⊕ I; hence

GL(R).E(U )/E(U ) ∼= E(U ).k×/E(U ) ∼= k×/(k× ∩ E(U )).

Now it can be shown (Cohn [82b], Révész [83a]) that k× ∩ E(U ) = 1, therefore
we have for the universal field of fractions U of the free algebra R = k〈X〉,

K1(U ) ∼= D(R) × k×. (11)

Thus we obtain

Theorem 7.10.9. Let R = k〈X〉 be the free algebra and U its universal field
of fractions. Then the Whitehead group of U is isomorphic to the direct product
of the divisor group of R by the multiplicative group of k. �

Let us return to the case of a Sylvester domain R and its universal field of
fractions U, and examine the case of valuations on U. We recall that a valuation
on U is a function v on U with values in G ∪ {∞}, where G is a totally ordered
group, taken abelian and written additively for simplicity, such that
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v.1. v(x) = ∞ if and only if x = 0,
v.2. v(xy) = v(x) + v(y),
v.3. v(x − y) ≥ min {v(x), v(y)}.

Using v.2 we can weaken v.3 to

v(p − 1) ≥ min{v(p), 0} for any p ∈ U ; (12)

moreover, it is clear that a G-value on R gives rise to a valuation on U, provided
that (12) holds. To restate this condition in terms of R, let us take an admis-
sible matrix A = (A0, A•, A∞) for p; then an admissible matrix for p − 1 is
(A0 + A∞, A•, A∞), so the condition (12) becomes, after a slight rearrange-
ment (bearing in mind (1)),

v(A0 + A∞ A•) ≥ min{v(A0 A•), v(A∞ A•)}. (13)

Hence v gives rise to a valuation on U provided that

V.8. v(A∇ B) ≥ min{v(A), v(B)},
for any square matrices A, B whose determinantal sum is defined.

In general this condition need not hold, e.g. in the free algebra R = k〈x, y〉
consider the simple N-values associated with x. We have v(xy) = v(yx) = 1,
but v(xy − yx) = 0. Nevertheless, there is a valuation on the universal field of
fractions U that is associated with x. To find it we write U as a skew function
field K (x ; α), where K is the universal field of fractions of k〈yi |i ∈ Z〉 and α

is the shift automorphism yi �→ yi+1; thus yi is realized as x−i yxi . On K (x ; α)
the order of an element in x (i.e. the exponent of the least power of x occurring
with a non-zero coefficient) is the required valuation. In terms of N-values this
valuation may be obtained as the sum of certain simple N-values, but this does
not seem a very efficient way of constructing the valuation.

Exercises 7.10

1. Let K be a field with centre k, such that for any c ∈ K there exists a ∈ K centralizing
c and transcendental over k(c), and any two elements transcendental over k are
conjugate (see e.g. Cohn [71a], SF, Corollary 5.5.2 or Exercise 5.18). Show that
every element of K × is a multiplicative commutator and hence that K1(K ) = 1.

2. Prove Lemma 10.3 for n = 2 and for any field of more than three elements by
calculating the commutator of diag(a, a−1) and B12(c).

3∗. Let R = k〈x, y, z, t〉 be the free algebra and U its universal field of fractions. Show

that Det

(
x y
z t

)
= x(t − zx−1 y), but that this element of U ab has no representa-

tive in R. (Hint: Observe that k〈x, x−1 y, z, t〉 is also free on x, x−1 y, z, t − zx−1 y
and has the same field of fractions as k〈x, y, z, t〉.)
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4◦. In a fully atomic Sylvester domain R do all complete factorizations of a full matrix
have the same number of factors? In R define the relation A ∼ B between matrix
atoms to mean: v(A) = v(B) for all N-values v. Find explicit conditions for A ∼ B.

5. (Mahdavi-Hezavehi [82]) Let G be an ordered abelian group and define a matrix
valuation V on a ring R as a G-value satisfying V.8, defined on a factor-stable
multiplicative set �, with V (A) = ∞ for A /∈ �. Show that any valuation v on an
R-field K may be extended to a matrix valuation V by putting V (A) = v(Det A).
If f : R → S is a ring homomorphism and V a matrix valuation on S, show that
V f , defined for A ∈ M(R) by V f (A) = V (A f ), is a matrix valuation on R.

6. (Mahdavi-Hezavehi [82]) If R is a ring with a matrix valuation V, show that V −1(∞)
is a prime matrix ideal, and if K is the corresponding epic R-field (with singular
kernel V −1(∞)), then V induces a valuation v on K. Verify that all valuations on epic
R-fields arise in this way. Show that the correspondence between matrix valuations
on R and valuations on epic R-fields is bijective, but that different matrix valuations
may well define the same valuation on R. (Hint: Consider the trivial valuation on
K.)

7. (Whitehead lemma) Show that A ⊕ B ≡ B ⊕ A (mod E(R)) for any ring R. Deduce
that GL(R)′ = E(R).

8∗. Let R = k〈x, x−1, y〉 and denote its universal field of fractions by U. Writing A =
k〈yi |i ∈ Z〉, and denoting the shift automorphism yi �→ yi+1 by α, verify that R ∼=
A[x ; α](x). Hence obtain a Z-valued valuation on U such that v(x) = 1, v(x−i yxi ) =
0(i ∈ Z). Deduce that in U, x cannot be expressed as a sum of (multiplicative)
commutators. (Hint: Observe that v(c) = 0 for any multiplicative commutator c.)

9. Extend Theorem 10.2 to pseudo-Sylvester domains.
10. Let R be a persistent semifir over k. What is the relation between the matrix primes

of R and those of R ⊗ k(t)?
11. Show that over a weakly finite ring the determinantal sum of an invertible matrix

and a non-full matrix (when defined) is again invertible.
12. Let R be a ring with UGN, such that the product of full matrices of the same order

is full. Show that the diagonal sum of full matrices is full. Verify (using the magic
lemma) that any Hermite ring satisfying this condition is a Sylvester domain (Cohn
[2000a]).

7.11 Localization of firs and semifirs

Let R be a ring and � a set of square matrices over R. In this section we
consider which properties pass from R to the localization R� ; in particular we
shall consider the property of being a semifir or a fir.

We begin by examining what restrictions need to be placed on the set �.
Let R = k〈x, y〉 and take � = {xy}, or even {xy}∗, its multiplicative closure.
In R�, xy will have an inverse u and we have xyu = uxy = 1, but yux �=
1 (as can easily be verified), hence the universal xy-inverting ring contains
the idempotent yux �= 0, 1 and so is not even an integral domain. We can
exclude rings of this sort by assuming � to be factor-inverting, as defined
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in Section 7.5. Thus whenever AB ∈ � for square matrices A, B, then A is
invertible over R� . We remark that B will also be invertible over R� , for AB
has an inverse C over R� , hence B has the inverse CA: clearly C A.B = I and
A.BC = I. Since A−1 exists over R� , we must have A−1 = BC and so B.C A =
A−1 A = I.

If R� is to be a semifir, there is a further similar condition, obtained by taking
A, B to be rectangular. Let A ∈ rRn, B ∈ nRr ; If AB ∈ �, then AB is invertible
over R� , so if R� is to be a Hermite ring, then r ≤ n and A must be completable

in R� , i.e. there exists A′ ∈ n−rRn
� such that

(
A
A′

)
is invertible. A multiplicative

set of square matrices satisfying this condition is called factor-complete. This
condition is again left–right symmetric, by Theorem 0.4.1. Explicitly, if AB
has the inverse C over R� and (A, A′)T has the inverse (P, P ′), then B can be
completed to (B, P ′), with inverse (C A, A′ − A′BCA)T, as is easily checked.
From the definition it is clear that any factor-complete set is factor-inverting,
and all the matrices in it are full. Like factor-invertibility, the condition of being
factor-complete depends on R� and there is no obvious way of expressing it in
terms of R and � alone.

We note that if � is factor-complete and ABC ∈ �, where A is square,
then B is completable in R� . For by factor-completeness, AB is completable
in R� , say (AB, P)T ∈ GL(R�), and A is invertible, therefore so is (B, P)T =
(A−1 ⊕ I)(AB, P)T.

Our first result states that these properties are preserved by passing to the
multiplicative closure:

Lemma 7.11.1. Let R be a semifir, � a set of full matrices over R and �∗ the
set of all matrices of the form

X = P

⎛
⎜⎜⎝

C1
∗∗∗ ∗∗∗ ∗∗∗

0 C2
∗∗∗ ∗∗∗

. . . . . . . . . ∗∗∗

0 0 . . . Cr

⎞
⎟⎟⎠ Q, P, Q ∈ GL(R), Ci ∈

∑
∪{I}. (1)

Then �∗ is multiplicative, and if � is factor-inverting or factor-complete then
so is �∗.

Proof. It is clear that �∗ is multiplicative. Suppose now that � is factor-
complete and assume that the matrix X in (1) can be factorized as X = AB;
we have to show that A or equivalently, B is completable in R� . Thus we
have to find B′ such that (B, B ′) ∈ GL(R�). It comes to the same to show that
(B Q−1, B ′) ∈ GL(R�), so we may assume that P = I = Q in (1). We shall use
induction on the order r of X; when r = 1, then either AB ∈ � and the result
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follows by the hypothesis on �, or AB = I and then the result follows because
R is an Hermite ring. Now let r > 1 and write

AB =
(

X1 X2

0 X4

)
. (2)

By the partition lemma there exists T ∈ GL(R) such that

AT =
(

A1 A2

0 A4

)
, T −1 B =

(
B1 B2

0 B4

)
,

where A1 B1 = X1, A4 B4 = X4. By induction on r there exist B ′
1, B ′

4 such that
(B1, B ′

1), (B4, B ′
4) ∈ GL(R�), hence we can find B’ such that

(B B ′) = T
(

B1 B2 B ′
1 0

0 B4 0 B ′
4

)
∈ GL(R�).

This shows �∗ to be factor-complete. When � is factor-inverting, the proof is
similar, but simpler, since A, B in (2) are now restricted to be square. �

We shall need two auxiliary results, one on relations in the universal field of
fractions and one on the preservation of linear independence in passing from R
to R� . The first of them actually holds in Sylvester domains.

Lemma 7.11.2. Let R be a Sylvester domain and U its universal field of
fractions. Given a relation

A = B D−1C, (3)

over U, where D ∈ Rn is full, A ∈ mR p, B ∈ mRn and C ∈ nR p; then there
exist P, Q ∈ Rn, B ′ ∈ mRn, C ′ ∈ nR p such that

D = Q P, B = B ′ P, C = QC ′, A = B ′C ′. (4)

Proof. We have the following series of elementary transformations, leaving
the inner rank unchanged:(

A B
C D

)
→

(
A B

D−1C I

)
→

(
0 B
0 I

)
→

(
0 0
0 I

)
,

where we have used (3). The inner rank over U is n, by inspection of the last
matrix. Since the embedding R → U is rank preserving, by Corollary 5.4.10,
the rank is the same in U as in R, hence(

A B
C D

)
=

(
B ′

Q

)
(C ′ P),

where P, Q ∈ Rn, B ′ ∈ mRn, C ′ ∈ nR p. On multiplying out, we obtain (4). �
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Lemma 7.11.3. Let R be a semifir and � a factor-inverting set of matrices
over R. Given any matrix X ∈ mRn, there exists T ∈ GL(R�) such that XT is
a matrix over R whose non-zero columns are right R�-linearly independent.

Proof. Suppose that the columns of X are right R�-linearly dependent, say

Xv = 0, (5)

where 0 �= v ∈ nR� . Each component vi of v is a component of the solution of
a matrix equation with matrix in �. We can combine these equations into one,
Cv∗ = b, where C is an N × N matrix in � for some N ≥ n, b ∈ NR, v∗ ∈
NR� and the components of v occur among those of v∗. By permuting the
columns of C so that the rows relating to v come first, we can write this system
as

C
(

v

v′

)
= b. (6)

The original equation (5) may now be written as

(X 0)

(
v 0
v′ I

)
= 0, (7)

where I is the unit matrix of order N − n. If in (6) we partition C as C =
(C1, C2), where C1 ∈ NRn , we can write (7) over R� as

(X 0)C−1(b C2) = 0.

This equation still holds over the universal field of fractions U of R, so by
Lemma 11.2 there exist full N × N matrices Q, C ′, an m × N matrix X′ and
an N × (N − n + 1) matrix V over R, such that

C = QC ′, (X, 0) = X ′C ′, (b, C2) = QV, X ′V = 0. (8)

The third equation of (8) shows that b = QV1, where V1 is the first column
of V , so we can rewrite (6) as QC ′(v, v′)T = QV1; since QC ′ ∈ �, which is
factor-inverting, we can cancel Q from (6). We now have the same situation
with Q replaced by I. Thus the equations (8) are replaced by

(X, 0) = X ′C, X ′(b, C2) = 0. (9)

On replacing X′ by X ′T and C by T −1C for suitable T ∈ GL N (R), we may
assume that X ′ = (Y, 0), where the columns of Y are right linearly independent
over R. We have to show that Y has fewer than n columns, so let us assume the
contrary. The equation X ′C2 = 0 shows the first n rows of C2 to be zero, so C
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takes the form

C =
(

C ′
1 0

C ′
3 C ′

4

)
=

(
C ′

1 0
0 I

) (
I 0

C ′
3 C ′

4

)
,

where C ′
1 is n × n, and by the assumption on � is invertible over R� . Now

the equation X ′b = 0 shows the first n entries of b to be 0, but by (6) these
are just the entries of C ′

1v. Hence v = 0, a contradiction, which proves the
result. �

We now come to the first main result of this section, showing that localization
preserves semifirs.

