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conditions for asymptotic and uniform stability using the auxiliary 
vector Lyapunov functions and explore the polystability of the motion 
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Preface

The investigation of nonlinear systems with a small parameter is attributable
to a lot of modern problems of mechanics, physics, hydrodynamics, electrody-
namics of charge-particle beams, space technology, astrodynamics, and many
others. The key problem in solution of various applied problems is that of the
stability of solutions of systems of equations in various senses. The methods
of the classical stability theory, if appropriately adapted, may be applied to
systems containing a small parameter.

The progress in solving problems of the theory of stability and nonlinear
perturbations is associated with finding ways, around significant difficulties
connected with the growth of the number of variables characterizing the state
of a system, which may include critical variables. In addition, the presence
of critical variables may result in a situation when not only the first ap-
proximation cannot solve a stability problem, but also the further nonlinear
approximations below some order cannot solve it.

New approaches recently developed for systems with a small parameter
include the following:

A. The development of the direct Lyapunov method for the study of the
boundedness and stability of systems with a finite number of degrees of free-
dom with respect to two different measures.

B. The analysis of stability on the basis of the combination of the con-
cepts of the direct Lyapunov method and the averaging method of nonlinear
mechanics for some classes of linear and nonlinear systems.

C. The generalization of the direct Lyapunov method on the basis of the
concepts of the comparison principle and the averaging method of nonlinear
mechanics.

D. The development of the method of matrix-valued Lyapunov functions
and its application in the study of stability of singularly perturbed systems.

The core subject of investigation in this book is the systems with a small
parameter, including nonlinear systems of weakly connected equations. Here
approaches A –D are applied and developed when solving specifically defined
problems.

The monograph consists of five chapters, and their content is outlined
below.

The first chapter provides description of the mathematical foundations of

xi



xii

the methods of qualitative analysis of systems with small parameter. Namely,
it contains the necessary information from the theory of integral and differ-
ential inequalities, the comparison technique, and the main theorems of the
direct Lyapunov method. In this chapter, stability definitions for systems with
small parameter are discussed as well as their relationship with the classical
Lyapunov definitions.

The second chapter contains the results of the development of new ap-
proaches to the problem of the boundedness of motion of weakly connected
nonlinear systems. The direct Lyapunov method and the comparison tech-
nique are applied in this chapter to establish the conditions for the bounded-
ness of nonlinear systems with respect to two different measures. The results of
the analysis of the dynamical behavior of an individual subsystem in a complex
system of weakly connected equations are given, which were obtained via the
application of strengthened Lyapunov functions. The uniform boundedness
and the uniform ultimate boundedness are in terms of the vector Lyapunov
function and the theory of M -matrices. The final section of the chapter deals
with the problem of the boundedness of solutions of the Lienard oscillator with
weak damping, the boundedness of solutions of the Lurie–Postnikov system,
and the boundedness of solutions for nonlinear systems with weak nonlinear
constraints.

In the third chapter, the application of the direct Lyapunov method and
the comparison technique is set forth for solving the problem of stability of
solutions of a weakly connected system of differential equations. The anal-
ysis is carried out under different assumptions on the connection functions
of subsystems. The sufficient conditions for asymptotic and uniform asymp-
totic stability were established based on the auxiliary vector function. Also, a
general problem on polystability of motion of a nonlinear system with small
parameter is formulated. In the section dealing with applications, some prob-
lems of the automatic control theory are considered.

The fourth chapter contains the description of one general approach to
the study of stability of solutions for nonlinear systems with small perturbing
forces. This approach is based on the generalization of the direct Lyapunov
method combined with the asymptotic method of nonlinear mechanics. In
addition, generalizations of the main Lyapunov theorems on stability and
Chetayevs theorem on instability for the class of systems under considera-
tion are given. Due to the difficulties arising in construction of solutions for
a degenerate system, an approach associated with the substitution for its ex-
act solution by the solution of a limiting system is discussed in the chapter.
Systems of weakly connected oscillators are considered as applications.

The fifth chapter is dedicated to the analysis of stability of singularly per-
turbed systems. For this purpose the generalization of the direct Lyapunov
method on the basis of matrix-valued functions is applied. The proposed ap-
proach enables one to reduce the requirements to the dynamic properties of
a singular system and the boundary layer and obtain new conditions for the
asymptotic stability of the initial system. The proposed approach is applied



xiii

in the analysis of stability of large-scale singularly perturbed systems. As an
engineering application, the singularly perturbed Lurie–Postnikov system is
considered.

The fifth chapter gives an account of results of the analysis of hybrid sys-
tems with weakly connected subsystems on the basis of the generalization of
the direct Lyapunov method. Both vector and matrix-valued auxiliary func-
tions are applied here.

Thus, this book contains the description of the main approaches to the
analysis of stability of solutions of systems with a small parameter, which
have been developed for the last four decades. Those approaches do not ex-
haust the given problem, but they may help solve many applied problems
of the modern technique and technologies. In addition, their certain “incom-
pleteness” leaves room for further search of more effective approaches in this
line of investigation.

The Member of the Academy of Sciences Yu. A. Mitropolsky has more
than once drawn the authors’ attention to the necessity of the development of
methods of qualitative analysis of systems with a small parameter that could
be used in engineering. The proposed approaches provide a kind of answer
to this problem in the context of the modern development of the qualitative
theory of equations.

The main results given in this monograph were obtained in the department
of stability of processes of the Institute of Mechanics of the National Academy
of Sciences of Ukraine in the period of 1978 – 2010 in the frame of the depart-
ment’s subject of scientific investigation: the development of qualitative and
analytical methods of the analysis of dynamics and stability of functioning of
complex nonlinear and controllable systems, including systems with structural
and stochastic perturbations, and with aftereffect.

This subject is the extension and further development of some lines of
investigation conducted in the institute by Member of the Academy of Sciences
N.M. Krylov and N.N. Bogolyubov1.

In the process of the above investigation, some issues were discussed with
Professors T.A. Barton, V.I. Zubov, V. Lakshmikantham, V.M. Starzhinsky,
D.D. Šiljak, and others.

Separate parts of this book were written by: A.A. Martynyuk (Chapters
1–3, 5); L.N. Chernetskaya (Chapters 1, 4), and V.A. Martynyuk (Chapters 2,
3). The chapters attributed to two authors have been written by both of them
together.

1See the bibliography of the works of N.N.Bogolyubov in nonlinear mechanics in the
article of A. A.Martynyuk, E. F. Mishchenko, A. M. Samoilenko, and A. D. Sukhanov, Aca-
demician N.N.Bogoliubov, Nonlinear Dynamics and Systems Theory, 9(2) (2009) 109–115.
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Chapter 1

Preliminaries

1.1 Introductory Remarks

For the mathematical simulation of many processes of the real world, sys-
tems of nonlinear differential equations are used which contain a small positive
parameter µ participting in the determination of the time scale of the process.
In general, the equations have the form

dy

dt
= Y (t, y, µ), y(t0) = y0, (1.1.1)

where y(t) ∈ Rn is the vector of the state of a system at a point of time t ∈ R,
R = (−∞,+∞), t0 ∈ R+, Y : R × Rn ×M → Rn, M = (0, 1], µ is a small
parameter.

Section 1.2 contains Gronwall-Bihari fundamental inequalities, differential
and integral inequalities applied in the book.

In Section 1.3, theorems on the dependence of solutions of a system of dif-
ferential equations on the parameter µ are formulated. Here it is also demon-
strated that the application of a finite majorizing equation instead of a differ-
ential equation essentially improves the estimate of the radius of convergence
of series, which represent a solution of a system in powers of the parameter.
In addition, the well-known theorems of extendability of solutions are quoted,
as well as the Poincare theorem on presentation of solutions in powers of a
small parameter.

In Section 1.4, the original Lyapunov definitions of various types of stability
of motion are given.

Section 1.5 contains the basic theorems of Lyapunov direct method on the
basis of a scalar Lyapunov function.

Section 1.6 contains the basic theorems of the principle of comparison with
the scalar and vector Lyapunov functions.

In the concluding section, the definitions of the main types of µ-stability
of solutions of a system with a small parameter are given. The connection
between Lyapunov stability and µ-stability is demonstrated with a number of
specific examples.

Thus, Chapter 1 contains a set of known and new results which constitute
the basis for the mathematical analysis of solutions of systems of differential
equations with a small parameter.

1



2 Weakly Connected Nonlinear Systems

1.2 Fundamental Inequalities

1.2.1 Gronwall type inequalities

To begin with, we take one of the simplest integral inequalities that are
used most often.

Theorem 1.2.1 Let the functions m, v ∈ C(R+, R+). Assume that for
some c ≥ 0 the following inequality holds:

m(t) ≤ c+

t
∫

t0

v(s)m(s) ds, t ≥ t0 ≥ 0. (1.2.1)

Then

m(t) ≤ c exp

[

t
∫

t0

v(s) ds

]

, t ≥ t0. (1.2.2)

Proof Denote the right-hand part of the inequality (1.2.1) by z(t). Here
z(t0) = c, m(t) ≤ z(t), and z′(t) = v(t)m(t) ≤ v(t)z(t) at all t ≥ t0. Since

z′(t) exp

(

−
t
∫

t0

v(s) ds

)

− z(t)v(t) exp

(

−
t
∫

t0

v(s) ds

)

=
d

dt

(

z(t) exp

(

−
t
∫

t0

v(s) ds

))

,

then

d

dt

(

z(t) exp

(

−
t
∫

t0

v(s) ds

))

≤ 0.

Integrating this inequality from t0 to t, obtain

z(t) exp

(

−
t
∫

t0

v(s) ds

)

− z(t0) ≤ 0.

Taking into account that z(t0) = c and m(t) ≤ z(t), we obtain the inequality
(1.2.2) at any c ≥ 0. Theorem 1.2.1 is proved.

The above classical proof of Theorem 1.2.1 holds much significance. How-
ever, we can prove this theorem by using a linear differential inequality and



Preliminaries 3

a formula of variation of constants. For this purpose, consider a more general
case.

Theorem 1.2.2 Let the functions m, v, h ∈ C(R+, R+) and

m(t) ≤ h(t) +

t
∫

t0

v(s)m(s) ds, t ≥ t0. (1.2.3)

Then

m(t) ≤ h(t) +

t
∫

t0

[v(s)h(s)] exp

(

t
∫

s

v(ξ) dξ

)

ds, t ≥ t0. (1.2.4)

If the function h is differentiable, then

m(t) ≤ h(t0) exp

(

t
∫

t0

v(s) ds

)

+

t
∫

t0

h′(s) exp

(

t
∫

s

v(ξ) dξ

)

ds, t ≥ t0.

(1.2.5)

Proof To prove the inequality (1.2.4), assume that p(t) =
t
∫

t0

v(s)m(s) ds,

so that p(t0) = 0 and

p′(t) = v(t)m(t), t ≥ t0.

Since m(t) ≤ h(t) + p(t), then

p′(t) ≤ v(t)p(t) + v(t)h(t), t ≥ t0.

Assuming q(t) = p(t) exp
(

−
t
∫

t0

v(s) ds
)

, we see that q(t0) = 0 and

q′(t) = [p′(t) − v(t)p(t)] exp

(

−
t
∫

t0

v(s) ds

)

≤ h(t)v(t) exp

(

−
t
∫

t0

v(s) ds

)

,

whence

q(t) ≤
t
∫

t0

h(s)v(s) exp

(

−
t
∫

t0

v(ξ) dξ

)

ds, t ≥ t0.

As a result, obtain the inequality

p(t) ≤
t
∫

t0

v(s)h(s) exp

(

t
∫

s

v(ξ) dξ

)

ds, t ≥ t0,
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which directly implies (1.2.4).
To prove the inequality (1.2.5), denote the right-hand part of the inequality

(1.2.3) by p(t), so that

p′(t) = v(t)m(t) + h′(t), p(t0) = h(t0).

The above expression, in view of (1.2.3), results in the linear differential in-
equality

p′(t) ≤ v(t)p(t) + h′(t), p(t0) = h(t0).

Now it is easy to obtain

p(t) ≤ h(t0) exp

(

t
∫

t0

v(s) ds

)

+

t
∫

t0

h′(s) exp

(

t
∫

s

v(ξ) dξ

)

ds, t ≥ t0,

hence the estimate (1.2.5).

At first, the estimates (1.2.4) and (1.2.5) are different. In actual truth,
they are equivalent. Thus, integrating the second summand in the right-hand
part of the inequality (1.2.5) in parts, obtain

t
∫

t0

h′(s) exp

(

t
∫

s

v(ξ) dξ

)

ds = h(t) − h(t0) exp

(

t
∫

t0

v(ξ) dξ

)

+

+

t
∫

t0

h(s)v(s) exp

(

t
∫

s

v(ξ) dξ

)

ds,

which, taking into account the estimate (1.2.5), gives (1.2.4). Thus, it is obvi-
ous that the assumption of the differentiability of the function h(t) does not
give anything new.

If we assume in Theorem 1.2.2 that the function h is positive and nonde-
crescent, then the estimate (1.2.4) can be transformed into

m(t) ≤ h(t) exp

(

t
∫

t0

v(s) ds

)

, t ≥ t0. (1.2.6)

Assuming w(t) =
m(t)

h(t)
, from (1.2.3) obtain

w(t) ≤ 1 +

t
∫

t0

v(s)w(s) ds, t ≥ t0.

Hence, according to Theorem 1.2.1, obtain w(t) ≤ exp
( t
∫

t0

v(s) ds
)

, which

implies (1.2.6).
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The estimate (1.2.6) can be obtained from the inequality (1.2.4), since

h(t) +

t
∫

t0

v(s)h(s) exp

(

t
∫

t0

v(ξ) dξ

)

ds

≤ h(t)

[

1 +

t
∫

t0

v(s) exp

(

t
∫

s

v(ξ) dξ

)

ds

]

= h(t)

(

1 −
t
∫

s

eσ(s) dσ(s)

)

= h(t) exp

(

t
∫

t0

v(ξ) dξ

)

, t ≥ t0.

Example 1.2.1 Let the function m ∈ C(R+, R+) and

m(t) ≤
t
∫

t0

(a+ bm(s)) ds, t ≥ t0,

where a ≥ 0 and b > 0. Then

m(t) ≤ a

b

[

exp(b(t− t0)) − 1
]

, t ≥ t0.

Example 1.2.2 Let the function m ∈ C(R+, R+) and

m(t) ≤ a+

t
∫

t0

(b+ cm(s)) ds, t ≥ t0,

where a, b ≥ 0 and c > 0. Then

m(t) ≤ b

c

[

exp(c(t− t0)) − 1
]

+ a exp(c(t− t0)), t ≥ t0.

Example 1.2.3 Let the function m ∈ C(R+, R+) and

m(t) ≤ et + b

t
∫

t0

m(s) ds, t ≥ t0

at b > 0. Then
m(t) ≤ exp[(b+ 1)t− bt0], t ≥ t0.

Example 1.2.4 Let the function m ∈ C(R+, R+) and let for t ≥ t0 the
following inequality hold:

m(t) ≤ m(t0) exp(−r(t − t0)) +

t
∫

t0

[exp(−r(t− s))](am(s) + b) ds,
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where r, a, b ≥ 0 and r − a > 0. Then for t ≥ t0

m(t) ≤ m(t0) exp[−(r − a)(t− t0)] +
b

r − a
[1 − exp(−(r − a)(t− t0))].

Now we will consider integral inequalities with a separable kernel, as they
may also be reduced to linear differential inequalities.

Theorem 1.2.3 Let the functions m,h, q, v ∈ C(R+, R+) and the follow-
ing inequality be satisfied:

m(t) ≤ h(t) +

t
∫

t0

q(t)v(s)m(s) ds, t ≥ t0. (1.2.7)

Then

m(t) ≤ h(t) + q(t)

t
∫

t0

v(s)h(s) exp

(

t
∫

s

v(ξ) dξ

)

ds, t ≥ t0. (1.2.8)

Proof Assume that p(t) =
t
∫

t0

v(s)m(s) ds, so that p(t0) = 0 and p′(t) =

v(t)m(t). Since m(t) ≤ h(t) + q(t)p(t), obtain

p′(t) ≤ v(t)q(t)p(t) + v(t)h(t), t ≥ t0,

hence

p(t) ≤
t
∫

t0

v(s)h(s) exp

(

t
∫

s

v(ξ)q(ξ) dξ

)

ds, t ≥ t0.

Hence follows the inequality (1.2.8).

Corollary 1.2.1 Let the functions m,h, gi, vi ∈ C(R+, R+), i = 1,
2, . . . , n, and

m(t) ≤ h(t) +

n
∑

i=1

gi(t)

t
∫

t0

vi(s)m(s) ds, t ≥ t0.

Then

m(t) ≤ h(t) +G(t)

t
∫

t0

V (s)h(s) exp

(

t
∫

s

V (ξ)G(ξ) dξ

)

ds, t ≥ t0,

where G(t) = sup
i
gi(t) and V (t) =

n
∑

i=1

vi(t).
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1.2.2 Bihari type inequalities

The theory of Gronwall integral inequalities considered in Subsection 1.2.1
may be applied to a separate type of nonlinear integral inequality known as
Bihari inequalities. In this section you will find some results related to such
inequalities, which correspond to the results obtained in Subsection 1.2.1.

Theorem 1.2.4 Let the functions m, v ∈ C(R+, R+), g ∈ C((0,∞),
(0,∞)) and let g(u) be nondecrescent with respect to u. Assume that for
some c > 0

m(t) ≤ c+

t
∫

t0

v(s)g(m(s)) ds, t ≥ t0 > 0. (1.2.9)

Then the following inequality holds:

m(t) ≤ G−1

[

G(c) +

t
∫

t0

v(s) ds

]

, t0 ≤ t < T,

where G(u) − G(u0) =
u
∫

u0

ds

g(s)
, G−1(u) is the reverse function to G(u) and

T = sup
{

t ≥ t0 : G(c) +
t
∫

t0

v(s)ds ∈ domG−1
}

.

Proof Denote the right-hand part of the inequality (1.2.9) by p(t) so that
p(t0) = c and p′(t) = v(t)g(m(t)). Since g is nondecrescent with respect to u
andm(t) ≤ p(t), then p′(t) ≤ v(t)g(p(t)), p(t0) = c. Integrating this inequality
from t0 to t, obtain

G(p(t)) −G(c) =

p(t)
∫

c

dz

g(z)
≤

t
∫

t0

v(s) ds

and therefore

m(t) ≤ p(t) ≤ G−1

[

G(c) +

t
∫

t0

v(s) ds

]

, t0 ≤ t < T.

The function g ∈ C[R+, R+] is said to be subadditive if g(u+ v) ≤ g(u) +
g(v), and superadditive if the above inequality has the opposite sign.

Theorem 1.2.5 Let the functions m, v, h ∈ C(R+, R+), g ∈ C((0,∞),
(0,∞)), let the function g(u) be nondecrescent, and let the following inequality
hold:

m(t) ≤ h(t) +

t
∫

t0

v(s)g(m(s)) ds, t ≥ t0.
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Then:

(a) if the function g(u) is subadditive, then

m(t) ≤ h(t) +G−1

[

G(c) +

t
∫

t0

v(s) ds

]

, t0 ≤ t ≤ T0 < T, (1.2.10)

where G, G−1, and T have the same values as in Theorem 1.2.4, c =
T0
∫

t0

v(s)g(h(s)) ds ;

(b) if the function h is not increscent, then

m(t) ≤ −h(t0) +G−1

{

G[h(t0)] +

t
∫

t0

v(s) ds

}

, t0 ≤ t < T. (1.2.11)

Proof Assuming that p(t) =
t
∫

t0

v(s)g(m(s)) ds and taking into account the

properties of g, obtain p(t0) = 0 and

p′(t) ≤ v(t)g(p(t)) + v(t)g(h(t)).

Note that the function σ(t) =
t
∫

t0

v(s)g(h(s)) ds is nondecrescent, and hence,

assuming c = σ(T0), at some T0, t0 ≤ T0 < T , obtain

p(t) ≤ c+

t
∫

t0

v(s)g(p(s))ds, t0 ≤ t ≤ T0 < T.

According to Theorem 1.2.4, the above expression implies the estimate
(1.2.10).

If the function h is not increscent, then the definition of p(t) implies that
g(m(t)) ≤ g(h(t0) + p(t)). Assuming h(t0) + p(t) = w(t), obtain

w(t) = p′(t) = v(t)g(m(t)) ≤ v(t)g(w(t)), w(t0) = h(t0).

From the above equation, according to Theorem 1.2.9, we arrive at the esti-
mate (1.2.11).

The estimate (1.2.10) may also be obtained in the case when in Theorem
1.2.5 the function g(u) is assumed to be nonincrescent and superadditive with
respect to u.

Using Theorem 1.2.2, the following result may be proved.
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Theorem 1.2.6 Let the functions m,h ∈ C(R+, R+), g ∈ C((0,∞),
(0,∞)) and the function g(u) be nondecrescent with respect to u. Assume
that K ∈ C[R2

+, R+], there exists a function Kt(t, s) which is continuous and
nonnegative, and at t ≥ t0 the following inequality holds:

m(t) ≤ h(t) +

t
∫

t0

K(t, s)g(m(s)) ds.

Then:

(a) if the function g is subadditive, then

m(t) ≤ h(t) + v2(t) +G−1

[

G(c) +

t
∫

t0

v1(s) ds

]

, t0 ≤ t ≤ t0 < T,

where G, G−1 and T have the same values as in Theorem 1.2.4,

c =

T0
∫

t0

v1(s)g(v2(s)) ds, v1(t) = K(t, t) +

t
∫

t0

Kt(t, s) ds,

v2(t) = K(t, t)h(t) +

t
∫

t0

Kt(t, s)g(h(s)) ds;

(b) if the function h is nondecrescent, then

m(t) ≤ h(t) − h(t0) +G−1

[

G(h(t0)) +

t
∫

t0

v1(s) ds

]

, t0 ≤ t < T.

A typical nonlinear integral inequality that can be reduced to Theorem
1.2.4. has the following form.

Theorem 1.2.7 Let the functions m, v ∈ C(R+, R+), w ∈ C(R2
+, R+)

and let the following inequalities hold:

m(t) ≤ c+

t
∫

t0

{v(s)m(s) + w[s,m(s)]} ds, t ≥ t0, (1.2.12)

where c > 0. Assume that

w

(

t, z exp

(

t
∫

t0

v(s) ds

))

≤ λ(t)g(z) exp

(

t
∫

t0

v(s) ds

)

, (1.2.13)
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where λ ∈ C(R+, R+), g ∈ C((0,∞), (0,∞)) and the function g(u) is decres-
cent with respect to u.

Then

m(t) ≤ G−1

[

G(c) +

t
∫

t0

λ(s) ds

]

exp

(

t
∫

t0

v(s) ds

)

, t0 ≤ t < T, (1.2.14)

G, G−1, and T are the same as in Theorem 1.2.4.

Proof Let the right-hand part of the inequality (1.2.12) be equal to

p(t) exp
( t
∫

t0

v(s) ds
)

, so that, using (1.2.12) and (1.2.13), obtain

[p′(t) + v(t)p(t)] exp

(

t
∫

t0

v(s) ds

)

= v(t)m(t) + w(t,m(t))

≤ [v(t)p(t) + λ(t)g(m(t))] exp

(

−
t
∫

t0

v(s) ds

)

exp

(

t
∫

t0

v(s) ds

)

.

Since the function g is nondecrescent and m(t) ≤ p(t) exp
( t
∫

t0

v(s) ds
)

, obtain

p′(t) ≤ λ(t)g(p(t)), p(t0) = c.

Hence according to Theorem 1.2.4 obtain

p(t) ≤ G−1

[

G(c) +

t
∫

t0

λ(s) ds

]

, t0 ≤ t < T,

which proves the estimate (1.2.14).

Example 1.2.5 Let the functions m, v, h ∈ C(R+, R+), so that at c > 0,
0 ≤ p < 1

m(t) ≤ c+

t
∫

t0

v(s)m(s) ds +

t
∫

t0

h(s)(m(s))pds, t ≥ t0.

Then at t ≥ t0

m(t) ≤
{

cq + q

t
∫

t0

h(s) exp

[

q

s
∫

t0

v(ξ) dξ

]

ds

}1/q

exp

[

t
∫

t0

v(s) ds

]

,

where q = 1 − p.
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If the kernel K(t, s) in Theorem 1.2.6 is such that Kt(t, s) ≤ 0, then in
the frame of this theorem one only can obtain a rough estimate. However, the
following theorem provides the possibility to obtain a better estimate.

Theorem 1.2.8 Assume that m ∈ C(R+, R+), g ∈ C((0,∞), (0,∞)), the
function g(u) is nondecrescent with respect to u, and at some c > 0, α > 0

m(t) ≤ c+

t
∫

t0

e−α(t−s)g(m(s)) ds, t ≥ t0. (1.2.15)

Then

m(t) ≤ (1 + λ0)c, t ≥ t0,

where λ0 > 0 satisfies the relations

g((1 + λ0)c) − αcλ0 = 0, g((1 + λ)c) − αcλ > 0, λ ∈ [0, λ0). (1.2.16)

Proof Let the right-hand part of the inequality (1.2.15) be equal to p(t),
so that p(t0) = c and

p′(t) = g(m(t)) − α(p(t) − c) ≤ g(p(t)) − αp(t) + αc. (1.2.17)

Transforming p(t) = (1 + z(t))c and τ = αt, it is easy to reduce (1.2.17) to
the form

dz

dτ
≤ 1

αc
g((1 + z)c) − z, z

(

τ0
α

)

= 0.

We state that z
( τ

α

)

≤ λ0, τ ∈ [τ0,∞). If this is not so, then one can find

a τ∗ <∞ such that z
(τ∗

α

)

= λ0 and z
( τ

α

)

≤ λ0, τ ∈ [τ0, τ
∗]. From (1.2.17)

it is clear that
1

αc
g((1 + λ)c) < λ0 for all λ ∈ [0, λ0]. Hence

∞ =

λ0
∫

0

ds

λ0 − s
≤

z( τ∗

α
)

∫

0

ds
1
αcg((1 + s)c) − s

≤ τ∗ − τ0,

which is a contradiction. Therefore, z
( τ

α

)

≤ λ0 at all τ ∈ [τ0,∞), which in

its turn results in the inequality

m(t) ≤ p(t) ≤ (1 + λ0)c, t ≥ t0.
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1.2.3 Differential inequalities

It is known that the theory of differential equations plays a key role in the
study of qualitative behavior of solutions of differential equations of different
types. This theory is helpful when one uses integral and integrodifferential
equations, since in numerous cases their study may be reduced to the study
of differential inequalities.

Consider the differential system

du

dt
= g(t, u), u(t0) = u0, (1.2.18)

where g ∈ C(R+ ×Rn, Rn).

The function g is called quasimonotone nondecrescent, if from the compo-
nent-wise inequality x ≤ y and xi = yi at some i, 1 ≤ i ≤ n, it follows that
gi(t, x) ≤ gi(t, y) at any t ≥ t0.

Now we will consider the concept of an extremum solution of the system
(1.2.18).

Let r(t) be a solution of the system (1.2.18), existing on some interval
J = [t0, t0 + a]. Then r(t) is called the maximum solution of the system
(1.2.18), if for each solution u(t) of the system (1.2.18), existing on J , the
following inequality holds:

u(t) ≤ r(t), t ∈ J. (1.2.19)

The minimum solution is determined in a similar way, but the sign in the
inequality (1.2.19) is changed to the opposite sign.

Surely, inequalities between vectors are understood componentwise.

For our study, the following known result is required the proof of which
can be found in Walter [1].

Theorem 1.2.9 Let the function g ∈ C(E,Rn), where E is an open
set (t, u) in Rn+1 and g(t, u) is a quasimonotone nondecrescent function with
respect to u for each t.

Then:

(a) if (t0, u0) ∈ E, then the system (1.2.18) has an extremum solution which
can be extended to the boundary E;

(b) if J is an interval of existence of the maximum solution r(t) of the
system (1.2.18) on any compact interval [t0, T ], then there exists ε0 > 0
such that at any 0 < ε < ε0 solutions u(t, ε) of the system

du

dt
= g(t, u) + ε, u(t0) = u0 + ε (1.2.20)

exist on the interval [t0, T ] and lim
ε→0

u(t, ε) = r(t) uniformly on [t0, T ].
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Lemma 1.2.1 Let the functions v, w ∈ C(J,R) and for some fixed Dini
derivative Dv(t) ≤ w(t), t ∈ J \ S, where S is a countable subset of J .

Then D v(t) ≤ w(t) on J .

The following result of comparison in the scalar form contains the key
concept of the inequality theory.

Theorem 1.2.10 Let the function g ∈ C(R+ ×R+, R) and let r(t) be the
maximum solution of the system (1.2.18), which exists on the interval [t0,∞).
Assume that m ∈ C(R+, R+) and Dm(t) ≤ g(t,m(t)), t ≥ t0, where D is any
fixed Dini derivative.

Then the inequality m(t0) ≤ u0 implies that m(t) ≤ r(t) at all t ≥ t0.

Proof According to Lemma 1.2.1, obtain

D m(t) ≤ g(t,m(t)), t ≥ t0,

where D m(t) = lim inf{[m(t + θ) − m(t)]θ−1 : θ → 0−}. Let t0 < T < ∞.
According to Theorem 1.2.9, the solution u(t, ε) of the system (1.2.20) exists
on the interval [t0, T ] at all sufficiently small ε > 0 and lim

ε→0
u(t, ε) = r(t)

uniformly on [t0, T ]. Hence it suffices to show that

m(t) < u(t, ε), t ∈ [t0, T ]. (1.2.21)

If the inequality (1.2.21) does not hold, then there exists such a value t1 ∈
[t0, T ], that

m(t1) = u(t1, ε), m(t) ≥ u(t, ε), t ∈ [t0, t1].

Hence obtain
D m(t1) ≥ u′(t1, ε),

which, in its turn, results in the contradiction

g(t1,m(t1)) ≥ D m(t1) ≥ u′(t1, ε) = g(t1, u(t1, ε)) + ε.

Therefore the inequality (1.2.21) holds, which completes the proof of the the-
orem.

To avoid the repetition of the proof, we have not considered the lower esti-
mate for m(t), which can be obtained by the change of signs in the inequalities
for opposite signs. To continue the discussion we will need the following the-
orem which contains the lower estimate for m(t).

Theorem 1.2.11 Let the function g ∈ C(R+ × R+, R) and let ρ(t) be
the minimum solution of the system (1.2.18) existing on [t0,∞). Assume that
m ∈ C(R+, R+) and Dm(t) ≥ g(t,m(t)), t ≥ t0, where D is any fixed Dini
derivative.

Then the inequality m(t0) ≥ u0 implies that m(t) ≥ ρ(t) at all t ≥ t0.
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The proof of the above theorem is similar to that of Theorem 1.2.10. In-
stead of solutions of the system (1.2.20), here we consider the solutions v(t, ε)
of the system

v′ = g(t, v) − ε, v(t0) = u0 − ε

for a sufficiently small ε > 0 on an interval [t0, T ], and lim
ε→0

v(t, ε) = ρ(t)

uniformly on [t0, T ]. To complete the proof, it is sufficient to see that

m(t) > v(t, ε), t ∈ [t0, T ].

When using Theorem 1.2.10, it is necessary that the function g should be
quasimonotone nondecrescent, which is a necessary condition for the existence
of extremum solutions of the system (1.2.18). Thus, we obtain the following
extension of Theorem 1.2.10.

Theorem 1.2.12 Let g ∈ C(R+ × Rn
+, R

n), g(t, u) be a quasimonotone
function, nondecrescent with respect to u for each t, and let r(t) be the max-
imum solution of the system (1.2.18), existing on [t0,∞). Assume that the
inequality Dm(t) ≤ g(t,m(t)), t ≥ t0, holds for a fixed Dini derivative.

Then, from the inequality m(t0) ≤ u0, it follows that m(t) ≤ r(t) at all
t ≥ t0.

As noted above, the inequalities in Theorem 1.2.12 are componentwise.
Instead of considering those inequalities between vectors, we will use the

concept of a cone in order to introduce partial ordering on Rn and prove
Theorem 1.2.12 in such a frame. Obviously, such an approach is more general
and used for cone-valued functions. Therefore, the extension of the theory of
differential inequalities is a result corresponding to Theorem 1.2.12 in arbitrary
cones.

The subset K ⊂ Rn is called a cone if it has the following properties:

λK ⊂ K, λ ≥ 0, K +K ⊂ K,

K = K, K ∩ {−K} = {0}, K0 6= ∅,
(1.2.22)

where K is the closure of K, K0 is the interior of the cone K.
Let ∂K denote the boundary of the cone K. By the cone K the ordering

relationship in Rn is introduced, which is determined by the relations

x ≤ y if and only if y − x ∈ K,

x < y if and only if y − x ∈ K0.
(1.2.23)

The set K∗, defined as K∗ = {ϕ ∈ Rn : ϕ(x) ≥ 0 at all x ∈ K}, where
the function ϕ(x) denotes the scalar product 〈ϕ, x〉 and is called an adjoint
cone, satisfies the conditions (1.2.22).

Note that K = (K∗)∗, x ∈ K0, if and only if ϕ(x) > 0 at all ϕ ∈ K∗
0 , and

x ∈ ∂K, if and only if ϕ(x) = 0 at some ϕ ∈ K∗
0 , where K0 = K \ {0}.



Preliminaries 15

Now we can give the definition of the property of quasimonotonicity with
respect to the cone K.

The function f ∈ C[Rn, Rn] is quasimonotone nondecrescent with respect
to the cone K, if from x ≤ y and ϕ(x− y) = 0 at some ϕ ∈ K∗

0 it follows that
ϕ(f(x) − f(y)) ≤ 0.

If the function f is linear, that is, f(x) = Ax, where A is an (n × n)-
matrix, then the property of quasimonotonicity of the function f means that
the conditions x ≥ 0 and ϕ(x) = 0 at some ϕ ∈ K∗

0 follow from ϕ(Ax) ≥ 0.
If K = Rn

+, then the quasimonotonicity of f amounts to the above defini-
tion.

For an ordinary cone Theorem 1.2.9 is true. Note that it is possible to prove
the existence of extremum solutions for differential equations in a Banach
space as well. Now we will prove the result of comparison with respect to the
cone K.

Theorem 1.2.13 Let the vector function g ∈ C(R+ × Rn, Rn) and
g(t, u) be a quasimonotone function, nondecrescent with respect to u relative
to the cone K for each t ∈ R+. Let r(t) be the maximum solution of the system
(1.2.18) with respect to the cone K existing on the interval [t0,∞), and for
t ≥ t0

D m(t) ≤ g(t,m(t)), (1.2.24)

where m ∈ C(R+,K).
Then the inequality m(t0) ≤ u0 implies that

m(t) ≤ r(t), t ≥ t0. (1.2.25)

Proof We will follow the proof of Theorem 1.2.10, but the inequalities will
now be considered with respect to the cone K. It suffices to prove that

m(t) ≤ u(t, ε), t ∈ [t0, T ]. (1.2.26)

If the inequality (1.2.26) does not hold, then there exists t1 ∈ (t0, T ] such that

m(t1) − u(t1, ε) ∈ ∂K, m(t) − u(t, ε) ∈ K0, t ∈ [t0, t1).

It means that there exists ϕ ∈ K∗
0 such that

ϕ(m(t1) − u(t1, ε)) = 0.

From the quasimonotonicity of the function g it follows that

ϕ{g[t1,m(t1)] − g[t1, u(t1, ε)]} ≥ 0.

Assuming w(t) = ϕ(m(t)−u(t, ε)), t ∈ [t0, t1], obtain w(t) > 0, t ∈ [t0, t1)
and w(t1) = 0. Hence D w(t1) ≤ 0, and as a result, we have

D w(t1) = ϕ(D m(t1) − u′(t1, ε)) > ϕ{g[t1,m(t1)] − g[t1, u(t1, ε)]} ≥ 0,
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which is a contradiction. Theorem 1.2.13 is proved.

It is clear that the quasimonotonicity of g(t, u) with respect to the cone
P does not imply the quasimonotonicity of g(t, u) with respect to the cone
Q, even if P ⊂ Q. However, the ordering relationship with respect to the
cone P assumes the same ordering relationship with respect to Q if P ⊂ Q.
The corollary given below is the result of such observations and is effective in
applications.

Corollary 1.2.2 Assume that P,Q are two cones in a space Rn, such
that P ⊂ Q. Let the assumptions of Theorem 1.2.13 hold true and K ≡ P .

Then the inequality m(t0) ≤ u0 implies that m(t) ≤ r(t) at all t ≥ t0.

1.2.4 Integral inequalities

Consider a theorem that generalizes Gronwall-Bihari type inequalities.

Theorem 1.2.14 Let g ∈ C(R2
+, R+), let g(t, u) be a function nondecres-

cent with respect to u for each t ∈ R+, and let r(t) be the maximum solution
of the system

u′ = g(t, u), u(t0) = u0, (1.2.27)

existing on the interval [t0,∞). Assume that the function m ∈ C(R+, R+)
and satisfies the inequality

m(t) ≤ m(t0) +

t
∫

t0

g(s,m(t)) ds, t ≥ t0. (1.2.28)

Then the condition m(t0) ≤ u0 implies the inequality m(t) ≤ r(t) at all
t ≥ t0.

Proof Assume

m(t0) +

t
∫

t0

g(s,m(t))ds = v(t),

so that m(t) ≤ v(t), m(t0) = v(t0) and v′ ≤ g(t, v), proceeding from the fact
that the function g is not decrescent with respect to u. Applying Theorem
1.2.10, obtain v(t) ≤ r(t), t ≥ t0, which completes the proof.

Corollary 1.2.3 Let all the assumptions of Theorem 1.2.14 be correct,
expect the inequality (1.2.28) which is replaced by the following:

m(t) ≤ n(t) +

t
∫

t0

g(s,m(s)) ds, t ≥ t0,
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where n ∈ C(R+, R+).

Then the following inequality holds

m(t) ≤ n(t) + r(t), t ≥ t0,

where r(t) is the maximum solution of the equation

u′ = g(t, n(t) + u), u(t0) = 0.

1.3 Stability in the Sense of Lyapunov

In its classical statement, the second Lyapunov method combines a number
of theorems on stability, asymptotic stability, and instability obtained on the
basis of a scalar Lyapunov function and its full derivatives by virtue of motion
equations considered in the time-invariant neighborhood of a point x = 0. In
this section, sufficient conditions for different types of stability of the state
x = 0 are given in terms of existence of Lyapunov functions which have special
properties. Somewhat different versions of those statements were given in the
works of Lyapunov [1], Persidsky [1], Grujić, Martynyuk, Ribbens-Pavella [1],
Yoshizawa [2], Rao [1], and others.

1.3.1 Lyapunov functions

In this subsection we will consider a system of the form

dx

dt
= f(t, x), f(t, 0) = 0 (1.3.1)

in the range of values (t, x) : t ≥ 0, ‖x‖ ≤ h, where x ∈ Rn and f : R+×Rn →
Rn.

Comparison functions are used as upper or lower estimates of the function
v and its total time derivative. From now on those functions will be denoted by
ϕ, ϕ : R+ → R+. Systematic application of comparison functions is connected
with the work of Hahn [1].

Definition 1.3.1 The function ϕ, ϕ : R+ → R+, belongs:

(a) to the class K[0,α), 0 < α ≤ +∞, if it is defined, continuous, and strictly
increscent on [0, α) and ϕ(0) = 0;

(b) to the class K, if the conditions of Definition 1.3.1 (a) are satisfied at
α = +∞, K = K[0,+∞);
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(c) to the classKR, if it belongs to the classK and, in addition, ϕ(ξ) → +∞
at ξ → +∞;

(d) to the class L[0,α), if it is defined, continuous, and strictly decrescent on
[0, α) and lim[ϕ(ζ) : ζ → ∞] = 0;

(e) to the class L, if the conditions of the definition (d) are satisfied at
α = +∞, L = L[0,+∞).

Let ϕ−1 be the inverse function to ϕ, ϕ−1[ϕ(ζ)] ≡ ζ. The following prop-
erties of comparison functions are known.

Proposition 1.3.1 If :

(a) ϕ ∈ K and ψ ∈ K, then ϕ(ψ) ∈ K;

(b) ϕ ∈ K and σ ∈ L, then ϕ(σ) ∈ L;

(c) ϕ ∈ K[0,α] and ϕ(α) = ξ, then ϕ−1 ∈ K[0,ξ];

(d) ϕ ∈ K and lim[ϕ(ζ) : ζ → +∞] = ξ, then ϕ−1 is not defined on (ξ,+∞];

(e) ϕ ∈ K[0,α], ψ ∈ K[0,α] and ϕ(ζ) > ψ(ζ) on [0, α], then ϕ−1(ζ) > ψ−1(ζ)
on [0, β], where β = ψ(α).

Now auxiliary functions will be used, which have the sense of a distance
from the origin of coordinates to the current value of solution and play the core
role in the direct Lyapunov method (see Grujić, Martynyuk, Ribbens-Pavella
[1]).

Definition 1.3.2 The function v : Rn → R is said to be:

(1) positive semidefinite, if there exists a time-invariant neighborhood N ,
N ⊆ Rn, of the point x = 0, such that:

(a) v(x) is continuous on N ,

(b) v(x) is nonnegative on N for all x ∈ N ,

(c) v(x) is equal to zero in the point x = 0;

(2) positive semidefinite in the neighborhood S of the point x = 0, if the
conditions of Definition 1.3.2 (1) are satisfied at N = S;

(3) globally positive semidefinite, if the conditions of Definition 1.3.2 (1) are
satisfied at N = Rn;

(4) negative semidefinite (in the neighborhood S of the point x = 0 or
in large), if (−v) is positive semidefinite (in the neighborhood S or in
large).
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Remark 1.3.1 The function v determined by the expression v(x) = 0 at
all x ∈ Rn is both positive and negative semidefinite. This indefiniteness can
be eliminated by introduction of a strictly positive (negative) semidefinite
function.

Definition 1.3.3 The function v : Rn → R is said to be strictly positive
(negative) semidefinite if it is positive (negative) semidefinite and there exists
y ∈ N such that v(y) > 0 (v(y) < 0).

If the matrix H is strictly positive (negative) semidefinite, then the func-
tion v(x) = xTHx is strictly positive (negative) semidefinite.

Definition 1.3.4 The function v : Rn → R is said to be:

(a) positive definite if there exists a time-invariant neighborhood N, N ⊆
Rn, of the point x = 0 at which it is positive semidefinite and v(x) > 0
at all (x 6= 0) ∈ N ;

(b) positive definite in the neighborhood S of the point x = 0, if the condi-
tions of Definition 1.3.4 (a) are satisfied at N = S;

(c) globally positive definite, if the conditions of Definition 1.3.4 (a) are
satisfied at N = Rn;

(d) negative definite (in the neighborhood S of the point x = 0 or in large)
if (−v) is positive definite (in the neighborhood S or in large).

The following statement is known (see Hahn [1]).

Proposition 1.3.2 For a function v to be positive definite in a neigh-
borhood N of the point x = 0, it is necessary and sufficient that a function
ϕ ∈ K[0,α), α = sup{‖x‖ : x ∈ N} should exist, such that v(x) ∈ C(N) and
ϕ(‖x‖) ≤ v(x) at all x ∈ N .

Definition 1.3.5 The function v : R+ ×Rn → R is said to be:

(1) positive semidefinite, if there exists a time-invariant connected neigh-
borhood N , N ⊆ Rn, of the point x = 0, such that:

(a) v is continuous with respect to (t, x) ∈ R+ ×N ,

(b) v is nonnegative on N at all (t, x) ∈ R+ ×N ,

(c) v vanishes at x = 0;

(2) positive semidefinite on R+ × S if the conditions (a) – (c) of Definition
1.3.5 (1) are satisfied at N = S;

(3) globally positive semidefinite, if the conditions (a) – (c) of Definition
1.3.5 (1) are satisfied at N = Rn;

(4) negative semidefinite (globally) if (−v) is positive semidefinite (globally);
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(5) strictly positive semidefinite if the conditions (a) – (c) of Definition 1.3.5
(1) are satisfied and for each t ∈ R+ there exists an y ∈ N such that
v(t, y) > 0.

Definition 1.3.6 The function v : R×Rn → R is said to be:

(1) positive definite, if there exists a time-invariant connected neighborhood
N , N ⊆ Rn, of the point x = 0, such that v is positive semidefinite and
there exists a positive definite function w on N , w : Rn → R, which
satisfies the inequality

w(x) ≤ v(t, x) at all (t, x) ∈ R+ ×N ;

(2) positive definite on R+ × S, if all the conditions of Definition 1.3.6 (1)
are satisfied at N = S;

(3) globally positive definite, if the conditions of Definition 1.3.6 (1) are
satisfied at N = Rn;

(4) negative definite (globally), if (−v) is positive definite (globally).

The following result is obtained directly from Proposition 1.3.2 and Defi-
nition 1.3.4.

Proposition 1.3.3 For the function v : R+ × Rn → R to be positive
definite it is necessary and sufficient that there should exist a time-invariant
neighborhood N of the point x = 0, such that :

(a) v(t, x) ∈ C(R+ ×N);

(b) v(t, 0) = 0 at all t ∈ R+;

(c) there exists a function ϕ1 ∈ K[0,α], where

α = sup{‖x‖ : x ∈ N},

which satisfies the estimate

ϕ1(‖x‖) ≤ v(t, x) at all (t, x) ∈ R+ ×N.

Definition 1.3.7 The function v : R×Rn → R is said to be:

(1) decrescent, if there exist a time-invariant neighborhood N of the point
x = 0 and a positive definite function w, w : Rn → R, such that

v(t, x) ≤ w(x) at all (t, x) ∈ R+ ×N ;

(2) decrescent on R+ × S, if all the conditions of Definition 1.3.7 (1) are
satisfied at N = S;
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(3) globally decrescent on R+, if all the conditions of Definition 1.3.7 (1)
are satisfied at N = Rn.

Proposition 1.3.2 and Definition 1.3.7 result in the following statement.

Proposition 1.3.4 For the function v : R+ × Rn → R to be decrescent
on R+ × N , where N is a time-invariant neighborhood of the point x = 0,
it is necessary and sufficient that there should exist a comparison function
ϕ2 ∈ K[0,α), α = sup{‖x‖ : x ∈ N}, such that

v(t, x) ≤ ϕ2(‖x‖) at all (t, x) ∈ R+ ×N.

Definition 1.3.8 The function v : R+ × Rn → R is said to be radially
unbounded if at ‖x‖ → +∞ v(t, x) → +∞ at all t ∈ R+.

It is not difficult to verify the correctness of the above statement (see Hahn
[1], Krasovsky [1]).

Proposition 1.3.5 For a globally positive definite function v to be radi-
ally unbounded, it is necessary and sufficient that there should exist a function
ϕ3 belonging to the KR-class, such that

v(t, x) ≥ ϕ3(‖x‖) at all x ∈ Rn and t ∈ R+.

1.3.2 Stability theorems

In the frame of the direct Lyapunov method, the following expressions of
full derivative of an auxiliary function v along solutions of the system (1.3.1)
are applied.

Let v be a continuous function, v(t, x) ∈ C(R+ × N) and let a solution
χ(t, t0, x0) of the system (1.3.1) exist and be defined on R+ × N . Then for
(t, x) ∈ R+ ×N :

(1) D+v(t, x) = lim sup{[v[t + θ, χ(t + θ; t, x)] − v(t, x)]θ−1 : θ → 0+} is
called the upper right-hand Dini derivative of the function v along the
solution χ(t, t0, x0);

(2) D+v(t, x) = lim inf{[v[t+θ, χ(t+θ; t, x)]−v(t, x)]θ−1 : θ → 0+} is called
the lower right-hand Dini derivative of the function v along the solution
χ(t, t0, x0);

(3) D−v(t, x) = lim sup{[v[t + θ, χ(t + θ; t, x)] − v(t, x)]θ−1 : θ → 0−} is
called the upper left-hand Dini derivative of the function v along the
solution χ(t, t0, x0);
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(4) D−v(t, x) = lim sup{[v[t + θ, χ(t + θ; t, x)] − v(t, x)]θ−1 : θ → 0−} is
called the lower left-hand Dini derivative of the function v along the
solution χ(t, t0, x0);

(5) The function v has a Eulerian derivative

v̇(t, x) =
d

dt
v(t, x)

along the solution χ(t, t0, x0), if

D+v(t, x) = D+v(t, x) = D−v(t, x) = D−v(t, x) = Dv(t, x),

and then
v̇(t, x) = Dv(t, x).

If v is differentiable with respect to (t, x) ∈ R+ ×N , then

v̇ =
∂v

∂t
+ (grad v)f(t, x),

where

grad v =

(

∂v

∂x1
,
∂v

∂x2
, . . . ,

∂v

∂xn

)T

.

The effective application of the upper right-hand Dini derivative within the
limits of the direct Lyapunov method is based on the following result obtained
by Yoshizawa [2], which secures the evaluation of D+v without direct use of
solutions of the system (1.3.1).

Theorem 1.3.1 Let the function v be continuous and locally Lipshitz with
respect to x in the product R+ × S and let S be an open set. Then along a
solution χ of the system (1.3.1)

D+v(t, x) = lim sup

{

v[t+ θ, x+ θf(t, x)] − v(t, x)

θ
: θ → 0+

}

at (t, x) ∈ R+ × S.

Further the symbol D∗v will mean that it is admissible to use both D+v
and D+v.

Theorem 1.3.2 Let the vector function f in the system (1.3.1) be con-
tinuous on R+ ×N . If there exist :

(1) an open time-invariant connected neighborhood S of the point x = 0;

(2) a positive definite function v on S such that

D+v(t, x) ≤ 0 at all (t, x) ∈ R+ × S,
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then the state x = 0 of the system (1.3.1) is stable.

Proof Since the function v(t, x) is positive definite, there exists a function
ϕ1 belonging to the K-class, such that

ϕ1(‖x‖) ≤ v(t, x) at all (t, x) ∈ R+ ×B(ρ),

where B(ρ) ⊂ Rn is an open connected domain in Rn. Now, at any 0 < ε < ρ
and t0 ∈ R+ choose δ = δ(t0, ε) so that the condition ‖x0‖ ≤ δ would imply
v(t0, x0) < ϕ1(ε). This is possible, since v(t, x) is a continuous function and
v(t0, 0) = 0. We will show that for any solution x(t; t0, x0) = x0 at t = t0
under the condition ‖x0‖ < δ the inequality ‖x(t; t0, x0)‖ < ε holds at all
t ≥ t0. If this is not so, then one can find a t∗ > t0, for which

‖x(t∗; t0, x0)‖ = ε at ‖x0‖ < δ.

From condition (2) of the theorem it follows that

v(t, x(t; t0, x0) ≤ v(t0, x0)) at all t ≥ t0.

Hence at t = t∗ obtain

ϕ1(ε) = ϕ1(‖x(t∗; t0, x0)‖) ≤ v(t∗, x(t∗, t0, x0)) ≤ v(t0, x0) < ϕ1(ε).

From the obtained contradiction it follows that at a point of time t∗ the
inequality ‖x(t, t0, x0)‖ < ε holds at ‖x0‖ < δ, which completes the proof of
the theorem.

Example 1.3.1 Consider the scalar equation

dx

dt
= (sin log t+ cos log t− 1,25)x. (1.3.2)

Choose a Lyapunov function in the form

v(t, x) = x2 exp[2(1,25 − sin log t)t].

This function is positive definite, but nondecrescent. Since D+v(t, x)|(1.3.2) =
0, the zero solution of the equation (1.3.2) is stable.

Theorem 1.3.3 Let the vector function f in the system (1.3.1) be con-
tinuous on R+ ×N . If there exist :

(1) an open time-invariant connected neighborhood S of the point x = 0;

(2) a decrescent positive definite function v on S such that

D+v(t, x) ≤ 0 at all (t, x) ∈ R+ × S,
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then the condition x = 0 of the system (1.3.1) is uniformly stable.

Proof Since the function v(t, x) is positive definite and decrescent, there
exist functions ϕ1, ϕ2 belonging to the K-class, such that

ϕ1(‖x‖) ≤ v(t, x) ≤ ϕ2(‖x‖) at all (t, x) ∈ R+ ×B(ρ).

For any 0 < ε < ρ choose δ = δ(ε) > 0 so that ϕ2(δ) < ϕ1(ε). Show that
under the conditions of Theorem 1.3.3 the zero solution of the system (1.3.1)
is uniformly stable, that is, if t∗ ≥ t0 and ‖x(t∗)‖ ≤ δ, then ‖x(t; t∗, x0)‖ < ε
at all t ≥ t∗. If this is not so, then there exists t̂ ≥ t∗ such that at t∗ ≥ t0 and
‖x(t∗)‖ ≤ δ the relation ‖x(t̂; t∗, x0)‖ = ε holds. Like in the proof of Theorem
1.3.2, obtain

ϕ1(ε) = ϕ1(‖x(t̂)‖) ≤ v(t̂, x(t̂; t∗, x0)) ≤ v(t∗, x(t∗))

≤ ϕ2(‖x(t∗)‖) ≤ ϕ2(δ) < ϕ1(ε).

The obtained contradiction shows that t̂ 6∈ R+ and at ‖x(t∗)‖ ≤ δ the estimate
‖x(t; t∗, x0)‖ < ε will hold at all t ≥ t∗. Theorem 1.3.3 is proved.

Theorem 1.3.4 Let the vector function f in the system (1.3.1) be con-
tinuous on R+ ×N and bounded. If there exist :

(1) an open time-invariant connected neighborhood S of the point x = 0;

(2) a function v(t, x) positive definite on S and a function ψ belonging to
the K-class, such that

D∗v(t, x) ≤ −ψ(‖x‖) at all (t, x) ∈ R+ × S,

then the condition x = 0 of the system (1.3.1) is asymptotically stable.

Proof From condition (2) of the theorem it follows that D∗v(t, x) ≤ 0 at
all (t, x) ∈ R+ ×S, and this condition together with condition (1) secures the
stability of the state x = 0 of the system (1.3.1), that is, for any 0 < ε < ρ
and t0 ∈ R+ there exists δ = δ(t0, ε) > 0 such that the condition ‖x0‖ < δ
implies that ‖x(t; t0, x0)‖ < ε at all t ≥ t0.

We will show that the state x = 0 of the system (1.3.1) is asymptotically
stable. Let this not be so and let t0 and x0 ∈ S be such that for some η,
0 < η < ε, and a divergent sequence {tn} ∈ R+ the equality ‖x(tn; t0, x0)‖ = η
would hold. Since f is bounded on R+×N , there exists a constantM > 0 such
that ‖f(t, x)‖ < M on R+ ×N . In this case, for t ≥ t0 obtain the estimate

‖x(t; t0, x0) − x(tn; t0, x0)‖ ≤M |t− tn|, n = 1, 2, . . . ,

and then

‖x(t; t0, x0)‖ ≥ 1

2
η at t ∈ In =

(

tn − η

2M
, tn +

η

2M

)

.
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Assume that the intervals In disjoint, that is, In∩In+1 = ∅, n = 1, 2, . . ., and

choose t1 > t0 +
η

2M
. From condition (2) of Theorem 1.3.4 it follows that at

t ≥ t0 and
1

2
η ≤ ‖x‖ < ρ there exist constants a and b such that b ≤ v(t, x)

and D∗v(t, x) ≤ −a. Hence, at t ∈
[

t0, tn +
η

2M

]

, obtain

0 < b ≤ v

(

tn +
η

2M
,x

(

tn +
η

2M
, t0, x0

))

− v(t0, x0)

≤ −a
(

tn − t0 +
η

2M

)

≤ −a η

2M
− anη

M
< −a η

M
n→ −∞

at n→ ∞.
The obtained contradiction proves that the state x = 0 of the system

(1.3.1) is asymptotically stable.

Theorem 1.3.5 Let the vector function f in the system (1.3.1) be con-
tinuous on R+ ×N . If there exist :

(1) an open time-invariant connected neighborhood S of the point x = 0;

(2) a decrescent positive definite function v on S;

(3) a positive definite function ψ on S such that

D∗v(t, x) ≤ −ψ(x) at all (t, x) ∈ R+ × S,

then the state x = 0 of the system (1.3.1) is uniformly asymptotically stable.

Proof Let 0 < ε < ρ be specified. Condition (2) of Theorem 1.3.5 implies
the existence of functions ϕ1, ϕ2 belonging to the K-class, such that

ϕ1(‖x‖) ≤ v(t, x) ≤ ϕ2(‖x‖) at all (t, x) ∈ R+ × S.

From condition (3) it follows that D∗v(t, x) ≤ 0, then the state x = 0 of
the system (1.3.1) is uniformly stable. Here for any ε > 0 there exists a
δ = δ(ε) > 0 such that for any solution x(t) = x(t; t0, x0) of the system (1.3.1)
the conditions ‖x(t1)‖ ≤ δ, t1 ≥ t0 imply that ‖x(t)‖ < ε at all t ≥ t1. From
condition (3) obtain

v(t, x(t)) ≤ v(t1, x(t1)) −
t
∫

t1

ψ(‖x(s)‖) ds. (1.3.3)

Let 0 < η < ρ be specified, choose δ0 = δ(ρ) and T (η) =
ϕ2(δ0)

ψ(δ(η))
. Show that

‖x(t)‖ < δ(η) at all t ∈ [t1, t1 + T ], as soon as t1 ≥ t0 and ‖x(t1)‖ < δ0.
Assume that this is not so. Then there exists a t ∈ [t1, t1 + T ] for which

‖x(t)‖ ≥ δ(η). (1.3.4)
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From the conditions (1.3.3), (1.3.4) at t ∈ [t1, t1 + T ] obtain

v(t, x(t)) ≤ v(t1, x1) − ψ(δ(η))(t − t1) ≤ ϕ2(δ0) − ψ(δ(η))(t − t1).

