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Preface

The Thailand-Japan Joint Conference on Computational Geometry and Graphs
(TJJCCGG 2012) was held during December 6–8, 2012, at Srinakharinwirot Uni-
versity, Bangkok, Thailand. Previous conferences were held in Tokyo as JCDCG
1997, 1998, 2000, 2002, 2004 (Japan Conference on Discrete and Computational
Geometry), in Kyoto as KyotoCGGT 2007 (Kyoto International Conference on
Computational Geometry and Graph Theory), and in Kanazawa as JCCGG
2009 (Japan Conference on Computational Geometry and Graphs). Other con-
ferences in this series were also held in Manila (2001), Bandung (2003), Tianjin
(2005), and Dalian (CGGA 2010).

TJJCCGG 2012 provided a forum for researchers working in computational
geometry, graph theory/algorithms, and their applications. This proceedings vol-
ume consists of original research papers in these areas. Applied and experimental
papers in this volume show convincingly the usefulness and efficiency of algo-
rithms in a practical setting.

This volume contains 15 papers selected from among six plenary talks, one
special public talk, and 41 talks by participants from about 20 countries around
the world. The papers have been carefully peer-reviewed by experts and revised
before acceptance.

This conference was dedicated to Prof. Narong Punnim and Prof. Wanida
Hemakul for their significant contributions to Thai mathematics.

September 2013
Jin Akiyama
Mikio Kano

Toshinori Sakai
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Operators which Preserve Reversibility

Jin Akiyama1 and Hyunwoo Seong2

1 Research Center for Math Education, Tokyo University of Science,
1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan

ja@jin-akiyama.com
2 Department of Mathematics, The University of Tokyo,

3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan
hwseong@hotmail.com

Dedicated to Dr. Narong Punnim and Dr. Wanida Hemakul.

Abstract. A given pair of convex polygons α and β is said to be re-
versible if α and β have dissections into a common finite number of
pieces which can be rearranged to form β and α respectively, under cer-
tain conditions. A polygon α is said to be reversible if there exists a
polygon β such that the pair α and β is reversible. This paper discusses
operators which preserve reversibility for polygons. All reversible poly-
gons are classified into seven equivalence classes Pi (i = 1, 2, . . . , 7) under
the equivalence relation ≡, where A ≡ B means that there exists some
operator f such that B = f(A).

1 Introduction

In the beginning of the 20th century, Henry E. Dudeney ([1]) proposed the
‘Haberdasher’s Problem’ of dissecting a regular triangle into a finite number of
pieces which can be rearranged to form a square (Fig. 1).

Fig. 1. (a) The answer to Dudeney’s haberdasher’s puzzle (b) The corresponding
hinged dissection

J. Akiyama, M. Kano, and T. Sakai (Eds.): TJJCCGG 2012, LNCS 8296, pp. 1–19, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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A pair of polygons α and β is said to be equidecomposable if α has a
dissection into a finite number of pieces which can be rearranged to form β.
Bolyai [2] and Gerwien [3] proved the following theorem:

Theorem A. ([2, 3]) A pair of polygons P and Q is equidecomposable if and
only if P and Q have the same area.

Equidecomposability of a pair of polygons and polyhedra has been completely
settled in [2] to [5].

Reversibility is a general case of Dudeney’s hinged dissection and a specific
case of equidecomposability. Related researches including equidecomposability,
folding and unfolding problems, and Dudeney’s puzzle can be found in [6] to
[10].

Throughout this paper, unless explicitly stated, the polygons that we deal
with will be convex polygons. In this paper, we dissect polygons along the edges
of a tree-like structure that we refer to as a dissection tree. The hexagon in
Fig. 2 is dissected along the edges of the dotted dissection tree.

Fig. 2. An example of a dissection tree of a regular hexagon

A given pair of polygons α and β is said to be reversible if α and β have
dissections into a common finite number of pieces along edges of dissection trees
which can be rearranged to form β and α respectively, under the following con-
ditions:

(i) The whole perimeter of one polygon fits into the interior of the other
without gaps or overlaps and

(ii) The dissection tree of either polygon does not include any vertex of that
polygon.

A polygon α is said to be reversible if there exists a polygon β such that the
pair α and β is reversible.

When a pair α and β is reversible, we hinge the pieces of α (β) like a tree
along the perimeter of α (β). It is always possible to hinge the n pieces of α
(β) by using point hinges at arbitrary n − 1 points among the n points on the
perimeter of α (β) and transform the hinged pieces to both α and β continuously.
Therefore we use models of hinged pieces without explicitly describing how to
hinge and move the pieces.
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Fig. 3. (a) The solid triangle α and the dashed quadrilateral β give an example of
reversible pair. (b) The pair of the solid hexagon γ and the dashed hexagon δ violates
condition (ii) in the definition of reversibility.

Note that a pair of polygons with the same area is not always reversible but
is always equidecomposable (Fig. 4).

Fig. 4. Neither the pair α and β nor the pair γ and δ is reversible but each pair is
equidecomposable

When the 2-dimensional plane is tiled by congruent copies of a polygon α
without gaps nor overlaps, we say that α tiles the plane and denote the tiling
by T (α).

The following theorem is proved in [11].

Theorem B. ([11, Theorem 3.2]) If a pair of polygons α and β is reversible,
each of α and β tiles the plane by 180-degree rotations and translations only.

The proof of Theorem B uses the fact that if a pair α and β is reversible, two
superimposed tilings T (α) and T (β) are obtained on the same plane by repeated
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reversals between α and β. The superimposition of T (α) and T (β) on the
same plane obtained in this manner is denoted by T (α,β) (Fig. 5).

The following fact, which follows from Theorem B, plays an important role in
further discussion:

The dissection trees between α and β are attained by the superimposition
T (α, β).

Fig. 5. The superimposition T (α, β) of T (α) and T (β)

2 Classification of Reversible Polygons

A convex polygon which tiles the plane by translations only is called a paral-
lelogon. The set of all parallelogons is classified into two families, namely,

(i) parallelograms and
(ii) convex hexagons with three pairs of parallel sides, with each pair having

the same length (Fig. 6).
The hexagons described in (ii) are called parallelohexagons. Denote the set

of all parallelohexagons by PH .
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Fig. 6. Two families of parallelogons

A convex polygonwhich tiles the plane by 180-degree rotations and translations
only is called a quasi-parallelogon. Denote the set of all quasi-parallelogons by
QP . Parallelogons are included in the setQP . The setQP can be classified with
respect to the number of sides of a polygon into four families, namely,

(i) triangles;
(ii) convex quadrilaterals;
(iii) quasi-parallel pentagons, which are convex pentagons with at least

one pair of parallel sides; and
(iv) quasi-parallel hexagons, which are convex hexagons with at least one

pair of parallel opposite sides with the same length (Fig. 7).
Denote the set of all quasi-parallel pentagons and the set of all quasi-parallel

hexagons by QPP and QPH , respectively.
A pair of parallel opposite sides of a polygon P ∈ QPH with the same length

is called a zone of P . Note that P has either 1 or 3 zones and that P belongs
to PH if and only if P ∈ QPH and P has 3 zones. Thus PH is a subset of
QPH .

Fig. 7. Four families of quasi-parallelogons

For later discussion, it is convenient to divide the family QPP into two sub-
families depending on whether there exists a pair of parallel sides with the same
length or not. We also divide the family of convex quadrilaterals into three fam-
ilies depending on the number of zones, which are pairs of parallel sides (Fig.
8, see [14] for details).

Note that the term “zone” is used in two different ways depending on whether
the polygon is a hexagon or not.

Recall that every reversible polygon belongs to the set QP by Theorem B.
Each reversible polygon belongs to one of the seven classes, namely,

(i) the set of all triangles, denoted by P1;
(ii) the set of all convex quadrilaterals with no zones, denoted by P2;
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(iii) the set of all trapezoids with exactly one zone, denoted by P3;
(iv) the set of all parallelograms, denoted by P4;
(v) the set of all house pentagons, each of whose elements is a convex

pentagon with a pair of parallel sides with the same length, denoted by P5;
(vi) the set of all non-house pentagons, each of whose elements is a convex

pentagon with at least one pair of parallel sides with different lengths, denoted
by P6; and

(vii) the set of all quasi-parallel hexagons, denoted by P7 (Fig. 9).

Fig. 8. (a) House and non-house pentagon (b) Quadrilateral with 0, 1, and 2 zones

Fig. 9. Seven classes of reversible polygons

Since PH is a subset of P7, we denote it by P′
7.

Consider a polygon P ∈ QP . Let P ′ be its half turn (180◦ rotation of P ).
A figure obtained by gluing P and P ′ in such a way that they share (a part of)
an edge is called a concatenation of P . Denote it by c(P ). Note that there are
infinitely many possible concatenations of P (Fig. 10).

Fig. 10. A triangle P , its half turn P ′, a concatenation c(P ), and another concatenation
c′(P )
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3 Operators for Reversible Polygons

3.1 Stretching Operators

Consider a polygon P = ABCDEF ∈ P7 with a zone with AB ‖ ED and
AB = ED. Denote the centers of BC, CD, EF , and FA by G, H , I, and J ,
respectively. The parallelogram GHIJ is called a reversion trunk R(P ) of P
(Fig. 11).

Fig. 11. Reversion trunk R(P ) (gray parallelogram)

Conversely, let R be a parallelogram and let X and Y be two distinct points
in R such that the line passing through X and Y intersects a pair of parallel
sides of R. The pair of parallel sides of R, which has an intersection with the line
XY , is called a non-zonal pair. The other pair of parallel sides of R is called
a zonal pair.

A quasi-parallel hexagon is constructed from R as follows:
(i) Reflect X through the midpoint of the side closer to X between the non-

zonal pair. Denote the image of X by C.
(ii) Reflect Y through the midpoint of the side closer to Y between the non-

zonal pair. Denote the image of Y by F .
(iii) Reflect C through each of the two terminal points of the side closer to X

between the non-zonal pair. Denote the images of C by B and D, respectively.
Reflect F through each of the two terminal points of the side closer to Y between
the non-zonal pair. Denote the images of F by E and A, respectively.

Note that the hexagon ABCDEF , which depends on X and Y , belongs to
P7 and has R as one of its reversion trunks.

GivenABCDEF (X,Y ), A′B′C′D′E′F ′(X ′, Y ′)∈P7, anoperator fR,X,Y,X′,Y ′

is called a stretching operator if fR,X,Y,X′,Y ′(ABCDEF (X,Y )) = A′B′C′D′

E′F ′(X ′, Y ′) (Fig. 12).
In thediscussionbelow,we simplydenoteby f a stretching operator fR,X,Y,X′,Y ′ .

Lemma 1. For arbitrary polygons P,Q ∈ P7, the following two propositions are
equivalent:

(i) There exists a stretching operator f such that P = f(Q).
(ii) The polygons P and Q have a common reversion trunk.

Proof. (1) (i) ⇒ (ii)
Suppose that there exists a stretching operator f such that P = f(Q).
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There exists a parallelogram R which is a common reversion trunk R =
R(P ) = R(Q) by the definition of stretching operator.

(2) (ii) ⇒ (i)
Suppose that there exist reversion trunks R(P ) and R(Q) such that R(P ) =

R(Q).
Let C and F be two vertices of P which are not included in the zone of P

corresponding to R(P ), respectively. Reflect C through the midpoint of the side
closer to C between the non-zonal pair of R(P ). Denote the image of C by X .
Reflect F through the midpoint of the side closer to F between the non-zonal
pair of R(P ). Denote the image of F by Y . Analogously, we obtain X ′ and Y ′

from Q.
We let f be the stretching operator fR(P ),X,Y,X′,Y ′ (Fig. 12).

��

Fig. 12. Two examples of stretching operators with different zonal pairs

We extend stretching operators to the set S of all convex quadrilaterals other
than parallelograms and all pentagons, i.e., S ≡ P2 ∪ P3 ∪ P5 ∪ P6. Take
an element P ∈ S and consider some concatenation (not necessarily unique)
c(P ) ∈ P7. We denote by fc(P ) the extension of a stretching operator f on
P ∈ S which is defined to satisfy that c(fc(P )(P )) = f(c(P ))

When P ∈ S \ P6, fc(P )(P ) is determined by the equation c(fc(P )(P )) =
f(c(P )). When P = AXY EF ∈ P6, we have c(P ) = ABCDEF ∈ P7 with a
zone with AB = ED and AB ‖ ED. Then fc(P )(P ) = A′X ′Y ′E′F ′ is determined
by cutting f(c(P )) = A′B′C′D′E′F ′ so that the internal ratio of the cut zone of
c(P ) is preserved, i.e., AX : XB : DY : Y E = A′X ′ : X ′B′ : D′Y ′ : Y ′E′ (Fig.
13). In the discussion below, we simply denote by f a stretching operator fc(P ).

3.2 Cutting Operators

We consider some concatenation c(P ) ∈ P′
7 (not necessarily unique) of a polygon

P ∈ P6 and call the glued edge e and its midpoint O. A non-house pentagon,
say Q ∈ P6, is obtained by cutting c(P ) along some line e′ passing through O
and intersecting the same zone of c(P ) as the zone intersecting e. An operator
fP,Q is called a cutting operator if fP,Q(P ) = Q (Fig. 14).

In the succeeding discussion, we simply denote a cutting operator fP,Q by f .
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Fig. 13. Extensions fc(P ), fc′(P ), fc(Q), gc′(P ), and hc′(R) of stretching operators f , g,
and h, where P ∈ P6, Q ∈ P5, and R ∈ P2 ∪P3

Fig. 14. Two non-house pentagons Q and R attained by two cutting operators based
on the concatenations c(P ) and c′(P ), corresponding to each pair of parallel sides,
respectively

3.3 Affine Operators

An affine operator is a composition of a linear operator and a translation
operator. Note that affine operators on a plane preserve convexity, parallelism,
and internal ratio. We can perform an affine operator f on polygons, tilings,
concatenations, trunks, etc.
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Lemma 2. For an arbitrary polygon P ∈ P7, a reversion trunk R(P ), and an
arbitrary affine operator f , f(R(P )) is a reversion trunk R(f(P )).

Proof. Let P = ABCEF with AB ‖ ED and AB = ED. Since f preserves the
internal ratio and the four vertices of R(P ) are the midpoints of BC, CD, EF ,
and FA, the four vertices of f(R(P )) are midpoints of four sides f(BC), f(CD),
f(EF ), and f(FA) of f(P ).

Since f preserves the parallelism, f(AB) ‖ f(ED) and f(AB) = f(ED).
Thus f(R(P )) is a reversion trunk R(f(P )).

��
So far, stretching operators are defined for P2∪P3∪P5∪P6∪P7 and cutting

operators are defined for P6 only. We extend the domain of stretching operators
and of cutting operators to all elements of QP by assigning the identity operator
when any operator is not defined. That is, a stretching operator is the identity
operator for P1∪P4 and a cutting operator is the identity operator for QP \P6.

3.4 Affine Stretching Cutting Operators

We denote the set of all stretching operators, of all cutting operators, and of all
affine operators by SO, CO, and AO, respectively.

Consider operators f ∈ AO, g ∈ SO, and h ∈ CO. The composite operators
g ◦f and h◦g ◦f are called affine stretching operator and affine stretching
cutting operator, respectively. Denote the set of all affine stretching operators
and of all affine stretching cutting operators by ASO and ASCO, respectively.

4 Main Results

If there exists an operator f ∈ ASCO such that B = f(A) for a pair of polygons
A,B ∈ QP , we say A is affine stretching cutting transformable to B and denote
it by A ≡ B.

Lemma 3. The relation ≡ among quasi-parallelogons is an equivalence relation.

Proof. Since the identity operator i belongs to ASCO, we have the relation
A ≡ i(A) = A for an arbitrary polygon A ∈ QP .

For an operator f ∈ ASCO, the inverse operator f−1 belongs to ASCO by
the definitions of AO, SO, and CO.

Suppose the relation A ≡ B holds for polygons A,B ∈ QP , then there exists
an operator f ∈ ASCO such that A = f(B). Since B = f−1(A), we have the
relation B ≡ A.

For operators f, g ∈ ASCO, the composite operator g ◦ f belongs to ASCO
by the definitions of AO, SO, and CO.

Suppose the relations A ≡ B and B ≡ C holds for polygons A,B,C ∈ QP .
Since there exist operators f, g ∈ ASCO such that A = f(B) = f(g(C)) =
g(f(C)), we have the relation A ≡ C.

Thus, the relation defined is an equivalence relation.
��
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Theorem 1. The seven classes P1,P2, · · · ,P7 of quasi-parallelogons are equiv-
alence classes under the relation ≡, i.e., polygons A and B satisfy the relation
A ≡ B if and only if there exists a class Pi (i = 1, 2, · · · , 7) such that A,B ∈ Pi.

Proof. First, suppose that there exists a class Pi (i = 1, 2, · · · , 7) such that
A,B ∈ Pi.

Case 1: i = 1
There exist concatenations c(A), c(B) ∈ P4 and an operator f ∈ AO such

that c(A) = f(c(B)) = c(f(B)). Then A = f(B) holds.

Case 2: i = 2, 3, 5
There exist concatenations c(A), c(B) ∈ P′

7 and an operator f ∈ AO such that
R(c(A)) = f(R(c(B))), where R(c(A)) and R(c(B)) are reversion trunks of c(A)
and c(B), respectively. By Lemma 2, R(c(A)) = f(R(c(B))) = R(f(c(B))) =
R(c(f(B))). By Lemma 1, there exists an operator g ∈ SO such that c(A) =
g(c(f(B))) = c(g(f(B))). Then A = f(g(B)) = g(f(B)) holds.

Case 3: i = 4
There exists an operator f ∈ AO such that A = f(B).

Case 4: i = 6
There exist concatenations c(A), c(B) ∈ P′

7 and an operator f ∈ AO where
R(c(A)) = f(R(c(B))), since R(c(A)) and R(c(B)) are reversion trunks of c(A)
and c(B), respectively.

By Lemma 2, R(c(A)) = f(R(c(B)) = R(f(c(B)) = R(c(f(B))).
By Lemma 1, there exists an operator g ∈ SO such that c(A) = g(c(f(B)) =

c(g(f(B))). Thus there exits an operator h ∈ CO such that A = h(g(f(B)))
holds.

Case 5: i = 7
There exists an operator f ∈ AO such that R(A) = f(R(B)). By Lemma 2,

we have R(A) = f(R(B)) = R(f(B)). By Lemma 1, there exists an operator
g ∈ SO such that A = g(f(B)) holds.

In each case, the relation A ≡ B holds.

Conversely, suppose that A ≡ B. By the definition of the relation ≡, there
exists an operator f ∈ ASCO such that B = f(A). Let Pi be the class to which
B belongs. Since f preserves the number of edges of a polygon, A has the same
number of edges as B.

Since a cutting operator is the identity operator for convex quadrilaterals and
an affine stretching operator preserves the number of zones, we have A ∈ P2 if
B ∈ P2, A ∈ P3 if B ∈ P3, and A ∈ P4 if B ∈ P4.

Since a cutting operator is the identity operator for house pentagons and an
affine stretching operator preserves the ratio of the lengths of a pair of parallel
sides, we have A ∈ P5 if B ∈ P5 and A ∈ P6 if B ∈ P6.

Therefore A belongs to Pi.
��
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Fig. 15. A procedure to attain the dissection trees between A = h(g(f(C))) and B =
h(g(f(D))), the superimposition T (A,B), and the checkerboard consisting of R(A :
B)’s and R(B : A)’s
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Fig. 16. An affine stretching cutting operator preserves reversibility in the sense of
Theorem 2

In Section 3.1, we defined reversion trunks R(P ) for a polygon P ∈ P7.
We now extend this notion to every P ∈ QP . Given a reversible polygon P ,

consider some polygon Q such that the pair P and Q is reversible. We define a
reversion trunk R(P : Q) of P as the convex hull of the terminal points of
a dissection tree T (Q) ∩ P of P . The reversion trunk R(P : Q) depends on the
choice of Q. We denote by R(P ) the set of all reversion trunks R(P : Q) where
the pair P and Q is reversible.

Recall that for a reversible pair P and Q, the dissection tree between P and
Q is induced by the superimposition T (P,Q).

Note that in the superimposition T (P,Q), reversion trunks R(P : Q) and
R(Q : P ) appear alternatively, like black parts and white parts in a checkerboard,
respectively. Thus we have the equation R(P : Q) = R(Q : P ) and all the
reversion trunks of P and Q are parallelograms. This fact guarantees that our
definitions of reversion trunks for a member of QP is a generalization of the
definition for a member of P7. See [13] for details.

In order to study reversibility among quasi-parallelogons, we prove the fol-
lowing theorem. An analogous result for reversibility among 3-dimensional par-
allelohedra is obtained in [12].

Theorem 2. Suppose that a pair C ∈ Pi and D ∈ Pj (1 ≤ i, j ≤ 7) is re-
versible. Then, for an arbitrary polygon A ∈ Pi, there exists a polygon B ∈ Pj

such that the pair A and B is reversible.

Proof. The dissection tree between C and D is induced by the superimposition
T (C,D). Let R(C : D) and R(D : C) be the reversion trunks attained by
T (C,D).

Consider an arbitrary polygon A ∈ Pi.
Since A and C belong to the same classPi, there exists an operator f ∈ ASCO

such that A = f(C) by Theorem 1.
Note that every affine stretching operator preserves the number of edges, the

convexity of each of the pieces, and the number of zones of polygons. Thus the
dissection tree between f(C) and f(D) is induced by T (f(C), f(D)) (Fig. 15).
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The pair f(C) = A and f(D) is reversible, where f(D) belongs to the same
class Pj as D.

Letting B ≡ f(D) completes the proof.
��

Theorem 3. For an arbitrary pair of families Pi and Pj (1 ≤ i, j ≤ 7), there
exists a reversible pair C ∈ Pi and D ∈ Pj.

Proof. Without loss of generality, we may assume that i ≤ j.
We prove the theorem by showing concrete dissection trees for each case.
For (i, j) = (1, 1)

For (i, j) = (1, 2)

For (i, j) = (1, 3)

For (i, j) = (1, 4)
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For (i, j) = (1, 5)

For (i, j) = (1, 6)

For (i, j) = (1, 7)

For (i, j) = (2, 2)

For (i, j) = (2, 3)

For (i, j) = (2, 4)

For (i, j) = (2, 5)
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For (i, j) = (2, 6)

For (i, j) = (2, 7)

For (i, j) = (3, 3)

For (i, j) = (3, 4)

For (i, j) = (3, 5)

For (i, j) = (3, 6)

For (i, j) = (3, 7)
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For (i, j) = (4, 4)

For (i, j) = (4, 5)

For (i, j) = (4, 6)

For (i, j) = (4, 7)

For (i, j) = (5, 5)

For (i, j) = (5, 6)

For (i, j) = (5, 7)
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For (i, j) = (6, 6)

For (i, j) = (6, 7)

For (i, j) = (7, 7)

��

Let us call the polygons C and D that appear in the proof of Theorem 3 the
representatives of the cases (i, j), respectively.

Theorem 4. For an arbitrary polygon A ∈ Pi and an arbitrary family Pj (1 ≤
i, j ≤ 7), there exists a polygon B ∈ Pj such that the pair A and B is reversible.

Proof. Consider an arbitrary polygon A ∈ Pi and an arbitrary family Pj (1 ≤
i, j ≤ 7).

By Theorem 3, there exist representatives C ∈ Pi and D ∈ Pj of the case
(i, j) such that the pair C and D is reversible. By Theorem 2, there exists a
polygon B ∈ Pj such that the pair A and B is reversible.

��
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Abstract. Let P ⊂ R2 be a k-colored set of n points in general position,
where k ≥ 2. A k-colored quadrangulation on P is a properly colored
straight-edge plane graph G with vertex set P such that the boundary of
the unbounded face of G coincides with CH(P ) and that each bounded
face of G is quadrilateral, where CH(P ) stands for the boundary of the
convex hull of P . It is easily checked that in general not every k-colored
P admits a k-colored quadrangulation, and hence we need the use of
Steiner points, that is, auxiliary points which can be put in any position
of the interior of the convex hull of P and can have any color among the
k colors. In this paper, we show that if P satisfies some condition for
colors of the points in the convex hull, then a k-colored quadrangulation
of P can always be constructed using less than (16k−2)n+7k−2

39k−6
Steiner

points. Our upper bound improves the known upper bound for k = 3,
and gives the first bounds for k ≥ 4.

1 Introduction

Let P ⊂ R2 be a set of n points on the plane, a point set or an n-point set
for short. Let CH(P ) denote the boundary of the convex hull of P . We always
assume that P is in general position, that is, no three points of P are collinear.
A quadrangulation of P is a straight-edge plane graph G with vertex set P such
that the boundary of the unbounded face of G coincides with the convex hull of
P , and that every bounded face of G is quadrilateral.

Quadrangulations of a point set received an extensive attention back in the
90’s, where they were sometimes preferred over triangulations in the study of
finite element methods and scattered data interpolation, see [8] for example. It is
not hard to see that not every P admits a quadrangulation. It can be verified that
a necessary condition for a point set P to admit a quadrangulation is |P | ≥ 4,
and CH(P ) must be even-sided. It turns out that these two conditions are also
sufficient, see [3,9].
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How about quadrangulations of point sets with special properties? For exam-
ple, each face of the quadrangulation is required to be a convex quadrilateral,
see [2,4,6,10,11]. Even in this setting it was shown in [2] that again, not every
set of points admits a convex quadrangulation. It was shown that one can always
construct a convex quadrangulation using at most 3n

2 Steiner points, that is,
auxiliary points which can be put in any position of the interior of the convex
hull of the given point set. On the other hand, n

4 are sometimes necessary [2].
Later both bounds were improved to roughly 5n

4 and n
3 respectively [6].

Another kind of quadrangulations arises when a point set P is colored with
k ≥ 2 colors, and we look for a quadrangulation not containing monochromatic
edges, that is, edges whose ends have the same color. We call them k-colored
quadrangulations, and for the special case when k = 2, we will alternatively use
the term bichromatic quadrangulation. Since monochromatic edges are forbidden
in a k-colored quadrangulation, and CH(P ) coincides with the outer cycle of any
quadrangulation of P , CH(P ) must be an even-sided properly colored polygon,
i.e., without monochromatic edges. As in the convex case, we again come up with
configurations not admitting k-colored quadrangulations, thus requiring Steiner
points, that is, auxiliary points which were already mentioned but each point
can have any color among the k colors. The bichromatic configuration in the left
of Figure 1 is taken from [5].

s

Fig. 1. In the left, a bichromatic point set not admitting a bichromatic quadrangula-
tion. In the middle, the same configuration quadrangulated with a Steiner point s. In
the right, a 3-colored point set not admitting a 3-colored quadrangulation no matter
how many Steiner points are added.

The study on k-colored quadrangulations of point sets is rather new. One
can always construct a bichromatic quadrangulation with the use of roughly 5n

12
interior Steiner points, and that n

3 Steiner points are sometimes necessary [1].
They also considered the case k = 3 and showed a surprising fact that there
are 3-colored point sets admitting no 3-colored quadrangulations no matter how
many interior Steiner points are added, which is definitely an unexpected result.
The configuration presented in [1] is shown in the right of Figure 1.

The strange phenomenon for such a 3-colored point set with no 3-colored
quadrangulation, even with Steiner points, was recently explained in [7], where
the authors showed an elegant characterization of the 3-colored point sets with
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no 3-colored quadrangulations using Steiner points. The idea was to introduce
the notion of “winding number”, as explained below:

Let Q ⊂ R2 be an m-sided convex polygon on the plane with m ≥ 3. Let
V (Q) denote the vertex set of Q and suppose that Q has a proper k-coloring
c : V (Q)→ {1, . . . , k}, i.e., for any edge xy of Q, c(x) �= c(y), where k ≥ 2. Let
us define an orientation O of the edges of Q as follows: if e = uv is an edge of Q,
then we orient e from u to v if c(u) < c(v). Let e+O(Q) and e−O(Q) be the number
of edges of Q in clockwise and counter-clockwise direction in O, respectively.
The winding number of Q, denoted by ω(Q), is defined as:

ω(Q) = |e+O(Q)− e−O(Q)|

For a k-colored point set P with k ≥ 2, we define ω(P ) = ω(CH(P )), extending
the definition of winding number for convex polygons to point sets. We say that
P can be k-quadrangulated or is k-quadrangulatable if P admits a k-colored
quadrangulation.

The following theorem characterizes the 3-quadrangulatable 3-colored point
sets with Steiner points added [7].

Theorem 1 (Kato et al.). Let P ⊂ R2 be a 3-colored n-point set in general
position such that CH(P ) is an m-sided properly colored polygon, where m ≥ 4
is an even integer. Then there exists a set S = S(P ) of Steiner points such that
P ∪ S is 3-quadrangulatable if and only if ω(P ) = 0. If S exists, then S can be
taken to be |S| ≤ 7n+17m−48

18 .

Our main contribution is the following result:

Theorem 2. Let k ≥ 2 be an integer. Let P ⊂ R2 be a k-colored n-point set in
general position, where CH(P ) is an even-sided properly colored polygon. Then
there exists a set S of Steiner points such that P ∪S admits a k-quadrangulation
if and only if ω(P ) = 0 or k ≥ 4. If S exists, then S can be taken to be |S| <
(16k−2)n+7k−2

39k−6 .

The condition ω(P ) = 0 or k ≥ 4 in Theorem 2 means that even when only
three colors appear on CH(P ) and ω(P ) �= 0, we can still find a set S of Steiner
points such that P ∪ S can be k-quadrangulated as long as we can use at least
four colors in total. Moreover, we note that in the case when k = 2, w(P ) = 0 if
and only if CH(P ) is properly 2-colored.

Our result has the following advantages:

1. Our algorithm for k = 3 improves Theorem 1 so much, since our algorithm
always perform equally, but the one in Theorem 1 depends on |CH(P )|. (For
comparison, our bound for k = 3, at worst, is essentially 46n

111 < 5n
12 , while

the one in Theorem 1 can grow larger than n if P has a few interior points.

2. Our result gives the first bounds for the cases when k ≥ 4.
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2 Proof of Theorem 2

In this section, we prove Theorem 2, preparing several lemmas. In those lemmas,
we assume that all point sets on the plane are in general position.

The following lemma shown in [7] claims that the winding number is well-
defined, and so we may assume that a 3-colored point set is colored by {1, 2, 3}:

Lemma 1. Let Q ⊂ R2 be a convex polygon with a proper 3-coloring by c1, c2, c3.
Then the winding number of Q is invariant for any bijection from {c1, c2, c3} to
{1, 2, 3}.

Lemma 2 is easily obtained from Euler’s formula, and used to prove Lemma 3:

Lemma 2. Let P ⊂ R2 be an n-point with |CH(P )| = m ≥ 4 even. Then any
quadrangulation of P has (n− 1)− m

2 quadrilaterals and 2(n− 1)− m
2 edges.

The following two lemmas are main tools for proving the main theorem:

Lemma 3. Let Q ⊂ R2 be a properly m-sided simple convex polygon, where
m ≥ 4 is even. If at least four color appears in Q or ω(Q) = 0, then Q can be
partitioned into m−2

2 properly colored quadrilaterals.

Proof. We proceed by induction on m. The case m = 4 is trivial, and thus we
assume that the lemma holds for every m′ < m.

Case 1. At most three colors appear in Q and ω(P ) = 0.

If P is bichromatic, then the lemma obviously holds, and we may assume that
exactly three colors appear in Q. By Lemma 1, suppose that the color classes
are {1, 2, 3}. Observe that there is a vertex v ∈ Q both of whose neighbors are of
the same color. For otherwise, i.e., if every vertex of Q has two neighbors with
distinct colors, then we can easily check that Q has a periodic cyclic sequence of
colors 1, 2, 3, which is contrary to ω(Q) = 0. See the left in Figure 2.

Now assume that all edges of Q are oriented by O explained before. Let v ∈ Q
be a vertex with two neighbors u,w ∈ Q of the same color, where u and w are the
right and the left neighbors of v, respectively. Let x ∈ Q be the right neighbor

v

u

w

x

Q′

e1

e2

e3

e41

1
2

3

1

1

2

2

2

3

3

3

Fig. 2. If Q is colored by the cyclic sequence 1, 2, 3, as shown in the left, it can be
easily verified that ω(Q) �= 0.
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of u. Since Q is properly colored, x has a color distinct from those of u and
w, and hence we can add an edge wx to create a properly colored quadrilateral
Q1 = xuvw. Now, let Q′ be the convex polygon defined by Q \ {u, v}. Observe
that ω(Q1) = 0 since u and w have the same color. Moreover, note that ω(Q′) = 0
as well, which is explained as follows: since u and w have the same color, the
orientations of vw and vu are canceled in the computation of ω(Q). Moreover,
xu and xw are both oriented away from x or both oriented toward x, so xw is
the actual edge making ω(Q′) = 0. Hence we get ω(Q) = ω(Q′) = 0. Then we
can repeat these procedures inductively on Q′, as in the right of Figure 2.

Case 2. At least four colors appear in Q.

We claim that there is at least one vertex w ∈ Q such that at least one of
its neighbors at distance 3 on Q is of different color. For otherwise, i.e., if every
vertex of Q shares the same color with its two neighbors at distance 3 on Q,
then Q would be 3-colored, a contradiction. See the left in Figure 2.

Let w ∈ Q be one of the vertices having a neighbor at distance 3 of different
color, say x ∈ Q. Join w and x with a straight segment, thus creating the
quadrilateral, sayQ1 = wvux. LetQ′ be the convex polygon defined byQ\{u, v}.
If Q′ has at least four colors or ω(Q′) = 0, then we are done by induction.
Otherwise, i.e., if ω(Q′) �= 0 and Q′ is 3-colored, then the fourth color appears
only at either v or u, say u. In this case, removing the edge wx, we quadrangulate
Q by adding diagonals so that all of those are incident to u. Then the resulting
quadrangulation must be proper, since no vertex of Q′ has the forth color.

In both cases, the total number of created quadrilaterals is m−2
2 by Lemma 2.

Lemma 4. Let P = C1 ∪ C2 be a 2-colored n-point set such that CH(P ) is an
m-sided properly colored polygon, where C1 and C2 are the color classes of P
such that |C1| ≥ |C2|. Then there exists a set S = S(P ) of Steiner points such
that P ∪ S can be 2-quadrangulated, and

|S| ≤
⌊
|C1|
3

⌋
+

⌊ |C2| − m
2

2

⌋
≤ 5n

12
− 1.

This lemma is essentially one of the main results of [1], and is proven using
exactly the same techniques as for Theorem 1 of [1]. However, they are applied
differently so the constant term on the bound of |S| is improved in the worst case
from − 1

3 to −1. This negligible improvement of constants will play an important
role when proving Theorem 2.

The next lemma is the last one before proceeding to the proof of Theorem 2.

Lemma 5. Let P ⊂ R2 be a k-colored (q + 4)-point set such that CH(P ) is a
properly colored quadrilateral and k ≥ 2. Then there exist two sets of Steiner
points SΓ = SΓ (P ) and SΔ = SΔ(P ) such that:

– P ∪ SΓ can be k-quadrangulated, and |SΓ | ≤ 5q+8
12 .

– P ∪ SΔ can be k-quadrangulated, and |SΔ| < (2k+1)q+16k
6k .
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Proof. We first consider SΓ . Note that P can be regarded as a bichromatic point
set, as follows: if Q is bichromatic itself, say using colors C1, C2, then we can
recolor every interior point of color different from C2 with C1. Rename the color
classes as Cα = C1 and Cβ = C2.

If Q is 3-colored, say using colors C1, C2, C3, then one color, say C2, appears
twice on Q in a diagonal position. Recolor every point of color different from C2

with a new color Cα, as before. Rename the color class C2 as Cβ .
If Q is 4-colored, say using colors C1, C2, C3, C4, assume that C1, C3 and

C2, C4 appear in diagonally opposite vertices ofQ in clockwise order. Now recolor
P with two new colors Cα and Cβ as follows: every point of color C2, C4 receives
color Cβ . All other points receive Cα.

Now we have a bichromatic point set with color classes Cα and Cβ . Thus by
Lemma 4, there exists a set SΓ = SΓ (P ) of Steiner points such that P ∪SΓ can
be 2-quadrangulated and:

|SΓ | ≤
⌊
|Cα|
3

⌋
+

⌊
|Cβ | − 2

2

⌋
≤ 5|P |

12
− 1 =

5q + 8

12

Second we consider SΔ. Let C1 ∪ · · · ∪Ck be the k color classes of the interior
points, where we let ci stand for the color of Ci, for i = 1, . . . , k. Suppose that
C1 is a smallest color class, and hence we have |C1| ≤ q

k . Suppose that Q is
colored with colors other than c1, since we will later see that this assumption
only worsens the upper bound. Now let us introduce two Steiner points x, y
of color c1 inside Q, very close to two opposite vertices of Q, so that the new
quadrilateral Q′ is still properly colored and contains the q interior points. Let
P ′ be the point set formed by the vertices of Q′ and the q points in its interior,
see Figure 3.

Now recolor every point of P ′ with color different from c1 with a new color C.
Then P ′ can be regarded as a bichromatic point set with color classes C1∪{x, y}
and C with (|C1|+2)+|C| vertices, where |C1|+|C| = q+2 and |C1| ≤ q

k . We ap-
ply Lemma 4 to P ′, and then the algorithm gives a bichromatic quadrangulation

QP ′

Fig. 3. Points colored with C1 are represented in black. The quadrilateral Q′ still
contains the q interior points.
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on P with a set of Steiner points SΔ = SΔ(P ) such that:

|SΔ| ≤
⌊
|C|
3

⌋
+

⌊
(|C1|+ 2)− 2

2

⌋
+ 2

≤ |C|
3

+
|C1|
2

+ 2 =
|C|+ |C1|

3
+
|C1|
6

+ 2

≤ q + 2

3
+

q

6k
+ 2

=
q(2k + 1) + 16k

6k
.

If |C1| = q
k , then |C1| = · · · = |Ck| = q

k , and hence we can take C1 so that
C1 appears on Q. In this case, only at most one Steiner point with color c1 is

required to obtain Q′. Hence |SΔ| < q(2k+1)+7k
6k , since we may assume |C1| < q

k .

We are finally ready to prove Theorem 2:

Proof. We first suppose that k = 2. Then we have (16k−2)n+7k−2
39k−6 = 5n+2

12 , which
is larger than the bound in Lemma 4. Hence the theorem follows for k = 2, and
so we may assume k ≥ 3.

Let P be a k-colored n-point set, where let |CH(P )| = m and q = n − m
be the number of interior points. Let k′ be the number of colors appearing on
CH(P ). If k′ ≥ 4 or ω(P ) = 0, then by Lemma 3, we can partition CH(P ) into
r = m−2

2 properly colored convex quadrilaterals Qi, for i = 1, . . . r. However, we
might have k′ = 3 (but k ≥ 4) and ω(P ) �= 0. In this case, we put exactly one
inner Steiner point, say s, with a color not appearing in CH(P ), very closed to
one of the points in CH(P ), say v. If we put P ′ = (CH(P )−{v})∪{s}, then we
can apply Lemma 3 to P ′, since P ′ has at least four colors in CH(P ′). Clearly, if
the theorem holds for P ′, then it also holds for P but we need one more Steiner
point corresponding to s.

Let qi be the number of interior points in the quadrilateral Qi, for i = 1, . . . , r.
By Lemma 5, there are two ways to k-quadrangulate Qi using Steiner points.
The first way uses a set of Steiner points Si

Γ for each Qi, which gives a k-
quadrangulation of P ∪ SΓ with SΓ = S1

Γ ∪ · · · ∪ Sr
Γ :

|SΓ | =
r∑

i=1

|Si
Γ | ≤

r∑
i=1

5qi + 8

12
=

2r

3
+

r∑
i=1

5qi
12

=
m− 2

3
+

5q

12
=

m− 2

3
+

5(n−m)

12
(1)

The second way to k-quadrangulate each Qi using a set Si
Δ of Steiner points

gives a k-quadrangulation of P ∪ SΔ with SΔ = S1
Δ ∪ · · · ∪ Sr

Δ such that:

|SΔ| =
r∑

i=1

|Si
Δ| <

r∑
i=1

(2k + 1)qi + 16k

6k
=

8r

3
+

r∑
i=1

(2k + 1)qi
6k

=
4(m− 2)

3
+

(2k + 1)q

6k
=

4(m− 2)

3
+

(2k + 1)(n−m)

6k
(2)
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Using (1) and (2), we consider which of SΓ or SΔ performs better:

m− 2

3
+

5(n−m)

12
<

4(m− 2)

3
+

(2k + 1)(n−m)

6k
⇐⇒ m >

k(n+ 24) − 2n

13k − 2
(3)

For a given n-point set P , we construct a set S of Steiner points such that

P ∪ S admits a k-quadrangulation. Hence, if P satisfies m > k(n+24)−2n
13k−2 , then

SΓ performs better by (3). So we let S = SΓ or S = SΓ ∪ {s}, and hence

|S| ≤ |SΓ |+ 1 ≤ m− 2

3
+

5(n−m)

12
+ 1 <

(16k − 2)n+ 7k − 2

39k − 6

On the other hand, if m ≤ k(n+24)−2n
13k−2 , then SΔ performs better, and hence let

S = SΔ or S = SΔ ∪ {s}, and

|S| ≤ |SΔ|+ 1 <
4(m− 2)

3
+

(2k + 1)(n−m)

6k
+ 1 ≤ (16k − 2)n+ 7k − 2

39k − 6

Now Theorem 2 follows entirely.

3 k-Colored Sets of Points Requiring Many Steiner Points

It was shown in [1] that there are bicolored sets P of n = 3m points with
m ≥ 4 that requires at least m Steiner points to be 2-quadrangulated, where
m = |CH(P )|. See the left in Figure 4.

We can briefly describe the configuration P presented in [1]: For each edge
e of CH(P ), exactly two interior points pe, qe are associated, as shown in the
left of Figure 4. The coloring of the configuration is done in the following way:
the endpoints of e get different colors and its associated pair of interior points
gets the color of the left endpoint of e, as in the left of Figure 4. Let G be any

e′
e

peqe

e

se

se′

Fig. 4. In the left the bichromatic configuration P that needs at least n
3
Steiner points

in order to be 2-quadrangulated. Every edge e of CH(P ) gets associated with a pair of
interior points pe, qe. In the middle a partial bichromatic quadrangulation using Steiner
points se �= se′ is shown. In the right the same configuration colored with 4 colors.
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2-colored quadrangulation on P ∪ S with Steiner points S. Then, if we let fe
be the quadrilateral face of G incident to e, then fe must require at least one
Steiner point, say se, since pe, qe and the left point of e are monochromatic.
Intuitively, se locally helps to k-quadrangulate the region between e and pe, qe,
see the middle of Figure 4.