Theorem 7.11.4. Let R be a semifir and � any set of full matrices over R.
Then the universal localization R� is again a semifir.

Proof. Let �′ be the set of all matrices over R that are inverted over R� .
Clearly �′ is multiplicative and consists of full matrices. Moreover it is factor-
inverting, for if AB ∈ �′ then A and B are regular, by Corollary 2.3.2. Now
over R� there exists C such that ABC = C AB = I; hence BCABC = BC and
cancelling BC on the right we obtain BC A = I. Thus A−1 = BC and similarly
B−1 = C A.

Clearly R�′ = R� so we may assume � to be factor-inverting. To show that
R� is a semifir, let u ∈ (R�)n and consider the right ideal of R� generated
by the components of u. If the components are right lineraly dependent, there
exists v ∈ nR�, v �= 0, such that uv = 0. As in the proof of Lemma 11.3 we can
write

C
(

v

v′

)
= b, (10)

where C ∈ �, b ∈ NR. Now the equation uv = 0 may be written

(u 0)

(
v 0
v′ I

)
= 0,

and we can again partition C as C = (C1, C2), C1 ∈ nRn , so that

(u 0)C−1(b C2) = 0. (11)

Here (b, C2) is N × (N − n + 1). We claim that this matrix is right full; for if
not, then (b, C2) = C ′′

2 (b′, C ′
2) where C ′′

2 is N × (N − n), b′ is a column and
C ′

2 is square of order N − n. Hence

C = (C1 C2) = (C1 C ′′
2 C ′

2) = (C1 C ′′
2 )

(
I 0
0 C ′

2

)
,
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and we can rewrite (10) as

(C1 C ′′
2 )

(
I 0
0 C ′

2

) (
v

v′

)
= b = (C1 C ′′

2 )

(
0

b′

)
.

Since � is a factor-inverting, the first factor is invertible over R� . Cancelling it,
we find thatv = 0, which is a contradiction; this shows (b, C2) to be right full, i.e.
of inner rank N − n + 1. By the left–right dual of Lemma 11.3 we can transform
(b, C2) by an invertible matrix over R� to a matrix over R with r rows that are
left R�-linearly independent, followed by 0s, say T (b, C2). Then (u, 0)C−1T −1

has at most N − r non-zero columns and since r ≥ ρ(b, C2) = N − n + 1, we
have at most N − (N − n + 1) = n − 1 non-zero columns. Thus we have a
generating set of less than n elements for our right ideal. Hence R� is a semifir
by Theorem 2.3.1.(c). �

When R is not a semifir, it is no longer true that every factor-inverting set is
factor-complete. If the set� is not factor-complete, we cannot expect an Hermite
ring, but as we shall see, the localization is a pseudo-Sylvester domain provided
that � is factor-inverting. We shall also need to assume � multipliative, since
Lemma 11.1 is no longer available now.

Theorem 7.11.5. Let R be an S-ring and let � be a multiplicative set of stably
full matrices over R. Then the localization R� is again an S-ring. Moreover,
(i) if � is factor-inverting, then R� is weakly finite, hence a pseudo-Sylvester
domain and (ii) if � is factor-complete, then R� is a Sylvester domain.

In both cases (i) and (ii) the canonical map R → R� is injective.

Proof. Let P be a stably full n × n matrix over R� ; by Cramer’s rule, applied
to P, we have an equation

(A• − A0) = (A• A∞)

(
I Q
0 P

)
, (12)

where Q is over R� , the A’s are over R and (A•, A∞) ∈ �. Since P is stably
full, so is the second factor on the right of (12), while the first factor is invertible
over R� , so the term on the left is stably full over R� , hence stably full over
R and so invertible over U, the universal R-field. It follows that P is invertible
over U, hence the map R� → U is stably honest, therefore by Theorem 5.18,
R� is an S-ring, as claimed.

Let us now return to (12) and suppose that P is an n × n matrix over R�

of stable rank r. Suppose that A• has t columns, and so t + n rows, since
(A•, A∞) is square. By increasing t if necessary we may enlarge the unit factor

on the right of (12) and thus we may assume that the rank of

(
I Q
0 P

)
is
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stabilized at t + r . Hence (A•, −A0) has the same inner rank and we have an
equation

(A• − A0) = B(C• C0), (13)

over R, where B has t + r columns. Therefore

(A• A∞) = (BC• A∞) = (B A∞)

(
C• 0
0 I

)
. (14)

Further, (A• − A0) = (B A∞)

(
C• C0

0 0

)
, so (12) now becomes

(B A∞)

(
C• C0

0 0

)
= (B A∞)

(
C• 0
0 I

) (
I Q
0 P

)
.

We thus obtain

(B A∞)

(
C• Q − C0

P

)
= 0, (15)

where (B, A∞) is (t + n) × (t + r + n).
We consider the two cases separately. (i) � is factor-inverting. Let P be a

square matrix of stable rank 0. Then (B, A∞) is a square left factor of (A•, A∞),
by (14), and hence is invertible over R� . Cancelling this factor from (15), we
find that P = 0, so R� is weakly finite, by Proposition 0.1.3. Thus R� is a
pseudo-Sylvester domain, as claimed.

(ii) � is factor-complete. Then the pair of factors on the right of (14) is
completable in R� ; if (

B A∞
X Y

)
and

(
S T
U V

)

are mutually inverse, then by (15) we have P = V Z for some matrix Z over
R� . Here the number of columns of V is the number of rows of X, which is
the index of (B, A∞), i.e. (t + r + n) − (t + n) = r . Thus ρ P ≤ r = ρ∗ P , and
this shows that the stable rank and the inner rank of P over R� are the same,
therefore by Propositions 0.4.4 and 5.6.1. R� is a Sylvester domain. Finally it
is clear that in both cases the canonical map R → R� is injective. �

In order to obtain a localization theorem for firs, we shall use the following
result of Bergman and Dicks [78]:

Theorem 7.11.6. Let R be a left hereditary ring and � any set of matrices
over R. Then the universal localization R� is again left hereditary.
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Proof. Let us write S = R� ; given M ∈ RMod, A ∈ Rn , we have an abelian
group endomorphism θA of n M given by

θA : u �→ Au (u ∈ n M). (16)

Let Mod� be the full subcategory of RMod consisting of those modules M
for which (16) is an automorphism for all A ∈ �. Then it is clear that Mod�

is equivalent to SMod; by the 5-lemma it follows that Mod� is closed under
extensions in RMod.

Now S is an epic R-ring, hence for M ∈ Mod� , HomR(S, M) ∼= M and it
follows that Ext1R(S, −) vanishes on Mod� . Given C ∈ SMod, we have an
injective resolution of C as R-module

0 → C → I0 → I1 → 0.

This is of length at most 1 because R is left hereditary. We now apply
HomR(S, −) and recall that if λ : R → S is the canonical map, then
HomR(S, I) = Iλ is the coinduced module; by Appendix Lemma B.6, this is
S-injective whenever I is R-injective, while Cλ = C , as we have seen:

0 → C → Iλ0 → Iλ1 → 0.

Thus C has an injective resolution of length at most 1, and so l.gl.dim.S ≤ 1
and S is left hereditary, as claimed. �

As a consequence we obtain

Theorem 7.11.7. Let R be a fir and � a factor-inverting set of matrices. Then
R� is a fir.

Proof. By Theorem 11.4, R� is a semifir and it is hereditary by Theorem
11.6, therefore R� is a fir, by Corollary 2.3.12. �

This shows for example that the ring k〈〈X〉〉rat discussed in Section 2.9 is
a fir, for it has the form R� , where � is the set of all matrices with invertible
constant term, clearly a factor-inverting matrix set. We also note

Corollary 7.11.8. The group algebra of a free group over a field is a fir.

Proof. Let F be the free group on a set X and consider the group algebra KF,
where K is a field. It can be obtained from the tensor ring K 〈X〉 by localizing at
the set � consisting of all diagonal matrices with diagonal elements in X ∪ {1}.
This set is easily seen to be factor-inverting, so the conclusion follows by
Theorem 11.7. �
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Let us now examine how the divisor group of a fir, or more generally, a fully
atomic semifir, behaves under localization. We shall assume that R is a fully
atomic semifir and � a factor-complete set of matrices. A matrix atom A over
R and also the associated simple N-value is called �-irrelevant if A becomes a
unit in R� and �-relevant otherwise. We note that a �-relevant N-value extends
to a Z-value that is not an N-value on R� .

Theorem 7.11.9. Let R be a fully atomic semifir and � a factor-complete
set of matrices over R. Then the localization R� is again a fully atomic semi-
fir and every matrix atom over R either becomes a unit or remains an atom
over R� .

Proof. Let P be any full matrix over R� and using Cramer’s rule, write

U (P ⊕ I)V = A, (17)

where A ∈ M(R), U, V ∈ GL(R�). Denote by w the sum of all �-relevant
N-values on R; then w is an N-value on R� and w(U ) = w(V ) = 0, hence
w(A) = w(P), so w(P) = 0 if and only if P is a unit. By Proposition 10.7 we
conclude that R� is fully atomic; it is a semifir by Theorem 11.4.

For the second part let A be a matrix atom over R and suppose that over R�

we have A = B1 B2, where the Bi are square non-units. By Cramer’s rule we
have Ui (Bi ⊕ I)Vi = Ci (i = 1, 2), where Ci is a matrix over R and Ui , Vi ∈
GL(R�). Hence

A ⊕ I = U−1
1 C1V −1

1 U−1
2 C2V −1

2 . (18)

Take complete factorizations of C1, C2 over R and let w be as before. Then
w(A) = 1, and w(Ci ) ≥ 1 because Ci , like Bi is a non-unit. By (17) we have

1 = w(A) = w(C1) + w(C2) ≥ 2,

a contradiction; this shows A to be an atom or a unit over R� . �

The fact that R� is fully atomic may also be proved as follows. Denote by
w the sum of all �-relevant simple N-values on R; then w is an N-value on R�

and by Cramer’s rule, for any full matrix A over R�, w(A) = 0 if and only if A
is invertible over R� . Hence we can apply the criterion of Proposition 10.7 to
reach the desired conclusion.

For any fully atomic semifir R, the divisor group may be defined as in Section
7.10, and if � is a factor-complete set of matrices over R, then the divisor group
can again be defined over R� , by Proposition 11.9. Our next result describes
the mapping between these divisor groups:
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Proposition 7.11.10. Let R be a fully atomic semifir and � a factor-complete
set of matrices over R, so that R� is again fully atomic. Then

(i) any two matrix atoms over R that are stably associated over R� are stably
associated over R,

(ii) every matrix P over R� is stably associated over R� to the image of a
matrix P ′ over R, and if P is an atom, then P ′ can also be taken to be an
atom.

Proof. (i) Let A, A′ be matrix atoms over R and suppose that they are not
stably associated over R; we may assume further that A is �-relevant. If v

is the simple N-value corresponding to A, then v is an N-value on R� and
v(A) = 1,v(A′) = 0; hence A, A′ cannot be stably associated over R� .

(ii) Let P be a matrix over R� ; then we have an equation (17), hence P is
stably associated to a matrix A over R. Now suppose that P is an atom over R�

and denote by w the sum of all �-relevant N-values on R; then w is an N-value
on R� . Since P is an atom, we have 1 = w(P) = w(A); hence in a complete
factorization of A over R there is only one factor, P ′ say, which is �-relevant,
and clearly P is stably associated over R� to P ′. �

Let A be a matrix atom over R and denote by [A]R the corresponding matrix
prime of R, as defined in Section 7.10. If A is �-relevant, it remains an atom over
R� and so defines a matrix prime [A]R�

there. It is clear that stably associated
atoms over R remain stably associated over R� , hence the correspondence
[A]R �→ [A]R�

defines a homomorphism

φ : D(R) → D(R�). (19)

Let D�(R) be the subgroup of D(R) generated by the matrix primes defined
by �-relevant atoms; we claim that D�(R) ∼= D(R�). For the restriction of φ

to D�(R) is injective, by Proposition 11.10 (i), and surjective by (ii). Thus we
obtain

Theorem 7.11.11. Let R be a fully atomic semifir, � a factor-complete set of
matrices over R and denote by D�(R) the subgroup of D (R) generated by the
matrix primes defined by the �-relevant matrix atoms of R. Then the embedding
R → R� induces an isomorphism

D�(R) ∼= D(R�).