Hence for t = t1 + T obtain

0 < ϕ1(δ(η)) ≤ v(t1 + T, x(t1 + T )) ≤ ϕ2(δ0) − ψ(δ(η))T (η) = 0.

This contradicts the inequality (1.3.4) and therefore there exists t1 ≤ t2 ≤
t1 + T, for which ‖x(t2; t1, x1)‖ < δ(η).

Thus, from the uniform stability of the state x = 0 it follows that ‖x(t)‖ <
η at all t ≥ t2, in particular at t ≥ t ≥ t1 + T . Consequently, ‖x(t)‖ < η
at all t ≥ t1 + T , as soon as t1 ≥ t0 and ‖x(t1)‖ ≤ δ0. This proves that the
state x = 0 of the system (1.3.1) is uniformly asymptotically stable, since T
depends on η only.

Example 1.3.2 Consider the scalar equation

dx

dt
= (t sin t− 2t)x, x(t0) = x0. (1.3.5)

Take a Lyapunov function in the form

v(t, x) = x2 exp

[

t
∫

0

(2u− u sinu) du

]

.

This function is positive definite, but nondecrescent. A simple calculation
results in the estimate

D+v(t, x)|(1.3.5) ≤ −αv(t, x) at all t > α ≥ 0.

Therefore, the zero solution of the equation (1.3.5) is asymptotically stable,
however not uniformly.

The property of exponential stability of the zero solution of the generating
system (1.3.1) is determined by the following statement.

Definition 1.3.9 The state x = 0 of the system (1.3.1) is said to be
exponentially stable, if for any solution x(t) of this system in the domain
t ≥ t0, x ∈ B(ρ) the following inequlity holds:

‖x(t; t0, x0)‖ ≤ a‖x0‖ exp(−λ(t− t0)),

where a > 0, λ > 0, t0 ≥ 0. The constants a and λ may depend on B.

Definition 1.3.10 The comparison functions ϕ1, ϕ2 belonging to the K-
class have the same order of growth, if there exist constants αi, βi, i = 1, 2,
such that

αiϕi(r) ≤ ϕj(r) ≤ βiϕi(r), i, j = 1, 2.

Theorem 1.3.6 Let the vector function f in the system (1.3.1) be con-
tinuous on R+ ×N and let there exist :
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(1) a time-invariant neighborhood S of the state x = 0;

(2) a function v(t, x) locally Lipshitz with respect to x, comparison functions
ϕ1, ϕ2 belonging to the K-class, having the same order of growth, and
constants a > 0, r1 > 0 such that

a‖x‖r1 ≤ v(t, x) ≤ ϕ1(‖x‖)

at all (t, x) ∈ R+ × S;

(3) at all (t, x) ∈ R+×S the following estimate holds D∗v(t, x) ≤ −ϕ2(‖x‖).

Then the state x = 0 of the system (1.3.1) is exponentially stable.

Proof Taking into account that the comparison functions ϕ1 and ϕ2 have
the same order of growth, it is possible to indicate constants α1, β1 > 0 such
that

α1ϕ1(r) ≤ ϕ2(r) ≤ β1ϕ1(r).

Therefore, condition (3) of the theorem is reducible to the form

D∗v(t, x) ≤ −α1v(t, x) at all (t, x) ∈ R+ × S.

Hence obtain

v(t, x(t)) ≤ v(t0, x0) exp(−α1(t− t0)) at all t ≥ t0.

From the above estimate and condition (2) of the theorem it follows that

‖x(t; t0, x0)‖ ≤ a−1/r1ϕ
1/r1

1 (‖x0‖) exp
(

− α1

r1
(t− t0)

)

(1.3.6)

at all t ≥ t0.

Denote λ =
α1

r1
. Then the estimate (1.3.6) is equivalent to the determina-

tion of the exponential stability of the state x = 0 of the system (1.3.1). In
addition, for any ε > 0 it is possible to choose δ(ε) = ϕ−1

1 (aεr1) so that as
soon as ‖x0‖ < δ(ε), t0 ≥ 0, then

‖x(t; t0, x0)‖ ≤ ε exp(−λ(t− t0)) at all t ≥ 0.

The theorem is proved.

Theorem 1.3.7 Let the vector function f in the system (1.3.1) be contin-
uous on R+ ×N . If there exist a function v(t, x) locally Lipshitz with respect
to x and comparison functions ϕ2, ψ belonging to the K-class, such that :

(1) at all (t, x) ∈ R+ ×B(ρ) the estimate |v(t, x)| ≤ ϕ2(‖x‖)holds;

(2) for any δ > 0 and any t0 > 0 there exists x0, ‖x0‖ ≤ δ such that
v(t, x) < 0;
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(3) at all (t, x) ∈ R+ × B(ρ) the following estimate holds D∗v(t, x) ≤
−ψ(‖x‖),

then the state x = 0 of the system (1.3.1) is unstable.

Proof Let 0 < ε < ρ be specified. Assume that the state x = 0 of the
system (1.3.1) is stable. Then for any ε > 0 there exists δ = δ(ε) > 0 such
that the condition ‖x(t0)‖ ≤ δ implies the estimate ‖x(t)‖ < ε at all t ≥ t0.
Choose x0 so that ‖x0‖ ≤ δ and v(t0, x0) < 0. According to the assumption,
at ‖x0‖ < δ the inequality ‖x(t)‖ < ε holds at all t ≥ t0. Condition (1) of the
theorem implies that

|v(t, x(t))| ≤ ϕ2(‖x(t)‖) < ϕ2(ε) at any t ≥ t0.

From condition (3) of the theorem it follows that the function v(t, x(t)) is
decrescent along any solution x(t) of the system (1.3.1); therefore, for any
t ≥ t0 the following estimate holds:

v(t, x(t)) ≤ v(t0, x0) < 0.

Hence, follows that |v(t, x(t))| ≥ |v(t0, x(t0))|. Condition (3) of Theorem 1.3.7
implies that

v(t, x(t)) ≤ v(t0, x0) −
t
∫

t0

ψ(‖x(s)‖)ds. (1.3.7)

According to condition (1) of the theorem, we obtain ‖x(t)‖ ≥ ϕ−1
2 (|v(t0, x0)|);

therefore, ψ(‖x(t)‖) ≥ ψ(ϕ−1
2 (|v(t0, x0)|)). Taking this inequality into account,

transform (1.3.7) to the form

v(t, x(t)) ≤ v(t0, x0) − ψ(ϕ−1
2 (|v(t0, x0)|))(t− t0).

Hence it follows that lim
t→∞

v(t, x(t)) = −∞, which contradicts the condition

|v(t, x(t))| < ϕ2(ε) at all t ≥ t0. This proves the instability of the state x = 0
of the system (1.3.1).

The universality of stability theorems is determined by the respective con-
verse theorems. One of the first theorems in this line of research is Persidsky’s
theorem [1] on the existence of a Lyapunov function in case of stability of
the state x = 0 of the system (1.3.1). The works of Krasovsky [1], Hahn [1],
Zubov [2], and others contain results concerned with the inversion of Lya-
punov theorems. Note that the known proofs of converse theorems are based
on functions that contain an estimate of solution of a differential equation
which is unknown as a rule. Among these functions are:

(1) v(t, x) = (1 + e−t)‖y(t0; t, x)‖2 in the domain t ≥ t0, ‖x‖ < ρ < +∞.
Here y(t; t0, y0) is a solution of the system

dy

dt
= Y (t, y), Y (t, y) = f(t, x)φ(y),
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where φ(y) =

{

1 at ‖y‖ ≤ ρ;

0 at ‖y‖ > ρ;
.

(2) v(t, x) = sup
τ≥0

‖x(t+ τ ; t, x)‖;

(3) v(t, x) = sup
τ≥0

‖x(t+ τ ; t, x)‖ exp(αqτ), where α > 0, q ∈ (0, 1);

(4) v(t, x) = sup
σ≥0

G(‖x(t + σ; t, x)‖)1 + ασ

1 + σ
, where G(r) is a scalar function

with the properties G(0) = 0, G′(0) = 0, G′(0) > 0, G′′(r) > 0 and
α > 1;

(5) v(t, x) = sup
σ≥0

ϕ(‖x(t+ σ; t, x)‖), where ϕ belongs to K-class.

It is clear that functions of the form (1)–(5) have no practical use, but they
show that under a certain type of stability of the state x = 0 of the system
(1.3.1) there exists a Lyapunov function with the respective properties.

1.4 Comparison Principle

The theorems of the comparison method given in this section are based on
the scalar Lyapunov function for a generating system and the theory of differ-
ential inequalities. For their further application it is sufficient to consider the
case of continuous solutions both in the initial system and in the comparison
system.

Consider the system of differential equations

dx

dt
= f(t, x), x(t0) = x0, (1.4.1)

where x ∈ Rn, t ∈ R+, f ∈ C(R+×Rn, Rn). Together with the system (1.4.1)
we consider the Lyapunov function v(t, x) and its full derivative D∗v(t, x)
along solutions of the system (1.4.1).

Formulate the main theorems of the comparison method.

Theorem 1.4.1 Let the function v ∈ C(R+×Rn, R+) be locally Lipschitz
with respect to x. Assume that the function D+v(t, x) satisfies the inequality

D+v(t, x)|(1.4.1) ≤ g(t, v(t, x)) at all (t, x) ∈ R+ ×Rn, (1.4.2)

where g ∈ C(R2
+, R). Let r(t) = r(t, t0, u0) be the maximum solution of the

scalar differential equation

du

dt
= g(t, u), u(t0) = u0, (1.4.3)
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existing at all t ≥ t0.
Then the inequality v(t0, x0) ≤ u0 implies the estimate

v(t, x(t)) ≤ r(t) at all t ≥ t0, (1.4.4)

where x(t) = x(t, t0, x0) is any solution of the system (1.4.1), which exists at
t ≥ t0.

Proof Let x(t) be any solution of the system (1.4.1), existing at t ≥ t0,
such that v(t0, x0) ≤ u0. Define the function m(t) = v(t, x(t)). For any h > 0
obtain

m(t+ h) −m(t) = v(t+ h, x(t+ h)) − v(t+ h, x(t) + hf(t, x(t)))

+ v(t+ h, x(t) + hf(t, x(t))) − v(t, x(t)).

Since the function v(t, x) is locally Lipschitz with respect to x, obtain the
differential inequality

D+m(t) ≤ g(t,m(t)), m(t0) ≤ u0, (1.4.5)

and now, in view of Theorem 1.2.10, arrive at the desired result: the estimate
(1.4.4).

Corollary 1.4.1 If in Theorem 1.4.1 we assume that g(t, u) ≡ 0, then the
function v(t, x(t)) is not increscent with respect to t and v(t, x(t)) ≤ v(t0, x0)
at all t ≥ t0.

The next theorem is important at application of several Lyapunov func-
tions.

Theorem 1.4.2 Let the vector function v ∈ C(R+ ×Rn, Rm), m ≤ n, be
locally Lipschitz with respect to x. Assume that

D+v(t, x) ≤ g(t, v(t, x)), (t, x) ∈ R+ ×Rn,

where g ∈ C(R+ × Rm
+ , R

m) and g(t, u) is a function quasimonotone nonde-
crescent with respect to u. Let r(t) = r(t, t0, u0) be the maximum solution of
the system

du

dt
= g(t, u), u(t0) = u0 ≥ 0, (1.4.6)

existing at t ≥ t0, and let x(t) = x(t, t0, x0) be any solution of the system
(1.4.1), existing at t ≥ t0.

Then the inequality v(t0, x0) ≤ u0 implies the estimate

v(t, x(t)) ≤ r(t) at all t ≥ t0. (1.4.7)

Recall that the inequalities between vectors in (1.4.7) are understood com-
ponentwise.
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Theorem 1.4.2 is a special case of the next theorem connected with cone-
valued Lyapunov functions.

Theorem 1.4.3 Assume that v ∈ C(R+ × Rn,K), the function v(t, x)
is locally Lipschitz with respect to x relative to the cone K ⊂ Rm and at
(t, x) ∈ R+ ×Rn the following inequality is true:

D+v(t, x) ≤
K g(t, v(t, x)).

Let g ∈ C(R+ ×K,Rm), here the function g(t, u) is not quasimonoton decres-
cent with respect to u with respect to K and r(t) = r(t, t0, u0) is the maximum
solution of the equation (1.4.6), which exists at t ≥ t0.

Then any solution x(t) = x(t, t0, x0) of the system (1.4.1), existing at
t ≥ t0, satisfies the estimate

v(t, x(t)) ≤
K r(t) at all t ≥ t0

provided that v(t0, x0)
≤
K u0.

Proof Following the proof of Theorem 1.4.1, upon necessary changes one
can easily obtain the differential inequality

D+m(t) ≤
K g(t,m(t)), m(t0)

≤
K u0, t ≥ t0.

Now, using Theorem 1.2.13, complete the proof of Theorem 1.4.3.

The next theorem, which is an alternate version of Theorem 1.4.3, is more
accessible for applications. Its proof follows from Corollary 1.2.2.

Theorem 1.4.4 Let P and Q be two cones in Rm such that P ⊂ Q.
Assume that v ∈ C(R+ × Rn, Q) and the function v(t, x) satisfies the local
Lipschitz condition with respect to x relative to the cone P and

D+v(t, x) ≤
P g(t, v(t, x)), (t, x) ∈ R+ ×Rn.

Now assume that g ∈ C(R+ ×Q,Rm), the function g(t, u) is quasimonotone
nondecrescent with respect to u relative to the cone P and x(t) = x(t, t0, x0) is
any solution of the system (1.3.3), existing at t ≥ t0, such that v(t0, x0)

≤
P u0.

Then
v(t, x(t)) ≤

Q r(t) at all t ≥ t0, (1.4.8)

where r(t) = r(t, t0, u0) is the maximum solution of the equation (1.4.6) with
respect to the cone P .

In particular, if Q = Rm
+ , then the inequality (1.4.8) implies the compo-

nentwise estimate v(t, x(t)) ≤ r(t), t ≥ t0.

Remark 1.4.1 In all of the above comparison theorems the derivative
D+v(t, x) was estimated by the functions g(t, v(t, x)) only. However, in certain
cases it is more natural to estimate the derivative D+v(t, x) by the functions
g(t, x, v(t, x)). Obviously, in this case the statements of the theorems would
be more complicated.
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1.5 Stability of Systems with a Small Parameter

Consider the system of differential equations with a small parameter

dy

dt
= Y (t, y, µ), y(t0) = y0 (1.5.1)

It is assumed that the right-hand part of the system (1.5.1) has the continuity
property and satisfies the conditions of the existence and uniqueness of
solutions. In addition, assume that Y (t, 0, µ) 6≡ 0 at all t ∈ R+, µ ∈M . Denote
µ = z and consider the system extended to (1.5.1)

dy

dt
= Y (t, y, z), y(t0) = y0,

dz

dt
= 0.

(1.5.2)

It is not difficult to show that from the properties of solutions of the system
(1.5.2) one can obtain the conclusion about the stability of the system (1.5.1).

Example 1.5.1 (see Duboshin [2]) Let the following system of equations
be specified:

dx

dt
= −µx− y − µ(1 − µ),

dy

dt
= x− µy − µ(1 − µ),

(1.5.3)

where µ ∈ (0, 1), and let a problem of the stability of the zero solution of the
system

dx

dt
= −y,

dy

dt
= x,

(1.5.4)

be considered, which is obtained from the system (1.5.3) at µ = 0. Assuming
µ = z, for the system (1.5.3) obtain

dx

dt
= y − z − xz + z2,

dy

dt
= x− z − yz − z2,

dz

dt
= 0.

(1.5.5)

For the system (1.5.5) the full derivative of the function

v(x, y, z) = (x− z)2 + (y + z)2 + z2 (1.5.6)
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along solutions of the system (1.5.5) has the form

Dv(t, x, z)|(1.5.5) = −2z[(x− z)2 + (y + z)2]. (1.5.7)

By implication of the problem z ∈ (0, 1) and therefore (1.5.7) is a negative
function with a fixed sign. Since the function (1.5.6) is positive definite, the
solution x = y = 0 of the system (1.5.4) is stable for a parameter µ ∈ (0, 1).
It is easy to show that for any ε > 0 it is sufficient to choose δ = δ(ε) = 2αε,

where α =

(

2 −
√

3

2

)1/2

and µ < αε, so that at

|x0| ≤ 2αε, |y0| ≤ 2αε, µ < αε

for any t ≥ 0 the following estimates should hold:

|x(t, t0, x0)| < ε and |y(t, t0, x0)| < ε.

1.5.1 States of equilibrium

For the system (1.5.1) introduce the following definition (cf. Gruijic, Mar-
tynyuk, Ribbens-Pavella [1]).

Definition 1.5.1 The state y∗ of the system (1.5.1) is the state of equi-
librium if

y(t; t0, y
∗, µ) = y∗ at all t ∈ R+, t0 ≥ 0, (µ 6= 0) ∈M, (1.5.8)

where y(t; t0, y
∗, µ) is the motion of the system (1.4.1) at a point of time

t ∈ R+, if and only if y(t0; t0, y
∗, µ) ≡ y0.

Proposition 1.5.1 For y∗ ∈ Rn to be the equilibrium of the system (1.5.1)
it is necessary and sufficient that at (µ 6= 0) ∈M :

(1) for any t0 ≥ 0 the solution y(t; t0, y
∗
0 , µ) of the system (1.5.1) should be

unique, determined for all t ∈ R+;

(2) Y (t0, y
∗, µ) = 0, t ∈ R+, t0 ≥ 0.

Proof. The necessity. Conditions (1) and (2) are necessary in view of Def-
inition 1.5.1 [the relation (1.5.8)].

The sufficiency. If y∗ ∈ Rn satisfies condition (2), then y(t, µ) = y∗ at all
t ∈ R+, at all t0 ≥ 0 and (µ 6= 0) ∈M so that

d

dt
y(t, µ) = 0 = Y (t, y∗, µ) = Y (t; y(t;µ), µ) (1.5.9)

at all t ∈ R+, t0 ≥ 0, (µ 6= 0) ∈M .
Hence y(t; t0, y

∗, µ) = y∗ is a solution of the system (1.5.1) at (t0, y
∗, µ),
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which is unique at all t0 ≥ 0 and (µ 6= 0) ∈ M . Consequently, the relation
(1.5.8) is correct.

Let y(t; t0, y0, µ), y(t0; t0, y0, µ) ≡ x0, be the motion of the system (1.5.1)
and let yp(t; t0, y0, µ) be a nonperturbed motion.

From the physical point of view, it is a nonperturbed motion that should
be realized in the system; from the mathematical point of view, this means
that the functions describing the nonperturbed motion are the solution of the
system (1.5.1), that is,

d

dt
yp(t; t0, y0, µ) ≡ Y (t; yp(·), µ). (1.5.10)

1.5.2 Definitions of stability

Definition 1.5.2 The equilibrium y∗ of the system (1.5.1):

(1) is µ-stable, if and only if for any t0 ≥ 0 and every ε > 0 there exist
δ = δ(t0, ε) > 0 and µ1(t0, ε) > 0 such that at ‖y0 − y∗‖ < δ the
following inequality would hold

‖y(t; t0, y0, µ) − y∗‖ < ε at all t ≥ t0 and µ < µ1;

(2) is uniformly µ-stable, if and only if the conditions of the Definition 1.5.2
(1) are satisfied and at every ε > 0 the respective maximum value of δ
in Definition 1.5.2 (1) does not depend on t0.

Definition 1.5.3 The equilibrium y∗ of the system (1.5.1) is µ-attracting,
if and only if for any t0 ≥ 0 there exists ∆(t0) > 0 and for any ρ ∈ (0,+∞)
there exist τ(t0, y0, ρ) ∈ [0,+∞) and µ2(t0, ρ) > 0 such that at ‖y0 − y∗‖ <
∆(t0) ‖y(t; t0, y0, µ) − y∗‖ < ρ holds at all t ≥ t0 + τ and µ < µ2.

Calculate the value µ0 = min(µ1, µ2). On the basis of the definitions of µ-
stability and µ-attraction, the definitions of asymptotic µ-stability are stated
as follows.

Definition 1.5.4 The state of equilibrium y∗ of the system (1.5.1) at
µ < µ0 is:

(1) asymptotically µ-stable, if and only if it is µ-stable and µ-attracting;

(2) uniformly asymptotically µ-stable, if and only if it is uniformly µ-stable
and uniformly µ-attracting.

The above definitions and terminology are similar to the known systems of
definitions used in the literature (see Hahn [1], Yoshizawa [2], etc.). However,
one should bear in mind that the system (1.5.1), generally speaking, may
have no zero solution, and therefore, unlike classical definitions characterizing
a specific solution of a system of differential equations under consideration,
the property of µ-stability characterizes the local behavior of a one-parameter
family of systems of the form (1.5.1) depending on the numeric parameter µ.
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1.6 Comments and References

Differential equations containing a small parameter as models of real pro-
cesses and phenomena in the engineering and technological areas have been
applied for a long time (see Poincaré [2], Krylov, Bogolyubov [2], Bogolyubov,
Mitropolsky [1], Stocker [1], Hayashi [1], Nayfeh, Mook [1] et al.).

Among the examples where systems of this kind have been of use, one
should note the problem of the loss of stability by a thin-shelled structure un-
der the action of wind and the dead load; the study of collapse of a star; the
destruction of a crystal lattice; the description of self-organization and decay
processes in biological systems; the simulation of turbulence; the analysis of
chaotic movements in simple deterministic models; and many others. In all
of the above listed examples, a slow change in system parameters, which is
characterized by the presence of a small parameter in a system of differential
equations, results in a change of the process quality. Sometimes such change
may occur abruptly. To study the dynamics processes in such systems in their
natural behavior, it is necessary to use adequate approaches to the qualita-
tive analysis of solutions of the respective systems of equations with a small
parameter.

This chapter contains some results from the theory of differential and in-
tegral inequalities and the theory of stability of motion which form the basis
for the approaches developed in the book and are intended for the study of
dynamic properties of solutions of systems with a small parameter. From the
numerous methods of nonlinear mechanics that have been developed recently,
the methods of perturbations and averaging are actively used in this book
(cf. Bogolyubov, Mitropolsky [1], Mitropolsky [1], Grebennikov [1], Volosov,
Morgunov [1] and others).

Below readers will find more detailed bibliographic references that do not
pretend to be exhaustive but provide an opportunity for an interested reader
to approach the border beyond which a new area of research is awaiting.

1.2. Theorem 1.2.1 is a fundamental linear integral inequality known as
the Gronwall or the Gronwall–Bellman inequality (see Bellman [1], Beesack
[1]). In the process of formulating Theorems 1.2.2, 1.2.3, and 1.2.5 we follow
the monograph by Lakshmikantham, Leela, Martynyuk [1]. Theorem 1.2.4 is
stated as per Bihari [1]. Theorems 1.2.7 and 1.2.8 are available in the mono-
graph by Martynyuk, Gutovsky [1]. Theorems 1.2.9–1.2.13 are taken from the
monograph by Lakshmikantham , Leela, Martynyuk [1] (see Walter [1] and
others).

1.3, 1.4. In the statement of the results of these sections, some results of
the works of Krasovsky [1], Lyapunov [1], Lakshmikantham, Leela, Martynyuk
[1], Rao [1], and Persidsky [1] were used. Many of the results related to the
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development of the comparison method can be found in the works of Conti
[1], Corduneanu [2], Matrosov [2], and other authors.

1.5. The formulations of definitions of the µ-stability are given according
to the article by Martynyuk [5] and the monograph by Martynyuk [16].

The works of Lagrange [1], Poincare [1], and Euler [1] were the basis for the
creation and development of the current methods of the analysis of solutions
of nonlinear systems with a small parameter.



Chapter 2

Analysis of the Boundedness of

Motion

2.1 Introductory Remarks

The problem of the boundedness of motion of mechanical systems simu-
lated by ordinary differential equations has been considered by many authors.
Here we will only mention some works directly related to the investigation
carried out in this chapter. In the work of Yoshizawa [1] the problem of the
boundedness of solutions is considered in the context with the method of Lya-
punov functions. In the work of Lakshmikantham and Leela [1] it was noted
that the application of a perturbed Lyapunov function in the problem of the
boundedness of motion results in the reduction of requirements to auxiliary
functions in the study of nonuniform properties of motion. The extension of
the conditions to perturbations of a Lyapunov function proposed in the ar-
ticle of Burton [1] provides an opportunity to consider the problem of the
boundedness of motion of nonlinear weakly connected systems under wider
assumptions on dynamical properties of subsystems.

Section 2.2 contains the statement of the problem and the main definitions
of the µ-boundedness of motion with respect to two measures.

In Section 2.3, the general approach to the study of the µ-boundedness
with respect to two measures is described. This approach is based on the
application of the direct Lyapunov method and an auxiliary vector function.

In Section 2.4, the conditions for µ-boundedness are discussed, which were
obtained by using the comparison technique. A scalar function constructed on
the basis of the vector Lyapunov function is applied therein.

Section 2.5 contains the necessary and sufficient conditions for µ-
boundedness of motion with respect to a part of variables of a weakly con-
nected system.

Section 2.6 provides the criteria for different types of µ-boundedness of
motion constructed via direct application of the vector Lyapunov function.

In Section 2.7, applications of certain results of this chapter are discussed.
In particular, the Lienard oscillator, Lurie–Postnikov systems of connected
equations, and nonlinear systems with weak linear connections between sub-
systems are discussed.

37
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2.2 Statement of the Problem

A nonlinear system of ordinary differential equations that describes a
weakly connected mechanical (or other) system with a finite number of degrees
of freedom has the form

dxs

dt
= fs(t, xs, µgs(t, x, µ)),

xs(t0) = xs0, s = 1, 2, . . . ,m.
(2.2.1)

Here xs ∈ Rns , fs ∈ C(R+×Rns×M×Rns, Rns), gs ∈ C(R+×Rn×M,Rns),
n1 + n2 + . . .+ nm = n, M = (0, 1], µ > 0 is a small parameter.

In a particular case when the connections of subsystems are included ad-
ditively, the system (2.2.1) is transformable to the following:

dxs

dt
= fs(t, xs) + µgs(t, x1, . . . , xm), xs(t0) = xs0,

s = 1, 2, . . . ,m,
(2.2.2)

where xs ∈ Rns , fs ∈ C(R+×Rns , Rns) and gs ∈ C(R+×Rn1×. . .×Rns , Rns).
If the vector functions fs are linear at all s = 1, 2, . . . ,m, then the system

(2.2.2) can be simplified yet more:

dxs

dt
= As(t)xs + µgs(t, x1, . . . , xm), xs(t0) = xs0,

s = 1, 2, . . . ,m.
(2.2.3)

Here As ∈ C(R+, R
ns × Rns), As(t), s = 1, 2, . . . ,m, are matrices (ns × ns)-

continuous and bounded at all t ∈ R+.
If the vector functions gs ≡ 0 at all s = 1, 2, . . . ,m or µ = 0, then the

system (2.2.2) consists of the independent subsystems

dxs

dt
= fs(t, xs), xs(t0) = xs0,

s = 1, 2, . . . ,m.
(2.2.4)

To formulate definitions required for further analysis, we will characterize
the dynamics of the k-th subsystem in the collection (2.2.2) by the two differ-
ent measures ρk(t, xk) and ρk0

(t, xk), which take on values from the sets (cf.
Movchan [1], Lakshmikantham and Salvadori [1])

M = {ρ(t, x) ∈ C(R+ ×Rn, R+) : inf
t,x
ρ(t, x) = 0},

M0 = {ρ(t, x) ∈M : inf
x∈Rn

ρ(t, x) = 0 for any t ∈ R}.

Here ρ(t, x) = σTρ̃(t, x), σT = (σ1, . . . , σm) and the vector measure ρ̃(t, x) =
ρ1(t, x1), . . . , ρm(t, xm))T, σs = const > 0 at all s = 1, 2, . . . ,m.
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Formulate the following definition.

Definition 2.2.1 The motion x(t, µ) = (x1(t; t0, x0), . . . , xm(t; t0, x0))
T

of the system (2.2.2) is said to be:

(1) (ρ0, ρ)µ-equibounded, if at any values of a ≥ 0 and t0 ∈ R+ there exists
a positive function β = β(t0, a) continuous with respect to t0 at all a
and a value of µ∗ = µ∗(t0, a) > 0 such that

ρ(t, x(t, µ)) < β at all t ≥ t0,

as soon as

ρ0(t0, x0) ≤ a and µ < µ∗(t0, a);

(2) uniformly (ρ0, ρ)µ-bounded, if β and µ∗ in definition (1) do not depend
on t0;

(3) uniformly ultimately (ρ0, ρ)µ-bounded, if it is uniformly (ρ0, ρ)µ-
bounded and for any a ≥ 0 and t0 ∈ R+ there exist positive numbers
µ∗ ∈ (0, 1], β∗ > 0 and τ = τ(t0, a) such that ρ(t, x(t, µ)) < β∗ at all
t ≥ t0 + τ , as soon as ρ0(t0, x0) ≤ a and µ < µ∗.

Remark 2.2.1 Depending on the considered type of the boundedness of
motion, the measures ρ0 and ρ may be chosen by different methods. Here are
some of the measures applied:

(1) in the study of the boundedness of motion in the sense of definitions
from the monographs of Reissig et al. [1] and Yoshizawa [1], the measures
ρ0(t, x) = ρ(t, x) = ‖x‖ are applied where ‖ · ‖ is the Euclidean norm of
the vector x;

(2) in the study of the boundedness of the prescribed motion x∗(t) the
measures ρ0(t, x) = ρ(t, x) = ‖x− x∗(t)‖ are applied;

(3) in the study of the boundedness of motion with respect to a part of
variables the measures ρ0(t, x) = ‖x‖ and ρ(t, x) = ‖xk‖, 1 ≤ k ≤ m are
applied;

(4) in the study of the boundedness of motion with respect to a set A the
measures ρ0(t, x) = ρ(t, x) = d(x,A) are applied, where d(x,A) is the
distance from the point x to the set A ⊂ Rn.

Thus, the conditions for the boundedness of motion of the system (2.2.2)
under different assumptions on the dynamic properties of the subsystems
(2.2.4) with respect to two different measures are generalized in relation to
other conditions determined earlier, when measures (1)–(4) were used.
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2.3 µ-Boundedness with Respect to Two Measures

In this section we will apply the functions of comparison of the classes K,
L (see Definition 1.3.1) and:

CK = {b ∈ C(R2
+, R+) : b(t, s) ∈ K at every t},

KL = {γ ∈ C(R2
+, R+) : γ(t, s) ∈ K for every s and

γ(t, s) ∈ L for every t},
KR = {c ∈ K : lim

u→∞
c(u) = ∞}.

Note that the comparison functions from the above classes are widely used
in works on the theory of stability of motion.

Below we will show some relations between the measures ρ0(t, x) and
ρ(t, x).

Definition 2.3.1 Let the measures ρk0
, ρk ∈ M at all k = 1, 2, . . . ,m.

We say that

(1) the measure ρ(t, x) =
m
∑

k=1

ρk(t, xk) is continuous with respect to the

measure ρ0(t, x) =
m
∑

k=1

ρk0
(t, xk), if there exists a constant ∆ > 0 and a

comparison function b ∈ CK-class, such that ρ(t, x) ≤ b(t, ρ0(t, x)), as
soon as ρ0(t, x) < ∆;

(2) the measure ρ is uniformly continuous with respect to the measure ρ0,
if in definition (1) the comparison function b does not depend on t;

(3) the measure ρ is asymptotically continuous with respect to the measure
ρ0, if there exists a constant ∆1 > 0 and a comparison function ψ ∈ KL-
class, such that ρ0(t, x) ≤ ψ(t, ρ0(t, x)), as soon as ρ0(t, x) < ∆1.

For the independent subsystems (2.2.4) construct auxiliary functions
vs(t, xs), s = 1, 2, . . . ,m. Let vs ∈ C(R+ × Rns , R+) at all s = 1, 2, . . . ,m.
For any function vs ∈ C(R+ ×Rns , R+) determine the function

D+vs(t, xs) = lim
θ→0+

sup
1

θ
[vs(t+ θ, xs + θfs(t, xs)) − vs(t, xs)]

at all s = 1, 2, . . . ,m for the values (t, xs) ∈ R+ ×Rns .
In order to note that the full derivative of the function vs(t, xs) is calculated

along the solutions of a certain subsystem (*), we will denote this as follows:

D+vs(t, xs)|(∗), s = 1, 2, . . . ,m.
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Definition 2.3.2 A function

v(t, x, µ) =

m
∑

s=1

[vs(t, xs) + ws(t, xs, µ)], (2.3.1)

where v ∈ C(R+ ×Rn ×M,R+), v(t, x, µ) is locally Lipshitz with respect to
x, is said to be strengthened if v(t, x, µ) has a certain type of sign definiteness
with respect to the measure ρ, while the functions vs(t, xs) are constantly
positive at all s = 1, 2, . . . ,m and

|ws(t, xs, µ)| < cs(µ), s = 1, 2, . . . ,m,

where lim
µ→0

cs(µ) = 0.

Definition 2.3.3 Let the function v(t, x, µ) be constructed by the formula
(2.3.1). We say that the strengthened function v(t, x, µ):

(1) is ρ-positive definite, if there exist constants δ1 > 0, µ∗ > 0, and a
comparison function a ∈ K-class, such that

a(ρ(t, x)) ≤ v(t, x, µ),

as soon as ρ(t, x) < δ1 and µ < µ∗;

(2) is ρ-decrescent, if there exist constants δ2 > 0, µ̃ > 0, and a function
ω ∈ K-class such that

v(t, x, µ) < ω(ρ(t, x))

as soon as ρ(t, x) < δ2 and µ < µ̃.

Now pass on to the formulation and proof of statements on the bounded-
ness of motion of the system (2.2.2) with respect to two different measures.

Theorem 2.3.1 Assume that:

(1) for the independent subsystems (2.2.2) the measures ρ0k, ρk ∈ M are
specified, and the measure ρ(t, x) is continuous with respect to the mea-
sure ρ0(t, x);

(2) there exist constantly positive functions vk ∈ C(R+ × Rnk , R+) and
functions wk ∈ C(R+ × Rnk ×M,R+) at all k = 1, 2, . . . ,m such that
the strengthened function v(t, x, µ) [see the formula (2.3.1)] is locally
Lipshitz with respect to x and satisfies the estimates

a(ρ(t, x)) ≤ v(t, x, µ) ≤ r(t, ρ0(t, x)) (2.3.2)

at all (t, x) ∈ R+ × Rn, where a(γ) → ∞ at γ → ∞ and r ∈ C(R+ ×
R+, R+);
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(3) there exists a value of µ∗ ∈ (0, 1], at which the following inequality holds:

D+v(t, x, µ)|(2.2.2) ≤ 0 at all (t, x) ∈ R+ ×Rn and at µ < µ∗.

Then the motion x(t, µ) of the weakly connected system (2.2.2) is (ρ0, ρ)µ-
bounded.

Proof Let a > 0, t0 ∈ R+ be specified and let x(t, µ) = x(t; t0, x0, µ)
be the motion of the system (2.2.2) with its initial conditions satisfying the
inequality

ρ0(t0, x0) =
m
∑

k=1

ρ0k(t0, x0k) ≤ a.

From condition (1) of Theorem 2.3.1 it follows that there exists a function b
belonging to the CK-class, such that

ρ(t, x) ≤ b(t, ρ0(t, x)).

Choose β = β(t0, a) > 0 so that

β > max{b(t0, a), r−1(t0, a)}. (2.3.3)

From the estimate (2.3.2) at the chosen value of β, it is clear that ρ(t0, x0) < β.
To prove the theorem, it suffices to show that

ρ(t, x(t, µ)) < β at all t ≥ t0 and µ < µ∗. (2.3.4)

Let the inequality (2.3.4) be satisfied not at all t ≥ t0. Then at a fixed µ∗

there should exist t1 > t0 such that ρ(t1, x(t1, µ)) = β at µ < µ∗. Since the
function v(t, x, µ) is nonincrescent, from conditions (2) and (3) of Theorem
2.3.1 it follows that

a(β) ≤ v(t1, x(t1, µ), µ) ≤ v(t0, x0, µ) ≤ r(t0, a) at µ < µ∗.

This contradicts the choice of β by the formula (2.3.3). Consequently, the
motion x(t, µ) of the weakly connected system (2.2.2) is (ρ0, ρ)µ-bounded.

Theorem 2.3.1 has a number of corollaries.

Corollary 2.3.1 Let the measures ρ0 and ρ be defined as follows:

ρ0(t, x1, . . . , xm) =

m
∑

k=1

ρk0(t, xk),

ρ(t, x) = ρ̃(t, x1, . . . , xl) =
l
∑

k=1

ρk(t, xk), 1 ≤ l < m,

and let all the conditions of Theorem 2.3.1 be satisfied.
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Then the motion of the weakly connected system (2.2.2) is (ρ0, ρ̃)µ-
bounded, that is, bounded with respect to a part of variables x1, . . . , xl.

Corollary 2.3.2 Let in the system (2.2.2) µ = 0 and let conditions (2)
and (3) of Theorem 2.3.1 be satisfied with the function

v(t, x, µ) = v0(t, x) =

m
∑

k=1

vk(t, xk).

Then the motion of the independent subsystems (2.2.4) is (ρ0, ρ)µ-
bounded.

Corollary 2.3.3 Let in the system (2.2.2) µ = 0, m = 1 and let all the
conditions of Theorem 2.3.1 be satisfied with the measures

ρ0(t, x) = ρ10(t, x1) ∈M,

ρ(t, x) = ρ1(t, x1) ∈M

and the function
v(t, x, µ) = v1(t, x1).

Then the motion of the system

dx1

dt
= f1(t, x1), x1(t0) = x10 (2.3.5)

is (ρ10, ρ1)-bounded.

Corollary 2.3.4 Let in the system (2.2.2) µ = 0, m = 1, the function
r = 0 and let all the conditions of Theorem 2.3.1 be satisfied with the measures

ρ10(t, x1) = ρ1(t, x1) = ‖x1‖

and the function
v(t, x, µ) = v1(t, x1).

Then the motion of the system (2.3.5) is bounded.

Later we will consider the domains

Sk(ρ, δ) = {xk ∈ Rnk : ρk(t, xk) < δ}, k = 1, 2, . . . ,m,

and their contradomain Sc
k(ρ, δ). Let S(ρ,∆) =

m
⋃

k=1

Sk(ρ, δ) and Sc(ρ,∆) be

a contradomain of S(ρ,∆).

Theorem 2.3.2 Assume that :

(1) for the subsystems (2.2.2) the measures ρ0k, ρk ∈ M are specified, and
the measure ρ(t, x) is uniformly continuous with respect to the measure
ρ0(t, x);



44 Weakly Connected Nonlinear Systems

(2) there exist functions

vk ∈ C(Sc
k(ρ, δ), R+) and wk ∈ C(Sc

k(ρ, δ) ×M,R)

at all k = 1, 2, . . . ,m, a comparison function a from the K-class and a
function q ∈ C(R+, R+) such that the strengthened function v(t, x, µ) is
locally Lipschitz with respect to x and

a(ρ(t, x)) ≤ v(t, x, µ) ≤ q(ρ0(t, x))

at all (t, x) ∈ Sc(ρ,∆), where a(γ) → ∞ at γ → ∞;

(3) there exists µ∗ ∈ (0, 1], at which the following inequality holds

D+v(t, x, µ)|(2.2.2) ≤ 0 at all (t, x) ∈ Sc(ρ,∆) and µ < µ∗.

Then the motion x(t, µ) of the weakly connected system (2.2.2) is uniformly
(ρ0, ρ)µ-bounded.

Proof From condition (1) of Theorem 2.3.2 it follows that there exists a
function ϕ from the K-class such that

ϕ(t, x) ≤ ϕ(ρ0(t, x)). (2.3.6)

For an arbitrary a > 0 choose β = β(a) > 0 so that

a(β) > max{q(a), q(∆), a−1(ϕ(a)), a−1(ϕ(∆))}. (2.3.7)

Now let t0 ∈ R+ and ρ0(t0, x0) < a. Assume that for the motion x(t, µ) =
(x1(t; t0, x0, µ), . . . , xm(t; t0, x0, µ))T of the system (2.2.2) there exists t∗ such
that

ρ(t∗, x(t∗, µ)) ≥ β. (2.3.8)

Then there exist values t1, t2 : t0 ≤ t1 ≤ t2 < t∗, for which

ρ0(t1, x(t1, µ)) = max{a,∆}, ρ(t2, x(t2, µ)) = β,

(t, x(t, µ)) ∈ S(ρ, β) ∩ Sc(ρ0,max{a,∆}), t ∈ [t1, t2).
(2.3.9)

From condition (2) of Theorem 2.3.2 it follows that

v(t1, x(t1, µ), µ) ≤ q(ρ0(t1, x(t1, µ)) = max{q(a), q(∆)} (2.3.10)

and
v(t2, x(t2, µ), µ) ≥ a(ρ(t2, x(t2, µ)) = a(β). (2.3.11)

According to condition (3) of Theorem 2.3.2, there exists µ∗ ∈ (0, 1] and the
following estimate holds:

v(t2, x(t2, µ), µ) ≤ v(t1, x(t1, µ), µ) at µ < µ∗. (2.3.12)
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Taking into account (2.3.10) and (2.3.11), from (2.3.12) obtain

a(β) ≤ max{q(a), q(∆)}. (2.3.13)

This contradicts the selection of a(β) by the formula (2.3.7) and proves The-
orem 2.3.2.

Theorem 2.3.2 has some corollaries, too.

Corollary 2.3.5 Let the measures ρ0, ρ ∈M and be chosen as specified in
Corollary 2.3.1. If all the conditions of Theorem 2.3.2 are satisfied, the motion
of the weakly connected system (2.3.2) is uniformly (ρ0, ρ̃)µ-bounded.

Corollary 2.3.6 Let in the system (2.2.2) µ = 0 and let conditions (2)
and (3) of Theorem 2.3.2 be satisfied with the function v(t, x, µ) indicated in
Corollary 2.3.2.

Then the motion of the independent subsystems (2.2.4) is uniformly (ρ0, ρ)-
bounded.

Corollary 2.3.7 Let in the system (2.2.2) µ = 0, m = 1 and let the
conditions of Theorem 2.3.2 be satisfied with the measures ρ10, ρ1 ∈ M and
the function v(t, x, µ) = v1(t, x1), indicated in Corollary 2.3.3.

Then the motion of the systems (2.3.14) is uniformly (ρ10, ρ1)-bounded.

Corollary 2.3.8 Let in the system (2.2.2) µ = 0 and m = 1. If here all the
conditions of Theorem 2.3.2 with the measures ρ10(t, x1) = ρ1(t, x1) = ‖x1‖
are satisfied, and the function v(t, x, µ) = v1(t, x1), then the motion of the
system (2.2.14) is uniformly bounded.

Theorem 2.3.3 Assume that :

(1) conditions (1) and (2) of Theorem 2.3.2 are satisfied ;

(2) there exists µ∗ ∈ (0, 1] and a comparison function c from the K-class
such that

D+v(t, x, µ)|(2.2.2) ≤ −c(ρ0(t, x))

at all (t, x) ∈ Sc(ρ0,∆) and µ < µ∗.

Then the motion of the weakly connected system (2.2.2) is uniformly ulti-
mately (ρ0, ρ)µ-bounded.

Proof Under the conditions of Theorem 2.3.3 all the conditions of Theorem
2.3.2 are satisfied and therefore the motion of the system (2.2.2) is uniformly
(ρ0, ρ, µ)-bounded. This means that there exists β∗ > 0 such that

ρ(t, x(t, µ)) < β∗ at all t ≥ t0,

as soon as ρ0(t0, x0) < γ and µ < µ∗.
Consider the motion x(t, µ) of the system (2.2.2) with the initial conditions
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ρ0(t0, x0) < a, where a is an arbitrary number such that a > γ. Then there
exists a positive number β = β(a) > 0 such that

ρ(t, x(t, µ)) < β at all t ≥ t0 and µ < µ1.

Show that there exists t∗ ∈ [t0, t0 + τ ], where

τ =
q(a) + 1

c(γ)
,

such that ρ0(t
∗, x(t∗, µ)) < γ at µ < µ2. If this is not correct, then

ρ0(t, x(t, µ)) ≥ γ at all t ∈ [t0, t0 + τ ] and µ < µ2.

In this case, condition (2) of Theorem 2.3.3 implies the estimate

v(t0 + τ, x(t0 + τ, µ), µ) ≤ v(t0, x0, µ) − c(γ)τ,

which, together with the estimate

a(ρ(t, x)) ≤ v(t, x, µ) ≤ q(ρ0(t, x)) at all (t, x) ∈ Sc(ρ,∆)

results in the inequality

0 ≤ q(a) − c(γ)
q(a) + 1

c(γ)
< 0.

The obtained contradiction proves that under the conditions ρ0(t0, x0) < a
and µ < µ∗ = min{µ1, µ2} the estimate ρ(t, x(t, µ)) < β∗ holds at all t ≥ t0+τ
and µ < µ∗. The theorem is proved.

Like Theorems 2.3.1 and 2.3.2, Theorem 2.3.3 has a number of corollaries.

Corollary 2.3.9 Let the measures ρ0, ρ ∈ M be chosen as indicated
in Corollary 2.3.1. If all the conditions of Theorem 2.3.3 are satisfied, then
the motion of the weakly connected system (2.2.2) is uniformly ultimately
(ρ0, ρ̃)µ-bounded.

Corollary 2.3.10 Let in the system (2.2.2) µ = 0 and let conditions (2)
and (3) of Theorem 2.3.3 be satisfied with the function indicated in Corollary
2.3.2.

Then the motion of independent systems (2.2.4) is uniformly ultimately
(ρ0, ρ)-bounded.

Corollary 2.3.11 Let in the system (2.2.2) µ = 0, m = 1 and all the
conditions of Theorem 2.3.3 be satisfied with the measures ρ10, ρ1 ∈M and the
function v(t, x, µ) = v1(t, x1), indicated in Corollary 2.3.3. Then the motion
of the system (2.2.14) is uniformly ultimately (ρ10, ρ1)-bounded.

Corollary 2.3.12 Let in the system (2.2.2) µ = 0 and m = 1. If all the
conditions of Theorem 2.3.3 with the measures ρ10(t, x1) = ρ1(t, x1) = ‖x1‖
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and the function v(t, x, µ) = v1(t, x1) are satisfied, then the motion of the
system (2.2.14) is uniformly ultimately bounded.

The general theorems 2.3.1– 2.3.3 on the boundedness of motion with re-
spect to two different measures ρ0, ρmay provide the basis for the construction
of different sufficient conditions for the boundedness of motion of the nonlinear
weakly connected systems (2.2.2). At specifically chosen measures ρ0, ρ ∈ M
and functions vk and wk at k = 1, 2, . . . ,m the sufficient conditions for the
boundedness of motion coincide in particular cases with those obtained both
for second-order systems (see Reissig et al. [1]) and for a system of n ordinary
differential equations (see Yoshizawa [2]).

2.4 Boundedness and the Comparison Technique

The comparison technique allows us to simplify the investigation of the
boundedness of motion of the weakly connected system (2.2.2) by substituting
it with the analysis of solutions of a nonlinear scalar comparison equation.
This fruitful approach is based on theorems on differential inequalities (see
Chapter 1).

2.4.1 Auxiliary results

Consider the scalar differential equation

du

dt
= g(t, u, µ), u(t0) = u0 ≥ 0. (2.4.1)

Here g ∈ C(R+ ×R×M,R), g(t, u, µ) = 0 at all t ≥ t0, if and only if u = 0.

Definition 2.4.1 Let γ(t, µ) be a solution of the comparison equation
(2.4.1), existing on the interval J = [t0, t0 + a), 0 < a < +∞, µ ∈ M . The
solution γ(t, µ) is said to be the µ-maximum solution for the equation (2.4.1),
if for any other solution u(t, µ) = u(t; t0, u0, µ) of the equation (2.4.1), existing
on J , the following inequality holds:

u(t, µ) ≤ γ(t, µ) at all t ∈ J, µ ≤ µ0. (2.4.2)

The µ-minimum solution is obtained in a similar way, the sign in the
inequality (2.4.2) is substituted with the opposite one.

Lemma 2.4.1 Let the function g ∈ (R+ × R ×M,R) and let γ(t, µ) =
γ(t, t0, u0, µ) be the maximum solution of the equation (2.4.1), defined on the
interval J . Assume that the function m ∈ C(R+, R+) and

Dm(t) ≤ g(t,m(t), µ), t ∈ J, (2.4.3)
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where D is a fixed Dini derivative.
Then

m(t) ≤ γ(t, µ), t ∈ J,

as soon as m(t0) ≤ u0.

Lemma 2.4.2 Let the function g ∈ C(R+ × R×M,R) and let r(t, µ) =
r(t; t0, u0, µ) be the minimum solution of the equation (2.4.1), defined on J .
Assume that the function n ∈ C(R+, R+) and

Dn(t) ≥ g(t, n(t), µ), t ∈ J.

Then
n(t) ≥ r(t, µ), t ∈ J,

as soon as n(t0) ≥ u0.

Lemma 2.4.3 Let the function v ∈ C(R+ × Rn, R+) and, in addition,
v(t, x) let it be locally Lipschitz with respect to x at every t ∈ R+. Assume
that the function D+v(t, x) satisfies the inequality

D+v(t, x) ≤ g(t, v(t, x), µ), (t, x) ∈ R+ ×Rn, (2.4.4)

where g ∈ C(R+ ×R+ ×M,R).
Let γ(t, µ) = γ(t; t0, u0, µ) be the maximum solution of the equation (2.4.1)

existing on J1.
Then for any solution x(t) = x(t, t0, x0) of the system

dx

dt
= f(t, x), x(t0) = x0, (2.4.5)

existing on J2, the following estimate holds

v(t, x(t)) ≤ γ(t, µ) at all t ∈ J1 ∩ J2, µ ≤ µ0, (2.4.6)

as soon as
v(t0, x0) ≤ u0.

The proofs of Lemmas 2.4.1 – 2.4.3 are given in the monograph by Laksh-
mikantham, Leela, and Martynyuk [1].

2.4.2 Conditions for the boundedness of motion

We will set out one variant of sufficient conditions for the boundedness of
motion of the weakly connected system (2.2.2), which is based on the com-
parison technique.

The motion of the system (2.2.2) will be considered in the space Rn =
Rn1 ×Rn1 × . . .× Rnm . Let E ⊂ Rn, and let the sets Ē, Ec, and ∂E be the
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closure, the complement, and the boundary of E. For an arbitrary H > 0,
define an open ball

S(H) = {x ∈ Rn : ‖x‖ < H},

where ‖ ·‖ is the Euclidean norm of the state vector x(t) of the system (2.2.2).

Introduce the following assumptions:

(1) the dynamics of the subsystem (2.2.2) are characterized by the functions
vs ∈ C(R+ × Ec, R+), the functions vs ≥ 0 at all s = 1, 2, . . . ,m are
locally Lipschitz with respect to xs;

(2) the estimate of the influence of the connection functions µgs(t, x), s =
1, 2, . . . ,m, in the system (2.2.2) is taken into account in the functions
ws(t, x, µ) which are defined at all (t, x, µ) ∈ R+ × Sc ×M ;

(3) the functions

v0(t, x) = ηTV (t, x), η ∈ Rm
+ ,

where V (t, x) = (v1(t, x1), . . . , vm(t, xm))T, and

w0(t, x, µ) = ηTW (t, x, µ),

where W (t, x, µ) = (w1(t, x, µ), . . . , wm(t, x, µ))T, satisfy special condi-
tions.

Theorem 2.4.1 Assume that :

(1) the set E ⊂ Rn is compact and for the subsystem (2.2.2) there exist
functions vs(t, xs) ≥ 0, s = 1, 2, . . . ,m, such that the function v0(t, x)
is locally Lipschitz with respect to x at every t ∈ R+, the comparison
functions a, b ∈ K-class, a(r) → ∞ at r → ∞, and the function Φ ∈
C(R+ ×R+, R) are such that

(a) a(‖x‖| ≤ v0(t, x) ≤ b(‖x‖) at all (t, x) ∈ R+ × Ec,

(b) D+v0(t, x)|(2.2.2) ≤ Φ(t, v0(t, x), µ) at all (t, x) ∈ R+ × Ec, where
Φ(t, u, µ) = 0 at u = 0;

(2) there exist functions ws(t, x, µ), s = 1, 2, . . . ,m, such that the function
w0(t, x, µ) is locally Lipschitz with respect to x at every t ∈ R+ and the
following estimates hold:

(a) |w0(t, x, µ)| ≤ c(µ) at (t, x, µ) ∈ R+ × Sc(H) ×M ;

(b) D+v0(t, x)|(2.2.2) +D+w0(t, x, µ)|(2.2.2) ≤ Ψ(t, v0(t, x) +
w0(t, x, µ), µ), where c(µ) is a nondecrescent function µ, lim

µ→0
c(µ) =

0 and Ψ ∈ C(R+ ×R×M,R);
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(3) the solution of the comparison equation

du

dt
= Φ(t, u, µ), u(t0) = u0 ≥ 0, (2.4.7)

is µ-bounded ;

(4) the solution of the comparison equation

dw

dt
= Ψ(t, w, µ), w(t0) = w0 ≥ 0, (2.4.8)

is uniformly µ-bounded.

Then the motion x(t, µ) of the system (2.2.2) is µ-bounded.

Proof In view of the fact that E is compact, there exists H0 > 0 such that
S(H0) ⊃ S(E,H) for some H > 0. Here S(E,H) = {x ∈ Rn : d(x,E) < H},
d(x,E) = inf

y∈E
‖x− y‖. Assume that t0 ∈ R+ and a ≥ H0. Let

a1 = a1(t0, a) = max{a0, a
∗}, (2.4.9)

where a0 = max(v0(t0, x0) : x0 ∈ S(a) ∩Ec) and a∗ ≥ v0(t, x) at (t, x) ∈
R+ × ∂E.

Since all solutions of the equation (2.4.7) are µ-bounded, for a specified
t0 ∈ R+ and a1 > 0 there exists β0 = β0(t0, a1) and µ1 = µ1(a1) such that

u(t, t0, u0, µ) < β0 at all t ≥ t0, (2.4.10)

as soon as u0 < a1 and µ < µ1. From condition (4) of Theorem 2.4.1 it follows
that at a specified a2 > 0 there exists β1(a2) and µ2(a2) such that

w(t; t0, w0, µ) < β1(a2) at all t ≥ t0, (2.4.11)

as soon as w0 < a2 and µ < µ2. Let u0 = v0(t0, x0) and a2 = b(a) + β0. Since
a(r) → ∞ at r → ∞, it is possible to choose β = β(t0, a) so that

a(β) > β1(a). (2.4.12)

Now show that if x0 ∈ S(a), then the solution x(t, µ) of the system (2.2.2)
satisfies the inclusion x(t, µ) ∈ S(β) at all t ≥ t0 and µ < µ0. If this is not
correct, then one can find a solution x(t, µ) such that for some t∗ ≥ t0 at
µ < µ0 the relation ‖x(t∗, µ)‖ = β would hold. Since S(E,H) ⊂ S(H0), it is
necessary to consider two cases:

(a) the inclusion x(t, µ) ∈ Ec is true at all t ∈ [t0, t
∗] and µ < µ0;

(b) there exists t̃ ≥ t0 such that x(t̃, µ) ∈ ∂E and x(t, µ) ∈ Ec at t ∈ [t̃, t∗]
and µ < µ0.
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First, consider case (a). For the inclusion (a) one can find t1 > t0 such
that











x(t1, µ) ∈ ∂S(H),

x(t∗, µ) ∈ ∂S(β),

x(t, µ) ∈ S0(H) at t ∈ [t1, t∗], µ < µ0.

(2.4.13)

Denoting m(t, µ) = v(t, x) + |w(t, x, µ)|, where m ∈ C(R+ ×M,R+), obtain
the inequality

D+m(t, µ) ≤ Ψ(t,m(t, µ), µ), t ∈ [t0, t∗] (2.4.14)

and the estimate

m(t, µ) ≤ w+(t; t1, u0, µ), t ∈ [t0, t∗], (2.4.15)

where w+(t1; t1, u0, µ) = u0, w
+ is the maximum solution of the equation

(2.4.8). Thus,
m(t∗, µ) ≤ w+(t∗; t1,m(t1, µ)). (2.4.16)

Similarly, using the inequality from condition (1b) of Theorem 2.4.1 and
the comparison equation (2.4.7), obtain

(t1, x(t1, µ)) ≤ u+(t1; t0, v(t0, x(t0, µ))) (2.4.17)

at all t ∈ [t0, t1], where u∗ is the maximum solution of the equation (2.4.7). It
is obvious that if we choose

u0 = v0(t0, x0) < a1,

then, in compliance with (2.4.10), we will obtain

u+(t1; t0, v0(t0, x0)) ≤ β0. (2.4.18)

Now take a µ3 ∈ M from the formula µ3 = c−1(β0). Then, in view of
condition (2a) of Theorem 2.4.1, obtain

|w0(t, x, µ)| ≤ c(µ) = c(c−1(β0)) = β0. (2.4.19)

Hence

w0 = v0(t1, x(t1; t0, x0)) + |w0(t1, x(t1; t0, x0), µ)| < b(a) + β0 = a2

at µ < µ3.