For the k-colored case, the number of case analysis increases, since there are
more colors for the Steiner points se. The reader will be able to verify that the
same arguments as in [1] carry over into the k-colored setting, and hence we
also get the lower bound of n

3 Steiner points. We will thus refrain ourselves to
repeating those arguments here. See the right in Figure 4 for an example of a
4-colored configuration needing at least n

3 Steiner points. Hence we have:

Proposition 1. For any k ≥ 2, there exists a k-colored n-point set P satisfying
the following: if S is any set of Steiner points such that P ∪S admits a k-colored
quadrangulation, then |S| ≥ n

3 .

4 Conclusions

In this paper, we have studied the problem of constructing k-colored quadrangu-
lations of k-colored sets of points using Steiner points, for any k ≥ 2. Moreover,
we have been able to improve the previous known upper bound for the number
of Steiner points when k = 3, and given the first upper bounds for the case when
k ≥ 4. We also pointed out that the lower bound of n

3 interior Steiner points for
the bichromatic case [1] follows in more general cases k ≥ 3.

The upper bound for the number of Steiner points in the k-colored case is

always less than (16k−2)n+7k−2
39k−6 , in which we essentially have 16n

39 ≈ 0.4102n.
Since n

3 is the lower bound, both bounds differ by roughly n
13 . Therefore closing

this gap is still an interesting open question.
There is one more thing to note. The upper bound in the bichromatic case is

roughly 5n
12 = 0.416̄n [1]. Thus both upper bounds are essentially the same in the

worst case. This is because the core of our algorithm bases on the technique in
the bichromatic case. Hence, an improvement of the bounds for the bichromatic
case will carry over into the general case using our algorithm. We believe that
the cases k = 2 and k = 3 are really challenging, while the cases k ≥ 4 might be
more attackable.

Acknowledgement. The authors are grateful to the anonymous referee for
reading the first version of the paper carefully and giving us several suggestions
improving the presentation.
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Abstract. A set P of points in R2 is n-universal, if every planar graph
on n vertices admits a plane straight-line embedding on P . Answering a
question by Kobourov, we show that there is no n-universal point set of
size n, for any n ≥ 15. Conversely, we use a computer program to show
that there exist universal point sets for all n ≤ 10 and to enumerate all
corresponding order types. Finally, we describe a collection G of 7′393
planar graphs on 35 vertices that do not admit a simultaneous geometric
embedding without mapping, that is, no set of 35 points in the plane
supports a plane straight-line embedding of all graphs in G.

1 Introduction

We consider plane, straight-line embeddings of graphs in R2. In those embed-
dings, vertices are represented by pairwise distinct points, every edge is repre-
sented by a line segment connecting its endpoints, and no two edges intersect
except at a common endpoint.

An n-universal (or short universal) point set for planar graphs admits a plane
straight-line embedding of all graphs on n vertices. A longstanding open problem
is to give precise bounds on the minimum number of points in an n-universal
point set. The currently known asymptotic bounds are apart by a linear factor.
On the one hand, it is known that every planar graph can be embedded on a grid
of size n− 1× n− 1 [1,2]. On the other hand, it was shown that at least 1.235n
points are necessary [3], improving earlier bounds of 1.206n [4] and n+

√
n [1].

The following, somewhat simpler question was asked ten years ago by
Kobourov [5]: what is the largest value of n for which a universal point set
of size n exists? We prove the following.

Theorem 1. There is no n-universal point set of size n, for any n ≥ 15.
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At some point, the Open Problem Project page dedicated to the problem [5]
mentioned that Kobourov proved there exist 14-universal point sets of size 14.
If this is correct, our bound is tight, and the answer to the above question is
n = 14. After verification, however, this claim appears to be unsubstantiated [6].
We managed to check that there exist universal point sets only up to n ≤ 10.
Further investigations are ongoing.

Overview. Section 2 is devoted to the proof of Theorem 1. It combines a labeled
counting scheme for planar 3-trees (also known as stacked triangulations) that
is very similar to the one used by Kurowski in his asymptotic lower bound
argument [3] with known lower bounds on the rectilinear crossing number [7,8].
Note that although planar 3-trees seem to be useful for lower bounds, a recent
preprint from Fulek and Tóth [9] shows that there exist n-universal point sets
of size O(n5/3) for planar 3-trees.

For a collection G = {G1, . . . , Gk} of planar graphs on n vertices, a simultane-
ous geometric embedding without mapping for G is a collection of plane straight-
line embeddings φi : Gi → P onto the same set P ⊂ R2 of n points.

In Section 3, we consider the following problem: what is the largest natural
number σ such that every collection of σ planar graphs on the same number
of vertices admit a simultaneous geometric embedding without mapping? From
the Fáry-Wagner Theorem [10,11] we know that σ ≥ 1. We prove the following
upper bound:

Theorem 2. There is a collection of 7′393 planar graphs on 35 vertices that do
not admit a simultaneous plane straight-line embedding without mapping, hence
σ < 7′393.

To our knowledge these are the best bounds currently known. It is a very in-
teresting and probably challenging open problem to determine the exact value
of σ.

Finally, in Section 4, we use a computer program to show that there exist
n-universal point sets of size n for all n ≤ 10 and give the total number of such
point sets for each n. As a side remark, note that it is not clear that the property
“there exists an n-universal point set of size n” is monotone in n.

2 Large Universal Point Sets

A planar 3-tree is a maximal planar graph obtained by iteratively splitting a
facial triangle into three new triangles with a degree-three vertex, starting from
a single triangle. Since a planar 3-tree is a maximal planar graph, it has n vertices
and 2n − 4 triangular faces and its combinatorial embedding is fixed up to the
choice of the outer face.

For every integer n ≥ 4, we define a family Tn of labeled planar 3-trees on the
set of vertices [n] := {1, . . . , n} as follows:

(i) T4 contains only the complete graph K4,
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(ii) Tn contains every graph that can be constructed by making the new vertex
n adjacent to the three vertices of one of the 2n− 6 facial triangles of some
T ∈ Tn−1.

We insist on the fact that Tn is a set of labeled abstract graphs, many of which
can in fact be isomorphic if considered as abstract (unlabeled) graphs. We also
point out that for n > 4, the class Tn does not contain all labeled planar 3-trees
on n vertices. For instance, the four graphs in T5 are shown in Fig. 1, and there
is no graph for which both Vertex 1 and Vertex 2 have degree three.

Lemma 1. For n ≥ 4, we have |Tn| = 2n−4 · (n− 3)!.

Proof. By definition, |T4| = 1. Every graph in Tn is constructed by splitting one
of the 2n− 6 faces of a graph in Tn−1. We therefore have:

|Tn| = |Tn−1| · (2n−6) = 4 ·6 · . . . · (2n−6) = 2n−4 · (n−3)!. ��

1 2

3

4

5

4 1

2

3

5

4 3

1

2

5

1 2

4

3

5

Fig. 1. The four planar 3-trees in T5, with vertex set {1, 2, 3, 4, 5}

Lemma 2. Given a set P = {p1, . . . , pn} of labeled points in the plane and a
bijection π : [n] → P , there is at most one T ∈ Tn such that π is a plane
straight-line embedding of T .

Proof. Consider any such labeled point set P and assume without loss of gen-
erality that π(i) = pi for all i. In all T ∈ Tn the vertices {1, 2, 3, 4} form a K4.
Hence, for all T , the straight-line embedding π connects all pairs of points in
{p1, p2, p3, p4} with line segments. If these points are in convex position, there is
a crossing and there is no T ∈ Tn for which π is a plane straight-line embedding
(Fig. 2). Otherwise, there is a unique graph K4 ∈ T4 for which p1, p2, p3, p4 is a
plane straight-line drawing. We proceed as follows.

Given a plane straight-line drawing for some graph Ti ∈ Ti on the first i ≥ 4
points, the next point pi+1 is located in some triangular region of the drawing;
denote this region by paipbipci . Only if during the construction of T we decided
to connect the next vertex i + 1 to exactly the vertices ai, bi, ci, there is no
crossing introduced by mapping i + 1 to pi+1. (An edge to any other vertex
would cross one of the bounding edges of the triangle paipbipci .) In other words,
for every i ≥ 5 the role of vertex i is completely determined. If no crossing is
ever introduced, this process determines exactly one graph T ∈ Tn for which π
forms a plane straight-line embedding. (Note that a crossing can be introduced
only if pi+1 is located outside of the convex hull of {p1, . . . , pi}. And also in that
case there need not be a crossing, as the example in Fig. 2 (right) shows.) ��
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5 4

3

1 2
1

2

3

4 5

Fig. 2. Some permutations of a given point set do not define any planar 3-tree in Tn,
because they generate a crossing (left). On the other hand, when no such crossing
occurs, the permutation defines a unique planar 3-tree in Tn (right). At any rate, a
single permutation can be associated with at most one planar 3-tree in Tn.

We use the following theorem by Ábrego and Fernández-Merchant.

Theorem 3 ([7]). Every plane straight-line drawing of the complete graph Kn

has at least 1
4

⌊
n
2

⌋ ⌊
n−1
2

⌋ ⌊
n−2
2

⌋ ⌊
n−3
2

⌋
crossings.

Note that for n ≤ 4 at least one of the floor expressions is zero, whereas for
n = 5 the theorem states that every straight-line drawing of K5 has at least
one crossing. Any pair of crossing edges corresponds to a four-tuple of points in
convex position. Using this interpretation we can easily derive a floor-free lower
bound on the number of convex four-gons contained in every planar point set.

Corollary 1. Given a point set P ⊂ R2 of n points in general position, more
than a 3

8 ·
n−4
n -fraction of all four element subsets of P is in convex position.

Proof. By Theorem 3 at least c = 1
4

⌊
n
2

⌋ ⌊
n−1
2

⌋ ⌊
n−2
2

⌋ ⌊
n−3
2

⌋
four element subsets

of P are in convex position. For n odd we have

c =
1

4

(
n− 1

2

)2(
n− 3

2

)2

and for n even we have

c =
1

4

(n
2

)(n− 2

2

)2(
n− 4

2

)
and so

c >
1

4

(
n− 1

2

)(
n− 2

2

)(
n− 3

2

)(
n− 4

2

)
=

3

8
· n− 4

n
· n(n− 1)(n− 2)(n− 3)

4 · 3 · 2

=
3

8
· n− 4

n
·
(
n

4

)
,

for all n. ��
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We will use this fact to prove the following lemma.

Lemma 3. On any set P ⊂ R2 of n ≥ 4 points fewer than 1
8 (5n+ 12)(n − 1)!

graphs from Tn admit a plane straight-line embedding.

Proof. Let P ⊂ R2 be a set of n points and denote by Fn ⊆ Tn the set of labeled
planar 3-trees from Tn that admit a plane straight-line embedding onto P . Note
that a straight-line embedding can be represented by a permutation π of the
points of P , where each vertex i is mapped to point π(i). Let Sn be the set of all
permutations of P . We define a map ψ : Fn → Sn by assigning to each T ∈ Fn

some ψ(T ) ∈ Sn such that ψ(T ) is a plane straight-line embedding of T (such
an embedding exists by definition of Fn).

By Lemma 2, every permutation π ∈ Sn is a plane straight-line embedding
of at most one T ∈ Fn. It follows that ψ is a injection, and hence ψ : Fn → Π ,
with Π = Im(ψ), is a bijection and so |Fn| = |Π | ≤ |Sn| = n!.

Next we can quantify the difference between Π and Sn using Corollary 1.
Note that the general position assumption is not a restriction, since in case of
collinearities, a slight perturbation of the point set yields a new point set that
still admits all plane straight-line drawings of the original point set. Consider a
permutation π = p1, . . . , pn such that p1, p2, p3, p4 form a convex quadrilateral.
As argued in the first paragraph of the proof of Lemma 2, π is not a plane
straight-line embedding for any T ∈ Fn. It follows that π ∈ Sn\Π . We know from
Corollary 1 that more than a fraction of (3/8)·(n−4)/n of the 4-tuples of P are in
convex position and therefore a corresponding fraction of all permutations does
not correspond to a plane straight-line drawing. So we can bound the number
of possible labeled plane straight-line drawings by

|Π | <
(
1− 3

8
· n− 4

n

)
n! =

1

8
(5n+12)(n−1)! . ��

Proof (of Theorem 1). Consider an n-universal point set P ⊂ R2 with |P | = n.
Being universal, in particular P has to accommodate all graphs from Tn. By
Lemma 1, there are exactly 2n−4 · (n− 3)! graphs in Tn, whereas by Lemma 3 no
more than 1

8 (5n+12)(n−1)! graphs from Tn admit a plane straight-line drawing
on P . Combining both bounds we obtain 2n−1 ≤ (5n+12)(n−1)(n−2). Setting
n = 15 yields 214 = 16′384 ≤ 87 · 14 · 13 = 15′834, which is a contradiction and
so there is no 15-universal set of 15 points.

For n = 14 the inequality reads 213 = 8′192 ≤ 82 · 13 · 12 = 12′792 and so
there is no indication that there cannot be a 14-universal set of 14 points. To
prove the claim for any n > 15, consider the two functions f(n) = 2n−1 and
g(n) = (5n+12)(n−1)(n−2) that constitute the inequality. As f is exponential
in n whereas g is just a cubic polynomial, f certainly dominates g, for sufficiently
large n. Moreover, we know that f(15) > g(15). Noting that f(n)/f(n− 1) = 2
and g(n) > 0, for n > 2, it suffices to show that g(n)/g(n−1) < 2, for all n ≥ 16.
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We can bound

g(n)

g(n− 1)
=

(5n+ 12)(n− 1)(n− 2)

(5(n− 1) + 12)(n− 2)(n− 3)
=

(5n+ 12)(n− 1)

(5n+ 7)(n− 3)

<
(5n+ 15)n

5n(n− 3)
=

n+ 3

n− 3
,

which is easily seen to be upper bounded by two, for n ≥ 9. ��

3 Simultaneous Geometric Embeddings

The number of non-isomorphic planar 3-trees on n vertices was computed by
Beineke and Pippert [12], and appears as sequence A027610 on Sloane’s Ency-
clopedia of Integer Sequences. For n = 15, this number is 321′776. Hence we can
also phrase our result in the language of simultaneous embeddings [13].

Corollary 2. There is a collection of 321′776 planar graphs that do not admit
a simultaneous (plane straight-line) embedding without mapping.

In the following we will give an explicit construction for a much smaller family
of graphs that not admit a simultaneous embedding without mapping. As a first
observation, note that the freedom to select the outer face is essential in order
to embed graphs onto a given point set. In fact, for planar 3-trees, the mapping
for the outer face is the only choice there is. We prove this in two steps.

Lemma 4. Let G be a labeled planar 3-tree on the vertex set [n], for n ≥ 3, and
let C denote any triangle in G. Then G can be constructed starting from C by
iteratively inserting a degree-three vertex into some facial triangle of the partial
graph constructed so far.

Proof. We prove the statement by induction on n. For n = 3 there is nothing to
show. Hence let n > 3. By definition G can be constructed iteratively from some
triangle in the way described. Without loss of generality suppose that adding
vertices in the order 1, 2, . . . , n yields such a construction sequence. Denote by
Gi the graph that is constructed by the sequence 1, . . . , i, for 1 ≤ i ≤ n.

Let C = u, v, w such that u < v < w. Consider the graph Gw: In the last
step, w is added as a new vertex into some facial triangle T of Gw−1. As w is
a neighbor of both u and v in G, both u and v are vertices of T ; denote the
third vertex of T by x. Note that all of u, v, w and u,w, x and v, x, w are facial
triangles in Gw.

If w = 4, then exchanging the role of w and x yields a construction sequence
u, v, w, x, 5, . . . , n for G, as claimed. If w > 4, then c1, c2, v is a separating triangle
in Gw. By the inductive hypothesis we can obtain a construction sequence S for
Gw−1 starting with the triangle u, v, x. The desired sequence for G is obtained as
u, v, w, x, S−, w+1, . . . , n, where S− is the suffix of S that excludes the starting
triangle u, v, x. ��

And now we can prove the desired property:
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Lemma 5. Given a labeled planar 3-tree G on vertex set [n], a triangle c =
c1c2c3 in G, and a set P ⊂ R2 of n points with p1, p2, p3 ∈ P , there is at most
one way to complete the partial embedding {c1 �→ p1, c2 �→ p2, c3 �→ p3} to a
plane straight-line embedding of G on P .

Proof. We use Lemma 4 to relabel the vertices in such a way that c1, c2, c3
becomes 1, 2, 3 and the order 1, . . . , n is a construction sequence for G. Embed
vertices 1, 2, 3 onto p1, p2, p3. We iteratively embed the remaining vertices as
follows. Vertex i was inserted into some face jk� during the construction given
by Lemma 4. Note that j, k, � have already been embedded on points pj , pk, p�.
The vertices contained in the triangle jk� (except i) are partitioned into three
sets by the cycles ijk (n1 vertices) and ik� (n2 vertices) and i�j (n3 vertices).
We want to embed i on a point pi such that pipjpk contains exactly n1 points,
pipkp� contains exactly n2 points and pip�pj contains exactly n3 points. Note
that it is necessary to embed i on a point with this property: if some triangle has
too few points, then it will not be possible to embed the subgraph of G enclosed
by the corresponding cycle there. It remains to show that there is always at most
one choice for pi. Suppose that there are two candidates for pi, say p′i and p′′i .
Then p′′i must be contained in p′ipjpk or p′ipkp� or p′ip�pj (or vice versa). Without
loss of generality, let it be contained in p′ipjpk: now p′′i pjpk contains fewer points
than p′ipjpk, which is a contradiction. The lemma follows by induction. ��

Therefore it is not surprising that it is very easy to find three graphs that do
not admit a simultaneous (plane straight-line) embedding without mapping, if
the mapping for the outer face is specified for each of them.

a b

c

a b

c

a b

c

Fig. 3. Three planar graphs that do not admit a simultaneous geometric embedding
with a fixed mapping for the outer face

Lemma 6. There is no set P ⊂ R2 of five points with convex hull pa, pb, pc such
that every graph shown in Fig. 3 has a (plane straight-line) embedding on P where
the vertices a, b and c are mapped to the points pa, pb and pc, respectively.

Proof. The point p for the central vertex that is connected to all of a, b, c must
be chosen so that (i) it is not in convex position with pa, pb and pc and (ii) the
number of points in the three resulting triangles is one in one triangle and zero
in the other two. That requires three distinct choices for p, but there are only
two points available. ��
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In fact, there are many such triples of graphs. The following lemma can be
verified with help of a computer program that exhaustively checks all order types.
Point set order types [14] are a combinatorial abstraction of planar point sets
that encode the orientation of all point triples, which in particular determines
whether or not any two line segments cross. For a small number of points, there
is a database with realizations of every (realizable) order type [15].

Lemma 7. There is no set P ⊂ R2 of eight points with convex hull pa, pb, pc
such that every graph shown in Fig. 4 has a (plane straight-line) embedding on P
where the vertices a, b and c are mapped to the points pa, pb and pc, respectively.

a b

c

(a) T1

a b

c

(b) T2

a b

c

(c) T3

a b

c

(d) T4

a b

c

(e) T5

a b

c

(f) T6

a b

c

(g) T7 (h) B

Fig. 4. (a)–(g): Seven planar graphs, no three of which admit a simultaneous geometric
embedding with a fixed mapping for the outer face; (h): the skeleton B of a triangular
bipyramid

Denote by T = {T1, . . . , T7} the family of seven graphs on eight vertices depicted
in Fig. 4. We consider these graphs as abstract but rooted graphs, that is, one
face is designated as the outer face and the counterclockwise order of the vertices
along the outer face (the orientation of the face) is a, b, c in each case. Observe
that all graphs in T are planar 3-trees.

Using T we construct a family G of graphs as follows. Start from the skeleton
B of a triangular bipyramid, that is, a triangle and two additional vertices, each
of which is connected to all vertices of the triangle. The graph B has five vertices
and six faces and it is a planar 3-tree.

We obtain G from B by planting one of the graphs from T onto each of the
six faces of B. Each face of B is a (combinatorial) triangle where one vertex has
degree three (one of the pyramid tips) and the other two vertices have degree
four (the vertices of the starting triangle). On each face f of B a selected graph
T from T is planted by identifying the three vertices bounding f with the three
vertices bounding the outer face of T in such a way that vertex c (which appears



38 J. Cardinal, M. Hoffmann, and V. Kusters

at the top in Fig. 4) is mapped to the vertex of degree three (in B) of f . In
the next paragraph, we will see why we do not have to specify how a and b are
matched to f . The family G consists of all graphs on 5 + 6 · 5 = 35 vertices
that can be obtained in this way. By construction all these graphs are planar
3-trees. Therefore by Lemma 5 on any given set of 35 points, the plane straight-
line embedding is unique (if it exists), once the mapping for the outer face is
determined.

Observe that T is flip-symmetric with respect to horizontal reflection. In other
(more combinatorial) words, for every T ∈ T we can exchange the role of the
bottom two vertices a and b of the outer face (and thereby also its orientation)
to obtain a graph that is also in T . The graphs form symmetric pairs of siblings
(T1, T2), (T3, T4), (T5, T6), and T7 flips to itself. Therefore, regardless of the
orientation in which we plant a graph from T onto a face of B, we obtain a
graph in G, and so G is well-defined.

Next, we give a lower bound on the number of nonisomorphic graphs in G.
Lemma 8. The family G contains at least 9′805 pairwise nonisomorphic graphs.

Proof. Consider the bipyramid B as a face-labeled object. There are 76 different
ways to assign a graph from T to each of the six now distinguishable faces.
Denote this class of face-labeled graphs by F . For many of these assignments
the corresponding graphs are isomorphic if considered as abstract (unlabeled)
graphs. However, the following argument shows that every isomorphism between
two such graphs maps the vertex set of B to itself.

The two tips of B have degree three and are incident to three faces. Onto each
of the faces one graph from T is planted, which increases the degree by four (for
T1, . . . , T6) or three (for T7) to a total of at least twelve. The three triangle
vertices start with degree four and are incident to four faces. Every graph from
T planted there adds at least one more edge, to a total degree of at least eight.
But the highest degree among the interior vertices of the graphs in T is seven,
which proves the claim.

Hence we have to look for isomorphisms only among the symmetries of the
bipyramid B. The tips are distinguishable from the triangle vertices, because the
former are incident to three high degree vertices, whereas the latter are incident
to four high degree vertices. Selecting the mapping for one face of B determines
the whole isomorphism. Since there are at most two ways to map a face to a face
(we can select the mapping for the two non-tip vertices, that is, the orientation
of the triangle), every graph in F is isomorphic to at most 2 · 6 = 12 graphs
from F . It follows that there are at least 76/12 > 9′804 pairwise nonisomorphic
graphs in G. ��
We now give an upper bound on the number of graphs of G that can be simul-
taneously embedded on a common point set.

Lemma 9. At most 7′392 pairwise nonisomorphic graphs of G admit a simul-
taneous (plane straight-line) embedding without mapping.

Proof. Consider a subset G′ ⊆ G of pairwise nonisomorphic graphs and a point
set P that admits a simultaneous embedding of G′. Since G′ is a class of maximal
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planar graphs, the convex hull of P must be a triangle. For each G ∈ G′ we can
select an outer face f(G) and a mapping π(G) for the vertices bounding f(G)
to the convex hull of P so that the resulting straight-line embedding, which by
Lemma 5 is completely determined by f(G) and π(G), is plane.

Let us group the graphs from G′ into bins, according to the maps f and π.
For f , there are 7 ·11 possible choices: one of the eleven faces of one of the seven
graphs in T . For π there are three choices: one of the three possible rotations
to map the face chosen by f to the convex hull of P . Note that regarding π
there is no additional factor of two for the orientation of the face, because by
flip-symmetry such a change corresponds to a different graph (for T1, . . . , T6) or
a different face of the graph (for T7), that is, a different choice for f . Altogether
this yields a partition of G′ into 3 · 77 = 231 bins.

The crucial observation (and ultimate reason for this subdivision) is that for
all graphs in a single bin the vertices of B (the bipyramid) are mapped to the
same points. This is a consequence of the uniqueness of the embedding up to
the mapping for the outer face (Lemma 5), which is identical for all graphs in
the same bin. Therefore, the triangle t of B in which the outer face is located is
mapped to the same oriented triple of points in P for all graphs in the same bin.
From there the pattern repeats, noting that every face of B contains the same
number of points (five) and that the polyhedron B is face-transitive so that there
is no difference as to which face of B was selected to contain the outer face.

It follows that for all graphs in the same bin the graphs from T planted onto
the faces of B are mapped to the same point sets. Any two (nonisomorphic)
graphs from G′ differ in at least one of those faces – and by definition not in
the one in which the outer face was selected by f . In order for the graphs in
a bin to be simultaneously embeddable on P , by Lemma 7 there are at most
two different graphs from T mapped to any of the remaining five faces of B.
Therefore there cannot be more than 25 = 32 graphs from G′ in any bin. Hence
|G′| ≤ 231 · 32 = 7′392, as claimed. ��

Since there are strictly more nonisomorphic graphs in G than can possibly be
simultaneously embedded, not all graphs of G admit a simultaneous embedding.
In particular, any subset of 7′392 + 1 nonisomorphic graphs in G is a collection
that does not have a simultaneous embedding. This proves our Theorem 2.

4 Small n-universal Point Sets

As we have seen in the previous sections, there are no n-universal point sets of
size n for n ≥ 15. In this section, we consider the case n < 15. Specifically, we
used a computer program [16] to show the following:

Theorem 4. There exist n-universal point sets of size n for all 1 ≤ n ≤ 10.

We use a straightforward brute-force approach. The two main ingredients are the
aforementioned order type database [15] with point sets of size n ≤ 10 and the
plantri program for generating maximal planar graphs [17,18]. To determine if
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a point set P of size n is n-universal, our program tests if for all maximal planar
graphs G = (V,E) on n vertices, there exists a bijection ϕ : V → P such that
straight-line drawing of G induced by ϕ is plane. If such a bijection exists for all
G, then P is universal. Otherwise, there is a graph G that has no plane straight-
line embedding on P . Note that it is sufficient to consider maximal planar graphs
since adding edges only makes the embedding problem more difficult. Work on
the case n = 11 is still in progress at the time of writing. For n > 11 the
approach unfortunately becomes infeasible; it is unknown whether or not there
exist n-universal point sets of size n for 11 ≤ n ≤ 14. Table 1 gives an overview
of the results of this paper and Fig. 5 shows one universal point set for each
n = 5, . . . , 10.

Table 1. The number of (non-equivalent) n-universal point sets of size n

n: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ≥ 15
# universal point sets: 1 1 1 1 1 5 45 364 5′955 2′072 ? ? ? ? 0

(138, 72)
(255, 69)

(69, 255)

(149, 116)

(0, 0)

(253, 136)

(194, 131)

(63, 182)

(101, 83)

(65, 15)

(5, 240)

(180, 140)

(148, 122)

(177, 107)

(219, 61)

(170, 194)

(92, 132)

(36, 112)

(151, 161)

(150, 186)

(126, 232)

(254, 82)

(162, 107)

(124, 125)

(2, 24)

(88, 60)

(27011, 31063)

(29367, 32804)

(29348, 30469)

(29312, 31921)

(29060, 31627)

(28635, 30173)

(32686, 28235)

(28014, 34715)

(25174, 31591)

(21851, 49497)

(45873, 38514)

(43249, 34704)

(36513, 24768)

(23183, 47690)

(26329, 42168)
(26104, 43895)

(30430, 8698)

(61273, 56838)

(4263, 46244)

Fig. 5. One universal point set for each n = 5, . . . , 10. Each pair of points is connected
with a line segment



On Universal Point Sets for Planar Graphs 41

References

1. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

2. Schnyder, W.: Embedding planar graphs on the grid. In: Proc. 1st ACM-SIAM
Sympos. Discrete Algorithms, pp. 138–148 (1990)

3. Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all
n-vertex planar graphs. Information Processing Letters 92(2), 95–98 (2004)

4. Chrobak, M., Karloff, H.J.: A lower bound on the size of universal sets for planar
graphs. SIGACT News 20(4), 83–86 (1989)

5. Demaine, E.D., Mitchell, J.S.B., O’Rourke, J.: The Open Problems Project, Prob-
lem #45, http://maven.smith.edu/~orourke/TOPP/P45.html

6. Kobourov, S.G.: Personal communication (2012)
7. Ábrego, B.M., Fernández-Merchant, S.: A lower bound for the rectilinear crossing

number. Graphs and Combinatorics 21(3), 293–300 (2005)
8. Lovász, L., Vesztergombi, K., Wagner, U., Welzl, E.: Convex quadrilaterals and

k-sets. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs. Contemporary
Mathematics, vol. 324, pp. 139–148. American Mathematical Society, Providence
(2004)

9. Fulek, R., Tóth, C.D.: Universal point sets for planar three-trees. CoRR
abs/1212.6148 (2012)

10. Fáry, I.: On straight lines representation of planar graphs. Acta Sci. Math.
Szeged 11, 229–233 (1948)

11. Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen
Mathematiker-Vereinigung 46, 26–32 (1936)

12. Beineke, L.W., Pippert, R.E.: Enumerating dissectible polyhedra by their auto-
morphism groups. Canad. J. Math. 26, 50–67 (1974)

13. Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D.P.,
Kobourov, S.G., Lubiw, A., Mitchell, J.S.: On simultaneous planar graph embed-
dings. Comput. Geom. Theory Appl. 36(2), 117–130 (2007)

14. Goodman, J.E., Pollack, R.: Multidimensional sorting. SIAM J. Comput. 12(3),
484–507 (1983)

15. Aichholzer, O., Krasser, H.: The point set order type data base: A collection of
applications and results. In: Proc. 13th Canad. Conf. Comput. Geom., Waterloo,
Canada, pp. 17–20 (2001)

16. Cardinal, J., Hoffmann, M., Kusters, V.: A program to find all universal point sets
(2013), http://people.inf.ethz.ch/kustersv/universal.html

17. Brinkmann, G., McKay, B.: Fast generation of planar graphs. MATCH Communi-
cations in Mathematical and in Computer Chemistry 58(2), 323–357 (2007)

18. Brinkmann, G., McKay, B.: The program plantri (2007),
http://cs.anu.edu.au/~bdm/plantri

http://maven.smith.edu/~orourke/TOPP/P45.html
http://people.inf.ethz.ch/kustersv/universal.html
http://cs.anu.edu.au/~bdm/plantri


On Non 3-Choosable Bipartite Graphs

W. Charoenpanitseri1, N. Punnim2, and C. Uiyyasathian1,�

1 Department of Mathematics and Computer Science, Faculty of Science,
Chulalongkorn University, Bangkok, 10330, Thailand

2 Department of Mathematics, Srinakharinwirot University,
Sukhumvit 23, Bangkok 10110, Thailand

ch wongsakorn@hotmail.com, punnim@gmail.com, chariya.u@chula.ac.th

Abstract. In 2003, Fitzpatrick andMacGillivray proved that every com-
plete bipartite graph with fourteen vertices exceptK7,7 is 3-choosable and
there is the unique 3-list assignment L up to renaming the colors such that
K7,7 is not L-colorable. We present our strategies which can be applied to
obtain another proof of their result. These strategies are invented to claim
a stronger result that every complete bipartite graph with fifteen vertices
exceptK7,8 is 3-choosable. We also show all 3-list assignments L such that
K7,8 is not L-colorable.
Keywords and Phrases: list coloring, choosability.

1 Introduction

A list assignment of a graph G is a mapping which assigns a set of colors, called
a list, to each vertex of G. A k-list assignment of G is a list assignment L such
that |L(v)| = k for every v ∈ V (G). A coloring of G is a mapping from V (G)
to a set of colors such that endpoints of each edge has different colors. Given a
list assignment L, a coloring f of G is an L-coloring of G if f(v) is chosen from
L(v) for every vertex v of G. If a graph G has an L-coloring, we say that G is
L-colorable or L is a colorable list assignment of G. A graph G is k-choosable
if G is L-colorable for every k-list assignment L. Let S ⊆ V (G). If L is a list
assignment of G, we let L|S denote L restricted to S and L(S) denote

⋃
v∈S L(v).

Let F = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}}. It is
well-known that F is the collection of lines of the Fano plane which is unique
up to renaming the colors. LF denotes the 3-list assignment of K7,7 such that
all seven vertices in each partite set are assigned by distinct lists from F .

The problem of list assignments was first studied by Vizing [8] and by Erdős,
Rubin and Taylor [2]. In both papers, the authors proved that there exists a non
k-choosable bipartite graph for every positive number k. For example,K7,7 is not
3-choosable, and LF is a non 3-colorable list assignment ofK7,7. Moreover, in [2],
the authors give a characterization of 2-choosable graphs. However, for k ≥ 3,
there is no literature giving a characterization of k-choosable graphs in general,
only some specific classes of graphs are investigated. For example, every planar
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c© Springer-Verlag Berlin Heidelberg 2013



On Non 3-Choosable Bipartite Graphs 43

graph is 5-choosable, while some authors found some classes of 3-choosable planar
graphs.(See [5],[6],[7],[10],[11],[12],[13].) Recently, (k, t)-choosability of graphs is
explored in [1]. In 1996, Hanson, MacGillivray and Toft[4] stated that every com-
plete bipartite graph with thirteen vertices is 3-choosable. In other word, K7,7

is the smallest non 3-choosable graph. Later, Fitzpatrick and MacGillivray [3]
added that every complete bipartite graph with fourteen vertices except K7,7 is
3-choosable. Furthermore, LF is the unique 3-list assignment up to renaming the
colors which is a non 3-colorable list assignment ofK7,7. In this paper, we explore
their results to show that every complete bipartite graph with fifteen vertices is
3-choosable except K7,8, and a 3-list assignment L of K7,8 is a non-colorable list
assignment if and only if L|V (K7,7) = LF . However, the proof in [3] does not seem
to be extendable, we then construct new strategies. These strategies not only pro-
vide our main result, but also give another proof of [3].

Let L be a list assignment of the complete bipartite graph Ka,b. The notation
La and Lb denote the collections of lists assigned to the vertices in the partite
sets with a and b vertices, respectively. If a = b, we use the notation La(i) and
La(ii). Given a collection of lists X = {X1, X2, . . . , Xn}, a coloring of X is a set
C ⊆ X1 ∪X2 ∪ . . . ∪Xn such that C ∩Xi �= ∅ for all i = 1, 2, . . . , n. A coloring
C of X is called a t-coloring if |C| = t.

Lemma 1. [3],[4] Let L be a list assignment of the complete bipartite graph
Ka,b. Then Ka,b is not L-colorable if and only if every coloring of La(or Lb) has
a subset that is a list in Lb(or La, respectively).

Theorem 1. [3],[4] Let G be an n-vertex graph. If G is L1-colorable for every
k-list assignment L1 such that |

⋃
v∈V (G) L1(v)| = t and n

(
k
2

)
<
(
t+1
2

)
, then G is

L2-colorable for every k-list assignment L2 such that |
⋃

v∈V (G) L2(v)| ≥ t.

2 Strategies

To prove the main result, many similar cases are considered. Thus we construct
tools to deal with each case. The first tool is for the cases that all lists assigned
to the vertices in one partite set are mutually disjoint.

Strategy A. Let L be a list assignment of Ka,b with La = {A1, A2, . . . , Aa},
Lb = {B1, B2, . . . , Bb} and all lists have size at most 3. If all lists in La are
mutually disjoint and

∏a
i=1 |Ai| > 3a−1n1 + �3a−2�n2 + �3a−3�n3 where ni =

|{B ∈ Lb, |B| = i}| for i = 1, 2, 3, then Ka,b is L-colorable.

Proof. Since there are |Ai| possible ways to color the list Ai for each i and all Ai’s
are mutually disjoint, the number of a-colorings of La is

∏a
i=1 |Ai|. We count the

number of those a-colorings containing each Bi of Lb for i = 1, 2, . . . , b. Consider
Bi ∈ Lb.

Case 1. |Bi| = 1, say Bi = {r}.
If r �∈ Aj for all j = 1, 2, . . . , a, then all a-colorings of La do not contain Bi.
Without loss of generality, suppose that r ∈ A1. To complete an a-coloring of La,
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we choose the other a−1 colors each from the remaining Aj where j = 2, 3, . . . , a.
Thus the number of the a-colorings of La containing r is

∏a
j=2 |Aj |. That is, the

number of the a-colorings of La which contain Bi as a subset is at most 3a−1.
Case 2. |Bi| = 2, say Bi = {r, s}.

Consider an a-coloring of La containing both r and s. Without loss of generality,
suppose that r ∈ A1 and s ∈ A2. To complete an a-coloring of La, we choose the
other a − 2 colors each from the remaining Aj where j = 3, 4, . . . , a. Thus the
number of the a-colorings of La which contain Bi as a subset is

∏a
j=3 |Aj |. That

is, the number of the a-colorings of La which contain Bi as a subset is at most
3a−2. Note that in case a = 1, all a-colorings are 1-colorings; hence, the number
of a-colorings containing Bi as a subset is �3a−2� = 0.

Case 3. |Bi| = 3, say Bi = {r, s, t}.
Consider an a-coloring of La containing r, s and t. Without loss of generality,
suppose that r ∈ A1, s ∈ A2, t ∈ A3. Again, we can choose the other a− 3 colors
from each Aj where j = 4, 5, . . . , a. Thus the number of the a-colorings of La

which contain Bi as a subset is
∏a

j=4 |Aj |. That is, the number of the a-colorings

of La which contain Bi as a subset is at most 3a−3. Note that in the case a ≤ 2,
all a-colorings are 1-colorings or 2-colorings; hence, the number of a-colorings
containing Bi as a subset is �3a−3� = 0.

Hence La has at most 3a−1n1 + �3a−2�n2 + �3a−3�n3 a-colorings containing
some Bi. Since the number of a-colorings of La is

∏a
j=1 |Aj | and

∏a
j=1 |Aj | >

3a−1n1 + �3a−2�n2 + �3a−3�n3, there exists a coloring of La which does not
contain any list in Lb. Therefore, Ka,b is L-colorable.

The same result can be concluded if we consider the other way around, that
is, the assumption in Strategy A for a list assignment L of Ka,b becomes the
statement that all lists in Lb are mutually disjoint and

∏a
i=1 |Bi| > 3b−1n1 +

�3b−2�n2 + �3b−3�n3, where ni = |{A ∈ La, |A| = i}| for i = 1, 2, 3. In this case,
we call Strategy A for Lb and we call the original version Strategy A for La.

Note that the value 3a−1n1 + 3a−2n2 + 3a−3n3 is sharp because of a non-
colorable 3-list assignment L ofK3,27 such that L3 = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}
and L27 = {{a, b, c}|a ∈ {1, 2, 3}, b ∈ {4, 5, 6}, c ∈ {7, 8, 9}}.

The next five strategies are tools to find an L-coloring ofKa,b with respect to a
list assignment L in the case that a color appears in at least a−1, a−2, a−3, a−4
and a− 5 lists in La, respectively. The next strategy is called Strategy B for La

and we can define Strategy B for Lb, similarly.

Strategy B. Let L be a 3-list assignment of Ka,b. If a color appears in a − 1
lists in La, then Ka,b is L-colorable.

Proof. Because a color appears in a− 1 lists in La, we can label La by at most
two colors. Since every list in Lb has size 3, all lists in Lb still have available
colors.

Remark 1. Let L be a list assignment of Ka,b such that La has a 2-coloring C.
Then,
(i) if L is a 3-list assignment then Ka,b is L-colorable;
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(ii) if all lists of size at most 2 in Lb have a color which is not in C, then Ka,b

is L-colorable.

Strategy C. Let L be a 3-list assignment of Ka,b such that every color appears
in at most eight lists in Lb. If a color appears in a − 2 lists in La then Ka,b is
L-colorable.

Proof. Strategy B takes care the case that a color appears in more than a − 2
lists in La. Assume that a color appears in exactly a − 2 lists in La. If the two
remaining lists in La have a common color, then there exists a 2-coloring of La.
Since all lists in Lb are of size 3, Ka,b is L-colorable by Remark 1. Suppose that
the two remaining lists in La have no common color. Hence, La has at least nine
3-colorings containing color 1. However, by the assumption, color 1 appears in
at most eight lists in Lb. Thus, at least one of such nine 3-colorings is not a list
in Lb. Therefore, by Lemma 1, Ka,b is L-colorable.

For convenience, from now on, we write lists without commas and braces.
For example, {123, 145, 167, 246, 257, 347, 356} is written instead of {{1, 2, 3},
{1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}}. For a list A, the notation
A− 1 represents the list which is obtained from A by removing color 1 from A.
Similarly, the notation A − 12 represents the list which is obtained from A by
removing color 1 and color 2 from A.

Strategy D. Let L be a 3-list assignment of Ka,b such that every color appears
in at most r lists in Lb. If there exists a color that appears in at least a−3 lists in
La and (r, b) ∈ {(r, b)|r ≤ 2, b ≤ 22}∪{(3, b)|b ≤ 14}∪{(4, b)|b ≤ 12}∪{(5, b)|b ≤
9}, then Ka,b is L-colorable.

Proof. Let La = {A1, A2, . . . , Aa} and Lb = {B1, B2, . . . , Bb}. If there is a color
appearing in more than a − 3 lists, we apply Strategy C. Assume that color 1
appears in exactly a − 3 lists in La, say 1 ∈ A1, A2, . . . , Aa−3. First, we label
A1, A2, . . . , Aa−3 by color 1. Now, we consider the remaining vertices which form
K3,b. For the worst case, we may suppose that 1 ∈ B1, B2, . . . , Br. Let L

′ be the
list assignment of K3,b which is obtained from L by removing color 1. Notice
that L′

3 = {Aa−2, Aa−1, Aa} and L′
b = {B1 − 1, . . . , Br − 1, Br+1 . . . , Bb}. If

Aa−2∩Aa−1∩Aa �= ∅ then there is a 2-coloring of La ; hence, Ka,b is L-colorable
by Remark 1. Suppose that Aa−2 ∩Aa−1 ∩ Aa = ∅.

Case 1. |Aa−2 ∩ Aa−1| = 2.
Let 2, 3 ∈ Aa−2, Aa−1 and Aa = 456. Then La has at least six 3-colorings, called
{1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}. Since r ≤ 5, at least one of
the six 3-colorings is not a list in Lb. By Lemma 1, Ka,b is L-colorable.

Case 2. |Aa−2 ∩ Aa−1| = 1.
Let Aa−2 = 234, Aa−1 = 256 and Aa = pqr where p, q, r �∈ {1, 2}. There are
several subcases.