Moreover, if (19) is the induced homomorphism, then

D(R) = D�(R) × ker φ, (20)

where ker φ is the subgroup of D(R) generated by the �-irrelevant primes.
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Proof. The first part is proved by the above remarks and (20) follows because
D�(R) is free and so provides a splitting. �

Exercises 7.11

1. Let R be a semifir with universal field of fractions U. If ai a−1
0 = bi b−1

0 in U
(for ai , bi ∈ R, i = 1, 2), find a, b, ci ∈ R such that ai = ci a, bi = ci b. Prove a
corresponding result for matrices over R.

2∗. Show that the canonical non-IBN ring Vm,n is hereditary and that Vn,n is a fir.
(Hint: Use Theorem 11.6 for rectangular matrices. It can be shown that Vm,n is an
r-fir, where r = min(m, n) − 1. See Section 2.11 or SF, Section 5.7.)

3∗. (A. H. Schofield) Let R be a semifir and �(n) the set of all full n × n matrices,
for some n ≥ 1. Show that �(n) is factor-complete; deduce that R�(n) is a semifir.
Show that the chain of rings obtained by iterating this process (for a fixed n) has
as its union the universal field of fractions of R. Verify that different values of n
give cofinal chains.

4. Let R be a k-algebra with 2n(n + 1) generators arranged as an n × (n + 1) matrix
A and an (n + 1) × n matrix B, with defining relation (in matrix form) AB = I.
It follows by Theorem 2.11.2 that R is an n-fir (see also SF, theorem 5.7.6). Show
that the universal localization of R at the set of all full n × n matrices is not an
n-fir. (Hint: Note that the localization is not Hermite.)

5. (A. H. Schofield) Let R be a k-algebra on 18 generators arranged as two 3 × 3
matrices A, B with defining relation AB = 0. By Theorem 2.11.2 it follows
that R is a 2-fir (see also SF theorem 5.7.6). Show that RR× is not an inte-
gral domain. (Hint: Apply elementary operations to reduce some of the entries
to 0.)

6. Let R be a ring and � ⊆ M(R). Show that if � is multiplicative and R� is a local
ring, then � is factor-complete.

7. Let R be a ring with an ideal a such that R/a is Hermite. Show that the set of all
matrices over R invertible (mod a) is factor-complete.

8. Let R be a semifir and � ⊆ M(R). Show that R� is a semifir if and only if R�

is weakly finite and whenever AB ∈ �, where A ∈ mRn, B ∈ nRm, m ≤ n, then
In − B(AB)−1 A has inner rank n − m over R� .

9∗. Let F be the free group on a set Y. Show that if X is a set with a bijection φ : Y → X ,
then the group algebra kF may be embedded in the free power series ring k〈〈X〉〉
by mapping y �→ 1 − yφ, y−1 �→ �(yφ)n . Show further that this embedding is
totally inert. (Hint: Verify that every matrix over kF is stably associated to a matrix
over k〈Y 〉 and use the inertia theorem.)

10◦. For a free algebra of infinite rank let �0 be a finite set of matrices such that
the multiplicative set generated by �0 is factor-inverting. Find a finite set �1

containing �0 and such that the multiplicative set generated by �1 is factor-
complete.

11◦. (G. M. Bergman) Let R be a fully atomic semifir and � the union of a set of
similarity classes of some matrix atoms over R. What can be said about the set �∗

of similarity classes of matrix atoms inverted over R�? Examine the cases where
R is (i) commutative, (ii) a free algebra.
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12. Let R be a Sylvester domain with a homomorphism to an Hermite ring. Show that
the set � of all matrices inverted is factor-complete and R� is a Sylvester domain.
(See Cohn [2000a]. Hint: Use Cramer’s rule and Theorem 11.5.)

7.12 Reversible rings

We now examine a special class of rings for which some of the conditions for
embeddability become much simpler. A non-zero ring will be called reversible if
ab = 0 implies ba = 0. Clearly every non-zero commutative ring is reversible,
as well as every integral domain and more generally, any redued ring. As we
shall see, reversible rings share some of the properties of commutative rings.

Lemma 7.12.1. Let R be a reversible ring and suppose that a1, . . . , an ∈ R
satisfy a1 . . . an = 0. Then

ai ai+1 . . . ai−1 = 0 for i = 2, . . . , n (where the subscripts are taken mod n)

(1)

and

c0a1c1a2 . . . cn−1ancn = 0 for all c0, . . . , cn ∈ R. (2)

Proof. If a1 . . . an = 0, then (1) follows by writing x = a1 . . . ai−1, y =
ai . . . an and applying reversibility. Given (1), we have ai ai+1 . . . ai−1ci−1 = 0
for any ci , hence a1 . . . ai−1ci−1ai . . . an = 0, and by repeating this process we
obtain (2). �

We recall that an ideal a is nilpotent if an = 0, for some n ≥ 1. It is called a
nil ideal if all its elements are nilpotent. A ring without nilpotent ideals (other
than 0) is called semiprime and in any ring R a nilradical is a nil ideal N such
that R/N is semiprime. A commutative ring has a unique nilradical, but general
rings may have more than one, in fact there is an upper nilradical, the sum of
all nil ideals, and a lower nilradical, the intersection of all prime ideals (see
FA, Section 8.5).

Proposition 7.12.2. In any reversible ring, every nil right ideal generates a
two-sided nil ideal and the set of all nilpotent elements is a nil ideal, the unique
nilradical.

Proof. Let R be a reversible ring and take a nilpotent element x ∈ R. If
xr = 0, then xr1 c1xr2 c2 . . . xrn cn = 0, for any ci ∈ R and any ri such that r1 +
· · · + rn = r , by Lemma 12.1. Now if a is a nil right ideal, then for any a, b ∈
a, ar = bs = 0 for some r, s ≥ 1, hence any product of r + s − 1 factors a or
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b vanishes; more generally, (xa + yb)r+s−1 = 0 for any x, y ∈ R and so Ra is
a nil ideal. Next let N be the set of all nilpotent elements of R and suppose that
x, y ∈ N , say xr = ys = 0; the same argument shows that x + y ∈ N . Further,
if xr = 0, then (bxc)r has r factors x and so is 0, and this shows N to be an
ideal, a nil ideal, by definition. Now any element of N generates a nilpotent
ideal, hence N is the unique nil radical. �

To simplify the conditions for embeddability in fields we shall need more
than reversibility; in fact one would expect a matrix type of condition. This
suggests the following definition. A ring R is said to be n-reversible if R is
non-zero and for any square matrices A, B of the same order, at most n, AB is
full whenever BA is full. Thus ‘reversible’ is the same as ‘1-reversible’. If R is
n-reversible for all n, it is said to be fully reversible. We shall need a couple of
lemmas on the behaviour of these rings; the first one is a consequence of the
magic lemma:

Lemma 7.12.3. Over a fully reversible ring R the determinantal sum of any
two non-full matrices, when defined, is again non-full.

Proof. Let C = A∇ B, where A, B are non-full; by Lemma 5.11 we have
A = ST, C = SU T . Since R is fully reversible and A is non-full, so is TS, TSU
and SUT = C , as we had to show. �

Lemma 7.12.4. Over a fully reversible ring every full matrix is stably full.

Proof. Let R be a fully reversible ring and suppose that A is a full n × n matrix
such that A ⊕ 1 is not full. Then there exist square matrices P, Q of order n, a
row p = (p1, p2, . . . , pn) and a column q = (q1, q2, . . . , qn)T such that(

A 0
0 1

)
=

(
P
p

) (
Q q

)
. (3)

Since Pq = 0, it follows that P Q′ is not full, where Q′ = (q, e2, . . . , en), for
P Q′ has its first column zero. By elementary transformations we can reduce
the first column of Q′ to the form (q1, 0, . . . , 0)T, hence P(q1 ⊕ I) is not full,
so neither is (q1 ⊕ I)P , and it follows that (p1q1 ⊕ I)P is not full. The same
is true of (pi qi ⊕ I)P , for if T is the matrix obtained from the unit matrix by
interchanging the first and ith rows, then Tq is the column q with the first and ith
component interchanged and PT .T q = 0. By the previous argument it follows
that (pi qi ⊕ I)PT is not full, so this is also true of (pi qi ⊕ I)P . We now form
the determinantal sum of these matrices with respect to the first row; bearing in
mind that

∑
pi qi = 1 (by (1)), and find by Lemma 12.3 that P is not full. This

contradicts the fact that A = PQ is full, and the conclusion follows. �
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We have seen (Theorem 5.13) that a ring is a Sylvester domain if and
only if the set of all non-full matrices is a prime matrix ideal. The next
result shows that fully reversible rings are characterized by a slightly weaker
condition:

Theorem 7.12.5. Let R be any ring. Then R is fully reversible if and only if
the set of all non-full matrices is a proper matrix ideal.

Proof. Assume that R is fully reversible. By Lemma 12.3, the set Z of all
non-full square matrices is closed under determinantal sums and it is proper,
since R is non-zero. Further, if A ⊕ I ∈ Z then A ∈ Z because full matrices
are stably full, by Lemma 12.4. Thus Z is a proper matrix ideal, clearly the
least one. Conversely, suppose that the set Z of all non-full matrices is a proper
matrix ideal; then R is non-zero. Now assume that AB ∈ Z. Then A ⊕ B ∈ Z

by Section 7.3 (f), but this is equivalent to B ⊕ A ∈ Z and so B A ∈ Z; so R is
fully reversible, as we had to show. �

By combining this result with Theorem 5.13, we obtain

Corollary 7.12.6. Every Sylvester domain is fully reversible. �

As we saw in Section 7.3, the matrix nilradical N is the intersection of all
prime matrix ideals (Theorem 3.8):

N = √
Z = ∩Pλ, (4)

where Pλ runs over all prime matrix ideals. Write Kλ = R/Pλ for the epic
R-field defined by Pλ; the natural maps φλ : R → Kλ can be combined to a
homomorphism φ : R → �Kλ. Its kernel is given by the equation

ker φ = N ∩ R = (N)1, (5)

where the subscript 1 indicates the subset of 1 × 1 matrices. To prove (5), if
xφ = 0, then x lies in each Pλ, so x ∈ N. Conversely, if x ∈ N, then x maps to
0 in all the Kλ and so lies in ker φ thus (5) is proved.

For a fully reversible ring R we saw in Proposition 12.2 that the set N of
all nilpotent elements is the nilradical of R; we claim that N = ker φ. Clearly
N ⊆ ker φ; conversely, if xφ = 0, then xI ∈ N for a unit matrix of a certain
order n, say, which means that xI is non-full, hence (by Section 7.3 (f)), xn ∈ N,
that is, x is nilpotent and so x ∈ N . The residue-class ring R∗ = R/N is reduced,
and so is reversible. If {Pλ} is the family of all prime matrix ideals of R and
Kλ = R/Pλ as before, then as we have seen, the homomorphism φ : R → �Kλ

has kernel N, hence R∗ is embedded in �Kλ. We thus obtain
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Theorem 7.12.7. Let R be a fully reversible ring and N its nilradical. Then
R/N is a subring of a direct product of fields; in particular, any fully reversible
ring has a homomorphism into a field. �

We recall that a non-zero ring R is called prime if a Rb = 0 implies a = 0 or
b = 0; the notion of semiprime ring introduced earlier can also be characterized
by: a Ra = 0 ⇒ a = 0. Now Theorem 12.7 yields

Corollary 7.12.8. Any fully reversible semiprime ring is a subring of a direct
product of fields. In particular, any such ring has a homomorphism to a field. �

In order to find embeddability conditions we can make Theorem 12.7 more
precise. Let R be any ring and � a set of full matrices over R closed under diag-
onal sums. If, further,� ∩ Z = ∅, then by Theorem 3.7, there is a prime matrix
ideal P disjoint from � and over the corresponding R-field R/P the members
of � become invertible. So far we have not had to assume full reversibility. But
if we now assume that R is a fully reversible prime ring and take � to consist of
all diagonal matrices with no zero on the main diagonal, then since Z contains
no non-zero element of R, � ∩ Z = ∅ by Section 7.3 (f), and we obtain an
embedding in a field. This yields

Theorem 7.12.9. A fully reversible ring is embeddable in a field if and only
if it is an integral domain or, equivalently, a prime ring.

Proof. Clearly the condition is necessary, and any integral domain is prime.
Conversely, if R is a prime ring, then, being reversible, it is an integral domain,
and by Theorem 12.7 it is a subring of a direct product of fields, say R ⊆ P =
��Kλ. Let φλ be the projection R → Kλ and for any x ∈ R, put �(x) =
{λ ∈ �|xφλ �= 0}. Then for any x1, . . . , xn ∈ R×, since R is embedded in P,

�(x1) ∩ . . . ∩ �(xn) = �(x1 . . . xn) �= ∅,

so there is a filter on � including all the �(x), and this is contained in an
ultrafilter F. Let ψ : P → P/F be the natural map, where P/F is a field, by
Appendix Theorem C.1. For each x ∈ R, xφλ �= 0 for all λ in a member of F,
hence xφψ �= 0 and φψ provides an embedding of R in the field P/F. �

Exercises 7.12

1. Show that a ring is an integral domain if and only if it is prime and reversible, and
that it is reduced (i.e. x2 = 0 ⇒ x = 0) if and only if it is semiprime and reversible.