From the estimate (2.4.15) obtain

v0(t1, x(t1; t0, x0)) + |w0(t1, x(t1; t0, x0), µ)|
< w+(t1, t0, w0, µ) < β1(a2) at µ < µ3.

Hence, taking into account (2.4.12), it follows that

a(β) + β0 < β1(a2) < a(β) at µ < µ3. (2.4.20)
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The obtained contradiction (2.4.20) shows that x(t, µ) ∈ S(β) at all t ≥ t0
and µ < µ0 = min(µ1, µ2, µ3).

Let case (b) be realized. Here, like before, we obtain the inequality (2.4.15),
where t1 ≥ t0 satisfies the inclusion (2.4.13). For the function v0(t, x) the
following estimate holds:

v0(t1, x(t1; t0, x0)) < u+(t; t̃, v0(t̃, x(t̃; t0, x0)).

In case (b) we have x(t̃; t0, x0, µ) ∈ ∂E and v0(t̃, x(t̃; t0, x0, µ)) ≤ a∗ < a1.
Therefore, the reasoning is similar to the above results in the contradic-
tion (2.4.20). Hence it follows that if x0 ∈ S(a) and a ≥ H, µ < µ0, then
‖x(t; t0, x0, µ)‖ < β at all t ≥ t0. At a < H we assume that β(t0, a) =
β0(t0, H).

Theorem 2.4.1 is proved.

Condition (1a) from Theorem 2.4.1 is essential for the proof of the µ-
boundedness of motion of the system (2.2.2). If a(r) does not tend to +∞ at
r → +∞, then the function v0(t, x) is not radially unbounded, and therefore
its application in the study of the µ-boundedness of the system (2.2.2) is
impossible.

Show the method of application of a function v0(t, x) that does not satisfy
property (1a).

Definition 2.4.2 (cf. Burton [1]). The function v0(t, x), v0 : R+ ×Rn →
R+ is strengthened by the function u : Rn ×M → R+, if the function

v0(t, x) + u(x, µ) (2.4.21)

is radially unbounded, and the following conditions are satisfied:

(1) there exist disjoint open sets S1, . . . , Sk in Rn and continuous functions
u1, . . . , uk, ui : Si ×M → R+ which have continuous partial derivatives
in Si, and

u(x, µ) =

{

ui(x, µ), if x ∈ Si for some i,

0, if x ∈ (∪Si)
c;

(2) there exist positive constants L1, . . . , Lk such that for every i at 0 <
L∗

i < Li there exists such a constant D > 0 that if x ∈ Si and v0(t, x) ≤
L∗i, then ui(x, µ) ≤ D.

Note that if the function (2.4.2) is radially unbounded for every L > 0,
then there exists a constant H > 0 such that if

v0(t, x) ≤ L and ‖x‖ ≥ h, (2.4.22)

then x ∈ Si for some i.
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Like in Theorem 2.4.1, the function v0(t, x) is determined by the formula

v0(t, x) =

m
∑

s=1

asvs(t, xs),

and the functions vi(x, µ) and hence the function u(x, µ) are constructed with
consideration for the connection functions µgs(t, x1, . . . , xm) between the sub-
systems.

Theorem 2.4.2 Assume that the motion equations (2.2.2) are such that :

(1) for the subsystems (2.2.4) there exist auxiliary functions vs(t, xs) such
that for the function v0(t, x) the following conditions are satisfied:

(a) vs : R+ × Rns → R+, vs have continuous partial derivatives on
R+ ×Rns ,

(b) there exists a nonnegative constant M such that in the domain
R+ × Sc(M) the following inequality holds:

dv0(t, x)

dt

∣

∣

∣

∣

(2.2.2)

≤ 0,

(c) if M > 0, then there exist positive constants K and P , P > M ,
such that at all t ≥ 0

v0(t, x) ≤ K at ‖x‖ = M

and
v0(t, x) > K at ‖x‖ = P ;

(2) there exists a function u(x, µ), which strengthens the function v0(t, x),
and for every x ∈ ⋃

i

Si there exists µ0 ∈M such that the inequality

du(x, µ)

dt

∣

∣

∣

∣

(2.2.2)

≤ 0

holds at all t ≥ 0 and µ < µ0.

Then the motion x(t, µ) of the system (2.2.2) is µ-bounded.

Proof If x ∈ ⋃Si, then for some i the motion x ∈ Si. By assumption the
sets Si are open so that there exists gradu(x, µ) = gradui(x, µ).

If Theorem 2.4.2 is incorrect, then there exists a motion of the system
(2.2.2) for which the vector function x(t, µ) = (x1(t, µ), . . . , xm(t, µ))T, defined
on the maximum right-hand interval [t0, T ), at µ < µ0, is µ-unbounded. In
this case there exists an increscent sequence {τn}: t0 < τn < T such that
‖x(τn)‖ → ∞ at n→ ∞.
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From conditions (1b) and (1c) of Theorem 2.4.2 it follows that ‖x(t, µ)‖ ≥
M , and the condition

dv0(t, x)

dt

∣

∣

∣

∣

(2.2.2)

≤ 0

results in the estimate

v0(t, x(t, µ)) ≤ v0(t0, x(t0, µ)) = L.

This means that there exists H > 0 such that the condition ‖x(t, µ)‖ ≥ H
implies x(t, µ) ∈ Si for some i. Consequently, for all sufficiently large n a so-
lution x(τn, µ) belongs to some Si. From the sequence {τn} one can choose a
subsequence {τ∗n} so that x(τ∗n , µ) ∈ Si for some fixed i and ‖x(τ∗n , µ)‖ > H .
As soon as v0(τ

∗
n , x(τ

∗
n , µ)) ≤ L and the function v0(t, x) + u(x, µ) is radi-

ally unbounded, the fact that ‖x(τ∗n , µ)‖ → ∞, means that u(x(τ∗n , µ), µ)′ =
ui(x(τ

∗
n , µ), µ) → ∞. Here we should consider the following two cases:

(a) there exists t1 ∈ [t0, T ) such that

x(t, µ) ∈ Si on [t1, T );

(b) there exists a sequence {tn} : tn < τn < tn+1 such that

x(t, µ) ∈ Si on (tn, tn+1) and ‖x(tn, µ)‖ = H.

For the verification of the above two cases, note that the functions ui(x, µ)
are continuous on S̄i, ‖x(τn)‖ > H and the motion x(t, µ) is continuous. Since
Si are open and do not overlap in view of the condition (2.4.22), there exists
a sequence {tn} such that ‖x(tn, µ)‖ = H and ‖x(t, µ)‖ > H on [tn, τn]. The
continuous function x(t, µ) cannot leave Si at t < τn, if only ‖x(t, µ)‖ does
not reach H at some point in time t = tn.

Let case (a) be true. Then

dui(x, µ)

dt

∣

∣

∣

∣

(2.2.2)

≤ 0

and hence
ui(x(t, µ), µ) ≤ ui(x(t1, µ), µ)

on the interval [t1, T ), which contradicts the possible unboundedness of the
function ui(x(t, µ), µ).

Let the case (b) be true. Then ‖x(tn, µ)‖ = H and there exists a subse-
quence {x(tnk

, µ)} with some limit y ∈ S̄i. Hence ui(x(tn, µ), µ) → ui(y, µ) at
tn → +∞. The condition

dui(x, µ)

dt

∣

∣

∣

∣

(2.2.2)

≤ 0
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on [tnk
, τnk

] for sufficiently large k results in the estimate

ui(x(τn, µ), µ) ≤ ui(y, µ) + 1,

which in its turn contradicts the possible unboundedness of the functions
ui(x(τn, µ), µ).

The theorem is proved.

Definition 2.4.3 The function v(t, x, µ), v : R+ × Rn × M → R+, is
a strengthened Lyapunov function if v0(t, x) is strengthened by the function
u(x, µ) indicated in Definition 2.4.2, and

(1) for the function v0(t, x) =
m
∑

s=1
asvs(t, x) the following conditions are

satisfied:

(a) vs : R+ ×Rns → R+, vs have continuous first-order partial deriva-
tives,

(b) there exists a nonnegative constant M such that in the domain
R+ × Sc(M) the following inequality holds

dv0(t, x)

dt

∣

∣

∣

∣

(2.2.2)

≤ 0,

(c) if M > 0, then there exist positive constants K and P (P > M)
such that at all t ≥ 0 the following inequalities hold:

v0(t, x) ≤ K at ‖x‖ = M

and

v0(t, x) > K at ‖x‖ = P ;

(2) for every i and every L > Li there exists a positive constant J and
continuous functions Φ: (0, L − Li) → R+ and H : [J,∞) → R+, for
which

L−Li
∫

0+

ds

Φ(s)
<∞ and

∞
∫

J

H(s) ds = ∞, (2.4.23)

while the conditions ui(x, µ) ≥ J and L ≥ v(t, x, µ) > Li imply

dv0(t, x, µ)

dt

∣

∣

∣

∣

(2.2.2)

≤ −Φ(v(t, x, µ) − Li)H(ui(x, µ))

× ‖gradui(x, µ)(f(t, x) + µg(t, x1, . . . , xm)‖.
(2.4.24)

Now consider the following statement.
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Theorem 2.4.3 Let the motion equations (2.2.2) be such that :

(1) there exists a strengthening function u(x, µ) such that v(t, x, µ) is a
strengthened Lyapunov function in accordance with Definition 2.4.3 ;

(2) for every i there exists µ0 ∈M such that if ui(x, µ) ≥ J and v0(t, x, µ) =
Li, then

dv0(t, x, µ)

dt
|(2.2.2) < 0 at µ < µ0.

Then the motion x(t, µ) of the system (2.1.2) is µ-bounded.

The proof of this theorem is similar to that of Theorem 2.4.2.

2.5 Boundedness with Respect to a Part of Variables

Continue the study of the µ-boundedness of motion of the system (2.2.2)
under the following assumptions:

(a) the right-hand parts of the system (2.2.2) are continuous and satisfy the
conditions for the existence of the unique solution x(t, µ) = x(t; t0, x0, µ)
in the domain

t ≥ 0, ‖x‖ =

m
∑

s=1

‖xs‖ < +∞, µ ∈M,

here fs(t, 0) 6= 0 and gs(t, 0, . . . , 0) 6= 0 for at least one s = 1, 2, . . . ,m;

(b) any solution x(t; t0, x0, µ) of the system (2.2.2) is defined at all t ≥ t0
and µ ∈M0 ⊂M .

Taking into account Definition 2.2.1 and condition (3) from Remark 2.2.1,
formulate some definitions of µ-boundedness of motion of the system (2.2.2)
with respect to variables of a part of subsystems.

Represent the vector x = (xT
1 , . . . , x

T
m)T with subvectors xs, s =

1, 2, . . . ,m, as follows:
x = (yT, zT)T,

where
yT = (xT

1 , . . . , x
T
k )T and zT = (xT

k+1, . . . , x
T
m)T.

Now we will give the following definitions.

Definition 2.5.1 The motion

x(t, µ) = (xT
1 (t; t0, x0, µ), . . . , xT

m(t; t0, x0, µ))T

of the system (2.2.2) is said to be:
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(1) µ-bounded with respect to the subvector of variables y = (xT
1 , . . . , x

T
k )T,

if for any t0 ≥ 0 and x0 = (xT
10, . . . , x

T
m0)

T one can find N(t0, x0) > 0
and µ0 ∈M such that

‖y(t; t0, x0, µ)‖ ≤ N at all t ≥ t0 and µ < µ0; (2.5.1)

(2) µ-bounded uniformly with respect to t0 with respect to the subvector of
variables y = (xT

1 , . . . , x
T
k )T, if in Definition 2.5.1 (1) for any x0 one can

choose N(x0) > 0 independent of t0;

(3) µ-bounded uniformly with respect to x0 with respect to the subvector of
variables y = (xT

1 , . . . , x
T
k )T, if for any t0 ≥ 0 and a compact set E ⊂ Rn

one can find N(t0, E) > 0 and µ0 ∈ M such that x0 ∈ E would imply
the estimate (2.5.1);

(4) µ-bounded uniformly with respect to (t0, x0), if in Definition 2.5.1 (3)
for any compact set E one can choose N(E) > 0 independent of t0.

Now for the system (2.2.2) consider the function (2.4.21), that is, the
function v0(t, x) strengthened by the function u(x, µ).

Theorem 2.5.1 Assume that the motion equations (2.2.2) are such that :

(1) the strengthened function

v0(t, x) + u(x, µ), µ < µ∗ ∈M, (2.5.2)

in the range of values (t, x) ∈ R+ ×Rn satisfies the condition

a(‖y‖) ≤ v0(t, x) + u(x, µ), a(r) → ∞ at r → ∞; (2.5.3)

(2) there exists µ∗ ∈M such that for any motion x(t; t0, x0, µ) the function
v0(t, x(t; t0, x0, µ)) + u(x(t; t0, x0, µ), µ) is not increscent at all t ≥ t0
and at µ < µ∗.

Then the motion x(t, µ) of the system is µ-bounded with respect to the
subvector of variables y = (xT

1 , . . . , x
T
k )T.

Proof. Sufficiency According to condition (1) of Theorem 2.5.1, at any
t ≥ t0 and x0 ∈ Rn for the number η = v0(t0, x0) + u(x0, µ) at µ < µ∗

one can choose N(η) = N(t0, x0) > 0 so that if ‖y‖ > N , then a(‖y‖) ≤
v0(t0, x0) + u(x0, µ) at µ < µ∗.

Condition (2) of Theorem 2.5.1 implies that at µ < µ∗

a(‖y(t, µ)‖) ≤ v0(t, x(t; t0, x0, µ)) + u(x(t; t0, x0, µ), µ) ≤ η ≤ a(N).

Hence ‖y(t, µ)‖ < N at all t ≥ t0 and µ < µ∗.
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Necessity From the fact that the motion x(t, µ) of the system (2.2.2) is
µ-bounded with respect to the subvector y = (xT

1 , . . . , x
T
k )T it follows that in

the domain R+ ×Rn for the function v0(t, x) + u(x, µ) there exists

sup
τ≥0

‖y(t+ τ ; t, x, µ)‖ = v0(t, x) + u(x, µ). (2.5.4)

It is clear that there exists µ∗ ∈M at which v0(t, x)+u(x, µ) ≥ ‖y‖, if µ < µ∗.
For the values t1 < t2 obtain

v0(t1, x(t1; t0, x0, µ)) + u(x(t1; t0, x0, µ), µ)

= sup
τ≥0

‖y(t1 + τ ; t, x, µ)‖ ≥ sup
τ≥0

‖y(t2 + τ ; t0, x0)‖

= v0(t, x0(t2; t0, x0, µ)) + u(x(t2; t0, x0, µ), µ)).

This means that the function v0(t, x(t; t0, x0, µ)) + u(x(t; t0, x0, µ), µ) is not
increscent.

Theorem 2.5.1 is proved.

Theorem 2.5.2 Assume that the motion equations (2.2.2) are such that :

(1) the strengthened function v0(t, x)+u(x, µ) in the range of values (t, x) ∈
R+ ×Rn satisfies the condition (2.5.3) and, in addition,

v0(t, x) + u(x, µ) ≤ w(x) at µ < µ∗, (2.5.5)

where w(x) is a function finite at each point x ∈ Rn;

(2) there exists µ∗ ∈M such that for any motion x(t; t0, x0, µ) of the system
(2.2.2) the function

v0(t, x(t; t0, x0, µ)) + u(x(t; t0, x0, µ), µ)

is not increscent at all t ≥ t0 and µ < µ∗.

Then the motion x(t, µ) of the system (2.2.2) is µ-bounded uniformly with
respect to t0 with respect to the subvector y = (xT

1 , . . . , x
T
k )T.

Proof. Sufficiency For any x0 ∈ Rn choose a value N(x0) > 0 so that at
‖y‖ > N(x0) the inequality a(‖y‖) > w(x0) would hold.

According to conditions (1) and (2) of Theorem 2.5.2, obtain

a(‖y(t, µ)‖) ≤ v0(t, x(t; t0, x0, µ)) + u(x(t; t0, x0, µ), µ)

≤ v0(t0, x0) + u(x0, µ) ≤ w(x0) ≤ a(N)

at all t ≥ t0 and µ < µ∗. Hence ‖y(t, µ)‖ < N(x0) at all t ≥ t0 and µ < µ∗.
Necessity If the motion x(t, µ) of the system (2.2.2) is µ-bounded uni-

formly with respect to t0 with respect to the subvector y = (xT
1 , . . . , x

T
k )T,

then the function (2.5.4) is defined in the domain R+ ×Rn. In addition,

v0(t, x) + u(x, µ) ≤ N(x) ≡ w(x) at µ < µ∗.
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This function is not increscent along solutions of the system (2.2.2) at all
t ≥ t0 and µ < µ∗.

Thus, Theorem 2.5.2 is proved.

Theorem 2.5.3 Assume that the motion equations (2.2.2) are such that :

(1) the strengthened function v0(t, x)+u(x, µ) in the range of values (t, x) ∈
R+×Rn satisfies the condition (2.5.3) and for any compact set E ⊂ Rn

there exists a function ∆E(t) such that

v0(t, x) + u(x, µ) ≤ ∆E(t) at x ∈ E, t ≥ 0, µ < µ∗ ∈M ;

(2) there exists µ∗ ∈M such that for any motion x(t; t0, x0, µ) the function

v0(t, x(t; t0, x0, µ)) + u(x(t; t0, x0, µ), µ)

is not increscent at all t ≥ t0 and µ < µ∗.

Then the motion x(t, µ) of the system (2.2.2) is µ-bounded with respect to
x0 with respect to the subvector y = (xT

1 , . . . , x
T
k )T.

Proof. Sufficiency According to the condition (2.5.3) for any t0 ≥ 0 and a
compact set E there exists N(t0, E) > 0 and µ ∈M such that:

(a) at ‖y‖ > N(t0, E) the following inequality holds:

a(‖y‖) > ϕE(t0);

(b) at x0 ∈ E, t ≥ t0 and µ < µ∗ the following estimates hold:

a(‖y(t; t0, x0, µ)‖) ≤ v0(t, x(t; t0, x0, µ)) + u(x(t; t0, x0, µ), µ)

≤ v0(t0, x0) + u(x0, µ) ≤ ∆E(t0) ≤ a(N).

Hence find ‖y(t; t0, x0, µ)‖ ≤ N at t ≥ t0 and µ < µ∗.
Necessity The function v0(t, x)+u(x, µ) determined by the formula (2.5.4)

satisfies the estimate

v0(t, x) + u(x, µ) ≤ N(t, E) ≡ ϕE(t), µ < µ∗,

and is not increscent along the solutions x(t; t0, x0, µ) of the system (2.2.2).
Theorem 2.5.3 is proved.

Theorem 2.5.4 Assume that the motion equations (2.2.2) are such that :

(1) the strengthened function v0(t, x)+u(x, µ) in the range of values (t, x) ∈
R+ × Rn satisfies the condition (2.5.3) and, in addition, there exists a
function b : b(r) → +∞ at r → +∞ such that

v0(t, x) + u(x, µ) ≤ b(‖x‖);
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(2) there exists µ∗ ∈M such that for any motion x(t; t0, x0, µ) of the system
(2.2.2) the function

v0(t, x(t; t0, x0, µ)) + u(x(t; t0, x0, µ), µ)

is not increscent at all t ≥ t0 and µ < µ∗.

Then the motion x(t, µ) of the system (2.2.2) is µ-bounded uniformly with
respect to (t0, x0) with respect to the subvector y = (xT

1 , . . . , x
T
k )T.

Proof. Sufficiency For any compact set E ⊂ Rn calculate the value

bE = sup[v0(t, x) + u(x, µ) : t ≥ 0, x ∈ E] ≤ sup[b(‖x‖) : x ∈ E] < +∞.

From conditions (1) and (2) of Theorem 2.5.4 it follows that there exists
N(E) > 0 and µ∗ ∈M such that:

(a) at ‖y‖ > N(E) the inequality holds true:

a(‖y‖) > bE ;

(b) at µ < µ∗, t0 ≥ 0 and x0 ∈ E the following estimate holds:

a(‖y(t; t0, x0, µ)‖) ≤ v0(t, x(t; t0, x0, µ)) + u(x(t; t0, x0, µ), µ)

≤ v0(t0, x0) + u(x0, µ) ≤ bE ≤ a(N).

Hence, ‖y(t; t0, x0, µ)‖ ≤ N for all t ≥ t0 and µ < µ∗.
Necessity If the motion x(t, µ) of the system (2.2.2) is µ-bounded uniformly

with respect to {t0, x0} with respect to the subvector

y = (xT
1 , . . . , x

T
k )T,

then there exists a function v0(t, x)+u(x, µ) determined by the formula (2.5.4).
For compact sets E use the balls ‖x‖ = r, r ∈ [0,∞), and for the values
(t, x) ∈ R+ ×Rn obtain

v0(t, x) + u(x, µ) ≤ N(E) = N(r)

at µ < µ∗, E ⊂ Rn, r ∈ [0,∞).

The function N(r) → +∞ at r → +∞; therefore, one can assume b(‖x‖) =
N(‖x‖). The function v0(t, x) + u(x, µ) determined by the formula (2.5.4) is
not increscent along solutions of the system (2.2.2).

Theorem 2.5.4 is proved.

Remark 2.5.1 If the strengthened function

v0(t, x) + u(x, µ), µ < µ∗,
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has continuous first-order partial derivatives, then the condition for the non-
increase of the function

v0(t, x(t; t0, x0, µ)) + u(x(t; t0, x0, µ), µ)

along solutions of the system (2.2.2) can be substituted by the condition

d

dt
(v0(t, x) + u(x, µ))|(2.2.2) ≤ 0

in the range of values (t, x) ∈ R+ ×Rn at µ < µ∗.

Remark 2.5.2 If in the system (2.2.2) we assume that µ = 0, xs = x ∈ Rn

and s = 1, then Theorems 2.5.1 – 2.5.4 imply the statements of Theorem 39.1
from the monograph by Rumiantsev and Oziraner [1].

2.6 Algebraic Conditions of µ-Boundedness

Now for the study of µ-boundedness of motion of the system (2.2.2),
construct the algebraic necessary conditions, using the functions vs(t, xs),
s = 1, 2, . . . ,m only, which were constructed for the independent subsystems
(2.2.4). Those conditions will be based on the following assumption on the
independent subsystems.

Assumption 2.6.1 There exist:

(1) continuously differentiable functions vs(t, xs), vs : R+×Rns → R+, s =
1, 2, . . . ,m;

(2) comparison functions ψs1, ψs2, ψs3 from the KR-class, s = 1, 2, . . . ,m;

(3) constants σs ∈ R, s = 1, 2, . . . ,m, such that

(a) ψs1(‖xs‖) ≤ vs(t, xs) ≤ ψs2(‖xs‖)

(b)
dvs(t, xs)

dt

∣

∣

∣

∣

(2.2.4)

≤ σsψs3(‖xs‖)

at all t ∈ R+ and all ‖xs‖ ≥ rs (rs may be sufficiently large);

(4) the functions vs(t, xs) and
dvs

dt

∣

∣

∣

(2.2.4)
at all s = 1, 2, . . . ,m are bounded

on the sets R+ × S(rs), s = 1, 2, . . . ,m.
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Theorem 2.6.1 Let the motion equations (2.2.1) with the decomposition
(2.2.2) be such that :

(1) all the conditions of Assumption 2.6.1 are satisfied ;

(2) at the specified functions vs : R+ × Rns → R+ and ψs3 from the KR-
class there exist constants asj ∈ R such that

(

∂vs(t, xs)

∂xs

)T

gs(t, x1, . . . , xm) ≤ [ψs3(‖xs‖)]1/2
m
∑

j=1

asj [ψs3(‖xj‖)]1/2

at all xs ∈ Rns , xj ∈ Rns , s = 1, 2, . . . ,m and t ∈ R+;

(3) at the specified constants σs ∈ R there exists a value of the parameter
µ∗ ∈M and an m-vector aT = (a1, . . . , am) such that the matrix S(µ) =
[sij(µ)] with the elements

sij(µ) =







as(σs + µass), s = j,
1

2
µ(ajasj + ajajs), s 6= j,

is negative semidefinite (definite) at µ ∈ (0, µ∗] and at µ→ 0.

Then the motion x(t, µ) of the system (2.2.2) is uniformly µ-bounded (uni-
formly ultimately µ-bounded).

Proof Using the functions vs(t, xs) and the vector a = (a1, . . . , am)T con-
struct the scalar function

v(t, x, a) =

m
∑

s=1

asvs(t, xs). (2.6.1)

According to condition (3a) from Assumption 2.6.1, for the function (2.6.1)
the following estimates hold:

ψ1(‖x‖) ≤ v(t, x, a) ≤ ψ2(‖x‖), (2.6.2)

where ψ1, ψ2 ∈ KR-class. In addition, condition (3b) and condition (2) of
Theorem 2.6.1 at all t ∈ R imply the estimate

m
∑

s=1

as

[

dvs(t, xs)

dt

]

(2.2.2)

≤ λM (µ)ψ3(‖x‖), (2.6.3)

where λM (µ) < 0, as soon as x ∈ Rn \ (S1(r1) × . . . × Sm(rm)). Here the
comparison function ψ3 ∈ KR-class.

Now we will consider the situation where ‖xi‖ ≥ ri for i = 1, 2, . . . , l,
l < m and ‖xi‖ < ri at i = l+ 1, . . . ,m. For the function (2.6.1) consider the
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estimates

l
∑

s=1

asψs1(‖xs‖) +

m
∑

s=l+1

asvs(t, xs) ≤ v(t, x, a) ≤

≤
l
∑

s=1

asψs1(‖xs‖) +

m
∑

s=l+1

asvs(t, xs).

(2.6.4)

The fact that vs(t, xs) are continuous on R+ ×Rns and bounded on R+ ×
Ss(rs), s = 1, 2, . . . , l, implies the existence of comparison functions ϕ1, ϕ2

from the KR-class, such that

ϕ1(‖x‖) ≤ v(t, x, a) ≤ ϕ2(‖x‖) (2.6.5)

at all t ∈ R+ and all x ∈ Rn, while ‖xs‖ < rs, s = l+1, . . . ,m, and the values
‖xs‖ are sufficiently large for s = 1, 2, . . . , l.

For the function
dv(t, x, a)

dt
along solutions of the system (2.2.2) obtain

dv(t, x, a)

dt

∣

∣

∣

(2.2.2)
=

l
∑

s=1

as

{[

dvs(t, xs)

dt

]

(2.2.4)

+

(

∂vs(t, xs)

∂xs

)T

µgs(t, x1, . . . , xm)

}

+

m
∑

s=l+1

as

{

dvs(t, xs)

dt

∣

∣

∣

(2.2.4)
+

(

∂vs(t, xs)

∂xs

)T

µgs(t, x1, . . . , xm)

}

≤
l
∑

s=1

asσsψs3(‖xs‖) +
l
∑

s=1

as[ψs3(‖xs‖)]
1
2µ

l
∑

l=1

asj [ψj3(‖xj‖)]
1
2

+

l
∑

s=1

as[ψs3(‖xs‖)]
1
2µ

m
∑

j=l+1

asj [ψj3(‖xj‖)]
1
2

+

m
∑

s=l+1

as
dvs(t, xs)

dt

∣

∣

∣

(2.2.4)

+

m
∑

s=l+1

as[ψs3(‖xs‖)]
1
2µ

l
∑

j=1

asj [ψj3(‖xj‖)]
1
2

+

m
∑

s=l+1

as[ψs3(‖xs‖)]
1
2µ

m
∑

j=l+1

asj [ψj3(‖xj‖)]
1
2 .

(2.6.6)

For all ‖xs‖ < rs, s = l + 1, . . . ,m, there exist constants K, K1, K2, K3,
K4s, s = l + 1, . . . ,m, such that

m
∑

j=l+1

|asj |[ψj3(‖xj‖)]
1
2 ≤ K1, (2.6.7)
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m
∑

i=l+1

ai[ψi3(‖xi‖)]
1
2 ≤ K2, (2.6.8)

m
∑

s=l+1

as[ψs3(‖xs‖)]
1
2

l
∑

j=1

asj [ψj3(‖xj‖)]
1
2 ≤ K3, (2.6.9)

∣

∣

∣

∣

dvs(t, xs)

dt

∣

∣

∣

∣

(2.2.2)

∣

∣

∣

∣

≤ K4s, s = l + 1, . . . ,m. (2.6.10)

Let w = (ψ13(‖x1‖), . . . , ψl3(‖xl‖))T and let P = [pij ] be an l × l-matrix
with the elements

pij(µ) =

{

ai(σi + µaii), i = j,

µaiaij , i 6= j.

Denote S̃ = 1
2 (P + PT). Then the estimate of the expression (2.6.6), taking

into account the inequalities (2.6.7) – (2.6.10), has the form

dv(t, x, a)

dt

∣

∣

∣

(2.2.2)
≤ wTS̃w + µK1

l
∑

s=1

as[ψs3(‖xs‖)]
1
2

+

m
∑

s=l+1

asK4s + µK2

l
∑

j=1

|asj |[ψj3(‖xj‖)]
1
2 + µK3.

According to condition (3) of Theorem 2.6.1, there exists µ∗ ∈ M such
that the matrix S̃(µ) is negative semidefinite (definite) at µ < µ∗. Therefore,
λM (S̃) < 0 and then

dv(t, x, a)

dt

∣

∣

∣

(2.2.2)
≤ λM (S̃)

l
∑

i=l

ψi3(‖xi‖) + µK1

r
∑

s=l

as[ψs3(‖xs‖)]
1
2

+

m
∑

s=l+1

asK4s + µK2

l
∑

j=l

|asj [ψj3(‖xj‖)]
1
2 + µK3.

(2.6.11)

Since λM (S̃(µ)) < 0, at any value of ‖xs‖, s = 1, 2, . . . , l, one can find

µ∗∗ ∈ M such that the sign of
dv(t, x, a)

dt

∣

∣

∣

(2.2.2)
will be determined by the

expression

λM (S̃)

l
∑

i=l

ψi3(‖xi‖)

at µ < µ∗∗. Thus, at µ < µ0 = min(µ∗, µ∗∗) the function v(t, x, a) is positive
definite and decrescent and its full derivative (2.6.11) is negative definite.
According to Theorems 10.4 and 10.5 from the monograph of Yoshizawa [2],
the state x = 0 of the system (2.2.2) is uniformly µ-bounded (uniformly
ultimately µ-bounded).



Analysis of the Boundedness of Motion 65

Theorem 2.6.1 is proved.

Remark 2.6.1 Along with the use of the function (2.6.1) for the analysis of
µ-boundedness of motion of the system (2.2.2) it is possible to use the vector
function

v(t, x) = (v1(t, x1), . . . , vm(t, xm))T

and the theory of M -matrices.

Recall some definitions, following the monographs of Michel and Miller [1]
and Šiljak [1].

Definition 2.6.1 A real (m×m)-matrix D = [dsj ] is called an M -matrix
if dsj ≤ 0, s 6= j (i.e., all off-diagonal elements of the matrix D are not
positive) and all principal minors of the matrix D are positive.

Definition 2.6.2 The real (m ×m)-matrix A = [asj ] is called a matrix
with the dominant main diagonal, if there exist positive numbers dj , j =
1, 2, . . . , s, such that

ds|ass| >
m
∑

j=1,j 6=s

dj |asj | for all s = 1, 2, . . . ,m

or

dj |ajj | >
m
∑

s=1,s6=j

ds|asj | for all j = 1, 2, . . . ,m.

Consider the following statement.

Theorem 2.6.2 Let the motion equations (2.2.1) with the decomposition
(2.2.2) be such that :

(1) all the conditions of Assumption 2.6.1 are satisfied ;

(2) condition (2) of Theorem 2.6.1 is satisfied with the constants asj ≥ 0 at
s 6= j;

(3) at the specified constants σs ∈ R there exists a value of the parameter
µ∗ ∈ M such that all the main diagonal minors of the matrix D(µ) =
[dsj(µ)] are positive at µ < µ∗, where

dsj(µ) =

{

−(σs + µass), s = j,

−µasj , s 6= j.

Then the motion x(t, µ) of the system (2.2.2) is uniformly µ-bounded (uni-
formly ultimately µ-bounded).

The proof of Theorem 2.6.2 is similar to that of Theorem 2.6.1 and there-
fore is not given here.
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2.7 Applications

2.7.1 Lienard oscillator

The Lienard equation is one of the important differential equations widely
used in mechanics and electrical engineering (see Česari [1], Burton [2], Reissig
et al. [1], and others). The study of solutions of this equation is still the focus of
attention for a lot of specialists, which is witnessed by numerous publications
in academic periodicals.

Study the µ-boundedness of solutions of the equation

ẍ+ f(t, x, ẋ, µ)ẋ+ g(x) = 0, (2.7.1)

where f : R+ × R × R ×M → R+, g : R → R, the functions f and g are
continuous, f(t, x, y, µ) > 0, if y 6= 0 and µ ∈ M0 ⊂ M , and xg(x) > 0, if
x 6= 0. The equation (2.7.1) is equivalent to the system

ẋ = y,

ẏ = −f(t, x, y, µ)y − g(x).
(2.7.2)

Choose the function

v(x, y) = W (x) +
1

2
y2,

where W (x) =
x
∫

0

g(s) ds. Then obtain

Dv(x, y)|(2.7.2) = −f(t, x, y, µ)y2 ≤ 0 (2.7.3)

at all (t, x, y, µ) ∈ R+ ×R×R ×M0.
Assume that W (−∞) and W (+∞) are finite quantities and determine the

sets
S1 = {(x, y) : x > 0},
S2 = {(x, y) : x < 0}.

Take the strengthening functions ui(x, y, µ), i = 1, 2, in the form

u1(x, y, µ) = µx,

u2(x, y, µ) = −µx, µ ∈M0,
(2.7.4)

and assume that J = 1. Let X = (x, y)T and denote the right-hand part of
the system (2.7.2) by F (t,X, µ) = (y,−f(t, x, y, µ)y − g(x))T. Take L1 and
L2 in the form L1 = Φ(+∞) and L2 = Φ(−∞). Note that

|gradui(x, y, µ)F (t,X, µ)| = |y|,

v(t,X) − L1 = W (x) −W (+∞) +
1

2
y2,

v(t,X) − L2 = W (x) −W (−∞) +
1

2
y2.
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Then if ui(x, y, µ) ≥ J , then v(t, x) − Li <
1
2y

2.
If the function Φ: (0, L − Li) → R+ from Definition 2.4.3 is taken in the

form Φ(s) = (2s)1/2, then at ui(x, y, µ) ≥ J and v(t, x, y) > Li obtain

Φ(v(t, x, y) − Li) < |y| at i = 1, 2.

Now, let L > L1 and a function h(x) such that
∞
∫

J

h(s) ds = +∞ be speci-

fied. If L ≥ v(t, x, y) > L1 and u1(x, y, µ) ≥ J , then, choosing µ ∈ M1 ⊂ M ,
one can obtain

f(t, x, y, µ) ≥ h(x) ≥ 0 and

∞
∫

J

h(s) ds = +∞. (2.7.5)

Similarly, for a specified L > L2, if L ≥ v(t, x, y) > L2 and u2(t, y, µ) ≥ J ,
then, choosing µ ∈M2 ⊂M , one can obtain

f(t, x, y, µ) ≥ h(x) ≥ 0 and

−∞
∫

−J

h(s) ds = −∞. (2.7.6)

Under the conditions (2.7.5) and (2.7.6) for J ≤ ui(x, y, µ), i = 1, 2, and
L ≥ v(t, x, y) > Li obtain

Dv(t, x, y)|(2.7.2) ≤ Φ(v(t, x, y)−Li))h(ui(x, y, µ))|Dui(x, y, µ)|(2.7.2) (2.7.7)

at µ ∈M0 = M1 ∩M2.
Thus, all the conditions of Theorem 2.4.3 are satisfied and solutions of the

system (2.7.2) are µ-bounded.

Remark 2.7.1 If f(t, x, y, µ) = h(x) at all (t, x, y, µ) ∈ R+ ×R×R×M ,
then the conditions (2.7.5) and (2.7.6) are necessary and sufficient for the
boundedness of solutions of the system (2.7.2) according to the results of the
article of Burton [2].

2.7.2 Connected systems of Lurie–Postnikov equations

Consider an indirect control system

dx1

dt
= A1x1 + b1f(σ),

dx2

dt
= A2x2 + b2f(σ),

dσ

dt
= µcT1 x1 + µcT2 x2 − rf(σ),

(2.7.8)

where x1 ∈ Rn1 , x2 ∈ Rn2 , A1 is an (n1 × n1)-matrix, A2 is an (n2 × n2)-
matrix, b1 ∈ Rn1 , b2 ∈ Rn2 , c1 ∈ Rn1 , c2 ∈ Rn2 , n1 + n2 = n, f : R → R,
σf(σ) > 0, if σ 6= 0, f is a continuous function, µ ∈M .
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Define the conditions for the µ-boundedness of motion of the system (2.7.8)
on the basis of Theorem 2.4.3. For this purpose, consider the two functions

V1(x1, σ) = xT
1 B1x1 +W (σ), (2.7.9)

V2(x2, σ) = xT
2 B2x2 +W (σ), (2.7.10)

where W (σ) =
σ
∫

0

f(σ) dσ, B1 and B2 are positive definite matrices of the

dimensions n1 × n1 and n2 × n2, respectively. For the function

V0(x1, x2, σ) = V1(x1, σ) + V2(x2, σ) (2.7.11)

obtain

dV0(x1, x2, σ)

dt

∣

∣

∣

∣

(2.7.8)

= −xT
1D1x1 − xT

2D2x2

+ f(σ)
[

2bT1B1 + µcT1
]

x1

+ f(σ)
[

2bT2B2 + µcT2
]

x2 − 2rf(σ).

(2.7.12)

The function dV0(x1, x2, σ)/dt|(2.7.8) will be negative definite if

D1 = −(AT
1 B1 +B1A1),

D2 = −(AT
2 B2 +B2A2)

(2.7.13)

and
r > min{r1, r2}, µ0 = min{µ0

1, µ
0
2}, (2.7.14)

where

r1 > (B1b1 + µc1/2)TD−1
1 (B1b1 + µc1/2), µ < µ0

1 ∈M,

r2 > (B2b2 + µc2/2)TD−1
2 (B2b2 + µc2/2), µ < µ0

2 ∈M.

Let M = 0 (see condition (b) in Theorem 2.4.2) and let W (±∞) 6= ∞.
Here the function V0(x1, x2, σ) is not radially unbounded and therefore its
application for the analysis of the µ-boundedness of the system (2.7.8) is
impossible.

Now assume that W (∞) = W (−∞) and choose L1 = L2 = W (∞). Define
the surfaces S1, . . . , S4 as follows:

S1 = {(x1, σ) : σ > 0}, S2 = {(x1, σ) : σ < 0},
S3 = {(x2, σ) : σ > 0}, S4 = {(x2, σ) : σ < 0}. (2.7.15)

Choose the strenghthening function on the basis of the conditions

u1(x1, σ) = σ, u2(x1, σ) = −σ,
u3(x2, σ) = σ, u4(x2, σ) = −σ. (2.7.16)
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Under (2.7.14), from the negative definiteness of the function dV0(x1,x2,σ)
dt

∣

∣

(2.7.8)

it follows that there exists a constant m > 0 such that

dV0(x1, x2, σ)

dt

∣

∣

∣

∣

(2.7.8)

≤ −m(xT
1 x1 + xT

2 x2 + f2(σ)). (2.7.17)

Now

V0(x1, x2, σ) −W (∞) = xT
1 B1x1 + xT

2 B2x2 +W (σ) −W (∞)

≤ xT
1 B1x1 + xT

2 B2x2 ≤ Q(xT
1 x1 + xT

2 x2)

for some Q > 0.
In addition,

|σ′| = |µcT1 x1 + µcT2 x2 − rf(σ)| ≤ P [µ(xT
1 x1 + xT

2 x2) + f2(σ)]1/2

for µ < µ∗ ∈M and some P > 0.
Assuming h(s) = m/µPQ1/2, obtain

dV0(x1, x2, σ)

dt

∣

∣

∣

∣

(2.7.11)

≤ −(m/µPQ1/2)[V0(x1, x2, σ)−W (∞)]1/2|u̇i| (2.7.18)

at µ < µ∗ and i = 1, 2, 3, 4.
According to Theorem 2.4.3, every motion of the weakly connected system

(2.7.8) is µ-bounded.

2.7.3 A nonlinear system with weak linear connections

Consider the linear system with weak linear connections

dx1

dt
= f1(t, x1) + µC12x2,

dx2

dt
= f2(t, x2) + µC21x1,

(2.7.19)

where xi ∈ Rni , i = 1, 2, fi : R+ × Rni , Cij are matrices, µ is a small
parameter. At µ = 0 the system (2.7.19) falls into two independent nonlinear
subsystems

dx1

dt
= f1(t, x1), x1(t0) = x10, (2.7.20)

dx2

dt
= f2(t, x2), x2(t0) = x20. (2.7.21)

Introduce the following assumption for the systems (2.7.20) and (2.7.21).

Assumption 2.7.1 For the independent subsystems (2.7.20) and (2.7.21)
there exist:
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(1) functions v1(t, x1) and v2(t, x2), continuous and continuously differen-
tiable on R+ ×Rni , i = 1, 2;

(2) constants c11, . . . , c15 and c21, . . . , c25 such that

(a) −c11‖x1‖2 ≤ v1(t, x1) ≤ −c12‖x1‖2,

(b) −c14‖x1‖2 ≤ dv1
dt

∣

∣

∣

(2.7.20)
≤ −c13‖x1‖2,

(c)
∥

∥

∥

∂v1
∂x1

(t, x1)
∥

∥

∥ ≤ −c15‖x1‖2

at all t ∈ R+ and x1 ∈ Rn1 ;

(a′) c21‖x2‖2 ≤ v2(t, x2) ≤ c22‖x2‖2,

(b′)
dv2
dt

∣

∣

∣

(2.7.21)
≤ −c23‖x2‖2,

(c′)
∥

∥

∥

∂v2
∂x2

(t, x2)
∥

∥

∥ ≤ c25‖x2‖2

at all t ∈ R+ and x2 ∈ Rn2 .

Taking into account that

(

∂v1
∂x1

(t, x1)

)T

g1(t, x) =

(

∂v1
∂x1

(t, x1)

)T

C12x2, (2.7.22)

(

∂v2
∂x2

(t, x2)

)T

g2(t, x) =

(

∂v2
∂x2

(t, x1)

)T

C21x1, (2.7.23)

find the estimates

∥

∥

∥

∥

(

∂v1
∂x1

)T

C12x2

∥

∥

∥

∥

≤
∥

∥

∥

∥

∂v1
∂x1

∥

∥

∥

∥

‖C12‖ ‖x2‖ ≤ c15‖C12‖ ‖x1‖ ‖x2‖,
∥

∥

∥

∥

(

∂v2
∂x2

)T

C21x1

∥

∥

∥

∥

≤
∥

∥

∥

∥

∂v2
∂x2

∥

∥

∥

∥

‖C21‖ ‖x1‖ ≤ c25‖C21‖ ‖x1‖ ‖x2‖

in the domain x1 ∈ Rn1 , x2 ∈ Rn2 .
According to condition (3) of Theorem 2.6.1, elements of the matrix S(µ)

have the form

s11 = −a1c13, s22 = −a2c23,

s12 = s21 = 1/2[µ(a1c15‖C12‖ + s2c25‖C21‖)].

Choose a vector a = (a1, a2)
T > 0 with the components

a1 =
1

c15‖C12‖
, a2 =

1

c25‖C21‖
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and assume that the function

V (t, x) = a1V1(t, x1) + a2V2(t, x2) (2.7.24)

satisfies condition (2) of Theorem 2.6.1.

The matrix S(µ) from condition (3) of the theorem has the form

S(µ) =







− c13
c15‖C12‖

µ

µ − c23
c25‖C21‖






.

If the conditions

− c13
c15‖C12‖

< 0, µ2‖C12‖‖C21‖ <
c13c23
c15c25

are satisfied at all µ ∈ (0, µ∗], where

µ∗ =

[

c13c23
c15c25‖C12‖ ‖C21‖

]1/2

,

then the matrix S(µ) at µ ∈ (0, µ∗] is negative definite. Now Corollary 2.3.12 of
Theorem 2.3.3 according to which the motion of the weakly connected system
(2.7.19) is uniformly ultimately µ-bounded can be applied to the function
(2.7.24) and the estimate

dV0

dt
≤ uTS(µ)u, (2.7.25)

where u = (‖x1‖, ‖x2‖)T.

2.8 Comments and References

2.2. The statement of the problem of the boundedness of motion of sys-
tems with a small parameter is formulated, taking into account the known
results (see Česari [1], Yoshizawa [1, 2], Pliss [1], Lakshmikantham, Leela, and
Martynyuk [1]).

2.3. Theorems 2.3.1–2.3.3 are new. To obtain them, strengthened Lya-
punov functions (see Burton [1]) and two measures (see Lakshmikantham and
Salvadori [1], Movchan [1]) are applied. Under some special assumptions, the
obtained results imply the known results obtained for systems that do not
contain a small parameter (cf. Reissig, Sansone, and Conti [1], Yoshizawa [2],
Lakshmikantham and Liu [1]).
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2.4. The comparison technique is applied, the basic ideas were stated in
the monograph by Lakshmikantham, Leela, and Martynyuk [1] (see Lem-
mas 2.4.1–2.4.3). Theorem 2.4.1 is taken from the work of Mitropolsky and
V.A. Martynyuk [1]. Theorems 2.4.2 and 2.4.3 are new.

2.5. For the investigation of the boundedness of weakly connected equa-
tions with respect to a part of variables, it is proposed to apply a strengthened
Lyapunov function and Lyapunov method. Theorems 2.5.1–2.5.4 are new. To
obtain them, the approach to the analysis of the boundedness of solutions
of systems of ordinary differential equations described in the monograph of
Rumiantsev and Oziraner [1] was used.

2.6. The sufficient conditions for the different types of the µ-boundedness
of motion are given under certain assumptions on the dynamic properties of
subsystems and limitations on their connection functions. Here some results
from the monographs of Michel and Miller [1] and Yoshizawa [2] and from the
article of Mitropolsky and V.A. Martynyuk [1] are used.

2.7. Applied problems on the boundedness of solutions of nonlinear engi-
neering systems have been considered in many publications (see Krylov and
Bogolyubov [1], Letov [1], Lefschetz [1], Lurie [1], Stocker [1] and the bibli-
ography therein). We only kept to the analysis of some systems of such kind.
The results obtained in this section are new and published for the first time.

Different sufficient conditions for the boundedness of solutions of linear
and nonlinear systems of ordinary differential equations are available in the
works of Burdina [1], Bourland and Haberman [1], Vinograd [1], Gusarova
[1], Demidovich [1], Zubov [3], Liu and Shaw [1], Rozo [1], Yakubovich [1],
Yakubovich and Starzhinskii [2], and others.

An extensive bibliography of works where questions of the boundedness
of motion are studied is available in the monographs of Česari [1], Reissig,
Sansone, and Conti [1], and others.



Chapter 3

Analysis of the Stability of Motion

3.1 Introductory Remarks

The analysis of the stability of solutions of nonlinear weakly connected
equations is of interest for a number of physical systems, for example, Toda’s
chains (see Bourland and Haberman [1] and others), as well as systems of
weakly connected oscillators (see Goisa and Martynyuk [1] and others).

The application of methods of nonlinear mechanics provides an opportu-
nity to construct asymptotic solutions of such systems and analyze them.

The purpose of this chapter is to determine new sufficient conditions for the
µ-stability (µ-instability) of motion of nonlinear weakly connected systems.
Those conditions are based on the ideas of the method of comparison with a
scalar or vector Lyapunov function.

In Section 3.2, the objectives of the study are formulated and their con-
nection with the problem of stability under continuous perturbations in its
classical statement is discussed (see Duboshin [1], Malkin [1]).

In Section 3.3, the direct Lyapunov method and the vector function are
applied to obtain sufficient conditions for the stability of a weakly connected
system with respect to two measures under the four types of connection func-
tions:

(A1) bounded at each point of time,

(A2) asymptotically vanishing at t→ +∞,

(A3) bounded in the mean, and

(A4) developing at t→ +∞.

In Section 3.4, the conditions for the stability of the system (3.2.1) are
obtained by application of a perturbed Lyapunov function and a scalar com-
parison equation.

In Section 3.5, the conditions for µ-stability and µ-instability of the equi-
librium state of an individual subsystem interacting with other subsystems
are found.

In Section 3.6, the algebraic conditions for the uniform asymptotic µ-
stability (in the large) and the exponential µ-stability under type A1 con-
nections are obtained. Here the conditions for µ-instability and complete µ-
instability of the equilibrium state of the system (3.2.1) are given.

73
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In Section 3.7, the µ-polystability of the motion of a weakly connected
system consisting of two subsystems is discussed.

In Section 3.8, the conditions for the stability of a longitudinal motion of
an aeroplane are given, as well as the conditions for the stability of an indirect
control system with small linearity and an unstable free subsystem.

3.2 Statement of the Problem

Consider the equations of perturbed motion of a nonlinear weakly con-
nected system in the form

dxs

dt
= fs(t, xs) + µgs(t, x1, . . . , xm),

xs(t0) = xs0, s = 1, 2, . . . ,m,
(3.2.1)

where xs ∈ Rns , fs ∈ C(R+ ×Rns , Rns), gs ∈ C(R+ ×Rn1 × . . .×Rns , Rns),
µ ∈ (0, µ∗] is a small parameter. At µ = 0 the system (3.2.1) reduces to the
set of unrelated subsystems

dxs

dt
= fs(t, xs), xs(t0) = xs0, s = 1, 2, . . . ,m. (3.2.2)

Apply the two measures ρs(t, xs) and ρs0(t, xs) from the class of functions
M :

M = {ρs ∈ C(R+ ×Rns , R+), inf
t,xs

ρs(t, xs) = 0, s = 1, 2, . . . ,m}.

In addition, for the measures

ρ(t, x) =

m
∑

s=1

asρs(t, xs) (3.2.3)

and

ρ0(t, x) =

m
∑

s=1

asρs0(t, xs), as = const, (3.2.4)

it is assumed that the inequality

ρ(t, x) ≤ ϕ(ρ0(t, x)) (3.2.5)

holds provided that
ρ0(t, x) < δ, δ > 0, (3.2.6)

where the function ϕ belongs to the K-class.
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For the estimation of the impact of the vector connection function

g(t, x) = (g1(t, x1, . . . , xm), . . . , gm(t, x1, . . . , xm))T

the Euclidean norm of the vector g(t, x) is applied:

‖g(t, x)‖ =

( m
∑

s=1

‖gs(t, x1, . . . , xm)‖
)1/2

.

The connection functions gs(t, x1, . . . , xm), s = 1, 2, . . . ,m, in the system
(3.2.1) will be considered under certain assumptions:

A1. The connection functions gs ∈ C(R+ × Rn1 × . . . × Rnm , Rns) at

all s = 1, 2, . . . ,m and ‖g(t, x)‖ =
( m
∑

s=1
‖gs(t, x1, . . . , xm)‖

)1/2

are

bounded uniformly with respect to t ≥ t0 > 0.

A2. The connection functions gs ∈ C(R+ × Rn1 × . . . × Rnm , Rns) at all
s = 1, 2, . . . ,m and lim

t→∞
‖g(t, x)‖ = 0 unifomly with respect to x ∈ Rn.

A3. The connection functions gs ∈ C(R+ × Rn1 × . . . × Rnm , Rns) at all
s = 1, 2, . . . ,m and there exists an integrable function ϕ(t) for which

‖g(t, x)‖ < ϕ(t),

t0+T
∫

t0

ϕ(s) ds ≤ ∆

for some T > 0 and ∆ > 0.

A4. The connection functions gs ∈ C(1,1)(R+ ×Rn1 × . . .×Rnm , Rns) at all

s = 1, 2, . . . ,m are bounded together with the partial derivatives
∂gs

∂t
,

∂gs

∂xj
, s = 1, 2, . . . ,m, j = 1, 2, . . . , ns, and are such that:

(a) gs(t0, x1, . . . , xm) = 0 at t0 ∈ R+ and x1 6= 0, . . . , xm 6= 0, s =
1, 2, . . . ,m;

(b) gs(t, x1, . . . , xm) 6= 0 at t > t0, s = 1, 2, . . . ,m.

Definition 3.2.1 The system (3.2.1) is said to be (ρ0, ρ) µ-stable under
small bounded interactions of subsystems if for specified ε > 0 and t0 ∈ R+

there exist two numbers δ1, δ2 and a value of the parameter µ∗ ∈ (0, 1] such
that as soon as

ρ0(t0, x0) < δ1 (3.2.7)

and

‖g(t, x)‖ < δ2 at (t, x) ∈ S(ρ,H), (3.2.8)
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then ρ(t, x(t; t0, x0, µ)) < ε at all t ≥ 0 and µ < µ∗. Here S(ρ,H) = {(t, x) ∈
R+ ×Rn : ρ(t, x) < H}, n = n1 + n2 + . . .+ nm, H = const > 0.

Remark 3.2.1 The condition (3.2.8) resembles the one applied in the study
of the stability under continuous perturbations (see Malkin [1]). However, in
this problem the functions g(t, x) are specified as a part of the system (3.2.1)
and g(t, 0) = 0 at all t > 0, and this, as is known, is not assumed in the
problem of the stability under continuous perturbations.

3.3 Stability with Respect to Two Measures

Now connect the auxiliary functions vs ∈ C(R+ × Rns , R+), s =
1, 2, . . . ,m, vs(t, 0) = 0 at all t > 0, with the free subsystems (3.2.2).

The function

v(t, x, β) =

m
∑

s=1

βsvs(t, xs), βs = const 6= 0, (3.3.1)

is assumed to be ρ-positive definite and ρ-decrescent, that is, for this function
there exist comparison functions a, b that belong to the K-class and constants
∆1 and ∆2 such that

a(ρ(t, x)) ≤ v(t, x, β), as soon as ρ(t, x) < ∆1,

v(t, x, β) ≤ b(ρ0(t, x)), as soon as ρ0(t, x) < ∆2

(3.3.2)

respectively.
Let us prove the following statement.

Theorem 3.3.1 Assume that the equations of perturbed motion (3.2.1)
are such that :

(1) the state of the subsystems is characterized by the measures ρs(t, xs) and
ρs0(t, xs) which take on values from the set M ;

(2) the measure ρ(t, x) =
m
∑

s=1
αsρs(t, xs) is uniformly continuous with respect

to the measure ρ0(t, x) =
m
∑

s=1
αsρs0(t, xs);

(3) there exist functions vs ∈ C(R+ × Rns , R+), s = 1, 2, . . . ,m, and a
function v(t, x, β) determined by the formula (3.3.1) is locally Lipschitz
with respect to x, ρ-positive definite and ρ0-decrescent ;

(4) along solutions of the independent subsystems (3.2.2) the estimate

D+v(t, x, β)|(3.2.2) ≤ −w(ρ0(t, x)) (3.3.3)

holds at all (t, x) ∈ S(ρ,H), w from the K-class;
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(5) the connection functions gs(t, x1, . . . , xm), s = 1, 2, . . . ,m, satisfy the
conditions A1.

Then the system (3.2.1) is (ρ0, ρ)µ-stable under small bounded interactions
of the subsystems.

Proof The fact that the function v(t, x, β) is ρ-positive definite and ρ0-
decrescent implies the existence of constants ∆1 > 0 and ∆2 > 0 such that

a(ρ(t, x)) ≤ v(t, x, β), if ρ(t, x) < ∆1,

and

v(t, x, β) ≤ b(ρ0(t, x)), if ρ0(t, x) < ∆2.

Let ε ∈ (0,∆0), where ∆0 = min(∆1,∆2). Choose δ1 ∈ (0,∆0) so that the
inequality

b(δ1) < a(ε) and ρ(t, x) < ε, (3.3.4)

should hold as soon as

ρ0(t, x0) < δ1. (3.3.5)

The inequality (3.3.4) is possible in view of conditions (1) and (2) of Theo-
rem 3.3.1.

Now construct the function (3.3.1) and calculate D+v(t, x, β) along solu-
tions of the system (3.2.1), taking into account the estimate (3.3.3):

D+v(t, x, β)|(3.2.1) ≤ −w(ρ0(t, x)) + µL‖g(t, x)‖ (3.3.6)

at all (t, x) ∈ S(ρ,H), L > 0 is the Lipschitz constant for the function
v(t, x, β).