Case 2.1 {p, q, r} ∩ {3, 4, 5, 6} �= ∅.
Without loss of generality, we let p = 3. Then La has at least five 3-colorings,
called {1, 2, 3}, {1, 2, q}, {1, 2, r}, {1, 3, 5}, {1, 3, 6}. If one of such 3-colorings is
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not a list in Lb, then Ka,b is L-colorable by Lemma 1. Suppose that such 3-
colorings are lists in Lb. Thus r = 5 and b ≤ 9. Let B1 = 123, B2 = 12q, B3 =
12r, B4 = 135 and B5 = 136. We label B1, B2, B3, B4 and B5 by color 2 and
color 3. Now, the remaining vertices form a K3,b−5 where b ≤ 9. For the worst
case, we suppose b = 9. Let L′′ be the list assignment of K3,4 which is obtained
from L′ by removing color 2. Then L′′

3 = {4, 56, qr} and L′′
4 = {B6, B7, . . . , B9}.

If L′′
3 has a 2-coloring, then K3,4 is L′′-colorable by Remark 1. Hence, sup-

pose that L′′
3 has no 2-coloring. That is, q, r �∈ {4, 5, 6}. We let q = 7 and

r = 8. Then L′′
3 has four 3-colorings, namely {4, 5, 7}, {4, 5, 8}, {4, 6, 7}, {4, 6, 8}.

Again, we suppose that such 3-colorings are lists in L′′
4 . Now, Lb = L9 =

{123, 127, 128, 135, 136, 457, 458, 478, 468}. Hence, color 1 and color 4 form a 2-
coloring of Lb. By Remark 1, Ka,b is L-colorable.

Case 2.2 p, q, r �∈ {3, 4, 5, 6}.
Let p = 7, q = 8 and r = 9. Then {1, 2, 7}, {1, 2, 8} and {1, 2, 9} are 3-colorings
of La. Again, by Lemma 1, Ka,b is L-colorable unless the case that Lb contains
127, 128 and 129. Let B1 = 127, B2 = 128, B3 = 129. Thus r ≥ 3. Next, we
label B1, B2, B3 by color 2. Let L′′ be the list assignment of K3,b−3 which is
obtained from L′ by removing color 2. Then L′′

3 = {Aa−2− 2, Aa−1− 2, Aa} and
L′′
b−3 = {B4 − 1, . . . , Br − 1, Br+1, Br+2, . . . , Bb}. Now, we apply Strategy A for

L′′
3 .
Case 2.2.1 r = 3.

Then all lists in L′′
b−3 are of size 3. Apply Strategy A for L′′

3 because 12 >
33−3(b− 3).

Case 2.2.2 r = 4.
For the worst case, we suppose that 1 ∈ B4. That is, L

′′
b−3 has exactly one lists

of size 2 and the remaining lists are of size 3. Again, we apply Strategy A for L′′
3

because 12 > 33−2 · 1 + 33−3(b − 4).
Case 2.2.3 r = 5.

For the worst case, we suppose that 1 ∈ B4, B5. That is, L
′′
b−3 has exactly two

lists of size 2 and the remaining lists are of size 3. Again, we apply Strategy A
for L′′

3 because 12 > 33−2 · 2 + 33−3(b− 5).
Case 3. Aa−2, Aa−1, Aa are mutually disjoint.

Then |Aa−2| · |Aa−1| · |A| = 33 Now, we use Strategy A for L′
3. Note that there

are r lists in Lb containing color 1. So the number of lists of size 2 and size 3 in
L′
b are n2 = r and n3 = b− r, respectively. Thus 3 · r+ (b− r) < 33. Hence K3,b

is L′-colorable by Strategy A for L′
3. Therefore, Ka,b is L-colorable.

Lemma 2. Let L be a 3-list assignment of Ka,b such that every color appears
in at most three lists in Lb. If color 1 appears in exactly a − 4 lists in La and
colors 1 and 2 appear together in three lists in Lb, then Ka,b is L-colorable.

Proof. Let La = {A1, A2, . . . , Aa} and Lb = {B1, B2, . . . , Bb}. Assume that
1 ∈ A1, A2, . . . , Aa−4 and 1, 2 ∈ B1, B2, B3. If Aa−3 ∩ Aa−2 ∩ Aa−1 ∩ Aa is
not empty, then La has a 2-coloring; hence, Ka,b is L-colorable by Remark 1.
Suppose that Aa−3 ∩ Aa−2 ∩ Aa−1 ∩ Aa = ∅. Then we label A1, A2, . . . , Aa−4

by color 1 and label B1, B2, B3 by color 2. Next, consider the remaining vertices
which form K4,b−3. Let L′ be the list assignment of K4,b−3 which is obtain
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from L by removing color 1 and color 2. For the worst case, we suppose that
2 ∈ Aa−3, Aa−2, Aa−1. That is, L′

4 = {Aa−3 − 2, Aa−2 − 2, Aa−1 − 2, Aa} and
L′
b−3 = {B4, B5, . . . , Bb}. If any two lists in L′

4 have a common color, it can be
verified that L′

4 has at least four 3-colorings of L
′
4. Since every color appears in at

most three lists in L′
b−3, at least one of these 3-colorings is not a list in L′

b−3. Then
we suppose that all lists in L′

4 have no common color. Let L′
4 = {34, 56, 78, 9AB}.

Since all lists in L′
4 are subsets of {3, 4, 5, 6, 7, 8, 9, A,B}, we may suppose that

all lists in L′
b−3 are subsets of {3, 4, 5, 6, 7, 8, 9, A,B}. Since every color appears

in at most three lists in L′
b, we obtain b− 3 ≤ 9.

Case 1. b − 3 ≤ 7.
Then K4,b−3 is L′-colorable by Strategy A for L′

4.
Case 2. b − 3 = 8.

We consider the possibility of L′
8 such that K4,8 is not L′-colorable. Then L′

8

must be {357, 358, 367, 368, 457, 458, 467, 468}. However, this case cannot occur
because every color appears in at most three lists in L′

8.
Case 3. b − 3 = 9.

Then every color from 3, 4, 5, 6, 7, 8, 9, A,B must appear in three lists in L′
9. We

label 34 in L′
4 by color 3 and label three lists containing color 4 in L′

9 by color 4.
The remaining vertices form aK3,6. Let L

′′ be the list assignment ofK3,6 which is
obtained from L′ by removing color 3 and color 4. Then L′′

3 = {56, 78, 9AB}. For
the worst case, we suppose that L′′

6 has three lists of size 2 and three lists of size
3. Again, we consider the possibilities of L′′

6 such that K4,6 is not L′′-colorable.
Without loss of generality, L′′

6 must be {57, 58, 67, 689, 68A, 68B}. However, this
case cannot occur because every color appears in at most three lists in L′′

6 .

Strategy E. Let L be a 3-list assignment of Ka,b such that every color appears
in at most r lists in Lb. If color 1 appears in a − 4 lists in La, and (r, b) ∈
{(r, b)|r ≤ 2, b ≤ 22} ∪ {(3, b)|b ≤ 14}, then Ka,b is L-colorable unless the four
remaining lists in La are 246, 257, 347, 356 and F ⊆ Lb.

Proof. Let La = {A1, A2, . . . , Aa} and Lb = {B1, B2, . . . , Bb}. If there is a color
appearing in more than a−4 lists in La, then we apply Strategy D. Assume that
color 1 appears in exactly a−4 lists in La, say 1 ∈ A1, A2, . . . , Aa−4. Moreover, we
suppose that the four remaining lists in La are not 246, 257, 347, 356 or F �⊆ Lb.

We first label A1, A2, . . . , Aa−4 by color 1. Then the remaining vertices form
K4,b. For the worst case, we may suppose that 1 ∈ B1, B2, . . . , Br. Let L′ be
the list assignment of K4,b which is obtained from L by removing color 1. Then
L′
4 = {Aa−3, Aa−2, Aa−1, Aa} and L′

b = {B1 − 1, . . . , Br − 1, Br+1, . . . , Bb}.
Case 1. There is a color appearing in all lists in L′

4.
Thus we use such color to label all lists in L′

4. It follows that every list in L′
b still

has an available color. Then Ka,b is L-colorable.
Case 2. There is a color appearing in three lists in L′

4.
If a color appears in four lists, then it is done by case 1. Suppose that no
color appears in four lists in L′

4. Let 2 ∈ Aa−3 ∩ Aa−2 ∩ Aa−1 and Aa = 345.
Now, we consider L of Ka,b. Then La has at least three 3-colorings, that is,
{1, 2, 3}, {1, 2, 4}, {1, 2, 5}. If Lb does not contain all of these 3-colorings, Ka,b
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is immediately L-colorable by Lemma 1. Otherwise, we suppose that B1 =
123, B2 = 124, B3 = 125. By Lemma 2, Ka,b is L-colorable.

Case 3. There is a color appearing in two lists in L′
4 and the remaining two

lists have no common color.
If there is a color appearing in more than two lists, then the proof is done by
Case 1 and Case 2. Suppose that each color appears in at most two lists in L′

4.
Let 2 ∈ Aa−3, Aa−2 and Aa−1 ∩Aa = ∅. We next label Aa−3 and Aa−2 by color
2. Then, we focus on the remaining vertices which form a K2,b. Let L′′ be the
list assignment of K2,b which is obtained from L′ by removing color 2. Since we
use color 1 and color 2 to label lists in La, we may suppose that both color 1
and color 2 appear in three lists in L′′

b for the worse case. Thus, there are four
possibilities of L′′

b .
Case 3.1 L′′

b has six lists of size 2 and b− 6 lists of size 3.
We see that |Aa−1|·|Aa| = 32 > 30 ·6. By Strategy A for L′′

2 , K2,b is L
′′-colorable.

Then Ka,b is L-colorable.
Case 3.2 L′′

b has one list of size 1, four lists of size 2 and b− 5 lists of size 3.
We see that |Aa−1| · |Aa| = 32 > 3 · 1 + 4. By Strategy A for L′′

2 , K2,b is L′′-
colorable. Then Ka,b is L-colorable.

Case 3.3 L′′
b has two lists of size 1, two lists of size 2 and b− 4 lists of size 3.

We see that |Aa−1| · |Aa| = 32 > 3 · 2 + 2. By Strategy A, K2,b is L′′-colorable.
Then Ka,b is L-colorable.

Case 3.4 L′′
b has three lists of size 1, no list of size 2 and b− 3 lists of size 3.

That is, color 1 and color 2 appear together in exactly three lists of Lb. Then
Ka,b is L-colorable by Lemma 2.

Case 4. There is a color appearing in two lists in L′
4 and the remaining two

lists have a common color.
Similar to case 3, we suppose that no color appears in three lists in L′

4. Let
2 ∈ Aa−3, Aa−2 and 3 ∈ Aa−1 ∩ Aa. Hence, {1, 2, 3} is a 3-coloring of La. If 123
is not a list in Lb, then Ka,b is L-colorable by Lemma 1. Otherwise, we suppose
that B1 = 123.

Case 4.1 |Aa−3 ∩ Aa−2| ≥ 2 and |Aa−1 ∩ Aa| ≥ 2.
Let 4 ∈ Aa−3 ∩ Aa−2 and 5 ∈ Aa−1 ∩ Aa. We obtain at least four 3-colorings
of La, that is, {1, 2, 3}, {1, 2, 5}, {1, 4, 3}, {1, 4, 5}. Since each color appears in at
most three lists in Lb, at least one of such 3-colorings is not a list in Lb. Then
Ka,b is L-colorable by Lemma 1.

Case 4.2 |Aa−3 ∩ Aa−2| ≥ 2 and |Aa−1 ∩ Aa| = 1.
We may suppose that |Aa−3 ∩Aa−2| = 2. Let Aa−3 = 24x,Aa−2 = 24y,Aa−1 =
356 and Aa = 378 where x �= y and x, y �∈ {1, 2, 3, 4}. Then {1, 4, 3} is a 3-
coloring of La. If 143 is not a list in Lb, thenKa,b is L-colorable by Lemma 1. Oth-
erwise, suppose that B2 = 143. Recall that we have already labeled A1, A2, . . . ,
Aa−4 by color 1. Now, we label B1, B2 by color 3. Consider the uncolor ver-
tices which form a K4,b−2. Let L′′ be a list assignment of K4,b−2 which is ob-
tained from L by removing color 3. Then L′′

4 = {24x, 24y, 56, 78} and L′′
b−2 =

{B3 − 1, B4, B5, . . . , Bb}. By the fact that L′
4 has at least eight 3-colorings and
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every color appears in at most three colors in Lb, it can be verified that K4,b−2

is L′′-colorable.
Case 4.3 |Aa−3 ∩ Aa−2| = 1 and |Aa−1 ∩ Aa| ≥ 2.

It is similar to Case 4.2.
Case 4.4 |Aa−3 ∩ Aa−2| = 1 and |Aa−1 ∩ Aa| = 1.

Let Aa−1 = 345, Aa = 367 and Aa−3 = 2ef,Aa−2 = 2gh where e, f, g, h are
distinct. Note that {1, 2, 4, 6}, {1, 2, 4, 7}, {1, 2, 5, 6}, {1, 2, 5, 7} are 4-colorings of
La. By Lemma 1, if one of these 4-colorings has no subset that is a list in Lb,
then Ka,b is L-colorable. Again, suppose that these 4-colorings have a subset
that is a list in Lb. Without loss of generality, Lb can be verified that there are
two possibilities of Lb.

Case 4.4.1 B2 = 124 and B3 = 125.
Then Ka,b is L-colorable by Lemma 2.

Case 4.4.2 B2 = 146, B3 = 147, B4 = 256, B5 = 257.
Recall that we have already labeled A1, A2, . . . , Aa−4 by color 1. Now, we label
Aa−1, Aa by color 3 and label B1, B4, B5 by color 2. Next, consider the remaining
vertices which forms a K2,b−3. Let L

′′ be the list assignment of K2,b−3 which is
obtained from L′ by removing color 2 and color 3. That is, L′′

2 = {ef, gh} and
L′′
b−3 = {46, 47, B6, B7, . . . , Bb}. Then L′′

2 has exactly four 2-colorings, namely
{e, g}, {e, h}, {f, g} and {f, h}. If one of such 2-colorings is not a list in L′′

b−3,
then K2,b−3 is L′′-colorable by Lemma 1. Suppose that such four 2-colorings are
lists in L′′

b−3. Then L′′
b−3 has at least four lists of size 2. Recall that 3 ∈ B1. Then

color 3 appears in two lists in B6, B7, . . . , Bb. Hence, we suppose that 3 ∈ B6, B7.
Then L′′

b−3 = {56, 57, B6 − 3, B7 − 3, B8, B9, . . . , Bb−3}.
Let L∗ be a 2-list assignment of K2,4 such that L∗

2 = {ef, gh} and L∗
4 =

{56, 57, B6− 3, B7− 3}. By Remark 1, K2,b−3 is L′′-colorable if and only if K2,4

is L∗-colorable. Moreover, K2,4 is not L∗-colorable if and only if L∗
2 = {45, 67}

and L∗
4 = {46, 47, 56, 57}. Therefore, K2,4 is not L∗-colorable if and only if

{Aa−3, Aa−2, Aa−1, Aa} �= {246, 257, 347, 356} or F �⊆ Lb.
Case 5. All lists in L′

4 are mutually disjoint.
Note that L′

b has b − r lists of size 3, r lists of size 2 and no list of size 1. We
have that

∏a
i=a−3 |Ai| = 34 > 32 · r + 3 · (b − r). By Strategy A for L′

4, K4,b is
L′-colorable.

Lemma 3. Let L be a 3-list assignment of Ka,b such that every color appears in
at most two lists in Lb. If a color appears in exactly a− 5 lists in La and a color
appears in exactly three of the five remaining lists, then Ka,b is L-colorable.

Proof. Let La = {A1, A2, . . . , Aa} and Lb = {B1, B2, . . . , Bb}. Suppose that 1 ∈
A1, A2, . . . , Aa−5 and 2 ∈ Aa−4, Aa−3, Aa−2. Then we first label A1, A2, . . . , Aa−5

by color 1 and label Aa−4, Aa−3, Aa−2 by color 2. Consider the remaining vertices
which form K2,b. Let L′ be the list assignment of K2,b which is obtained from
L by removing color 1 and color 2. Note that L′

2 = {Aa−1, Aa}. The proof is
divided into four cases.

Case 1. Aa−1 ∩ Aa = ∅.
To apply Strategy A for L′

2, we count the number of the lists of size 1, size 2
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and size 3 in L′
b. There are three possibilities. Denote that ni is the number of

the lists of size i in L′
b for i = 1, 2, 3.

1. n1 = 2, n2 = 0 and n3 = b− 2.
2. n1 = 1, n2 = 2 and n3 = b− 3.
3. n1 = 0, n2 = 4 and n3 = b− 4.

All possibilities satisfy the condition in Strategies A of L′
2. Therefore, K2,b is

L′-colorable.
Case 2. |Aa−1 ∩ Aa| = 1.

Let Aa−1 = 345 and Aa = 367. If 123 is not a list in Lb, then Ka,b is L-
colorable. Without loss of generality, suppose that B1 = 123. Then we label
all lists containing color 3 in L′

b by color 3. Now, we consider all uncolored
vertices. For the worst case, we suppose that no other list except B1 contains
color 3. Thus the remaining vertices form K2,b−1. Let L

′′ be the list assignment
of K2,b−1 which is obtained from L′ by removing color 3. Then we can apply
Strategy A for L′

2.
Case 3. |Aa−1 ∩ Aa| = ∅.

Let Aa−1 = 345 and Aa = 346. If 123 and 124 are not lists in Lb, then Ka,b

is immediately L-colorable. Without loss of generality, suppose that B1 = 123
and B2 = 124. Then we label B1, B2, Aa−1 and Aa by color 3, color 4, color 5
and color 6, respectively. Notice that every uncolored vertex in L′

b still has an
available color. Therefore, K2,b is L′-colorable.

Strategy F. Let L be a 3-list assignment of Ka,b such that every color appears
in at most two lists in Lb. If a color appears in a− 5 lists in La and a+ b ≤ 18,
then Ka,b is L-colorable.

Proof. Let La = {A1, A2, . . . , Aa} and Lb = {B1, B2, . . . , Bb}. Since a + b ≤ 18
and a ≥ 5, we obtain b ≤ 13. Since each color appears in at most two lists in Lb,
we have F �⊂ Lb. We can apply Strategy E if a color appears in more than a− 5
lists. Suppose that a color appears in exactly a−5 lists. Without loss of generality,
assume 1 ∈ A1, A2, . . . , Aa−5. Then label the a− 5 lists by color 1. For the worst
case, assume that color 1 is in two list in Lb, say B1, B2. Next, consider the
remaining vertices which formK5,b. Let L

′ be the list assignment ofK5,b which is
obtained from L by removing color 1. Then L′

5 = {Aa−4, Aa−3, Aa−2, Aa−1, Aa}
and L′

b = {B1 − 1, B2 − 1, B3, . . . , Bb}.
Case 1. There is a color appearing in all lists in L′

5.
Then La has a 2-coloring; hence, Ka,b is L-colorable by Remark 1.

Case 2. There is a color appearing in four lists in L′
5.

By case 1, we may suppose that color 2 appears in exactly four lists in L′
5.

Let 2 ∈ Aa−4, Aa−3, Aa−2, Aa−1 and Aa = 345. We obtain three 3-colorings of
La, that is, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}. Since every color appears in at most two
lists in Lb, at least one of the 3-colorings is not a list in Lb. Therefore, Ka,b is
L-colorable by Lemma 1.

Case 3. There is a color appearing in three lists in L′
5.

By Lemma 3, Ka,b is L-colorable.
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Case 4. There is a color appearing in two lists in L′
5.

From Case 3, we may suppose that each color appears in at most two lists in L′
5.

Since color 1 appears in at most two lists in Lb, at most four colors appears in
the same lists with color 1 in Lb. We apply Theorem 1. Since 18 ·

(
3
2

)
≤
(
10+1

2

)
,

we may suppose that |
⋃a

i=a−4 Ai| ≤ |
⋃

v∈V (Ka,b)
L(v)| ≤ 10. Since |Aa−4| +

|Aa−3|+ |Aa−2|+ |Aa−1|+ |Aa| = 15 and the number of colors is at most ten, at
least five colors must appear in exactly two lists in L′

5. Recall that only B1, B2

contain color 1. Hence, at most four colors from the five colors appear in the
same lists with color 1 in Lb. Hence, we can choose the remaining color such
that no list in Lb contains both color 1 and this color, namely color 2. Let
2 ∈ Aa−4, Aa−3 and then we label Aa−4, Aa−3 by color 2. Let L′′ be the list
assignment of K3,b which is obtained from L′ by removing color 2. For the worst
case, we suppose 2 ∈ B3, B4. Hence, L

′′
b = {B1−1, B2−1, B3−2, B4−2, B5 . . . , Bb

and L′′
2 = {Aa−2, Aa−1, Aa}.

If color 3 appears in exactly two lists in Aa−2, Aa−1, Aa, then L′′
3 has at least

three 2-colorings containing color 3. Since every color appears in at most two
lists in L′′

b , at least one 2-coloring is not a list in L′′
b . Otherwise, we suppose

that Aa−2, Aa−1, Aa are mutually disjoint. To apply Strategy A, we count the
number of lists of size 1, size 2 and size 3 in L′′

b . We obtain that L′′
b has no list

of size 1, four lists of size 2 and b − 4 lists of size 3 where b − 4 ≤ 6. Then
|Aa−2| · |Aa−1| · |Aa| = 33 > 3 · 4 + (b− 4).

Case 5. Aa−4, Aa−3, Aa−2, Aa−1, Aa are mutually disjoint.
Then L′

b has at most three lists of size b − 2 and two lists of size 2. Since∏a
i=a−4 |Ai| = 35 > 33 · 2+ 32 · (b− 2), Ka,b is L-colorable by Strategy A for L′

5.

Strategies A,B,C,D,E and F shows that there exists a coloring of La such
that every vertex in Lb still has available colors. It is called Strategy A(B,C,D,E,
or F) for La. However, we can exchange the role between La and Lb for a list
assignment L of Ka,b and we call Strategy A(B,C,D,E, or F, respectively) for Lb.

3 On 3-Choosability of Complete Bipartite Graphs with
Fourteen Vertices

Hanson, MacGillivray and Toft [4] stated that every complete bipartite graph
with thirteen vertices is 3-choosable. Furthermore, Fitzpatrick and MacGillivray
[3] proved that every complete bipartite graph with fourteen vertices except K7,7

is 3-choosable. Moreover, there is the unique list assignment up to renaming the
colors such that K7,7 is not L-colorable.

Here we give a shorter proof of Fitzpatrick and MacGillivray’s result by using
our strategies from the previous section.

Lemma 4. The complete bipartite graph K3,b is 3-choosable if and only if
b ≤ 26.

Proof. Let L be the 3-list assignment of K3,27 defined by L3 = {123, 456, 789}
and L27 = {{a, b, c}|a ∈ {1, 2, 3}, b ∈ {4, 5, 6}, c ∈ {7, 8, 9}}. Notice that every
coloring of L3 is a list in L27. By Lemma 1, K3,27 is not L-colorable.
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To prove K3,26 is 3-choosable, let L be a 3-list assignment of K3,26. If some
lists in L3 have a common color, K3,26 is immediately L-colorable by Strategy B
for L3. Suppose that all lists in L3 have no common color. We apply Strategy A
for L3 by counting the number of 3-colorings of L3 and the number of lists of
size 1, size 2 and size 3 in L26. We see that the number of 3-colorings of L3 is
27. Since L26 has only 26 lists of size 3, at least one of those 3-colorings is not a
list in L26. Hence, we can use such 3-coloring to color L3 while every vertex in
L26 still has an available color.

Lemma 5. The complete bipartite graph K4,10 is 3-choosable.

Proof. Let L be a 3-list assignment of K4,10. Let r4 and r10 be the maximum
number of lists in L4 and L10, respectively, containing a common color. Note
that r4 ≤ 4 and r10 ≤ 10.
Case 1. r4 = 3, 4 or r10 = 9, 10; apply Strategy B for L4 or Strategy B for L10,
respectively.
Case 2. r4 = 2 and r10 ≤ 8; apply Strategy C for L4.
Case 3. r4 = 1 and r10 ≤ 8; apply Strategy A for L4. Notice that

∏4
i=1 |Ai| =

34 > 3 · 10 = 34−3n3.

Lemma 6. The complete bipartite graph K5,9 is 3-choosable.

Proof. Let L be a 3-list assignment of K5,9. Let r5 and r9 be the maximum
number of lists in L5 and L9, respectively, containing a common color. Then
r5 ≤ 5 and r9 ≤ 9.
Case 1. r5 = 4, 5 or r9 = 8, 9; apply Strategy B for L5 or Strategy B for L9,
respectively.
Case 2. r5 = 3 and r9 ≤ 7; apply Strategy C for L5.
Case 3. r5 ≤ 2 and r9 = 7; apply Strategy C for L9.
Case 4. r5 ≤ 2 and r9 = 6; apply Strategy D for L9.
Case 5. r5 ≤ 2 and r9 = 5; apply Strategy E for L9. Notice that F �⊂ L5 because
L5 contains only five lists.
Case 6. r5 = 2 and r9 ≤ 4; apply Strategy D for L5.
Case 7. r5 = 1 and r9 ≤ 4; apply Strategy A for L5. Notice that

∏5
i=1 |Ai| =

35 > 32 · 9 = 35−3n3.

Lemma 7. The complete bipartite graph K6,8 is 3-choosable.

Proof. Let L be a 3-list assignment of K6,8. Let r6 and r8 be the maximum
number of lists in L6 and L8, respectively, containing a common color. Then
r6 ≤ 6 and r8 ≤ 8.
Case 1. r6 = 5, 6 or r8 = 7, 8; apply Strategy B for L6 or Strategy B for L8,
respectively.
Case 2. r6 = 4 and r8 ≤ 6; apply Strategy C for L6.
Case 3. r6 ≤ 3 and r8 = 6; apply Strategy C for L8.
Case 3. r6 ≤ 3 and r8 = 5; apply Strategy D for L8.
Case 4. r6 ≤ 3 and r8 = 4; apply Strategy E for L8. Notice that F �⊂ L6 because
L6 contains only six lists.
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Case 5. r6 = 3 and r8 ≤ 3; apply Strategy D for L6.
Case 6. r6 = 2 and r8 ≤ 3; apply Strategy E for L6 unless 1 ∈ A1, A2, A3 =
246, A4 = 257, A5 = 347, A6 = 356 and F ⊂ L8. In this forbidden cases, consider
3 ∈ A5, A6 instead. Note that the forbidden cases consist of a colors in two
lists and six colors in the union of the remaining four lists. In such case, colors
1, 2, 3, 4, 5, 6, 7 have already appeared in two lists in L6. Since r6 = 2, A1 contains
two new colors, say color 8 and color 9. Hence, A1 ∪A2 ∪A3 ∪A4 contains eight
colors, so it is not a forbidden case. Therefore, we can apply Strategy E for L6

to conclude that K6,8 is L-colorable.

Case 7. r6 = 1 and r8 ≤ 3; apply Strategy A for L6. Notice that
∏6

i=1 |Ai| =
36 > 33 · 8.

Lemma 8. Let L be a 3-list assignment of K7,7. The complete bipartite graph
K7,7 is L-colorable unless L = LF .

Proof. Let L be a 3-list assignment such that F �⊂ L7(i) or F �⊂ L7(ii). Let
r7(i) and r7(ii) be the maximum number of lists in L7(i) and L7(ii), respectively,
containing a common color. Then r7(i), r7(ii) ≤ 7.

Let t = |
⋃

v∈V (K7,7)
L(v)|. By Theorem 1, we may suppose that t ≤ 10 be-

cause 14 · 3 <
(
10+1

2

)
. Since

∑
v∈L7(i)

|L(v)| = 21, we obtain r7(i) ≥ 3 by the

Pigeonhole Principle. Similarly, r7(ii) ≥ 3.
Case 1. r7(i) = 6, 7 or r7(ii) = 6, 7; apply Strategy B for L7(i) or Strategy B for
L7(ii), respectively.
Case 2. r7(i) = 5 and r7(ii) ≤ 5; apply Strategy C for L7(i).
Case 3. r7(i) ≤ 4 and r7(ii) = 5; apply Strategy C for L7(ii).
Case 4. r7(i) = 4 and r7(ii) ≤ 4; apply Strategy D for L7(i).
Case 5. r7(i) = 3 and r7(ii) = 4; apply Strategy D for L7(ii).
Case 6. r7(i) = 3 and r7(ii) = 3; apply Strategy E for L7(i) unless 1 ∈ A1, A2, A3,
A4 = 246, A5 = 257, A6 = 347, A7 = 356 and L7(ii) = F . In such case,
{1, 2, 3}, {1, 4, 5}, {1, 6, 7} are 3-colorings of L7(ii). One of such 3-colorings is
not a list in L7(i) because L7(i) �= F . Then K7,7 is L-colorable by Lemma 1.

Lemmas 4, 5 6, 7 and 8 provide another proof of the next theorem of [3].

Theorem 2. The complete bipartite graph with at most fourteen vertices is 3-
choosable if and only if it is not K7,7. For a 3-list assignment L, K7,7 is L-
colorable unless L = LF .

4 On 3-Choosability of Complete Bipartite Graphs with
Fifteen Vertices

We keep utilizing our strategies to extend the result in the previous section to
15 vertices. We first show thatK4,11,K5,10 andK6,9 are 3-choosable, and then we
prove that for a 3-list assignment L, K7,8 is L-colorable unless L|V (K7,7) = LF .

Lemma 9. The complete bipartite graph K4,11 is 3-choosable.
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Proof. Let L be a 3-list assignment of K4,11, and r4 and r11 be the maximum
number of lists in L4 and L11, respectively, containing a common color. Then
r4 ≤ 4 and r11 ≤ 11.
Case 1. r4 = 3, 4 or r11 = 10, 11; apply Strategy B for L4 or Strategy B for L11,
respectively.
Case 2. r4 ≤ 2 and r11 = 9; apply Strategy C for L11.
Case 3. r4 = 2 and r11 ≤ 8; apply Strategy C for L4.
Case 4. r4 = 1 and r11 ≤ 8; apply Strategy A for L4. Notice that

∏4
i=1 |Ai| =

34 > 3 · 11 = 34−3n3.

Lemma 10. The complete bipartite graph K5,10 is 3-choosable.

Proof. Let L be a 3-list assignment of K5,10, and r5 and r10 be the maximum
number of lists in L5 and L10, respectively, containing a common color. Then
r5 ≤ 5 and r10 ≤ 10.
Case 1. r5 = 4, 5 or r10 = 9, 10; apply Strategy B for L5 or Strategy B for L10,
respectively.
Case 2. r5 = 3 and r10 ≤ 8; apply Strategy C for L5.
Case 3. r5 ≤ 2 and r10 = 8; apply Strategy C for L10.
Case 4. r5 ≤ 2 and r10 = 7; apply Strategy D for L10.
Case 5. r5 ≤ 2 and r10 = 6; apply Strategy E for L10. Notice that F �⊂ L5

because L5 contains only five lists.
Case 6. r5 ≤ 2 and r10 = 5; apply Strategy F for L10.
Case 7. r5 = 2 and r10 ≤ 4; apply Strategy D for L5.
Case 8. r5 = 1 and r10 ≤ 4; apply Strategy A for L5. Notice that

∏5
i=1 |Ai| =

35 > 32 · 10 = 35−3n3.

Lemma 11. The complete bipartite graph K6,9 is 3-choosable.

Proof. Let L be a 3-list assignment of K6,9, and r6 and r9 be the maximum
number of lists in L6 and L9, respectively, containing a common color. Then
r6 ≤ 6 and r9 ≤ 9.
Case 1. r6 = 5, 6 or r9 = 8, 9; apply Strategy B for L6 or Strategy B for L9,
respectively.
Case 2. r6 = 4 and r9 ≤ 7; apply Strategy C for L6.
Case 3. r6 ≤ 3 and r9 = 7; apply Strategy C for L9.
Case 4. r6 ≤ 3 and r9 = 6; apply Strategy D for L9.
Case 5. r6 ≤ 3 and r9 = 5; apply Strategy E for L9. Notice that F �⊂ L6 because
L6 contains only six lists.
Case 6. r6 = 3 and r9 ≤ 4; apply Strategy D for L6.
Case 7. r6 ≤ 2 and r9 = 4; apply Strategy F for L9.
Case 8. r6 = 2 and r9 ≤ 3; apply Strategy E for L6 unless 1 ∈ A1, A2 and
A3 = 246, A4 = 257, A5 = 347, A6 = 356. In such case, we obtain that 4, 5, 6, 7 �∈
A1, A2 because r6 = 2. Let A1 = 178. Then 3 ∈ A5, A6 and the four remaining
lists cannot rename the colors to be 246, 257, 347, 356. Hence, we still apply
Strategy D for L6.
Case 9. r6 = 1 and r9 ≤ 3; apply Strategy A for L6. Notice that

∏6
i=1 |Ai| =

36 > 33 · 9 = 36−3n3.
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Lemma 12. Let L be a 3-list assignment of K7,8. The complete bipartite graph
K7,8 is L-colorable unless L|V (K7,7) = LF .

Proof. Let L be a 3-list assignment of K7,8 such that F �⊂ L7 or F �⊂ L8. Let r7
and r8 be the maximum number of lists in L7 and L8, respectively, containing a
common color. Then r7 ≤ 7 and r8 ≤ 8.
Case 1. r7 = 6, 7 or r8 = 7, 8; apply Strategy B for L7 or Strategy B for L8,
respectively.
Case 2. r7 = 5 and r8 ≤ 6; apply Strategy C for L7.
Case 3. r7 ≤ 4 and r8 = 6; apply Strategy C for L8.
Case 4. r7 ≤ 4 and r8 = 5; apply Strategy D for L8.
Case 5. r7 = 4 and r8 ≤ 4; apply Strategy D for L7.
Case 6. r7 ≤ 3 and r8 = 4; apply Strategy E for L8 unless 1 ∈ B1, B2, B3, B4,
B5 = 246, B6 = 257, B7 = 347, B8 = 356 and L7 = F . Since L7 = F ,
{1, 2, 3}, {1, 4, 5} and {1, 6, 7} are 3-colorings of L7. Since F �⊂ L8, one of such
3-colorings is not a list in L8. Hence K7,8 is L-colorable by Lemma 1,
Case 7. r7 = 3 and r8 ≤ 3; apply Strategy E for L7 unless 1 ∈ A1, A2, A3,
A4 = 246, A5 = 257, A6 = 347, A7 = 356 and F ⊂ L8. In such case, let
B1 = 123, B2 = 145, B3 = 146, B4 = 246, B5 = 257, B6 = 347, B7 = 356.
Suppose that B8 = 89A because r8 ≤ 3 and color 1 to color 7 are appears in
three lists in B1, B2, . . . , B7. Since L7 �= F , we obtain that at least one of 123,
145, 167 is not a list in L7. Suppose that 123 �∈ L7. Then we label B1, B2, . . . , B7

by color 1, color 2 and color 3. For the worst case, suppose the 2 ∈ A1 and
3 ∈ B2. Then then remaining vertices can be easily labeled. Then K7,8 is L-
colorable by Lemma 1.
Case 8. r7 ≤ 2 and r8 = 3; apply Strategy F for L8.
Case 9. r7 = 2 and r8 ≤ 2; apply Strategy F for L7.
Case 10. r7 = 1 and r8 ≤ 2; apply Strategy A for L7. Notice that

∏7
i=1 |Ai| =

37 ≥ 34 · 8 = 37−3n3.

Lemmas 4, 9, 10, 11 and 12 provide us the following main theorem.

Theorem 3. A complete bipartite graph with fifteen vertices is 3-choosable if
and only if it is not K7,8. For a 3-list assignment L, K7,8 is L-colorable unless
L|V (K7,7) = LF .
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Abstract. The notion of gregarious cycles in complete multipartite
graphs was introduced by Billington and Hoffman in 2003 and was mod-
ified later by Billington, Hoffman, and Rodger and by Billington, Smith,
and Hoffman.

In this paper, we propose a new definition of gregarious cycles in com-
plete multipartite graphs which generalizes all of the three definitions.
With our definition, we can consider gregarious cycles of long length
in complete multipartite graphs, and we show some results on the ex-
istence of edge-disjoint decompositions of complete multipartite graphs
into gregarious long cycles.

1 Introduction

A (simple) graph is a pair G = (V,E) of a nonempty finite set V and a family
E of 2-element subsets of V . Each element v in V is called a vertex of the
graph G, and each element {u, v} in E is called an edge of G. We denote the
vertex set of G and the edge set of G by V (G) and by E(G), respectively.
For a positive integer n, the complete graph of order n is the graph Kn such
that |V (Kn)| = n and E(Kn) = {{u, v} | u, v ∈ V (Kn), u �= v}. For two
positive integers n and m, the complete multipartite graph with n partite sets
of the same size m is the graph Kn(m) defined by V (Kn(m)) := V1 ∪ · · · ∪ Vn,
where V1, . . . , Vn are pairwise disjoint sets of the same size m, and E(Kn(m)) :=
{{u, v} | u ∈ Vi, v ∈ Vj , i, j ∈ {1, . . . , n}, i �= j}. We refer V1, . . . , Vn as the
partite sets of Kn(m). Note that Kn(1) = Kn and that |V (Kn(m))| = nm and

|E(Kn(m))| = 1
2n(n− 1)m2. For a positive integer k, a k-path in a graph G is a

sequence (v1, v2, . . . , vk) of k distinct vertices of G such that {vi, vi+1} is an edge
of G for each i = 1, 2, . . . , k− 1. For an integer k ≥ 3, a k-cycle in a graph G is a
sequence (v1, v2, . . . , vk, vk+1) of vertices ofG such that v1, v2, . . . , vk are distinct,
vk+1 = v1, and {vi, vi+1} is an edge of G for each i = 1, 2, . . . , k. If a vertex
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sequence (v1, v2, . . . , vk, v1) is a k-cycle, then we denote it by [v1, v2, . . . , vk, v1].
Let k ≥ 3 be an integer. A k-cycle decomposition (resp. a k-path decomposition)
of Kn(m) is a family D = {G1, G2, . . . , Gt} of k-cycles (resp. k-paths) in Kn(m)

such that E(G1) ∪ · · · ∪E(Gt) = E(Kn(m)) and E(Gi) ∩E(Gj) = ∅ for distinct
i and j in {1, . . . , t}. For a positive integer n, we denote the n-set {1, . . . , n}
by [n].

Edge-disjoint decompositions of graphs into cycles has been considered in a
number of ways. Necessary and sufficient conditions for a complete graph of odd
order or a complete graph of even order minus a 1-factor to have a decomposition
into cycles of some fixed length are known (see [1], [9] and [10] as well as their
references). Although much work has done for cycle decompositions of complete
graphs, it seems that less attention has been paid to the same problem for
complete multipartite graphs. The notion of gregarious cycles in a complete
multipartite graph was introduced by Billington and Hoffman [2] in 2003 and
was modified later by Billington, Hoffman, and Rodger [4] and by Billington,
Smith, and Hoffman [5].

In this paper, we propose a new definition of gregarious cycles in complete
multipartite graphs which generalizes all of the three definitions. By introducing
our new definition, we can consider gregarious cycles of length greater than
the number of the partite sets in a complete multipartite graph, and we show
some results on edge-disjoint decompositions of complete multipartite graphs
into gregarious long cycles. This paper is organized as follows: In Section 2,
we first recall the three definitions of gregarious cycles in complete multipartite
graphs, and then we introduce a new definition. In Section 3, we give some
results on the existence of decompositions of complete multipartite graphs into
gregarious long cycles. Section 4 gives some remarks.

2 Gregarious Cycles

In 2003, Billington and Hoffman [2] introduced the notion of gregarious cycles
as follows:

Definition 1 ([2]). A 4-cycle C in a complete tripartite graph Kr,s,t with partite
sets V1, V2, V3 is called gregarious if |V (C) ∩ Vi| ≥ 1 for any i ∈ {1, 2, 3}.

They gave a necessary and sufficient condition for r, s, and t such that the com-
plete tripartite graph Kr,s,t has an edge-disjoint decomposition into gregarious
4-cycles.

Billington, Hoffman, and Rodger [4] defined gregarious cycles as follows:

Definition 2 ([4]). An n-cycle C in a complete n-partite graph Kn(m) with par-
tite sets V1, . . . , Vn is called gregarious if |V (C)∩Vi| = 1 for any i ∈ {1, 2, . . . , n}.

They considered gregarious cycle decompositions of Kn(m) with an additional
property called resolvability and gave a characterization.

Billington, Smith, and Hoffman [5] defined gregarious cycles as follows:
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Definition 3 ([5]). Let k, n be positive integers such that k ≤ n. A k-cycle C in
a complete n-partite graph Kn(m) with partite sets V1, . . . , Vn is called gregarious
if |V (C) ∩ Vi| ≤ 1 for any i ∈ {1, 2, . . . , n}.

With adopting the last definition, the necessary and sufficient condition for the
existence of a gregarious k-cycle decomposition of Kn(m) is known for k = 4 [3],
for k = 5 [11], for k = 6 and k = 8 [5], and for prime k [12].

As we see above, there are three different definitions of gregarious cycles.
Now, we introduce a new definition of gregarious cycles which is a common
generalization of the above definitions.

Definition 4. Let n, m, and k be positive integers with n ≥ 2 and k ≥ 3. A
k-cycle C in a complete n-partite graph Kn(m) with partite sets V1, . . . , Vn is
called gregarious if ⌊

k

n

⌋
≤ |V (C) ∩ Vi| ≤

⌈
k

n

⌉
for any i ∈ {1, 2, . . . , n}.

Remark 1. (i) If we take k = 4 and n = 3, then the above definition coincides
with that of Billington and Hoffman [2].
(ii) If we take k = n, then the above definition coincides with that of Billington,
Hoffman, and Rodger [4].
(iii) For the case where k ≤ n, the above definition coincides with that of Billing-
ton, Smith, and Hoffman [5].
(iv) More generally, we can define as follows: A subgraph H of a multipartite
graph G with partite sets V1, . . . , Vn is said to be gregarious in G if⌊

1

n
|V (H)|

⌋
≤ |V (H) ∩ Vi| ≤

⌈
1

n
|V (H)|

⌉
for any i ∈ {1, 2, . . . , n}. This is an extension of the definition given by
Smith [12]. ��

With our definition, we can consider gregarious cycles of length greater than
the number of the partite sets in a complete multipartite graph. A gregarious
cycle decomposition of Kn(m) is a cycle decomposition in which all the cycles are
gregarious in the sense of our definition. Here are some examples of gregarious
k-cycle decompositions of Kn(m) with k > n. In the following, we let Vi :=
{i1, . . . , im} for each i ∈ {1, . . . , n}.

