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Foreword

Cloud computing has become one of driving forces for the IT industry. IT vendors

are promising to offer storage, computation, and application hosting services and to

provide coverage on several continents, offering service-level agreements-backed

performance and uptime promises for their services. They offer subscription-based

access to infrastructure, platforms, and applications that are popularly termed

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-

Service (SaaS). These emerging services have reduced the cost of computation and

application hosting by several orders of magnitude, but there is significant complex-

ity involved in the development and delivery of applications and their services in a

seamless, scalable, and reliable manner.

One of challenging issues is to have efficient scheduling systems for cloud com-

puting. This book is one of a few books focusing on IaaS-level scheduling. Most of

data centers currently only implement simple scheduling strategies and algorithms,

there are many issues requiring in-depth system solutions. Optimized resources

scheduling, mainly faces the fundamental questions such as optimal modeling, allo-

cation, and dynamic live migration. This book addresses these fundamental pro-

blems, and takes multidimensional resources (CPU, storage, networking, etc.) with

load balance, energy efficiency and other features into account, rather than just con-

sidering static preset parameters.

In order to achieve objectives of high performance, energy saving, and reduced

costs, cloud data centers need to handle the physical and virtual resources in

dynamic environment. This book aims to identify potential research directions and

technologies that will facilitate efficient management and scheduling of computing

resources in cloud data centers supporting scientific, industrial, business, and con-

sumer applications.

This book offers excellent overview of the state of the art in resource scheduling

and management in cloud computing. I strongly recommend the book as a reference

for audiences such as system architects, practitioners, developers, new researchers,

and graduate-level students.

Professor Rajkumar Buyya

Director, Cloud Computing and Distributed Systems (CLOUDS) Laboratory,

The University of Melbourne, Australia

CEO, Manjrasoft Pty Ltd., Australia

Editor in Chief, IEEE Transactions on Cloud Computing



Preface

Optimized resource scheduling can be a few magnitudes better in performance

than simple or random resource scheduling.

Cloud computing is a new business model and service model that composes

tasks across a large number of different computer data centers, so that all applica-

tions can obtain necessary computing power, storage space, and information

services. The network or data center that provides services is often called a “cloud.”

Cloud computing is treated by researchers as the fifth public resource (the fifth

public utility), in addition to water, electricity, gas, and oil. Following the personal

computer revolution and Internet changes, cloud computing is seen as the third

wave of IT and is an important strategic component of the world’s emerging indus-

tries that will bring profound changes to life, production methods, and business

models.

Web searches, scientific computing, virtual environments, energy, bioinformat-

ics, and other fields have begun to explore the applications and relevant services of

cloud computing. Many studies have predicted “the core of future competition is in

the cloud data center.” Cloud data centers accommodate equipment resources and

are responsible for energy supply, air conditioning, and equipment maintenance.

Cloud data centers can also be placed in a separate room within other buildings,

which can be distributed across multiple systems in different geographic locations.

A cloud brings together resources: multi-tenant mode services for large-scale consu-

mers. Physically, the sharing of distributed resources exists, and a single overall

form is presented to the user logically.

There are many different types of resources. The resources involved in the book

include:

Physical machines (PMs): are the compositions of physical computing devices in a cloud

data center; each PM can host multiple virtual machines, and can have more than one

CPU, memory, hard drive, and network cards.

Physical clusters: consist of a number of PMs, necessary networks, and storage facilities.

Virtual machines (VMs): are created by the virtualization software on PMs; each VM

may have a number of virtual CPUs, hard drives, and network cards.

Virtual clusters: consist of a number of VMs, necessary networks, and storage facilities.

Shared storage: high-capacity storage systems that can be shared by all users.

The resource scheduling of a Cloud data center is at the core of cloud comput-

ing; advanced and optimized resource scheduling is the key to improving efficiency

of schools, government, research institutions, and enterprises. Improving the sharing



of resources, improving performance, and reducing operating costs are of great sig-

nificance and deserve further systematic study and research.

Resource scheduling is a process of allocating resources from resource provi-

ders to users. There are generally two levels of scheduling: job-level scheduling

and facility-level scheduling. Job-level scheduling is a program-specific operation;

the system is assigned specific jobs. For example, some require more computing

resources, independent and time-consuming procedures, or high-performance

parallel processing procedures; these procedures often require large-scale, high-

performance computing resources (such as cloud computing) in order to be

completed quickly. Facility-level scheduling refers primarily to the underlying

infrastructure resources as a service (Infrastructure as a Service, abbreviated as

IaaS) available to users, based on actual use of these resources. For example, PMs

(including CPU, memory, and network bandwidth), VMs (including virtual CPU,

memory, and network bandwidth), and virtual clustering are types of infrastructure

computing resources.

This book focuses on facility-level scheduling. Most data centers currently only

implement simple scheduling strategies and algorithms; there are many issues

requiring in-depth system solutions. Optimized resource scheduling concerns the

following three fundamental questions:

1. Scheduling objectives: What are the optimization objectives for the allocation of a virtual

machine?

2. Allocation problems: Where should resources be allocated on a virtual machine? (e.g.,

What is the criteria for allocating the resources in a virtual machine?)

3. Migration issues: How can a virtual machine be migrated to another physical server when

overloads, failures, alarms, and other exceptional conditions occur?

When addressing fundamental problems, dynamic scheduling takes into account

multidimensional resources (CPUs, storage, and networking), load balance, energy

efficiency, utilization, and other features, rather than just considering static, preset

parameters.

Cloud data centers need to handle physical and virtual resources in this new

dynamic scheduling problem, in order to achieve the objectives of high performance,

less energy usage, and reduced costs. The current resource scheduling in cloud data

centers tends to utilize traditional methods of resource allocation, so it is difficult to

meet these objectives. Cloud data centers face scheduling issues challenges, includ-

ing: dynamic flexibility in overall performance in the distribution and migration of

VMs and PMs, the overall balance (CPU, storage, and networks), and other resource

factors, rather than a single factor; the resolution of inconsistencies in specifications

related to system performance; energy-efficiency, and cost-effectiveness.

This book aims to identify potential research directions and technologies that

will facilitate the efficient management and scheduling of computing resources in

cloud data centers supporting scientific, industrial, business, and consumer applica-

tions. We expect the book to serve as a reference for larger audiences, such as sys-

tems architects, practitioners, developers, new researchers, and graduate-level

students. This area of research is relatively new, and—as such—has no existing

reference book to address it.
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This book includes: an overview of Cloud computing (Chapter 1), the relation-

ship between big data technologies and Cloud computing (Chapter 2), the definition

and modeling of Cloud resources (Chapter 3), Cloud resource scheduling strategies

(Chapter 4), load balance scheduling (Chapter 5), energy-efficient scheduling using

interval packing (Chapter 6), energy efficiency from parallel offline scheduling

(Chapter 7), the comparative study of energy-efficient scheduling (Chapter 8),

energy-efficient scheduling in Hadoop (Chapter 9), maximizing total weights in

virtual machine allocations (Chapter 10), using modeling and simulation tools for

virtual machine allocation (Chapter 11), and running practice scientific workflows

in the Cloud (Chapter 12).

Chapter 11
Simulation

Chapter 2
Big data and cloud computing

Chapter 1
Overview

Chapter 3
Resource modeling 

Chapter 4
Strategies and algorithms

Chapter 12
Workflows

Chapter 6
Energy-

efficiency

Chapter 7
Energy-

efficiency

Chapter 9
Energy-

efficiency

Chapter 8
Energy-

efficiency

Chapter 5
Load-

balance

Chapter 10
Maximize
weights

Thanks go to the following people for their editing contributions: Yaqiu Jiang

for Chapter 3; Minxian Xu for Chapters 4, 5, and 11; Qin Xiong and Xianrong Liu

for Chapters 6, 7, and 8; Yu Chen and XinYang Wang for Chapter 9; Jun Cao for

Chapter 10; Youfu Li and Rao Chen for Chapters 2 and 12.

This book aims to be more than just the editorial content of a small number of

experts with theoretical knowledge and practical experience; you are welcome to

send comments to CloudSched@gmail.com.
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1An Introduction to Cloud

Computing

Main Contents of this Chapter

� Background of Cloud computing
� Driving forces of Cloud computing
� Status and trends of Cloud computing
� Classification of Cloud computing applications
� Main features and challenges of Cloud computing

1.1 The background of Cloud computing

The world is entering the Cloud computing era. Cloud computing is a new business

model and service model. Its core concept is that it doesn’t rely on the local com-

puter to do computing, but on computing resources operated by third parties that

provide computing, storage, and networking resources. The concept of Cloud com-

puting can be traced back to 1961 in a speech on the centennial of MIT, when

computer industry pioneer John McCarthy said: “The computing may one day be as

common as the telephone resources (public utility), . . . the computer resources will

become an important new industrial base.” In 1966, D. F. Parkhill in his classic

book “The Challenge of the Computer Utility,” predicted that computing power

would one day be available to the public in a similar way as water and electricity.

Today, the industry says that Cloud computing is the fifth public resource

(“the fifth utility”) after water, electricity, gas, and oil.

People often use the following two classic stories to describe Cloud-computing

applications [1].

In the first story, Tom is an employee of a company; the company sends Tom to

London for business. So, Tom wants to know the flight information, the best route

from his house to the airport, the latest weather in London, accommodation informa-

tion, etc. All of the above information can be provided through Cloud computing.

Cloud computing is connected to a wide variety of terminals (e.g., PC, PDA, cell

phone, TV) to provide users with extensive, active, highly personalized service.

In the second story, Bob is another employee of the same company. The com-

pany does not send him on a business trip, so he works as usual at the company.

Arriving at the company, he intends to manage recent tasks, so he uses Google

Calendar to manage the schedule. After creating his work schedule, Bob can send

and receive mail through Gmail and contact colleagues and friends through GTalk.

If he then wants to start work, he can use Google Docs to write online documents.

Optimized Cloud Resource Management and Scheduling. DOI: http://dx.doi.org/10.1016/B978-0-12-801476-9.00001-X
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During the process, if he needs access to relevant papers, he can search through

Google Scholar, use Google Translate to translate English into other languages or

vice versa, and even use Google Charts to draw diagrams. Bob can also share logs

via Google Blogger, share video through Google’s YouTube, and edit and share

pictures through Google Picasa.

A popular argument to explain why “Cloud computing” is called “Cloud” com-

puting: during the rise of Internet technology, people used to draw a cloud when

describing the Internet, as shown in Figure 1.1, because when people access the

Internet through a web browser, they may need to go through several intermediate

transfer processes, which are transparent to them. Therefore, when choosing a term

to represent this new generation of Internet-based computing services, “Cloud com-

puting” is used, which does not reference the network’s forwarding processes, but

relates to client services and applications. This interpretation is very interesting and

trendy, but it can confuse people. Especially in Chinese, many words associated

with the word cloud are derogatory terms, so it is necessary to give a clear defini-

tion of Cloud computing.

There are many definitions of Cloud computing. Wikipedia’s definition is:

“Cloud computing is a computational model and information services business

model. It distributes tasks to different data centers that consist of a number of

physical computer servers or virtual servers, so that all kinds of applications can

obtain necessary computing power, storage space and information services [2].”

A Berkeley white paper defines Cloud computing as “includ[ing] various forms of

Internet applications, services, and hardware and software facilities provided by

data center [3].” We integrate the characteristics of Cloud computing and define it

as: “a large-scale, distributed computing model driven by economies of scale, which

provide the abstract, virtualized, dynamically scalable, and effective management

of computing, storage, the pooling of resources and services, and an on-demand

model via the Internet to external users [4].” It is different from the traditional com-

puting model in that: (1) it is large scale, (2) it can be encapsulated into an abstract

User

Internet

Figure 1.1 Internet depicted as a cloud.
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entity and provide users with different levels of service, (3) it is based on econo-

mies of scale, and (4) the service is dynamically configured and on-demand.

Cloud computing can provide network computing and information services and

applications as shown in Figure 1.2, including computing, storage, networking,

services, and software, among others.

In 1966, D. F. Parkhill, in his classic book “The Challenge of the Computer

Utility,” predicted that computing power would one day be available to the public

in a similar manner to water and electricity. Many computer scientists constantly

explore and innovate to achieve this goal, however, a successful widely accepted

approach by industry and users has not been found. Many approaches have been

proposed, but have been overthrown or have not been used widely [5]. With the

continuous improvement of network infrastructure, and the rapid development of

Internet applications, Cloud computing is accepted by more and more people.

People have called Cloud computing the “the fifth utility”—the fifth public

resource after water, electricity, gas, and oil. Some people call it the “poor man’s

supercomputer” because users no longer need to purchase and maintain large

computer pools, they only need to use computing resources through the network

on demand.

1.2 Cloud computing is an integration of other
advanced technologies

In the history of computer science and technology development, often landmark

technologies appear and change the landscape dramatically.

Web server DNS server

Internet

User Device

Computing Network
Storage

Service Software

Figure 1.2 Cloud computing services and applications.
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These technologies have a tremendous impact on the world’s IT applications and

service models. These include parallel computing, grid computing, utility computing,

virtual computing, and software as a service (SaaS) [1]. Cloud computing gradually

evolved from these techniques, but not in a simplistic manner. The industry generally

believes that Cloud computing is a synthesis (integration) of other advanced technolo-

gies. Figure 1.3 shows a few key technologies in the evolution of Cloud computing.

1.2.1 Parallel computing

Parallel computing divides a scientific computing problem into several small com-

puting tasks, and concurrently runs these tasks on a parallel computer, using parallel

processing methods to solve complex computing problems quickly. Parallel com-

puting is generally used in the fields that require high computing performance, such

as in the military, energy exploration, biotechnology, and medicine. It is also known

as High-Performance Computing or Super Computing. A parallel computer is a

group of homogeneous processing units that solve large computational problems

more quickly through communication and collaboration. Common parallel com-

puter architecture includes a shared memory symmetric multiprocessor, a distrib-

uted memory massively parallel machines, and a loosely coupled cluster of

distributed workstations. Parallel programs to solve computational problems often

require special algorithms. To write parallel programs, one needs to consider factors

other than the actual computational problem to be solved, such as how to coordinate

the operation between the various concurrent processes, how to allocate tasks to

each process, and so on.

Grid computing
Uses parallel
computing to solve
large-scale
problems;

Globus alliance
makes it the main
trend.

Utility computing
Computing resources
are provided as service
that can be measured;

Proposed in 1990s.

Software as a
service
Based on the web
reservation
application;

Proposed in 2001

Cloud 
computing
Internet 
computing of 
next generation;

Next data center

Evolution of cloud computing

Figure 1.3 Major evolution process of Cloud computing.
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Parallel computing can be said to be an important part of the Cloud environment.

Similar to the idea of Cloud computing, the current world has been built on a num-

ber of supercomputing centers that serve parallel computing users in contiguous

regions and charge in a cost-sharing way. However, there are significant differences

between Cloud computing and traditional parallel computing. First of all, parallel

computing requires the use of a specific programming paradigm to perform single

large-scale computing tasks or to run certain applications. In contrast, Cloud com-

puting needs to provide tens of millions of different types of applications with a

high-quality service environment, to improve responsiveness based on user require-

ments, and to accelerate business innovation. In general, Cloud computing doesn’t

limit the user’s programming models and application types: users no longer need to

develop complex programs, they can put all kinds of business and personal applica-

tions in the Cloud computing environment. Second, Cloud computing puts more

emphasis on using Cloud services through the Internet, and it can manage large-

scale resources in the Cloud environment. In parallel computing, the computing

resources are often concentrated in the machine or in a cluster in a single data cen-

ter. As noted above, Cloud computing resources are distributed more widely, so

they are no longer limited to a data center, but can extend to a number of different

geographic locations. At the same time, the use of virtualization technology effec-

tively improves Cloud computing resource utilization. Thus, Cloud computing is

the product of the flourishing of the Internet and information technology industry

and completes the transformation from the traditional, single-task-oriented comput-

ing model to a modern, service-oriented, multi-computing model.

1.2.2 Grid computing

Grid Computing is a distributed computing model. Grid computing technology inte-

grates servers, storage systems, and networks distributed within the network to form

an integrated system and provide users with powerful computing and storage capac-

ity. For the grid end users or applications, the grid looks like a virtual machine with

powerful capabilities. The essence of grid computing is to manage heterogeneous

and loosely coupled resources in an efficient way in this distributed system, and to

coordinate these resources through a task scheduler so they can complete specific

cooperative computing tasks.

We can conclude that grid computing focuses on managing heterogeneous

resources connected by a network and ensures that these resources can be fully uti-

lized for computing tasks. Typically, users need a grid-based framework to build

their own grid system, and to manage this framework and perform computing tasks

on it. Cloud computing is different. Users only use Cloud resources and don’t focus

on resource management and integration. Cloud providers provide all of the

resources and the users just see a single logical whole. Therefore, there are big dif-

ferences in the respective relationships of resources. We can also say that in grid

computing, several scattered resources provide a running environment for a single

task, but in Cloud computing a single integrated resource serves multiple users.
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1.2.3 Utility computing

Utility computing is based on the premise that IT resources like computing and

storage resources are provided based on user requirements: users only pay accord-

ing to their actual usage. The goal of utility computing is for IT resources to be sup-

plied and billed like traditional public facilities (such as water and electricity).

Utility computing allows companies and individuals to avoid the large one-time

investment, and to still have huge computing resources along with a reduction in

the costs of using and managing these resources. The goal of utility computing is to

increase the utilization of resources, minimize costs, and improve flexibility in the

use of resources.

The idea of providing resources on demand and payment depending upon usage

matches the resource use concept in Cloud computing. Cloud computing can also

allocate computing resources, storage, networks, and other basic resources accord-

ing to user demand. When compared with utility computing, Cloud computing

already has many practical applications, the technology involved is feasible, and

its architecture is stronger. Cloud computing is concerned with how to develop,

operate, and manage different services with its own platform in the Internet age.

Cloud computing will not only focus on the provision of basic resources, but also

on service delivery. In the Cloud computing environment, in addition to the hard-

ware and other IT infrastructure resources provided in the form of services, applica-

tion development, operations, and management are also provided in the form of

service. Also, the application itself can be provided in the form of operations and

the management of different services. Therefore, compared to utility computing,

cloud computing covers a broader range of technology and concepts.

1.2.4 Ubiquitous computing

In 1988, Mark Weiser presented the ubiquitous computing idea and predicted that

this method of computing would become pervasive. In the late 1990s, the concept

of pervasive computing got extensive attention and people began gradually warm-

ing to the idea. In 1999, IBM formally proposed the concept of ubiquitous com-

puting. In the same year, IBM held the first session of its UbiComp conference.

In 2000, the first Pervasive Computing International Conference was held. In 2002,

the IEEE Pervasive Computing journal was founded.

The promoters of ubiquitous computing hope the computing embedded into the

environment or everyday tools can enable people to interact with computers more

naturally. One of the significant goals of ubiquitous computing is to allow computer

equipment to sense changes in the surrounding environment and to alter behaviors

according to those changes.

Pervasive computing uses radio network technology to enable people to access

information without the constraints of time and place. While general mobile com-

puting has no context-specific features, pervasive computing technology can pro-

vide the most effective environment by sensing the location of individuals,

environmental information, personal situations, and tasks.
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1.2.5 Software as a service

SaaS is a web-based software application that provides a software services model.

SaaS is a software distribution model: the application is specifically designed for

network delivery. SaaS applications are often priced as a “package” cost (a monthly

rental fee), which includes the application software license fees, software mainte-

nance, and technical support costs. For the majority of small and medium compa-

nies, SaaS is one of the best ways to use advanced technologies.

By 2008, Internet data centers (IDCs) divided SaaS into two categories: hosted

application management (hosted AM)—formerly known as an application service

provider—and “on-demand software,” which is a synonym for SaaS. From 2009,

hosted AM has been one part of the IDC outsourcing program, and on-demand and

SaaS are treated as the same software delivery model.

Currently, SaaS has become an important force in the software industry. As long as

the quality and credibility of SaaS continue to be confirmed, its attraction will not

subside.

1.2.6 Virtualization technology

Virtualization is a broad term and, in terms of computers, it usually means that the

computing components run in a virtual environment rather than in a real one.

Virtualization technology can expand the capacity of the hardware and simplify the

software reconfiguration process. CPU virtualization technology can simulate paral-

lel multi-CPUs with a single CPU, can allow a platform to run multiple operating

systems and applications, and can run systems in independent space without affect-

ing each other, which significantly improves the efficiency of the computer.

Virtualization technology first appeared in IBM mainframe systems in the 1960s

and became popular in the System 370 series in the 1970s. These machines gener-

ate many virtual systems that can run independent operating systems on hardware

through the Virtual Machine Monitor program. With the widespread deployment of

multi-core systems, clusters, grids, and even Cloud computing, the advantages of

virtualization technology in commercial applications were gradually realized. It not

only reduces IT costs, but also enhances system security and reliability. The con-

cept of virtualization gradually penetrated into people’s daily work and life.

Virtualization is a broad term and may mean different things to different

people. In computer science, virtualization represents an abstraction of computing

resources, not just a virtual machine. For example, the abstraction of physical mem-

ory, resulting in virtual memory technology, makes the application think that it has

continuously available address space. In fact, the application code and data may be

separated into many pages or fragments, or may even be swapped out to a disk,

flash memory, and/or other external memories. Even if there is not enough physical

memory, the application can be implemented smoothly.

Hyper-threading virtualization and multitasking virtualization are completely

different. Multitasking refers to an operating system that runs multiple programs in

parallel, and with virtualization technology, it can run multiple operating systems
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simultaneously. Each operating system runs multiple programs and each operating

system runs in a virtual CPU or virtual host. On the other hand, hyper-threading

technology refers to a single CPU simulating two CPUs to balance program perfor-

mance, and the two simulated CPUs are not separated, but work together.

1.3 The driving forces of Cloud computing

Cloud computing is the inevitable result of massive information processing require-

ments led by the development of the Internet and an information society. Its business

model is accepted and used more widely by global companies and customers than pre-

vious models such as grid computing. In sum, it’s the product of technological devel-

opment and social needs. Cloud computing integrates previous advanced technologies

of the computer industry, including large-scale data centers, virtualization, and SaaS.

The Internet-based information explosion is the main factor driving Cloud comput-

ing. Figure 1.4 shows the growth (in EB) of the digital universe [6]. In 2006, the whole

world generated 161 EB (1 EB equals 1 billion G bytes) data: the thickness of it as a

printed book would be 10 times the distance from the Earth to the Sun. In 2009, the

whole world generated 988 EB, or about 158G per person; compare this with the only

5 EB data of written records from the previous 5000 years of human history.

1.4 The development status and trends
of Cloud computing

Figure 1.5 provides a search volume index comparing Grid computing and Cloud

computing from Google trends. In around 2005, IBM, Intel, and other companies

0

10,000

20,000

30,000

40,000

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

The digital universe: 50-fold growth from the
beginning of 2010 to the end of 2020

Figure 1.4 The evolution of Cloud computing [6].
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and universities in the United States launched a Cloud computing virtual laboratory

project. This project first started with experiments at North Carolina State

University near IBM headquarters. IBM and Google jointly launched Cloud com-

puting in 2007—known as a new network computing model to challenge the tradi-

tional Intel and Microsoft computing model—and it immediately attracted attention

from a large number of research institutions.

World-renowned investment bank Merrill Lynch predicts the global Cloud

computing market is expected to increase to $160 billion in 2011 and commercial

and office software from the Cloud computing market will reach $95 billion.

International Data Corporation (IDC) predicts that in the next four years, the China

Cloud computing market will be 1.1 trillion RMB Yuan. A huge number of network

users—especially small businesses—provide a good user base for the development

of Cloud computing in China. Cloud computing will greatly enhance electronic

levels of domestic small and medium enterprises (SMEs), and ultimately will

enhance the competitiveness of enterprises. This huge market opportunity is very

attractive for many companies and research institutions. Cloud computing is consid-

ered to be a new generation of high-speed network computing and services platform

that will lead to revolutionary changes in the computer field. In fact, many compa-

nies and research institutions have already begun research or planning, preparing to

get the competitive advantage of this next round of technology. From the perspec-

tive of virtualization, computers, networks, storage, databases, and scientific com-

puting devices can be potential Cloud computing resources, according to certain

rules and service agreements. IT industry leaders (e.g., IBM [1,7], Google, Amazon

[7], Microsoft [8], VMware [9]) have launched “Cloud computing” plans; other

well-known companies like Baidu, Alibaba, and Lenovo are also carrying out

Grid computing

Cloud
computing

News reference volume 

Search volume index

Grid computing Cloud computing

Figure 1.5 Trends of Cloud computing.
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related research; as are universities and research institutions around the world.

After establishing a Cloud computing platform, an important and key issue is the

effective allocation and management of the virtual share resources according to

user needs and to improve resource usage efficiency (Figure 1.6).

1.5 The classification of Cloud computing applications

Clouds in nature have very different shapes and slightly different physical processes

involved in their formation, but they still have some common characteristics. Based

on their similarities, combined with a need for observation and weather forecasting,

meteorologists divide the clouds into three levels based on elevation: low, medium,

and high.

Drawing similar classifications to those for clouds in nature, there are broad cat-

egories that apply in the Cloud computing industry.

1.5.1 Classification by service type

The industry generally believes that Cloud computing can be divided into the fol-

lowing bottom-up categories, depending on the type of service:

1. Infrastructure as a Service (IaaS) in the Cloud: provides infrastructure, including physical

and virtual servers, storage, and network bandwidth services directly to users. Users

design and implement applications based on their practical requirements, like Amazon

EC2 (Amazon Elastic Cloud Computing).

Google

Salesforce

The cloud

Microsoft

Amazon

Rackspace

Yahoo
Zoho

Figure 1.6 Cloud service providers.
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2. Platform as a Service (PaaS) in the Cloud: provides a hosting Cloud platform in which

users can put their applications onto the Cloud platform. Development and deployment of

the applications must comply with the specific rules and restrictions of the platform, such

as the use of certain programming languages, programming frameworks, and data storage

models. For example, Google App Engine provides an operating environment for Web

applications; once the applications are deployed, other involved management activities—

like dynamic resource management—will be the responsibility of the platform.

3. Application as a Service in the Cloud: provides software that can be used directly, most

of which is browser-based and specific for a particular function. For example, Salesforce

provides the customer relationship management system (CRM). The application is easy to

use in the Cloud, but its flexibility is low and it is generally only used for a specific appli-

cation (Table 1.1).

1.5.2 Classification by deployment method

As an innovative computing model, Cloud computing has many advantages that

previous models do not have, but it also brings a series of challenges, related to the

business model and techniques. The first is security: customer information is the

most valuable asset for enterprises that require a high security level, such as bank-

ing, insurance, trade, and the military. Once the information is stolen or damaged,

the consequences can be disastrous. The second challenge relates to reliability. For

example, banks require their transactions to be completed quickly and accurately,

because accurate data records and reliable information transmission is a necessary

condition for customer satisfaction. Another problem relates to regulatory issues.

Some companies want their IT departments to be completely controlled by the com-

pany, free from outside interference and control. Although Cloud computing can

provide users with guaranteed data security through system isolation and security

measures and can provide users with reliable service through service quality man-

agement, it still might not meet all the needs of users.

To solve this series of problems, the industry divides the Cloud into three cate-

gories according to the relationship between Cloud computing providers and users,

Table 1.1 Service type classification of Cloud computing

Classification Service type Flexibility/

Generality

Difficulty

level

Scale and

example

IaaS Basic computing,

storage, network

resources

High Difficult Large, Amazon

EC2

PaaS Application hosting

environment

Middle Middle Middle, Google

App Engine

SaaS Application with

specific function

Low Easy Small,

Salesforce

CRM
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namely, public, private, and hybrid Clouds, as shown in Figure 1.7. Users can

choose their own Cloud computing model according to their needs.

1. Public Cloud: The Cloud environment is shared by some businesses and users. In the public

Cloud, the service is provided by independent, third-party Cloud providers. The Cloud

provider also serves other users; these users share the resources owned by the Cloud provider.

2. Private Cloud: The Cloud environment is built and used by a company independently.

The private Cloud is owned by an enterprise or organization. In a private Cloud, users are

members of the enterprise or organization, and those members share the resources of the

Cloud computing environment. Users outside of the enterprise or organization cannot

access the services provided by the Cloud computing environment.

3. Hybrid Cloud: Refers to the mixture of a public and a private Cloud.

1.6 The different roles in the Cloud computing
industry chain

Cloud providers: Cloud providers stay in a high position of the Cloud computing

industry chain and provide hardware and software equipment and solutions for

Cloud users. They need to have a wealth of software, hardware, and industry expe-

rience. They provide services for other roles.

Cloud service providers: Cloud service providers use the platform provided by

Cloud providers to provide computing services. They need to work closely with the

Cloud providers (they can also build their own Cloud environment).

Enterprise users: A huge number of small and medium enterprises are users in

the Cloud computing industrial chain. Enterprises can rent Cloud platforms from

Cloud providers and service providers according to actual development needs, or

they can build a small, private Cloud.

Individual users: Individual users will use services mainly through thin clients,

mobile handsets, and other devices. Users no longer need to buy expensive high-

performance computers to run software; they also don’t need to install, maintain, or

upgrade software, so client systems’ costs and security vulnerabilities can be reduced.

In addition to the commercial Cloud, open-source Cloud platforms have been

widely applied in the industry, such as that in Hadoop [10,11], Eucalyptus [12].

Public cloud Hybrid cloud Private cloud

Internet user Intranet user in enterprise of organization

Figure 1.7 Cloud computing service model.
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1.7 The main features and technical challenges
of Cloud computing

1.7.1 The main features of Cloud computing

1. Virtualization

Cloud computing platforms and applications are built based mostly on resource virtua-

lization technology. Virtualization plays an important role in improving resource effi-

ciency and increasing service reliability and security. The authors in [1] describe the

practice and principle of virtualization technology in detail.

2. Dynamic (flexibility)

Cloud resources platforms can dynamically expand or reduce in size depending on

user needs, which reduces the investment risk for the user and meets the needs of different

users. Cloud computing gives people the sense that there are infinite computing resources

that can be used.

3. On-demand service

Cloud platforms and services can be provided and billed for according to the actual

needs of users. Cloud computing eliminates the risk of the one-time large investment, and

it allows users to use only the necessary amount of resources depending on their needs.

Therefore, services must be based on prices in the short term (e.g., by the hour), so users

can free up resources when they are no longer needed.

4. Economies of scale

Because Cloud computing is built based on large-scale resources (Google, IBM,

Microsoft, Amazon), the use of large-scale effects can reduce the rental or use fees and

thus can attract more users.

5. High reliability

Cloud computing platforms need to ensure that customer data is secure and the appli-

cation platform is reliable. Generally, multiple data and platform backups are used to

increase reliability. At the same time, Cloud computing platforms use dynamic network

management systems to monitor the status and efficiency of each resource node, to

dynamically migrate nodes that have low efficiency or failure, and to ensure that overall

system performance is not affected.

6. Dynamic Customization

Cloud rental resources must be highly customizable. Infrastructure as a service allows

users to deploy specialized and virtual appliances. Other services (PaaS and SaaS) provide

low flexibility and don’t apply to general purpose computing, but are still expected to pro-

vide a degree of customization.

Figure 1.8 shows the main features of Cloud computing.

1.7.2 Challenging issues

Security: For companies requiring a high level of data security (such as those in

banking, insurance, trade, or the military), customer information security level

requirements are extremely high. The ability of Cloud computing to ensure data

security is a general concern for these industries. Currently, researchers and service

providers have proposed many solutions. In the new application environment, there

are still many security issues to be resolved.
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In general, companies or organizations requiring high security, reliability, and IT

that can be monitored—such as that required by financial institutions, government

agencies, and large enterprises—are potential users of a private Cloud. Because

they already have large-scale IT infrastructures, they only need to invest a small

amount to upgrade their IT systems, they can have the flexibility and efficiency

brought by Cloud computing, and they can effectively avoid the negative impact of

using a public Cloud. In addition, they can also choose the hybrid Cloud and deploy

applications demanding low security and reliability—such as human resources man-

agement—on the public Cloud to lessen the burden on their IT infrastructures.

Most small and medium enterprises and start-up companies will choose a public

Cloud, while financial institutions, government agencies, and large enterprises are

more inclined to choose a private or hybrid Cloud.

Reliability issues: A Cloud computing platform needs to ensure the reliability of

customer data and application platforms. In a large-scale system, a good solution is

required to ensure high reliability. A dynamic network management system also

monitors the status and efficiency of resource nodes and migrates failed or ineffi-

cient nodes dynamically, so the overall system performance will not be affected.

Dynamically allocate on-demand: The dynamic expansion and reduction of

resources depending on the needs of users brings new challenges for Cloud plat-

forms and management systems.

Management issues: The management of Cloud computing platform is very com-

plex, including how to efficiently monitor system resources, how to dynamically

schedule and deploy resources, and how to manage clients. All are great challenges.

Cloud data center resource scheduling technology is at the core of Cloud comput-

ing, and is the key technology that allows Cloud computing to be used widely

and system performance to be improved, and it also takes into account energy sav-

ings. Advanced dynamic resource scheduling algorithms are of great significance

The IT application

Hardware and software resources

Changes in IT

Users’ access to 
resources on demand 
via the Internet

These resources are
dynamic and scalable

Users pay according
to their usage and
business

Figure 1.8 Features of Cloud computing.
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for improving computing resource efficiency of schools, government, research

institutions, and enterprises; saving energy; improving the sharing of resources;

and reducing operating costs. These algorithms deserve further systematic study

and research.

Standardization: Cloud computing has only been developed in recent years, and

first began to be used and promoted in large companies. Each company’s main

business is different (such as searching, mass information processing, flexible

Cloud computing, resource virtualization), so the methods of implementing technol-

ogy and service delivery are different. In March 2009, hundreds of IT companies

led by IBM, Cisco, SAP, EMC, RedHat, AMD, AT&T, and VMware jointly issued

the “Open Cloud Manifesto,” which promoted the declaration of cloud comput-

ing relevant standards. Other standards for different layers of cloud computers are

under development.

Summary

This chapter describes the background of Cloud computing, the driving force behind

Cloud computing, the development status and trends of Cloud computing, a prelimi-

nary classification of Cloud computing, the main features of Cloud computing, and

the challenges Cloud computing has faced. These introductions lay the foundation

for this book. The subsequent chapter will focus on the Cloud data center.
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2Big Data Technologies and Cloud

Computing

Main Contents of this Chapter

� The background and definition of big data
� Big data problems
� The dialectical relationship between Cloud computing and big data
� Big data technologies

2.1 The background and definition of big data

Nowadays, information technology opens the door through which humans step

into a smart society and leads to the development of modern services such as:

Internet e-commerce, modern logistics, and e-finance. It also promotes the devel-

opment of emerging industries, such as Telematics, Smart Grid, New Energy,

Intelligent Transportation, Smart City, and High-End Equipment Manufacturing.

Modern information technology is becoming the engine of the operation and

development of all walks of life. But this engine is facing the huge challenge of

big data [1]. Various types of business data are growing by exponential orders of

magnitude [2]. Problems such as data collection, storage, retrieval, analysis, and

the application of data can no longer be solved by traditional information proces-

sing technologies. These issues have become great obstacles to the realization of

a digital society, network society, and intelligent society. The New York Stock

Exchange produces 1 terabyte (TB) of trading data every day; Twitter generates

more than 7 TB of data every day; Facebook produces more than 10 TB of data

every day; the Large Hadron Collider located at CERN produces about 15 PB of

data every year. According to a study conducted by the well-known consulting

firm International Data Corporation (IDC), the total global information volume of

2007 was about 165 exabytes (EB) of data. Even in 2009 when the global financial

crisis happened, the global information volume reached 800 EB, which was an increase

of 62% over the previous year. In the future, the data volume of the whole world will

be doubled every 18 months. The number will reach 35 (zettabytes) ZB in 2020, about

230 times the number in 2007, yet the written record of 5000 years of human history

amounts to only 5 EB data. These statistics indicate the eras of TB, PB, and EB are all

in the past; global data storage is formally entering the “Zetta era.”

Beginning in 2009, “big data” has become a buzzword of the Internet informa-

tion technology industry. Most applications of big data in the beginning were in the

Internet industry: the data on the Internet is increasing by 50% per year, doubling
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every 2 years. Most global Internet companies are aware of the advent of the “big

data” era and the great significance of data. In May 2011, McKinsey Global

Institute published a report titled “Big data: The next frontier for innovation, com-

petition, and productivity” [3], and since the report was released, “big data” has

become a hot topic within the computer industry. The Obama administration in the

United States launched the “Big Data Research and Development Initiative” [4] and

allocated $200 million specifically for big data in April 2012, which set off a wave

of big data all over the world. According to the big data report released by Wikibon

in 2011 [5], the big data market is on the eve of a growth spurt: the global market

value of big data will reach $50 billion in the next five years. At the beginning of

2012, the total income of large data�related software, hardware, and services was

around $5 billion. As companies gradually realize that big data and its related anal-

ysis will form a new differentiation and competitive advantage and will improve

operational efficiency, big data�related technologies and services will see consider-

able development, and big data will gradually touch the ground and big data market

will maintain a 58% compound annual growth rate over the next five years. Greg

McDowell, an analyst with JMP Securities, said that the market of big data tools is

expected to grow from $9 billion to $86 billion in 10 years. By 2020, investment in

big data tools will account for 11% of overall corporate IT spending.

At present the industry does not have a unified definition of big data; big data

has been defined in differing ways as follows by various parties:

Big Data refers to datasets whose size is beyond the capability of typical database

software tools to capture, store, manage, and analyze.

—McKinsey.

Big Data usually includes datasets with sizes beyond the capability of commonly

used software tools to capture, curate, manage, and process the data within a toler-

able elapsed time.

—Wikipedia.

Big Data is high volume, high velocity, and/or high variety information assets that

require new forms of processing to enable enhanced decision making, insight dis-

covery, and process optimization.

—Gartner.

Big data has four main characteristics: Volume, Velocity, Variety, and Value [6]

(referred to as “4V,” referencing the huge amount of data volume, fast processing

speed, various data types, and low-value density). Following are brief descriptions

for each of these characteristics.

Volume: refers to the large amount of data involved with big data. The scale of

datasets keeps increasing from gigabytes (GB) to TB, then to the petabyte (PB) level;

some even are measured with exabytes (EB) and zettabytes (ZB). For instance, the

video surveillance cameras of a medium-sized city in China can produce tens of TB

data every day.
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Variety: indicates that the types of big data are complex. In the past, the data

types that were generated or processed were simpler, and most of the data was

structured. But now, with the emerging of new channels and technologies, such as

social networking, the Internet of Things, mobile computing, and online advertis-

ing, much semi-structured or unstructured data is produced, in the form of text,

XML, emails, blogs, and instant messages—as just a few examples—resulting in

a surge of new data types. Companies now need to integrate and analyze data

from complex traditional and nontraditional sources of information, including the

companies’ internal and external data. With the explosive growth of sensors,

smart devices, and social collaborative technologies, the types of data are

uncountable, including text, microblogs, sensor data, audio, video, click streams,

log files, and so on.

Velocity: The velocity of data generation, processing, and analysis continues to

accelerate. There are three reasons: the real-time nature of data creation, the

demands from combining streaming data with business processes, and decision-

making processes. The velocity of data processing needs to be high, and processing

capacity shifts from batch processing to stream processing. There is a “one-second

rule” in the industry referring to a standard for the processing of big data, which

shows the capability of big data processing and the essential difference between it

and traditional data mining.

Value: Because of the enlarging scale, big data’s value density per unit of data is

constantly reducing, however, the overall value of the data is increasing. Big data is

even compared to gold and oil, indicating big data contains unlimited commercial

value. According to a prediction from IDC research reports, the big data technology

and services market will rise from $3.2 billion in 2010 to $16.9 billion in 2015, will

achieve an annual growth rate of 40%, and will be seven times the growth rate of

the entire IT and communication industry. By processing big data and discovering

its potential commercial value, enormous commercial profits can be made. In spe-

cific applications, big data processing technologies can provide technical and plat-

form support for pillar industries of the nation by analyzing, processing, and mining

data for enterprises; extracting important information and knowledge; and then

transforming it into useful models and applying them to the processes of research,

production, operations, and sales. Meanwhile, many countries are strongly advocat-

ing the development of the “smart city” in the context of urbanization and informa-

tion integration, focusing on improving people’s livelihoods, enhancing the

competitiveness of enterprises, and promoting the sustainable development of cities.

For developing into a “smart city,” a city would need to utilize the Internet of

Things, Cloud computing, and other information technology tools comprehensively;

integrate the city’s existing information bases; integrate advanced service concepts

from urban operations; establish a widely deployed and deeply linked information

network; comprehensively perceive many factors, such as resources, environment,

infrastructures, and industries of the city; build a synergistic and shared urban infor-

mation platform; process and utilize information intelligently, so as to provide intel-

ligent response and control for city operation and resource allocation; provide the

intelligent basis and methods for the decision making in social management and
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public services; and offer intelligent information resources and open information

platforms to enterprises and individuals.

Data is undoubtedly the cornerstone of the new IT services and scientific

research, and big data processing technologies have undoubtedly become the hot

spot of today’s information technology development. The flourishing of big data

processing technologies also heralds the arrival of another round of the IT revolu-

tion. On the other hand—with the deepening of national economic restructuring and

industrial upgrading—the role of information processing technologies will become

increasingly prominent, and big data processing technologies will become the best

breakthrough point for achieving advances in core technology, progress chasing,

application innovation, and reducing lock-in in the informatization of the pillar

industries of a nation’s economy [7].

2.2 Big data problems

Big data is becoming an invisible “gold mine” for the potential value it contains.

With the accumulation and growth of production, operations, management, monitor-

ing, sales, customer services, and other types of data, as well as the increase of user

numbers, analyzing the correlation patterns and trends from the large amount of data

makes it possible to achieve efficient management, precision marketing. This can be

a key to opening this “gold mine.” However, traditional IT infrastructure and meth-

ods for data management and analysis cannot adapt to the rapid growth of big data.

We summarize the problems of big data into seven categories in Table 2.1.

2.2.1 The problem of speed

Traditional relational database management systems (RDBMS) generally use cen-

tralized storage and processing methods instead of a distributed architecture. In

many large enterprises, configurations are often based on IOE (IBM Server, Oracle

Database, EMC storage). In the typical configuration, a single server’s configura-

tion is usually very high, there can be dozens of CPU cores, and memory can reach

the hundreds of GB. Databases are stored in high-speed and large-capacity disk

arrays and storage space can be up to the TB level. The configuration can meet the

demands of traditional Management Information Systems, but when facing ever-

growing data volume and dynamic data usage scenarios, this centralized approach

is becoming a bottleneck, especially for its limited speed of response. Because of

its dependence on centralized data storage and indexing for tasks such as importing

and exporting large amounts of data, statistical analysis, retrieval, and queries, its

performance declines sharply as data volume grows, in addition to the statistics and

query scenarios that require real-time responses. For instance, in the Internet of

Things, the data from sensors can be up to billions of items; this data needs real-

time storage, queries, and analysis; traditional RDBMS is no longer suitable for

such application requirements.
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2.2.2 The type and architecture problem

RDMBS has developed very mature models for the storage, queries, statistics, and

processing of data that are structured and have fixed patterns. With the rapid devel-

opment of the Internet of Things and Internet and mobile communication networks,

the formats and types of data are constantly changing and developing. In the field

of Intelligent Transportation, the data involved may contain text, logs, pictures,

videos, vector maps, and various other kinds of data from different monitoring

sources. The formats of this data are usually not fixed; it will be difficult to respond

to changing needs if we adopt structured storage models. So we need to use various

modes of data processing and storage and to integrate structured and unstructured

data storage to process this data, whose types, sources, and structures are different.

The overall data management model and architecture also require new types of dis-

tributed file systems and distributed NoSQL database architecture to adapt to large

amounts of data and changing structures.

2.2.3 Volume and flexibility problems

As noted earlier—due to huge volume and centralized storage—there are problems

with big data’s speed and response. When the amount of data increases and the

Table 2.1 Problems of big data

Classification of big data

problems

Description

Speed Import and export problems

Statistical analysis problems

Query and retrieval problems

Real-time response problems

Types and structures Multisource problems

Heterogeneity problems

The original system’s infrastructure problems

Volume and flexibility Linear scaling problems

Dynamic scheduling problems

Cost Cost difference between mainframe and PC

servers

Cost control of the original system’s adaptation

Value mining Data analysis and mining

Actual benefit from data mining

Security and privacy Structured and nonstructured

Data security

Privacy

Connectivity and data sharing Data standards and interfaces

Protocols for sharing

Access control
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amount of concurrent read and write becomes larger and larger, a centralized file

system or single database will become the deadly performance bottleneck. After all,

a single machine can only withstand limited pressure. We can distribute the pres-

sure to many machines up to a point at which they can withstand by adopting fra-

meworks and methods with linear scalability, so the number of files or database

servers can dynamically increase or decrease according to the amount of data and

concurrence, to achieve linear scalability.

In terms of data storage, a distributed and scalable architecture needs to be

adopted, such as the well-known Hadoop file system [8] and HBase database [9].

Meanwhile, in respect to data processing, a distributed architecture also needs to be

adopted, assigning the data processing tasks to many computing nodes, in which we

the correlation between the data storage nodes and the computing nodes needs to be

considered. In the computing field, the allocation of resources and tasks is actually

a task scheduling problem. Its main task is to make the best match between

resources and tasks or among tasks, based on resource usage status (e.g., including

the CPU, memory, storage, and network resources) of each individual node in the

cluster and the Quality of Service (QoS) requirement of each user task. Due to the

diversity of users’ QoS requirements and the changing status of resources, finding

the appropriate resources for distributed data processing is a dynamic scheduling

problem.

2.2.4 The cost problem

For centralized data storage and processing, when choosing hardware and software,

a basic approach is to use very high-end mainframe or midrange servers and high-

speed, high-reliability disk arrays to guarantee data processing performance. These

hardware devices are very expensive and frequently cost up to several million dol-

lars. For software, the products from large software vendors—such as Oracle, IBM,

SAP, and Microsoft—are often chosen. The maintenance of servers and databases

also requires professional technical personnel, and the investment and operation

costs are high. In the face of the challenges of massive data processing, these com-

panies have also introduced an “All-In-One” solution in the shape of a monster

machine—such as Oracle’s Exadata or SAP’s Hana—by stacking multi-server, mas-

sive memory, flash memory, high-speed networks, and other hardware together to

relieve the pressure of data. However, the hardware costs in such approaches are

significantly higher than an ordinary-sized enterprise can afford.

The new distributed storage architecture and distributed databases—such as

HDFS, HBase, Cassandra [10], MongoDB [11]—don’t have the bottleneck of cen-

tralized data processing and aggregation as they use a decentralized and massive

parallel processing (MPP) architecture. Along with linear scalability, they can deal

with the problems of storage and processing of big data effectively. For software

architecture, they also have some automanagement and autohealing mechanisms to

handle occasional failure in massive nodes and to guarantee the robustness of the

overall system, so the hardware configuration of each node does not need to be

high. An ordinary PC can even be used as a server, so the cost of servers can be
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greatly reduced; in terms of software, open-source software also gives a very large

price advantage.

Of course, we cannot make a simple comparison between the costs of hardware

and software when we talk about cost problems. If we want to migrate systems and

applications to the new distributed architecture, we must make many adjustments

from the platforms in the bottom to the upper applications. Especially for database

schema and application programming interfaces, there is a big difference between

NoSQL databases and the original RDBMS; enterprises need to assess the cost,

cycle, and risk of migration and development. Additionally, they also need to con-

sider the cost from service, training, operation, and maintenance aspects. But in

general the trend is for these new data architectures and products to become better

developed and more sophisticated, as well as for some commercial operating com-

panies to provide professional database development and consulting services based

on open source. The new distributed, scalable database schema is, therefore, bound

to win in the big data wave, defeating the traditional centralized mainframe model

in every respect: from cost to performance.

2.2.5 The value mining problem

Due to huge and growing volumes, the value density per data unit is constantly

shrinking, while the overall value of big data is steadily increasing. Big data is anal-

ogous to oil and gold, so we can mine its huge business value [12]. If we want to

extract the hidden patterns from large amount of data, we need deep data mining

and analysis. Big data mining is also quite different from traditional data mining

models. Traditional data mining generally focuses on moderate data size and its

algorithm is relatively complex and convergence is slow, while in big data the

quantity of data is massive and the processes of data storage, data cleaning, and

ETL (extraction, transformation, loading) deal with the requirements and challenges

of massive volume, which generally suggests the use of distributed and parallel pro-

cessing models. For example, in the case of Google and Microsoft’s search engines,

hundreds or even thousands of servers working synchronously are needed to per-

form the archive storage of users’ search logs generated from search behaviors of

billions of worldwide users. Similarly, when mining the data, we also need to

restructure traditional data mining algorithms and their underlying processing archi-

tectures, adopting the distributed and parallel processing mechanism to achieve fast

computing and analysis over massive amounts of data. For instance, Apache’s

Mahout [13] project provides a series of parallel implementations of data mining

algorithms. In many application scenarios, the mining results even need to be

returned in real time, which poses significant challenges to the system: data mining

algorithms usually take a long time, especially when the amount of data is huge. In

this case, maybe only a combination of real-time computation and large quantities

of offline processing can meet the demand.

The actual gain from data mining is an issue to be carefully assessed before min-

ing big data’s value, as well as the awareness that not all of the data mining pro-

grams will lead to the desired results. Firstly, we need to guarantee the authenticity
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and completeness of the data. For example, if the collection of information intro-

duces big noise itself, or some key data is not included, the value that is dug out

will be undermined. Second, we also need to consider the cost and benefit of the

mining. If the investments of manpower and hardware and software platforms are

costly and the project cycle is long, but the information extracted is not very valu-

able for an enterprise’s production decisions or cost-effectiveness, then the data

mining is impractical and not worth the effort.

2.2.6 The security and privacy problem

From the perspective of storage and safety reliability, big data’s diverse formats

and huge volume have also brought a lot of challenges. For structured data,

RDBMSs have already formed a set of comprehensive mechanisms for storage,

access, security, and backup control after decades of development. The huge vol-

ume of big data has impacted traditional RDBMS: centralized data storage and pro-

cessing are shifting to distributed parallel processing, as already mentioned. In most

cases, big data is unstructured data, thus a lot of distributed file storage systems and

distributed NoSQL databases are derived to deal with this kind of data. But such

emerging systems need to be further developed, especially in areas such as user

management, data access privileges, backup mechanisms, and security controls.

Security, in short, first is the prevention of data loss, which requires reasonable

backup and redundancy mechanisms for the massive volume of structured and

unstructured data, so data will never be lost under any circumstances. Second, secu-

rity refers to protecting the data from unauthorized access. Only the users with the

right privileges and permissions can see and access the data. Since large amounts of

unstructured data may require different storage and access mechanisms, a unified

security access control mechanism for multisource and multitype data has yet to be

constructed and become available. Because big data means more sensitive data is

put together, it’s more attractive to potential hackers: a hacker will be able to get

more information if he manages a successful attack—the “cost performance ratio”

is higher. All of these issues make it easier for big data to become the target of

attack. In 2012, LinkedIn was accused of leaking 6.5 million user account pass-

words; Yahoo! faced network attacks, resulting in 450,000 user ID leaks. In

December 2011, Chinese Software Developer Network’s security system was

hacked, and 6,000,000 user login names, passwords, and email addresses were

leaked.

Privacy problems are also closely associated with big data. Due to the rapid

development of Internet technology and the Internet of Things, all kinds of informa-

tion related to our lives and jobs have been collected and stored. We are always

exposed to the “third eye.” No matter when we are surfing the Internet, making a

phone call, writing microblogs, using Wechat, shopping, or traveling, our actions

are always being monitored and analyzed. The in-depth analysis and modeling of

user behaviors can serve customers better and make precision marketing possible.

However, if the information is leaked or abused, it is a direct violation to the user’s

privacy, bringing adverse effects to users, and even causing life and property loss.
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In 2006, the US DVD rental company Netflix organized an algorithm contest. The

company released a million renting records from about 500,000 users, and publicly

offered a reward of one million dollars, organizing a software design contest to

improve the accuracy of their movie recommendation system; with the condition of

victory was an improvement in their recommendation engine’s accuracy by 10%.

Although the data was carefully anonymized by the company, a user was still iden-

tified and disclosed by the data; a closeted lesbian mother, going by the name

“Anonymous” sued Netflix. She came from the conservative Midwest. On Twitter.

com, a popular site in the United States, many users are accustomed to publishing

their locations and activities at any time. There are a few sites, such as

“PleaseRobMe.com” and “WeKnowYourHouse.com,” that can speculate the times

that the users are not at home, get the user’s exact home address, and even find

photos of the house, just based on the information the users published. Such Web

sites are designed to warn us that we are always exposed to the public eye; if we

don’t develop an awareness of safety and privacy, we will bring disaster upon our-

selves. Nowadays, many countries around the world—including China—are

improving laws related to data use and privacy to protect privacy information from

being abused.

2.2.7 Interoperability and data sharing issues

In the process of enterprise information development in China, fragmentation and

information-silos are common phenomena. Systems and data between different indus-

tries have almost no overlap, while within an industry—such as within the transporta-

tion and social security systems—they are divided and constructed by administrative

regions such that information exchange and collaboration across regions are very diffi-

cult. More seriously, even within the same unit—such as in the development of infor-

mation systems within a district hospital—subsystems for data such as medical record

management, bed information, and drug management are developed discretely, and

there is no information sharing and no interoperability. “Smart City” is one of the key

components in China’s Twelfth Five-Year Plan for information development. The

fundamental goals of “Smart City” are: to achieve interoperability and the sharing of

information, so as to realize intelligent e-government, social management, and

improvement in people’s lives. Thus, in addition to creating a Digital City where

information and data are digitized, we also need to establish interconnection—to open

access to the data interfaces of all disciplines, so as to achieve interoperability—and

then to develop intelligence. For example, in the emergency management of urban

areas, we need data and assistance from many departments and industries, such as:

transportation, census, public security, fire, and health care. At present the data sharing

platform developed by the US federal government, www.data.gov, and the data

resource Network of Beijing Municipal Government, www.bjdata.gov.cn, are great

moves toward open access to data and data sharing.

To achieve cross-industry data integration, we need to make uniform data stan-

dards and exchange interfaces as well as sharing protocols, so we can access,

exchange, and share data from different industries, different departments, and
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different formats on a uniform basis. For data access, we also need to have detailed

access control to regulate which users can access which type of data under what cir-

cumstances. In the big data and Cloud computing era, data from different industries

and enterprises may be stored on a single platform and data center, and we need to

protect sensitive information—such as data related to corporate trade secrets and

transaction information. Although their processing relies on the platform, we should

require that—other than authorized personnel from the enterprises—platform

administrators and other companies cannot gain access to such data.