Choose µ∗ ∈ (0, 1] and denote k = µ/µ∗, µ < µ∗. Taking into account
condition (5) of Theorem 3.3.1, choose

δ2 =
w(δ1)

µ∗L
.

Under the condition (3.3.6) and at the chosen δ2 > 0 all the conditions of
Definition 2.2.1 are satisfied, that is, the system (3.2.1) is (ρ0, ρ)µ-stable. Let
us show this.

Consider the solution x(t, µ) = x(t; t0, x0, µ) of the system (3.2.1), begin-
ning in the range of values (t0, x0), for which ρ0(t0, x0) < δ1 and µ < µ∗. Let
there exist t2 > t1 > t0 such that at (t, x) ∈ S(ρ,H) ∩ Sc(ρ0, δ1)

ρ0(t1, x(t1, µ)) = δ1, ρ(t2, s(t2, µ)) = H (3.3.7)

and

‖g(t, x(t, µ))‖ < δ2 at all t ∈ [t1, t2). (3.3.8)
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From the estimate (3.3.6) under the conditions (3.2.7) and (3.2.8) obtain

D+v(t, x, β)|(3.2.1) < −w(ρ0(t1, x(t1, µ)))

+
µ

µ∗
l
w(ρ0(t1, x(t1, µ)))

L
= (k − 1)w(δ1) < 0

(3.3.9)

at all t1 < t < t2 and µ < µ∗. Hence obtain the sequence of inequalities

a(ρ(t2, x(t2, µ))) ≤ v(t2, x(t2, µ), β)

≤ v(t1, x(t1, µ), β) ≤ b(ρ0(t1, x(t1, µ)))

and taking into account (3.3.4) and (3.3.7), obtain

a(ε) ≤ v(t2, x(t2, µ), β) ≤ v(t1, x(t1, µ), β) < a(ε).

The obtained contradiction invalidates the assumption that there exists
t2 > t0 such that the solution x(t; t0, x0, µ) of the system (3.2.1) at µ < µ∗

reaches the bound of the domain S(ρ,H) at a point of time t = t2. Hence the
system (3.2.1) is (ρ0, ρ) µ-stable under small bounded interactions of subsys-
tems.

Definition 3.3.1 The system (3.2.1) is said to be asymptotically (ρ0, ρ)µ-
stable under asymptotically decrescent interactions if it is (ρ0, ρ)µ-stable and
for the specified t0 ∈ R+ there exist constants δ0 = δ0(t0) > 0 and µ∗ ∈ (0, 1]
such that lim

t→∞
ρ(t, x(t, µ)) = 0, as soon as ρ0(t0, x0) < δ0 and µ < µ∗.

The following statement contains conditions sufficient for the system
(3.2.1) to be asymptotically (ρ0, ρ) µ-stable under asymptotically decrescent
interactions.

Theorem 3.3.2 Assume that :

(1) conditions (1)–(4) of Theorem 3.3.1 are satisfied ;

(2) the connection functions gs(t, x1, . . . , xm), s = 1, 2, . . . ,m, are asymp-
totically decrescent, that is, there exists a constant σ > 0 at which the
limit relations

lim
t→∞

gs(t, x1, . . . , xm) = 0, s = 1, 2, . . . ,m,

are satisfied uniformly with respect to x1, . . . , xm as soon as ρ(t, x) < σ.

Then the system (3.2.1) is asymptotically (ρ0, ρ) µ-stable under asymptot-
ically decrescent interactions.

Proof It is clear that under conditions (1) and (2) of Theorem 3.3.2 the
system (3.2.1) is (ρ0, ρ) µ-stable, that is, for ε = min{∆0, σ} there exist con-
stants δ10 > 0 and δ20 > 0 such that

ρ(t, x(t, µ)) < σ0 at all t ≥ t0, µ < µ∗,
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as soon as

ρ0(t0, x0) < δ10 and ‖g(t, x)‖ < δ20

at (t, x) ∈ S(ρ, σ0).

Further, for η ∈ (0, σ0) choose δ1 = δ1(η) and δ2 = δ2(η) as specified by
Definition 3.3.1. According to condition (2) of Theorem 3.3.2 for the quantity

δ∗2 = min

{

δ2,
w(δ1)

µ∗L

}

(3.3.10)

there exists τ1 = τ1(t0, x0) > 0 such that

‖g(t, x(t, µ))‖ < δ∗2 (3.3.11)

at all t ≥ t0 + τ1 and µ < µ∗.

The asymptotic (ρ0, ρ)µ-stability of the system (3.2.1) will be proved if we
specify such τ = τ(t0, x0) > 0, that for some t∗ ∈ [t0, t0 + τ ] the inequalities

ρ0(t
∗, x(t∗, µ)) < δ1

and

‖g(t, x(t, µ))‖ < δ∗2 , t ≥ t∗

will hold. For µ∗ ∈ (0, 1] such that k = µ/µ∗ ≤ 1/2, choose

τ =
4b(ρ0(t0 + τ1, x(t0 + τ1, µ)))

w(δ1)
+ τ1, µ < µ∗.

Then for the values t0 + τ1 ≤ t ≤ t0 + τ such that (t, x(t, µ)) ∈ S(ρ, σ0) ∩
Sc(ρ0, δ1), from (3.3.6), (3.3.10), and (3.3.11) obtain the estimate

D+v(t, x, β)|(3.2.1) ≤ −1

2
w(δ1), t1 + τ1 ≤ t ≤ t0 + τ. (3.3.12)

Taking into account that the function v(t, x, β) is ρ0-decrescent, from the
estimate (3.3.12) obtain the inequality

v(t0+τ, x(t0+τ, µ), β) ≤ b(ρ0(t0+τ1, x(t0+τ1)))−
1

2
w(δ1)(τ−τ1) < 0 (3.3.13)

at the chosen τ . But the function v(t, x, β) is ρ-positive definite and therefore
the obtained contradiction proves the existence of τ , that is, the system (3.2.1)
is asymptotically (ρ0, ρ) µ-stable at asymptotic decreases of the connection
functions.

Now consider the system (3.2.1) under the conditions of the assumption
A3 on the connection functions gs(t, x1, . . . , xm), s = 1, 2, . . . ,m.
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Definition 3.3.2 The system (3.2.1) is said to be (ρ0, ρ) µ-stable under
small in the mean interactions of subsystems if for the specified ε > 0, t0 ∈ R+

and T > 0 there exist two positive numbers δ1 = δ1(ε), δ2 = δ2(ε) and a value
µ∗ ∈ (0, 1] such that

ρ(t, x(t, µ)) < ε at all t ≥ t0, µ < µ∗,

as soon as

ρ0(t0, x0) < δ1, ‖g(t, x1, . . . , xm)‖ ≤ ϕ(t) at ρ(t, x) ≤ ε, (3.3.14)

where
t+T
∫

t

ϕ(s) ds < δ2.

The following statement contains sufficient conditions for (ρ0, ρ)µ-stability
in the sense of Definition 3.3.2.

Theorem 3.3.3 Assume that :

(1) conditions (1) and (2) of Theorem 3.3.1 are satisfied ;

(2) there exist continuous functions vs ∈ C(R+×Rns , R+), s = 1, 2, . . . ,m,
and a function v(t, x, β) determined by the formula (3.3.1)

(a) is ρ-positive definite,

(b) is ρ0-decrescent,

(c) satisfies the Lipschitz condition with respect to x with a constant
L > 0

|v(t, x, β) − v(t, x′, β)| ≤ L‖x− x′‖
at (t, x), (t, x′) ∈ S(ρ,H), H = const > 0;

(3) there exists a function c from the K-class such that

D+v(t, x, β)|(3.2.2) ≤ −c(v(t, x, β)) (3.3.15)

at all (t, x) ∈ S(ρ,H);

(4) the connection functions gs(t, x1, . . . , xm), s = 1, 2, . . . ,m, satisfy the
condition A3.

Then the system (3.2.1) is (ρ0, ρ) µ-stable under small in the mean inter-
actions of subsystems.

Proof Since the function v(t, x, µ) is ρ-positive definite and ρ-decrescent,
for the specified ε > 0, choose δ1 = δ1(ε) > 0 so that the following inequality
would hold:

b(δ1) < a(ε). (3.3.16)
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Let ρ0(t0, x(t0, µ)) < δ1 and m(t, µ) = v(t, x(t, µ), β) at µ < µ∗. Under
the inequality (3.3.16) obtain m(t0, µ) < b(δ1) < a(ε) at µ < µ∗. Show that
m(t, µ) < a(ε) at all t ≥ t0 and µ < µ∗. Let this statement be incorrect. Then
there exists t1 > t0 such that m(t1, µ) = a(ε) and m(t, µ) < a(ε) at t < t1.
The inequality

a(p(t, x(t, µ))) ≤ v(t, x(t, µ), β) ≤ a(ε)

at t0 ≤ t ≤ t1 implies the estimate

ρ(t, x(t, µ)) ≤ ε < H, t0 ≤ t ≤ t1. (3.3.17)

Let t1 − t0 = T and

G(u) −G(u0) =

u
∫

u0

ds

c(s)
, G(u) =

u
∫

0

ds

c(s)
, if

u
∫

0

ds

c(s)
<∞.

In the general case

G(u) =

u
∫

δ

ds

c(s)

for some δ > 0 and G−1(u) is the inverse of the function G(u).
Taking into account conditions (2c) and (3) of Theorem 3.3.3, obtain

D+v(t, x, β)|(3.2.1) ≤ −c(v(t, x, β)) + µL‖g(t, x1, . . . , xm)‖ (3.3.18)

at t ∈ [t0, t1]. To transform the inequality (3.3.18), introduce the notation

λ(t, µ) = v(t, x(t, µ), β) − γ(t, µ), (3.3.19)

where

γ(t, µ) = µL

t
∫

t0

‖g(s, x1(s, µ), . . . , xm(s, µ))‖ ds.

For the Dini derivative of the function λ(t, µ) obtain the inequality

D+λ(t, µ) ≤ −c(λ(t, µ)), (3.3.20)

since the function c is monotone increscent and therefore the inequality
v(t, x, β) ≤ λ(t, µ) implies c(v(t, x, β)) ≤ c(λ(t, µ)).

Applying Bihari’s lemma to the inequality (3.3.20), obtain

λ(t, µ) ≤ G−1[G(v(t0, x0, β)) − (t− t0)], t ∈ [t0, t1]. (3.3.21)

Now revert to (3.3.21) and note that

v(t, x(t, µ), β) ≤ G−1[G(v(t0, x0, β)) − (t− t0)] + γ(t, µ). (3.3.22)
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Choose

δ2 = δ2(ε) <
1

kµ∗L

{

a(ε) −G−1[G(b1(δ1)) − T ]
}

,

where k < 1.
Taking into account that ρ(t, x(t, µ)) ≤ ε at all t0 ≤ t ≤ t0 + T ,

v(t0, x0, β) < b(δ1), ‖g(t, x1, . . . , xm‖ ≤ ϕ(t) and

t0+T
∫

t0

ϕ(s) ds < δ2,

from the inequality (3.3.22) obtain the following inequality at t = t0 + T :

a(ρ(t0 + T, x(t0 + T, µ))) ≤ v(t0 + T, x(t0 + T, µ), β)

≤ G−1[G(b1(δ1)) − T ] + µLδ2,

or

a(ε) ≤ v(t0 +T, x(t0 +T, µ), β)+G−1[G(b1(δ1))−T ]+µLδ2 < a(ε). (3.3.23)

The obtained contradiction proves that m(t, µ) < a(ε) at all t ≥ t0. Conse-
quently, the system (3.2.1) is (ρ0, ρ) µ-stable at small in the mean connection
functions gs(t, x1, . . . , xm), s = 1, 2, . . . ,m.

Now consider the system (3.2.1) at connection functions gs(t, x1, . . . , xm),
s = 1, 2, . . . ,m, indicated in the assumption A4. Such connections are said
to be developing (see Martynyuk [6]). In the work the instability of the k-th
interacting subsystem in the Lyapunov sense was studied.

Definition 3.3.3 The system (3.2.1) is said to be (ρ0, ρ) µ-stable under
developing connections of subsystems if for specified ε > 0 and t0 ∈ R+,
0 < ε < H , there exists a number δ1 > 0 and a value µ∗ ∈ (0, 1] of the
parameter µ such that

ρ(t, x(t, µ)) < ε at all t > t0 and µ < µ∗,

as soon as the connection functions gs(t, x1, . . . , xm), s = 1, 2, . . . ,m, satisfy
the conditions of the assumption A4 and ρ(t0, x0) < δ1.

It is necessary to find the conditions for (ρ0, ρ) µ-stability of the system
(3.2.1) under developing connections gs(t, x1, . . . , xm), s = 1, 2, . . . ,m. The
solution of this problem is similar to the proof of Theorem 2.2.1 by using the
derivative auxiliary function v(t, x, β) of an order higher than the first one.

Theorem 3.3.4 Assume that :

(1) conditions (1) and (2) of Theorem 3.3.1 are satisfied ;

(2) for subsystems (3.2.2) there exist functions vs ∈ C(2,2)(R+ ×Rns , R+),
s = 1, 2, . . . ,m, and the function v(t, x, β), determined by the formula
(3.3.1) is ρ-positive definite and ρ0-decrescent ;
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(3) in the domain (t, x) ∈ S(ρ,H) at t = t0

∂v

∂t
+ (grad v(t, x, β))Tf(t, x) ≤ 0,

where f(t, x) = (f1(t, x1), . . . , fm(t, xm))T and outside an arbitrarily
small neighborhood S(ρ,H) at t > t0

∂v̇

∂t
+ (grad v̇)T(f(t, x) + µg(t, x1, . . . , xm)) ≤ 0;

(4) in the domain (t, x) ∈ S(ρ,H) there exist constants M > 0 and N > 0
such that

∥

∥

∥

∥

∂v

∂x

∥

∥

∥

∥

≤M,

∥

∥

∥

∥

∂v̇

∂x

∥

∥

∥

∥

≤ N

and the connection functions gs(t, x1, . . . , xm), s = 1, 2, . . . ,m, satisfy
the conditions of the assumption A4.

Then the system (3.2.1) is (ρ0, ρ) µ-stable under developing connections
gs(t, x1, . . . , xm), s = 1, 2, . . . ,m.

Proof For the specified ε > 0 and t0 ∈ R+ choose δ1 > 0 like it was set
out in the proof of Theorem 3.3.1. Assume that the inequalities (3.3.4) and
(3.3.5) hold. From the Lyapunov relation

v̇(t, x, β) = v̇(t, x, β)|t=t0 +

t
∫

t0

v̈(s, x(s), β) ds (3.3.24)

under condition (3) of Theorem 3.3.4 obtain

[v̇(t, x(t, µ), β)]|(3.2.1) = [v̇(t, x(t,m), β)](3.2.1)|t=t0

+

t
∫

t0

[

∂v̇(t, x, β)

∂t2
+ (grad v̇(t, x, β))T[f(t, x) + µg(t, x1, . . . , xm))

]

dt.

Since gs(t, x1, . . . , xm) = 0 at t = t0, s = 1, 2, . . . ,m, then

[v̇(t, x(t, µ), β)]|(3.2.1)|t=t0 =
∂v

∂t
+ (grad v(t, x, β))Tf(t, x).

Therefore,

v̇(t, x(t, µ), β)|(3.2.1)|t=t0 ≤ 0 at (t, x) ∈ S(ρ,H). (3.3.25)

Hence

v(t, x(t, µ), β) ≤ v(t0, x0, β) at all t ≥ t0. (3.3.26)
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Show that if ρ(t0, x0) < δ1, then

ρ(t, x(t, µ)) < ε, t ≥ t0 at (t, x) ∈ S(ρ,H) (3.3.27)

and µ < µ∗. Let this not be so, then there should exist a motion of the
system (3.2.1) with the initial values (t0, x0) : ρ(t0, x0) < δ1 and points of
time t2 > t1 > t0 such that

ρ0(t1, x(t1, µ)) = δ1, ρ(t2, x(t2, µ)) = ε

and
ρ(t, x(t, µ)) ∈ S(ρ, ε) ∩ Sc(ρ, δ1) (3.3.28)

at t ∈ [t1, t2). From the relations (3.3.26) and (3.3.4) find

a(ε) ≤ v(t2, x(t2, µ), β) ≤ v(t1, x(t1, µ), β) < b(δ1) < a(ε).

The obtained contradiction proves that (3.3.27) holds at all t ≥ t0, that is,
the system (3.2.1) is (ρ0, ρ) µ-stable under developing connections.

In Theorems 3.3.1 – 3.3.4 the connection functions gs(t, x1, . . . , xm), s =
1, 2, . . . ,m, were treated as a factor destabilizing the motion of the system
(3.2.1) under certain limitations on the dynamic properties of the subsystems
(3.2.2) and the connection function the (ρ0, ρ)µ-stability of the system (3.2.1)
may occur due to the fact that connection functions stabilize the motion of
the system (3.2.1). This situation is reflected in the following statement.

Theorem 3.3.5 Assume that :

(1) conditions (1) and (2) of Theorem 3.3.1 are satisfied ;

(2) there exist functions vs ∈ C(1,1)(R+ ×Rns , R+), s = 1, 2, . . . ,m, and a
function v(t, x, β), determined by the formula (3.3.1), ρ-positive definite
and ρ0-decrescent ;

(3) at (t, x) ∈ S(ρ,H) the following inequality holds:

m
∑

s=1

αs

[

∂vs

∂t
+ (gradvs(t, xs))

Tfs(t, xs)

]

≤ 0, s = 1, 2, . . . ,m;

(4) the connection functions gs(t, x1, . . . , xm), s = 1, 2, . . . ,m, are such that
there exist integrable functions l1(t), . . . , lm(t) for which

m
∑

s=1

αs

[

(gradvs(t, xs))
Tgs(t, x1, . . . , xm)

]

≤ (l1(t) + l2(t) + · · · + lm(t))v(t, x, β)

and

exp

[

µ

t2
∫

t1

(l1(s) + l2(s) + · · · + lm(s)) ds

]

≤ N(µ),

N(µ) > 0 at all µ < µ∗.
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Then the system (3.2.1) is uniformly (ρ0, ρ) µ-stable.

Proof For the measures ρ0(t, x) and ρ(t, x) determined according to con-

dition (1) of Theorem 3.3.5 and the function v(t, x, α) =
m
∑

s=1
αsvs(t, xs) there

exist functions a, b from the K-class and constants ∆1 and ∆2 > 0 such that

v(t, x, α) ≤ b(ρ0(t, x)) at ρ0(t, x) < ∆2

and
a(ρ(t, x)) ≤ v(t, x, α) at ρ(t, x) < ∆1,

where ∆2 ∈ (0, H).
For ε ∈ (0,∆2) by choosing δ1 ∈ (0,∆1) secure the satisfaction of the

inequality

Nδ(δ1) < a(ε) if ρ(t, x) < ε and ρ0(t, x) < δ1. (3.3.29)

Let t0 ∈ R+ and let x(t, t0, x0, µ) be a solution of the system (3.2.1) with the
initial conditions (t0, x0) for which

ρ0(t0, x0) < δ1. (3.3.30)

Along this solution, according to conditions (3) and (4) of Theorem 2.2.5
obtain

dv(t, x, α)

dt

∣

∣

∣

∣

(3.2.1)

≤
m
∑

s=1

αs

[

∂vs

∂t
+ (grad vs)

Tfs(t, x)

]

+ µ

m
∑

s=1

αs(grad vs)
Tgs(t, x1, . . . , xm)

≤ µ(l1(t) + · · · + lm(t))v(t, x, α)

∀ (t, x) ∈ S(ρ,H) and µ < µ∗ ∈M.

(3.3.31)

Show that under the conditions (3.3.30) and (3.3.31) the system (3.2.1) is
uniformly (ρ0, ρ)µ-stable. Let this not be so, that is, at (3.3.30) for the solution
x(t, µ) there exist values of time t2 > t1 > t0 such that ρ0(t1, x(t1, µ)) ≤ δ1
and ρ(t2, x(t2, µ)) = ε and ρ(t, x(t, µ)) ∈ S(ρ, ε) ∩ Sc(ρ0, δ1) at all t ∈ [t1, t2).
From the inequality (3.3.31) under (3.3.29) obtain

a(ε) ≤ v(t2, x(t2, µ), β) ≤ v(t1, x(t1, µ), β) exp

[

µ

t2
∫

t1

(l1(s) + . . .

. . .+ lm(s)) ds

]

≤ N(µ)b(δ1) < a(ε) at all µ < µ∗.

The obtained contradiction proves Theorem 3.3.5.

Remark 3.3.1 Condition (3) of Theorem 3.3.5 is impossible within the
limits of the Malkin [1] theorem of stability under continuous perturbations.
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3.4 Equistability Via Scalar Comparison Equations

Continue the study of the stability of the nonlinear system (3.2.1) under
some additional assumptions.

Let the system (3.2.1) be defined in the domain R+ × D, D ⊆ Rn, and
have the unique equilibrium state x1 = x2 = . . . = xm = 0, i.e. fs(t, 0) = 0
and gs(t, 0, . . . , 0) = 0 at all s = 1, 2, . . . ,m. Choose the measures (3.3.3) and
(3.2.4) in the form

ρ(t, x) = ‖x‖ =

( m
∑

s=1

‖xs‖2

)1/2

,

ρ0(t, x) = ‖x0‖ =

( m
∑

s=1

‖xs0‖2

)1/2

,

where ‖ · ‖ is the Euclidean norm of the vector x.

Definition 3.4.1 The state of equilibrium (x = 0) ∈ Rn1 × . . . . . .×Rnm

of the system (3.2.1) is equistable, if for the specified t0 ∈ R+ and ε > 0 one
can find δ(t0, ε) > 0 and µ∗(ε) < 1 such that

‖x(t, µ)‖ < ε at all t ≥ t0,

as soon as ‖x0‖ < δ(t0, ε) and µ < µ∗(ε).

Remark 3.4.1 The term “equi” emphasizes the dependence of the property
of stability of solutions of the system (3.2.1) on the parameter µ (the condition
µ < µ∗(ε)).

Similarly to the study of the µ-boundedness, here the dynamic behavior of
the subsystems (3.2.2) is characterized by the functions vs ∈ C(R+ ×Ds, R+)
assumed to be locally Lipschitz with respect to xs ∈ Ds, Ds ⊆ Rns , s =
1, 2, . . . ,m.

The impact of the connection functions µgs(t, x1, . . . , xm), s = 1, 2, . . . ,m,
in the system (3.2.1) upon its state is characterized by the functions ws(t, x, µ)
defined in the domain R+ × D ∩ Sc(η) ×M at some η > 0, S(η) = {x ∈
Rn : ‖x‖ < η}.

Using the functions vs(t, xs) and ws(t, x, µ), s = 1, 2, . . . ,m, we construct
the scalar functions

v0(t, x, a) = aTv(t, x), a ∈ Rm
+ ,

where v(t, x) = (v1(t, x), . . . , vm(t, xm))T, and

w0(t, x, µ, β) = βTw(t, x, µ), β ∈ Rm,

where w(t, x, µ) = (w1(t, x, µ), . . . , wm(t, x, µ))T, which will be applied for the
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determination of the conditions for the µ-stability of the state x = 0 of the
system (3.2.1).

Theorem 3.4.1 Assume that the system of equations of perturbed motion
(3.2.1) is such that :

(1) for the subsystems (3.2.2) there exist functions vs ∈ C(R+ × Rns , R+),
vs(t, xs) ≥ 0 at all s = 1, 2, . . . ,m, vs(t, 0) = 0 at all t ∈ R+, and some
vector a ∈ Rm

+ , a > 0, such that

(a) a(‖x‖) ≤ v0(t, x, a) ≤ b(‖x‖) at all (t, x) ∈ R+ × S(H), where the
functions a, b belong to Hahn’s K-class,

(b) D+v0(t, x, a)|(3.2.1) ≤ g0(t, v(t, x, a), µ) at all (t, x) ∈ R+ × S(H),
where g0 ∈ C(R+ ×R+ ×M,R), g0(t, 0, µ) = 0 at all t ∈ R+;

(2) for any η > 0 there exist functions ws(t, x, µ) estimating the impact
of the connection functions, such that w0(t, x, µ, β) ∈ C(R+ × S(H) ∩
Sc(η) ×M ×Rm, R) and

(a) there exists a nondecrescent function c(µ), lim
µ→0

c(µ) = 0, such that

|w0(t, x, µ, β)| < c(µ) at all t ∈ R and η ≤ ‖x‖ < ε ≤ H,

(b) at all (t, x, µ) ∈ R+ × S(H) ∩ Sc(η) ×M the inequality

D+v0(t, x, a)|(3.2.1) +D+w0(t, x, µ, β)|(3.2.1)

≤ g(t, v0(t, x, a) + w0(t, x, µ, β), µ),

is satisfied where g(t, 0, µ) = 0 at all t ∈ R+, µ ∈M0 ⊂M ;

(3) the zero solution of the scalar equation

du

dt
= g0(t, u, µ), u(t0) = u0 ≥ 0, (3.4.1)

is µ-stable;

(4) the zero solution of the scalar equation

dw

dt
= g(t, w, µ), w(t0) = w0 ≥ 0, (3.4.2)

is uniformly µ-stable.

Then the state of equilibrium x = 0 of the system (3.2.1) is equistable.

Proof Let t0 ∈ R+ and 0 < ε < H be specified. Under conditions (2) and
(4) of Theorem 3.4.1 for the function a(ε) > 0 at any t0 ∈ R+ one can choose
δ0 = δ0(ε) > 0 and µ1 ∈M1 ⊂M so that

w(t; t0, w0, µ) < a(ε) at all t ≥ t0,
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as soon as

w0 =
m
∑

s=1

αsvs(t0, xs0) +
m
∑

s=1

|βs||ws(t0, x0, µ)| < δ0

and µ < µ1.
Since the function b belongs to the K-class and is monotone increscent,

then for a fixed δ0 > 0 one can choose δ1 = δ1(ε) > 0 so that

b(δ1) <
1

2
δ0(ε) at 0 < ε < H.

According to condition (3) of Theorem 3.4.1, the zero solution of the equation

(3.4.1) is µ-stable. Therefore, at fixed
1

2
δ0(ε) > 0 an t0 ∈ R+ one can choose

values δ2 = δ2(t0, ε) > 0 and µ2 ∈M2 ⊂M so that

u(t; t0, u0, µ) <
1

2
δ0 at all t ≥ t0 (3.4.3)

provided that µ < µ2 and

0 ≤ u0 < δ2. (3.4.4)

Note that the inequality (3.4.3) is satisfied for any solution of the equation
(3.4.1) with the initial conditions (3.4.4), including the maximum solution,

that is, u+(t; t0, u0, µ) <
1

2
δ0 at all t ≥ t0.

Let

u0 =

m
∑

s=1

αsvs(t0, xs0), αs = const > 0.

According to condition (1) of Theorem 3.4.1, the functions vs(t, xs), s =
1, 2, . . . ,m, are continuous, nonnegative, and vanishing at xs = 0, s =
1, 2, . . . ,m. Therefore, for the specified δ2 > 0 one can choose a value of
δ3 > 0 so that the inequalities

‖x0‖ < δ3 and
m
∑

s=1

αsvs(t0, xs0) < δ2

will be satisfied simultaneously.
Now choose δ = min(δ3, δ1) and show that if ‖x0‖ < δ, ‖x0‖ =

(

m
∑

s=1
‖xs0‖2

)1/2

, then the solution x(t, µ) of the system (3.2.1) will satisfy

the estimate

‖x(t, µ)‖ < ε at all t ≥ t0 (3.4.5)

and µ < µ∗, where µ∗ ∈ M , that is, it will be equistable in the sense of
Definition 3.4.1.
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Let µ3 = c−1
(1

2
δ0

)

. Then, according to condition (2a) of Theorem 3.3.1,

obtain the estimate

m
∑

s=1

|βs||ws(t0, x0, µ)| < c

(

c−1

(

1

2
δ0

))

=
1

2
δ0 at η ≤ ‖x‖ < ε. (3.4.6)

Let the motion x(t, µ) of the system begin in the point (t0, x0) for which
t0 ∈ R+ and ‖x0‖ < δ, and the inequality (3.4.5) does not hold at all t ≥ t0.
Since the motion is continuous, for a solution x(t, µ) there should exist values
t1, t2 > t0 such that:

(A) x(t1; t0, x0, µ) ∈ ∂S(δ1);

(B) x(t2; t0, x0, µ) ∈ ∂S(ε);

(C) x(t; t0, x0, µ) ∈ S(ε) ∩ S(δ1), t ∈ [t1, t2].

Let in condition (2) of Theorem 3.4.1 the quantity η = δ1. Then conditions
(2a) and (2b) of Theorem 3.4.1 for the function

m(t, µ) =

m
∑

s=1

αsvs(t, xs) +

m
∑

s=1

βsws(t, x, µ), t ∈ [t1, t2],

result in the differential inequality

D+m(t, µ) ≤ g(t,m(t, µ), µ), t ∈ [t1, t2]. (3.4.7)

From the inequality (3.4.7) and the equality (3.4.2) according to Theorem
1.2.10 is obtained the estimate

m(t2, µ) ≤ w+(t2, t1,m(t1, µ), µ),

where w+(t2, ·) is the maximum solution of the comparison equation (3.4.2)
at the initial values (t1, w0). Along with the inequality (3.4.7), for the function
v0(t, x(t, µ), α) we obtain the estimate

v0(t1, x(t1, µ), α) ≤ u+(t1, t0, v0(t0, x0, α)),

and, according to the condition (3.4.3), obtain

v0(t1, x(t1, µ), α) <
1

2
δ0. (3.4.8)

The condition (3.4.8) is the condition for the applicability of Theorem 1.2.10
to the comparison equation (3.4.1).

Taking into account the estimates (3.4.6) and (1a) from Theorem 3.4.1,
for the value t = t2 obtain

a(ε) +
m
∑

s=1

|βs||ws(t2, x, µ)| < w+(t2; t1, w0, µ) < a(ε)
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or a(ε) +
1

2
δ0 < a(ε) at µ < µ∗, µ∗ = min{µ1, µ2, µ3}.

The obtained contradiction proves that the assumption of the existence of
the value t2 > t0 for which the solution x(t, µ) reaches the boundary of the
domain S(ε), that is, the inclusion (B) holds, is incorrect. Thus, ‖x(t, µ)‖ < ε
at all t ≥ t0 and µ < µ∗.

Theorem 3.4.1 is proved.

Corollary 3.4.1 If in the conditions of Theorem 3.4.1 the majorizing
function g0(t, v, µ) ≡ 0 and all the remaining conditions of Theorem 3.4.1 are
satisfied, then the state of equilibrium x = 0 of the system (3.2.1) is equistable.

Corollary 3.4.2 If in the conditions of Theorem 3.4.1 the majorizing
function g(t, v, µ) ≡ 0 and all the remaining conditions of Theorem 3.4.1 are
satisfied, then the state of equilibrium x = 0 of the system (3.2.1) is equistable.

Corollary 3.4.3 If in condition (1b)

D+v0(t, x, a)
∣

∣

(3.2.2)
≤ 0

and all the remaining conditions of Theorem 3.4.1 are satisfied, then the state
of equilibrium x = 0 of the system (3.2.1) is equistable.

Corollary 3.4.4 If in condition (2b)

D+v0(t, x, a)
∣

∣

(3.2.2)
+D+w0(t, x, µ, β)

∣

∣

(3.2.2)
≤ 0

and all the remaining conditions of Theorem 3.4.1 are satisfied, then the state
of equilibrium x = 0 of the system (3.2.1) is equistable.

Note that condition (1a) and the conditions of Corollary 2.1.3 at µ = 0
are sufficient for the uniform stability of the state x = 0 of the subsystems
(3.2.2).

3.5 Dynamic Behavior of an Individual Subsystem

The study of the dynamics of an interacting subsystem in the set of systems
(3.2.1) is of certain interest, since the subsystems may be unstable or, on
the contrary, strongly (e.g., exponentially) stable in themselves (i.e., when
isolated).

The purpose of this section is the formulation of conditions sufficient for
the µ-stability or µ-instability of the k-th subsystem from the set (3.2.1).

Consider the k-th interacting subsystem of the system (3.2.1)

dxk

dt
= fk(t, xk) + µgk(t, x1, . . . , xm), (3.5.1)
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where xk(t) ∈ Rnk is the state vector of the subsystem, fk ∈ C(R+ ×
Rnk , Rnk), gk ∈ C(R+ × Rn1 × . . . × Rnm , Rnk). The state of equilibrium
of the system (3.5.1) and the free subsystem

dxk

dt
= fk(t, xk) (3.5.2)

is the state xk = 0 at all t ∈ R+.

Definition 3.5.1 The state of equilibrium xk = 0 of the k-th interacting
subsystem (3.5.1) is said to be µ-stable, if for any ε > 0 and t0 ∈ R+ one can
find δ = δ(ε, t0) > 0 and µ∗ > 0 such that

‖xk(t, t0, x0, µ)‖ < ε at all t ≥ t0, (3.5.3)

as soon as ‖x0‖ < δ and µ < µ∗, where x0 = (xT
10, . . . , x

T
m0)

T.

Remark 3.5.1 Definition 3.5.1 develops the definition of stability with
respect to a part of variables (see Lyapunov [1], Rumiantsev [1], and others)
in the sense that, unlike the separation of all the system variables into two
groups (in the stability theory with respect to a part of variables), here the
k-th vector of state of the system (3.2.1) is considered under various dynamic
properties of solutions of the remaining m− 1 subsystems.

Theorem 3.5.1 Assume that the equations of perturbed motion of the
k-th interacting subsystem (3.5.1) are such that :

(1) there exists a function vk ∈ C(R+×Rnk , R+), vk(t, xk) locally Lipschitz
with respect to xk, vk(t, 0) = 0 at all t ∈ R+, satisfying the inequalities

(a) a(‖xk‖) ≤ vk(t, xk) ≤ b(‖xk‖) for all (t, xk) ∈ R+ × S(Hk);

(b) D+vk(t, xk)|(3.5.2) ≤ g0k(t, vk(t, xk), µ), where g0k ∈ C(R+×Rnk ×
M,R), g0k(t, 0, µ) = 0 for all t ∈ R+;

(2) the impact of the connections gk(t, x1, . . . , xm) is estimated by the func-
tion

wk ∈ C(R+ × S(H1) ∩ Sc(η1) × . . .× S(Hm) ∩ Sc(ηm), R),

wk(t, x1, . . . , xm, µ) is locally Lipschitz with respect to the variables
x1, . . . , xm, 0 < ηs < Hs, for which

(a) there exists a nondecrescent function c(µ), lim
µ→∞

c(µ) = 0 and

|wk(t, x1, . . . , xm, µ)| < c(µ) for t ∈ R+ and 0 ≤ ‖x‖ < ε ≤ H ;

(b) at all (t, x, µ) ∈ R+ × S(H) ∩ Sc(η) ×M

D+vk(t, xk)|(3.5.2) +D+wk(t, x1, . . . , xm, µ)|(3.2.1)

≤ g1k(t, vk(t, xk) + wk(t, x1, . . . , xm, µ), µ),

where g1k(t, 0, µ) = 0 at all t ∈ R+, µ ∈M0 ⊂M ;
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(3) the zero solution of the equation

duk

dt
= g0k(t, uk, µ), uk(t0) = uk0 ≥ 0,

is µ-stable;

(4) the zero solution of the equation

dvk

dt
= gk(t, uk, µ), vk(t0) = vk0 ≥ 0,

is uniformly µ-stable.

Then the state of equilibrium xk = 0 of the k-th interacting subsystem
(3.5.1) is µ-stable.

The proof of this theorem is similar to that of Theorem 3.4.1 and therefore
is not given here.

Note that the influence of the remaining subsystems on the k-th subsystem
is estimated by the function wk, since it contains all variables x1, . . . , xm, and
by the expression of the derivative D+wk(t, x1, . . . , xm, µ)|(3.2.1) in view of
the whole system (3.2.1).

Now consider the subsystem (3.5.1) and determine the conditions for the
instability of the equilibrium state xk = 0. Following the works of Chetaev [1]
and Martynyuk [15], formulate some definitions.

Definition 3.5.2 The state of equilibrium xk = 0 of the k-th interacting
subsystem (3.5.1) is said to be µ-unstable if there exist ε > 0 and t0 ∈ R+

such that for any arbitrarily small δ > 0 one can find x∗0 : ‖x∗0‖ < δ, µ∗ ∈M
and t∗ > t0 for which ‖xk(t∗; t0, x

∗
0, µ)‖ ≥ ε at µ < µ∗.

According to the above definition, the µ-instability of the k-th subsystem
(3.5.1) will be determined if we only note one path reaching the boundary of
the domain ‖xk‖ = Hk at arbitrarily small ‖x∗0‖.

The subsystem (3.5.1) will be considered in the domain

t ≥ 0, ‖xk‖ ≤ Hk,

‖x1‖ + . . .+ ‖xk−1‖ + ‖xk+1‖ + . . .+ ‖xm‖ < +∞,
(3.5.4)

where Hk = const > 0.
For the subsystem (3.5.2) we construct a function vk(t, xk) and give the

following definitions.

Definition 3.5.3 A set of points (t, xk) from the domain (3.5.4), for which
vk(t, xk) > 0, is called the domain vk > 0.

Definition 3.5.4 The function Φ(t, x) is called positive definite in the
domain vk > 0, if for any ε > 0, however small it may be, there exists δ(ε) > 0
such that for any point (t, x) from the domain (3.5.4) satisfying the condition
vk(t, xk) ≥ ε the inequality Φ(t, x) ≥ δ would hold.
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Let v− : L → T0, t → v−(t; t0, v0, µ) be the minimum solution of the
equation

dv

dt
= g(t, v, µ), v(t0) ≥ v0, (3.5.5)

passing through the point (t0, v0) at all µ ∈M0 ⊆M .

Theorem 3.5.2 Assume that the equations of perturbed motion of the
k-th interacting subsystem (3.5.1) are such that :

(1) there exists a function vk(t, xk), locally Lipschitz with respect to xk, and
in the domain (3.5.4) the set of points (t0, xk0) for which vk(t0, xk0) > 0;

(2) for all (t, x) ∈ R+ × {vk > 0} the following estimates hold:

(a) vk(t, xk) ≤ b(‖xk‖), where b belongs to the K-class,

(b) D+vk(t, xk)|(3.5.2) ≥ 0;

(3) there exists a function wk ∈ C(R+ ×RN ×M,R), N = n1 + . . .+ nm,
wk(t, x1, . . . , xm, µ) locally Lipschitz with respect to x1, . . . , xm, such that

(a) |wk(t, x1, . . . , xm, µ)| < χ(µ), lim
µ→0

χ(µ) = 0,

(b) D+vk(t, xk)|(3.5.1)+D
+wk(t, x1, . . . , xm, µ)|(3.2.1) ≥ g(t, vk(t, xk)+

wk(t, x1, . . . , xm, µ), µ), where g ∈ C(R+×R×M,R), g(t, 0, µ) = 0
at all t ≥ t0;

(4) the zero solution of the equation (3.5.5) is µ-unstable.

Then the state of equilibrium xk = 0 of the k-th interacting subsystem
(3.5.1) is µ-unstable.

Proof Conditions (1) and (2) of Theorem 3.5.2 implies that the state
xk = 0 of the free subsystem (3.5.2) is unstable in the sense of Lyapunov. From
condition (4) of Theorem 3.5.2 it follows that for the solution v(t, t0, v0, µ) of
the equation (3.5.5) there exist ε∗, µ1 such that for an arbitrarily small δ∗ one
can find v0 : 0 ≤ v0 ≤ δ∗ and τ > t0 ∈ R, for which

v(τ, t0, v0, µ) > ε∗ at t ≥ τ. (3.5.6)

For the specified δ > 0 choose ε∗ so that

(∀v0 : 0 ≤ v0 ≤ δ∗)(∃x0 : ‖x0‖ < δ),

v0 ≤ vk(t0, xk0) + wk(t0, x10, . . . , xm0, µ).
(3.5.7)

Now choose µ2 = χ−1
(

1
2 δ

∗
)

and according to condition (3a) of Theorem 3.5.2

obtain

|wk(t, x1, . . . , xm, µ)| < 1

2
δ∗ at µ < µ2 ∈M (3.5.8)

at all (t, x) ∈ R+ ×Rn.
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Choose ε mentioned in Definition 3.5.2 so that

b(ε) +
1

2
δ∗ ≤ ε∗. (3.5.9)

Let J(t0, x0) denote the interval of existence of a solution of the system
(3.5.1). Let v0 : 0 ≤ v0 ≤ δ∗ and τ ≥ t0 be fixed so that the inequality (3.5.7)
holds. If the vector x0 is chosen so that ‖x0‖ < δ and τ ∈ J(t0, x0), then the
instability x(t, µ) is determined, as the solution cannot cease to exist without
leaving the domain S(ε).

Now assume that τ ∈ J(t0, x0), the vector x0 : ‖x0‖ < δ, and the inequality
(3.5.7) holds. Show that the motion xk(t, t0, x0k, µ) of the subsystem (3.5.1)
at t = τ does not belong to the domain S(ε). Let this not be so, that is,
‖xk(t, t0, x0k, µ)‖ < ε at t = τ . Assume

n(t, µ) = vk(t, xk) + |wk(t, x1, . . . , xm, µ)|

at t ∈ [t0, τ ]. According to condition (3b), obtain the differential inequality

D+n(t, µ) ≥ g(t, n(t, µ), µ). (3.5.10)

Applying the comparison technique to the inequality (3.5.10) and the equation
(3.5.5), obtain

vk(τ, xk(τ, t0, x0k, µ)) + |wk(τ, x1(τ, t0, x10 < µ), . . . ,

xm(τ, t0, xm0, µ), µ)| ≥ v−(τ, t0, v0, µ).
(3.5.11)

Here v−(τ, ·) is the minimum solution of the equation (3.5.5) with the initial
conditions (3.5.7).

Taking into account (3.5.6), (3.5.8), and (3.5.9), from (3.5.11) obtain the
sequence of inequalities

vk(τ, x(τ, t0, xk), µ)) +
1

2
δ∗ ≥ v−(τ, t0, v0, µ) > ε∗ ≥ b(ε) +

1

2
δ∗. (3.5.12)

The inequality (3.5.12) results in a contradiction. It means that

xk(τ, t0, xk0, µ) 6∈ int S(ε) at t = τ.

Consequently, choosing µ∗ = min(µ1, µ2), find that the state of equilibrium
xk = 0 of the subsystem (3.5.1) is µ-unstable.

Theorem 3.5.2 is proved.

Remark 3.5.2 In contrast to the conditions of Theorem 19.1 from the
monograph of Martynyuk [6], here the perturbed Lyapunov function is used,
and it is with the help of the perturbations wk(t, x1, . . . , xm, µ) that the in-
fluence of the connection functions µgk(t, x1, . . . , xm) between the subsystem
(3.5.1) and the remaining m− 1 subsystems is estimated.
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3.6 Asymptotic Behavior

To characterize the dynamic properties of the system (3.2.1) and the free
subsystems (3.2.2) we will use the vector function and the Euclidean norm of
the state vector of the system.

3.6.1 Uniform asymptotic stability

The system (3.2.1) will be considered under the condition (A1) about the
interconnection functions gi(t, x1, . . . , xm), i = 1, 2, . . . ,m.

Assuming ρ0(t, x) = ρ(t, xi) = ‖xi‖, i = 1, 2, . . . ,m, formulate the def-
inition of the uniform asymptotic µ-stability, taking into account Definition
2.2.1.

Definition 3.6.1 The state of equilibrium x = 0 of the system (3.2.1)
is said to be uniformly asymptotically µ-stable if it is uniformly µ-stable and
quasiuniformly asymptotically µ-stable.

Following Yoshizawa [2, p. 28], formulate the following definition for the
system (3.2.1)

Definition 3.6.2 The state of equilibrium x = 0 of the system (3.2.1) is
said to be quasiuniformly asymptotically µ-stable if for a specified ε > 0 there
exists δ0(ε) > 0, T (ε) > 0 and µ∗ ∈ (0, 1] such that if ‖x0‖ < δ0 and µ < µ∗,
then ‖x(t, t0, x0, µ)‖ < ε at all t ≥ t0 + T (ε).

Remark 3.6.1 Definition 3.6.2 in the above-mentioned monograph was
formulated for the system (3.2.1) at µ = 0 and s = 1.

Assumption 3.6.1 There exist:

(1) open connected time-invariant neighborhoodsNi ⊆ Rni , i = 1, 2, . . . ,m,
of the equilibrium states xi = 0 of the subsystems (3.2.2);

(2) continuously differentiable functions vi : R×Ni → R+, comparison func-
tions ψi1, ψi2, ψi3 from K-class, constants σi ∈ R such that

(a) ψi1(‖xi‖) ≤ vi(t, xi) ≤ ψi2(‖xi‖),
(b) dvi(t, xi)/dt|(3.2.2) ≤ σiψi3(‖xi‖) in the range of values (t, xi) ∈

R+ ×Ni, i = 1, 2, . . . ,m;

(3) constants aij = aij(µ) ∈ R such that

(gradvi(t, xi))
Tµg(t, x1, . . . , xm)

≤ [ψi3(‖xi‖)]1/2
m
∑

j=1

aij(µ)[ψj3(‖xj‖)]1/2

at all (t, xi) ∈ R×Ni.
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Theorem 3.6.1 Let the equations of perturbed motion of the weakly con-
nected system (3.2.1) be such that :

(1) all the conditions of Assumption 3.6.1 are satisfied ;

(2) at specified σi, i = 1, 2, . . . ,m, there exists a vector α = (α1, . . . , αm)T >
0 and a value µ∗ ∈M such that a matrix S = [sij(µ)] with the elements

sij(µ) =







αi(σi + aii(µ)), i = j,
1

2
(αiaij(µ) + αjaji(µ)), i 6= j,

is negative definite at all µ < µ∗.

Then the state of equilibrium x = 0 of the system (3.2.1) is uniformly
asymptotically µ-stable.

Proof On the basis of the function vi(t, xi), i = 1, 2, . . . ,m, construct a
function

v(t, x, α) =

m
∑

i=1

αivi(t, xi), (3.6.1)

for which, according to condition (2a) from Assumption 3.6.1, the estimates

m
∑

i=1

aiψi1(‖xi‖) ≤ v(t, x, α) ≤
m
∑

i=1

aiψi2(‖xi‖)

hold at all (t, x) ∈ R+ × N1 × . . . × Nm. The fact that the functions ψi1,
ψi2 belong to the K-class implies the existence of functions ψ1, ψ2 from the
K-class such that

ψ1(‖x‖) ≤
m
∑

i=1

aiψi1(‖xi‖), ψ2(‖x‖) ≥
m
∑

i=1

aiψi2(‖xi‖).

Hence

ψ1(‖x‖) ≤ v(t, x, α) ≤ ψ2(‖x‖), (3.6.2)

and therefore the function v(t, x, α) is positive definite and decrescent.
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Taking into account conditions (2b) and (3) from Assumption 3.6.1, obtain

dv(t, x)

dt

∣

∣

∣

∣

(3.2.1)

=

m
∑

i=1

{

αi

[

∂vi(t, xi)

∂t
+

(

∂vi(t, xi)

∂xi

)T

fi(t, xi)

]

+ αi

[(

∂vi(t, xi)

∂xi

)T

µgi(t, x1, . . . , xm)

]}

=
m
∑

i=1

{

αi

[

∂vi(t, xi)

∂t

]

(3.2.2)

+ αi

[(

∂vi(t, xi)

∂xi

)T

µgi(t, x1, . . . , xm)

]}

≤
m
∑

i=1

{αiσiψi3(‖xi‖) + αi[ψi3(‖xi‖)]1/2
m
∑

j=1

aij(µ)[ψi3(‖xi‖)]1/2}.

(3.6.3)

Introduce the notations: w =
{

[ψ13(‖x1‖)]
1
2 , . . . , [ψm3(‖xm‖)] 1

2

}T
and R =

[rij ] is a matrix with the elements

rij =

{

αi[σi + aii(µ)], i = j,

αiaij(µ), i 6= j, (i, j) = 1, 2, . . . ,m.

From (3.6.3) obtain

dv(t, x)

dt

∣

∣

∣

∣

(3.2.1)

≤ wTRw = wT

(

1

2

[

R +RT
]

)

w = wTS(µ)w.

According to condition (2) of Theorem 3.6.1, there exists µ∗ ∈ M such that
the matrix S(µ) at µ < µ∗ is negative definite. Then λM (S(µ)) < 0 at µ < µ∗

and
dv(t, x)

dt

∣

∣

∣

∣

(3.2.1)

≤ λM (S(µ))wTw = λM (S(µ))

m
∑

i=1

ψi3(‖xi‖).

Since ψi3 belongs to the K-class, there exists a function ψ3 ∈ K such that

ψ3(‖x‖) ≥
m
∑

i=1

ψi3(‖xi‖),

that is,

dv(t, x)

dt

∣

∣

∣

∣

(3.2.1)

≤ λM (S(µ))ψ3(‖x‖), λM (S(µ)) < 0 at µ < µ∗

in the range of values (t, x) ∈ R+ ×N1 × . . .×Nm.
Hence it follows that the state x = 0 of the system (3.2.1) is uniformly

asymptotically stable.
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Remark 3.6.2 If the constants aij in condition (3) of Assumption 3.6.1 do
not depend on µ, then for the elements sij of the matrix S(µ) we obtain the
expressions

sij =







αai[σi + µaii], i = j,
1

2
µ(αiaij + αjaji), i 6= j,

and Theorem 3.5.1 survives.

3.6.2 The global uniform asymptotic stability

At first formulate the following assumption.

Assumption 3.6.2 For the subsystems (3.2.2):

(1) conditions (1) and (2) of Assumption 3.6.1 with the functions ψi1, ψi2

from the KR-class are satisfied;

(2) at specified vi and ψi3 there exist functions aij : R+ × Rn → R such
that

(

∂vi(t, xi)

∂xi

)T

gi(t, x1, . . . , xm)

≤ [ψi3(‖xi‖)]1/2
m
∑

j=1

aij(t, x)[ψi3(‖xi‖)]1/2

at all (t, x) ∈ R+ ×Rn.

For Theorem 3.6.1 formulate a generalization in the following form.

Theorem 3.6.2 Let the equations of perturbed motions of the weakly
connected system (3.2.1) be such that :

(1) all the conditions of Assumption 3.6.2 are satisfied ;

(2) there exists a vector αT = (α1, . . . , αm) > 0, a constant ε > 0, and a
value µ∗ ∈M such that the matrix S(t, x, µ)+ εE is negative definite at
all (t, x, µ) ∈ R+ × Rn ×M∗, M∗ ⊂ M ; here, the elements sij(t, x, µ)
of the matrix S(t, x, µ) are defined by the formula

sij(t, x, µ) =







αi[σi + µaii(t, x)], i = j,
1

2
µ(αiaij(t, x) + αjaji(t, x)), i 6= j,

where E is a unit (m×m)-matrix.

Then the state of equilibrium x = 0 of the system (3.2.1) is globally uni-
formly asymptotically µ-stable.
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Proof The function (3.6.1) is positive definite and decrescent. Let
R(t, x, µ) = [rij(t, x, µ)] denote an (m×m)-matrix with the elements

rij(t, x, µ) =

{

αi[σi + µaii(t, x)], i = j,

µαiaij(t, x), i 6= j.

Using (3.5.19) and the conditions of Assumption 3.6.2, for µ < µ∗ obtain the
estimate

dv(t, x)

dt

∣

∣

∣

∣

(3.2.1)

≤ wTR(t, x, µ)w

= wT

(

1

2
[R(t, x, µ) +RT(t, x, µ)]

)

w

= wTS(t, x, µ)w ≤ −εwTw = −ε
m
∑

i=1

ψi3(‖xi‖)

(3.6.4)

at all (t, x) ∈ R+×Rn. Since ψi3 belongs to the K-class, there exists ψ3 from
the K-class, such that

ψ3(‖xi‖) ≤
m
∑

i=1

ψi3(‖xi‖).

Therefore, from (3.6.4) obtain

dv(t, x, α)

dt

∣

∣

∣

∣

(3.2.1)

≤ −εψ3(‖xi‖) at µ < µ∗.

Thus, the equilibrium state x = 0 of the system (3.2.1) is globally uniformly
asymptotically µ-stable.

3.6.3 Exponential stability

Further we will use the following notions.

Definition 3.6.3 The state of equilibrium x = 0 of the system (3.2.1) is
called to be exponentially µ-stable if in an open connected neighborhood N
of the state x = 0 one can find constants r1, . . . , rm > 0, a > 0 and λ > 0
such that at t ≥ t0

‖x1(t, t0, x0, µ)‖2r1 + . . .+ ‖xm(t, t0, x0, µ)‖2rm ≤ a‖x0‖ exp[−λ(t− t0)].

The constants a and λ may depend on N .

Definition 3.6.4 The comparison functions ϕ1, ϕ2 from the KR-class
have the value of the same order if there exist constants αi, βi, i = 1, 2, such
that

α−1
i ϕi(r) ≤ ϕj(r) ≤ β−1

i ϕi(r), i 6= j, i, j = 1, 2.
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Assumption 3.6.3 There exist:

(1) open time-invariant connected neighborhoodsNi ⊆ Rni , i = 1, 2, . . . ,m,
of the equilibrium states xi = 0 of the subsystems (3.2.2);

(2) continuously differentiable functions vi : R+×Ni → R, comparison func-
tions ϕi1, ϕi2, which have the values of the same order, ϕi2 from the
K-class, and constants σi ∈ R such that

(a) uTAu ≤ v(t, x, α) ≤ uTBu, where u = (‖x1‖r1 , . . . . . . , ‖xm‖rm)T,
r1, . . . , rm > 0, A, B are constant (m×m)-matrices,

(b) dvi(t, xi)/dt
∣

∣

(3.2.2)
≤ σiϕi2(‖xi‖) in the range of values (t, xi) ∈

R+ ×Ni, i = 1, 2, . . . ,m;

(3) constants aij = aij(µ) ∈ R such that

(gradvi(t, xi))
Tµgi(t, x1, . . . , xm)

≤ [ϕi2(‖xi‖)]1/2
m
∑

j=1

aij(µ)[ϕi2(‖xi‖)]1/2

at all (t, xi) ∈ R+ ×Ni.

Theorem 3.6.3 Let the equations of perturbed motion of the system
(3.2.1) be such that :

(1) all the conditions of Assumption 3.6.3 are satisfied ;

(2) at specified σi, i = 1, 2, . . . ,m, there exists an m-vector αT =
(α, . . . , αm) > 0 and µ∗ ∈ M such that the matrix S(µ) = [sij(µ)]
with the elements

sij(µ) =







αi[σi + aii(µ)], i = j,
1

2
[αiaij(µ) + αjaji(µ)], i 6= j,

is negative definite at µ < µ∗;

(3) the matrices A and B in the estimate (2a) of Assumption 3.6.3 are
positive definite.

Then the equilibrium state x = 0 of the system (3.2.1) is exponentially
µ-stable.

Proof For the function v(t, x, a) = αTv(t, x) where v(t, x) = (v1(t, x1, . . . ,
vm(t, xm))T, according to condition (3) of Theorem 3.6.3, obtain

λm(A)uTu ≤ v(t, x, α) ≤ λM (B)uTu. (3.6.5)
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Since ϕi1 belongs to the K-class, there exists a comparison function ϕ1

from the K-class, such that uTu ≤ ϕ1(‖x‖) and therefore (3.6.5) takes on the
form

λm(A)uTu ≤ v(t, x, α) ≤ λM (B)ϕ1(‖x‖). (3.6.6)

Using (3.6.3), conditions (2b) and (3) of Theorem 3.6.3, obtain

dv(t, x, α)

dt

∣

∣

∣

∣

(3.2.1)

≤ λM (S(µ))
m
∑

i=1

ϕi2(‖xi‖) (3.6.7)

at all (t, xi) ∈ R+ × Ni, i = 1, 2, . . . ,m. Since ϕi2 belongs to the K-class,
there exists ϕ2 from the K-class, such that

m
∑

i=1

ϕi2(‖xi‖) ≤ ϕ2(‖x‖).

Taking into account the last estimate, the inequality (3.6.7) will take on the
form

dv(t, x, α)

dt

∣

∣

∣

∣

(3.2.1)

≤ λM (S(µ))ϕ2(‖x‖). (3.6.8)

Under the hypothesis of Theorem 3.6.3 there exists µ∗ ∈M such that

λM (S(µ)) < 0 at all µ < µ∗. (3.6.9)

Since the functions ϕ1 and ϕ2 are the values of the same order, there exist
constants β1, β2 such that

β−1
1 ϕ1(r) ≤ ϕ2(r) ≤ β−1

2 ϕ1(r). (3.6.10)

Taking into account (3.6.8) and (3.6.9), for (3.6.7) obtain

dv(t, x, α)

dt

∣

∣

∣

∣

(3.2.1)

≤ −λM (S(µ))β−1
1 λ−1

M (B)v(t, x, α),

whence

v(t, x(t), α) ≤ v(t0, x0, α) exp
[λM (S(µ))

β1λM (B)
(t− t0)

]

, t ≥ t0. (3.6.11)

Taking into account the inequality

‖x1‖2r1 + . . .+ ‖xm‖2rm ≤ (‖x1‖r1 , . . . , ‖xm‖rm)T(‖x1‖r1 , . . . , ‖xm‖rm)
(3.6.12)

and the estimates (3.6.6) and (3.6.11), obtain

‖x1(t, t0, x0)‖2r1 + . . .+ ‖xm(t, t0, x0)‖2rm

≤ λ−1
m (A)λM (B)ϕ1(‖x‖0) exp

[λM (S(µ))

β1λM (B)
(t− t0)

]

, t ≥ t0.
(3.6.13)
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Assuming

a = λ−1
m (A)λM (B) and λ =

λM (S(µ))

β1λM (B)
,

from the estimate (3.6.13) obtain the inequality involved in Definition 3.6.3.
Theorem 3.6.3 is proved.