Example 1. The complete multipartite graph K4(2) has a gregarious 6-cycle de-
composition. Let

C1 = [11, 21, 31, 41, 32, 22, 11], C2 = [12, 21, 32, 42, 31, 22, 12],
C3 = [21, 41, 11, 31, 12, 42, 21], C4 = [22, 41, 12, 32, 11, 42, 22].

Then we can check that C1, C2, C3, C4 are gregarious 6-cycles in K4(2) and
{C1, C2, C3, C4} is a cycle decomposition of K4(2). ��
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Example 2. The complete multipartite graph K4(4) has a gregarious 8-cycle de-
composition. Let

C1 = [11, 21, 32, 42, 13, 23, 34, 44, 11],
C2 = [13, 21, 34, 42, 11, 23, 32, 44, 13],
C3 = [11, 31, 42, 22, 13, 33, 44, 24, 11],
C4 = [13, 31, 44, 22, 11, 33, 42, 24, 13],
C5 = [11, 41, 22, 32, 13, 43, 24, 34, 11],
C6 = [13, 41, 24, 32, 11, 43, 22, 34, 13],

C7 = [12, 22, 31, 41, 14, 24, 33, 43, 12],
C8 = [14, 22, 33, 41, 12, 24, 31, 43, 14],
C9 = [12, 32, 41, 21, 14, 34, 43, 23, 12],
C10 = [14, 32, 43, 21, 12, 34, 41, 23, 14],
C11 = [12, 42, 21, 31, 14, 44, 23, 33, 12],
C12 = [14, 42, 23, 31, 12, 44, 21, 33, 14].

Then we can check that C1, . . . , C12 are gregarious 8-cycles and {C1, . . . , C12} is
a cycle decomposition of K4(4). ��

The following proposition gives a necessary condition for Kn(m) to have a gre-
garious k-cycle decomposition where k may be larger than n.

Proposition 1. Let n,m, k be positive integers such that k ≥ 3. If there exists
a gregarious k-cycle decomposition of Kn(m), then (n− 1)m is even and 1

2n(n−
1)m2 is divided by k.

Proof. Since the degree of each vertex should be even, (n − 1)m is even. Since
the number of edges of Kn(m) should be divided by the length of the cycles,
1
2n(n− 1)m2 is divided by k. ��

3 Results

In this section, we show some results on edge-disjoint decompositions of com-
plete multipartite graphs into gregarious cycles of long length. In particular, we
consider the cases where the length k of cycles is equal to 2n− 2 or 2n, where n
is the number of partite sets.

3.1 Gregarious (2n − 2)-cycle Decompositions of Kn(m)

In this subsection, we prove the following theorem.

Theorem 1. Let n and m be positive integers with n > 2. If n and m are
even, then the complete multipartite graph Kn(m) has a gregarious (2n−2)-cycle
decomposition.

Lemma 1. The complete graph Kn has an n-path decomposition if and only if
n is even.

Proof. Let n be an even positive integer. Then, since n + 1 is odd, Kn+1 has
an (n + 1)-cycle decomposition D (cf. [1]). Fix a vertex v∗ of Kn+1. For each
(n+1)-cycle C ∈ D, C−v∗ is an n-path. Then we can easily check that the family
{C − v∗ | C ∈ D} is an n-path decomposition of Kn+1 − v∗ ∼= Kn. Conversely,
if Kn has an n-path decomposition, then |E(Kn)| = 1

2n(n− 1) must be divided
by (n− 1) and thus n is even. ��
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Lemma 2. Let n and m be positive integers with n > 2. If n is even, then the
complete multipartite graph Kn(m) has a gregarious n-path decomposition.

Proof. Since n is even, it follows from Lemma 1 that there exists an n-path
decomposition D of the complete graph Kn with V (Kn) = {1, 2, . . . , n}. Note
that Kn = Kn(1) and that n-paths in Kn(1) are gregarious n-paths. Let Vi =
{i1, . . . , im} (i ∈ [n]) denote the partite sets of Kn(m). For each n-path P ∈ D
of the form P = (σ(1), σ(2), . . . , σ(n− 1), σ(n)), where σ is a permutation of [n],
we define m2 gregarious n-paths in Kn(m) by

QP
ij := (σ(1)i, σ(2)j , σ(3)i, σ(4)j , . . . , σ(n− 1)i, σ(n)j) ((i, j) ∈ [m]× [m]).

Then we can check that QP
ij is gregarious and that D∗ := {QP

ij | P ∈ D, (i, j) ∈
[m]× [m]} gives an edge-disjoint path decomposition of Kn(m). Hence the com-
plete multipartite graph Kn(m) has a gregarious n-path decomposition. ��

Proof (Proof of Theorem 1). Since m is even, l := 1
2m is an integer. Since n is

even, it follows from Lemma 2 that there exists a gregarious n-path decompo-
sition D of the complete multipartite graph Kn(l). For each gregarious n-path
P ∈ D, P has the form

P = (σ(1)f(1), . . . , σ(n)f(n))

where σ is a permutation of [n] and f is a map from [n] to [l]. For simplicity,
we denote σ(i)f(i) by xi. Let x′

i := σ(i)f(i)+l. For each gregarious n-path P =
(x1, x2, . . . , xn) ∈ D, we define two gregarious (2n − 2)-cycles CP

+ and CP
− in

Kn(2l) by

CP
+ := [x1, x2, x3, . . . , xn−2, xn−1, xn, x

′
n−1, x

′
n−2, x

′
n−3, . . . , x

′
3, x

′
2, x1],

CP
− := [x′

1, x2, x
′
3, . . . , xn−2, x

′
n−1, x

′
n, xn−1, x

′
n−2, xn−3, . . . , x3, x

′
2, x

′
1].

Then we can check that D∗ := {CP
ε | P ∈ D, ε ∈ {+,−}} gives a gregarious

(2n− 2)-cycle decomposition of Kn(2l) = Kn(m). Hence the theorem holds. ��

3.2 Gregarious 2n-cycle Decompositions of Kn(m)

In this subsection, we show the following the following theorem.

Theorem 2. Let n and m be positive integers with n > 2. If n is even and m
is a multiple of 4, then the complete multipartite graph Kn(m) has a gregarious
2n-cycle decomposition.

To prove this theorem, we use the following result by Billington, Hoffman,
and Rodger.

Lemma 3 ([4, Corollary 2.2]). Let n and m be positive integers with n > 2. If
n and m are even, then the complete multipartite graph Kn(m) has a gregarious
n-cycle decomposition. ��
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Proof (Proof of Theorem 2). Since m is a multiple of 4, l := 1
2m is an even

integer. Since n and l are even, it follows from Lemma 3 that there exists a
gregarious n-cycle decomposition D of the complete multipartite graph Kn(l).
For each gregarious n-cycle C ∈ D, C has the form C = [σ(1)f(1), . . . , σ(n)f(n),
σ(1)f(1)] where σ is a permutation of [n] and f is a map from [n] to [l]. For
simplicity, we denote σ(i)f(i) by xi. Let x′

i := σ(i)f(i)+l. For each gregarious
n-cycle C = [x1, . . . , xn, x1] ∈ D, we define two gregarious 2n-cycles OC

+ and OC
−

in Kn(2l) by

OC
+ := [x1, x2, x3, . . . , xn−2, xn−1, xn, x

′
1, x

′
2, x

′
3, . . . , x

′
n−2, x

′
n−1, x

′
n, x1],

OC
− := [x′

1, x2, x
′
3, . . . , xn−2, x

′
n−1, xn, x1, x

′
2, x3, . . . , x

′
n−2, xn−1, x

′
n, x

′
1].

Then we can check that D∗ := {OC
ε | C ∈ D, ε ∈ {+,−}} gives a gregarious

2n-cycle decomposition of Kn(2l) = Kn(m). Hence the theorem holds. ��

4 Concluding Remarks

In this paper, we introduced a new definition of gregarious cycles in complete
multipartite graphs as a common generalization of three different definitions,
and we show some results on the existence of edge-disjoint decompositions of
complete multipartite graphs into gregarious long cycles. We left the existence
problems of gregarious cycle decompositions of complete multipartite graphs in
other various cases for further study, especially the case where the length of
cycles is greater than the number of partite sets. It would be also interesting
to consider gregarious long cycle decompositions having some additional condi-
tions such as resolvable decompositions (see [4]) and circulant decompositions
(see [6], [7], [8]).
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Abstract. In addition to the well-known classification of 3-dimensional
parallelohedra we describe this important class of polytopes classified by
the affine equivalence relation and parametrize representatives of their
equivalent classes.

1 Introduction

For each dimension, parallelohedra constitute a very important class of Euclidean
polyhedra that have important applications in geometry, especially in geometry
of numbers, combinatorial geometry, and in some other fields of mathematics.
Three-dimensional parallelohedra play a significant role in geometric crystallog-
raphy. The concept and the term of a paralleloherdon were introduced by the
Russian eminent crystallographer E.S.Fedorov ([1]).

A d-parallelohedron is defined as a polyhedron whose parallel copies tile the
space Rd in a face-to-face manner. Classical theorems by H. Minkowski [2] and
B. A. Venkov [3] are equivalent to the following criterion:

Theorem 1. ([3,4]). A d-dimensional convex bounded polyhedron is a parallelo-
hedron if and only if
(i) P is centrally symmetric;
(ii) all its faces are centrally symmetric;
(iii) the projection of P along each of its (d − 2)-faces is either a parallelogram
or a centrally symmetric hexagon.

E.S.Fedorov [1] determinedall five combinatorial types of convex3-parallelohedra.
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Theorem 2. ([1]) There are five combinatorial types of convex parallelohedra in
R3: the cube, the right hexagonal prism, the rhombic dodecahedron, the elongated
dodecahedron, and the truncated octahedron.

A well-developed, algorithmical theory of a very important subclass of paral-
lelohedra had been elaborated by G.Voronoi [4]. This subclass consists of those
parallelohedra which can be represented as Dirichlet-Voronoi domains of points
in a integer point lattice. Now such parallelohedra are called Voronoi parallelo-
hedra. Not every parallelohedron is a Voronoi parallelohedron. So, for instance
in a plane every 2-dimensional parallelohedron (syn. parallelogon) is either a
parallelogram or a centrally symmetric hexagon. However, a parallelogon is a
Voronoi 2-dimensional parallelohedron if and only if it is either a rectangle or a
centrally symmetric hexagon inscribed into a circle.

Voronoi introduced a notion of a primitive parallelohedron as a parallelohe-
dron to tile a space in such a way that each vertex belongs to the least possible
number (for a given dimension d) of tiling cells, namely, d + 1. In a space of
dimension 2 or 3 there is the only combinatorial type of primitive parallelohedra
(if d = 2 it is the hexagon but not the parallelogram, if d = 3, it is the trun-
cated octahedron only). If d = 4 or 5, there are 3 or 222 combinatorial types of
primitive parallelohedra, respectively. Voronoi proved that every primitive paral-
lelohedron is affine equivalent to some Voronoi parallelohedron and suggested a
conjecture: For any parallelohedron there exists an affine equivalent (for brevity,
a-equivalent) Voronoi parallelohedron. Regardless of serious efforts and signifi-
cant progresses this centennial conjecture on the existence of the a-equivalent
Voronoi parallelohedron still remains unsolved. Among recent results we select
out so-called uniqueness theorems. In [5] it was proved that if a parallelohedron
P is primitive, then an a-equivalent Voronoi parallelohedron P ′ is determined
uniquely up to similarity. The uniqueness theorem was proved in [6] in a very
elementary way for a wider class of parallelohedra, namely for those parallelohe-
dra whose boundary after the removal of all standard faces (see [6] for definition)
remains connected.

The uniqueness theorem easily implies a surprising fact. As already said,
Voronoi developed a deep theory of Voronoi parallelohedra ([4]). According to
this theory, all Voronoi parallelohedra of a given primitive combinatorial type
correspond to lattices which fill a so-called Voronoi type domain in the cone of
positive quadratic forms. If, instead a Voronoi tiling by primitive parallelohedra,
one considers dual Delaunay tiling (in the primitive case by simplexes), in the in-
terior of a given Voronoi type domain all the Delaunay tilings are pairwise affine
equivalent. The surprising fact to follow from the uniqueness theorem is that all
Voronoi tilings are pairwise affine non-equivalent, in contrast to the uniqueness
of affine classes of Delaunay tilings within the domain.

In the case of d-dimensional primitive parallelohedra the dimension of each

Voronoi type domain is equal to d(d+1)
2 . Thus, from the uniqueness theorem

([5,6]) it follows that the dimension of the space of affine equivalence classes is
equal to d(d + 1)/2 − 1. So, if d = 2, for example, in the primitive case (the
centrally symmetrical hexagon) the dimension of the space of affine equivalence
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classes of a primitive parallelohedron is 2. If d = 3 the dimension of the space of
affine equivalence classes with combinatorial type of the truncated octahedron
is equal to 5.

We see that the affine classification of parallelohedra turns out a delicate
question relevant to the Voronoi conjecture. In this paper, we classify convex
parallelohedra in R3 by the affine equivalence relation and realize their repre-
sentatives in geometric formulation. In this way we will find the dimension of
the space of affine equivalence classes of all 5 different combinatorial types of
parallelohedra in 3-space (Theorems 4-6).

We study on centrally symmetric hexagons in Sect. 2 and truncated octahe-
drons in Sect. 3. The main theorems are showed in Sect. 3 for primitive paral-
lelohedra and in Sect. 4 for non-primitive parallelohedra. The affine equivalent
classes of parallelohedra with the combinatorial type of the truncated octahe-
dron, are parameterized by a 5-tuple (α, β, h, δ, l) which satisfies 0 < α, 0 < β ≤
(π−α)/2, 0 ≤ h, 0 < π−γ < tan−1(sin(α/2)/h), 0 < π−δ < tan−1(sin(β/2)/h),
and the inequalities (4) and (5) given in the section 3 (Theorem 4). The affine
classes of parallelohedra with the combinatorial type of the rhombic dodeca-
hedron are parameterized by a 3-tuple (α, β, h) where 0 < α, 0 < β ≤ (π −
α)/2, 0 < h (Theorem 5).

2 Two-Dimensional Case

We start with parallelogons, i.e. 2-dimensional parallelohedra. There are two
combinatorial types of parallelogons: the quadrangle and the hexagon. More-
over, since parallelohedra are centrally symmetric, a parallelogon is either a
parallelogram or a centrally symmetrical hexagon.

All parallelograms are obviously pairwise a-equivalent, i.e. belonging to one
affine class. The dimension of the space of affine classes of parallelograms is zero.

Now give a centrally symmetric (c.-s.) hexagon. A c.-s. hexagon is inscribed
into an ellipse. By an appropriate affine map the ellipse is transformed on a unit
circle. Let O be the center of the unit circum-circle of the hexagon transformed
by the affine map, and let A1, A2, A3, A4, A5, A6 be vertices of the hexagon. A
centrally symmetric hexagon has three pairs of central angles symmetric each
other: ̂A1OA2 = ̂A4OA5, ̂A2OA3 = ̂A5OA6, and ̂A3OA4 = ̂A6OA1. Let α, β, γ
be the values of these angles. Without loss of generality we can and will consider
only the following triples

0 < α ≤ β ≤ γ, whereα+ β + γ = π. (1)

Each triple α, β, γ with (1) determines a unique (up to congruence) a-
equivalent c.-s. hexagon inscribed into a unit circle, and vice versa. On the
other hand, two inscribed c.-s. hexagons with different triples satisfying (1)
(α, β, γ) �= (α′, β′, γ′) are not a-equivalent.

Theorem 3. The configuration space of a-equivalence classes of centrally sym-
metric (c.-s.) hexagons has dimension 2 and can be parameterized by ordered
triples (α, β, γ) provided 0 < α ≤ β ≤ γ, α+ β + γ = π.
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3 The Truncated Octahedron

For a given combinatorial type K of parallelohedra, we denote by A(K) the
set of the affine equivalence classes of parallelohedra combinatorially equivalent
to K.

For a given parallelohedron P and each (d − 2)-face of P , there is a cycle of
four or six (d− 1)-faces by Theorem 1 (iii). We call this cycle a belt of P .

In the rest of this section, we consider P a parallelohedron with its combina-
torial type of the truncated octahedron. So, P has six different belts. Each belt
consists of six faces (two parallelograms and four centrally symmetric hexagons)
and it has six parallel edges by Theorem 1 (iii).

Lemma 1. Six centers of faces on a belt and the center of P are coplanar.

Proof. Let the center of P be the origin O in R3, and Gi be centers of six
consecutive faces Fi (1 ≤ i ≤ 6) of a belt of P . Since P is centrally symmetric,−−→
OGi = −−−−−→

OGi+3 for 1 ≤ i ≤ 3. Since P is a parallelohedron, P tiles the space
by its parallel copies in a face-to face manner. Let P1 and P2 be the copies of P
obtained by the parallel translations along 2

−−→
OG1 and 2

−−→
OG2 respectively. Since

P is primitive, the edge F1 ∩ F2 belongs to exactly three parallel copies of P
(including itself) in its tiling. So, P2 is obtained by the parallel translation of

P1 along 2
−−→
OG3. Hence

−−→
OG3 =

−−→
OG2 − −−→

OG1. Therefore, Gi (1 ≤ i ≤ 6) and the
origin are coplanar.

Nowwe fix a belt ofP , and define a reduced parallelohedronPr ofP corresponding
to the belt, which is described in R3 with the origin O as the center of P .

Step 1. We can assume all centers of the faces of the belt is on the xy-plane
by Lemma 1 and the center of P is the origin. The orthogonal projection of P
to the xy-plane is a centrally symmetric hexagon by Theorem 1 (iii).

Step 2. There is an affine transformation which satisfies the following condi-
tions:
i) the c.-s. hexagon in the xy-plane is mapped to a c.-s. hexagon inscribed in the
unit circle with center O in xy-plane, by Theorem 3, and
ii) the parallel six edges of the belt are mapped to edges with unit length, which
are parallel to the z-axis.

We denote such transformation by fa = fa,B which depends on the belt B.
We call the image Pr of P by fa a reduced parallelohedron of P . Now we show
that Pr is uniquely determined by the following five parameters.

Definition of Parameters. Let ±F1 be two parallelograms and ±Fi (i = 2, 3)
be four hexagons in the belt of Pr, where F1, F2 and F3 are consecutive in
order. Let α (resp. β) be � A1OA2 (resp. � A2OA3) where the line segment A1A2

(resp. A2A3) is the projection of F1 (resp. F2) to the xy-plane. We can assume
β ≤ (π − α)/2 by considering −F3 instead of F2 if necessary.
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Let B1, B2, B3, B4, B5 and B6 be consecutive vertices of F2, where the line
segment B1B2 is the common edge of F1 and F2 and the z-coordinate of B2 is
greater than the one of B1. Notice that we can assume the z-coordinate of the
midpoint of the edge B1B2, denoted by h, satisfies h ≥ 0, by considering −F1

and −F2 instead of F1 and F2 if necessary. Denote � B1B2B3 and � B3B4B5 by
γ and δ respectively (see Fig. 2).

Let C1 and C2 be vertices of F1 so that F1 = B1B2C2C1. By |A1A2| =
2 sin(α/2), � B1B2C2 = tan−1(|A1A2|/2h) = tan−1(sin(α/2)/h), where |XY |
means the Euclidean distance of X, Y ∈ R3. Since P is convex, �B2B3C2 is up-
per than the parallelogramB2C2(−B1)(−C1), and so γ > π−tan−1(sin(α/2)/h).
Since F2 is convex, γ < π. Hence

0 < π − γ < tan−1(sin(α/2)/h). (2)

Since � B2B4B5 < δ < π and � B2B4B5 = π − tan−1(sin(β/2)/h), δ satisfies

0 < π − δ < tan−1(sin(β/2)/h). (3)

For a point Q and a set S in R3, we denote by −Q the symmetric point of
Q about the origin, and by −S the set {−Q : Q ∈ S}. For three points P1, P2

and P3 in R3 which are not collinear, we denote by Π(x, y, z; P1, P2, P3) = 0 the
equation of the plane including those three points and by Π(Q; P1, P2, P3) the
value Π(qx, qy, qz; P1, P2, P3) for a point Q = (qx, qy, qz).

Since the plane including �B2B3C2 (resp. �(−B1)(−B6)(−C1)) does not
intersect with the edge (−B1)(−B6) (resp. (B2)(B3)),

Π(A2; B2, B3, C2) ·Π(−B6; B2, B3, C2) > 0 (4)

and
Π(A2; −B1, −C1, −B6) ·Π(B3; −B1, −C1, −B6) > 0 (5)

hold , where
(i) A1A2 · · ·A6 is the hexagon centrally symmetric about the origin with ver-

tices A1 = (cosα, sinα, 0), A2 = (1, 0, 0), A3 = (cosβ, − sinβ, 0),
(ii) B1B2 · · ·B6 is the hexagon centrally symmetric about the midpoint of

A2A3 with vertices B1 = (1, 0, −1/2+ h), B2 = (1, 0, 1/2+ h) and the point B3

determined by � B1B2B3 = γ and � B3B4B5 = δ, and
(iii) C1 and C2 are the points symmetric to B2 and B1 respectively about the

midpoint of A1A2 (see Figs. 1, 2 and 4).
We call such 5-tuple (α, β, h, δ, l) a parameterization of Pr. We show that for

each 5-tuple satisfying the above conditions, there exists a unique parallelohe-
dron with the given parametrization and the combinatorial type of the truncated
octahedron.

Theorem 4. The affine equivalent classes A(K) of parallelohedra with the com-
binatorial type K of the truncated octahedron are parameterized by a 5-tuple
(α, β, h, δ, l) which satisfies the following:

0 < α, 0 < β ≤ (π − α)/2, 0 ≤ h,
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0 < π − γ < tan−1(sin(α/2)/h),

0 < π − δ < tan−1(sin(β/2)/h),

and the conditions (4) and (5).

Proof. Let (α, β, h, δ, l) be a 5-tuple satisfying all conditions in the theorem.
Step 1. Take a c.-s. hexagon A1A2 · · ·A6 in R3 satisfying the following condi-

tions (1)-(4): (1) inscribed in the unit circle with the center of the origin O, (2)
included in the xy-plane, (3) � A1OA2 = α and � A2OA3 = β, and (4) the point
A2 is in the positive x-axis (see the left figure in Fig. 1).
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Fig. 1. Steps to obtain a truncated octahedron

Step 2. Let e1 be the line segment with unit length included in the line pass-
ing through A1, and orthogonal to the xy-plane, whose midpoint has the z-
coordinate −h. Draw five edges ei (i = 2, · · · , 6) with unit length parallel to
e1 such that ei+1 is symmetric to ei about the midpoint of AiAi+1 for each
i = 1, · · · , 6, where e7 means e1. Denote by e1 = C1C2, e2 = B1B2, and
e3 = B4B5, where the z-coordinate of B2 (resp. B4) is greater than the one
of B1 (resp. B5) (see the right figure in Fig. 1).

Step 3. Let F1 be the parallelogram C1C2B2B1 spanned by e1 and e2. Let F2

be a c.-s. hexagon B1B2 · · ·B6 with angles � B1B2B3 = γ and � B3B4B5 = δ
(see Fig. 2).

Step 4. Let Π1 be the plane including the edges B2B3 and B2C2 . Let Π2 be
the plane including the edges (−C1)(−B1) of −F1 and (−B1)(−B6) of −F2.

By the conditions (2) and (3), B3 and −B6 are higher than the plane including
the parallelogram B2C2(−B1)(−C1).

Since Π1 and Π2 include parallel lines B2C2 and (−C1)(−B1) respectively,
and cannot be parallel planes from the existence of B3 (upper than B2) and −B6

(upper than −B1), the two planes Π1 and Π2 intersect in a line (denoted by l)
which is parallel to B2C2 and (−C1)(−B1).

By the assumption (4), two points −B6 and A2 are in the same half-space di-
vided by the equationΠ(x, y, z; B2, B3, C2) = 0. So, l does not intersect with the
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Fig. 2. Construction of four faces for the given parameters

edge (−B1)(−B6), Similarly, by the assumption (5), Π(A2; −B1, −C1, −B6) ·
Π(B3; −B1, −C1, −B6) > 0, the line l does not intersect with B2B3 (see the
left figure in Fig. 3 which is the orthogonal projection to the xy-plane).
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Fig. 3. The orthogonal projection to the xy-plane

Step 5. Let Π3 (resp. Π4) be the plane which is orthogonal to the xy-plane,
parallel to A3A4, and which includes the point B3 (resp. −B6). Denote by D1

(resp. D2) the intersection point of the line l and Π3 (resp. Π4) (see the left
figure in Fig. 3).

Step 6. Let E1 (resp. E2) be the point such that the line segment D1E1 (resp.
D2E2) is parallel and congruent to the edge B3B4 (resp. B2B3) (see the right
figure in Fig. 3). Now we obtain a belt (see the left figure in Fig. 4). By drawing
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Fig. 4. Process to obtain a truncated octahedron

edges, we obtain the unique parallelohedron with its combinatorial type K of
the truncated octahedron and the given parameters.

Remark. For each parallelohedron with its combinatorial type of the truncated
octahedron, there are six belts. So, at most six different 5-tuples of parameters
may correspond to a-equivalent parallelohedra in Theorem 4.

4 Non-primitive Parallelohedra

By applying the method used in the proof of Theorem 4, we get the following
results.

Theorem 5. The set of affine classes A(K) with the combinatorial type K of
the rhombic dodecahedron are parameterized by a 3-tuple (α, β, h) where

0 < α, 0 < β ≤ (π − α)/2, 0 < h.

Proof. Since all faces of parallelohedra with the combinatorial type K of the
rhombic dodecahedron are parallelograms, Step 3 in the proof of Theorem 4, we
take a parallelogram B1B2B4B5 instead of the hexagon B1B2 · · ·B6. Then we
get a figure of the orthogonal projection to the xy-plane showed in Fig. 5. By
drawing edges, we obtain the unique parallelohedron with combinatorial type K
and the given parameters.
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Fig. 5. The orthogonal projection of a parallelohedron with the combinatorial type of
the rhombic dodecahedron to the xy-plane

Theorem 6. The set of affine classes A(K) where K is the combinatorial type
of the elongated dodecahedron is parameterized by a 4-tuple (α, β, h, l) where

0 < α, 0 < β ≤ (π − α)/2, 0 < h, 0 < l

.

Proof. It is proved by Theorem 6.
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Abstract. The flooding games, which are called Flood-It, Mad Virus,
or HoneyBee, are a kind of coloring games and they have been becom-
ing popular online. In these games, each player colors one specified cell
in his/her turn, and all connected neighbor cells of the same color are
also colored by the color. This flooding or coloring spreads on the same
color cells. It is natural to consider the coloring games on general graphs:
Once a vertex is colored, the flooding flows along edges in the graph. Re-
cently, computational complexities of the variants of the flooding games
on several graph classes have been studied. We investigate the one player
flooding games on some graph classes characterized by interval represen-
tations. Our results state that the number of colors is a key parameter
to determine the computational complexity of the flooding games.

1 Introduction

The flooding game is played on a precolored board, and each player colors a
cell on the board in a turn. When a cell is colored with the same color as its
neighbor, they will be merged into one colored area. If a player changes the color
of one of the cells belonging to a colored area of the same color, the color of all
cells in the area are changed. On the one player flooding game, it finishes when
all cells are colored with one color. The objective of the game is to minimize the
number of turns (or to finish the game within a given number of turns). This
one player flooding game is known as Flood-It (Fig. 1). In Flood-It, each cell is a
precolored square, the board consists of n×n cells, the player always changes the
color of the top-left corner cell, and the goal is to minimize the number of turns.
This game is also called Mad Virus played on a honeycomb board (Fig. 2). One
can play both the games online (Flood-It (http://floodit.appspot.com/) and
Mad Virus (http://www.bubblebox.com/play/puzzle/539.htm)).

In the original flooding games, the player colors a specified cell. However, it is
natural to allow the player to color any cell. The original game is called fixed and

J. Akiyama, M. Kano, and T. Sakai (Eds.): TJJCCGG 2012, LNCS 8296, pp. 73–84, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. A sequence of four moves on a 5×5
Flood-It board

Fig. 2. The initial screen of the Mad
Virus (http://www.bubblebox.com/play/
puzzle/539.htm). The player changes the
cell having eyes.

this extended game is called free. The flooding games are intractable in general
on the grid board; both free and fixed versions are NP-hard on rectangular 3×n
boards when the number of colors is 4 [MS12b], and the free version is still NP-
hard on rectangular 2×n boards when the number of colors is O(n) [MS11]. On
the other hand, Meeks and Scott also show an O(h(k)n18) time algorithm for
the flooding game on 2 × n boards when the number of colors is k, where h(k)
is an explicit function of k [MS11].1

In recent literature, the game board has been generalized to general graph; the
vertex set corresponds to the set of precolored cells, and two cells are neighbors if
and only if the corresponding vertices are adjacent in the graph. It is also natural
to parameterize by the number k of colors. The generalized flooding games on
general graphs have been well investigated from the viewpoint of computational
complexity. We summarize recent results in Table 1. (The other related results
can be found in [MS12a, CJMS12].)

Since the original game is played on a grid board, the extension to the graph
classes having geometric representation is natural and reasonable. For example,
each geometric object corresponding to a vertex can be regarded as a “power”
or an “influence range” of the vertex. When a vertex is colored, the influence
propagates according to the geometric representation. We first consider the case
that the propagation is in one dimensional. That is, we first investigate the
computational complexities of the flooding game on graphs that have interval
representations. We will show that even in this restricted case, the problem is
already intractable in general.

From the viewpoint of the geometric representation of graphs, the notion of
interval graphs is a natural extension of paths. (We here note that path also
models rectangular 1 × n boards of the original game.) A path is an interval
graph such that each vertex has an influence on at most two neighbors. In this
case, the flooding games can be solved in polynomial time [LNT11, FNU+11,
MS12b]. However, we cannot extend the results for a path to an interval graph
straightforwardly. There are two differences between paths and interval graphs:

1 Recently, Clifford et al. give a linear time algorithm for 2×n boards with any number
of colors [CJMS12].

http://www.bubblebox.com/play/puzzle/539.htm
http://www.bubblebox.com/play/puzzle/539.htm
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Table 1. Computational complexities of the flooding games on some graph classes,
where n and k are the number of vertices and colors, respectively

Graph classes fixed fixed, k is bounded

general graphs NP-C NP-C if k ≥ 3 [ACJ+10]
P if k ≤ 2 (trivial)

(�/�/hex.) grids NP-C NP-C if k ≥ 3 [LNT11]

paths/cycles O(n2) [LNT11] O(n2) [LNT11]

co-comparability graphs P [FW12] P [FW12]

split graphs NP-C [FW12] P [FW12]

caterpillars P2 O(4kk2n3) (This)

proper interval graphs P2 O(4kk2n3) (This)

interval graphs P2 O(4kk2n3) (This)

Graph classes free free, k is bounded

general graphs NP-C NP-C if k ≥ 3 [ACJ+10]
P if k ≤ 2 [Lag10, LNT11]

(�/�/hex.) grids NP-C NP-C if k ≥ 3 [LNT11]

paths/cycles O(n3) [FNU+11]3 O(n3) [FNU+11]3

split graphs NP-C (This) O((k!)2 + n) (This)

caterpillars NP-C (This,[MS11]) O(4kk2n3) (This)

proper interval graphs NP-C (This) O(4kk2n3) (This)

interval graphs NP-C (This) O(4kk2n3) (This)

Interval graphs have branches and twins. Interestingly, one of them is sufficient
to make the flooding game intractable:

Theorem 1. The free flooding game is NP-complete even on proper interval
graphs, or even on caterpillars. These results still hold even if the maximum
degree of the graphs is bounded by 3.

Both of the classes consist of very simple interval graphs. The results are tight
since they degenerate to the set of paths when the maximum degree is bounded
by 2. On the other hand, when the number of colors is a constant k, the game
on interval graphs becomes tractable.

Theorem 2. The free flooding game on an interval graph can be solved in
O(4kk2n3) time.

Thus the game is fixed parameter tractable with respect to the number of colors.
We also extend the results for the fixed flooding game on a split graph men-

tioned in [FW12] to the free flooding game on a split graph. Precisely, the free
flooding game is NP-complete even on a split graph, and it can be solved in
O((k!)2 + n) time when the number k of colors is fixed.

2 The class of co-comparability graphs properly contains interval graphs and hence
caterpillars and proper interval graphs. Since this game is polynomial time solvable
on a co-comparability graph, so they follow.

3 In [FNU+11], the authors gave an O(kn3) algorithm. However, it can be improved
to O(n3) easily in the same way in [LNT11].



76 H. Fukui et al.

Although we only consider one player game in this paper, it is also natural
to extend to multi-players. Two-player variant is known as HoneyBee, which
is available online at http://www.ursulinen.asn-graz.ac.at/Bugs/htm/

games/biene.htm. Fleischer and Woeginger have investigated this game from
the viewpoint of computational complexity. See [FW12] for further details.

Due to the space limitation, we omit the details of some proofs, which can be
found in [FOU+13].

2 Preliminaries

We model the flooding game in the following graph-theoretic manner. The game
board is a connected, simple, loopless, undirected graph G = (V,E). We denote
by n and m the number of vertices and edges, respectively. There is a set C =
{1, 2, . . . , k} of colors, and every vertex v ∈ V is precolored (as input) with some
color col(v) ∈ C. Note that we may have an edge {u, v} ∈ E with col(u) = col(v).
For a vertex set U ⊆ V , the vertex induced graph G[U ] is the graph (U, F )
with F = E ∩ {{u, v} | u, v ∈ U}. For a color c ∈ C, the subset Vc contains
all vertices in V of color c. For a vertex v ∈ V and color c ∈ C, we define
the color-c-neighborhood Nc(v) by the set of vertices in the same connected
component as v in G[Vc]. Similarly, we denote by Nc(W ) = ∪w∈WNc(w) the
color-c-neighborhood of a subset W ⊆ V . For a given graph G = (V,E) and the
precoloring col(), a coloring operation (v, c) for v ∈ V and c ∈ C is defined by, for
each vertex v′ ∈ Nc′(v) with c′ = col(v), setting col(v′) = c. For a given graph
G = (V,E) and a sequence (v1, c1), (v2, c2), . . . , (vt, ct) of coloring operations in
V × C, we let G0 = G and Gi is the graph obtained by the coloring operation
(vi, ci) on Gi−1 for each i = 1, 2, . . . , t. In the case, we denote by Gi−1 →(vi,ci) Gi

and G0 →i Gi for each 0 ≤ i ≤ t. Then the problem in this paper are defined as
follows4:

Problem 1. Free flooding game

Input : A graph G = (V,E) such that each vertex in V is precolored
with col(v) ∈ C and an integer t;

Output: Determine if there is a sequence of coloring operations
((v1, c1), (v2, c2), . . . , (vt, ct)) of length t such that all vertices in
the resulting graph G′ (i.e. G→t G′) have the same color;

For the problem, if a sequence of operations of length t colors the graph, the
sequence is called a solution of length t.

A graph (V,E) with V = {v1, v2, · · · , vn} is an interval graph if there is a
set of (real) intervals I = {Iv1 , Iv2 , · · · , Ivn} such that {vi, vj} ∈ E if and only
if Ivi ∩ Ivj �= ∅ for each i and j with 1 ≤ i, j ≤ n (Fig. 3(a)(b)). We call the
set I of intervals an interval representation of the graph. For each interval I, we
denote by L(I) and R(I) the left and right endpoints of the interval, respectively

4 In the fixed flooding game, v1 = v2 = · · · = vt is also required, and this vertex is
specified as a part of input.

http://www.ursulinen.asn-graz.ac.at/Bugs/htm/games/biene.htm
http://www.ursulinen.asn-graz.ac.at/Bugs/htm/games/biene.htm
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Fig. 3. (a) An interval graph G, (b) one of interval representations of G, and (c) unique
MPQ-tree of G (up to isomorphism)

(hence we have L(I) ≤ R(I) and I = [L(I), R(I)]). For a point p, let N [p] denote
the set of intervals containing the point p. In general, there exist many interval
representations for an interval graph G. On the other hand, there exists unique
representation for an interval graph G, which is called MPQ-tree of G. The
definition ofMPQ-tree is postponed to Section 3.2.

An interval representation is proper if no two distinct intervals I and J exist
such that I properly contains J or vice versa. An interval graph is proper if
it has a proper interval representation. If an interval graph G has an interval
representation I such that every interval in I has the same length, G is said
to be a unit interval graph. Such an interval representation is called a unit
interval representation. It is well known that the class of proper interval graphs
coincides with the class of unit interval graphs [Rob69]. That is, given a proper
interval representation, we can transform it into a unit interval representation.
A simple constructive way of the transformation can be found in [BW99]. With
perturbations if necessary, we can assume without loss of generality that L(I) �=
L(J) (and hence R(I) �= R(J)), and R(I) �= L(J) for any two distinct intervals
I and J in a unit interval representation I.

A connected graph G = (V,E) is a caterpillar if V can be partitioned into B
and H such that G[B] is a path, H is an independent set, and each vertex in H
is incident to exactly one vertex in B. It is easy to see that the caterpillar G is
an interval graph. We call B (and G[B]) backbone, and each vertex in H hair of
G, respectively. A graph G = (V,E) is a split graph if V can be partitioned into
C and I such that C is a clique and I is an independent set. (A vertex set C is
clique if every pair of vertices is joined by an edge, and it is independent set if
no pair is joined.)

3 Graphs with Interval Representations

Let G = (V,E) be an interval graph precolored with at most k colors. We first
show that, when k is not bounded, the flooding game on G is NP-complete even
if G is a caterpillar or a proper interval graph. Next we show an algorithm that
solves the flooding game in O(4kk2n3) on a proper interval graph. Lastly, we
extend the algorithm to general interval graphs. That is, the flooding game is
fixed parameter tractable on an interval graph with respect to the number of
colors.
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Fig. 4. A gadget for e = (u, v)

3.1 NP-Completeness on Simple Interval Graphs

To prove Theorem 1, we reduce the following well-known NP-complete problem
to our problems (see [GJ79, GT1]):

Problem 2. Vertex Cover
Input : A graph G = (V,E), and an integer k;
Output: Determine if there is a subset S of V such that for each edge

e = {u, v} ∈ E, e ∩ S �= ∅ and |S| = k;

Let G = (V,E) and k be an instance of the vertex cover problem. Let n = |V |
and m = |E|.

Caterpillar. We first construct a caterpillar5. The key gadget is shown in
Fig. 4(a). We replace an edge e = (u, v) by a path (b1, b2, b3, b4, b5, b6) with
two hairs h3 and h4 attached to b3 and b4. The colors are as shown in the fig-
ure: col(b1) = col(b6) = b, col(b2) = col(b5) = e, col(b3) = col(h4) = v, and
col(b4) = col(h3) = u. This gadget cannot be colored in at most three turns. On
the other hand, there are some ways to color them in four turns. One of them
is: color b3 by u, color b3 by e, color b3 by b, and color h4 by b.

Now we turn to the reduction from a general graph (Fig. 5). We first arrange
the edges in arbitrary way, and replace each edge by the gadget in Fig. 4(a).
In this time, each vertex of color b is shared by two consecutive edges. In other
words, endpoints of the gadget are shared by two consecutive gadget except both
ends. This is the reduction. The resulting graph is a caterpillar, the reduction
is a polynomial-time reduction, and the flooding game is clearly in NP. Thus it
is sufficient to show that a minimum vertex cover S of G gives a solution with
3m+ |S| operatoins of the flooding game on the resulting graph and vice versa.

As shown in the example, all vertices on the backbone are colored by b in
3m coloring operations. On the other hand, 3m coloring operations are required
to color the backbone since each gadget is separated by the color b. Moreover,
we have a leftover hair at each gadget, and their colors form a vertex cover S
since they hit all edges. Therefore, once we have a vertex cover S, we color the
resulting graph with 3m+ |S| operations. On the other hand, if we can color the
resulting graph with 3m+ |S′| operations, we can extract 3m operations to color
the backbone, and each of |S′| operations is an operation to color a leftover hair,

5 We sometimes identify an interval graph and its interval representation.
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Fig. 5. An example of reduction to a caterpillar

which gives us a vertex cover. Therefore, the graph G has a vertex cover of size
k′ iff the resulting graph can be colored with 3m+ k′ coloring operations.

On the other hand, if we have a vertex cover S of the original graph, we can
color the resulting graph in 3m+ |S| operations by joining the backbones with
leaving hairs corresponding to S.

We note that the basic idea of this reduction can be found in the proof of the
NP-completeness on rectangular 2 × n boards in [MS11]. In fact, the gadget in
Fig. 4(a) can be represented by a rectangular 2 × n board shown in Fig. 4(b),
and we can obtain essentially the same proof in [MS11]. We here explained the
details of the proof to make this paper self-contained, and this idea is extended
to proper interval graphs in the next section.
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Fig. 6. Reduction from Vertex Cover to Flooding game

Proper Interval Graph. From a given general graph, we next construct an
interval representation I of a proper interval graph as follows (Fig. 6).
(1) C is the color set V ∪{wj

i | 1 ≤ i ≤ m−1, 1 ≤ j ≤ m}∪{b} of n+m(m−1)+1
different colors. (Note that each vertex in V has its own unique color.)
(2) For each 0 ≤ i ≤ m, we put an interval Ii = [4i, 4i + 1] with precolor
col(I) = b. We call these m+ 1 intervals backbones.
(3) For each ei = {u, v} ∈ E with 0 ≤ i < m, we add two identical intervals
Ji = [4i + 2, 4i + 3] and J ′

i = [4i + 2, 4i + 3] with precolor col(Ji) = u and
col(J ′

i) = v. (Note that the ordering of the edges is arbitrary.)
(4) Each two identical intervals Ji and J ′

i are connected to the left and right
backbone by paths of length m. Precisely, a left backbone I = [4i, 4i + 1] and
the two intervals Ji = [4i + 2, 4i + 3] and J ′

i = [4i + 2, 4i + 3] are joined by
a path (wi

m, wi
m−1, . . . , w

i
1, w

i
0), where I = [4i, 4i + 1] = Iwi

m
and Ji = Iwi

0

(which is identical to J ′
i). (Note that w

i
1 has three neighbors: wi

2 and two vertices
corresponding to Ji and J ′

i .) The intervals Ji = [4i+2, 4i+3], J ′
i = [4i+2, 4i+3]

are connected to the right backbone I = [4i + 4, 4i + 5] in a symmetric way.
That is, they are connected by a path (wi

0, w
i
1, . . . , w

i
m−1, w

i
m) such that Iwi

0
=

[4i + 2, 4i + 3], Iwi
m

= [4i + 4, 4i + 5]. For each j with 1 ≤ j ≤ m − 1, we

set col(wi
j) = wi

j with 1 ≤ j ≤ n. That is, two paths from [4i + 2, 4i + 3] to
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both backbones have the same color sequence, and when we color the interval
Ji (or J ′

i) by the sequence wi
1, . . . , w

i
m−1, b, we can connect the left and right

backbones.
Now we show a lemma that implies the latter half of Theorem 1.