2. Let R be a ring such that abc = 0 ⇒ cba = 0. Show that if a1a2 . . . an = 0, then
the product of the ai in any order is zero (such a ring is called symmetric).
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3. Show that every strongly regular ring (see Exercise 5.6) is reduced; deduce that if
in addition it is prime it must be a field.

4. Let R be a strongly regular ring and 0 �= a ∈ R; show that any ideal p maximal
subject to a /∈ p is prime, and deduce that R is a subdirect product of fields.

5. Show that a strongly regular ring is embeddable in a field if and only if it is an integral
domain. [Hint: For the sufficiency take R ⊆ P = �Kλ(Kλ a field), with projections
ελ : P → Kλ and for each x ∈ P define �x = {λ|xελ = 0}, Ix = �{Kλ|λ ∈ �x } =
Ann(x). Verify that Ix is an ideal in P, and if I is the ideal generated by all Ix with
x ∈ R×, show that R ∩ I = 0. Deduce that the map P → P/I is R×-inverting,
hence any homomorphism of P/I into a field provides an embedding of R in K.]

6. Let R be a subring of a direct product of fields. Use the proof of Theorem 12.9 to
show that R is embeddable in a field if and only if it is an integral domain.

7. (V. O. Ferreira) A ring is said to be unit-stable if it is non-trivial and for any square
matrices A, B of the same order and any invertible matrix U, AUB is full whenever
AB is full. Verify that every fully reversible ring is unit-stable, and conversely,
a unit-stable ring is fully reversible if the stable rank equals the inner rank (this
follows from Proposition 0.4.3, but give a direct proof).

8. Show that any direct product of fields is fully reversible.
9∗. (Cohn [99]) Show that a subring of a field need not be fully reversible. (Hint:

Find two full 3 × 3 matrices over the polynomial ring k[x, y, z] whose product is
non-full.)

10. Show that a fully reversible Hermite ring need not be embeddable in a field. (Hint:
Try the direct product of two fields.)

Notes and comments on Chapter 7

It is well known that a commutative ring R can be embedded in a field if and only if R is an
integral domain. This condition is clearly still necessary in the non-commutative case, but
no longer sufficient. This was first shown by Malcev [37] in answer to van der Waerden
([30], p. 49) who had written: “Die Möglichkeit der Einbettung nicht kommutativer
Ringe ohne Nullteiler in einen sie umfassenden Körper bildet ein ungelöstes Problem,
außer in ganz speziellen Fällen”. Malcev’s counter-example was in the form of a monoid
ring QS, where S is a monoid with cancellation, but not embeddable in a group (see
SF, Section 1.2). The existence of such a monoid also provided a counter-example to
the claim by Sushkevich [36], that every cancellation monoid is embeddable in a group.
Malcev followed up his example by two papers (Malcev [39, 40]), which gave a set of
necessary and sufficient conditions for a monoid to be embeddable in a group, in the
form of quasi-identities and showing that these conditions formed an infinite set that
could not be replaced by a finite subset.

The following classification is taken from Bokut [81]. Let D0 be the class of integral
domains, D1 the class of rings R such that R× is embeddable in a group, D2 the class of
invertible rings, i.e. rings R such that the universal R×-inverting mapping is injective,
and E the class of rings embeddable in fields. Then it is clear that

D0 ⊇ D1 ⊇ D2 ⊇ E.
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Here all the inclusions are strict: in answering van der Waerden’s question (whether
D0 = E), Malcev proved that D0 �= D1 and he raised the question whether D1 = E.
This was answered 30 years later by three people, independently and almost simultane-
ously: Bowtell [67b] and Klein [67] gave examples showing that D2 �= E, while Bokut
[67, 69] gave examples to show that D1 �= D2. The examples of Bowtell and Klein
can be obtained quite simply by the methods described in Section 2.11 (see also SF,
Section 5.7), which provide n-firs that are not (n + 1)-firs, while Bokut’s proofs have
now been simplified by Valitskas [87]. The examples of n-firs that are not embeddable
in (n+1)-firs can also be used to show that the necessary and sufficient conditions of
Section 7.5 for embeddability in a field cannot be replaced by a finite subset (they
are not equivalent to a finite set of elementary sentences, see Cohn [74b] and UA,
p. 344). Dubrovin [87] proves that the group algebra of any right-ordered group over a
field is invertible.

Exercise 5.6 shows that the conditions for an integral domain to be embeddable in a
field take the form of quasi-identities, as expected from the general theory (UA,VI.4).
Thus E = T ∩ D0, where T is a quasi-variety, namely the class of all subrings of strongly
regular rings (see Exercise 5.6 and SF, Section 1.2). The result that a subdirect product
of rings in E is in E if and only if it is in D0 was proved by Burmistrovich [63] (see also
Exercise 12.6).

Malcev’s solution of the embedding problem for monoids gave no hint for the cor-
responding problem of embedding rings in fields. Until 1970 the only purely algebraic
method of embedding rings in fields was based on Ore’s method (Ore [31], see Section
0.7); for a topological method see Cohn [61b] and SF, Section 2.6. L. Schwarz [49]
defined a form of quotient ring for a free algebra R = k〈X〉 (essentially a localization
RR× ), but he did not succeed in constructing a field of fractions for k〈X〉 (it may be of
interest to note that Schwarz began in 1931 as a student of E. Noether and then became
a student of H. Weyl; he submitted a Habilitationsschrift in Halle, but withdrew it later).

The first field of fractions for R = k〈x, y〉 had been obtained by R. Moufang [37]
by embedding R in kG, where G is the free metabelian group on x, y, and constructing
a field of power series for kG (Schwarz seems to have been unaware of her work). In
the light of Moufang’s construction it is relevant to observe that the free monoid X∗

cannot be embedded in a nilpotent group on X, because such a group always satisfies
non-trivial monoid identities (see Malcev [53]). Later, Malcev [48] and B. H. Neumann
[49] independently showed that k〈X〉 has a field of fractions, by embedding it in the
group ring kF, where F is the free group on X, and constructing the field of formal
power series kF in terms of an ordering on F (see Corollary 1.5.10 above and SF,
Section 2.4).

The basic idea underlying this chapter, to invert matrices rather than just elements,
was inspired by the rationality criteria of Schützenberger [62] and Nivat [69] for non-
commutative power series rings. The observation that these criteria had quite general
validity, coupled with the notion of a ‘full’ matrix (derived from the ‘inner rank’ defined
by Bergman [67]) was exploited in Cohn [71a] to embed firs in fields. These criteria
survive in Theorem 1.2 (the forms given by Schützenberger and Nivat correspond to (b)
and (c), respectively). The application to firs is based on the following theorem (Cohn
[71a]): let R be a ring and M a subset of R. Then the universal localization R → RM

is injective provided that M consists of regular elements of R and for any p, q ∈ M ,
HomR(R/pR, R/q R) is 0 or a field according as p �= q or p = q. This shows for
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example that any atomic 2-fir is in D2. Other interesting consequences depend on the
fact that the coproduct of fields is a fir and so is embeddable in a field (SF, Chapter 5).

The notion of a ‘free’ field was introduced by Amitsur [66] as a result of studying
generalized rational identities (see also Bergman [70a] and SF, Chapter 7). J. Lewin
[74b] proved that the subfield of the Malcev–Neumann power series field generated by
kF is the universal field of fractions of k〈X〉. This result has also been proved recently
by Reutenauer [99] by means of graph theory.

The development in Section 7.2 is based on Cohn [72a]; the method of matrix
equations, Section 7.1, and matrix ideals, Sections 7.3 and 7.4, was first described
in Cohn [72b]. Proposition 2.1 and the discussion of ring epimorphisms is based on
Knight [70]. The term ‘matrix nilradical’ is new here, though the concept already
appeared in FR.2. The term emphasizes the analogy with the commutative case, where
there is a unique nilradical, the radical of 0, which is the greatest nilideal; by con-
trast, a general (non-commutative) ring usually has more than one nilradical (see FA,
Section 8.5).

In FR.1 the construction of an epic R-field with prescribed singular kernel was based
on an axiomatic description of fields as groups with an extra element 0 and an operation
x �→ 1 − x (see Cohn [61b]; Dicker [68]; Leissner [71] and, for an amusing connexion
with Mersenne primes, Hotje [83]). In FR.2 this was replaced by a direct but quite
lengthy proof; its place has now been taken by Theorem 4.3. The proof of the latter went
through several versions; the present form was greatly helped by comments from G. M.
Bergman. The consequences of this result are traced out in Section 7.5; in particular this
leads to explicit conditions for a ring to be embeddable in a field (Theorem 5.7) and the
existence of a universal field of fractions for any semifir (Cohn [72b]); this result was
generalized to Sylvester domains by Dicks and Sontag [78]. The more general condition
of Theorem 5.13 is taken from Cohn [2000a].

The proof of Theorem 5.20, that k〈X〉 is honestly embedded in k〈〈X〉〉, is new. As
is well known, the free algebra of countable rank can be embedded in a free algebra of
rank 2, but the obvious embedding will not be honest; in Cohn [90] the theory is applied
to obtain an honest embedding, which is presented in Theorem 5.19.

The field spectrum X (R) defined in Section 7.4 was introduced by Cohn [72b]; it
leads to an ‘affine scheme’ (X ; R̄) associated with a general ring (see also Cohn [79]).
For any ring one has a sheaf of local rings over X, and a natural homomorphism

γ : R → �(X, R̄),

into the ring of global sections, but, of course, one cannot expect an isomorphism
(as in the commutative case, see e.g. Macdonald [68]). Thus, for example, if R has no
homomorphism into fields, then X (R) = ∅ and the scheme is trivial. Besides the sections
arising from R (the ‘integral’ sections) one also has the following ‘rational’ sections. Let
A ∈ M(R); if A becomes invertible in every localization, then the entries of A−1 define
rational sections and one may ask: (i) for which rings is every global section rational
and (ii) for which rings is every rational section integral? For fully atomic semifirs (i)
holds, by Theorem 7.4. There is also a generalization of the field spectrum to take into
account homomorphisms into simple Artinian rings (see Cohn [79]; Ringel [79]). An
even more general spectrum, the epi-spectrum, has been defined by Bergman [70b]; for
commutative rings this agrees with the usual prime spectrum and, in general, it is never
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empty, but is difficult to determine explicitly (for Noetherian rings it agrees with the
previous case, see Cohn [79]).

Sections 7.6 and 7.7 are extracted with only small changes from the trilogy Cohn
[82a, 85a, 85b], where further details on semifirs of bounded depth and centralizers
in field coproducts can be found. Proposition 7.3, on expressing a fraction in ‘lowest
terms’ is new. Section 7.9 is based on Cohn [85b], but some of the proofs have been
streamlined; Propositions 9.9–9.11 and Corollary 9.12 are based on Bergman [87].

Section 7.8 contains the specialization lemma (Lemma 8.7), which in FR.2 formed
part of Section 5.9 and whose proof incorporates simplifications due to Bergman. The-
orem 8.2, taken from Cohn and Reutenauer [99], answers a question of Bergman by
showing that ‘free fields’ really are free, using a simple case of Malcolmson’s criterion
(Proposition 8.1). Theorem 8.3 was proved in Cohn [82a].

Section 7.10 is based on Cohn [82b, 83], with some simplifications; for a different
approach (and more precise results for free algebras) see Révész [83a]. There is a
corresponding development of valuations, briefly mentioned in Exercises 10.5 and 10.6
(Mahdavi-Hezavehi [82]) and a description of orderings of epic R-fields in terms of
‘matrix cones’ on R, by Révész [83b]; see also SF; Chapter 9).

The localization theorem for semifirs, Theorem 11.4, is taken from Cohn and Dicks
[76], which corrects and complements results of Cohn [74b]. The extension to Sylvester
domains in Theorem 11.5 was obtained by Cohn and Schofield [82]. Bergman and Dicks
[78] first proved Theorem 11.6 on localization of hereditary rings; the very simple proof
given here is essentially due to Dlab and Ringel [85], in a formulation by W. Dicks. The
corresponding statement for flat epimorphisms is much easier to prove, see Hudry [70].
The behaviour of atoms under localization (Propositions 11.9–11.10 Theorem 11.11) is
described in Cohn [82b], where these results are used to prove the following theorem.
Let R = k〈X〉 be the free algebra on an infinite set X, let X0 be a subset of X with an
infinite complement, and denote by � the set of all full matrices totally coprime to the
elements of X0. Then R� is a simple principal ideal domain. This result is used in Cohn
and Schofield [85] to construct a simple Bezout domain that is right but not left principal,
thus answering exercise 1.2.9◦ of FR.1.