Assumption 3.6.4 There exist:

(1) continuously differentiable functions vi : R+ ×Rni → R, constant (m×
m)-matrices A and B, constants r1, . . . . . . , rm > 0 such that

(a) uTAu ≤ v(t, x, a) ≤ wT
1 Bw1, where

w1 = (c11‖x1‖2, . . . , c1m‖xm‖2)T,

u = (‖x1‖r1 , . . . , ‖xm‖rm)T;

(b) dvi(t, xi)/dt
∣

∣

(3.2.2)
≤ σi‖xi‖2 in the range of values (t, xi) ∈ R+ ×

Rni , i = 1, 2, . . . ,m;

(2) at specified σi, i = 1, 2, . . . ,m, there exist constants aij ∈ R such that

(grad vi(t, x))
Tgi(t, x1, . . . , xm) ≤ ‖xi‖

m
∑

j=1

aij‖xj‖

at all xi ∈ Rni , xj ∈ Rnj , i, j = 1, 2, . . . ,m.

Theorem 3.6.4 Let the equations of perturbed motion of the weakly con-
nected system (3.2.1) be such that :

(1) all the conditions of Assumption 3.6.4 are satisfied ;

(2) at specified σi, i = 1, 2, . . . ,m, there exists µ∗ ∈ (0, 1] such that the
matrix S(µ) = [sij(µ)] with the elements

sij(µ) =







αi(σi + µaii), i = j,
1

2
µ(αiaij + αjaji), i 6= j,

is negative definite at µ < µ∗;

(3) the matrices A and B in the estimate (1a) of Assumption 3.6.4 are
positive definite.

Then the equilibrium state x = 0 of the system (3.2.1) is globally exponen-
tially µ-stable.

Proof From the conditions of Assumption 3.6.4 it follows that the com-
parison functions ϕ1i, ϕ2i have the form

ϕi1(‖xi‖) = c1i‖xi‖2, ϕi2(‖xi‖) = ‖xi‖2, i = 1, 2, . . . ,m.
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It is clear that those function have the value of the same order. In addition,
the function v(t, x, α) is positive definite, decrescent, and radially unbounded.

The function dv(t, x, α)/dt along solutions of the system (3.2.1) is negative
definite in view of condition (1) of Theorem 3.6.4. Hence the state x = 0 of
the system (3.2.1) is globally exponentially µ-stable.

Theorem 3.6.4 is proved.

3.6.4 Instability and full instability

In Section 3.5 the conditions for the µ-instability of an individual subsys-
tem in the system (3.2.1) were determined. Here we will consider the complete
system (3.2.1) under the following conditions.

Assumption 3.6.5 There exist:

(1) open connected time-invariant neighborhoods Ni ⊆ Rni of the equilib-
rium states xi = 0 of the subsystems (3.2.2);

(2) continuously differentiable functions vi : R+ × Ni → R+, comparison
functions ψi1, ψi2, ψi3 from the K-class, constants δi1, δi2, σ ∈ R such
that

(a) δi1ψi1(‖xi‖) ≤ vi(t, xi) ≤ δi2ψi2(‖xi‖),
(b) dvi(t, xi)/dt

∣

∣

(3.2.2)
≤ σiψi3(‖xi‖) in the range of values (t, xi) ∈

R+ ×Ni, i = 1, 2, . . . ,m;

(3) constants aij ∈ R and a value µ∗ ∈ (0, 1] such that

gradvi(t, xi)µgi(t, x1, . . . , xm) ≤ [ψi3(‖xi‖)]1/2
m
∑

j=1

aij [ψj3(‖xj‖)]1/2

at all (t, xi, xj) ∈ R+ ×Ni ×Nj and µ < µ∗.

Remark 3.6.3 If δi1 = δi2 = −1, then it is said that the subsystems (3.2.2)
have the property C, and if δi1 = δi2 = 1 they have the property A.

Remark 3.6.4 From conditions (1) and (2) of Assumption 3.6.4 it follows
that if the subsystems (3.2.2) have the property C and σi < 0 at all i =
1, 2, . . . ,m, then the equilibrium state xi = 0 of the subsystems (3.2.2) is
quite unstable, that is, all the subsystems (3.2.2) are unstable in the sense of
the Lyapunov definition [1].

If the subsystems (3.2.2) have the property A and σi < 0 at all i =
1, 2, . . . ,m, then all the subsystems (3.2.2) are uniformly asymptotically sta-
ble.

Let L = {1, 2, . . . ,m} be the set of all subsystems in the complex system
(3.2.1). Let N 6= ∅ denote a set of subsystems that have the property C,
N ⊂ L.
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Theorem 3.6.5 Let the equations of perturbed motion (3.2.1) be such
that :

(1) all the conditions of Assumption 3.6.5 are satisfied ;

(2) at specified σi there exists a vector αT = (α1, . . . . . . , αm) > 0 and a
value µ∗ ∈M such that the matrix S(µ) = [sij(µ)] with the elements

sij(µ) =







αi[σi + aii(µ)], i = j,
1

2
[αiaij(µ) + αjaji(µ)], i 6= j,

is negative definite at µ < µ∗.

Then:

(a) if N 6= L, then the equilibrium state x = 0 of the system (3.2.1) is
µ-unstable;

(b) if N = L, then the equilibrium state x = 0 of the system (3.2.1) is
completely µ-unstable.

Proof Like in Theorem 3.6.1, for the function

v(t, x, α) =

m
∑

s=1

αsvs(t, xs) (3.6.14)

its negative definiteness and decrease are determined. Similarly to (3.6.4) ob-
tain the estimate

dv(t, x, α)

dt

∣

∣

∣

∣

(3.2.1)

≤ λM (S(µ))

m
∑

i=1

ψi3(‖xi‖) (3.6.15)

at all (t, x) ∈ R+ × N1 × . . . × Nm, i ∈ L. According to condition (2) of
Theorem 3.6.5 at µ ≤ µ∗ λm(S(µ)) < 0, and therefore dv(t, x, α)/dt

∣

∣

(3.2.1)
is

negative definite.
Now consider the set D = {(t, x) ∈ R+ × Rn : xi ∈ Bi(r) at i ∈ N and

xi = 0, as soon as i 6∈ N}. Here r = min
i
ri, for which i ∈ N . For the function

(3.6.14) obtain the estimate

−
∑

i∈N

αiψi1(‖xi‖) ≤ v(t, x, α) ≤ −
∑

i∈N

αiψi2(‖xi‖).

Hence it follows that in any neighborhood of the state x = 0 there exists at
least one point x∗ 6= 0 in which v(t, x∗, α) < 0 at all t ∈ R+. In addition, over
the set D the function v(t, x, a) is bounded below. Thus, all the conditions of
the Lyapunov theorem [1] on instability at µ < µ∗ are satisfied. This proves
statement (a) of the theorem if N 6= L. If N = L, all the subsystems (3.2.2)
are unstable, and the connections do not change that dynamical state, that
is, the system (3.2.1) is completely µ-unstable.



Analysis of the Stability of Motion 105

3.7 Polystability of Motion

The polystability of motion of dynamic systems is some extension of the
concept of stability with respect to a part of variables.

The purpose of this section is the study of the µ-polystability of the system
(3.2.1) at m = 2.

3.7.1 General problem of polystability

Consider the nonlinear system of equations of perturbed motion

dxi

dt
= fi(t, xi) + µgi(t, x1, . . . , xm),

xi(t0) = xi0, i = 1, 2, . . . ,m,
(3.7.1)

where xi ∈ Rni , t ∈ R+, t0 ∈ Ri, Ri ⊆ R, fi : R+ × Rni → Rni , gi : R+ ×
Rn1 × Rn2 × . . . × Rnm → Rni , and assume that fi(t, 0) = gi(t, 0, . . . , 0) = 0
for all t ∈ R+, µ ∈ (0, 1].

Definition 3.7.1 The system (3.7.1) is said to be µ-polystable (on R+) if
and only if its solution (x = 0) ∈ Rn is µ-stable (on R+) and µ-attracting (on
R+) with respect to a group of variables {xi}T, i = 1, 2, . . . ,m (with respect
to a set of groups of variables {xT

1 , . . . , x
T
l }, l < m).

Remark 3.7.1 If the µ-polystability of the equilibrium state x = 0 is
considered with respect to all subvectors {xi}T, i = 1, 2, . . . ,m, of the system
(3.7.1), then the system (3.7.1) is considered in the domain

R+ ×B1(ρ) ×B2(ρ) × . . .×Bi(ρ), Bi(ρ) = {xi : ‖xi‖ < Hi},
Hi = const > 0, i = 1, 2, . . . ,m,

or in Rn, as usual.

Remark 3.7.2 If the µ-polystability of the equilibrium state x = 0 of the
system (3.7.1) is considered with respect to the set of subvectors (xT

1 , . . . , x
T
l ),

l < m, then the system (3.7.1) is considered in the domain

Bl(ρ) = {xT
i : ‖(xT

1 , . . . , x
T
l )T‖ < H∗}, H∗ = const > 0,

Dl = {xT
k : 0 < ‖(xT

l+1, . . . , x
T
m)T‖ < +∞}, k = l + 1, . . . ,m.

Here the motion x(t, x0, µ) of the system (3.7.1) should be defined at all t ∈
R+, for which ‖(xT

1 , . . . , x
T
l )T‖ < H∗.

This condition is satisfied in all applied problems (see Rumiantsev and
Oziraner [1]), since it means that none of the coordinates of the subvectors
xT

k (t), k = l+ 1, . . . ,m, of the state of the subsystems (3.7.1) reaches infinity
in a finite period of time.
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3.7.2 Polystability of the system with two subsystems

Assume that for the independent subsystems

dxi

dt
= fi(t, xi), xi(t0) = xi0, i = 1, 2, (3.7.2)

the functions vi : R+ × Rni → R, i = 1, 2, are constructed, as well as the
function

v(t, x, α) = α1v1(t, x1) + α2v2(t, x2), α1, α2 = const. (3.7.3)

See the following definitions.

Definition 3.7.2 The function v(t, x, a) : R+ ×Rn ×R → R+ is

(1) positive semidefinite onR+, if there exists a time-invariant neighborhood
N of the state x = 0, such that

(a) v(t, x, α) is continuous with respect to (t, x) ∈ R+ ×N ;

(b) v(t, x, α) is nonnegative on N , that is,

v(t, x, α) ≥ 0 ∀(t, x) ∈ R+ ×N ;

(c) v(t, x, α) = 0, if x = 0 at all t ∈ R+ ;

(2) xT
i -positive definite on R+, if in the domain R+ × Bi(ρ) × Dj , i 6= j,
i, j = 1, 2, the following conditions are satisfied:

(a) v(t, x, α) is continuous with respect to (t, x) ∈ R+ ×Bi(ρ) ×Dj ;

(b) there exists a function w(xT
i ) such that the inequality

w(xT
i ) ≤ v(t, x, α) ∀(t, x, α) ∈ R+ ×Bi(ρ) ×Dj

holds for one of the values i = 1, 2;

(c) v(t, x1, x2, α) = 0, if x1 = 0, x2 6= 0, or x1 6= 0, x2 = 0;

(3) xT
i -decrescent on R+, i = 1, 2, if in the domain R+ ×Bi(ρ)×Dj , i 6= j,
i, j = 1, 2, condition (2a) is satisfied and there exists a function w̃(xT

i )
such that

v(t, x, α) ≤ w̃(xT
i ), i = 1, 2.

The system (3.7.1) at s = 2 is further considered in the domain R+ ×
B1(H1) ×B2(H2).

Definition 3.7.3 The system (3.7.1) at s = 2 is said to be µ-polystable
(on R+), if its equilibrium state x = 0 is

(a) uniformly µ-stable on R+ with respect to (xT
1 , x

T
2 ),
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(b) uniformly asymptotically µ-stable on R+ with respect to xT
2 .

Theorem 3.7.1 Let the equations of perturbed motion (3.7.1) at s = 2
be such that :

(1) there exist differentiable functions vi(t, xi) : R+ × Rni → R, i = 1, 2,
for which the function v(t, x, α) is

(a) positive definite on N ⊆ Rn, n = n1 + n2,

(b) decrescent on N (on R+ ×N);

(2) there exists µ∗ ∈M such that the function dv(t, x, a)/dt
∣

∣

(3.7.1)
is

(a) negative semidefinite on R+ ×N at µ < µ∗,

(b) xT
2 -negative definite on R+ ×N at µ < µ∗.

Then the system (3.7.1) is µ-polystable in the sense of Definition 3.7.3.

Proof From conditions (1a), (1b), and (2a), it follows that the state (x =
0) ∈ Rn, n = n1 + n2, is uniformly µ-stable on R+. If in addition condition
(2b) is satisfied, then the uniform asymptotic µ-stability on R+ occurs with
respect to xT

2 .

Now consider the system (3.7.1) at s = 2 in the domain

R+ ×B1(H1) ×D2, D2 = {x2 : 0 < ‖x2‖ < +∞}.

Extend Theorem 4.2 from the monograph by Rumiantsev and Oziraner [1]
to the systems (3.7.1) at s = 2.

Theorem 3.7.2 Let the equations of perturbed motion (3.7.1) at s = 2
be such that :

(1) there exist differentiable functions vi(t, xi) : R+ × Rni → R+, i = 1, 2,
for which the function v(t, x, α) is

(a) xT
1 -positive definite on R+ ×B1(H1) ×D2,

(b) decrescent on R+ ×B1(H1) ×D2,

(c) xT
1 -decrescent on R+ ×B1(H1) ×D2;

(2) the function dv(t, x, α)/dt
∣

∣

(3.7.1)
is

(a) negative semidefinite on R+ ×B1(H1) ×D2,

(b) xT
1 –negative definite on R+ ×B1(H1) ×D2,

(c) negative definite on R+ ×B1(H1) ×D2.

Then, respectively,
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(a) conditions (1a) and (2a) are sufficient for the xT
1 − µ-stability of the

state (x = 0) ∈ Rn on R+;

(b) conditions (1b) and (2b) are sufficient for the uniform xT
1 − µ-stability

of the state (x = 0) ∈ Rn on R+;

(c) conditions (1c) and (2c) are sufficient for the asymptotic xT
1 −µ-stability

of the state (x = 0) ∈ Rn on R+.

The proof of this theorem lies in the verification of the satisfaction of the
conditions of Theorems 5.1, 5.2, and 6.1 from the above-mentioned monograph
under the conditions of Theorem 3.7.2.

In connection with Theorem 3.7.1 the question that has to be answered
is what general form the system (3.7.1) should have for its motion to be µ-
polystable in the sense of Definition 3.7.3. The answer resides in the following
assumption.

Assumption 3.7.1 There exist:

(1) continuously differentiable functions vi : R+ × Rni → → R+, i = 1, 2,
(2 × 2)-constant matrices A1 and B1 and the comparison function ψ
from the K-class, such that

(a) uTA1u ≤ v(t, x, a) ≤ uTB1u at all (t, x) ∈ R+ ×B1(H1)×B2(H2),
where uT = (‖x1‖, ‖x2‖),

(b) ∂v1/∂t+ (∂v1(t, x1)/∂xk)Tf1(t, x1) ≤ 0, k = 1, 2, . . . , n1,

(c) ∂v2/∂t+(∂v2(t, x2)/∂xl)
Tf2(t, x1) ≤ −σ1ψ(‖x2‖), l = 1, 2, . . . , n2;

(2) there exist constants k1, k2 > 0 such that

|∂v1(t, x1)/∂xk| < k1 and |∂v2(t, x2)/∂xj | < k2,

k = 1, 2, . . . , n1, j = 1, 2, . . . , n2;

(3) the connection functions of the subsystems gi(t, x1, x2) satisfy the con-
ditions

g1(t, x1, x2) = g1(t, x2),

g2(t, x1, x2) ≡ 0,

and, in addition, ‖g1(t, x2)‖ ≤ ψ(‖x2‖), where ψ belongs to the K-class.

It is easy to show that under all conditions of Assumption 3.7.1 the system

dx1

dt
= f1(t, x1) + µg1(t, x2),

dx2

dt
= f2(t, x2)

(3.7.4)
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is µ-polystable in the sense of Definition 3.7.3.
From conditions (1b) and (1c) it follows that the subsystem

dx1

dt
= f1(t, x1)

is neutrally stable and the subsystem

dx2

dt
= f2(t, x2)

is uniformly asymptotically stable. Hence, at µ < µ∗ the function µg1(t, x2)
has a stabilizing impact in the system (3.7.4).

3.8 Applications

In this section, some typical systems of the theory of automatic control
are considered on the basis of the general approach developed in this chapter.

3.8.1 Analysis of longitudinal motion of an aeroplane

The controllable longitudinal motion of an aeroplane may be described by
the equations (see Letov [1] and others)

dxk

dt
= −ρkxk + µσ, k = 1, 2, 3, 4,

dσ

dt
= −rpσ − f(σ) + µ

4
∑

k=1

βkxk,
(3.8.1)

where ρk > 0, r > 0, p > 0, βk are constants, µ is a small parameter, xk ∈ R,
σ ∈ R, the function f : R → R has the following properties:

(a) f is continuous on R;

(b) f(σ) = 0, if and only if σ = 0;

(c) σf(σ) > 0 at all σ 6= 0.

The function f with the properties (a) – (c) is called the admissible non-
linearity for the system (3.8.1) (see Aizerman and Gantmacher [1]). If the
equilibrium state

xT = (x1, x2, x3, x4, σ) = 0 (3.8.2)

of the system (3.8.1) is globally asymptotically stable at all admissible non-
linearities of f , then the system (3.8.1) is absolutely stable.
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At µ = 0 from the system (3.8.1) obtain two isolated subsystems

dxk

dt
= −ρkxk, k = 1, 2, 3, 4, (3.8.3)

dσ

dt
= −rpσ − f(σ). (3.8.4)

Represent the system (3.8.1) in the form

dzi

dt
= fi(zi) + µ

2
∑

l=1,j 6=i

Cijzj , i = 1, 2, (3.8.5)

where the matrices CT
12 and C21 are such

CT
12 = [1, 1, 1, 1] and C21 = [β1, β2, β3, β4]. (3.8.6)

Now assume that

ρ1 ≤ ρ2 ≤ ρ3 ≤ ρ4, (3.8.7)

and denote zT
1 = (x1, . . . , x4), z2 = σ.

With the subsystems (3.8.3) and (3.8.4) connect the functions

v1(z1) = c1z
T
1 z1, v2(z2) = c2z

2
2 , (3.8.8)

where c1, c2 > 0 are constants.

It is easy to verify that the following estimates hold:

dv1(z1)

dt

∣

∣

∣

∣

(3.8.3)

≤ −2c1ρ1‖z1‖2, (3.8.9)

dv2(z2)

dt

∣

∣

∣

∣

(3.8.4)

≤ −2rpc2‖z2‖2, (3.8.10)

‖gradv1(z1)‖ ≤ 2c1‖z1‖, (3.8.11)

‖gradv2(z2)‖ ≤ 2c2‖z2‖ (3.8.12)

at all z1 ∈ R4, z2 ∈ R. The norms of matrices (3.8.6), concordant with the
Euclidean norm of vectors, are

‖C12‖ = 2, ‖C21‖ =

( 4
∑

i=1

β2
1

)1/2

. (3.8.13)

For further treatment we will use a corollary of Theorem 3.6.3.
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Corollary 3.8.1 Let the equations of perturbed motion (3.8.3) and (3.8.4)
be such that:

(1) for each subsystem (3.8.3) and (3.8.4) there exist functions v1(z1) and
v2(z2) such that

ci1‖zi‖2 ≤ vi(zi) ≤ ci2‖zi‖2,

dvi(zi)

dt

∣

∣

∣

∣

(·)

≤ σi‖zi‖2, where (·) =

{

(3.8.3),

(3.8.4);

(2) for the specified functions vi(zi), i = 1, 2, there exist positive constants
ci3 for which

‖gradvi(zi)‖ ≤ ci3‖zi‖ at all zi ∈ Rni ;

(3) at specified σi, i = 1, 2, there exist a vector α = (α1, α2)
T and a value

µ∗ ∈M such that the matrix S(µ) = [sij(µ)] with the elements

sij(µ) =







αiσi at i = j,
1

2
µ[αici3‖Cij‖ + αjcj3‖Cji‖] at i 6= j,

(3.8.14)

is negative definite at all µ < µ∗.

Then the equilibrium state (3.8.2) of the system (3.8.1) is globally µ-stable.

Taking into account (3.8.9) – (3.8.12), for the elements sij(µ) of the matrix
S(µ) obtain the expressions according to (3.8.14):

s11 = −2α1c1ρ1, s22 = −2α2rpc2,

s12 = s21 = 2α1µc1 + α2µc2

( 4
∑

i=1

β2
i

)1/2

.

Now choose

a1 =
1

4c1
, a2 =

1

2c2

( 4
∑

i=1

β2
i

)1/2
.

Here

s11 = −1

2
ρ1, s22 = − rp

( 4
∑

i=1

β2
i

)1/2
, s12 = s21 = µ.

Therefore, the matrix S(µ) has the form

S(µ) =











−1

2
ρ1 µ

µ − rp
( 4
∑

i=1

β2
i

)1/2











.
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The matrix S(µ) is negative definite if at µ < µ∗ the following inequalities
hold:

−1

2
ρ1 < 0,

(

− 1

2
ρ1

)









− rp
( 4
∑

i=1

β2
i

)1/2









− µ2 > 0.

Since ρ1 > 0, the first inequality holds automatically. From the second
inequality obtain

µ2

( 4
∑

i=1

β2
i

)1/2

<
1

2
rpρ1 (3.8.15)

at µ < µ∗.

The condition (3.8.15) is sufficient for the global exponential µ-stability of
the motion of the system (3.8.1).

3.8.2 Indirect control of systems

Among the problems of automatic control, an important place is held by
the problem of indirect control (see Lefshets [1] and others). Consider the
equations of perturbed motion of such a system with small nonlinearities

dx

dt
= Ax+ µbf(σ),

dσ

dt
= −ρσ − rf(σ) + µaTx,

(3.8.16)

where x ∈ Rn, σ ∈ R, A is a stable (n × n)-matrix (Re λj < 0), b ∈ Rn,
ρ > 0, a ∈ Rn, µ ∈ (0, 1] and f : R→ R and has the following properties:

(a) f(σ) = 0 if and only if σ = 0;

(b) f(σ) is continuous on R;

(c) 0 < σf(σ) ≤ kσ2 at all σ 6= 0, where k = const > 0.

At µ = 0 from the system (3.8.16) obtain the independent subsystems

dx

dt
= Ax, (3.8.17)

dσ

dt
= −ρσ − rf(σ). (3.8.18)

The connection functions have the form

g1(x, σ, µ) = µbf(σ),

g2(x, µ) = µaTx.
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For the subsystems (3.8.17) and (3.8.18) construct the Lyapunov functions

v1(x) = xTBx, (3.8.19)

where ATB +BA = −C, C is some positive definite matrix, and

v2(σ) =
1

2
σ2. (3.8.20)

For the function vi(·), i = 1, 2, the following estimates hold:

c11‖x‖2 ≤ v1(x) ≤ c12‖x‖2,

dv1(x)

dt
|(3.8.17) ≤ −c13‖x‖2,

‖gradv1(x)‖ ≤ c14‖x‖ at all x ∈ Rn;

dv2(σ)

dt
|(3.8.18) ≤ −ρ|σ|2,

‖gradv2(σ)‖ ≤ |σ| at all σ ∈ R.

For the connection functions g1 and g2 the following estimates hold:

‖g1(x, σ, µ)‖ ≤ µk|b|‖x‖,
‖g2(x, µ)‖ ≤ µ|a||σ|.

Choose the values

α1 =
1

k|b| and α2 =
c14
|a| (3.8.21)

and construct a matrix S(µ) with the elements

sij(µ) =







αiσj at i = j,
1

2

[

αici3‖cij‖ + αjcj3‖cji‖
]

at i 6= j,
(3.8.22)

where ‖cij‖ = µk|b|, ‖cji‖ = µ|a|.
Taking into account (3.8.21) and the estimates for the functions v1(x) and

v2(σ), it is not difficult to find expressions for the matrix

S(µ) =







− c13
µk|b| c14

c14 −c14ρ
µ|a|






. (3.8.23)

The matrix (3.8.23) is negative definite if

µ2k <
ρc13

c14|a||b|
at µ < µ∗, µ∗ ∈ (0, 1]. (3.8.24)

Due to the presence of a small parameter in the inequality (3.8.24), the range
of values of the parameters of the system (3.8.16) may be extended.
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Thus, since the function

v(x, σ) = α1v1(x) + α2v2(σ)

is positive definite and decrescent, under the inequality (3.8.24) the equi-
librium state (xT, σ) = 0 of the indirect control system (3.8.16) is globally
asymptotically µ-stable.

3.8.3 Control system with an unstable free subsystem

Continue the study of the system (3.8.16). Using a nonsingular linear trans-
formation (see Michel and Miller [1]) the system (3.8.16) can be reduced to
the form

dx1

dt
= A1x1 + µb1f(σ),

dx2

dt
= A2x2 + µb2f(σ),

dσ

dt
= −ρσ − rf(σ) + µaT

1 x1 + µaT
2 x2,

(3.8.25)

where x1 ∈ Rn1 , x2 ∈ Rn2 , A1 is a constant (n1×n1)-matrix, A2 is a constant
(n2 × n2)-matrix, b1 ∈ Rn1 , b2 ∈ Rn2 , a1 ∈ Rn1 , a2 ∈ Rn2 , µ ∈ (0, 1],
n1 + n2 = n.

At µ = 0 from the system (3.8.25) obtain three subsystems

dx1

dt
= A1x1, (3.8.26)

dx2

dt
= A2x2, (3.8.27)

dσ

dt
= −ρσrf(σ). (3.8.28)

The connection functions have the form

g1(x1, x2, σ, µ) = µb1f(σ),

g2(x1, x2, σ, µ) = µb2f(σ),

g3(x1, x2, σ, µ) = µaT
1 x1 + µaT

2 x2.

Make the following assumptions about the subsystems (3.8.26) and
(3.8.27):

(a) all eigenvalues of the matrix A1 have positive real parts;

(b) the matrix A2 is stable, that is, Reλj(A2) < 0, j = 1, 2, . . . , n2.
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In addition, there exist functions v1 : Rn1 → R and v2 : Rn2 → R, positive
constants cij , i=1,2, j = 1, 2, 3, 4, such that

−c11‖x1‖2 ≤ v1(x1) ≤ −c12‖x2‖2,

dv1(x1)

dt

∣

∣

∣

(3.8.26)
≤ −c12‖x2‖2,

‖gradv1(x1)‖ ≤ c14‖x1‖,
c21‖x2‖2 ≤ v2(x2) ≤ c22‖x2‖2,

dv2(x2)

dt

∣

∣

∣

(3.8.27)
≤ −c23‖x2‖2,

‖gradv2(x2)‖ ≤ c24‖x2‖

(3.8.29)

at all x1 ∈ Rn1 and x2 ∈ Rn2 .
For the subsystem (3.8.28) take the function v3(σ) in the form

v3(σ) =
1

2
σ2.

For this function obtain

dv3(σ)

dt

∣

∣

∣

(3.8.28)
≤ −ρ|σ|2,

|gradv3(σ)| ≤ |σ|
(3.8.30)

at all σ ∈ R.
The constants aij from condition (3) of Assumption 3.6.5 for the system

(3.8.25) have the form

a13 = c14µk‖b1‖, a23 = c24µk‖b2‖, a31 = µ‖a1‖,
a32 = µ‖a2‖, a12 = a21 = a11 = a22 = a33 = 0.

(3.8.31)

Now apply Theorem 3.6.5 on µ-instability. Taking into account the con-
ditions (3.8.29) – (3.8.31), for the elements of the matrix S(µ) obtain the ex-
pression

S(µ) =





c13 0 −c14µk‖b1‖
0 c23 −c24µk‖b2‖

−µ‖a1‖ −µ‖a2‖ ρ



 . (3.8.32)

The matrix (3.8.32) is positive definite at µ < µ∗, if and only if

µ2k <
c13c23ρ

c23c14‖a1‖‖b1‖ + c13c24‖a2‖‖b2‖
, µ∗ ∈ (0, 1]. (3.8.33)

Thus, Theorem 3.6.5 implies that the equilibrium state (xT
1 , x

T
2 , σ) = 0 of

the system (3.8.25) is µ-unstable at all admissible nonlinearities of f , if the
inequality (3.8.33) holds.
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3.9 Comments and References

The dynamic analysis of nonlinear weakly connected systems is conducted
in this chapter on the basis of one variant of the comparison technique that
was substantiated in Chapter 1. As is known, the advantage of such approach
lies in the fact that it allows us to make a conclusion about the stability
(instability) of solutions of the initial system via the analysis of the properties
of solutions of a scalar equation and the properties of auxiliary functions used
for the transformation of the initial equations.

3.2. The statement of the problem on the stability of nonlinear weakly
connected systems in terms of two different measures for four types of con-
nection functions between the subsystems is discussed. The similarity and the
difference between the statement and the problem of stability under continu-
ous perturbations are described (see Gorshin [1], Duboshin [1, 2], Malkin [1],
Martynyuk [12, 13]).

3.3. Theorems 3.3.1 – 3.3.5 are new. To obtain them, some of the results
of the monographs of Lyapunov [1], Malkin [2], and Lakshmikantham, Leela,
and Martynyuk [1] were used.

3.4. Theorem 3.4.1 is new. It was obtained through the application of
the perturbed Lyapunov function and the scalar variant of the comparison
principle. Note that starting from the work of Corduneanu [2] the principle of
comparison with the scalar and vector Lyapunov functions has been applied
in many lines of investigation (see Matrosov [2], Rouche, Habets, and Laloy
[1], Rao [1], and others).

3.5. Theorems 3.5.1 and 3.5.2 are new. The idea of the dynamic analysis of
an individual subsystem in a complex system was proposed in the monograph
of Martynyuk [6]. In this section, the perturbed Lyapunov function and the
technique of comparison with the perturbed Lyapunov function are applied
(cf. Lakshmikantham and Leela [1]).

3.6. The results have been obtained on the basis of specific assumptions
on the dynamic properties of independent subsystems and the functions of
connection between them. The sufficient conditions for the respective types of
stability are formulated in terms of sign definiteness of special matrices. All
the results are new for the system (3.2.1). They were obtained by using some
results of the monograph of Michel and Miller [1]. The results of the analysis
of stability of large-scale systems that do not contain a small parameter can
be found in many journals.

3.7. The polystability of motion presents a new line of investigation in the
nonlinear dynamics of systems (see Aminov and Sirazetdinov [1], Martynyuk
[11, 15]). This section is based on the article of V.A. Martynyuk [1]. This
problem is related to the problem of stability with respect to a part of variables
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(see Rumiantsev [1], Vorotnikov [1], Corduneanu [3], Martynyuk [14], Peiffer
and Rouche [1], Hatvani [1]).

3.8. Some applications of the general results are described. Here the sys-
tems of automatic control are studied whose motion equations are given in
the monographs of Aizerman and Gantmacher [1], Lefschetz [1], and Lurie [1]
(see Chapter 2). The sufficient conditions for the µ-stability were obtained in
algebraic form (cf. Michel and Miller [1]). The results of this section have not
been published before.
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Chapter 4

Stability of Weakly Perturbed

Systems

4.1 Introductory Remarks

As far as in 19th century Delaunay and Hill noticed that averaging along
the solution of a degenerate system in celestial mechanics problems provided
results that corresponded to real phenomena. The contribution to Delaunay’s
theory made by Tissarand formed the conceptual background of the new meth-
ods of celestial mechanics developed by Poincaré.

The investigation of the stability of systems with a small parameter which
was started in Chapter 3 is continued here. In contrast to Chapter 3, here
the ideas of the method of averaging of the nonlinear mechanics are added to
the direct Lyapunov method. In some instances such an approach makes it
possible to study classes of systems with a small parameter under new wider
assumptions on the properties of solutions of generating equations.

In Section 4.2, the stable-like properties of solutions of a weakly perturbed
nonlinear system are investigated. Analogues of the main theorems of the
direct Lyapunov method for the given class of systems are cited.

In Section 4.3, the investigation of the same class of systems is continued,
but on a finite time interval. The estimate of the interval on which the solution
does not leave the ε-neighborhood of the stationary point is shown.

Section 4.4 contains the theorems on the stability of a weakly perturbed
system by Lyapunov and the stability on a finite time interval when a special
mean is calculated along solutions of a limiting system corresponding to the
generating system.

Section 4.5 contains the results of the analysis of stability of weakly con-
nected large-scale systems with nonasymptotically stable subsystems.

Section 4.6 contains the generalization of one of the theorems of Section
4.2 for the case of stability with respect to a part of variables.

Section 4.7 contains some applications of the general results to the analysis
of oscillatory systems.

Section 4.8 contains comments and a bibliography.

119



120 Weakly Connected Nonlinear Systems

4.2 Averaging and Stability

4.2.1 Problem and auxiliary results

Consider the system of differential equations

dx

dt
= f(t, x) + µg(t, x), x(t0) = x0, (4.2.1)

where x ∈ Rn, the vector functions f(t, x) and g(t, x) are defined and con-
tinuous in the domain Ω = {x ∈ Rn, t ∈ J : ‖x‖ < H, H = const > 0}.
It is assumed that at (t0, x0) ∈ intΩ a solution of the system exists and is
unique on the interval J = [t0,∞). In addition, the vector function f(t, x) in
the domain Ω satisfies the Lipschitz condition with respect to x

‖f(t, x′) − f(t, x′′)‖ ≤ L‖x′ − x′′‖, L = const > 0. (4.2.2)

It is assumed that the degenerate system

dx

dt
= f(t, x), x(t0) = x0 (4.2.3)

has the state of equilibrium x = 0 (f(t, 0) = 0) which is stable uniformly with
respect to t0 and for it the general solution x(t) = x(t, t0, x0), x(t0) = x0,
(t0, x0) ∈ intΩ is known.

For the study of the system (4.2.1) we will use the mean of the scalar
product of the gradient of the Lyapunov function v0(t, x) of the degenerate
system and the perturbation vector g(t, x), calculated along solutions of the
system (4.2.3),

Θ0(t0, x0) = lim
T→∞

1

T

t0+T
∫

t0

ϕ(t, x(t)) dt, (4.2.4)

where ϕ(t, x) =
(

∂v0/∂x
)T
g(t, x) exists in the domain Ω.

Now we will need the following auxiliary statements.

Lemma 4.2.1 Let the function u(t) be continuous and nonnegative on
the interval [α, β] and satisfy the inequality

u(t) ≤
t
∫

α

a(τ)u(τ) dτ + f(t),

where a(τ) is a function nonnegative and integrable on [α, β] and f(t) is a
function bounded on [α, β].
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Then the following inequality holds:

u(t) ≤ sup
α≤t≤β

|f(t)| exp

(

t
∫

α

a(τ) dτ

)

.

This estimate is a minor generalization of the Bellman–Gronwall theorem.

Lemma 4.2.2 Let the vector function f(t, x) satisfy the Lipschitz con-
dition with respect to x and let there exist a summable function M(t) and
a constant M0 such that in the domain Ω on any finite interval [t1, t2] the
following inequalities hold:

‖g(t, x)‖ ≤M(t),

t2
∫

t1

M(t) dt ≤M0(t2 − t1). (4.2.5)

Then for the norm of difference of the solutions x(t, t0, x0) of the system
(4.2.1) and x(t, t0, x0) of the system (4.2.3) at all t ∈ [t0, t0 + l] the following
inequality holds:

‖x(t) − x(t)‖ ≤ µM0l exp(Ll). (4.2.6)

The estimate (4.2.6) is obtained through direct application of the Bellman
lemma to the integral equation obtained from the equation (4.2.1).

Lemma 4.2.3 Assume that the vector functions f(t, x) and g(t, x) satisfy
the Lipschitz condition with respect to x with a constant L, and in addition,
g(t, 0) = 0. Then for the solutions x(t, t0, x0) and x(t, t0, x0) of the systems
(4.2.1) and (4.2.3) the following inequalities hold:

(a) ‖x(t, µ)‖ ≤ ‖x0‖ exp[L(1 + µ)(t− t0)] ≤ ‖x0‖Qx(t− t0),

(b) ‖x(t)‖ ≤ ‖x0‖ exp[L(t− t0)] = ‖x0‖Qx(t− t0),

(c) ‖x(t, µ) − x(t)‖ ≤ µ‖x0‖{exp[L(t− t0)] − 1}
× exp[L(µ+ 1)(t− t0)] ≤ µ‖x0‖Q(t− t0).

(4.2.7)

Here the obvious notation is introduced, and in the functions Qx(t − t0)
and Q(t− t0) it is assumed that µ = µ∗.

Proof From the equations (4.2.1) and (4.2.3), using the conditions of
Lemma 4.2.3, obtain

‖x(t, t0, x0)‖ ≤ ‖x0‖ +

t
∫

t0

L(µ+ 1)‖x(t, t0, x0)‖ dt,

‖x(t, t0, x0)‖ ≤ ‖x0‖ +

t
∫

t0

L‖x(t, t0, x0)‖ dt.
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Hence, using Lemma 4.2.1, obtain inequalities (a) and (b) from (4.2.7).

Inequality (c) from (4.2.7) follows from

‖x(t, µ) − x(t)‖ ≤
t
∫

t0

[‖f(t, x(t)) − f(t, x(t))‖ + µ‖g(t, x(t))

− g(t, x(t))‖] dt+ µ

t
∫

t0

‖g(t, x(t))‖ dt

≤
t
∫

t0

L(1 + µ)‖x(t) − x(t)‖dt+ µ

t
∫

t0

L‖x(t)‖dt

≤
t
∫

t0

L(1 + µ)‖x(t) − x(t)‖dt+ µ‖x0‖{exp[L(t− t0)] − 1}.

The lemma is proved.

Recall some notation. The distance from a point x to a set M will be
denoted as follows:

ρ(x,M) = inf(‖x− x′‖, x′ ∈M).

We will use continuously differentiable Lyapunov functions v(t, x) defined
in a domain Ω. Let v∗(x) denote a nonpositive function defined and continuous
in a domain D. The set of points x ∈ D for which v∗(x) = 0 will be denoted by
E(v∗ = 0). Similarly, introduce the notation of a nonnegative function w∗(x)
and a set E(w∗ = 0).

4.2.2 Conditions for stability

The conditions for the stability of solutions of the system (4.2.1) were
obtained in the case of “neutrality” of the shortened system (4.2.3) on the
basis of the mean (4.2.4).

The main requirement ensuring the stability of a trivial solution is the
negativeness of the mean outside an arbitrarily small neighborhood of the
point x = 0.

Here we will obtain the conditions for the µ-stability under weaker limita-
tions on the mean (4.2.4).

Definition 4.2.1 The mean Θ0(t0, x0) is less than zero in the set
E(v∗ = 0), if for any numbers η and ε, 0 < η < ε < H , there exist positive
numbers r(η, ε) and δ(η, ε) such that Θ0(t0, x0) < −δ(η, ε) at η ≤ ‖x0‖ ≤ ε,
ρ(x0, E(v∗ = 0)) < r(η, ε) for all t0 ∈ J .
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Theorem 4.2.1 Let the following conditions be satisfied :

(1) in the domain Ω there exists a positive definite decrescent function v(t, x)
such that

∂v

∂t
+

(

∂v

∂x

)T

f(t, x) ≤ v∗(x) ≤ 0;

(2) there exist summable functions M(t), F (t), N(t), constants M0, F0, and
N0, and a function χ(β) ∈ R such that the following inequalities hold :

ϕ(t, x) ≤ N(t),

t2
∫

t1

N(t) dt ≤ N0(t2 − t1) (4.2.8)

at x ∈ D \ E(v∗ = 0), t ∈ J and

‖g(t, x)| ≤M(t),

t2
∫

t1

M(t) dt ≤M0(t2 − t1),

|ϕ(t, x′) − ϕ(t, x′′)‖ ≤ χ(‖x′ − x′′‖)F (t),

t2
∫

t1

F (t) dt ≤ F0(t2 − t1)

(4.2.9)

at (t, x) ∈ Ω on any finite interval [t1, t2];

(3) uniformly with respect to (t0, x0) ∈ Ω there exists a mean Θ0(t0, x0);

(4) the mean Θ0(t0, x0) is less than zero in the set E(v∗ = 0).

Then the solution x = 0 of the system (4.2.3) is µ-stable.

Proof Let ε ∈ (0, H) and t0 ∈ R+ be specified. We will show the method
used for choosing η(ε) and µ0(ε), which do not depend on t0. Assume that the
conditions of Theorem 4.2.1 are satisfied. For the positive definite decrescent
function v(t, x) there exist functions a(r) and b(r) from the K class, such that
in the domain Ω the following condition is satisfied:

a(‖x‖) ≤ v(t, x) ≤ b(‖x‖). (4.2.10)

In view of (4.2.10) all points of the moving surface v(t, x) = a(ε/2) will satisfy
the condition

b−1(a(ε/2)) ≤ ‖x‖ ≤ ε/2 (4.2.11)

for all t ∈ R+. Assume that η(ε) = b−1(a(ε/2)).
Consider the solution x(t, µ) of the system (4.2.1) with the initial condi-

tions ‖x0‖ < η(ε). Assume that it left the domain ‖x‖ < η(ε) and at a point
of time t = t0 crossed the surface v(t, x) = a(ε/2) in a point x′0. For this point



124 Weakly Connected Nonlinear Systems

the inequality (4.2.11) holds and therefore, in view of condition (4) of the
theorem for ε/2 and η(ε), there exist numbers r(η, ε/2) > 0 and δ(η, ε/2) > 0
such that one of the following conditions is satisfied:

ρ(x′0, E(v∗ = 0)) ≥ r(η, ε/2), ϕ(t′0, x
′
0) < −δ(η, ε/2).

Consider some properties of the solution x(t, µ):

(a) Let the following conditions be satisfied at a point of time τ :

v(τ, x(τ)) = a(ε/2), ρ(x(τ), E(v∗ = 0)) ≥ r(η, ε/2).

Study the behavior of the function v(t, x) along the solution x(t, µ) of the
system (4.2.1). Integrating the expression of the full derivative of the function
v(t, x), taking into account the system (4.2.1), for t > τ obtain

v(t, x(t)) ≤ v(τ, x(τ)) +

t
∫

τ

v∗(x(t)) dt + µ

t
∫

τ

ϕ(t, x(t)) dt. (4.2.12)

In this situation there exists a positive number γ = inf
x∈P

|v∗(x)|, where

P = {x : ρ(x,E(v∗ = 0)) ≥ r/2, η ≤ ‖x‖ ≤ ε/2}.

Choosing µ < µ′
0 = γ/2N0 and using the inequalities (4.2.8) for all t > τ , for

which the conditions ‖x(τ)‖ ≥ η and ρ(x(t), E(v∗ = 0)) ≥ r/2 are satisfied,
from the inequality (4.2.12) obtain

v(t, x(t)) ≤ a(ε/2)− γ

2
(t− τ). (4.2.13)

It implies that at µ < µ′
0 the function v(t, x(t)) is not increscent, which means

that the solution x(t, τ, x(τ)) in view of the inequality (4.2.11) will not leave
the domain ‖x‖ < ε/2, at least until the inequality ρ(x(t), E(v∗ = 0)) ≥ r/2
is violated.

(b) Let the following conditions be satisfied at a point τ :

v(τ, x(τ)) = a(ε/2), ρ(x(τ), E(v∗ = 0)) < r(η, ε/2).

In this event, as a result of condition (4) of Theorem 4.2.1, the following
inequality holds:

Θ0(τ, x(τ)) < δ(η, ε/2). (4.2.14)

Therefore, we will estimate the change of the function v(t, x) along the solution
x(t, µ). The first integral in the inequality (4.2.12) will be neglected, and the
second one will be represented in the form

t
∫

τ

ϕ(t, x(t)) dt =

t
∫

τ

[ϕ(t, x(t)) − ϕ(t, x(t))] dt +

t
∫

τ

ϕ(t, x(t)) dt. (4.2.15)
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Here x(t) is a solution of the system (4.2.3).
Condition (3) of the theorem implies that there exists a function κ(t) such

that lim
t→∞

κ(t) = 0, and the last integral in (4.2.15) can be represented in the

form
t
∫

τ

ϕ(t, x(t)) dt = (t− τ) [ϕ(τ, x(τ)) + κ(t)]. (4.2.16)

Choose the time interval l so large that for t > τ + l the condition

|κ(t)| < δ(η, ε/2)/4 (4.2.17)

will be satisfied, and construct estimates on the interval [τ, τ + 2l]. Choosing

µ1 = κ
−1(δ/4F0)/2M0l exp(2Ll)

and using Lemma 4.2.2 for µ < µ1 and t ∈ [τ, τ + 2l], obtain

‖x(t) − x(t)‖ < χ−1(δ/4F0). (4.2.18)

From the inequality (4.2.9) and the estimate (4.2.18) it follows that

t
∫

τ

|ϕ(t, x(t)) − ϕ(t, x(t))| dt < δ

4
(t− τ) (4.2.19)

for all t ∈ [τ, τ + 2l] and µ < µ1. Choose µ2 so that at µ < µ2 on the interval
[τ, τ + 2l] the solution x(t, µ) would not leave the domain ‖x‖ < ε. For this
purpose, taking into account that ‖x(t, µ)‖ ≤ ε/2, it is sufficient to demand
that ‖x(t, µ) − x(t, µ)‖ < ε/2. Then from the inequality (4.2.6) obtain

µ2 =
ε

4M0l exp(2lL)
.

Choose µ′′
0 = min(µ1, µ2), then at µ < µ′′

0 for t ∈ [τ, τ + 2l] the condition
‖x(t, µ)‖ < ε and the estimate (4.2.19) will hold. Substituting (4.2.16) and
(4.2.19) into (4.2.11) and using the inequalities (4.2.14) and (4.2.17), for t ∈
[τ + l, τ + 2l] and µ < µ′′

0 obtain

t
∫

τ

ϕ(t, x(t)) dt ≤ − δ
4
(t− τ). (4.2.20)

As is obvious from (4.2.20), the last integral in the expression (4.2.12), at
least starting from the point t = τ + l, becomes negative, which means that
the solution x(t, µ), having left v(t, x) = a(ε/2), due to the chosen µ < µ′′

0 ,
will remain at t ∈ [τ, τ + 2l] in the domain ‖x‖ < ε and at some point of time
t∗ ∈ [τ, τ + 2l] return to the domain bounded by the surface v(t, x) = a(ε/2).
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Choose µ0 = min(µ′
0, µ

′′
0). At a point of time t′0 for the solution x(t, µ) of

the system (4.2.1) one of the above conditions (a) or (b) is satisfied. Choosing
a time interval depending on what case holds, we can show that the solution
of the system (4.2.1) in the finite point of the interval lies within the domain
bounded by the surface v(t, x) = a(ε/2). Continuing this solution until the
intersection with the above-mentioned surface, we obtain the initial point of
the next interval, in which case (a) or case (b) will hold again. Since in both
cases the estimates are uniform with respect to τ and x(τ), on all the following
intervals either (4.2.13) or (4.2.20) will hold, which means that x(t, µ) for all
t ≥ t0 will remain in the domain ‖x‖ < ε. The numbers η, µ0 were chosen
without regard to t0.

Theorem 4.2.1 is proved.

Example 4.2.1 Study the equilibrium state x = 0 of the system of equations

dx1

dt
= −x1 + x2 + µ(x3

1 − ax3
2),

dx2

dt
= µ[a(x1 + x2) cos t+ (x3

1 − ax3
2)], a = const > 0.

(4.2.21)

The derivative of the function v(x) = x2
2 + (x1 − x2)

2 in view of the
shortened system

dx1

dt
= −x1 + x2,

dx2

dt
= 0 (4.2.22)

has the form
dv

dt
(x) = −2(x1 − x2)

2 = v∗(x) ≤ 0.

Having calculated the mean (4.2.4) along the solutions x2 = x20, x1 =
x20 + (x10 − x20) exp[−(t− t0)] of the system (4.2.22), obtain

Θ0(x0) = 2x4
20(1 − a). (4.2.23)

It is clear that the mean Θ0(x0) is less than zero in the set E(v∗ = 0) =
{x : x1 = x2} at a > 1.

Thus, at a > 1 the solution x = 0 of the system (4.2.21) is µ-stable. Note
that the mean (4.2.23) vanishes over the set x20 = 0 in the neighborhood of
the point x = 0, and the derivative of the function v(x) = x2

2 + (x1 − x2)
2 in

view of the system (4.2.21) is an alternating function in this case.

4.2.3 Conditions of instability

The instability of solutions of the system (4.2.1) can be studied on the
basis of Gorshin’s theorem [1] on the instability under continuous perturba-
tions, in which the instability of the equilibrium state of a shortened system is
required. In the monograph by Khapaev [3] the cases were investigated when
a shortened system is “neutral”. An essential condition was the condition for
the positiveness of the mean (4.2.3) in the domain v > 0.

In this subsection the conditions for the instability of the Chetaev theorem
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type were obtained under wider assumptions on the properties of solutions of
the generating system.

Recall that a domain v > 0 is a neighborhood of the point x = 0 (x ∈ D),
where the function v(t, x) takes on positive values. It is assumed that this
domain is bounded by the surface v = 0 and exists for all t ∈ R+ at arbitrarily
small x.

The mean Θ0(t0, x0) is above zero in the sets Et(Θ0 = 0) of the domain
v > 0, if for any positive λ, however small it may be, there exist positive
numbers δ(λ) and χ(λ) such that at t0 ∈ R+ and x0 ∈ D satisfying the
conditions v(t0, x0) > λ, v̇(t0, x0) ≤ χ(λ) the inequality Θ0(t0, x0) > δ(λ)
holds.

Let {vτ > 0} denote the intersection between the domain v > 0 and the
plane t = τ .

Theorem 4.2.2 Let there exist a function v(t, x) bounded in the domain
v > 0, and, in addition,

(1) in the domain v > 0 the inequality v̇(t, x) ≥ 0 holds ;

(2) there exist summable functions M(t), N(t), F (t), constants M0, N0, F0,
and a function χ(β) ∈ K, such that

‖g(t, x)‖ ≤M(t),

t2
∫

t1

M(t) dt ≤M0(t2 − t1),

|ϕ(t, x′) − ϕ(t, x′′)‖ ≤ F (t)χ(‖x′ − x′′‖),
t2
∫

t1

F (t) dt ≤ F0(t2 − t1)

(4.2.24)

in the domain v > 0 and

ϕ(t, x) ≥ −N(t),

t2
∫

t1

N(t) dt ≤ N0(t2 − t1) (4.2.25)

at x ∈ {v > 0} \ (Et(v̇ = 0) ∩ {v > 0}), t ∈ J on any finite interval
[t1, t2];

(3) uniformly with respect to t0, x0 in the domain v > 0 there exists a mean
Θ0(t0, x0);

(4) the mean Θ0(t0, x0) is above zero in the sets Et(v̇ = 0) in the domain
v > 0.

Then the solution x = 0 of the system (4.2.1) is µ-unstable.
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Proof Specify ε ∈ (0, H) and t0 ∈ R+. Prove that however small x0 may
be chosen, one can always find an arbitrarily small number µ0 > 0 such that
for the solution x(t, µ) of the system (4.2.1) at µ < µ0 at some point of time
t∗ > t0 the condition ‖x(t∗, µ)‖ = ε will be satisfied.

For a function v(t, x) bounded in the domain v > 0 one can find a constant
ω such that at ‖x‖ < ε the following inequality would hold:

v(t, x) < ω. (4.2.26)

We will choose the value x0 as small as we please, provided that the point x0

belongs to the domain v > 0. Then there will exist such a positive number α,
that the following condition will be satisfied:

v(t0, x0) > α. (4.2.27)

Under hypoghesis (4) of Theorem 4.2.2, for α > 0 there exist positive numbers
δ(α) and χ(α) such that one of the following inequalities holds:

Θ0(t0, x0) > δ(α), v̇(t0, x0) > ξ(α).

Consider some properties of the solution x(t, µ) of the system (4.2.1).

(a) Let the following conditions be satisfied at a point τ :

v(τ, x(τ)) > α, v̇(τ, x(τ)) > ξ(α).

Consider the behavior of the function v(t, x) along the solution x(t, µ).
Integrating the expression of full derivative of the function v(t, x), along solu-
tions of the system (4.2.1) obtain

v(t, x(t)) = v(τ, x(τ)) +

t
∫

τ

v(t, x(t)) dt + µ

t
∫

τ

ϕ(t, x(t)) dt. (4.2.28)

Using the inequalities (4.2.25), at µ < µ′
0 = ξ(α)/2N0 from the expression

(4.2.28) find the estimate

v(t, x(t)) > α+
ξ

2
(t− τ) (4.2.29)

for those t at which for the solution x(t, µ) the condition v̇(t, x(t)) > ξ(α)
is satisfied, that is, the inequality v(t, x(t)) > α for those points of time will
not be violated. For the solution x(t, µ) the following conditions cannot be
satisfied:

v(t, x(t)) > ξ(α), ‖x(t, µ)‖ < ε (4.2.30)

within the time interval T = 2(Ω−α)/ξ(α). Assume that those conditions are
satisfied. Then from the inequality (4.2.29) for the point of time τ+T we obtain
v(τ + T, x(τ + T )) > Ω, which contradicts the condition for the boundedness
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of the function v(t, x). The contradiction implies that there exists a point of
time from the interval (τ, τ + T ), at which one of the inequalities (4.2.30)
is violated. The violation of the second inequality from (4.2.30) means the
instability. Assume that the first inequality of (4.2.30) is violated.

(b) Let the conditions v(τ, x(τ)) > α, v̇(τ, x(τ)) ≤ χ(α) be satisfied at a
point of time τ . In this case, in view of condition (4) of Theorem 4.2.2 the
following inequality will hold:

Θ0(τ, x(τ)) > δ(α). (4.2.31)

Now we will estimate the change of the function v(t, x) along the solution
x(t, µ), using the mean Θ0(τ, x(τ)).

In the expression (4.2.28) neglect the first integral and represent the second
one in the form

t
∫

τ

ϕ(t, x(t)) dt =

t
∫

τ

[ϕ(t, x(t)) − ϕ(t, x(t))] dt +

t
∫

τ

ϕ(t, x(t)) dt, (4.2.32)

where x(t) = x(t, τ, x(τ)) is a solution of the system (4.2.3).

Represent the last integral from (4.2.32) in the form

t
∫

τ

ϕ(t, x(t)) dt = (t− τ)[Θ0(τ, x(τ)) + κ(t)]. (4.2.33)

In view of condition (3) of the theorem, the function κ(t) is such that
lim

t→∞
κ(t) = 0. Estimate the summands in the relation (4.2.32) on the in-

terval [τ, τ + 2l + T ], where l will be chosen so large that for t > τ + l the
following condition would be satisfied:

|κ(t)| < δ(α)/4. (4.2.34)

According to Lemma 4.2.2 for t ∈ [τ, τ + 2l + T ] find

‖x(t) − x(t)‖ ≤ µM0(2l + T ) exp[(2l + T )L]. (4.2.35)

Choose

µ1 =
χ−1(δ(α)/4F0)

M0(2l+ T ) exp[(2l + T )L]
.

Using the inequality (4.2.35) for µ < µ1 and t ∈ [τ, τ + (2l+ T )], obtain

t
∫

τ

[ϕ(t, x(t)) − ϕ(t, x(t))] dt <
δ(α)

4
(t− τ). (4.2.36)
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Using (4.2.33), (4.2.34), and (4.2.36), for the integral (4.2.32) at a point of
time t ∈ [τ + 2l, τ + 2l+ T ] obtain the inequality

t
∫

τ

ϕ(t, x(t)) dt > δl.

Since all the requirements of Theorem 4.2.2 are satisfied in the domain
v > 0, it is necessary to ensure that the solution x(t, τ, x(τ)) on the interval
[τ, τ + 2l + T ] will not cross the surface v = 0 and will not leave the domain
v > 0. For this purpose, impose another limitation on µ. Choose µ2 so that
at t ∈ [τ, τ + 2l+ T ] the following condition would be satisfied:

µ2

t
∫

τ

ϕ(t, x(t))dt ≤ α

2
.