Lemma 1. In the reduction above, the original graph G has a vertex cover of
size k′ if and only if there is a sequence of coloring operations of length m2 + k′

to make the resulting interval representation in monochrome.

Proof. (Outline.) We first suppose that the graph G has a vertex cover S of size
k′. Then we can construct a sequence of coloring operations of length m2 + k′

as follows. First step is joining the backbones. Let ei = {u, v} be an edge in E.
Since S is a vertex cover, without loss of generality, we assume u ∈ S. Then we
color v by wi

1, w
i
2, . . . , w

i
m−1, and b (we do not mind if v is in S or not). Repeat

this process for every edge. Then all the backbones are connected and colored by
b after m2 colorings. We then still have m intervals corresponding to the vertices
in S. Thus we pick up each vertex v in S and color the backbone by col(v). After
|S| colorings, all vertices become monochrome.

Next we suppose that we have a sequence of coloring operations of length
m2 + k′ that makes the representation monochrome. Then, among them, we
have to use m2 operations to join the backbones. Moreover, they should start
from each of twin intervals. After that, remaining ones of twins give us the
vertex cover of size k′. Thus, we can extract a vertex cover of size k′ from these
operations. The details are omitted due to the lack of space. ��

3.2 Polynomial Time Algorithm on Interval Graphs for Fixed
Number of Colors

We first show an algorithm for proper interval graphs that runs in polynomial
time if the number of colors is fixed. Next we extend the algorithm to deal with
general interval graphs.

Algorithm for a Proper Interval Graph. Let I(G) be an interval repre-
sentation of the proper interval graph G = (V,E). The interval representation
is given in a compact form (see [UU07] for details). Precisely, each endpoint is
a positive integer, N [p] �= N [p+ 1] for each integer p, and there are no indices
N [p] ⊂ N [p + 1] or vice versa for each integer p with N [p] �= ∅ (otherwise we
can shrink it). Intuitively, each integer point corresponds to a set of different
endpoints of the intervals since the representation has no redundancy. Then, it
is known that I(G) is unique up to isomorphism when G is a proper interval
graph (see [SYKU10]), and I(G) can be placed in [0..P ] for some P ≤ 2n− 1.
Sweeping a point p from 0 to P on the representation, the color set N [p] dif-
fers according to p. More precisely, we obtain 2P + 1 different color sets for
each p = 0, 0.5, 1, 1.5, 2, 2.5, . . . , P − 0.5, P . We note that for each integer p,
N [p+0.5] ⊂ N [p] and N [p+0.5] ⊂ N [p+1]. Let Si be the color set obtained by
the ith p (to simplify the notation, we use from S0 to S2P ). Since the color set



On Complexity of Flooding Games on Graphs with Interval Representations 81

C has size k, each Si consists of at most k colors. That is, the possible number
of color sets is 2k − 1 (since Si �= ∅).

Now we regard the unique interval representation as a path P =
(Ŝ0, Ŝ1, . . . , ˆS2P ), where each vertex Ŝi is precolored by the color set Si. Then we
can use a dynamic programming technique, which is based on the similar idea
to the algorithms for the flooding game on a path in [FNU+11, LNT11, MS12b].
On a path, the correctness of the strategy comes from the fact that removing
the color at the point p divides the interval representation into left and right,
and they are independent after removing the color at the point p. However, on
P , we have to take care of the influence of changing the color set of a vertex
in the original interval graph. In the algorithms for an ordinary path, changing
the color of a vertex has an influence to just two neighbors. In our case, when
we change a color c in Si at a point p to c′, all reachable color sets joined by c
from Ŝi are changed. Thus we have to remove c from Sj and add c′ to Sj for
each j with i′ ≤ j ≤ i′′, where i′ and i′′ are the leftmost and the rightmost
vertices such that c ∈ ∩i′≤j≤i′′Sj . By this coloring operation, some colors may
be left independent on the backbone of color c′. To deal with these color sets, we
maintain a table f(�, r, c, S) that is the minimum number of coloring operations
to satisfy the following conditions: (1) c ∈ Si for each i with � ≤ i ≤ r, and (2)
∪�≤i≤rSi ⊆ (S ∪ {c}). That is, f(�, r, c, S) gives the minimum number of color-
ing operations to make this interval connected by the color c, and the remaining
colors in this interval are contained in S. Once we obtain f(0, 2P, c, S) for all c
and S on P , we can obtain the solution by the following lemma:

Lemma 2. For a given proper interval graph G, let f(�, r, c, S) be the table
defined above. Then the minimum number of coloring operations to make G
monochrome is given by minc f(0, 2P, c, φ) = minc,S(f(0, 2P, c, S) + |S|).

Proof. (Outline) We first show that we can make G monochrome within
minc,S(f(0, 2P, c, S) + |S|) coloring operations. For each c and S, by the def-
inition of the table, we can make that every color set Si contains c with
f(0, 2P, c, S) coloring operations. This means that every vertex v is either
col(v) = c or N(v) contains some u such that col(u) = c, and G[Nc(v)] is
connected. Therefore, taking each color c′ ∈ S, and changing the color of any
vertex of color c to c′, all vertices of color c′ and c are merged to the vertices
of color c′. Therefore, repeating this process, we can make G monochrome with
minc,S(f(0, 2P, c, S)+ |S|) coloring operations. It is easy to observe that we have
minc f(0, 2P, c, φ) = minc,S(f(0, 2P, c, S) + |S|).

We next show that the above strategy cannot be improved. In the definition
of the function f , we take a strategy that (1) first, color the interval [i, j] with a
color c and (2) second, color the remaining colors in the interval [i, j] by changing
the color c. We say that this color c dominates the interval [i, j] after the first
step. We suppose that a coloring operation pick up a color c of a vertex v and
change it to another color c′. Then the color sets in an interval [i, j] are changed
since i ≤ L(Iv) ≤ R(Iv) ≤ j, i is the leftmost vertex such that Si contains c,
and j is the rightmost vertex with c ∈ Sj . Here we suppose that [i, j] is properly
contained in another interval [i′, j′] with i′ ≤ i ≤ j ≤ j′ that is dominated by a
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color c′′. Then, we can override to use the color c′′ instead of c in the sense that
changing c to c′ is not better than changing c′′ to c′. That is, when we change a
color c to c′, if there is another overriding color c′′, it is not worse to change a
color c′′ to c′ instead of c. Repeating this argument, we can see that the above
strategy is not worse any other strategy. Thus we cannot improve it. ��

By careful case analysis, this function satisfies the following recursive relation.

f(�, r, c, S) = min{
min�<i≤r,c′∈C\{c} f(�, i− 1, c, S′) + f(i, r, c′, S′′) + 1 such that S′, S′′ ⊆ S ∪ {c}
min�<i≤r,,c′∈C\{c} f(�, i− 1, c′, S′) + 1 + f(i, r, c, S′′) such that S′, S′′ ⊆ S ∪ {c}
min�<i≤r f(�, i− 1, c, S′) + f(i, r, c, S′′) such that S′, S′′ ⊆ S
}

The correctness of the dynamic programming algorithm based on this recursive
function is given by Lemma 2. Thus the remaining task is showing the compu-
tational complexity of the function. This can be done in a standard dynamic
programming technique, but the details are omitted due to lack of space.

Lemma 3. The value of minc f(0, 2P, c, φ) can be computed in O(4kk2n3) time.

We here note that a similar concept can be found in the algorithm for 2 × n
board in [MS11].

Extension to Interval Graphs. A proper interval graph has a simple interval
representation. Especially, its interval representation is linear and essentially
unique up to isomorphism. Therefore we can use the dynamic programming
technique on the unique path-like structure. On the other hand, a general interval
graph has exponentially many different interval representations. To deal with an
interval graph, we use a tree representation that was used to solve the graph
isomorphism problem for interval graphs [KM89]. The MPQ-tree stands for
modified PQ-tree, and this notion was introduced by Korte and Möhring in
[KM89]. For an interval graph, the MPQ-tree is uniquely determined up to
isomorphism. To solve the flooding problem on an interval graph, we extend
the algorithm for proper interval graph to solve the problem on theMPQ-tree
of color sets. TheMPQ-tree maintains inclusion relationships among intervals.
That is, if an interval I appears in a node p that is an ancestor of another node
q, all intervals appearing in the node q is properly contained in the interval I.
Thus, by the same argument of the proof of Lemma 2, a coloring operation for
the intervals appearing in the node q can be overridden by the coloring operation
of I. Therefore, in the same manner of the algorithm for the color sets of proper
interval graphs, it is enough to consider the coloring operation of I, and the
other intervals properly contained in I will be dealt with as the set of remaining
colors in S in the function f(0, 2P, c, S) in the previous algorithm. However, we
omit the details in this draft due to lack of space.
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4 Split Graphs

In [FW12], the fixed flooding game on a split graph is investigated. Using a
similar idea in [FNU+11], we can extend the results for the fixed flooding game
to the free flooding game.

Theorem 3. (1) The free flooding game is NP-complete even on a split graph.
(2) The free flooding game on a split graph can be solved in O((k!)2 + n) time,
where n and k are the number of vertices and colors, respectively.

Proof. (Sketch) (1) In [FW12], the feedback vertex set problem is reduced to the
fixed flooding game on a split graph G = (V,E). The resulting graph G consists
of a clique K and an independent set I. Each vertex in I has degree one except
one universal vertex u incident to all vertices in K. It is easy to see that this
universal vertex u can be one of the clique K. Now we add |K| vertices to I and
join them to u, and each of them is colored by |K| colors that are same to the
colors of vertices in K. Then, the resulting graph is still split graph with clique
K∪{u}. We consider the free flooding game on this new split graph. Then, using
the similar argument in [FNU+11], this graph has a solution of a given length
if and only if there is a sequence of operations that always colors the universal
vertex u. Thus the feedback vertex set problem has a solution if and only if the
free flooding game has a solution.

(2) We can observe that there is a solution of length at most 2k that first makes
all vertices in K having the same color, and changes the color of the clique to
join the vertices in I. We can also see that there is an optimal solution of this
form. This means that we always change the color of a clique vertex. Since the
vertices in K of the same color are always connected, the number of possibilities
of each operation is at most k′(k′ − 1), where k′ is the current number of colors
used in K. Thus, we can find an optimal solution in O((k!)2 + n) time. ��
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Abstract. Janken, which is a very simple game and it is usually used
as a coin-toss in Japan, originated in China, and many variants are
seen throughout the world. A variant of janken can be represented by a
tournament, where a vertex corresponds a sign and an arc (x, y) means
sign x defeats sign y. However, not all tournaments define useful janken
variants, i.e., some janken variants may include a useless sign, which is
strictly inferior than another sign in any case. We first shows that for
any positive integer n except 2 and 4, we can construct a janken vari-
ant with n signs without useless signs. Next we introduces a measure
of amusement of janken variants by using the variation of the difference
of out-degree and in-degree. Under this measure, we show that a janken
variant has the best amusement among ones with n signs if and only if it
corresponds to one of the tournaments defined by J. W. Moon in 1993.
Following these results, we present a janken variant “King-fles-janken,”
which is the best amusing janken variant among ones with five signs.

1 Introduction

Janken is a simple game to decide a winner by simultaneously holding out one
hand in one of three gestures (signs) to signify rock (closed hand), paper (open
hand), or scissors (closed hand with index and middle fingers extended). So, it’s
also called rock-paper-scissors. Rock defeats scissors, scissors defeats paper, and
paper defeats rock. These relation can be represented by using a tournament,
i.e., an asymmetric complete digraph, where an arc (x, y) means x defeats y as
Fig. 1 (a).

Janken originated in China and many variants are seen throughout the world.
For example, in the local rule in a part of France, pot1 (forming a hole) is added
to the signs, and hence they have four signs. Pot defeats rock and scissors (since
they are sunk) but is defeated by paper (since it covers the mouse). This variant
of janken can be also represented by a corresponding tournament, which has
four vertices (see Fig. 1 (b)).

1 Sometimes “well” is used in replace with pot.

J. Akiyama, M. Kano, and T. Sakai (Eds.): TJJCCGG 2012, LNCS 8296, pp. 85–94, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Rock

Scissors
(a) (b)

Paper

Rock Pot

Scissors Paper

Fig. 1. Jankens represented by tournaments: (a) the popular janken, (b) pot-janken

A variant of janken can be defined corresponding to any tournament2. (For
properties on tournaments, see [3].) However, not all tournaments define useful
variants of janken. For example, the above defined extended janken (here we
call it pot-janken) has a weak point, i.e., forming pot is always a more excellent
selection than forming rock, since both defeats scissors, are defeated by paper,
and pot defeats rock. Thus no one will use rock, and so pot-janken is essentially
the same as the popular one.

Our Contribution. We call a variant of janken (or a tournament) is efficient if
it contains no such useless sign, which will be rigorously defined in Definition 1
in Section 2. This idea is the same as the known idea “totally incomparable,”
i.e., a tournament is totally incomparable if and only if the corresponding janken
is efficient.

In this paper, we first show that:

Theorem 1. Let n be a positive integer. There is an efficient tournament (a
janken variant) with n vertices (signs) if and only if n �= 2, 4.

Next, the level of “amusement” of janken variants is examined. We define the
level of amusement of a janken variant as the irregularity of the corresponding
tournament T . The irregularity of T is irr(T ) :=

∑
x∈V ((out-degree of x) −

(in-degree of x))2.
By using this idea, we obtain the following result:

Theorem 2. Let T be an efficient tournament (janken variant) with n �= 2, 4
vertices (signs). Then

irr(T ) ≤

⎧⎪⎪⎨⎪⎪⎩
(n− 1)(n− 2)(n− 3)

3
if n is odd,

n3 − 6n2 + 11n− 48

3
if n is even,

with equality holding if and only if T is one of the tournaments Mn, which are
defined by J.W. Moon in 1993 [4].

2 We don’t consider any janken variant allowing ties between distinct signs in this
paper.



How to Generalize Janken – Rock-Paper-Scissors-King-Flea 87

Based on this result, we introduce a new janken variant called “King-flea-
janken” which is the unique efficient janken variant having the highest irregu-
larity (i.e., amusement).

Related Work. Various properties on tournaments are shown in [1], [3], and
[4]. Variants of Janken were examined by Fisher and Ryan [2] as “tournament
games,” where optimal strategies are discussed. Note that “sign x is not useless”
and “x has nonzero probability in any optimal mixed strategy” is not equivalent.
Although in fact the farmer leads the latter, the reverse doesn’t hold generally.

2 Janken Variants and Efficiency

2.1 Janken Variants and Terminology

Janken have many variants in history and in the world [5]: many of them consist
of three signs, e.g., “rock-paper-scissors” are replaced with “frog-snake-slug”
in Japan, “fox-rifle-headman” in Japan (it is called kitsune-ken, where kitsune
means a fox), “tiger-Watounai (a hero)-his mother” in Japan (it is called tora-
ken, where tora means a tiger), “tiger-soldier-commander” in Myanmar, or “ant-
human-elephant” in India, etc. Some janken variants require gestures by the
whole body, e.g., kitsune-ken and tora-ken are such type. These janken variants
are all represented by the tournament of Fig. 1 (a), i.e., essentially the same,
only except for gestures.

However, there are some janken variants consisting of more than three signs:
As well as the above described pot-janken, in Malaysia they have a janken variant
consisting of five signs, “rock-pistol-water-bird-board,” and the relation between
them is represented in Fig. 2 (a). In the web (e.g. [7]), we find “rock-paper-
scissors-Spock-lizard,” shown in Fig. 2 (b). Although these two janken variants
are very similar, they are different: if the relation between pistol and bird is
reversed, they become essentially the same.

Water

Rock

Pistol

(a) (b)
Board

Bird

Rock

Lizard

Scissors

Paper

Spock

Fig. 2. Janken variants with five signs
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The janken variant of Fig. 2 (a) also includes useless signs, bird and rock,
as rock in the pot-janken investigated in Section 1. Here we define this word
rigorously.

From here, a tournament is identified with the corresponding janken vari-
ant. A vertex of a tournament is also identified with the corresponding sign. A
tournament consists of n vertices is sometimes denoted by an n-tournament.

Definition 1. For a tournament T = (V,A), if a pair of vertices x and y satis-
fies the following two conditions, then x is superior than y and y is useless:

– (x, y) ∈ A, and
– for any vertex z ∈ V , if (y, z) ∈ A, then (x, z) ∈ A,

If a tournament includes no useless vertex, then it is said to be efficient or totally
incomparable.

For example, in the pot-janken, rock is useless, since pot is superior than it,
and hence we observe that the pot-janken is not efficient. Similarly in the janken
variant in Fig. 2 (a), board is superior than bird and pistol is superior than
rock. Thus this janken becomes simpler such as “pistol-water-board,” which is
essentially the same as “rock-paper-scissers.”

For a vertex x ∈ V of a tournament T = (V,A), the number of edges outgo-
ing from (incoming to) v is called out-degree (in-degree) of x and expressed by
deg+(x) (deg−(x)), i.e.,

deg+(x) := |{y ∈ V | (x, y) ∈ A}| and

deg−(x) := |{y ∈ V | (y, x) ∈ A}|.

Note that deg+(x) (deg−(x)) means the number of vertices which are defeated
by x (which defeat x).

2.2 Existence of Efficient Jankens with n Signs

Here the first question is coming: can we construct an efficient tournament with
n=4 or 5? For more generally, for what integer n we can do? For this question,
we obtained an answer as Theorem 1 stated in Section 1, i.e., there is an efficient
tournament for every positive integer n ≥ 1, only excepting 2 and 4. We will
show the proof of this theorem, which is not difficult.

For n = 2, there is only one tournament: (V = {x, y}, A = {(x, y)}), and
clearly it is not efficient, since x is superior than y and hence y is useless.

The diameter of T is the longest distance from a vertex to a vertex. That
is, for a pair of vertices x, y ∈ V , let dist(x, y) be the length of a shortest x-y
(directed) path, and the diameter of T is:

diam(T ) := max
x,y∈V

dist(x, y).

The following property is useful.
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Lemma 1. A tournament T = (V,A) is efficient if and only if the diameter of
T is less than or equal to 2.

Proof: Let x and y be an arbitrary pair of vertices in V and we assume (x, y) ∈ A
w.l.o.g. Clearly dist(x, y) = 1 and x is not defeated by y. If dist(y, x) ≤ 2,
then there is a vertex z ∈ V such that (y, z), (z, x) ∈ A. This means that y is
not defeated by x. If dist(y, x) > 2, then there is no vertex z ∈ V such that
(y, z), (z, x) ∈ A. This means that y is defeated by x and hence y is useless.
From these discussions, the desired statement is directly obtained. ��

By using this lemma, the case of n = 4 is easily checked as follows:
Assume that there is an efficient 4-tournament T = (V,A). Let (x, y) ∈ A

be an arbitrary arc in A. From diam(T ) ≤ 2, then dist(y, x) = 2, i.e., there is
a vertex z ∈ V such that (y, z), (z, x) ∈ A. This means 〈x, y, z, x〉 is a 3-cycle.
Let w ∈ V be the remaining vertex. The out-degree and in-degree of w must
be more than zero, since otherwise w is useless or superior than another vertex.
Then there are a vertex that is defeated by w and a vetex that defeats w; w.l.o.g.
we can let them x and y, respectively. The remaining freedom is only whether
(w, z) ∈ A or (z, w) ∈ A. In the former case, w is superior than z, and otherwise
z is superior than w, i.e., T is not efficient, a contradiction. Therefore there is
no efficient 4-tournament.

Now we consider the existence in some cases. For n = 1, the unique (trivial)
1-tournament (V = {x}, A = ∅) is efficient. (Note that this janken is in fact
“useless” practically since in every time it ends in a tie, but it doesn’t violate
the condition of efficiency (Lemma 1), i.e., it includes no pair of signs in which
one is superior than the other.) For n = 3, we know an efficient tournament as
“rock-paper-scissors.” For n = 5, the tournament of Fig. 2 (b) is efficient, you
can check it doesn’t have any useless sign.

We so far checked that for n = 1, 3, 5 there is an efficient tournament, and
for n = 2, 4 there is not. But don’t cursorily decide that if n is even number,
we don’t have efficient tournaments. For n = 6, we have three distinct efficient
6-tournaments as shown in Fig. 3. Except these three, we don’t have any efficient
6-tournaments. It is not difficult to check it by using Lemma 1, and hence we
omit to explain it.

(a) (b) (c)

Fig. 3. Three efficient 6-jankens
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For extending these results for general n, we use the following lemma.

Lemma 2. Let Tn = (V,A) be an efficient n-tournament, then the (n + 2)-
tournament Tn+2 = (V ′, A′) defined below is also efficient.

V ′ := V ∪ {x, y}, where x, y /∈ V, and

A′ := A ∪ {(x, y)} ∪ {(z, x), (y, z) | ∀z ∈ V }.

Proof: For any z ∈ V , there is a 3-cycle 〈z, x, y, z〉. It follows from this that
dist(z, x) = dist(x, y) = dist(y, z) = 1 and dist(z, y) = dist(y, x) = dist(x, z) =
2. By considering this and diam(Tn) ≤ 2, we obtain that diam(Tn+2) = 2. ��

Now we can prove Theorem 1:

Proof of Theorem 1: We observed that for n = 1, 3, 5, 6, there are efficient n-
tournaments. By using Lemma 2, this theorem is obtained by induction. ��

3 What Janken Is Amusing?

3.1 A Measure of Amusement

We proved that we can construct an efficient n-tournament for any positive in-
teger n except 2 and 4. In fact for n ≥ 5, there are more than one n-efficient
tournaments. But now we have the next question: “Are they all the same for
play?” For example, two 7-tournaments shown in Fig. 4 are both efficient. How-
ever they give a different impression if we play them.

(a) (b)
x1

x2

x3

x4

x5

x6

x7 x1

x2

x3

x4

x5

x6

x7

Fig. 4. What is different in these efficient janken variants?

Observe the variation of the strength of each vertex, i.e., the difference between
the out-degree and in-degree. The tournament of (a) is regular, i.e., every vertex
defeats just three vertices and is defeated by just three vertices (we express it
as (3-3)). But in the tournament of (b), x1 is (5-1), x2 is (4-2), x3, x4, x5 are
(3-3), x6 is (2-4), and x7 is (1-5). This variation of the strength should effect
the amusement of janken variants deeply. For example, in the janken variant of
(a), every vertex is essentially the same and our strategy becomes very simple.
However in the janken variant of (b), we consider that to use the strongest
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vertex x1 have an advantage, but the opponent may gamble to use x7, which
is the weakest vertex but only one that defeats x1. If you win by using x7, you
should feel very happy! Many games played widely employ such difference of
strength, e.g., Napoleon, poker, contract bridge, war, gunjin-shogi (army chess),
etc.

From this observation, we introduce a measure of amusement of tournaments
(jankens) by using the variation of the difference of out-degree and in-degrees as
follows.

irr(T ) :=
∑
x∈V

(deg+(x)− deg−(x))2. (1)

3.2 Proof of Theorem 2

Tournaments made by applying Lemma 2 one by one starting from the trivial 1-
tournament look having the highest irregularity (amusement). Such tournaments
have already defined and investigated by J.W. Moon [4]. Let we call them Moon
tournaments and let Mn be the sets of Moon tournaments consists of n vertices,
i.e., Mn is defined as follows:

Definition 2. M1 consists of the trivial 1-tournament. M2 = M4 = ∅. M6

consists of the three efficient 6-tournaments shown in Fig. 3. For the other
n ∈ {3, 5, 7, 8, 9, 10, . . .}, Mn consists of Tn, which is obtained by applying the
construction way of Lemma 2 to Tn−2 ∈Mn−2.

From the definition, Mn consists of only one tournament if n is odd, and three
tournaments if n is even except 2 and 4. Note that the popular 3-janken and the
7-janken of Fig. 4 (b) are the unique tournaments of M3 and M7, respectively.

For Moon tournaments the following result have been known.

Theorem 3 (Moon 93 [4]). Let c3(T ) be the number of 3-cycles in a tourna-
ment T . For an n-tournament T , if every arc is contained in a 3-cycle, then

c3(T ) ≥
{
(n− 1)2/4, if n is odd,
(n2 − 2n+ 8)/4, if n is even,

with equality holding if T ∈Mn.

To connect c3(T ) and irr(T ), we obtain the following property.

Lemma 3. Let T be a tournament with n ≥ 1 vertices. Then

irr(T ) =
n(n+ 1)(n− 1)

3
− 8c3(T ).

Proof: Let Sn = (Vn, An) be the unique acyclic n-tournament, i.e., there is a
linear order σ : Vn → {1, 2, . . . , n} such that arc (x, y) exists if σ(x) < σ(y). The
following two equations clearly hold.

c3(Sn) = 0, (2)

irr(Sn) =

n∑
i=1

(n+ 1− 2i)2 =
n(n+ 1)(n− 1)

3
. (3)
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Any n-tournament can be obtained by flipping arcs of Sn. Focus on an arbi-
trary arc (x, y) of an arbitrary n-tournament T = (V,A). Let

k := |{z ∈ V − {x, y} | (x, z), (z, y) ∈ A}|,
h := |{z ∈ V − {x, y} | (z, x), (y, z) ∈ A}|,
p := |{z ∈ V − {x, y} | (x, z), (y, z) ∈ A}|, and

q := |{z ∈ V − {x, y} | (z, x), (z, y) ∈ A}|.

Let T ′ = (V,A′) be the tournament obtained by flipping arc (x, y) of T , i.e.,
A′ := A ∪ {(y, x)} − {(x, y)}.

irr(T )− irr(T ′) =
{
(k + p− h− q + 1)2 + (h+ p− k − q − 1)2

}
−
{
(k + p− h− q − 1)2 + (h+ p− k − q + 1)2

}
= 8(k − h) = −8(c3(T )− c3(T

′)). (4)

For any n-tournament T , there is a a sequence of n-tournaments 〈T 0 = Sn, T
1,

. . ., T k = T 〉, which transforms T 0 = Sn into T k = T , such that T i is obtained
from T i−1 by flipping one arc (∀i ∈ {1, . . . , k}). From equations (2), (3), and
(4), we get:

irr(T k)− irr(T 0) =

k∑
i=1

(
irr(T i)− irr(T i−1)

)
= −8

k∑
i=1

(
c3(T

i)− c3(T
i−1)
)

= −8
(
c3(T

k)− c3(T
0)
)
.

Hence
irr(T ) = irr(Sn)− 8c3(T ),

and the lemma is obtained. ��
Now we can prove Theorem 2, which is presented in Section 1:

Proof of Theorem 2: Let T be an efficient n-tournament. From Lemma 1, every
arc in T is contained in a 3-cycle. Hence T satisfies the inequality of Theorem 3.
By considering Lemma 3, we get the following inequalities:

irr(T ) ≤
{
n(n+ 1)(n− 1)/3− 2(n− 1)2, if n is odd,
n(n+ 1)(n− 1)/3− 2(n2 − 2n+ 8), if n is even.

By calculating them, we obtain the inequalities in Theorem 2. ��

3.3 Best Amusing Efficient 5-Janken

Based on these results, we introduce a new janken variant called “King-flea-
janken” as follows. We use two extra signs “king” (only thumb extended) and
“flea” (only little finger extended), whose roles are (see Fig. 5):

– King defeats all of rock, paper, and scissors, but is only defeated by flea.
– Flea is defeated by all of rock, paper, and scissors, but only defeats king.
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From Theorem 2, it follows that king-flea-janken is the unique janken variant
having the highest irregularity (i.e., amusement) among efficient 5-jankens. Al-
though this janken is very simple, surprisingly we don’t know that any 5-janken
isomorphic to this have been presented.

rock

paper

scissors

fleaking

Fig. 5. King-flea-janken, which is the best amusing janken variant with five signs

We can easily calculate that the optimal mixed strategy (mixed Nash equilib-
lium) [2,6] of King-flea-janken is forming at random king, flea, rock, paper, and
scissors with probability 1/3, 1/3, 1/9, 1/9, and 1/9, respectively. It is interest-
ing that the probability of the “weakest” sign flea and the “strongest” sign king
are the same.

4 Conclusions

We considered generalizing janken in this paper. We defined “efficiency” of
janken variants and introduced “a measure of amusement” of janken variants.
Based on them, we first showed that we can construct an efficient janken variant
with n signs for any positive integer n except 2 and 4. We next presented how
to construct the best amusing janken variants with n signs, and gave “King-flea-
janken.”

We didn’t treat any tie in janken variants. However there is some janken
variants that allow ties between different signs (e.g., “god-rifle-fox-hen-termite”
in Guangdong, China, some pairs, e.g., god and fox, end in ties. [5]). Extending
our term “efficiency” and “the measure of amusement” to such janken variants
with ties is remaining for future work.
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in Université Libre de Bruxelles, and Prof. Erik Demaine in MIT for valuable
information on janken variants. We would like to thank Prof. Yoshimi Egawa in
Tokyo University of Science, Prof. Hikoe Enomoto in Keio University, and Prof.
Hiroshi Nagamochi in Kyoto University for their precious discussions. We would
also thank the anonymous referees for their careful reviews.



94 H. Ito

References

1. Chartrand, G., Lesniak, L., Zhang, P.: Graphs & Digraphs, 5th edn. CRC Press
(2011)

2. Fisher, D.C., Ryan, J.: Tournament games and positive tournaments. Journal of
Graph Theory 19, 217–236 (1995)

3. Moon, J.W.: Topics on Tournaments. Holt, Rinehart and Winston (1968)
4. Moon, J.W.: Uncovered nodes and 3-cycles in tournaments. Australasian Journal of

Combinatorics 7, 157–173 (1993)
5. Ohbayashi, T., Kishino, U., Sougawa, T., Yamashita, S. (eds.): Encyclopedia of

Ethnic Play and Games. Taishukan Shoten (1998) (in Japanese)
6. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.): Algorithmic Game

Theory. Cambridge University Press (2007)
7. Rock-paper-scissors, in Wikipedia,

http://en.wikipedia.org/wiki/Rock-paper-scissors

http://en.wikipedia.org/wiki/Rock-paper-scissors


Spanning Caterpillars Having at Most k Leaves

Mikio Kano1,�, Tomoki Yamashita2, and Zheng Yan1,��

1 Department of Computer and Information Sciences
Ibaraki University, Hitachi, Ibaraki, Japan

kano@mx.ibaraki.ac.jp, yanzhenghubei@163.com

http://gorogoro.cis.ibaraki.ac.jp
2 Department of Mathematics

Kinki University, Higashi-osaka, Osaka, Japan
yamashita@math.kindai.ac.jp

Abstract. A tree is called a caterpillar if all its leaves are adjacent to the
same its path, and the path is called a spine of the caterpillar. Broersma
and Tuinstra proved that if a connected graph G satisfies σ2(G) ≥ |G| −
k + 1 for an integer k ≥ 2, then G has a spanning tree having at most
k leaves. In this paper we improve this result as follows. If a connected
graph G satisfies σ2(G) ≥ |G|−k+1 and |G| ≥ 3k−10 for an integer k ≥
2, then G has a spanning caterpillar having at most k leaves. Moreover,
if |G| ≥ 3k − 7, then for any longest path, G has a spanning caterpillar
having at most k leaves such that its spine is the longest path. These
three lower bounds on σ2(G) and |G| are sharp.

1 Introduction

We consider simple graphs, which have neither loops nor multiple edges. For a
graph G, let V (G) and E(G) denote the set of vertices and the set of edges of
G, respectively. We write |G| for the order of G (i.e., |G| = |V (G)|). For a vertex
v of G, we denote by degG(v) the degree of v in G. We define σ2(G) to be the
minimum degree sum of two nonadjacent vertices of G. An end-vertex of a tree
is often called a leaf. A tree T is called a caterpillar if T contains a path such
that all the vertices not contained in the path are adjacent to the path. In other
words, a tree is a caterpillar if the removal of its leaves results in a path. Let
T be a caterpillar. Then T has a path P connecting two leaves such that all
the leaves of T not contained in P are adjacent to P . This path P is called a
spine of T . Notice that the path Q obtained from T by removing all the leaves
of T is often called the spine, however, for convenience, in this paper a spine of
a caterpillar connects two leaves of a caterpillar and includes the path Q.

Recall the classic theorem of Ore [6] on a hamiltonian cycle.

Theorem 1 (Ore [6]). Let G be a connected graph. If σ2(G) ≥ |G|, then G has
a hamiltonian cycle.
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This theorem implies the following corollary on a hamiltonian path.

Corollary 1. Let G be a connected graph. If σ2(G) ≥ |G| − 1, then G has a
hamiltonian path.

This corollary was generalized as follows by introducing a tree having at most
k leaves. Notice that a hamiltonian path is a spanning tree with two leaves.

Theorem 2 (Broersma and Tuinstra [3]). Let k ≥ 2 be an integer and G
be a connected graph. If σ2(G) ≥ |G| − k + 1, then G has a spanning tree with
at most k leaves.

Our main result is the following theorem, which says that under the same
condition of Theorem 2, if the order of G is sufficiently large, then G has a
spanning caterpillar having at most k leaves.

Theorem 3. Let k ≥ 2 be an integer and G be a connected graph. If σ2(G) ≥
|G| − k+1 and |G| ≥ 3k− 10, then G has a spanning caterpillar having at most
k leaves.

Furthermore, we obtain the following result, which requires the spine of a
spanning caterpillar to be a given longest path.

Theorem 4. Let k ≥ 2 be an integer and let G be a connected graph. Let P be
a longest path of G. If σ2(G) ≥ |G| − k + 1 and |G| ≥ 3k− 7, G has a spanning
caterpillar having at most k leaves such that its spine is P .

We first show that the degree conditions of Theorems 3 and 4 are sharp. It is
shown in [3] that the condition σ2(G) ≥ |G| − k+1 is sharp for a graph to have
a spanning tree with k leaves.

We now show that the order condition of Theorem 3 is sharp. Let Km denote
the complete graph of order m. Assume that k ≥ 6. For each 1 ≤ i ≤ 3, let Hi

be a copy of Kk−5. We construct a graph G as follows: V (G) = {w, v1, v2, v3} ∪
V (H1) ∪ V (H2) ∪ V (H3) (disjoint union), w is adjacent all the vertices of H1 ∪
H2 ∪ H3 and vi is adjacent to all the vertices of Hi for each 1 ≤ i ≤ 3. Then
|G| = 3(k − 5) + 4 = 3k − 11 and

σ2(G) = degG(v1) + degG(v2) = 2(k − 5) = |G| − k + 1.

However G has no spanning caterpillar. Thus the condition |G| ≥ 3k − 10 is
sharp.

We next show that the order condition of Theorem 4 is sharp. Assume that
k ≥ 5. Let Hi be a copy ofKk−3 for each i ∈ {1, 2} and let H3 be a copy ofKk−4.
We construct a graph G as follows: V (G) = {w, v3} ∪ V (H1) ∪ V (H2) ∪ V (H3)
(disjoint union), w is adjacent all the vertices of H1∪H2∪H3 and v3 is adjacent
to all the vertices of H3. Then |G| = 2(k − 3) + (k − 4) + 2 = 3k − 8 and

σ2(G) = degG(v3) + degG(v) = k − 4 + k − 3 = |G| − k + 1,
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where v ∈ V (H1) ∪ V (H2). However for a longest path P containing all vertices
of V (H1) ∪ V (H2) ∪ {w}, G has no spanning caterpillar whose spine is P . Thus
the condition |G| ≥ 3k − 7 is sharp.

Czygrinow, Fan, Hurlbert, Kierstead and Trotter [4] investigated a spanning
caterpillar with bounded degree in the same direction.

Another results on spanning trees with at most k leaves can be found in [5],
[8] and others. The interested reader is referred to the survey paper [7] and the
book [1] for more information on spanning trees.

2 Proof of Theorem 3

In this section, we give a proof of Theorem 3. Our proof uses the following result
on dominating paths of graphs. For a graph G, let σ3(G) is defined to be the
minimum degree sum of three independent vertices of G, where a vertex set X
is called independent if no two vertices of X are adjacent in G.

Lemma 1 (Broersma [2], Corollary 14 (k = 1 and λ = 2)). Let G be a
connected graph. If σ3(G) ≥ |G| − 3, then G has a spanning caterpillar.

Proof of Theorem 3. Let {x, y, z} be any set of three independent vertices of G.
Then

σ3(G) ≥ degG(x) + degG(y) + degG(z)

=
degG(x) + degG(y)

2
+

degG(y) + degG(z)

2
+

degG(z) + degG(x)

2

≥ 3σ2(G)

2
≥ 3(|G| − k + 1)

2

≥ |G| − 7

2
. (by |G| ≥ 3k − 10)

Hence by Lemma 1, G has a spanning caterpillar.

Choose a spanning caterpillar T of G so that its spine is as long as possible.
Let P be a spine of T , and let u and v be the two end-vertices of P , which
are leaves of T . We assign an orientation in P from u to v, and for a vertex x
of P , its successor x+ and the predecessor x− are defined, if they exist. By the
choice of the spanning caterpillar, G has no cycle C with V (C) = V (P ), and
it follows that NG(u) ∩ (V (G) − V (P )) = ∅, NG(v) ∩ (V (G) − V (P )) = ∅ and
NG(u)

− ∩NG(v) = ∅. Since NG(u)
− ∪NG(v) ⊆ V (P )− {v}, we obtain

degG(u) + degG(v) ≤ |P | − 1.

Since σ2(G) ≥ |G| − k + 1, we have |G| − k + 1 ≤ |P | − 1, which implies
|G|− |P | ≤ k− 2. Therefore the spanning caterpillar T has at most k leaves. �
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3 Proof of Theorem 4

In this section, we give a proof of Theorem 4. We denote by P [u, v] a path
connecting two vertices u and v, which are the end-vertices of P . For a vertex
set X of a graph G, let 〈X〉G denote the subgraph of G induced by X .

Proof of Theorem 4. If G has a hamiltonian path, we are done, and so we may
assume that G does not have a hamiltonian path. Let P be a longest path in G,
and let u and v be the end-vertices of P . We assign an orientation in P from u
to v, and for a vertex x of P , we denote its successor and predecessor, if any,
by x+ and x−, respectively. The following claim holds immediately by the fact
that P is a longest path of G.

Claim 1. (i) NG(u) ∪NG(v) ⊆ V (P ).
(ii) G has no cycle C with V (C) = V (P ).
(iii) NG(u)

− ∩NG(v) = ∅ and {v} ∪NG(u)
− ∪NG(v) ⊆ V (P ).

By Claim 1, we have

|V (P )| ≥ |NG(u)
−|+ |NG(v)|+ |{v}| = degG(u) + degG(v) + 1

≥ σ2(G) + 1 ≥ |G| − k + 2. (1)

Hence |G| − |V (P )| ≤ k− 2. Since G is a connected graph, by connecting all the
vertices in V (G)− V (P ) to P by edges or paths, we can obtain a spanning tree
T of G with at most k leaves.

Next, we prove that T is a caterpillar. Otherwise, there exists a vertex w ∈
V (G)− V (P ) such that NG(w)∩ V (P ) = ∅. By the choice of w and by Claim 1,
the following claim easily holds.

Claim 2. (i) {w, u, v} is an independent set of G.
(ii) NG(w) ⊆ V (G)− V (P )− {w}.

By Claim 2 (i), we have

degG(w) + degG(u) + degG(v) ≥
3σ2(G)

2
≥ 3

2
(|G| − k + 1). (2)

On the other hand, it follows from Claim 2 (ii) and Claim 1 that

degG(w) + degG(u) + degG(v)

= |NG(w)|+ |NG(u)
−|+ |NG(v)|

≤ |G| − |P | − 1 + |P | − 1 = |G| − 2. (3)

By (2) and (3), we have |G| ≤ 3k−7. Hence, the theorem holds when |G| ≥ 3k−6.
Next we consider the case where |G| = 3k−7. In this case, σ2(G) ≥ |G|−k+1 =

2k− 6. Furthermore, if k ≤ 4, then |G| ≤ 5 and so the theorem holds. Hence we
may assume that k ≥ 5.
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Assume that |P | = 2k − 5 + t, where t ≥ 0 by (1). Then degG(w) ≤ |G| −
|P | − 1 = k − 3− t. Hence,

degG(w) + min{degG(u), degG(v)} ≤ k − 3− t+
|P | − 1

2
= 2k − 6− t

2
.

Since σ2(G) ≥ 2k − 6, we obtain t = 0, that is, |P | = 2k − 5. Since the above
inequality holds with equality, it follows from (1) that degG(w) = degG(u) =
degG(v) = k − 3. Since σ2(G) ≥ 2k − 6, we have

degG(x) ≥ k − 3 for every vertex x ∈ V (G)− V (P ). (4)

Since the inequality (1) holds with equality,

V (P )− {v} = NG(u)
− ∪NG(v) (disjoint union). (5)

Since G is connected, G has a path Q connecting w and a vertex of V (P ).
Note that Q has at least two vertices. Let {z} = V (P ) ∩ V (Q). Since P is a
longest path, z �∈ NG(u)

−. By (5), we obtain z ∈ NG(v). Since P is longest,
we have z+ �∈ NG(u)

−; otherwise Q[w, z] + P [z, u] + uz++ + P [z++, v] is a
longer path than P . Hence z+ ∈ NG(v). Inductively by using (5) and Calim 1,
we obtain that s ∈ NG(v) for every vertex s ∈ V (P [z, v−]). It is immediate
that z− �∈ NG(v), which implies z− ∈ NG(u)

− by (5), and thus z ∈ NG(u).
Inductively, we can show that t ∈ NG(u) for every vertex t ∈ V (P [u+, z]). By
the fact that P is a longest path of G, for every vertex x ∈ V (G) − V (P ), it
follows that NG(u)

−∩NG(x) = ∅ and NG(v)
+∩NG(x) = ∅. Therefore we obtain

NG(x) ∩ V (P ) ⊆ {z} for every vertex x ∈ V (G) − V (P ). (6)

Claim 3. H = 〈(V (G) − V (P )) ∪ {z}〉G has a hamiltonian path with an end-
vertex z.