2.3 The dialectical relationship between Cloud
computing and big data

Cloud computing has development greatly since 2007. Cloud computing’s core

model is large-scale distributed computing, providing computing, storage, network-

ing, and other resources to many users in service mode, and users can use them

whenever they need them [14]. Cloud computing offers enterprises and users high

scalability, high availability, and high reliability. It can improve resource utilization

efficiency and can reduce the cost of business information construction, investment,

and maintenance. As the public Cloud services from Amazon, Google, and

Microsoft become more sophisticated and better developed, more and more compa-

nies are migrating toward the Cloud computing platform.

Because of the strategic planning needs of the country as well as positive guid-

ance from the government, Cloud computing and its technologies have made great

progress in recent years in China. China has set up models in several cities, includ-

ing Beijing, Shanghai, Shenzhen, Hangzhou, and Wuxi. Beijing’s “Lucky Cloud”

plan, Shanghai’s “CloudSea” plan, Shenzhen’s “International Joint Laboratory of

Cloud Computing,” Wuxi’s “Cloud Computing Project,” and Hangzhou’s “West

Lake Cloud Computing Platform for Public Service” have been launched. Other cit-

ies, such as Tianjin, Guangzhou, Wuhan, Xi’an, Chongqing, and Chengdu, have

also introduced corresponding Cloud computing development plans or have set up

Cloud computing alliances to carry out research, development, and trials of Cloud

computing. But the popularity of Cloud computing in China is still largely limited

by infrastructure and a lack of large-scale industrial applications, so Cloud comput-

ing has not yet gained its footing. The popularity of the Internet of Things and

Cloud computing technology relate to the idea that they are humanity’s great vision,

so that it can achieve large-scale, ubiquitous, and collaborative information collec-

tion, processing, and application. However, it is based on the premise that most

industries and enterprises have good foundations and experience in informatization

and have the urgent need to transform the existing system architecture and to

improve the efficiency of the system. The reality is that most of China’s Small and

Medium Enterprises have only just begun in the area of informatization, and only a

few large companies and national ministries have the necessary foundation in infor-

mation development.
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The outbreak of big data is a thorny problem encountered in social and informa-

tization development. Because of the growth of data traffic and data volume, data

formats are now multisource and heterogeneous, and they require real-time and

accurate data processing. Big data can help us discover the potential value of large

amounts of data. Traditional IT architecture is incapable of handling the big data

problem, as there are many bottlenecks, such as: poor scalability; poor fault toler-

ance; low performance; difficulty in installation, deployment, and maintenance; and

so on. Because of the rapid development of the Internet of Things, the Internet, and

mobile communication network technology in recent years, the frequency and speed

of data transmission has greatly accelerated. This gives rise to the big data problem,

and the derivative development and deep recycling use of data make the big data

problem even more prominent.

Cloud computing and big data are complementary, forming a dialectical relation-

ship. Cloud computing and the Internet of Things’ widespread application is peo-

ple’s ultimate vision, and the rapid increase in big data is a thorny problem that is

encountered during development. The former is a dream of humanity’s pursuit of

civilization, the latter is the bottleneck to be solved in social development. Cloud

computing is a trend in technology development, while big data is an

inevitable phenomenon of the rapid development of a modern information society.

To solve big data problems, we need modern means and Cloud computing technolo-

gies. The breakthrough of big data technologies can not only solve the practical

problems, but can also make Cloud computing and the Internet of Things’ technolo-

gies land on the ground and be promoted and applied in in-depth ways.

From the development of IT technologies, we can summarize a few patterns:

1. The competition between Mainframe and personal PCs ended in the PC’s triumph. The

battle between Apple’s iOS and the Android, and the open Android platform has taken

over more than 2/3 of market share in only a couple of years. Nokia’s Symbian operating

system is on the brink of oblivion because it is not open. All of these situations indicate

that modern IT technologies need to adopt the concept of openness and crowdsourcing to

achieve rapid development.

2. The collision of existing conventional technologies with Cloud computing technology is

similar to the aforementioned situations; the advantage of Cloud computing technology

is its utilization of the crowdsourcing theory and open-source architecture. Its construction

is based on a distributed architecture of open platform and novel open-source technolo-

gies, which allow it to solve problems that the existing centralized approach is difficult to

solve or cannot solve. TaoBao, Tencent, and other large Internet companies once also

relied on proprietary solutions provided by big companies such as Sun, Oracle, and EMC.

Then they abandoned those platforms because of the cost and adopted open-source tech-

nologies. Their products have also, in turn, ultimately contributed to the open-source com-

munity, reflecting the trend in information technology development.

3. The traditional industry giants are shifting toward open-source architecture; this is a his-

toric opportunity for others to compete. Traditional industry giants and large state enter-

prises—such as the National Grid, telecommunications, banking, and civil aviation—rely

too heavily on sophisticated proprietary solutions provided by foreign companies for his-

torical reasons, resulting in a pattern that lacks innovation and has been hijacked by for-

eign products. Analyzing from the perspective of the path and the plan to solve the big
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data problem, we must abandon the traditional IT architecture gradually, and must begin

to utilize the new generation of information technology represented by Cloud technology.

Despite the fact that advanced Cloud computing technology originated mainly in the

United States, because of open-source technology, the gap between Chinese technology

and the advanced technology is not large. The urgent big data problem of applying Cloud

computing technologies to large-scale industry is also China’s historic opportunity to

achieve breakthrough innovations, defeat monopolies, and catch up with international

advanced technologies.

2.4 Big data technologies

Big data brings not only opportunities but also challenges. Traditional data proces-

sing has been unable to meet the massive real-time demand of big data; we need

the new generation of information technology to deal with the outbreak of big data.

Table 2.2 classifies big data technologies into five categories.

Infrastructure support: mainly includes infrastructure-level data center manage-

ment, Cloud computing platforms, Cloud storage equipment and technology, net-

work technology, and resource monitoring technology. Big data processing needs

the support from Cloud data centers that have large-scale physical resources and

Table 2.2 Classification of big data technologies

Classification of big data

technologies

Big data technologies and tools

Infrastructure support Cloud Computing Platform

Cloud Storage

Virtualization Technology

Network Technology

Resource Monitoring Technology

Data acquisition Data Bus

ETL Tools

Data storage Distributed File System

Relational Database

NoSQL Technology

Integration of Relational Databases and Non-

Relational Databases

In-Memory Database

Data computing Data Queries, Statistics, and Analysis

Data Mining and Prediction

Graph Analysis

BI (Business Intelligence)

Display and interaction Graphics and Reports

Visualization Tools

Augmented Reality Technology
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Cloud computing platforms that have efficient scheduling and management

functionalities.

Data acquisition: data acquisition technology is a prerequisite for data proces-

sing; first we need the means of data acquisition for collecting the information and

then we can apply top-layer data processing technologies to them. Besides the vari-

ous types of sensors and other hardware and software equipment, data acquisition

involves the ETL (extraction, transformation, loading) processing of data, which is

actually preprocessing, which includes cleaning, filtering, checking and conversion,

and converting the valid data into suitable formats and types. Meanwhile, to support

multisource and heterogeneous data acquisition and storage access, a enterprise

data bus is needed to facilitate the data exchange and sharing between the various

enterprise applications and services.

Data storage: after collection and conversion, data needs to be stored and

archived. Facing the large amounts of data, distributed file storage systems and dis-

tributed databases are generally used to distribute the data to multiple storage

nodes, and are also needed to provide mechanisms such as backup, security, access

interfaces, and protocols.

Data computing: data queries, statistics, analysis, forecasting, mining, graph

analysis, business intelligence (BI), and other relevant technologies are collectively

referred to as data computing technologies. Data computing technologies cover all

aspects of data processing and utilize the core techniques of big data technology.

Display and interaction: display of data and interaction with data are also essen-

tial in big data technologies, since data will eventually be utilized by people to pro-

vide decision making support for production, operation, and planning. Choosing an

appropriate, vivid, and visual display can give a better understanding of the data, as

well as its connotations and associated relationships, and can also help with the

interpretation and effective use of the data, to fully exploit its value. For the means

of display, in addition to traditional reporting forms and graphics, modern visualiza-

tion tools and human�computer interaction mechanisms—or even Augmented

Reality (AR) technology, such as Google Glasses—can be used to create a seamless

interface between data and reality.

2.4.1 Infrastructure support

Big data processing needs the support of cloud data centers that have large-scale

physical resources and Cloud computing platforms that have efficient resource

scheduling and management. Cloud computing management platforms can: provide

flexible and efficient deployment, operation, and management environments for

large data centers and enterprises; support heterogeneous underlying hardware and

operating systems with virtualization technology; provide applications with cloud

resource management solutions that are secure, high performance, highly extensi-

ble, highly reliable, and highly scalable; reduce the costs of application develop-

ment, deployment, operation, and maintenance; and improve the efficiency of

resource utilization.
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As a new computing model, Cloud computing has gained great momentum in

both academia and industry. Governments, research institutions, and industry lea-

ders are actively trying to solve the growing computing and storage problems in the

Internet age using Cloud computing. In addition to Amazon Web Services (AWS),

Google’s App Engine, and Microsoft’s Windows Azure Services—along with other

commercial cloud platforms—there are also many open-source Cloud computing

platforms, such as: OpenNebula [15,16], Eucalyptus [17], Nimbus [18], and

OpenStack [19]. Each platform has its own significant features and constantly

evolving community.

AWS is the most popular Cloud computing platform; in the first half of 2013, its

platform and Cloud computing services have earned $1.7 billion, with year-on-year

growth of 60%. The most distinct features of its system architecture are open data,

functioning via Web Service interfaces, and the achievement of loose-coupling via

Service Oriented Architecture (SOA). The web service stack AWS provides can be

divided into four layers:

1. The Access Layer: provides management console, API, and various command-line tools.

2. The Common Service Layer: includes authentication, monitoring, deployment, and

automation.

3. The PaaS Layer: includes parallel processing, content delivery, and messaging services.

4. The IaaS Layer: includes Cloud computing platform EC2, Cloud storage services S3/EBS,

network services VPC/ELB, and database services.

Eucalyptus is an open-source Cloud computing platform that attempts to clone

AWS. It has realized functionalities similar to Amazon EC2, achieving flexible and

practical Cloud computing with computing clusters and workstation clusters; it pro-

vides compatibility interfaces for EC2 and S3 systems. The applications that use

these interfaces can interact directly with Eucalyptus, and it supports Xen [20] and

KVM [21] virtualization technology, as well as Cloud management tools for system

management and user account settlements. Eucalyptus consists of five major com-

ponents, namely, cloud controller CLC, cloud storage service Walrus, cluster con-

troller CC, storage controller SC, and node controller NC. Eucalyptus manages

computing resources by way of “Agents”: components that can collaborate together

to provide the required Cloud services.

OpenNebula is an open-source implementation of the virtualization management

of virtual infrastructure and Cloud computing initiative by the European Research

Institute in 2005. It’s an open-source tool used to create IaaS private Clouds, public

Clouds, and hybrid Clouds, and is also a modular system that can create different

Cloud architectures and interact with a variety of data center services. OpenNebula

has integrated storage, network, virtualization, monitoring, and security technolo-

gies. It can deploy multilayered services in a distributed infrastructure in the form

of virtual machines according to allocation policies. OpenNebula can be divided

into three layers: the interface layer, the core layer, and the driver layer.

1. The interface layer provides native XML-RPC interfaces and implements various APIs,

such as: EC2, Open Cloud Computing Interface, and OpenNebula Cloud API, giving users

a variety of access options.

30 Optimized Cloud Resource Management and Scheduling



2. The core layer provides core functionalities such as unified plug-in management, request

management, VM lifecycle management, hypervisor management, network resources

management, and storage resource management in addition to others.

3. The final layer is the driver layer. OpenNebula has a set of pluggable modules to interact

with specific middleware (e.g. virtualization hypervisor, cloud services, file transfer

mechanisms or information services), these adaptors are called Drivers.

OpenStack is an open-source Cloud computing virtualization infrastructure with

which users can build and run their Cloud computing and storage infrastructure. APIs

compatible with Amazon EC2/S3 allows users to interact with Cloud services provided

by OpenStack, and it also allows client tools written for AWS to work with

OpenStack. OpenStack is among the best as far as the implementation of SOA and the

decoupling of service-oriented components. The overall architecture of OpenStack is

also divided into three layers. The first layer is the access layer for applications, man-

agement portals (Horizon), and APIs; the core layer comprises computing services

(Nova), storage services (including the object storage service Swift and block storage

service Cinder), and network services (Quantum); layer 3 is for shared services, which

now includes identity management service (keystone) and image service (Glance).

Nimbus System is an open-source system, providing interfaces that are compati-

ble with Amazon EC2. It can create a virtual machine cluster promptly and easily

so that a cluster scheduling system can be used to schedule tasks, just like in an

ordinary cluster. Nimbus also supports different virtualization technologies (XEN

and KVM). It is mainly used in scientific computing.

2.4.2 Data acquisition

Sufficient scale of data is the basis of big data strategic development for enterprises,

so data acquisition has become the first step of big data analysis. Data acquisition is

an important part of the value mining of big data, and the subsequent analysis and

data mining rely on it. The significance of big data is not in grasping the sheer scale

of the data, but rather in the intelligent processing of the data—the analysis and

mining of valuable information from it—but the premise is to have a large amount

of data. Most enterprises have difficulty judging which data will become data assets

in the future and the method for refining the data into real revenue. For this, even

big data service vendors cannot give a definitive answer. But one thing is for sure:

in the era of big data, one who has enough data is likely to rule the future: the

acquisition of big data now is the accumulation of assets for the future.

Data acquisition can be accomplished via sensors in the Internet of Things and

also can be derived from network information. For example, in Intelligent

Transportation, data acquisition may include information collection based on GPS

positioning, image collection based on traffic crossroads, and coil signal collection

based on intersections. Data acquisition on the Internet, in contrast, collects a vari-

ety of page and user visit information from various network media, such as: search

engines, news sites, forums, microblogs, blogs, and e-commerce sites, and the

contents are mainly text, URL, access logs, dates, and pictures. Preprocessing,
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such as: cleaning, filtering, and duplicate removal, is then needed, followed by cate-

gorization, summarization, and archiving.

ETL tools are responsible for extracting the different types and structures of data

from distributed, heterogeneous data sources, such as: text data, relational data, pic-

tures, video, and other unstructured data, to a temporary middle layer to clean, con-

vert, classify, integrate, and finally load them into the corresponding data storage

systems. These systems include data warehouses and data marts, which serve as the

basis for online analytical processing and data mining. ETL tools for big data are

different from the traditional ETL process: on the one hand the volume of big data

is huge, on the other hand the data’s production speed is very fast. For example,

video cameras and smart meters in a city generate large amounts of data every sec-

ond, thus preprocessing of data has to be real time and fast. When choosing ETL

architecture and tools, a company also adopts modern information technology, such

as: distributed memory databases, real-time stream processing systems.

There are various applications and various data formats and storage requirements

for modern enterprises, but between enterprises and within enterprises, there exists

the problems of fragmentation and information islands. Enterprises cannot always

easily achieve controlled data exchange and sharing, and the limitations of develop-

ment technologies and environments also set up barriers to enterprise data sharing.

This can hinder data exchange and sharing between applications and the enterprise’s

ability to control, manage, and secure data. To achieve cross-industry and cross-

departmental data integration—especially in the development of a Smart City—we

need to develop unified data standards as well as exchange interfaces and sharing

protocols, so data from different industries and different departments with different

formats can be accessed, exchanged, and shared based in a unified way. With enter-

prise data bus (EDS), we can provide data access functions to all kinds of data and

can separate the enterprise’s data access integration from the enterprise’s functional

integration.

EDS creates an abstraction layer for data access, so corporate business functions

can avoid the details of data access. Business components only need to contain ser-

vice function components (used to implement services) and data access components

(by the use of EDS). By means of EDS, we can provide a unified data conversion

interface between the data models for enterprise management and application sys-

tems, and can effectively reduce coupling between the various application services.

In big data scenarios, there are a large number of synchronized data access requests

in EDS. The performance degradation of any module in the bus will greatly affect

the functionality of the bus, so EDS needs to be implemented in a large-scale, con-

current, and highly scalable way as well.

2.4.3 Data storage

Big data is accumulating large amounts of information each year. Combined with

existing historical data information, it has brought great opportunities and chal-

lenges to the data storage and data processing industry. In order to meet the fast-

growing storage demand, Cloud storage requires high scalability, high reliability,
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high availability, low cost, automatic fault tolerance, and decentralization. Common

forms of Cloud storage can be divided into distributed file systems and distributed

databases. Distributed file systems use large-scale distributed storage nodes to meet

the needs of storing large amounts of files, and distributed NoSQL databases sup-

port the processing and analysis of massive amounts of unstructured data.

Early on when Google was facing the problems of storage and analysis of large

numbers of Web pages, it developed Google File System (GFS) [22] and the

MapReduce distributed computing and analysis model [23�25] based on GFS.

Since some applications need to deal with a large amount of formatted and semi-

formatted data, Google also built a large-scale database system called

BigTable [26], which supports weak consistency and is capable of indexing, query-

ing, and analyzing massive amounts of data. This series of Google products has

opened the door to massive data storage, querying, and processing in the Cloud

computing era, and has become the de facto standard in this field, with Google

remaining a technology leader.

Google’s technology was not open source, so Yahoo and open-source communi-

ties developed Hadoop system collaboratively, which is an open-source implemen-

tation of MapReduce and GFS. The design principles of its underlying file system

HDFS is completely consistent with GFS, and an open-source implementation of

BigTable is also provided, which is a distributed database system named HBase.

Since their launch, Hadoop and HBase have been widely applied all over the world.

They are now managed by the Apache Foundation. Yahoo’s own search system

runs on Hadoop clusters of hundreds of thousands of servers.

GFS has fully considered the harsh environment it faces in running a distributed

file system in a large-scale data cluster:

1. A large number of nodes may encounter failure so fault tolerance and automatic recovery

functions may need to be integrated into the system.

2. Construct special file system parameters: files are usually measured in GB, and there may

be a large number of small files.

3. Consider the characteristics of applications, support file append operations, optimize

sequential read and write speeds.

4. Some specific operations of the file system are no longer transparent and need the assis-

tance of application programs.

Figure 2.1 depicts the architecture of the GFS: a GFS cluster contains a primary

server (GFS Master) and several chunkservers, which are accessed by multiple cli-

ents (GFS Client). Large files are split into chunks with fixed sizes; a chunk server

stores the blocks on local hard drives as Linux files and reads and writes chunk data

according to specified chunk handles and byte ranges. In order to guarantee reliabil-

ity, each chunk has three replicas by default. The Master server manages all of the

metadata of the file system, including namespaces, access control, mapping of files

to chunks, physical locations of chunks, and other relevant information. By joint

design of the server side and client side, GFS provides applications with optimal per-

formance and availability support. GFS was designed for Google applications them-

selves; there are many deployments of GFS clusters in Google. Some clusters have
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more than a thousand storage nodes, storage space over PB, and are visited by thou-

sands of clients continuously and frequently from different machines.

In order to deal with massive data challenges, some commercial database sys-

tems attempt to combine traditional RDBMS technologies with distributed, parallel

computing technologies to meet the requirements of big data. Many systems also

try to accelerate data processing on the hardware level. Typical systems include

IBM’s Netezza, Oracle’s Exadata, EMC’s Greenplum, HP’s Vertica, and Teradata.

From a functionality perspective, these systems can continue supporting the opera-

tional semantics and analysis patterns of traditional databases and data warehouses.

In terms of scalability, they can also use massive cluster resources to process data

concurrently, dramatically reducing the time for loading, indexing, and query pro-

cessing of data.

Exadata and Netezza have both adopted data warehouse AIO solutions. By com-

bining software and hardware together, they have a seamlessly integrated database

management system (DBMS), servers, storage, and networks. For users, an AIO

machine can be installed quickly and easily, and can satisfy users’ needs via stan-

dard interfaces and simple operations. These AIO solutions have many shortcom-

ings, too, though, including expensive hardware, large energy consumption,

expensive system service fees, and the required purchase of a whole system when

upgrade is needed. The biggest problem of Oracle’s Exadata is the Shared-

Everything architecture, resulting in limited IO processing capacity and scalability.

The storage layers in Exadata cannot communicate with each other, so any results

of intermediate computing have to be delivered from the storage layer to the RAC

node, then delivered to the corresponding storage layer node by the RAC node, and
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Figure 2.1 Architecture of the GFS.
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before it can be computed. The large number of data movements results in unneces-

sary IO and network resource consumption. Exadata’s query performance is not sta-

ble; its performance tuning also requires experience and in-depth knowledge.

NoSQL databases by definition break the paradigm constraints of traditional

relational databases. From a data storage perspective, many NoSQL databases are

not relational databases, but are hash databases that have key-value data format.

Because of the abandonment of the powerful SQL query language, transactional

consistency, and normal form constraints of relational databases, NoSQL databases

can solve challenges faced by traditional relational databases to a great extent. In

terms of design, they are concerned with high concurrent reading and writing of

data and massive amounts of data storage. Compared with relational databases, they

have a great advantage in scalability, concurrency, and fault tolerance. Mainstream

NoSQL databases include Google’s BigTable, an open-source implementation simi-

lar to BigTable named HBase, and Facebook’s Cassandra.

As some Google applications need to process a large number of formatted and

semi-formatted data, Google built a large-scale database system with weak consis-

tency named BigTable. BigTable applications include search logs, maps, an Orkut

online community, an RSS reader, and so on.

Figure 2.2 describes the data model of BigTable. The data model includes rows,

columns, and corresponding timestamps, with all of the data stored in the cells.

BigTable contents are divided by rows, and many rows form a tablet, which is

saved to a server node.

Similar to the aforementioned systems, BigTable is also a joint design of client

and server, making performance meet the needs of applications. The

BigTable system relies on the underlying structure of a cluster system, a distributed

cluster task scheduler, and the GFS, as well as a distributed lock service Chubby.

Chubby is a very robust coarse-grained lock, which BigTable uses to store the boot-

strap location of BigTable data, thus users can obtain the location from Chubby

first, and then access the data. BigTable uses one server as the primary server to

store and manipulate metadata. Besides metadata management, the primary server
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“<html>... ...”
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Figure 2.2 Data model in BigTable.
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is also responsible for remote management and load deployment of the tablet server

(the general sense of the data server). Client uses the programming interfaces for

metadata communication with the main server and data communication with tablet

servers.

As for large-scale distributed databases, mainstream NoSQL databases—such as

HBase and Cassandra—mainly provide high scalability support and make some

sacrifices in consistency and availability, as well as lacking traditional RDBMS

ACID semantics and transaction support. Google Megastore [27], however, strives

to integrate NoSQL with a traditional relational database and to provide a strong

guarantee for consistency and high availability. Megastore uses synchronous repli-

cation to achieve high availability and consistent view of the data. In short,

MegaStore provides complete serialized ACID semantics for “low-latency data

replicas in different regions” to support interactive online services. Megastore com-

bines the advantages of NoSQL and RDBMS, and can support high scalability,

high fault tolerance, and low latency while maintaining consistency, providing ser-

vices for hundreds of production applications in Google.

2.4.4 Data computing

Data queries, statistics, analysis, mining, and other requirements for big data pro-

cessing have motivated different computing models of big data, and we divide big

data computing into three categories: offline batch computing, real-time interactive

computing, and stream computing.

2.4.4.1 Offline batch computing

With the widespread application and development of Cloud computing technolo-

gies, analysis systems based on open-source Hadoop distributed storage system and

MapReduce data processing mode have also been widely used. Hadoop can support

PB levels of distributed data storage through data partitioning and an auto-recovery

mechanism, and can analyze and process this data based on MapReduce’s distrib-

uted processing model. The MapReduce programming model can easily make many

general data batch processing tasks and operations parallel on a large-scale cluster

and can have automated failover capability. Led by open-source software such as

Hadoop, the MapReduce programming model has been widely adopted and is

applied to Web search, fraud detection, and a variety of other practical applications.

Hadoop is a software framework that can achieve distributed processing of large

amounts of data in a way that is reliable, efficient, and scalable, relying on horizon-

tal scaling to improve computing and storage capacity by adding low-cost commod-

ity servers. Users can easily develop and run applications for massive data. We

summarize Hadoop’s advantages as follows:

1. High reliability: data storage and processing is worthy of trust.

2. High scalability: data allocation and computing task completion occurs in available com-

puter clusters, and these clusters can be expanded to the scale of thousands of nodes

easily.
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3. High efficiency: data can be dynamically moved between nodes and the dynamic balance

of each node is ensured, thus the processing speed is very fast.

4. High fault-tolerance: multiple copies of data can be saved automatically and failed tasks

are reassigned automatically.

Big data processing platform technologies [28] utilizing the Hadoop platform

include MapReduce, HDFS, HBase, Hive, Zookeeper, Avro [29], and Pig, which

has formed a Hadoop ecosystem, as shown in Figure 2.3.

1. The MapReduce programming model is the heart of Hadoop and is used for the parallel

computation of massive datasets. It is this programming model that has achieved massive

scalability across hundreds or thousands of servers within a Hadoop cluster.

2. Distributed File System HDFS provides mass data storage based on the Hadoop proces-

sing platform. NameNode provides metadata services, and DataNode is used to store the

file blocks of the file system.

3. HBase is built on HDFS and is used to provide a database system that has high reliability,

high performance, column storage, scalability, and real-time read and write. It can store

unstructured and semi-structured sparse data.

4. Hive [30] is a large data warehouse based on Hadoop that can be used for data extraction,

transformation, and loading (ETL); storage; querying; and analysis of large-scale data

stored in Hadoop.

5. Pig [31] is a large-scale data analysis platform based on Hadoop that can transform SQL-

like data analysis requests into a series of optimized MapReduce operations and can pro-

vide a simple operation and programming interface for complex massive data parallel

computing.

6. Zookeeper [32] is an efficient and reliable collaborative system; it is used to coordinate a

variety of services on distributed applications. Zookeeper can be used to build a coordination

service that can prevent single-point failures and can deal with load balancing effectively.

7. As high performance, binary communication middleware, Avro provides data serialization

capabilities and RPC services between Hadoop platforms.

The Hadoop platform is mainly for offline batch applications and is typically

used to schedule batch tasks on static data. The computing process is relatively
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slow. To get results, some queries may take hours or even longer, so it is impotent

when faced with applications and services with real-time requirements. MapReduce

is a good cluster parallel programming model and can meet the needs of a majority

of applications. Although MapReduce is a good abstract of distributed/parallel com-

puting, it is not necessarily suitable for solving any computing problem. For exam-

ple, for those applications that require results in real time, such as advertisement

placement based on the pay-per-click traffic model, social recommendations based

on real-time data analysis of users’ behavior, or anti-fraud statistics based on Web

search and clickstream, MapReduce cannot provide efficient processing for these

real-time applications because the processing of the application logic requires mul-

tiple rounds of tasks—or the splitting of the input data into a fine grain. The

MapReduce model has the following limitations:

1. The intermediate data transfer is difficult to be fully optimized.

2. The restart of individual tasks is costly.

3. The storage cost for intermediate data is high.

4. The master node can easily become a bottleneck.

5. Support is limited to a unified file chunk size, which makes it difficult to deal with a com-

plex collection of documents that have a variety of sizes.

6. Structured data is difficult to store and access directly.

In addition to the MapReduce computing model, workflow computing models

represented by Swift [33,34] and graph computing models represented by Pregel

[35] can handle application processes and graph algorithms that contain large-scale

computing tasks. As a bridge between scientific workflow and parallel computing,

the Swift system is a parallel programming tool for fast and reliable specification,

execution, and management of large-scale science and engineering workflows.

Swift uses a structured approach to manage workflow definition, scheduling, and

execution. It uses the simple scripting language SwiftScript. SwiftScript can con-

cisely describe complex parallel computing [36] based on dataset types and itera-

tions. Meanwhile, it can dynamically map datasets for large-scale data with

different data formats. When it is running, the system provides an efficient work-

flow engine for scheduling and load balancing, and it can interact with resource

management systems, such as PBS and Condor, to execute the tasks. Pregel is a dis-

tributed programming framework for graph algorithms that can be used in graph

traversal, shortest path, and PageRank computing. It adopts the iterative computing

model: In each round, every vertex processes the messages that are received in the

last round, sends messages to other vertices, and updates status and topology (out-

going edges, incoming edges).

2.4.4.2 Real-time interactive computing

Nowadays, real-time computing generally needs to process large amounts of data,

in addition to meeting some of the requirements of non-real-time computing (e.g.,

accurate results). The most important requirement of real-time computing is the

response to computing results in real time—generally at the millisecond level.
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Real-time computing can generally be categorized into the following two applica-

tion scenarios:

1. The amount of data is huge and the results cannot be computed in advance, while user

response has to be in real time.

It is mainly used for specific data analysis and processing. When the amount of data is

large and it is impossible to list all query combinations for possible conditions or the

exhaustive condition combinations do not help, then real-time computing can play a role

in postponing the computing process until the query phase, though it needs to provide

users with real-time responses. In this case, it can process part of the data in advance and

combine it with the real-time computing results to improve processing efficiency.

2. The data source is real-time and continuous and requires user response to be real time.

When the data source is real time and continuous, it is called streaming data. So-called

streaming data means the data is viewed as a data stream. A data stream is a collection of

a series of data records that are unbounded in time distribution and number. A data record

is the smallest unit of data streams. For example, the data generated by sensors of the

Internet of Things may be continuous. We will introduce stream processing systems in the

next section separately. Real-time data computing and analysis can analyze and count

data dynamically and in real time, this has important practical significance on system

monitoring, scheduling, and management.

The real-time computing process of massive data can be divided into the follow-

ing three phases: real-time data collection, real-time data analysis and processing,

and real-time query services, as shown in Figure 2.4.

Real-time data collection: It must ensure collection of all of the data and must pro-

vide real-time data for real-time applications. Response time must be real time and

low latency. Configuration should be simple and deployment should be easy. The sys-

tem needs to be stable and reliable. Currently, big data acquisition tools from Internet

companies include Facebook’s open-source Scribe [37], LinkedIn’s open-source

Kafka [38], Cloudera’s open-source Flume [39], Taobao’s open-source TimeTunnel

[40], and Hadoop’s Chukwa [41], which can all meet the acquisition and transmission

requirements for log data, which is hundreds of megabytes (MB) per second.

Real-time data computing: Traditional data operations usually include collecting

data and storing it in a DBMS first, then interacting with DBMS via queries to get

the answers users want. Throughout the entire process the users are active, while

the DBMS system is passive. However, for real-time big data, which requires real-

timeliness, huge data volume, and diverse data formats, traditional relational data-

base architecture is not suitable. The new real-time computing architectures gener-

ally adopt the distributed architecture of MPP, and data storage and processing are

then assigned to large-scale nodes to meet the real-time requirements. For data

Real-time
data collection

Real-time
data computing

Real-time
query service

Figure 2.4 Process of real-time calculation.
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storage they use large-scale distributed file systems, such as Hadoop’s HDFS file

system or the new NoSQL distributed databases.

Real-time query service: Its implementation can be categorized in three ways:

(1) Full Memory, which provides data read services directly, and dumps to disks or

databases for backup regularly. (2) Semi-Memory, which uses Redis, Memcache,

MongoDB, BerkeleyDB, and other databases to provide real-time querying services

and leaves backup operations to these systems. (3) Full Disk, which uses NoSQL

databases such as HBase that are based on distributed file system (HDFS). As for

key-value engines, it is vital to design the distribution of the key.

Among real-time and interactive computing technologies, Google’s Dremel [36]

system is the most prominent. Dremel is Google’s “interactive” data analysis sys-

tem. It can build clusters of scale of thousands and can process PB-level data. As

the initiator of MapReduce, Google has developed the Dremel system to shorten

the processing time to the second level, as a strong complement to MapReduce. As

a report engine for Google BigQuery, Dremel is very successful. Like MapReduce,

Dremel also needs to run together with data and to move computing to data. It

requires file systems such as GFS as the storage layer. Dremel supports a nested

data model, similar to Javascript Object Notation (JSON). The traditional relational

model inevitably has a large number of join operations in it: is often powerless

when dealing with large-scale data. Dremel also uses column storage, so it only

needs to scan the part of the data that is needed to reduce access to CPU and disks.

Meanwhile, column storage is compression friendly; using compression can reduce

storage space and achieve maximum efficiency.

Spark [42] is a real-time data analysis system developed by the AMP Lab at the

University of California, Berkeley; it adopts an open-source cluster computing envi-

ronment similar to Hadoop, but Spark is superior in the design and performance of

task scheduling and workload optimization. Spark uses in-memory distributed data-

sets, in addition to providing interactive queries, and it can also optimize the work-

load of iterations [43]. Spark is implemented in Scala and uses it as the application

programming framework, which can be tightly integrated. Scala can easily operate

on distributed datasets as it does on local collection objects. Spark supports iterative

operations on distributed datasets and is an effective complement to Hadoop, sup-

porting fast data statistics analysis. It can also run concurrently on the Hadoop file

system, supported by a third-party cluster framework named Mesos. Spark can be

used to build large-scale, low-latency data analysis applications.

Impala [44], released by Cloudera recently, is similar to Google’s Dremel sys-

tem. It is an effective tool for big data real-time queries. Impala can offer fast, inter-

active SQL queries on HDFS or HBase; besides a unified storage platform, it also

uses Metastore and SQL syntax—the same as those used by Hive. It provides a uni-

fied platform for batch and real-time queries.

2.4.4.3 Streaming computing

In many real-time application scenarios, such as real-time trading systems, real-

time fraud analysis, real-time ad delivery [45], real-time monitoring, or real-time
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analysis of social networks, the data volume is large, the requirement for real-time

response is high, and the data sources are continuous. New arrival data must be pro-

cessed immediately or the subsequent data will pile up and the processing will

never end. We often need a sub second or even sub millisecond response time,

which requires a highly scalable streaming computing solution.

Stream Computing [46,47] is designed for real-time and continuous data, analyz-

ing the movement process in real-time while the stream data is changing; capturing

the information that may be useful to the users; and sending the result out. In the

process, the data analysis and processing system is active, and the users are in a

passive state of reception, as shown in Figure 2.5.

Traditional stream computing systems are generally based on an event mecha-

nism, and the amount of data processed by them is small. The new stream proces-

sing technologies, such as Yahoo’s S4 [46,47], are mainly used to solve stream

processing issues that have a high data rate and a large amount of data.

S4 is a general-purpose, distributed, scalable, partially fault-tolerant, pluggable

platform. Developers can easily develop applications for unbounded, uninterrupted

stream data processing on it. Data events are routed to processing elements (PEs);

PEs consume these events and handle them as follows:

1. send out one or more events that may be processed by other PEs;

2. publish results.

S4’s design is primarily driven by data acquisitions and machine learning in a

production environment on a large scale. Its main features include:

1. A simple programming interface to handle data streaming.

2. A high-availability cluster that is scalable on commodity hardware.

3. Use of local memory on every processing node to avoid disk I/O bottlenecks and to mini-

mize latency.

4. Use of a decentralized, peer-to-peer architecture; all nodes provide the same functions and

responsibilities with no central node to take special responsibility. This greatly simplifies

deployment and maintenance.

5. Use of a pluggable architecture to keep the design as generic and customizable as

possible.

6. A user-friendly design concept—that is, one that is easy to program and is flexible.

Processing node Processing node Processing node

Computed result

Data stream Data stream

Figure 2.5 Process of stream computing.
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There are many shared characteristics between S4’s design and IBM’s stream

processing core SPC middleware [48]. Both systems are designed for large

amounts of data. Both have the ability to use user-defined operations to collect

information in continuous data streams. The main difference is in the structural

design: SPC’s design is derived from the Publish/Subscribe mode, whereas

S4’s design comes from a combination of the MapReduce and Actor models.

Yahoo! believes that because of its P2P structure, S4’s design has achieved a

very high degree of simplicity. All nodes in the cluster are identical; there is no

central control.

SPC is a distributed stream processing middleware to support applications that

extract information from large-scale data streams. SPC contains programming mod-

els and development environments to implement distributed, dynamic, scalable

applications. Its programming models include APIs for declaring and creating pro-

cessing units (PE), as well as a toolset for assembling, testing, debugging, and

deploying applications. Unlike other stream processing middleware, in addition to

supporting relational operators, it also supports nonrelational operators and user-

defined functions.

Storm [49] is a real-time data processing framework similar to Hadoop and open

sourced by Twitter. This kind of stream computing solution with high scalability

and the capability of processing high-frequency and large-scale data can be applied

to real-time searches, high-frequency trading, and social networks. Storm has three

acting scopes:

1. Stream Processing

Storm can be used to process new data in real time and to update a database; it has

both fault tolerance and scalability.

2. Continuous Computation

For this use, Storm is set up as a distributed function that waits for invocation mes-

sages. When it receives an invocation, it computes the query and sends back the results.

3. Distributed RPC

Storm is also set up as a distributed function that waits for invocation messages. When

it receives an invocation, it computes the query and sends back the results.

2.4.5 Data presentation and interaction

Computing results need to be presented in a simple and intuitive way, so users can

understand and use them to form effective statistics, analyses, predictions, and

decision-making processes to be applied to production practices and business opera-

tions. For this reason the display technology of big data, as well as technology for

interacting with data, plays an important role in the big data picture.

Excel spreadsheets and graphics are data display methods that people have

known and used for a long time; they are very convenient for everyday simple data

applications. Many Wall Street traders still rely on Excel and years of accumulated

and summarized formulae to carry out large stock trades. Microsoft and a number

of entrepreneurs have seen the market potential and are developing big data
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processing platforms that use Excel for presentation and interaction, and that inte-

grate Hadoop and other technology.

The perception and processing speed of graphics by the human brain is far

greater than that of texts. Therefore, presenting data by means of visualization can

expose latent or complex patterns and relationships in data at a deeper level. With

the rise of big data, there have emerged many novel means of data presentation and

interaction, as well as start-up companies that focus on this area. These novel meth-

ods include interactive charts, which can be displayed on Web pages and support

interactions, and which can operate and control icons, animations, and demos.

Additionally, interactive map applications—such as Google Maps—can create

dynamic markers, generate routes, and superimpose panoramic aerial maps. Due to

its open API interfaces, it can be combined with many user maps and location-

based service applications, for which it has gained extensive application. Google

Chart Tools also offer a variety of flexible approaches to Web site data visualiza-

tion. From simple line graphs, to geographic maps, to gauges (measuring instru-

ments), to complex tree graphs, Google Chart Tools provide a large number of

well-designed charting tools.

Tableau [50], a big data start-up company from Stanford, is becoming one of the

most outstanding data analysis tools. Tableau combines data computing and aes-

thetic charts perfectly, as shown in Figure 2.6. Its program is easy to use: users can

Daily sales dashboard

SAT performance Sports comparison
This comparison tool’s simplicity allows you to get an
overview of the sweet 16, Elite 8, and final four.

Explore students’ SAT performance across year, gender,
and college.

Public technology equities
Track customers and sales over time. Drill into region or
customer segment and search for individual customers.

Find market trends and inspect the daily trading details of
publicly traded technology stocks.

Figure 2.6 Visualization examples of Tableau.
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drag and drop large amounts of data onto a digital “canvas” and can create a variety

of charts promptly. Tableau’s design and implementation philosophy is: the easier

the manipulation of the data is on the page, the more thoroughly companies can

understand whether their business decisions are right or wrong. Fast processing and

easy sharing are other features of Tableau. In only a few seconds, a Tableau Server

can publish an interactive control panel on the Internet. A user only needs a

browser to filter and select data easily and to get a response to her questions, which

will increase the user’s enthusiasm for using the data.

Another big data visualization start-up company—Visual.ly [51]—is known for its

abundant infographics resources. It is a creation and sharing platform of infographics

combined with social network. We live in an era of data acquisition and content crea-

tion. Visual.ly is the product of the data age: a brand-new visual infographics platform.

Many users are willing to upload infographics to a Web site and then share it with

others. Infographics will greatly stimulate visual expression performance and will pro-

mote mutual learning and discussion between users. It is not complicated to use Visual.

ly to make infographics. It is an automated tool that makes the insertion of different

types of data quick and easy, and it expresses the data with graphics.

In addition, 3D digital rendering technology has been applied widely in many

areas, such as in digital cities, digital parks, modeling and simulations, and design

and manufacturing, with highly intuitive operability. Modern AR technology

applies virtual information to the real world via computer technologies: real envi-

ronment and virtual objects are superimposed in the same picture or space in real

time. Combining virtual 3D digital models and real-life scenarios provides a better

sense of presence and interaction. With AR technology, users can interact with vir-

tual objects, such as trying on virtual glasses or virtual clothes, or driving simulated

aircrafts. In Germany, when engineering and technical personnel are conducting

mechanical installation, maintenance, or tuning with a helmet-mounted monitor, the

internal structures of the machine and its associated information and data can be

fully presented, which was not possible before.

Modern motion-sensing technologies, such as Microsoft’s Kinect and Leap’s

Leap Motion somatosensory controller, are capable of detecting and perceiving

body movement and gestures, and then converting the actions into computer and

system controls, freeing people from the constraints of keyboard, mouse, remote

control, and other traditional interactive devices, and making users interact with

computers and data directly with their bodies and gestures. This can create the

super-cool action in the movie “Minority Report,” in which Tom Cruise moves data

in the air. Even more advanced technology can give us experiences close to those

in the movie “Avatar.”

Today’s hottest wearable technologies, such as Google glass, have combined big

data technology, AR, and somatosensory technology organically. With the improve-

ment of data and technologies, we can perceive the realities around us in real time.

Through big data searching and computing, we can achieve real-time identification

and data capture of the surrounding buildings, businesses, people, and objects, and

can project them onto our retinas, which can help us in real time to work, shop,

and relax at great convenience. Of course, the drawbacks of this new device and
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technology are obvious. We are able to be monitored constantly: with privacy being

encroached upon and violated at all times. In the future we may have to wear a

mask before we go out.

2.4.6 Related work

The scale of big data brings great challenges to data storage management and data

analysis, and data management mechanisms are evolving. Meng and other scholars

[52] have analyzed the basic concepts of big data and have compared it with major

applications of big data. They have also explained and analyzed the basic frame-

work of big data processing and the affect of Cloud computing technology on data

management and have summarized new challenges we face in the era of big data.

Tao et al. [53] have described and analyzed related concepts and features of big

data, and domestic and overseas development of big data technology, especially

from the data mining perspective, and the challenges we face in the era of big data.

Meanwhile, some scholars have pointed out that the real time and validity needs of

data processing requires a technological change of conventional data processing

techniques, starting with big data characteristics for developing technologies for big

data collection, storage, management, processing, analysis, sharing, and visualiza-

tion [54]. This work pays more attention to the analysis of big data characteristics

and development trends, and as opposed to problems related to big data—discussed

more thoroughly in the present text.

Compared with traditional data warehousing applications, big data analysis has

large volumes of data, and complex queries and analysis. From the perspective of

big data analysis and data warehouse architectural design, literature [55] has first

listed several important features that a big data analysis platform needs. It then goes

on to analyze and summarize current mainstream implementation platforms, such as

parallel databases, MapReduce, and hybrid architectures of both, and points out

their strengths and weaknesses. HadoopDB [56,57] is an attempt to combine the

two architectures. Other scholars [58,59] discuss the competition and symbiotic

relationship of RDBMS and MapReduce and analyze the challenges they encoun-

tered during development. They also point out that relational data management tech-

nology and nonrelational data management technology complement each other—in

constant competition—and will find the right position within the new big data

analysis ecosystem. In the study of NoSQL systems, researchers like Shen Derong

[60] summarize the related research of NoSQL systems systematically, including

architecture, data model, access method, index technique, transaction characteris-

tics, system flexibility, dynamic load balancing, replication policy, data consistency

policy, multilevel caching mechanisms based on flash, data processing policies

based on MapReduce, and the new generation of data management systems.

The papers aforementioned tend to introduce data storage for big data, analyze dif-

ferent storage policies, and detail their advantages and disadvantages, but they stop

short of comprehensively presenting big data technologies, and do not address

the synergy between different big data technologies. They also don’t consider the

relationship between big data technology and Cloud computing.
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Modern science in the twenty-first century brings tremendous challenges to sci-

entific researchers. The scientific community is facing the “data deluge” problem

[2] that comes from experimental data, analog data, sensor data, and satellite data.

Data size and the complexity of scientific analysis and processing are growing

exponentially. The Scientific Workflow Management System provides some neces-

sary supports for scientific computing, such as data management, task dependen-

cies, job scheduling and execution, and resource tracking. Workflow systems, such

as Taverna [61], Kepler [62], Vistrails [63], Pegasus [64], Swift [39], and VIEW

[65], have a wide range of applications in many fields, such as physics, astronomy,

bioinformatics, neuroscience, earth science, and social science. Meanwhile, the

development of scientific equipment and network computing has challenged the

reliable workflow systems in terms of data size and application complexity. We

have combined scientific workflow systems with Cloud platforms as a service [66]

of Cloud computing, to deal with the growing amount of data and analysis com-

plexity. A Cloud computing system with a large-scale data center resource pool and

an on-demand resource allocation function can provide scientific workflow systems

better services than the environments already mentioned, which enables the work-

flow systems to handle scientific questions at the PB level.

Summary

Big Data is the hot frontier of today’s information technology development. The

Internet of Things, the Internet, and the rapid development of mobile communica-

tion networks have spawned big data problems and have created problems of speed,

structure, volume, cost, value, security privacy, and interoperability. Traditional IT

processing methods are impotent when faced with big data problems, because of

their lack of scalability and efficiency. Big Data problems need to be solved by

Cloud computing technology, while big data can also promote the practical use and

implementation of Cloud computing technology. There is a complementary rela-

tionship between them. We focus on infrastructure support, data acquisition, data

storage, data computing, data display, and interaction to describe several types of

technology developed for big data, and then describe the challenges and opportu-

nities of big data technology from a different angle from the scholars in the related

fields. Big data technology is constantly growing with the surge of data volume and

processing requirements, and it is affecting our daily habits and lifestyles.
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3Resource Modeling and

Definitions for Cloud Data Centers

Main Contents of this Chapter

� Cloud data center resource models
� Cloud data center resources
� Properties of Cloud resources
� Classification of Cloud resources
� Operations of Cloud resources

3.1 Resource models in Cloud data centers

Figure 3.1 shows the architecture of Cloud data centers. The following is a brief

description of the major processes [1]:

1. User requests: the user initiates the request through the Internet (such as via login to

Cloud service provider’s Web portal).

2. Scheduling management: the scheduling center makes decisions based on the user’s iden-

tity (e.g., geographic location) and the operational characteristics of the request (e.g.,

quantity and quality requirements); the request is submitted to the appropriate data center,

then the data center management program submits it to a scheduling domain; the schedul-

ing domain allocates the request via implementation of a scheduling algorithm.

3. Feedback: the scheduling algorithm provides available resources to the user.

4. Scheduling execution: the scheduling results (such as deploying steps) are sent to the next

stage.

5. Updating and optimization: the scheduler updates resource information and optimizes

resources among different data centers according to the objective functions.

The following are detailed descriptions of major Cloud data center resources.

3.2 Data center resources

Figure 3.2 is the proposed model of data center resources, reflecting the relative hier-

archy of the resources, considering resource definitions mainly from the perspective

of service providers in a bottom-up way, including physical server (cluster) !
virtual server (cluster) ! security group ! middleware/application services !
scheduling domain ! data center. Figure 3.3 provides a UML diagram of the

resource model to demonstrate the relationship between all of the entities and their

resources.
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Resource entity: refers to all the independent and available resources for Cloud providers

in the data center.

Physical server: physical computing devices that form the data center; each physical

server can provide multiple virtual servers; each physical server can be composed of mul-

tiple CPUs, memories, hard drives, and network cards.

Physical cluster: consists of a number of physical servers, the necessary network, and stor-

age infrastructure.

Virtual server: virtual computing platform on the physical server created with virtualiza-

tion software, consisting of a number of virtual CPUs, hard drives, and network cards.

Virtual cluster: a virtual server group consisting of a number of virtual servers and the

necessary network and storage infrastructure.

Shared storage: provides large-capacity storage for data center computing resources and

can be shared by all devices and applications.

Middleware: Software as a Service (SaaS) built on a single or on multiple physical (or vir-

tual) servers.

Users

1. Request
resource

5. Update/Optimize 4. Schedule task

Data center/
schedule domain

Data center/
schedule domain

Data center/
schedule domain

Scheduling center

2. Find suitable
resource

3. Feedback
to users

Figure 3.1 The architecture of Cloud data centers.
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Service (application): a form of SaaS, built on a single or on multiple physical (or virtual)

server(s) or in multiple data centers to provide software services and integrated applica-

tions to users.

Scheduling domain: the scope of the scheduling algorithm execution. The scheduling

algorithms—such as maximum utilization, load balancing, and performance optimization—

are usually implemented within a region (domain). Multiple domains applying different

scheduling algorithms do not interfere with each other. Also, a scheduling domain can be

expanded and shrunk automatically.

Data center: It may be distributed across multiple systems in different geographic locations,

is the pooling of resources to accommodate the computing device, and is also responsible

for energy supply and air conditioning maintenance. The rack in a data center hosts

different physical servers, network switches/routers, and air conditioning equipment.

3.3 Categories of Cloud data center resources

Cloud data center resources can be described and defined in the following three

categories:

1. From the service provider point of view: the user can directly use the hardware and soft-

ware components (including computing, storage, and networking), middleware, and appli-

cation services, which can be distributed in different geographic locations. Providers can

dynamically configure all data centers the same or can create multiple data center infra-

structures to meet user needs.

2. From the user point of view: the user can select the configuration, though it might be pre-

configured. The location of specific resources is transparent to the user.

3. From the perspective of elements constituting a data center: hardware computing

resources (e.g., physical facilities and networks), power supply, cooling, software (and

copyright), management (human) resources, and so forth constitute the total cost of data

center elements.

3.3.1 Properties and operations of various resources

Following the data center resource model in Figures 3.2 and 3.3, the following will

introduce their properties and operations.

3.3.1.1 Physical servers (PMs)

Physical servers refer to server resources and provide computer software for users.

They are usually divided into file servers, database servers, and application servers.

Compared to an ordinary PC, servers demand a higher level of stability, security,

performance, and other characteristics [2] (Figure 3.4).

3.3.1.1.1 The main properties of a physical server
Static:

ServerID (long): Server number

Location (long): position in the index
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ServerType (boolean): whether the physical machine is running a virtual machine (VM)

pOS: operating system

CPUNum (int): CPU number

CPUKernel (int): the number of cores

CPU (String): CPU frequency

ComputingPower: server computing capability (obtained through benchmarking)

VCPUAllocate (int): number of virtual CPUs

Mem (int): memory size (G)

MemSpeed (float): memory transfer rate (Mb/s)

MemDelay (long): memory latency (ms)

Disk ([long] [float]): hard numbers, hard disk size, (the same type of server’s hard drive)

DiskCleanTime (Date): the last time, disk defragmentation

NIC ([][][]): three-dimensional array, including the card number, MAC address of net-

work card, network card bandwidth information

IP: IP address

News:

CPUtilization: occupancy rate of physical server CPU (taking into account multi-Core)

MemUtilization: physical server footprint

PowerConsumption: physical server power consumption data

Schedule_Domain_ID: schedule domain ID

3.3.1.1.2 Physical server states
Running: physical servers running

Closing: the physical server is down

Error: physical server error

InScheduling: is scheduling or performing maintenance

Physical server

CPU Disk

1

N

Mem

1

NN

1 1

Net
(NIC, IP, etc.)

N

Figure 3.4 Components of a physical server.
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3.3.1.1.3 Main operations of a physical server

3.3.1.1.4 Server operation error
ERROR_NOSUCHSERVER: cannot find servers

ERROR_SERVERISRUNNING: server already running

ERROR_SERVERISCLOSED: server is down

3.3.1.2 Physical server cluster

Multiple physical servers form a group of computer systems through networking. A

cluster system is often referred to as a single computer node, typically through a

LAN connection, but there are other possible connections. A computer cluster can

be used to improve the calculation of a single computer speed, reliability, and load

balancing [3] (Figure 3.5).

3.3.1.2.1 Main properties of a physical server cluster
ClusterID (long): cluster number

ClusterDescriptor (Sting): cluster description

ServerIDs (long []): physical machine that it contains

NumsOfServers (int): the number of physical machines

SharedDisk (DiskID): common data storage

ManagementNode (IP): a management node IP for a cluster

Table 3.1 Summary of physical server operations

Operation Description

pServer.PowerOn(serverID) Start specify physical

pServer. PowerOff (serverID) Shutdown specify physical

pServer.GetAttributes(serverID) Specify ID attributes of the physical servers, including

CPU, memory, hard drives, and other information

pServer.Allocate(userAccount) Physical server resource allocation

Physical server cluster 

Physical server Manage node 

1

N

1

1

Storage 

1

N

Figure 3.5 A physical server cluster.
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ClusterNet: network (external bandwidth is more than any external connection to the ser-

ver’s external bandwidth and the bandwidth of each server)

Schedule_Domain_ID: domain ID

3.3.1.2.2 States of a physical server cluster
Active: physical servers in the cluster are working (e.g., cluster computing tasks are being

completed)

InActive: physical server cluster is not working

InScheduling: is scheduling or performing maintenance

3.3.1.2.3 Operations of a physical server cluster

3.3.1.2.4 Physical server errors
ERROR_NOSUCHCLUSTER: cannot find the number of clusters

ERROR_CLUSTERNOTEXIST: specifies the number of clusters does not exist

ERROR_CLUSTERCREATE: failed to create cluster

ERROR_CLUSTERDELETE: failed to delete cluster

ERROR_CLUSTEROPERATION: cluster deletions failed

3.3.1.3 Virtual machines

A virtual server is created from a physical server with virtualization software. It has

complete hardware system functions, and runs in a completely isolated environment

of complete computer systems. One physical server can create multiple VMs.

Different VMs depend on the selection of the different VM images; a VM image is

an image file of an operating system that is already installed, so a VM can be con-

figured fairly quickly [4] (Figure 3.6).

3.3.1.3.1 Properties of VMs
Static:

VMImageID: corresponding to VM images (including memory, OS, CPU)

ServerID: corresponding to the physical server

VMID: the primary key of the VM

ComputingPower: server computing capability (obtained through benchmarking)

Table 3.2 Physical server cluster operating summary

Operation Description

Cluster.Create Create a cluster

Cluster.Delete(ClusterID) Remove a cluster

Cluster. GetAttributes

(ClusterID)

Get the specified ID attribute of the physical server

clusters

Cluster.AddServer

(ClusterID,ServerID)

Add specifies the physical machine to be added to the

specified cluster

Cluster.DelServer

(ClusterID,ServerID)

Delete specifies the physical machine to be deleted from

the specified cluster
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VMemInitialization: the initial size of memory

VMemIncrement: incremental memory for each increase or decrease in the size of

memory

VMemType: type of memory (corresponding to different performance)

VDiskID: corresponding storage device (different ID for different types)

VDiskType: storage type

DiskInitialization: the initial size of the hard disk

DiskIncrement: hard disk the size of each increase or decrease

IP: IP of the VM

News:

CPUUtilization: CPU utilization

VMemUtilization: memory usage

Bandwidth: bandwidth size

PerformanceID: selects logo, to ensure efficiency or guarantee performance (e.g., load

balancing) optional

SecureGroupID: belongs to security group

UserID: user ID

3.3.1.3.2 Operations of VMs

vServer↵

VM
CPU↵

1↵

1↵

1↵

1↵
1↵

N↵ N↵

N↵
N↵ N↵

mem↵ disk↵ net (NIC,
IP, etc.)image↵

Figure 3.6 Virtual machines.