Section 7.12 is based on Cohn [99], with minor simplifications. We note that Propo-
sition 12.2 provides a positive answer to Köthe’s conjecture for reversible rings by
showing that a reversible ring with a non-zero nil right ideal has a non-zero nil ideal.



Appendix

This appendix gives a brief summary of facts needed from lattice theory, homo-
logical algebra and logic, with references to proofs or sometimes the proofs
themselves. In each section some reference books are listed, with an abbrevia-
tion which is used in quoting them in the appendix.

A. Lattice theory

LT: G. Birkhoff, Lattice Theory, 3rd Edition. Amer. Math. Soc. Providence RI
1967.

BA: P. M. Cohn, Basic Algebra, Groups, Rings and Fields. Springer, London
2002.

FA: P. M. Cohn, Further Algebra and Applications. Springer, London 2003.
UA: P. M. Cohn, Universal Algebra, 2nd Edition. D. Reidel, Dordrecht 1981.

(i) We recall that a lattice is a partially ordered set in which any pair of
elements a, b has a supremum (i.e. least upper bound, briefly: sup), also called
join and written a ∨ b, and an infimum (i.e. greatest lower bound, briefly: inf),
also called meet and written a ∧ b. It follows that in a lattice L every finite
non-empty subset has a sup and an inf; if every subset has a sup and an inf, L is
said to be complete. A partially ordered set that is a lattice (with respect to the
partial ordering) is said to be lattice-ordered. It is possible to define lattices as
algebras with two binary operations ∨, ∧ satisfying certain identities, so that
lattices form a variety of algebras (LT, p. 9, UA, p. 63 or BA, Section 3.1).

If we reverse the ordering in a lattice, we again obtain a lattice, in which
meet has been replaced by join and vice versa. This is the basis of the principle
of duality in lattice theory, by which we obtain from each theorem about lattices
(except the self-dual ones) another one that is its dual.
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Figure A1
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Given any elements x ≤ y in a lattice L, we define the interval from x to y
as the set [x, y] = {z ∈ L|x ≤ z ≤ y}; it is a sublattice of L, i.e. closed under
the operations of join and meet in L. If [x, y] contains no elements apart from x
and y, it is called a link, and y is said to cover x. The maximal number of links
in a chain is called the length of the lattice; thus a lattice of length n has chains
of n + 1 elements, but no more.

(ii) Nearly all the lattices we deal with will be modular, i.e. they satisfy the
modular law (Dedekind [1900]):

(x ∨ y) ∧ z = x ∨ (y ∧ z) for all x, y, z such that x ≤ z. (1)

As stated here, this law is not actually an identical relation, since it involves a
condition, but we observe that it is equivalent to the following identity:

((x ∧ z) ∨ y) ∧ z) = (x ∧ z) ∨ (y ∧ z).

An important example of a modular lattice, which will much occupy us here
(and which incidentally is responsible for the name) is the set LatR(M) of all
submodules of a module M over a ring R, partially ordered by inclusion. A
criterion for modularity is provided by

Proposition A.1 A lattice is modular if and only if it contains no sublattice
isomorphic to the 5-element lattice of length 3 (Fig. A1; see LT, p. 13, BA,
Section 3.1). �

The following well-known consequence of (1) will be used without further
reference:

Lemma A.2 Let M be a module and M ′ a submodule of M. Then any direct
summand of M that is contained in M ′ is a direct summand of M ′.

Proof. Assume that M = P ⊕ Q and P ⊆ M ′. Then by (1),

M ′ = (P ⊕ Q) ∩ M ′ = P ⊕ (Q ∩ M ′). �
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If a, b are any two elements of a modular lattice L, there is an isomorphism
between the intervals I = [a ∧ b, a] and J = [b, a ∨ b], given by the mapping
x 
→ x ∨ b, with inverse y 
→ y ∧ a. This fact is often referred to as the par-
allelogram law; the proof is an easy exercise (see LT, p. 13, BA, p. 35). Two
intervals related in this way are said to be perspective; more generally, two
intervals are said to be projective if we can pass from one to the other by a
series of perspectivities.

The parallelogram law shows that projective intervals are isomorphic as lat-
tices. This may not tell us much, e.g. when the intervals are links, referring
to simple modules, but for modules a stronger assertion can be made: by the
Noether isomorphism theorem, perspective intervals give isomorphic module
quotients: (a + b)/b ∼= a/(a ∩ b), hence by induction, so do projective inter-
vals.

Many basic theorems on modules are lattice-theoretic in nature, in the sense
that the results can be stated and proved in terms of lattices. This is true of the
next group of theorems, which are all used in the text (mainly in Chapter 3):

Theorem A.3 (Schreier refinement theorem) In a modular lattice, two finite
chains between the same end-points have refinements that are isomorphic, in
the sense that their intervals can be paired off in such a way that corresponding
intervals are projective (LT, p. 66, BA, p. 37). �

This result shows in particular that any two maximal chains between given
end-points in a modular lattice have the same length. A lattice of finite length
necessarily has a greatest element, usually denoted by 1, and a least element,
denoted by 0. The length of the interval [0, a] is called the height of a. A modular
lattice is of finite length whenever it satisfies the ascending and descending chain
conditions, for then all its maximal chains are finite and of equal length. As in
group theory, the Schreier refinement theorem has the following consequence:

Theorem A.4 (Jordan–Hölder theorem) In a modular lattice of finite length,
any chain can be refined to a maximal chain, and any two maximal chains are
isomorphic (LT, p. 166, BA, p. 36). �

(iii) A lattice L is said to be distributive, if

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) for all x, y, z ∈ L . (2)

This is easily seen to be equivalent to its dual (obtained by interchanging ∨
and ∧) and to imply (1), so that every distributive lattice is modular. Like
modularity, distributivity can be characterized by the non-existence of a certain
type of sublattice:
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Figure A3

Proposition A.5 A lattice L is distributive if and only if it is modular and
does not contain a 5-element sublattice of length 2 (LT, p. 14, UA, p. 73 or
BA, 3.1). �

There is precisely one 5-element modular lattice of length 2, up to isomor-
phism; it is shown in Fig. A3. Given an interval [a, b] and x ∈ [a, b], an element
x ′ ∈ [a, b] is called a relative complement of x in [a, b] if x ∨ x ′ = b, x ∧ x ′ =
a. Proposition A.5 shows that a lattice is distributive if and only if relative
complements, when they exist, are unique, while Proposition A.1 states that a
lattice is modular if and only if relative complements of a given element are
incomparable.

In a lattice L of finite length we have unique least and greatest elements
0 and 1, respectively; a relative complement in [0, 1] is called a complement.
Such complements may not exist in a distributive lattice, but when they do, they
are unique, by Propositions A.1 and A.5. A distributive lattice with 0 and 1 in
which every element has a complement is called a Boolean algebra; the latter
can also be defined as an abstract algebra with two binary operations: ∨, ∧ and
a unary operation x 
→ x ′, satisfying the appropriate set of identities (see BA,
Section 3.4).

(iv) Distributive lattices are much more special than modular ones, as is
clear from Chapters 3 and 4. It is also apparent from the special form taken
by the next two theorems in the distributive case. An element a in a lattice
with least element 0 is said to be expressed as a join of independent elements:
a = a1 ∨ . . . ∨ an , if ai 
= 0 and

ai ∧ (∨a j ) = 0 for i = 1, . . . , n.
j 
=i
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If a is not 0 and cannot be expressed as a join of two independent elements, it
is said to be indecomposable. We can now state another result, well-known for
modules, in terms of lattices:

Theorem A.6 (Krull–Schmidt theorem) In a modular lattice of finite length,
let

c = a1 ∨ . . . ∨ am and

c = b1 ∨ . . . ∨ bn

be two representations of c as a join of independent indecomposable elements.
Then m = n and for some permutation i 
→ i ′ of 1, 2, . . . , n, [0, ai ] is projective
with [0, bi ′ ]. In the case of a distributive lattice projectivity may be replaced by
equality: ai = bi ′ (LT, p. 168, UA, p. 73). �

A finite decomposition a = a1 ∨ . . . ∨ an is called irredundant, if no ai can
be omitted. If a 
= 0 and no irredundant decomposition of a with more than one
term exists, a is said to be join-irreducible. For such elements there is also a
decomposition theorem:

Theorem A.7 (Kurosh–Ore theorem) In a modular lattice L, let

c = p1 ∨ . . . ∨ pr and c = q1 ∨ . . . ∨ qs

be two irredundant decompositions of c into join-irreducible elements. Then
s = r and the p’s may be exchanged against the q’s, i.e. after suitable renum-
bering of the q’s we have

c = q1 ∨ . . . ∨ qi ∨ pi+1 ∨ . . . ∨ pr (i = 1, . . . , r − 1).

If moreover, L is distributive, then the p’s and q’s are equal except for their
order (LT, p. 58, UA, p. 76f.). �

It is clear how an algebraic notion like ‘homomorphism’ is to be inter-
preted for lattices, namely as a join-and-meet-preserving mapping. An order-
preserving mapping of lattices need not be a lattice-homomorphism, but
an order-preserving bijection with an order-preserving inverse is a lattice-
isomorphism, because the lattice structure can be defined in terms of the
ordering.

A homomorphism of a modular lattice L that collapses an interval I (i.e. iden-
tifies all its points) will clearly collapse all intervals perspective with I and hence
all intervals projective with I. Conversely, if we collapse all intervals projective
with a given one, we obtain a homomorphic image of L. Thus each congruence
on L (i.e. each collection of inverse image sets of a given homomorphic image)
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is a union of projectivity classes of intervals. As an illustration consider the
4-point chain 4 and its homomorphic image obtained by collapsing the top and
bottom interval; the result is a 2-point chain 2 and we have a homomorphism
4 → 2. If we apply the same homomorphism to the square of 4, we obtain
4 × 4 → 2 × 2. Here each point of 2 × 2 has as congruence class the vertices
of one of the corner squares in 4 × 4.

(v) There is a useful representation theorem for lattices due to G. Birkhoff,
which is actually true for any variety of abstract algebras and it is no more
difficult to state and prove it in that form (although this assumes that the reader
has met varieties and congruences before, see UA, pp. 57, 162, LT, p. 26 or FA,
Chapter 1). In what follows we shall be dealing with algebras defined by a family
of operations and subject to certain identities, for example, modular lattices.
Given such a family of algebras (Ai ), their direct product is the Cartesian product
�Ai , on which the operations can be defined componentwise. A subalgebra of
�Ai that projects onto each factor Ai is called a subdirect product of the Ai .
If an algebra C can be written as a subdirect product of the family (Ai ) where
none of the projections C → Ai is an isomorphism, C is said to be subdirectly
reducible, otherwise C is subdirectly irreducible.

Theorem A.8 (Birkhoff’s representation theorem) Every algebra A (of a
given variety) can be expressed as a subdirect product of a (possibly infinite)
family of subdirectly irreducible algebras.

Proof (sketch). Given any pair of elements x, y ∈ A, x 
= y, there is (by
Zorn’s lemma) a maximal congruence q not identifying x and y. The homo-
morphism A → A/q separates x and y, whereas every proper homomorphic
image of A/q identifies them, therefore A/q is subdirectly irreducible. By
combining these homomorphisms, for all pairs x, y, we obtain the required
representation. �

For example, as is easily verified, a distributive lattice is subdirectly
reducible, unless it consists of a single link 2. As a consequence every distribu-
tive lattice can be expressed as a subdirect power of 2 (see Theorem 3.4.4).

B. Categories and homological algebra

H: S. Mac Lane, Homology. Springer, Berlin-Göttingen-Heidelberg 1963.
C: S. Mac Lane, Categories for the working mathematician. Springer, New

York-Heidelberg-Berlin 1971.
UA. P. M. Cohn, Universal Algebra 2nd Ed. D. Reidel Dordrecht 1981.
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SF: P. M. Cohn, Skew Fields, Theory of General Division Rings, Cambridge
University Press 1995.

BA: P. M. Cohn, Basic Algebra, Groups, Rings and Fields. Springer, London
2002.

FA: P. M. Cohn, Further Algebra and Applications. Springer, London 2003.

(i) We shall not give a formal definition of a category here; let us just recall that
if one merely looks at morphisms or maps (by identifying objects with their
identity maps) a category is a class (i.e. a ‘big’ set) with a set of maps between
any pair of objects and a multiplication, not necessarily everywhere defined, but
where defined it is associative, with left and right neutrals for multiplication.
As in the main text we shall compose maps from left to right, thus fg will mean
‘first f, then g’. In diagrams each map is represented by an arrow going from the
source (or domain) to the target (or codomain). If the collection of all objects
is a set, we have a small category; a small category in which there is at most
one map between any two objects is essentially a partially ordered set. The
anti-isomorph of a category C, obtained by reversing all the arrows, is again a
category, called the opposite of C and denoted by Co. Most of the categories in
this book are categories of modules and their homomorphisms.