We prove Claim 3. If 〈V (G)−V (P )〉G is a complete graph, then we are done.
We may assume that 〈V (G) − V (P )〉G is not complete. By (6), (4) and k ≥ 5,
we have degH(x) = degG(x) ≥ k − 3 ≥ 2 for each vertex x ∈ V (G)− V (P ).

Since 〈V (G)−V (P )〉G is not complete, there exists two non-adjacent vertices s
and t in it, which are adjacent to z since degH(s)+degH(t) ≥ σ2(G) ≥ 2(|H |−2),
and hence degH(z) ≥ 2. Therefore degH(x) + degH(y) ≥ k − 3 + 2 = |H | for
all non-adjacent two vertices x, y ∈ V (H). By Theorem 1, H has a hamiltonian
cycle, and so H has a hamiltonian path with end-vertex z. Therefore Claim 3 is
proved.

Let R be a hamiltonian path with end-vertex z in H , and x be another end-
vertex of R. Then R[x, z] +P [z, u] or R[x, z] + P [z, v] is a path of order at least
k − 2 + (|V (P )|+ 1)/2 > |V (P )|, a contradiction.

Consequently, Theorem 4 is proved. �
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Abstract. A group divisible design GDD(v = 1 + n+ n, 3, 3, λ1, λ2) is
an ordered pair (V,B) where V is an (1 + n + n)-set of symbols and B
is a collection of 3-subsets (called blocks) of V satisfying the following
properties: the (1 + n+ n)-set is divided into 3 groups of sizes 1, n and
n; each pair of symbols from the same group occurs in exactly λ1 blocks
in B; and each pair of symbols from different groups occurs in exactly λ2

blocks in B. Let λ1, λ2 be positive integers. Then the spectrum of λ1, λ2,
denoted by Spec(λ1, λ2), is defined by

Spec(λ1, λ2) = {n ∈ N : a GDD(v = 1 + n+ n, 3, 3, λ1, λ2) exists}.

We found in [10] the spectrum Spec(λ1, λ2) provided that λ1 ≥ λ2 in
all situations. We find in this paper Spec(λ1, λ2) when λ1 < λ2 in all
situations.

1 Introduction

A group divisible design GDD(v = v1 + v2 + . . .+ vg, g, k, λ1, λ2) is a collection
of k-subsets (called blocks) of a v-set of symbols, where the v-set is partitioned
into g groups of sizes v1, v2, . . . , vg; each pair of symbols from the same group
occurs in exactly λ1 blocks; and each pair of symbols from different groups
occurs in exactly λ2 blocks. Elements occurring together in the same group
are called first associates, and elements occurring in different groups are called
second associates. The existence problem of such GDDs has been of interest over
the years, going back to at least the work of Bose and Shimamoto in 1952 who
began classifying such designs [1]. More recently, much work has been done on
the existence of such designs when λ1 = 0 (see [3] for a summary), and the
designs here are called partially balanced incomplete block designs (PBIBDs) of
group divisible type in [3]. The existence question for k = 3 has been solved by
Sarvate, Fu and Rodger (see [4], [5]) when all groups are the same size.
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The existence problem of GDD(v = v1 + v2 + . . .+ vg, g, k, λ1, λ2), when the
groups may have different size, is considered recently. Chaiyasena, et al. [2] have
published a paper in this direction. In particular, they found all ordered pairs
(n, λ) of positive integers such that a GDD(v = 1 + n, 2, 3, 1, λ) exists. Details
can be found in [2]. Pabhapote and Punnim found in [12] all ordered triples
(m,n, λ) of positive integers with such that a GDD(v = m+ n, 2, 3, λ, 1) exists.
The existence problem of a GDD(v = m + n, 2, 3, λ1, λ2) is more difficult if
λ1 < λ2. Punnim and Uiyyasathian found in [11] infinitely many ordered pairs
(m,n) of positive integers such that a GDD(v = m+ n, 2, 3, 1, 2) exists.

We now consider the problem of determining the existence of a GDD(v =
n1+n2+n3, 3, 3, λ1, λ2). Chaiyasena, et al. [2] published a paper in this direction
for small values of n1, n2, n3. In particular, for each n ∈ {2, 3, 4, 5, 6} they found
all ordered pairs (λ1, λ2) of positive integers such that a GDD(v = 1 + 2 +
n, 3, 3, λ1, λ2) exists. Hurd and Sarvate found in [6] all ordered pairs (n, λ) of
positive integers such that a GDD(v = 1 + 1 + n, 3, 3, 1, λ) exists. Later, Hurd
and Sarvate found in [7] all ordered pairs (n, λ) of positive integers such that
a GDD(v = 1 + 1 + n, 3, 3, λ, 1) exists. Recently, Hurd and Sarvate found in
[8] all ordered triples (n, λ1, λ2) of positive integers, with λ1 > λ2, such that a
GDD(v = 1 + 2 + n, 3, 3, λ1, λ2) exists.

We will concentrate in this paper on GDDs with three groups of sizes 1, n and
n and consider the following problem:

Problem: Find all triples (n, λ1, λ2) of positive integers such that there exists
a GDD(v = 1 + n+ n, 3, 3, λ1, λ2).

This problem was recently solved in [10] when λ1 ≥ λ2. Thus, this paper is a
continuation of what we have done in [10]. Let λ1, λ2 be positive integers with
λ1 < λ2. The spectrum of λ1, λ2, denoted by Spec(λ1, λ2), is defined by

Spec(λ1, λ2) = {n ∈ N : a GDD(v = 1 + n+ n, 3, 3, λ1, λ2) exists}.

We proved in [10] the following theorem.

Theorem 1. Let n be a positive integer. If n ∈ Spec(λ1, λ2), then n is a
solution of the system of linear congruences:

F (λ1, λ2) = λ1n(n− 1) + λ2n(n+ 2) ≡ 0(mod 3) · · · (1)
G(λ1, λ2) = λ1(n− 1) + λ2(n+ 1) ≡ 0 (mod 2) · · · (2).

The following table shows the relationship between n (mod 6) and (λ1, λ2) as
given in Theorem 1.

In the case where λ1 < λ2 we have an additional necessary condition.

Lemma 1. If GDD(v = 1 + n + n, 3, 3, λ1, λ2) exists, then it is necessary that
λ2 ≤ 2λ1.

Proof. Let X = {x}, Y = {y1, y2, . . . , yn}, and Z = {z1, z2, . . . , zn}. Let P =
X ∪ Y . Thus there are λ2n(n + 1) edges between P and Z, there are λ1

(
n
2

)
edges inside Z, and there are λ1

(
n
2

)
+ λ2n edges inside P . Since any three edges
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Table 1. Necessity

λ2 0 1 2 3 4 5
λ1

0 all n 1, 3 0, 1, 3, 4 1, 3, 5 0, 1, 3, 4 1, 3

1 1,3 0, 1, 3, 4 1, 3, 5 0, 1, 3, 4 1, 3 all n

2 0, 1, 3, 4 1, 3, 5 0, 1, 3, 4 1, 3 all n 1, 3

3 1, 3, 5 0, 1, 3, 4 1, 3 all n 1, 3 0, 1, 3, 4

4 0, 1, 3, 4 1, 3 all n 1, 3 0, 1, 3, 4 1, 3, 5

5 1, 3 all n 1, 3 0, 1, 3, 4 1, 3, 5 0, 1, 3, 4

between P and Z can not form a triangle, and any one edge in P and any one
edge in Z can also not form a triangle, it follows that triangles can be formed by
three edged in P , three edges in Z, or two edges between P and Z and one edge
in P ∪Z. Thus, the number of edges between P and Z can not exceed twice the
number of edges in P ∪ Z. Therefore,

λ2n(n+ 1) ≤ 2[λ1

(
n

2

)
+ λ1

(
n

2

)
+ λ2n].

That is λ2 ≤ 2λ1.

2 Preliminary Results

We review some known results concerning triple designs that will be used in what
follows. Most of these results are taken from [9]. We begin with the classic well-
known result on the existence of balanced incomplete block designs (BIBDs).

Theorem 2. Let v be a positive integer. Then there exists a BIBD(v, 3, 1) if
and only if v ≡ 1 or 3 (mod 6).

A BIBD(v, 3, 1) is usually called Steiner triple system and is denoted by
STS(v). Let (V,B) be an STS(v). Then the number of triples b = |B| = v(v−1)/6.
A parallel class in an STS(v) is a set of disjoint triples whose union is V. A par-
allel class contains v/3 triples, and hence an STS(v) having a parallel class can
exist only when v ≡ 3 (mod 6). When the set B can be partitioned into parallel
classes, such a partition R is called a resolution of the STS(v), and the STS(v) is
called resolvable. If (V,B) is an STS(v) and R is a resolution of it, then (V,B,R)
is called a Kirkman triple system, denoted by KTS(v), with (V,B) as its under-
lying STS. It is well known that a KTS(v) exists if and only if v ≡ 3 (mod 6).
Thus if (V,B,R) is a KTS(v), then R contains (v − 1)/2 parallel classes. The
following results on the existence of λ-fold triple systems are well known (see,
e.g., [9]).

Theorem 3. Let v be a positive integer. Then a BIBD(v, 3, λ) exists if and
only if λ and v are in one of the following cases:
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(a) λ ≡ 0 (mod 6) and v �= 2,
(b) λ ≡ 1 or 5 (mod 6) and v ≡ 1 or 3 (mod 6),
(c) λ ≡ 2 or 4 (mod 6) and v ≡ 0 or 1 (mod 3), and
(d) λ ≡ 3 (mod 6) and v is odd.

A factor of a graph G is a spanning subgraph. An r-factor of a graph is a
spanning r-regular subgraph, and an r-factorization is a partition of the edges
of the graph into disjoint r-factors. A graph G is said to be r-factorable if it
admits an r-factorization. In particular, a 1-factor is a perfect matching, and a
1-factorization of an r-regular graph G is a set of 1-factors which partition the
edge set of G.

A near 1-factorization of a regular graph on 2x+1 vertices is a partition of its
edges into independent sets of size x, each of which is called a near 1-factor. Each
near 1-factor saturates all vertices except one; the exceptional vertex is known
as its deficiency. A near 1-factorization of K2x+1 can be constructed from a
1-factorization of K2x+2 by deleting a single vertex.

The following notations will be used throughout the paper for our construc-
tions.

1. Let T = {x, y, z} be a triple and a �∈ T . We use a ∗ T for three triples of the
form {a, x, y}, {a, x, z}, {a, y, z}. If T is a set of triples, then a ∗ T is defined
as {a ∗ T : T ∈ T }.

2. Let G = 〈V (G), E(G)〉 and H = 〈V (H), E(H)〉 be two vertex disjoint simple
graphs. If e = uv ∈ E(G) and a ∈ V (H), then we use a + e for the triple
{a, u, v}. If ∅ �= X ⊆ E(G), then we use a + X for the collection of triples
a+ e for all e ∈ X .

3. Let V be a v-set. We use K(V ) for the complete graph Kv on the vertex set
V .

4. Let V be a v-set. BIBD(V, 3, λ) can be defined as BIBD(V, 3, λ) = {B :
(V,B) is a BIBD(v, 3, λ)}.

5. Let X and Y be disjoint sets of cardinality m and n, respectively. We define
GDD(X,Y ;λ1, λ2) as GDD(X,Y ;λ1, λ2) = {B : (X,Y ;B) is a GDD(v =
m+ n, 2, 3, λ1, λ2)}.

6. Let X,Y and Z be three pairwise disjoint sets of cardinality n1, n2 and n3,
respectively. We define GDD(X,Y, Z;λ1, λ2) as GDD(X,Y, Z;λ1, λ2) = {B :
(X,Y, Z;B) is a GDD(v = n1 + n2 + n3, 3, 3, λ1, λ2)}.

7. When we say that B is a collection of subsets (blocks) of a v-set V , B may
contain repeated blocks. Thus “∪” in our context will be used for the union
of multisets.

8. Finally, if we have a set X , the cardinality of X is denoted by |X |.

3 Sufficiency

We will assume throughout this subsection that λ1 < λ2. It is well known that
Kn has a 1-factorization if and only if n is even. If n = 2m + 1 ≥ 3 is odd,
then Kn can be decomposed as a union of n copies of mK2 ∪ {v}. In this case
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Fv = mK2 is a near 1-factor and v is the deficiency of Fv. Let X = {x},
Y = {y1, y2, . . . , yn} and Z = {z1, z2, . . . , zn}. Let F = {Fyi : i = 1, 2, . . . , n}
and F ′ = {Fzi : i = 1, 2, . . . , n} be the sets of near 1-factorizations of K(Y )
and K(Z), respectively. Let B1 =

⋃n
i=1 yi + Fzi , B2 =

⋃n
i=1 zi + Fyi , and B3 =

{{x, yi, zi} : i = 1, 2, . . . , n}. It can be easily checked that (X,Y, Z;B1∪B2∪2B3)
forms a GDD(v = 1+n+n, 3, 3, 1, 2) for odd integers n. Consequently, for every
positive integer λ, GDD(v = 1 + n + n, 3, 3, λ, 2λ) exists. Therefore, we obtain
the following lemma.

Lemma 2. Let n be an odd positive integer. Then for every positive integer
λ we have n ∈ Spec(λ, 2λ).

Letn ≡ 2 (mod 6) and letX = {x}, Y = {y1, y2, . . . , yn} andZ = {z1, z2, . . . , zn}.
Thus KTS(X∪Y ) and KTS(X∪Z) are not empty. We now choose B1 ∈ KTS(X∪
Y ) with P1,P2, . . . ,Pn−1

2
as its parallel classes, and B2 ∈ KTS(X ∪ Z) with

Q1,Q2, . . . ,Qn−1
2

as its parallel classes. Let

B =

⎛⎝n−1
2⋃

i=1

zi ∗ Pi

⎞⎠∪
⎛⎝ n⋃

i=n+1
2

zi ∗ Pi−n−1
2

⎞⎠∪
⎛⎝n−1

2⋃
i=1

yi ∗ Qi

⎞⎠∪
⎛⎝ n⋃

i= n+1
2

yi ∗ Qi−n−1
2

⎞⎠.
It can be easily checked that (X,Y, Z;B) forms a GDD(v = 1+ n+ n, 3, 3, 2, 4).
Consequently, for every positive integer λ, GDD(v = 1+n+n, 3, 3, 2λ, 4λ) exists.
Therefore, we obtain the following lemma.

Lemma 3. Let n ≡ 2 (mod 6). Then for every positive integer λ we have
n ∈ Spec(2λ, 4λ).

Let n ≡ 0 or 4 (mod 6) and let X = {x}, Y = {y1, y2, . . . , yn} and Z =
{z1, z2, . . . , zn}. It follows, by Theorem 3, that BIBD(Y, 3, 2) and BIBD(Z, 3, 2)
are not empty. Let B1 ∈ BIBD(Y, 3, 2). Then we choose the corresponding B2 ∈
BIBD(Z, 3, 2) in a natural way. Namely, {zi, zj , zk} is a block in B2 if and only
if {yi, yj , yk} is a block in B1. Let B3 = {{yi, yj, zk} : {yi, yj, yk} ∈ B1}, B4 =
{{zi, zj , yk} : {zi, zj, zk} ∈ B2}, and B5 = {{x, yi, zi} : i = 1, 2, . . . , n}. Now let
B = B3 ∪ B4 ∪ 4B5. Then it can be checked that (X,Y, Z;B) forms a GDD(v =
1+n+n, 3, 3, 2, 4). Consequently, for every positive integer i, GDD(v = 1+n+
n, 3, 3, 2i, 4i) exists. Therefore, we obtain the following lemma.

Lemma 4. Let n ≡ 0 or 4 (mod 6). Then for every positive integer λ we have
n ∈ Spec(2λ, 4λ).

Results in Lemmas 2-4 are our basic tools for constructing the GDDs in general
and we can see that if n is odd, then GDD(v = 1 + n + n, 3, 3, λ, 2λ) exists for
every positive integer λ and if n is even, then GDD(v = 1 + n + n, 3, 3, λ, 2λ)
exists for every positive even integer λ. We can summarize as a basic theorem.

Theorem 4. Let n be a positive integer. If n is odd, then GDD(v = 1 + n+
n, 3, 3, λ, 2λ) exists for every positive integer λ and if n is even, then GDD(v =
1 + n+ n, 3, 3, λ, 2λ) exists for every positive even integer λ.



106 W. Lapchinda, N. Punnim, and N. Pabhapote

We will use in the following results X,Y, Z for sets of sizes 1, n, n, respec-
tively. We first observe that 2n + 1 ≡ 1 or 3 (mod 6) if and only if n ≡
0, 1, 3 or 4 (mod 6). In these particular values of n, BIBD(2n + 1, 3, 1) ex-
ists, and hence, BIBD(2n + 1, 3, λ) exists for every positive integer λ. For n ≡
2 or 5 (mod 6), we can ensure that BIBD(2n+ 1, 3, 3λ) exists for every positive
integer λ. Let n ≡ 0, 1, 3 or 4 (mod 6). Let B1 ∈ BIBD(X ∪ Y ∪ Z, 3, 1). Let s
and t be non-negative integers and i ∈ {1, 2, 3, 4, 5, 6} such that 6t+ i < 6s+ i ≤
2(6t+i). Thus, 6(s−2t) ≤ i. Then, by Theorem 4, GDD(v = 1+n+n, 3, 3, 6(s−
t), 12(s− t)) exists. Let B2 ∈ GDD(X,Y, Z; 6(s− t), 12(s− t)). Thus, (X,Y, Z;B)
forms a GDD(v = 1+n+n, 3, 3, 6t+ i, 6s+ i), where B = (6(2t− s)+ i)B1∪B2.
Thus, we have the following result.

Lemma 5. Let n ≡ 0, 1, 3 or 4 (mod 6) and i ∈ {1, 2, 3, 4, 5, 6}. If s
and t are non-negative integers with 6t + i < 6s + i ≤ 2(6t + i), then n ∈
Spec(6t+ i, 6s+ i).

Suppose that n ≡ 2 or 5 (mod 6) and i ∈ {3, 6}. If s and t are non-negative
integers with 6t+ i < 6s+ i ≤ 2(6t+ i), then, by Theorem 3, BIBD(2n+1, 3, 3)
exists. Let B1 ∈ BIBD(X ∪ Y ∪ Z, 3, 3). By Theorem 4, GDD(v = 1 + n +
n, 3, 3, 6(s− t), 12(s − t)) exists. Let B2 ∈ GDD(X,Y, Z; 6(s − t), 12(s − t)). It
can be checked that (X,Y, Z;B) forms a GDD(v = 1+ n+ n, 3, 3, 6t+ i, 6s+ i),
where B = (2(2t− s) + i

3 )B1 ∪ B2. Thus, we have the following results.

Lemma 6. Let n ≡ 2 or 5 (mod 6) and i ∈ {3, 6}. If s and t are non-negative
integers with 6t+ i < 6s+ i ≤ 2(6t+ i), then n ∈ Spec(6t+ i, 6s+ i).

Note that the results of Lemma 5 and Lemma 6 take care of the sufficiency
for the values of the entries on the main diagonal of Table 1.

Letn ≡ 1 or 3 (mod 6), s and t be non-negative integers, and i ∈ {1, 2, 3, 4, 5, 6}
with 6t+i < 6s+i+1 ≤ 2(6t+i). Then, byTheorem4, letB1 ∈ GDD(X,Y, Z; 6(s−
t) + 1, 12(s− t) + 2) and, by Theorem 3, let B2 ∈ BIBD(X ∪ Y ∪ Z, 3, 1). Thus,
(X,Y, Z;B) forms a GDD(v = 1 + n + n, 3, 3, 6t + i, 6s + i + 1), where B =
B1 ∪ (6(2t− s) + i− 1)B2.

Let n ≡ 5 (mod 6), s and t be non-negative integers, and i ∈ {1, 4} with
6t+ i < 6s+ i+1 ≤ 2(6t+ i). Then, by Theorem 4, let B1 ∈ GDD(X,Y, Z; 6(s−
t) + 1, 12(s− t) + 2) and, by Theorem 3, let B2 ∈ BIBD(X ∪ Y ∪ Z, 3, 3). Thus,
(X,Y, Z;B) forms a GDD(v = 1 + n + n, 3, 3, 6t + i, 6s + i + 1), where B =
B1 ∪ (13 (6(2t− s) + i− 1))B2. Thus, we have the following results.

Lemma 7. Let n ≡ 1 or 3 (mod 6) and i ∈ {1, 2, 3, 4, 5, 6}. If s and t are
non-negative integers with 6t + i < 6s + i + 1 ≤ 2(6t + i), then n ∈ Spec(6t +
i, 6s+ i+ 1).

Lemma 8. Let n ≡ 5 (mod 6) and i ∈ {1, 4}. If s and t are non-negative
integers with 6t+ i < 6s+ i+ 1 ≤ 2(6t+ i), then n ∈ Spec(6t+ i, 6s+ i+ 1).

Let n ≡ 0, 1, 3 or 4 (mod 6), s and t be non-negative integers, and i ∈
{1, 2, 3, 4, 5, 6} with 6t+ i < 6s+ i+2 ≤ 2(6t+ i). Then, by Theorem 4, let B1 ∈
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GDD(X,Y, Z; 6(s− t)+ 2, 12(s− t)+ 4) and, by Theorem 3, let B2 ∈ BIBD(X ∪
Y ∪Z, 3, 1). Thus, (X,Y Z;B) forms a GDD(v = 1+n+n, 3, 3, 6t+ i, 6s+ i+2),
where B = B1 ∪ (6(2t− s) + i− 2)B2.

Let n ≡ 2 or 5 (mod 6), s and t be non-negative integers, and i ∈ {2, 5} with
6t+ i < 6s+ i+2 ≤ 2(6t+ i). Then, by Theorem 4, let B1 ∈ GDD(X,Y, z; 6(s−
t) + 2, 12(s− t) + 4) and, by Theorem 3, let B2 ∈ BIBD(X ∪ Y ∪ Z, 3, 3). Thus,
(X,Y, Z;B) forms a GDD(v = 1 + n + n, 3, 3, 6t + i, 6s + i + 2), where B =
B1 ∪ (13 (6(2t− s) + i− 2))B2. Thus, we have the following results.

Lemma 9. Let n ≡ 0, 1, 3 or 4 (mod 6) and i ∈ {1, 2, 3, 4, 5, 6}. If s and
t are non-negative integers with 6t + i < 6s + i + 2 ≤ 2(6t + i), then n ∈
Spec(6t+ i, 6s+ i+ 2).

Lemma 10. Let n ≡ 2 or 5 (mod 6) and i ∈ {2, 5}. If s and t are non-
negative integers with 6t+i < 6s+i+2 ≤ 2(6t+i), then n ∈ Spec(6t+i, 6s+i+2).

Let n ≡ 1 or 3 (mod 6), s and t be non-negative integers, and i ∈ {1, 2, 3, 4, 5, 6}
with 6t+i < 6s+i+3 ≤ 2(6t+i). Then, byTheorem4, letB1 ∈ GDD(X,Y, Z; 6(s−
t) + 3, 12(s− t) + 6) and, by Theorem 3, let B2 ∈ BIBD(X ∪ Y ∪ Z, 3, 1). Thus,
(X,Y, Z;B) forms a GDD(v = 1 + n + n, 3, 3, 6t + i, 6s + i + 3), where B =
B1 ∪ (6(2t− s) + i− 3)B2 .

Let n ≡ 5 (mod 6), s and t be non-negative integers, and i ∈ {3, 6} with
6t+ i < 6s+ i+3 ≤ 2(6t+ i). Then, by Theorem 4, let B1 ∈ GDD(X,Y, Z; 6(s−
t) + 3, 12(s− t) + 6) and, by Theorem 3, let B2 ∈ BIBD(X ∪ Y ∪ Z, 3, 3). Thus,
(X,Y, Z;B) forms a GDD(v = 1 + n + n, 3, 3, 6t + i, 6s + i + 3), where B =
B1 ∪ (13 (6(2t− s) + i− 3))B2.

Thus, we have the following results.

Lemma 11. Let n ≡ 1 or 3 (mod 6) and i ∈ {1, 2, 3, 4, 5, 6}. If s and
t are non-negative integers with 6t + i < 6s + i + 3 ≤ 2(6t + i), then n ∈
Spec(6t+ i, 6s+ i+ 3).

Lemma 12. Let n ≡ 5 (mod 6) and i ∈ {3, 6}. If s and t are non-negative
integers with 6t+ i < 6s+ i+ 3 ≤ 2(6t+ i), then n ∈ Spec(6t+ i, 6s+ i+ 3).

Let n ≡ 0, 1, 3 or 4 (mod 6), s and t be non-negative integers, and i ∈
{1, 2, 3, 4, 5, 6} with 6t+ i < 6s+ i+4 ≤ 2(6t+ i). Then, by Theorem 4, let B1 ∈
GDD(X,Y, Z; 6(s− t)+ 4, 12(s− t)+ 8) and, by Theorem 3, let B2 ∈ BIBD(X ∪
Y ∪Z, 3, 1). Thus, (X,Y, Z;B) forms a GDD(v = 1+n+n, 3, 3, 6t+ i, 6s+ i+4),
where B = B1 ∪ (6(2t− s) + i− 4)B2.

Let n ≡ 2 or 5 (mod 6), s and t be non-negative integers, and i ∈ {1, 4} with
6t+ i < 6s+ i+2 ≤ 2(6t+ i). Then, by Theorem 4, let B1 ∈ GDD(X,Y, Z; 6(s−
t) + 4, 12(s− t) + 8) and, by Theorem 3, let B2 ∈ BIBD(X ∪ Y ∪ Z, 3, 3). Thus,
(X,Y, Z,B) forms a GDD(v = 1 + n + n, 3, 3, 6t + i, 6s + i + 4), where B =
B1 ∪ (13 (6(2t− s) + i− 4))B2. Thus, we have the following results.

Lemma 13. Let n ≡ 0, 1, 3 or 4 (mod 6) and i ∈ {1, 2, 3, 4, 5, 6}. If s and
t are non-negative integers with 6t + i < 6s + i + 4 ≤ 2(6t + i), then n ∈
Spec(6t+ i, 6s+ i+ 4).
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Lemma 14. Let n ≡ 2 or 5 (mod 6) and i ∈ {1, 4}. If s and t are non-
negative integers with 6t+i < 6s+i+4 ≤ 2(6t+i), then n ∈ Spec(6t+i, 6s+i+4).

Let n ≡ 1 or 3 (mod 6), s and t be non-negative integers, and i ∈ {1, 2, 3, 4, 5, 6}
with 6t+i < 6s+i+5 ≤ 2(6t+i). Then, byTheorem4, letB1 ∈ GDD(X,Y, Z; 6(s−
t) + 5, 12(s − t) + 10) and, by Theorem 3, let B2 ∈ BIBD(X ∪ Y ∪ Z, 3, 1).
Thus, (X,Y, Z;B) forms a GDD(v = 1 + n + n, 3, 3, 6t + i, 6s + i + 5), where
B = B1 ∪ (6(2t− s) + i− 5)B2.

Let n ≡ 5 (mod 6), s and t be non-negative integers, and i ∈ {2, 5} with
6t+ i < 6s+ i+5 ≤ 2(6t+ i). Then, by Theorem 4, let B1 ∈ GDD(X,Y, Z; 6(s−
t) + 5, 12(s − t) + 10) and, by Theorem 3, let B2 ∈ BIBD(X ∪ Y ∪ Z, 3, 3).
Thus, (X,Y, Z;B) forms a GDD(v = 1 + n + n, 3, 3, 6t + i, 6s + i + 5), where
B = B1 ∪ (13 (6(2t− s) + i− 5))B2. Thus, we have the following results.

Lemma 15. Let n ≡ 1 or 3 (mod 6) and i ∈ {1, 2, 3, 4, 5, 6}. If s and
t are non-negative integers with 6t + i < 6s + i + 5 ≤ 2(6t + i), then n ∈
Spec(6t+ i, 6s+ i+ 5).

Lemma 16. Let n ≡ 5 (mod 6) and i ∈ {2, 5}. If s and t are non-negative
integers with 6t+ i < 6s+ i+ 5 ≤ 2(6t+ i), then n ∈ Spec(6t+ i, 6s+ i+ 5).

Combining results in this section, Theorem 1 and Lemma 1, we obtain the
following theorem.

Theorem 5. Let λ1 and λ2 be positive integers with λ1 < λ2 and n be a
positive integer. Then n ∈ Spec(λ1, λ2) if and only if

1. 3 | [λ1n(n− 1) + λ2n(n+ 2)],
2. 2 | [λ1(n− 1) + λ2(n+ 1)], and
3. λ2 ≤ 2λ1.
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Abstract. A quadrangulation is a spherical map of a simple graph such
that each face is bounded by a cycle of length four. Since every quad-
rangulation G is bipartite, G has a unique bipartition V (G) = B ∪ W ,
where we call (|B|, |W |) the bipartition size of G. In this article, we shall
prove that any two quadrangulations G and G′ with the same bipartition
size can be transformed into each other by at most 10|B| + 16|W | − 64
diagonal slides.

1 Introduction

A triangulation (resp., a quadrangulation) is a spherical map of a simple graph
such that each face is bounded by a cycle of length 3 (resp., 4). In triangulations,
a diagonal flip is an operation flipping an edge as shown in Figure 1. If this
transformation breaks the simpleness of graphs, then we don’t apply it. For
diagonal flips of triangulations, the following theorem was proved. For related
topics, see a survey [8].

Theorem 1 (Wagner [9]). Any two triangulations with the same number of
vertices can be transformed into each other by diagonal flips.

In quadrangulations, a diagonal slide is an operation sliding an edge as shown
in Figure 2, and a diagonal rotation is one rotating a path of length 2, where the
middle vertex has degree 2 as shown in Figure 3. They are called diagonal trans-
formations in quadrangulations. If these transformations break the simpleness
of graphs, then we don’t apply them.

Since any quadrangulation is bipartite, we always consider a fixed vertex 2-
coloring by black and white. For a bipartite graph G (resp., G′), we denote the
set of black vertices and that of white vertices by B and W (resp., B′ and W ′),
respectively. Moreover, the bipartition size of G means (|B|, |W |). It is easy to
see that a diagonal slide preserves the bipartition size, but a diagonal rotation
does not. For quadrangulations, Nakamoto [4] proved the following theorems.
(In fact, Nakamoto [4] proved similar theorems also for non-spherical surfaces.
For related topics, see [3,5].)
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Fig. 1. A diagonal flip

Fig. 2. A diagonal slide

Fig. 3. A diagonal rotation

Theorem 2 (Nakamoto [4]). Any two quadrangulations with the same number
of vertices can be transformed into each other by diagonal transformations.

Theorem 3 (Nakamoto [4]). Any two quadrangulations G and G′ with the
same bipartition size can be transformed into each other only by diagonal slides.

In this paper, we focus on the number of diagonal transformations in trian-
gulations and quadrangulations. From the proofs of Theorems 1, 2 and 3, we
can obtain the fact that any two triangulations (or quadrangulations) can be
transformed into each other by O(n2) transformations, where n is the number
of vertices. However, for triangulations, Komuro [1] proved that the number is
at most 8n− 48. Afterward, Mori et al. [2] improved Komuro’s result as follows
by a clever idea.
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Theorem 4 (Mori et al. [2]). Any two triangulations G and G′ with |V (G)| =
|V (G′)| = n ≥ 6 can be transformed into each other by at most 6n− 30 diagonal
flips.

Moreover, for quadrangulations, Nakamoto and Suzuki [6] recently proved the
following theorem by using the method similar to that in Komuro’s result, which
has motivated our study.

Theorem 5 (Nakamoto and Suzuki [6]). Any two quadrangulations G and
G′ with |V (G)| = |V (G′)| = n ≥ 6 can be transformed into each other by at most
6n− 32 diagonal transformations.

In this paper, we estimate the number of diagonal slides in Theorem 3, as
follows.

Theorem 6. Let G and G′ be quadrangulations with |B| = |B′| = m ≥ |W | =
|W ′| = n ≥ 3. Then G and G′ can be transformed into each other by at most
10m+ 16n− 64 diagonal slides.

By this theorem, we also have the following corollary.

Corollary 1. Let G and G′ be quadrangulations with k ≥ 6 vertices and |B| ≥
|B′|. Then there exists a sequence of diagonal transformations of length at most
13k− 64 from G to G′ in which exactly |B|− |B′| diagonal rotations are applied.

2 Lemmas

In this section, we prepare several lemmas to prove our main theorem. For each
vertex v, the set of neighbors of v is denoted by N(v) and the degree of v is
denoted by deg(v). A k-vertex is a vertex of degree k. Throughout this section,
G denotes a quadrangulation with |B| ≥ |W |.

Lemma 1. A 2-vertex in G can be moved to a neighboring face by exactly two
diagonal slides.

Proof. As shown in Figure 4, a 2-vertex can be moved to a neighboring face by
exactly two diagonal slides. ��

Fig. 4. Moving 2-vertex



Congruent Dudeney Dissections 113

Lemma 2. There exists a vertex x ∈ B such that deg(x) ≤ 3.

Proof. We suppose that deg(x) ≥ 4 for any vertex x ∈ B. Observe 4|F (G)| =
2|E(G)|, |V (G)| = |B|+ |W |, and |E(G)| ≥ 4|B| by the assumption. By Euler’s
formula, we have |E(G)| ≤ 2|V (G)| − 4, and hence,

2|B| ≤ 2|W | − 4.

This inequality contradicts |B| ≥ |W |. ��

Lemma 3. Let e = xy ∈ E(G). If the degree of x and y are at least 3, then e
can be flipped by a diagonal slide.

Proof. Let xaby and xcdy be two faces sharing the edge xy (note that a �= c and
b �= d since deg(x) ≥ 3 and deg(y) ≥ 3). Consider to switch xy to ad by a diagonal
slide. If this operation is not applicable, then ad ∈ E(G). In this case, we can
switch xy to cb by a diagonal slide since if cb ∈ E(G), then G contains a complete
bipartite graph K3,3 as a subgraph, and so this contradicts G is planar. ��

Lemma 4. At most one diagonal slide yields a 2-vertex in B.

Proof. If G has a 2-vertex v ∈ B, then we are done. Hence we may suppose that
there exists v ∈ B with deg(v) = 3 by Lemma 2. For three vertices w1, w2, w3 ∈
N(v), if deg(wi) = 2 for each i ∈ {1, 2, 3}, then G has exactly three faces vw1bw2,
vw2bw3 and vw3bw1 meeting at v ∈ B, and B = {v, b}, W = {w1, w2, w3}.
However, this contradicts |B| ≥ |W |, and hence, we may suppose that deg(w1) ≥
3. Then, by Lemma 3, we can switch an edge vw1 to reduce deg(v) by one. Hence,
the lemma holds. ��

3 Proof of Theorem 6

In this section, we shall prove Theorem 6. We first prove the following propo-
sition. The quadrangulation shown in Figure 5 is a standard form Sm,n which
consists of the equator abcd (a and c are black and b and d are white), m − 2
black 2-vertices in the northern hemisphere which are adjacent to b and d, and
n− 2 white 2-vertices in the southern hemisphere which are adjacent to a and c.

a

b

c

d

Fig. 5. The standard form Sm,n
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The following is essential for proving Theorem 6.

Proposition 1. Let G be a quadrangulation with |B| = m ≥ |W | = n ≥ 3.
Then G can be transformed into the standard form by at most 5m + 8n − 32
diagonal slides.

Proof. By Lemma 4, we may suppose that there exists b1 ∈ B such that
deg(b1) = 2 after we apply at most one diagonal slide. Then, we first regard
a face ub1vbm as an outer face as shown in Figure 6. Consider the constant
d(u, v) = 2 deg(u)+deg(v). Since deg(u) ≥ 3 and deg(v) ≥ 3, we have d(u, v) ≥ 9.

u v

bm

b1

b2

Fig. 6. The first setting

Let ub1vb2 be the face sharing the path ub1v with the outer face ub1vbm and
let w be a neighbor of b2 which is next to v with respect to the anti-clockwise
rotation around b2. If w = u, then we consider a next vertex b3 ∈ B since we
have deg(b2) = 2, where a face ub2vb3 shares a path ub2v with the face ub1vb2
(in this case, we regard b2 and b3 as b1 and b2, respectively). Hence we may
suppose w �= u. Let vb2wx and wb2w

′y be faces sharing the edge b2w as shown
in Figure 7.

The first case is when deg(w) ≥ 3 (see Figure 7). Switch b2w to vy by a
diagonal slide. This operation increases d(u, v) by one and decreases deg(b2) by
one. If this operation is not applicable, then there already exists an edge vy (note
that if bm = x, then we can apply the operation). In this case, we can slide b2v
to ux by a diagonal slide by Lemma 3 (note that it also preserves deg(v) ≥ 3
since x does not coincide with bm even if y = bm), and this operation increases
d(u, v) by one since deg(u) increases by one. After applying this operation, we
replace x with b2. Thus, we can increase d(u, v) by one.

The second case is when deg(w) = 2 (see Figure 8; this configuration is ob-
tained from Figure 7 by identifying x and y and replacing them by z). In this
case, as shown in Figure 9, we move w to the quadrilateral region ub1vbm by ex-
actly four diagonal slides by Lemma 1. After this operation, d(u, v) is un-changed
but deg(b2) is decreased by one.

Then, since we eventually have deg(b2) = 2, we continue the above operations
for b3, where ub2vb3 is a face sharing a path ub2v with ub1vb2. (In this case, if the
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u v

b1

b2

ww′
x

y

bm

Fig. 7. Case of deg(w) ≥ 3

u v

b1

b2

w

w′ z

bm

Fig. 8. Case of deg(w) = 2

w

bm

b1

u v

Fig. 9. Moving a white 2-vertex by Lemma 1

above second case appears, then we move a white 2-vertex to the quadrilateral
region ub1vb2 by exactly four diagonal slides. In general, in the above procedures
for bi, we move a white 2-vertex to the quadrilateral region ubi−2vbi−1 by exactly
four diagonal slides when the second case happens.) By repeating the above
operations, we can transform G into a special form, say H , with d(u, v) = 3m
as shown in Figure 10 since u and v are adjacent to all black vertices.

b1

b2

bm

vu

bm−1

w1

wk

Fig. 10. A quadrangulation H with d(u, v) = 3m



116 N. Matsumoto and A. Nakamoto

Next, we transform H into the standard form. Since |W | ≥ 3, one of the
quadrilateral regions ubivbi+1, say ubmvb1, includes at least one white 2-vertices,
say w1, . . . , wk (1 ≤ k ≤ n− 2), in the interior, where vb1w1bm and ub1wkbm are
faces of H (see Figure 10). Then, we can move each of white 2-vertices in two
quadrilateral regions ub1vb2 and ub2vb3 into the quadrilateral region vb1w1bm
by at most four diagonal slides as shown in Figure 11. Hence we eventually have
deg(b2) = 2, and then we can move b2 into the quadrilateral region ub1wkbm by
exactly two diagonal slides as shown in Figure 12. Hence, applying the above
operations repeatedly, we can transform G into the standard form Sm,n.

b1

b2

bm

vu w1

b1

b2

bm

vu w1

Lemma 1

b1

b2

bm
v

u w1

Lemma 1

Fig. 11. Moving a white 2-vertex

Finally, we estimate the total number of diagonal slides applied. In the proce-
dures transforming G intoH , since one diagonal slide increases d(u, v) by exactly
one, and since d(u, v) ≥ 9 and d(u, v) = 3m, we applied at most 3m−9 diagonal
slides. Moreover, in the process, we moved each of the white 2-vertices except
u and v by exactly four diagonal slides. In the process transforming H into the
standard form, each black (resp., white) 2-vertex except b1 and bm (resp., u, v
and w) is moved to the specific quadrilateral regions ub1w1bm (resp., vb1wkbm)
by at most two (resp., four) diagonal slides. Then, since we apply at most one
diagonal slide to obtain a black 2-vertex by Lemma 4, we have

(3m− 9) + 4(n− 2) + 2(m− 2) + 4(n− 3) + 1 = 5m+ 8n− 32. ��

Proof of Theorem 6. By Proposition 1, we can transform G and G′ into the same
standard formSm,n by atmost 5m+8n−32diagonal slides. Therefore, the number
of diagonal slides to transformG into G′ is at most 10m+ 16n− 64 in total. ��
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b1

b2

bm
v

u wk

Lemma 1

b1

bm

v

u wk

Fig. 12. Moving a black 2-vertex

Finally, we shall prove Corollary 1.

Proof of Corollary 1. Let (m,n) and (m′, n′) be the bipartition sizes of G and G′,
respectively. By Proposition 1,G andG′ can be transformed into Sm,n and Sm′,n′

only by diagonal slides, respectively. As shown in Figure 13, we can transform
Sk,l into Sk+1,l−1 (or Sk−1,l+1) by two diagonal slides and one diagonal rotation.

Fig. 13. Transforming a standard form into another standard form

Therefore, since we can transform Sm,n into Sm′,n′ by applying the operation
shown in Figure 13 repeatedly, there exists a sequence of diagonal transforma-
tions, where the number of diagonal rotations is exactly |B| − |B′|.
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Finally, we estimate the length of the sequence. In this proof, we suppose that
m ≥ n. (Since we can easily prove the casem < n similarly to the following proof
method, we entrust the remaining case to the reader.) Then, we first transform
G and G′ into Sm,n and Sm′,n′ by at most 5m+8n−32 and at most 5m′+8n′−32
(or 5n′ + 8m′ − 32) diagonal slides, respectively. Moreover, we apply 3(m−m′)
diagonal transformations to transform Sm,n into Sm′,n′ . Then, we have

(5m+ 8n− 32) + (5m′ + 8n′ − 32) + 3(m−m′)
= (8m+ 8n) + (2m′ + 2n′) + 6n′ − 64

≤ 8k + 2k + (6× k

2
)− 64 = 13k − 64, or

(5m+ 8n− 32) + (5n′ + 8m′ − 32) + 3(m−m′)
= (8m+ 8n) + (5n′ + 5m′)− 64

≤ 8k + 5k − 64 = 13k − 64.

In both cases, since the length of the sequence is at most 13k−64, we complete
the proof. ��

4 Examples

In the end of the paper, we construct two quadrangulations which need many
diagonal transformations to transform the quadrangulation into the other, and
show that the linear order of the bound in Theorem 6 (or Corollary 1) is best
possible with respect to the number of vertices.