Table 3.3 Main operations of VMs

Operation Description

VServer.Run Run virtual server

VServer.Close Close virtual server

VServer.Reboot Restart virtual server

VServer.Move Move VMs from one physical server to another

VServer.AddDisk Increase hard drive size

VServer.DelDisk Reduce hard drive size

VServer.AddMem Increase memory size

Vserver.DelMem Reduce memory size

VServer.Snapshot Create virtual server snapshot
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3.3.1.3.3 States of VMs
Inactive: the VM has been created, but it has not yet started

Running: the VM has started; the status of running

Stopping: stop the VM

Sleeping: sleep

Error: the state of VM error

InScheduling: scheduling or maintenance (Figure 3.7)

3.3.1.3.4 Typical configurations of VMs
Table 3.4 gives typical configurations of VMs, which can be created as templates

(plus operating systems) for the user.

3.3.1.4 Virtual clusters

A virtual cluster can be formed with many VMs through networking (Figure 3.8).

3.3.1.4.1 Main properties of a virtual cluster
VClusterID (long): virtual cluster number

VClusterDescript (Sting): description of the virtual cluster

VServerIDs (long []): contains the VM number

3.3.1.4.2 States of a virtual cluster
Active: virtual server cluster working

InActive: virtual server cluster not working

InSchedule: virtual server cluster preparation

Inactive/scheduling

Error

Stopping

Running

Run Close

Sleeping

Figure 3.7 State transitions of VMs.

59Resource Modeling and Definitions for Cloud Data Centers



3.3.1.4.3 Operations of a virtual cluster

Virtual server cluster

vNET

VM
#1

vMem vDisk vNIC vCPU

VM
#2

VM
#n

Figure 3.8 A virtual cluster.

Table 3.4 Typical configurations of VMs

Type #vCPU vRAM vDisk Machine bits vNIC Cost

Basic 1 2 GB 80 GB 32/64 1 IP 0.8/h

Small 1 4 GB 100 GB 32/64 1 IP 1.0/h

Middle 2 8 GB 400 GB 32/64 1 IP 2.0/h

Large 4 16 GB 800 GB 32/64 2 IP 4.0/h

Huge 8 32 GB 1000 GB 32/64 4 IP 8.0/h

Table 3.5 Operations of virtual server cluster

Operation Description

VCluster.Create Create a Virtual Cluster

VCluster.Delete(VClusterID) Delete a Virtual Cluster by VClusterID

VCluster.Start(VClusterID) Start a Virtual Cluster by VClusterID

VCluster.Stop(VClusterID) Stop a Virtual Cluster by VClusterID

VCluster.GetProperties(VClusterID) Get the Properties of one Virtual Cluster by

VClusterID

VCluster.AddServer(VClusterID,VServerID) Add the VM with number of VServerID to the

Virtual Cluster with number of VClusterID

VCluster.DelServer (VClusterID,VServerID) Remove the VM of VServerID from the Virtual

Cluster of VClusterID

VCluster.ListvServer (VClusterID) List the information of all the VMs on the Virtual

VCluster of VClusterID

VCluster.listVNET (VClusterID) List the information of all the Virtual Net on the

Virtual VCluster of VClusterID

VCluster.createVNET (VClusterID) Create a Virtual Net for the Virtual CLulster of

VClusterID
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3.3.1.4.4 Operational errors on VMs
ERROR_NOSUCHVCLUSTER: can’t find the number of this virtual cluster

ERROR_VCLUSTERNOTEXIST: can’t find the virtual cluster of such a number

ERROR_VCLUSTERCREATE: failed to create virtual cluster

ERROR_VCLUSTERDELETE: failed to delete virtual cluster

ERROR_VCLUSTEROPERATION: virtual cluster operation failed

3.3.1.5 Schedule domains

A schedule domain may consist of one or more physical clusters. A schedule

domain can only execute one scheduling algorithm (such as load balance or maxi-

mum utilization) in a period of time. Schedule domains belong to a data center at

the system level, but there is a special case in which one data center has only one

schedule domain (Figure 3.9).

3.3.1.5.1 Properties of schedule domains
ScheduleDomain_PM_Set: physical machines in this schedule domain

ScheduleDomain_ID: schedule domain’s ID

LocationID: information of location in data center

IPSection: IP sections in schedule domain

ScheduleDomain_PM_CountOfOverLoad: the number of overloaded physical machines in

this schedule domain

ScheduleDomain_Status: schedule domain’s status

ScheduleDomain_Strategy: strategy of this schedule domain

Schedule
domains

Physical clusters Data centers 

1

N

N

N

Figure 3.9 Schedule domains.
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3.3.1.5.2 Operations of schedule domains

3.3.1.5.3 States of schedule domains
Inactive: schedule domain is created, but has not started

Enabled: schedule domain has started

Error: schedule domain is in error

Updating: schedule domain is in the status of updating or reconfiguration (Figure 3.10)

3.3.1.6 Storage

Most data centers adopt the independent storage area network (SAN) and network-

area storage (NAS) (or block and file) storage systems. SAN architecture allows the

server to connect any disk array or tape library, so that the server can directly

access the required data regardless of the data’s location. The SAN can be used in a

Cloud data center, and hundreds or even thousands of storage devices can be

Table 3.6 Operations of schedule domains

Operation Description

Create_Schedule_D () Create a new Schedule Domain

Delete_Schedule_D() Eliminate this Schedule

Expand_Schedule_D() Expand a Schedule Domain

Reduce_Schedule_D() Reduce a Schedule Domain

Apply_Schedule_Strategy() Execute the Schedule Domain’s Schedule Strategy

Query_Schedule_Strategy() Ask for the Schedule Domain’s Strategy

Optimize_Schedule_D() Do optimizing in this Schedule Domain

Updated/Inactive

Error 

Enabled

AddPM/DelPM/
ChangeLocation

Error
handled

Error

Occur

Destroy

Enable 

Initial

Figure 3.10 States of schedule domains.
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connected together to form a low-cost, manageable SAN with a fast fiber-optic net-

work. A SAN can not only reduce system pressure caused by data transference on

certain networks, which accordingly reduces the cost of storage, but it can also easily

monitor and adjust storage devices by centralizing them to achieve flexible manage-

ment [5] (Figure 3.11).

3.3.1.6.1 Properties of shared storage
Static:

StorageID: ID of storage device

StorageNodeID: ID of a node in this storage device

TotalCapacity: amount of storage capacity in this device

Distribution: distribution of block storage resources’ capacity

Storage Location: location of storage

Storage Media: kind of storage media

Organization: organization

Method: block storage, object storage

Dynamic:

Utilization: the distribution of the utilization of block storage resources

Performance Distribution: the distribution of the performance of block storage resources

WRSpeed: current write/read speed

Shared storage Virtual disk Physical disk 

Physical server Virtual server 

N

M

1

N

N

1

N

1

1

N

Figure 3.11 Shared storage.

Table 3.7 Storage operations

Operation Description

Storage.Increase Increases the capacity of storage

Storage.Decrease Decreases the capacity of storage

Storage.Backup Data backup: actively backs up VM

Storage.Move Data transfer: automatically executes when the physical

machine fails

Storage.Allocate Assigns storage for VM; returns results

Storage.QueryAlloc Queries VM allocation, whose virtual storage is allocated from

this physical storage
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3.3.1.6.2 Storage operations

3.3.1.6.3 States of storage
Running: status of normal and enabled storage

Error: status of unusable storage

Updated: capacity or firmware is reconfiguring

3.3.1.7 VM image

A VM image is an executable image file from a VM; this image file is in a special

storage format. We can create a new VM by uploading the image file to the physi-

cal machine. Usually some software, like mysql or ms office, is installed on these

new VMs beforehand. Users can choose different VM images to install [5]

(Figure 3.12).

3.3.1.7.1 Properties of a VM image
VMImageID: ID of a VM image

Size(float): the size of VM image (in GB)

VCPUType(String): type of CPU

VCPUNum(int): amount of CPU

VCPUKernel(int): number of CPU kernels per CPU

VCPU(String): CPU frequency

VMem(int): capacity of memory

VDisk(int): capacity of storage

OS(String): type of operation system

Application(String): users can choose a suit of software that can fit their needs depending

on their purpose (e.g., deploying websites, computing, or storage)

NetworkAdapter(String): Network (e.g., Bridged, NAT, or Custom)

VMImage

OS Application

vDisk

NetworkAdapter

vCPU vRAM

Figure 3.12 Composition of a VM image.
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3.3.1.7.2 VM image operations

3.3.1.7.3 States of VMs
InUsing: Some VM is using this VM image.

NotUsing: This VM image is not in use.

3.3.1.8 Network resources

A network resource is defined as part of the infrastructure of a data center, includ-

ing switches, routers, VLAN, DNS, and IP addresses. Figure 3.13 shows the main

network resources, including VNET, which is a virtual network used by a VM

(cluster), and PNET, which is a physical network used by a physical machine (clus-

ter). The system defines a series of IP/MAC address pairs; when the VM is created

Table 3.8 VM image operations

Operation Description

VMImage.Select Select an appropriate physical machine

VMImage.Upload Transfer the image file to a physical machine

VMImage.Save Save the used VM as an image file

VMImage.Delete Delete a VM image file

Network

VNET Physical Net

Router/SwitchDNSIP/Submask/NICVLAN

1

11

N

N N

N

1 1

N N

Figure 3.13 Network resources.
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and activated, the management system for this VM allocates MAC/IP address pairs

and ensures that each VM will be given a unique IP address. When the user opens

an instance of the VM, the user can define a private network VLAN so that the

VNET can be independent of the physical network [2].

3.3.1.8.1 Network resource properties
VNET Properties

VNET may include one or more clusters and VLAN, which includes the switches, routers,

and other resources

VExBandWidth (int) VNET external bandwidth

VInBandWidth (int) VNET internal bandwidth

VIPValue (string) IP Address resources; allocates to VMs

VSubmask (string) Subnet mask that allocates to VM

VNIC (string) Virtual network card, which is an interface used to associate with a VM;

when the VM or virtual cluster is created, VNIC is established at the same time.

VMAC (string) MAC address allocates to VM VNIC

VDNSValue (string) Domain name for VNET

PNET(PhysicalNet) Properties

PNET can include resources including several physical machines, switches, and routers.

ExBandWidth (int) PNET external bandwidth

InBandWidth (int) PNET internal bandwidth

IPValue (string) IP address resources; allocates to physical machines

Submask (string) Subnet mask;is used to allocate to physical machines

NIC (string) MAC address allocates to physical machine

DNS Value (string) Domain name for PNET

Switch Properties

Description: (string) Description of type of performance

PortNum: (int) Number of ports

Bandwidth: (int) Bandwidth of switch’s port (static data)

BandwidthUtilization: (int) dynamic utilization ratio of a switch’s port bandwidth

Router Properties

Description: (string) Description of type of performance

PortNum: (int) Number of ports

Bandwidth: (int) Bandwidth of router’s port (static data)

BandwidthUtilization: (int) Router’s port bandwidth utilization ratio (dynamic)

VLAN Properties

A VLAN corresponds to one or more SecureGroups

VLANIPValue: (string) IP section allocates to this VLAN

VLANSubmask: (string) Subnet mask allocates to this VLAN

BandWidthMatrix: (2D array) Measures bandwidth between different VM servers (or

switches/routers) (Table 3.9)
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3.3.1.9 Data centers

As shown in Figure 3.1, Cloud data centers are entities (including physical servers,

virtual servers, operating systems, applications, middleware, and application ser-

vices) that can be virtual or physical. They may have the highest level of resources

that a Cloud service provider can offer.

3.3.1.9.1 Properties of data centers
Data centers’ properties include (but are not limited to):

Location: describes the characteristics of physical location of data centers

ID: for recognizing different data centers in various locations

Size: can be the physical form of the number of servers in data centers or can be related

to determining the physical setting

pClusters: information from data center physical clusters

pServers: information from data center physical machines

Schedule_Domain_ID: information from data center scheduling domain

3.3.1.9.2 Data center states
Ready: data center has been customized or deployed and is awaiting start

Starting: data center begins to be used

Busy: busy or in use

Free: to be in idle

Table 3.9 Network operations

Operation Description

VNET.AllocIP Reallocates IP for a VM in VNET

VNET.RetrieveIP Retrieves the IP address of a VM in VNET

VNET.AllocSubMask Reallocates subnet mask for VNET

VNET.RetrieveSubMask Retrieves the subnet mask of a VNET

VNET.SetMAC Reallocates MAC address for a VM in VNET

VNET. RetrieveMAC Retrieves MAC address from VM in VNET

VNET.GetDNS Gets possible domain name of VNET

PNET. AllocIP Allocates IP address for this PNET

PNET.RetrieveIP Retrieves IP address from this PNET

PNET. AllocSubMask Allocates subnet mask for this PNET

PNET.RetrieveSubMask Retrieves subnet mask from this PNET

VNET.AllocVLAN Allocates a VLAN for users on this VNET

VLAN. AllocIP Allocates IP address for this VLAN

VLAN.RetrieveIP Retrieves IP address from this VLAN

VLAN. AllocSubMask Allocates subnet mask for this VLAN

VLAN.RetrieveSubMask Retrieves subnet mask from this VLAN

VLAN.AllocGateway Allocates gateway for this VLAN
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3.3.1.9.3 Data center operations

3.3.1.10 Machine room resources

Building space, electricity, and air conditioning facilities of a data center are key

elements of the total cost of data centers.

3.3.1.10.1 Space
With the increasing number of data centers and computing facilities, the space a

data center occupies is one of the major factors of the cost of a data center.

Properties:

TotalSpace: capacity of data centers (sq.m)

ActiveSpace: actual volume occupied by computing facilities (sq.m)

LeasedSpace: occupied capacity of computing facilities leased to users

PricePerSquareMeter: price per sq.m

3.3.1.10.2 Power supply
Electricity supplies power to computing facilities in a data center, battery backup,

onsite power generation, and power supply and generator for redundant backup.

From a cost perspective, we need to consider power supply, depreciation, and main-

tenance costs.

Properties:

TotalPowerSupply: power required when the data center is operating at full capacity

(unit: kW MW)

UtilizedCapacity: actual power consumed by data center (unit: kW MW)

PriceOfPerWatt: price per watt of power

AveragePowerDensity: power consumption per square meter in data center

DepreciationCost: depreciation (depreciation costs consider per month per watt)

MaintenanceCost: maintenance costs (depreciation costs consider per month per watt)

Table 3.10 Data center operations

Operation Description

vCenter.Create Create a virtual data center and start all virtual servers

vCenter.List List all virtual data center resources (e.g., virtual clusters, virtual

servers)

vDisk.List Display virtual disk information

vDisk.Create Create disk file for virtual center that can be deployed with virtual

server

publicIP.List List public IPs of data center

publicIP.Allocate Allocate public IPs for virtual data center

DiskImage.List Display disk image information from data center

DiskImage.

Register

Register disk image for virtual data center
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3.3.1.10.3 Air conditioning
Air conditioning is a key element in maintaining the temperature of the machine

room of a data center and in keeping all of the physical servers within a certain

temperature range (not too hot or too cold). Along with air circulation, it is a major

factor in the cost of the data center.

Properties:

CoolingFactor: relationship between air conditioning and requirements of computing

facilities (as CPU optimization) as it relates to power consumption;

CostOfCoolingPerMonth: direct cost of air conditioning per month;

Maintenance: depreciation of air conditioning maintenance costs (depreciation costs need

to be considered per month per watt) as it relates to CostOfCoolingPerMonth; can be mea-

sured as a coefficient;

CoolingForTemperature: air conditioning costs needed for maintaining servers in data

center within a certain temperature range.

3.4 Constraints and dependencies among resources

We will introduce several possible constraints and dependencies among resources.

The actual industry standards used to achieve processing rules and constraints

can be expressed in business process execution Language for Web Services (WS-

BPEL). WS-BPEL is an XML-based language that defines the logical process

stream for several services used in forming the business process. It measures con-

straints and dependencies throughout the network and can be selected by users.

3.4.1 Software/hardware based relations

There are different combinations of relevance among physical servers, virtual server

hardware platforms, and operating systems (and even some applications). So actu-

ally we always deploy an application platform beforehand and provide it to users as

a kind of service [6].

3.4.2 Associated hardware and software platforms and network

Similarly, the network bandwidth in a data center’s physical servers, virtual servers,

and their applications is constrained by the total bandwidth of the data center and

the method of networking utilized. It’s almost always predetermined or within a

range (dynamic characteristics of network bandwidth usage) [6].

3.4.3 Reliability constraints

Consider the relationship of resources for improving overall system reliability.

Major equipment and backup should not be located in the same physical machine.

For the primary computing device, storage, network equipment, power supply, and
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air conditioning facilities, different redundant backup can be adopted to improve

overall reliability [7].

3.4.4 Time constraints

If a specific combination of hardware, software platforms, and network resources is

assigned to a user at a certain time, other users cannot use it during the same period

of time (but can wait for an idle period occurs) [7].

3.4.5 Relationship among performance, system capacity
(storage), and bandwidth

With an increase in the number of physical servers and storage capacity in a data

center, each server’s read and write operations may take up a great deal of band-

width (the quantitative relationship can be obtained through experimentation. The

delay of read and write operations may increase (this quantitative relationship can

also be obtained through experimentation) [7].

3.4.6 Scheduling domain constraints on the scope of
algorithm execution

The most important purpose of defining a schedule domain is to restrain the range

of schedule executions. Usually the maximum optimization, load balancing, and

performance optimization scheduling algorithms are implemented in one schedule

domain. Multiple domains do not interfere with each other by performing different

scheduling algorithms. Moreover, schedule domains can be used to expand or

reduce size by hand [7].

3.5 Data modeling of resources in a Cloud data center

3.5.1 Relationship of resources

The UML relationship of resources is shown in Figure 3.14, which is appended at

the end of the paper.

3.5.2 Data management of main resource

3.5.2.1 Data center

Figure 3.14 shows an example of two data centers; properties of Cloud data centers

are displayed. Figure 3.15 shows an example of two schedule domains: one applies

a heat balance algorithm, the other applies a load balance algorithm.
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3.5.2.2 Schedule domains

Figure 3.14 Cloud data center information.

Figure 3.15 Schedule domains.

Figure 3.16 Physical machine [8].

Figure 3.17 Physical machine [3].
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3.5.3 Physical machine queries

SQL: Select � from [PM] where Location5 ’domain#1’

An example of PM query results in domain #1 are shown in Figures 3.16�3.18.

Major information defined for PMs is displayed. This information can be used for

monitoring, scheduling, and deploying Cloud resources.

3.5.4 Add physical machine

string

a5 System.DateTime.Now.ToString(“yyyy/MM/dd”)1System.DateTime.Now

.ToLongTimeString();

SQL: Insert Into [PM] Values(‘10’,‘domain#1’,‘10’,‘RedHatE5,windows server

2003’,‘10’,‘intel core E5300’,‘4’,‘4’,‘0.44’,‘0.8’,‘3.2’,‘2’,‘6’,‘0’,‘0.5’,‘0.9’,‘500’,‘kuyu’,

‘“1 a1 ”’,‘100’,‘1000’,‘0.77’,‘100’,‘0.71’,‘192.168.1.101’,”,‘1’,‘40’)

Figure 3.19 shows an example of adding a new PM to a schedule domain (#1);

Figure 3.20 relates to deleting a PM.

Figure 3.18 Physical machine [2].

Figure 3.19 Add physical machine No. 10.
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3.5.5 Delete physical machine

SQL: Delete from [PM] Where PMID5 ’9’

3.5.6 Update physical machine information

SQL: update PM set Location5 ’domain#2’ where PMID. 6

Figure 3.21 shows the updating of PM schedule domain information. This opera-

tion allows some properties of PMs and VMs to be changed.

3.5.7 Query VM

SQL: Select � from [VM] where VM, 17

An example of VM query results are shown in Figures 3.22 and 3.23. Major VM

information as defined in previous sections is displayed. This information can be

used for monitoring, scheduling, and deploying VMs in a Cloud.

Figure 3.20 Delete physical machine No. 9.

Figure 3.21 Update physical machine location.
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3.5.8 Add VM

string

a5 System.DateTime.Now.ToString(“yyyy/MM/dd ”)1 System.DateTime.Now

.ToLongTimeString();

string

b5 System.DateTime.Now.ToString(“yyyy/MM/dd ”)1System.DateTime.Now

.AddHours [12].ToLongTimeString();

SQL: Insert Into [VM] Values(‘17’,‘2’,‘17’,‘17’,‘1.5’,‘0.54’,‘1.5’,‘1’,‘kingston’,‘xijie’,‘in-

telcore E5300’,‘2’,‘2’,‘2.6’,‘0.3’,‘260’,‘1’,‘1’,‘192.168.1.101’,‘100’,‘1’,‘1’,‘1’,‘1’,

‘ 17’,‘0’,‘”1 a1 ”’,‘”1 b1 ”’,’”1 a1 ”’,’”1 b1 ”’,’1’,’4’,’7.6’) (Figure 3.24)

Figure 3.22 Query VM [8].

Figure 3.23 Query VM [3].
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3.5.9 Delete VM

SQL: Delete from [VM] Where PMID5 ’14’ (Figure 3.25)

3.5.10 Update VM information

SQL: update VM set VMemInitialization5 ’2.0’ where VMID. 10 (Figure 3.26)

3.6 Conclusion

In this chapter, we introduce the way to model resources in Infrastructure as a

Service. The definitions and models defined in this chapter are aimed to be general

Figure 3.24 Add VM No. 17.

Figure 3.25 Delete VM No. 14.

Figure 3.26 Update VM memory.
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enough to describe a variety of Cloud providers. The chapter provides definitions,

properties, and operations, as well as data modeling, for Cloud data center

resources; both modeling and operational methods are introduced in detail. This can

help developers better understand how to build information systems and manage

resources in Cloud data centers.

Appendix 1: The UML Relationship of Resources
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4Cloud Resource Scheduling

Strategies

Main Contents of this Chapter

� Key technologies of resource scheduling
� Current Cloud data center scheduling strategies
� Classification and constraining conditions of scheduling strategies

4.1 Key technologies of resource scheduling

Cloud computing is based on computer science’s long-term technical accumulation,

which includes key technology such as SaaS, PaaS, virtualization, and mass data

centers, among others. Data centers (probably distributed in different geographical

multiple systems) are the places that accommodate computing equipment and are

responsible for providing energy and air conditioning maintenance for the comput-

ing devices. A data center could be a single construction or it could be located

within several buildings. Dynamic distribution manages virtual and shared resources

in the new application environment—Cloud computing data centers face new chal-

lenges. Because Cloud computing application platform resources may be distributed

widely and in manifold ways with many different user requirements, real-time

dynamic change can be difficult to accurately predict. Such factors as system per-

formance and cost also need to be considered, making the problem very compli-

cated. Efficient scheduling strategies and algorithms must be designed to adapt to

different business requirements and to satisfy different business goals. The current

major data center scheduling strategies include: first come, first service; load bal-

ance; and maximizing efficiency, among others. Improving system performance

and service quality is a key technology goal of data centers. However—with the

constant expansion of data center scale—energy consumption is increasingly

becoming a serious problem of particular note because energy consumption greatly

affects cost and environment.

Key technologies of resource scheduling include:

� Scheduling strategies: It is the top level of resource scheduling management, which needs

to be defined by data center owners and managers. It mainly determines the resource

scheduling goals and makes sure to satisfy all immediately required handling strategies

when resources are insufficient.
� Optimization goals: Scheduling center needs to identify different objective functions to

determine the pros and cons of different types of scheduling. Now there are optimal objective

functions, such as minimum costs, maximum profits, and maximum resource utilization.
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� Scheduling algorithms: Good scheduling algorithms need to produce optimal results

according to objective functions in a very short time without consuming too many

resources. In a general way, the problems scheduling algorithms need to solve are basi-

cally NP-hard problems, which need a great amount of calculation and are not commonly

used. The industry generally uses approximate optimal scheduling algorithms and uses

different scheduling algorithms for different applications.
� Scheduling system architecture: It is closely related to the basic infrastructure of data

centers. Nowadays the multistage distributed system structure as shown in Figure 2.3 is

mainly utilized.
� Data center resource demarcation and mutual restrictive relationships: Clear analysis of

resources and their mutual restrictive relationships help scheduling algorithms to synthe-

size and balance various factors.
� Data center business flow characteristic analysis: Mastering business flow characteristics

helps to optimize scheduling algorithms.

4.2 Comparative analysis of scheduling strategies

4.2.1 Amazon

Amazon’s Cloud computing scheduling strategy combines strategies for cost first,

then satisfies different user requirements such as load balancing or high reliability:

1. Differential costs: It uses a charge scheduling allocation strategy that involves different

regions having different costs among which customers can choose.

2. Accelerating response speed: Preconfigures typical virtual machine applications.

3. Business classification: Users can be classified immediately by type of business using cli-

ent, reservations, and other information. Fees differ and booking client fees are a little

lower than immediate user client fees.

4. General charge standard: Long-term usage fees in unit time are lower than short-term

usage fees.

5. Load balance: Round Robin is one of the scheduling strategy technologies. It only

requires an IP address list circular function, as opposed to traditional single IP addresses

provided for DNS usage. The server responds to requests, provides the first IP address to

the first request, the second IP address to the next request, and repeats the process until

the final IP is distributed. Then the server repeats this process. Round Robin is very

suitable for servers in different areas or for servers with contents in several data centers or

servers (Table 4.1).

4.2.2 IBM

4.2.2.1 Performance related: satisfying user requirements

IBM belongs to large enterprise, and its internal business (with subsidiaries and its

research institute, for example) has big demands for computing resources. The IBM

Cloud computing platform [11] is based on a virtual computing experiment project

[1�3] experience that has been developed together with North Carolina State

University (NCSU) for many years.
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IBM resource scheduling management adopts the following measures:

� Preconfigures virtual machines or provides optional models, letting users choose the virtual

resources’ hardware platform, CPU, memory, and operating systems online, indicating such

information as start time and end time), and submitting booking or immediate-use request.
� Dynamic monitoring resource status. Monitoring is executed by IBMs Tivolis

Monitoring; users can monitor detailed information via the Tivoli Enterprise portal and

can fully combine this information with Cloud portals.
� Automatic resource deployment and dynamic updates. After users make the choice, the sys-

tem begins a process—which includes Web service, Tivoli Provisioning Manager, optional

IBM Tivoli Security Compliance Manager, BPEL, and IBM Enterprise Workload Manager

Remote Deployment Manager/Cluster Systems Managements/Network Installation Manager

—to construct a server whose process is completely automatic and only takes about an hour.
� Immediate use and booking. Immediate use is for users to request resource upon arrival

while booking is for users to reserve resources in advance.
� Users who receive resources can request extensions of time in advance when using

resources, and—of course—the user can also terminate in advance.

Meanwhile, various scheduling strategies that consider different users, user prior-

ities and groups are also introduced in [2, 3].

4.2.3 HP

4.2.3.1 Cost based: cost model

HP began data center research work very early [3�6]. An HP data center document

[5] systematically introduces HP data center cost model’s detailed scheme and

Table 4.1 Virtual application types currently provided by Amazon
EC2

Application type Memory

(GB)

CPU

(ECU)

Storage

(GB)

Standard instance (for most

ordinary applications)

Small instance 1.7 1 160

Big instance 7.5 4 850

Oversized instance 15 8 1690

High storage instance (high-

throughput applications,

such as e-commerce, etc.)

High memory

oversized instance

17.1 6.5 420

High memory double

oversized instance

34.2 13 850

High memory fourth

oversized instance

68.4 26 1690

High CPU instance (compute-

intensive applications)

High CPU medium

instance

1.7 5 350

High CPU oversized

instance

7 20 1690

Note: EC2 computing unit (ECU, EC2 Compute Unit): an EC2 computing unit (ECU) provides the CPU capacity as
1.0�1.2 GHz, 1.0 Opteron1, 1.0�1.2 GHz, or Xeon processors in 2007.
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technical methods, which becomes an important reference for the cost model.

Equation 4.1 describes each element a data center considers with respect to cost:

including building space occupation, power supply, refrigeration, and maintenance.

Total Cost5 SpaceCost1 PowerCost1CoolingCost1OperationCost ð4:1Þ

Among these elements, SpaceCost includes building/space costs; PowerCost

considers data center power supply costs; CoolingCost refers to data center air con-

ditioning expenses; OperationCost includes fees such as manager, software, and

hardware depreciation and maintenance.

HP’s cost model is very comprehensive and provides examples for data centers

to consider related costs.

4.2.3.2 Load balance: automatically assesses virtual machine
burden and carries out dynamic migration

Patel et al. [6] mainly considers load balance strategy for making CPU, storage, and

network resource utilization close to an average value. Through real-time monitor-

ing of a virtual machine’s CPU, storage, and network resource utilization, the

machine can accomplish automatic configuration and dynamic migration so as to

achieve a balanced load (Figure 4.1).

4.2.4 VMWare

At present, the VMWare company focuses on resource virtualization, disaster

recovery, and dynamic migration [7,8].

4.2.4.1 Improve resource utilization

The main consideration of the VMWare company data centers is improving

resource utilization, dynamic virtual machine migration, and disaster recovery

through virtualization. Managing virtual machines (increasing, deleting, and

updating) is mostly carried out manually, and scheduling generally uses timing

arrangements.

4.2.4.2 Improve reliability

Improving reliability mainly occurs through preset dynamic migration or automatic

transfer, backup, and restoration.

By establishing a remote server group, VMWare can double a center’s virtua-

lized IT structure. Using vReplicator service between the operating end and the

remote end, a real-time application copy can be created from the virtual machine

at the operating end to ESX host storage in the remote end. This can allow for

disaster recovery in different places. VReplicator operates with virtual machines,

monitors virtual machine disk file data changes, and—after a full disk data copy

operation is completed, every other 5 minutes—automatically copies different

82 Optimized Cloud Resource Management and Scheduling



data between the disk data and the disaster recovery end. When the operating

server has a service disruption, vReplicator automatically performs a failover

operation for virtual machine backup, whose disaster recovery end is on standby

status. Backup machine data and settings exactly match the virtual machine

source, so after starting, the application can be immediately taken over and

restarted, providing service for final users.

4.2.4.3 Load balance: Distributed Resource Scheduling

At present, this product mainly realizes load balance through distributed schedul-

ing. Dynamic resource scheduling performs three crucial resource-related opera-

tions: (1) It calculates the demand of resources that each VM should request

based on the reservation and shares settings and constraints for VMs, as well as

resource pool nodes; (2) it does initial placement of VMs on to hosts automati-

cally; and (3) it suggests and performs live VM migrations to do load balancing

across hosts in a dynamic environment when the VM’s resource demands vary

during a period of time.

GUI CLI

API

VM configuration
service

Strategy
A

Schedule domain A Schedule domain B Schedule domain C

Host
A1

Host
B1

Host
BM

VM
A1

VM
AN

VM
B1

VM
BN

Host
AM

...

...

... Host
C1

Host
CM

...

...
VM
C1

VM
CN

...

Strategy
B

Strategy
C

Collect data,
migrate VMs, etc. API

VM management
service

Figure 4.1 HP automatic management virtual machine (dynamic migration) system

structure [6].
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4.2.5 Other solutions

Hadoop is based on MapReduce architecture. MapReduce consists of two core

operations: Map and Reduce. In short, Map is one-on-one mapping, which means

that one group of data is mapped to another group of data with mapping rules speci-

fied by a function. For example, if you apply a 2 multiply map {1,2,3}, it becomes

{2,4,6}. The reduce function reduces a group of data, and these reducing rules are

also specified by a function. For example, if you apply a sum reduce to {1,2,3,4},

the result is 10, while applying a quadrate reduce would result in 30.

The basic Hadoop strategies include: fair distribution, load balance, preference

for nearby nodes, and reliability improvement (backup1 dynamic adjustment)

[12,13].

4.2.5.1 Fair scheduling

Fair scheduling represents a situation in which users (putting forward calculation

requests) are not considered with priority, based on adoption of a first-in, first-out

(FIFO) queue approach. Hadoop’s task scheduling is a master�slave model, which

has a master node called JobTracker that controls the task scheduling of the whole

system. The other nodes are called TaskTrackers and they arrange tasks for

JobTracker when they are available. Hadoop master nodes use a FIFO scheduling

service algorithm. All tasks are executed according to execution time of users’ sub-

mission, and the master node uses a JobQueue (task queue) to maintain submitted

tasks: no tasks are given any priority.

4.2.5.2 Load balance

The master node dynamically allocates tasks through slave nodes to achieve bal-

anced loads. After load balance information is collected from slaves, dynamic con-

figuration can be triggered. Dynamic configuration is just an operation in which

data is migrated from one slave node to another. Migration just means the data is

copied from the slave with the higher load to another slave with a lower load, and

that the data is deleted from the original, higher load slave.

4.2.5.3 Delayed scheduling for locality in Hadoop

Hadoop slave nodes use a greedy algorithm: the default scheduling algorithm is

always trying to find the slave node that is nearest to the customer so large data

does not need to be transmitted throughout the network. If the closest slave node is

busy, then the task can be allocated to another available node.

4.2.5.4 Reliability improvement

Generally when making block backup for data, backup data is distributed in several

(such as three or more) nodes. The main control program pings each live node regu-

larly, and if a particular work node does not return correlative information within a
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specified time—indicating node failure, the main control program defines that node

as invalid, all Map tasks and Reduce tasks assigned to that node will be reset into

the initial free state, and other working nodes can handle those tasks.

4.3 Classification of main scheduling strategies

4.3.1 Performance related

4.3.1.1 First come, first served

To fully satisfy a virtual machine’s resource requirement, a first come, first served

strategy is generally used, combined with user priority. Early IBM virtual comput-

ing was set up in this way and was mostly used in companies or schools. There may

not be specific scheduling optimization goal functions, but it still needs to define

administrator resource allocation. The server can be divided into categories such as

ordinary, high throughput, or extensive computing for users to choose.

4.3.1.2 Load balance

The goal of load balance is to create a balanced average resource utilization of the

physical machines. Typical load balance strategies are used by VMWare and SUN

plan [14,15].

Optimization goal: the utilization of resources5 the average utilization of all

physical servers (CPU, memory utilization, and network bandwidth).

When there is a resource assigned, the system must immediately calculate and

monitor each resource utilization (or directly use a load balance allocation algo-

rithm) and then allocate users’ requests to the resource with the lowest utilization.

Load balancing can be realized through software or through hardware. Hardware

can utilize special load balance devices, such as multilayer switches, which can dis-

pense packets in a cluster. Normally, implementation, configuration, and mainte-

nance solutions from hardware require time and capital investment. As for

software, scheduling algorithms—such as Round Robin—can be used.

4.3.1.3 Improve reliability

Optimization objectives: make each resource’s reliability to the specified require-

ment (such as Amazon’s 99.9% business guarantee [10]). Reliability and the server

itself (average breakdown time, average maintenance time) are related, and break-

down, power outages, and dynamic migration produce business disruption that will

influence reliability.

If a physical server’s reliability is 90% and user required business reliability is

99.99%, scheduling should provide for at least a double-machine backup. If

dynamic migration decreases business reliability by 0.1%, scheduling strategy must

reduce (or avoid) dynamic migration.
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Under certain premises, a system should reduce the average number of virtual

machine migrations (average migration numbers, total migration numbers, or

maximum migration numbers for a single virtual machine). A system also needs

statistics on the quantitative influence on virtual machine migration on

reliability.

Ways to improve reliability: backup redundancy should not place master

machine and backup machine in the same physical machine or frame. Specific indi-

cators can be proposed by users (as a demand option for users to choose).

4.3.2 Cost based

4.3.2.1 Improve overall utilization

Optimization objective: the highest resource utility5 the highest utility that all resources

in the data center can reach (or with the least number of physical machines satisfying the

user’s requests).

Input: resource distribution in the data center and user requests for specific virtual

machine.

Output: physical machine’s ID allocation for user requests.

The CPU utilization of a physical (virtual) server5 number of CPUs that have

been allocated/the number of CPUs that the physical machine can provide. This

parameter can represent the service condition of the current physical server and can

sort the physical server’s utility from high to low. The price of every virtual

machine in unit time5 the cost of a virtual machine in unit time3 (11 a), where a

is the profit margin, which can be provided by the provider. The cost of a virtual

machine in unit time can be estimated by the resources it occupies.

4.3.2.2 Maximum profit

Optimization objective: Maximum profit5Max (the income of all kinds of

resources; the cost of all kinds of resources).

Main factors to be considered:

1. Cost in unit time for unit resource (may be different in each physical machine)5Fixed

Cost (depreciation and labor included)1Variable Cost (including power consumption).

2. Virtual machine power consumption ratio5Total Cost when virtual machine is at full

load/total CPU capacity of virtual machine.

3. Cost of every physical machine5Boot Cost (every time a new physical machine

starts)1Cost in unit time with unit resource3 time3 resource amount.

4. Income of every user’s request equals the unit time cost of the virtual machine user

selected, total income of resources equals the total income from all users.

5. After user finishes request, migration validation should be done to check whether the con-

dition is satisfied. If it is, then migration occurs, which can reduce the number of booted

physical machines to save costs.
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4.3.2.3 Minimum operation costs

Reducing operation costs as much as possible includes cutting down on air condi-

tioning, electricity, and space costs.

Optimization goal: Minimum Cost5Min (all resource cost)

The main factors to be considered:

1. Cost in unit time per unit resource (may be different for each physical machine)5Fixed

Cost (depreciation and labor included)1Variable Cost (including power consumption).

2. Virtual machine power consumption ratio5Total Cost when virtual machine has full

load/total CPU capacity of virtual machine.

3. Cost of every physical machine5Boot Cost (every time a new physical machine

starts)1Cost in unit time with unit resource3 time3 resource amount.

4. Income of every user request equals the unit time cost of the virtual machine user

selected, total income of resources equals the total income from all users.

References [16] and [17] both introduce the scheduling strategy and algorithm

related to heat-sensitivity, Refs. [18] and [19] propose strategy and algorithm for man-

aging and reducing power consumption, Ref. [20] introduces strategy and algorithm to

improve sharing and utility to reduce cost, Ref. [21] provides comparison of 22 data

centers’ power consumption indices, Ref. [22] proposes temperature-sensitivity sched-

uling strategy and algorithms, which can be used in a data center to allocate loads.

Since air conditioning power cost is the main cost in a data center, the industry gener-

ally measures energy efficiency for a data center. Industry usually adopts a power con-

sumption index in a data center to measure power utilization. A data center power

consumption index is the total power consumption (including that by computing equip-

ment, heat, ventilation, air conditioning, light, and other power consumption) divided by

the power consumption of the computing equipment. In a power consumption index, the

higher the better; in practice the value would be between 0.8 and 0.9 (Table 4.2).

4.3.2.4 Combining scheduling strategies

Above all, selecting different strategies should consider both service requirements

and business goals in practice. In Table 4.3, compatibility of every basic scheduling

strategy is collected. If internal service of a company is the first requirement, then

minimum cost, utility, and load balance should be considered. If business applica-

tion is the main requirement, maximum profit should be considered. For instance,

the maximum profit strategy should be selected and configured with the appropriate

load balance and reliability strategies as constraints.

Since combined strategy can result in many new scheduling strategies, the 7

essential scheduling strategies may create 128 combined strategies. A recommended

method would be setting a basic scheduling strategy as the main strategy and then

setting other strategies as constraints to generate new strategies. Here the maximum

utilization compatibility with high reliability is used as an example:

Maximum utilization means utilization of all working physical servers reaches

the maximum level (there is an upper limit to ensure service performance), so some
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Table 4.2 Comparison analysis of main scheduling strategies [9]

Type Strategy Optimization goal Complexity Strength Weakness

Performance

first

Load balance Makes the utilization of a resource

reach the average value

Low Supports basic resource

performance

(performance can be

configured—good

performance utility

domain)

Mainly ensures

performance while other

characteristics may not

be reached easily

High

reliability

Makes reliability of all resources

reach predefined requirement

(like ensuring service, this

strategy can be used 99.95% of

the time)

Low Ensures service reliability If different requirements

exist, a great deal of

resources and cost are

added

Maximum

user request

satisfaction

No explicit goal function Low Classifies user level

according to priority,

safety level, and so on

Can only be qualitatively

allocated when not

quantitatively allocated

Cost first Maximum

utility

Maximizing resource

utilization5 all computing

resources in data center are at

maximum utilization

Higher Makes resource utilization

higher with lower costs

Cannot satisfy other

relative performance

requirements, like load

balance, reliability, and

fast service

Maximum

profits

Maximum Profits5Max (Income

of all types of resources; Cost of

using all types of resources)

High Fits into the profit

requirements of most

business providers

Cannot satisfy other

relative performance

requirements like load

balance, reliability, and

fast service

Minimum cost Minimum Cost5Min (Cost of all

resources)

High Fits into the profit

requirements of most

providers

Cannot satisfy other

relative performance

requirements like load

balance, reliability, and

fast service



Table 4.3 Basic integrated scheduling strategy relationship compatibility (O) or incompatibility (3 )

Maximum user

request

satisfaction

Load

balance

High

reliability

Maximum

utilization

Maximum

profit

Minimum

cost

Energy

efficiency

Capability

optimization

Maximum user

request

satisfaction

O O 3 3 3 O O

Load balance O 3 � 3 3 O O
High Reliability 3 � O 3 O O
Maximum

utilization

O O 3 3

Maximum profit O 3 3

Minimum cost 3 3
Energy

efficiency

O

Capability

optimization

Note: The high reliability mentioned in the table mainly refers to the general load. When user requirements are much higher than resources, many scheduling strategies are compatible.



physical servers would be shut down if necessary. If high reliability is also consid-

ered (like in the master copy), an additional constraint that might influence the mas-

ter copy could be added based on other constraints before shutting down the

physical servers. If that constraint is triggered, then the shut down operation would

not occur. In a similar way, when allocating virtual machines to a physical server to

improve resource utilization, satisfying high reliability could also be added as a

constraint.

4.4 Some constraints of scheduling strategies

4.4.1 Space: association and anti-association

The association rule represents putting two or more virtual machines on the same

server. Anti-association means two or more virtual machines cannot be allocated to

the same server.

4.4.2 Scheduling domain: scheduling locality

A domain is constituted of one or more physical servers or clusters. Some automatic

schedulers, like load balance or maximum utilization, can only happen in a single

scheduling domain within the scheduling system. Scheduling in several domains is

possible and is very important, while sometimes manually operation is needed.

From a layering view, a scheduling domain can only occur at the system layer or

smaller (of course, it may consist of only one scheduling domain in a data center).

4.4.3 Time: limited available time

Tasks allocated to the same resource cannot share the same execution time. If a vir-

tual machine occupies a resource during a period of time, then other users cannot

use the same resource at the same time unless they have higher priority within the

scheduling domain.

4.4.4 Migration versus nonmigration

Some virtual machines are particularly important and cannot be migrated automati-

cally. If migrations are needed, notify the manager and he will handle it.

4.5 Scheduling task execution time and trigger
conditions

When resource costs are taken into consideration, not all scenarios trigger the

scheduler to respond instantaneously. For instance, if the monitor notices that the
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CPU utilization has surpassed the threshold, this could be just temporary, so an

instantaneous schedule would not be reasonable. Common optimization scheduling

usually adopts cyclical timing. For uncommon situations—as when a physical

machine is broken—the scheduler would be triggered instantaneously.

A scheduling condition may be classified as one of three types:

1. Regular scheduling performance: considers business demand when scheduling execution

time is set (i.e., at regular intervals; if business demand is high, it can be set to 1 min. If

business demand is small, it can be set to 10 min).

2. Uncommon condition: occurs when physical resources are broken or load balance has

surpassed the predefined threshold.

3. Optimization with manual operation: arranges schedule manually.

Summary

This chapter analyzes the scheduling strategies of a data center, compares all of the

prominent scheduling strategies from current businesses, and proposes basic schedul-

ing strategy recommendations. In real applications, service requirements need to be

taken into consideration to select different strategies. For those companies whose

main requirements are business applications, the maximum profit strategy is the best

solution. Additionally, we recommend performance and cost should both be consid-

ered; for instance, load balance and reliability satisfaction can be set as constraints-

when the maximum profits strategy is selected.

Appendix: Some elementary terms

Resource

Resources can be divided into many different types with a variety of division stan-

dards. In this chapter, “resource” only refers to those necessary for a scheduler to

consider when deciding where a virtual machine should be created or migrated.

Resource provider

Physical machines and clusters are physical resource providers.

Resource user

A virtual machine is a resource user when considered in terms of physical resources

or is just a resource from the point of view of the end user.
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Resource scheduling

Resource scheduling is a process whereby resource providers allocate resources to

users. For a Cloud data center, the types of resources scheduling strategies must

consider include physical servers, physical server clusters, shared memories, band-

widths, virtual machine images, and security groups.

When requirements surpass capacity and capacity varies with time, a Cloud data

center can adopt resource management to allocate resources dynamically to make

resource usage more efficient. For virtual machine scheduling, the following three

questions need to be considered carefully:

1. Scheduling strategy and goal: What’s the standard for allocating the required virtual

machine to a physical machine?

2. Main problem scheduling algorithm must solve: Which physical machine will be allocates

the required virtual machine?

3. Deployment and configuration of the required virtual machine: Predefined configuration

and dynamic configuration differ. Problems 1 and 2 have a close relationship to the

scheduling algorithm.

Resource management

Generally speaking, resource management is a broader concept than resource sched-

uling, because in addition to scheduling, it also includes resource monitoring, auto-

matic installation and configuration, and the implementation of scheduling tasks.

Scheduling strategy

This is the highest strategy in scheduling management, and must be chosen by the

data center owner and managers. The main aim is to fulfill the goals of the sched-

uled resources and to provide strategies when resources cannot satisfy all real-time

requirements. Additionally, unique situations—like hardware failure, high tempera-

ture, and resource overload—require migration to be taken into consideration.
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5Load Balance Scheduling for Cloud

Data Centers

Main Contents of this Chapter

� Related work on resource scheduling for data centers
� Online algorithm model and analysis
� Comparison of several online algorithms

5.1 Introduction

Cloud data centers can be distributed networks in structure, containing many com-

pute nodes (such as servers), storage nodes, and network devices. Each node is

formed by a series of resources, such as CPU, memory, and network bandwidth,

which are called multidimensional resources. Each has corresponding properties

discussed in this paper. The definitions and models defined in this paper are aimed

to be general enough to be used by a variety of Cloud providers and to focus on

Infrastructure as a Service. In traditional data centers, applications are tied to spe-

cific physical servers that are often overworked to deal with heavy workloads. Such

configurations make data centers expensive to maintain—with wasted energy and

floor space, low resource utilization, and significant management overhead. With

virtualization technology, today’s Cloud data centers have become more flexible,

more secure, and provide better support for on-demand allocation. In a virtualiza-

tion situation, Cloud data centers have the ability to migrate an application from

one set of resources to another in a nondisruptive manner. This ability is essential

in modern Cloud computing infrastructure that aims to efficiently have and manage

extremely large data centers. One key technology playing an important role in

Cloud data centers is resource scheduling. There are quite a few load balance

scheduling algorithms. Most of them are for the load balancing of traditional Web

servers or server farms. One of the challenging scheduling problems in Cloud data

centers is the allocation and migration of reconfigurable virtual machines (VMs)

and the integrated features of physical machine (PM) hosting. Unlike traditional

load balance scheduling algorithms that consider only one physical server factor—

such as CPU—online resource scheduling algorithm (OLRSA) considers CPU,

memory, and network bandwidth integrated for PMs and VMs. The major contribu-

tions are as follows:

� Providing a modeling approach to VM scheduling problems of capacity sharing by modi-

fying traditional interval scheduling and considering life cycles and multidimensional

characteristics of both VMs and PMs.
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� Designing and implementing online load balancing scheduling algorithms with computa-

tional complexity and competitive analysis.
� Providing performance evaluation of multiple metrics, such as makespan, load efficiency,

imbalance value, and makespan capacity, to adjust makespan capacity by simulating dif-

ferent algorithms.

5.2 Related work

A great amount of work has been devoted to scheduling algorithms and it can basi-

cally be divided into two types: online load balance algorithms and offlineload bal-

ance algorithms. The major difference is that online schedulers only know the

current requests and status of all PMs, whereas offline schedulers know all requests

and every status of all PMs throughout time. Andre et al. [1] discussed the detailed

design of a data center. Armbrust et al. [2] summarized the key issues and solutions

in Cloud computing. Foster et al. [3] provided detailed comparison between Cloud

computing and Grid computing. Buyya et al. [4] introduced a way to model and sim-

ulated Cloud computing environments. Wickremasinghe et al. [5] introduced three

general scheduling algorithms for Cloud computing and provided simulation results.

Wood et al. [6] introduced techniques for VM migration and proposed some migra-

tion algorithms. Zhang [7] compared major load balance scheduling algorithms for

traditional Web servers. Singh et al. [8] proposed a novel load balance algorithm

called VectorDot that deals with hierarchical and multidimensional resource con-

straints by considering servers and storage in a Cloud. Arzuaga and Kaeli [9] pro-

posed a quantifying measure of load imbalance on virtualized enterprise servers.

Tian [10] provided a comparative study of major existing scheduling strategies and

algorithms for Cloud data centers. Sun et al. [11] presented a novel heuristic algo-

rithm to improve integrated utilization considering multidimensional resources. Tian

et al. [12] introduced a dynamic load balance scheduling algorithm considering only

current allocation periods and multidimensional resources, without considering life

cycles of both VMs and PMs. Li et al. [13] proposed a Cloud task scheduling policy

based on an ant colony optimization algorithm to balance the entire system and mini-

mize the makespan of a given task set. Galloway in Ref. [14] introduced an online

greedy algorithm, in which PMs can be dynamically shut down or started, but the start

time and end time (life cycle) are not considered. Hu et al. [15] discussed an algorithm

named Genetic, which measures historical data and current states in order to determine

allocations. Most of the existing research does not consider the real-time and fixed-

interval constraints of VM allocation. We will address this issue in this chapter.

5.3 Problem formulation and description

In this chapter we model VM allocations as Modified Interval Scheduling

Problems (MISPs) with fixed processing times. More explanations and analysis
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about traditional interval scheduling problems (ISPs) with fixed processing times

can be found in Ref. [16] and the references therein. We present a general formu-

lation of a MISP and evaluate its results when compared with well-known exist-

ing algorithms. A set of requests 1,2,. . .,n where the ith request corresponds to an

interval of time starting at si and finishing at fi is associated with a capacity

requirement ci.

Several assumptions follow:

1. All data are deterministic and—unless otherwise specified—the time is formatted in slot-

ted windows. As shown in Figure 5.1, we partition the total time period [0, T] into slots

with equal length (s0), with the total number of slots k5T/s0. The start time si and finish

time fi are integer numbers of one slot. Then the interval of a request can be represented

in slot format with (start time, finish time). For example, if s05 5 min, an interval (3, 10)

means that it has a start time and a finish time at the 3rd slot and 10th slot, respectively.

The actual duration of this request is (102 3)3 55 35 min.

2. All tasks are independent. There are no predetermined constraints other than those implied

by the start and finish times.

3. The required capacity of each request is a positive real number between (0, 1]. Notice that

the capacity of a single PM is normalized to 1.

4. Assume that—when processed—each VM request is assigned to a single PM, thus inter-

rupting a request and resuming it on another machine is not allowed, unless explicitly

stated otherwise.

5. Each PM is always available, that is, each machine is continuously available in [0, N).

The traditional ISP with fixed processing time: In a set of requests 1, 2,. . .,n
where the ith request corresponds to an interval of time starting at si and finishing

at fi, each request needs a capacity of 1—occupying the whole capacity of a

machine during a fixed processing time.

Interval scheduling with capacity sharing (ISWCS): The only difference from

traditional interval scheduling is that a resource (a concrete, PM) can be shared by

different requests if the total capacity of all requests allocated to the single resource

at any time does not surpass the total capacity that the resource can provide.

Sharing compatible intervals for ISWCS: A subset of intervals with total required

capacity not surpassing the total capacity of a PM at any time, therefore the capac-

ity of a PM can be shared.

The formulation of ISWCS can be described as follows. Given a set of m identi-

cal machines (PMs) PM1,PM2,. . .,PMm and a set of n requests (VMs), with a pro-

cessing time for each request (e.g., consider only CPU processing), the objective of

load balance is to assign each request to one of the PMs so the loads placed on all

machines are balanced. The online scheduler only has access to the current requests

and status of all PMs. In the literature, the makespan is used to measure the load

balance, which is simply the maximum total load (processing time) on any machine.

0 1 2 3 4 5 6 7 8 9 10 k – 2 k – 1 k

Figure 5.1 Slot formats.
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Traditionally, the makespan is the total length of the schedule (e.g., when all of the

jobs have finished processing when each job occupies the whole capacity of a

machine during processing).

Theorem 5.1 The offline scheduling algorithm allocating minimum makespan in a

general case is NP-complete.

Proof We sketch a brief proof as follows, with the detailed proof referred to in

Ref. [16]. We show that this scheduling problem (called the Load balance

Scheduling Problem) is a polynomial time reducible to a well-known NP-com-

plete problem: the Subset Sum Problem. Thus consider an instance of Subset Sum

with numbers w1,w2,. . .,wn, which correspond to the CPU load of n VM requests

and have the total CPU load W. To achieve load balance, in an ideal situation, all

m machines would share the same amount of the total CPU load, W/m. This

requires all allocations on all PMs to be satisfied. Suppose there are j VMs on

PMi; this requires that Li5W/m. It reduces to the Subset Sum Problem, which

completes the proof.