Let C be any category and write C(X, Y ) for the set of all maps X → Y
with source X and target Y. A subcategory B is defined (as in algebra) as a
subclass of C closed under multiplication when defined, and containing with
any maps its left and right neutrals. If for any objects X, Y in B we have
B(X, Y ) = C(X, Y ), B is said to be full; clearly a full subcategory is determined
by its objects alone. A subcategory B of C is called dense if every object of C

is a direct limit of B-objects.
In any category a map is called an isomorphism if it has a two-sided inverse,

and two objects are isomorphic if there is an isomorphism between them. An
object X0 in a category C is said to be initial if for each object Y there is precisely
one map X0 → Y ; clearly any two initial objects are isomorphic, by a unique
isomorphism. Dually, an initial object in the opposite category Co is called a
final object for C. An object that is both initial and final is called a zero object
and is written 0.

(ii) In a diagram of maps there may be several ways of passing from a given
object to another one; if all ways compose to the same map, the diagram is said
to be commutative. In any category consider a diagram consisting of two maps
f, g with the same target (Fig. B1). The different ways of completing this figure
to a commutative square as in Fig. B2 form themselves a category in which the
‘maps’ are maps between the new objects added to get a ‘commutative wedge’.
A final object in this category is called the pullback of f and g. Thus the pullback
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g

f
Figure B1

Figure B2

consists of a pair of maps f ′, g′ with the same source, such that f ′g = g′ f ,
and ‘universal’ with this property; in other words, the pullback of f and g is just
their least common left multiple (when it exists). Pushouts are defined dually,
as the least common right multiple of two maps with the same source (see C, p.
65ff. BA, p. 88). An important example is provided by a pair of rings R, S with
a common subring A; the two inclusion maps A → R, A → S have a pushout,
called the coproduct of R and S over A and written R∗

A S. The coproduct of fields
is discussed in chapter 5 of SF.

X1 S X2

i1 p2

p1 i2

Figure B3

(1)

(iii) A category A is called additive if (a) A(X, Y ) is an abelian group such that
composition when defined is distributive: α(β + β ′) = αβ + αβ ′, (α + α′)β =
αβ + α′β, (b) there is a zero object, and (c) to each pair of objects X1, X2

there corresponds an object S and maps as shown in Fig. B3, such that i1 p1 =
1, i2 p2 = 1, p1i1 + p2i2 = 1. The object S is called the direct sum of X1 and
X2 with injections iν and projections pν . For example, ModR is an additive
category in which the direct sum has its usual meaning. A category satisfying
just (a) is called preadditive; a small preadditive category is called a ringoid; if
there is a single object we have a ring.

Let A be an additive category; with each map f : X → Y we can associate
a new category whose objects are maps α of A with target X and satisfying
α f = 0, and whose maps, between α and α′, are maps λ from the source of α to
that of α′ such that α = λα′. A final object μ in this category (when one exists)
is called a kernel map for f and its source is a kernel for f, written ker f ; μ is
always a monomorphism or monic, i.e. ξμ = ξ ′μ implies ξ = ξ ′. It follows that
its source ker f is unique up to isomorphism. The dual notion is the cokernel
map of f, whose target is written coker f. It is an epimorphism or epic, i.e. it can
be cancelled whenever it appears as a left-hand factor.
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Given f : X → Y , we define its image as im f = ker coker f, its coimage as
coim f = coker ker f ; of course they may not exist, but when they do, we have
the following picture:

X
f

Coker fker f

im fcoim f

Y

Here the map coim f → im f follows from the definition of im and coim.
If the additive category A is such that every map has a kernel and a cokernel
and the natural map coim f → im f is an isomorphism, then A is said to be
abelian. We remark that the notion of an abelian category is again self-dual,
and also note that in an abelian category a map that is both epic and monic is
necessarily an isomorphism. The category of all right modules over a ring R is
an abelian category, as is easily seen; of course not every abelian category is
isomorphic to one of the form ModR ; for example, if R is any non-zero ring,
then the opposite of ModR is not isomorphic to a category of the form ModS ,
for any ring S (FA, p. 47). The following result is an easy consequence of the
definitions:

Proposition B.1 Let A be an abelian category and B a full subcategory. Then
B is abelian provided that the direct sums, kernels and cokernels, taken in A,
of maps in B again lie in B. �

We remark that in most ‘concrete’ categories (where the objects have an
underlying set structure), such as rings and modules, monomorphisms are
injective; this simplifies the terminology. However, an epimorphism need not
be surjective, thus in the category of rings the embedding Z → Q is an epi-
morphism, though in module categories it is true that all epimorphisms are
surjective.

(iv) A sequence of maps in an abelian category

. . . −→ Xi−1
fi−1−→ Xi

fi−→ Xi+1 −→ . . .

is exact at Xi if ker fi = im fi−1; if it is exact at each object, it is called an
exact sequence. Verifying the exactness of sequences in diagrams is often called
‘diagram chasing’. An exact sequence beginning and ending in 0 cannot have
just one non-zero term, and if it has two, the map connecting them must be
an isomorphism. Thus the first non-trivial case is that of a three-term exact
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sequence:

0 → A′ → A → A′′ → 0, (2)

also called a short exact sequence. For example, in the case of modules, (2)
represents an extension: A is an extension of A′ by A′′.

The following two results are easily proved for modules by a diagram chase
(and this is all we need), but in fact they hold in any abelian categories:

Lemma B.2 (five lemma) Given a commutative diagram with exact rows

a1 a2 a3 a4 a5
(3)

if α1 is epic and α2, α4 are monic, then α3 is monic. Dually, if α5 is monic and
α2, α4 are epic, then α3 is epic. In particular, if α1, α2, α4, α5 are isomorphisms,
then so is α3 (H, p. 14, C, p. 201, FA, p. 71). �

Lemma B.3 (three-by-three lemma) Given a commutative diagram with
exact rows and columns as shown, there is a unique way of filling in the first
column so as to keep the diagram commutative and then the new column is
exact, too (H, p. 49, FA, p. 41). �

0

0

0

00 0

00 0

0

0

0

A′

B′

C′

A′′

B′′

C′′

A

B

C

(v) With every type of algebraic system there is associated the notion of a
homomorphism, i.e. a structure-preserving mapping. In the case of categories
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one speaks of functors. Thus a functor F : A → B is a mapping from one
category, A, to another, B, which preserves neutrals and satisfies

F(αβ) = Fα.Fβ. (4)

If instead of (4) we have

F(αβ) = Fβ.Fα, (5)

F is said to be a contravariant functor, in contrast to the sort defined by (4),
which is called covariant. Thus a contravariant functor from A to B may also
be regarded as a covariant functor from A◦ to B, or from A to B◦. If F and G
are two covariant functors from A to B, a natural transformation t : F → G is
a function that assigns to each A-object X a B-map tX : F X → G X such that
for each map X → Y the square

FX FY

GYGX

tx ty

commutes. If each tX is an isomorphism, t is called a natural isomorphism, or in
the case of contravariant functors, a natural anti-isomorphism or also a duality;
if B is a concrete category and tX is an inclusion map, F is called a subfunctor
of G.

Given categories A and B, if there is a pair of functors F : A → B, G : B →
A such that the compositions (from left to right) FG : A → A and G F : B → B

are naturally isomorphic to the identity functor, FG ∼= 1, G F ∼= 1, then A and
B are said to be equivalent and F, G are equivalences between them. In the case
of contravariant functors we speak of anti-equivalence or duality, and A, B are
said to be dual.

Let A, B be any rings. If the module categories ModA and ModB (or equiv-
alently, AMod and BMod) are equivalent, then A and B are said to be Morita-
equivalent. For example, any ring R is Morita-equivalent to the matrix ring
Mn(R), for any n ≥ 1, and these are the only such rings when R is projective-
free. It can be shown that A and B are Morita-equivalent if and only if there exist
bimodules A PB,B Q A such that P ⊗B Q ∼= A, Q ⊗A P ∼= B as bimodules (see
FA, p. 151).

(vi) Let A be a class of algebras and X a set. Then we can form the comma
category (X, A) whose objects are maps α : X → G from X to an A-object G
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and whose morphisms from α : X → G to β : X → H are A-homomorphisms
f : G → H such that β = α f . An initial object in (X, A), if it exists, is called
a universal A-object for X; as initial object it is unique up to isomorphism. For
example, the free group on a set X is a universal object in this sense. We remark
that if with each group G we associate its underlying set σ (G) by means of
the ‘forgetful’ functor from groups to sets, then we have a natural bijection of
morphism sets:

Gp(FX , G) ∼= Ens(X, σ (G)), (6)

where Gp, Ens (= Ensemble, French for ‘set’) denote the categories of groups
and sets, respectively. More generally, a pair of functors T : A → B, S : B →
A is called an adjoint pair, and S is left adjoint, T right adjoint, if for any
A-object X and B-object V,

A(V S, X ) ∼= B(V, X T ). (7)

It is not hard to show that each of S, T determines the other up to natu-
ral isomorphism by (7) (H, p. 266, FA, p. 45). For example the free group
functor is the left adjoint of the forgetful functor σ , by (6). More generally,
almost every universal construction arises as the left adjoint of a forgetful
functor.

The following lemma is often useful in discussing universal constructions;
although we state it for rings, it clearly holds quite generally for all types of
algebras:

Lemma B.4 Let A, B be any rings and f, g two homomorphisms from A to B.
If f and g agree on a generating set of A, then f = g.

Proof. The set {x ∈ A| x f = xg} is easily seen to be a subring of A; since it
contains a generating set it must be the whole of A. �

(vii) We shall mainly be concerned with additive (in particular abelian)
categories; in that case all functors are assumed to be additive, i.e. F(α + β) =
Fα + Fβ. For example, HomR(M, −) and M ⊗ − are additive functors. We
note that an additive functor preserves direct sums when they exist; this is easily
verified from the definition. In what follows, all functors are tacitly assumed to
be additive.

Any functor F transforms an exact sequence
α−→ A

β−→ (8)

into a sequence
Fα−→ F A

Fβ−→ (9)
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with composition zero: Fα.Fβ = 0, but (9) need not be exact. However, if (8)
is split exact, i.e. if im α = ker β is a direct summand of A, then the same is
true of (9). The functor F is said to be exact if it transforms any exact sequence
into an exact sequence.

Exact functors are rare; thus HomR(P, −) is exact if and only if P is pro-
jective. This may be taken as the definition of a projective module, and it can
then be proved that P is projective if and only if it is a direct summand of a
free module. Similarly, HomR(−, I ) is exact if and only if I is injective. There
is no simple description of injective modules, as there is for projectives, but in
testing for injective modules, Baer’s criterion is often useful. This states that a
right R-module I is injective if and only if every homomorphism a → I where
a is a right ideal, can be extended to a homomorphism R → I (FA, p. 53).

Every module can be embedded in an injective module, and the least injective
containing a given module M is unique up to isomorphism and is called the
injective hull of M; further, M can be shown to be an essential submodule of its
injective hull (i.e. it meets every non-zero submodule); the injective hull of M
is also called an essential extension of M. There is an alternative definition of
injective module and injective hull as a sort of algebraic closure, but this will
not be needed here (see UA, p. 261, FA, p. 166).

(viii) Although few functors are exact, many have a partial exactness prop-
erty, which we now describe.

A covariant functor F is called left exact if the sequence

0 −→ F A′ −→ F A −→ F A′′ −→ 0 (10)

obtained by applying F to the short exact sequence (2), is exact except possibly
at F A′′; if (10) is exact except possibly at F A′, then F is called right exact.
For a contravariant functor D : A → B these terms are defined by applying the
definitions just given to the associated covariant functor from A◦ to B. A routine
verification shows that HomR(−, −) is left exact in each of its arguments.