Using the expression (4.2.32) and the inequality (4.2.36), this condition can
be written as follows:

µ2

[

t
∫

τ

ϕ(t, x(t)) dt+
δ(α)

4
(t− τ)

]

≤ α

2

at all t ∈ [τ, τ + 2l+ T ], τ ∈ J . Then at µ < µ′
0 = min(µ1, µ2) on the interval

[τ, τ + 2l + T ] the solution x(t, τ, x(τ)) will not leave the domain v > 0, and
at the point t ∈ [τ + 2l, τ + 2l+ T ] the following condition will be satisfied:

v(t, x(t)) > α+ µδl > α. (4.2.37)

Choose µ0 = min(µ′
0, µ

′′
0 ) and consider the sequence of points of time

ti = t0 + i(2l+T ), i = 1, 2, . . . . At the initial point of time t0 condition (a) or
(b) will be satisfied. If condition (1) is satisfied, then according to the proved
property at µ < µ0 on the solution of the system (4.2.1) x(t, t0, x0) at some
point of time t′0 from the interval (t0, t0 + T ) the conditions v(t′0, x(t

′
0)) > α,

Θ0(t
′
0, x(t

′
0)) > δ(α) will be satisfied. Then, according to property (b), for

the point of time t1 = t0 + 2l + T the estimate (4.2.37) will hold. If at the
initial point of time condition (b) is satisfied, then at the point t1 we will also
obtain the estimate (4.2.37). On all further intervals [ti, ti+1] we will obtain
similar cases, that is, on each interval the function v(t, x(t)) increases at least
by µδl > 0 (µ ∈ (0, µ0)). Let k be the smallest integer satisfying the condition
k ≥ (ω − α)/µδl.

Assume that at t ∈ [t0, tk], where tk = t0 + k(2l+ T ), the solution x(t, µ)
lies in the domain ‖x‖ < ε. Taking into account the above, for a point of time
tk obtain v(tk, x(tk)) > Ω, which contradicts the condition for the bound-
edness of the function v(t, x). The obtained contradiction implies that there
exists a point of time t∗ from the interval (t0, tk), at which the condition
‖x(t∗, t0, x0)‖ = ε is satisfied.

The theorem is proved.
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4.2.4 Conditions for asymptotic stability

Assume that for the vector functions f(t, x) and g(t, x) from the system
(4.2.1) the conditions of Lemma 4.2.3 are satisfied, that is, the functions f(t, x)
and g(t, x) in the domain Ω satisfy the Lipshitz condition with respect to x
with a constant L and f(t, 0) = g(t, 0) = 0.

Denote

κ(t, t0, x0) =
1

t− t0

t
∫

t0

ϕ(t, x(t, t0, x0)) dt− Θ0(t0, x0).

Theorem 4.2.3 For the system (4.2.1) let the following conditions be
satisfied :

(1) there exists a positive definite decrescent function v(t, x) such that

v̇(t, x)|(4.2.3) ≤ v∗(x) ≤ 0;

(2) the function ϕ(t, x) is differentiable with respect to x and there exist
constants M > 0 and d ≥ 1 such that the following inequalities hold :

|ϕ(t, x)| ≤M‖x‖d, ‖∇ϕ‖ ≤M‖x‖d−1;

(3) uniformly with respect to (t0, x0) there exists a mean Θ0(t0, x0) and
the following condition is satisfied :

max[ρ(x0, E(v∗ = 0)), (−Θ0(t0, x0))] > c1(‖x0‖), c1(r) ∈ K;

(4) there exists a constant k > 0 such that for x0 ∈ Ω the following condition
is satisfied :

ρ(x0, E(v∗ = 0)) < c1(‖x0‖),
and for t0 ∈ J the following inequality holds:

kΘ0(t0, x0) ≤ −‖x0‖d;

(5) there exist a constant µ1 > 0 and a function c2(r) ∈ K such that at x
satisfying the condition ρ(x,E(v∗ = 0)) > c1(‖x‖), and µ < µ1, t ∈ J

v̇(t, x)|(4.2.3) + µϕ(t, x) < −c2(‖x‖);

(6) there exists a constant l > 0 such that at t − t0 > l, t0 ∈ R+,
ρ(x0, E(v∗ = 0)) ≤ c1(‖x0‖) the function k(t, t0, x0) satisfies the es-
timate

|κ(t, t0, x0)| ≤ |Θ0(t0, x0)|/4.
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Then the solution x = 0 of the system (4.2.1) is asymptotically µ-stable.

Proof Let ε ∈ (0, H), t0 ∈ R+, and α ∈ (0, ε) be specified. Show that
there exist numbers η(ε) > 0, µ0(ε) > 0, T (µ, α, ε) > 0, not depending on
t0, such that for the perturbed motion x(t, µ) of the system (4.2.1) under the
condition ‖x0‖ < η the following inequalities hold: ‖x(t, µ)‖ < ε for all t ≥ t0
and ‖x(t, µ)‖ < α for t > t0 + T (µ, α, ε).

For the function v(t, x) indicated in condition (1) of Theorem 4.2.3 the
following inequality holds:

a(‖x‖) ≤ v(t, x) ≤ b(‖x‖), (4.2.38)

where a(r) ∈ K and b(r) ∈ K.
Choose η(ε) = b−1(a(ε/2)). In view of the inequality (4.2.38) for all points

of the moving surface v(t, x) = a(ε/2) the condition

η(ε) ≤ ‖x‖ ≤ ε/2

is satisfied, and all points of the surface v(t, x) = a(α/2) satisfy the inequality

b−1(a(α/2)) ≤ ‖x‖ ≤ α/2

for all t ∈ R+.
Consider some properties of the perturbed motion x(t, µ) at ‖x0‖ < η(ε)

and t0 ∈ R+.

(a) Let at a point of time τ the following conditions be satisfied:

‖x(τ)‖ ≥ b−1(a(α/2)), v(τ, x(τ)) < a(ε/2),

ρ(x(τ), E(v∗ = 0)) > c1(‖x(τ)‖).

Estimate the change of the function v(t, x) along the perturbed motion x(t) =
x(t, τ, x(τ)). In this case, in view of condition (5) of Theorem 4.2.3, as long as
the condition

x(t) ∈ U = {x : b−1(a(α/2)) ≤ ‖x‖ ≤ ε/2, ρ(x(t), E(v∗ = 0)) > c1(‖x(t)‖)}

is satisfied, the full derivative of the function v(t, x) in view of the system
(4.2.1) at µ < µ1 satisfies the inequality

v̇(t, x)|(4.2.1) ≤ −c2(b−1(a(α/2))). (4.2.39)

The function v(t, x(t)) is not increscent, which means that the integral curve
x(t, τ, x(τ)) will not cross the surface

v(t, x) = a(ε/2)

and will not leave the domain ‖x‖ ≤ ε/2, at least until the condition

ρ(x(t), E(v∗ = 0)) > c1(‖x(t)‖).
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is violated.
The perturbed motion x(t) cannot permanently stay in the set U within

a time interval equal to

l1 = b(ε/2)c2(b
−1(a(α/2))).

Indeed, assuming that within a time interval equal to l1, x(t) ∈ U , from the
inequality (4.2.39) for t = τ + l1 obtain

v(t, x(t)) ≤ v(τ, x(τ)) − c2(b
−1(a(α/2)))l < 0.

This contradicts the condition of positive definiteness of the function
v(t, x). The contradiction implies the existence of a point of time from the
interval (τ, τ + l1), at which one of the following conditions will be violated:

b−1(a(α/2)) ≤ ‖x‖, ρ(x,E(v∗ = 0)) > c1(‖x‖). (4.2.40)

(b) Let the following conditions be satisfied at a point τ :

‖x(τ)‖ ≥ b−1(a(α/2)), v(τ, x(τ)) < a(ε/2),

ρ(x(τ), E(v∗ = 0)) ≤ c1(‖x(τ)‖).

By condition (4) of Theorem 4.2.3, in this event

Θ0(τ, x(τ)) < −c1(‖x(τ)‖) ≤ −c1(b−1(a(α/2))). (4.2.41)

Estimate the change of the function v(t, x) along the perturbed motion x(t, µ).
On the basis of Lemma 4.2.3 the inequalities (4.2.7) hold for the solutions
x(t, µ) and x(t) of systems (4.2.1) and (4.2.3). Using condition (2) of the
theorem and the inequalities (4.2.7), obtain

|ϕ(t, x(t)) − ϕ(t, x(t))| ≤ max ‖∇φ‖‖x(t) − x(t)‖
≤M‖x(τ)‖d−1(Qx(t− τ) +Qx(t− τ))d−1µ‖x(τ)‖Q(t− τ)

= µ‖x(τ)‖dB(t− τ).

Using condition (4) of the theorem, obtain

|ϕ(t, x(t)) − ϕ(t, x(t))| ≤ µkB(t− τ)|ϕ(τ, x(τ))|. (4.2.42)

Determine µ2 from the inequalities

µ2kB(2l + l1) ≤
1

4
, µ2Q(2l+ l1) < 1. (4.2.43)

The second inequality of (4.2.43) means that the perturbed motion x(t, µ) will
not leave the domain ‖x‖ < ε at µ < µ2 at least on the interval (2l+ l1).
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Using the inequality (4.2.42) and the existence of the mean Θ0(τ, x(τ)),
obtain an estimate for v(t, x, (τ)):

v(t, x(t)) ≤ v(τ, x(τ)) +

t
∫

τ

µkB(t− τ)|v(τ, x(τ))| dt

+ µ(t− τ)[Θ0(τ, x(τ)) + κ(t, τ, x(τ))].

Taking into account the existence of the interval l [condition (6) of Theorem
4.2.3] and the inequalities (4.2.5) and (4.2.7), at µ < µ2, t ∈ [τ+2l, τ+2l+ l1]
obtain

v(t, x(t)) ≤ v(τ, x(τ)) − µlc1(b
−1(a(α/2))). (4.2.44)

The perturbed motion x(t, µ) may leave the domain bounded by the surface
v(t, x) = a(ε/2), but due to the choice µ < µ2 it will remain in the domain
‖x‖ < ε within a time interval 2l + l1 and, as it is clear from the inequality
(4.2.43), at some point of time from the interval (τ, τ + 2l) it will return to
the domain v(t, x) < a(ε/2).

Properties (a) and (b) imply that if µ < µ0 = min(µ1, µ2), ‖x0‖ < η
and t0 ∈ R+, then the perturbed motion x(t, µ) will not leave the domain
‖x‖ < ε at all t ≥ t0. The number η(ε) was chosen without regard to t0. Prove
that at some point of time the perturbed motion will get into the domain
‖x‖ < b−1(a(α/2)).

Consider the sequence of points of time ti = t0 + i(2l + l1), i = 1, 2, . . . .
On each interval [ti, ti+1] the function v(t, x(t)) in view of properties (a)
and (b) decreases along the perturbed motion at least by µlc1(b

−1(a(α/2))),
µ ∈ (0, µ0). Indeed, if condition (a) holds at the initial point of the interval,
then on the time interval l1 there exists a point of time when one of the in-
equalities (4.2.40) is violated. Assume that the second inequality is violated.
Then, taking that point of time as the initial one, using property (b), obtain
the estimate (4.2.44) in the finite point of the interval. If property (b) holds in
the initial point of the interval, we immediately obtain the estimate (4.2.44)
for the finite point of the interval.

Let n be the smallest integer satisfying the condition

n ≥ b(ε/2)/µlc1(b
−1(a(α/2))).

Assume that on the interval [t0, tn], tn = t0 +n(2l+ l1), the perturbed motion
is in the domain ‖x‖ ≥ b−1(a(α/2)). Then at a point of time tn

v(tn, x(tn)) ≤ v(t0, x0) − nµlc1(b
−1(a(α/2))) < 0

holds, which contradicts the condition of the positive definiteness of the
function v(t, x). The contradiction implies the existence of a point of time
t1 ∈ (t0, t0 + n(2l + l1)) at which the condition ‖x(t1, µ)‖ < b−1(a(α/2)) is
satisfied.
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In the same way as it was proved that the perturbed motion x(t, µ) re-
mained in the domain ‖x‖ < ε at ‖x0‖ < η(ε) and t ≥ t0, it is possible to show
that the perturbed motion x(t, t1.x(t1)) will remain in the domain ‖x‖ < α
at all t ≥ t1 and µ < µ0.

This proves that at all t > t0 + T , where

T = n[2l + b(ε/2)/c2(b
−1(a(α/2)))],

the condition ‖x(t, t0, x0)‖ < α is satisfied. The number T was chosen without
regard to t0.

Theorem 4.2.3 is proved.

4.3 Stability on a Finite Time Interval

Let the trivial solution of the system (4.2.3) be stable, which is determined
by the existence of a positive definite continuously differentiable Lyapunov
function v0(t, x), whose derivative in view of the equations (4.2.3) is identically
zero, that is, this is a critical case.

In this section the systems (4.2.1) are considered, whose mean (4.2.4) is
alternating in any arbitrarily small neighborhood of zero.

Introduce the notation

E+
Θ(t0) = {(t0, x0) ∈ Ω: Θ0(t0, x0) > 0},

E−
Θ (t0) = {(t0, x0) ∈ Ω: Θ0(t0, x0) < 0},

Eδ
Θ(t0) = {(t0, x0) ∈ Ω: Θ0(t0, x0) < −δ}

(4.3.1)

and show the conditions for the µ-stability on a finite interval.
Consider the following result.

Theorem 4.3.1 Let the following conditions be satisfied :

(1) there exists a positive definite Lyapunov function v0(t, x) of the system
(4.2.3), decrescent in the domain Ω;

(2) the full derivative of the function v0(t, x) along the paths of the system
(4.2.3) is identically zero in the domain Ω;

(3) for any ε, ρ > 0, ρ < ε, there exists ϕ0 > 0, ϕ0 = const, such that
|ϕ(t, x)| < ϕ0 at all t ∈ J , as soon as ρ < ‖x‖ < ε.

Then one can show σ(ε), η(ε), T = σ(ϕ0µ)−1 such that all solutions that
satisfy the inequality ‖x0‖ < η at the initial point of time, for all t ∈ [t0, t0+T ]
do not leave the domain ‖x‖ < ε.
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The next theorem enables us to improve the estimate of the time interval
on which ‖x‖ < ε, if it is known that for a specified t0 the value x0 belongs
to E−

Θ (t0), where E−
Θ (t0) is determined by the expression (4.3.1).

Theorem 4.3.2 Let the following conditions be satisfied :

(1) there exists a positive definite Lyapunov function v0(t, x) of the system
(4.2.3), decrescent in the domain Ω;

(2) the full derivative of the function v0(t, x) along the paths of the system
(4.2.3) is identically zero in the domain Ω;

(3) uniformly with respect to (t0, x0) ∈ Ω there exists a mean Θ0(t0, x0)
alternating in the domain Ω and at a specified t0 and all γ > 0, η > 0,
γ < η < H, the following condition is satisfied:

(Bη \Bγ) ∩E−
Θ (t0) 6= ∅,

Bη = {x : ‖x‖ < η}, Bγ = {x : ‖x‖ < γ};

(4) there exist a summable function F (t), constants F0, ϕ0(ε), ϕ0(ε), and
M0, and a nondecrescent function χ(α), lim

α→0
χ(α) = 0 such that in the

domain Ω

|ϕ(t, x′) − ϕ(t, x′′)| < χ(‖x′ − x′′‖)F (t),

t2
∫

t1

F (t) dt ≤ F0(t2 − t1) at all τ < t1 < t2 <∞,

‖g(t, x)‖ < M0;

at all ρ > 0, ε > 0, ρ < ε < ε, |ϕ(t, x)| < ϕ0(ε) at all t ∈ J ,
ρ < ‖x‖ < ε,

|ϕ(t, x)| < ϕ0(ε) at all ε < ‖x‖ < ε.

Then for any ε > 0 and ε < ε one can find η, wε, wε, µ0, l, T = 2l +
lδ[ϕ0(ε)]

−1 + (wε −wε)[µϕ0(ε)]
−1 such that for all t ∈ [t0, t0 + T ] ‖x(t)‖ < ε

holds, if only this path begins in the domain where the mean Θ0(t0, x0) < 0
and ‖x0‖ < η.

Proof Let ε > 0 (ε < H) be specified. Specify ε > 0, ε = const, so that
ε < ε. According to condition (1), there exists a positive definite function
w(x) such that

v0(t, x) ≥ w(x) at all (t, x) ∈ Ω. (4.3.2)

Introduce wε so that the surface Sε = {x ∈ Ω: w(x) = wε} would lie
within the ε-neighborhood of the origin of coordinates. The moving surface
Sv(t) = {x ∈ Ω: v0(t, x) = wε} in view of (4.3.2) lies inside the surface Sε,
hence Sv(t) ⊂ Bε.
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Since v0(t, x) is decrescent in the domain Ω, one can find η > 0 such that
Bη would lie inside the moving surface Sv(t). Since Θ0(t0, x0) < 0, then there
exists δ > 0: Θ0(t0, x0) < −δ. According to condition (3) of the theorem,
the values δ and γ > 0 may be chosen so that x0 ∈ (Bη \ Bγ) ∩ Eδ

Θ(t0).
Denote c = v0(t0, x0). Obviously, c < wε. Let the point (t0, x0) lie on the
moving surface S′

v(t) = {x ∈ Ω: v0(t, x) = c}. This surface is located inside
the surface Sv(t).

Consider the behavior of the function v0(t, x) along the solution x =
x(t; t0, x0) of the system (4.2.1). It is easy to show that one can find suffi-
ciently large l and small µ0 such that at µ < µ0 on the interval t ∈ [t0, t0 +2l]
the solution x(t) belongs to Bε and at t ∈ [t0 + l, t0 + 2l] the estimate
v0(t, x) < c− (t− t0)µδ/2 holds.

Assuming t1 = t0 + 2l, x1 = x(t), obtain v0(t1, x1) < c − µlδ. Here the
point x1 lies inside the surface S′

v(t). Denote c1 = v0(t1, x1) and construct a
surface S′′

v (t) = {x ∈ Ω: v0(t, x) = c1}.
The moving surface S′′

v (t) lies inside a fixed surface Sε. Consider the be-
havior of v0(t, x) along a portion of the path of the system (4.2.1), beginning
in the point (t1, x1). In view of the system (4.2.1) dv0/dt = µϕ(t, x), hence,
integrating from the point t1, obtain

v0(t1 + T, x) = c1 + µ

t1+T
∫

t1

ϕ(t, x) dt < c− µlδ + µϕ0T < wε − µlδ + µϕ0T.

For the path x = x(t) to remain within Bε on the time interval t ∈ [t1, t1 +
T1], it suffices that the equality wε−µlδ+µϕ0(ε)T1 = wε should hold, whence
T1 = lδ[ϕ0(ε)]

−1. Here, when estimating the function ϕ(t, x)¡ it is taken into
account that x belongs to Bε.

Introduce the quantity wε so that the surface Sε = {x ∈ Ω: w(x) = wε}
should lie inside the ε-neighborhood of the origin of coordinates, Sε ⊂ Bε.
The path x = x(t, µ) may only leave the ε-neighborhood of the origin of
coordinates after crossing the moving surface S′′

v (t) = {x ∈ Ω: v0(t, x) = wε},
which lies inside the surface Sε. Therefore, for the path x = x(t, µ) to remain
within the bounds of Bε on the interval t ∈ [t1+T1, t1+T1+T2], it suffices that
the equality wε +µϕ0T2 = wε should hold, whence T2 = (wε −wε)[µϕ0(ε)]

−1.
Here the function ϕ(t, x) is estimated at ρ < ‖x‖ < ε.

Thus, on the whole interval [t0, t0 + T ], where

T = t1 + T1 + T2 = 2l +
lδ

ϕ0(ε)
+
wε − wε

µϕ0(ε)
,

the solution x(t, µ) with the initial value x0 ∈ Eδ
Θ(t0) ∩Bη will not leave the

ε-neighborhood of the stationary point.
The theorem is proved.

The next theorem allows us to essentially improve the estimate from The-
orem 4.3.2 due to fuller information on the change of weak perturbations in
the neighborhood of the equilibrium.
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Theorem 4.3.3 Let the following conditions be satisfied :

(1) there exists a positive definite Lyapunov function v0(t, x) of the system
(4.2.3), decrescent in the domain Ω;

(2) the full derivative of the function v0(t, x) along the paths of the system
(4.2.3) is identically zero in the domain Ω;

(3) for any ε, ρ such that 0 < ρ < ε < H, in the domain ρ < ‖x‖ < ε
the function ϕ(t, x) is defined and on the interval (ρ, ε) there exists a
nondecrescent function ψ(ζ) such that |ϕ(t, x)| ≤ ψ(ζ) at ρ < ‖x‖ < ζ.

Then on the interval (ρ, ε) there exists a nondecrescent continuous function
κ(ζ) and for any ε0 ∈ (ρ, ε) one can find η(ε0) such that all solutions satisfying
the inequality ‖x0‖ < η at the initial point of time do not leave the domain
‖x‖ < ε for all t ∈ [t0, t0 + T ], where

T =
1

µ

ε
∫

ε0

dκ(ζ)

ψ(ζ)
. (4.3.3)

Proof Let ε > 0 (ε < H) be specified. Specify ε0 > 0, ε0 = const, so
that ρ < ε0 < ε. Divide the interval [ε0, ε] by the points εi, ε0 < ε1 < . . . <
εk−1 < εk = ε, and introduce the system of nested neighborhoods {Bi},
Bi = {x : ‖x‖ < εi}.

According to condition (1), there exists a positive definite function w(x)
such that

v0(t, x) ≥ w(x) at all (t, x) ∈ Ω. (4.3.4)

On the interval [ε0, ε] introduce a continuous nondecrescent function κ(ζ)
so that at any ζ ∈ [ε0, ε] the surface {x ∈ Ω: w(x) = κ(ζ)} would lie in the
neighborhood Bζ , and construct the system of surfaces Si = {x ∈ Ω: w(x) =
κ(εi)} ⊂ Bi, i = 0, 1, 2, . . . , k. Since the function w(x) is continuous and κ(ζ)
nondecrescent, all the surfaces Si are closed and the surface Si lies inside
the surface Si+1. Consider the system of moving surfaces {Si}, Si = {x ∈
Ω: v0(t, x) = κ(εi)}. In view of the inequality (4.3.4) the surface Si lies
inside the surface Si. The continuity of v0(t, x) implies that the surfaces Si

are closed; in addition, the surface Si lies inside the surface Si+1. Therefore,
the solution may only leave the neighborhood Bi after crossing Si.

Since v0(t, x) is decrescent in the domain Ω, one can find η > 0 such that
the η-neighborhood Bη of the point x = 0 for all t > 0 lies within the moving
surface S0.

Let the integral curve x(t; t0, x0) leave the neighborhood Bη and assume
that at a point of time t = t0 it crossed the surface S0. Let ti denote the point
of time when the curve crosses the surfaceSi, and let xi denote the respective
value of x: xi = x(ti; t0, x0).
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Differentiate v0(t, x) in view of the equations (4.2.1). Taking into account
conditions (2) and (3) of Theorem 4.3.3, obtain

dv0
dt

= µϕ(t, x). (4.3.5)

Consider the behavior of the function v0(t, x) along the portion of the
path, beginning at the point (ti, xi). Integrating (4.3.5) from the point t = ti,
in view of condition (3) and the definition of ti obtain

v0(ti+1, xi+1) = v0(ti, xi) + µ

ti+1
∫

ti

ϕ(t, x) dt ≤ v0(ti, xi) + µψ(εi+1)(ti+1 − ti).

The last inequality, taking into account that v0(ti, xi) = κ(εi), implies

ti+1 − ti ≥
κ(εi+1) − κ(εi)

µψ(εi+1)
, i = 0, 1, . . . , k − 1,

and

tk − t0 ≥ 1

µ

k−1
∑

i=1

κ(εi+1) − κ(εi)

ψ(εi+1)
.

In view of the definition of the function κ(ζ) and the arbitrariness of the
division of the interval [ε0, ε], the sum in the right-hand part is integral one.
Passing to the limit at max(εi − εi−1) → 0, obtain

T =
1

µ

ε
∫

ε0

dκ(ζ)

ψ(ζ)
.

The theorem is proved.

For solutions beginning in the domain where Θ0(t0, x0) < 0, the following
theorem is correct.

Theorem 4.3.4 Let :

(1) all the conditions of Theorem 4.3.2 be satisfied ;

(2) uniformly with respect to (t0, x0) ∈ Ω there exists a mean Θ0(t0, x0),
which is alternating sign in the domain Ω, besides at the specified t0 and
at all γ > 0, η > 0, γ < η < H, the following condition is satisfied:

(Bη \Bγ) ∩E−
Θ (t0) 6= ∅,

Bη = {x : ‖x‖ < η}, Bγ = {x : ‖x‖ < γ};
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(3) there exists a summable function F (t), constants F0, M0, and a nonde-
crescent function χ(α), lim

α→0
χ(α) = 0, such that in the domain Ω

|ϕ(t, x′) − ϕ(t, x′′)| < χ(‖x′ − x′′‖)F (t), ‖g(t, x)‖ < M0,

t2
∫

t1

F (t) dt ≤ F0(t2 − t1) at all τ < t1 < t2 <∞.

Then for any ε > 0 and ρ < ε < ε on the interval [ρ, ε] there exists a
nondecrescent continuous function κ(ζ) and one can find η(ε), µ0, l, ε0 < ε,

T = 2l+
1

µ

ε
∫

ε0

dκ(ζ)

ψ(ζ)
(4.3.6)

such that for all t ∈ [t0, t0 + T ] ‖x(t)‖ < ε holds, if only this path begins in
the domain where the mean Θ0(t0, x0) < 0 and ‖x0‖ < η.

Proof Let ε > 0 (ε < H) be specified. Specify ε > 0, ε = const so that
ε < ε. Repeating the reasoning from the proof of Theorem 4.3.3, introduce
a continuous and nondecrescent function κ(ζ) on the interval [ρ, ε]. In view
of condition (1) of the theorem, Sε = {x ∈ Ω: v0(t, x) = κ(ε)} lies in the
neighborhood Bε.

Since v0(t, x) is decrescent in the domain Ω, one can find η > 0 such that
Bη lies inside the moving surface Sε. Like in the proof of Theorem 4.3.2, verify
that one can find sufficiently large l and small µ0 such that at µ < µ0 the
solution x(t), leaving the point x0 ∈ (Bη \ Bγ) ∩ Eδ

Θ(t0) at a point of time
t0, on the interval t ∈ [t0, t0 + 2l] does not leave Bε and at t = t1 = t0 + 2l
v0(t1, x1) < v0(t0, x0) − lδµ holds, where x1 = x(t1) and v0(t0, x0) < κ(ε).

Let ε0 be a root of the equation κ(ε0) = κ(ε)− lδµ. Construct the surfaces
Sε0

= {x ∈ Ω: v0(t, x) = κ(ε0)} and Sε = {x ∈ Ω: v0(t, x) = κ(ε)}. By
the definition of the function κ(ζ) the surfaces Sε0

and Sε are closed and
Sε0

⊂ Bε0
, Sε ⊂ Bε. Since the point x1 is located inside the moving surface

Sε0
, an integral curve emanating from it may only leave Bε after sequential

crossing of the surfaces Sε0
and Sε.

Assume that the integral curve crossed the surface Sε0
at a point of time

t = t2 > t1. Repeating the reasoning of the proof of Theorem 4.3.3, verify that
the solution will not leave the domain ‖x‖ < ε for all t ∈ [t2, t2 + T1], where

T1 =
1

µ

ε
∫

ε0

dκ(ζ)

ψ(ζ)
.

Thus, on the whole interval [t0, t0 + T ], where

T = t1 + T1 − t0 = 2l +
1

µ

ε
∫

ε0

dκ(ζ)

ψ(ζ)
,
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the solution x(t) with the initial value x0 ∈ eδ
Θ(t0) ∩ Bη will not leave the

ε-neighborhood of the point x = 0.

The theorem is proved.

4.4 Methods of Application of Auxiliary Systems

The results of the previous section are based on the known general so-
lution of the shortened system (4.2.3), which essentially confines the area of
application of such approach in the study of stability or instability of motion.
We will show that instead of solutions of the system (4.2.3) it is possible to
use solutions of some limiting system, which may turn out to be simpler.

4.4.1 Development of limiting system method

Consider the systems (4.2.1) and (4.2.3) under the same assumptions with
regard to the right-hand part.

Let for some system

dx

dt
= f0(t, x), x(t0) = x0, (4.4.1)

connected with the system (4.2.3), the general solution x0(t) = x0(t, t0, x0) ∈
D1 is known at (t0, x0) ∈ intΩ and t ≥ t0. The vector function f0(t, x) is
continuous and satisfies the Lipschitz condition with respect to x with the
constant L in the domain R+ ×D1.

Instead of the mean Θ0(t0, x0) we will use an integral calculated along
solutions of the system (4.4.1).

Denote

v̇0(t, x)
∣

∣

(4.4.1)
=
∂v0

∂t
+

(

∂v0

∂x

)T

f0(t, x),

G0(T, t0, x0) =

t0+T
∫

t0

ϕ(t, x0(t, t0, x0)) dt.

Theorem 4.4.1 Let for the system (4.2.1) the following conditions be
satisfied :

(1) there exists a positive definite decrescent function v(t, x) and

v̇(t, x)|(4.2.3) ≤ 0;
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(2) for any number ξ ∈ (0, H) uniformly with respect to x ∈ {x : ‖x‖ < ξ}
there exists a limit

lim
t→∞

‖f(t, x) − f0(t, x)‖ = 0;

(3) there exist a χ(β) ∈ K, summable functions M(t) and F (t) such that on
any finite interval [t1, t2], t1, t2 ∈ R+, the following inequalities hold :

‖g(t, x)‖ ≤M(t), |ϕ(t, x′) − ϕ(t, x′′)| ≤ F (t)χ(‖x′ − x′′‖)

and
t2
∫

t1

M(t) dt ≤M0(t2 − t1),

t2
∫

t1

F (t) dt ≤ F0(t2 − t1),

M0, F0 = const;

(4) for any numbers α, β, 0 < α < β < H, there exist positive quantities
µ′, δ, l such that for the values t′, x′, t′ ∈ R+, α ≤ ‖x′‖ ≤ β, one of
the following conditions is satisfied:

(a) v̇(t′, x′)
∣

∣

(4.2.3)
+ µϕ(t′, x′) ≤ 0 at µ < µ′,

(b) G0(T, t′, x′) ≤ −δT at T > l.

Then the solution x = 0 of the system (4.2.1) is µ-stable.

Proof Let ε ∈ (0, H) be satisfied. In view of condition (1) of Theorem
4.4.1, all points of the moving surface v(t, x) = a(ε/2) satisfy the inequality
(4.2.11) for all t ∈ R+. Under condition (4) for the numbers b−1(a(ε/2)) and
ε/2, there exist positive constants δ and l. It can be shown that for

λ = min
[

χ−1(δ/4F0)/2l exp(2lL), ε/4l exp(2lL)
]

there exists a point of time τ0 such that at τ > τ0 and t ∈ [τ, τ + 2l] for
the solutions x(t, τ, xτ ) and x0(t, τ, xτ ) of the systems (4.2.3) and (4.4.1) the
following inequality holds:

‖x(t, τ, xτ ) − x0(t, τ, xτ )‖ ≤ min
[

χ−1(δ/4F0), ε/2
]

(4.4.2)

at xτ , satisfying the condition v(τ, xτ ) = a(ε/2). Indeed, condition (2) implies
that for λ one can find a point τ0 such that

‖f(t, x) − f0(t, x)‖ < λ

at t > τ0, ‖x‖ < ε. From the equations (4.2.3) and (4.4.1) for τ > τ0 and
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t ∈ [τ, τ + 2l] obtain

‖x(t, τ, xτ ) − x0(t, τ, xτ )‖ ≤
t
∫

τ

‖f(t, x(t, τ, xτ ) − f0(t, x(t, τ, xτ )‖ dt

+

t
∫

τ

‖f0(t, x(t, τ, xτ ) − f0(t, x0(t, τ, xτ )‖ dt

< λ2l

t
∫

τ

L‖x(t, τ, xτ ) − x0(t, τ, xτ )‖ dt.

Using Lemma 4.2.1, obtain the estimate (4.4.2). From the equation (4.2.1),
taking into account condition (3) and the Lipschitz condition for f(t, x), obtain

‖x(t, t0, x0)‖ ≤ ‖x0‖ +

t
∫

t0

‖f(t, x(t, t0, x0))‖ dt+ µ

t
∫

t0

M(t) dt

≤ ‖x0‖ + µM0(t− t0) +

t
∫

t0

L‖x(t, t0, x0)‖ dt.

Now, applying Lemma 4.2.1, for any t0 ∈ [0, τ1] and t ∈ [t0, τ1] (let τ0 < τ1 <
∞) obtain the estimate

‖x(t, t0, x0)‖ ≤ [‖x0‖ + µM0τ0] exp(Lτ1). (4.4.3)

Choose

µ1 = b−1(a(ε/2))/2M0τ1 exp(Lτ1), η = b−1(a(ε/2))/2 exp(Lτ1).

Then the estimate (4.4.3) implies the estimate

‖x(t, t0, x0)‖ < b−1(a(ε/2))

at ‖x0‖ < η, t0 ∈ [0, τ1], t ∈ [t0, τ1]. Therefore, to prove the theorem it suffices
to show that ‖x(t, t′0, x′0)‖ < ε at t′0 ≥ τ1 and ‖x′0‖ < b−1(a(ε/2)) at t ≥ t′0.
Consider the solution x(t, µ) and assume that it has left the domain ‖x‖ <
b−1(a(ε/2)) and at some point of time t = τ the condition v(τ, x(τ)) = a(ε/2)
is satisfied. At a point x(τ) the inequality (4.2.11) will hold and one of the
conditions (4a) or (4b) will be satisfied.

1. Let condition (4a) be satisfied at a point of time τ , that is, for the
numbers b−1(a(ε/2)) and ε/2 there exists µ′ such that the full derivative of
the Lyapunov function in view of the system (4.2.1) at that point is nonpositive
at µ < µ′, which means that the solution x(t) at the point τ cannot cross the
surface

v(τ, x(τ)) = a(ε/2).
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2. Let condition (4b) be satisfied at the point τ , that is, for the numbers
b−1(a(ε/2)) and ε/2 there exist δ and l such that

G0(T, τ, x(τ)) ≤ −δT (4.4.4)

at T > l. Integrating the expression of full derivative of the Lyapunov function
in view of the system (4.2.1), for t > τ obtain

v(t, x(t, τ, x(τ))) ≤ v(τ, x(τ)) + µ

t
∫

τ

ϕ(t, x(t, τ, x(τ))) dt. (4.4.5)

Represent the last integral in the form

t
∫

τ

ϕ(t,x(t)) dt =

t
∫

τ

[ϕ(t, x(t)) − ϕ(t, x(t))] dt

+

t
∫

τ

[ϕ(t, x(t)) − ϕ(t, x0(t))] dt+

t
∫

τ

ϕ(t, x0(t)) dt.

(4.4.6)

Here x(t) = x(t, τ, x(τ)), x(t) = x(t, τ, x(τ))), x0(t) = x0(t, τ, x(τ)). On the
basis of Lemma 4.2.2 for the norm of difference of solutions x(t) and x(t) at
t ∈ [τ, τ + 2l] the following estimate is true:

‖x(t) − x(t)‖ ≤ µM0l exp(2lL). (4.4.7)

Choose
µ2 =

ε

4M0l exp(2lL)
.

Then at µ < µ2 from the inequality (4.4.7) obtain ‖x(t) − x(t)‖ < ε/2 at all
t ∈ [τ, τ + 2l]. In view of condition (1) of Theorem 4.4.1 and the inequality
‖x(t)‖ < ε/2 obtain ‖x(t)‖ ≤ ε at t ∈ [τ, τ + 2l]. Estimate the first integral in
the right-hand part of the expression (4.4.6). Choose

µ3 = χ−1(δ/4F0)/2M0l exp(2lL).

Using condition (3) and the inequality (4.4.7), for µ < min(µ2, µ3) and t ∈
[τ, τ + 2l] obtain

t
∫

τ

|ϕ(t, x(t))−ϕ(t, x(t))| dt ≤
t
∫

τ

F (t)χ(‖x(t)−x(t)‖) dt ≤ δ(t−τ)/4. (4.4.8)

From the inequality (4.4.2) it is clear that the solution x0(t, µ) on the inter-
val [τ, τ + 2l] will not leave the ε-neighborhood and, respectively, the domain
Ω; therefore, for the estimation of the second integral from the expression
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(4.4.6) it is possible to use condition (2) of the theorem. Taking into account
the inequality (4.4.2), for t ∈ [τ, τ + 2l] obtain the estimate

t
∫

τ

|ϕ(t, x(t)) − ϕ(t, x0(t))| dt ≤
t
∫

τ

F (t)χ(‖x(t) − x0(t)‖) dt ≤ δ(t− τ)/4.

(4.4.9)
The expression (4.4.6) and the inequalities (4.4.4), (4.4.8), and (4.4.9) at µ <
min(µ2, µ3) and t ∈ [τ + l, τ + 2l] imply the estimate

t
∫

τ

ϕ(t, x(t)) dt ≤ δ(t− τ)/4.

Thus, the integral in the inequality (4.4.5) becomes negative at least from
the point t = τ + l, which means that the solution x(t, µ), having left the
surface v(τ, x(τ)) = a(ε/2), due to the choice of µ will remain in the domain
‖x‖ < ε at t ∈ [τ, τ +2l] and at some point of time from the interval [τ, τ +2l]
will return to the domain bounded by the surface v(τ, x(τ)) = a(ε/2).

From the considered cases 1 and 2 and the choice of η, it is clear that the
solution x(t, µ) at t0 ∈ R+, ‖x0‖ < η, µ < µ0 = min(µ1, µ2, µ3, µ

′) will not
leave the domain ‖x‖ < ε at all t ≥ t0.

The theorem is proved.

Let us use a simple example to illustrate Theorem 4.4.1.

Example 4.4.1 Study the equilibrium state x = 0 of the system

dx1

dt
= −x1 + [1 − p(t)]x2 + µ(x3

1 − ax3
2),

dx2

dt
= p(t)(x1 − x2) + µ[a(x1 + x2) cos t+ (x3

2 − ax3
1)].

(4.4.10)

Here a = const > 1, p(t) is a continuous function, 0 ≤ p(t) ≤ m = const,
lim

t→∞
p(t) = 0.

The derivative of the Lyapunov function

v = [x2
2 + (x1 − x2)

2]/2

along solutions of the system (4.4.10) at µ = 0 has the form

v̇ = −(1 + p)(x1 − x2)
2 ≤ 0.

The integral G0(T, t0, x0) calculated along the solutions

x0
1 = x20 + (x10 − x20) exp[−(t− t0)],

x0
2 = x20

of the limiting system ẋ1 = −x1 + x2, ẋ2 = 0, will satisfy condition (4b) of
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Theorem 4.4.1 at t0 ≥ 0 and x0 ∈ E = {x0 : |x20| ≤ 2|x10|, |x10| ≤ 2|x20|},
since there exists a mean

lim
T→∞

1

T
G0(T, t0, x0) = x4

20(1 − a),

negative at a > 1 and at the values t0 ≥ 0 and x0 ∈ E.
In the remaining part of the neighborhood of zero, in view of the nega-

tiveness of v̇(t, x), condition (4a) will be satisfied. Thus, the stability of the
equilibrium state x = 0 of the system (4.4.10) holds in the following sense:
for any ε there exists η(ε) > 0 and µ(ε) > 0 such that ‖x(t, t0, x0)‖ < ε at all
t ≥ t0, as soon as ‖x0‖ < η, t0 ≥ 0.

Similarly, it is possible to show that the theorem of instability is correct.
We will give its statement without proof.

Theorem 4.4.2 Let for some τ ∈ R+ in the domain [τ,∞) ×D:

(1) there exists a domain v > 0, in which the function v(t, x) is bounded,
and

v̇(t, x)|(4.2.3) ≥ 0, lim
t→∞

Θ̇0
0(t, x) ≥ 0;

(2) in the domain v > 0, conditions (2) and (3) of Theorem 4.4.1 be satis-
fied ;

(3) for an arbitrarily small number α > 0 there exist positive numbers µ′, γ
and δ, l such that for each value t′, x′, satisfying the inequality v(t′, x) >
α′ one of the following conditions is satisfied :

(a) v̇(t′, x′)|(4.2.3) + µϕ(t′, x′) ≥ γ at µ < µ′,

(b) G0(T, t′, x′) ≥ δT at T > l.

Then the solution x = 0 of the system (4.2.1) is µ-unstable.

Note that the derived Lyapunov function in view of the system (4.2.1)
may be alternating in the domain v > 0 in contrast to the limitations on the
function v in Chetaev’s instability theorem [1].

4.4.2 Stability on time-dependent sets

Let P be the set of all subsets of the set Rn. The mapping S : R→ P is a
set-valued function. The set of its values at t ∈ R is a time-varying set S(t).
Let N = {(t, x) : t ∈ R, x ∈ N(t)}, N(t) be a time-varying neighborhood of
the point x = 0. If S(t) is substituted with N(t), then S is substituted with N.

Now consider the system of the form

dx

dt
= f(t, x) + g(t, x), x(t0) = x0. (4.4.11)
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Along with the shortened system

dx

dt
= f(t, x), x(t0) = x0

consider the limiting system

dx

dt
= f0(β, x), f0(β, 0) ≡ 0. (4.4.12)

Here it is assumed that at all x ∈ S(t) there exists a limit

lim
t→β

‖f(t, x) − f0(β, x)‖ = 0, 0 < β < τ.

Remark 4.4.1 If β = +∞ and the approach to the limit is uniform with
respect to x ∈ {x : ‖x‖ < H}, then the limiting system (4.4.12) coincides with
the one considered in Section 4.4.1.

Assume that the nonperturbed motion x = 0 of the system (4.4.12) is
nonasymptotically stable and for it there exists a function v(t, x) with the
respective properties.

Theorem 4.4.3 Let the vector function f0 be continuous at (t, x) ∈ N

and let N(t) be a continuous neighborhood of the point x = 0 at each t ∈ R,
which may be time-invariant or time-variable and the following conditions are
satisfied :

(1) for the system (4.4.12) there exist a function v(t, x) and functions a, b
belonging to the K-class, such that at any (t, x) ∈ S

(a) a(‖x‖) ≤ v(t, x) ≤ b(‖x‖),
(b) dv/dt ≤ 0;

(2) at any ρ, 0 < ρ < H < +∞, in the domain {x : ρ ≤ ‖x‖ < H} ⊂
N(t) the function ϕ(t, x) = (∂v/∂x)Tg(t, x) is defined and there exist a
function c from the K-class and a continuous nonnegative function κ(t)
at all t ∈ J such that |ϕ(t, x)| ≤ c(‖x‖)κ(t);

(3) there exist a function w from the K-class and a continuous nonnegative
function λ(t) such that

|(∂v/∂x)T(f − f0)| ≤ w(‖x‖)λ(t) at all (t, x) ∈ S.

Then for any ε0 > ρ there exists η(ε0) such that any motion of the system
(4.4.11), which begins at t = t0 in the domain ‖x0‖ ≤ η(ε0), will not leave the
set Bζ = {x : ‖x‖ ≤ ζ(t)} on the interval of existence of a positive solution of
the differential equation

dζ

dt
= λ(t)

w(ζ)

a′(ζ)
+ κ(t)

c(ζ)

a′(ζ)
, ζ(t0) = ε0 > 0, (4.4.13)

such that ζ(t) < H.
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Proof Let ε0 ∈ (ρ,H). For the function ζ(t) with the value ζ ∈ [ε0, H ]
at t ∈ T = [t0, t0 + τ) (τ is a finite number or +∞) consider a time-
varying set Bζ = {x : ‖x‖ ≤ ζ(t)} and a moving surface Sζ = ∂Vζ(t),
Vζ(t) = {x : v(t, x) < a(ζ(t))}. From the continuity of v(t, x) it follows that
the surface Sζ is closed. According to condition (1a) obtain Sζ ⊂ Bζ . Indeed,
for ‖x‖ = ζ(t) at all t ∈ J1 ⊂ T we have v(t, x) ≥ a(ζ(t)), and in view of
the monotonicity of the function a(·) the equality v(t, x) = a(ζ) will hold at
the points x ∈ Bζ . Hence it follows that Sζ ⊂ Bζ and at any ζ1, ζ2 such that
ε0 < ζ1 < ζ2 < H , the surface Sζ1

is embedded in Sζ2
. Therefore, at any

ε ∈ (ε0, H) the solution x(t; t0, x0) may only leave the set Bζ after crossing
all surfaces Sζ , when ζ takes on values from the interval [ε0, ε].

Let η = b−1(a(ε0)). According to condition (1a) of Theorem 4.4.3, Bη ⊂
Sε0

∪Vε0
(t). Let the solution x(t; t0, x0), beginning in the set Bη at a point of

time t = t0, cross the surface Sε0
at a point of time t∗ ≥ t0. Let tζ denote the

point of time when the solution x(tζ ; t0, x0) reaches the surface Sζ . Consider
the behavior of the function v(t, x) along the interval of the path x(t; t0, x0)
with its origin at the point (tζ , xζ) and the end at the point (tζ+dζ , xζ+dζ),
located on the surface Sζ+dζ . From the expression of the full derivative of the
function v(t, x) in view of the system (4.4.11) obtain

v(tζ+dζ , xζ+dζ) ≤ v(tζ , xζ) +

tζ+dζ
∫

tζ

∣

∣

(

∂v0/∂x
)T

(f − f0)
∣

∣dt

tζ+dζ
∫

tζ

|ϕ(y, x)| dt.

Taking into account the definition of the surface Sζ , under conditions (2) and
(3) of Theorem 4.4.3 obtain

a(ζ + dζ) − a(ζ) = a′(ζ)dζ ≤ λ(t)w(ζ)dt + κ(t)c(ζ)dt.

Since a(·) is a strictly monotone increscent function, a′(ζ) > 0 and

dζ

dt
≤ λ(t)

dζ

dt

w(ζ)

a′(ζ)
+ κ(t)

c(ζ)

a′(ζ)
. (4.4.14)

Keeping the same notation for the variables and passing on to the equation
(4.4.13) from the inequality (4.4.14), we see that at all values of t for which
ζ(t) is positive and satisfies the equation (4.4.13) the solution x(t; t0, x0) will
remain in the time-varying set Sζ ∪ Vζ ⊂ Bζ .

Theorem 4.4.3 is proved.

Remark 4.4.2 If f0(t, x) ≡ f(t, x), then the nonlinear equation (4.4.13)
takes the form

dζ

dt
= κ(t)

c(ζ)

a′(ζ)
.

Hence obtain
ε
∫

ε0

a′(ζ)dζ

c(ζ)
=

t
∫

t0

κ(t) dt. (4.4.15)
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If in condition (2) of Theorem 4.4.3 we assume |ϕ(t, x)| ≤ µc(‖x‖), that is,
κ(t) ≡ 1, then (4.4.15) implies the estimate T from Theorem 4.3.3.

Corollary 4.4.1 Let the following assumptions be taken into account in
conditions (1a), (2), and (3):

a‖x‖r1 ≤ v(t, x) ≤ b‖x‖r1 ,

‖g(t, x)‖ ≤ κ1(t)‖x‖r2 ,

‖f(t, x) − f0(β, x)‖ ≤ λ1(t)‖x‖r3 .

Then the equation (4.4.13) takes the form

dζ

dt
= λ(t)ζr3 + κ(t)ζr2 , (4.4.16)

ζ(t0) =
( b

a

)
1

r1 ‖x0‖, (4.4.17)

where the functions λ(t) and κ(t) are determined from the inequalities

|(∂v/∂x)T(f − f0)| ≤ ar1λ(t)‖x‖r1+r3−1,

|ϕ(t, x)| ≤ ar1κ(t)‖x‖r1+r2−1,

and the solution x(t; t0, x0) remains in the set Bζ at all values of t, for which
the Cauchy problem (4.4.16) and (4.4.17) has a positive solution ζ(t; t0, ζ0).

The proof is made by direct substitution of the considered functions into
the equation (4.4.13) taking into account that a(ζ) = a · ζr1 .

Now consider some particular cases of the problem (4.4.16) and (4.4.17).

Case A. The right-hand parts of the limiting system (4.4.12) and the short-
ened system coincide. Here λ(t) ≡ 0 and the equation (4.4.16) takes the form

dζ

dt
= κ(t)ζr2 , (4.4.18)

the value ζ(t0) is determined by the expression (4.4.17). Hence at r2 = 1
obtain

ζ(t) =
( b

a

)
1

r1 ‖x0‖ exp

(

t
∫

t0

κ(s) ds

)

,

and at r2 6= 1

ζ(t) =

[

( b

a

)
q

r1 ‖x0‖q + q

t
∫

t0

κ(s) ds

]
1
q

, q = 1 − r2.

The value of τ in the estimate [t0, t0 + τ) is determined by the expression

τ = sup{t ∈ J : ζ(t) ∈ (0, H)}. (4.4.19)
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Remark 4.4.3 The result similar to the obtained one holds if in the system
(4.4.11) g(t, x) ≡ 0 or r2 = r3.

Case B. The shortened system is linear, that is, f(t, x) = A(t)x, where
A(t) is an (n × n)-matrix with its elements continuous and bounded on J .
Here f0(t, x) = A0(t)x, r3 = 1, and the equation (4.4.16) takes the form

dζ

dt
= λ(t)ζ + κ(t)ζr2 . (4.4.20)

By the substitution ζ = η
1

1−r2 the equation (4.4.20) is reducible to a linear
equation and integrable by quadratures. Obtain

ζ(t) = E(t)

{[

( b

a

)
1
2 ‖x0‖

]q

+ q

t
∫

t0

κ(s)E(−qs) ds
}

1
q

, (4.4.21)

where

E(t) = exp

[

t
∫

t0

λ(s) ds

]

, q = 1 − r2.

The value of τ in the estimate of the interval on which ‖x(t)‖ ≤ ζ(t), that
is, x(t; t0, x0) ∈ Bζ , is estimated by the formula (4.4.19), taking into account
(4.4.21).

Remark 4.4.4 Since the shortened system is linear, the Lyapunov function
v(t, x) is chosen in the quadratic form and therefore r2 = 2.

Example 4.4.2 Consider the system

dx1

dt
= α

(

β

t
− 1

)

x1 + ωx2,

dx2

dt
= −ωx1 + µω cos2 νt · x1,

(4.4.22)

where µ is a small parameter, α, β, ω, ν are positive constants, and t > 0. For
the shortened system (let µ = 0)

dx1

dt
= α

(

β

t
− 1

)

x1 + ωx2,

dx2

dt
= −ωx1

(4.4.23)

the full derivative of the Lyapunov function v = x2
1 + x2

2 is nonnegative;
therefore, Theorem 4.3.3 cannot be applied to the system (4.4.22). Taking
into account that

A0 = lim
t→β





α

(

β

t
− 1

)

ω

−ω 0



 =

(

0 ω
−ω 0

)
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and the state x1 = x2 = 0 of the respective limiting system is stable (not
asymptotically), Theorem 4.4.3 is applicable to it.

Choosing the norm of vector x ∈ R2 in the form ‖x‖ = max{|x1|, |x2|},
for the constants obtain the values r1 = 2, r2 = r3 = 1, a = 1, b = 2. The
functions κ(t) and λ(t) have the form

κ(t) =
1

2
µω(1 + cos 2t), λ(t) = α

(

β

t
− 1

)

.

Applying Theorem 4.4.3 in Case A, obtain ‖x(t)‖ ≤ ζ(t) at all t ∈ [t0, t0 + τ),
t0 > 0, where

ζ(t) =
√

2‖x0‖
(

t

t0

)αβ

exp

[(

1

2
µω − α

)

(t− t0) +
1

4
µω(sin 2t− sin 2t0)

]

and τ is determined by the formula (4.4.19).

Remark 4.4.5 The interval of the stay of motion on a time-varying set is
determined by the inverse transformation of the function ζ(t).

4.5 Systems with Nonasymptotically Stable Subsystems

Consider a system of the form

dxs

dt
= fs(t, xs) + µgs(t, x1, . . . , xm), s = 1, . . . ,m, (4.5.1)

where (xT
1 , . . . , x

T
m)T = x, xs ∈ Rns ,

m
∑

s=1
ns = n, fs(t, 0) = gs(t, 0, . . . , 0) = 0.

A peculiar property of the system (4.5.1) is that at µ = 0 it falls into m
independent subsystems

dxs

dt
= fs(t, xs), s = 1, . . . ,m. (4.5.2)

The vector functions fs(t, xs) and gs(t, x), s = 1, . . . ,m, in the domain
Ω satisfy the condition of the existence and uniqueness of the solution of the
Cauchy problem for the systems (4.5.1) and (4.5.2), in addition, fs(t, xs),
s = 1, . . . ,m, satisfy the Lipschitz condition with respect to xs, s = 1, . . . ,m,
with the constant L.

Assume that the solution xs = 0 of the systems (4.5.2) is stable uniformly
with respect to t0 (nonasymptotically) and the general solution is known
xs(t) = xs(t, t0, xs0), s = 1, . . . ,m, (t0, x0) ∈ intΩ.

Assume that for each subsystem (4.5.2) a continuously differentiable Lya-
punov function vs(t, xs) is known, which has the respective properties.
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Let the vectors xs, s = 1, . . . ,m, be numbered in an order convenient for
the study, let αs, s = 1, . . . ,m, be some sequence for which α1 = 1, and let
each subsequent term αk, k = 2, . . . ,m, be equal either to the previous term
or to the index k. Denote

ϕα1

s (t, x1, . . . , xm) =

(

∂vs

∂xs

)T

gs(t, x1, . . . , xm),

ϕαs
s (t, xαs

, . . . , xm) =

(

∂vs

∂xs

)T

gs(t, 0, . . . , 0, xαs
, . . . , xm),

s = 1, . . . ,m.

(4.5.3)

Consider the sequence of means

Θαs
s (t0, xαs0, . . . , xm0) = lim

T→∞

1

T

t0+T
∫

t0

ϕαs
s (t, xαs

(t), . . . , xm(t))dt,

s = 1, . . . ,m.

(4.5.4)

Let v∗s(xs) denote nonpositive functions and let w∗
s(xs) denote nonnegative

functions defined and continuous in the domains Ds = {xs : ‖xs‖ < H},
s = 1, 2, . . . ,m.

The mean ϕαs
s is less than zero in the set E(v∗s = 0), if for any numbers

ηs and εs, 0 < ηs < εs < H , one can find positive quantities rs(ηs, εs) and
δs(ηs, εs) such that Θαs

s (t0, xαs0, . . . , xm0) < −δs(ηs, εs) at ηs ≤ ‖xs0‖ ≤ εs,
ρ(xs0, E(v∗s = 0)) < rs(ηs, εs) for all t0 ∈ R+, xk0 ∈ Dk, k = αs, . . . , s −
1, s+ 1, . . . ,m.

Consider the following statement.

Theorem 4.5.1 Let the following conditions be satisfied for the system
(4.5.1):

(1) there exist positive definite decrescent functions vs(t, xs), s = 1, . . . ,m,
and the following inequalities hold:

∂vs

∂t
+

(

∂vs

∂xs

)T

fs(t, xs) ≤ v∗s(xs) ≤ 0, s = 1, . . . ,m;

(2) there exist summable functions Ms(t) and Fs(t), constants Ms0, Fs0,
and functions χs(β) ∈ K such that on any finite interval the following
inequalities will hold :

|ϕα1

s (t, x′1, . . . , x
′
m) − ϕα1

s (t, x′′1 , . . . , x
′′
m)| ≤ Fs(t)χs

( m
∑

k=1

|x′k − x′′k|
)

,
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t2
∫

t1

Fs(t)dt ≤ Fs0(t2 − t1),

‖gs(t, x1, . . . , xm) ≤Ms(t),

t2
∫

t1

Ms(t)dt ≤Ms0(t2 − t1),

s = 1, . . . ,m;

(3) uniformly with respect to t0, xαs0, . . . , xm0 there exist means

Θαs
s (t0, xαs0, . . . , xm0), s = 1, . . . ,m;

(4) the mean Θαs
s is less than zero in the set E(v∗s = 0), s = 1, . . . ,m.

Then the solution x = 0 of the system (4.5.1) is µ-stable.

Proof Let ε ∈ (0, H) and t0 ∈ R+ be specified. We will show that for ε it
is possible to find positive numbers η(ε) and µ0(ε), not depending on t0, such
that any solution xs(t, t0, x0), s = 1, . . . ,m, of the system (4.5.1) will satisfy
the condition

m
∑

s=1

‖xs(t, t0, x0)‖ < ε

for all t > t0 at
m
∑

s=1
‖xs0‖ < η(ε) and µ ∈ (0, µ0).

Choose εm = ε/m. In view of condition (1) of the theorem, for the function
vm(t, xm) there exist functions am(‖xm‖) ∈ K and bm(‖xm‖) ∈ K such that

am(‖xm‖) ≤ vm(t, xm) ≤ bm(‖xm‖). (4.5.5)

Let ηm(εm) = b−1
m (am(εm/2)). Then all points of the moving surface

vm(t, xm) = a(εm/2) for all t ∈ R+ will satisfy the inequality ηm ≤ ‖xm‖ ≤
εm/2. For the numbers ηm and εm/2 according to condition (4), there exists
a value δm(ηm, εm/2).

Determine the number

εm−1 = min

(

χ−1
m (δm/4Fm0)

2(αm − 1)
, εm

)

.