Remarks Notice that Theorem 5.1 considers offline load balance scheduling for

a single resource CPU on identical machines. When there are multiple resources

to be considered in a heterogeneous case (like in this paper), the problem

is more difficult, but can still be proven to be NP-complete in a similar way

(a detailed proof is provided in Ref. [17] by transforming the problem to a

three-dimensional matching problem or a multidimensional vector bin-packing

problem). The load balance of ISWCS is different from the load balance of tra-

ditional multiprocessor scheduling. First, each request may have different capac-

ity demand in ISWCS, whereas each job occupies the entire capacity of one

machine in traditional multiprocessor scheduling. Second, ISWCS has fixed pro-

cess intervals, whereas in traditional multiprocessor scheduling the job can be

delayed without considering start time or end time. Traditional metrics, such as

makespan, may not reflect the real load for ISWCS problems. For example, con-

sider when there are n5 7 jobs, m5 3 machines, and each machine has the

capacity C5 3. The first six jobs all have start times of zero and end times of 1,

with capacity 1. The last job has the start time zero and end time 3, with capac-

ity 1. The traditional List Scheduling (LS) algorithm [18] allocates two jobs of

the first six jobs to each machine and the last job to the first machine, and has a

makespan of 3. The optimal solution is to allocate three of the first six jobs to

the first two machines and the last job to the third machine, which will also

have a makespan equal to 3. However, this does not reflect the real load of each

machine. Actually, LS would allocate the maximum load of 5 to all machines,

while the maximum load is 3 for all machines in the optimal solution. The rea-

son is that both capacities share and the ISWCS problem uses a fixed processing

interval constraint.

In view of this issue, we redefine makespan to be capacity makespan.
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Capacity makespan: In any allocation of VM requests to PMs, we can let A(i)

denote the set of VM requests allocated to machine PMi. With this allocation,

machine PMi will have the total loads:

Li 5
X
jAAðiÞ

cjtj ð5:1Þ

where cj is the capacity (e.g., CPU) request of VMj and tj is the span of request j

(i.e., the length of processing time of request j). The goal of load balancing is to

minimize the maximum load (capacity makespan) on any PM. Some other related

metrics, such as imbalance value and load efficiency, are also considered and will

be explained in the following section.

5.3.1 Metrics for real-time load balancing scheduling algorithms

In this section, a few existing metrics and new metrics for load balancing schedul-

ing will be presented. Wood et al. [6] introduced a few VM migration techniques.

One integrated load balance measurement is applied as follows:

V 5
1

ð12CPUuÞð12MemuÞð12NETuÞ
ð5:2Þ

where CPUu, Memu, NETu are the average utilization of CPU, memory, and net-

work bandwidth during each observed period, respectively. The higher the value of

V, the higher the integrated utilization will be.

Zheng et al. in Ref. [19] introduced an integrated load balancing index and load

balancing algorithm:

B5 a3
N1i 3Ci

N1m 3Cm

1 b3
N2i 3Mi

N2m 3Mm

1 c3
N3i 3Di

N3m 3Dm

1 d3
NETi

NETm

ð5:3Þ

where i is the index of PM and m is the ID of the referenced PM, Ni is the capabil-

ity of CPU, N2 is the parameter of memory, N3 refers to the parameter of band-

width, C and M are the utilization of CPU and memory, D is the transference rate

of the hard disk, Net is the network throughput, a, b, c, d are the compared

weighted values of CPU, memory, hard disk, and network, respectively, initialized

as 1. The optimization goal seeks to allocate requests to the PM with the smallest B

value. For the OLRSA algorithm, we take the following parameters into

consideration:

1. PM resource: PMi(i, PCPUi, PMemi, PStoragei), i is the index number of PM, PCPUi,

PMemi, PStoragei are the CPU, memory, and storage capacity that a PM can provide.

2. VM resource: VMjðj;VCPUj;VMemj;VStoragej;T
start
j ; Tend

j Þ; j is the VM type ID, VCPUj,

VMemj, VStoragej are the CPU, memory, storage requirements of VMj, T
start
j ; Tend

j are the

start time and end time, which are used to represent the life cycle of a VM.

99Load Balance Scheduling for Cloud Data Centers



3. Time slot: we consider a time span from 0 to T divided into parts of the same length.

Then n parts can be defined as [(t12 t0), (t22 t1),. . .,(tn2 tn21)], each time slot Tk means

the time span (tk2 tk21).

4. Average CPU utilization of PMi during slot 0 and Tn:

PCPUU
i 5

Pn
k50

PCPUTk
i 3Tk

Pn
k50

Tk

ð5:4Þ

And with memory PMemU
i and storage PStorageUi , utilization of both PMs and VMs

can be computed in the same way. Similarly, average CPU utilization of a VM can be

computed.

5. Integrated load imbalance value ILBi of PMi. The variance is widely used as a measure of

how far a set of values are spread out from each other in statistics. Using variance, an

integrated load imbalance value IBLi of server i is defined

ILBi 5
ðAvgi2CPUA

u Þ2
3

1
ðAvgi2MemA

u Þ2
3

1
ðAvgi2StorageAu Þ2

3
ð5:5Þ

where

Avgi 5
PCPUU

i 1PMemU
i 1PStorageUi

3
ð5:6Þ

and PCPUU
i ;PMemU

i ; PStorage
U
i are respectively the average utilization of CPU, memory,

and storage in a Cloud data center. ILBi is applied to indicate load imbalance level, com-

paring utilization of CPU, memory, and network bandwidth of a single server, itself. This

metric is very similar to the VMware DRS load balance metric with standard deviation, as

presented in Ref. [20].

6. Makespan is the same as in the traditional definition, and therefore the capacity makespan

of all PMs can be formulated as below:

capacitymakespan 5maxiðLiÞ ð5:7Þ

7. Load efficiency (skew of makespan) is defined as the minimal average load divided by

the maximal average load on all machines:

skewðmakespanÞ5 miniLi

maxiðLiÞ
ð5:8Þ

where Li is the load of PMi. The Skew shows the load balance efficiency to some degree.

8. Imbalance Level (IBL) of CPU is defined as:

ILBcpu 5

Pn
i50

ðCPUu
i 2PCPUavgÞ2

n
ð5:9Þ
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where PCPUavg is the average utilization of all CPUs in a data center. The IBL of memory

IBLMem and the IBL of storage IBLStorage can be obtained in the same way.

So the total IBL of a data center is:

IBLtotal 5 IBLCPU 1 IBLMem 1 IBLStorage ð5:10Þ

Based on the above definitions and equations, we have developed another metric:

capacity skew of the load balancing algorithm for the new situation as follows:

9. Skew of capacity makespan is defined as the minimal capacity makespan over maximal

capacity makespan on all machines (referring to Eq. (5.1)):

Skewðcapacity2makespanÞ5 min
P

jAAðiÞ cjtj
max

P
jAAðiÞ cjtj

ð5:11Þ

A higher value shows a better load balance to some degree.

From these equations, we notice that life cycle and capacity sharing are two

major differences from traditional metrics such as makespan and skew.

Traditionally, LS [18] is widely used for load balancing online multiprocessor

scheduling. By considering both fixed process intervals and capacity sharing prop-

erties in a Cloud data center, we propose a new online algorithm as follows.

5.4 OLRSA algorithm

5.4.1 Algorithm description

Figure 5.2 shows the core process of the OLRSA algorithm. For each request, it first

finds the PM with the lowest average capacity makespan. The PM with the next-

lowest average capacity makespan would be turned on only if the resources on the

first PM have already been utilized, so all requests can be allocated without rejection.

Theorem 5.2 The computational complexity of OLRSA algorithm is O(nlogm)

using priority queue data structure where n is the number of VM requests and m is

the total number of PMs used.

Proof The priority queue is designed such that each element (PM) has a priority

value (average capacity makespan), and such that each time the algorithm needs to

select an element from it, the algorithm takes the one with the highest priority (the

smaller the value of the average capacity makespan, the higher priority it is).

Sorting a set of n numbers in a priority queue takes O(n) time, and a priority queue

performs the insertion and the extraction of minima in O(logn) steps (detailed proof

of the priority queue is shown in [16]). Therefore, by using a priority queue or

related data structure, the algorithm can find the PM with the lowest average capac-

ity makespan in O(logm) time. Altogether, for n requests, the OLRSA algorithm

has time complexity O(nlogm).
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Theorem 5.3 The competitive ratio of OLRSA algorithm is (22 1/m) where m is

the total number of machines.

Proof Considering m machines and n requests:

n.m;m. 2 ð5:12Þ

CMi is the capacity makespan of VMi, ci is the resource capacity VMi needed,

which could be CPU, memory, storage, or integrated resources:

CMi 5 ci � ðTend
i 2 Tstart

i Þ ð5:13Þ

Let OPT and OLRSA represent the scheduling results of an optimal solution and

an OLRSA solution respectively. Let Li denote the load of machine Mi and let M�

be the most heavily loaded machine in the schedule by OLRSA. Let jk be the last

job assigned to M�. We can easily deduce the following two equations:

OPT$
1

m

Xn
i51

CMi ð5:14Þ

OPT$ max
i

CMi ð5:15Þ

Figure 5.2 Pseudo code of OLRSA algorithm.
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All PMs must be loaded at least (OLRSA-CMk) at the time of allocating CMk

because OLRSA already allocates a VM to a PM with the lowest capacity makespan.

Since OLRSA2CMk represents the PM with the lowest capacity makespan, we have:

Xi5n

u51

CMi 2CMk $mðOLRSA2CMkÞ ð5:16Þ

The above equations can be transformed to:

OLRSA #

Xi5n

i51

CMi 2CMk

m
1CMk

5

Xi5n

i51

CMi

m
1 12

1

m

0
@

1
ACMk

#OPT1 12
1

m

0
@

1
AOPT

5 22
1

m

0
@

1
AOPT

Observation The upper bound for the OLRSA algorithm is tight.

Remarks We have shown a general example to demonstrate that the upper bound

holds. Consider m machines are providing resources and each machine can be allo-

cated VMs with the total capacity g (total capacity of a machine is g). Suppose

there are (m2 1)3 g1 1 requests in total, the first (m2 1)3 g requests all start at

time slot 0 and finish at time slot 1, while the last request starts at 0 and ends at g.

In this case, for the OPT algorithm, the capacity makespan is:

OPT5
ðm2 1Þg1 g

m
5 g

As for OLRSA, the first (m2 1)g would be allocated to m machines equally by

the allocation rule (let (m2 1)g divide m), and the last one would also be allocated

to the PM with the lowest capacity makespan value (in this case any PM would

work). So

OLRSA5
ðm2 1Þg

m
1 g5 g 12

1

m

� �
1 g
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Then, the competitive ratio of OLRSA over OPT is:

OLRSA

OPT
5 12

1

m
1 15 22 1=m

5.4.2 Mythology and simulation settings

In this section, we will show simulation results for the OLRSA algorithm compared

with other existing algorithms. A Java discrete simulator is developed for this pur-

pose. All simulations are conducted on a Pentium dual-core computer with 3.2 GHz

CPU and 2 GB memory. We compare the simulation results of our proposed algo-

rithm with four existing algorithms:

1. Random Algorithm (Random): a general scheduling algorithm that randomly allocates the

VM requests to the PM that can provide the resource required.

2. Round Robin (Round): a traditional load balance scheduling algorithm allocates the VM

requests one-by-one to each PM in turn that can provide the resources required.

3. ZHJZ algorithm: as defined in Ref. [19] selects a referenced PM, calculates the value, and

chooses the PMs with the lowest B value (as defined in Eq. (5.3)) and available resources

to which to allocate VMs.

4. LS algorithm [16]: One of the best-known online traditional load-balancing algorithms, it

selects the available PM with the lowest current load to which to allocate the VM.

For a simulation to be realistic, we adopt the log data from Lawrence Livermore

National Lab (LLNL) [21]. That log contains months of records collected by a large

Linux cluster. Each line of data in that log file includes 18 elements, while in our

simulation; we only need the requestID, start time, duration, and relevant processor.

To enable that data to fit within our simulation, some conversions are needed. For

example, we can convert the units from seconds from the LLNL log file into min-

utes, because we set a minute as a time slot length as mentioned in the previous

section. Another conversion changes the processor number needed in the LLNL log

file to eight types of VM requests. To simplify the simulation, three types of hetero-

geneous PMs and eight types of VMs are considered (they can be dynamically con-

figured and extended). We simulate with enough PMs to satisfy all VM requests

(e.g., with 200 VMs and durations larger than 30, the number of PMs is 18 type-1,

20 type-2, and 12 type-3, respectively). VM numbers vary from 200 to 800 (each

type equaling approximately 1/8 of the total). The simulations for different algo-

rithms use the same environment with the same VM requests. The only difference

lies in the scheduling process of each algorithm: OLRSA PMs are turned on one by

one according to the VM requests, while all other PMs are turned on at the begin-

ning.For the sake of easy comparison, if the actual total number of PMs turned on

are not the same for different algorithms, all metrics—such as capacity makespan,

skew, and imbalance value—are adjusted with a timing coefficient (the actual total

number of PMs turned on divided by the maximum number of PMs used by all

algorithms).

104 Optimized Cloud Resource Management and Scheduling



5.4.3 Simulation results and analysis for OLRSA

5.4.3.1 Divisible capacity configuration of VMs and PMs

Strongly divisible capacity of jobs and machines: the capacity of all jobs form a divi-

sible sequence (i.e., the sequence of distinct capacities c1$ c2$ . . .$ ci$ ci11$ . . .)
taken on by jobs (the number of jobs of each capacity is arbitrary) such that all

i. 1, ci is divisible by ci11, and capacity C is divisible by the largest item

capacity ci in L. See Ref. [17] for a detailed discussion.

In this paper, we also adopt the following divisible capacity configuration of VMs

and PMs as shown in Tables 5.1 and 5.2. Note that one Compute Unit (CU) has the

equivalent CPU capacity of a 1.0�1.2 GHz 2007 Opteron or 2007 Xeon processor [22].

To simplify the corresponding relationship, we use VM types 1, 2, and 3 for PM

Type 1; VM types 4, 5, and 6 for PM Type 2; and VM types 7 and 8 for PM

Type 3.

Figures 5.3�5.7 show the IBLs, makespans and skews of makespans, and capac-

ity makespans and skews of capacity makespans, respectively when keeping the

total number of VM requests as 200 but varying the maximum duration of VMs.

The results are an average value of five different simulations of the same inputs

(data is from an LLNL log file). From these figures, we notice that the OLRSA

algorithm shows the best performance in IBLs, makespans, capacity makespans,

and skews of capacity makespans; everything except for skews of makespans when

compared with the other four algorithms. Notice that the skew of the makespan is a

traditional index for measuring load balance scheduling without considering

capacity-sharing and fixed-interval constraints.

Table 5.1 Eight types of VMs in Amazon EC2

CPU units Mem Storage VM type

1 unit 1.7 GB 160 GB 1-1(1)

4 units 7.5 GB 850 GB 1-2(2)

8 units 15 GB 1690 GB 1-3(3)

6.5 units 17.1 GB 420 GB 2-1(4)

13 units 34.2 GB 850 GB 2-2(5)

26 units 68.4 GB 1690 GB 2-3(6)

5 units 1.7 GB 350 GB 3-1(7)

20 units 7 GB 1690 GB 3-2(8)

Table 5.2 Three types of recommended PMs

PM pool type CPU units Mem Storage

Type 1 16 units 30 GB 3380 GB

Type 2 52 units 136 GB 33S0 GB

Type 3 40 units 14 GB 3380 GB
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5.5 LIF algorithm

In this section, we introduce another OLRSA: the Lowest Integrated-load First

(LIF) algorithm. The objective of the LIF algorithm is to globally minimize the cur-

rent total imbalance value of all servers in a Cloud data center (i.e., minPN
i51 ILBi). The LIF is a dynamic scheduler with past and current requirement
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Figure 5.3 IBL comparisons when varying duration of VMs.
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Figure 5.4 Makespan comparisons when varying duration of VMs.
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Figure 5.5 Skews of makespan comparisons when varying duration of VMs.
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information, but without future incoming request information. In long run, it will

cause the lowest total imbalance value of all servers when the number of requests is

large compared to the total number of physical servers. Results in the simulation

section validate this observation.

5.5.1 Description of LIF algorithms

Figure 5.8 shows the detailed steps of an LIF algorithm. Inputs into the algorithm

include current the VM request r, the status of current active tasks, and PMs. For

dynamic scheduling, the output is a placement scheme for request r. Basically, the

algorithm dynamically finds the data center’s lowest total imbalance value when

placing a new VM request by comparing different imbalance values that would be

created if the request is allocated to different PMs. In actuality, the algorithm finds

the PM with the lowest integrated-load (referred to in Eq. (5.5)).

Theorem 5.1 For all of the PMs in a Cloud data center, allocating the current VM

request to the PM with the lowest integrated load (the lowest average multidimen-

sional utilization value, as defined in Eq. (5.5)) leads to the lowest total imbalance

value of all servers in a Cloud data center.
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Figure 5.6 Capacity-makespan comparisons when varying duration of VMs.
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Figure 5.7 Skews of capacity-makespan comparisons when varying duration of VMs.
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Proof Let’s set the current VMi with CPU, memory, and network bandwidth

requests (vC,vM,vN) for N PMs. If the VM can be satisfied, then the average utiliza-

tion of CPU, memory, and network bandwidth of the data center will be

(CPUA
u ;MemA

u ;NET
A
u ), respectively. Using Eq. (5.10), the total imbalance values of

all PMs in a Cloud data center is the sum of individual imbalance values of each

PM. After allocating for the current VMi, data center�wide average utilization of

CPU, memory, and network bandwidth is fixed for all PMs. Only one PM—which

hosts the current VM request—will change its Avgi as defined in Eq. (5.6). For the

sake of generalization, let us state that there are N PMs, each with average multidi-

mensional utilization Avgi as defined in Eq. (5.6). Therefore, there are N possible

allocations if all PMs can host VMi, with corresponding total imbalance values as

IBL
j
tot. Let us set average utilization of CPU, memory, and network bandwidth as

(UC,UM,UN) after allocating VMi. Supposing that PMi and PMk are the two PMs on

which the scheduler is trying to allocate VMi, ILBi, and ILBk are the imbalance

values of physical server i before allocating VMi and after allocating VMi, respec-

tively. ILBk and ILBk are imbalance values of physical server k before allocating

VMi and after allocating VMi, respectively. Let the total imbalance value IBLi

denote the total imbalance values of all servers if VMi is allocated on PMi and, sim-

ilarly, IBLk
tot denote the total imbalance values of all servers if VMi is allocated on

PMk, then:

IBLi
tot 5 IBLi 1 ILB2 1?1 ILBi 1?1 ILBk 1?1 ILBN ð5:17Þ

and

IBLk
tot 5 ILN1 1 ILB2 1?1 ILBi 1?1 ILBk 1?1 ILBN ð5:18Þ

Figure 5.8 LIF algorithm.
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Comparing the above two equations, only E15 (ILBi1 ILBk) and

E25 (ILBi1 ILBk) will affect the total imbalance values because the other parts are

the same for both equations. This assumes that all PMs are homogeneous. If PMs

are heterogeneous, then classification of different PMs is necessary to convert the

heterogeneous problem into a homogeneous problem. For example, if different

types of PMs can be put into different clusters (data centers), then all PMs in each

cluster (data center) are treated as homogeneous. Next, we compare E1 and E2. Set

α5Avgi; α̂5Avgi 5α1 δ, where δ is the average utilization increase of PMj if

VMi is allocated to it; and β5Avgk; β̂5β1 δ, where δ is the average utilization

increase of PMk if VMi is allocated to it. Set UC,UM,UN as average CPU, memory,

and network (or storage) utilization in a Cloud data center as defined in Eq. (5.5).

We prove that E1,,E2 is equivalent to the following:

� ðα̂2UCÞ21 ðα̂2UMÞ21 ðα̂2UNÞ21 ðβ2UCÞ21 ðβ2UMÞ21 ðβ2UNÞ2,
ðα2UCÞ21 ðα2UMÞ21 ðα2UNÞ21 ðβ̂2UCÞ21 ðβ̂2UMÞ21 ðβ̂2UNÞ2
� 3α̂222α̂ðUC1UM1UNÞ13β222βðUC1UM1UNÞ,3α222αðUC1UM1UNÞ
13β̂

2
22β̂ðUC1UM1UNÞ

� 3α̂223α222ðα̂2αÞðUC1UM1UNÞ13β223β̂
2
12ðβ̂2βÞðUC1UM1UNÞ,0

� 3ðα̂2αÞðα̂1αÞ12ðβ̂2β2 α̂1αÞðUC1UM1UNÞ13ðβ2 β̂Þðβ̂1βÞ,0

� δ
�
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δ
3

�
1

�
2
δ
3
22

δ
3

�
ðUC1UM1UNÞ2δ

�
2β1

δ
3

�
,0

� 2αδ22βδ,0

� α,β
�Avgi,Avgk

This means that allocating current VM requests to the PM with the lowest inte-

grated load creates the lowest total imbalance value of all of the servers, which

completes the proof.

5.5.2 Simulation results

In this section, we provide simulation results for the comparison of the five differ-

ent scheduling algorithms introduced in this paper. For convenience, a short name

is given for each algorithm as follows:

1. ZHCJ algorithm: as introduced in [6], the algorithm always chooses PMs with the lowest

V value (as defined in Eq. (5.2)) and available resources to which to allocate VMs.

2. ZHJZ algorithm: selects a referring PM [19], calculates the value, and chooses the PM with

the lowest B value (as defined in Eq. (5.3)) and available resources to which to allocate VMs.

3. LIF algorithm: as described in Figure 5.8, based on-demand characteristics (e.g., CPU,

memory, network bandwidth requirements, etc.), always selects the PMs with the lowest

integrated load (or average multidimensional utilization) and available resources to which

to allocate VMs.

4. Rand algorithm: randomly assigns requests (VMs) to PMs that have available resources.
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5. Round-Robin (Round) algorithm: one of the simplest scheduling algorithms, which assigns

tasks to each PM in equal portions and in circular order, handling all tasks without priority

(also known as the cyclic executive). In the following, we only consider random configura-

tion cases, which are more general. For the simulations, three types of heterogeneous PM

pools (clusters) are considered; each PM pool consists of some number of PMs (which can

be dynamically configured and extended). For the simulation of a large number of VM

requests, both CPU and memory are configured with large sizes that can be set dynamically:

type 1: CPU5 12 GHz, memory5 24 G, bandwidth5 200 M

type 2: CPU5 24 GHz, memory5 36 G, bandwidth5 300 M

type 3: CPU5 32 GHz, memory5 48 G, bandwidth5 400 M.

Similarly, the following eight Amazon EC2 examples have high CPU values,

high-memory, and standard configurations (but not exactly the same), and eight

types of VMs with an equal probability of requests that are generated randomly as

follows (can be dynamically configured):

type 1: CPU5 2.0 GHz, memory5 1.0 G, bandwidth5 2.0 M

type 2: CPU5 10.0 GHz, memory5 4.0 G, bandwidth5 8.0 M

type 3: CPU5 16.0 GHz, memory5 12.0 G, bandwidth5 15.0 M

type 4: CPU5 3.0 GHz, memory5 9.0 G, bandwidth5 5.0 M

type 5: CPU5 6.0 GHz, memory5 20.0 G, bandwidth5 15.0 M

type 6: CPU5 13.0 GHz, memory5 36.0 G, bandwidth5 25.0 M

type 7: CPU5 1.0 GHz, memory5 1.0 G, bandwidth5 25.0 M

type 8: CPU5 2.0 GHz, memory5 4.0 G, bandwidth5 50.0 M.

For all of the simulations, the number of PMs ranges from 100 to 600 (with an

equal probability); the number of requests of VMs is randomly generated and varies

from 1000 to 6000; and a Pentium PC with 2 GHz CPU, 2 G memory is used for

all of the simulations. All simulations use the same set of randomly generated

requests. The average imbalance value of a Cloud data center and all PMs are two

major metrics we computed.

Figure 5.9 shows the average imbalance value (defined in Eq. (5.10)) of a Cloud

data center. In this simulation, the five scheduling algorithms ZHJZ, ZHCJ, Rand,

Round Robin, and LIF are compared when both the total number of PMs and the

total number of VM requests are changing. It can be seen that the LIF algorithm

has the lowest average imbalance value of a Cloud data center when both the total

number of PMs and the total number of VM requests change (i.e., the total number

of PMs change from 100 to 600 and the total number of VM requests change from

1000 to 6000 correspondingly). Note that the same eight types of VMs with an

equal probability of requests are used for all of the simulations.

Figure 5.10 shows the average imbalance value of all physical servers (defined

in Eq. (5.5)). Here, the simulation settings are the same as in Figure 5.9. The LIF

algorithm has the lowest average imbalance value for all PMs.

Figure 5.11 shows the average imbalance value (defined in Eq. (5.10)) of a

Cloud data center when the total number of PMs is fixed, but the number of VMs

varies. Here the total number of PMs is fixed at 100, but the total number of VMs

varies between 250, 500, 700, 1000, and 1500. It can be seen that the LIF algorithm

has the lowest average imbalance value of a Cloud data center.
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Figure 5.12 shows the average imbalance value for all physical servers (as

defined in Eq. (5.5)) when the total number of PMs is fixed but the number of VMs

varies. Here the total number of PMs is fixed at 100, but the total number of VMs
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Figure 5.9 Average imbalance value of a Cloud data center.
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Figure 5.10 Average imbalance value of all physical servers.
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varies betweens 250, 500, 700, 1000, and 1500. The LIF algorithm has the lowest

average imbalance value in this case.

Through extensive simulation, similar results are observed. Because of page lim-

itations, other simulation results—such as those from varying the probability of each

VM request, fixing the total number of PMs, and varying the number of VMs—are

not provided here.
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Figure 5.11 Average imbalance value of a Cloud data center when PMs5 100.
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Figure 5.12 Average imbalance value of all physical servers when PMs5 100.
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5.6 Discussion and conclusion

In this chapter, to reflect capacity sharing property and fixed-interval constraints in

Cloud data centers, we propose an Online Resource Scheduling Algorithm

(OLRSA) with new metrics, such as capacity makespan and skew of capacity make-

span. Simulations have shown that OLRSA has better performance results than the

few existing algorithms when it comes to IBL, capacity makespan, and skew of

capacity makespan. A theoretical competitive ratio upper bound 22 1
m

� �
is pro-

vided and the proof is also given where m is the number of PMs.

We also introduce a dynamic resource scheduling algorithm (LIF) for Cloud

data centers by considering multidimensional resources. Simulation results show

that the LIF algorithm works well when considering the total imbalance value of a

Cloud data center and all servers, and the average imbalance value of a Cloud data

center and each server.

References

[1] Andre L, et al. The datacenter as a computer: an introduction to the design of ware-

house-scalemachines, Ebook, 2009.

[2] Armbrust M, et al. Above the Clouds: a Berkeley view of Cloud computing, Technical

Report, 2009.

[3] Foster I, Zhao Y, Raicu I, Lu S. Cloud computing and grid computing 360-degree com-

pared. In: IEEE international workshop on grid computing environments (GCE) 2008,

Co-located with IEEE/ACM supercomputing, 2008.

[4] Buyya R, Ranjan R, Calheiros RN. Modeling and simulation of scalable cloud comput-

ing environments and the CloudSim toolkit: challenges and opportunities. In:

Proceedings of the seventh high performance computing and simulation conference,

HPCS 2009, Leipzig, Germany, June 21�24, 2009.

[5] Wickremasinghe B, et al. CloudAnalyst: a CloudSim-based tool for modelling and

analysis of large scale cloud computing environments. In: Proceedings of the 24th

IEEE international conference on advanced information networking and applications

(AINA 2010), Perth, Australia, April 20�23, 2010.

[6] Wood T, et al. Black-box and gray-box strategies for virtual machine migration. In:

Proceedings of symposium on networked systems design and implementation (NSDI),

2007.

[7] Zhang W. Research and implementation of elastic network service, PhD dissertation,

National University of Defense Technology, China, 2000 (in Chinese).

[8] Singh A, Korupolu M, Mohapatra D. Server-storage virtualization: integration and load

balancing in data centers, International conference for high performance computing,

networking, storage and analysis, 2008.

[9] Arzuaga E, Kaeli DR. Quantifying load imbalance on virtualized enterprise servers. In:

Proceedings of WOSP/SIPEW 10, San Jose, CA, January 28�30, 2010.

[10] Tian W. Adaptive dimensioning of cloud data centers. In: Proceeding of the eighth

IEEE international conference on dependable, automatic and secure computing, DACS,

2009.

113Load Balance Scheduling for Cloud Data Centers



[11] Sun X, Xu P, Shuang K, et al. Multi-dimensional aware scheduling for co-optimizing

utilization in data center. China Commun 2011;8(6):19�27.

[12] Tian W, Jing C, Hu J. Analysis of resource allocation and scheduling policies in Cloud

datacenter. In: Proceedings of the IEEE third international conference on networks

security wireless communications and trusted computing, March 2011.

[13] Li K, Xu G, Zhao G, et al. Cloud task scheduling based on load balancing ant colony

optimization, 2011 sixth annual China grid conference, 2011, p. 3�9.

[14] Galloway JM, Smith KL, Vrbsky SS. Power aware load balancing for cloud computing.

In: Proceedings of the world congress on engineering and computer science 2011,

WCECS 2011, vol. I, October 19�21, 2011.

[15] Hu J, Gu J, Sun G, et al. A scheduling strategy on load balancing of virtual machine

resources in cloud computing environment, 2010 third international symposium on par-

allel architectures, algorithms and programming (PAAP), December 18�20, 2010, p.

89�96.

[16] Kleinberg J, Tardos E. Algorithm design. Pearson Education Inc.; 2005.

[17] Coffman Jr. EG, Garey MR, Johnson DS. Bin-packing with divisible item sizes. J

Complexity 1987;3:406�28.

[18] Graham RL. Bounds on multiprocessing timing anomalies. SIAM J Appl Math 1969;

17(2):416�29.

[19] Zheng H, Zhou L, Wu J. Design and implementation of load balancing in web server

cluster system. J Nanjing Univ Aeronaut Astronaut 2006;38(3):.

[20] Gulati A, Shanmuganathan G, Holler A, Ahmad I. Cloud-scale resource management:

challenges and techniques. VMware Tech J 2011.

[21] Hebrew University, Experimental Systems Lab, ,www.cs.huji.ac.il/labs/parallel/work-

load.; 2007.

[22] Amazon, Amazon Elastic Compute Cloud, ,http://aws.amazon.com/ec2/.; 2012.

114 Optimized Cloud Resource Management and Scheduling

http://refhub.elsevier.com/B978-0-12-801476-9.00005-7/sbref1
http://refhub.elsevier.com/B978-0-12-801476-9.00005-7/sbref1
http://refhub.elsevier.com/B978-0-12-801476-9.00005-7/sbref1
http://refhub.elsevier.com/B978-0-12-801476-9.00005-7/sbref2
http://refhub.elsevier.com/B978-0-12-801476-9.00005-7/sbref3
http://refhub.elsevier.com/B978-0-12-801476-9.00005-7/sbref3
http://refhub.elsevier.com/B978-0-12-801476-9.00005-7/sbref3
http://refhub.elsevier.com/B978-0-12-801476-9.00005-7/sbref4
http://refhub.elsevier.com/B978-0-12-801476-9.00005-7/sbref4
http://refhub.elsevier.com/B978-0-12-801476-9.00005-7/sbref4
http://refhub.elsevier.com/B978-0-12-801476-9.00005-7/sbref5
http://refhub.elsevier.com/B978-0-12-801476-9.00005-7/sbref5
http://refhub.elsevier.com/B978-0-12-801476-9.00005-7/sbref6
http://refhub.elsevier.com/B978-0-12-801476-9.00005-7/sbref6
http://www.cs.huji.ac.il/labs/parallel/workload
http://www.cs.huji.ac.il/labs/parallel/workload
http://aws.amazon.com/ec2/


6Energy-efficient Allocation

of Real-time Virtual Machines

in Cloud Data Centers Using

Interval-packing Techniques

Main Contents of this Chapter

� Background of energy efficiency in Cloud computing
� The green architecture of Cloud computing
� Energy-efficient scheduling
� Performance evaluation of energy-efficient scheduling

6.1 Introduction

Cloud computing is developing based on various recent advancements in virtualiza-

tion, Grid computing, Web computing, utility computing, and related technologies.

Cloud computing provides both platforms and applications on demand through the

Internet or intranet [1]. Some examples of emerging Cloud computing platforms are

Google App Engine [2], IBM blue Cloud [3], Amazon EC2 [4], and Microsoft

Azure [5]. Cloud computing allows the sharing, allocation, and aggregation of soft-

ware; and computational and storage network resources on demand. Some of the key

benefits of Cloud computing include the hiding and abstraction of complexity, vir-

tualized resources, and efficient use of distributed resources. Cloud computing is still

considered to be in its infancy as there are many challenging issues to be resolved

[1,6�8]. Youseff et al. [9] establish a detailed ontology of dissecting Cloud comput-

ing into five main layers from the top down: Cloud applications (SaaS), the Cloud

software environment (PaaS), Cloud software infrastructure (IaaS), the software ker-

nel, and hardware (HaaS), and illustrates their interrelations as well as their interde-

pendency on preceding technologies. In this paper, we focus on Infrastructure as a

Service (IaaS) in Cloud data centers.

There is extensive research on issues related to Cloud data centers. Armbrust

et al. [1] summarize the key issues and solutions in Cloud computing. Foster et al. [8]

compare Cloud computing to Grid computing. Tian [10] presents multi-dimensional

algorithms for Cloud data centers by considering dynamic traffic models. IaaS is

one of the key services in Cloud computing. It is very important to develop an

on-demand resource management system for IaaS in Cloud environments.
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As for Cloud architecture, Liu et al. [11] present GreenCloud architecture, which

aims to reduce data center power consumption while guaranteeing performance

from a user’s perspective. Using the recommendations developed in its open-source

Cloud standards’ incubator, DMTF [12] focuses on standardizing interactions

among Cloud environments. Nurmi et al. [13] introduce the Eucalyptus open-source

Cloud-computing system. Tian et al. [14] propose a dynamic and integrated load-

balancing algorithm for resource scheduling in Cloud data centers.

Garg et al. [15] introduce a GreenCloud framework for improving the carbon

efficiency of Clouds; Beloglazov et al. [6] propose a taxonomy and survey of

energy-efficient data centers and Cloud computing. Jing et al. [16] provide a state-

of-the-art research study for GreenCloud computing and point out three hot research

areas. Srikantaiah et al. [17] study the interrelationships among energy consump-

tion, resource utilization, and performance of consolidated workloads. Lee et al.

[18] introduce two online heuristic algorithms for energy-efficient utilization of

resources in Cloud computing systems by consolidating active tasks. Beloglazov

et al. [19] consider offline allocation of virtual machines (VMs) by modified best-

fit bin-packing heuristics and also minimizing the total number of migrations. Liu

et al. [20] study performance and energy modeling for live migration of VMs and

evaluate models using five representative workloads on a Xen virtualized environ-

ment. Guazzone et al. [21] consider a two-level control model to automatically allo-

cate resources to reduce energy consumption of web-service applications. Kim

et al. [22] model a real-time service as a real-time VM request, and use dynamic

voltage frequency scaling schemes for provisioning VMs in Cloud data centers.

Other than dynamic voltage frequency scaling schemes, there is still a lack of

research on real-time VM scheduling considering fixed processing intervals.

Resource scheduling plays an important role in Cloud data centers. One of the

challenging scheduling problems in Cloud data centers is the consideration of the

allocation and migration of VMs with full life cycle constraints, which is often

neglected [23].

In this chapter, we introduce a framework for energy-efficient scheduling of

real-time VMs considering fixed processing intervals in IaaS to address the above

mentioned key issues. The main aims of this chapter are as follows:

� Providing a uniform view to facilitate the management of different heterogeneous types of

physical machines (PMs) and VMs with various combinations. Then both managers and

users can more easily control and monitor their increasing collections of VMs through

this single access point.
� Considering the allocation of VMs with their fixed processing intervals (full life cycles).

This is often neglected by most research work. Taking into account both critical capacity

and real-time constraints increases the difficulty of the problem.
� Designing scheduling schemes for offline and online contexts by taking advantage of clas-

sical interval scheduling and bin-packing techniques. Our models are different from tradi-

tional interval scheduling problems (ISPs) by considering multiple intervals sharing the

total capacity of a PM during some periods if the capacity constraint is satisfied. Our

models are different from traditional bin-packing problems (BPPs) by considering the life

cycle of the VMs.
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� For the offline context in which the scheduler knows all requests in advance, optimal and

approximate algorithms that minimize energy consumption are derived with theoretic

proofs.
� Observing that the total number of PMs and their power-on time affect total power con-

sumption, approximate algorithms with delay and minimum migration are proposed for

the online context when the scheduler knows only the current requests.
� Considering the energy impact under different configurations and energy models, there

are some existing results that are based on a single and simple set of VM and PM config-

urations. We show through simulations that energy consumption can be different under

different configurations and models. Especially important is the proposed divisible capac-

ity configuration of VMs and PMs to simplify the scheduling problem and reduce energy

consumption.

The remaining content of this chapter is structured as follows: Section 6.2 pre-

sents the proposed GreenCloud architecture and main components for resource

scheduling in Cloud data centers. Section 6.3 formulates the problem and introduces

proposed scheduling algorithms. Section 6.4 shows the performance evaluation of

different algorithms under different configurations. Section 6.5 presents related

work in energy-efficient scheduling. Section 6.6 concludes.

6.2 GreenCloud architecture

The layered architecture for GreenCloud is proposed in Figure 6.1. There is a web por-

tal at the top layer for the user to select resources and send requests: basically, it’s a

uniform view of the few types of VMs that are preconfigured for users to choose.

Once user requests are initiated, they go to the next level—CloudSched—which is

User interface (web portal) 

CloudSched

VM monitor VC manag.

Cloud

Resource Cloud data centers (CDC), Hosts (PMs)

MEM DISK NET

Scheduling polices and algorithms

CPU

Uniform view of VMs User requests

Figure 6.1 Proposed GreenCloud architecture.
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responsible for choosing appropriate data centers and PMs based on user requests.

This layer can manage a large number of Cloud data centers, consisting of thousands

of PMs. At this layer, different scheduling algorithms can be applied in different data

centers based on customer characteristics. At the lowest layer, there are Cloud

resources that include PMs and VMs, both consisting of a certain amount of CPU,

memory, storage, and bandwidth. At the Cloud resource layer, virtual management is

mainly responsible for keeping track of all VMs in the system, including their status,

required capacities, hosts, arrival times, and departure times.

6.2.1 Cloud data center resources

In this chapter, only computing resources are considered. A data center is composed

of a set of hosts (PMs), which are responsible for managing VMs during their life

cycles. A host is a component that represents a physical computing node in a

Cloud. It is assigned a preconfigured processing capability (e.g., that expressed in

Million Instructions Per Second or GHz), memory, storage, and a scheduling policy

for allocating VMs. A number of hosts can also be interconnected to form a cluster

or a data center.

6.2.2 A uniform view for different types of VMs

There can be too many different types of PMs, VMs, and their combinations alto-

gether. Cloud providers will face a huge number of problems if a uniform view is

not provided. Taking the widely used example of Amazon EC2, we show that a uni-

form view of different types of VMs is possible. Table 6.1 shows the eight types of

VMs as found in Amazon EC2 online information. Amazon EC2 does not provide

information on its hardware configuration. However, we can still form three types

of different PMs based on compute units. In a real Cloud data center, for example,

Table 6.1 8 types of VMs in Amazon EC2

Memory (GB) Compute units Storage (GB) API name VM type

1.875 1 (1 cores3 1 units) 211.25 m1.small 1-1(1)

7.5 4 (2 cores3 2 units) 845 m1.large 1-2(2)

15.0 8 (4 cores3 2 units) 1690 m1.xlarge 1-3(3)

17.1 6.5 (2 cores3 3.25 units) 420 m2.xlarge 2-1(4)

34.2 13 (4 cores3 3.25 units) 845 m2.2xlarge 2-2(5)

68.4 26 (8 cores3 3.25 units) 1690 m2.4xlarge 2-3(6)

1.7 5 (2 cores3 2.5 units) 422.5 c1.medium 3-1(7)

7.0 20 (8 cores3 2.5 units) 1690 c1.xlarge 3-2(8)
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in a PM with 23 68.4 GB memory, 16 cores3 3.25 units, and 23 1690 GB storage

can be provided. In this or a similar way, it is possible to form a uniform view of

different types of VMs. This kind of classification provides a uniform view of vir-

tualized resources for heterogeneous virtualization platforms (e.g., Xen, KVM,

VMWare) and brings great benefits to VM management and allocation. Customers

only need to select suitable types of VMs based on their requirements. Tables 6.2

and 6.3 are possible divisible and random capacity configurations of PMs, respec-

tively, comparing with VM capacity in Table 6.1. We will define “divisible” and

“random” capacity of VMs and PMs formally in Section 6.3.

6.2.3 Real-time VM request model

The Cloud computing environment is a suitable solution for real-time VM service

because it leverages virtualization [22]. When users request execution of their real-

time VMs in a Cloud data center, appropriate VMs are allocated.

Example 1 A real-time VM request can be represented in an interval vector:

vmRequestID(VM typeID, start time, finish time, requested capacity). In

Figure 6.2, vm1(1, 0, 6, 0.25) shows that for VM request ID vm1, the VM requested

is of Type1 (corresponding to integer 1) with a start time of 0 and a finish time of 6

(i.e., finished at the 6th slot after start time of 0), and 25% of the total capacity of

Type1 PM. Other requests can be represented in similar ways. Figure 6.2 shows the

life cycles of VM allocation in a slotted-time window format using two PMs, where

PM#1 hosts vm1, vm2, and vm3 while PM#2 hosts vm4, vm5, and vm6. Notice

that the total capacity restriction has to be met in each interval.

Table 6.2 Divisible configuration of three types of PMs (an example)

PM type CPU (compute units) Memory (GB) Storage (GB)

Type1 16 30.0 3380

Type2 52 136.8 3380

Type3 40 14.0 3380

Table 6.3 Random configuration of three types of PMs (an example)

PM type CPU (compute units) Memory (GB) Storage (GB)

Type1 13 37.0 3000

Type2 53 137.8 4000

Type3 47 17.0 2000
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6.3 Energy-efficient real-time scheduling

6.3.1 Problem description

We model the problem of real-time scheduling of VMs as a modified ISP. More

explanation and analysis about fixed ISPs can be found in Ref. [24] and references

therein. We present a formulation of the modified interval scheduling problem and

evaluate its results compared to well-known existing algorithms.

A set of requests {1, 2,. . ., n} where the ith request corresponds to an interval of

time starting at si and finishing at fi, associated with a capacity requirement ci. For

energy-efficient scheduling, the goal is to meet all requirements with the minimum

number of running PMs and total running times based on the following assumptions:

1. All data are deterministic and—unless otherwise specified—the time is formatted in slot-

ted windows. As shown in Figure 6.3, we partition the total time period [0,T] into slots

with equal length (s0), with the total number of slots k5T/s0 (in integer form). The start

time si and finish time fi are integer numbers of one slot. Then the interval of a request

can be represented in slot format with (start time, finish time). For example, if s05 5 min,

an interval [16,19] means that it has start time and finish time at the 3rd slot and 10th

slot, respectively. The actual duration of this request is (102 3)3 55 35 min.

2. All tasks are independent. There are no precedence constraints other than those implied

by the start and finish times.

3. The required capacity of each request is a positive real number between (0,1]. Notice that

the capacity of a single PM is normalized to be 1. When considering multiple resources—

such as CPU, memory, or storage, for example—it can become multidimensional.

4. Assume that—when processed—each VM request is assigned to a single PM. Thus, inter-

rupting a request and resuming it on another machine is not allowed, unless explicitly

stated otherwise (such as when using migration).

5. Each PM is always available (i.e., each machine is continuously available in [0, N)).

6. Assume each VM request consumes the maximum required capacity (the worst case

scenario) when allocated. For example, if the total capacity of a PM is normalized to be

PM#1

PM#2

0 1 2 3 4 5 6 7 8 9 10
Time

vm6 (2, 5, 9, 0.25)

vm5 (2, 4, 8, 0.25)

vm4 (2, 3, 6, 0.5)

vm3 (1, 3, 8, 0.5)

vm1 (1, 0, 6, 0.25)

vm2 (1, 1, 4, 0.125)

Figure 6.2 VM allocations using two PMs.

0 1 2 3 4 5 6 7 8 9 10 k–2... k–1 k

Figure 6.3 Time in slotted format.
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1—all capacity of (CPU, memory, storage)5 [1,1,1], when a VM request VMi5 (CPU,

memory, storage)5 [0.25,0.25,0.25] during interval [0,5]—then the scheduler allocates

0.25 of the total capacity of a PM to VMi (i.e., the system presumes that the VMi occupies

25% of the total capacity of a PM during interval [0,5]).

To help formally understand the problem, the following definitions are given:

[Definition 1. Traditional interval scheduling with fixed processing time]. A set of

requests {1, 2,. . .,n} where the ith request corresponds to an interval of time starting at si
and finishing at fi. Each request needs a capacity of 1 (i.e., occupying the whole capacity

of a machine during the fixed processing time).

[Definition 2. Interval scheduling with capacity sharing (ISWCS)]. The only difference

from traditional interval scheduling is that a resource (to be specific, a PM) can be shared

by different requests if the total capacity of all requests allocated on the single resource at

any time does not surpass the total capacity that the resource can provide.

[Definition 3. Sharing compatible intervals for ISWCS]. A subset of intervals with the

total required capacity do not surpass the total capacity of a PM at any time, therefore

they can share the capacity of the PM.

The energy consumption of all VMs and PMs are closely related to the power

model, capacity configuration of VMs and PMs, and the power usage policies.

These are introduced as follows.

6.3.1.1 The linear power consumption model of a server

Most of the power consumption in data centers is from computation processing,

disk storage, networking, and cooling systems. In Ref. [25] authors propose a power

consumption model for blade servers:

P514:4510:236Ucpu1 ð4:47E28ÞUmem10:0028Udisk1ð3:1E28ÞUnet ð6:1Þ

where Ucpu, Umem, Udisk, and Unet are utilization of CPU, memory, hard disk, and

network interface, respectively. It can be seen that other factors such as memory,

hard disk, and network interface have a very small impact on total power consump-

tion. In Ref. [19], authors find that CPU utilization is typically proportional to the

overall system load and propose a power model defined in Eq. (6.2):

PðuÞ5 kPmax 1 ð12 kÞPmaxu ð6:2Þ

where Pmax is the maximum power consumed when the server is fully utilized; k is

the fraction of power consumed by the idle server (studies show that on average it

is about 70%); and u is CPU utilization. This chapter focuses on CPU power con-

sumption, which accounts for the main part of energy consumption compared to

other resources, such as: memory, disk storage, and network devices. In this work,

we use the power model defined in Eq. (6.2). Equation (6.2) is further reduced to

Eq. (6.3):

P5Pmin 1 ðPmax 2PminÞu ð6:3Þ
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where Pmin is the power consumption of the given PM when its CPU utilization is

zero (when the PM is idle without any VM running). In a real environment, the uti-

lization of the CPU may change over time due to workload variability. Thus, CPU

utilization is a function of time and is represented as u(t). Therefore, the total

energy consumption by a PM (Ei) can be defined as an integral of the power con-

sumption function over a period of time as in Eq. (6.4):

Ei 5

ðt1
t0

PðuðtÞÞdt ð6:4Þ

If u(t) is constant over time, for example, if average utilization is adopted, u(t)5 u,

then Ei5P(u) (t12 t0).

1. The total energy consumption of a Cloud data center is computed as Eq. (6.5):

EDC 5
Xn
i51

Ei ð6:5Þ

It is the sum of energy consumed by all PMs. Note that energy consumption of all

VMs on PMs is included.

2. The total length of power-on time of all PMs during the testing period is

Total Time5
Xn
i50

PMi Poweron Time ð6:6Þ

where PMi_Power-on Time is total power-on time of the ith PM.

For comparison purposes, we will assume that all VMs consume 100% of their

requested CPU capacities.

Suppose current CPU utilization of a PM is u, and becomes u0 after allocating
a VM, then the energy increase caused by the VM is denoted as Evm, and can

be computed as in Eq. (6.7), where Δu is the CPU utilization increase after allocat-

ing a VM:

Evm 5P3 ðt1 2 t0Þ2P0 3 ðt1 2 t0Þ
5 ðP0 2PÞ3 ðt1 2 t0Þ
5 ðPmin 1 ðPmax 2PminÞu0 2 ðPmin 2 ðPmax 2PminÞuÞÞ
ðPmax 2PminÞ3 ðu0 2 uÞ3 ðt1 2 t0Þ
ðPmax 2PminÞ3Δu3 ðt1 2 t0Þ

ð6:7Þ

Formally, our problem of real-time scheduling VMs to minimize total energy

consumption (Min ΣiEi) becomes a multidimensional combinatorial optimization

problem with constraint satisfaction (satisfying capacity and time constraints),

which makes it an NP-complete problem [26,27].
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Theorem 1 The decision version of a real-time VM scheduling problem in a het-

erogeneous case is NP-complete.

Remark In the case of a heterogeneous configuration, different types of PMs and

VMs are considered. It is proven in Ref. [23] that the decision version (determining

whether a feasible scheduling exists) of this problem is NP-complete.

To reduce the complexity, we consider the heterogeneous case but mapping dif-

ferent types of VMs to corresponding types of PMs (i.e., we simplify the heteroge-

neous case to a homogeneous case as given in Tables 6.1�6.3). In the following,

all discussion and results are based on a homogeneous case.

6.3.1.2 Capacity configuration of VMs and PMs

Observing that different capacity configurations of VMs and PMs affect the pro-

blem’s complexity and the total energy consumption, in the following, we consider

two different capacity configurations.

6.3.1.2.1 Random capacity configuration of VMs and PMs
In this case—called the random capacity case—the capacities (CPU, memory, storage,

and other factors) of VMs and PMs are randomly set. If we need to consider CPU,

memory, storage, life cycles, and other factors of VMs and PMs, this problem can be

transformed into a dynamic multidimensional BPP or interval-packing problem, which

is known to be an NP-complete problem. See for example Refs. [5,26,27].

Lemma 1 In a random capacity case, there is no optimal solution for minimizing

the total number of power-on PMs in offline scheduling—as shown in the literature.

Remark In this case, our real-time VM scheduling problem can be transformed

into a classic multidimensional (interval) BPP by considering CPU, memory, stor-

age, life cycle, and other factors. By reducing a well-known NP-complete problem

—the multidimensional BPP—to our problem, it is easy to prove that the real-time

VM scheduling problem is an NP-complete problem [5,26,27]. No optimal solution

can be obtained in polynomial time, but some approximate solutions can be reached

to minimize the total number of power-on PMs.

6.3.1.2.2 Divisible capacity configuration of VMs and PMs
In this case, (CPU, memory, storage) capacities are treated as a whole, as given in

Tables 6.1 and 6.2. For example, the total capacity (CPU, memory, storage) of VM

Types 1-1, 1-2, and 1-3 is 1/16, 1/4, and 1/2 of the total capacity (CPU, memory,

storage) of PM Type1, respectively. Similarly, the total capacity of VM Type 2-1

and 2-2 is 1/8 and 1/4 of the total capacity of PM Type2, respectively. The total

capacity of VM Type 3-1 and 3-2 is 1/8 and 1/2 of the total capacity of PM Type3,

respectively. This is called the strongly divisible capacity case.
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[Definition 4 Strongly divisible capacity of VMs and PMs]. The capacity of

VMs form a divisible sequence, that is, the sequence of distinct capacities

s1. s2. . . .. si. si11. . . . taken on by VMs (the number of VMs of each capac-

ity is arbitrary) is such that for all i. 1, si11 exactly divides si. Let’s say that a list

L of items has a divisible item capacity if the capacities of the items in L form a

divisible sequence. Also, if L is a list of items and C is a total capacity of a PM, we

say that the pair (L, C) is weakly divisible if L has divisible item capacities and

strongly divisible if, in addition, the largest item capacity s1 in L exactly divides the

capacity C [5].

Lemma 2 In a strongly divisible capacity case, there is an optimal solution for

minimizing total number of power-on PMs in offline scheduling.

Proof In the strongly divisible capacity case, as given in Tables 6.1 and 6.2, the

total capacity of a VM is (1/16 or 1/8 or 1/4 or 1/2) of the total capacity of a PM

and the capacities of all VMs of the same type form a strongly divisible sequence.

Our real-time VM scheduling problem therefore can be transformed into a classic

one-dimensional interval-packing problem or BPP; the First-Fit Decreasing (FFD)

or Best-Fit Decreasing (BFD) algorithm produces the optimal result [5] for offline

scheduling. Also, in this case, the problem can be transformed into an ISP, which

proves that the minimum number of PMs to host all requests exists [27].

Lemma 3 In the strongly divisible capacity case, the asymptotic worst case

approximation ratio (compared to the offline optimal solution) of minimizing the

total number of power-on PMs in online scheduling is 2.384.

Remark The proof of Lemma 3 can be obtained from proofs given in Coffman

et al. [28].

In the strongly divisible capacity case, the multidimensional problem (consider-

ing CPU, memory, storage, and other factors) is reduced to a one-dimensional BPP

or interval-packing problem; therefore many existing results can be applied. The

following discussion and simulation are based on this.

6.3.1.3 The power usage policies

6.3.1.3.1 Strategy one: idle servers turned off
To reduce energy consumption, assume a PM is turned off when it is idle during a

testing period. It may happen that each PM can be turned on or off many times dur-

ing the testing period.

Example 2 Given a testing period (0,1000), a PM is turned on during three inter-

vals (2, 100), (209, 235), (789, 1000), respectively, with average utilization 0.5 dur-

ing all intervals, Pmax5 300 W, Pmin5 200 W, then its total length of power-on

time is 1002 21 2352 2091 10002 7895 335 slots. Assuming each slot is
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5 min, then the total energy consumption is (2001 (3002 200)3 0.5)3 3353 5/

60/10005 6.979 kW h.

Lemma 4 Minimizing the total number of PMs does not necessarily mean that the

total energy is minimized when turning off idle servers.

Proof From the linear power model of Eqs. (6.3)�(6.7), it can be seen that the

total energy consumption of a PM depends on the average utilization and its power-

on times, but not solely on the total number of PMs used. When VM requests are

the same and therefore average utilization of all PMs are the same, the total power

consumption also depends on the total power-on time of all PMs. Therefore, the

objective of minimizing total energy consumption is to minimize both the total

number of PMs used and their power-on time.

Remark It is an NP-complete problem to minimize the total busy time of all

machines (PMs) [26,27]. No optimal scheduling is known yet in this case, so we

propose an approximate algorithm, called the modified interval scheduling algo-

rithm (MFFI).

6.3.1.3.2 Strategy two: idle servers not turned off
Considering server reliability and to avoid too many server transitions or traffic

vibrations, in this case idle servers are not turned off but can be put into sleep

mode to save energy.

In Example 2, assume servers in idle states consume power Pmin and are never

turned off. Then the total power-on time is 1000 slots, and average utilization is

3353 0.5/10005 0.1675. The total energy consumption is (2001 (3002 200)3
0.1675)3 10003 5/60/10005 18.06 kW h.

From Example 2, it can be seen that the total energy consumption can also be

affected by different strategies on how to deal with idle servers.

Lemma 5 The problem of minimizing the total energy consumption reduces to

finding the minimum number of PMs, assuming idle servers are not turned off.

Proof (1). Assume that idle servers are turned on (but can be put into sleep mode)

during the scheduling process. From Eqs. (6.3)�(6.7), the total energy consumption

depends on average utilization and running times because Pmin values are the same.