With each functor F we can associate a series of derived functors F i(i ∈ Z)
that measure the departure of F from exactness. Assume further that every
object is quotient of a projective and subobject of an injective (the category
‘has enough projectives and injectives’). When F is exact, Fi = 0 for i 
= 0 and
F0 is naturally isomorphic to F, in symbols F0 ∼= F . For a left exact functor
F, Fi = 0 for i < 0 and (a) F0 ∼= F , (b) Fn I = 0 for n > 0 and I injective, and
(c) to each short exact sequence (2) there corresponds a long exact sequence

0 → F0 A′ → F0 A → F0 A′′ 	−→ F1 A′ → F1 A → . . . (11)

with a ‘connecting homomorphism’ 	 that is a natural transformation. More-
over, Fi is uniquely determined up to isomorphism by (a)–(c).
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As an example let us take F A = HomR(M, A). The derived functor in this
case is denoted by Ext. Thus Ext0R(M, N ) ∼= HomR(M, N ), ExtiR(M, I ) = 0
for i > 0 and I injective, and we have an exact sequence

0 → HomR(M, A′) → HomR(M, A) → HomR(M, A′′) → Ext1R(M, A′)

→ Ext1R(M, A) → Ext1R(M, A′′) → Ext2R(M, A′) → . . . (12)

Next let us take HomR(M, N ), regarded as a functor in M. This is contravari-
ant and we have to replace injectives in (b) above by projectives. The derived
functor is the same as before, namely Ext. Thus we have ExtiR(P, N ) = 0 for
i > 0 and P projective, and from any short exact sequence (2) we obtain

0 → HomR(A′′, N ) → HomR(A, N ) → HomR(A′, N ) → Ext1R(A′′, N )

→ Ext1R(A, N ) → Ext1R(A′, N ) → Ext2R(A′′, N ) → . . . (13)

Whenever R is a field or, more generally, when R is a semi-simple Artinian
ring, then Exti = 0 for all i 
= 0, because for such rings all exact sequences split,
so Hom is then exact in each argument. Most of the rings considered in this book
are hereditary, which amounts to saying that Exti vanishes identically for i > 1.
Therefore (12) and (13) reduce to 6-term sequences in this case. For any module
M, the projective dimension, also called homological dimension, is defined as the
least n ≥ 0 such that Extn+1

R (M, −) = 0, or ∞ if no such n exists; the injective
or cohomological dimension is the least n ≥ 0 such that Extn+1

R (−, M) = 0 or
∞ if no such n exists. They are denoted by pd.M, id.M, respectively. Now
the right global dimension of R is defined as r.gl.dim.R = sup(pd.M), where
M ranges over all right R-modules, and the left global dimension is defined
similarly in terms of left R-modules. In a Noetherian ring these dimensions are
equal, but in general they may be different (see Section 1.6).

Let us briefly consider the connexion of Ext with module extensions. In (12)
put M = A′′ and consider the image of 1 ∈ HomR(A′′, A′′) under 	; this is an
element θ of Ext1R(A′′, A′). It can be shown (H, Chapter 3, FA, p. 71) that two
short exact sequences (2) and

0 → A′ → B → A′′ → 0 (14)

give rise to the same θ if and only if the extensions A and B are isomorphic in
the sense that there is an isomorphism f : A → B making the diagram

0 A′

0

0

0A′

A

1 1f

B

A′′

A′′
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commutative. Moreover, every element of Ext1R(A′′, A′) gives rise to an exten-
sion in this way; so the isomorphism classes of extensions of A′ by A′′ may be
classified by Ext1R(A′′, A′). We remark that the element θ can also be obtained as
the image of 1 under 	 by putting N = A′ in (13). This element θ is sometimes
called the obstruction; it is zero if and only if the extension (2) splits.

(ix) Since every free module is projective, every module can be written as a
homomorphic image of a projective module, in other words, for any ring R the
category of R-modules has ‘enough projectives’. Given a module M, we can
write it as a homomorphic image of a projective module P0, say f0 : P0 → M .
Similarly we can find a projective module P1 mapping onto ker f0 and by
continuing in this way we get an exact sequence of projective modules Pi :

. . . → P1 → P0 → M → 0, (15)

called a projective resolution of M. Dually, M has an injective resolution

0 → M → I0 → I1 → . . . , (16)

where the Ii are injective. If in (15) we replace P1 by the kernel of the map
P1 → P0, we obtain a short exact sequence

0 → Q → P → M → 0, P projective. (17)

This is called a presentation of M. Clearly if P is finitely generated, then so is
M; if there is a presentation (17) of M with P, Q both finitely generated, (17) is
called a finite presentation of M and M is said to be finitely presented; if there
is a presentation of M with Q finitely generated (but not necessarily P), M is
said to be finitely related. Different presentations of M are compared in

Lemma B.5 (extended Schanuel lemma) Given two presentations of a module
M, one of them by a projective module, say (17) and

0 → Q′ → P ′ → M → 0, (18)

where P is projective (but not necessarily P ′), then there is an exact sequence

0 → Q → P ⊕ Q′ → P ′ → 0.

In particular, if P ′ is also projective, then

P ⊕ Q′ ∼= P ′ ⊕ Q. �

(See FA, p. 58 and Theorem 0.5.3 above; the last assertion is the actual form of
Schanuel’s lemma.)

This shows in particular that if M is finitely presented then in any presentation
(18) of M in which P ′ is finitely generated, the same is true of Q′. For a finitely
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presented R-module M we also note that any submodule M ′ of M is finitely
generated if and only if M/M ′ is finitely presented. For we may take M = F/K ,
where F is free of finite rank and K is a finitely generated submodule, and take
M ′ to be of the form G/K , where K ⊆ G ⊆ F . Since K is finitely generated,
M ′ is finitely generated if and only if G is finitely generated, and this is the
condition for M/M ′ ∼= F/G to be finitely presented.

(x) The tensor product may be defined as the left adjoint of the Hom-functor.
Thus if modules UR,R VS are given, their tensor product U ⊗R V is determined
up to isomorphism as a right S-module by the equation

HomR(U, HomS(V, W )) ∼= HomS(U ⊗R V, W ), (19)

where W is a right S-module; (19) is also referred to as adjoint associativity.
From the left exactness of Hom and (19) it is easily proved that the tensor
product is right exact in each of its arguments (FA, p. 45).

Let f : R → S be a ring homomorphism. With each right R-module M we
can associate an S-module, the coinduced extension M f = HomR(S, M) (see
FA, p. 54).

Lemma B.6 If I is an injective right R-module, then the coinduced extension
I f is an injective right S-module.

Proof. If N is any S-module, we have, by (19),

HomS(N , I f ) ∼= HomR(N ⊗S S, I ) = HomR(N , I ),

hence HomS(−, I f ) is an exact functor, and the assertion follows. �

Suppose that U is a free right R-module with basis (uλ); in particular, such
a basis always exists if R is a field. Then for any left R-module V, each element
of U ⊗ V can be written in the form

f =
∑

uλ ⊗ aλ (aλ ∈ V ),

and moreover, the coefficients aλ are uniquely determined by f. In general no
such convenient normal form exists, but one has the following independence
property of the tensor product (see Cohn [59], BA, Proposition 4.8.9; for a
special case see also Bourbaki [61], p. 41):

Lemma B.7 Let R be any ring and UR,R V modules over R, where V is
generated by a family (eβ, β ∈ B) with defining relations

∑
aαβeβ = 0 (α ∈

A). Given any family (xβ) of elements in U indexed by B and almost all
0, if ∑

xβ ⊗ eβ = 0 in U ⊗ V,
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then there exist elements yα ∈ U, almost all 0, such that

xβ =
∑

yαaαβ. (20)

Proof. By hypothesis V has a presentation

0 → G
λ−→ F

μ−→ V → 0,

where F is free on a family ( fβ) and G is the submodule of F spanned by the
elements

∑
aαβ fβ . Tensoring with U and observing that this operation is right

exact, we obtain the exact sequence

U ⊗ G
λ′−→ U ⊗ F

μ′
−→ U ⊗ V → 0.

By hypothesis, (
∑

xβ ⊗ fβ)μ′ = 0, hence exactness shows that∑
xβ ⊗ fβ =

(∑
yα ⊗ aαβ fβ

)
λ′,

for some elements yα ∈ U , almost all 0. Now λ′ is the homomorphism induced
by the inclusion G → F , and F is free on the f ’s, so on equating coefficients
we obtain (20). �

A right module U is said to be flat if U ⊗ − is an exact functor. E.g. any
free module, and more generally, any projective module is flat. We note an easy
consequence of the definition:

Proposition B.8 Let R be any ring. If U is a flat right R-module and a is a left
ideal of R, then the natural mapping

ν : U ⊗ a → Ua (21)

is an isomorphism.

Proof. Only the injectivity requires proof and this follows by tensoring the
exact sequence

0 → a → R → R/a → 0

with U and using the fact that the latter is flat. �

The following criterion for flatness is easily proved. It suggests that any
‘torsion’ in a flat module is due to relations in the ring, which accounts for the
name.

Proposition B.9 Let R be any ring. A right R-module U is flat if and only if,
whenever

uc = 0, where u ∈ U n, c ∈ nR,
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there exist B ∈ mRn and x ∈ U m such that

u = x B, Bc = 0.

(For a proof see FA, p. 161). �

Proposition B.9 shows that a module U is flat if and only if every finitely
generated submodule of U is contained in a flat submodule; in other words,
flatness is a local property. The definition shows that U is flat if and only if
Tor1(U, −) = 0, where Tor is the left derived of the tensor product. Here it is
enough to show that Tor1(U, −) vanishes on all finitely generated modules, by
the remark just made.

The weak dimension of a module M is defined as

wd.M = sup{n|TorR
n (−, M) 
= 0} ;

thus if wd.M = r and we take a projective resolution (15) of M, then ker(Pr →
Pr−1) is flat. Now the weak global dimension of a ring R is defined as

w.gl.dim.R = sup{n|TorR
n 
= 0}.

Clearly this is left–right symmetric and is majorized by the left and the right
global dimensions of R, while for Noetherian rings all three global dimensions
coincide (see FA, p. 77).

(xi) A ring R is said to be right coherent if every finitely generated right
ideal is finitely related; left coherent is defined similarly. It follows easily that
when R is right coherent, then every finitely generated submodule of a free
right R-module is finitely related. Some equivalent formulations of coherence
are given in the next result:

Theorem B.10 For any ring R the following assertions are equivalent:

(a) R is right coherent,
(b) the right annihilator of any row vector over R is finitely generated, i.e. given
u ∈ Rn, if u B = 0 for some B ∈ nRI , then there exist C ∈ nRr , D ∈ rRI such
that B = C D, uC = 0,
(c) the right annihilator of any matrix over R is finitely generated, i.e. given
A ∈ mRn, if AB = 0 for some B ∈ nRI , then there exist C ∈ nRr , D ∈ rRI such
that B = C D, AC = 0,
(d) the dual of every finitely presented left R-module is finitely presented,
(e) the direct product of any family of flat left R-modules is flat,
(f) every direct power RI is left flat,
(g) every finitely generated submodule of a free right R-module is finitely related.

Proof. The proof follows the pattern a ⇒ b, c ⇒ a ∧ c ⇔ d, b ⇒ e ⇒ f ⇒
c ∧ f ⇒ g ⇒ a.(a) ⇒ (b). By definition R is right coherent precisely if every
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finitely generated right ideal is finitely related. Consider u = (u1, . . . , un) ∈ Rn

and let the family of all relations be
∑

ui biλ = 0. By (a) these relations can
be generated by a finite subset; writing the biλ as a matrix B with n rows and
possibly infinitely many columns, we see that there exists C ∈ nRr and a matrix
D with r rows such that B = C D and uC = 0.

(a) ∧ (c) ⇔ (d). Let V be finitely presented, say

Rm α−→ Rn −→ V → 0,

where α is given by A ∈ mRn . Dualizing, we obtain the exact sequence

0 → V ∗ −→ nR −→m R,

and V ∗ is the annihilator of A in nR. Now (c) is just the condition for V ∗ to be
finitely generated, but then it is finitely presented by (a). Conversely, if V ∗ is
finitely generated, (a) and so also (c) holds.

(b) ⇒ (e). Let (Vα) be a family of flat left R-modules and consider V = �Vα .
If av = 0, where a ∈ Rn, v ∈ nR, let v = (vα), vα ∈ nV α; then avα = 0. Since
Vα is flat, there exists Bα ∈ nRmα , v′

α ∈ mαV α such that vα = Bαv′
α, aBα = 0.

By (b), Bα = C Dα for some C, Dα such that aC = 0. Now v = (C Dαv′
α) and

this shows V to be flat.
(e) ⇒ (f) is clear. To prove (f) ⇒ (c), suppose that AB = 0, where A ∈ mRn

and B has possibly infinitely many columns. Since RI is left flat, there exists
C ∈ nRr such that B = C D for some D ∈ rRI and AC = 0. The same argument
shows that (c) ⇒ (f), so (c) ⇒ (c) ∧ (f).

(c) ∧ (f) ⇒ (g). Let U be a finitely generated submodule of a free right R-
module F. By omitting basis elements of F not involved in the generators of U,
we can take F to be finitely generated. If U is generated by the columns of the
m × n matrix A and B is the matrix of all relations between the columns of A,
then by (f) there exist C ∈ nRr and D with r rows such that B = C D, AC = 0.
Hence U is finitely related, by the columns of C. Finally (g) ⇒ (a) is
clear. �

Corollary B.11 Over a right coherent ring the intersection of any two finitely
generated submodules of a free right R-module is finitely generated.

Proof. If U, V are submodules of a free module F, generated by u1, . . . , um

and v1, . . . , vn , respectively, then the elements of U ∩ V are all of the form∑
ui ai = �v j b j , where ai , b j ∈ R,

and they thus correspond to the relations
∑

ui ai − ∑
v j b j = 0. But the module

of all these relations is finitely generated, by (c), hence U ∩ V is indeed finitely
generated. �
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We also show that over a coherent ring the finitely presented modules form
an abelian category.