Let G and G′ be quadrangulations with the same bipartition size such that
G ∼= Sm,n and G′ ∼= Gm,n shown in Figure 14, where m = 2k + l, n = 2k and k
is sufficiently large. Now, by considering the maximum degree of G and G′, we
can see that G has two black n-vertices and two white m-vertices and G′ has two
black 4-vertices and two white (l + 3)-vertices. Let x and y be black 4-vertices,
and let u and v be white (l + 3)-vertices in G′. Then, we consider to make
deg(x) = deg(y) = n and deg(u) = deg(v) = m only by diagonal slides. Note

l black 2-vertices

Fig. 14. Gm,n
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that each diagonal slide cannot simultaneously increase the degree of two black
(or white) vertices. Moreover, at most four diagonal slides can simultaneously
increase the degree of two of x, y, u and v by the simpleness. Thus, we need
at least 2(n − 4) + 2{m − (l + 3)} − 4 = 2m + 2n − 2l − 18 diagonal slides to
transform G into G′. (Note that for any way of transformations, the number
of transformations deforming G into G′ is at least 2m + 2n − 2l − 18 since we
now choose vertices of the maximum degree.) Therefore, the linear order of the
bound in Theorem 6 is best possible.
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Remarks on Schur’s Conjecture
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Abstract. Let P be a set of n > d points in Rd for d ≥ 2. It was
conjectured by Schur that the maximum number of (d− 1)-dimensional
regular simplices of edge length diam(P ), whose every vertex belongs to
P , is n. We prove this statement under the condition that any two of the
simplices share at least d − 2 vertices. It is left as an open question to
decide whether this condition is always satisfied. We also establish upper
bounds on the number of all 2- and 3-dimensional simplices induced by
a set P ⊂ R3 of n points which satisfy the condition that the lengths of
their sides belong to the set of k largest distances determined by P .

1 Introduction

The investigation of the distribution of distinct distances induced by a finite set of
points in Euclidean space was initiated by Erdős in 1946. It has become a classical
topic in discrete and computational geometry, with applications in combinatorial
number theory, the theory of geometric algorithms, pattern recognition, etc. A
typical problem in the area is Erdős’ unit distance problem [2,11]: what is the
maximum number of unit distance pairs among n points in Rd?

In the present paper, we concentrate on graphs of diameters. The diameter
graph D(P ) of a finite set of points P in Rd is the graph whose vertex set is P ,
and two vertices are connected by an edge if and only if their distance is the
diameter of P .

Throughout this paper, d will always denote an integer which is at least 2.
One of the basic properties of graphs of diameters was formulated by Erdős [2]:

the maximum number of diameters among n points in the plane is n., Erdős
generously attributed the statement to Hopf and Pannwitz [4], who in fact proved
a slightly different statement. In 3 dimensions, a similar result was conjectured
by Vázsonyi and proved by Grünbaum [5], Heppes [6], and Straszewicz [12]: the
maximum number of diameters generated by n > 3 points in R3 is 2n − 2. In
higher dimensions, the analogous problem turned out to have a different flavor:
Lenz found some simple constructions with a quadratic number of diameters.

In [10], instead of counting the number of edges, Schur, Perles, Martini, and
Kupitz initiated the investigation of the number of cliques in a graph of di-
ameters. A k-clique, that is, a complete subgraph of k vertices, in the graph
of diameters of P corresponds to a regular (k − 1)-dimensional simplex (or, in
short, (k − 1)-simplex) of side length diam(P ) generated by P .

J. Akiyama, M. Kano, and T. Sakai (Eds.): TJJCCGG 2012, LNCS 8296, pp. 120–131, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Theorem A (Schur et al.). Any finite subset P ⊂ Rd contains the vertices of
at most one regular d-simplex of edge length diam(P ).

The main result in [10] is the following.

Theorem B (Schur et al.). Any set P of n points in R3 can generate at most
n equilateral triangles of side length diam(P ).

Theorem B can be regarded as another 3-dimensional generalization of the
Hopf-Pannwitz result, according to which any set of n points in the plane has at
most n diameters. It was conjectured by Z. Schur (see [10]) that this result can
be extended to all dimensions d.

Conjecture 1 (Schur). The number of d-cliques in a graph of diameters on n
points in Rd is at most n.

The fact that this bound is tight for any n > d can be shown by the fol-
lowing simple construction given in [10]. Let p0, p1, . . . , pd be the vertices of a
regular d-simplex inscribed in the unit sphere. The edge length of the simplex is
λd =

√
2(1 + 1/d). Denote by c the center of the (d − 2)-simplex p0p1 . . . pd−2.

Consider the circle centered at c and passing through pd−1 and pd, and let
pd+1, pd+2, . . . , pn−1 be arbitrary points on the short arc between pd−1 and pd
of the circle. It is not difficult to see that the set P = {p0, p1, . . . , pn−1} has
diameter λd and determines exactly n regular (d − 1)-simplices of edge length
λd. Figure 1 illustrates the case d = 3 of this construction.

In a recent manuscript Kupavskii proved Conjecture 1 for d = 4.

Fig. 1. Construction for d = 3
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We can prove Schur’s conjecture for point sets satisfying a special condition.

Theorem 1. The number of d-cliques in a graph of diameters on n vertices in
Rd is at most n, provided that any two d-cliques share at least d− 2 vertices.

We do not have any example violating the additional condition and we believe
that, in fact, it holds for all graphs of diameters. However, we were unable to
prove that it is true in general.

Problem 1. Is it true that any two unit regular (d−1)-simplices in Rd must share
at least d− 2 vertices, provided the diameter of their union is one?

This is vacuously true for d = 2. For d = 3 it follows, e.g., from Dolnikov’s
theorem [1,14] (a direct proof is given in [10]), and it is open for d ≥ 4. We
cannot even verify that two simplices must share at least one vertex (for d ≥ 4),
so this step would already be a breakthrough. We propose the following still
weaker conjecture.

Conjecture 2. Given two unit regular (d − 1)-simplices in Rd with d ≥ 3, we
can choose a vertex u of one simplex and a vertex v of the other one, so that
|uv| ≥ 1.

This is only known to be true for d = 3. Obviously, a positive answer to
Problem 1 would imply Conjecture 2. It seems that regularity of the simplices is
not a crucial condition in Conjecture 2, and the following stronger version may
be true.

Conjecture 3. Let a1 . . . ad and b1 . . . bd be two (d−1)-simplices in Rd with d ≥ 3,
such that all their edges have length at least α. Then there exist i, j ∈ {1, . . . , d}
such that |aibj| ≥ α .

In other words, given d red and d blue points, we can find a red-blue distance
that is at least as large as the smallest monochromatic distance. We can ask
another more general question, which is probably very hard.

Problem 2. For given d, characterize all pairs k, � of integers such that for any
set of k red and � blue points we can choose a red point r and a blue point b
such that |rb| is at least as large as the smallest distance between two points of
the same color.

From an easy packing argument one can see that there is a good choice of
r and b, whenever at least one of the numbers k and � is large enough. The
following theorem is a first step towards Problem 2.

Theorem 2. For any set of 2k points a1, . . . , ak, b1, . . . , bk in Rd the following
inequality holds:

max{|aibj | : 1 ≤ i, j ≤ k} ≥ min{|aiaj |, |bibj | : 1 ≤ i < j ≤ k} ,

provided that k ≥ c ·
√
d · 2 3d

2 with a large enough absolute constant c.
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Some generalizations of Theorems A and B to graphs of the k-th largest
distances were established in [9]. In this paper we show how these theorems can
be extended to non-regular triangles in R3 whose all sides are large (i.e., among
the k largest distances). For a given finite set P ⊂ R3, we let d1 > d2 > . . . be
all distinct inter-point distances generated by point pairs in P , so that by dk we
denote the k-th largest distance generated by P .

Theorem 3. For any k ∈ N there is a constant ck such that the following holds:
any set P of n points in R3 can generate at most ckn triangles whose all sides
have length at least dk.

This can be viewed as a 3-dimensional analogue of the well-known observation
by Vesztergombi: the number of pairs at distance dk among n points in the plane
is at most 2kn (see [15]). The analogous statement for large non-regular (d− 1)-
simplices in Rd probably holds for d ≥ 4 as well, but this is open.

The corresponding result for (not necessarily regular) tetrahedra with large
edges in R3 is somewhat weaker in the sense that the bound depends not only
on k, but also on the given tetrahedron. We will see in Section 4 that this kind
of dependence is necessary.

Theorem 4. For any tetrahedron T and any k there is a constant c(T, k) such
that the following holds: any finite set P of points in R3 spans at most c(T, k)
tetrahedra congruent to T , provided that all edges of T have length at least dk.

If Conjecture 3 holds, then Theorem 4 can be generalized to higher dimensions.
As for the planar case, it is an easy exercise to show that, for every k, there is
a constant ck such that any finite set of points in the plane spans at most ck
triangles, whose all sides have length at least dk.

2 Proof of Theorem 1

We start with two lemmas that are borrowed from [13], where they are attributed
to [8].

Lemma 1 (Kupitz et al.). Let a, b, c, d be points on a 2-sphere of radius at
least 1/

√
2 such that diam{a, b, c, d} = 1 and |ab| = |cd| = 1. Then the short

great circle arcs ab and cd must intersect.

The maximum number of diameters in a finite set of points on a 2-sphere is
the same as in the plane, as long as the radius of the sphere is large enough,
compared to the diameter of the set.

Lemma 2 (Kupitz et al.). Let S be a 2-sphere of radius at least 1/
√
2 in R3.

If a set of n points on S has diameter 1, then the diameter occurs at most n
times.

Next, we establish Theorem 1, which says that Schur’s conjecture (Conjec-
ture 1) holds, provided that the given graph of diameters satisfies an additional
condition: any two d-cliques share at least d− 2 vertices.
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Proof of Theorem 1.. Assume without loss of generality that the diameter of our
set is equal to 1. We can also assume that every vertex belongs to at least two
d-cliques, since otherwise we can proceed by induction. We start with several
geometric observations.

Note that the vertices of a d-clique represent d affinely independent points, so
their affine hull is (d − 1)-dimensional, i.e., a hyperplane. Therefore, the affine
hull of the d vertices divides the space into two half-spaces.

We will use the expression angle uvw and notation α(u, v, w) to refer to the
following set of points:

α(u, v, w) = {μ1(u− v) + μ2(w − v) : μ1, μ2 ≥ 0} .

Lemma 3. If two d-cliques a1 . . . ad−2xy and a1 . . . ad−2zt share exactly d − 2
vertices, then the open segment zt has exactly one common point with aff(a1, . . . ,
ad−2, x, y), which lies inside α(x, c, y), where c = a1+···+ad−2

d−2 is the center of
gravity of a1 . . . ad−2.

Proof. Since |aix| = |aiy| = |aiz| = |ait| = 1 for all i = 1, . . . , d− 2, and

|cx| = |cy| = |cz| = |ct| =
√

d− 1

2(d− 2)
,

we know that the points x, y, z, t lie on a 2-sphere with center c and radius≥ 1/
√
2

(Figures 2(a), 2(b)) . Hence, we can apply Lemma 1 to the points x, y, z, t to con-
clude that the arcs xy and zt intersect at some point p. But then the segment cp is
contained in α(x, c, y) and it is intersected by the open segment zt. Therefore, the

a1

c

a2

y

z

xt

(a)

zz

x

c

t

y

p

(b)

Fig. 2. Proof of Theorem 1, Lemma 3
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open segment zt intersects aff(a1, . . . , ad−2, x, y) at a point which lies in α(x, c, y),
and in no other point, since otherwise the two d-cliques would lie in the same hy-
perplane and would necessarily coincide by Theorem A.

Lemma 4. There are no three d-cliques that share a (d− 1)-clique.

Proof. Suppose the contrary: let a1 . . . ad−1x, a1 . . . ad−1y and a1 . . . ad−1z be
three d-cliques. Denote by c the center of gravity for a1, . . . , ad−1. Then the

points x, y, z lie on the circle with center c and radius
√

d
2(d−1) , that is orthogonal

to aff(a1, . . . , ad−1). Since the radius of the circle is at least 1/
√
2, we have that

∠xcy,∠ycz,∠zcx ≤ π
2 . Hence, the points x, y, z lie on a half-circle and we can

assume without loss of generality that y is between x and z. Note that |xy|, |yz| <
1 and the points x and z lie on different sides of aff(a1, . . . , ad−1, y). According
to our initial assumption, there is at least one d-clique C containing y apart
from a1 . . . ad−1y. Since C shares at least d − 2 points with each of the cliques
a1 . . . ad−1x, a1 . . . ad−1y and a1 . . . ad−1z and, moreover, C cannot contain x
or z, we conclude that C contains exactly d − 2 of the points a1, . . . , ad−1.
Without loss of generality, let C = ya1 . . . ad−2u and let u lie on the same side
of aff(a1, . . . , ad−1, y) as x. Now, because of Lemma 3, the open segment ad−1z
contains a point from α(u, c′, y), where c′ is the center of gravity for a1, . . . , ad−2.
However, the whole set α(u, c′, y) lies in the closed half-space that contains x,
while the open segment ad−1z lies entirely in the open half-space that contains
z. This is a contradiction.

It turns out that the above geometric observations provide enough information
so that the proof can be finished more or less combinatorially. We distinguish
two cases.

Case 1. There is a (d+ 1)-clique a1 . . . ad+1.
Suppose there is a d-clique C that contains a vertex x /∈ {a1, . . . , ad+1}.

By the assumption, C shares d− 2 vertices with the clique a1 . . . ad, so
we can assume that C contains a1, . . . , ad−2. But C also shares d − 2
vertices with the clique a2 . . . ad+1, so we can also assume that C con-
tains ad−1. Therefore, C = a1 . . . ad−1x . Thus, we have three d-cliques
containing a1, . . . , ad−1: namely, a1 . . . ad, a1 . . . ad−1ad+1 and C. This
is forbidden by Lemma 4. Hence we conclude that all d-cliques must be
contained in a1 . . . ad+1, which gives us at most d+ 1 cliques, so in this
case the statement is proven, since n ≥ d+ 1.

Case 2. There is no (d+ 1)-clique.
We have two subcases.

Subcase 2.1 There are two d-cliques that share d− 1 vertices.
Let the cliques be a1 . . . ad−1x and a1 . . . ad−1y. Observe that

|xy| < 1, since we assume there is no (d+ 1)-clique. If there are no
more d-cliques except for those generated by a1, . . . , ad−1, x, y, we
are done. So we can suppose that there are some more d-cliques.
Any new d-clique shares d − 2 points both with a1 . . . ad−1x and
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a1 a2

b1

b2

b3

b4

C

C ′

(a)

a1 a2

a3

b1

b2

b3

(b)

Fig. 3. (a) Proof of Theorem 2; (b) construction for d = 4: two equilateral triangles in
two orthogonal planes with a common center at the origin

with a1 . . . ad−1y. Hence, any new clique contains exactly d − 2 of
the vertices a1, . . . , ad−1. We say that a d-clique is of type k if it
contains all the vertices a1, . . . , ad−1 except for ak. Now we will
again branch out into different cases.

First, let us see what happens if all d-cliques have the same type,
e.g., they all contain the points a1, . . . , ad−2. The remaining two ver-
tices of any d-clique must lie on the 2-sphere with center a1+···+ad−2

d−2

and radius
√

d−1
2(d−2) >

1√
2
. Thus, the number of d-cliques is no more

than the number of unit-diameters among n − (d − 2) points on a
2-sphere of radius > 1/

√
2, which is at most n−(d−2), by Lemma 2.

Therefore, we can assume that there are at least two d-cliques
of different types. Any two cliques of different types share exactly
d − 3 vertices among a1, . . . , ad−1, so they must share at least one
more vertex. Again, we consider different cases.

Suppose there are two d-cliques of different types that share a
vertex v outside of {a1, . . . , ad−1, x, y}. Let the cliques be a1 . . .
ad−2uv and a2 . . . ad−1vw. Clearly, a1 . . . ad−1v is also a d-clique, so
we have three d-cliques sharing d − 1 points a1, . . . , ad−1, which is
impossible, according to Lemma 4.

The second possibility that remains is that any two cliques of
different types contain x or y. This means that either all cliques
(apart from the initial two) contain x or all of them contain y.
Without loss of generality, let all new cliques contain x. Notice
that there can be at most one clique of each type, for if C1 and C2

were d-cliques of the same type, say, type 1, there would be three
d-cliques sharing d − 1 points x, a2, . . . , ad−1, contrary to Lemma
4. Consequently, in this case we have at most d+1 cliques, and the
total number of vertices is at least d+ 2.
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Subcase 2.2 Any two d-cliques share at most d− 2 vertices.
Let a1 . . . ad−2xy and a1 . . . ad−2zt be two d-cliques. None of the

points x and y forms a diameter with any of the points z and t, since
it would produce two d-cliques that share d− 1 vertices. If all other
cliques contain a1, . . . , ad−2, we are done as above, so without loss of
generality suppose that there is a d-clique a1 . . . ad−3xuv. Clearly,
u, v are new points, i.e., different from a1, . . . , ad−2, x, y, z, t. But
now a1 . . . ad−3xuv and a1 . . . ad−2zt have only d− 3 points in com-
mon, contradicting the assumption.

We have proved that n is an upper bound for the number of d-cliques. A construc-
tion from [10] showing that this bound can be achieved is given in Introduction.
This completes the proof of Theorem 1.

Remark. If the statement from Problem 1 is true, then Theorem 1 would con-
firm Schur’s conjecture. The following weaker statement might be easier to prove:
There is a constant K(d) such that among any K(d) cliques in a graph of di-
ameters, there are two cliques sharing a vertex. If true, this would give a bound
of the form k(d) · n for Schur’s conjecture. However, it appears that even this
weaker form requires a new insight.

It is natural to extend Problem 1 to cliques that might have fewer than d
vertices. In particular, is it true that a d-clique and a (d−1)-clique in a graph of
diameters in Rd must share a vertex? For d = 2 and d = 3, this is clearly false.
It is also false in R4, as shown by the following construction (for k = 2).

Proposition 1. For every k ≥ 2, there exist a unit regular (2k−1)-simplex and
a unit regular k-simplex in R2k that do not share a vertex, while the diameter of
their union is 1.

Proof. Consider a unit regular (2k − 1)-simplex Δ = a1 . . . a2k in R2k and let
u1, . . . , uk be the midpoints of the edges a1a2, a3a4, . . . , a2k−1a2k, respectively.
Let the origin o = (0, . . . , 0) be the center of the simplex Δ and let the simplex
lie in the hyperplane x2k = 0. For every n ≥ 1, denote by rn the circumradius of

a unit regular n-simplex. We have that rn =
√

n
2n+2 . Denote by v1, . . . , vk the

points such that |ovi| = rk−1 and ui lies on the segment ovi for i = 1, 2, . . . , k.
Then v1v2 . . . vk is a unit regular (k − 1)-simplex with center o. Translate the

points v1, . . . , vk by the vector (0, . . . , 0,

√
3−2

√
2

4k ) to get points w1, . . . , wk, and

let wk+1 = (0, . . . , 0,

√
3−2

√
2

4k −
√

k+1
2k ). Now it is not difficult to verify that Δ̃ =

w1 . . . wkwk+1 is a unit regular k-simplex and that the pair of simplices Δ and
Δ̃ satisfies the needed conditions (we omit the straightforward calculation).

The question whether a d-clique and a (d− 1)-clique in a graph of diameters
in Rd must share a vertex remains open for d ≥ 5.
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3 Proof of Theorem 2

Proof of Theorem 2. Suppose the contrary, i.e., that the maximum is strictly
smaller than the minimum, while k ≥ c ·

√
d · 2 3d

2 for a large enough c. Without
loss of generality, we assume that

min{|aiaj |, |bibj | : 1 ≤ i < j ≤ k} = 1

and |a1a2| = 1. Denote by C the intersection of two balls with centers a1 and
a2 and radius 1 (Figure 3(a)). Then C contains all the points b1, . . . , bk. Since
|bibj | ≥ 1, the balls centered at b1, . . . , bk with radii 1

2 do not overlap. Moreover,
all these balls are contained in C′, which is the intersection of the balls with
centers a1 and a2 and radius 3

2 . Let us estimate the volume of C′. Using the fact
that the volume of a spherical cap of height h is

π
d−1
2 rd

Γ
(
d+1
2

) ∫ arccos r−h
h

0

sind(t) dt ,

where r is the radius of the sphere, we get

Vol(C′) = 2 · π
d−1
2 (3/2)d

Γ
(
d+1
2

) ∫ arccos 1
3

0

sind(t) dt

≤ 2 · π
d−1
2 (3/2)d

Γ
(
d+1
2

) ·(2
√
2

3

)d

· arccos 1
3
= O

(
(2π)

d
2

Γ
(
d+1
2

)) .

But C′ contains k non-overlapping balls of radius 1
2 , and, therefore,

k · π
d
2 2−d

Γ
(
1 + d

2

) ≤ O

(
(2π)

d
2

Γ
(
d+1
2

)) .

Finally, taking into account the asymptotics Γ (x) ∼ xx− 1
2 e−x

√
2π, we obtain

k = O(
√
d · 23d/2) , with a contradiction, as long as c is large enough.

Remark. On the other hand, we know that Theorem 2 does not hold with
k ≤ �d+1

2 � . To see this, consider the following construction. Let a1 . . . ak be a
regular (k − 1)-dimensional simplex inscribed in the sphere

{(x1, . . . , xd) : x2
1 + · · ·+ x2

k−1 = 1, xk = · · · = xd = 0}

and let b1 . . . bk be a regular (k− 1)-dimensional simplex inscribed in the sphere

{(x1, . . . , xd) : x2
k + · · ·+ x2

2k−2 = 1, x1 = · · · = xk−1 = 0} .

Then |aiaj | = |bibj | =
√

2k
k−1 for all i �= j, while |aibj| =

√
2 (Figure 3(b)).

Thus, the smallest k(d) for which Theorem 2 holds is somewhere between d/2

and c
√
d · 2 3d

2 . The gap is obviously quite large, and Conjecture 3 suggests the
answer should be closer to the lower bound.
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4 Proofs of Theorems 3 and 4

The proofs of Theorem 3 and Theorem 4 are both analogous to the proofs of the
corresponding statements for regular simplices given in [9], with the only new
ingredient being the next lemma.

Lemma 5. Let a1a2a3 and b1b2b3 be two triangles in R3 such that all their sides
have length at least α. Then there exist i, j ∈ {1, 2, 3} such that |aibj| ≥ α .

Proof. Suppose the contrary, i.e., that the two triangles are placed so that
|aibj | < α for all i and j. Without loss of generality, let a1a2a3 lie in the plane
x3 = 0. By the pigeon hole there are two vertices of b1b2b3 that lie on the same
side of x3 = 0. Without loss of generality, let b1 and b2 lie in the half-space
x3 ≥ 0 and let b1 = (0, 0, p) and b2 = (0, q, r), where p, q, r are non-negative and
r ≥ p (Figure 4). Translate the points b1 and b2 by the vector (0, 0,−p) to get
new points c1 = (0, 0, 0) and c2 = (0, q, r − p). Note that |c1c2| = |b1b2| ≥ α
and |ciaj | ≤ |biaj | < α for all i ∈ {1, 2}, j ∈ {1, 2, 3}. It follows that the points
a1, a2, a3 must have non-negative second coordinates. Now we rotate the point
c2 around c1 in the plane x1 = 0 until it hits the plane x3 = 0. Thus, we replace
c2 by c′2 = (0, s, 0), where s =

√
q2 + (r − p)2 . Again, |c1c′2| = |c1c2| ≥ α and

the distances between c′2 and aj for j ∈ {1, 2, 3} are all smaller than α. Indeed,
letting aj = (t, u, 0), we have

|c′2aj | =
√
t2 + (u− s)2 ≤

√
t2 + (q − u)2 + (r − p)2 = |c2aj | < α ,

where we used that u ≥ 0 and q ≤ s.

x3

x1

x2

b2 = (0, q, r)

c2

c′2

c1

a3

a1

a2

b1 = (0, 0, p)

Fig. 4. Proof of Lemma 5
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The points c1, c
′
2, a1, a2, a3 lie in the same plane and segment c1c

′
2 can intersect

at most two sides of triangle a1a2a3 at their interior points. So, without loss of
generality, assume that c1c

′
2 does not intersect a1a2 at an interior point. Then

either c1, c
′
2, a1, a2 are in convex position or an extension of one of the segments

c1c
′
2 and a1a2 intersects the other one. In either case one can easily show that one

of the segments c1a1, c1a2, c
′
2a1, c

′
2a2 has length at least min{|c1c′2|, |a1a2|} ≥ α.

Contradiction.

a

q0
p0

b

(a)

p0(ε)

p1(5ε)

p2(9ε)
p3(13ε)

q0(π − ε)

q1(π + 3ε)

q2(π + 7ε)

q3(π + 11ε)

(b)

Fig. 5. (a) Construction with many congruent large non-regular simplices; (b) points
in the plane x3 = 0

Remark. Note that some dependence on T is necessary in Theorem 4, as shown
by this simple construction. Take two points a = (0, 0, 1), b = (0, 0,−1), and 2n
points in the plane x3 = 0 on the circle x2

1 + x2
2 = 1/4 with polar coordinates as

follows:

pi =

(
1

2
, (1 + 4i)ε

)
, qi =

(
1

2
, π + (4i− 1)ε

)
,

for i = 0, 1, . . . , n− 1 and small enough ε > 0 (Figures 5(a),5(b)). In this set of
2n+ 2 points we have that

d1 = |ab| = 2, d2 = |api| =
√
5

2
and d3 = |piqi| =

√
1

2
+

1

2
cos(2ε) < 1 .

Recall that the distance between the points (r1, θ1) and (r2, θ2) in polar coordi-
nates is equal √

r21 + r22 − 2r1r2 cos(θ1 − θ2).

Also, we can check that for all i, j we have

|piqj | =
√

1

2
+

1

2
cos((4(j − i)− 2)ε) ≤

√
1

2
+

1

2
cos(2ε) = d3 ,
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since |4(j − i)− 2| ≥ 2 . It remains to notice that the chosen points span 2n− 1
tetrahedra with edge lengths d1, d2, d2, d2, d2, d3. Those are the tetrahedra abpiqj
for all i, j ∈ {0, 1, . . . , n−1} such that j− i ∈ {0, 1}. Thus, for k = 3 we can have
an arbitrarily large number of tetrahedra whose all edges have lengths at least dk.
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Abstract. Generalized maximum flow problem is a generalization of the
traditional maximum flow problem, where each edge e has gain factor
γ(e). When f(e) units of flow enter edge e = (u, v) at u, then γ(e)f(e)
units of flow arrive at v. Since relation extraction, which is an important
application of the problem, uses large networks such as Wikipedia and
DBLP, the computation time to solve the problem is important. How-
ever, conventional algorithms for the problem are expensive and do not
scale to large graph. Therefore, we propose approximation algorithms
based on greedy augmentation and a heuristic initial flow calculation.
The experimental result shows that our algorithms are two orders of
magnitude faster than a conventional algorithm.

1 Introduction

Generalized maximum flow problem is a generalization of the traditional maxi-
mum flow problem. In the generalized maximum flow problem, each edge e has
a real number called gain factor γ(e). When f(e) units of flow enter the edge
e = (u, v) at u, then γ(e)f(e) units of flow arrive at v. The objective is to
maximize the flow entering a distinguished vertex called the sink.

One of the important applications of the generalized maximum flow problem
is relation extraction on information networks. An information network is a
network in which each edge represents an explicit relation between two objects.
For example, if a web page p1 has a hyper link to a web page p2, p1 is considered
to have an explicit relation to p2. Given an information network and two objects,
the relation extraction problem is to compute the strength of the implicit relation
between the two objects. An implicit relation is represented by a subgraph of
the information network including the two objects. For example, if a web page
p1 has a hyper link to a web page p2, and p2 has a hyper link to a web page p3,
then p1 and p3 are considered to have an implicit relation through p2.

By our observation, the following characteristics of implicit relations can be
assumed:

– If there are many disjoint paths between the given two objects, the implicit
relation between the two objects is strong. In Figure 1, the implicit relation

J. Akiyama, M. Kano, and T. Sakai (Eds.): TJJCCGG 2012, LNCS 8296, pp. 132–142, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. The examples of implicit relations

between u2-v2 is stronger than the implicit relation between u1-v1 because
u2-v2 has two distinct paths and u1-v1 has only one distinct path.

– If paths connecting the given two objects are short, the implicit relation be-
tween the two objects is strong. In Figure 1, the implicit relation between
u2-v2 is stronger than the implicit relation between u3-v3 because the dis-
tance between u2-v2 is two and the distance between u3-v3 is three.

The relation extraction problem can be modeled by the generalized maximum
flow problem [1]. The generalized maximum flow problem can reflect the connec-
tivity between the source and the sink because the generalized maximum flow
problem inherits the characteristic of the maximum flow problem. The gener-
alized maximum flow problem can also reflect the distance between the source
and the sink because a generalized flow decays in accordance with the length of
the path.

Besides the generalized maximum flow model, many other models are pro-
posed to extract implicit relations from information networks. Hitting Time [2,3]
and Truncated Hitting Time [3] are similarity measures based on the average
lengths of all paths between the given two objects. Co-citation [4] is a similarity
measure based on the number of objects cited by both of the given two objects.
PFIBF [5] is a relation measure based on cohesion defined relying on the number
of paths between the given two objects.

An advantage of the generalized maximum flow model over these models is
that the generalized maximum flow model can simultaneously reflect both as-
sumption described above. Zhang, et al. [1] conducted an experiment and con-
cluded that a fairly reasonable implicit relations are obtained by the generalized
maximum flow model compared to other models.

Because large networks, such as Wikipedia and DBLP, are typically used
in the relation extraction, the computation time of solving the problem is im-
portant. Conventional algorithms to solve generalized maximum flow problems
are expensive and do not scale to large networks. The best exact algorithm
currently known is Goldfarb, Jin and Orlin’s O(m2(m+ n logn) logB) time al-
gorithm [6], and the best ε-optimum approximation scheme is Fleischer and
Wayne’s O(m(m+n logm)ε−2 logn) time algorithm [7], where n and m are the
number of vertices and the number of edges, respectively, and B is the largest
integer required for representing capacities and gain factors of the network.
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Table 1. Time complexities of algorithms for generalized maximum flow problem

ε-optimum flow / optimum flow

Kapoor-Vaidya [8] -
O(m1.5n2.5 logB)

Vaidya [9] -
O(m1.5n2 logB)

Goldberg-Plotkin-Tardos [10] Õ(mn2 logB log(1/ε))

Õ(m2n2 logB)

Cohen-Megiddo [11] Õ(m2n2 log(1/ε))

Õ(m3n2 logB)

Radzik [12] Õ(m2n+min{m2n,m(m+ n log logB)} log 1
ε
)

Õ(m2(m+ n log logB) logB)

Tardos-Wayne [13] Õ(m(m+ n log logB) log(1/ε) +mn2 logB)

Õ(m2(m+ n log logB) logB)
Fleischer-Wayne [7] O(m(m+ n logm)ε−2 log n)

Õ(m2(m+ n log logB) logB)
Goldfarb-Jin-Orlin [6] -

O(m2(m+ n log n) logB)

We propose approximation algorithms to calculate the generalized maximum
flow based on a greedy method. Our algorithm augments a flow along the highest-
fatness residual paths. The highest-fatness residual path is a path along which
largest amount of flow can reach to the sink. We also discuss the heuristic al-
gorithm for initial flow calculation. Although our algorithms have no accuracy
assurances, the experimental result showed that our algorithms accomplish com-
parable accuracy to Fleischer and Wayne’s algorithm with ε = 0.2, and run two
orders of magnitude faster than the conventional algorithm.

2 Related Work

There are many studies on the generalized maximum flow problem. We discuss
various approaches for solving generalized maximum flow problem.

Because the generalized maximum flow problem is a special case of the linear
programming, there are approaches that utilize the linear programming meth-
ods. Vaidya [9] proposed the O(m1.5n2 logB) time algorithm that utilize the
Karmarkar’s interior point method, together with speeding up techniques devel-
oped by Kapoor and Vaidya [8]. This algorithm can solve a more general version
of the generalized maximum flow problem than the one considered in this pa-
per. The time complexity of this algorithm, however, remains same if the input
graph is constrained to the generalized maximum flow problem considered in
this paper.
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Combinatorial approach is another approach to the generalized maximum flow
problem. In combinatorial approach, we focus on the combinatorial structure of
the given network, and utilize the network algorithms such as shortest path
algorithms, maximum flow algorithms, and minimum cost flow algorithms.

Onaga [14] showed that a flow is optimum if and only if neither augmenting
paths nor generalized augmenting paths (augmenting paths from flow generating
cycles) exist.

Goldberg, Plotkin and Tardos [10] constructed a Õ(m2n2 logB) time algo-

rithm for generalized maximum flow problem, where Õ(f) = O(f logO(1) n).
This algorithm is called Fat-path algorithm. Fat-path algorithm augments a
flow along to an augmenting path, and then removes the all flow generating
cycles from the residual graph. If we augment the flow along to an arbitrary
augmenting path, exponential time of augmentation can be needed to obtain
the optimum flow. Fat-path algorithm, therefore, selects a fat path. A fat path
is a path along which we can send a sufficiently large amount of flow from the
source to the sink.

Radzik [12] proposed the improved version of Fat-path algorithm. This algo-
rithm is an ε-approximate algorithm that runs in Õ(m2n + min{m2n,m(m +
n log logB)} log(1/ε)). The main idea is that this algorithm does not remove all
flow generating cycles but removes the generating cycles that have sufficiently
large gains. Radzik also proposed the error-scaling algorithm where recursively
solve generalized maximum flow problems with different ε.

Tardos and Wayne [13] improved the Radzik’s algorithm by gain-scaling. The
main idea of gain-scaling is that construct the rounded network whose gains
are rounded to powers of the base (1 + ε)1/n, and calculate flow in the rounded
network. This algorithm runs in Õ(m(m+n log logB) log(1/ε)+mn2 logB) time.

Fleischer and Wayne [7] proposed an ε-approximate algorithm for lossy gen-
eralized networks that runs in O(m(m+n logm)ε−2 logn) time. This algorithm
is based on the linear programming as well as gain-scaling and error-scaling.

Goldfarb, Jin andOrlin [6] proposed the exact algorithm that runs inO(m2(m+
n logn) logB) time. To the best to our knowledge, this is the fastest exact algo-
rithm for generalized maximum flow problem.

Table 1 describes the time complexity of each algorithm.

3 Preliminary

An instance of the generalized maximum flow problem is a generalized network
G = (V,E, s, t, μ, γ), where V is a set of n vertices, E is a set of m edges, s, t ∈ V
are distinguished vertices called the source and sink respectively, μ : E → R≥0

is a capacity function, and γ : E → R≥0 is a gain function. A lossy network is
a generalized network where no edges has gain factor exceeding one. The gain
factor of a path P is defined by γ(P ) :=

∏
e∈P γ(e).

An example of generalized network is shown in Figure 3. In the figure, x/y
means that x is the capacity and y is the gain factor of the corresponding edge.

A function f : E → R≥0 is a flow ofGwhen f satisfies the following conditions:
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(a) A generalized net-
work

(b) The optimum
flow for the gen-
eralized network
depicted in Fig-
ure 3

Fig. 2. A generalized network and its optimum flow

– For each edge e ∈ E,
f(e) ≤ μ(e).

– For each vertices v ∈ E\{s, t},

exf (v) = 0.

Where exf (v) is the residual excess of f at a vertex v that is defined by

exf (v) :=
∑

(u,v)∈E

γ(u, v)f(u, v)−
∑

(v,w)∈E

f(v, w).

The value of the flow f is defined by

|f | := exf (t).

An example of the flow is shown in Figure 3. In the figure, edges with zero
flow values are illustrated by light color. The flow in the figure has a value
0.5 · 1 + 0.4 · 0.8 = 0.82.

Given a real number x, flow f , and a path P = 〈e1, e2, . . . , ek〉, for each edge
ei (i = 1, . . . , k), let

xi :=
x∏k

j=i γ(ej)
.

Then, the augmentation of f along P by x is defined as follows: for each edge
ei (i = 1, . . . , k), augment f(ei) by xi. Algorithm 1 is an implementation of this
operation.
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Algorithm 1. Augment

Input: Generalized network G = (V,E, t, u, γ, ex)CFlow f : E → R≥0CPath function

P : V → ←→
E

Output: Flow of G, f : E → R≥0

1: x := 1Cv := tCy := ∞
2: loop
3: e := P (v)
4: if e = null then break
5: x ← x/γ(e)
6: y ← min{y, uf (e)/x}
7: v ← tail(e)
8: end loop
9: v ← t
10: loop
11: e := P (v)
12: if e = null then break
13: y ← y/γ(e)
14: if e ∈ E then
15: f(e) ← f(e) + y
16: else
17: Let e′ ∈ E the edge where

←−
e′ = e

18: f(e′) ← f(e′)− y
19: end if
20: v ← tail(e)
21: end loop

4 Greedy Algorithms

4.1 Simple Greedy Algorithm

Our greedy algorithm is based on the repeated augmentation along the highest-
fatness paths. The highest-fatness residual path is a path along which largest
amount of flow can reach to the sink. We call this algorithm highest-fatness
greedy method (HFG).

The highest-fatness residual path is obtained by Dijkstra-like algorithm. Di-
jkstra’s algorithm maintains the distance d(v) from s and updates the distance
by

d(v)← min{d(v), d(u) + l(u, v)},
where l(u, v) is length of edge (u, v). Similarly, our algorithm updates the fatness
by

F (v)← max
{
F (v), γ(u, v) ·min{F (u), μ(u, v)− f(u, v)}

}
.

After the highest-fatness residual path is obtained, we augment the flow along
the path as much as possible. We repeat this augmentation process until there
are no s-t residual paths.

After one augmentation of a flow, at least one edge is saturated. In this algo-
rithm, the flow value of every edge never decreases. Therefore, the number of flow
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Algorithm 2. Highest-Fatness Greedy Method

Input: Lossy generalized network G = (V,E, t, u, γ, ex)
Output: Flow of G, f : E → R≥0

1: For each e ∈ E, let f := 0
2: loop
3: For each v ∈ V , let P (v) := null
4: For each v ∈ V , let X(v) := ex(v)
5: Q := {(ex(v), v,null) | v ∈ V, ex(v) > 0}
6: while Q �= {} do
7: Extract tuple (x, v, e) from Q that has maximum x in Q
8: if P (v) �= null then continue
9: P (v) ← e
10: if v = t then break
11: for all e ∈ δ+(v) do
12: w := head(e)
13: x′ := γ(e) ·min{X(v), uf (e)}
14: if x′ > X(w) then
15: X(w) ← x′

16: Q ← Q ∪ {(x′, w, e)}
17: end if
18: end for
19: end while
20: if P (t) = null then break
21: f ← Augment(G, f, P )
22: end loop

augmentation is at most m times. The time of solving a shortest path problem is
dominant on the time of a flow augmentation. Therefore, the time complexity of
HFG is O(mTSP), where TSP is a time required for solving a shortest path prob-
lem. If we use the Dijkstra’s algorithm implemented with the Fibonacci heap,
TSP is O(m+ n logn).

4.2 Improvement by Initial Flow Calculation

Our greedy algorithms sometimes output a flow with lower value than the opti-
mum flow. We propose an improvement by calculating a initial flow.

We first construct the instanceG′ from instanceG of the generalized maximum
flow problem. G′ is defined by (V,E, s, t, μ′), where μ′(u, v) = μ(u, v)/γ(P (u)),
and P (u) is highest-gain path from s to u.

After the maximum flow f ′ on G′ is obtained, we translate f ′ into initial
generalized flow f on G. Without loss of generality, we assume that f ′ has no
cycles. The translation from f ′ to f is defined as follows:

1. f(e) := 0 if f ′(e) = 0.
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(a) The example
where our greedy
method output a
flow with lower
value than the
optimum flow

(b) The instance
of maximum flow
problem translated
from the general-
ized network de-
picted in Figure 3

Fig. 3. A failure case of the greedy method and a translated maximum flow network

Algorithm 3. Translate Flow

Input: Vertices V , Edges E, Gains γ : E → R≥0CMaximum flow f ′ : E → R≥0,
Generalized flow f : E → R≥0, Visited vertices S ⊂ V , Vertex v ∈ V

Output: Flow f : E → R≥0

1: if v ∈ S then return
2: S ← S ∪ {v}
3: x′ := 0Cx := 0
4: for all e ∈ δ−(v) do
5: if f ′(e) > 0 then
6: w := tail(e)
7: f ← TranslateFlow(V,E, γ, f ′, f, S, w)
8: x′ ← x′ + f ′(e)
9: x ← x+ γ(e)f(e)
10: end if
11: end for
12: for all e ∈ δ+(v) do
13: if f ′(e) > 0 then
14: if x′ = 0 then
15: f(e) ← f ′(e)
16: else
17: f(e) ← xf ′(e)/x′

18: end if
19: end if
20: end for
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2. For each vertex v, let

x′
v :=

∑
(u,v)∈E

f ′(u, v),

xv :=
∑

(u,v)∈E

γ(u, v)f(u, v).

Then, for each edge e = (v, w) ∈ E,

f(e) :=

{
xvf

′(e)/x′
v x′

v �= 0

f ′(e) x′
v = 0

This translation can be performed by a depth-first search starting at t on the
subgraph of G induced by edges {e ∈ E | f ′(e) > 0}. Note that the induced
subgraph is directed acycle graph since f ′ has no cycles. The pseudo-code for
the translation is listed in Algorithm 3. The time complexity of the initial flow
calculation is O(TSP + TMF +m) = O(TMF), where TMF is a time required for
solving a maximum flow problem.

Figure 4.2 is an example ofG′ obtained from the generalized network in Figure
3. In the figure, numbers assigned to edges are capacities and numbers assigned
to vertices are γ(P (u)).

After the translation, we augment the initial flow f using the same method as
that used in HFG. Since this heuristic does not always give the better approx-
imation than simple HFG, we first calculate both simple HFG and HFG with
the initial flow, then select the flow with larger value. We call this algorithm
HFG-M.

5 Experiment

In respect to computation times and values of flows, we compared our algorithms
with Fleischer and Wayne’s ε-approximation algorithm with ε = 0.2

We used a computer with Core i5-2500K 3.3GHz, 16GB memory. Our pro-
gram was implemented by C#.

The input network is the JapaneseWikipedia at January 21, 2012.We view the
Wikipedia as the information network whose vertices are corresponding to the
articles and whose edges are corresponding to links between articles. The number
of vertices was 2,087,085 and the number of edges was 63,230,008. Because the
input network is too large to calculate the solution with the baseline algorithm,
we sampled the network with random walk sampling introduced by Leskovec and
Faloutsos [15]. The obtained network has 100,000 vertices and 268,950 edges. We
used this sampled network for our experiment.