(2). Set Ei5 (Pmin1 (Pmax2Pmin)u)t5 (α1 βui)t, where ui is the average utiliza-

tion of PMi. Assuming there are m homogeneous PMs, then the total energy con-

sumption is E5ΣiEi5mαt1β(Σiui)t. (3). If two scheduling results use the same

number of PMs, we know the total time t (the length of time from start-up to the

present) is the same for all scheduling because mαt is the same. β(Σiui)t is the

same because there are the same number of VM requests resulting in the same utili-

zation for all PMs. (4). If two scheduling processes use different numbers of PMs—

say scheduling#1 uses m homogeneous PMs and scheduling#2 uses m1 1
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homogeneous PMs—then the only difference is mαt, (m1 1)αt, obviously mαt
,(m1 1)αt when αt. 0 (which is true). This means that using more PMs will

cause the total energy consumption to be larger (notice that this is not true if

assumption is that idle servers are turned off). This completes the proof.

6.3.2 Four offline and online scheduling algorithms

We propose four offline and online scheduling algorithms as follows:

[Definition 5. Modified Interval Partitioning First-Fit Algorithm (MFF)]. The algo-

rithm places the requests in arbitrary order. It attempts to place each request in the first

PM (with the lowest index) that can accommodate it. If no nonempty PM is found, it

starts a new PM and places the VM on it. Note that MFF is online with respect to the VM

requests, in that it does not use any information about other requests that follow the cur-

rent request.

[Definition 6. Modified Interval Partitioning First-Fit Increasing Algorithm (MFFI)].

For the ISWCS problem, the VM requests are preceded by sorting based on the increasing

order of their start times before MFF is applied. MFFI is an offline scheduling algorithm.

Figures 6.4 and 6.5 show the pseudo code of MFF and MFFI algorithms, respectively,

also called ONWID and OFWID in this chapter.

Lemma 6 The time complexity of the MFFI algorithm as shown in Figure 6.5 is O

(n max(m, logn)), where n is the number of VM requests and m is the number of

PMs.

Remark The proof of Lemma 6 is straightforward following the pseudo code in

Figure 6.5.

Lemma 7 The time complexity of the MFF algorithm as shown in Figure 6.4 is O

(nm), where n is the number of VM requests and m is the number of PMs.

Figure 6.4 Modified interval partitioning first-fit algorithm (MFF).
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Remark The proof for Lemma 7 is straightforward, so details are omitted.

[Definition 7. Offline MFFI with delay (OFWD)]. Observing that requests can conflict

with respect to time and capacity restrictions, postponing starting times of some requests

can reduce the total number of PMs. For the most part this algorithm is the same as MFFI

(OFWID), but OFWD can delay the starting time of VM requests for some times (with a

threshold) and then use MFFI.

[Definition 8. Online MFF with delay and migration (ONWD)]. Similar to ONWID,

but this algorithm allows postponing starting times of some VMs and the migration of

VMs between PMs. This is helpful for reducing the total number of PMs and their power-

on times. Migration takes place only when the total workload of the system is low: always

choosing VMs from the PMs with the lowest (or second-lowest) loads and relocating the

chosen VMs to other PMs using the MFF algorithm.

6.4 Performance evaluation

In this section, we introduce how to evaluate different scheduling algorithms; analy-

sis of methodologies, metrics, algorithms, and results are provided as follows.

6.4.1 Methodology

There is no existing tool suitable for performing the comparisons proposed in this

chapter. A java discrete simulator is therefore implemented for performing compari-

sons. The same set of inputs (VM requests) is applied to all compared algorithms.

The set of inputs are first generated by a program and then written into a text file.

Offline algorithms then use all of these inputs at once, while online algorithms read

one record (request) at a time. In the simulations, all results are based on divisible

capacity configurations of VMs and PMs, as given in Tables 6.1 and 6.2.

Figure 6.5 Modified interval partitioning first-fit increasing (MFFI).
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6.4.2 Metrics

1. Although the linear energy model (Eqs. (6.3)�(6.7)) is applied in all simulations, our

algorithmic results hold for any power function that is convex.

2. The total energy consumption of a Cloud data center.

3. The total number of PMs, which are powered on during the testing period.

4. The total length of power-on time of all PMs during the testing period.

6.4.3 Algorithms

The four proposed algorithms are already explained in Section 6.3. The other two

algorithms are as follows:

Round Robin (Round): the Round Robin is one of most commonly used scheduling algo-

rithms (e.g., by Eucalyptus [13] and Amazon EC2 [4]), which allocates VM requests in

turn to each PM. The advantage of this algorithm is that it is simple to implement.

Modified Best-Fit Decreasing (MBFD): The MBFD algorithm is a bin-packing algorithm.

BFD is shown to use no more than 11/9 OPT 11 bins (where OPT is the number of bins

given by the optimal solution) for the one-dimensional BPP [19]. The MBFD algorithm

first sorts all VMs in decreasing order of their CPU utilization and then allocates each

VM to a host that provides the smallest increase of power consumption due to the

allocation.

6.4.4 Inputs settings and results analysis

The configurations of VMs and PMs are given in Tables 6.1 and 6.2, which we con-

sider to be strongly divisible capacity cases. Table 6.4 also provides a different

Pmin and Pmax for different type of PMs.

For comparison, we assume all VMs occupy the total amount of requested

capacity (as the worst case scenario). In this case, eight types of VMs are consid-

ered—as shown in Table 6.1—which is based on Amazon EC2. The total number

of arrivals (requests) is 1000 and each type of VM has an equal number (i.e., 125).

All requests follow the Poisson arrival process and have exponential service times.

The mean inter-arrival period is set as 5 slots; the maximum intermediate period is

set as 50 slots; the maximum duration of requests is set as 50, 100, 200, 400, and

800 slots, respectively. Each slot is equal to 5 min. For example, if the requested

duration (service time) of a VM is 20 slots, its actual duration is 203 55 100 min.

For each set of inputs (requests), simulations are run six times and all of the results

Table 6.4 Three types of PMs with power consumptions

PM type CPU (compute units) Memory (GB) Storage (GB) Pmin (W) Pmax (W)

Type1 16 30.0 3380 210 300

Type2 52 136.8 3380 420 600

Type3 40 14.0 3380 350 500
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shown in this chapter are the average of the six runs. We restrict the maximum

delay to 50 slots.

6.4.4.1 Assuming idle servers turned off

Tables 6.5 and 6.6 present total energy consumption assuming idle servers turned

off and idle servers not turned off, respectively. The last column in both tables is

the total migration number; only the online scheduling algorithm ONWD applies

migration.

Figure 6.6 shows the total energy consumption (in percentages compared to

Round Robin) of the six algorithms as the maximum duration of VMs varies from

50 to 800 slots, while all other parameters are the same. The total energy consump-

tion of other algorithms are compared to Round Robin: setting the total energy con-

sumption of Round Robin as 100% as the baseline. Then total energy consumption

of other algorithms are compared with Round Robin. For all cases,

Round.MBFD.ONWID.OFWID.ONWD.OFWD for the total energy con-

sumption calculated using Equations 6.3–6.7. In general, ONWID, ONWD, OFWD.

and OFWID consume about 2�8% less power than MBFD and 30% less power

than Round Robin. The reason ONWID, ONWD, OFWD, and OFWID perform

Table 6.5 Total energy consumption (idle servers turned off)

Total energy consumed

in a DC (kW h)

RR OFWID OFWD MBFD ONWID ONID Migrations

maxdur.5 50 655.6 465.9 438.4 495.1 476.0 459.8 0

maxdur.5 100 1210.7 813.3 781.7 890.8 824.7 796.8 1

maxdur.5 200 2312.1 1478.3 1444.4 1620.0 1492.3 1458.8 4

maxdur.5 400 4011.4 2731.3 2676.0 2957.3 2762.3 2708.3 12

maxdur.5 800 7508.2 5190.9 5117.2 5559.6 5209.8 5168.9 21

Table 6.6 Total energy consumption (idle servers NOT turned off)

Total energy

consumed (kW h)

Round ONWID OFWID MBFD OFWD ONWD Migrations

maxdur.5 50 2793.4 1918.4 1918.4 1918.4 1305.9 1305.9 0

maxdur.5 100 3534.5 2790.7 2659.5 2397.0 1784.5 1784.5 2

maxdur.5 200 5029.9 3542.4 3411.2 3411.2 3017.4 3017.4 5

maxdur.5 400 8353.4 6034.7 6034.7 6034.7 5290.9 5290.9 16

maxdur.5 800 16918.7 9962.5 9831.2 9568.7 9568.7 9568.7 30
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better than MBFD is that ONWID and OFWID use the best possible capacity shar-

ing and take less total power-on time.

Figure 6.7 shows the total number of PMs used in six algorithms, observing that

the order is not strictly like the total energy consumption.

Figure 6.8 shows the total power-on time (in minutes) of six algorithms. Note that

in all simulations, a PM is assumed to be turned off if it is idle during some intervals.

The total power-on time of all PMs is computed using Eq. (6.6). It can be seen that in

all cases, Round.MBFD.ONWID.OFWID.ONWD.OFWD with respect to

total power-on time. This explains why the total energy consumption follows the same

pattern and is consistent with the theoretical results and proof of Lemma 3.
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Figure 6.6 Total energy consumption comparing to Round Robin (%) when varying

maximum duration of VM requests (idle servers turned off).
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Figure 6.7 Total number of PMs used (idle servers turned on).
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Figure 6.8 Total power-on time (minutes) of all PMs (idle servers turned off).
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6.4.4.2 Assuming idle servers not turned off

Figure 6.9 shows the total energy consumption (in percentages compared to

Round Robin) of the six algorithms as the maximum duration of VMs varies

from 50 to 800 slots, while all other parameters are the same. For all cases,

Round.ONWID.OFWID.MBFD.OFWD.ONWD regarding total energy

consumption calculated using Eqs. (6.3)�(6.7). In general, ONWD and OFWD con-

sume about 5�20% less power than MBFD, and 40% less power than Round

Robin. The reason ONWD and OFWD perform better is that delay or migrations

are adopted so a smaller total number of PMs are used. Figure 6.10 shows the total

number of PMs used in different algorithms; these results validate the theoretical

results and proof of Lemma 4.

6.4.4.3 Impact of varying the total number of VM requests

We also fixed the total number of each type of PM, but varied the total number of

VM requests. The system load was defined as the average arrival rate divided by

the average service rate. Similar results were observed as before. Because of page

limits, these results are not provided here.
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Figure 6.9 Total energy consumption comparing to Round Robin in percentages (idle

servers not turned off).
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6.5 Related work

One of the challenging scheduling problems in Cloud data centers is to consider the

allocation and migration of VMs with full life cycle constraints, which is often

neglected [23]. Beloglazov et al. [19] consider offline allocation of VMs by modi-

fied best-fit bin-packing heuristics. Kim et al. [22] model a real-time service as a

real-time VM request and use dynamic voltage frequency scaling schemes.

Matthew et al. [29] combines load balance and energy efficiency and proposes an

optimal offline algorithm and an optimal online algorithm. Rao et al. [30] models

the problem as constrained mixed-integer programming and proposes an approxi-

mate solution. Lin et al. [31] proposes online and offline algorithms for data centers

by turning off idle servers to minimize total cost.

6.6 Conclusions

In this chapter, we introduce energy-efficient scheduling schemes that consider the

full life cycle of heterogeneous VM types using modified interval partitioning mod-

els. We have shown that these scheduling schemes can reduce the overall energy

consumption of Cloud data centers. There are a few more research directions that

need further investigation:

1. the consideration of energy consumption during migration transitions;

2. the collection and analysis of energy consumption data in real Cloud data centers;

3. the combination of energy efficiency, load balance, and other features together.

Our future work will investigate scheduling schemes that consider these points.
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7Energy Efficiency by Minimizing

Total Busy Time of Offline Parallel

Scheduling in Cloud Computing

Main Contents of this Chapter:

� Approximation algorithm and its approximation ratio bound
� Application to energy efficiency in Cloud computing
� Performance evaluation

7.1 Introduction

We follow a three-field notation scheme for the job scheduling problem in

machines. This notation is proposed in Ref. [1] as αjβjγ, which specifies the

processor environment, task characteristics, and objective function, respectively.

For example, Pjrj; ejjCmax refers to the multiprocessor problem of minimizing the

completion time (makespan), when each task has a release date and deadline speci-

fied. Pmjrj; ejj
P

Cj denotes the multiprocessor problem of minimizing the total

completion time, when each task has a release date and deadline specified, and m

number of processors is specified as part of the problem type.

In this chapter, the notation is Pgjsj; ejj
P

ibi, where multiple machines

(each with capacity g) are considered. Each job has a start-time and end-time speci-

fied during which interval it should be processed, and the objective is to minimize

the total busy time of all used machines. Formally, the input is a set of n jobs

J5 J1; . . .; Jn. Each job Jj is associated with an interval ½sj; ej� in which it should

be processed; pj 5 ej 2 sj 1 1 is the process time of job Jj. Also given is the capac-

ity parameter g$ 1, which is the maximal capacity a single machine provides.

The busy time of a machine i is denoted by its working time interval length bi.

The goal is to assign jobs to machines such that the total busy time of all machines,

given by B5
P

ibi is minimized. Note that the number of machines ðm. 1Þ to be

used is part of the output of the algorithm and takes an integral value. To the best

of our knowledge, Khandekar et al. [2] are among the first to discuss this issue,

while Brucker [3] reviews the problem and related references therein. Unless other-

wise specified, lower case letters are used for indices, while upper case letters are

used for a set of jobs, time intervals, and machines.

Cloud computing allows for the sharing, allocating, and aggregating of software,

computational, and storage network resources on demand. Some of the key benefits

of Cloud computing include the hiding and abstraction of complexity, virtualized
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resources, and the efficient use of distributed resources. Maximizing the energy

efficiency of Cloud data centers is a significant challenge. Beloglazov et al. [4] pro-

pose a taxonomy and survey of energy-efficient data centers for Cloud computing,

while Jing et al. [5] conduct a state-of-the-art research study for green Cloud com-

puting and point out three hot research areas.

A Cloud Infrastructure as a Service provider, such as Amazon EC2 [6], offers

virtual machine (VM) resources with specified computing units. A customer

requests certain computing units of resources for a period of time and then pays

based on the total provisioned time of these computing units. For a provider, the

total energy cost of computing resources is closely related to the total power-on

(busy) time of all computing resources. Hence, a provider aims to minimize the

total busy time to save on energy costs. Therefore, in this chapter, we propose and

prove a 3-approximation algorithm, modified first-fit-decreasing-earliest (MFFDE)

that can be applied to VM scheduling in Cloud data centers to minimize energy

consumption.

7.1.1 Related work

There is extensive research on job scheduling on parallel machines. In traditional

interval scheduling [7�9], jobs are given as intervals in real time, each job has to

be processed on some machine, and that machine can process only one job at any

time.

There are many studies on scheduling with fixed intervals, in which each job has

to be processed on some machine during a time interval between its release time

and due date, or each job has to be processed during the fixed interval between its

start-time and end-time assuming a machine can process a single job at any given

time. In addition, there are studies of real-time scheduling with capacity demands

in which each machine has some capacity; however, to the best of our knowledge,

Khandekar et al. [2] are among the first to discuss the objective of minimizing the

total busy time. There has also been earlier work on the problem of scheduling jobs

to a set of machines so as to minimize the total cost [10], but in these works the

cost of scheduling each job is fixed. On the other hand, in our problem, the cost of

scheduling each job depends on the other jobs that are scheduled on the same

machine in the corresponding time interval; thus, it may change over time and

across different machines. As pointed out in [2], our scheduling problem is different

from the batch scheduling of conflicting jobs [3].

In the general case, the scheduling problem is NP-hard [11]. Chapter 6 shows

that the problem is NP-hard for g5 2, when the jobs are intervals on the line.

Flammini et al. [12] consider the scheduling problem, in which jobs are given as

intervals on the line with unit demand. For this version of the problem, Flammini

et al. give a 4-approximation algorithm for general inputs and better bounds for

some subclasses of inputs. In particular, Flammini et al. present a 2-approximation

algorithm for instances in which no interval is properly contained in another inter-

val (i.e., the input forms a proper interval graph) and in which any two intervals

intersect (i.e., the input forms a clique (see also Ref. [2])). Flammini et al. also
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provide a 2-approximation for bounded lengths of time, i.e., the length (or process

time) of any job is bounded by some fixed integer d.

Khandekar et al. [2] propose a 5-approximation algorithm for the scheduling

problem by separating all jobs into wide and narrow jobs based on their demands

when α5 0:25, which is a demand parameter of narrow jobs as compared to the

total capacity of a machine. The results obtained based on α5 0:25 are only good

for this special case. In this chapter, we improve upon and extend the results of

Ref. [2] by proposing a 3-approximation algorithm for our scheduling problem.

As for energy efficiency in Cloud computing, one of the challenging scheduling

problems in Cloud data centers is to consider the allocation and migration of VMs

with full life cycle constraints, which is often neglected [13]. Srikantaiah et al. [14]

examine the interrelationships between power consumption, resource utilization,

and performance of consolidated workloads. Lee and Zomaya [15] introduce two

online heuristic algorithms for energy-efficient utilization of resources in Cloud

computing systems by consolidating active tasks. Liu et al. [16] study the perfor-

mance and energy modeling for live migration of VMs and evaluate the models

using five representative workloads in a Xen virtualized environment. Beloglazov

et al. [10] consider the offline allocation of VMs by minimizing the total number of

machines used and minimizing the total number of migrations through modified

best-fit bin packing heuristics. Kim et al. [17] model a real-time service as a real-

time VM request and use dynamic voltage frequency scaling schemes. Mathew

et al. [18] combine load balancing and energy efficiency by proposing an optimal

offline algorithm and an online algorithm for content delivery networks. Rao et al.

[19] model the problem as constrained mixed-integer programming and propose an

approximate solution. Lin et al. [20] propose online and offline algorithms for data

centers by turning off idle servers to minimize the total cost. However, there is still

a lack of research on VM scheduling that considers fixed processing intervals.

Hence, in this chapter, we demonstrate how our proposed 3-approximation algo-

rithm can be applied to VM scheduling in Cloud computing. Mertzios et al. [21]

consider a similar problem model, but only consider it with respect to various spe-

cial cases. They mainly provide constant factor approximation algorithms for both

total busy time minimization and throughput maximization problems, while we

focus on energy efficiency in Cloud data centers.

7.1.2 Preliminaries

For energy-efficient scheduling, the goal is to meet all requirements with the mini-

mum number of machines and their total busy times based on the following

assumptions:

� All data are deterministic and unless otherwise specified, the time is formatted in slotted

windows. We partition the total time period ½0; T� into slots of equal length ðl0Þ in discrete

time, thus the total number of slots is k5 T=l0 (always making it a positive integer).

The start-time of the system is set as s0 5 0. Then the interval of a request j can be repre-

sented in slot format as [StartTime, EndTime, RequestedCapacity]5 ½si; ei; di� with both

start-time si and end-time ei being nonnegative integers.
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� All job tasks are independent. There are no precedence constraints other than those

implied by the start-time and end-time. Preemption is also not considered in this chapter.
� The required capacity of each request is a positive integer between ½1; g�.
� Assuming that each request is assigned to a single machine when processed, interrupting

a request and resuming it on another machine is not allowed, unless explicitly stated

otherwise.

From the aforementioned assumptions, we have the following key definitions

and observations:

Definition 1 Given a time interval Ii 5 ½s; t� where s and t is the start-time and end-

time, respectively, the length of Ii is jIij5 t2 s1 1. The length of a set of pairwise

intervals I5 , k
i51Ii, is defined as lenðIÞ5 jIj5 Pk

i51 jIij, i.e., the length of a set

of intervals is the sum of the length of each individual interval.

Definition 2 spanðIÞ is defined as the length of the union of all intervals consid-

ered, i.e., spanðIÞ5 j, Ij.

Example 1 If I5 f½1; 4�; ½2; 4�; ½5; 6�g, then spanðIÞ5 j½1; 4�j1 j½5; 6�j5 ð42 1Þ1
11 ð62 5Þ1 15 6, and lenðIÞ5 j½1; 4�j1 j½2; 4�j1 j½5; 6�j5 9. Note that spanðIÞ#
lenðIÞ and equality holds if and only if I is a set of pairwise nonoverlapping

intervals.

Definition 3 For any instance I and capacity parameter g$ 1, let OPTðIÞ denote
the minimized total busy time of all machines. Here, strictly speaking, busy time

means the power-on time of all machines. From Definition 2 of spanðIÞ, to mini-

mize the total busy time is to minimize the sum of makespan on all machines.

Note that the total power-on time of a machine is the sum of all intervals during

which the machine is power-on. As in Example 1, a machine is busy (power-on)

during intervals [1, 5] and [5, 6]. Based on Definition 1 of the interval for each job,

the total busy time of this machine is (52 1)1 (62 5)5 5 time units (or slots).

The interval [0, 1] is not included in the total busy time of the machine.

Definition 4 Approximation ratio: An offline deterministic algorithm is said to be

a C-approximation for the objective of minimizing the total busy time if the total

busy time is at most C times that of an optimal solution.

Definition 5 Time in slotted window: Assuming that the start-time and end-time of

all jobs are nonnegative integers, the required capacity of each job di is a natural

number between 1 and g, i.e., 1# di # g.

Definition 6 For any job j, its required workload is wðjÞ, which is its capacity

demand multiplied by its process time, i.e., wðjÞ5 djpj. Then the total workload of

all jobs J is WðJÞ5 Pn
j51 wðjÞ.

The following observations are given in Ref. [2].
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Observation 1 For any instance J and capacity parameter g$ 1, the following

bounds hold:

i. Capacity bound: OPTðJÞ$WðJÞ=g;
ii. Span bound: OPTðJÞ$ spanðJÞ.

The capacity bound holds because g is the maximum capacity that can be

achieved in any solution. The span bound holds because only one machine is suffi-

cient when g5 1.

Observation 2 The upper bound for the optimal total busy time is OPTðJÞ# lenðJÞ.
The equality holds when g5 1, or all intervals are not overlapped when g. 1.

For analyzing any scheduler S, the machines are numbered as M1;M2; . . . and Ji
is the set of jobs assigned to machine Mi with the scheduler S. The total busy period

of a machine Mi is the length of its busy intervals, i.e., bi 5 spanðJiÞ for all i$ 1,

where spanðJiÞ is the span of the set of job intervals scheduled on Mi.

7.1.3 Results

For the objective of minimizing the total busy time of multiple identical machines

without preemption subject to fixed interval and capacity constraints (referred to as

MinTBT), we obtain the following results:

� Minimizing the total busy time of multiple identical machines in scheduling without pre-

emption and with capacity constraint (MinTBT) is an NP-complete problem in the general

case (Theorem 1).
� There exist algorithms to find an optimal solution for the MinTBT problem in polynomial

time when the demand is one unit and the total capacity of each machine is also one unit,

so in this case, MFFDEðIÞ5OPTðIÞ5 lenðIÞ (Theorem 2). This shows the result in the

special case, which can be applied to energy-efficient Cloud data centers.
� The approximation ratio of our proposed MFFDE algorithm for the MinTBT problem has

an upper bound 3 (Theorem 3). This is one of our main results, which guides us in the

approximation of the algorithm design.
� The case in which di 5 1, as shown in Ref. [12]—called the unit demand case—there is a

special case of 1# di # g (let us call it a general demand case). As for minimizing the

total busy time, the unit demand case represents the worst-case scenario for first-fit-

decreasing (FFD) and MFFDE algorithms (Observation 3).
� For the cases in which the capacities of all requests form a strongly divisible sequence,

there exist algorithms to find an optimal solution of the minimum number of machines for

the MinTBT problem in polynomial time (Theorem 4). This enables the design of approx-

imate and near-optimal algorithms.
� For the cases in which the capacity parameter g5N, there exist algorithms to find an

optimal solution for the MinTBT problem in polynomial time (Theorem 5).
� For a linear power model and a given set of VM requests in Cloud computing, the total

energy consumption of all physical machines (PMs) is dominated by the total busy time

of all PMs, i.e., a longer total busy time of all PMs for a scheduler leads to higher total

energy consumption (Theorem 6).

The remaining content of this chapter is structured as follows: Section 7.2

presents our proposed approximation algorithm and its approximation bounds.
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Section 7.3 discusses its application to VM scheduling in Cloud computing.

Section 7.4 compares the performance of MFFDE with FFD and the theoretical

optimal solution. Section 7.5 concludes and outlines the direction of future research

in this area.

7.2 Approximation algorithm and its approximation
ratio bound

For offline non-real-time scheduling, the longest processing time (LPT) is one of

the best approximation algorithms. LPT is known to have the best possible upper

bound for minimizing the maximum makespan for the case in which g5 1 in a tra-

ditional multiprocessor system [4]. In this chapter, the start-time and end-time of

jobs are fixed, and the general case g. 1 is considered. We need to consider the

fixed start-time and end-time of jobs with the capacity constraint of machines when

allocating jobs. Our MFFDE algorithm, as shown in Algorithm 1, schedules jobs in

the nonincreasing order of their process times and considers the earlier start-time

first if two jobs have the same process time, or it breaks ties arbitrarily when two

jobs have exactly the same start-time, end-time, and process time. Each job is

scheduled to the first machine that has the capacity (so as to use as few machines

as possible to minimize the total busy time).

MFFDE algorithm has the computational complexity Oðn maxðm; log nÞÞ, where
n is the number of jobs and m is the number of machines used. It first sorts all

jobs in the nonincreasing order of their process times, which takes Oðn log nÞ time.

Then it finds a machine for a request, which needs OðmÞ steps, thus n jobs need

OðnmÞ steps. Therefore, the entire algorithm takes Oðn maxðm; log nÞÞ time, where

often n.m.

Input: (J, g) where  J  is set of jobs and  g  is maximum capacity of a machine

Output: Scheduled jobs, total busy time of all machines, and total number of machines used

Sort all jobs in non-increasing order of their process times, such that p1  ≥  p2... ≥ pn
(Considers earlier start-time first if two jobs have the same process time. Breaks ties
arbitrarily when two jobs have exactly the same start-time,end-time, and process time)
for  j = 1  to  n  do
        
        Find first machine  i  with available capacity;
        
        Allocate job  j  to machine  i  and update its load;

Compute workload and busy time of all machines;

Algorithm 1 MFFDE Algorithm.
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To see the hardness of the general problem:

Theorem 1 Minimizing the total busy time of multiple identical machines in offline

scheduling without preemption and with a capacity constraint (MinTBT) is an NP-

complete problem in the general case.

Proof This can be proved by reducing the well-known NP-complete set partitioning

problem to the MinTBT problem in polynomial time as follows:

The K-partition problem is NP-complete [22] for a given arrangement S of posi-

tive numbers and an integer k; partition S into k ranges so that the sums of all of

the ranges are close to each other. The K-partition problem can be reduced to the

MinTBT problem as follows: For a set of jobs J where each job has capacity

demand di (set as a positive number), partitioning J by capacity into K ranges is the

same as allocating K ranges of jobs with the capacity constraint g (i.e., the sum of

each range is at most g). On the other hand, if there is a solution to K-partition for

a given set of intervals, there exists a schedule for the given set of intervals.

Because K-partition is NP-hard in the strong sense, our problem is also NP-hard.

In this way, we have shown that the MinTBT problem is an NP-complete problem.

Khandekar et al. [2] have shown by a simple reduction from the subset sum

problem that it is already NP-hard to approximate our problem in the special case

in which all jobs have the same (unit) process time and can be scheduled in one

fixed time interval.

7.2.1 Bounds for approximation ratio when g is one unit
and di is one unit

When g is one unit and di is one unit, our problem reduces to the traditional interval

scheduling problem with the start-time and end-time constraints, where each job

needs a one unit capacity and the total capacity of a machine is one unit.

Theorem 2 There exist algorithms to find an optimal solution for the MinTBT prob-

lem in polynomial time when the demand is one unit and the total capacity of each

machine is also one unit, especially in the case of MFFDEðIÞ5OPTðIÞ5 lenðIÞ.

Proof Because the capacity parameter g is one unit, let us set it to 1. As each

job needs a capacity 1, each machine can only process one job at any time. In this

case, using Definition 1 of interval length and Definition 2 of span, we have

OPTðIÞ5 lenðIÞ no matter whether there are jobs that overlap or not. By allocating

each interval to different machines for continuous working intervals, MFFDEðIÞ is
also the sum of lengths of all intervals.

7.2.2 Bounds for the approximation ratio in the general case
when g. 1

Observation 3 The case in which di 5 1 as shown in Ref. [12], called the unit

demand case, is a special case of 1# di # g (let us call it a general demand case).
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As for minimizing the total busy time, the unit demand case represents the worst-

case scenario for FFD and MFFDE algorithms.

Proof Consider the general demand case, i.e., where 1# di # g. The adversary is

generated as follows: All g groups of requests have the same start-time at si 5 0,

demand di (for 1# i# h,
Ph

i51 di 5 g), and each has an end-time at ei 5 T=kg2i,

where T is the length of time under consideration, k is a natural number, and

j5 i mod g if i mod g 6¼ 0, else j5 g. In this case, for the optimal solution, one can

allocate all of the longest requests to a machine ðm1Þ for a busy time of dgT , then

allocate all of the second longest requests to another machine ðm2Þ for a busy time

of dg21T=k, . . . , and—finally—allocate all of the shortest requests to machine ðmgÞ
with a busy time of d1T=kg21. Therefore, the total busy time of the optimal solution

is

OPTðIÞ5 T
Xg

i51

di

gkg2i
5 T

Xg

i51

di

kg2i
ð7:1Þ

We consider the worst case (upper bound). For any offline algorithm, let us call

it ALGX , the upper bound will make ALGX=OPT the largest while keeping other

conditions unchanged. When k and T are given, Eq. (7.1) will have the smallest

value if di has the smallest value, i.e., di 5 1.

This means that the unit demand case represents the worst-case scenario.

Remark 1 We can easily check that Observation 3 is true for the worst-case sce-

nario of FFD as shown in Figure 7.1. Because the unit demand case represents the

worst-case scenario for the MinTBT problem, we only consider this case for the

upper bound as follows.

g copies

g–1 jobs
Δ2

Δ3

Δ1

g–1 jobs

g–1 jobs

0 t1– ε

ε ε

t1 t2– ε t2 t3

Figure 7.1 Generalized instance for the proof of the upper bound of FFD.
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The following observation is given in Refs. [2,12]:

Observation 4 For any 1# i#m2 1, we have spanðIi 1 1Þ# 3wðIiÞ=g, in the worst

case for FFD algorithm, where m is the total number of machines used.

Remark 2 In Ref. [12], a result of spanðIi 1 1Þ# 3wðIiÞ=g is established and

proved for the FFD algorithm. For a job i on machine Mi, pi is its process time.

Let iL or iR be the job with the earliest or latest completion times, respectively, in

Ii11 on machine Mi11. Because our proposed algorithm is also based on the FFD

algorithm for process time and considers earlier start-times first when ties exist,

we also have spanðIi 1 1Þ# 3pi 5 3wðIiÞ=g.

Theorem 3 The approximation ratio of our proposed MFFDE algorithm for the

MinTBT problem has an upper bound 3.

Proof Let us define that all of the jobs in Ji11 are assigned to machine Mi11.

For such a set, the total busy time of the assignment is exactly its span.

Xm

i51

MFFDEðJiÞ5MFFDEðJ1Þ1
Xm

i52

MFFDEðJiÞ ð7:2Þ

5MFFDEðJ1Þ1
Xm21

i51

MFFDEðJi11Þ ð7:3Þ

#MFFDEðJ1Þ1
3

g

Xm21

i51

wðJiÞ ð7:4Þ

5MFFDEðJ1Þ1
3

g

Xm

i51

wðJiÞ2
3

g
wðJmÞ ð7:5Þ

5MFFDEðJ1Þ1
3

g
WðJÞ2 3

g
wðJmÞ ð7:6Þ

# 3 OPTðJÞ1MFFDEðJ1Þ2
3

g
wðJmÞ ð7:7Þ

# 3 OPTðJÞ ð7:8Þ
Ideally, when MFFDEðJ1Þ has the largest value and ð3=gÞwðJmÞ has the smallest

value at the same time, Eq. (7.6) will have the upper bound; but this generally is

not true. The analysis is given as follows:

1. If MFFDEðJ1Þ5 spanðJ1Þ has the upper bound OPTðJÞ when all long jobs are allocated on

machine M1, the optimal solution OPTðJÞ is dominated by MFFDEðJ1Þ. In this case, allo-

cations on other machines have little effect on OPTðJÞ, then ð3=gÞwðJmÞ is very small
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(which can be ignored as compared to spanðJ1Þ), otherwiseMFFDEðJ1Þ5 spanðJ1Þ cannot
reach the upper bound OPTðJÞ. In this case,

Pm
i51 MFFDEðJiÞ is dominated by spanðJ1Þ,

which is very close or equal to OPTðJÞ.
2. If MFFDEðJ1Þ5 spanðJ1Þ is small as compared to OPTðJÞ (i.e., OPTðJÞ is not dominated by

MFFDEðJ1Þ), we consider the worst case since it is for the upper bound. In the worst case,

spanðIi11Þ# 3wðIiÞ=g, thus we can easily check that MFFDEðJ1Þ, ð3=gÞwðJmÞ as shown in

Figures 7.1 and 7.2. Set Δ0 5Δ1 5Δ2 5Δ3, Actually, MFFDE considers the earlier start-

time first when jobs have the same process times, so MFFDEðJ1Þ5 spanðJ1Þ5Δ0 2 2ε,
ð3=gÞwðJmÞ5 ð3=gÞwðJgÞ5 ð3=gÞðgΔ0 1Δ0Þ5 3Δ0 1 ð3Δ0=gÞ. In this case, OPTðJÞ5
gΔ0 1Δ0. Hence MFFDEðJ1Þ2 ð3=gÞwðJmÞ52 2Δ0 2 ð3Δ0=gÞ is very small as com-

pared to OPTðJÞ when g is large. From Eq. (7.7), we have MFFDEðJ1Þ2 ð3=gÞ
wðJmÞ1 ð3=gÞwðJÞ# 3 OPTðJÞ, (i.e., MFFDEðJÞ# 3 OPTðJÞ). In this case, a tight upper

bound is proved using Figure 7.2 as the worst case (which is shown in the next proof).

3. For special cases, such as one-sided clique and clique cases [2,12], we can easily find that

MFFDEðJÞ is very close to or equal to OPTðJÞ.
By combining the aforementioned three analyses, we have proved Theorem 3.

Another simpler proof considers the worst case only because we are looking for

the upper bound. As pointed out in Refs. [2,12], the worst case for the FFD algorithm

is shown in Figure 7.1. Therefore, we can easily check that MFFDEðJÞ5OPTðJÞ
because the MFFDE algorithm considers the earliest start-time first (ESTF) when two

requests have the same length of process time. We further construct the worst case

for the MFFDE algorithm and provide a proof as follows.

Left Middle

g–1 jobs

g–1 jobs

g–1 jobs

Note: for all jobs, each capacity request is di= 1

Group #g by
process time

Δ1

Δ3

Δ1– i+1

Δ1– g+1

Δ3– g+1

Δ2– g+1

Δ2– i+1

Δ2

Δ3– i+1
Group #i by
process time

g groups:
sorted by

decreasing
order of
process

time

Group #1 by
process time

Right

Figure 7.2 Generalized instance for the proof of the upper bound of MFFDE.
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Proof The upper bound is tight: Consider the instance J as depicted in Figure 7.2.

Assuming that Δ15Δ25Δ35Δ0, there are g groups of jobs sorted by the decreasing

order of their process times. For group i, all jobs have the same process times:

Δ0 2 i1 1; i$ 1. Notice that the left-side jobs have start-time, end-time5 ½i2 1;Δ0�;
the right-side jobs have start-time, end-time5 ½2Δ0 2 2i; 3Δ0 2 3i1 1�, the middle-

plane jobs have start-time, end-time5 ½Δ0 2 i; 2Δ0 2 2i1 1�, where Δ0 . 3g2 2, so

that the intervals intersect between different groups. In this case, the optimal solution

uses one machine during ½0;Δ0�, ðg2 1Þ machines with span5Δ0 1 22 i, 1# i# g,

and one during ½2Δ0 2 2g; 3Δ0 2 3g1 1�, so OPTðJÞ5 ðg1 1ÞΔ0 1 3ðg2 1Þ2
0:5gðg2 1Þ. In contrast, the MFFDE algorithm needs g machines with one machine

for each group of jobs, whereby each machine has span5 3Δ0 2 5i1 1, 1# i# g.

Hence MFFDEðJÞ5 Pg
i51 3ðΔ0 2 5i1 1Þ5 3gΔ0 2 2:5g2 2 1:5g. We now have the

following:

MFFDEðJÞ
OPTðJÞ 5

3gΔ022:5g221:5g

ðg11ÞΔ013ðg21Þ20:5ðg21Þ 5
32 ð2:5g11:5Þ=Δ0

111=g2 ð0:5g223:5g13Þ=gΔ0

which has an upper bound 3 when g is large since Δ0 . 3g2 2 by setting.

Remark 3 With comparison to the random capacity configuration case, there are

many good features in the strongly divisible case [23]; thus it is possible to find an

optimal number of machines for the MinTBT problem as follows.

Theorem 4 In the case in which the capacities of all requests form a strongly divisi-

ble sequence, there exists an algorithm to find an optimal solution of the minimum

number of machines for the MinTBT problem in polynomial time.

Remark 4 In the strongly divisible capacity case, the total capacity of a machine

and the capacities of all jobs form a strongly divisible sequence. Our scheduling

problem therefore can be transformed into the classical one-dimensional interval

(bin) packing problem, whereby the best-fit-decreasing algorithm produces the opti-

mal result for offline scheduling [23]. Also in this case, the problem can be trans-

formed into the interval scheduling problem, in which the minimum number of

machines exist to host all requests [8]. Theorem 4 guides the design of the system

to have the optimal number of machines used while minimizing the total busy time.

In this way, the average utilization of all machines also improves. Notice that

Theorem 4 is not true for the general capacity case where each job requests a ran-

dom real number of capacity between 1 and g.

Example 2 Assuming that the total capacity of each machine is g5 10, there are

four jobs in [StartTime, EndTime, RequestedCapacity] format: [0, 1, 9], [0, 1, 5],

[0, 1, 3], and [0, 1, 3] with the capacity requirement of 9, 5, 3, and 3, respectively.

In this case, the total requested capacity is 20, thus—ideally—two machines will be

the optimal solution. But because of the randomness of each requested capacity, no
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subset sum of jobs has the total capacity exactly equal to 10. In fact, three machines

are necessary regardless of what scheduling algorithms are used: one for [0, 1, 9];

one for [0, 1, 5] and [0, 1, 3]; and one for [0, 1, 3].

Theorem 5 For the case of the capacity parameter g5N, there exists an algorithm

to find an optimal solution for the MinTBT problem in polynomial time.

Proof When g5N, one machine is sufficient for all jobs. Once all jobs J are

given, their total spanðJÞ is fixed by the definition and can be computed in polyno-

mial time, which is linear to the number of total jobs. Let the intervals of all of the

jobs be contained in ½0; T�, assuming the time is in slotted window format and each

slot has a unit time length. In addition, all start-times and end-times are integers.

For example, a job Jj has requested ½tj; ej; dj�5 [2, 10, 1], which means it has a start-

time at slot-2, an end-time at slot-10, and the required capacity of 1, respectively.

One way to find the total busy time is to sum the lengths of all slots, which have at

least one job spanning them. By Definition 2 of spanðJÞ, this is the total busy time.

In summary, the approximation ratio of the MFFDE algorithm for multiple

machine scheduling has an upper bound 3, which is an improvement as compared

to the 5-approximation algorithm proposed in Ref. [2].

7.3 Application to energy efficiency in Cloud computing

In this section, we introduce how our results are applied to Cloud computing.

We consider VM allocation in Cloud data centers where PMs are major resources

[4,10,17]. Each VM has a start-time si, an end-time ei, and a capacity request di.

The capacity request di of a VM is a natural number between 1 and the total capacity

g of a PM. Our objective here is to minimize the total energy consumption of all PMs

by minimizing the total busy time. This is exactly the same as the MinTBT problem.

7.3.1 Problem formulation

Theorem 6 For the abovementioned power model and a given set of VM requests

in Cloud computing, the total energy consumption of all PMs is dominated by the

total busy time of all PMs. That is, the longer the total busy time of all PMs for a

scheduler, the higher the total energy consumption.

Proof By setting α5Pmin and β5 ðPmax 2PminÞ, we have

Xm

i51

Ei 5
Xm

i51

ðEion 1
Xk

j51

EijÞ

5α
Xm

i51

Ti 1β
Xn

i51

X

jAPMi

ujtj

5αT 1βL

ð7:9Þ
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Where T 5
Pm

i51 ti is the total busy time of all PMs and L is the total workload

of all VMs, which is fixed once the set of VM requests is given. From Eq. (7.9),

we can see that the total energy consumption of all PMs is dominated by the total

busy time (T) of all PMs, i.e., the longer the total busy time of all PMs for a sched-

uler, the higher the total energy consumption.

From Theorem 6, for energy efficiency, one should try to minimize the total

busy time of all PMs. However, the general problem is an NP-complete problem as

stated in Theorem 1.

Observation 5 For a given set of interval requests, the total busy time of all

PMs depends on the scheduling algorithms (or schedulers). It is possible that differ-

ent schedulers can have different total numbers of PMs used, but with the same

total busy time of all PMs. In other words, a solution that minimizes the total busy

time may not be optimal with respect to the number of PMs used, or a solution that

minimizes the number of PMs used may not be optimal with respect to the total

busy time.

Example 3 We assume that the total capacity of a PM is g5 16, and that each PM

has a load threshold of 0.75. As given in Table 7.1, there are six VM requests in

[StartTime, EndTime, RequestedCapacity] format: v1½1; 5; 4�, v2½2; 4; 1�, v3½4; 9; 8�,
v4½4; 6; 8�, v5½4; 9; 8�, v6½5; 9; 4�. As shown in Figure 7.3, the VM allocations based

on three scheduling approaches are as follows:

� Scheduler A (MFFDE) uses 3 PMs with a total busy time of 20 slots (PM1 runs 9 slots for

v1; v3; PM2 runs 8 slots for v2; v5; v6; PM3 runs 3 slots for v4).
� Scheduler B (earliest start-time first (ESTF)) uses 4 PMs with a total busy time of 20 slots

(PM1 runs 5 slots for v1; v2; PM2 runs 6 slots for v3; PM3 runs 3 slots for v4; PM4 runs

6 slots for v5; v6).
� Scheduler C (shortest process time first (SPTF)) uses 3 PMs with a total busy time

of 23 slots (PM1 runs 8 slots for v2; v4; v6; PM2 runs 9 slots for v1; v3; PM3 runs 6 slots

for v5).

Schedulers A and B show that two solutions can use different number of PMs

but still have the same total busy time. Scheduler C uses 3 PMs (optimal) as sched-

uler A does but has longer total busy time.

Table 7.1 Six VM requests for Example 3

VM\slot 1 2 3 4 5 6 7 8 9

v1 4 4 4 4 4

v2 1 1 1

v3 8 8 8 8 8 8

v4 8 8 8

v5 8 8 8 8 8 8

v6 4 4 4 4 4
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From Theorem 6, we can induce the following two observations:

Observation 6 For a given set of VM requests, scheduler A uses the same number

of PMs as scheduler B. Scheduler A has a total busy time TA of all PMs, while

scheduler B has total busy time TB of all PMs. If TA . TB, then the total energy

consumption of scheduler A is higher than scheduler B.

This means that the scheduler should attempt to minimize the total busy time of

all PMs so as to reduce the total energy consumption when all other conditions are

the same, which is one of main objectives of this chapter.

Observation 7 For the same set of VM requests, scheduler A uses more number of

PMs than scheduler B. Scheduler A uses MA number of PMs with a total busy time TA,

while scheduler B uses MB number of PMs with a total busy time TB. If MA .MB but

TA 5 TB, then the total energy consumption of scheduler A is the same as scheduler B.

Example 4 Let us consider a set of n VM requests, which are not overlapped

and require unit demand. Then there are two ways to have optimal total busy time.

The first way is to use one PM for all n requests. The second way is to use n PMs,

respectively, for each job. It is obvious that these two ways result in the same total

busy time.

MFFDE

ESTF

SPTF

PM3 ν4 [4, 6, 8]

ν2 [2, 4, 1]

ν6 [5, 9, 4]
ν5 [4, 9, 8]

ν1 [1, 5, 4]

ν3 [4, 9, 8]

ν6 [5, 9, 4]
ν5 [4, 9, 8]

ν4 [4, 6, 8]

ν3 [4, 9, 8]

ν2 [2, 4, 1]

ν2 [2, 4, 1]

ν1 [1, 5, 4]

ν5 [4, 9, 8]

ν3 [4, 9, 8]

ν1 [1, 5, 4]

ν6 [5, 9, 4]

ν4 [4, 6, 8]

PM2

PM1

PM4

PM3

PM2

PM1

PM3

PM2

PM1

1 2 3 4 5 6 7 8 9

Scheduler PM Time slot

Figure 7.3 VM allocation based on the MFFDE algorithm, the ESTF, and the SPTF for

Example 3.
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This means that a solution that minimizes the total busy time may not be unique

and may not be optimal in the number of PMs used. For practical consideration,

one should attempt to minimize the total busy time and use the optimal number

of PMs. Theorem 6 guides the design of the system to have the optimal number of

PMs used while minimizing the total busy time. In this way, the average utilization

of all PMs also improves.

Remark 5 Observations 6 and 7 also explain the feature of cost associativity in

Cloud computing [24], i.e., 1000 computers used for 1 h costs the same as one com-

puter used for 1000 h because the total busy time is 1000 h for the same given set

of jobs in this case.

Observation 8 By applying our proposed MFFDE algorithm, the approximation

ratio of minimizing the total energy consumption of Cloud data centers is 3 in the

general case and can be near optimal in special cases such as one-sided clique and

clique cases (special cases discussed in Refs. [2,12]).

7.3.2 Average case analysis

In the previous sections, we mainly focus on the worst-case analysis and provide

the upper bound of approximation ratio for the worst case. For the average case,

MFFDE algorithm accepts random inputs subject to some underlying random pro-

cess (such as Poisson process). It is well known that the approximation ratio for the

average case is below the upper bound for the worst case.

7.4 Performance evaluation

The open source private Cloud platform, Eucalyptus [25] provides two scheduling

options: GREEDY and ROUNDROBIN. Both options do not shut down machines or

put machines to sleep. GREEDY is similar to first-fit bin packing approximation by

minimizing the total number of PMs used to save energy. ROUNDROBIN (also used

in Amazon EC2 [6]) sets the order of PMs first and then allocates jobs (requests) to

the PMs in that order. In this chapter, we discuss offline scheduling algorithms FFD

[2,12] and MFFDE, which are known to have better approximation ratio than first-fit

and ROUNDROBIN because preprocess sorting in the decreasing order of all process

time are adopted. Therefore, for performance evaluation, we only compare the results

of FFD, MFFDE, and the theoretical optimal solution (OPT).

7.4.1 Methodology

To evaluate performance, we use a Java discrete event simulator [26]. For incoming

VM requests, we consider eight VM types in Amazon EC2 [6] as listed in Table 7.2.

From these eight VM types, we derive three PM types as listed in Table 7.3. For

example, PM type 1 is derived from the first three VM types 1-1, 1-2, and 1-3.
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7.4.2 Algorithms

We compare three algorithms as follows:

1. (FFD [2,12] first sorts all VM requests in the nonincreasing order of their process time

and then allocates the requests to the first available PM;

2. MFFDE as proposed in this chapter;

3. Optimal solution (OPT) represents the theoretical lower bound, which is obtained by mul-

tiplying the sum of minimum number of machines needed in all slots and the time length

of each slot.

We assume that all VMs occupy their requested capacity fully (the worst case).

For each set of VM requests, simulations are run 10 times. All the results shown

are the average of the 10 runs.

7.4.3 Simulation using real traces

Because of a lack of data from real Cloud data centers regarding the energy con-

sumption of computing resources, we use the readily available Lawrence Livermore

National Lab Thunder log from Parallel Workloads Archive [27] to model incoming

VM requests. This log is collected by a large Linux cluster called Thunder installed

at Lawrence Livermore National Lab. From the log, we can extract relevant data

consistent with our problem model, which includes the request number, start-time,

requested time, and requested number of processors. We convert the time unit from

seconds—as in the log—to minutes because we set 1 min as the time slot length in

our simulation. We also convert the requested number of processors to correspond

Table 7.2 Eight VM types in Amazon EC2

VM type Compute units Memory (GB) Storage (GB)

1-1 (1) 1 1.875 211.25

1-2 (2) 4 7.5 845

1-3 (3) 8 15 1690

2-1 (4) 6.5 17.1 422.5

2-2 (5) 13 34.2 845

2-3 (6) 26 68.4 1690

3-1 (7) 5 1.7 422.5

3-2 (8) 20 6.8 1690

Table 7.3 Three PM types for divisible configuration

PM type CPU Memory (GB) Storage (GB) PminðWÞ Pmax ðWÞ
1 16 30 3380 210 300

2 52 136.8 3380 420 600

3 40 14 3380 350 500
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to the eight types of VM requests listed in Table 7.2. We run the simulations with

sufficient number of PMs so that all VM requests can be allocated successfully

without being rejected.

Figures 7.4�7.6 show the total busy time (in minutes), total energy consumption

(in kilowatt hours), and total simulation time (in milliseconds), respectively, for the

increasing number of VM requests (from 1000 to 7000).

7.4.4 Simulation using synthetic data

7.4.4.1 Data center energy consumption evaluation

All requests follow the Poisson arrival process and have exponential service times.

The mean interarrival period is set as 5 slots, the maximum intermediate period

between two arrivals is set as 50 slots, and the maximum duration of requests is set

as 50, 100, 200, 400, and 800 slots, respectively. The total number of arrivals

(VM requests) is 1000, each VM type has an equal number of 125 requests, and

there are 60 PMs (20 for each PM type). Each slot is 5 min long. For example, if

the requested duration (service time) of a VM is 20 slots, its actual time duration is

203 55 100 min.
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Figure 7.4 Total busy time (min) for increasing number of VM requests.
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Figure 7.5 Total energy consumption (kWh) for increasing number of VM requests.
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Figure 7.6 Total simulation time (ms) for increasing number of VM requests.



Figures 7.7 and 7.8 show the total busy time (in minutes) and total energy con-

sumption (in kilowatt hours), respectively, for the increasing maximum duration (in

slots) of VM requests (from 50 to 800). Results of the MFFDE are less than three

times the results of the optimal solution (OPT). This validates our theoretical results

and observations for total energy consumption.

7.4.4.2 Impact of total workload

Let us define the total workload ρ5 ðP ’ jdjpjÞ=mT0, where m is the total number

of PMs, T0 is the total time length under consideration, j is a VM request, and dj is

the capacity demand. By keeping the total number of VM requests fixed (e.g., VMs

D 3000) and varying their durations, we can study the impact of total workload

when p varies from 0.1 to 0.9.

Figures 7.9 and 7.10 show the total busy time (in minutes) and total energy con-

sumption (in kilowatt hours), respectively, for the increasing total workload p (from

0.1 to 0.9). Both the FFD and the MFFDE have almost the same simulation times.
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Figure 7.7 Total busy time (min) for increasing maximum duration (slots) of VM requests.
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VM requests.
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7.4.5 General observations

For both simulations using real traces and synthetic data, we observe that the total

simulation times for the FFD and the MFFDE are in the same order, ranging from a

few seconds to a few minutes. FFD.MFFDE.OPT for total busy time and total

energy consumption; the results of the MFFDE are closer to the lower bound (OPT)

and are about 2�10% more energy-saving than the FFD on the average. Hence,

these simulation results validate our theoretical results and observations. Other sim-

ilar results are not shown.

7.5 Conclusions

In this chapter, we improve the best-known bounds for multiple machine schedul-

ing. As pointed out in [2,12], there is no existing polynomial time solution for

the case of minimizing the total busy time of all machines to schedule all jobs

nonpreemptively in their start-time�end-time windows, subject to the machine

capacity constraint. We propose an approximation algorithm, the MFFDE, i.e., a

3-approximation in the general case and near optimal in the special and average

cases. The MFFDE algorithm can be applied to Cloud computing and other related

areas to improve energy efficiency. Because the MFFDE algorithm combines fea-

tures of the FFD algorithm (largest process time first) and the ESTF algorithm, it

also is a good approximation bound for minimizing the maximum makespan while
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minimizing the total busy time. It will not sacrifice the makespan in order to mini-

mize the total busy time.

Some open issues to be further investigated include the following:

� Find better algorithms and bounds for general and special cases: We conjecture there are

better offline algorithms for improving performance.
� Consider VM migration and energy consumption during migration transitions: It is possi-

ble to reduce the total energy consumption by limiting the number of VM migrations.

As frequently migrating VMs can cause network congestion, the number of VM migra-

tions should be minimized.
� Collect and analyze energy consumption data in real Cloud data centers: There is still a

lack of data for real Cloud data centers regarding the energy consumption of computing

resources. We can evaluate our algorithms in a medium-sized Cloud data center to ana-

lyze how they can be further improved.
� Considering start up time, shut down time, and other additional overheads in real imple-

mentation: In theoretical proofs and performance evaluations, these overheads are not

considered for all algorithms. We will consider this during real implementation.
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8Comparative Study of Energy-

efficient Scheduling in Cloud Data

Centers

Main Contents of this Chapter:

� Background of energy-efficient scheduling
� Data center energy models
� MFFDE algorithm
� BFF algorithm
� GRID algorithm

8.1 Introduction

Today, the industry regards Cloud computing to be the fifth utility after water, elec-

tricity, gas, and oil resources. Cloud computing is a model of the business comput-

ing and information services, which allocate jobs to different data centers that

consist of large numbers of physical or virtual servers, so applications can access

computing power, storage space, and information services as needed.

Cloud computing is in an era of vigorous development, with new Cloud data cen-

ters becoming larger and larger. Additionally, energy consumption is gradually

increasing. The current energy consumption in GDP in China is 11.5 times more

than Japan, 8.7 times more than Germany and France, and 4.3 times more than the

United States. In 2007, the total cost of energy consumption in China reached 13.68

billion yuan, which is equivalent to the amount of power generated by Gezhouba

power station in 1 year. A data center with 500 servers will cost 1.8 million yuan in

electricity bills each year. The power consumption used by server facilities—such as

that for air-conditioning for cooling—is almost the same as that used by the server,

itself. Once we spend 1 W of IT energy, we need more than 1 W of energy for cool-

ing; but if we can save 1 W of IT energy, then we can also reduce the amount of

energy used by the data center by at least as much. In order to avoid rising costs in

terms of energy consumption, traditional data centers are struggling to find ways to

enhance data center resource efficiency and reduce energy consumption.