Theorem B.12 If R is a right coherent ring, then the category of all finitely
presented right R-modules is closed under taking finitely generated submodules,
finite direct sums, kernels and cokernels, hence it is an abelian subcategory of
the category of all right R-modules.

Proof. If M is a finitely presented right R-module over a right coherent ring
R, then any finitely generated submodule M ′ of M is finitely presented. For
if M = F/K , M ′ = G/K , where F is free, then G, being a finitely generated
submodule of F, is finitely presented by Theorem B.10 (g), and now the remark
after Lemma B.5, applied to G and K ⊆ G shows M ′ = G/K to be finitely
presented, which proves the first claim. To prove the rest, let f : M → N be an
R-linear map between finitely presented right R-modules; then im f is a finitely
generated submodule of N and so is finitely presented. If we apply the remark
after Lemma B.5 to im f ∼= M/ker f and coker f ∼= N/im f, we see that ker f
is a finitely generated submodule of M, hence finitely presented, and coker f is
likewise finitely presented. The rest is clear. �

C. Ultrafilters and the ultraproduct theorem

The properties of a mathematical structure are described by statements in which
the variables refer to elements of the structure and are usually quantified, i.e.
they are limited by a universal quantifier ∀ (for all) or an existential quantifier
∃ (there exists). Such statements are called elementary sentences. Any set of
elementary sentences thus defines a class of structures; this is called a universal
class if all sentences have only universal quantifiers. In the text we only need
one result from logic, the ultraproduct theorem, and only a special case of it.
We briefly explain the background.

Let I be a set. A filter C on I is defined as a collection of subsets of I not
including ∅, closed under finite intersections, and such that any subset of I
containing a member of C itself belongs to C. With the help of Zorn’s lemma
it is easy to prove that every filter is contained in a maximal filter, also called
ultrafilter and characterized by the fact that for every subset of I it contains either
the subset or its complement (but not both). Let {Ri |i ∈ I } be a family of rings
and P = �Ri their direct product, with canonical projections πi : P → Ri .
For any ultrafilter F on I, the reduced product �Ri/F, also called ultraproduct,
is defined as the quotient of �Ri given by the rule

aF = 0 if and only if aπi = 0 for all i in some member of F.
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The special case where all the factors are equal is called an ultrapower. The
ultraproduct theorem of logic (L� os’s theorem) states that in an ultraproduct
�Ai/F (of algebras, say) any elementary sentence holds if and only if it holds
in all the factors corresponding to a member of F. We shall only need the
following special case:

Theorem C.1 Any ultraproduct of fields is again a field.

Proof. Given a family of fields Ki (i ∈ I ), let D = �Ki/F be an ultraproduct,
formed with an ultrafilter F on I. Clearly D, as a quotient of the product �Ki

is a ring; we have to show that it is a field. Let a = (ai ) be a non-zero element
of D. Then J = {i |ai 
= 0} ∈ F; we define

a′ =
{

a−1
i if i ∈ J,

0 otherwise.

Then aa′ = a′a = 1, because the components are 1 for all i ∈ J . Thus a has
an inverse and the result follows. �
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Bourbaki, N. 61. Algèbre Commutative, Chapters 1 & 2. Act. Sci. et Ind. 1290. Hermann,
Paris 1961. 534

72. Commutative Algebra, Chapters 1–7. Addison-Wesley, Reading, MA. 1972.
183, 338

Bowtell, A. J. 67a. The multiplicative semigroup of a ring and the embedding of rings
in skew fields. Thesis, London University 1967. 182f., 191, 223

67b. On a question of Malcev. J. Algebra 9 (1967), 126–139. 516
Bowtell, A. J. and Cohn, P. M. 71. Bounded and invariant elements in 2-firs. Proc. Camb.

Phil. Soc. 69 (1971), 1–12. 407
Bray, U. and Whaples, G. 83. Polynomials with coefficients from a division ring. Canad.

J. Math. 35 (1983), 509–515.
Brenner, J. L. 55. Quelques groupes libres de matrices. C. R. Acad. Sci. Paris 241 (1955),

1689–1691. 152
Brungs, H.-H. (see also Bessenroth-Timmerscheidt, C.) 69a. Ringe mit eindeutiger Fak-

torzerlegung. J. reine angew. Math. 236 (1969), 43–66. 214, 223
69b. Generalized discrete valuation rings. Canad. J. Math. 21 (1969), 1404–

1408. 104, 106
71. Overrings of principal ideal domains. Proc. Amer. Math. Soc. 28 (1971), 44–46.
73. Left Euclidean rings. Pacif. J. Math. 45 (1973), 27–33.
74. Right invariant right hereditary rings. Canad. J. Math. 26 (1974), 1186–1191.
76. Rings with a distributive lattice of right ideals. J. Algebra 40 (1976), 392–400.



544 Bibliography and author index

78. Unique factorization in rings with right ACC1. Glasgow Math. J. 19 (1978),
167–171. 223

86. Bezout domains and rings with a distributive lattice of right ideals. Canad. J.
Math. 38 (1986), 286–303.

Brungs, H.-H. and Törner, G. 81. Right chain groups and the generalized semigroup of
divisibility. Pacif. J. Math. 97 (1981), 293–305. 237

84a. Extensions of chain rings. Math. Zeits. 185 (1984), 93–104.
84b. Skew power series rings and derivations. J. Algebra 87 (1984), 368–379.

Burkov, V. D. 81. Derivations of polynomial rings (Russian, English summary). Vestnik
Moscov. Univ. Ser. I Mat. Mekh. 1981, No. 2, 51–55, 87.

Burmistrovich, I. E. 63. On the embedding of rings in skew fields (Russian). Sibirsk.
Mat. Zh. 4 (1963), 1235–1240. 516

Camillo, V. P. (see also Anderson, D. D.) 75. Distributive modules. J. Algebra 36 (1975),
16–25. 231, 261
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Guazzone, S. 62. Sui �-moduli liberi i alcuni teoremi di C. J. Everett, Rend. Sem. Mat.
Univ. Padova 32 (1962), 304–312. 183

Guralnick, R. M., Levy, L. S. and Odenthal, C. 88. Elementary divisor theorem for
non-commutative principal ideal domains. Proc. Amer. Math. Soc. 103 (1988),
1003–1011. 106
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Hasse, H. 28. Über die eindeutige Zerlegung in Primelemente oder in Primhauptideale
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Köthe, G. 518
Kozhukhov, I. B. 82. Free left ideal semigroup rings (Russian). Algebra i Logika 21(1)

(1982), 37–59. 185
Kraft, L. G. 49. A device for quantizing, grouping and coding amplitude modu-

lated pulses. M.S. Thesis, Electrical Engineering Dept., MIT, Cambridge, MA
1949. 408

Krasilnikov, A. N. and Vovsi, S. M. 96. On fully invariant ideals in the free group
algebra. Proc. Amer. Math. Soc. 124 (1996), 2613–2618.

Krob, D. 91. Some examples of formal series used in non-commutative algebra.
Theoret. Comput. Sci. 79 (1991), 111–135.

Krull, W. 28. Zur Theorie der zweiseitigen Ideale in nichtkommutativen Bereichen.
Math. Zeits. 28 (1928), 481–503.

54. Zur Theorie der kommutativen Integritätsbereiche. J. Reine Angew. Math. 192
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Pitarch, A. (see also Cedó, F.) 90. Monoid rings that are firs. Publ. Mat. 34 (1990),

217–221.
Poincaré, H. 105
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Gröbner basis 184
Grothendieck category 276
Grothendieck group 14, 98

Hasse’s criterion 77, 131
HCF, HCLF, HCRF highest common (left,

right) factor 54, 154
height (of lattice element) 521
hereditary ring 108, 183
Hermite ring 19, 58, 87, 115
higher derivation 91
Higman’s trick 311
Hilbert basis theorem 63
Hilbert series 142, 184, 382
HNN-construction 141, 185, 399, 407, 454
hollow matrix 187, 430
homogeneous subalgebra 368f.
homological dimension 532
honest ring homomorphism 287, 446

IBN = invariant basis number 2, 58
idealizer I (–) 33, 58, 488
idempotent matrix 12ff.
image 527
indecomposable 523
independence property of tensor product 534
index of a matrix xviii
inert subring 165
inertia lemma 255f., 292
inertia theorem 165, 184, 453
inessential modification 113, 222, 305
initial object 525
injective hull 531
injective resolution 533
inner derivation 42, 64
inner rank 3, 58
integral closure 332
integral element, extension 332, 338
integral section 517
intersection theorem 328
interval 210, 520
Inv-atom 334
Inv-(in)decomposable element 345
invariant 379
invariant element, monoid, ring 53, 231, 236
invariant factors 84, 254
invariant matrix 335
invariant principal ideal 333
inverse filtration 157
inverse weak algorithm 157, 161, 184
invertible ring 515



Subject index 569

-inverting 37, 411
involution 326
irredundant decomposition 215, 523
isomorphic idempotents 13
isomorphism of factorizations 75, 208
isotone (= order-preserving) map 243
iterated skew polynomial ring 98

J -(skew polynomial) ring 98, 106
Jacobian matrix 405
Jacobson radical 15, 102, 201, 230
join 519
join-irreducible 244, 523
de Jonquières automorphism 397
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see-saw lemma 252
semi-Euclidean ring 85
semifir 113, 183
semifree module 49, 122
semihereditary ring 108, 183
semimaximal left ideal 37
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semiprime matrix ideal 434f.
semiprime ring 511
Serre’s conjecture 297
shear 397
short exact sequence 528
signed permutation matrix xvii, 159
similar elements, matrices 27, 189
similar right ideals 76f., 186
simple N-value 496
singular kernel 423
singularity support 442, 481
skew Laurent polynomial 86
skew polynomial 61f., 105f.
skew power series ring 248
skew rational function field 63
Smith normal form 80
source 525
spatial module 293
special module 269
specialization 420
specialization lemma 479f.
spectral space 443
split idempotent 24, 288
square-free module 233
stabilized matrix 300
stable matrix atom 23
stable general linear group 494
stable rank 5, 300
stably associated 28, 189
stably biassociated 456
stably free module 15, 19
stably full 5, 301
stably honest homomorphism 451
standard basis 10
standard form for GE2 146, 401
strict operation 461
strictly bordered matrix 461
strictly positive (negative) module 273
strong DFL-property 234, 332
strong E2-ring 117, 155
strong G-ring 117
strong prime ideal 104, 206
strong v-dependence 126, 184
strongly bound module 270
strongly regular ring 454, 515
subcategory 525
subdirectly (ir)reducible 524
subfunctor 529
subhomomorphism 420
suffix (set) 361
support 93

Sylvester domain 291, 450
symmetric ring 514

tame automorphism 398
target 525
TC-ring 224
tensor K -ring 134
tensor product 534
tertiary radical 350
three-by-three lemma 528
topological fir 160
Tor-functor 536
Tor-simple 195
torsion class, torsion-free class 264
torsion element 48, 77f.
torsion-free module 48
torsion module 192, 273
torsion theory 264
total divisor 79, 106
total inertia 165, 184
totally coprime elements 344, 471
totally unbounded 253, 344
totally uncleft 221
trace form, map 387
transcendental matrix 252
transduction 133, 136, 184
transfinite degree-function 171
transfinite weak algorithm 172, 185
transfinitely Euclidean 68, 105
translation 396
translation ring 65
transpose of a module 269, 329
triangular automorphism 397
trivial filtration 125
trivial(izable) relation 113f.
truncated filtered ring 137
type of a non-IBN ring 4

UF-monoid 52f., 334
UFD unique factorization domain 52, 75,

192
UGN unbounded generating number 2, 58
ultrafilter, -power, -product 538
unbound (n-unbound) module 264
uncleft 220
unfactorable matrix 307
uniform module 51
unimodular row xviii, 20
unique factorization of invariant elements

334f.
unique remainder algorithm 69, 99, 106
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unit-closed, -closure 373, 395, 404
unit-linear dependence 118
unitriangular matrix 159
universal denominator 470
universal derivation 66
universal derivation bimodule 145
universal field of fractions 421
universal group 38
universal localization 422ff.
universal object 530
universal R-field 421
universal �-inverting homomorphism,

ring 422
upper segment 243, 370

v-dependence 125
v-generator 130
V -ring 224
valuation (ring) 337, 498f.
value of a display 437

weak algorithm (n-term) 126, 183, 380f.
weak (global) dimension 536
weak v-basis 129, 160
weakly (n-)finite 2, 58
weakly semihereditary 109, 183
weight of a subset 361
Weyl algebra 64, 87, 152, 199
WF = weakly finite 2, 58
Whitehead group 495
Whitehead’s lemma 498, 500
wild automorphism 398

X -inner, -outer 387

Young tableau 382

zero-delay code 361
zero-divison xvii
zero object 325
Zero ring xvi
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