In our experiment, we utilized two kinds of capacities and gain factors as
follows.

– Fixed capacities and gain factors (u(e) ≡ 1, γ(e) ≡ 0.5).
– Randomized capacities and gain factors (chosen uniformly within 0 ≤ u(e) ≤
2C0 ≤ γ(e) ≤ 1).
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Table 2. Ratio of flow values and times

Fixed Random

HFG / FW
Flow value

Average 1.00 0.97
Worst 1.00 0.19

Speed up Average 527 562

HFG-M / FW
Flow value

Average 1.00 1.00
Worst 1.00 0.31

Speed up Average 157 146

Fifty pairs of vertices are randomly selected for the sources and sinks.
With this generalized network, we computed the generalized maximum flow

using HFG and Fleischer-Wayne’s method (FW). Then, for each flow, we calcu-
lated the ratio between two method of computation time and the ratio between
two method of flow value. Finally we calculated the average computation time
ratio and average flow value ratio.

Experimental result are shown in table 2. The HFG is more than 500 times
faster than FW. The values of flows obtained by the two algorithms are compa-
rable in average. The HFG-M is about 150 times faster than FW and its worst
flow value is 50% better than HFG’s one.

6 Conclusion

We proposed an approximate algorithm for the generalized maximum flow prob-
lem. This algorithm is based on a greedy method where repeatedly send the
flow along the highest fatness augmenting path in the graph. The experimen-
tal result showed that this algorithm is order of magnitudes faster than the
Fleischer-Wayne’s method with ε = 0.2, and has a comparable accuracy to
Fleischer-Wayne’s method. We believe that this algorithm sufficient for the re-
lation extraction in large real information networks like Wikipedia.

We also proposed an initial flow calculation method to improve the accuracy
of our greedy method. This method is based on the translation from general-
ized maximum flow problem to maximum flow problem. After obtaining the
maximum flow from the source to the sink, we construct the initial flow for
generalized maximum flow problem from the maximum flow. The experimental
result showed that this method improves the accuracy in the worst case.

This paper discusses the practical improvements of the computation time of
generalized maximum flow problem. Real complex networks often have special
structures such as scale-free network and small-world network. We expect that
some theoretical bounding of time complexity can be hold by assuming the such
network structures.
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Abstract. In this paper, we present a necessary and sufficient condition
for a bipartite distance-hereditary graph to be Hamiltonian. The result
is in some sense similar to the well known Hall’s theorem, which concerns
the existence of a perfect matching. Based on the condition we also give
a polynomial-time algorithm for the Hamilton cycle problem on bipartite
distance-hereditary graphs.

1 Introduction

A graphG is distance-hereditary if for each induced connected subgraphG′ of G
and for any two vertices u, v of G′, the distance between u and v does not change,
that is, dG′(u, v) = dG(u, v), where dG(u, v) is the length of a shortest path in G
between u and v. Distance-hereditary graphs form a subclass of perfect graphs.
Two well-known classes of graphs, trees and cographs, are both subclasses of
distance-hereditary graphs.

For a undirected graph G = (V,E), a Hamilton cycle of G is a cycle which
passes each vertex of G exactly once. A graph is said to be Hamiltonian if it
contains a Hamilton cycle. The Hamilton cycle problem is a problem to decide
whether a given graph is Hamiltonian or not.

In this paper we present a necessary and sufficient condition for a bipartite
distance-hereditary graph (BDHG) to be Hamiltonian, and give a polynomial-
time algorithm for the Hamilton cycle problem on this class of graphs. Note that
the Hamilton cycle problem on chordal bipartite graph, which is a superclass of
the bipartite distance-hereditary graphs, is known to be NP-complete[13].

Our polynomial time algorithm for BDHG is not the first one. Müller and
Nicolai[12] proposed the first polynomial time algorithm in 1993. Since then
there have been incremental improvements, and eventually resulting in linear
time algorithms [14,7,6,8]. 1 However, these algorithms are quite complicated
and difficult to implement. Our algorithm is based on the necessary and sufficient
condition we propose in this paper, and easy to implement.

1 Actually, these improvements and linear time algorithms are for distance-hereditary
graphs, not restricted to BDHG.

J. Akiyama, M. Kano, and T. Sakai (Eds.): TJJCCGG 2012, LNCS 8296, pp. 143–149, 2013.
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The rest of this paper is organized as follows. In Section 2, we give some basic
definitions and review some properties of distance-hereditary graphs. Section 3
introduces the reduced graph. In Section 4, we present a necessary and sufficient
condition for a bipartite distance-hereditary graph to be Hamiltonian. Finally,
in Section 5, we present a polynomial-time algorithm for the Hamilton cycle
problem on bipartite distance-hereditary graphs.

2 Preliminaries

This paper considers a finite, simple and undirected graph G = (V,E), where
V and E are the vertex and edge sets of G, respectively. For a vertex x of G,
we denote by NG(x) the set of adjacent vertices of x. We write N(x) when
the underlying graph is clear. A graph G = (V,E) is bipartite if V can be
partitioned into two subsets V + and V − such that any edge ofG has one terminal
in V + and the other terminal in V −. A bipartite graph may be denoted by
G = (V +, V −, E). A bipartite graph G = (V +, V −, E) is complete if every
vertex of V + is adjacent to every vertex in V −. A graph is chordal if any cycle
of length ≥ 4 has a chord. A graph is (k, l)-chordal if any cycle of length ≥ k
has at least l chords.

Bandelt and Mulder[1] showed that every connected distance-hereditary graph
G can be generated by iterating a one-vertex extension from K1. The one-vertex
extension is a set of three operations to add a new vertex to a graph: adding pen-
dant vertex operation (PV) and two twin operations (FT and TT). Specifically,
for G = (V,E) and x ∈ V , we add a new vertex x′ /∈ V as follows: V ← V ∪{x′}
and
E ← E ∪ {(x, x′)} (PV),
E ← E ∪ {(x′, y)|y ∈ N(x)} (FT) or
E ← E ∪ {(x′, y)|y ∈ N(x) ∪ {x}} (TT).

In this paper, we consider only connected graphs. The following (1),(2),(3) are
equivalent[1].

(1) G is a BDHG.
(2) G can be generated from K1 by iterating PV and FT operations.
(3) G is (6, 2)-chordal bipartite.

3 Reduced Graph

For a BDHG G = (V +, V −, E), we partition each V + and V − into groups and
make a new graph Gr so that each vertex of Gr represents a group of G. Let R be
the equivalence relation on V (= V +∪V −) such that viRvj iff N(vi) = N(vj). We
partition V into the equivalence classes γi(1 ≤ i ≤ t) of R. From the equivalence
classes, we construct a graph Gr = (V r, Er), the reduced graph, as follows. Each
vertex vi of G

r represents γi, and if there is an edge between a vertex of γi and
a vertex of γj , we add an edge (vi, vj) into Er.
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In terms of the modular decomposition[16], our equivalence class corresponds
to a module of G = (V +, V −, E). For a undirected graph G = (V,E), a set
M ⊆ V is a module of G if N(x) \ M = N(y) \ M holds for all vertices x
and y in M . The modular decomposition of a graph is a recursive (hierarchical)
decomposition of the graph into modules. For a graph G, this decomposition is
unique and represented by a rooted tree whose nodes correspond to modules of
G; the root to V , the leaves to single vertices, and each parent module contains
all its child modules. The modular decomposition of a graph can be computed
in linear time[3,5,11,15]. In case of bipartite graphs, the modular decomposition
is just a partition of the vertices of G and the rooted tree is of hight 2. Our
reduced graph Gr is called characteristic graph in the modular decomposition.

The following observation is essential in our discussion.

Proposition 1. Let G be a BDHG with at least one edge. Then there is at least
one vertex of degree 1 in its reduced graph Gr.

Proof. We show the proposition by an induction on the number n of vertices of
G. When n = 2,G has two vertices of degree 1. Let G be a BDHG of n+1 vertices
and assume that G is constructed by adding a new vertex x′ to a vertex x of a
graph G′ by a PV operation. The equivalence class including x′ is a singleton
set, and hence the reduced graph Gr has at least one vertex of degree 1. If G is
constructed by adding a vertex x′ to a vertex x of G′ by an FT operation. Then
the reduced graph does not change by this operation, since the added vertex x′

belongs to the equivalence class of x in G. From the induction hypothesis, the
reduced graph of G′ has a vertex of degree 1, and hence the reduced graph of G
has a vertex of degree 1. ��

4 Expanding Condition

Assume that G = (V +, V −, E) is a bipartite graph with 2n vertices and |V +| =
|V −| = n. Let X be any vertex set of V + with |X | < n. We denote by N(X) the
set of adjacent vertices of vertices in X , that is, N(X) =

⋃
v∈X N(v). It is clear

that if G has a Hamilton cycle, |X | < |N(X)|. We call the following condition
an expanding condition for V + of G.

∀X � V + |X | < |N(X)| (1)

For any bipartite graph G = (V +, V −, E) with |V +| = |V −|, the expanding
condition for V + holds if and only if the expanding condition for V − holds.

Proposition 2. The following condition is equivalent to (1).

∀X � V − |X | < |N(X)| (2)

Proof. We show that (1) implies (2). Assume that (2) does not hold for some
X � V −, that is, |X | ≥ |N(X)| for this X . Since |V +| = |V −|, we have |V − −
X | ≤ |V +−N(X)|. Since there is no edge between X and (V +−N(X)), we have
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N(V + − N(X)) ⊂ (V − −X). Therefore, |V + − N(X)| ≥ |N(V + − N(X))|.
This means that (1) does not hold. The reverse direction can be proved in the
same manner. ��

It is obvious that the expanding condition is necessary for G to have a Hamil-
ton cycle. However, it is not a sufficient condition if G is a general bipartite
graph. See Fig.1. In the rest of this section, we will show that if G is a BDHG
then the expanding condition is a sufficient condition for G to have a Hamilton
cycle.

Fig. 1. A non-Hamiltonian bipartite graph satisfying the expanding condition

Let G be a BDHG and vi a vertex of degree 1 in the reduced graph Gr. Let x
be a vertex of G belonging to the equivalence class γi, and y ∈ N(x). We denote
by G\{x, y} the graph obtained by deleting x and y from G. Then, the following
lemmas hold.

Lemma 1. If the expanding condition holds for G, then G\{x, y} is also a con-
nected BDHG.

Proof. Since G is a BDHG, G is (6, 2)-chordal. Deleting x and y from G does
not delete a chord of a cycle in G and it does not produce a new cycle in G.
Therefore the resulted graph is also (6, 2)-chordal and bipartite. Furthermore,
since the expanding condition holds for G, |NG(x)| ≥ 2, and hence G\{x, y} is
connected.

Lemma 2. Assume that the expanding condition holds for G. If G\{x, y} is
Hamiltonian, G is also Hamiltonian

Proof. Let H be a Hamilton cycle of G\{x, y}. Let z(�= y) be a vertex of NG(x)
and u(�= x) is an adjacent vertex of z such that H passes through edge (u, z).
The expanding condition guarantees the existence of such z and u. Since vi is of
degree 1 inGr, z and y belong to the same equivalence class, that isN(z) = N(y).
Hence there exists an edge between u and y. Thus we can modify H so that it
passes through vertices u, y, x, z in this order. We have a Hamilton cycle of G.

��

Lemma 3. The expanding condition holds for G\{x, y} whenever it holds for
G.
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Proof. We will show that for any X � (V + − {x})

|X | < |NG\{x,y}(X)|. (3)

Since the expanding condition holds for G, we have |X | < NG(X) with respect
to this X . Hence (3) obviously holds if y /∈ NG(X).

We consider the case y ∈ NG(X). Let X ′ = X ∪ {x}. Since X ′ � V +, the
expanding condition for G implies |X ′| < |NG(X

′)|. Let z be any vertex of X
adjacent to y. The expanding condition for G guarantees the existence of such
z. Since z is adjacent to each vertex of γ[y] (the equivalence class of y) and x is
adjacent exactly to the vertices of γ[y], NG(X

′) = NG(X). Therefore,

|X | < |X ′| < |NG(X
′)| = |NG(X)|

This implies (3). ��

From the above lemmas, we have the following theorem.

Theorem 1. Let G2n = (V +, V −, E) be a BDHG of 2n vertices and |V +| =
|V −| = n(≥ 2). If the expanding condition holds for G2n, there is a Hamilton
cycle in G2n.

Proof. We show the theorem by an induction on the value of n.
If the graph has 4 vertices, from the expanding condition G2n is a biclique and

a Hamilton cycle exists. We assume that the theorem holds for G2n and show
it also holds for G2(n+1). Since G2(n+1) is a BDHG, from Proposition 1 there
is a vertex vi of degree 1 in Gr

2(n+1). From Lemma 3, the expanding condition

holds for G2(n+1)\{x, y} that is obtaind from G2(n+1) by deleting x ∈ γi and
y ∈ N(x). From Lemma 1 and the induction hypothesis, there is a Hamilton
cycle in G2(n+1)\{x, y}. Therfore, from Lemma 2, G2(n+1) has a Hamilton cycle.

��

Chvátal introduced the concept of toughness, a measure of connectivity that
is closely connected to the existence of Hamilton cycles[4,2] . For a graph G =
(V,E) let c(G) denote the number of its connected components. The toughness
of G is the minimum value of |S|/c(G− S) over all sets S such that ∅ ⊂ S ⊂ V .
It is easy to see that if G is Hamiltonian then t(G) ≥ 1 and if G is bipartite then
t(G) ≤ 1. Thus if G is bipartite and Hamiltonian then t(G) = 1. We have the
following corollary.

Corollary 1. For a BDHG G, t(G) = 1 implies that G is Hamiltonian.

Proof. For a BDHG G, if t(G) = 1 then the expanding condition holds. Consider
to the contrary that the expanding condition does not hold. Then there is a
subset X � V + with |X | ≥ |N(X)|. Deleting the vertices of N(X) from G yields
more than |X | components, contradicting that t(G) = 1. Then our theorem
implies that G is Hamiltonian. ��

Note that there are non-Hamiltonian bipartite graphs with t(G) = 1. See
Figure 1 in [9]. Indeed, that graph is not a BDHG.
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5 Algorithm

Based on the reduced graph and the lemmas above, we can construct a polyno-
mial time algorithm for deciding whether a BDHG G = (V +, V −, E) is Hamil-
tonian.

procedure Hamilton(G)
1. Construct the reduced graph Gr of G.
2. If Gr consists of a single edge,
output “G is Hamiltonian” and stop.

3. Let vi be a vertex of Gr with deg(vi)=1 and vj its adjacent vertex.
Let γi and γj be the corresponding equivalence classes.

4. If |γi| ≥ |γj |, output “G is not Hamiltonian” and stop.
5. Delete the vertices of γi and the |γi| vertices of γj from G.
Let G be the resulted graph and goto Step 1.

This algorithm can easily be extended to become certifying(see [10]): When it
rejects in Step 4 the sets γi and γj certify that the current graph does not satisfy
the expanding condition. Also when the algorithm terminates in Step 2, we can
trace back the graphs appeared in the algorithm to produce the Hamilton cycle.

Although polynomial-time algorithms have been known for BDHG as noted
in Introduction, our algorithm is simple and implementation would be easy. A
naive implementation yields an O(mn) time algorithm, where n is the number of
vertices and m is the number of edges in the input graph. We can use linear-time
modular decomposition algorithms[3,5,11,15] for Step 1 and Step 1 may be re-
peated O(n) times, yielding an O(mn) time algorithm. Introducing an elaborate
data structure, we can implement this algorithm so that it runs in linear time.
We do not go into the discussion of implementation, since it is beyond the scope
of this paper.

Acknowledgment. The authors would like to thank the anonymous referees
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16. Möhring, R.H., Radermacher, F.J.: Substitution decomposition for discrete struc-
tures and connections with combinatorial optimization. Annals of Discrete Math-
ematics 19, 257–356 (1984)



On Simplifying Deformation of Smooth

Manifolds Defined by Large Weighted Point Sets

Ke Yan and Ho-Lun Cheng

National University of Singapore
{yanke2,hcheng}@comp.nus.edu

Abstract. We present a simple and efficient algorithm for deforma-
tion between significantly different objects, which does not require any
forms of similarity or correspondence. In our previous work, the algo-
rithm, which is called general skin deformation, requires a complexity
of O(m2n2). In this paper, we improve the complexity from O(m2n2)
to O(m2 + n2) by proposing a simplified deformation process. This im-
provement greatly reduces the program running time and unnecessary
topology changes. Moreover, it makes some impossible deformation with
large input sets to become possible.

1 Introduction

Almost all available deformation techniques require similarity to establish corre-
spondence mapping of the source and target shapes, e.g. deformations between
different postures of human or animals [1,3,12,15,16]. For deformation between
significantly different objects, e.g. a mannequin head and a fist (Figure 1), it
is always a challenge to create a smooth transition from one to another. These
examples are not unreasonable since many breath-taking movies and cartoons
require deformation animations between rather different objects (e.g. the liquid
robot deforms in the movie Terminator 2). Automatic correspondence mapping
methods suffer in these cases, and usually require heavy user labor. Two prob-
lems arise for deformation between non-similar objects: 1. there are ambiguities
in vertex mapping between the source and target shapes 2. there are difficulties
to handle topology changes automatically.

In 2010, we propose a general deformation process for any shapes approx-
imated by a smooth manifolds called skin surfaces [9]. The general skin de-
formation (GSD) requires no correspondence mapping information and handles
topology changes automatically. We convert the source and target shapes into
weighted point sets B0 and B1, by existing algorithms such as the power crust
[2] or the sphere-tree toolkit [4]. The general skin surface deformation algorithm
generates skin surfaces skin (B0) and skin (B1) and deforms one skin surface into
another with a parameter t ∈ [0..1] as time.

However, the complexity of GSD increases with the sizes of input weighted
point sets. Given two input weighted point sets with m and n points, an inter-
mediate complex is required to be constructed by mn weighted points. Due to
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skin(B0)-12, 680
weighted points.

Intermediate
complex with

69, 245, 480 weighted
points.

skin(B1)-5, 461
weighted points.

Original
GSD

algorithm

Fig. 1. It is hard to deform between a mannequin head and a fist because of the large
number of intermediate weighted points

the complexity of Delaunay triangulation, the overall complexity is O(m2n2).
This quadratic complexity slow down the entire deformation process because all
mesh points have to float through O(m2n2) numbers of blocks which we called
intermediate mixed cells [7]. The deformation of skin surface over such a dense
intermediate mixed cell structure results heavy computation of scheduling [9],
which is directly associated with the overall computation time of GSD. In Figure
1, we deform a mannequin head model skin (B0) with 12, 680 weighted points
to a fist model skin (B1) with 5, 461 weighted points. The intermediate complex
consists of a number of 69 million of weighted points. The complexity of this in-
termediate complex is the square of 69 million which is impossible to be handled
with a 32-bit machine.

In this paper, we present a simple and efficient deformation solution, namely,
SGSD, for drastically different source and target objects with no correspondence
mapping information provided. We inherit most features from our previous work
(GSD) and improve the overall complexity from O(m2n2) to O(m2 + n2). This
improvement greatly reduces the program running time. Moreover, it abandons
unnecessary topology changes and makes some impossible deformations with
large input sets become possible. New degeneracy problems arise in the simplified
deformation process and we solve them by introducing new types of intermediate
complexes.

1.1 Related Work

The skin surface is firstly introduced as a maximum curvature continuous surface
model for molecules by Edelsbrunner in 1999 [10]. It has several distinct proper-
ties such as smoothness, deformability and complementary, which are desirable
in biological studies such as protein docking and protein-protein interactions
[13].
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The first deformation framework of skin surface which is the growth model,
is implemented in 2002 [7]. In the growth model, all weighted points increase
or decrease by the same α value [11], which is not useful in real world appli-
cations. For years, there is no proper algorithm to handle deformation between
arbitrary skin surfaces, although the initial idea was proposed by Edelsbrunner
in 1999 [10]. The main difficulty of skin surface deformation is all intermedi-
ate shapes have to maintain the skin surface properties with correct topology.
The intermediate skin surfaces require to maintain the same homology groups as
the alpha complexes, which makes most of the existing morphing theories, such
as the shape-interpolation by Alexa et al. [1] and skeleton-driven deformation
works [15], failed to handle the skin surface deformation. The only way to visu-
alize the deformation between different skin surfaces is to generate each frame
separately using static skin mesh generation methods, such as CGAL [5] and
quality skin mesh software developed by Cheng and Shi [8]. These methods has
several disadvantages, such as lack of efficiency, no surface point correspondence
and discontinuous of homology group changes [9]. In 2006, Cheng and Chen find
that the super-imposed Voronoi diagram of two or more skin surfaces remains
unchanged during the deformation process [6]. This makes continuous skin de-
formation possible for any combination of skin surfaces. In 2010, we implement
GSD algorithm to deform between any given skin surfaces under general position
assumption (GPA) [9].

The interest of skin surface deformation is no longer restricted in molecu-
lar studies but applied to all forms of objects that are representable by sets of
weighted points. With the help from algorithms converting polygonal objects into
weighted point sets [2,4,14], the GSD algorithm can perform global deformation
between real world objects approximated by skin surfaces. The advantage of GSD
algorithm over other deformation technologies is that the GSD algorithm requires
no similarity or correspondence mapping information about the source and tar-
get shapes. The GSD software is available at http://www.comp.nus.edu.sg/ ˜
yanke2/skin/skin.htm.

2 Skin Surface Deformation

In this section, we briefly introduce the basics of the GSD algorithm. For the
details of the implementation, including experimental results, readers can refer
to our previous works [6,7,9].

2.1 Delaunay, Voronoi Complexes under General Position
Assumption

A weighted point in Rd can be written as bi = (zi, wi) ∈ Rd × R where zi ∈ Rd

is the position and wi ∈ R is the weight. A weighted point is also viewed as
a ball with center zi and radius

√
wi. Given a finite set B = {b1, b2, ..., bn},

z(B) ⊂ Rd is denoted as the set of the positions of the weighted points in B.
The weighted distance of a point x ∈ Rd from a weighted point bi is defined as
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πbi(x) = ‖xzi‖
2 − wi. The Voronoi region νi for each weighted point bi ∈ B is

defined as,

νi = {x ∈ Rd | πbi(x) ≤ πbj (x), bj ∈ B}.

For a set of weighted points X ⊆ B, the Voronoi cell of X is defined as νX =⋂
bi∈X νi. The collection of all the non-empty Voronoi cells is called the Voronoi

complex of B, denoted as, VB . For each νX ∈ VB, its corresponding Delaunay
cell, δX , is the convex hull of the set of centers of X , namely, conv (z(X)), where
νX �= φ. The collection of all the Delaunay cells is called the Delaunay complex
of B, denoted as DB.

Usually, a general position assumption is made so that the Delaunay complex
is simplicial, namely, ∀νX ∈ VB, card(X) = dim(δX)+1. Under this assumption,
there are only four types of Delaunay cells in R3: vertices, edges, triangles and
tetrahedra.

2.2 Intermediate Voronoi Complexes

During the deformation process, a series of intermediate skin surface meshes
skin (B(t)) is generated from skin (B0) to a new skin surface skin (B1). In our
previous work, we prove that for any t ∈ [0, 1], all weighted point sets B(t) share
the same Voronoi complex V (t), which we call the intermediate Voronoi complex
[6]. This intermediate Voronoi complex can be obtained by super-imposing the
two Voronoi diagrams of B0 and B1. Let the Voronoi complex of B0 be V0, and
the Voronoi complex of B1 be V1. This intermediate Voronoi complex is the
super-imposition of V0 and V1,

V (t) = {νXY |νX ∈ V0, νY ∈ V1, νX ∩ νY �= ∅}.

For t ∈ [0, 1], with the invariance of the intermediate Voronoi complex, we
determine the type of intermediate Voronoi cells in the process of deformation.
We assume the two weighted point sets are under GPA individually. In Rd, the
dimension of νXY = νX ∩ νY , νX ∈ V0 and νY ∈ V1, is

dim(νXY ) = dim(νX) + dim(νY )− d. (1)

In R3, after super-imposing Voronoi complexes, there are in total six possibil-
ities of intermediate Voronoi cell types. Each type of intermediate Voronoi cells
is classified by a tuple, namely, (dim(νX),dim(νY ),dim(νXY )). We assume that
dim(νX) > dim(νY ) and all possible tuples are (3,3,3), (3,2,2), (3,1,1), (3,0,0),
(2,2,1) and (2,1,0).

2.3 Intermediate Delaunay Complexes

We denote the intermediate Delaunay complex, D(t), as the Delaunay complex
of B(t), and it is not a simplicial complex. Apart from regular Delaunay trian-
gulation, we define the intermediate Delaunay complex as,

D(t) = {conv(z(ν−1(νXY )))|νXY ∈ V (t)},
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where

z(X) = {zi|bi ∈ X}, and
ν−1(νXY ) = {b(t)|νX ∈ V0, νY ∈ V1, νX ∩ νY �= ∅}.

2.4 Skin Decomposition

The skin can be decomposed by mixed cells. A mixed cell μX is the Minkowski
sum of a Delaunay cell and its corresponding Voronoi cell, formally μX =
(δX + νX) /2. The center and size of a mixed cell are defined as

zX = aff (δX) ∩ aff (νX), and

wX = wi − ‖zXzi‖2.

where bi = (zi, wi) is any weighted point in X .
Within each mixed cell μX , skin (B) ∩ μX is a quadratic surface. In R3, skin

patches are pieces of spheres and hyperboloids of revolution.

2.5 Mesh Point Movement and Escaping Time Scheduling

We apply linear interpolation from every weighted point bi ∈ B0 to every
weighted point bj ∈ B1, namely, bij(t) = (1 − t) · bi + t · bj . Each mixed cell
center zX moves linearly since νX is fixed and δX moves linearly with b(t). Skin
patches expand or shrink according to the update of wX . We triangulate skin
surfaces skin (B(t)) with meshes and move the mesh surface points.

Scheduling is a technique while we trigger a special event in the deformation
process. While a scheduled time reaches, the deformation pauses to execute the
scheduled event and resume afterwards. The total number of schedules directly
affects the efficiency of the program.

Every surface vertex p has an escaping time schedule tp which is the time
while p escapes from its mixed cell. The program moves p to a new mixed cell
at time tp and gives another escaping time schedule to p in the new mixed cell.
The total number of the escaping time schedules depends on the complexity of
the intermediate complex. Therefore the original GSD algorithm suffers from the
problem of too many intermediate mixed cells.

3 Simplified General Skin Deformation Algorithm

We propose a simplified GSD (SGSD) algorithm to improve the efficiency and the
complexity of intermediate complex in GSD. Given two skin surfaces, skin (B0)
with m weighted points, and skin (B1) with n weighted points, we improve the
overall complexity of GSD from O(m2n2) to O(m2 + n2) by three steps:

1. Simplify Weighted Point Set. We consider the input weighted point
sets as unions of balls and simplify the unions of balls with the number of
simplified weighted points given by user. We generate skin surfaces for both
the original weighted point sets and the simplified weighted point sets as
inputs for SGSD algorithm.
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2. Deform Skin Surfaces. The whole SGSD process is divided into three
parts. We name the three parts as Deformation I, II and III, for deformation
from skin (B0) to skin (B′

0), from skin (B′
0) to skin (B′

1) and from skin (B′
1)

to skin (B1) respectively.
3. Connect the Three Deformation Processes. The whole deformation

process is constructed by connecting Deformation I, II and III. For later
deformations like Deformation II and III, we make use of the result from
the previous deformation. The mesh points therefore move continuously in
between of different deformations.

3.1 Simplifying the Union of Balls

Given a large set of balls, our goal is to simplify it into a reasonable small set
with m′ (given by the user) balls with a similar volume. By “reasonable” we
mean that we do not have to set a tight bound on the difference between the
volumes of the two unions of balls because the simplified skin surface is one of
the intermediate shapes in the deformation sequence.

There are two repeating steps in simplifying the balls, namely, deletion and
enlarging all the balls with the same α value. For the first step, a sphere bi is
removed if:

– The sphere bi contributes some surface to the model.
– The volume that bi contributes is less than the feature variable (K) multiply

the average contribution of all the spheres.
– The sphere bi contributes less than the density variable (J) of its volume to

the model.
– Topology is preserved.

For the feature variable (K), a value greater than 0.5 and less than 1.5 is
recommended. For the density valuable (J), a value between 0 and 0.5 is sug-
gested. In Figure 6 and 7, we show experiments comparing the original GSD
versus the SGSD. Similar deformation processes can be obtained with proper
choice of variables K and J .

After the deletion, we enlarge the radius of each ball from
√
wi to

√
wi + α

with a value of α that gives the least difference in symmetric difference of the
volumes between the unions of the original and simplified set of balls. This
increment by α does not change the underlying Voronoi complex. After this, the
steps are repeated until the symmetric difference stable.

3.2 Degeneracies

In Deformation I and III, we keep weighted point positions in B′
0 the same as

in B0 and change all the weights by the same value α. The benefits for this are:
1. to avoid skinny intermediate mixed cells, and 2. to reduce the complexity of
intermediate complex. For example, in Figure 2, in R2 we deform a skin curve
skin (B0) with four weighted points to its simplified model skin (B′

0) by deleting
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one weighted point in B0. The intermediate complex is built base on the super-
imposition of the two Voronoi complex of B0 and B′

0, namely V (B(t)) [6]. The
complexity of the intermediate complex is equivalent to the number of simplices
in V (B(t)). In Figure 2, there are in total four intermediate Voronoi vertices
in the intermediate complex. However, if we allow different point positions in
B′

0 or different α changes, after the super-imposition, there are more than 4
intermediate Voronoi vertices (Figure 3).

V (B0) V (B′
0)

V (Bt)

Fig. 2. A four weighted point set B0 deforms to a subset B′
0 by deleting one of its

weighted point. We show the Voronoi diagram of B0, B
′
0 and the intermediate weighted

point set B(t). The dot circled vertices in V (B(t)) are intermediate Voronoi vertices
with trapezoid intermediate Delaunay cells.

V (B0) V (B′
0)

V (Bt)

Fig. 3. We give an α to the weighted point on the up-right corner. After super-
imposition, we have 6 intermediate Voronoi vertices.

Degeneracies arise in the intermediate complexes in Deformation I and III.
The GPA is again unavoidably violated while B0 and B′

0 share the same point
locations (The first violation happens in Section 2.2). First, we illustrate the
degenerate case in R2. In R2, after we super-impose the Voronoi complexes in
Deformation I and III, there are Voronoi edges from different Voronoi complex
intersect at one of their end-points (See Figure 2 as an example). This degenerate
case is represent as tuple (1,0,0). The corresponding intermediate Delaunay cell
is a trapezoid which is obtained by deforming a Delaunay edge to a Delaunay
triangle (Figure 4).

In R3, there are two more degenerate cases in the intermediate complex (Table
1). First, Tuple (2,1,1) indicates that a Voronoi face and a Voronoi edge from
different Voronoi complexes intersect at one boundary edge of the Voronoi face.
For example, in Figure 5(a), we delete one weighted point from a five weighted
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D(B0) D(B′
0)D(B(0.5))

Fig. 4. The intermediate Delaunay triangulation at t = 0.5 (middle) with the original
simplification shown in Figure 2

point set. There are six such degenerate intermediate Voronoi edges, each of
which is shared by four Voronoi regions. The corresponding intermediate Delau-
nay cells are trapezoids. Second, Tuple (1,0,0) represents an intersection between
a Voronoi edge and a Voronoi point from different Voronoi complexes. The corre-
sponding intermediate Delaunay cell is a frustum which deforms from a triangle
to a tetrahedron (Figure 5(b)).

(a) The degenerate Voronoi
complex consists of four
degenerate Voronoi vertices
(circled in red).

(b) The intermediate Delau-
nay complex consists of four
frustum and one tetrahedron.

Fig. 5. Degenerate intermediate Voronoi and Delaunay complexes after deleting one
point in a five weighted point set

3.3 Complexity Analysis

We argue that the time complexity for the new SGSD is O(m2+n2) by assuming
m′ is a user input constant and it is comparatively small to m. The number of
weighted points in Deformation I is mm′ and we can treat it as O(m) while m′

is a small constant. Treating Deformation III similarly, the overall complexity is
O(m2) +O((m′n′)2) +O(n2) = O(m2 + n2).
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Table 1. Combinations of all possible intermediate Voronoi cells and Delaunay Cells

Type Voronoi Delaunay Patch

(3,3,3) Polyhedron Vertex Sphere

(3,2,2) Polygon Edge Hyperboloid

(3,1,1) Edge Triangle Hyperboloid

(3,0,0) Vertex Tetrahedron Sphere

(2,2,1) Edge Parallelogram Hyperboloid

(2,1,0) Vertex Triangle Prism Sphere

(2,1,1) Edge Trapezoid Hyperboloid

(1,0,0) Vertex Tri. Frustum Sphere

4 Experiment Result

Experimental results show that SGSD algorithm largely reduces the number
of intermediate mixed cells, the number of schedules and the overall running
time over the GSD algorithm. We perform the deformations and compare the
results over three pairs of skin models: a bunny skin model and a cow skin
model (Figure 6), a dragon skin model to a bunny skin model and a man-
nequin head skin model to a fist skin model (Figure 7). We introduce two
simplification levels to compare their performance, namely SGSD-1 (K = 0.6,
J = 0.1) and SGSD-2 (K = 1.0, J = 0.3). All starting weighted point sets
are get from the power crust project developed by Nina Amenta et al. [2] at
http://www.cs.ucdavis.edu/ amenta/powercrust.html and the sphere-tree con-
struction toolkit developed by Bradshaw et al. [4] at http://isg.cs.tcd.ie/
spheretree/. The input skin meshes are generated by quality skin mesh software
developed by Cheng and Shi [8].

Table 2. Number of intermediate mixed cells for different deformation models

Model pair GSD SGSD-1 SGSD-2

Mannequin ↔ Fist 149,381,672 913,053 317,192

Bunny ↔ Cow 577,614 182,254 94,911

Dragon ↔ Bunny 891,161 221,658 103,746

We test both GSD and SGSD algorithms in a 32-bit windows machine with
Intel Duo Core 2.33GHz and 4GB RAM. First, a comparison of the total number
of intermediate mixed cells is made, as shown in Table 2. The total number of
intermediate mixed cells in all three sub-deformations in SGSD are also shown in
Table 2. The result shows that the intermediate complex is significantly simplified
in SGSD. Second, the whole deformation process is divided into 1, 000 frames and
the average number of schedules (Table 3) and average running time (Table 4)
are compared in each frame for both algorithms. Based on the statistics collected,
both the number of schedules and running time are reduced due to the simpler
intermediate complexes in SGSD.
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Table 3. Average number of schedules

Model pair GSD SGSD-1 SGSD-2

Mannequin ↔ Fist - 16,491 5,719

Bunny ↔ Cow 10,855 3,712 1,731

Dragon ↔ Bunny 13,774 4,073 2,442

The number of intermediate weighted points is maintained at less than 3 mil-
lion in GSD. When the number of intermediate weighted points exceeds 3 million,
for example, the direct GSD between the mannequin and fist skin models in Fig-
ure 1, it is impossible for a 32-bit machine to handle such a large intermediate
complex (indicated by the empty cell in Table 2 and 3). However, It is possible
to deform the mannequin model to the fist model using the SGSD algorithm by
two simplification deformations and one GSD (Figure 7).

The results of SGSD are very similar to the original GSD algorithm as the
simplification processes guarantees the volume difference to be small (Figure 6
and 7). Although the simplified objects may lose sharp features of the original
objects, it is visually tolerable since it is only one intermediate frame in the
whole deformation process.

Table 4. Average time taken in each frame

Model pair GSD SGSD-1 SGSD-2

Mannequin ↔ Fist - 3.18 sec 1.38 sec

Bunny ↔ Cow 5.40 sec 1.87 sec 0.65 sec

Dragon ↔ Bunny 6.14 sec 1.92 sec 0.75 sec

K = 0.6; J = 0.1

K = 1.0; J = 0.3

K = 0.6; J = 0.1

K = 1.0; J = 0.3

Fig. 6. Different simplification level break down for deformation between bunny and
cow
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K = 0.6; J = 0.1

K = 1.0; J = 0.3

K = 0.6; J = 0.1

K = 1.0; J = 0.3

Fig. 7. Different simplification level break down for deformation between mannequin
head and fist

5 Conclusion and Discussion

In this paper, we introduce a new simplified general skin deformation algorithm
to improve the efficiency of the original GSD algorithm and provide a solution to
deform skin surface with huge weighted point sets which originally is impossible
to be handled by GSD. We manage to improve the complexity of intermediate
complex from the original O(m2n2) to O(m2 + n2). This improvement reduces
the number of intermediate mixed cells in the deformation, reduces the number
of schedules in GSD algorithm and therefore improves the overall running time.

Both GSD and SGSD algorithms are suitable for deformation between signif-
icantly different objects, since all input weighted points are assumed in general
positions. In fact, for two shapes that are too similar, both the algorithms suf-
fer from degeneracy problems. See the simplification deformation (Deformation
I and III) as an example, the two new intermediate Delaunay types are intro-
duced because of identical point positions in source and target weighted point
sets. More degenerate cases are found for partial movements of weighted point
set, such as an elbow bend, which only the lower part of the arm changes position.

Although fully automated deformation algorithms are still far away to become
practical in real world industries, such as movie and cartoon animations. In GSD
and SGSD, we provide a solution to escape from the restriction of correspondence
mapping, convert both source and target shapes into weighted point sets and
interpolate the weighted points from the two sets. The limitation of this approach
is that we may lose sharp features in the intermediate shapes. This limitation
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induces our future work, which is to introduce additional reference shapes during
the deformation [6].
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Morić, Filip 120

Nakamoto, Atsuhiro 20, 110
Nara, Chie 64
Nojima, Yusuke 132

Otachi, Yota 73

Pabhapote, Nittiya 101
Pach, János 120
Park, Jeongmi 57
Punnim, Narong 42, 101

Sano, Yoshio 57
Seong, Hyunwoo 1

Takasuga, Masahide 143

Uehara, Ryuhei 73
Uiyyasathian, C. 42
Uno, Takeaki 73
Uno, Yushi 73

Yamashita, Tomoki 95
Yan, Ke 150
Yan, Zheng 95
Yoshikawa, Masatoshi 132


	Preface
	Organization
	Table of Contents
	Operators which Preserve Reversibility
	1 Introduction
	2 Classification of Reversible Polygons
	3 Operators for Reversible Polygons
	3.1 Stretching Operators
	3.2 Cutting Operators
	3.3 Affine Operators
	3.4 Affine Stretching Cutting Operators

	4 MainResults
	References

	Colored Quadrangulations with Steiner Points
	1 Introduction
	2 Proof of Theorem 2
	3 k-Colored Sets of Points Requiring Many Steiner Points

	4 Conclusions
	References

	On Universal Point Sets for Planar Graphs
	1 Introduction
	2 Large Universal Point Sets
	3 Simultaneous Geometric Embeddings
	4 Small n-universal Point Sets
	References

	On Non 3-Choosable Bipartite Graphs
	1 Introduction
	2 Strategies
	3 On 3-Choosability of Complete Bipartite Graphs with Fourteen Vertices
	4 On 3-Choosability of Complete Bipartite Graphs with Fifteen Vertices
	References

	Edge-disjoint Decompositions of Complete Multipartite Graphs
into Gregarious Long Cycles
	1 Introduction
	2 Gregarious Cycles
	3 Results
	3.1 Gregarious (2n
	3.2 Gregarious 2n-cycle Decompositions of Kn(m)

	4 Concluding Remarks
	References

	Affine Classes of 3-Dimensional Parallelohedra- 
Their Parametrization -
	1 Introduction
	2 Two-Dimensional Case
	3 The Truncated Octahedron
	4 Non-primitive Parallelohedra
	References

	On Complexity of Flooding Games on Graphs
with Interval Representations
	1 Introduction
	2 Preliminaries
	3 Graphs with Interval Representations
	3.1 NP-Completeness on Simple Interval Graphs

	3.2 Polynomial Time Algorithm on Interval Graphs for Fixed Numbers of Colors


	4 Split Graphs
	References

	How to Generalize Janken –
Rock-Paper-Scissors-King-Flea
	1 Introduction
	2 Janken Variants and Efficiency
	2.1 Janken Variants and Terminology
	2.2 Existence of Efficient Jankens with n Signs

	3 What Janken Is Amusing?
	3.1 A Measure of Amusement
	3.2 Proof of Theorem 2
	3.3 Best Amusing Efficient 5-Janken

	4 Conclusions
	References

	Spanning Caterpillars Having at Most k Leaves
	1 Introduction
	2 Proof of Theorem 3
	3 Proof of Theorem 4
	References

	GDDs with Two Associate Classes and
with Three Groups of Sizes 1, n,n and λ1 < λ2
	1 Introduction
	2 Preliminary Results
	3 Sufficiency
	References

	The Number of Diagonal Transformations
in Quadrangulations on the Sphere
	1 Introduction
	2 Lemmas
	3 Proof of Theorem 6
	4 Examples
	References

	Remarks on Schur’s Conjecture
	1 Introduction
	2 Proof of Theorem 1
	3 Proof of Theorem 2
	4 Proofs of Theorems 3 and 4
	References

	Greedy Approximation Algorithms for Generalized Maximum Flow Problem towards Relation Extraction
in Information Networks
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Greedy Algorithms
	4.1 Simple Greedy Algorithm
	4.2 Improvement by Initial Flow Calculation

	5 Experiment
	6 Conclusion
	References

	A Necessary and Sufficient Condition for a Bipartite Distance-Hereditary Graph
to Be Hamiltonian
	1 Introduction
	2 Preliminaries
	3 Reduced Graph
	4 Expanding Condition
	5 Algorithm
	References

	On Simplifying Deformation of Smooth
Manifolds Defined by Large Weighted Point Sets
	1 Introduction
	1.1 Related Work

	2 Skin Surface Deformation
	2.1 Delaunay, Voronoi Complexes under General Position Assumption

	2.2 Intermediate Voronoi Complexes
	2.3 Intermediate Delaunay Complexes
	2.4 Skin Decomposition
	2.5 Mesh Point Movement and Escaping Time Scheduling

	3 Simplified General Skin Deformation Algorithm
	3.1 Simplifying the Union of Balls
	3.2 Degeneracies
	3.3 Complexity Analysis

	4 Experiment Result
	5 Conclusion and Discussion
	References

	Author Index