According to statistics, a data center only uses about 20% of its computing

power at any given time on average, therefore, 80% of its resources are idle or

wasted. In addition, only about 3% of the power consumption in a data center is

used to process the data. The huge waste of energy mainly stems from two separate
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sources: the need for redundant backup devices in order to ensure real-time system

capabilities and a lack of efficient resource utilization.

With the development of Cloud computing, today’s Cloud data centers must

ensure critical business access capability, provide large-scale service scheduling

ability or “transparent infinite capacity,” ensure controllable bandwidth, and possess

large-scale data center architecture. Well-designed energy-efficient scheduling algo-

rithms can: centrally manage and dynamically use physical server and virtual

resources in Cloud data centers, provide flexible and resilient services that help

companies build dynamic, flexible infrastructure able to accommodate business

growth; enable enterprises to provide high performance services; and achieve the

goals of cost reduction and energy efficiency.

Power supply and air-conditioning needs currently make up the major costs of

Cloud computing data centers. In order to measure the energy efficiency of Cloud

data centers, the industry generally uses a data center energy consumption index.

This index refers to the percentage of energy consumed by data center computing

devices out of all of the energy consumed by the data center. Here the data center

energy consumption includes the energy consumption of computing devices, as

well as the energy used for temperature control, heating, ventilation, and lighting,

among other things. The higher the energy consumption index, the better. In reality,

the target value of the index should generally be between 0.8 and 0.9. Figure 8.1

shows 22 data center energy consumption indices, which indicate that the energy

consumption in data centers has room for improvement. Energy-efficient scheduling

algorithms for data centers are designed to target that need.

Scheduling algorithms for Cloud data centers need to dynamically allocate and

integrate resources reasonably. Studies have shown that in the context of dealing

with a fixed number of user requests, turning on fewer physical servers leads to less

total energy consumption. However, what is the specific quantitative relationship

between total data center energy consumption and the total number of physical

machines being utilized? Is the total number of physical machine used directly
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Figure 8.1 The comparison of 22 data centers’ energy consumption [1] index.
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related to the total energy consumption of a given total running time? Past studies

have not engaged in an in-depth analysis of this relationship, so this chapter com-

bines the energy consumption model with an in-depth study, and analyzes the

results in details.

8.2 Related research

Kang and Wei-Min [2] introduce Cloud computing system instance and current sta-

tus. Bing et al. [3] discuss green computing; Peng [4] introduces the research back-

ground and challenging Cloud computing and energy issues. Lin et al. [5] provide a

detailed introduction to green power-saving mechanisms in networks, including the

energy consumption model and evaluation methods. Ye et al. [6] analyze the cur-

rent status and progress of research related to four aspects of energy management—

energy measurement, energy modeling, management mechanisms, and management

methods—and then presents ten further problems. Tan et al. [7] propose several

optimal scheduling algorithms for Cloud platforms using the random task energy

problem and an M/M/1 queuing model. Tian and Zhao [8] detail the basics of

Cloud computing resource scheduling management. Lee and Zomaya [9] take the

integration of real-time tasks into consideration for achieving the goal of maximum

utilization: two real-time scheduling heuristic algorithms allocate real-time tasks to

save energy by maximizing resource utilization. Eduardo et al. [10] propose to save

energy through turning servers on or off according to system performance and cur-

rent energy consumption. Energy-saving algorithms are implemented separately at

the application level and at the operating system level. The scheduling algorithm

considers energy consumption, performance, throughput, uptime, and other para-

meters to decide whether to add or remove nodes.

Flammini et al. [11] propose the minimization of the running time of all

machines in order to save energy by designing a 4-approximation offline sched-

uling algorithm for task scheduling that considers the unit capacities and fixed

process times of tasks. Khandekar et al. [12] provide a 5-approximation algo-

rithm for general inputs and better bounds for some subclasses of inputs that

relate to random request capacity. Shalom et al. [13] give an online scheduling

algorithm with a competitive ratio of g (measuring physical server capacity) for

general inputs and better bounds for some subclasses of inputs. Tan et al. [7]

propose several optimal scheduling algorithms using the M/M/1 queuing model

for Cloud platforms; Gandhia [14] discusses the physical server cluster, energy

reduction, and performance (e.g., system response time) combining optimization

and modeling methods to measure consumption and response times from differ-

ent scheduling algorithms. Tian et al. [15] propose the implementation of a vir-

tual computing platform as a service framework to facilitate user, resource, and

access management—among other basic functions—through virtualization and

73 24 remote online services to improve resource sharing and utilization, and to

provide more convenience to users. Tian [16] proposes different stochastic
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queuing models to meet quality of service requirements. Tian et al. [17] intro-

duce several offline scheduling algorithms and their effects on energy consump-

tion. Tian et al. [18] use parallel task scheduling to minimize the total running

time of all physical servers: proposing a 3-approximation offline scheduling

algorithm and applying related results to Cloud data center energy-efficient

scheduling. Tian et al. [19] offer a dynamic dichotomy of online scheduling

algorithms that provide better energy-saving results than the current online

energy-saving algorithms.

8.3 Comparative study of offline scheduling algorithms

8.3.1 Energy models for data centers

8.3.1.1 Data center energy consumption evaluation

Data centers can be composed of a large number of servers. In the center, each row

has rows of racks (cabinets) with multiple chassis on each shelf and each chassis

containing multiple servers (blades). A server can be a single-core or a multi-core

processor. All servers on a chassis share a power supply device. Data centers are

now designed with hot and cold channel comprising intervals—a style shown in

Figure 8.2—with each row of racks in a hot and a cold corridor of the middle [20].

The air-conditioning provides cold air, while the cold air passing through under-

floor channels, and the gap to the ground.
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Figure 8.2 The airflow diagram of Cloud data centers.
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Most of the power consumption in data centers is caused by computational pro-

cessing, disk storage, networking, and cooling systems. The following is a

formula

Ptotal 5Ppm 1PAC 1Podditional ð8:1Þ

where Ptotal refers to the total energy consumption of the data center, Ppm refers to

the total energy consumption of physical servers, PAC refers to the energy consump-

tion of the cooling system, and Podditional refers to other energy consumption (such

as that from lighting and networking equipment).

The energy consumption of the refrigeration system can be represented by the

following formula [4]:

PAC 5
Ppm

CoPðTsupÞ
ð8:2Þ

where Tsup is the temperature of the air entering the cooling system (air-condi-

tioning) and CoPðTsupÞ is the coefficient describing the performance of the cool-

ing system (air-conditioning). This parameter presents the ratio of energy

consumption by the refrigeration system compared to the energy consumption of

the cooling system, itself. For example, the cooling system consumes 1000 W,

itself consumes power is 500 W, the value of this coefficient is 2. This value is

also related to the temperature of air entering the cooling system.

8.3.1.2 Server power consumption model

Combining with the existing research by other scholars, we can know that the utili-

zation of a server is proportionate to the utilization of its CPUs. Pmin is the power

consumption when the server is idle; Pmax is the maximum power consumed when

the server is fully utilized. From this, we have the following formula:

P5Pmin 1 ðPmax 2PminÞu ð8:3Þ

where P refers to the power utilized by the physical servers and U refers to the

CPU utilization of the physical servers.

In a real environment, the utilization of the CPU may change over time due to

workload variability. Thus, CPU utilization is a function of time and is represented

as UiðtÞ. Therefore, the total energy consumption—Ei—by a physical machine can

be defined as an integral of the power consumption function over a period of time

as shown in the following:

Ei 5

ðt1
t0

PðUiðtÞÞdt ð8:4Þ
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If UiðtÞ is constant over time (e.g., if average utilization is adopted, so

UiðtÞ5Ui), then

Ei 5PðUiÞðt1 2 t0Þ5PminTi 1 ðPmax 2PminÞUiTi ð8:5Þ

where Ti is the busy time of machine PMi, PminTi is the power consumed with a

power-on time of PMi, PminTi 5Epmon
, and ðPmax 2PminÞUiTi is the energy increase

from hosting VMs. Assume that a VM increases the total utilization of a PM from

U to U0 and that U2U0 5ΔU, and that a VM is fully utilized in the worst case.

Defining Evmi
as the energy increase after running VMi on PMi from time t0 to t1,

we obtain

Evmi
5 ðPmin 1 ðPmax 2PminÞU0 2 ðPmin 1 ðPmax 2PminÞUÞÞðt1 2 t0Þ
5 ðPmax 2PminÞðU0 2UÞðt1 2 t0Þ
5 ðPmax 2PminÞΔuðt1 2 t0Þ

ð8:6Þ

To figure the real-time VM allocation, we can further show that the total energy

consumption of PMi is the sum of its idle energy consumption and the total energy

increase from hosting all of the VMs allocated to it. The total energy consumption

of the PMi can be expressed as the sum of energy consumption when it is powered

on and energy consumption by all VMs allocated to it. So, formally, the energy

consumption of the PMi is

Ei 5Eion 1
Xk
j51

Evmj

5PminTi 1 ðPmax 2PminÞ
Xk
j51

ujtj

ð8:7Þ

where Ti is the total power-on time of machine PMi, uj is the utilization increase of

VMj allocated on PMi, and tj is the length of time that VMj works on PMi.

The total energy consumption of a Cloud data center is computed as

Ecdc 5
Xn
i51

Ei ð8:8Þ

It is the sum of energy consumed by all PMs. Note that energy consumption of

all VMs on PMs is included in the final figure.

8.3.2 FFD algorithm

FFD is short for the first-fit-decreasing algorithm. The main premise of the algo-

rithm is that virtual requests are sorted in decreasing order of processing times first;
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that is to say we first allocate a virtual request to a physical machine if its proces-

sing time is the longest out of all of the virtual requests. The algorithm allocates the

virtual task to the first physical machine that can accommodate the virtual request.

8.3.3 MFFDE algorithm

For offline non-real-time scheduling, the longest processing time first (LPT) algo-

rithm is one of the best approximation algorithms. The LPT is known to have the

best possible upper bound for minimizing the maximum makespan in the case of

g5 1 (where g is the capacity of a server as explained in Chapter 7) in a traditional

multiprocessor system. In this paper, the start-times and end-times of jobs are fixed,

and the general case g. 1 is considered. The fixed start-times and end-times of

jobs and the capacity constraint of machines must be taken into account when allo-

cating jobs. Our modified first-fit-decreasing-earliest (MFFDE) algorithm schedules

jobs in the nonincreasing order of their process times and considers the earlier start-

time first (STF) if two jobs have the same process times or breaks ties arbitrarily

when two jobs have exactly the same start-times, end-times, and process times.

Each job is scheduled to the first machine with the capacity to perform it (so as to

use the fewest number of machines possible to minimize total busy time).

8.3.4 Other offline algorithms

In an offline situation, if we know all of the relevant information for requested

VMs, the allocation of VMs and the energy consumption of the entire system can

be calculated using the following algorithms.

8.3.4.1 The STF algorithm

The main idea behind the STF algorithm is that virtual machines are sorted in

ascending order by start-times. The maximum load of overlapping time periods is

used to determine the minimum number of physical machines needed (for the sake

of energy efficiency and to maximize scheduling utilization). Then the virtual

machines are allocated and, ultimately, the energy consumption of all of the pms

can be determined.

The main pseudo-code of the STF algorithm is shown in Algorithm 1.

8.3.4.2 The earliest ending-time first algorithm

The main idea behind the ending-time first (ETF) algorithm is that, first, the virtual

machines are sorted in ascending order by their end-times and based on the

maximum load of overlapping time periods to find the minimum number of

physical machines needed. Then virtual machines are allocated based on the physi-

cal machine load and, ultimately, the energy consumption of all the of the

physical machines can be found (Algorithm 2).
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Input: VM requests indicated by their (required VM type IDs, start-time, ending-time,

requested capacity), the number of the request i is denoted as Ri.

Output: IDs of PMs for all VMs, the number of the needed PMs, the total energy

consumption.

1.sort the virtual machine in ascending order of their start-time;

2.for i = from 1 to n do

3. d = 0 ;

4.if they are not overlapped or overlapped but still can share resources of an PM do;

5.allocate i to the PM d ;

6.else;

7.start a new PM; d = d + 1; allocate i to PM d ;

8.end;

9.end for

Algorithm 1 The STF algorithm.

Input: VM requests indicated by their (required VM type IDs, start-time, ending-time,

requested capacity), the number of the request i is denoted as Ri.

Output: IDs of PMs for all VMs, the number of the needed PMs, the total energy

consumption. 

Initialization: allocating an ID to each PM.

1. sort the virtual machine in ascending order of their end-time;

2. for i = from1 to n do

3. d = 0;

4. if they are not overlapped or overlapped but still can share resources of an PM do;

5. allocate i to the PM d;

6. else;

7.start a new PM; d = d + 1; allocate i to PM d;

8. end;

9. end for

Algorithm 2 The earliest ETF algorithm.
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8.3.4.3 Random allocation algorithm (Random)

The main idea underlying the random allocation algorithm is that a physical

machine that can host the request is randomly selected, based on the number of vir-

tual machines. The algorithm applies a random selection function; the core pseudo-

code is shown in Algorithm 3.

8.4 Online algorithms

The main idea behind this algorithm is that once a request is received, it must be

allocated immediately; the scheduler must tell the user to which physical machine a

request can be assigned (Algorithm 4).

8.4.1 BFF algorithm

The BFF (bipartition-first-fit) algorithm schedules the job on a first-come-first-

service (FIFS) principle, dynamically partitioning the time plane into two sub win-

dows (bipartitioning) and allocating the request to the first machine that can host it

(first-fit). The BFF algorithm is described in more detail in Algorithm 5.

Input: VM requests indicated by their (required VM type IDs, start-time, ending-time,

requested capacity), the number of the request i is denoted as Ri.

Output: IDs of PMs for all VMs, the number of the needed PMs, the total energy

consumption.

Initialization: allocating an ID to each PM.

1. calculate the approximate number of the PM –d according to the load of each time

slot;

2. for i = from 1 to n do

3. select a PM randomly;

4. if the virtual machine can be allocated to the PM do;

5. allocate i to the PM d;

6. else;

7. loop 3–5 utill the VM has been allocated to a PM;

8. end;

9. end for

Algorithm 3 The random allocation algorithm.
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Input: a VM request indicates (required VM type IDs, start-time, ending-time, requested

capacity), the number of the request i is denoted as Ri.

Output: IDs of PMs for all VMs, the number of the needed PMs, the total energy consumption.

Initialization: allocating an ID to each PM.

1. d = 0;

2. when there comes the request of the VM do;

3. if they are not overlapped or overlapped but still can share resources of an PM do;

4. allocate i to the PM d;

5. else;

6. start a new PM; d = d + 1; allocate i to PM d;

7. end;

8. end for

Algorithm 4 Online algorithm.

Input: g, the max capacity of a machine, and job Ii one by one.

Output: The scheduled jobs and total busy time of all machines and total number of

machines used. 

3. Allocates the first job to machine m1;

4. for all job comes and time period in T do 

5. IF there is only one job, allocate it to the first machine;

4.      ELSE Computes the longest and the second longest interval of all current requests in

the system, set k ;
span(the longest int erval)

span(the sec ond longest int erval)
=

5.     IF k > 1, dynamically partitions the time plane into two sub windows LEFT and 

RIGHT using the median of all end-time of current requests as the partitioning point. 

The first job is counted as in LEFT window. Any job interval with end-time at left side 

of the partitioning point belongs to LEFT window, others belong to RIGHT;

6. Else considers alljobs in LEFT window;

7.     allocate jobs to machines by First-fit for each time window;

8. end

9. Counts workload and busy time of all machines;

10. Returns the set of machines used and total busy time.

Algorithm 5 BFF algorithm.
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This algorithm has computational complexity OðnmÞ, where n is the number of

jobs and m is the number of machines used. The algorithm finds a machine for a

request needing OðmÞ steps, with n jobs needing OðnmÞ steps. Therefore, the entire

algorithm takes OðnmÞ time, where n.m.

Theorem 1 describes the hardness of the general problem.

Theorem 1 Minimizing the total busy time of multiple, offline identical machines

using real-time scheduling without preemption and with capacity constraints

(MinTBT-ON) is—generally—an NP-complete problem.

One NP-hard proof of an offline version of this problem is provided in Ref. [15].

Peng [4] shows it is NP-hard to approximate the problem in the special case in

which all jobs have the same (one unit) processing time and can be scheduled in

one fixed time interval, with a simple reduction from the subset sum problem. This

also can be proved by reducing a well-known NP-complete problem—a set parti-

tioning problem—to an offline version of the MinTBT-ON problem in polynomial

time.

In the following, we consider the unit demand case ðdi 5 1Þ only for the competi-

tive ratio analysis of the upper bound.

8.4.1.1 The bounds for the competitive ratio when g is one unit
and di is one unit

When g is one unit and di is also one unit, our problem reduces to a traditional

interval scheduling problem with the start-time and end-time constraint, where each

job needs a one unit capacity and the total capacity of a machine is one unit.

Theorem 2 There exists an algorithm for the optimal solution in polynomial time

for the MinTBT-ON problem when the demand is one unit and the total capacity of

each machine is also one unit, especially BFFðIÞ5OPTðIÞ5 lenðIÞ in this case.

Proof Since the capacity parameter g is one unit, let us set it as 1. Each job needs a

capacity of 1, and each machine can only process one job at any given time. In this

case, using the definitions (Definition 1 and 2 given in Chapter 7) of interval length

and span, we have OPTðIÞ5 lenðIÞ, whether there are overlapping jobs or not. By

allocating each interval to a different machine for continuous working intervals,

BFFðIÞ has a total busy time equal to the sum of the lengths of all of the intervals.

This completes the proof.

8.4.1.2 The bounds for the competitive ratio in the general case
when g. 1

Theorem 3 The competitive ratio of our proposed BFF algorithm for the MinTBT-

ON problem has an upper bound of
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g2 2

k
2

g2 1

k2

� �

where k5 span(the longest interval)/span(the second longest interval).

Proof We use the adversary described in algorithm Adversary ðr; t; dÞ [13]. The

Adversary assigns a new machine to a job of length lkj, for some job j, and recur-

sively treats lkj as t. The adversary is described by three parameters ðr; t; dÞ, where
1# d, g is the number of machines used by the Adversary. Initially, the para-

meters for Adversary is ð0; T ; 1Þ, where T can be set as a large number, set

T 5 glkg, so that k5 ðT=glÞ1=g.

The general example is shown in Figure 8.3. There are g groups of jobs, and

each group has g columns of jobs from left to right, and each column of jobs has

g requests with lengths l; lk; . . .; lkg. In this case, for the optimal solution, one can

allocate all of the longest requests to a machine m1 for a busy time of T , then

allocate all of the second longest requests to another machine m2 for a busy time

of T=k; . . ., etc., and then finally allocate all of the shortest requests to machine

mg with a busy time of T=kg21. The total busy time of the optimal solution, there-

fore, is

Xg21

i50

T

ki
5

Tð12 ð1=kgÞÞ
12 ð1=kÞ

Group #1

Ik

Ikg Ikg Ikg

Ikg Ikg Ikg

Ikg

1 2 g

Ikg Ikg

Ik Ik

Ik Ik Ik

Ik Ik Ik

Group #2

Group #g

Figure 8.3 General example for the proof of the bound algorithm.

170 Optimized Cloud Resource Management and Scheduling



Adversary (r,t,d) 

1: WHILE d ≤ gDO 

2:
g

t
l

k
=

3: DO

4: Release jobs with start-time r and length l, lk,...

5: WHILE (a new machine is used for a job of length lk j) 

6: Adversary (s, lk j, d +1) 

7: s = s+ jlk

8: END WHILE

The BFF algorithm partitions the time plane into two parts, so that all of the lon-

gest jobs will be allocated to a single machine with a busy time of T , the remaining

jobs will be allocated based on the first-fit principle, with a maximum possible

busy time of T=k, therefore, the total busy time of BFF is expressed as

BFFðIÞ5 T 1 ðg2 1ÞðT=kÞ. Therefore, the competitive ratio of BFF is

BFFðIÞ
OPTðIÞ5

T 1 ðg2 1ÞðT=kÞ
Tð12 ð1=kgÞÞ=ð12 1=kÞ

5
kg 1 ðg2 2Þkg21 2 ðg2 1Þkg22

kg 2 1

� 11
g2 2

k
1

g2 1

k2
; k$ 1

ð8:9Þ

Note that the simple first-fit algorithm will have a total busy time of gT with the

upper bound of g in this case; specifically, when g5 1, the above equation has a

value of 1 for g, which validates our Theorem 2.

Theorem 4 For the case in which the capacity parameter g5N, there exists an algo-

rithm in polynomial time to find an optimal solution for the MinTBT-ON problem.

Proof When g5N, one machine is enough for all of the jobs. In this case, the

total busy time is determined by the span of all jobs. Any algorithm that solely allo-

cates jobs based on their required start-times, end-times, and capacities, will have

the same total busy times: Alg xðIÞ5OPTðIÞ5 spanðIÞ.

Before considering a few special cases, we have the following new observation:

Observation 1 In Ref. [13], að11ϕÞ-competitive for a one-sided clique instance

where ϕ5 ð11
ffiffiffi
5

p
Þ=2, i.e., all job intervals have the same start-time, assuming
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αi21 , lenðmiÞ#αi, α5 ð31
ffiffiffi
5

p
Þ=2. The assumption is that α5 ð31

ffiffiffi
5

p
Þ=2 is too

restrictive so that the result is only true for some specific examples.

Proof In Ref. [13], authors assume αi21 , lenðmiÞ#αi, α5 ð31
ffiffiffi
5

p
Þ=2 and obtain

að11ϕÞ-competitive for one-sided clique instances where ϕ5 ð11
ffiffiffi
5

p
Þ=2.

However, for the general one-sided case, this assumption is too restrictive (very

unique). The GREEDYBUCKET algorithm in Ref. [13] assumes that a job j is cate-

gorized to a bucket according to lenðjÞ: the bucket of a job set J is the minimum

value of i such that lenðjÞ#αi. For i$ 1, the bucket i consists of a set of jobs J

such that αi21 , lenðJÞ#αi. Considering the following adversary: job i has a start-

time 0 and an end-time αi. Using the definition of GREEDYBUCKET in Ref. [13],

each job will be allocated to a different bucket (machine). If there are g2 jobs, the

GREEDYBUCKET algorithm needs g2 machines with a total busy time of

Xg2
i51

αi 5
αg211 2 1

α2 1
2 1; α. 1

The optimal solution in this case is to have g groups allocated to g machines,

with a total busy time of

Xg
i51

αgi 5
αg21g 2αg

αg 2 1
; α. 1

Therefore, we have

GREEDYBUCKETðIÞ
OPTðIÞ 5

ððαg211 2 1Þ=ðα2 1ÞÞ2 1

ððαg21g 2αgÞ=ðαg 2 1ÞÞ

5
αg11 2α
αg11 2αg

5
12 ð1=αgÞ
12 ð1=αÞ ; α. 1; g. 1

Therefore, in the worst case, the competitive ratio of the GREEDYBUCKET algo-

rithm can be very large when α is close to 1 and g is large. This completes the proof.

Theorem 5 In the case in which all jobs form a one-sided clique [13] in which all

jobs have the same start-time or end-time, the proposed algorithm has the competi-

tive ratio ð11 ððg2 2Þ=kÞ2 ððg2 1Þ=k2ÞÞ in the worst case.

Proof We use the adversary described in the following. Consider the case in which

all g2 requests have the same start-time at si 5 0, each has an end-time at

ei 5 ðT=kg2jÞ, and where T is the time length under consideration, k is natural num-

ber, and if ði mod gÞ 6¼ 0, j5 ði mod gÞ, else j5 g. In this example, for the optimal

solution, one can allocate all of the longest requests to a machine m1 for a busy
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time of T , then allocate all of the second longest requests to another machine m2

for a busy time of T=k, and, finally, allocate all of the shortest requests to a

machine mg with a busy time of T=kg21. The total busy time of the optimal solution

therefore is

Xg21

i50

T

ki
5

Tð12 ð1=kgÞÞ
12 ð1=kÞ

The BFF algorithm partitions the time plane into two parts, so all of the longest

jobs will be allocated to a single machine with a busy time T , the remaining jobs

will be allocated based on the first-fit rule, with a busy time at most of T=k, there-
fore, the total busy time of BFF is BFFðIÞ5 T1 ðg2 1ÞðT=kÞ.

So, the competitive ratio for the BFF algorithm is

BFFðIÞ
OPTðIÞ5

T 1 ðg2 1ÞðT=kÞ
Tð12 ð1=kgÞÞ=ð12 1=kÞ

5
kg 1 ðg2 2Þkg21 2 ðg2 1Þkg22

kg 2 1

� 11
g2 2

k
1

g2 1

k2
; k$ 1

ð8:10Þ

In the specific case when g5 1, the above equation has a value of 1, which vali-

dates our Theorem 2. Note that if all job intervals have the same end-time, one can

easily check that the same result is obtained.

8.4.2 GRID algorithm

8.4.2.1 GREEDYBUCKET is g-competitive in the worst-case
scenario

Proof The adversary is as follows: there are αg21 jobs with length α, which are

consecutively in a line (i.e. the end-time of the previous job is the start-time of the

next job); there are αg22 jobs with length α2 consecutively in a line; there are αg2i

jobs with length αi consecutively in a line; and, finally, there is a job of length αg.

The GREEDYBUCKET algorithm in Ref. [21] will have a total busy time of gαg

with a competitive ratio g in this case, because different lengths of requests will be

allocated to different buckets (machines). That is, jobs with the length of α are allo-

cated to bucket 1 (machine M1), jobs with the length of α2 are allocated to bucket 2

(machine M2),. . ., and, finally, the job with the length of αg is allocated to bucket g

(machine Mg). Therefore, the total busy time for GREEDYBUCKET is gαg, while

the optimal solution uses just one machine for all jobs with a total busy time of αg.
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In this chapter, the start-times and end-times of jobs are fixed and the general

case in which g. 1 is considered. We need to consider the fixed start-time and

end-time of jobs and the capacity constraint of machines when allocating jobs.

When considering online scheduling, we propose a new GRID algorithm. The

GRID algorithm schedules the job on a FIFS principle, partitioning the time plane

into sub grids and allocating the request to the first machine with the capacity to

host (first-fit). The GRID depends on a parameter β, an integer, and βAð1; gÞ. The
GRID algorithm is described in detail in Algorithm 6 and an example is shown in

Figure 8.4.

Definition 1 GRIDing rule: The absolute length of an interval is its process time.

The relative length of an interval is the distance of its end-time from the origin

point (start-point for the time plane). A job ji is categorized to a grid according to

the GRIDing rule: there are two types of grids: an absolute grid i contains jobs that

have an absolute length between ðβi21; βi�; a relative grid i contains jobs that have

a relative length between ðβi21;βi�.
This algorithm has a computational complexity of OðnmÞ, where n is the number

of jobs and m is the number of machines used.

Theorem 6 The competitive ratio of the GRID algorithm for the MinTBT-ON

problem has an upper bound of β in the worst case, where 1,β, g.

Proof The adversary is as follows: as shown in Figure 8.5, there are g groups of

jobs in which each job has a length of βg21 1 1. For group i, note that the left-side

Input: a job ji comes one by one, and g, the max capacity of a machine

Output: The scheduled jobs and total busy time of all machines

6. Determine the GRID i of input job j according to the parameter β, a job j belongs to

a relative or absolute GRID i if and only it satisfies GRIDing rule;

7. if GRID  i has no machine allocated then

3. open a new machine and make it the current machine;

4. end

5. if Current machine of GRID i can’t host any more job because of capacity constraint then

6. open a new machine;

7. update load of current machine;

8. end

9. Find busy times of all machines;

10. Return the set of machines used, and the total busy time of all machines

Algorithm 6 GRID algorithm.
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β β

β
β2

βk

Grid #2

Grid #1 Relative
Grid #2

Relative
Grid #k

Grid #k

Figure 8.4 GRIDing rule for the GRID algorithm.

βg–1+1

g–1 group #1

group #2

group #g

g–1

g–1

βg

βg

βg–1+1

Figure 8.5 One worst-case example for the GRID algorithm.
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jobs have a start-time, end-time5 ½0;βg21�, the right-side jobs have a start-time,

end-time5 ½βg 2βg21 2 1; βg�, and the middle-jobs have a start-time, end-time

between ½ðβg 2βg21 2 1Þ=2; ð2βg 2βg21 2 1Þ=2�.
In this case, the optimal solution uses one machine for left-side jobs with a length

of ðβg21 1 1Þ, ðg2 1Þ machines for middle-jobs with the length ðg2 1Þðβg21 1 1Þ,
one machine for right-side jobs with length ðβg21 1 1Þ. The total busy time for the

optimal solution is ðg1 1Þðβg21 1 1Þ. In contrast, all of these jobs have a relative

length between (ðβg21;βg�] and will be put onto the same grid. The GRID algorithm

needs g machines with one machine for each group of jobs, each group of jobs have

a span length of gβg. Hence GRIDðIÞ5 gβg. We now have the following:

GRIDðIÞ
OPTðIÞ 5

gβg

ðg1 1Þðβg21 1 1Þ

5
gβg

ðg1 1Þβg21 1 g1 1

� β
11 1=g

� β; 1,β, g

ð8:11Þ

This completes the proof.

Theorem 7 The GRID algorithm is g=ð11 ðg2 1Þ=βÞ-competitive for a one-sided

set of the MinTBT-ON problem, 1,β, g.

Proof The adversary is that there are g2 jobs that all started at the same time

(set all start-times as zero); there are g groups of jobs; all groups have a first job

with length βg, the others are ðg2 1Þ with length ðβg21 1 1Þ, in that order. In this

case, GRID will allocate each group to a different Grid so that the total busy time

for the GRID algorithm is gβg; while the total busy time for the optimal solution is:

βg 1 ðg2 1Þðβg21 1 1Þ, since all of the longest jobs can be allocated to a single

machine and the others are allocated to ðg2 1Þ machines. Therefore, in this case:

GRIDðIÞ
OPTðIÞ 5

gβα

αg 1 ðg2 1Þðαg21 1 1Þ

5
g

11 ððg2 1Þ=αÞ1 ððg2 1Þ=αgÞ

� g

11 ððg2 1Þ=αÞ ; 1,α, g

ð8:12Þ

Remarks From Theorems 6 and 7, we should set β as small as possible to have

the best performance in practice. For example, GRID is 2-competitive for a one-

sided set when β5 2.
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8.5 Summary

In this chapter, we have improved the best-known bounds for multiple machine

real-time scheduling. As pointed out in Refs. [11,22], there is no existing polyno-

mial time solution for an example that minimizes the total busy time of all

machines to schedule all jobs non-preemptively in their start-time�end-time win-

dows, subject to machine capacity constraints. Since the MFFDE algorithm com-

bines features of the FFD algorithm (largest process time first) and the Earliest STF

algorithm, it also has good approximation bounds for minimizing the maximum

makespan while minimizing the total busy time. The design and analysis of approx-

imation algorithms for other objectives—such as minimizing the total number of

machines and minimizing the makespan—are currently under study.

There are still some research issues we can further investigate:

1. Finding better algorithms and bounds for general and special cases. We conjecture there

are better bounds for online and offline algorithms and that this needs further

investigation.

2. Considering arbitrary-sized jobs for online and offline scheduling. In this paper, we focus

on unit-sized jobs. We believe these results can be extended for arbitrary-sized jobs and

will provide further solid theoretical proofs.

3. Combining with load-balance and other related performance issues. Consideration of

energy alone or load-balance alone is not enough for the whole system to perform effi-

ciently in a real-world environment. We need to combine a few different objectives

together to find a comprehensive way.
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9Energy Efficiency Scheduling

in Hadoop

Main Contents of this Chapter:

� Hadoop introduction
� Scheduling algorithms
� Design and implementation of Hadoop energy control system
� Energy-efficient scheduling for multiple users
� Test and analysis of energy-efficient scheduling algorithms

9.1 Overview

9.1.1 Hadoop introduction

Hadoop is a distributed infrastructure system, developed by the Apache Foundation, in

which users can develop distributed programs without first needing an understanding

of the underlying details. Users can fully utilize the power of high-speed computing

clusters and storage. Hadoop implements a distributed file system called the Hadoop

Distributed File System (HDFS) that has high fault tolerance features and is designed

to be deployed in low-cost hardware. Hadoop provides a high data transfer rate, mak-

ing it suitable for applications that require large data to function. HDFS relaxes the

requirements of the POSIX file system so data can be accessed in the form of streams.

As a well-known open source project that focuses on distributed computing, Hadoop

has received increasing amounts of attention. It has been used in many large compa-

nies, such as Amazon, Facebook, Yahoo!, and IBM, and is widely used in many fields,

such as web search, log analysis, advertising computing, and data mining.

As a system with a large number of nodes, Hadoop has no dynamic node manage-

ment in its early design. In a traditional Hadoop cluster, Hadoop determines the num-

ber of nodes once the system is open; therefore, the energy efficiency and resource

utilization is not high. Thus, the study of Hadoop dynamic management can effectively

improve its performance and efficiency. This improvement would be of great signifi-

cance for improved energy conservation and large-scale applications of Hadoop.

9.1.2 Hadoop framework

Hadoop is a distributed process software framework that can be used for large data.

It is reliable, efficient, and scalable. Hadoop is reliable because it assumes comput-

ing storage and facilities will fail; therefore, it maintains multiple working copies of
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data so that it can redistribute in case of node failure. It is efficient because it has a

parallel design and by using parallel computing, it improves processing speed.

Finally, Hadoop is scalable and can handle petabyte (PB)-level data. Moreover,

because Hadoop relies on an ordinary server, it is relatively low cost. Hadoop has

many modules, the most important of which are the HDFS and MapReduce mod-

ules. HDFS is the lowest level system in Hadoop; it stores all files on the storage

node in the Hadoop cluster. MapReduce is the upper layer engine on HDFS and is

composed of JobTrackers and TaskTrackers.

The core idea of MapReduce is to parallelly decompose the task and combine

the results. HDFS provides the underlying storage support for distributed comput-

ing. MapReduce is a programming model for parallel computing of large data sets

(typically greater than 1 terabyte (TB)). The program’s main goal, to map and sim-

plify (Map denotes mapping and Reduce denotes simplifying), is borrowed from

other functional programming languages and takes some properties from vector pro-

gramming languages. This model facilitates program function on a distributed sys-

tem, requiring little distributed programming knowledge from the programmer.

Current software implementation is to specify a mapping function for a group of

key-value mapping into a new set of key-value pairs and run a Reduce (simplified)

function to ensure all key mappings share the same key group. A simplified

MapReduce task execution process is shown in Figure 9.1. The MapReduce frame-

work consists of a single master node (JobTracker) and slave nodes (TaskTrackers).

The master node is responsible for scheduling all tasks that constitute a job, distrib-

uting these tasks to slave nodes, and monitoring the task execution, which includes

re-executing failed tasks. Slave nodes, however, are only responsible for the execu-

tion of the tasks assigned by the master node. A MapReduce job will usually divide

the input data set into several separate blocks so the Map task can address them par-

allelly. Framework will sort the output of the Map first, then transfer them to the

Reduce task. The input and output are stored in the HDFS. The framework is

responsible for monitoring and re-executing the failed task.

map

reduce

reduce

map

map

Input
HDFS

Output
HDFS

HDFS
replication

HDFS
replication

split 0

sort

copy
merge

part 0

merge

part 1

split 1

sort

split 2

sort

Figure 9.1 MapReduce flowchart.
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HDFS is highly fault tolerant and designed to be deployed on cheap hardware. It

provides high throughput to access application data and is suitable for applications

with large data sets. HDFS usually has hundreds of server nodes, any one may fail;

therefore, HDFS has the ability to automatically detect errors and rapidly recover.

The usual HDFS file size ranges from gigabyte (GB) to TB, so HDFS is good to

write, providing very high bandwidth data. Most data on HDFS only write once and

read many times. Once a file is created, written, and closed, it has no need to modify.

This simplifies the data consistency and high throughput data access problems. As a

Master/Slave architecture, as shown in Figure 9.2, the HDFS cluster usually consists

of a NameNode and multiple DataNodes. NameNode is the central server—it

manages the file system namespace, as well as responds to the client. A DataNode is

responsible for managing the data stored on that particular node. Users can store any

data on the HDFS file system using namespace. In internal storage, a file is cut into

one or more blocks. The NameNode performs file system namespace operations

stored on a DataNode, such as open, close, and rename the file or directory. It also

determines the mapping from the block to a specific DataNode. All data blocks on

HDFS have copies. The number and size of the copied blocks are configurable.

HDFS files are write once and have only one writer. The NameNode manages the

process of data copy; it periodically receives DataNode block status report from

heartbeat signals. Block status report contains a list of all of the data blocks on

a DataNode.

9.1.3 Hadoop running processes

A complete Hadoop running process is based on the idea of “divide and conquer.”

The Map process is the “divide” step and the Reduce process is the “conquer” step.

The entire process is shown in Figure 9.3.

HDFS architecture

Metadata ops

Metadata (Name,replicas, ...):
/home/foo/data, 3, ...

DataNodesDataNodesRead

Block ops

Replication

Client

Client

Rack 1 Rack 2Write

NameNode

Blocks

Figure 9.2 HDFS architecture.
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The Map process includes the following steps: (1) read data from the disk, (2)

run Map task, and (3) write the results to disk.

The Reduce process includes the following steps: (1) Shuffle and sort, (2) run

Reduce task, and (3) write the results to disk.

In the third phase of the Map step, the output of the Map task will be written to

the output file by Partitioner class. If Combiner is provided, the Mapper output key

will not be written to the output immediately; rather, it will be buffered in memory

until it reaches a certain amount of data. Then, this part of the data will be merged

in the Combiner and then transferred to the Partitioner. Through this stage, the data

is written to disk to improve the reliability of the system though it decreases the

performance. The Hadoop framework will transfer the Map key to the Reducer in

the first Reduce stage. This step use remote transmission of the HTTP protocol. In

the third Map phase, Hadoop Online Prototype lets the data between different tasks

interact through a pipeline, on the premise that Hadoop’s fault tolerance, which

increases task concurrency and shorten the response time.

9.2 Scheduling algorithms

9.2.1 Dynamic management of Hadoop clusters

Research teams have already focused on Hadoop research extensively. A team in

Stanford thinks there is a lot to do in Hadoop energy saving. They suggest using a

new algorithm for node data placement [1]. U.C. Berkeley constructed a model,

which they claimed achieved good results, based on node, working time, and power

[2,3]. Further, they believe optimizing energy efficiency and performance have the

same value [4]. Swiss scientists modified the block allocation algorithm to reduce

the Hadoop energy consumption [5]. However, these research examples were all
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Data
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devoted to static data block allocation and could not be used in a dynamical situa-

tion. Researchers at Oben University [6] focused on optimizing the heterogeneous

Hadoop cluster. Researchers at the Technical University of Catalonia [7] also stud-

ied MapReduce scheduling and performance management of Hadoop. Their

research mostly focused on leveraging the adaptive MapReduce scheduler to meet

user-defined high-level performance goals while transparently and efficiently

exploiting the capabilities of hybrid systems. They described the changes intro-

duced in the adaptive scheduler to enable it with hardware awareness and with the

ability to co-schedule accelerable and nonaccelerable jobs on the same heteroge-

neous MapReduce cluster, making the most of the underlying hybrid systems.

However, their research is more in line with the close integration of the hardware

and scheduling efficiency, whereas energy consumption is not considered in the

cluster. Additionally, dynamic voltage regulation is also widely used by researchers

to reduce energy consumption in [8,9], but the disadvantage is that it requires spe-

cial hardware environments.

Intel research shows energy consumption in the cluster has a positive correlation

with average utilization. From the figure, we can determine that energy consump-

tion increases as average utilization increases. This introduces a design can dynamic

suspend and restart the nodes to decrease the average utilization, which leads to a

decrease in energy consumption. This is completed using software and without

using any specific hardware (Figure 9.4).

This section introduces a new Hadoop dynamic load balance method, Dynamic

Adjusting and Negative Feedback (DANF), which has following features:

� Suspending and restarting the nodes according to the cluster load, thus decreasing the

average utilization and reducing the node running time and energy consumption.
� Using feedback to increase the cluster stability.
� Using the jitter coefficient to avoid jitter, further reduce load variance, and increase load

balance.
� This design is easy to implement and expand.
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9.2.2 Load modeling

To evaluate the load of a node, we must build a model. Research shows that the

processor consumes the most energy in a system and occupies about 40% of the

total energy consumption [10]. Therefore, we consider it as a factor in our model.

Memory is another energy consumption module in the system.

9.2.2.1 Load information

Most existing load models only consider the CPU factor. We use a two-dimensional

vector with a coefficient p. Let a node j have a load vector L5, Lcpu;Lmem . , we

calculate its modulus, so the load is

L5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p3 L2cpu 1 ð12 pÞ3 L2mem

q
ð9:1Þ

Let us consider that a cluster has n nodes and the average load in ti is

Lavg 5
Xn
i51

Li

n
ð9:2Þ

Therefore, the range of Lavg is (0,1), and p can be assigned according to different

tasks, meaning p can be larger, around 0.8, if the task, such as scientific calculation,

requires a lot of CPU. Otherwise, if the task requires large memory consumption,

we usually set a smaller p.

9.2.2.2 Period

This value is a variable and we must set an observation period to calculate it. If the

period is too long, we cannot obtain the latest information. However, if the period

is too short, the too frequent query will infect the result. Experiments show that the

period relies on the task. Therefore, to consume less energy, an intensive computing

application should use a long period and a data intensive application should use a

short period.

9.2.2.3 Negative feedback mechanism

In a control system, there are many checks and balances. In a mathematical model,

negative feedback means the feedback coefficient is negative. Negative feedback is

added as portion of the input to offset the output changes:

x0 52k3Δy ð9:3Þ

In the automatic control theory, the feedback method of root, derived from

Newton’s method, is widely used in automatically adjustment systems, such as

combustion automatically adjustment, steam temperature automatically adjustment,
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transportation system automatically adjustment, and bypass system automatically

adjustment. The main formula is as follows:

Xn11 5Xn 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn11

A
2Xn

3

r
ð9:4Þ

where A is assigned closely to Xn. Here, we already know the initial value of Xn, so

let the cluster in ti21 have an average load Lti21avg, in ti has average load Ltiavg, then we

use Eq. (9.4) and in ti, the DANF load is

LtiDANF 5 Ltiavg 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lti21avg 2 Ltiavg

3

q
ð9:5Þ

9.2.3 Scheduling algorithm

9.2.3.1 Scheduling conditions

The load from Eq. (9.1) can use the default or user-defined threshold Wl and Wh.

Here, Wl is the lower threshold and Wh is the upper threshold. When

Wl , LDANF ,Wh, the system is in ideal status and no steps are required. When

LDANF ,Wl, the system has a low load and we should suspend nodes one by one

until they system is in ideal status. When LDANF .Wh, the system has a high load

and we must restart the suspended nodes.

9.2.3.2 Choosing a node to suspend

Selecting a node is one of the main purposes of DANF when used in a dynamic

management system. Currently, there are several [11]:

a. Random

This algorithm is simple and easy to understand. It randomly selects a node when the

system reaches the threshold.

b. Round-Robin

This algorithm assigns each node within a circular order and suspends according to

this order.

c. Minimum load

This algorithm sorts all node loads and selects the minimum load node to suspend.

Examining these algorithms, we find that when a system experiences a significant

change, and if the suspend and restart operation occurred on the same node, this would

create a large number I/O operations, which could seriously affect the performance.

To reduce jitter in the DANF algorithm, we add a jitter coefficient to select the node.

Calculating each node load using Eq. (9.1), and to increase system stability, we

introduce a jitter coefficient k:

k5
Lti 2 Lti21

Δt

����
���� ð9:6Þ
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Here, Δt is a unit time period Δt5 ti 2 ti21 and k has a range greater than 0;

considering k, the node load is

Ltinode 5 k3 Lti ð9:7Þ

At this time, the small load node with large change would not be selected due to

the coefficient, thus greatly improving stability. The algorithm is effective in pre-

venting frequent scheduling on the same node in the system.

9.2.3.3 Choosing a node to restart

When the system reaches Wh, we have to restart one or more nodes. Unlike with

suspension, we remove the node from the queue using “first in, first out” (FIFO) in

increasing order of their load.

9.2.3.4 Pseudocode

DANF algorithm is provided in Algorithm 1.

9.3 Energy control

9.3.1 System architecture

We implemented this DANF method using Java. The whole system includes

resource collection, remote control, and node control modules.

Input: CPU and memory information of each node
Output: name and operation of a node
Initialization: allocating a name to each node
DO  
calculate current load of Hadoop cluster, denote as cl
  IF wl< cl<wh
     continues;
  ELSE IF cl<wl
   FOR each node in active
     calculate load value of all current nodes and sort in increasing order 
     sleep one or more of the lowest load nodes until wl<cl<wh and 
     put them in waiting queue
   END FOR
 ELSE
   open one or more nodes in the waiting queue until wl< cl<wh
 ENDIF
ENDDO

Algorithm 1 DANF algorithm.
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9.3.2 Detailed design

9.3.2.1 Resource collection

The resource collection module is implemented through reading Linux file system

procfs. Procfs (or the proc filesystem) is a special file system in UNIX-like operat-

ing systems that presents information about processes and other system information.

Therefore, we can use it to obtain CPU and memory information.

a. Memory information

Total: The first line in /proc/meminfo;

Available: The second line in /proc/stat;

Mem5 1 - Available/Total.

b. CPU

Total: The first line in /proc/stat;

Each CPU: The second line /proc/stat;from CPU0-CPUn;

user, nice, sys, idle: The following four column numbers;.

We read these data twice, we present with “user_1 or user_2”,user1 sys is the used CPU.

CPU5 (int)rintf(((float)((user_21 sys_21 nice_2)-(user_11 sys_11 nice_1))/(float)

(total_22 total_1) )�100).

9.3.2.2 Remote control

The remote control module is implemented using Security SHell (SSH). Here, we

use the third-party lib Ganymed SSH-2 for Java, which can provide an SSH connec-

tion in Java.

a. Create a connection using an IP

Connection conn5 new Connection(hostname);

b. Using username and password to log in

booleanisAuthenticated5 conn.authenticateWithPassword(username,password);

c. Begin a session and run the Linux shell

Session sess5 conn.openSession();

sess.execCommand(“last”);

d. Receive the response from the console

InputStreamstdout5 new StreamGobbler(sess.getStdout());

BufferedReaderbr5 new BufferedReader(new InputStreamReader(stdout));

e. Get the status flag “0” success; “not 0” Failed

System.out.println(“ExitCode: ”1 sess.getExitStatus());

f. Close cession and connection

sess.close();

conn.close();

9.3.2.3 Node control

Node control is implemented using the Hadoop configuration file and shell. The

master can suspend and restart nodes by modifying them.

Add node:

./hadoop-daemon.sh start datanode;

./hadoop-daemon.sh start tasktracker.
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Delete node;

a. Add the following in core-site.xml in master node

, property.
, name. dfs.hosts.exclude, /name.

, value. /data/hadoop-0.20.2/conf/excludes, /value.
, /property.
dfs.hosts.exclude: node to be deleted

/data/hadoop-0.21.0/conf/excludes: The file and directory to be deleted.

b. Using Java to write the node to be deleted in /data/hadoop-0.20.2/conf/excludes.

c. Refresh NameNode

Hadoopdfsadmin �refreshNodes

The command can dynamic refresh dfs.hosts and dfs.hosts.exclude without restart

NameNode.

d. Using remote SSH

Stop datanode

./hadoop-daemon.sh stop datanode

Stop Tasktracker

./hadoop-daemon.sh stop tasktracker

9.4 Energy-efficient scheduling for multiple users

9.4.1 Problem formulation

A MapReduce performance model is introduced in [12�14]. The model predict the

completion time of the Map and Reduce stages as functions of the input data set

size and allocated resources.

Definition 1 MapReduce slots. Depending on the configuration of a Hadoop clus-

ter, each node in the cluster can proceed P Map and P Reduce tasks simultaneously.

Thus, this Hadoop cluster has P3P MapReduce slots.

Definition 2 Execution waves. If the number of MapReduce tasks is greater than

the number of MapReduce slots in the cluster, the task assignment proceeds in

multiple rounds; each round is called an execution wave.

Figure 9.5 shows an example executed in two waves of 203 20 MapReduce

slots.

Consider a job represented as a set of n tasks processed by P3P MapReduce

slots (workers) in Hadoop environments. Each MapReduce job consists of a speci-

fied number of Map and Reduce tasks. The job execution time and the specifics of

the execution depend on the amount of resources (Map and Reduce slots) allocated

for the job. A simple abstraction is adopted [12], where each MapReduce job, Ji, is

defined by the durations of its Map and Reduce stages, mi and ri, i.e., Ji5 (mi, ri).

Let us consider the execution of two independent MapReduce jobs, J1 and J2, in a

Hadoop cluster with a FIFO scheduler. There are no data dependencies between

these jobs. Therefore, once the first job completes its Map stage and begins
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processing its Reduce stage, the next job can start its Map stage execution with the

released Map resources in a pipelined fashion. There may be “overlap” in the execu-

tions of the Map stage of the next job and the Reduce stage of the previous one. We

further consider the following problem. Let J5 fJ1; J2; . . .; Jng be a set of n

MapReduce jobs with no data dependencies between them. Here, Ji requests Ri 3Ri

MapReduce slots and has Map and Reduce phase durations (mi, ri), respectively.

The system scheduler can change a job’s MapReduce slots allocation depending on

available resources. Let T be the makespan of all n jobs. We aim to determine an order

(a schedule) of execution of jobs JiAJ such that the makespan of all jobs is mini-

mized. Let us set the end-time of the Map stage and start-time of the Reduce stage of

job Ji as ðtim; tirÞ, respectively. Thus, the actually allocated MapReduce slots for job Ji
are Pi 3Pi, the max available MapReduce slots in the Hadoop cluster is P3P.

Formally, the problem of minimizing the makespan, T, can therefore be formulated as

Min T ð9:8Þ

subject to

1.

’ Ji;Pi #P ð9:9Þ

2.

’ Ji; t
i
r # tim ð9:10Þ
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Figure 9.5 Execution example of TeraSort [15] in a 203 20 MapReduce slot.
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where Eq. (9.9) is the available capacity constraint, i.e., actually allocated

MapReduce slots, Pi, to any job are not more than the number of available

MapReduce slots in the system, P. Equation (9.10) is the time nonoverlapping con-

straint of the Map and Reduce stages for a single job—meaning that for the same

job, the end-time of its Map stage should not be less than the start-time of its

Reduce stage.

Based on the problem formulation, we propose a new approach to minimize the

makespan of a set of given MapReduce jobs.

9.4.2 Revised Johnson’s algorithm and HScheduler

Before introducing the new algorithm, let us revisit the classical Johnson’s algo-

rithm [16] to determine if it can be applied to the MapReduce scheduling directly.

9.4.2.1 Johnson’s algorithm revisited

The original Johnson’s algorithm [16] considers that “there are n items which must

go through one production stage or machine and then a second one. There is only

one machine for each stage. At most one item can be on a machine at a given

time.” To adapt the MapReduce model, we treat the Map and Reduce stage

resources as a whole (like a single machine), i.e., to represent the resources as

MapReduce slots, then we can apply Johnson’s algorithm. Using a similar notation

to the one found in [12], let us consider a collection of n jobs, where each job, Ji, is

represented by the pair, mi, ri, of Map and Reduce stage durations, respectively.

Each job Ji5 (mi, ri) with an attribute Di is defined as follows:

Di 5
ðmi;mÞ; if minðmi; riÞ5mi;

ðri; rÞ; otherwise
�

ð9:11Þ

The first argument in Di is called the stage duration and denoted as D1
i . The sec-

ond argument is called the stage type (Map or Reduce) and denoted as D2
i . Notice

that when ri5 0, Johnson’s algorithm reduces to the shortest process time first algo-

rithm, which is known to be optimal for minimizing total finish (flow) time of all

jobs. Algorithm 2 presents the pseudocode of the Revised Johnson’s algorithm for

MapReduce. First, it sorts all n jobs from the original set J in the ordered list L in

such a way that job Ji precedes job Ji11 if and only if minðmi; riÞ#minðmi11; ri11Þ.
It finds the smallest value among all durations, if the stage type in Di is m (i.e., it

represents the Map stage), then the job Ji is placed at the head of the schedule.

Otherwise, Ji is placed at the tail. Then, the allocated job is removed and other jobs

are considered in the same fashion. The complexity of Johnson’s algorithm is

dominated by the sorting operation and thus is O(n log n).

Theorem 1 Johnson’s algorithm obtains the theoretical lower bound of total

elapsed time (makespan) for a two-stage production system when all jobs go

through the same two stages and each job utilizes all resource of each stage.
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The detailed proof for Theorem 1 is provided in Johnson [16]. From Johnson’s

algorithm, we can obtain the ideal makespan (theoretical lower bound) as follows:

1. Considering there are n tasks for Map and Reduce stages. Let mi denote the work time of

the ith task for the Map phase and ri denote the corresponding time on the Reduce phase

for a given Hadoop cluster with P machines (slots).

2. Then, the optimal total elapsed time (makespan) is as follows:

T 5
Xn
i51

ri 1maxnu51Ku ð9:12Þ

Ku 5
Xu
i51

mi 2
Xu21

i51

ri ð9:13Þ

Observation 1 If each job utilizes either all Map or all Reduce slots during its pro-

cessing, there is a perfect match between the assumptions of the classic Johnson’s

algorithm for a two-stage production system and MapReduce job processing. Then

Johnson’s algorithm can be applied to find the theoretical lower bound of minimiz-

ing the makespan of all MapReduce jobs.

Example 1 We reproduce the five MapReduce jobs given in [12] in Figures 9.6(a)

and (b), respectively, where Figure 9.6A shows the durations of the Map and

Reduce stages of each job and Figure 9.6B provides an ordered list of the five jobs

by applying Johnson’s algorithm. According to Johnson’s algorithm, the optimal

Input: All Jobs’ Map and Reduce durations, number of machines for the 
Hadoop cluster
Output: Scheduled jobs, makespan
1 List the Map and Reduce durations in two vertical columns (implemented 
 in a list);
2 for all entries do
3  Find the shortest one among all durations;
4  In case of ties, for the sake of simplicity order the item with the 
  smallest subscript first. In case of a tie between Map and Reduce, 
  order the item according to the Map;
5  IF it is for the Map, place the corresponding item at the first place;
6  ELSE it is for the Reduce, place the corresponding item at the last place ;
7  Remove both time durations for that task;
8  Repeat the steps on the remaining set of items;
9 end
10 Compute makespan;

Algorithm 2 Revised Johnson’s algorithm for MapReduce.
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sequence is δ5 (2, 5, 1, 3, 4). The total delay time for this sequence can be com-

puted using Eq. (9.13), i.e., 4 units, and the total elapsed time (makespan) is 47

units (using Eqs. (9.12) and (9.13)). If one reverses the order of the jobs, then the

worst-case result can be obtained (as the upper bound), i.e., 78 units.