For vm−1(t, xm−1) there exist functions am−1(‖xm−1‖) and bm−1(‖xm−1‖)
from the K-class such that a relation similar to (4.5.5) will hold. Determine
the number

ηm−1(εm−1) = b−1
m−1(am−1(εm−1/2)).

Under condition (4) for ηm−1 and εm−1/2 it is possible to determine the
quantity δm−1(ηm−1, εm−1/2). Assume that

εm−2 = min

(

χ−1
m−1(δm−1/4Fm−10)

2(αm−1 − 1)
, εm−1

)

.
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Continuing this process, for each function vs(t, xs), s = m − 2, . . . , 1, de-
termine the respective functions as(‖xs‖), bs(‖xs‖) and numbers

εs = min

(

χ−1
s+1(δs+1/4Fs+10)

2(αs+1 − 1)
, εs+1

)

,

ηs(εs) = b−1
s (as(εs/2)), δs(ηs, εs/2).

Considering the components xs(t, t0, x0) in increscent order of the index s,
s = 1, . . . ,m, show that each of them satisfies the condition ‖xs(t)‖ < εs

at µ < µs for all t ≥ t0 at ‖xk0‖ < ηk, k = 1, . . . ,m. The proofs of this
statement for each component are similar; therefore, we will give proof for
xs(t), assuming that for x1(t), . . . , xs−1(t) it has been proved already and
the components xi(t), i = s + 1, . . . ,m, at t > t0 remain in the domain
Di, i = s+ 1, . . . ,m. Assume that the component xs(t, t0, x0) left the domain
‖xs‖ < ηs and at a point of time t = t′s0 crossed the surface vs(t, xs) = as(εs/2)
in a point x′s0. For this point, in view of condition (4), one of the following
inequalities will hold:

ρ(x′s0, E(v∗s = 0)) ≤ rs(ηs, εs/2),

Θαs
s (t′0, x

′
αs0, . . . , x

′
m0) < −δs(ηs, εs/2).

Here x′k0 = xk(t′0, t0, x0), k = αs, . . . ,m.
Consider some properties of the solutions xs(t, t0, x0).

(a) Let the following conditions be satisfied at a point of time τ

vs(τ, xs(τ)) = as(εs/2),

ρ(xs(τ), E(v∗s = 0)) ≥ rs(ηs, εs/2).

Taking into account the equality gs(t, 0, . . . 0) = 0, from condition (2) of the
theorem obtain

|ϕα1

s (t, x1, . . . , xm)| ≤ csF (t)

at (t, x) ∈ Ω, where cs is some constant. Choosing

µ < µ′
s = γ/2csFs0, γ = inf

xs∈Ps

|v∗s (xs)|,

Ps = {x : ρ(xs, E(v∗s = 0)) ≥ rs/2, ηs ≤ ‖xs‖ ≤ εs},
for all t > τ , at which the conditions

‖xs(t)‖ ≥ ηs, ρ(xs(t), E(v∗s = 0)) ≥ rs/2

are satisfied, obtain

vs(t, xs(t)) ≤ vs(τ, xs(τ)) +

t
∫

τ

v∗s (xs(t)) dt+ µ

t
∫

τ

ϕα1

s (t, x1(t), . . . , xm(t)) dt

≤ vs(τ, xs(τ)) −
γs

2
(t− τ).

(4.5.6)
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The function vs(t, xs(t) is not increscent and, respectively, xs(t, τ, x(τ)) will
not leave the domain bounded by the surface vs(t, xs) = as(εs/2), which
means that for it the inequality will not be violated at least as long as the
condition

ρ(xs(t), E(v∗ = 0)) ≥ rs/2

holds.

(b) Let the following conditions be satisfied at a point of time τ :

vs(τ, xs(τ)) = as(εs/2),

ρ(xs(τ), E(v∗s = 0)) < rs(ηs, εs/2).

In view of condition (4) of Theorem 4.5.1

Θαs
s (τ, xαs

(τ), . . . , xm(τ)) < −δs(ηs, εs/2). (4.5.7)

Taking this into account, estimate the change of the function vs(t, xs). Rep-
resent the last integral in the inequality (4.5.6) in the form

t
∫

τ

ϕα1

s (t, x1(t), . . . , xm(t)) dt =

t
∫

τ

[ϕα1

s (t, x1(t), . . . , xm(t))

− ϕαs
s (t, xαs

(t), . . . , xm(t))] dt+

t
∫

τ

ϕαs
s (t, xαs

(t), . . . , xm(t)) dt,

(4.5.8)

where xk(t) = xk(t, τ, xk(τ)), k = αs, . . . ,m. Estimate the last integral in the
expression (4.5.8), using the estimate of the mean Θαs

s (τ, xαs
(τ), . . . , xm(τ))

in the inequality (4.5.7) and choosing the time interval ls so large that at
t > τ + ls the following condition will be satisfied:

t
∫

τ

ϕαs
s (t, xαs

(t), . . . , xm(t)) dt < −3

4
δs(t− τ). (4.5.9)

Choose µ′′
s so small that on the interval [τ, τ + 2ls] at µ < µ′′

s the following
inequalities will hold:

‖xs(t) − xs(t)‖ <
εs

2
,

m
∑

k=αs

‖xk − xk‖ <
χ−1

s (δs/4Fs0)

2
. (4.5.10)

Using Lemma 4.2.2, determine µ′′
s :

µ′′
s = min

(

εs

4Ms0ls exp(2lsL)
, χ−1

s (δs/4Fs0)/4ls exp(2Lls)

m
∑

k=αs

Ms0

)

.
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The first inequality of (4.5.10) means that xs(t, µ) at µ < µ′′
s will not leave

the domain ‖xs‖ < ε at least on the time interval 2ls.
Now estimate the second integral in the expression (4.5.8), using condition

(2) of the theorem, the second inequality of (4.5.10), and the choice of numbers
εi, i = 1, . . . , αs − 1. For t ∈ [τ, τ + 2ls] and µ < µ′′

s = min(µ′′
s , µαs−1) obtain

t
∫

τ

|ϕα1

s (t, x(t)) − ϕαs
s (t, xαs

(t), . . . , xm(t)) dt

≤
t
∫

τ

Fs(t)χs

( αs−1
∑

i=1

‖xi(t)‖ +

m
∑

k=αs

‖xk(t) − xk(t)‖
)

dt

≤
t
∫

τ

Fs(t)χs(χ
−1
s (δs/4Fs0)) dt ≤ δs(t− τ)/4.

(4.5.11)

Substituting the estimates (4.5.9) and (4.5.11) into (4.5.8), for t ∈ [τ +
ls, τ + 2ls] and µ < µ′′

s obtain

t
∫

τ

ϕα1

s (t, x(t)) dt < −δs
2

(t− τ).

Thus, in the inequality (4.5.6) the last integral becomes negative at least
from the point of time t = τ + ls. Therefore, the component xs(t, µ), having
left the domain bounded by the surface vs(t, xs) = as(εs/2), in view of the
chosen µ, will remain in the domain ‖xs‖ < εs and at some point of time from
the interval (τ, τ + 2ls) will return into the domain bounded by the surface
vs(t, xs) = as(εs/2).

Choose µs = min(µ′
s, µ

′′
s ). Then at µ < µs properties (a) and (b) imply that

for all t ≥ t0 the component xs(t, t0, x0) will remain in the domain ‖xs‖ < εs.
Thus, considering the components xs(t, µ) of the solution in increscent

order of the index s, s = 1, . . . ,m, we see that each of them satisfies the
condition ‖xs(t)‖ < εs at ‖xk0‖ < ηk, k = 1, . . . ,m, and t ≥ t0. Choosing
µ0 = min(µs), η(ε) = min(ηs), s = 1, . . . ,m, and taking into account the
chosen numbers εs, s = 1, . . . ,m, obtain

m
∑

s=1

‖xs(t, µ)‖ < ε at all t ≥ t0 as soon as,

m
∑

s=1

‖xs0‖ < η.

Here the quantities η(ε) and µ0(ε) were chosen irrespective of t0.
Theorem 4.5.1 is proved.

If we consider the functions gs(t, x1, . . . , xm), s = 1, . . . ,m, as weak con-
nections such that gs(t, 0, . . . , 0) = 0, s = 1, . . . ,m, then for the correctness of



Stability of Weakly Perturbed Systems 157

Theorem 4.5.1 one should additionally require the correctness of the following
inequalities on any finite interval [t1, t2]

ϕα1

s (t, x1, . . . , xm) ≤ Ns(t),

t2
∫

t1

Ns(t) dt ≤ Ns0(t2 − t1)

at t ∈ R+, xs ∈ Ds \ E(v∗s = 0), xk ∈ Dk, Ns0 is a constant, s = 1, . . . ,m,
k = 1, . . . , s− 1, s+ 1, . . . ,m.

Here are some applications of Theorem 4.5.1.

Example 4.5.1 Consider the system

dx1

dt
= −x1 + x2

2 + µx2y1, x1(t0) = x10,

dx2

dt
= µ(x2y2 − x1x2 + x1z + x2

1 sin t), x2(t0) = x20,

dy1
dt

= −y1 + y2 + µx2
2, y1(t0) = y10,

dy2
dt

= µ[−x2
2y2z − y1y2 + (y1 + y2) cos t], y2(t0) = y20,

dz

dt
= µ(−z3 + y1y2 − x2

1z + z2 cos t), z(t0) = z0,

(4.5.12)

which falls into three subsystems at µ = 0:

dx1

dt
= −x1 + x2

2,
dx2

dt
= 0,

dy1
dt

= −y1 + y2,
dy2
dt

= 0,

dz

dt
= 0.

(4.5.13)

Write the solution of the subsystems (4.5.13) in the form

x1(t) = x2
20 + (x10 − x2

20) exp[−(t− t0)], x2(t) = x20,

y1(t) = y20 + (y10 − y20) exp[−(t− t0)], y2(t) = y20,

z(t) = z0.

Start the investigation of the µ-stability of the system (4.5.12) from the
second subsystem. Choose the Lyapunov function v1(y) = y2

2 + (y1 − y2)
2,

whose derivative in view of the second subsystem of (4.5.13) satisfies the re-
lation v̇1(y) = −2(y1 − y2)

2 = v∗1(y) ≤ 0. Calculating the mean for that
subsystem, obtain Θ1

1(y0, z0, x0) = −2y4
20 − 2y2

20x
2
20z

2
0 . Obviously, the mean

Θ1
1 is less than zero in the set E(v∗1 = 0) = {y : y1 = y2} at any x20 and z0.

For the third subsystem take the Lyapunov function v2(z) = z2. Its deriva-
tive in view of the third subsystem of (4.5.13) is zero. Assuming y1 = 0 and
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y2 = 0, calculate the mean for that subsystem Θ2
2(z0, x0) = −2(z4

0 + z2
0x

4
20).

The mean ϕ2
2 is negative definite with respect to z0 at any x20 and therefore

it satisfies condition (4) of Theorem 4.5.1.
Now for the first subsystem choose the function v3(x) = x2

2 + (x1 − x2)
2,

whose full derivative satisfies the relation v̇3(x) = −2(x1 − x2
2)

2 = v∗3(x) ≤ 0.
At y1 = 0, y2 = 0, z = 0 obtain Θ3

3(x0) = −2x4
20.

The conditions of Theorem 4.5.1 are satisfied; therefore, the solution y = 0,
z = 0, x = 0 of the sytem (4.5.12) is µ-stable.

Now we will need the following definition.
The mean Θαs

s (t0, xαs0, . . . , xm0) > 0 in the set E(w∗
s = 0) of the domain

vs > 0, if for any positive λ, however small it may have been chosen, there exist
positive numbers δs(λ) and rs(λ) such that at t0 ∈ R+ and xs0 ∈ Ds satisfying
the condition vs(t0, x0) > λ, ρ(xs0, E(w∗ = 0)) < rs(λ), the inequality

Θαs
s (t0, xαs0, . . . , xm0 > δs(λ)

will hold at all xk0 ∈ Dk, k = αs, . . . , s− 1, s+ 1, . . . ,m.

Theorem 4.5.2 Let the following conditions be satisfied for the system
(4.5.1):

(1) for the s-th subsystem there exists a function vs(t, xs) which has a do-
main vs(t, xs) > 0 and is bounded therein;

(2) in the domain vs > 0

∂vs

∂t
+

(

∂vs

∂xs

)T

fs(t, xs) ≥ w∗
s ≥ 0;

(3) there exist summable functions Ms(t), Fs(t), constants Ms0, Fs0, and a
function χs(β) ∈ K such that on any finite interval [t1, t2] the following
inequalities will hold:

‖gs(t, x1, . . . , xm)‖ ≤Ms(t),

t2
∫

t1

Ms(t) dt ≤Ms0(t2 − t1),

|ϕα1

s (t, x′1, . . . , x
′
m) − ϕα1

s (t, x′′1 , . . . , x
′′
m)| ≤ Fs(t)χs

( m
∑

k=1

‖x′k − x′′k‖
)

,

t2
∫

t1

Fs(t) dt ≤ Fs0(t2 − t1)

at t, xs from the domain vs > 0 and xn ∈ Dn, n = 1, . . . , s − 1, s +
1, . . . ,m;
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(4) uniformly with respect to (t0, xs0) from the domain vs > 0 and xn0 ∈ Dn,
n = αs, . . . , s−1, s+1, . . . ,m, there exists a mean Θαs

s (t0, xαs0, . . . , xm0;

(5) the mean Θαs
s is above zero in the set E(v∗s = 0) of the domain vs > 0;

(6) for each i-th subsystem (i = 1, . . . , s−1) the conditions of Theorem 4.5.1
are satisfied.

Then the solution x = 0 of the system (4.5.1) is µ-unstable.

Proof Let εs ∈ (0, H) and t0 ∈ R+ be specified. We will show that it is
possible to find an arbitrarily small x0 such that the solution x(t, t0, x0) of the

system (4.5.1) at some point of time will leave the domain ‖x‖ =
m
∑

k=1

‖xk‖ < ε.

Choose the value of xs0 as small as we please and such that at the specified t0
that value would belong to the domain vs > 0. Then there will exist a number
α > 0 such that vs(t0, xs0) > α. Under condition (5) of the theorem, for α > 0
there exist positive numbers δs(α) and rs(α) such that one of the following
inequalities holds:

ρ(xs0, E(v∗s = 0)) ≥ rs(α)

or
Θαs

s (t0, xαs0, . . . , xm0 > δs(α).

Determine the number

εs−1 ≤ min

(

χ−1
s (δs/4Fs0)

2(αs − 1)
, εs

)

.

For the positive definite function vs−1(t, xs−1) there exist functions
as−1(‖xs−1‖) and bs−1(‖xs−1‖) from the class K such that the following in-
equality would hold:

as−1(‖xs−1‖) ≤ vs−1(t, xs−1) ≤ bs−1(‖xs−1‖).

Choose ηs−1 = b−1
s−1(as−1(εs−1/2)). For the numbers ηs−1 and εs−1/2, accord-

ing to condition (4), there exists a value δs−1(ηs−1, εs−1/2). Thus, for each
subsystem sequentially determine

εk = min

(

χ−1
k+1(δk+1/4Fk+10)

2(αk+1 − 1)
, εk+1

)

,

the functions ak(‖xk‖) ∈ K and bk(‖xk‖) ∈ K, the numbers ηk =
b−1
k (ak(εk/2)) and δk(ηk, εk/2), k = s− 2, . . . , 1.

In the proof of Theorem 4.5.1 it was shown that for ‖xi0‖ < ηi, xj0 are
any arbitrarily small, i = 1, . . . , s − 1, j = s + 1, . . . ,m, each component
xi(t, t0, x10, . . . , xm0) will satisfy the condition ‖xi‖ < εi at µ < µ′

0, at least
until any of the components xj(t, t0, x0), j = s, s+1, . . . ,m, leaves the domain
‖xj‖ < H , j = s, . . . ,m. Show that for xs(t, t0, x0) at some point of time the
condition ‖xs‖ = εs will be satisfied.
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Consider some properties of the solution xs(t, t0, x0).

(a) Let the following conditions be satisfied at a point of time τ

vs(τ, xs(τ)) > α, ρ(xs(τ), E(w∗
s = 0)) ≥ rs(α).

Estimate the change of the function vs(t, xs(t)). From condition (3) of the
theorem obtain |ϕα1

s (t, x1, . . . , xm)| ≤ csFs(t) at (t, x) ∈ Ω, where cs is some
constant. Choose

µ < µ′
s = γs/2csFs0, γs = inf

xs∈Ps

v(xs),

Ps = {xs : ρ(xs, E(w∗
s = 0)) ≥ rs/2,

vs(t, xs) > α, t ∈ R+, ‖xs‖ < εs}.

Then for all t > τ , at which the conditions

xs ∈ U = {xs : ρ(xs, E(w∗
s = 0)) ≥ rs/2, ‖xs‖ < εs}

are satisfied, obtain

vs(t, xs(t)) ≥ w∗
s(xs(t)) + µϕα1

s (t, x1(t), . . . , xm(t)) ≥ γs

2
. (4.5.14)

The function vs(t, xs(t)) is not decrescent; therefore, the solution
xs(t, τ, x(τ)) will not leave the domain vs > 0 and the inequality vs > α will
not be violated. Taking into account that in the domain vs > 0 at ‖xs‖ < εs

in view of condition (1) of the theorem |(vs(t, xs)| < ω, where ω is some con-
stant, show that xs(t, µ) cannot permanently remain in the domain U within
the time interval T = 2(ω − α)/γs. Indeed, if we assume the contrary, then
from the inequality (4.5.14) at a point τ we will obtain

vs(t, xs(t)) ≥ vs(τ, x(τ)) +
γs

2
(t− τ) > ω.

This inequality contradicts the condition of the boundedness of the function
vs(t, xs).

The contradiction proves that there exists a point of time from the interval
τ + T , when one of the inequalities is violated:

ρ(xs, E(w∗
s = 0)) ≥ rs

2
, or ‖xs‖ < εs.

The violation of the second inequality means the instability. Assume that the
first inequality is violated.

(b) Let the following conditions be satisfied at a point of time τ :

vs(τ, x(τ)) > α, ρ(xs(τ), E(w∗
s = 0)) > rs(α).

Taking into account condition (5) of the theorem, obtain

Θαs
s (τ, xαs

(τ), . . . , xm(τ)) > δs(α). (4.5.15)
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Estimate the change of the function vs(t, xs(t)). For t > τ the following con-
dition is satisfied:

vs(t, xs(t)) ≥ vs(τ, x(τ)) + µ

t
∫

τ

ϕαs
s (t, x(t)) dt ≥ vs(τ, xs(τ))

− µ

t
∫

τ

|ϕαs
s (t, x(t)) − ϕαs

s (t, xαs
(t), . . . , xm(t))| dt

+ µ

t
∫

τ

ϕαs
s (t, xαs

(t), . . . , xm(t)) dt.

(4.5.16)

Estimate the last integral in (4.5.16), using the existence of the mean
ϕαs

s (τ, xαs
(τ), . . . , xm(τ)), the inequality (4.5.15), and choosing the time in-

terval ls so large that at t > τ + ls the following inequality would hold:

t
∫

τ

ϕαs
s (t, xαs

(t), . . . , xm(t)) dt >
3

4
δs(t− τ). (4.5.17)

Choose µ′′
s so that on the interval [τ, τ + 2ls + T ] at µ < µ′′

s the following
condition would be satisfied:

m
∑

k=αs

‖xk − xk‖ <
χ−1

s (δs/4Fs0)

2
. (4.5.18)

This can be done by using Lemma 4.2.2:

µ′′
s =

χ−1
s (δs/4Fs0)

2(2ls + T ) exp(2ls + T )
m
∑

k=αs

Mk0

.

From condition (3) of the theorem, taking into account the inequality (4.5.18)
and the chosen numbers εi, i = 1, . . . , αs − 1, obtain

t
∫

τ

|ϕα1

s (t, x(t)) − ϕαs
s (t, xαs

(t), . . . , xm(t)) dt

≤
t
∫

τ

Fs(t)χs

( αs−1
∑

i=1

‖xi(t)‖ +

m
∑

k=αs

‖xk(t) − xk(t)‖
)

dt

≤ δs
4

(t− τ)

(4.5.19)

at t ∈ [τ, τ + 2ls + T ].
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Choose µ′′′
s so that the solution xs(t, τ, x(τ)) on the interval [τ, τ +2ls +T ]

would not leave the domain vs > 0. For this purpose, µ′′′
s should satisfy the

inequality

µ′′′
s

[

t
∫

τ

ϕαs
s (t, xαs

(t), . . . , xm(t)) dt+
δs
4

(t− τ)

]

<
α

2

at t ∈ [τ, τ + 2ls + T ]. Then at

µ < µ′′
0 = min(µ′

0, µ
′′
s , µ

′′′
s )

and t ∈ [τ + 2ls, τ + 2ls + T ] from the inequality (4.5.16), taking into account
(4.5.17) and (4.5.19), obtain

vs(t, xs(t)) ≥ vs(τ, x(τ)) + µ
δs
2

(t− τ) > α. (4.5.20)

Therefore, due to the chosen µ′′
0 , the solution xs(t, τ, x(τ)) will not leave

the domain vs > 0 on the interval [τ, τ + 2ls + T ] and at any point t ∈
[τ + 2ls, τ + 2ls + T ] the estimate (4.5.20) holds.

Choose µ0 = min(µ′
s, µ

′′
0 ) and consider the sequence of points of time

ti = t0 + i(2ls + T ), i = 1, 2, . . . .

At an initial point of time t0 the conditions of one of the cases (a) or (b)
are satisfied. The function vs(t, xs(t)) will increase on each interval [ti, ti+1]
at least by the value µδsls at µ ∈ (0, µ0). Assuming that xs(t, t0, x0) on an
interval [t0, tn], where n is the smallest integer satisfying the condition

n ≥ (ω − α)/µδsls,

is in the domain ‖xs‖ < εs, for a point of time tn obtain

vs(tn, xs(tn)) ≥ vs(t0, xs0) + nµδsls.

This inequality contradicts the condition of the boundedness of the function
vs(t, xs) in the domain vs > 0. The contradiction means that there exists a
point of time t1 ∈ (t0, t0 + n(2ls + T )) at which the condition ‖x(t1, µ)‖ ≥
‖xs(t1, t0, x0)‖ = εs is satisfied.

The theorem is proved.

If we consider gs(t, x1, . . . , xm), s = 1, . . . ,m, as weak connections for
which gs(t, 0, . . . , 0) 6= 0, then for the correctness of Theorem 4.5.2 additional
limitations on ϕα1

s (t, x1, . . . , xm) are required, like it was done earlier.
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4.6 Stability with Respect to a Part of Variables

Represent the system of equations (4.2.1) in the form

dy

dt
= Y (t, y, z) + µG(t, y, z),

dz

dt
= Z(t, y, z) + µQ(t, y, z),

(4.6.1)

where y ∈ Rm, z ∈ Rp, Y ∈ C(R+ × Rm × Rp, Rm), G ∈ C(R+ × Rm ×
Rp, Rm), Z ∈ C(R+×Rm×Rp, Rp), Q ∈ C(R+×Rm×Rp, Rp), i. e. f(t, x) =
(Y T(t, y, z), ZT(t, y, z))T, x = (yT, zT)T, ‖y‖ = (yTy)1/2, ‖z‖ = (zTz)1/2,
and ‖x‖ = (‖y‖2 + ‖z‖2)1/2.

The vector functions Y (t, y, z) and G(t, y, z) in the domain

P = {t ∈ R+, y ∈ Dy = {y : ‖y‖ < H}, 0 ≤ ‖z‖ <∞} (4.6.2)

satisfy the conditions for the existence and uniqueness of the solution of the
Cauchy problem for the system (4.6.1). In addition, Y (t, y, z) in the domain
(4.6.2) satisfies the Lipschitz condition with respect to the variables y, z with
a constant L and Y (t, 0, z) = 0, that is, the system (4.6.1) has the equilibrium
y = 0 at µ = 0.

For the system (4.6.1) assume that any solution x(t, µ) of this system is
determined at all t ≥ 0 for which ‖z(t, µ)‖ ≤ H , H = const > 0, that is, the
solution x(t, µ) is z-continuable.

Together with the generating system

dy

dt
= Y (t, y, z), y(t0) = y0,

dz

dt
= Z(t, y, z), z(t0) = z0,

(4.6.3)

we will consider the auxiliary function v(t, x), x = (yT, zT)T, defined in the
domain (4.6.2). Recall the following definitions.

Definition 4.6.1 The function v(t, y, z) is positive definite with respect
to y in the domain (4.6.2) if and only if there exists a function a from the
K-class, such that

a(‖y‖) ≤ v(t, y, z) at all (t, y, z) ∈ P.

Definition 4.6.2 The function v(t, y, z) is decrescent with respect to y
in the domain P , if and only if there exists a function b from the K-class such
that

v(t, y, z) ≤ b(‖y‖) at all (t, y, z) ∈ P.
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Definition 4.6.3 The state of equilibrium x = 0 of the system (4.6.1) is
(y, µ)-stable, if for any ε > 0, t0 ∈ R+ there exists η(ε) > 0 and µ0(ε) > 0, not
depending on t0, such that for an arbitrary solution x(t, t0, x0) of the system
(4.6.1) the condition ‖y(t, t0, x0)‖ < ε is satisfied at all t ≥ t0 as soon as
‖x0‖ < η and µ < µ0.

The mean Θ(t0, y0, z0) is less than zero in the set E(v∗ = 0) with respect to
the variables y, if for any numbers η and ε, 0 < η < ε < H , there exist positive
numbers r(η, ε) and δ(η, ε) such that Θ(t0, y0, z0) < −δ at η ≤ ‖y0‖ ≤ ε,
ρ(y0, E(v∗ = 0)) < r(η, ε), 0 ≤ ‖z0‖ <∞. Here the continuous function v∗(y)
is determined at y ∈ Dy.

The following statement is correct.

Theorem 4.6.1 Let the following conditions be satisfied in the domain
(4.6.2):

(1) there exists a y-positive definite function v(t, x), decrescent with respect
to y and such that

Dv(t, x)|(4.6.3) ≤ v∗(y) ≤ 0;

(2) there exist summable functions M(t), F (t), N(t), constants M0, F0, and
N0, and a function χ(β) ∈ K, such that the following inequalities hold :

ϕ(t, x) ≤ N(t),

t2
∫

t1

N(t) dt ≤ N0(t2 − t1)

at y ∈ Dy \ E(v∗ = 0), 0 ≤ ‖z‖ <∞, t ∈ J , and

‖G(t, x)‖ ≤M(t),

t2
∫

t1

M(t) dt ≤M0(t2 − t1),

|ϕ(t, x′) − ϕ(t, x′′)| ≤ χ(‖x′ − x′′‖)F (t),

t2
∫

t1

F (t) dt ≤ F0(t2 − t1)

in the domain (4.6.2) on any finite interval [t1, t2];

(3) uniformly with respect to t0, x0 there exists a mean Θ(t0, y0, z0);

(4) the mean Θ(t0, y0, z0) is less than zero in the set E(v∗ = 0) with respect
to variables y.
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Then the solution x = 0 of the system (4.6.3) is (y, µ)-stable.

Proof Let ε ∈ (0, H) and t0 ∈ R+ be specified. Assume that the conditions
of Theorem 4.6.1 are satisfied. For the function v(t, x) in view of condition (1)
there exist functions a ∈ K and b ∈ K such that in the domain (4.6.2) the
following inequality holds:

a(‖y‖) ≤ v(t, x) ≤ b(‖y‖). (4.6.4)

For all points of the moving surface v(t, x) = a(ε/2) in view of the inequality
(4.6.4) obtain

b−1(a(ε/2)) ≤ ‖y‖ ≤ ε/2 (4.6.5)

for all t ∈ R+. Let η(ε) = b−1(a(ε/2)) and consider the solution x(t, t0, x0) of
the system (4.6.1) at ‖x0‖ < η(ε). Assume that it left the domain ‖y‖ < η(ε)
and at some point of time t′0 crossed the surface v(t, x) = a(ε/2) in a point x′0.
For this point the inequality (4.6.5) is correct, and in view of condition (4) of
the theorem there exists r(η, ε/2) and δ(η, ε/2) such that one of the following
conditions is satisfied:

ρ(y′0, E(v∗ = 0)) > r(η, ε/2), Θ(t′0, y
′
0, z

′
0) < −δ(η, ε/2).

Consider the following properties of the solution x(t, t0, x0).

(a) Let the following conditions be satisfied at a point τ

v(τ, x(τ)) = a(ε/2), ρ(y(τ), E(v∗ = 0)) ≥ r(η, ε/2).

Consider the behavior of the function v(t, x) along the solution
x(t, τ, x(τ)) = (y(t, τ, x(τ)), z(t, τ, x(τ))):

v(t, x(t)) ≤ v(τ, x(τ)) +

t
∫

τ

v∗(y(t)) dt+ µ

t
∫

τ

ϕ(t, x(t)) dt. (4.6.6)

In this case, at µ < µ′
0 = γ/2N0 (γ = inf

x∈Q
|v∗(y)|, Q = {y : ρ(y,E(v∗ =

0)) > r/2, η ≤ ‖y‖ ≤ ε/2}) for all t > τ , for which the following conditions
are satisfied:

‖y(t)‖ ≥ η, ρ(y(t), E(v∗ = 0)) > r/2,

obtain
v(t, x(t)) ≤ a(ε/2)− γ

2
(t− τ). (4.6.7)

The function v(t, x(t)) is not increscent at µ < µ′
0, which means that for the

solution x(t, τ, x(τ)) in view of the inequality (4.6.5) the condition ‖y(t)‖ ≤
ε/2 will be satisfied, at least until the inequality

ρ(y(t), E(v∗ = 0)) > r/2

is violated.
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(b) Let the following conditions be satisfied at a point τ :

v(τ, x(τ)) = a(ε/2), ρ(y(τ), E(v∗ = 0)) < r(η, ε/2).

In this case, under condition (4) of the theorem, Θ(τ, y(τ), z(τ)) < −δ. Ne-
glect the first integral in the inequality (4.6.6) and estimate the last one. For
this purpose, choose a time interval l and the values µ1 and µ2 so that at
µ < µ2 on the interval [τ, τ + 2l] for the solution x(t, τ, x(τ)) the condition
‖y(t, τ, x(τ))‖ < ε will be satisfied. Choosing µ < µ′′

0 = min(µ1, µ2), for the
second integral from the inequality (4.6.6) at t > τ + l obtain the estimate

t
∫

τ

ϕ(t, x(t)) dt ≤ − δ
4
(t− τ).

This integral, at least from the point of time τ + l, becomes negative, which
means that the solution x(t, τ, x(τ)) will return into the domain bounded by
the surface v(t, x) = a(ε/2).

As is clear from properties (a) and (b), for the solution x(t, t0, x0) of the
system (4.6.1) the condition ‖y(t, t0, x0)‖ < ε will hold for all t ≥ t0, which
proves the theorem.

Obviously, for the study of stability with respect to a part of variables it
is also possible to use the perturbed Lyapunov function

v(t, x, µ) = v0(t, x) + u(t, x, µ),

where the perturbation u at small values of µ may be sufficiently small.

4.7 Applications

4.7.1 Analysis of two weakly connected oscillators

Consider the system of two weakly connected oscillators

ẋ1 = x2, ẋ2 = −ω2
1x1 + µω2

1x1x3x4 cos ν1t,

ẋ3 = x4, ẋ4 = −ω2
2x3 + µω2

2x1x2x3 cos ν2t.
(4.7.1)

The degenerate system corresponding to (4.7.1) is stable, which is determined
by the existence of the Lyapunov function

v0 = ω2
1x

2
1 + x2

2 + ω2
2x

2
3 + x2

4,

whose derivative in view of the degenerate system is identically zero. Hence it
follows that the properties of stability or instability of the system (4.7.1) are
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determined by the sign of the mean Θ0(t0, x0). The mean Θ0(t0, x0) for the
system (4.7.1) is determined by the expression

Θ0(t0, x0) = Θ
(1)
0 (t0, x0) + Θ

(2)
0 (t0, x0),

where

Θi
0(t0, x0) = lim

T→∞

1

T

t0+T
∫

t0

ϕ(i)(t, x(t))dt,

ϕ(i)(t, x(t)) = 2ω2
i x1x2x3x4 cos νit

(4.7.2)

and xi, i = 1, 2, 3, 4, is a solution of the degenerate system corresponding to
(4.7.1) under the initial condition xi(0) = x0

i .
Denoting α = x0

2(ω1x
0
1)

−1, β = x0
4(ω2x

0
3)

−1 and performing the necessary
transformations, obtain

Θi
0(t0, x0) =

1

8
ω1ω2ω

2
i x

02
1 x

02
3 lim

T→∞

1

T

t0+T
∫

t0

{[4αβ + (α2 − 1)(β2 − 1)]

× [cos(γ1 − νit) + cos(γ1 + νit)]

+ [4αβ − (α2 − 1)(β2 − 1)] [cos(γ2 − νit) + cos(γ2 + νit)]

+ 2[β(α2 − 1) − α(β2 − 1)] [sin(γ1 − νit) + sin(γ1 + νit)]

+ 2[β(α2 − 1) + α(β2 − 1)] [sin(γ2 − νit) + sin(γ2 + νit)]}dt,

(4.7.3)

where γ1 = 2(ω1 − ω2)(t− t0), γ2 = 2(ω1 + ω2)(t− t0).

The mean Θ
(i)
0 (t0, x0) is not identically zero in an arbitrarily small neigh-

borhood of the point x = 0, except for the singular point, when νi = 2|ω1−ω2|
or νi = 2(ω1 + ω2).

Consider the first case in more detail. Let νi = 2|ω1 − ω2|, assuming
that ω1 6= ω2, so that νi 6= 0. Denoting 2(ω1 − ω2)t0 = γ, reduce the mean

Θ
(i)
0 (t0, x0) to the form

Θi
0(t0, x0) =

1

8
ω1ω2ω

2
i x

02
1 x

02
3

1

cos γ
[α(β cos γ − sin γ − 1) +

+ β(sin γ + 1) + cos γ] ×
× [α(β cos γ − sin γ + 1) + β(sin γ − 1) + cos γ].

The mean Θ0(t0, x0) is nonzero when Θ
(1)
0 (t0, x0) 6= 0, or Θ

(2)
0 (t0, x0) 6= 0,

or Θ
(1)
0 (t0, x0) 6= 0 and Θ

(2)
0 (t0, x0) 6= 0 simultaneously. It is easy to see that

in all cases the mean Θ0(t0, x0) is alternating in an arbitrary indefinitely small
neighborhood of the stationary point.

Under the specific choice of νi, the system (4.7.1) satisfies the conditions
of Theorem 4.2.2 on the instability of the equilibrium. To the system (4.7.1)
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Theorem 4.3.1 is applicable. Determine the quantities included into the state-
ment of the theorem. For simplicity of calculations we assume that the norm
of vector x ∈ Rn is specified by the expression ‖x‖ = max

i
{|xi|}.

Then, since

ϕ(t, x) = 2x1x2x3x4(ω
2
1 cos ν1t+ ω2

2 cos ν2t), (4.7.4)

for the values of x, contained in the ring domain ρ < ‖x‖ < ε, where ρ > 0
and ε > 0 (ρ < ε) are arbitrary constants, t ∈ I, one can assume that
ϕ0(ε) = 2ε4(ω2

1 + ω2
2), ϕ0(ε) = 2ε4(ω2

1 + ω2
2).

Estimate the difference ϕ(t, x′) − ϕ(t, x′′), x′, x′′ ∈ Bε, t ∈ I:

|ϕ(t, x′) − ϕ(t, x′′)| = |(x′1x′2x′3x′4 − x′′1x
′′
2x

′′
3x

′′
4 )2(ω2

1 cos ν1t+ ω2
2 cos ν2t)

≤ (|(x′1 − x′′1 )x′2x
′
3x

′
4| + |x′′1 (x′2 − x′′2 )x′3x

′
4|

+ |x′′1x′′2 (x′3 − x′′3 )x′4| + |x′′1x′′2x′′3(x′4 − x′′4 )|) · 2|ω2
1 cos ν1t+ ω2

2 cos ν2t|
< 4ε3‖x′ − x′′‖ · 2|ω2

1 cos ν1t+ ω2
2 cos ν2t|.

Taking into account condition (4) of Theorem 4.3.1, obtain

χ(α) = 4ε3α, F0 = 2(ω2
1 + ω2

2). (4.7.5)

For (t, x) ∈ J × Bε ‖g(t, x)‖ = max{ω2
1 |x1x3x4 cos ν1t|, ω2

2 |x1x2x3 cos ν2t|}
holds, hence it follows that M0 = ε3 max{ω2

1 , ω
2
2}.

Specify a number ε > 0 and introduce a number ε > 0 so that the condition
ε < ε would be satisfied. Consider the surface of the level of the Lyapunov
function v0(x) = ω2

1x
2
1 + x2

2 + ω2
2x

2
3 + x2

4 = ωε.
For this surface to lie inside the ε-neighborhood of the origin of coordinates,

it is obviously sufficient to choose

ωε = ε2 min{1, ω2
1, ω

2
2}. (4.7.6)

Similarly,
ωε = ε2 min{1, ω2

1, ω
2
2}. (4.7.7)

Determine η as the radius of the η-neighborhood of the stationary point,
nested in the surface v0(x) = wε. For the point x ∈ Bη obtain v0(x) ≤
η2(2 + ω2

1 + ω2
2) = ε2 min{1, ω2

1, ω
2
2}, whence

η = ε
min{1, ω2

1, ω
2
2}

√

2 + ω2
1 + ω2

2

. (4.7.8)

Estimate the function κ(t) in the relation

1

t− t0

t
∫

t0

ϕ(t, x(t))dt = Θ0(t0, x0) + κ(t),



Stability of Weakly Perturbed Systems 169

when νi do not satisfy the resonance conditions, and in the event when the
resonance conditions are satisfied.

In the first case Θ
(i)
0 (t0, x0) = 0. Hence, taking into account (4.7.3), it

follows that

|κi(t)| =
1

t− t0

∣

∣

∣

t
∫

t0

2ω2
i x1x2x3x4 cos νitdt

∣

∣

∣

<
1

t− t0
· ω1ω2

4
ω2

i x
02
1 x

02
3 (α2 + 1)(β2 + 1)di

<
1

t− t0
· ω2

i

4ω1ω2
η4(1 + ω2

2)di,

where

di =
1

|2(ω1 − ω2) − νi|
+

1

|2(ω1 − ω2) + νi|
+

+
1

|2(ω1 + ω2) − νi|
+

1

2(ω1 + ω2) + νi
.

If the value νi is resonance, then Θ
(i)
0 (t0, x0) 6= 0 and obtain a similar esti-

mate for κi(t), but the expression for di does not contain a summand whose
denominator is zero at the specified value of νi.

Thus, at t ∈ [t0 + l, t0 + 2l] the condition |κ(t)| < δ/4 will be satisfied,
when l is determined by the inequality

l ≥ η4

δ

(1 + ω2
1)(1 + ω2

2)

ω1ω2
(ω2

1d1 + ω2
2d2). (4.7.9)

Find µ1 by the formula

µ1 = (ε− ε)
[

M0 · 2le2lN
]−1

, (4.7.10)

where N = max{ω2
1 , ω

2
2}. Choose µ2 so small that the inequality χ(µ2M0 ·

2le2lN)F0 ≤ δ/4 would hold. From the last expression, taking into account
(4.7.5), obtain

µ2 =
δ

16ε3F0
[M0 · 2le2lN ]−1. (4.7.11)

Now determine µ0 = min{µ1, µ2}.
Applying Theorem 4.3.1 to the system (4.7.1), one can formulate the fol-

lowing statement.

Corollary 4.7.1 Let at a specified number ε > 0 and some ε, 0 < ε < ε,
the quantities ϕ0(ε), ϕ0(ε), wε, wε, η, l, µ0 be determined by the expressions
(4.7.4) – (4.7.11). Then at µ < µ0 the solution x(t; t0, x0) of the system (4.7.1),
which began at a point x0 ∈ E−

Θ (t0) ∩ Bη, will not leave the domain ‖x‖ < ε
on the time interval t ∈ [t0, t0 + T ], where T = 2l + lδ[ϕ0(ε)]

−1 + (wε −
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wε)[µϕ0(ε)]
−1 and the quantity δ at the specified t0, x0 is determined by the

inequality 0 < δ < −Θ0(t0, x0).

Let in the system (4.7.1) ω1 = 1, ω2 = 2, ν1 = ν2 = 2|ω1−ω2| = 2. Having
determined ϕ0(ε), ϕ0(ε), wε, wε, η, l, µ0 from the expressions (4.7.4) – (4.7.11),
we arrive at the following statement.

Corollary 4.7.2 The solution of the system (4.7.1), satisfying the con-

dition x0 ∈ E−
Θ (t0) at the initial point, with ‖x0‖ <

ε√
14

, at µ < µ0 will not

leave the ε-neighborhood of the point x = 0 on an interval t ∈ [t0, t0 + T ],
where

T = 2l+
2lδ

5ε4
+

1

20µε2
, µ0 = min

{

(2 −
√

2)ε,
δ

80ε3

}

e−8l

16lε3
,

l ≥ 125

784

ε4

δ
,

and the quantity δ is determined from the above relations.

In the event when neither of the resonance conditions is satisfied in the
system (4.7.1), the mean Θ0(t0, x0) is identically zero, and it is necessary to use
the perturbed Lyapunov function v(t, x, µ) to solve the question of stability
of the system (4.7.1). Let

v(t, x, µ) = v0(t, x) + µv1(t, x).

Differentiate the perturbed Lyapunov function in view of the equations of the
system (4.7.1) (here it is taken into account that a nonperturbed system is
neutrally stable)

dv

dt
= µ

(

∂v1
∂t

+
∂v1
∂x

f(t, x) + ϕ(t, x)

)

+ µ2 ∂v1
∂x

g(t, x).

Determine v1(t, x) as a solution of the linear equation in first-order partial
derivatives

∂v1
∂t

+
∂v1
∂x

f(t, x) = −ϕ(t, x). (4.7.12)

Since the characteristics of the equation (4.7.12) are the integral curves of the
nonperturbed system (4.2.3), by integrating the equation (4.7.12) with the
initial conditions v1(0, x0) = 0 obtain the function v1(t, x) which is equal to
zero on the initial set t = 0, x0:

v1(t, x) = −
t
∫

0

ϕ(τ, x(τ)) dτ.

For the system (4.7.1) the equation (4.7.12) takes the form

∂v1
∂t

+ x2
∂v1
∂x1

− ω2
1x1

∂v1
∂x2

+ x4
∂v1
∂x3

− ω2
2x3

∂v1
∂x4

= −ϕ(t, x),



Stability of Weakly Perturbed Systems 171

whence

v1(t, x) = −2

t
∫

0

x1x2x3x4(ω
2
1 cos ν1τ + ω2

2 cos ν2τ) dτ.

The system (4.7.1) with the constructed perturbed Lyapunov function
v(t, x, µ) = v0(x) + µv1(t, x) satisfies the conditions of theorems from Sec-
tion 4.2 on the stability and instability of a stationary point. Therefore, the
stability of the system is determined by the sign of the mean Θ1(t0, x0) =

Θ
(1)
1 (t0, x0) + Θ

(2)
1 (t0, x0), where

Θ
(1)
1 (t0, x0) = lim

T→∞

1

T

t0+T
∫

t0

ω2
1

∂v1
∂x2

x1x3x4 cos ν1t dt,

Θ
(2)
1 (t0, x0) = lim

T→∞

1

T

t0+T
∫

t0

ω2
2

∂v1
∂x4

x1x2x3 cos ν2t dt.

The final form of the function and the means is not given here due to their
awkwardness.

Like in the treatment of the mean Θ0(t0, x0), in the case under consider-
ation it turns out that in an arbitrary indefinitely small neighborhood of the
point x = 0 the mean Θ1(t0, x0) is alternating. In the same manner as for
the mean Θ0(t0, x0), obtain that the solution of the system (4.7.1) is unstable
at those values of ν1 and ν2, at which Θ1(t0, x0) 6= 0, that is, the resonance
occurs. Here the resonance values will be those of ω1, ω2, ν1, and ν2, for which
the following relations hold:

ω1 = 2ω2, 2ω1 = ω2, ν1 = ω1, ν2 = ω2, ν1 = 2ω2,

ν2 = 2ω1, ν1 = ω1 + 2ω2, ν1 = |ω1 − 2ω2|, ν2 = 2ω1 + ω2,

ν2 = |2ω1 − ω2|, ν1 + ν2 = 2ω1, ν1 + ν2 = 2ω2, |ν1 − ν2| = 2ω1,

|ν1 − ν2| = 2ω2, ν1 + ν2 = 4ω1, ν1 + ν2 = 4ω2, |ν1 − ν2| = 4ω1,

|ν1 − ν2| = 4ω2, ν1 − ν2 = ±2ω1 ± 4ω2, ν1 − ν2 = ±4ω1 ± 2ω2,

ν1 + ν2 = |2ω1 ± 4ω2|, ν1 + ν2 = |4ω1 ± 2ω2|.

4.7.2 System of n oscillators

In the space R2n consider a system n of weakly connected oscillators

ẋ2i−1 = x2i,

ẋ2i = −ω2
i x1 + µω2

i cos νit
2n
∏

j=1,j 6=2i

xj , i = 1, 2, . . . , n.
(4.7.13)

In a similar manner as was done for the system (4.7.1), determine that the
degenerate system corresponding to (4.7.13) is stable, since the derivative, in
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view of the degenerate system of the Lyapunov function

v0 =
n
∑

i=1

(ω2
i x

2
2i−1 + x2

2i),

is identically zero. Therefore, the properties of stability or instability of the
system (4.7.13) are determined by the sign of the mean Θ0(t0, x0), which is
specified by the expression

Θ0(t0, x0) =

n
∑

i=1

Θ
(i)
0 (t0, x0),

where

Θi
0(t0, x0) = lim

T→∞

2ω2
i

T

t0+T
∫

t0

2n
∏

k=1

xk cos νit dt

and xi, i = 1, 2, . . . , 2n, is a solution of the degenerate system corresponding
to (4.7.13) at the initial condition xi(0) = x0

i .
After necessary transformations, transform the last expression as follows:

Θi
0(t0, x0) =

ω2
i

2n−1

n
∏

k=1

ω2
kx

02
2k−1 + x02

2k

ωk

× lim
T→∞

1

T

t0+T
∫

t0

h
∏

k=1

sin[2ωk(t− t0) + ψk] cos νit dt

where tgψk = 2
ωkx

0
2k−1x

0
2k

−ω2
kx

02
2k−1 + x02

2k

.

Let P denote an integer n-vector whose components pi take on the values
±1, Ω = (ω1, ω2, . . . , ωn) ∈ Rn, Ψ = (ψ1, . . . , ψn) ∈ Rn, 〈P,Ω〉 = p1ω1 + . . .+

pnωn. Upon necessary transformations, for Θ
(i)
0 (t0, x0) obtain the expression

Θ
(i)
0 (t0, x0) =

ω2
i

22n−1

n
∏

k=1

(

ωkx
02
2k−1 +

x02
2k

ωk

)

×

× lim
T→∞

1

T

t0+T
∫

t0

∑

k

sin[2〈Pk,Ω〉(t− t0) + 〈Pk,Ψ ± νit〉] dt.

The limit in the right-hand part is not zero if and only if at least for one value
of k

2|〈Pk,Ω〉| = νi, i = 1, 2, . . . , n. (4.7.14)

Here Θ
(i)
0 (t0, x0) takes the form

Θ
(i)
0 (t0, x0) =

ω2
i

22n−1

n
∏

k=1

(

ωkx
02
2k−1 +

x02
2k

ωk

)

∑

k′

sin(〈Pk′ ,Ψ − 2Ωt0〉), (4.7.15)



Stability of Weakly Perturbed Systems 173

where the summation is applied to those indices k′ for which (4.7.14) holds.

It is obvious that Θ
(i)
0 (t0, x0) determined in such manner is alternating in an

arbitrary indefinitely small neighborhood of the point x = 0.
It is easy to show that in view of the degenerate system, the following

relation holds:
d

dt
Θ

(i)
0 (t, x) = 0.

Therefore, on the solutions of the degenerate system corresponding to (4.7.13),
the mean remains constant

Θ
(i)
0 (t, x(t; t0, x0)) = Θ

(i)
0 (t0, x0).

Thus, the system (4.7.13) satisfies the conditions of Theorem 4.2.2, and at res-
onance values νi determined by the relation (4.7.14) the origin of coordinates
is an unstable equilibrium. In particular, at n = 1 the resonance value will be
ν = 2ω; at n = 2 — νi = 2(ω1 + ω2), νi = 2|ω1 − ω2|; at n = 3 we obtain
four resonance values νi: 2(ω1 + ω2 + ω3), 2|ω1 + ω2 − ω3|, 2|ω1 − ω2 + ω3|,
2| − ω1 + ω2 + ω3|.

Let us use Theorem 4.3.1 to estimate the time interval on which the solu-
tion x(t; t0, x0) will not leave the ε-neighborhood of the point x = 0. For this
purpose it is necessary to estimate ϕ(t, x) and determine the values ϕ0, σ, and
η contained in the statement of the theorem. As it was done before, determine
the norm of vector x ∈ Rn by the expression ‖x‖ = maxi{|xi|}. Then for the
values of x contained in the ring area ρ < ‖x‖ < ε, where ρ, ε = const > 0,
obtain

|ϕ(t, x)| = 2

∣

∣

∣

∣

( 2n
∏

i=1

xi

) n
∑

i=1

ω2
i cos νit

∣

∣

∣

∣

< 2ε2n
n
∑

i=1

ω2
i .

Thus, one can assume that ϕ0 = 2ε2n
n
∑

i=1

ω2
i .

To determine σ(ε) and η(ε), consider the surface of the level of the Lya-
punov function

v0(x) =

n
∑

i=1

(ω2
i x

2
2i−1 + x2

2i) = w0. (4.7.16)

Obviously, the surface (4.7.16) will lie inside the ε-neighborhood of the point
x = 0 if we assume that

w0 = ε2 min
i
{1, ω2

i }. (4.7.17)

Determine σ(ε) by the inequality σ(ε) < w0, assuming that

σ(ε) = (1 − λ2)w0 = (1 − λ2)ε2 min
i
{1, ω2

i }, 0 < λ < 1.

Determine the constant η(ε) as the radius of the η-neighborhood of the point
x = 0 lying inside the surface v0(x) = w0 − σ. For the point x ∈ Bη obtain

v0(x) =
n
∑

i=1

(ω2
i x

2
2i−1 + x2

2i) ≤ η2
n
∑

i=1

(ω2
i + 1) = λ2ε2 min

i
{1, ω2

i },
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whence

η(ε) = ε
λmin

i
{1, ω2

i }
√

n+
n
∑

i=1

ω2
i

. (4.7.18)

Thus, we arrive at the following statement.

Corollary 4.7.3 Solutions of the system (4.7.13) which at the initial point
t0 satisfy the inequality ‖x0‖ < η, where η is determined by the expression
(4.7.18), for all t ∈ [t0, t0 + T ] will not leave the domain ‖x‖ < ε, if T is
determined by the expression

T = (1 − λ2)min
i
{1, ω2

i }
(

2µε2n−2
n
∑

i=1

ω2
i

)−1

. (4.7.19)

Since in the system (4.7.13) the mean is alternating in sign in an arbitrary
indefinitely small neighborhood of the origin of coordinates, we can apply to
it Theorem 4.3.2 on the stability on a finite interval for solutions beginning in
the domain E−

Θ (t0) = {x0 ∈ Bη : Θ0(t0, x0) < 0}. In the same manner as was
done for the system of two oscillators, obtain

M0 = ε2n−1 max
i

{ω2
i }, χ(α) = 2nε2n−1α, F0 = 2

n
∑

i=1

ω2
i ,

a = min
i
{1, ωi}, ωε = ε2a2, ωε = ε2a2, η = εa

(

n+

n
∑

i=1

ω2
i

)− 1
2

,

N = max
i

{1, ω2
i }, ϕ0(ε) = 2ε2n

n
∑

i=1

ω2
i , ϕ0(ε) = 2ε2n

n
∑

i=1

ω2
i ,

l ≥ η2n

22n−3δ

n
∏

i=1

1 + ω2
i

ωi
·

n
∑

i=1

ω2
i di,

µ0 = min

{

ε− ε,
δ

8nε2n−1F0

}

· (M0 · 2le2lN)−1

(4.7.20)
where

di =
∑

k

(

1

|2〈Pk,Ω〉 − νi|
+

1

|2〈Pk,Ω〉 + νi|

)

.

If the value of νi satisfies the resonance conditions (4.7.14), then the expression
for di does not contain a summand whose denominator is equal to zero at the
specified value of νi.

Applying Theorem 4.3.2 to the system (4.7.13), one can formulate the
following statement.
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Corollary 4.7.4 Let at the specified number ε > 0 and some ε, 0 < ε < ε,
the values of ωε, ωε, l, µ0, ϕ0, and η be determined by the expressions (4.7.20).
Then at µ < µ0 the solution x = x(t; t0, x0) of the system (4.7.13), emanating
from the point x0 ∈ E−

Θ (t) such that ‖x0‖ < η, will not leave the domain
‖x‖ < ε on the time interval t ∈ [t0, t0 + T ], where

T = 2l+ lδ

(

2ε2n
n
∑

i=1

ω2
i

)−1

+ a(ε2 − ε2)

(

2µε2n
n
∑

i=1

ω2
i

)−1

,

and the value δ at the specified t0 and x0 is determined from the inequality
0 < δ < −Θ0(t0, x0).

Now revert to Corollary 4.7.3. Let T ∗ denote the point of time at which the
solution reaches the surface S(ε) = {x : ‖x‖ = ε}. Excluding λ from (4.7.18)
and (4.7.19), for T ∗ obtain the estimate

T ∗ ≥ T =

ε2 min
i
{1, ω2

i } − η2
(

n+
n
∑

i=1

ω2
i

)

2µε2n
n
∑

i=1

ω2
i

, (4.7.21)

whence it follows that at a constant ε with a decrease of the η-neighborhood
of the origin of coordinates the value of T approaches the limit

T ′ =
min

i
{1, ω2

i }

2µε2n−2
n
∑

i=1

ω2
i

.

If at a constant η ε is unlimitedly increased, then at n 6= 1 T vanishes.
Thus, the expression (4.7.21) gives a substantially low value of T , since it

would be natural to expect that in the first case T will unboundedly increase,
and in the second case it would at least not decrease. This shortcoming is
eliminated by the application of Theorem 4.3.3, which more completely takes
into account the information on the change of perturbations g(t, x) in the
ε-neighborhood of the origin of coordinates.

Since for the system (4.7.13)

ϕ(t, x) = 2

2n
∏

i=1

xi ·
n
∑

i=1

ω2
i cos νit,

then

ψ(ζ) = 2ζ2n
n
∑

i=1

ω2
i . (4.7.22)

For the function κ(ζ), in view of (4.7.17), obtain the expression

κ(ζ) = ζ2 min
i
{1, ω2

i }. (4.7.23)
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Determine the constant η(ε) as the radius of the η-neighborhood of the point
x = 0 lying inside the surface S0. Assuming that ε0 = λε, 0 < λ < 1, for η(ε)
obtain the expression

η(ε) = λεmin
i
{1, ωi}

(

n+

n
∑

i=1

ω2
i

)− 1
2

. (4.7.24)

Substituting (4.7.22) and (4.7.23) into (4.3.3) and integrating, we arrive
at the following statement.

Corollary 4.7.5 Solutions of the system (4.7.13), which at the initial
point of time t0 satisfy the inequality ‖x0‖ < η, where the value is determined
by the expression (4.7.24), for all t ∈ [t0, t0 + T ] will not leave the domain
‖x‖ < ε if at n 6= 1 T is determined by the expression

T =
min

i
{1, ω2

i }

2(n− 1)µε2n−2
n
∑

i=1

ω2
i

(

1

λ2n−2
− 1

)

(4.7.25)

and at n = 1

T =
min{1, ω2}

µω2
ln

1

λ
,

where 0 < λ < 1.

Excluding λ from (4.7.25), using (4.7.24), at n 6= 1 obtain

T =
min

i
{1, ω2

i }

2(n− 1)µ
n
∑

i=1

ω2
i

(

min
i
{1, ω2n−2

i }

η2n−2
(

n+
n
∑

i=1

ω2
i

)n−1 − 1

ε2n−2

)

,

whence it follows that at a constant ε at a decrease in the η-neighborhood of
the origin of coordinates the value T → ∞, and at an unlimited increase of ε
and a constant η the value of T approaches the limit

T ′′ =
min

i
{1, ω2

i }

2(n− 1)µη2n−2
n
∑

i=1

ω2
i

(

n+
n
∑

i=1

ω2
i

)n−1 .