Observation 2 For multiple MapReduce jobs, besides Map and Reduce phases, there

are additional process times, such as job setting up, migration, and dispatch, which

also should be included in the actual makespan. Based on Eqs. (9.12) and (9.13), the

actual makespan is adjusted to T̂ 5 ð11 c0ÞT , where c0 is a weight factor that depends
on the job types.

We will validate Observation 2 in the performance evaluation section.

Observation 3 The job stage duration closely depends on the amount of allocated

resources (Map and Reduce slots). If the system scheduler allocates more or less

MapReduce slots than their required slots, the jobs’ appearance can be changed.

Example 2 Consider Scenario 2 in [12]: For Example 1, now let jobs J1, J2, and J5
be comprised of 30 Map and 30 Reduce tasks, and jobs J3 and J4 be comprised of

20 Map and 20 Reduce tasks, while all other parameters are the same as in

Example 1. We reproduce results in Figure 9.7 that visualize the execution of these

five MapReduce jobs according to the generated Johnson’s schedule, δ5 (J2, J5, J1,

J4, J3). For jobs J3 and J4, [12] assumes that they only use 203 20 MapReduce

slots, even if the system has 303 30 MapReduce slots available. However, if we
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Figure 9.6 Five MapReduce jobs examples by one cluster. (A) Before applying the

algorithm; (B) After applying the algorithm.
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allow that any job can use all available MapReduce slots in the system during exe-

cution, which can be implemented easily in Hadoop (e.g., by splitting the large

input files based on available number of MapReduce slots), the result is very differ-

ent from [12]. For the same example in Scenario 2 [12], now jobs J3 and J4 can use

all available 303 30 MapReduce slots. Here, J3 will have Map and Reduce dura-

tions of ð20; ð8=3ÞÞ, respectively, and J4 will have Map and Reduce durations of

(4, 20), respectively. Both are shorter than only using 203 20 MapReduce
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Figure 9.7 Five MapReduce jobs executions in one cluster.
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Figure 9.8 New result of five MapReduce jobs execution.
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slots. Therefore, the makespan will be 35ð2=3Þ, as shown in Figure 9.8,

where X15 1. This result is 12% smaller than the result obtained by the two pools

approach [12]. Therefore, the following principle is the key strategy for our results.

Claim 1 The system scheduler can decrease or increase the allocated number of

MapReduce slots for a job if the job’s requested number of MapReduce slots is

larger than or less than the available MapReduce slots in the system.

Assuming that there are P3P MapReduce slots in the given Hadoop cluster,

then there are two Jobs A and B and each has requested MapReduce slots, R, and

time duration, TA, TB, respectively. Note their theoretical makespan, T1, can be eas-

ily computed using Eqs. (9.12) and (9.13) directly. Then, the actual makespan of

job A and B using all available slots (P) is (TA):

TA 5
R

P
T1 ð9:14Þ

Based on Observations 1�3 and Claim 1, we design a new approach called

HScheduler to efficiently schedule MapReduce jobs to minimize makespan.

Algorithm 3 presents the pseudocode of the HScheduler algorithm for MapReduce.

First, it allocates all available MapReduce slots to a given set of jobs by recomput-

ing their actual durations based on available slots. This changes their Map and

Reduce durations by taking more or less execution waves based on available slots.

Then it used the Revised Johnson’s algorithm to schedule all updated jobs. The

complexity of HScheduler is dominated by Johnson’s algorithm and thus is O

(n log n).

 Input: All Jobs’ Map and Reduce durations, number of machines for the 
         Hadoop cluster
 Output: Scheduled jobs, makespan
1 Compute the Map and Reduce durations of all jobs by their required slots 
 and Equations (11–14);
2 for all jobs do
3  IF a job’s required slots Ri ≥ P (total available slots), THEN allocates all 
  available slots to it and adds more execution waves based on tasks’ 
  splitting;
4  ELSE IF Ri < P, allocates all available slots to it and records actual 
  execution waves;
5  End;
6 end
7 Call Revised Johnson’s Algorithm;
8 Compute makespan;

Algorithm 3 HScheduler.
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9.5 Performance evaluation

9.5.1 Evaluation platform

We build a 16-node Hadoop cluster and each node has the same dual-core Pentium

CPU, 512 M memory. Each node was installed with CentOS 6.3, Hadoop 0.21.

9.5.2 Evaluation design

a. Energy control system

We use the Hadoop WordCount as a large memory task example and TeraSort as an

intense calculation task example. The WordCount data are from Wiki, whereas TeraSort

data are generated by TeraGen. For both tasks, the data sizes are 500 megabytes (M), 1G,

2G, 4G, and 8G. We set the time period to 10 s and use the threshold 0.2 as the lower

threshold and use 0.8 as the upper threshold. In WordCount, we set p to 0.5, whereas in

TeraSort, we set p to 0.8. Each test is repeated five times and we record the mean result.

b. Energy-efficient scheduling

We use similar workloads to those found in [12] for our experiments:

This workload represents a mixed number of MapReduce jobs based on the analysis

performed on the Yahoo! M45 cluster [12]. The number of Map and Reduce tasks is gen-

erated by Normal distribution and the durations of the Map and Reduce phases are

obtained from real data of WordCount [17] and TeraSort [15].
� Unimodel: where a set of 50 WordCount [17] (with mean Map duration 65 s and mean

Reduce duration 57 s, uniformly distributed) and 50 TeraSort jobs [15] (with mean

Map duration 73 s and Reduce duration 58 s, uniformly distributed) are tested, it uses

a single scale factor for the overall workload, i.e., the scale factor for each job is

drawn uniformly from [1,10], and Normal distribution with parameter round(N(154,

558)0.1) for the number of Map tasks and round(N(19,145)0.1) for Reduce tasks.
� Bimodal: where a subset of 20 WordCount from [17] (with mean Map duration 448 s

and mean Reduce duration 413 s, uniformly distributed) and 20 TeraSort jobs from

[15] (with mean Map duration 287 s and Reduce duration 306 s, uniformly distrib-

uted). In this case, 80% of the jobs are scaled using a factor uniformly distributed

between [1,2] and the remaining jobs (20%) are scaled using [8,10] and Normal distri-

bution with parameter round(N(154, 558)_0.3) for the number of Map tasks and round

(N(19,145)_0.3) for Reduce tasks. This mimics workloads that have a large fraction of

short jobs and a small subset of long jobs.

All results are obtained by the average of six runs.

9.5.3 Results analysis

9.5.3.1 Energy control system

a. Load balance test

To evaluate the node chosen algorithm, we can compare the load balance. Here, the

variance is calculated in following formula.

σ2 5 ðLavg2LÞ2 ð9:15Þ
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Figures 9.9 and 9.10 show the WordCount and TeraSort results, respectively, for

the Random, Round-Robin, Minimum load, and DANF tests.

From the result, we can see that TeraSort has a larger variance than WordCount.

Compared to others, the DANF has smaller variance for both results, which proves

our algorithm is efficient and has an improved load balance [18].

b. Energy test

E5PðuÞ3 Tall 5 ½Pmin 1 ðPmax 2PminÞ3 u�3 Tall ð9:16Þ

Here, Pmin is the system’s idle energy consumption, Pmax is the system’s full

load energy consumption, u is the average utilization in Tall, and Tall is the system’s

boot time. Further, Tr is the node working time and Ts is the node idle time. For

Tall 5 Tr 1 Ts, the total node idle time is the sum of the idle time for all nodes

(Tables 9.1�9.3).
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Figure 9.9 WordCount variance comparisons.
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Figure 9.10 TeraSort variance comparisons.
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Figure 9.11 is the comparison (Tables 9.4�9.6).

Figure 9.12 is the comparison.

From Figures 9.11 and 9.12, we observe that DANF increases the idle time in

both tests. It is clear that in TeraSort and WordCount, tests show the advantage of

DANF.

Table 9.2 WordCount idle nodes

500 MB 1G 2G 4G 8G

Idle nodes 1 1 2 3 4

Table 9.3 WordCount total idle time

500 MB 1G 2G 4G 8G

Without DANF dynamic management system (s) 32 96 208 448 928

With DANF dynamic management system (s) 40 120 250 570 1140

Table 9.1 WordCount total working time

500 MB 1G 2G 4G 8G

Without dynamic Management systems 111 153 250 430 836
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Figure 9.11 WordCount total idle time comparison.
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In Eq. (9.14), u is the average utilization of system boot time, we use Ganglia to

record: (Figures 9.13 and 9.14).

From Eq. (9.14), because Tall is the same, Pmin, Pmax are constants. Therefore,

the energy consumption and average utilization are proportional. In our experiment

environment, we measured Pmin5 50 W, Pmax5 300 W. The energy consumption

comparison figures are Figures 9.15 and 9.16:

Table 9.4 TeraSort total working time

500 MB 1G 2G 4G 8G

Without DANF dynamic management systems 64 130 279 664 1384

Table 9.5 TeraSort idle nodes

500 MB 1G 2G 4G 8G

Idle nodes 1 1 2 4 4

Table 9.6 TeraSort total idle time comparison

500 MB 1G 2G 4G 8G

Without DANF dynamic management systems 32 112 224 560 1184

With DANF dynamic management systems 40 140 270 680 1490
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Figure 9.12 TeraSort total idle time comparison.
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Figure 9.13 WordCount average utilization comparison.
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From the figure, we observe that the system’s energy consumption was reduced

with DANF, compared to the original system. All DANF test examples have an

average energy reduction of 14%.

9.5.3.2 Energy-efficient scheduling

We compare the following algorithms:

� Random Order (Rand): this algorithm schedules all jobs in a random order based on their

job IDs.
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Figure 9.15 WordCount system energy consumption comparisons.
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� Reversed Order of Johnson’s Algorithm (R_Johnson): this algorithm schedules all jobs in

reverse order of Revised Johnson’s algorithm. It is the worst case regarding makespan of

all jobs and is proved in [16].
� HScheduler: this is our proposed algorithm.
� Johnson’s Algorithm (Johnson T): this is the classical Johnson’s algorithm, which works

as a theoretical lower bound because it does not consider additional process time caused

by jobs setting up, dispatch, and migration, etc. in the real Hadoop cluster.
� BalancedPools (BP) is another way to minimize makespan proposed in [12]. It partitions

the Hadoop cluster into two balanced pools and then allocates each job to a suitable pool

to minimize the makespan.

In all tests, 18 data nodes each with two MapReduce slots are set, two pools

each with 12 and 24 MapReduce slots are set respectively for the BalancedPools

algorithm.

Figures 9.17 and 9.18 present the makespan comparison of four algorithms.

R_Johnson is the worst case, working as the upper bound of makespan, whereas

results obtained from Johnson’s algorithm are the theoretical lower bounds. Rand

and R_Johnson have higher makespans than HScheduler. HScheduler has 8�10%

less makespan on the average than BP. HScheduler is 15% and 13% larger on

average than theoretical lower bound in Unimodel and Bimodel, respectively. This

is because HScheduler has additional process times, such as job setting up, dis-

patch, and migration, in a real Hadoop environment. In Figure 9.19, we conducted

tests with 50 TeraSort data (with mean Map duration 73 s and Reduce duration

58 s, uniformly distributed) without considering Bimodel or Unimodel. From

extensive real experiments, similar results are observed and omitted because of the

page limit.
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Figure 9.17 Comparison of makespan in Unimodel (in seconds).
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9.6 Summary

This chapter described the basic principles and architecture of Hadoop, the

MapReduce mechanism, and the HDFS file system and presented previous Hadoop

research. The core of DANF, an approach to combine dynamically the load balance
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Figure 9.18 Comparison of makespan in Bimodel (in seconds).
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Figure 9.19 Comparison of makespan (in seconds) of 50 TeraSort jobs.
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and energy efficiency of Hadoop, was implemented and tested. Further, an energy-

efficient scheduler was introduced and compared to several existing algorithms.

It was found that these two methods not only improve efficiency in the Hadoop

cluster, but also reduce energy consumption.

Questions

1. What is Hadoop? Which parts make up its basic frames?

2. How does Hadoop work?

3. List the usual energy algorithms and try to improve them.

4. What should one consider when designing an energy control system?

5. Design an online energy-efficient schedule for multiple users.

6. Add an energy control system in a Hadoop kernel.
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10Maximizing Total Weights in

Virtual Machines Allocation

Main Contents of this Chapter

� Background of maximizing total weights
� Problem formulation
� Exact approach
� Applications discussion
� Related work and conclusions

10.1 Introduction

Cloud computing is developing based on various recent advancements in virtualiza-

tion, grid computing, web computing, utility computing, and related technologies.

Cloud computing provides both platforms and applications on demand through the

internet or intranet. Cloud computing allows the sharing, allocation, and aggrega-

tion of software, computational, and storage network resources on demand. Some

key benefits of cloud computing include the hiding and abstraction of complexity,

virtualized resources, and efficient use of distributed resources. Cloud computing is

still considered in its infancy, as there are many challenging issues to be resolved.

In this chapter, we focus on infrastructure as a service in cloud data centers. Using

a large-scale application of cloud computing, maximizing profits becomes one of

key factors for many service providers to be considered. We consider maximizing

profits (weights) of virtual machines (VMs) allocation in cloud data centers. For

example, Amazon offers two different purchase types: on-demand and spot

instances. On-demand instances are more expensive, but have a fixed price. Spot

instances are usually cheaper than on-demand instances. However, because the spot

instance price varies and customers specify a maximum price they are willing to

pay, the provider may terminate the instance prematurely depending on how the

spot price changes. A third pricing option, called timed instances, is proposed by

Knauth and Fetzer [1]. Timed instances have an a priori specified fixed length res-

ervation time. The scheduling algorithm uses the reservation time to colocate

instances with similar expiration times. We based our maximizing weights sched-

uler on these timed instances in the following discussion. This problem can be mod-

eled using our proposed new model, the capacity sharing interval scheduling (IS).

Interval scheduling problems (ISPs) have been studied extensively for a long

time [2]. Traditionally, scheduling problems are stated in terms of machines and

jobs. The machines represent resources and the jobs (requests) represent tasks that
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need to be carried out using these resources. The IS with fixed processing time is

that each request has a fixed start- and end-time [3]. Similar to Ref. [2], a basic ISP

can be stated as follows. Given n intervals of the form [sj, fj] with start-time sj, fj
(end-time), for j5 1,. . ., n. These intervals are the jobs that require uninterrupted

processing during that interval, and assume that:

1. Each machine can process, at most, one job at a time and is always available, i.e., each

machine is continuously available in [0, N).

2. Without loss of generality, i.e., sj and fj are nonnegative integers.

3. Two intervals (or jobs) are said to overlap if their intersection is nonempty; otherwise,

they are called compatible or disjoint.

4. Machines are identical.

The objective of basic ISP is to process all jobs using a minimum number of

machines. In other words, finding an assignment of jobs to machines such that no two

jobs assigned to the same machine overlap while using a minimum number of machines.

Definition 1: IS An assignment of (a subset of) the jobs to the machines is called

IS, which requires that all intervals assigned to the same machine are compatible.

The maximum of overlapped intervals is called the depth of all intervals. It has

been proven that this number of machines actually suffices to process all jobs [4].

The weighted interval scheduling problem (WISP) is that each request is associated

with a weight, with the goal to find a subset of mutually compatible intervals with maxi-

mal total weight.

In this chapter, we consider the scheduling algorithm for WISWCS

(SAWISWCS). The difference of SAWISWCS from WISP is that all intervals may

require part of the total capacity of a single resource so they can share that capacity

if their total required capacity at any time does not surpass the total capacity a

machine can provide. To the best of our knowledge, this problem is not studied in

the open literature. The major contributions of this chapter are:

1. Formulating a model for the Weighted Interval Scheduling with Capacity Sharing

(WISWCS) for the first time. Providing an exact scheduling algorithm and its complexity

analysis for a WISWCS problem.

2. The remaining content of this chapter is structured as follows: Section 10.2 provides for-

mulation of and complexity analysis of the WISWCS problem. Section 10.3 shows some

possible applications. Section 10.4 concludes the chapter.

10.2 Problem formulation: WISWCS

10.2.1 Traditional WISP

A set of requests {1,2,. . .,n} where the ith request corresponds to an interval of time

starting at si and finishing at fi, where each request is associated with a weight wi.

The goal is to find a subset of mutually compatible intervals, so to maximize the sum

of the values of the selected intervals. There are the following assumptions:

1. All data are deterministic and unless otherwise specified, the time is formatted in slotted

windows, as shown in Figure 10.1. We partition total time period [0,T] into slots with
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equal length s0, the total slots is k5T/s0, all are integer numbers. The starting time si and

finishing time fi are integer numbers of one slot. Then the interval of a request can be

represented in slot format with start-time, end-time. For example, if s05 5 min, an interval

[4,5] means that it has start-time and end-time, respectively, at the third slot and tenth

slot, making the actual duration of this request (102 3)�55 35 min.

2. All tasks are independent. There are no precedence constraints other than those implied

by the start- and end-time.

3. The required capacity of each request is a positive real number between [0,1]. Note that

the capacity of a single machine is normalized to be 1.

4. Assuming that, when processed, each job is assigned to a single machine, thus, interrupting

a job and resuming it on another machine is not allowed, unless explicitly stated otherwise.

5. Machines are identical; each machine can process, at most, one job at a time.

Definition 2 Compatible intervals for WISP A subset of intervals is compatible

if no two of them overlap in time, i.e., either request i is for an earlier time

interval than request j (fi, sj), or request i is for a later time than request j (fj, si).

More generally, a subset A of requested intervals is compatible if all pairs of

requests (i, j in A, i 6¼ j) are compatible.

Definition 3 WISP In the WISP, we want to find the maximum weight subset of

nonoverlapping jobs, given a set J of jobs that have weights associated with them.

Job i in J has a start-time si, a finish time fi, and a weight wi. Suppose we have a

set of weighted intervals J5 {I1,I2,I3,. . .,In} and wj is the weight of interval Ij.

We seek to find an optimal schedule—a subset O of nonoverlapping jobs in J with

the maximum possible sum of weights. In other words, the goal is to choose inter-

vals from J that don’t overlap in time that gives the highest possible total weight.

Figure 10.2 shows an example of WIS.

0 1 2 3 4 5 6 7 8 9 10 … k–2 k–1 k

Figure 10.1 Time in slotted format.
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Figure 10.2 Example of WIS.
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Note that when the weights are all 1, this problem is identical to basic ISP, and

for that, we know that a greedy algorithm that chooses jobs in order of earliest fin-

ish time first gives an optimal schedule [4].

For a traditional WISP, the classic dynamic programming (DP) approach pro-

vides an efficient solution to find both the optimal total weight and the subset of

intervals that are compatible, see Ref. [4].

The basic optimization model in DP is as follows. After sorting all intervals in

the nondecreasing finish time, consider the optimal total weight using the following

recursive formula for the jth interval:

OPTðjÞ5maxðwj 1OPTðpðjÞÞ;OPTðj2 1ÞÞ ð10:1Þ

where p(j) is the largest index i, j, such that intervals i and j are disjoint for an interval

j, OPT(j) is the optimal total weight for j intervals. Figure 10.3 shows the algorithm to

find an optimal total weight using a recursive formula, as shown in Eq. (10.1), where

M[j] is defined as the optimal total weight for all j intervals [4]. Figure 10.4 presents an

algorithm to find the optimal solutions (subset of intervals) using a recursive method.

In Figure 10.2, there are eight interval requests (jobs) in (start-time, end-time,

weight) format, respectively: A(0,6,4),B(1,4,5),C(3,5,2),D(3,8,1), E(4,7,8), F(5,9,4),

G(6,10,8), and H(8,11,3). By applying the DP algorithm, it can be easily shown that

the optimal total weight is 16 and optimal subset is {B,E,H}.

1. If j=0 then
2. Return 0
3. Else if M[j] is not empty then
4. Return M[j]
5. Else
6. M[j]=max(wj+Opt_Weight_Com(p(j)),Opt_w

eight_Com(j-1))
7. return M[j]
8. Endif

Opt_Weight_Com()

Figure 10.3 Algorithm for computing the optimal total weight in DP.

1. If j=0 then
2. Output nothing
3. Else if (wj+M[p(j)]>M[j-1]  then
4. Output j together with the result of

Opt_Solution_Find(p(j))
5. Else
6. Output the result of Opt_Solution_Find(j-1)
7. Endif
8. Endif

Opt_Solution_Find()

Figure 10.4 Algorithm for the find optimal solution in DP.
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10.3 WISWCS

Definition 4 WISWCS The only difference for WISWCS from traditional weighted

interval scheduling (WIS) is that a resource (to be concrete, a machine or a processor or

a circuit) can be shared by different jobs if the total capacity of all jobs allocated on the

single source at any time does not surpass the total capacity of a resource can provides.

A request can be represented in a victor [ID, si, fi, ci, wi], where ID denotes the ID num-

ber, si denotes the start-time, fi, denotes the end-time, ci denotes the capacity request,

and wi denotes the weight of the request. The objective of WISWCS is to maximize the

total weight by accepting a subset of requests for a given number of machines.

Definition 5 Sharing-compatible intervals for WISWCS A subset of intervals

that have the total required capacity does not surpass the total capacity of a machine

at any time.

Definition 6 Divisible capacity for WISWCS The capacity of different requests

(jobs) have follows feature:

c1 . c2 . . . .. ci . ci11 . . . .

Such that for all i. 5 1, ci11 exactly divides ci. There is a list L of requests

(each can have arbitrary number), the capacity of requests in L form a divisible

capacity. If L is a list of requests and C is the total capacity of a machine (consider-

ing homogeneous case here), we say that the pair (L,C) is strongly divisible if, in

addition, the largest item capacity c1 in L exactly divides the total capacity C.

See Ref. [6] for a more detailed discussion about divisible size bin-packing. We

observe that popular providers, such as Amazon and Google, have a small and finite

set of instance sizes following the divisible capacity pattern in [7]. Similarly,

Knauth and Fetzer [1] also introduce a similar idea. In [1], VMs, as rented out to

customers, have fractional sizes of the original hardware, e.g., 1/8, 1/4, 1/2, or 1/1.

Individual resources of a VM, such as CPU, RAM, and local disk, double between

VM sizes. For example, a small instance may have one CPU, 1 GB RAM, and

100 GB local disk. The next instance size has 2 CPUs, 2 GB RAM, and 200 GB

local disk. This abstractly quantifying a server’s compute power with resources is

justified by real providers such as Amazon and Google.

Definition 7 Capacity-length proportional weight for WISWCS We assume that

the weight of a request is proportional to the product of its capacity and length.

Definition 7 is a reasonable assumption found in the literature and is important

assumption for our primary results. For WISWCS with divisible capacity and

capacity proportional profit, we seek to find an optimal schedule—a subset O of

sharing-compatible intervals (jobs) with the maximum possible sum of weights.

Note that WIS is the special case of WISWCS when all weights are equal to 1.

Therefore, the WISWCS problem is more difficult.
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For comparison, we show two examples, one for WIS in Figure 10.5 and another

for WISWCS in Figure 10.6. The only difference between these two examples is

the required capacity of each job.

In Figure 10.5, an example of WIS is shown. The n5 6 requests (jobs), in (start-

time, end-time, request capacity, weight) format, respectively, are #1(0,3,1,2),

#2(1,4,1,4), #3(3,5,1,4), #4(1,7,1,7), #5(5,7,1,2), and #6(5,8,1,1).

Applying DP, we can easily obtain optimal total weight5 8 for Figure 10.5 and

optimal subset is {#1,#3,#5).

In Figure 10.6, there are n5 6 requests and their start-time, end-time, and weights

are same as the example given in Figure 10.5. However, their required capacities are

different. Unfortunately, in this case of WISWCS, we cannot use the DP technique

any longer for the traditional WIS problem. The reason is that the situation of

Time 
0 1 2 3 4 5 6 7 8 9 10 11 

w6 = 1, c6 = 1 

w4 = 7, c4 = 1 

w3 = 4, c3 = 1

w1 = 2, c1= 1 

w2 = 4, c2 = 1

w5 = 2, c5 = 1

Figure 10.5 Example of WIS.

Time 
0 1 2 3 4 5 6 7 8 9 10 11

w6 = 1, c6 = 0.5

w4 = 7, c4 = 0.125

w3 = 4,
c3 = 0.25

w1 = 2, c1= 0.5 

w2 = 4, c2 = 0.5

w5 = 2,
c5 = 0.5

Figure 10.6 Example of WISWCS.
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sharing-compatible intervals makes WISWCS different from WIS, meaning we

cannot use compatible intervals defined by WIS to recursively apply the memoriza-

tion technique in DP to find an optimal solution. For example, using the example in

Figure 10.6, if we still apply DP technique, the result will be that the optimal subset

is {I1,I3,I5}, with an optimal total weight of 8. However, this is far from optimal

because of the sharing-compatible intervals in WISWCS. We will show that the

results for WISWCS are different from WIS in the following section.

10.4 An exact SAWISWCS

In the following, we introduce an exact SAWISWCS. The algorithm is shown in

Figure 10.7.

SAWISWCS() 
Input: requests indicated by their (start times, finish-times, 
requested capacity, weight), the request i is denoted as Ii .
Assuming that the weight of a request is proportional to the 
product of its capacity and length
Output: finding sets of sharing compatible intervals which have 
maximum total weights for each of the given number of 
machines.

1. Sort all requests in non-increasing order of their weights, if 
two requests have same weights, the one with shorter 
duration is considered first, otherwise breaking ties 
arbitrarily; wi denotes as the weight of interval Ii 

2. d=1; 
3. for j = from 1 to n do
4.     if  Ij can share capacity of k-th machine (start  

from lowest index machine to d-th machine)
5.   Assign Ij to machine k; W[k]=W[k]+w(Ij);  

S(k)=S(k)U Ij

6.        else   
7.            allocate a new machine d+1  
8.            assign   Ij to d+1;d=d+1 
9.           W[d]=W[d]+w(Ij); S(d)=S(d)U Ij

10.   endif 
11.  endfor    
12.  sort W by non-increasing order of their values and record 

corresponding subsets S. The largest value of W (W[1]) 
and corresponding subsets S (S(1)) are optimal solutions for 
the first machine, the second largest value of W (W[2] and 
corresponding subsets S (S(2)) are optimal solutions for the 
second machine, so on until the last one for the d-th machine. 

Figure 10.7 SAWISWCS.
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For better understanding, let us take the example shown in Figure 10.6 to show

how algorithm for WISWCS works:

1. Sorting all requests in nonincreasing order of their weights, we have I4(w45 7),

I3(w35 4), I2(w25 4), I1(w15 2), I5(w55 2), I6(w65 1);

2. j5 1, I4 with weight w45 7 and capacity c45 0.125 is considered, it is allocated to the

first (d5 1) machine; W[1]5w45 7, S(1)5 {I4};

3. j5 2, I3 with w35 4 (shorter duration than I2) and capacity c35 0.25 is selected, it is allo-

cated to the first machine because it is sharable compatible with I4, W[1]5w41w35 11,

S(1)5 {I4,I3};

4. j5 3, I2 with w25 4 and capacity c25 0.5 is selected, it is allocated to the first machine

since it can share the capacity, so W[1]5w31w41w25 15, S(1)5 {I3,I4,I2};

5. j5 5, I5 with w55 2 (shorter duration than I1) and capacity c55 0.5 is selected, it can

share the capacity of machine 1 with existing intervals, so it is allocated to machine 1, W

[1]5w31w41w21w55 17, S(1)5 {I3,I4,I2,I5};

6. j5 4, I1 with w15 2 and capacity c15 0.5 is selected, it cannot share the capacity of

machine 1 with other existing intervals, so d5 11 15 2 is allocated for it, W[2]5

w15 2, S(2)5 {I1};

7. j5 6, I6 with w15 1 and capacity c65 0.5 is selected, it cannot share capacity with

machine 1 but can share capacity of machine 2, so it is allocated to machine 2, W[2]5

w11w65 3, S(2)5 {I1,I6}.

From preceding steps, it is shown that the optimal subset is {I3,I4,I2,I5}, with

total weight 17. Obviously, these results are different from the WIS case.

Lemma 1 The SAWISWCS correctly finds the optimal solution for a subset of

sharing-compatible intervals (jobs) with the maximum possible sum of weights.

Proof The SAWISWCS, as shown in Figure 10.7, first sorts all requests by nonin-

creasing order of their weights—this guarantees that requests with larger weights

are considered first—then the algorithm applies the sharing-compatible rule

(Definition 6) for all requests, as shown in line 1 of Figure 10.7. This ensures all

possible requests are included in the optimal solution if they are sharing-compati-

ble, as shown in line 2�11. Finally, the algorithm finds optimal results by compar-

ing total weights of each machine, as shown in line 12. By the definition of the

objective of WISWCS, the algorithm finds the optimal solution for a subset of

sharing-compatible intervals (jobs) with the maximum possible sum of weights.

Remarks for Lemma 1: We conducted many examples using the proposed algo-

rithm, both for WISP and WISWCS problems. In all cases, it finds optimal solutions.

Lemma 2 The time complexity of the SAWISWCS, as shown in Figure 10.7, is O

(n d), where n is the number of requests (jobs) and d is the number of machines.

Proof As shown in Figure 10.7, the algorithm first sorts all intervals in nonincreas-

ing order of their weights (if two requests have same weights, the one with the

shorter duration is considered first, otherwise breaking ties arbitrarily). This takes O
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(n log n) time, where n is the number of intervals (requests). Then, the algorithm

finds sharing-compatible intervals for all intervals, as shown in lines 6 to 12. This

takes O(n d) steps in worst case. The worst case is that all intervals have large

capacity (e.g., 1), and the same start-time and end-time. So that all intervals are not

sharing-compatible, therefore finding a machine for a job to allocate needs O(d)

steps, n intervals need O(nd) steps. Finally, the algorithm finds optimal solutions

using a simple comparison with costs O(nd log n) time. So all together, the algo-

rithm for WISWCS takes O(nd) time, where normally n.m.

For implementation of SAWISWCS, interval tree data structure can be used.

An interval tree is an ordered tree data structure used to hold intervals. It allows one to

efficiently find all intervals that overlap with any given interval or point. The trivial or

traditional solution (e.g., using arrays) is to visit each interval and test whether it inter-

sects the given point or interval, which requires Θ(n2) times or higher, where n is the

number of intervals in the collection. Interval trees are dynamic, i.e., they allow inser-

tion and deletion of intervals. They obtain a query time ofΘ(log n), whereas the prepro-

cessing time to construct the data structure has tight bound Θ(n log n), see Ref. [8].

Lemma 3 The maximum number of machines needed for WISWCS is the depth of

all intervals that are overlap. This is the optimal number of resources needed.

Proof Suppose a set of intervals has depth d in the WISWCS problem. If J5
{I1,. . .,Ik} is the set, we know that d is the maximal value (round in integer) of the

required capacity in which all intervals overlap. That is, d is the ceiling (in integer)

of the sum of all requested capacities by intervals in J. These intervals all pass over

a common point on the time line. Then, these intervals must be scheduled on d

resources so that the capacity constraint is satisfied.

From remarks of SAWISWCS, Lemmas 1 and 3, we know that:

1. If there are d resources, the SAWISWCS can find optimal solutions for all requests using

d resources.

2. If there are m, d resources, the SAWISWCS also can find optimal solutions for all

requests. It sorts W by nonincreasing order of their values and records corresponding sub-

sets S. The largest value of W and corresponding subsets S are optimal solutions for the

first machine, the second largest value of W and corresponding subsets S are optimal solu-

tions for the second machine, so on until the last one for the dth machine.

3. If there is only a single resource, the SAWISWCS in the line 12 of Figure 10.7 uses a

simple comparison to find the largest value of W and corresponding subsets S, which are

optimal solutions for the single resource (machine).

10.5 Applications of WISWCS

In this section, we list a few typical applications, but it is not meant to be an

exhaustive list.
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10.5.1 Virtual machine scheduling in cloud computing

Let us consider a physical machine (PM) with 23 68.4 GB memory, 16

cores3 3.25 units, 23 1690 GB storage. There are three types of VMs with capaci-

ties 1/8, 1/4, and 1/2 of the total capacity of the given PM. As an example, a set of

six VM requests are considered: vm1(0, 6, 1, 0.25), vm2(1, 4, 2, 0.125), vm3(3, 6,

3,0.25), vm4(3, 8, 4, 0.5), vm5(4, 8, 5, 0.25), and vm6(5, 9, 6, 0.25). Here, vm1

(0, 6, 1, 0.25) means vm1 starts at time 0, ends at time slot 6, has weight 1, and

capacity requirement of 0.25 of the given PM’s total capacity. Others are similar.

We can use our proposed algorithm for WISWCS to find the optimal solution.

10.5.2 Performance evaluation

In this section, we provide numerical results for our proposed algorithm. We note

that in some special cases, such as all requests have the same start-time and end-

time, the Knapsack algorithm (KA) [4] can be applied to our problem repeatedly to

obtain optimal results. Once one “sack” is packed with the max weight, it loops for

the next sack until all requests are packed. In this section, we provide numerical

results comparison between the KA and the SAWISWCS. Because the KA does not

work for real-time ISP, in this section, we consider special cases, i.e., all requests

have the same start-time (zero) and end-time (one), so that KA can be applied.

Also, assuming there are three types of requests that occupy 1/4, 1/2, and 1 of the total

capacity of a machine, the weight of a request is three times of the product of its

capacity and length. In Table 10.1, we provide the total number of machines used

(# machines) and running time (run time) results for both KA and the SAWISWCS

when the total number of intervals is varied from 10 to 100,000. One can observe

that the SAWISWCS takes much less time to obtain the same result than KA, espe-

cially when the total number of intervals is larger.

Table 10.1 Performance comparison between KA and SAWISWCS

# Intervals #PMs by (KA) Run time (KA) #PMs

(WISCS)

Run time

(WISCS)

10 4 15 ms 4 15 ms

100 30 16 ms 30 16 ms

500 147 32 ms 147 32 ms

1000 291 62 ms 291 32 ms

5000 1457 1016 ms 1457 250 ms

10000 2896 9951 ms 2896 922 ms

50000 14527 3 min 10 s 14527 1 min 1 s

100000 29164 16 min 58 s 29164 3 min 26 s
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10.6 Related work

There is a long research history for ISPs, which can be traced back to the 1950s

when Dantzig and Fulkerson [9] studied a tanker scheduling problem. Kolen et al.

[2] provide a comprehensive survey for ISPs. Ford and Fulkerson [10] solved a

basic ISP and specified the staircase rule, which is based on Dilworth’s theorem

and involves O(n2) operations. Gupta et al. [11] propose another procedure that

runs in O(n log n) time and they show to be the best possible procedure for parti-

tioning a set of n intervals into a minimal subsets that do not overlap with each

other. If each job can only be carried out by a given subset of the machines, the

problem is proved to be NP-hard [12]. Heuristics and exact algorithms are proposed

by Kroon et al. [5]. WISP for single machine can be solved using DP [4]. WIS for

multiple machines can be solved using a min-cost flow formulation with computa-

tional complexity O(n2 log n), where n is the number of jobs (see Arkin and

Silverberg [3], Bouzina and Emmons [13], and Orlin [14]). Bar-Noy et al. [15]

introduced IS applications in bandwidth allocation. Bhowmik et al. [16] discussed

the principles, strengths, and limitations of DP.

To the best of our knowledge, WISWCS is not studied in the open literature.

10.7 Conclusions

In this chapter, a new algorithm for WISWCS is proposed by considering divisible

capacity and capacity-length proportional weight. It is interesting to note that the

proposed algorithm works for both single machine and multiple machines cases.

Our future work will investigate scheduling problems in which a certain time of

delay is allowed for a number of requests. Cases other than divisible capacity

capacity-length proportional weight will be extended.
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11A Toolkit for Modeling and

Simulation of Real-time Virtual

Machine Allocation in a Cloud

Data Center

Main Contents of this Chapter

� CloudSched architecture and main features
� Performance metrics for different scheduling algorithms Status and trends of

cloud computing
� Design and implementation of CloudSched
� Performance evaluation

11.1 Introduction of the cloud data center

Cloud computing is developing based on various recent advancements in virtualiza-

tion, grid computing, web computing, utility computing, and related technologies.

Cloud computing provides both platforms and applications on demand through the

internet or intranet [1]. Some key benefits of cloud computing include the hiding

and abstraction of complexity, virtualized resources, and efficient use of distributed

resources. Some examples of emerging cloud computing platforms are the Google

App Engine [2], the IBM blue cloud [3], Amazon EC2 [4], and Microsoft Azure

[5]. Cloud computing allows the sharing, allocation, and aggregation of software,

computational, and storage network resources on demand. Cloud computing is still

considered in its infancy, as there are many challenging issues to be resolved

[1,6,7,8]. Youseff et al. [9] established a detailed ontology of dissecting the cloud

into five main layers from top to down, as shown in Figure 11.1:

1. cloud application (SaaS)

2. cloud software environment (PaaS)

3. cloud software infrastructure (IaaS)

4. software kernel

5. hardware (HaaS)

Figure 11.1 also illustrates the interrelations, as well as the interdependency, on

preceding technologies. In this chapter, we focus on infrastructure as a service

(IaaS) in cloud data centers (CDCs).
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A CDC can be a distributed network in structure, which is composed of many

computing nodes (such as servers), storage nodes, and network devices. Each node

is formed using a series of resources such as CPU, memory, network bandwidth,

etc. Each resource has its own corresponding properties. There are many different

types of resources for cloud providers. This chapter focuses on IaaS. The definition

and model defined in this chapter are aimed to be general enough to be used by a

variety of cloud providers. In a traditional data center, applications are tied to spe-

cific physical servers that are often over-provisioned to deal with workload surges

and unexpected failures. Such configuration rigidity makes data centers expensive

to maintain because of wasted energy and floor space, low resource utilization, and

significant management overhead.

Using virtualization technology, current CDCs become more flexible, secure,

and allow on-demand allocating. With virtualization, CDCs should have the ability

to migrate an application from one set of resources to another in a nondisruptive

manner. Such agility becomes important in modern cloud computing infrastructures

that aim to efficiently share and manage extremely large data centers. A technology

plays an important role in CDCs is resource scheduling.

Much research has been conducted in scheduling algorithms. Most of them are

for the load balancing of traditional web servers or server farms. One of the chal-

lenging scheduling problems in CDCs is to consider allocation and migration of

reconfigurable virtual machines (VMs) and integrated features of hosting physical

machines (PMs). Unlike traditional load balancing scheduling algorithms, which

consider only physical servers with one factor (such as CPU), new algorithms treat

CPU, memory, and network bandwidth integrated for both PMs and VMs. In addi-

tion, real-time VM allocation for multiple parallel jobs and PMs is considered.

With the development of cloud computing, the size and density of the CDC

became large and problems that need to be solved therewith. Examples of these

problems include: how to intensively manage physical resources and virtual

resources and dynamically use them, how to improve elasticity and flexibility

(which can improve service and reduce cost and risk management), and how to

help customers build flexible, dynamic, and adaptive infrastructure that allows

Cloud application

Cloud software environment

Cloud software infrastructure

Software kernel

Firmware/Hardware (HaaS)

Computational
resources (laaS)

Communications
(CaaS)

Storage
(DaaS)

(e.g., SaaS)

(e.g., PaaS)

Figure 11.1 Layered architecture of cloud computing [9].
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enterprises to ensure sustainable future development without an increase in spend-

ing. It is extremely difficult to research widely for all these problems in real internet

platforms because the application developers cannot control and process the net-

work environment. What’s more, the network conditions cannot be predicted or

controlled, but they still affect the quality evaluation of the strategies. The research

of dynamic and large-scale distributed environments can be achieved by building a

data center simulation system, which supports visualized modeling and simulation

in large-scale applications in cloud infrastructure. A data center simulation system

can describe the application workload statement, which includes user information,

data center position, the amount of users and data centers, and the amount

of resources in each data center. Using this information, the data center simula-

tion system generates response requests and allocates these requests to VMs. By

using a data center simulation system, application developers can evaluate

suitable strategies, such as distributing reasonable data center resources, selecting a

data center to match special requirements, reducing costs, etc.

Buyya et al. [7] introduced the GridSim toolkit for the modeling and simulation

of distributed resource management for grid computing. Dumitrescu and Foster [8]

introduced the GangSim tool for grid scheduling. Buyya et al. [7] introduced the

modeling and simulation of cloud computing environments at the application level,

in which simple scheduling algorithms, such as time-shared and space-shared, are

discussed and compared. CloudSim [7] is a cloud computing simulator, which has

the following functions:

1. supporting modeling of large-scale cloud computing infrastructure, both in a single physi-

cal computing node and a Java VM data center

2. modeling of the data center, service agency, and scheduling and distributing strategies

3. providing virtual engines, which is helpful for creating and managing several independent

and collaborative virtual services in a data center node

4. be able to switch flexibly between processing cores with space-sharing and time-sharing

CloudAnalyst [12] aims to achieve the optimal scheduling among user groups

and data centers based on the current configuration.

Both CloudSim and CloudAnalyst are based on SimJava [11] and GridSim [10],

which makes them complicated. In addition, CloudSim and CloudAnalyst treat a

CDC as a large resource pool and consider only application-level workloads.

Therefore, they may not suitable for an IaaS simulation where each VM as resource

is considered requested and allocated.

Wood et al. [13] introduced techniques for VM migration and proposed migra-

tion algorithms. Zhang [15] compared major load balance scheduling algorithms for

traditional web servers. Singh et al. [14] proposed a novel load balancing algorithm

called Vector Dot to handle the hierarchical and multidimensional resource con-

straints by considering both servers and storage in cloud computing.

There is a lack of tools that enable developers to evaluate the requirements of

large-scale cloud applications in terms of comparing different resource scheduling

algorithms regarding the geographic distribution of both computing servers and

user workloads. To fill this gap in tools for evaluation and modeling of cloud
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environments and applications, in this chapter we propose CloudSched to be used

for dynamic resource scheduling in a CDC. CloudSched supports multiple schedul-

ing algorithms and it is suitable for the use and comparison of different scheduling

algorithms. Unlike traditional scheduling algorithms that consider only one factor

(such as CPU), which can cause hotspots or bottlenecks in many cases, CloudSched

treats multidimensional resources (such as CPU, memory, and network bandwidth

integrated for both PMs and VMs). Real-time constraint of both VMs and PMs,

which is often neglected in the literature, is considered in this chapter. The main

contributions of this chapter are:

1. proposing a simulation system for modeling cloud computing environments and perfor-

mance evaluation of different resource scheduling policies and algorithms;

2. focusing on the simulation of scheduling in an IaaS layer where related tools are still

lacking;

3. designing and implementing a lightweight simulator combining real-time multidimen-

sional resource information.

CloudSched offers the following novel features:

1. Modeling and simulation of large-scale cloud computing environments, including data

centers, VMs, and PMs

2. Providing a platform for modeling different resource scheduling policies and algorithms

at the IaaS layer for clouds

3. Both graphical and textual outputs are supported

The organization of remaining parts of this chapter is as follows: Section 11.2

introduces the CloudSched architecture and its main features. Section 11.3 discusses

performance measurements of different scheduling algorithms. Section 11.4 pre-

sents the design and implementation of CloudSched. Section 11.5 discusses the sim-

ulation results by comparing a few different scheduling algorithms. Finally,

conclusions are provided in Section 11.6.

11.2 The architecture and main features of CloudSched

The simplified layered architecture is shown in Figure 11.2:

1. Web portal. At the top layer is a web portal for users to select resources and send

requests; essentially, a few types of VMs are preconfigured for users to choose.

2. Core layer of scheduling. Once user requests are initiated, they go to next level

CloudSched scheduling, which is for selecting appropriate data centers and PMs based

on user requests. CloudSched provides support for modeling and simulation of CDCs,

especially allocating VMs (consisting of CPU, memory, storage, bandwidth, etc.) to

suitable PMs. This layer can manage a large scale of CDCs consisting of thousands of

PMs. Different scheduling algorithms can be applied in different data centers based on

customers’ characteristics.

3. Cloud resource. At the lowest layer are cloud resources that include PMs and VMs, both

consisting of certain amounts of CPU, memory, storage, and bandwidth.
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Some other tools, such as CloudSim and CloudAnalyst, are based on existing

simulation tools such as JavaSim and GridSim, which makes the simulation system

very large and complicated. Considering these, CloudSched uses a lightweight

design and is focused on resource scheduling algorithms.

The main features of CloudSched are the following:

1. Focus on the IaaS layer. Unlike existing tools that focus on the application (task) level,

such as CloudSim and CloudAnalyst, CloudSched focuses on scheduling VMs at the IaaS

layer, i.e., each request needs one or more VMs, whereas each request only occupies a

portion of the total capacity of a VM in CloudSim and CloudAnalyst.

2. Providing a uniform view of all resources. Similar to Amazon EC2 real applications,

CloudSched provides a uniform view of all physical and virtual resources so that both sys-

tem management and user selections are simplified. We will explain this in detail in the

following section.

3. Lightweight design and scalability. Compared to other existing simulation tools, such as

CloudSim and CloudAnalyst, which are built on GridSim (may cause complications),

CloudSched focuses on resource scheduling polices and algorithms. CloudSched can sim-

ulate tens of thousands of requests in a few minutes.

4. High extensibility. Modular design is applied in CloudSched. Different resource schedul-

ing policies and algorithms can be plugged into and compared with each other for perfor-

mance evaluation. In addition, multiple CDCs are modeled and can be extended to a very

large distributed architecture.

5. Easy to use and repeatable. CloudSched enables users to set up simulations easily and

quickly with easy-to-use graphical user interfaces and outputs. It can accept inputs from

User interface

Resources
types

CloudSched

Different scheduling algorithms

VM monitor VM manag.

User requests

Data centersHosts

Resource

Cloud

VMs CPU MEM DISK NET

Figure 11.2 Simplified layered architecture of CloudSched.
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text files and output to text files. CloudSched can save simulation inputs and outputs so

that modelers can repeat experiments. CloudSched ensures that repeated simulation yields

identical results. Some GUIs are shown in Figure 11.3 and illustrated in Figure 11.4.

6. Easy to configure and evaluate different algorithms. CloudSched provides a high degree

of control over the simulation. Entities and configuration options are modeled with major

features: CDC is defined in terms of PMs consisting of CPU, memory, and bandwidth (or

storage); VM is defined in terms of CPU, memory, and bandwidth (or storage), a few typ-

ical types of VMs are preconfigured; different resource scheduling policies and algorithms

are dynamically selectable for different data centers. Using identical inputs for different

scheduling policies and algorithms, CloudSched can collect results and automatically plot

different outputs to compare performance indices.

11.2.1 Modeling CDCs

The core hardware infrastructure related to the clouds is modeled in the simulator

by a data center component for handling VM requests. A data center is mainly com-

posed by a set of hosts, which are responsible for managing VMs during their life

cycles. Host is a component that represents a physical computing node in a cloud: it

is assigned a preconfigured processing capability (expressed in computing power in

CPU units), memory, bandwidth, storage, and a scheduling policy for allocating

processing cores to VMs. A VM can be represented in a similar way.

Figure 11.3 Main interface of CloudSched [1].
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11.2.2 Modeling VM allocation

With virtualization technologies, cloud computing provides flexibility in resource

allocation. For example, a PM with two processing cores can host two or more

VMs on each core concurrently. VMs can only be allocated if the total used amount

of processing power by all VMs on a host is not more than the one available in that

host.

Taking the widely used example of Amazon EC2, we show that a uniform view

of different types of VMs is possible. Table 11.1 provides eight types of VMs from

Amazon EC2 online information. Amazon EC2 does not provide information on its

hardware configuration. However, we can therefore form three types of different

PMs (or PM pools) based on compute units. In a real CDC, for example, a PM with

23 68.4 GB memory, 16 cores3 3.25 units, and 23 1690 GB storage can be pro-

vided. In this way, a uniform view of different types of VMs is possibly formed.

This kind of classification provides a uniform view of virtualized resources for het-

erogeneous virtualization platforms, e.g., Xen, KVM, VMWare, and brings great

benefits for VM management and allocation. Customers only need to select

suitable types of VMs based on their requirements. There are eight types of VMs in

CPU utilization diagram

Memory utilization diagram

Bandwidth utilization diagram

Mean utilization diagram

Figure 11.4 Main interface of CloudSched [2].
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EC2, as given in Table 11.1, where MEM stands for memory with unit GB, CPU

is normalized to unit (each CPU unit is equal to 1 Ghz 2007 Intel Pentium processor

[4]) and Sto stands for hard disk storage with unit GB. Three types of PMs are

considered for heterogeneous cases, as given in Table 11.2.

Currently, CloudSched implements dynamic load balancing, maximizing utiliza-

tion, and energy-efficient scheduling algorithms. Other algorithms, such as

reliability-oriented and cost-oriented, can be applied as well.

11.2.3 Modeling customer requirements

CloudSched models customer requirements by randomly generating different types

of VMs and allocating VMs based on appropriate scheduling algorithms in different

data centers. The arrival process, service time distribution, and required capacity

distribution of requests can be generated according to random processes. The arrival

rate of customers’ requests can be controlled. Distribution of different types of

VM requirements can also be set. A real-time VM request can be represented

in an interval vector: vmID(VM typeID, start-time, end-time, requested capacity).

For example, vm1(1, 0, 6, 0.25) shows that the request ID is 1, VM is of type 1

(corresponding to integer 1), start-time is 0, and end-time is 6 (here, 6 can mean the

sixth slot ended at time 6) and 0.25 for the capacity of a VM occupies from a given

PM. Other requests can be represented in similar ways. Figure 11.5 shows the life

cycles of VM allocation in a slotted time window using two PMs, where PM1 hosts

vm4, vm5, and vm6, whereas PM2 hosts vm1, vm2, and vm3.

Table 11.1 Eight types of VMS in Amazon EC2

MEM CPU (units) BW(or Sto) VM

1.7 1 (1 cores3 1 units) 160 1-1(1)

7.5 4 (2 cores3 2 units) 850 1-2(2)

15.0 8 (4 cores3 2 units) 1690 1-3(3)

17.1 6.5 (2 cores3 3.25 units) 420 2-1(4)

34.2 13 (4 cores3 3.25 units) 850 2-2(5)

68.4 26 (8 cores3 3.25 units) 1690 2-3(6)

1.7 5 (2 cores3 2.5 units) 350 3-1(7)

7.0 20 (8 cores3 2.5 units) 1690 3-2(8)

Table 11.2 Three types of PMs suggested

PM CPU (units) MEM BW (or Sto)

1 16 (4 cores3 4 units) 160 1-1(1)

2 52 (16 cores3 3.25 units) 850 1-2(2)

3 40 (16 cores3 2.5 units) 1690 1-3(3)
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11.3 Performance metrics for different scheduling
algorithms

Unlike traditional scheduling algorithms that consider only one aspect, which can

cause hotspots or bottlenecks in many cases, CloudSched treats multidimensional

resources, such as CPU, memory, and network bandwidth integrated for both PMs

and VMs. There is lack of related metrics for scheduling algorithms considering

multidimensional resources. For different scheduling objectives, there are different

metrics. In the following, we consider metrics for load balancing, energy effi-

ciency, and maximizing utilization. Other metrics for different objectives can be

extended easily.

11.3.1 Metrics for multidimensional load balancing

In the following, we review some existing metrics and then develop an integrated

measurement for the total imbalance level of the CDC, as well as the average

imbalance level of each server. Wood et al. [13] introduced a few VM migration

techniques. One integrated load balance metric is applied as follows:

V 5
1

ð12CPUuÞð12MENuÞð12NETuÞ
ð11:1Þ

where CPUu, MENu, and NETu are the average utilization of CPU, memory, and net-

work bandwidth, respectively, during each observed period. The large value V is, the

higher of integrated utilization. Migration algorithms can therefore be based on this

measurement. This actually is a strategy of minimizing integrated resource utilization

Time

0

vm1 (1, 0, 6, 0.25)

vm4 (2, 3, 6, 0.5)

vm5 (2, 4, 8, 0.25)

vm3 (1, 3, 8, 0.5) 

1 2 3 4 5 6 7 8 9 10

vm6 (2, 5, 9, 0.25)

PM#1

PM#2

vm2 (1, 1, 4, 0.125)

Figure 11.5 Example of user requests.
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by converting three-dimensional (3D) resource information into a one-dimensional

(1D) value. This conversion may cause multidimensional information loss.

Zheng et al. [16] proposed another integrated load balancing metric as follows:

B5
aN1iCi

N1mCm

1
bN2iMi

N2mMm

1
cN3iDi

N3mDm

1
dNeti

Netm
ð11:2Þ

The referred physical server m is selected first. Then, other physical servers i are

compared to server m. N1i is the CPU capability, N2i is the memory capability, and

N3i is the hard disk. Here, Ci and Mi denote the average utilization of CPU and

memory, respectively. Di represents the transferring rate of hard disk and Neti
represents the network throughput. Here, a, b, c, and d denote the weighting factors

for CPU, memory, hard disk, and network bandwidth, respectively. The major idea

of this algorithm is to select the smallest value B among all physical servers to

allocate VMs. This technique is also converting 3D resource information into a

1D value.

Singh et al. [14] introduced a novel Vector Dot algorithm to consider integrating

factors of load balance for flow paths in data centers. For a server node, the

node fraction vector ,ðCPUU=CPUCapÞ; ðmemU=memCapÞ; ðnetU=netCapÞ. is

defined, where CPUU, memU, and netU denote the average utilization of CPU,

memory, and network bandwidth of a server, respectively. CPUCap, memCap, and

netCap denote the total capacity of CPU, memory, and network bandwidth of a

server, respectively. And the node utilization threshold vector is given by ,CPUT,

memT, netT, ioT., where CPUT, memT, netT, and ioT represent the utilization

threshold of CPU, memory, network bandwidth, and IO, respectively. To measure

the degree of overload in a node and the system, the notion of an imbalance score

is used. The imbalance score for a node is given by:

IBscoreðf ;TÞ5 0; if f , T

eðf2TÞ=T ; otherwise

�
ð11:3Þ

By summing imbalance scores of all nodes, the total imbalance score of the sys-

tem is obtained. This nonlinear measurement has the advantage of distinguishing

between a pair of nodes at 3T and T and a pair of nodes both at 2T. The imbalance

score is a good measurement for comparing average utilization to its threshold.

Considering the advantages and disadvantages of existing metrics for resource

scheduling, an integrated measurement for the total imbalance level of a CDC, as

well as the average imbalance level of each server, has been developed for load bal-

ancing strategy. Other metrics for different scheduling strategies can be developed

as well. The following parameters are considered:

1. Average CPU utilization CPUu
i of a single server i. This is defined as the averaged CPU

utilization during an observed period. For example, if the observing period is 1 min and

the CPU utilization is recorded every 10 s, then CPUu
i is the average of six recorded

values of server i.
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2. Average utilization of all CPUs in a CDC. Let CPUn
i be the total number of CPUs of

server i,

CPUA
u 5

PN
i CPUU

i CPU
n
iPN

i CPUn
i

ð11:4Þ

where N is the total number of physical servers in a CDC. Similarly, the average utiliza-

tion of memory, network bandwidth of server i, all memories, and all network bandwidth

in a CDC can be defined as MEMU
i ; NET

U
i ; MEMA

u ; and NETA
u , respectively.

3. Integrated load imbalance value (ILBi) of server i. Variance is widely used as a measure

of how far a set of numbers are spread out from each other in statistics. Using variance,

an integrated load imbalance value (ILBi) of server i is defined:

ðAvgi2CPUA
u Þ2 1 ðAvgi2MEMA

u Þ2 1 ðAvgi2NETA
u Þ2

3
ð11:5Þ

where

Avgi 5
ðCPUU

i 1MEMU
i 1NETU

i Þ
3

ð11:6Þ

(ILBi) is applied to indicate load imbalance level comparing utilization of CPU, mem-

ory, and network bandwidth of a single server itself.

4. The imbalance value of all CPUs, memories, and network bandwidth. Using variance, the

imbalance value of all CPUs in a data center is defined as

IBLcpu 5
XN

i
ðCPUU

i 2CPUA
u Þ2 ð11:7Þ

Similarly, imbalance values of memory and network bandwidth can be calculated.

Then total imbalance values of all servers in a CDC is given by

IBLtot 5
XN

i
ILBi ð11:8Þ

5. Average imbalance value of a physical server i. The average imbalance value of a physi-

cal server i is defined as

IBLPM
avg 5

IBLtot

N
ð11:9Þ

where N is the total number of servers. As its name suggests, this value is used to measure

imbalance level of all physical servers.

6. Average imbalance value of a CDC. The average imbalance value of a CDC is defined as

IBLCDC
avg 5

IBLcpu 1 IBLmem 1 IBLnet

N
ð11:10Þ

7. Average running times. Average running time of the proceeding same amount of tasks

can be compared for different scheduling algorithms.

8. Makespan. This is defined as the maximum load (or average utilization) on any PM.

9. Utilization efficiency. In this case, this is defined as the minimum load on any PM divided

by the maximum load on any PM.
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11.3.2 Metrics for energy efficiency

11.3.2.1 Power consumption model

1. The power consumption model of a server. Most power consumption in data centers comes

from computation processing, disk storage, network, and cooling systems. In Ref. [17],

the authors proposed a power consumption model for blade server, where P is defined as

14:51 0:2Ucpu 1 ð4:5E2 8ÞUmen 1 0:003Udisk 1 ð3:1E2 8ÞUnet ð11:11Þ

where UCPU, Umem, Udisk, and Unet are the utilization of CPU, memory, hard disk, and net-

work interface, respectively. It can be seen that other factors such as memory, hard disk,

and network interface have a very small impact on the total power consumption. In Ref.

[3], the authors found that CPU utilization is typically proportional to the overall system

load, and proposed the following power model:

PðUÞ5 kPmax 1 ð12 kÞPmaxU ð11:12Þ

where Pmax is the maximum power consumed when the server is fully utilized, k is the

fraction of power consumed by the idle server (studies show that on average it is about

0.7), and U is the CPU utilization. This chapter focuses on CPU power consumption,

which accounts for the main part of energy compared to other resources such as memory,

disk storage, and network devices.

In the real environment, CPU utilization may change over time due to the workload

variability. Thus, the CPU utilization is a function of time and is represented as u(t).

Therefore, the total energy consumption by a PM (Ei) can be defined as an integral of the

power consumption function over a period of time as:

Ei 5

ðt1
t0

PðuðtÞÞdt ð11:13Þ

If u(t) is constant over time (e.g., average utilization is adopted, u(t)5 u), then

Ei5P (u)(t12 t0).

2. The total energy consumption of a CDC is computed as

Ecdc 5
Xn

i51
Ei ð11:14Þ

It is the sum of all energy consumed by all PMs. Note that energy consumption of all

VMs on PMs is included.

3. The total number of PMs used. This is the total number of PMs used for the given set of

VM requests. It is important for energy efficiency.

4. The total power-on time of all PMs used. Based on the energy consumption equation of

each PM, the total power-on time is the key factor.

11.3.3 Metric for maximizing resource utilization

1. Average resource utilization. Average utilization of CPU, memory, hard disk, and network

bandwidth can be computed and an integration utilization of all these resources can also

be used.

2. The total number of PMs used. It is closely related to the average and entire utilization of

a CDC.
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11.4 Design and implementation of CloudSched

In this section, we provide details related to the design and implementation of

CloudSched. A Java discrete simulator is implemented. In the following, major

building blocks of the CloudSched are described briefly.

11.4.1 IaaS resources considered

IaaS resources considered in this chapter include:

1. PMs: Physical computing devices that form data centers. Each PM can provide multiple

VMs and each PM can have a multiple composition of CPU, memory, hard drives, net-

work cards, and related components.

2. Physical clusters: These consist of a number of PMs, necessary network, and storage

infrastructure.

3. VM: A virtual computing platform on the PM that uses virtualization software. It has a

number of virtual CPUs, memory, storage, network cards, and related components.

4. Virtual cluster: consists of a number of VMs and necessary network and storage

infrastructure.

11.4.2 Scheduling process in CDC

Figure 11.6 provides a referred architecture of CDCs and major operations of

resource scheduling:

1. User requests: The user initiates the request through the internet (such as login cloud ser-

vice provider’s web portal).

2. Scheduling management: Scheduler Center makes decisions based on the user’s identity

(geographic location, etc.) and the operational characteristics of the request (quantity and

quality requirements). The request is submitted to the appropriate data center and then the

data center management program submits it to Scheduler Center. The Scheduler Center

allocates the request based on scheduling algorithms applied in CDCs.

3. Feedback: The scheduling algorithm provides available resources to the user.

4. Execute scheduling: The scheduling results (such as deploying steps) are sent to the

next stage.

5. Updating and optimization: Scheduler updates resource information and optimizes

resources among different data centers according to the optimizing objective functions.

Figures 11.7 and 11.8 show general and detailed UML diagrams of the main

resources in CDCs, respectively. Figure 11.7 shows the major resources and their

relationships in CDCs and Figure 11.8 shows the properties of each major resource

(classes).

11.4.3 Scheduling algorithms: taking the LIF algorithm as an
example

Figure 11.9 shows the pseudocodes of least imbalance level first (LIF) algorithm

for dynamic load balance of a CDC. Inputs to the algorithm include current
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Figure 11.8 Detailed UML diagram of main resources in CDCs.

Algorithm : Lowest-Average-Value-First(R)
Input: placement request r = (id,t_s,t_e.k);

status of current active tasks and PMs
Output: placement scheme for r and IBL_tot.
1) initialization: LowestAvg = large number;
2) For i=1:N Do
3)    If  request r can be placed on PM (i) 
4)    Then
5)      compute  avg(i)  utilization value of PM(i) it using    equations  (4)-(6);
6)         If avg(i)<LowestAvg
7)           Then
8)             LowestAvg=avg(i);
9)             allocatedPMID=i;
10)             Else
11)           EndIf
12)       Else  //find next PM
13)   Endfor
14)   IF LowestAvg== large number L  // cannot allocate
15)       Then put r into waiting queue or reject
16)        Else place r on PM with allocatedPMID and compute IBL_tot

Figure 11.9 LIF algorithm.
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VM request r, status of current active tasks, and PMs. For dynamic scheduling,

the output is placement scheme for request r. Basically, the algorithm dynami-

cally finds the lowest total imbalance value of the data center when placing

a new VM request by comparing different imbalance values if the request

is allocated to different PMs. The algorithm finds a PM with the lowest inte-

grated load. This will make the total imbalance value of all servers in a CDC

the lowest.

Figures 11.10 and 11.11 show the main class diagram and sequence diagram,

respectively, of the LIF algorithm. Class ScheduleDomain consists of main methods

and handles tasks in each queue by calling other classes. Class CreateRandVM and

VmTaskInfo generate task requests. Class Allocate and Sort allocate the requests of

VMs. Class Migrate and Allocate-Alg can migrate VMs. Record, PrintPM, and

BalanceLevel are responsible for printing and output functions. Server, PM, and

VM accomplish functions of physical servers and VMs.

Sequence diagram shows the following sequences of the algorithm:

1. Initialize the system

2. Obtain task requests

3. Allocate VM requests in the waiting queue

4. Operate migrating queues

5. Operate requesting queues

6. Operate deleting queues

CreateRandVM Vm TaskInfo

ScheduleDomain

Allocate_Alg

Migrate

PrintPM

Record

Sort

BalanceLevel

VirtualMachine

Server

PhysicsMachine

Figure 11.10 Main class diagram.
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Figure 11.12 shows one of the interfaces of configuring CDCs in CloudSched.

First, a data center is selected (by the manager) using different IDs, then the number

of and types of PMs are set up. Manager can also add/delete data centers.

Figure 11.13 shows one of the interfaces of configuring user requests. Probability

sd ScheduleDomain

ScheduleDomain : sd AddVmRequest : av Allocate : alt Migrate : migrate

1:Initialzie0

2:GetVmsRequest0

3:AllocateVM0

4:MigrateVM0

5:AllocateVM0

6:DeleteVM0

AllocateVM

MigrateVm

addVmRequest

[else needMove==1]

[if((WaitQueut!=null)&(vm.startTime>=currentTime))]

[else if((addVmRequest)&vm.startTime>=currentTime)]

[else if((deleteVmRequest!=null)&endTime>=currentTime)]

alt : Loop
alt

Ref

Ref

Ref

Figure 11.11 Sequence diagram.

Figure 11.12 One interface of configuring CDCs.
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distribution of each type of VMs, the total number of simulated VMs, and preferred

data centers can be set up. The design diagram of main classes is depicted in

Figure 11.10.

11.5 Performance evaluation

We use regular Pentium PC with CPU 2 Ghz and 2 GB of memory for the simulation.

11.5.1 Random configuration of VMs and PMs

In this section, we provide simulation results for comparing four different schedul-

ing algorithms for load balance. For convenience, short name is given for each

algorithm as follows:

1. ZHCJ algorithm: As introduced in Ref. [16], the algorithm always chooses PMs with the

lowest V value (as defined in Eq. (11.1)) and available resources to allocate VMs

(Figure 11.14).

2. ZHJZ algorithm: Selects a referring PM [16], calculates the value, and chooses PMs with

lowest B value (as defined in Eq. (11.2)) and available resources to allocate VMs.

3. LIF algorithm: Based on demands characteristics (e.g., CPU intensive, high memory, high

bandwidth requirements etc.), always selects PMs with lowest integrated imbalance value

(as defined in Eq. (11.5)) and available resource to allocate VMs.

4. Rand algorithm: randomly assigns requests (VMs) to PMs that have available resources.

5. Round-Robin algorithm: One of the simplest scheduling algorithms, it assigns tasks to

each physical server in equal portions and in circular order, handling all tasks without pri-

ority (also known as cyclic executive).

For the simulation, three types of heterogeneous PMs are considered,

each PM pool consists of some amount of PMs (can be dynamically config-

ured and extended). For the simulation of a large number of VM requests,

Figure 11.13 One interface of configuring user requests.
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both CPU and memory are configured with a large size, which can be set

dynamically:

PM type 1: CPU5 6 GHz, memory5 8 G, and bandwidth5 1000 M

PM type 2: CPU5 12 GHz, memory5 16 G, and bandwidth5 1000 M

PM type 3 CPU5 18 GHz, memory5 32 G, and bandwidth5 1000 M.

Similar to eight Amazon EC2 instances with high CPU, high memory, and stan-

dard configurations (but not exactly the same), eight types of VMs with equal prob-

ability of requests are generated randomly as follows (can be dynamic configured):

Type 1: CPU5 1.0 GHz, memory5 1.7 G, bandwidth5 100 M

Type 2: CPU5 4.0 GHz, memory5 7.5 G, bandwidth5 100 M

Type 3: CPU5 8.0 GHz, memory5 15.0 G, bandwidth5 100 M

Type 4: CPU5 5.0 GHz, memory5 1.7 G, bandwidth5 100 M

Type 5: CPU5 20.0 GHz, memory5 7.0 G, bandwidth5 100 M

Type 6: CPU5 6.5 GHz, memory5 17.1 G, bandwidth5 100 M

Type 7: CPU5 13.0 GHz, memory5 34.2 G, bandwidth5 100 M

Type 8: CPU5 26.0 GHz, memory5 68.4 G, and bandwidth5 100 M.

For all simulations, the number of PMs ranges from 100 to 600, the number of

requests of VMs varies from 1000 to 6000, a Pentium PC with CPU 2 Ghz and

2 GB of memory is used for all simulations. The input data of user requests is gen-

erated using a program by considering equal probabilities of the previously

VMs=10K VMs=20K VMs=50K
0

100

200

300

400

500

600
Running time (s)

Figure 11.14 Running time of CloudSched.
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mentioned eight types of VMs. Of course, different (random) probabilities of differ-

ent types of VMs can be generated. For steady-state analysis, a warm-up period

(initial 2000 requests) is used to drop the transient period.

Figure 11.15 shows the average imbalance level, defined in Eq. (11.10), of a

CDC. It can be seen that the LIF algorithm has the lowest average imbalance level

when the total number of VMs and PMs are varied.

Figure 11.16 shows the average imbalance level of the entire physical server

defined in Eq. (11.5). The LIF algorithm again has lowest average imbalance level

for all PMs when the total number of VMs and PMs are varied.

ZHJZ ZHCJ Rand Round LIF
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Figure 11.15 Average imbalance values of a CDC.
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Figure 11.16 Average imbalance values of each physical server.
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Figure 11.17 shows the average imbalance level, defined in Eq. (11.10), of

a CDC when the total number of physical servers is fixed but the number of VMs

is varied.

Figure 11.18 shows the average imbalance level of the entire physical server, defined

in Eq. (11.5), when the total number of physical servers is fixed but the number of VMs

is varied. Through extensive simulation, similar results are observed.
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Figure 11.17 Average imbalance values of a CDC when PMs5 100.
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Figure 11.18 Average imbalance values of each physical server when PMs5 100.
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11.5.2 Divisible size configuration of PMs and VMs

The configuration of VMs and PMs are explained in section 11.2.2.

In Figures 11.19�11.21, we show the average utilization of CPU, memory, band-

width, and the average of these three utilizations. We also show the imbalance value

(IBL, as in Eq. (11.10)) of the entire data centers by running five different algo-

rithms: Rand, Round-Robin, ZHJZ, ZHCJ, and LIF. It can be seen that in all the

cases (when the total number of VMs and PMs are varying), that LIF has highest

average utilization of CPU, memory, and bandwidth but has the lowest imbalance

value. These results demonstrate that metrics obtained in divisible cases are much

better than random configuration cases. Therefore, cloud providers such as Amazon

can adopt these configurations to provide better quality of service regarding load bal-

ancing, energy efficiency, and other performance related requirements.

11.5.3 Comparing energy efficiency

We considered four algorithms here:

1. Round-Robin: The Round-Robin is the most commonly used scheduling algorithm (e.g.,

by Eucalyptus and Amazon EC2 [18]), which allocates VM requests in turn to each PM.

The advantage of this algorithm is that it is simple to implement.

2. Modified Best Fit Decreasing (MBFD): MBFD is a bin-packing algorithm. Best Fit

Decreasing is shown to use no more than 11/9 optimal solution (OPT)11 bins (where

OPT is the number of bins given by the optimal solution) [6]. The MBFD algorithm [6]

first sorts all VMs in decreasing order of their current CPU utilizations and allocates each

VM to a host that provides the least increase of power consumption due to this allocation.

This allows leveraging the heterogeneity of resources by choosing the most power-

efficient nodes first. For homogenous resources (PM), the VM can be allocated to any

running PM that can still host because the power increasing is the same for homogenous
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Figure 11.19 Utilization and imbalance value of the entire data center when PMs5 100 and

VMs5 1000.

238 Optimized Cloud Resource Management and Scheduling



resources. The complexity of the allocation part of the algorithm is nm, where n is the

number of VMs that must be allocated and m is the number of hosts. MBFD needs sorting

requests so that it is only suitable for offline (or semi-offline) scheduling.

3. Offline Without Delay (OFWID): OFWID knows all requests in advance and follows the

requests exactly without delay. It firstly sorts requests in increasing order of their start-

times and allocates requests to PMs in increasing order of their IDs. If all running PMs

cannot host the request, then a new PM is turned on.

4. Online Without Delay (ONWID): ONWID knows one request each time. It allocates

requests to PMs in increasing order of their IDs. If all running PMs cannot host the
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Figure 11.20 Utilization and imbalance value of the entire data center when PMs5 200 and

VMs5 4000.
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Figure 11.21 Utilization and imbalance value of the entire data center when PMs5 500 and

VMs5 5000.
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request, a new PM is powered on. When the total number of PMs is fixed, if all PMs still

cannot host the request, then the request is blocked.

11.5.3.1 Impact of varying maximum duration of VM requests

In this case, eight types of VMs are considered, as given in Table 11.1, which is

based on Amazon EC2. The total number of arrivals (requests) is 1000 and each

type of VMs has an equal number, i.e., 125. All requests follow the Poisson arrival

process and have exponential service time, the mean interarrival period is set as 5,

the maximum intermediate period is set as 50, and the maximum duration of

requests are set as 50, 100, 200, 400, and 800 slots, respectively. Each slot is 5 min.

For example, if the requested duration (service time) of a VM is 20 slots, actually

its duration is 20�55 100 min. For each set of inputs (requests), experiments are

run three times and all the results shown in this chapter are the average of the three

runs. The configuration of PMs is based on eight types of VMs, as given in

Table 11.2. In this configuration, there are three different types of PMs (heteroge-

neous case) and the total capacity of a VM is proportional to the total capacity of a

PM. For comparison, we assume that all VMs are running using their requested

capacity. Figure 11.22 shows the total energy consumption (in kilowatt hours) of

the four algorithms as the maximum duration varies from 50 to 800, while all other

parameters are the same.

11.5.3.2 Impact of varying the total number of VM requests

Next, we fix the total number of each type of PM but vary the total number of VM

requests. The system load is defined as the average arrival rate (λ) divided by the

average service rate (u). The arrival process follows the Poisson distribution and

service time follows uniform distribution. To increase the system load, we vary the

maximum duration of each request, whereas the total number of PMs remains fixed

as 15 (each type has 5). Figure 11.23 provides the total energy consumption

comparison.

11.6 Conclusions

In this chapter, we introduced a lightweight cloud resources scheduling emulator,

CloudSched. Its major features and design and implementation details are pre-

sented. Simulation results are discussed for load balance and energy-efficient algo-

rithms. CloudSched can help developers to identify and explore appropriate

solutions considering different resource scheduling policies and algorithms. In the

near future, we will develop more indices to measure the quality of related algo-

rithms for different scheduling strategies such as maximization utilization of multi-

dimensional resource. In addition, more simulation results, such as varying the
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probability of each VM request, fixing total number of physical servers, with a

varying number of VMs are collected. Currently, different scheduling algorithms

are compared inside a CDC but they can be extended to multiple data centers eas-

ily. CloudSched is designed for comparing different resource scheduling algo-

rithms regarding IaaS. As for modeling and comparing features in SaaS (software

as a service), PaaS (platform as a service), and other domains, the system needs to

be extended as well.
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12Toward Running Scientific

Workflows in the Cloud

Main Contents of this Chapter

� Towards running scientific workflows in the cloud
� Experiment procedure
� Experiment on Amazon EC2

12.1 Introduction

Scientific workflow management systems (SWFMSs) have proven essential to scientific

computing because they provide functionalities such as workflow specification, process

coordination, job scheduling and execution, provenance tracking, and fault tolerance.

Systems such as Taverna [1], Kepler [2], Vistrails [3], Pegasus [4], Swift [5], and

VIEW [6] have seen wide adoption in various disciplines such as physics, astronomy,

bioinformatics, neuroscience, earth science, and social science. Nevertheless, advances

in science instrumentation and network technologies are posing new challenges to our

workflow systems in both data scale and application complexity.

We are entering into a big data era. The amount of data created in the world is

growing explosively. According to recent International Data Corporation (IDC)

research, the total amount of digital information in the world reached 1 zettabyte in

2010. Popular search engines such as Google and Bing can generate multiple tera-

bytes of search logs every day. Social network data is also tremendous: each month,

the Facebook community creates more than 30 billion pieces of content ranging

from web links, news, stories, blog posts, and notes to videos and photos [7]. The

scientific community is also facing a data deluge [8] coming experiments, simula-

tions, sensors, and satellites. The Large Hadron Collider [9] at CERN can generate

more than 100 terabytes of collision data per second. GenBank [10], one of the

largest DNA databases, already hosts over 120 billion bases and the number is

expected to double every 9�12 months. Data volumes are also increasing dramati-

cally in physics, earth science, medicine, and many other disciplines. As for appli-

cation complexity, a protein simulation problem [11] involves running many

instances of a structure prediction simulation, each with different random initial

conditions, performs multiple rounds, and can run up to tens of CPU years.

As an emerging computing paradigm, cloud computing [12] is gaining tremen-

dous momentum in both academia and industry: not long after Amazon opened its

Elastic Computing Cloud (EC2) to the public, Google, IBM, and Microsoft all

released their cloud platforms. Meanwhile, several open source cloud platforms,
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such as Hadoop [13], OpenNebula [14], Eucalyptus [15], Nimbus [16], and

OpenStack [17], became available because of the fast growth within their respective

communities.

There are major benefits and advantages that are driving the widespread adop-

tion of the cloud computing paradigm:

1. Easy access to resources: resources are offered as services and can be accessed over the

internet. For instance, with a credit card, you can get access to Amazon EC2 virtual

machines (VMs) immediately.

2. Scalability on demand: once an application is deployed onto the cloud, the application

can automatically be made scalable by provisioning the resources in the cloud on demand.

The cloud takes care of scaling out and in and load balancing.

3. Better resource utilization: cloud platforms can coordinate resource utilization according

to resource demand of the applications hosted in the cloud.

4. Cost saving: cloud users are charged based on their resource usage in the cloud, meaning

they only pay for what they use, and if their applications are optimized, that will immedi-

ately be reflected into a lowered cost.

Scientific workflow systems have been formerly applied over a number of exe-

cution environments, such as workstations, clusters/grids, and supercomputers. The

new cloud computing paradigm, with an unprecedented size of datacenter-level

resource pools and on-demand resource provisioning, can offer much more to such

systems, enabling scientific workflow solutions capable of addressing peta-scale

scientific problems. The benefit of running scientific workflows on top of a cloud

can be multifold:

1. The scale of scientific problems that can be addressed using scientific workflows can be

greatly increased compared to cluster/grid environments, which was previously

upbounded by the size of a dedicated resource pool with limited resource sharing exten-

sion in the form of virtual organizations. Cloud platforms can offer a vast amount of com-

puting resources, as well as storage space for such applications, allowing scientific

discoveries to be carried out on a much larger scale.

2. Application deployment can be made flexible and convenient. With bare-metal physical

servers, it is not easy to change the application deployedand the underlying supporting

platform. However, with virtualization technology in a cloud platform, different applica-

tion environments can either be preloaded in VM images or deployed dynamically onto

VM instances.

3. The on-demand resource allocation mechanism in the cloud can improve resource utiliza-

tion and change the experience of end users for improved responsiveness. Cloud-based

workflow applications can allocate resources accordingly with the number of nodes at

each workflow stage instead of reserving a fixed number of resources upfront. Cloud

workflows can scale out and in dynamically, resulting in a fast turnaround time for end

users.

4. Cloud computing provides a much larger room for the trade-off between performance and

cost. The spectrum of resource investment now ranges from dedicated private resources, a

hybrid resource pool combining local resource and remote clouds, and a full outsourcing

of computing and storage to public clouds. Cloud computing not only provides the poten-

tial to solve larger-scale scientific problems, but also presents the opportunity to improve

the performance/cost ratio.
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In an earlier paper [18], we identified various challenges associated with migrat-

ing and adapting an SWFMS in the cloud. In this chapter, we present an end-to-end

approach that addresses the integration of Swift, an SWFMS that has a broad appli-

cation in grids and supercomputers, with the OpenNebula cloud platform. The inte-

gration covers all major aspects of workflow management in the cloud, from client-

side workflow submission to the underlying cloud resource management, thus pro-

viding scientific-workflow-management-as-a-service in the cloud.

12.2 Related work

There have been a couple of early explorers that tried to evaluate the feasibility, per-

formance, and adaptation of running data-intensive and HPC applications on clouds

or hybrid grid/cloud environments. Palankar et al. [19] evaluated the feasibility, cost,

availability, and performance of using Amazon’s S3 service to provide storage sup-

port to data-intensive applications and identified a set of additional functionalities

that storage services targeting data-intensive scientific applications should support.

Oliveira et al. [20] evaluated the performance of X-ray crystallography workflow

using SciCumulus middleware with Amazon EC2. These studies provide a good

source of information about cloud platform support for scientific applications. Other

studies investigated the execution of real science applications on commercial clouds

[21,22], mostly High Performance Computing (HPC) applications, and compared the

performance and cost against grid environments. Although such applications indeed

can be ported to a cloud environment, cloud execution doesn’t show a significant

benefit, because of the applications’ tightly coupled nature.

There are also endeavors to run workflow applications on top of clouds. This

research [23,24] focused on running scientific workflows composed of loosely cou-

pled parallel applications on various clouds. The study conducted on an experimen-

tal Nimbus Cloud test bed [25] dedicated to scientific applications involved a

nontrivial amount of computation performed over many days, which allowed the

evaluation of the scalability, as well as the performance and stability of the cloud

over time. Their studies demonstrated that multisite cloud computing is a viable

and effective solution for some scientific workflows, the networking and manage-

ment overhead across different cloud infrastructures do not have a major effect on

the overall user experience, and the convenience of being able to scale resources at

runtime outweighs such overhead.

With VGrADS [26], not only did the virtual grid abstraction enable a more

sophisticated and effective scheduling of workflow sets, unifying workflow execu-

tion over batch queue systems and cloud computing sites (including Amazon EC2

and Eucalyptus), but the Virtual Grid Execution System also provided a uniform

interface for provisioning, querying, and controlling the resources. Its workflow

planner could interact with a DAG scheduler, an Amazon EC2 planner, and fault

tolerance subcomponents to trade-off various system parameters—performance,

reliability, and cost.
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Approaches for automated provisioning include the Context Broker [16] from

the Nimbus project, which supported the concept of a one-click virtual cluster

that allowed clients to coordinate large virtual cluster launches in simple steps.

The Wrangler system [27] was a similar implementation that allowed users to

describe a desired virtual cluster in XML format and send to a web service,

which managed the provisioning of VMs and the deployment of software and

services. It was also capable of interfacing with many different cloud resource

providers.

Bresnahan et al. [28] introduced Cloudinit.d, a tool for launching, configuring,

monitoring, and repairing a set of interdependent VMs in one or a set of

infrastructure-as-a-service (IaaS) clouds. In addition, as its name suggested,

Cloudinit.d could launch groups of interdependent VMs and optimize the launch by

allowing independent VMs to launch at the same time.

12.3 Integration

In this section, we discuss our end-to-end approach for integrating Swift with the

OpenNebula cloud platform. Before we go into further details of the integration, we

will discuss some background information with regard to workflow systems and

cloud integration options.

12.3.1 Integration options

In our earlier paper [18], we described a reference architecture of SWFMSs and

identified four integration approaches for the deployment of SWFMSs in a cloud

computing environment according to the reference architecture. The reference

architecture for SWFMSs [29] is proposed as an endeavor to standardize

SWFMS research and development efforts, and an Service Oriented Architecture

(SOA)-based instantiation is first implemented in the VIEW system. As shown

in Figure 12.1, the reference architecture consists of four logical layers, seven

major functional subsystems, and six interfaces. The first layer is the

Operational Layer, which consists of a wide range of heterogeneous and distrib-

uted data sources, software tools, services, and their operational environments,

including high-end computing environments. The second layer is the Task

Management Layer, which consists of three subsystems: Data Product

Management, Provenance Management, and Task Management. The third layer,

the Workflow Management Layer, consists of Workflow Engine and Workflow

Monitoring. Finally, the fourth layer, the Presentation Layer, consists of the

Workflow Design subsystem and the Presentation and Visualization subsystem.

The reference architecture would allow the scientific workflow community to

focus on different layers and subsystems of SWFMSs, and enable such systems

to interact and interoperate with each other based on the interface definitions.
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The four deployment options, accordingly, correspond to deploying different

layers of the reference architecture into the cloud:

12.3.1.1 Operational-Layer-in-the-cloud

In this solution, only the Operational Layer lies in the cloud with an SWFMS running

out of the cloud. An SWFMS can now leverage cloud applications as another type of

task component. Cloud-based applications can take advantage of the high scalability

provided by the cloud and large resource capacity provisioned by the data centers.

This solution also relieves a user from the concern of vendor lock-in due to the

relative ease of using alternative cloud platforms for running cloud applications.

However, the SWFMS itself cannot benefit from the scalability offered by the cloud.

12.3.1.2 Task-Management-Layer-in-the-cloud

Both the Operational and Task Management Layers will be deployed in the cloud.

The Data Product Management, Provenance Management, and Task Management

components can now leverage the high scalability provided by the cloud. For Task

Management, rather than accommodating the user’s request based on a batch-based

scheduling system, all or most tasks with a ready state can now be immediately

deployed over cloud computing nodes and executed instead of waiting in a job

queue for the availability of resources. One limitation of this solution is the eco-

nomic cost associated with the storage of provenance and data products in the

cloud. Moreover, although task scheduling and management can benefit from the

scalability offered by the cloud, workflow scheduling and management do not bene-

fit because the workflow engine runs outside of the cloud.
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Figure 12.1 Reference architecture for SWFMSs.
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12.3.1.3 Workflow-Management-Layer-in-the-cloud

In this solution, the Operational, Task Management, and Workflow Management

Layers are deployed in the cloud with the Presentation Layer deployed at a client

machine. This solution provides a good balance between system performance and

usability: the management of computation, data, and storage and other resources are

all encapsulated in the cloud, while the Presentation Layer remains at the client to

support the key architectural requirement of user interface customizability and user

interaction support. In this solution, both workflow and task management can bene-

fit from the scalability offered by the cloud. However, the downside is that they

become more dependent on the cloud platform over which they run.

12.3.1.4 All-in-the-cloud

In this solution, an entire SWFMS is deployed inside the cloud and accessible via a

web browser. A distinct feature of this solution is that no software installation is

needed for a scientist and the SWFMS can fully take advantage of all the services

provided in a cloud infrastructure. Moreover, the cloud-based SWFMS can provide

highly scalable scientific workflows and task management as services, providing

one kind of software-as-a-service (SaaS). One concern the user might have is the

economic cost associated with the necessity of using a cloud on a daily basis, the

dependency on the availability and reliability of the cloud, and the risk associated

with vendor lock-in.

12.3.2 The Swift workflow management system

Swift is a system that bridges scientific workflows using parallel computing. It is a

parallel programming tool for rapid and reliable specification, execution, and man-

agement of large-scale science and engineering workflows. Swift takes a structured

approach to workflow specification, scheduling, and execution. It consists of a sim-

ple scripting language called SwiftScript for concise specification of complex paral-

lel computations based on dataset typing and iterations [30] and dynamic dataset

mappings for accessing large-scale datasets represented in diverse data formats. The

runtime system provides an efficient workflow engine for scheduling and load bal-

ancing and it can interact with various resource management systems such as

Portable Batch System (PBS) and Condor for task execution.

The Swift system architecture consists of four major components: Program

Specification, Scheduling, Execution, and Provisioning, as illustrated in Figure 12.2.

Computations are specified in SwiftScript, which has been shown to be simple yet

powerful. SwiftScript programs are compiled into abstract computation plans, which

are then scheduled for execution by the workflow engine onto provisioned resources.

Resource provisioning in Swift is very flexible and tasks can be scheduled to execute

on various resource providers, where the provider interface can be implemented as a

local host, a cluster, a multisite grid, or the Amazon EC2 service.
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The four major components of the Swift system can be easily mapped into the

four layers in the reference architecture. The specification falls into the Presentation

Layer, although SwiftScript focuses more on the parallel scripting aspect for user

interaction than on graphical representation. The scheduling components correspond

to the Workflow Management Layer, the execution components map to the Task

Management Layer, and the Provisioning Layer can be thought of as mostly in the

Operational Layer.

12.3.3 Integration challenges

For easy integration with a cloud platform, a Task-Management-Layer-in-the-

cloud approach can be chosen by implementing a provider (such as an Amazon

EC2) to Swift. Then, tasks in a Swift workflow can be submitted into Amazon

EC2 and executed on Amazon EC2 VM instances. However, this approach would

leave most of the workflow management and dynamic resource scaling outside

the cloud. For application developers, we would like to free them from compli-

cated cloud resource configuration and provisioning issues, and provide them

with the convenience and transparency to scalable cloud resources. Therefore, we

choose to take the Workflow-Management-Layer-in-the-cloud approach, which

requires minimal configuration on the client side and supports easy deployment

with virtualization techniques.

There are a couple of challenges associated with this integration approach. First,

we need to port the SWFMS (in our case, Swift) into the cloud, which would usu-

ally involve wrapping up an SWFMS as a cloud service. In addition, to fully

explore the capability and scalability of the cloud, the workflow engine may need

to be reengineered to be able to interact directly with the various cloud services

such as storage, resource allocation, task scheduling, and monitoring. On the client

side, either a complete web-based user interface needs to be developed to allow
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users to specify and interact with the SWFMS, or a thin desktop client application

needs to be developed to interact with the SWFMS cloud service.

Second, we need to address the resource provisioning issue. Although concep-

tually the cloud offers uncapped resources and a workflow can request as many

resources as it requires, this comes with a cost and the presumption that the

workflow engine can talk directly with the resource allocated in the cloud

(which is usually not true without tweaking the configuration of the workflow

engine). Considering these two factors, some existing solutions, such as Nimbus,

would acquire a certain number of VMs and assemble them as a virtual cluster,

onto which existing cluster management systems, such as PBS, can be deployed

and used as a job submission/execution service that a workflow engine can

directly interact with. We take a similar approach that creates a virtual cluster

and deploys the Falkon [31] execution services onto the cluster for high-

throughput task scheduling and execution. Falkon is a lightweight task execution

service for optimized task throughput and resource efficiency delivered by a

streamlined dispatcher, a dynamic resource provisioner, and the data diffusion

mechanism [32] to cache datasets in local disk or memory and dispatch tasks

according to data locality.

12.3.4 Integration architecture

We devise an end-to-end integration approach that addresses the previously men-

tioned challenges. We call it end-to-end because it covers all major aspects

involved in the integration, including a client-side workflow submission tool, a

cloud workflow service that accepts submissions, a CRM that accepts resource

requests from the workflow service and dynamically instantiates a Falkon virtual

cluster, and a cluster monitoring service that monitors the health of the acquired

cloud resources.

12.3.4.1 The client submission tool

The client submission tool is a standalone Java application that provides an

Integrated Development Environment (IDE) for workflow development and allows

users to edit, compile, run, and submit SwiftScripts. Scientists and application

developers can write their scripts in this environment and test run their workflows

on a local host before they make final submissions to the Swift Cloud service to

run in the cloud. It provides multiple submission options: execute immediately, exe-

cute at a fixed time point, or execute recurrently (per day, per week, etc.).

We integrate Swift with the OpenNebula cloud platform. We choose

OpenNebula for our implementation because it has a flexible architecture, is easy to

customize, and provides a set of tools and service interfaces that are handy for inte-

gration. Of course, other cloud platforms can be integrated in similar means. We

show the system diagram of the integration in Figure 12.3.
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12.3.4.2 The Swift Cloud workflow service

One of the key components of the system is the Swift Cloud workflow service that

it acts as an intermediary between the workflow client and the backend CRM. The

service has a web interface for configuration of the service, the resource manager,

and application environments. It also allows for workflow submission via the web

interface, in addition to the client tool submission.

12.3.4.3 The CRM

The CRM accepts resource requests from the cloud workflow service and is in

charge of interfacing with OpenNebula and provisioning Falkon virtual clusters

dynamically to the workflow service. In addition, it also monitors the virtual clus-

ters. The process to start a Falkon virtual cluster is as follows:

1. CRM provides a service interface to the workflow service: the latter makes a resource

request to CRM.

2. CRM initializes and maintains a pool of VMs: the number of VMs in the pool can be set

via a config file, the Ganglia is started on each VM to monitor CPU, memory, and IO.

3. Upon a resource request from the workflow service:

a. CRM fetches a VM from the VM pool and starts the Falkon service in that VM.

b. CRM fetches another VM, starts the Falkon worker in that VM, and makes that worker

register to the Falkon service.

c. CRM repeats step b until all Falkon workers are started and registered.

d. If there are not enough VMs in the pool, then CRM will make a resource request to

the underlying OpenNebula platform to create more VM instances.
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4. CRM returns the end point reference of the Falkon server to the workflow service, and

the workflow service can now dispatch tasks to the Falkon execution service.

5. CRM starts the Cluster Monitoring Service to monitor the health of the Falkon virtual clus-

ter. The monitoring service checks the heartbeat from all the VMs in the virtual cluster, and

will restart a VM if it goes down. If the restart fails, then, for a Falkon service VM, it will

get a new VM, start Falkon service on it, and have all the workers register to the new ser-

vice. For a Falkon worker VM, it will replace the worker and delete the failed VM.

6. Note that we also implement an optimization technique to speed up the Falkon virtual

cluster creation. When a Falkon virtual cluster is decommissioned, we change its status to

standby, and it can be reactivated. When CRM receives resource request from the

workflow service, it checks if there is a standby Falkon cluster. If so, it will return

the information of the Falkon service directly to the workflow service. It will also check

the number of the Falkon workers already in the cluster.

a. If the number is more than requested, then the surplus workers are deregistered and

put into the VM pool.

b. If the number is less than required, then VMs will be pulled from the VM pool to cre-

ate more workers.

As for the management of VM images, VM instances, and VM network, CRM

interacts with and relies on the underlying OpenNebula cloud platform. Our

resource provisioning approach considers not only the dynamic creation and

deployment of a virtual cluster with a ready-to-use execution service, but also effi-

cient instantiation and reuse of the virtual cluster and the monitoring and recovery

of the virtual cluster. We demonstrate the capability and efficiency of our integra-

tion using a small-scale experiment setup.

12.4 Experiment

In this section, we demonstrate and analyze our integration approach using a NASA

MODIS image processing workflow. The NASA MODIS dataset [33] we use is a

set of satellite aerial data blocks, with each block is of size around 5.5 MB, with

digits indicating the geological feature of each point in that block, such as water,

sand, green land, and urban area.

12.4.1 MODIS image processing workflow

The workflow (illustrated in Figure 12.4) takes a set of such blocks, obtains the size

of the urban area in each of the blocks, analyzes and selects the top 12 blocks with

the largest urban area, converts them into displayable format, and assembles them

into a single PNG file.

12.4.2 Experiment configuration

We use six machines in the experiment, each configured with Intel Core i5 760

with four cores at 2.8 GHz, 4 GB memory, 500 GB HDD, and connected with
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Gigabit Ethernet LAN. The operating system is Ubuntu 10.04.1, with OpenNebula

2.2 installed. The configuration for each VM is one core, 1.5 GB memory, 20 GB

HDD, and we use KVM as the hypervisor. One of the machines is used as the front-

end, which hosts the workflow service, the CRM, and the monitoring service. The

other five machines are used to instantiate VMs. Each physical machine can host

up to 2 VMs, so at most 10 VMs can be instantiated in the environment.

12.4.3 Experiment results

In our experiment, we control the workload by changing the number of input data

blocks, the resource required, and the submission type (serial submission or parallel

submission). Therefore, there are three dependent variables. We design the experi-

ment by making two of the dependent variables constant and changing the other.

We run three types of experiments:

1. Serial submission

2. Parallel submission

3. Different number of input data blocks

In all experiments, VMs are preinstantiated and put in the VM pool. The time to

instantiate a VM is around 42 s and this doesn’t change much for all the VMs created.

12.4.3.1 The serial submission experiment

In the serial submission experiment, we first measure the base line for server crea-

tion time, worker creation time, and worker registration time. We create a Falkon

virtual cluster with one server with a varying number of workers, and we don’t

reuse the virtual cluster (Figure 12.5).

We can observe that the server creation time is quite stable and is around 4.7 s

every time. Worker creation time is also stable, around 0.6 s each. For worker regis-

tration, the first one takes about 10 s, and the rest take about 1 s each.

For the rest of the serial submission, we submit a workflow after the previous

one has finished to test virtual cluster recycling. We use 50 input data blocks to run

the experiments.

getLandUse getLandUse
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colorModis colorModis

assemble

getLandUse 50
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Figure 12.4 MODIS Image processing workflow.
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In Figure 12.6, the resources required are one Falkon server with five workers,

one server with three workers, and one server with one worker. In Figure 12.7, the

resources required are in the reverse order of those in Figure 12.6.

From Figure 12.6, we can see that for the second and third submissions, the

worker creation and server creation time are zero; only the surplus workers need to

deregister themselves. In Figure 12.7, each time two extra Falkon workers need to

be created and registered, and the time taken are roughly the same. These experi-

ments show that the Falkon virtual cluster can be reused after it is created, and

worker resources can be dynamically removed or added.

In Figure 12.8, we first request a virtual cluster with one server and nine work-

ers. We then make five parallel requests for virtual clusters with one server and one
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worker. We can observe that one of these requests is satisfied using the existing vir-

tual cluster, whereas the other four are created on-demand. In this case, it takes

some time to deregister all eight surplus workers, which makes the total time com-

parable to on-demand creation of the cluster.

12.4.3.2 The parallel submission experiment

In the parallel submission experiment, we submit multiple workflows at the same

time to measure the maximum parallelism (the number of concurrent workflows

that can be hosted in the cloud platform) in the environment.

First, we submit resource requests with one server and two workers, and

the maximum parallelism is up to three. In Table 12.1, we give the results for
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the experiment, in which we make resource requests for one, two, three, and

four virtual clusters. The request of two virtual clusters can reuse the one

released by the early request, and the time to initialize the cluster is significantly

less than fresh creation (445 ms versus 4696 ms). It must create the second clus-

ter on-demand. For the four virtual cluster request, because all VM resources are

used up by the first three clusters, the fourth cluster creation will fail, as

expected. When we change resource requests to one server and four workers, the

maximum parallelism is two, and the request to create a third virtual cluster also

fails. Because our VM pool has a maximum of ten VMs, it is easy to explain

why this occurred. This experiment shows that our integrated system can maxi-

mize the cluster resources assigned to workflows to achieve efficient utilization

of resources.

12.4.3.3 Different number of data blocks experiment

In this experiment, we change the number of input data blocks from 50 blocks to

25 blocks and measure the total execution time with varying number of workers in

the virtual cluster.

In Figure 12.9, we can observe that, with the increase of the number of work-

ers, the execution time decreases accordingly (i.e., execution efficiency

improves). However, when using five workers to process the workflow, the sys-

tem reaches efficiency peak. After that, the execution time goes up with more

workers. This means that the improvement can’t subsidize the management and

registration overhead of the added worker. The time for server and worker crea-

tion, and worker registration remain unchanged when we change the input size

(as shown in Figure 12.5). The experiment indicates that although our virtual

resource provisioning overhead is well controlled, we do need to carefully deter-

mine the number of workers used in the virtual cluster to achieve resource utiliza-

tion efficiency.

Table 12.1 Parallel submission, one server two workers

No. of clusters Server unit Worker creation Worker registration

1 4624 ms 1584 ms 11305 ms

2 4696 ms 2367 ms 11227 ms

445 ms 0 0

3 4454 ms 1457 ms 11329 ms

488 ms 0 0

548 ms 0 0

4 521 ms 0 0

585 ms 0 0

686 ms 0 0

submission failed
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12.5 Experiment on Amazon EC2

In this section, we use Amazon EC2 as the resource provisioner and a Montage pro-

cessing workflow to process 2MASS nebula graph. The region size of the 2MASS

nebula graph is 0.5 and the image data are divided into 18 FITS images with size

of 2.01 MB in each survey band (H, J, and Ks). As we do not integrate the CRM

into Amazon EC2, we initialize the Falkon cluster manually.

12.5.1 Montage image processing workflow

Montage is a suite of software tools developed to generate large astronomical image

mosaics by composing multiple small images. The workflow stages for generating

the mosaic of three images are shown in Figure 12.10. The typical workflow pro-

cess involves the following steps:

1. Image projection:

a. Reproject each image into a common coordinate space (mProjectPP).

2. Background rectification:

a. Calculate a list of overlapping images (mOverlaps).

b. Perform image difference between each pair of overlapping images (mDiffFit).

c. Fit difference images into a plane (mConcatFit).

d. Background correction (mBackground).

3. Image co-addition (mAdd):

a. Optionally divide a region into a grid of subregions and co-add images in each region

into a mosaic.

b. Co-add the processed images (or mosaics in subregions) into a final mosaic.

Finally, the mosaic is shrunk (mShrink) and converted into a JPEG image

(mJPEG) for display.
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12.5.2 Experiment configuration

There are two Amazon instance types used in our experiment. The Falkon server and the

Swift server use the same configuration: instance type is c1.medium with five CPU units,

two CPU cores, and 1.7 GB memory. The Falkon worker is configured with instance

type m1.small: one CPU unit, one CPU core, and 1.7 GB memory. All the instances use

Ubuntu Server 11.10 as the operating system and are in the same security group.

12.5.3 Experiment results

In the experiment on Amazon EC2, we calculate the time cost to initialize the

Falkon cluster and 2MASS nebula graph processing. In all experiments, instances

are prelaunched using AMIs. The time to launch specified number of instances is

shown in Figure 12.11. We can clearly see that the time increases with the instance

number almost linearly. As the environment for launching instances in Amazon EC2

is uncontrollable, a few illogical data may appear that have already been excluded.

12.5.3.1 Falkon cluster initialization experiment

During the entire procedure of a Falkon cluster initialization, we first create the

Falkon server and start the services on it. Then we create, register, and deregister

workers concurrently.
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Figure 12.10 Montage workflow.
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In this experiment, we create a Falkon cluster with one server and a varying

number of workers, and we don’t reuse the cluster. We measure the server creation

time, worker creation time, and worker registration time to compare with the exper-

iment in OpenNebula. As we do not use a CRM in Amazon EC2, the worker crea-

tion/registration time is measured in different way compared to the results in the

OpenNebula experiment. To calculate the worker creation/registration time, we use

the end-time of the last worker finishes creating/registering minus the start-time of

the first worker starts to create/register.

In Figure 12.12, we can observe the time cost to create a Falkon server and start ser-

vices is around 5.5 s, which is very close to the server creation time in the OpenNebula

experiment in Figure 12.5. Creation time for one single worker is stable, around 3.5 s
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each, and with worker number increasing, the average time to create a worker becomes

lower—down to 0.5 s when the worker number reaches 32. Falkon server creation and

Falkon worker creation time are affected by the performance and configuration of

VMs. In addition, we have measured that the performance of Amazon instances is

lower than the performance of local VMs with lower configuration parameter. To prove

this, we initialize a local VM that is configured with one core and 1 GB memory and

run a Falkon worker on it. The worker creation time is 1.1 s, much lower than 3.5 s.

This also helps explain why the Falkon server creation time measured in the Amazon

EC2 experiment is still longer, whereas the Falkon server configuration parameter

seems much higher than the Falkon server we configured in OpenNebula experiment.

For worker registration, the time stays around 1.5 s each. Because the worker reg-

istration time is influenced by the network environment, we can determine why the

time measured in the Amazon EC2 experiment varies from the results in

OpenNebula experiment. In the OpenNebula experiment, the environment is

deployed in Gigabit LAN. However, the network in the Amazon EC2 experiment,

provided by Amazon, has a much smaller bandwidth. In addition, in the OpenNebula

experiment, the first worker registration cost around 10 s, which is different from the

result we measure here. Because the worker creation and registration is managed by

the CRM and the first worker is in charge of notifying the server to start worker reg-

istration related mechanism, the 10 s consist of the resource scheduling time, com-

mand sending time, mechanism starting time, and first worker registration time. In

our experiment in Amazon EC2, we do not use a CRM and the command to create

workers was submitted manually. Therefore, we only measure the time to register

one single worker, except the time cost in the preparation stage.

In this part, we measure the server creation, worker creation, and worker regis-

tration time of one Falkon cluster that consists of one server and 32 workers. Then

we deregister the workers and measure the time it takes to deregister 16 work-

ers!8 workers!4 workers!2 workers!1 worker. To calculate the worker dereg-

istration time, we use the end-time of the last worker finishes deregistering minus

the start-time of when the first worker starts to deregister.

In Figure 12.13, we can see that the deregistration time of one single worker is

around 20 ms, which is quite short compared to the worker creation and registration

time. Because of the relatively short deregistration time the network effect cannot

be ignored. There exists several workers cost around 100 ms to deregister, which

are regarded as dirty data and have been excluded. As we do not use a CRM, the

communication procedure between the Falkon cluster and the CRM is skipped and

the deregistration time in Amazon EC2 is much shorter than the time cost in

OpenNebula (shown in Figure 12.6).

Finally, we measure the server creation, worker creation, and worker registration

time of a Falkon cluster that consists of one server and one worker. Then, we

expand the cluster scale exponentially by adding 1 worker!2 workers!4 work-

ers!8 workers!16 workers into the cluster.

In Figure 12.14, we can note that the worker number increase exponentially, but

the time cost rises almost linearly. The time cost to create and register one single

worker is similar with the results in Figure 12.12.
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12.5.3.2 MASS nebula graph processing experiment

In this experiment, we submit a 2MASS nebula graph processing workflow to the

Swift server, then Swift schedules and dispatches tasks to Falkon workers through

the Falkon server. We change the number of workers in the Falkon cluster and mea-

sure the time cost of the entire procedure, except the cluster initialization.

In Figure 12.15, we can observe that, with the increase of the number of work-

ers, the montage processing time decreases accordingly. After the worker number

reaches eight, the time cost decreases slowly. If we consider both the montage pro-

cessing time and cluster creation time, the total time may become larger with the

increase of worker number. We can achieve the same conclusion as summarized
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from Figure 12.9. We should choose an appropriate cluster size based on the data

size to achieve resource utilization efficiency.

12.6 Conclusions

As more and more scientific applications are migrating into the cloud, it is impor-

tant to also migrate SWFMSs into the cloud to take advantage of cloud scalability

and to handle the ever-increasing data scale and analysis complexity of such appli-

cations. The cloud offers unprecedented scalability to workflow systems and could

potentially change the way we perceive and conduct scientific experiments. The

scale and complexity of the scientific problems that can be handled can be greatly

increased on the cloud, and the on-demand nature of resource allocation on the

cloud will also help improve resource utilization and user experience. We presented

our early effort in offering workflow management as a service by integrating the

Swift workflow management system with the OpenNebula cloud platform, in which

a cloud workflow management service, a cloud resource manager, and a cluster

monitoring service are developed. We also conducted a set of experiments to show-

case the functionality and efficiency of our approach.

For future work, we will leverage distributed storage for VM images and con-

duct large-scale experiments to find ways to improve VM instantiation, virtual clus-

ter creation, and workflow execution.

Additionally, CRM is a very important module in charge of the management of

VM images, VM instances, and VM network in the integration architecture. A

CRM also receives resource requests and interacts with the underlying cloud plat-

forms for resource provisioning. From the experiment in Amazon EC2 without a

CRM, we can clearly see that virtual cluster reuse does not exist, which is not effi-

cient. We will improve the CRM functionality to adapt to cloud platforms, such as
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Amazon EC2, OpenStack, and CloudStack, which are gaining popularity in the sci-

ence community. Then, we will develop a series of unified integration interfaces to

integrate Swift with cloud platforms, which could be a reference to integrate other

SWFMSs with cloud platforms.
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[24] Vöckler J-S, Juve G, Deelman E, Rynge M, Berriman GB. Experiences using cloud

computing for a scientific workflow application. Invited Paper, ACM Workshop on

Scientific Cloud Computing (ScienceCloud); 2011.

[25] Keahey K, Freeman T. Science clouds: early experiences in cloud computing for scien-

tific applications, cloud computing and its applications 2008 (CCA-08), Chicago, IL;

October 2008.

[26] Ramakrishnan L, Koelbel C, Kee Y-S, Wolski R, Nurmi D, Gannon D, et al. VGrADS:

enabling e-Science workflows on grids and clouds with fault tolerance. In: Proceedings

of the conference on high performance computing networking, storage and analysis

(SC’09); 2009.

[27] Juve G, Deelman E. Wrangler: virtual cluster provisioning for the Cloud. In HPDC;

2011.

[28] Bresnahan J, Freeman T, LaBissoniere D, Keahey K. Managing appliance launches in

infrastructure clouds, Teragrid 2011. Salt Lake City, UT; July 2011.

[29] Lin C, Lu S, Fei X, Chebotko A, Pai D, Lai Z, et al. A reference architecture for scien-

tific workflow management systems and the VIEW SOA solution. IEEE Trans Serv

Comput (TSC) 2009;2(1):79�92.

[30] Zhao Y, Dobson J, Foster I, Moreau L, Wilde M. A notation and system for expressing

and executing cleanly typed workflows on Messy scientific data. SIGMOD Rec

2005;34(3).

[31] Raicu I, Zhao Y, Dumitrescu C, Foster I, Wilde M. Falkon: a Fast and Light-weight

tasK executiON framework. Proceedings of the 2007 ACM/IEEE conference on

Supercomputing. ACM; 2007, November. p. 43.

[32] Raicu I, Zhao Y, Foster I, Szalay A. Accelerating large-scale data exploration through

data diffusion. International workshop on data-aware distributed computing 2008, co-

locate with ACM/IEEE international symposium high performance distributed comput-

ing (HPDC); 2008.

[33] NASA MODIS dataset, ,http://modis.gsfc.nasa.gov/.; 2012.

266 Optimized Cloud Resource Management and Scheduling

http://refhub.elsevier.com/B978-0-12-801476-9.00012-4/sbref6
http://refhub.elsevier.com/B978-0-12-801476-9.00012-4/sbref6
http://refhub.elsevier.com/B978-0-12-801476-9.00012-4/sbref6
http://refhub.elsevier.com/B978-0-12-801476-9.00012-4/sbref6
http://refhub.elsevier.com/B978-0-12-801476-9.00012-4/sbref7
http://refhub.elsevier.com/B978-0-12-801476-9.00012-4/sbref7
http://refhub.elsevier.com/B978-0-12-801476-9.00012-4/sbref7
http://refhub.elsevier.com/B978-0-12-801476-9.00012-4/sbref8
http://refhub.elsevier.com/B978-0-12-801476-9.00012-4/sbref8
http://refhub.elsevier.com/B978-0-12-801476-9.00012-4/sbref8
http://modis.gsfc.nasa.gov/