Thus, Corollary 4.7.5 gives a much better estimate of T than Corollary 4.7.3.
Since in the system (4.7.13) the mean Θ0(t0, x0) is alternating in an ar-

bitrarily small neighborhood of the origin of coordinates, we can apply to
it Theorem 4.3.4 on the stability on a finite interval for solutions beginning
in the domain E−

Θ (t0 ∩ Bη). Here the values η(ε), µ0, l, and the functions
ψ(ζ) and κ(ζ) contained in the statement of the theorem are determined by
the expressions (4.7.20), (4.7.22), and (4.7.23), respectively. Find ε0 from the
relation

ε0 =

(

ε2 − lδµ

min
i
{1, ω2

i }

)
1
2

. (4.7.26)
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Applying Theorem 4.3.4, obtain the following statement.

Corollary 4.7.6 Let at the specified ε > 0 and some ε, 0 < ε < ε, the
values η(ε), µ0, l be determined by the expressions (4.7.20), and the functions
ψ(ζ), κ(ζ), and ε0 by the expressions (4.7.22), (4.7.23), and (4.7.26), respec-
tively. Then at µ < µ0 the solution x = x(t; t0, x0) of the system (4.7.13),
emanating from the point x0 ∈ E−

Θ (t0) such that ‖x0‖ < η, will not leave the
domain ‖x‖ < ε on the time interval t ∈ [t0, t0 + T ], where

T = 2l+
min

i
{1, ω2

i }
2(n− 1)µ

∑n
i=1 ω

2
i

(

1

ε2n−2
0

− 1

ε2n−2

)

and the value of δ at specified t0, x0 is determined from the inequality 0 <
δ < −Θ0(t0, x0).

In conclusion we note that Theorem 4.3.3, like the theorem of the averaging
method, gives the estimate of closeness of solutions on a time interval of the
order 1/µ. On the other hand, this theorem is close to theorems on stability
on a finite interval, which may be obtained on the basis of the comparison
principle. An advantage of Theorem 4.3.3 is the simplicity of definition of the
functions ψ(ζ) and κ.

4.8 Comments and References

The application of the averaging technique in the investigation of real-
world processes dates back to the works of Euler [1], Lagrange [1], Poincaré [2],
and other founders of the mathematical science. In the study of stability of so-
lutions of nonautonomous systems, the averaging technique is applied in many
works (see, e.g., Bogolyubov and Mitropolsky [1], Starzhinsky [1], Roso [1],
Martynyuk [4], Sanders and Verhulst [1], and others).

This chapter contains some results of the analysis of stability of nonlinear
systems with a small parameter on the basis of the combination of the ideas
of the method of Lyapunov functions and the averaging principle of nonlinear
mechanics).

4.2. This section is based on the results of the articles of Martynyuk and
Kosolapov [1] and Kosolapov [3].

4.3. Here the results of the article of Chernetskaya [2] were used. The cited
results adjoin the investigation of Khapaev [1] (Theorem 4.3.1) and the results
obtained by other authors using a similar technique of analysis (see Anashkin
[1, 2]).
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4.4. Here some results obtained by Karimzhanov [1], Karimzhanov and
Kosolapov [1], Martynyuk and Karimzhanov [1, 2], and Martynyuk and Cher-
netskaya [1] are used.

4.5. In the works of Martynyuk [1 – 3], it was for the first time shown
that a method of estimating the stability of motion of large-scale systems
could be applied, which used special means of the derivative of an auxiliary
function along solutions of independent subsystems. This approach was devel-
oped in the works of Kosolapov [1, 2, 4] and others (see, e.g., Karimzhanov
and Kosolapov [1] and others). In this section, the articles of Martynyuk and
Kosolapov [1, 2] were used.

4.6. This section is based on the results obtained by Kosolapov (see [1, 3]).

4.7. This section is based on the results obtained by Chernetskaya (see
[1, 2]).



Chapter 5

Stability of Systems in Banach Spaces

5.1 Introductory Remarks

In this chapter the results of the analysis of µ-stability and boundedness
of solutions of equations in Banach spaces are given. Those equations describe
the class of hybrid systems with weakly interacting subsystems.

Section 5.2 contains some results from the theory of semigroups, which are
required for further treatment.

In Section 5.3, the problem of stability of systems in Banach spaces with
weakly interacting subsystems is formulated.

Section 5.4 contains the description of the general method of solution of
the posed problem. The application of the matrix-valued Lyapunov function is
discussed and the main theorems of that method are formulated for equations
in a Banach space.

In Section 5.5, the vector Lyapunov function is applied and the results of
the analysis of stability of a system in Banach spaces are given.

In Section 5.6, a matrix-valued function is applied to the analysis of µ-
stability of a two-component hybrid system. The case of nonasymptotic sta-
bility of isolated subsystems is considered.

The concluding section contains bibliographic data and some remarks on
further investigation in this line.

5.2 Preliminary Results

Let X or Z denote a Banach space, and let a linear operator A be defined
in the domain D(A) ⊂ X with its rank in Z, that is, A : D(A) → Z. Assume
that D(A) is a dense linear subspace X. The operator A is closed if its graph
Gr(A) = {(x,Ax) ∈ X × Z : x ∈ D(A)} is a closed subset in the product
X × Z. For the specified linear mapping A : D(A) → Z, D(A) ⊂ X, its norm
is determined by the expression

‖A‖ = sup{‖Ax‖ : ‖x‖ = 1},
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and ρ(A) is a resolvent set of the operator A.

Assume that some physical process is described by the linear differential
equation

dx

dt
= Ax, (5.2.1)

x(0) = x0 ∈ D(A) (5.2.2)

at all t ∈ R+. The abstract Cauchy problem (5.2.1) and (5.2.2) is defined
correctly if ρ(A) 6= ∅ and for any x0 ∈ D(A) there exists a unique solution
x : [0,∞) → D(A) in the space C1([0,∞),X).

The family (Q(t))t≥0 of bounded linear operators acting in a Banach
space X is a strictly continuous semigroup of bounded linear operators (C0-
semigroup) if the following conditions are satisfied:

(a) Q(0) = I, I is an identical operator on X;

(b) Q(t)Q(s) = Q(t+ s) at all t, s ≥ 0;

(c) lim
t↓0

‖Q(t)x− x‖ = 0 at all x ∈ X.

The infinitisemal generator of the semigroup (Q(t))t≥0 is a linear operator
A with the domain of definition

D(A) =
{

x ∈ X : lim
t↓0

1

t
(Q(t)x − x) exists

}

in the form

Ax = lim
t↓0

1

t
(Q(t)x − x), x ∈ D(A).

Along with the problem (5.2.1) and (5.2.2) consider the nonlinear abstract
Cauchy problem

dx

dt
= A(x(t)), (5.2.3)

x(0) = x0 ∈ D(A), (5.2.4)

where A : D(A) → X is a nonlinear mapping. Assume that the solution x(t)
of this problem is determined correctly and exists on R+ = [0,∞).

Let C be a subset of the Banach space X. The family (Q(t))t≥0 of oper-
ators mapping C into C is a nonlinear subgroup on C if the mapping Q(t)x
is continuous with respect to (t, x) on the product R+ × C, Q(0)x = x and
Q(t+ s)x = Q(t) ×Q(s)x for any fixed x ∈ C at (t, s) ∈ R+.

A nonlinear semigroup Q(t) is quasicontracting if there exists a number
w ∈ R such that ‖Q(t)x−Q(t)y‖ ≤ ewt‖x− y‖ at all t ∈ R+ and all x, y ∈ C.
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5.3 Statement of the Problem

Assume that for the equation (5.2.3) a linear (or nonlinear) semigroupQ(t)
is defined on a subspace C ∈ X. Let the point 0 ∈ int C and Q(t) permit the
trivial solution Q(t)x = 0 at all t ∈ R+ and x = 0.

Definition 5.3.1 The trivial solution Q(t)x = 0 of the equation (5.2.3)
is stable if for any ε > 0 there exists δ = δ(ε) > 0 such that ‖Q(t)x‖ < ε at
all t ∈ R+, as soon as ‖x‖ < δ at x ∈ C.

Definitions of other types of stability of the trivial solution Q(t)x = 0 of
the equation (5.2.3) are introduced in the same way as it was done for the
finite-dimensional case in view of Definition 5.3.1.

Now consider the nonlinear equations

dxi

dt
= fi(xi), i = 1, 2, . . . ,m, (5.3.1)

and assume that the corresponding abstract Cauchy problem is correctly de-
fined. Let the semigroup Qi(t) be defined on Ci ⊂ Zi and the point 0 ∈ int Ci

at any i = 1, 2, . . . ,m. The domain D(fi) is assumed to be dense in Ci and
the functions fi are generators of the semigroups Qi(t).

Using the operators gi(x, µ), i = 1, 2, . . . ,m (µ ∈ M = (0, 1] is a small
positive parameter) defined on D(gi) ×M ⊂ X and having the rank in Zi,
combine the equations (5.3.1) into the system

dxi

dt
= fi(xi) + gi(x, µ), i = 1, 2, . . . ,m. (5.3.2)

In particular, the operators gi(x, µ) may have the form

(A) gi(x, µ) =
∞
∑

s=1
µsGis(x1, . . . , xm), i = 1, 2, . . . ,m,

(B) gi(x, µ) =
N−1
∑

s=1
µsGis(x1, . . . , xm), i = 1, 2, . . . ,m,

(C) gi(x, µ) = µGi(x1, . . . , xm), i = 1, 2, . . . ,m.

The operators Gis are assumed to be defined on D(Gis) ⊂ X (on D(Gi) ⊂ X)
and having the rank in Zi. Here xi ∈ Zi and the hypervector xT = (x1, . . . , xm)
is a point in the product of spaces

X =
m
∏

i=1

Zi
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with the norm ‖x‖ =
m
∑

i=1

‖xi‖i. The system of equations (5.3.2) is equivalent

to the equation
dx

dt
= f(x) + g(x, µ)

∆
= A(x, µ),

x(0) = x0 ∈ D(f + g(x, µ)),
(5.3.3)

where fT(x)= (f1(x1), . . . , fm(xm)), gT(x, µ) = (g1(x, µ), . . . , gm(x, µ)).
The system (5.3.2) is a hybrid system with weakly interacting subsystems

(5.3.1). Note that

D(f + g(x, µ)) = D(f) ∩ D(g(x, µ)) =

= D(f) ∩ D(g1(µ)) ∩ D(g2(µ)) ∩ . . . ∩ D(gm(µ)).

In addition, it is assumed that the equation (5.3.3) is correctly defined, the
vector function f(x) + g(x, µ) generates the semigroup Q(t), and the domain
D0 = D(f(x) + g(x, µ)) ∩ D(fs) ∩ D(f(x) + g(x, µ))s is dense in X.

Our objective is to find the method for the analysis of µ-stability of the zero
solution of the system (5.3.2) on the basis of the generalized direct Lyapunov
method.

5.4 Generalized Direct Lyapunov Method

Along with the system (5.3.2) consider the two-index system of functions

U(x) = [uij(x)], i, j = 1, 2, . . . , s, s ≤ m, (5.4.1)

with the elements uii : Zi → R+ and uij : Zi × Zj → R at all i 6= j. Let
θ ∈ Rs

+, θi > 0, and the function

v(x, θ) = θTU(x)θ (5.4.2)

satisfy the conditions:

(1) there exists a neighborhood W ∈ X of the point 0 ∈ int C, such that
v : W → R+;

(2) the function v(x, θ) is continuous with respect to x ∈ W and v(x, θ) = 0,
if and only if x = 0;

(3) there exists a limit

lim
t→0+

sup
v(Q(t)x, θ) − v(x, θ)

t
= Dv(x(t), θ)

along the path x(t) = Q(t)x0 of the system (5.3.3).
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The function (5.4.2) will be called the Lyapunov function for the system
(5.3.2) in Banach space, if it satisfies conditions (1) – (3) and solves the prob-
lem of stability (instability) of the zero solution Q(t)x = 0 of the system
(5.3.2).

Note that the elements uii(x), i = 1, 2, . . . , s, of the matrix function (5.4.1)
are constructed on the basis of the equations (5.3.1) or their linear approxima-
tion, and the elements uij(xi, xj) at (i 6= j) ∈ [1, s] are constructed in view of
the connection operators gi(x, µ) or on the basis of consideration of the pairs
of subsystems

dxi

dt
= fi(xi),

dxj

dt
= fj(xj)

at (i 6= j) ∈ [1, s]. Generally, this approach simplifies the problem of construc-
tion of an appropriate Lyapunov function (functional) for the system (5.3.2)
in Banach space.

Let us cite the main theorems of the generalized direct Lyapunov method
for the system (5.3.2).

Theorem 5.4.1 If at some natural s ≤ m the function v(x, θ), θ ∈ R
s
+,

is a Lyapunov function and there exists a comparison function ϕ1 belonging
to K-class, such that v(x, θ) ≥ ϕ1(‖x‖) in the neighborhood W of the point
0 ∈ int C, and if Dv(x, θ)|(5.3.3) ≤ 0 at all x ∈ W and µ < µ∗ ∈ M , then the
trivial solution Q(t)x = 0 of the system (5.3.2) is µ-stable.

Theorem 5.4.2 If at some natural s ≤ m for the function v(x, θ), θ ∈
Rs

+, there exist three comparison functions ϕ1, ϕ2, ϕ3 of class K, such that
ϕ1(‖x‖) ≤ v(x, θ) ≤ ϕ2(‖x‖) in the neighborhood W of the point 0 ∈ int C,
and Dv(x, θ)|(5.3.3) ≤ −ϕ3(‖x‖) at all x ∈ W and µ < µ∗ ∈ M , then the
trivial solution Q(t)x = 0 of the system (5.3.2) is uniformly asymptotically
µ-stable.

Theorem 5.4.3 If in the conditions of Theorem 5.4.2 W = C = X

and the comparison function ϕ1 belongs to KR-class, then the trivial solution
Q(t)x = 0 of the system (5.3.2) is globally uniformly asymptotically µ-stable.

Theorem 5.4.4 If in the conditions of Theorem 5.4.2 the comparison
functions ϕ2, ϕ3 belong to K-class and have the same order of growth, there
exists a positive constant ∆1 and an integer p such that

∆1‖x‖p ≤ v(x, θ) ≤ ϕ2(‖x‖),

then the trivial solution Q(t)x = 0 of the system (5.3.2) is exponentially µ-
stable.

Theorem 5.4.5 If in the conditions of Theorem 5.4.2 W = C = X and
in the conditions of Theorem 5.4.4 the comparison functions ϕ2, ϕ3 belong to
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KR-class and have the same order of growth, then the trivial solution Q(t)x =
0 of the system (5.3.2) is globally exponentially µ-stable.

Theorem 5.4.6 Let at some natural s ≤ m for the function v(x, θ),
θ ∈ Rs

+, there exist a comparison function ϕ from K-class, such that
−Dv(x, θ)|(5.3.3) ≥ ϕ(‖x‖) in the neighborhood W ⊂ C of the point 0 ∈ int C
at any µ ∈M . If in any neighborhood N ⊂ C of the point 0 ∈ int C there exists
at least a single point x0 ∈ N at which v(x0, θ) < 0, then the trivial solution
Q(t)x = 0 of the system (5.3.2) is µ-unstable.

Theorem 5.4.7 Let C = X and S = {x ∈ X : ‖x‖ ≥ r}, where r may be
sufficiently large. If at some natural s ≤ m for the function v(x, θ) : S → R+,
θ ∈ Rs

+, there exist two comparison functions ϕ1, ϕ2 from KR-class, such that

ϕ1(‖x‖) ≤ v(x, θ) ≤ ϕ2(‖x‖)

at all x ∈ S, and if Dv(x, θ)|(5.3.3) ≤ 0 at all x ∈ S and µ < µ∗ ∈ M , then
the path Q(t)x0 of the system (5.3.2) is uniformly µ-bounded.

Theorem 5.4.8 Let the conditions of Theorem 5.4.7 be satisfied and let
there exist a comparison function ϕ3 from K-class, such that Dv(x, θ)|(5.3.3) ≤
−ϕ3(‖x‖) at all x ∈ S and µ < µ∗ ∈ M . Then the path Q(t)x0 of the system
(5.3.2) is uniformly ultimately µ-bounded.

The constructive application of Theorems 5.4.1 – 5.4.8 is connected with
the solution of the problem of construction of the function (5.4.2) with prop-
erties (1) and (2) and the calculation of its full derivative Dv(x, θ) along the
path x(t) = Q(t)x0 of the system (5.3.3). In a general case, the second prob-
lem is quite intricate. In some cases its solution may be simplified. Precisely,
if the semigroup Q(t) is a C0-semigroup or a quasicontracting semigroup on
a Hilbert space or a uniformly convex Banach space, then the infinitesimal
generator As of the semigroup Q(t) exists on a set D(As) which is dense in C.
In such a case, the calculation of Dv(x, θ)|(5.3.3) is simplified.

The pair (Q(t), v) is permissible for the problem (5.2.2), if v is a Lyapunov
function, the infinitesimal generator As of the semigroup Q(t) is defined on
the set D0 ⊂ D(As) dense in C, and, in addition, there exists a function ∇v
defined on (W ∩ D0) ×X , with its values in R, such that

(a) v(y) − v(x) ≤ ∇v(x, y − x) + o(‖y − x‖) at all x, y ∈ D0 and

(b) at each fixed x the operator ∇v(x, θ, h) is bounded and linear with re-
spect to h ∈ X.

Theorem 5.4.9 (see Michel and Miller [1, pp. 143–144]) Let for the system
(5.3.3) there exist a permissible pair (Q(t), v) and a comparison function ϕ
belonging to K-class, such that ∇v(x, θ, Asx) ≤ −ϕ(‖x‖) at all x ∈ D0 ∩W .
Then Dv(x, θ)|(5.3.3) ≤ −ϕ(‖x‖) at all x ∈W .
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Proof Let x ∈ D0 ∩W . Then, according to the definition of the function
Dv(x, θ), obtain

Dv(x, θ) = lim sup
t→0+

v(ϕ(t)x, θ) − v(x, θ)

t

≤ lim sup
t→0+

∇v(x,Q(t)x − x, θ) + o(‖Q(t)x− x‖)
t

= lim sup
t→0+

∇v
(

x, (Q(t)x − x)/t, θ
)

= ∇v(x,Asx, θ) ≤ −ϕ(‖x‖).
Now assume that x 6∈ D0 ∩ W . Choose a sequence {xn} in D0 so that

xn → x at n→ +∞. Since any element xn belongs to D0, at all t ∈ R+

v(Q(t)xn, θ) − x(xn, θ) ≤ −
t
∫

0

ϕ(‖Q(s)xn‖) ds.

The continuity of all functions contained in the above inequality implies that

v(Q(t)x, θ) − x(x, θ) ≤ −
t
∫

0

ϕ(‖Q(s)x‖) ds.

Hence, obtain

lim sup
t→0+

v(Q(t)x, θ) − v(x, θ)

t
≤ lim sup

t→0+

(

− 1

t

)

t
∫

0

ϕ(‖Q(s)x‖) ds = −ϕ(‖x‖).

Thus, at all x ∈ W obtain the estimate Dv(x, θ) ≤ ≤ −ϕ(‖x‖).
Theorem 5.4.9 is proved.

Note that along with the function (5.4.2) in some cases it makes sense to
apply the vector function

V (x,B, θ) = BU(x)θ, θ ∈ R
s
+, (5.4.3)

where B is an (s × s)-constant matrix. The vector function V (x,B, θ) has
the scalar functions vi(x,B, θ), i = 1, 2, . . . , s, as its components. If in the
expression (5.4.1) uij(·) = 0 at all (i 6= j) ∈ [1, s], then U(x) is a vector
function, that is, U(x) = diag [u11(x), . . . , uss(x)].

5.5 µ-Stability of Motion of Weakly Connected Systems

In this section we will consider the system (5.3.2) with the subsystems
(5.3.1). The dynamic properties of the zero solution Qi(t)xi = 0 of the
subsystem (5.3.1) will be characterized as follows.
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Let for each subsystem from the collection (5.3.1) there exist a semigroup
Qi(t) and a scalar function vi(xi) such that the pair (Qi(t), vi) is permissible.

Assumption 5.5.1 An isolated subsystem from the collection (5.3.1) per-
mits the property A, if for the pair (Qi(t), vi) there exist functions ψi1, ψi2, ψi3

from K-class and constants ∆i > 0 and βi such that:

(1) ψi1(‖xi‖) ≤ vi(xi) ≤ ψi2(‖xi‖) at all xi ∈ Zi, such that ‖xi‖ < ∆i, and

(2) ∇vi(xi,
sfi(xi)) ≤ βiψi3(‖xi‖) at all xi ∈ D(sfi) such that ‖xi‖ < ∆i.

Here sfi is an infinitesimal generator of the semigroup Qi(t).

Assumption 5.5.2 An isolated subsystem from the collection (5.3.1)
permits the property B, if it has the property A at ∆i = +∞ and comparison
functions ψi1, ψi2 from KR-class.

Assumption 5.5.3 The operator of connection gi(x, µ) between the sub-
systems (5.3.1) satisfies the property C, if at the specified permissible pair
(Qi(t), vi) there exist comparison functions ψi3 from K-class and constants
bij(µ), i, j = 1, 2, . . . ,m, such that

∇vi(xi, gi(x, µ)) ≤ ψ
1/2
i3 (‖xi‖)

m
∑

j=1

bij(µ)ψ
1/2
j3 (‖xj‖) (5.5.1)

at all xT = (x1, . . . , xm) ∈ D(f + g(x, µ)) and ‖xi‖ < ∆i, i = 1, 2, . . . ,m.

For the class of systems in Banach space with the subsystems (5.3.1) and
operators of connection between subsystems gi(x, µ), satisfying the properties
A and C, respectively, the following statement is correct.

Theorem 5.5.1 Assume that for each subsystem of the system (5.3.2) in
Banach space there exists a semigroup Qi(t) and a function vi(xi), composing
the permissible pair (Qi(t), vi), and

(1) the isolated subsystems from the collection (5.3.1) permit the property
A;

(2) the operators of connection gi(x, µ) between the subsystems (5.3.1) per-
mit the property C ;

(3) there exist constants θi > 0, i = 1, 2, . . . ,m, and a value of the parameter
µ∗ ∈M such that the matrix A(µ) = [aij(µ)] with the elements

aij(µ) =

{

θi(βi + bii(µ)) at i = j,
1
2 (θibij(µ) + θjbji(µ)) at i 6= j

is negative definite at µ < µ∗.
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Then the trivial solution of the system (5.3.2) is uniformly asymptotically
µ-stable.

Proof Over the set Π = {xT = (x1, . . . , xm) : ‖xi‖ < ∆i at i = 1, 2, . . . ,m}
consider the function

v(x, θ) = U∗(x)θ, θ ∈ R
m
+ , (5.5.2)

where U∗(x) = diag[u11(x1), . . . , umm(xm)]. According to the conditions of
the theorem, the functions uii(xi) = vi(xi) together with the semigroup Qi(t)
form a permisible pair for the i-th subsystem from the collection (5.3.1). It is
obvious that v(x, θ) is a continuous function and v(0, θ) = 0. Since vi(xi, θ)
satisfies condition (1), then

m
∑

i=1

θiψi1(‖xi‖) ≤ v(x, θ) ≤
m
∑

i=1

θiψi2(‖xi‖)

at all x ∈ Π. For the functions ψi1, ψi2 from K-class one can find comparison
functions ψ1, ψ2 belonging to the K-class, such that

ψ1(‖x‖) ≤ v(x, θ) ≤ ψ2(‖x‖) (5.5.3)

at all x ∈ Π, where

ψ1(‖x‖) ≤
m
∑

i=1

θiψi1(‖xi‖)

and

ψ2(‖x‖) ≥
m
∑

i=1

θiψi2(‖xi‖).

For the values of x ∈ W0 ⊂ X calculate the difference

v(x + h, θ) − v(x, θ) =

m
∑

i=1

θi{vi(xi + hi) − vi(xi)}

≤
m
∑

i=1

θi{∇vi(xi, hi) + o(‖hi‖)} =

m
∑

i=1

θi∇vi(xi, hi) + o(‖h‖).

Hence it follows that ∇v(x, θ, h) =
m
∑

i=1

θi∇vi(xi, hi). From the fact that

∇vi(xi, hi) are continuous and linear with respect to hi, it follows that
∇v(x, θ, h) at each fixed x ∈ Π is continuous and linear with respect to h.
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In view of the above and Assumption 5.5.3, obtain

∇v(x, θ, f(x) + g(x, µ)) =

m
∑

i=1

θi∇vi(xi, f(x) + g(x, µ))

=

m
∑

i=1

βi∇vi(xi, f(x)) +

m
∑

i=1

βi∇vi(xi, g(x, µ))

≤
m
∑

i=1

θi

[

βiψi3(‖xi‖) + ψ
1/2
i3 (‖xi‖)

m
∑

j=1

bij(µ)ψ
1/2
j3 (‖xj‖)

]

= uTA(µ)u,

where the elements aij(µ) of the matrix A(µ) = [aij(µ)] are the same as in
condition (3) of Theorem 5.5.1, and the vector u is determined as follows:

uT =
[

ψ
1/2
13 (‖x1‖), . . . , ψ1/2

m3 (‖xm‖)
]

.

Since at µ < µ∗ ∈M the matrix A(µ) is negative definite, then

∇v(x, θ, f(x) + g(x, µ)) ≤ uTA(µ)u ≤ λM (A)‖u‖2,

where λM (A) < 0 at µ < µ∗. The fact that

‖u‖2 =

m
∑

i=1

ψi3(‖xi‖) ≥ ψ3(‖x‖)

for some function ψ3 from K-class implies the estimate

∇v(x, θ, f(x) + g(x, µ)) ≤ λM (A)ψ3(‖x‖)

at all x ∈ Π ∩W0. Hence, according to Theorem 5.4.9, obtain the estimate

Dv(x, θ)|(5.3.3) ≤ λM (A)ψ3(‖x‖), (5.5.4)

which in view of Theorem 5.4.2 secures the uniform asymptotic µ-stability of
the zero solution Q(t)x = 0 of the system (5.3.2).

Theorem 5.5.2 Assume that for each subsystem of the system (5.3.2)
in Banach space there exists a semigroup Qi(t) and a function vi(xi), which
form a permissible pair (Qi(t), vi), and

(1) the isolated subsystems from the collection (5.3.1) permit the property B ;

(2) under the specified functions vi(xi) and the comparison functions ψi3

from K-class there exist constants b∗ij(µ), i, j = 1, 2, . . . ,m, such that
the estimates

∇vi(xi, gi(x, µ)) ≤ ψ
1/2
i3 (‖xi‖)

m
∑

j=1

b∗ij(µ)ψ
1/2
j3 (‖xj‖)

hold at all x ∈ D(f + g(x, µ)), where xT = (x1, . . . , xm) ∈ X;
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(3) there exist constants θi > 0, i = 1, 2, . . . ,m, and a value of the parameter
µ∗ ∈M such that the matrix A(µ) = [aij(µ)] with the elements

aij(µ) =

{

θi(βi + b∗ii(µ)) at i = j,
1
2

(

θib
∗
ij(µ) + θjb

∗
ji(µ)

)

at i 6= j

is negative definite at µ < µ∗.

Then the trivial solution of the system (5.3.2) is globally uniformly asymp-
totically µ-stable.

Proof Under condition (1) of Theorem 5.5.2 the function (5.5.2) is esti-
mated by the comparison functions ψ1(‖x‖) and ψ2(‖x‖) belonging to KR-

class, and the estimate (5.5.3) holds at all x ∈ X =
m
∏

i=1

Xi. Under condition

(2) of Theorem 5.5.2, the estimate (5.5.4) takes the form

Dv(x, θ)|(5.3.3) ≤ λM (A)ψ3(‖x‖),

where ψ3(‖x‖) ≤
m
∑

j=1

ψj3(‖x‖) at all x ∈ X.

According to Theorem 5.4.3, the zero solution xi = Qi(t)xi0 = 0 of the
system (5.3.2) is globally uniformly asymptotically µ-stable.

For the analysis of the exponential µ-stability of the system (5.3.2) we will
need some assumptions on the functions vi(xi) for the subsystems (5.3.1).

Assumption 5.5.4 An isolated subsystem from the collection (5.3.1)
permits the property A∗, if for the pair (Qi(t), vi) there exist comparison
functions ψi2, ψi3 from K-class of the same order of growth, constants ai, ri,
∆i and arbitrary constants βi such that:

(1) ai‖xi‖ri ≤ vi(xi) ≤ ψi2(‖x‖) at all xi ∈ Zi such that ‖xi‖ < ∆i, and

(2) ∇vi(xi,
sfi) ≤ βiψi3(‖xi‖) at all xi ∈ D(sfi) such that ‖xi‖ < ∆i.

Assumption 5.5.5 An isolated subsystem from the collection (5.3.1)
permits the property B∗ if it has the property A∗ at ∆i = ∞ and at comparison
functions of the same order of growth ψi2, ψi3, belonging to KR-class.

Now prove the following statement.

Theorem 5.5.3 Assume that for each subsystem of the system (5.3.2) a
semigroup Qi(t) and a function vi(xi) are constructed which form a permis-
sible pair, and

(1) isolated subsystems from the collection (5.3.1) permit property A∗;

(2) the operators of connection gi(x, µ) between the subsystems (5.3.1) sat-
isfy property C ;
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(3) there exist constants θi > 0, i = 1, 2, . . . ,m, and a value of the parameter
µ∗ ∈ M such that the matrix A(µ) = [aij(µ)], i, j = 1, 2, . . . ,m, from
condition (3) of Theorem 5.5.1 is negative definite at µ < µ∗.

Then the trivial solution of the system (5.3.2) is uniformly exponentially
µ-stable.

Proof Like in the proof of Theorem 5.5.1, apply the function (5.5.2). Under
condition (1) of Assumption 5.5.4 obtain the estimate for the function v(x, θ):

min
i

(θiai)
m
∑

i=1

‖xi‖ri ≤ v(x, θ) ≤ ψ2(‖x‖), (5.5.5)

where ψ2(‖x‖) ≥
m
∑

j=1

θjψj2(‖xj‖), ψ2 belongs to K-class and has an inverse

function ψ−1
2 (‖x‖).

Under conditions (2) and (3) of Theorem 5.5.3 obtain

Dv(x, θ)|(5.3.2) ≤ λM (A)ψ3(‖x‖), (5.5.6)

where ψ3(‖x‖) ≤
m
∑

i=1

ψi3(‖xi‖), λM (A) < 0 at µ < µ∗. Taking into account

that the comparison functions ψ2(‖x‖) and ψ3(‖x‖) have the same order of
growth at all x ∈ Π =

{

xT = (x1, . . . , xm) : ‖xi‖ < ∆i at all i = 1, 2, . . . ,m},
transform the estimates (5.5.5) and (5.5.6). There exist constants k1 and k2 >
0 such that

k1ψ2(‖x‖) ≤ ψ3(‖x‖) ≤ k2ψ2(‖x‖) (5.5.7)

at all x ∈ Π.

Denote a = min
i

(θiai), ‖x‖r =
m
∑

i=1

‖xi‖ri , and let k1 = −λM (A). Then the

estimates (5.5.5) and (5.5.6) take the form

a‖x‖r ≤ v(x, θ) ≤ ψ2(‖x‖),
Dv(x, θ)|(·) ≤ −k1v(x, θ)

at all x ∈ Π. Hence obtain

v(x(t), θ) ≤ v(x0, θ) exp[−k1(t− t0)], t ≥ t0.

Taking into account the inequality in the left-hand part of (5.5.7), obtain

‖x(t)‖ ≤ a−1/rψ
1/r
2 (‖x0‖) exp

[

−k1

r
(t− t0)

]

(5.5.8)

at all t ≥ t0.

Denote λ =
k1

r
and at any 0 < ε < H choose δ(ε) = ψ−1(aεr). Then at

‖x0‖ < δ(ε) the estimate (5.5.8) implies that

‖x(t)‖ ≤ ε exp [−λ(t− t0)] , t ≥ t0.
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Theorem 5.5.3 is proved.

Theorem 5.5.4 Assume that for each subsystem of the system (5.3.2)
there exists a semigroup Qi(t) and a function vi(xi), which form a permissible
pair, and

(1) isolated subsystems from the collection (5.3.1) permit the property B∗;

(2) conditions (2) and (3) of Theorem 5.5.2 are satisfied.

Then the trivial solution of the system (5.3.2) is globally exponentially µ-
stable.

Proof Under the conditions of Assumption 5.5.5 for the function v(x, θ)
obtain the estimate

min
i

(θibi)

m
∑

i=1

‖xi‖ri ≤ v(x, θ) ≤ ψ2(‖x‖), (5.5.9)

where bi > 0, ri > 0 and ψ2(‖x‖) is a function from KR-class, which has an

inverse ψ2(‖x‖) ≥
m
∑

j=1

θjψi2(‖xi‖). For the function Dv(x, θ) obtain

Dv(x, θ)|(5.3.2) ≤ λM (A)ψ3(‖x‖),

where ψ3(‖x‖) ≤
m
∑

j=1

ψi3(‖xi‖), λM (A) < 0 t µ < µ∗.

Similarly to the proof of Theorem 5.5.3 it is easy to obtain the estimate

‖x(t)‖ ≤ b−1/rψ
1/r
2 (‖x0‖) exp

[

−k1

r
(t− t0)

]

, t ≥ t0.

For any α > 0 calculate K(α) = b−1/rψ
1/r
2 (α). Here as soon as ‖x0‖ ≤ α,

then ‖x(t)‖ ≤ K(α) exp [−λ(t− t0)], t ≥ t0, at any xT = (x1, . . . , xm) ∈ X.
Theorem 5.5.4 is proved.

Now we will give the conditions for the µ-stability of the system (5.3.2)
on the basis of the function (5.5.2) in which θ = (1, 1, . . . , 1) ∈ R

m
+ , and the

constants bij ≥ 0 at all i 6= j and µ ≤ µ∗ ∈ M . For this purpose, instead of
the matrix A(µ) with the elements aij(µ), i, j = 1, 2, . . . ,m, consider a matrix
S(µ) with the elements

sij(µ) =

{

−(βi + bii(µ)) at i = j,

−bij(µ) at i 6= j,
(5.5.10)

where βi are constants from condition (2) of Assumption 5.5.1 and bij(µ) are
constants from the estimate (5.5.1). Note that in further consideration of the
properties of global stability in the expressions sij of the matrix S∗(µ) we will
use the constants b∗ij(µ) ≥ 0 at all i 6= j and µ < µ∗ ∈M .
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Consider the following statement.

Theorem 5.5.5 Assume that for each subsystem of the system (5.3.2)
there exist a semigroup Qi(t) and a function vi(xi), which form a permissible
pair (Qi(t), vi), and, in addition:

(1) conditions (1) and (2) of Theorem 5.5.1 with the constants bij(µ) ≥ 0
at i 6= j and all µ < µ∗ ∈ M are satisfied. If the main diagonal minors
of the matrix S(µ) are positive at all µ < µ∗, then the trivial solution of
the system (5.3.2) is uniformly asymptotically µ-stable;

(2) conditions (1) and (2) of Theorem 5.5.2 with the constants b∗ij(µ) ≥ 0
at i 6= j and all µ < µ∗ ∈ M are satisfied. If the main diagonal minors
of the matrix S∗(µ) are positive at all µ < µ∗, then the trivial solution
of the system (5.3.2) is globally uniformly asymptotically µ-stable;

(3) conditions (1) and (2) of Theorem 5.5.3 with the constants bij(µ) ≥ 0
at i 6= j and all µ < µ∗ ∈ M are satisfied. If the main diagonal minors
of the matrix S(µ) are positive at all µ < µ∗, then the trivial solution of
the system (5.3.2) is exponentially µ-stable;

(4) conditions (1) and (2) of Theorem 5.5.4 with the constants b∗ij(µ) ≥ 0
at i 6= j and all µ < µ∗ ∈ M are satisfied. If the main diagonal minors
of the matrix S∗(µ) are positive at all µ < µ∗, then the trivial solution
of the system (5.3.2) is globally exponentially µ-stable.

Proof Prove statement (1). For the function v(x, θ) in the form (5.5.2) it
is not difficult to obtain the estimates (5.5.3) at all x ∈ Π. In addition,

Dv(x, θ)|(5.3.2) ≤ −1

2
uT
(

θS(µ) + ST(µ)θ
)

u, (5.5.11)

where uT =
(

ψ
1/2
13 (‖x1‖), . . . , ψ1/2

m3 (‖xm‖)
)

, S(µ) is an (m×m)-matrix with the
elements (5.5.10), and θ = diag [θ1, . . . , θm]. It is known that the conditions for
the positiveness of the main diagonal minors of the matrix S(µ) are equivalent
to the existence of a diagonal matrix θ with positive elements, such that the
matrix

(

θS(µ) + ST(µ)θ
)

is positive definite at all µ < µ∗ ∈ M . In this case
θi = 1, i = 1, 2, . . . ,m, and this condition is satisfied. Thus, the estimate
(5.5.11) takes the form

Dv(x, θ)|(5.3.2) ≤ λM (S)ψ3(‖x‖) (5.5.12)

at all x ∈ Π and λM (S) < 0 at µ < µ∗. The estimate (5.5.12) and Theorem
5.4.2 imply statement (1) of Theorem 5.5.5.

Statements (2)–(4) of this theorem are proved in a similar manner.

Now we turn our attention to the conditions for the µ-instability of the
trivial solution of the system (5.3.2).
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Assumption 5.5.6 An isolated subsystem from the collection (5.3.1)
permits the property D, if there exists a semigroup Qi(t) and a function vi(xi)
which form a permissible pair (Qi(t), vi), comparison functions ψi1, ψi2, ψi3

from K-class, and real constants βi and ∆i such that

(a) ψi1(‖xi‖) ≤ vi(xi) ≤ ψi2(‖xi‖),

(b) ∇vi(xi,
sfi(xi)) ≥ βiψi3(‖xi‖) at all xi ∈ D(sfi), where D(sfi) denotes

the domain of definition of the infinitesimal generator of the semigroup
Qi(t) at ‖xi‖ < ∆i.

Assumption 5.5.7 The operator of connection between the subsystems
(5.3.1) satisfies the property E, if at a specified permissible pair (Qi(t), vi)
there exist comparison functions ψi3 from K-class and constants cij(µ), i, j =
1, 2, . . . ,m, such that

∇vi(xi, gi(x, µ)) ≥ ψ
1/2
i3 (‖xi‖)

m
∑

j=1

cij(µ)ψ
1/2
i3 (‖xi‖)

at all xT = (x1, . . . , xm) ∈ D(f + g(x, µ)) and ‖xi‖ < ∆i, i = 1, 2, . . . ,m.

Note that if in condition (b) of Assumption 5.5.6 the quantities βi > 0,
i = 1, 2, . . . ,m, then the trivial solution of all independent subsystems (5.3.1)
is unstable.

Consider the following statement.

Theorem 5.5.6 Assume that for each subsystem of the system (5.3.2)
there exists a semigroup Qi(t) and a function vi(xi) which form a permissible
pair (Qi(t), vi), and, in addition:

(1) isolated subsystems from the collection (5.3.1) permit property D ;

(2) the operators of connection gi(x, µ) between the subsystems of (5.3.1)
permit property E ;

(3) there exist constants θi > 0, i = 1, 2, . . . ,m, and a value of the parameter
µ∗ ∈M such that the matrix C(µ) with the elements

cij(µ) =

{

θi(βi + cii(µ)) at i = j,
1
2 (θicij(µ) + θjcji(µ)) at i 6= j

is positive definite at all µ < µ∗.

Then the trivial solution of the system (5.3.2) is µ-unstable.

Proof For the function (5.5.2) under the conditions of Theorem 5.5.6 it is
easy to obtain the estimates

ψ1(‖x‖) ≤ v(x, θ) ≤ ψ2(‖x‖) (5.5.13)
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at all x ∈ Π and
Dv(x, θ)

∣

∣

(5.3.2)
≥ λm(C)ψ3(‖x‖) (5.5.14)

at all x ∈ Π, where λm(C) > 0 is the minimum eigenvalue of the matrix C(µ)
at µ < µ∗. The estimates (5.5.13) and (5.5.14) and Theorem 5.4.6 imply that
the trivial solution of the system (5.3.2) is µ-unstable.

Let us turn now to the properties of the µ-boundedness of the motion of
the system (5.3.2).

Assumption 5.5.8 An isolated subsystem from the collection (5.3.1)
permits the property F, if there exist a semigroup Qi(t) and a function vi(xi)
which form a permissible pair (Qi(t), vi), comparison functions ψi1, ψi2, ψi3

from KR-class, and real constants β∗
i , such that:

(1) ψi1(‖xi‖) ≤ vi(xi) ≤ ψi2(‖xi‖),

(2) ∇vi(xi,
sfi(xi)) ≤ β∗

i ψi3(‖xi‖) at all xi ∈ D(sfi) and

(a) at all ‖xi‖ > ∆∗
i ,

(b) if |vi(xi)| ≤ mi, |∇vi(xi,
sfi(xi))| ≤ mi at ‖xi‖ ≤ ∆∗

i , where mi > 0
is const.

Assumption 5.5.9 The operators of connection gi(x, µ) between the
subsystems of (5.3.1) satisfy property G, if at a specified permissible pair
(Qi(t), vi) there exist real constants bij(µ), i, j = 1, 2, . . . ,m, such that

∇vi(xi, gi(x, µ)) ≤ ψ
1/2
i3 (‖xi‖)

m
∑

j=1

bij(µ)ψ
1/2
j3 (‖xi‖)

at all xT = (x1, . . . , xm) ∈ D(f + g(x, µ)).

Consider the following statement.

Theorem 5.5.7 Assume that for each subsystem of the system (5.3.2)
there exists a semigroup Qi(t) and a function vi(xi) which form a permissible
pair, and, in addition:

(1) isolated subsystems from the collection (5.3.1) permit property F ;

(2) the operators of connection gi(x, µ) between the subsystems of (5.3.1)
permit property G;

(3) there exist constants θi > 0, i = 1, 2, . . . ,m, and a value of the parameter
µ∗ ∈M such that the matrix B(µ) = [bij(µ)] with the elements

bij(µ) =

{

θi(β
∗
i + bii(µ)) at i = j,

1
2 (θibij(µ) + bji(µ)θj) at i 6= j

is negative definite at all µ < µ∗.
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Then the motion of the system (5.3.2) is uniformly ultimately µ-bounded.

Proof Consider the function (5.5.2). Under the conditions of Assumptions
5.5.8 and 5.5.9 for the functions v(x, θ) and Dv(x, θ), obtain the estimates

ψ1(‖x‖) ≤ v(x, θ) ≤ ψ2(‖x‖) (5.5.15)

and
Dv(x, θ)|(5.3.2) ≤ λM (B)ψ3(‖x‖) (5.5.16)

at all x ∈ X −
m
∏

i=1

Si(mi), where Si(mi) = {xi ∈ Zi : ‖xi‖ ≤ mi}.
Consider the estimates (5.5.15) and (5.5.16) in two cases.
Case 1. Let xi ∈ Zi and ‖xi‖ > mi at i = 1, 2, . . . , p.
Case 2. For the values i = p + 1, . . . ,m xi ∈ Zi and ‖xi‖ ≤ mi at

xT = (x1, . . . , xm) ∈ D(f + g(x, µ)).
The estimates (5.5.15) are transformable to the following:

p
∑

i=1

θiψi1(‖xi‖) +

m
∑

i=p+1

θivi(xi) ≤ v(x, θ) ≤
p
∑

i=1

θiψi2(‖xi‖) +

m
∑

i=p+1

θivi(xi)

in Case 1 and

p
∑

i=1

θiψi1(‖xi‖) −
m
∑

i=p+1

θimi ≤ v(x, θ) ≤
p
∑

i=1

θiψi2(‖xi‖) +

m
∑

i=p+1

θimi

in Case 2.
For the expression ∇v(x, f(x) + g(x, µ)) obtain the estimate

∇v(x, f(x) + g(x, µ)) ≤ wTB∗(µ)w +

p
∑

i=1

θiψ
1/2
i3 (‖xi‖)

[ m
∑

j=p+1

bij(µ)ψ
1/2
j3 (mj)

]

+

p
∑

i=1

θimi +

m
∑

i=p+1

θiψ
1/2
i3 (mi)

p
∑

j=1

bij(µ)ψ
1/2
j3 (‖xi‖)

+

m
∑

i=p+1

θiψ
1/2
i3 (mi)

m
∑

j=p+1

ψ
1/2
i3 (mj),

(5.5.17)

where B∗(µ) = [bij(µ)] at i, j = 1, 2, . . . , p and w = (ψ
1/2
13 (‖x1‖),

ψ
1/2
23 (‖x2‖), . . . , ψ1/2

p3 (‖xp‖))T.
It is easy to reduce the estimate (5.5.17) to the form

∇v(x, f(x) + g(x, µ)) ≤ wTB∗(µ)w + wTP0 + P1, (5.5.18)

where P0 ∈ Rp and P1 > 0 is some constant.
Now, since the matrix B(µ) is negative definite, the submatrix B∗(µ) will
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also be negative definite at µ < µ∗. Then the estimate (5.5.18) will take the
form

∇v(x, f(x) + g(x, µ)) ≤ λM (B∗)‖w‖2 + wTP0 + P1

≤ 1

2
λM (B∗)‖w‖2 =

1

2
λM (B∗)

p
∑

i=1

ψi3(‖xi‖)

≤ 1

2
λM (B∗)ψ∗

3

( p
∑

i=1

‖xi‖
)

,

(5.5.19)

where ψ∗
3 belongs to the KR-class. Since λM (B∗) < 0, the estimate (5.5.19)

implies that Dv(x, θ) < 0 at all xT = (x1, . . . , xm) ∈ D(f + g(x, µ)), 0 < µ <
µ∗ and at ‖xi‖ > r∗ for i = 1, 2, . . . , p, and ‖xi‖ ≤ mi for i = p + 1, . . . ,m.
According to Theorem 5.4.8, the motion of the system (5.3.2) is uniformly
ultimately µ-bounded.

5.6 Stability Analysis of a Two-Component System

Consider a physical process described by the system of equations

dx1

dt
= f1(x1(t)) + µb

∫

G

H1(y, x2(t, y)) dy,

∂x2(t, y)

∂t
= α∆x2(t, y) −H2(x2(t, y)) + µh2(y)c

Tx1(t)

(5.6.1)

with the boundary

x2(t, y) = 0 at all (t, y) ∈ R+ × ∂G (5.6.2)

and the initial

x1(0) = x10, x2(0, y) = ψ(y) at y ∈ G (5.6.3)

conditions. Here f(x) : R
n → R

n, b, c are specified n-dimensional vectors, α
and L are specified positive constants, ∆ is a Laplace operator in the space
Rm, G is an open subset in Rm with a smooth boundary ∂G, and µ ∈M is a
small positive parameter. The functions H1 and H2 are specified and satisfy
the conditions

(a) H1(y, 0) = 0 at all y ∈ G,

(b) H2(0) = 0 and |H1(y, z)−H1(y, z
∗)| ≤ |h1(y)|‖z− z∗‖ at all y ∈ G, and

(c) z, z∗ ∈ R and |H2(u) − H2(u
∗)| ≤ L‖u − u∗‖ at all u, u∗ ∈ R and

hi ∈ L2(G), i = 1, 2.
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Under the above conditions the problem (5.6.1) – (5.6.3) is correctly defined
and its solution (x1(t), x2(t, y))

T exists at all t ∈ R+.
The isolated subsystems of the system (5.6.1) have the form

dx1

dt
= f1(x1), (5.6.4)

∂x2(t, y)

∂t
= α∆x2(t, y) −H2(y) , f2(x2). (5.6.5)

The operators of connection gi(x, µ), i = 1, 2, are as follows:

µg1(x1, x2) = µb

∫

G

H1(y, x2(t, y)) dy, (5.6.6)

µg2(x1, x2) = µh2(y)c
Tx1(t). (5.6.7)

For the system (5.6.1) it is assumed that Z1 = Rn, Z2 = L2(G), and X =
Rn × L2(G). The norms in Rn and on L2(G) will be denoted by ‖ · ‖ and
‖ · ‖L2

, respectively.

Assumption 5.6.1 There exist:

(1) functions v11(x1) ∈ C(Rn,R+) and v22(x2) ∈ C(L2(G),R+) in open
connected neighborhoods of the points x1 = 0, x2 = 0, comparison
functions ϕi(‖x1‖) and ψi(‖x2‖L2

) from K-class, and positive constants
αii, αii, i = 1, 2, such that

α11ϕ
2
1(‖x1‖) ≤ v11(x1) ≤ α11ϕ

2
2(‖x1‖),

α22ψ
2
1(‖x2‖L2

) ≤ v22(x2) ≤ α22ψ
2
2(‖x2‖L2

);

(2) functions v12(x1, x2) = v21(x1, x2) ∈ C(Rn × L2(G),R) and arbitrary
constants α12, α21 such that

α12ϕ1(‖x1‖)ψ2(‖x2‖L2
) ≤ v12(x1, x2) ≤ α12ϕ2(‖x1‖)ψ2(‖x2‖L2

)

in the range of values x1 ∈ D(f1) and x2 ∈ D(f2).

Lemma 5.6.1 If all the conditions of Assumption 5.6.1 are satisfied and
the matrices

A1 =

(

α11 α12

α21 α22

)

, α12 = α21,

A2 =

(

α11 α12

α21 α22

)

, α12 = α21,

are positive definite, then the function v(x, θ) = θTU(x)θ, θ ∈ R2
+, U(x) =

[uij(·)], i, j = 1, 2, is positive definite and decreasing.

Assumption 5.6.2 For the specified functions v11(x1), v22(x2), and
v12(x1, x2) there exist constants βik, i = 1, 2, k = 1, 2, . . . , 8, comparison
functions ξ1(‖x1‖) and ξ2(‖x2‖L2

) from K-class, such that:
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(a) ∇v11(x1, f1(x1)) ≤ 0;

(b) ∇v11(x1, g1(x, µ)) ≤ β12ξ
2
1(‖x1‖) + β13ξ1(‖x1‖)ξ2(‖x2‖L2

);

(c) ∇v22(x2, f2(x2)) ≤ 0;

(d) ∇v22(x2, g2(x, µ)) ≤ β22ξ
2
2(‖x2‖L2

) + β23ξ1(‖x1‖)ξ2(‖x2‖L2
);

(e) ∇v12(x1, x2, f1(x1)) ≤ β14ξ
2
1(‖x1‖) + β15ξ1(‖x1‖)ξ2(‖x2‖L2

);

(f) ∇v12(x1, x2, f2(x2)) ≤ β24ξ
2
1(‖x1‖) + β25ξ1(‖x1‖)ξ2(‖x2‖L2

);

(g) ∇v12(x1, x2, g1(x, µ)) ≤ β16ξ
2
1(‖x1‖) + β17ξ1(‖x1‖)ξ2(‖x2‖L2

) +
β18ξ

2
2(‖x2‖L2

);

(h) ∇v12(x1, x2, g2(x, µ)) ≤ β26ξ
2
1(‖x1‖) + β27ξ1(‖x1‖)ξ2(‖x2‖L2

) +
β28ξ

2
2(‖x2‖L2

).

Consider the matrix C(µ) in the form

C(µ) =

(

c11 c12
c21 c22

)

, c12 = c21,

with the elements

c11 = θ21µβ12 + 2θ1θ2(β14 + µβ16 + µβ26),

c22 = θ22µβ22 + 2θ1θ2(β24 + µβ18 + µβ28),

c12 =
1

2

(

θ21µβ13 + θ22µβ23

)

+ θ1θ2(β15 + β25 + µβ17 + µβ27).

Introduce the notation a, p, q, µ1, µ2, µ3, µ4 by the formulae

a = θ1θ2[θ1β12 + 2θ1(β16 + β26)][θ2β22 + 2θ1(β13 + β28)]

−
[

1

2
(θ21β13 + θ22β23) + θ1θ2(β17 + β27)

]2

,

p = θ1θ2

{

[θ1β24(θ1β12 + 2θ1β16 + 2θ2β26)

+ θ2β14(θ2β22 + 2θ1β18 + 2θ1β28)]

− (β15 + β25)

[

1

2
(θ21β13 + θ22β23) + θ1θ2(β17 + β27)

]}

,

q = θ21θ
2
2 [4β14β24 − (β15 + β25)

2],

µ1 = −2
θ1
θ2

β14

β12
+ 2θ2(β16 + β26),

µ2 = −2
θ1
θ2

β24

β22
+ 2θ1(β18 + β28),

µ3 = (p+
√

p2 − 4aq)(−2a)−1,

µ4 = (−p−
√

p2 − 4aq)(−2a)−1.
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Now consider the value of the parameter µ for which the boundary value
µ0 is determined from the conditions:

B0. If a > 0, p > 0, then µ0 = min(µ1, µ2).

B1. If a < 0, p is arbitrary, then µ0 = min(µ1, µ2, µ3).

B2. If a > 0, p < 0, then µ0 = min(µ1, µ2, µ4).

It is not difficult to verify the correctness of the following lemma.

Lemma 5.6.2 If all the conditions of Assumption 5.6.2 are satisfied and
the inequalities

(a) θ1β14 < 0;

(b) θ1β12 + 2θ2(β16 + β26) > 0;

(c) θ1β24 < 0;

(d) θ2β22 + 2θ1(β18 + β28) > 0;

(e) 4β14 − (β15 + β25)
2 > 0

hold, then the matrix C(µ) is negative definite at µ ∈ (0, µ0), where µ0 is
determined by one of the conditions B0 –B2.

Taking into account the condition of Assumption 5.6.2, for the function
v(x, θ) we obtain the following estimate of the derivative:

∇v(x, θ)
∣

∣

(5.6.1)
≤ uTC(µ)u, (5.6.8)

where uT = (ξ1(‖x1‖), ξ2(‖x2‖)), µ ∈ (0, µ0).

Theorem 5.6.1 If the two-component system (5.6.1) and (5.6.2) is such
that all the conditions of Lemmas 5.6.1 and 5.6.2 are satisfied, then its state of
equilibrium x1 = 0, x2 = 0 is uniformly asymptotically µ-stable at µ ∈ (0, µ0).

The proof of the theorem follows from the conditions satisfied by the func-
tion v(x, θ) and its derivative (5.6.8).

Remark 5.6.1 In view of conditions (a) and (c) from Assumption 5.6.2,
the hybrid system (5.6.1) and (5.6.2) consists of stable (nonasymptotically)
subsystems, and the uniform asymptotic µ-stability of the state of equilibrium
x1 = 0, x2 = 0 is achieved due to the stabilizing influence of the connection
operators.
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5.7 Comments and References

Hybrid dynamical systems, being systems consisting of two or more dif-
ferent subsystems connected with each other, are widely spread models of
real processes and phenomena (see Haddad, Chellaboina, and Nersesov [1]
and bibliography therein). Initially the class of hybrid systems included those
whose dynamics were described by systems of ordinary differential equations
on R+ and systems of difference equations on Z. Examples of such systems are
systems with impulse effects (see Bainov and Simeonov [1], Samoilenko and
Perestyuk [1], and others), switched systems (see Branicky [1], Peleties and De
Carlo [1]), systems with variable structure (see Utkin [1]), and other systems.
The concept of generalized time (see Michel [1]) made it possible to unify a
lot of results obtained in this line of investigation by way of consideration of
a generalized hybrid system in a metric space (see Michel, Wang, and Hu [1],
Martynyuk [18]).

A more general class is the class of hybrid systems consisting of different
subsystems connected by operators (see Matrosov [1], Matrosov and Vassiliev
[1], and others). In this chapter, in compliance with the concept of this book,
hybrid systems with weakly connected subsystems described by equations in
a Banach space are considered.

5.2. The proofs of the statements given in this section are available in the
monographs of Hille and Phillips [1] and Krein [1]; see also Crandall [1], Brezis
[1], and Kurtz [1].

5.3. In the statement of the problem on µ-stability of solutions of a hybrid
system, the results of the articles of Martynyuk [8, 10] were considered. Note
that a similar problem was considered in the monograph of Michel and Miller
[1] and others.

5.4. Originally, a two-index system of functions as an environment suit-
able for construction of a Lyapunov function was considered in the works of
Djordjević [1], Martynyuk and Gutovsky [1], and Martynyuk [7, 9] for systems
of ordinary differential equations. For equations in a Banach space, a matrix
function was applied in the work of Martynyuk [8]. Theorems 5.4.1 – 5.4.8
are analogues of the classical theorems of the general theory of stability and
new for this class of hybrid systems. In the works of Lakshmikantham [1, 2],
Massera [1], and Zubov [1], one can find some approaches to the analysis of the
stability of solutions of equations in Banach spaces, which may be generalized
for hybrid systems.

5.5. All the results of this section are new for the class of systems of
(5.3.2) type. Theorems 5.5.3 and 5.5.4 on the exponential µ-stability of a
hybrid system are formulated and proved in view of the results of the works
of He and Wang [1] and Martynyuk [14, 15].
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5.6. The results of this section are new for the system (5.6.1). Some of
the results were taken from the work of Martynyuk [9]. A system of the type
(5.6.1) at f(x1) = Ax1 and µ = 1 was studied in the monograph by Michel
and Miller [1] on the basis of a vector Lyapunov function. The assumption on
the asymptotic stability of the zero solution of the independent subsystems
(5.6.4) and (5.6.5) makes it possible to apply the vector Lyapunov function,
but the connection operators gi(x), i = 1, 2 are considered as factors that
destabilize the trivial solution of the system under consideration.
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